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1 INTRODUCTION 

The occurrence and fate of both organic and inorganic trace contaminants in the aquatic environment 

has long been recognized as an important issue of public health and environmental concern. A wide 

range of trace organics, both synthetic and natural, have been detected and identified as important 

contaminants in sewage and effluent impacted water bodies including surface and groundwater. Trace 

inorganic contaminants can also occur naturally in groundwater under certain geochemical conditions.  

Trace contaminants are defined as chemicals of concern to human health and the biotic environment 

due to a combination of their physicochemical toxicological properties. In the aquatic environment, 

they are present at trace levels, usually in the µg/L range or less. From a toxicological point of view, 

low concentrations of trace contaminants in ground and drinking water may not always be harmful to 

humans (in fact in most cases health effects are unknown at this stage), but they are undesirable in 

regard to the “precautionary principle” [1]. Although trace contaminant removal is an issue facing 

various industries, this chapter focuses mostly on the water purification process. The role of 

nanofiltration (NF) in water and wastewater treatment, occurrence of trace contaminants and their 

environmental implications, separation processes and a review of current studies are presented in this 

chapter.  

2 NANOFILTRATION IN WATER AND WASTEWATER TREATMENT 

Historically, nanofiltration (NF) and reverse osmosis (RO) were primarily applied in water softening 

and desalination. However, NF has recently found its niche in both water and wastewater industries. 

This can be attributed to at least three factors [2]:  

1. More stringent regulation for both potable and waste waters;  

2. Increasing demand for water; and 

3. Market self-regulation. 

Given the increasing difficulty in meeting maximum contaminant levels (MCLs), there has been a shift 

from enhanced coagulation to membrane filtration in both water and wastewater treatment [3]. While 

coagulants preferentially remove larger molecular weight (MW) compounds, which tend to be more 

hydrophobic, it is more difficult to remove the smaller and more hydrophilic compounds by chemical 

means. NF membranes have a significant potential in retaining organics and hence are used increasingly 

for treatment of “coloured” waters. Increasing demand for water leads to the exploitation of resources 

of lower water quality that are not suitable for conventional treatment. Indeed, water recycling has now 

become a major approach to replenish diminishing water resources [4]. 

The majority of wastewater organics are the remnants of biological treatment and tend to be lower in 

molecular weight and aromaticity than organics found in natural waters [5]. These compounds are also 

referred to as effluent organic matter (EfOM) [5]. Further, such compounds may be less biologically 

degradable due partly to their binding capacity to bulk organic matter [6, 7] and contain a large number 

of trace organics. Finally, market self-regulation has assisted membrane process becoming an 

economically viable option due to the development and commercialisation of membrane technologies 

and the water industries themselves. Examples of wastewater and water treatment plants using NF/RO 

membranes are shown in Table 1. Further consideration of applications of NF in water and wastewater 

treatment can be found in Chapters 10 and 11. 
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Table 1: Examples of wastewater and water treatment plants using NF/RO membranes. 

 Location 
Capacity 

(m3/d) 
Application 

Water Factory 21 (Orange County 

California) [8] 
15 000 

Indirect potable reuse via 

groundwater recharge 

Mexico City [9] 500 Irrigation 

City of Livermore (California) [9] 2800 Irrigation; fire fighting water 

Chandler (Arizona) [9] 4160 Indirect potable 

Artis Zoo (Amsterdam) [10] 430-1200 
Cleaning animals cages; Ecoflow 

for the zoo environment 

Sydney Olympic Park (Homebush Bay-

Sydney) [11] 
2200 Non-potable reuse 

W
at
er
 r
eu
se
 

Kranji NEWater plant (Singapore) [12] 40,000 Indirect potable reuse 

W
at
er
 s
up

pl
y 

Mery-Sur-Oise (Paris, World’s largest 

water supply plant using NF process) [13] 
140 000 

Pesticide removal for drinking 

water supply 

 

NF is also an effective method to treat landfill leachate (see Chapter 16 for details on this application) 

as it may contain a wealth of trace contaminants that is not biodegradable and thus will remain in the 

water discharged after undergoing biological treatment [14]. In addition, NF plays an important role in 

some small-scale operations including mobile water treatment units for military activities in remote 

regions from the worst sources such as raw sewage [1] and space travel [15]. In the course of military 

action, a reliable and safe drinking water supply is an important logistical concern and it may be 

necessary to produce water from highly contaminated sources that may contain many trace 

contaminants. Safe and reliable direct water reuse is also a priority for long missions in space. Last but 

not least, NF presents a valuable tool for researchers to concentrate and characterize a variety of 

organics from aquatic environments.   

The removal processes of trace contaminants using NF are complex and to date poorly understood. 

Hence the mechanisms in this chapter are preliminary and much work still needs to be done to fill in 

the knowledge gap. This chapter will document and discuss the significance of trace contaminants in 

water and wastewater applications where NF can be applied as a treatment process. Removal 

mechanisms and membrane-contaminant interactions are discussed. 

Nghiem, L.D. ; Schäfer, A.I. (2004) Trace Contaminant Removal with Nanofiltration,  
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3 OCCURRENCES OF TRACE ORGANICS AND THEIR EFFECTS ON 

HEALTH & ENVIRONMENT 

Organic compounds are ubiquitous in any aquatic environment. Organic matter found in water spans a 

wide spectrum, their molecular weight ranging from several thousands to less than a hundred Daltons 

(grams per mol). Most compounds on the upper end of this spectrum are of natural origin, and they are 

commonly known as natural organic matter (NOM). Although they are not considered harmful to 

human health, the formation of carcinogenic trihalomethanes (THMs) and other disinfection by-

products after disinfection is directly related to the amount of these precursor compounds present.  

Trace organics are generally located at the lower end of this spectrum. It is the lower molecular weight 

compounds that are of significant concern.  Some trace organics such as pesticides, trihalomethanes 

(THMs), polychlorinated biphenols (PCBs) and polyaromatic hydrocarbons (PAHs) are regulated. That 

is their maximum contamination levels (MCLs) are established to be enforceable standards by a 

regulatory authority. However, the list of regulated compounds is not exhaustive. Many compounds 

have not yet been regulated due to difficulties associated with analysis of such compounds at trace 

levels, categorization or identification and proof of health effects or dose response relationships.  

Most trace contaminants are of anthropogenic origin. A variety of synthetic organics are produced in a 

substantial quantity each day for numerous beneficial uses such as pesticides, pigments, dye carriers, 

preservatives, pharmaceuticals, refrigerants, propellants, heat transfer medium, dielectric fluid, 

degreasers, lubricants, etc. [16]. These compounds are collectively known as synthetic organic 

compounds (SOCs). Although, there is no doubt that SOCs have contributed to the prosperity of the 

world by increasing productivity in both industrial and agriculture activities, treating and preventing 

many diseases, they also present a significant environmental threat to mankind and biodiversity. The 

production of such chemicals may also entail the introduction of by-products and their metabolites, 

some of which are far more detrimental to human health and the environment than the parent 

compounds. 

Depending on their characteristics, SOCs can be further divided into different groups including 

persistent organic compounds (POPs), pesticides, pharmaceutically active compounds (PhACs), and 

endocrine disrupting chemicals (EDCs). The last group also includes a number of naturally occurring 

compounds, which are excreted into the environment by humans, animals and plants. Definitions and 

example compounds in these groups are presented in Table 2.  

Guidelines and regulations with regard to trace contaminants in drinking and surface water are not 

uniform among authorities around the world. A framework for the regulations of EDCs and PhACs in 

aquatic environment is currently being developed by the European Union and their counterparts 

(Australia and Israel).  The US Geological Survey has published a list of emerging pollutants in natural 

waters [17]. 
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Table 2: Groups of trace contaminants, definitions and examples 

Group Definition Examples 

US-EPA MCL in 

drinking water 

(µg/L)[18] 

Bromate 10 

Chlorite 1000 

Haloacetic acid (HAA5) 60 DBPs 

By-products results from interaction of 
disinfectants (chlorine, chloramines, 
ozone, etc) with naturally occurring 
organic material such as humic and 
fulvic acids during disinfection  Trihalomethanes 

(THMs) 
80 

PCBs 0.5 

HCH (include Lindane) 0.2 POPs 

Synthetic organic compounds that are 
persistent, bioaccumulating and toxic 
organic compounds prone to long-
range atmospheric transport Dioxin (2,3,7,8-TCDD) 0.00003 

Heptachlor 0.4 

Lindane 0.2 

Endrin 2 
Pesticides  

Chemicals used as pesticides, 

insecticides, fungicides or herbicides 

Atrazine 3 

Estrodiol not regulated 

Estrone not regulated 

PCBs 0.5 
EDCs 

Exogenous substances that cause 

adverse health effects in an intact 

organism, or its progeny, consequent 

to endocrine function [19] Nonylphenol not regulated 

Ciprofloxacin not regulated 

Iopamidol not regulated 

Ioxithalamic acid not regulated 
PhACs 

Unused, residue or metabolites of 

pharmaceuticals that are administered 

to humans or animals for various 

benefit including treatment and 

prevention of diseases [20] Carbamazepine not regulated 

 

Although the toxicology of several SOCs is well known, monitoring and especially treatment of such 

compounds have not until recently been a focus in the water industry. This stems from the fact that 

when drinking water standards were developed, water resources were assumed to be “pollution free” 

[21]. This assumption is becoming more and more questionable as indeed there are many pathways in 

which trace organics can reach water bodies. For example, contaminants may be directly applied to 

control waterborne diseases, derived from leaching contaminants off agriculture land, spray drift from 

agricultural operations (i.e. pesticides) and atmospheric fall out (i.e. DDT, PCBs), accidentally released 

into water bodies, discharged from chemical factories or contamination of water sources from sewer 

discharge as is the case in many European rivers, for example, which receive effluent but also serve as a 

water supply.  

Nghiem, L.D. ; Schäfer, A.I. (2004) Trace Contaminant Removal with Nanofiltration,  
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 8, 479-520. 
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On the other hand, studies on removal of PhACs and EDCs are still very limited due to the absence of 

regulations as discussed above, but are experiencing a strong interest at present in part because of the 

increased need for water recycling and the uncertainties evolving around trace contaminants.  

3.1 Disinfection by products 

It is of paramount importance to ensure that drinking water is free of pathogenic microorganisms, 

which can cause disease and death. It is also desirable to eliminate or inactivate such microorganisms 

from sewage effluent prior to discharge into receiving water. Consequently, disinfection is one of the 

most important tools to achieve this goal. Disinfection can be accomplished via a variety of 

disinfectants or physical methods. Chlorine and hypochlorite are the most commonly used chemical 

disinfectants, however water may also be disinfected with chloramine, chlorine dioxide, ozone, 

ultraviolet radiation (UV) and physical processes such as ultrafiltration (UF) or NF. Unfortunately, 

disinfection processes (except membrane filtration) can produce a number of disinfection by products 

(DBPs), which may induce various forms of cancer and other health consequences [22-24].  

Chlorine is the most common disinfectant, and in the chlorination process it reacts with NOM to 

produce a complex mixture of by-products, including a wide variety of halogenated compounds, with 

the main by-products being trihalomethanes (THMs) and halogenated acetic acids (HAAs). Other 

disinfectants can produce different types of by-products. For example, ozone is known to produce a 

variety of aldehydes [25]. It is possible, however, that other disinfection by-products, for which no 

health data are available, are present at extremely low concentrations. It is also possible that the 

combined effects of these compounds (both known and unknown) on health may be different to the 

individual effects. Nonetheless, the immediate health risks posed by disinfection by-products are 

considerably less than the long term exposure (or chronic) risks due to the presence of pathogenic 

microorganisms in water, which has not been disinfected. Hence efforts to reduce the DBP 

concentration must not compromise disinfection itself but DBP formation and removal needs to be 

considered as part of disinfection.  

While there are several methods to reduce the concentration of disinfection by-products such as 

disinfectant dosage optimization, NF is presented as a powerful tool to minimize DBP concentrations 

in finished water. Natural organic matter comprises a large fraction of macro-organics with high 

molecular weight. Therefore, NF can effectively eliminate DBPs by removing natural occurring organic 

matter prior to disinfection. In such circumstances, reduction of DBP formation potential is commonly 

reported to indicate the effectiveness of DBPs removal. NF can also directly remove DBPs following 

disinfection. However, it is less effective as DBPs are organic compounds that are small in molecular 

weight. Indeed, in some cases, low-pressure RO membranes can be employed to ensure high removal 

rate of DBPs following disinfection. Table 3 summarises DBPs and DBP formation potentials 

reductions by NF from several studies. 
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Table 3: Reduction of DBPs and DBP formation potentials by various NF membranes (*THMFP: Trihalomethanes 

formation potential;  TOXFP: Total organic halides formation potential; TOX: Total organic halide) 

Membrane Compound* 
Formula Retention 

(%) 

Referenc

e 
Remark 

THMFP - 90-95 
NF70 

TOXFP - 87 
[26]  

THMFP - 95 
Unknown 

TOXFP  93 
[27] Pilot scale 

Trichloroethylene C2HCl3 85-95 
NF70 

Tetrachloroethylene C2Cl4 53-80 
[28] Lab scale 

Unknown Dibromochloropropane C3H5Br2Cl 35 [27] Full scale 

Trichloromethane CHCl3 87 

Bromodichloromethane CHBrCl2 87 Unknown 

Dibromochloromethane CHBr2Cl 70 

[8] Full scale 

NF70 Tetrachloromethane CCl4 76-96 [28] Lab scale 

Dichloroacetic acid CHCl2COOH 68-71 
Polyamide 

Trichloroacetic acid CCl3COOH 82-84 
[29] Pilot scale 

CDNF50 TOX - 89-93 [30] 

Bleaching 

paper mill 

effluent 

 

While the removal is generally high (mostly >80%), the removal is depending on the contaminant type, 

the membrane used, operating conditions and most likely the solution chemistry of the treated waters. 

Hence it is to date impossible to draw generic conclusions that is valid for all NF membranes and 

DBPs. 

3.2 Persistent organic pollutants  

In recent years persistent organic pollutants (POPs) have attracted significant attention from the 

scientific community as well as environmental policy makers and non-governmental organizations such 

as Greenpeace [31-34]. Concern over recalcitrant and extreme toxic properties of these compounds has 

led to international efforts to control their use and disposal and to understand their global distribution 

and behaviour [35]. These efforts have resulted in the UN-ECE POP protocol signed by 36 countries 

including European countries, Canada and the United States of America [34]. UNEP has identified a 

list of 16 POPs, 11 of which are active ingredients of pesticides [36]. There are many more substances 

that may meet the POPs’ criteria, which have yet to be declared due to difficulties associated with 

assessment of their toxicology and physicochemical properties [31]. 

Nghiem, L.D. ; Schäfer, A.I. (2004) Trace Contaminant Removal with Nanofiltration,  
in: Nanofiltration – Principles and Applications, Schäfer A.I., Waite T.D., Fane A.G. (Eds). Elsevier, Chapter 8, 479-520. 
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3.3 Pesticides 

As described above, pesticides are a dominant group in the list of POPs as defined by UNEP. The 

listed pesticides are DDT, aldrin, chlordane, dieldrin, endrin, heptachlor, mirex, toxaphene, and 

hexachlorobene [31].  

Given their extreme environmental hazard, the use and production of persistent pesticides has ceased 

for at least two decades. However, traces of these substances are still detectable and applied in many 

regions throughout the world. Degradation of such compounds is slow [31], on the order of ten years 

or more for many substances, thus ambient levels of persistent pesticides in contaminated areas will 

decline only very slowly [35]. Consequently, the occurrence of persistent pesticides and their 

metabolites in surface water, groundwater and particularly reclaimed water are of concern to the water 

industry.   

Although current registered pesticides are less persistent and harmful than their predecessors, the 

abundance of pesticides in both surface and ground water is common due to the widespread and long 

term applications. Severe water quality changes caused by excessive application of pesticides have 

occurred, for example, in Europe and North America [37-41]. An intensive monitoring program 

conducted for three main rivers in the Paris area from 1991 to 1994 has revealed high levels of atrazine 

[39]. Results of this study are represented in Figure 1 and more detail on the removal of atrazine using 

NF is given in Chapter 10.  
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Figure 1: Atrazine concentration in the rivers of the Paris region from 1991 to 1994 [39].  

The problem is worse for developing countries due to intensive and widespread application of 

agriculture chemicals, weak and unenforceable regulations, and most of all low environmental 

awareness over the issue. Between 68 and 100% of tested drinking water sources were polluted with 

pesticides in 10 regions in Videira, Brazil when a study was carried out between June 1988 and 

December 1990 [42]. Organophosphorus pesticides were found at levels of 3 to 19 µg/L in 

groundwater and surface water in Egypt [42]. Water samples taken from the Bhopal area of India in 

1990 showed DDT level in the range of 3 to 22 mg/L [43]. In some developing countries, there exists 
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evidence that DDT is still illegally used to combat mosquitoes despite a ban imposed by the 

government [44-46]. 

Given the resistance of these compounds to conventional water treatment, pesticide removal using NF 

and low-pressure RO membranes has been subject to intensive research. The results of several studies 

are shown in Table 4, illustrating the effectiveness of NF/RO membranes in removing such 

compounds using different membranes. Figure 2 shows molecular structures of several pesticides of 

particular environmental concern. Although molecular structures of most pesticides are branched 

(indicating a high retention by NF or low-pressure RO membranes), there is a great variation in both 

molecular structure and functional group amongst pesticides. In addition, the retention also strongly 

depends on the membrane used. For example, for atrazine retention values between 47 and 100% have 

been reported. From those results it is clear that one cannot generalise on the performance of NF to 

retain such contaminants. 
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Figure 2: Molecular structures of several pesticides. 
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Table 4: Rejection of several pesticides by NF/RO membranes (*DCB: Dichlorobenzne, TCB: Trichlorobenzene) 

Membrane Compound* 

Feed 

Conc. 

(µg/L) 

Retention 

(%) 
Reference Remark 

1,4-DCB 0.16 56 

1,2-DCB 0.20 50 Unknown 

1,2,4-TCB 0.16 56 

[8] Full scale 

Simazine 42 

Atrazine 61 

Alachlor 89 
HNF-1 

Methoxychlor 

20-170 

99.2 

[47] Pilot scale 

Diuron 82 

Simazine 92 PVD 1 

Atrazine 

1 

92 

Diuron 10 

Simazine 38 
Desal 5 

DK 
Atrazine 

1 

47 

[48] Lab scale 

Diuron 45 

Simazine 80 NF 200 

Atrazine 

1 

80 

[49] Lab scale, in distilled water 

Simazine 0.1-0.4 50-100 

NF 70 
Atrazine 0.5-1 50-100 

[50] 

Pilot scale, retention increases 

as NOM content varies from 

0.4 to 3.6 mg/L DOC 

Simazine 96 
NF 70 

Atrazine 

300 

300 97 
[51] Lab scale 

Carbaryl 40 

Chloroneb 53 NTR 7250 

Propiconazole 98 

Carbaryl 25 

Chloroneb 99 NTR 7410 

Propiconazole 

500-

1500 

77 

[52] Lab scale 

3.4 Endocrine Disrupting Chemicals (EDCs) 

The effects of endocrine-disrupting chemicals (EDCs) on both humans and the biota are of increasing 

concern. Over the last few years, intensive attempts have been made to study a wide variety of effects 

that have been attributed to EDCs. A multitude of environmental effects already observed include 

increase in vittellogenin levels (a bio-indicator of feminity in fish) in male and juvenile female fish in 
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and immediately downstream of sewage effluent discharge points [53-57]). Most recent studies by many 

researchers have confirmed the impacts of EDCs on trout at typical concentrations encountered in 

sewage effluent [58-60].  

OH

O

 

Estrone 

OH

OH

 

17β-estradiol 

OH

HO

OH

 

Estriol 

O

OH

Testosterone 

O

O CH3

 
Progesterone 

OH

OH
CH

 

17α-ethinylestradiol  

Figure 3: Structures of several steroid hormones. 

EDCs consist of a vast number of both synthetic and natural organic as well as inorganic chemicals 

[61-63]. Amongst them, the impacts of steroid hormones such as estrone and 17β-estradiol (natural 
hormones) and 17α-ethinylestradiol (a synthetic hormone, the main component of the contraceptive 

pill) are prominent as they have far higher endocrine-disrupting potency than other EDCs (see Table 5) 

and are very commonly found in municipal wastewaters. The steroid hormones all share a distinctive, 

characteristic five-ring structure (see Figure 3). Estrone and estriol are intermediate metabolite products 

of 17β-estradiol, which is mainly produced in the ovary of the placenta. 17β-estradiol controls the 
development of the secondary female sex characteristics in women and together with the gestagens, 

control the reproductive process [64]. Progesterone is a major gestagen, and testosterone is an 

important male hormone. 

Table 5: Examples of endocrine disrupting potency in relation to 17β-estradiol 

Substance Relative potency Reference 

17β-estradiol 1  

Estrone 3 x 10-1 [65] 

17α-Ethinylestradiol 1-10 [65, 66] 

17β-Estradiolglucuronide 2.5 x 10-2 

Diethylstilbestrol 7 x 10-2 

Progesterone 2 x 10-2 

Testosterone 1 x 10-2 

[66] 

Nghiem, L.D. ; Schäfer, A.I. (2004) Trace Contaminant Removal with Nanofiltration,  
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Phytoestrogenes < 1 x 10-3 

4-Butyl phenol 1.6 x 10-4 

4-Nonyl phenol 0.9 x 10-5 
[67] 

Kepone 1 x 10-6 

DDT 1 x 10-6 
[68] 

 

Being excreted by humans, such steroid hormones are ubiquitous in aquatic environments receiving 

sewage effluent. They are frequently detected in wastewater treatment plants (STP) discharge effluent 

or fresh water bodies receiving sewage effluent around the world within the lower ngL-1 range [17, 69-

74]. Estradiol concentrations of up to 200 ngL-1 in STP effluent have been also reported [61]. The 

performance of conventional wastewater treatment plants with regards to removal of steroid estrogens 

varies greatly and, as a consequence, concentrations of some steroid estrogens in secondary effluent 

often remain sufficiently high to harm wildlife such as fish [75]. This is particularly true for steroid 

estrogens as only 1 ng/L of 17β-estradiol may cause distinctive effects on fish [54]. In spite of the 

magnitude of this problem, research on the removal of EDCs (particularly steroid hormones) in water 

and wastewater has been limited to date due to their relatively low concentration and the associated 

analytical difficulties but has attracted significant interest in recent years in particular in Europe where 

large projects such as POSEIDON and PTHREE are addressing those issues in great detail [69]. 

Given the potential impacts of EDCs such as estrone and 17β-estradiol, and inadequate and 
inconsistent performance of conventional wastewater treatment with regard to such compounds, NF 

and low-pressure RO membranes are likely to play an important role in removal of these compounds. 

Retention of estrone and 17β-estradiol using several NF/RO membranes reported by several recent 

studies are summarised in Table 6. 

Table 6: Retention of estrone and 17β-estradiol using various NF/RO membranes.  

Membrane Compound Feed Conc. Retention (%) Reference 

Estrone 100 ng/L 13 
TFC-SR2 

17β-estradiol 100 ng/L 21 

Estrone 100 ng/L 76 
TFC-S 

17β-estradiol 100 ng/L 82 

X-20 Estrone 100 ng/L 87 

[76] 

Estrone 100 ng/L 89 
NF-90 

17β-estradiol 100 ng/L 86 

Estrone 100 ng/L 85 
NF-270 

17β-estradiol 100 ng/L 85 

[77] 

Estrone 50 µg/L 80 
UTC60 

17β-estradiol 50 µg/L 72 

[78] 
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Estrone 50 µg/L 57 
NTR7250 

17β-estradiol 50 µg/L 58 

Estrone 100 µg/L 40 
PES10 

17β-estradiol 100 µg/L 50 
[79] 

 

The results in Table 6 indicate that the retention of natural hormones estrone and 17β-estradiol also 
varies over a large range depending on the membrane type. However, the highest retention reported is 

89% and hence not a complete retention of those compounds can be achieved. This phenomenon will 

be explained in more detail in the later mechanisms section. 

3.5 Pharmaceutically active compounds (PhACs) 

Pharmaceuticals are administered to humans and animals for a variety of benefits including prevention 

and treatment of various types of disease. Given the variety of compounds in use and their widespread 

distribution and persistence in the environment, there are potential unanticipated consequences of 

pharmaceutical residues and their metabolites [80-82]. Most (if not all) pharmaceuticals administered to 

humans and animals are excreted to various degrees and discharged directly to the sewage system, 

depending upon the physiochemical properties of the compounds. Although some of the compounds 

are biodegradable, most xenobiotics are persistent to the conventional biological sewage treatment 

process. Consequently, in investigations carried out in many countries including Austria, Brazil, Canada, 

Croatia, England, Germany, Greece, Italy, Spain, Switzerland, The Netherlands, Australia and the U.S., 

more than 80 pharmaceuticals and their metabolites, have been detected in aquatic environments at 

concentrations in the µg/L range or lower [20, 83-88]. Reported compounds include pharmaceuticals 

with a wide range of applications: analgesics, anti-inflammatory compounds, beta-blockers, lipid-

regulators, antiepileptics, β2-sympathomimetics, antineoplastics, antibiotics, X-ray media contrast agents 

and contraceptive drugs. Molecular structures of several PhACs frequently detected in the aquatic 

environment are shown in Figure 4. 
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Figure 4: Structures of several PhACs most frequently detected in aquatic environment. 

As pharmaceuticals are designed to be biologically active, their potential to affect a large variety of non-

target organisms for a wide range of physiological consequences is inherent. The potential for induction 

[89] or proliferation of antibiotic resistance [89-91] due to low concentrations of antibiotic agents in the 

environment is of increasing concern to scientists. 

Several studies have shown that some PhACs are not eliminated completely in the conventional sewage 

treatment plants and are, thus, discharged as contaminants into the receiving waters [84, 85, 92]. 

Removals of some PhACs by municipal wastewater treatment plants are listed in Table 7. Under 

effluent recharge conditions, residues of PhACs such as clofibric acid, carbamazepine, primidone or X-

ray contrast agents may also leach into groundwater aquifers [93]. PhACs occurrence has been reported 

in ground and drinking water samples from water works using bank filtration or artificial groundwater 

recharge downstream from municipal wastewater treatment plants [94]. 
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Table 7: Removals of some PhACs in municipal wastewater treatment works. 

Compound Reference 
Raw sewage 

(ng/L) 

Effluent 

(ng/L) 

Removal 

(%) 

Treatment 

process 
Remark 

Diclofenac  N/A N/A 4 

Clofibric acid  N/A N/A 13 

Bezafibrate  

[87] 

N/A N/A None 

Flocculation Lab scale 

Ciprofloxacin  313 68 79 

Ciprofloxacin  447 62 86 

Norfloxacin  255 51 80 

Norfloxacin  

[95] 

435 55 87 

STP Switzerland 

Iopamidol  4300 4700 None 

Diatrizoateb  3300 4100 None 

Ioxithalamic acid  

[96] 

170 160 None 

STP Germany 

Ibuprofen 1000 600 52 

Carbamazepine 2000 1000 39 

Diclofenac 400 300 30 

Sulfamethoxazole 1000 900 27 

Naproxen 

[97] 

8000 4000 58 

STP 

Australia, 

predicted by 

quantities of 

use & 

fugacity 

model 

STP: Sew treatment plant; N/A: data not available 

 

The results reported in Table 7 vary from zero to 87%, depending on the PhAC, the location and most 

likely the local treatment plant design and operating conditions including the type of biomass. While 

several research groups now focus on the biodegradation mechanisms of trace contaminants and the 

optimisation of conventional treatment processes towards the removal of such contaminants, it is 

unlikely that high removal of all compounds can be achieved. 

On the other hand, several researchers have reported almost complete removal of all PhACs using 

NF/RO membranes in their studies (see Table 8) [1, 8, 98, 99]. 

Nghiem, L.D. ; Schäfer, A.I. (2004) Trace Contaminant Removal with Nanofiltration,  
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Table 8: Removal of some PhACs using RO membranes. 

Membrane Compound 
Feed Conc. 

(µg/L) 
Retention (%) Reference 

Remark 

Phenacetine 100 19 

Primidone 100 87 ESNA 

Diclofenac 100 93 

[99] Lab scale 

Sulfamethoxazole 700 96 
NF-270 

Carbamazepine 700 84 
[98] Lab scale 

Carbamazepine 0.43 >99.8 

Clofibric acid 0.33 >99.7 

Diclofenac 0.329 99.7 
RO membrane 

Naproxen 0.038 95 

[1] Pilot scale 

RO membrane Clofibric acid 7.4 89 [8] Pilot scale 

 

Table 8 shows that the retention of pharmaceuticals is high in RO processes. Recent studies show that 

PhACs are retained to a much higher extent than hormones despite a comparable or even lower 

molecular weight. This illustrates that there may be significant differences in how these compounds are 

removed and such possible mechanisms will be addressed in the following section. 
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4 TRACE ORGANIC REMOVAL MECHANISMS IN NANOFILTRATION 

Following the reported variations of trace organic retention in NF (see Table 4, Table 6, and Table 8) in 

the previous section, the reasons for such variations will be explored. Hence, a more detailed discussion 

of trace inorganic contaminant removals in membrane filtration processes is provided. Although 

focusing mainly on NF, this section will go beyond the boundary of NF to include ultrafiltration (UF) 

and reverse osmosis (RO) membranes to a limited extent to place removal mechanisms into proper 

context in this often ill-defined spectrum of processes. 

As NF membranes spans the gap between UF and RO membranes, while separation is thought to be 

accomplished via size exclusion or charge repulsion, sorption diffusion mechanism can also contribute 

to the separation process [2, 100]. Depending on the physicochemical characteristics of the solute and 

the membrane, separation can be achieved by one or several mechanisms. The word ‘physicochemical’ 

explicitly implies that separation can be due to physical selectivity (charge repulsion, size exclusion or 

steric hindrance) or chemical selectivity (solvation energy, hydrophobic interaction or hydrogen 

bonding).  

Consequently, the separation process of some low molecular weight trace organics can be strongly 

influenced by their physicochemical interactions with the membrane polymer and/or with water. All of 

the mechanisms mentioned above can contribute to the separation process. These interactions are 

complex and the transport of organic trace organics across the membrane is an interesting topic, which 

is to date not fully understood. Hence this section will provide an overview of existing parameters of 

importance, current mechanisms and models and their applicability to organic trace contaminant 

removal. 

4.1 Molecular compound characteristics and groupings 

Characterisation of trace contaminants is very important in understanding the fate of such compounds 

in the environment and to some extent in treatment systems [101]. Some generalities can be drawn by 

classifying organic compounds into groups based on their physical state in solution such as dispersion, 

aggregation and volatility [102]. In an early study, Hindin et al., found that high retention was achieved 

for those chemical species existing primarily in the colloidal, aggregate, micelle or macromolecular form 

[102]. Lower retention was observed for chemical species that exist as both an aggregate in dispersion 

and a discrete molecule in true solution. They also stated that volatile and low molecular weight 

compounds were poorly retained by the membrane. Molecular structure and conformation are also 

important. Reinhard et al. [8] for example studied the removal of a number of trace organics that can be 

encountered in wastewater reclamation processes, including trihalomethanes (THMs), aromatic 

hydrocarbons, chlorobenzenes and benzoic acids using two pilot RO systems. Both membranes 

rejected branched, complex molecules but varied greatly in their retention characteristics for smaller 

compounds such as chlorinated solvents. They also concluded that the latter group passed through 

cellulose acetate membranes while being retained to some extent by polyamide membranes.  

From the above it is clear that the characteristics of the contaminants are critical in the prediction of 

removal. While experimentation and monitoring of each contaminant of interest is not feasible, there is 

significant relevance in grouping contaminants into suites of similar characteristics. Besides molecular 

structure and electrokinetic properties, physicochemical properties especially important in 

understanding the separation process of trace organics in membrane nanofiltration include, but are not 

Nghiem, L.D. ; Schäfer, A.I. (2004) Trace Contaminant Removal with Nanofiltration,  
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limited to, polarity, dissociation constant, hydrophobicity, solubility, and volatility. Details of these 

parameters are described below. It should be noted that values of these physicochemical parameters 

reported in the literature should be used with some caution, as methods and conditions used in 

determining them can vary widely.  

Many organic molecules are electronically neutral having no net charge, neither positive nor negative. 

However, certain bonds in the molecule, especially bonds of the functional groups, are polar. Bond 

polarity results in an unsymmetrical electron distribution within the molecule. Polar organics are more 

reactive than non-polar ones. They may be ready to participate in chemical reactions with the 

membrane polymers, known as polar interactions [103]. The measure of a net molecular polarity is a 

quantity called the dipole moment, which is defined as the magnitude of a unit charge q times the 

distance r between the polar centres [103]. 

µ = qr  (1) 

where q is electric charge in electrostatic units (esu), r is distance in angstroms (Å = 0.1 nm), and the 

dipole moment µ is a vector expressed in Debye units (D). 

A number of trace organics possessing ionisable functional groups and can be ionised to become 

negatively charged (acid) or positively charged (base). The degree of ionisation depends on the solution 

pH and the solute dissociation constant value (pKa for acid and pKb for base), which describe the 

equilibrium relationship between ionised species and non-ionised species in an aqueous system. For 

example, since bisphenol A (BPA) has an pKa value of approximately 10.1, at pH above 10.1 exists 

mostly as negatively charged species, while at pH lower than 10.1 most BPA are neutral species. pKa 

(or pKb) value of a compound is also related to its polarity as they both  involve in the distribution of 

electrons within the compound. 

Partitioning of trace organics to the membrane substrate or particulates and organic matters in the feed 

water can be understood and predicted to some degree based on the compound hydrophobicity, which 

is usually quantified as the relative partitioning between the liquid octanol and water (octanol-water 

partitioning coefficient - Kow) and water solubility. In literature, the value of Kow is commonly 

presented in a log scale and defined as [104]: 

w

oc
ow C

C
LogK log=  (2) 

where Coc is the concentration of the solute in octanol and Cw is the concentration of the solute in 

water at equilibrium. Water solubility is defined as the maximum solute concentration in an aqueous 

solution at a given temperature.  

Henry constant (H) for chemical equilibrium between gaseous and aqueous phases is usually used to 

present the volatility of an organic compound. Similar to Kow, H is a partition coefficient between 

water and the atmosphere: 

( )
waterinionconcentrat

airgasinionconcentrat
H =  (3) 
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4.2 Size Exclusion 

Size exclusion is a simplified retention model that is based on the physical size of a contaminant. In size 

exclusion, solutes larger than the pore size of the membranes are retained due to size. This is 

comparable to a sieving phenomenon except that in membrane filtration, pores neither have a uniform 

pore size nor are the solutes of a uniform size. Solutes of varying structures are not easily represented 

by equivalent spheres due to different shapes and molecules are flexible in size and shape as a function 

of stress and solution chemistry. 

Many researchers consider size exclusion and sieving phenomena as an identical retention mechanism. 

The process can be described using a number of simplified assumptions. It is usually assumed that the 

membrane consists of a bundle of cylindrical capillaries with the pore size being the internal capillary 

diametre, and that solutes are spherical in shape. An average pore size and an estimated equivalent 

sphere diameter of solutes can be used to model the separation process. While this process is 

particularly useful for the retention of colloids and particulates by membranes, it can also be used for 

the retention of salts where the hydrated ion radius needs to be considered.  

In the case of organics there is a likely deviation of shape from a sphere and molecules may also change 

configuration due to changes in solution chemistry or interactions with other molecules or surfaces. 

Retention of trace organics due to a size exclusion mechanism is illustrated in Figure 5. 

Figure 5: Size exclusion mechanism. 

A number of models using this approach have been developed such as the friction model and the pore 

model [105] to elucidate the separation process of organics using NF membranes. Having included 

some empirical formulae, these models are relatively simple and powerful. Prediction of solute 

retention can be obtained based on available physical parameters such as pore size, molecule size and 

pure water flux. These models have been verified using a number of non-polar neutral organics such as 

carbon hydrates [105, 106]. 

Although size exclusion is usually the prevalent retention mechanism, in many cases, the separation 

process is not solely based on this mechanism. Consequently, application of such size exclusion models 

to trace organics is limited for a number of reasons. Firstly, the presentation of organic molecules as 

equivalent spheres is one of the major limitations of these models. Furthermore, the geometry of 

organic molecules can vary significantly as a function of solution chemistry. For instance, some larger 

NOM molecules are known to form coils when the molecules are uncharged (at low pH) and fold out 

into more linear chains at high pH due to charge repulsion as described by Braghetta et al. and shown in 

Figure 6 [107]. Trace contaminants may also alter in conformation. More importantly they also interact 

with other molecules such as NOM [6, 7], which can have important implications on retention. Finally, 

as some trace organics can also interact with the membrane polymer (for example via hydrogen 
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bonding or hydrophobic interaction), which subsequently results in adsorption that is not accounted 

for in the steric hindrance models.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Variation of molecular dimension and shape for the example of natural organics. A: high pH, low ionic 

strength, low solution concentration. B: low pH, high ionic strength, and high solution concentration [107]. 

Adsorption may have a strong influence. Given that surface diffusion is significantly faster than 

sorption diffusion, the transportation of trace organics across the membrane may be enhanced if the 

membrane pore is larger than the size of the trace organic. The extent of such influences on trace 

organic retention depends on the membrane pore size and distribution. It has been illustrated that, 

depending on the pore size, size exclusion, adsorption or both contribute to the retention of the trace 

organic estrone [104].  

There are several models relating molecular weight and size of contaminants. Molecular weight is the 

most easily accessible parameter that indicates the size of a molecule. Many studies have subsequently 

focused on molecular weight to obtain information about retention of neutral organics by NF. The 

molecular weight cut-off (MWCO), the molecular weight of a solute that corresponds to a retention of 

90%, is commonly used by most membrane manufacturers as a measure of the retention properties of 

NF membranes.  

However, molecular weight cut-off does not provide information on the retention of organics having a 

molecular weight smaller than the MWCO [108]. In addition, as dimensional parameters of the 

molecule are not taken into account, retention of organics with a similar molecular weight but different 

molecular structure may differ. It is hence desirable to be able to use a structural parameter to estimate 

retention. Consequently, the Stokes radius is often regarded as a better parameter to describe molecule 

size, when the molecule is assumed to be spherical in shape. The Stokes-Einstein radius of a molecule 

is defined as: 

s
s D

kT
r

πη6
=   (4) 

A 

B 
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where k is the Boltzmann constant (J/mol.K), η is viscosity (kg/m.s), T is temperature (K) and Ds is 

diffusion coefficient (m2/s).  

As the equation indicates, the Stokes radius is essentially related to the diffusion coefficient, which is 

not available for many organics. Fortunately, the diffusion coefficient can be estimated from molecular 

weight using several different methods as summarised in Table 9. However, the variation between 

different methods can be up to about 125% [109].  

Table 9: Summary of methods to estimate diffusion coefficients [109]. 
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Some size parameters other than Stokes radius worth mentioning include the equivalent molar diameter 

[108] where the molecule is also assumed to be spherical, and STERIMOL parameters [52] where both 

molecular width and length are calculated taking into account Val der Waals effects. However, there is 

usually a good correlation between these parameters and the Stokes radius.  

An organic molecule can also be presented as a cylinder whose height and diameter are determined 

following an energetic optimization procedure, which can be carried out using a computer program 

such as HyperChem [108].  

Further studies are essential to take into account such influences on trace organics retention with a 

rigorous approach coupled with grouping of contaminant characteristics. While size is an important 

factor, the impact on retention is also influenced by the charge of the molecules that may enhance 

attraction or repulsion from the membrane. 

4.3 Charge Interaction 

Wang et al. [110] have proposed a model to describe the transport of an organic electrolyte across a NF 

membrane by combining the space-charge and steric-hindrance pore physical phenomena. The model 

was consequently named the electrostatic and steric-hindrance (ES) model. It indicates that both 

electrostatic and steric-hindrance can contribute to the retention of organic electrolytes by NF 

membranes. Based on this model, solute retention is a function of the ratio of charge density of the 

membrane to ionic concentration, solute radius to pore radius of the membrane, and the relative 

mobility between cations and organic anions. As a result, one would expect that retention of these trace 

organics can be influenced by solution chemistry such as pH and ionic strength. Braghetta [111] has 
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illustrated schematically the effect of solution pH and ionic strength on the “apparent” pore size of the 

membrane as in Figure 7. Such variation of membrane structure as a function of solution chemistry 

usually manifests itself with a variation of flux and salt retention. 

Figure 7: Schematic effect of solution pH and ionic strength on membrane properties. Left: low pH and low ionic 

strength. Right: high pH and high ionic strength (adapted from Braghetta [111]).    

Some trace organics can possess a negative or positive charge when the molecules dissociate at high or 

low pH. For example, p-aminobenzoic acid has a negative charge at pH higher than 4.8 (pKa of 

carboxyl group) while it has a positive charge at lower pH (amine pKa = 4.6). Negatively charged 

organics often experience higher retention than uncharged organics with the same size, which can be 

attributed to electrostatic repulsion between the molecules and the negative functional groups of the 

membrane. On the other hand, positively charged organics are poorly retained by the negative 

membranes. Berg et al. [48] reported a significant increase in retention of the negatively charged 

organic, mecoprop, by five different negatively charged membranes at high pH. Williams et al. [112] 

also showed that the retention of p-aminobenzoic by negatively charged membranes resembles its 

speciation as a function of pH with an increase of retention as charge repulsion increases (see Figure 8). 

Although electrostatic interaction dominates the separation process, steric hindrance also appears to 

influence the retention of such solutes [48]. 

Area available for water transport but not for charged solutes 

Backbone polymer chain Double layer boundary 
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Figure 8: Effect of pH on retention of p-aminobenzoic acid by a negatively charged NF membrane 

(adapted from [112]). 

The pH value of the feed solution can also affect characteristics of the membrane; hence, their 

retention properties. Most significant is the membrane surface potential, which is often measured as 

zeta potential. Figure 9 shows the surface zeta potential of several NF membranes as an example. In 

general, zeta potential of the membrane surface can change from a positive to a negative value as the 

solution pH increases. Subsequently, electrostatic interaction between an ionic compounds and the 

membrane surface can also vary according to the solution pH.  
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Figure 9: Surface zeta potential of several NF/RO membranes as a function of pH ([113]). 

In addition to the change in zeta potential of the membrane surface, Childress and Elimelech [114] 

have also illustrated the dependence of membrane pore size on the pH of the feed solution using 

polyamide NF membranes. At high or low pH, functional groups of the membrane polymer can 

dissociate and take on positive or negative charge fractions. Repulsion between these fractions in the 

membrane polymer reduces or "closes up" the membrane pores. At the pore surface point of zero 

charge (or the isoelectric point), membrane functional groups are minimal in charge and hence the 

pores open up, as the absence of repulsion force contributes to the widening of the membrane pores. 
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This was confirmed experimentally when a drop in salt retention (corresponding to a peak in permeate 

flux) at this pH compared to low or high pH was observed [114]. On the other hand, Braghetta 

reported a decrease in retention due to charge repulsion between the polymer chains, and hence 

increased pore size [107]. However, this phenomenon in trace organics retention has yet to be 

examined and one would expect that the effects of pH on trace organic characteristics and membrane 

pore size cannot be easily separated. 

4.4 Interactions due to polarity 

Separation of polar organics by NF membrane is, in general, even more complex as the process is not 

only governed by charge repulsion and size exclusion but is also influenced by other physicochemical 

interactions between solutes and the membrane polymer. These polar interactions can influence the 

partitioning of solute between bulk solution and the membrane pores, sorption of solute into the water-

membrane interface and even sorption of solutes into the membrane polymer. Van der Bruggen et al., 

have successfully combined size exclusion and polarity effects to explain the retention of four 

pesticides [51]. Consequently, the polarities of both trace organics and the membrane polymers are of 

importance in predicting the retention of a trace organic. In addition, it is necessary to identify chemical 

parameters that contribute to the polarity of trace organics.  

While the dipole moment can be experimentally determined, it is not practical to measure dipole 

moments of all trace organics, given the large number of contaminants that exist. Sourirajan and 

Matsuura [100] have identified a number of parameters indirectly related to the polarity in their 

magnificent work in the early 1970s. The main quantifiable parameters related to polarity are: 

• Hydrogen bonding ability of the solute as represented by its ∆νs (acidity) relative shift in the 

OH band maximum in the IR spectra of the solute in CCl4 and ether solutions), 

• Taft (δ* or Σδ*) or Hammett (δ or Σδ) numbers for the substituted group in the solute 

molecule with reference to a given functional group, 

• pKa value of solute. 

However, while the pKa value is commonly reported in literature, the use of the other two parameters 

is limited due to their complexity and unavailability.  

In addition to these indirect polarity parameters, several researchers have attempted to relate retention 

and log Kow (logarithm of the n-octanol/water partition coefficient) or hydrophobicity of the 

membrane surface in examining the separation process of trace organics [52, 115-117]. Nevertheless, 

none of them has conclusively reported any characteristic correlations. Note that some researchers 

refer to this parameter as log P and log P and log Kow are indeed identical. Since these parameters are 

an indirect measure of the molecule polarity, they are uniquely related to each other [100]. 

Similar to the dipole moment, data on the values of these parameters are not available in the literature 

for many trace organics. Comparison between organics of similar structure but different in functional 

groups or vice versa can be made given the hydrocarbon skeleton and composition of the compounds. 

Based on a reference organic, the chemical characteristics of other organics can be qualitatively and 

quantitatively predicted. For example, a method to estimate the pKa value of an organic based on the 

pKa value of other organics similar in structure has been described by Perrin [118]. Several commercial 

computer software packages such as HyperChem and Pallas have been developed to predict these 
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parameters. However, when using such software, one should be caution that the database of referenced 

structures can be limited and they may fail to give a close estimation in some situations. 

Seeing the difficulty in quantifying the chemical characteristics of some contaminants, the relationships 

between chemical characteristics such as polarity and NF retention remain unavailable. Consequently, 

there are no universal indicators for the retention of such polar trace organics using NF. Membrane 

supplier information such as MWCO and salt retention are clearly not appropriate as salt retention 

often fails to serve as an indicator for trace organics removal [115] and MWCO should only be applied 

to non-polar neutral organics with caution as discussed earlier. It is hence not surprising when Kiso et 

al. [52] showed a poor correlation between the retention and molecular weight of 11 different aromatic 

pesticides as illustrated in Figure 10. 
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Figure 10: Retention of 11 aromatic pesticides by NF membranes as a function of molecular weight 

[52]. 

Sourirajan and Matsuura [100] examined the relevancy of these polarity parameters as described earlier 

to retention, using 65 organic compounds with different functional groups. Experimental results 

showed that there is a unique correlation between ∆νs (acidity) and retention of monohydric alcohols 

and phenols, which exist essentially as unionized molecules in aqueous solutions. Similarly, an excellent 

correlation has been found between the Taft number (Σδ*) and the retention of mono and polyhydric 

alcohols. 

Sourirajan and Matsuura subsequently explained these correlations using a sorption-capillary flow 

mechanism; where the sorption of solute with higher polarity to the membrane-water interface is 

favourable, solute transport across the membrane is enhanced, hence decreasing retention [100]. These 

results establish the relevance of polar parameters to retention of these alcohols and phenols. More 

importantly, Sourirajan and Matsuura reported that while retention is positive for solutes whose 

acidities (or Taft numbers) are less than that of water ∆νs (acidity of water) = 250 cm-1 (Σδ*=0.49), 

retention can be negative, zero or positive for those solutes (such as phenols) whose acidities or Taft 

numbers are higher than that of water, depending on filtration conditions. Sourirajan and Matsuura 

have illustrated this finding using phenol and p-chloro-phenol and several different membranes [100]. 

In general, for such solutes retention decreases as the driving force transmembrane pressure increases. 
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This separation phenomenon is distinctive for polar organics as it is in fact in contrast with the 

separation process of other solutes such as colloids, salts and neutral non-polar organics. 

While polarity is an important factor, again it is not the only factor influencing the separation process. 

Different correlation curves obtained between retention of ethers, ketones, aldehydes, esters and 

alcohols and their acidities and Taft numbers [100] clearly indicate that factors other than polarity can 

also influence the separation process. Identifying and including all of these factors in a mechanistic 

model to understand and predict retention of trace contaminants would be a complicated task and one 

that much more dedicated efforts should be devoted to in future research.  

4.5 Adsorption 

Adsorption (or partition) of trace organics to membrane materials is an important aspect of trace 

organics removal using NF. Many researchers have observed significant adsorption of some trace 

organics into the membrane polymer [27, 28, 52, 99, 112, 119, 120]. In fact, adsorption is recognized as 

the first step in the transport mechanism of water and in some cases solutes across the membrane in 

the well-known sorption-diffusion model [112, 121]. Trace organics, which can adsorb to the 

membrane, usually have high log Kow or hydrogen bonding capacity and are sparely soluble in water.   

According to the sorption-diffusion model, water flux across the membrane is thought to be greatly 

dependent on its ability to form hydrogen bonds with the hydrophilic groups of the membrane 

polymer; while specific adsorption due to hydrogen bonding can reduce water permeation. Possible 

formation of hydrogen bonding between the membrane polymer and a trace organic (in this case the 

steroid hormone estrone, the compound that showed the breakthrough phenomena in Figure 12) are 

illustrated in Figure 11. This indicates the likelihood of hydrogen bonding playing a major role in 

retention by NF. This premise is supported by an earlier study, in which Williams et al. [81] reported 

significant adsorption of benzene with no hydrogen bonding capacity but negligible water flux drop. 

On the other hand, there was a 60% drop in flux due to adsorption of 2,4-dinitrophenol, a compound 

with a high hydrogen bonding capacity, to an aromatic polyamide membrane. This can be attributed to 

the competition between 2,4-dinitrophenol and water for hydrogen bonding sites. Adsorption can also 

be accomplished via hydrophobic interaction. Kiso et al., besides showing a poor correlation between 

molecular weight and retention as was shown in Figure 10 also investigated the relationship between 

log Kow versus retention and adsorption of eleven aromatic pesticides using NF membranes [52]. While 

there was no significant correlation between retention of these pesticides and log Kow, there is a good 

correlation between adsorption of these pesticides and log Kow. Hydrogen bonding and hydrophobic 

interaction can act independently or together. In the later case, it is often difficult to separate the effect 

between them. 
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Figure 11: Hydrogen bonding between membrane polymer (polyamide) and natural hormones estrone 

[120]. 

Adsorption of trace organics to the membrane has two important implications. It may result in the 

accumulation of trace organics, which can lead to several deteriorative problems. In addition, a 

concentration gradient built-up as a result of adsorption (or partition) followed diffusion can reduce the 

membrane effectiveness to some extent.   

Trace organics can accumulate in the membrane to a considerable amount and changes in operation 

conditions may be able to cause a shift in adsorption/desorption equilibrium, and subsequently release 

some of the accumulated contaminants [122]. For example, the concern of estradiol release during 

membrane cleaning has been raised, where alkaline solutions at pH 11 are commonly applied [123]. 

At this pH, estradiol dissociates and becomes negatively charged. Subsequently, desorption of 

estradiol occurs due to charge repulsion between the negatively charged estradiol and the negative 

membrane surface. Figure 15 shows approximate amounts of the steroid hormone estrone that can be 

adsorbed by spiral wound membrane elements. It is necessary to emphasise that steroid hormone such 

as estrone can be endocrinologically active to fish at only about 1 ng/L [65].   

Table 10: Estimated estrone adsorption on full scale modules [120] 

NF-270 NF-90 

Steroid Hormone 
2.5” 

Module 

(µg) 

4”  

Module 

(µg) 

8’’  

Module 

(µg) 

2.5”  

Module 

(µg) 

4” 

Module 

(µg) 

8’’ 

Module 

(µg) 

Membrane Area (m2) 2.6 7.6 53.0 2.6 7.6 53.0 

Estrone 184 538 3737 169 493 3425 

Estradiol 100 292 2027 82 239 1657 

Testosterone 111 325 2259 54 158 1098 

Progesterone 231 674 4681 232 679 4718 
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Figure 12: Permeate concentration of estrone as a function of accumulative permeate volume [123]. 

Although adsorption contributes to an initial retention, lower retention is often observed when the 

membrane media has been saturated. When investigating the long-term effect of adsorption on 

retention of steroid sex hormone estrone, Nghiem et al., [123] observed a clear breakthrough curve for 

a NF membrane (see Figure 12).  

This phenomenon can be explained by the sorption-diffusion model, where solutes adsorb (or 

partition) into the membrane and transport across the membrane by diffusion. Adsorption itself occurs 

due to hydrophobic interaction or the formation of hydrogen bonding between the membrane polymer 

and trace organics. Diffusion in the dense polymeric phase can possibly be accomplished by a series of 

successive jumps from one equilibrium position to another, which usually involve the formation and 

breakage of secondary bonds [124]. Such “make-and-break” action can be the result of switching 

between two bonding sites or between a hydrophobic bond to a substrate and a hydrogen bond to 

water [125, 126]. It has been previously observed that compounds with hydrogen bonding capacity are 

usually retained less [121]. Several researchers have used the term “solute membrane affinity” to 

cautiously refer to this phenomenon [99, 115]. In another study, Nghiem et al., showed that retention of 

several natural hormones were slightly lower than predicted based poorly on a steric hindrance pore 

transport model [77].  

4.6 Concluding remarks 

This section demonstrates the complexity of trace organic retention by a nanofiltration process. 

Retention is mainly governed by three factors including steric hindrance, electrostatic interaction, and 

solute membrane affinity. Such factors can act dependently or together in a complex fashion. In the 

later case, they may enhance or diminish one another effect on retention. In addition, they are strongly 

influenced by physicochemical characteristics of not only the solute but also the membrane. Polarity, 

hydrophobicity and hydrogen bonding capacity are amongst the most important ones. These 

characteristics are again strongly dependent on operational parameters, particularly the solution 

chemistry such as pH and ionic strength as repeatedly illustrated through out the section. Therefore, to 

understand the retention of trace organics, one must fully understand this rather complex and 

interwoven matrix of many dependent components. Although recent years have seen many fruitful and 

dedicated studies particularly focusing on trace organic retention, much work is still needed to fully 
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understand the complexity of each phenomenon and creating a model that adequately describes such 

truly complex systems. 

 

5 REMOVAL OF INORGANIC TRACE CONTAMINANTS BY 

NANOFILTRATION 

NF has traditionally been more prominent for the removal of inorganic trace contaminants due to the 

presumably high charge of NF membranes. This has reflected in a large amount of work on heavy 

metals, for example. This is covered in more detail in Chapter 19 of this book. 

In this chapter the focus remains on trace inorganic contaminant removal mostly focuses, again, in 

drinking water provision. As such, groundwater from deep wells is an excellent water source, which is 

relatively free from pathogens and organic contaminants. However, underground waters may contain 

some undesirable inorganic contaminants at trace levels like arsenic, uranium, fluoride, and boron. 

Nitrates has also been identified as compounds of interest, although its maximum concentration in 

drinking water is much higher than what would be classified as trace level.  

Arsenic is a naturally occurring element, which can occur at considerable concentrations in inorganic 

form, particularly in ground water supplies. Inorganic arsenic has been identified as a toxic and 

carcinogenic agent that causes skin and various forms of internal cancer [127-129].  

Naturally occurring uranium is a mixture of three isotopes, of which U-238 is the most abundant and 

the other two isotopes U-234 and U-235 only account for less than 1% (see Table 11). Surprisingly, no 

radiological effects of natural uranium have been reported to date, although practically it is radioactive. 

This is possibly due to very low radiation doses involved. However, ingestion of natural uranium can 

lead to kidney and liver failure. 

Table 11: Isotope composition and their half-life of natural uranium. 

Nuclide Percent by weight (%) Half-life (years) 

238 U 99.2836 4.47 x 109 

235 U 0.7110 7.04 x 108 

234 U 0.0054 2.45 x 105 

 

Fluoride concentrations in fresh water depend on the geochemistry of soil and minerals through which 

the water drains. Fluoride concentrations in deep aquifers can be up to about 10 mg/L if the rock 

formations are fluoride rich.  Regular consumption of water with fluoride concentrations above 1.5 

mg/L may lead to dental fluorosis and above 4 mg/L may progressively increase the risk of skeletal 

fluorosis [130].  

Continuous ingestion of high boron doses may lead to several health effects such as gastrointestinal 

disturbances, skin eruption and depression [130]. Boron can be present in drinking water resources 

through the natural leaching of boron rich minerals processes, due to seawater intrusion or unsatisfied 

boron removal in seawater desalination processes.  
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Although nitrate is a naturally occurring oxide of nitrogen, intensification farming practices and sewage 

effluent disposal to streams have led to elevated concentration of nitrate in fresh water bodies, 

particularly in groundwater. Since nitrate can be reduced to nitrite, which can then disrupt the normal 

biological function of haemoglobin, high concentration of nitrate can have a particularly detrimental 

effect to infants. Consequently, most water authorities restricted nitrate concentration in drinking water 

to 50 mg/L.  

Given the human health effects of such contaminants, their maximum contaminant levels in drinking 

water have been regulated in most countries. Summary of the most recent drinking water guidelines for 

these inorganic contaminants by several water authorities around the world is shown in Table 12. 

Occurrences of these contaminants at excessive levels are sometimes encountered in groundwater with 

high or moderate salinity. In such circumstances, NF can be considered as a feasible treatment option, 

which can reduce salinity and remove these trace contaminants at the same time.  

 Table 12: Drinking water guideline values (in mg/L) for the inorganic contaminants of interest by 

several authorities 

Contaminants US-EPA [18] WHO [131] Australia [130] Canada [132] 

Arsenic 0.01 0.01 0.007 0.025 

Uranium (as 238U) 0.03 0.009 0.02 0.02 

Boron not regulated 0.5 4 5 

Fluoride 4 1.5 1.5 1.5 

Nitrate 10 50 50 45 

5.1 Characterisation of inorganic trace contaminants 

Most if not all of inorganic trace contaminants exist in aqueous environment in ionic form.  In an 

aqueous solution, each ion bound strongly with a number of water molecules by electrostatic 

interactions with the positive (or negative) pole of the H2O dipole (see Figure 13). Energy of such 

interactions is known as the solvation energy, as it is so great that it suffices to overcome the hydrogen 

bonding of the water. Consequently, it is important to note that the effective (hydrated) size of an ionic 

solute can be considerably larger than its ionic size (see Table 13). Interestingly, ions with small ionic 

radius can have a larger hydrated radius, as it binds strongly to more water molecules. For example,  the 

hydrated radius of F- is larger than that of I-, even though it has a much smaller ion radius. The 

hydration of an ionic compound can be seen as a special case of complexation, where water plays the 

role of the ligand. Complexation can significantly enhance retention due to an increase in the apparent 

size of an ion (see Chapter 19 for more detail). Furthermore, different species of the same element can 

be greatly different in hydrated radius. Readers are encouraged to refer to Chapter 7 for more detail on 

speciation and complexation of compounds. It is important to note that trace inorganics will often be 

found in the environment in complexed forms, with again compounds like natural organic matter 

(NOM) playing a key role [133].  
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Figure 13: Electrostatic interactions between an ion with the positive (left) or negative (right) poles of 

the water dipole. 

Table 13: Ionic and hydrated radius of several selected ions.  

Ions 
Ionic radius 

(nm) 

Estimated hydrated 

radius (nm) 

Reference 

Na+ 0.095 0.280 

K+ 0.133 0.230 

B+ 0.082 not available 

U4+ 0.103 not available 

[134] 

AsO43- not available 0.400 

I- 0.205 0.331 

Br- 0.180 0.330 

Cl- 0.164 0.332 

F - 0.116 0.352 

NO3- 0.179 0.340 

[135] 

 

However, the issue is complicated in a nanofiltration process as hydrated radii are not consistently and 

fully documented for comparative purposes [134]. Furthermore, the membrane often carries fixed 

charge groups, which can compete with water, or in another word ions are transported through the 

membrane in an ion-exchange process [136]. This phenomenon is more profound in RO and ion 

exchange membranes. Even when ion exchange plays a minimal role, it has been hypothesized that 

transmembrane pressure can reduce the hydrated layer of the membrane pores or of the solute ions 

[137]. Mukherjee and Sengupta argued that hydrated radii are unreliable to access the retention of 

polyatomic ions such as NO3-, AsO43-, AsO33-, etc. [136]. They proposed to use ion exchange selectivity 

as a surrogate to access the relative retention of ions and reported a characteristic correlation between 

ion exchange selectivity and retention of ionic solutes (higher ion exchange selectivity ions are retained 

less). Indeed, ion exchange selectivity can be seen as an analogue to the term “solute membrane 

affinity” as discussed in the previous section for trace organics. Ion exchange selectivity can be easily 

determined using ion chromatography or batch isotherm techniques. Although, this finding can provide 

a powerful method to predict the retention of inorganic trace contaminants, the premise is not always 
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true and it must be applied with caution. Reviewing available data of ion exchange selectivity in the 

open literature provides the following order of ionic compounds retention by RO/NF membranes: 

SO42- < NO3- < HAsO42- < I- < Br- < Cl- < F- < H2AsO4-, HCO3- << Si(OH)4, H3AsO3 

While this sequence is correct for halide series (see Figure 20), it contradicts current experimental 

results where retention of arsenic species is reported to be in the opposite order: H3AsO3 < H2AsO4
-  

< HAsO4
2- [138-140]. It appears that this model can only be used for ionic compounds of the same 

charge number and when diffusion is the dominant transport mechanism. 

5.2 Retetention Mechanisms 

In neutral NF membranes, solutes are transported across the membrane by two mechanisms: 

i. Convection: they are carried by the solvent stream and larger solutes are better retained (physical 

selectivity). 

ii. Sorption-diffusion: they are transported across the membrane due to diffusion under a chemical 

potential gradient. Their transportation is influenced by chemical selectivity such as ion 

exchange selectivity and diffusion coefficient. 

However, most available NF membranes are negatively charged and the presence of the fixed charge 

can also influence ion transport in the membrane. Such influence can be described by two central 

principles: Donnan equilibrium and the Nernst-Planck equation. When a negatively charged NF 

membrane is in contact with an electrolyte solution, ions with the same charge as the fixed ions in the 

membrane are excluded and cannot pass through the membrane. This is known as Donnan exclusion 

effect. In a polyelectrolyte solution, ions with lower or higher permeability can modify the permeability 

of the others, since electrostatic neutralisation must be maintained on both sides of the membrane. For 

example, Seidel et al. found that arsenate (as HAsO42-) removal by loose nanofiltration membrane can 

be enhanced by the presence of HCO3- [138]. Since HCO3- is more permeable through the membrane 

than HAsO42-, HCO3- is transported through the membrane instead of HAsO42-. A Donnan 

equilibrium is formed at the membrane surface where fixed negative charge of the membrane is 

neutralised by positively charged ions of the electrolyte solution. This is schematically shown in Figure 

14. Consequently, there is an electrical potential built-up at the membrane – solution interface.  
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Figure 14: Schematic illustration of the ionic distribution at the membrane solution interface for a 

membrane contains fixed negatively charged groups. 

The electrical potential caused by Donnan effect can be calculated using a simple equation: 

 







=

i

mi

i

don c

c

Fz

RT
E ,ln     (9) 

where F, Edon, R, and T are Faraday constant, Donnan potential, gas constant, and temperature (in 

Kelvin), respectively. The symbols zi, ci,m, and ci are charge number, solute concentration in membrane 

and  aqueous phase of component i, respectively.  

Apart from convective and concentration differences, the ionic solute is also subjected to a force 

caused by an electrical potential difference. Assuming minimal steric hindrance interactions and ideal 

conditions, combination of these three forces results in an equation known as the Nernst-Planck 

equation:   

 eleciconvidiffii JJJJ ,,, ++=   (10) 

where Ji is the total solute flux; and Ji,diff, Ji,conv, and Ji,elec are solute flux of component i due to diffusion, 

convection, and electrical potential, respectively. 

In absence of coupling phenomena, the Nernst-Planck equation can be given as: 

 vi
donsiiii

sii Jc
dx

dE

RT

DFcz

dx

dc
DJ ++−=   (11) 

where Ds and x are diffusion coefficient distance from the membrane surface of component i, 

respectively.  

The Nernst-Planck equation is an improvement over the Donnan equilibrium model as it takes into 

account the effects of convective and diffusive fluxes. Although both Donnan equilibrium model and 

Nernst-Planck equation are being used extensively to model the transport of ions in nanofiltration 

membranes (see Chapter 6 for further details), specific studies addressing such processes of trace 

inorganic contaminants are still limited. Work done by Elimelech, Urase, and co-workers are amongst 

the few who have applied to explain the removal of arsenic and nitrate by nanofiltration membranes 

[138, 139, 141]. 

5.3 Arsenic 

Arsenic can occur in the environment in various forms and oxidation states (-3, 0, +3, +5) but in 

natural waters is mostly found in inorganic forms as oxyanions of trivalent arsenite [As(III)] or 

pentavalent arsenate [As(V)]. The speciation of arsenic depends on the oxidizing conditions; arsenate is 

predominant in surface water while arsenite may dominate in some groundwaters. Arsenic toxicology 

and carcinogenicity depend on their chemical forms. Inorganic arsenic is more toxic than organic 

arsenic, and arsenite is more toxic than arsenate [142]. 

The concern over occurrence of arsenic in groundwater resources has increased exponentially followed 

the recognition of the largest mass poisoning of a population in history in Bangladesh. It is estimated 

that between 33 and 77 million Bangladeshis were at risk due to arsenic contamination of their drinking 
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water supplies [143]. High levels of arsenic in water resources in many countries including Bangladesh, 

India, Taiwan, Northern China, Thailand, Argentina, Chile, Mexico, Hungary, the South-Western USA 

and most recently Vietnam are well documented by Smedley and Kinniburgh [129]. In response to the 

mounting evidence for the chronic toxicological effects of As in drinking water, recommended and 

regulatory limits of many authorities are being reduced. The current WHO guideline value for As in 

drinking water is 10 µg/L; however, this value should be substantially lower based on standard risk 

assessment [129]. A limit of arsenic levels in drinking water of 50 µg/L within the United States was 

established in 1942. However, its adequacy was questioned by early studies in 1968 relating arsenic 

exposure and skin cancer [140]. This limit has been reduced to 10 µg/L since early 2002 [144]. The 

Australian and Japanese limits for drinking water are 7 and 10 µg/L, respectively, while the interim 

maximum acceptable for Canadian drinking water is 25 µg/L [132]. 

Treatment of arsenic in water supplies has been the subject for a considerable quantity of research. 

Amongst the many viable treatment technologies, the potential of membrane filtration to comply with 

the most stringent limit is unarguable. Performance of NF to reduce the arsenic health risk of drinking 

water has been demonstrated by a number of researchers [138-140, 145, 146]. The separation process 

of arsenic using NF is an interesting topic as its various speciation forms depend greatly on the solution 

chemistry. Both As (III) and As (V) occur in several protonated forms. At typical pH conditions of 

natural water (pH 6.5-8), As (V) exists as an anion, while As (III) remains as a neutral molecule. 

Consequently, these two As species are subjected to different separation mechanisms. Brandhuber and 

Amy [140] studied the removal of arsenic using negatively charged membranes and showed that under 

environmental conditions, retention of As (III) is due mainly to a sieving mechanism whereas the 

retention mechanism for As (V) it is predominantly due to charge repulsion (or Donnan effect). This is 

illustrated in Figure 15.   
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Figure 15: Relationship between specific flux and As(III) (squares) and As(V) (circles) retention for different 

negatively charged membranes. Mean arsenic concentration of test solution is 25.5 and 18.5 µg/L for As(V) and 

As(III), respectively, pH near neutral (Adapted from [140]). 

As the speciation of both As(III) and As(V) depends strongly on pH (see Figure 16), one would expect 

that retention of arsenic can be pH dependent. As can be seen from Figure 17, retention of As (III) 

Chapter 20 – Trace Contaminant Removal with Nanofiltration 

36 

increases sharply from 55 to 85% as As (III) changes from an uncharged species (H3AsO3) to a charged 

species (H2AsO3-) when pH increases from 7 to 10 (-o- symbol).  A slight increase in As(V) was also 

observed presumably due to the charge enhancement (negative) of both membrane and As(V) 

(speciation of As(V) changes from monovalent (H2AsO4-) to divalent (HAsO42-) forms as pH increases) 

(-□- symbol). In fact, when investigating the retention of arsenic using another NF membrane (-▲- 

symbol), Elimelech et al. [138] reported a more significant increase in retention of As(V) when pH 

increased from 4.7 to 8.5 (see Figure 17). With a more porous negatively charge NF membrane, 

retention of As(V) relies mainly on charge repulsion [138]. 
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Figure 16: Speciation of arsenite (left) and arsenate (right) as a function of the solution pH. 
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Figure 17: Effect of solution pH and membrane on arsenic retention ( 1[139],  2[138]). 

When using NF for the removal of inorganic trace contaminants, it may be desirable to operate at high 

pH to enhance arsenic retention and high recovery for economic reasons. However, high recovery at 

high pH with the presence of scalants such as Ca2+ or Mg2+ may result in severe scaling.  
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Therefore, it may be necessary to have several stages in series, where a high recovery at low pH stage to 

reduce salinity and eliminate scalants can be followed by a low recovery at high pH stage to target 

arsenic and minimize the risk of scaling.    

5.4 Uranium  

Uranium is a naturally occurring element, which can be found at very low levels in almost all rocks, 

soils, and waters. Higher levels (in the range of 50-300 mg/kg) of uranium can be found in 

phosphorous rocks, lignite or monazite sands. Amongst three natural isotopes, only U-234 can be used 

as fissile material in nuclear warheads or conventional nuclear reactors. However, U-234 makes up a 

very small fraction in natural uranium. The enrichment process of U-234 subsequently leads to the 

accumulation of a massive amount of non-fissile, low radioactive uranium by-product, known as 

depleted uranium. This amount of depleted uranium is reaching a million tons globally, which is 

currently in storage in the form of UF6 [147].   

Although there have not been many reports about natural contamination of uranium in the 

environment, extensive mining activities, massive storage of depleted uranium (DU) and recent use of 

hundreds of tons of DU ammunition during military actions in the Gulf (1991 and 2003) and Balkan 

(1994 and 1999) regions mean localised contamination has already occurred in many places [147]. 

Natural uranium and DU (which has been fired during military action) are usually in the form of 

uranium oxide such as UO2, which is insoluble in water and body fluid. However, in an oxygen rich 

and weak acidic environment, they are readily oxidised further to form soluble uranyl species, which 

can then threaten to contaminate groundwater aquifers and water supplies.  

The uranyl ion easily forms complexes, particularly with carbonate in natural water (see Figures 8 & 9 

in Chapter 7 for detail). Similar to arsenite and arsenate, retention of uranyl in natural water also 

depends on the solution pH. Highest retention in the range of 95-100% was found for a variety of 

nanofiltration membranes at pH near neutral where UO2(CO3)22- is the dominant species. At lower pH, 

the retention is slightly lower but overall, retention remains high [148]. Size exclusion is probably the 

predominant retention mechanism for uranium by nanofiltration membranes. In fact, uranium 

retention is much higher than that of Na+ or Ca2+ [149]. 

5.5 Boron 

The boron content in saline and seawater is often higher than the drinking water limit (WHO: 0.5 

mg/L). For example, concentrations of boron in Canadian coastal marine waters is in the range of 3.7 

to 4.3 [150]. Concentration can be even higher in boron rich mineral aquifers and concentrations in the 

range of 5 to 15 mg/L have been reported in western USA [151]. The impact of boron on human 

health is controversial and drinking water guidelines for boron hence vary greatly amongst government 

authorities throughout the world. While the maximum boron concentration in drinking water was not 

regulated by the US-EPA [18], it was set at 4 mg/L and 5 mg/L for Australia [130] and Canada [150], 

respectively. In contrast, the World Health Organisation provides a guideline value of 0.5 mg/L [131] 

and the Japanese authority current sets a maximum value of 1 mg/L in drinking water [152]. However, 

it is clear that vegetation and crops are much more sensitive to boron than humans. For instant, boron 

concentration in irrigation water of more than 0.5 mg/L can cause obvious damage to lemon and 

cherry [150].  
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Nevertheless, there have been a number of studies focusing on boron removal in drinking water 

treatment using membrane technology. However, most of these studies used RO membranes [152-

156]. Boron exists in natural water in the form of boric acid, and the dissociation of boric acid also 

strongly depends on the water pH (see Figure 18). At low or near neutral pH, boric acid that is quite 

small in size is undissociated. Consequently, it is conceivable that most NF membranes poorly retain 

boron.  
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Figure 18: Speciation of boric acid in an aqueous solution as a function of the solution pH. 
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Figure 19: Boron retention by several RO membranes as a function of the solution pH (adapted from 

[153] and [154]). 

The transport mechanism of boric acid in a nanofiltration membrane is thought to be sorption 

diffusion. There was no significant dependence of retention on concentration when Magara et al., 

varied the boron concentration from 2 to 30 mg/L [153]. An increase in transmembrane pressure (or 

recovery) can enhance boron retention. However, as discussed above with arsenic, NF operation at 

high recovery can result in scaling caused by other cations such as Ca2+ and Mg2+ in the feed water. 

Raising the solution pH can also enhance boron retention. As boric acid dissociates at pH 9.24, it 
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becomes a negatively charged species, which exhibits some Donnan exclusion effect and would be 

repeled by the negatively charged membrane. Boron retention by several RO membranes as a function 

of pH is shown in Figure 19. pH modification adds more complexity to the process as the permeate 

water pH also needs to be readjusted. Unfortunately, these two methods cannot be applied in the same 

stage, as scaling would be much more severe at high pH. Consequently, a multi-stage approach 

incorporating high recovery and low pH stages with low recovery and high pH stages has been 

suggested by several researchers. The first desalination plant with a capacity of 100 Million m3/day 

utilising this multi-stage approach is currently under construction in Askelon, Israel [155].     

5.6 Fluoride 

Fluoride is an element essential to dental health at low concentration (between 0.4 and 1.0 mg/L) but it 

is known to cause dental or bone fluorisis at higher concentration (more than 1.5 mg/L). Consequently, 

while many water supply plants include a fluoride dosing system in their treatment process, in some 

rare circumstances, fluoride must be reduced to meet the drinking water standard. Since there are no 

ion exchange resins or specific electrodialysis membranes for fluoride [157] and conventional water 

treatment is not effective in removing fluoride, NF appears to be the most attractive process to reduce 

fluoride concentrations.  

Although fluoride has the smallest ionic radius, its hydrated radius is larger than that of other halides 

(see Table 13). Therefore, it is not surprising when Lhassani et al. reports that retention of fluoride is 

the highest amongst all halides despite its very small molecular weight, particularly at low 

transmembrane pressure where diffusive transport is significant. Halide retentions as a function of 

transmembrane pressure are represented in Figure 20 [157]. However, the difference in retention 

between chloride and iodide cannot be explained by their hydrated radii, nor by the Nernst-Planck 

equation as these halides have similar hydrated radii and charge. In this case, it appears that ion 

exchange selectivity also contribute to high fluoride retention. Indeed, when pressure increases; the 

transport mechanism of these halides shifts from diffusion to convection, the difference in retention 

between chloride and iodide subtly reduces as the effect of ion exchange selectivity diminishes.  
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Figure 20: Retention of sodium halides as a function of pressure in single solution (NF-70 membrane, feed 

concentration of each halide was 5.67 mM) [157]. 

Chapter 20 – Trace Contaminant Removal with Nanofiltration 

40 

It is important to note that retention of fluoride and chloride by a looser NF membrane can be in a 

reversed order. When investigating retention of a co-ion mixture by NTR 7450 membrane, Choi et al., 

found that chloride retention was 55-70%, while fluoride retention was much lower, in the range of 10-

15%. Perhaps, in this case the Donnan effect plays a much larger role as the NTR 7450 membrane has 

a high negative surface potential [158].  

5.7 Nitrate 

As groundwater sometimes contains excessive levels of calcium and magnesium that cause hardness 

and render the water unfit for human consumption, NF membrane has long been employed to soften 

groundwater. Recent years have seen many groundwater aquifers being polluted by nitrate due to 

intensive and unsustainable farming or poor sewage disposal practices. Accordingly, there have been a 

considerable number of studies, investigating the removal of nitrate by nanofiltration membrane [141, 

158-162]. Although, nitrate does not have the ability to speciate and poorly complexes with other 

species, the variety number of co-ions exist in raw water and complicated interactions between nitrate 

and the membrane substrate make the task of predicting the performance of a nanofiltration membrane 

in removing nitrate a difficult one.  

Based on the extended Nernst-Planck equation, one can predict that negative retention of nitrate is 

possible given that co-ions of higher charge exist in the feed solution. This has been confirmed with 

experimental data reported by Choi et al. [158]. On the other hand, the presence of counter-ions such as 

Ca2+ and Mg2+ can significantly enhance nitrate retention, although the phenomena is much more 

complicated by the fact that such cations can shield the fixed negatively charge groups of the 

membrane, reducing electrostatic repulsion force between ionic solutes and the membrane, and hence 

the retention [3]. 

The hydrated radius of nitrate is slightly higher than that of chloride and both have similar charge. 

However, chloride is usually better retained by the membrane, a phenomenon that cannot be explained 

solely base on size exclusion mechanism or the extended Nernst-Planck equation. By taking into 

account the “solute membrane affinity”, which is essential equivalent to the ion exchange selectivity as 

mentioned earlier, Ratanatamskul et al., were able to explain this phenomenon [159]. It appears that 

sorption diffusion also play an important role in the transport of nitrate in nanofiltration membrane. 

5.8 Concluding remarks 

As discussed in this section, size and charge are the two key factors influencing the retention of trace 

inorganics by nanofiltration membranes. These factors can be incorporated into the extended Nernst-

Planck equation. Trace inorganics in the form of high charge ionic compounds such as H2AsO4- or 

complexes such as UO2(CO3)22- are rejected by nanofiltration membranes to a much greater extent. In 

addition to Chapter 6, this is a further emphasis on the importance of acid based transformation and 

complexation of trace inorganic species. Retention of several trace inorganic species strongly depends 

on the solution pH. In contrast, trace inorganics in the form of a neutral species such as B(OH)3 or 

those that have small hydrated radii such as NO3- are often poorly rejected by nanofiltration 

membranes. In addition to size and charge, ion exchange selectivity appears to play an important role in 

a diffusive flux, where the extended Nernst-Planck equation is unable to predict the relative retention 

order of same charge species. Although much more work is still needed, the inclusion of speciation and 
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complexation has set a positive outlook for the quest for a sound model that is capable of predicting 

trace inorganic retention.  

6 CONCLUSIONS 

This chapter describes the relevance of NF as a notable approach to remove trace contaminants, both 

organic and inorganic, in aquatic environments. A variety of trace contaminants, their occurrences in 

various water bodies, their health effects, and the perspective in their removal by NF has been 

summarised. Some insights into retention mechanisms have also been discussed.  

Retention is generally governed by three factors including steric hindrance, electrostatic interaction, and 

solute membrane affinity for trace organics or ion exchange selectivity for trace inorganics. While the 

first two factors often dominate the separation process, the latter factors play a subtle but not less 

critical role. All of these factors depend strongly on the physicochemical characteristics of the solute, 

which may be influenced by its environment. Since trace contaminants often exhibit distinct physical 

and chemical characteristics, the retention of trace contaminants in nanofiltration (as in other 

processes) can be very compound specific.  

An attempt to fully document research work relevant to trace contaminant removal in nanofiltration 

has been made. However, the variety of operational parameters used in those studies has rendered a 

conclusive interpretation to some extent. The chapter illustrates the influence of many inter-dependent 

factors on trace contaminants retention in seemingly simple nanofiltration processes. Much more 

dedicated work is needed to fully appreciate the complexity of trace contaminant separation processes 

in nanofiltration and allow the development of adequate predictive models. Future studies should pay 

particular attention to both physical and chemical properties of trace contaminants, and their 

interactions with the membrane polymer and other entities in the solution. 

Trace contaminant removal is however an important feature of nanofiltration. It is this characteristic 

that has driven nanofiltration into the water market and will continue to do so with an increased 

emphasis on trace contaminant regulation. A thorough understanding of mechanisms will assist the 

development of membranes that are able to remove targeted compounds at higher and higher 

efficiency. We are looking forward to watching and contributing to this progress. 
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7 SYMBOLS 

c  concentration (g/L) 

Ds solute diffusion coefficient in water 

(m2/s) 

Edon Donnan potential 

F Faraday constant (96 500) 

M molecular weight (g/mol) 

R gas constant 

T temperature (oK) 

Vw water molar volume (cm3/mol) 

Vs solute molar volume (cm3/mol) 

c  concentration in solution (g/L) 

cm concentration in membrane phase (g/L) 

J flux  

q electric charge (esu) 

r,x distance (m) 

z charge number 

η viscosity (cP) 

δw water surface tention (N/m2) 

δs solute surface tention (N/m2) 

µ dipole moment (D)

8 GLOSSARY 

DBPs  Disinfection by-products 

DOC  Dissolved organic carbon 

DU  Depleted uranium 

EDCs Endocrine disrupting chemicals 

HAAs Halogenated acetic acids 

MCLs Maximum contaminant levels 

MW  Molecular weight 

MWCO Molecular weight cut-off Molecular weight  

NOM Natural organic matter 

PAHs Polyaromatic hydrocarbons 

 

PCBs  Polychlorinated biphenols 

PhACs Pharmaceutical active compounds 

POPs  Persistent organic pollutions 

STP  Sewage treatment plant 

SOCs  Synthetic organic compounds  

THMs Trihalomethanes 

THMFP Trihalomethans formation 

potential 

TOX  Total organic halide 

TOXFP Total organic halides formation 

potential

8.1 Index 

Adsorption 13, 19-22 

Arsenic 22-24 

Arsenate see arsenic 

Arsenite see arsenic 

Atrazine 

Boron 22, 26 

Breach through curve 20 

Charge interaction 

Complexation 

Contact angle 

Dipole moment 18 

Donnan equilibrium 

Donnan effect see Donnan 

equilibrium 

Donnan exclusion see Donnan 

equilibrium 

DBPs  5, 7 

Depleted uranium 

Hydrated radius 

Hydrogen bonding  18, 20 

Hydrophobic interaction 

Ion exchange selectivity 
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EDCs 5, 8, 9 

Electrostatic interaction 

Estradiol 

Estrone 

Ethinylestradiol 

Fluoride 22, 25 

Log Kow 21 

Molecular weight cut-off 

Nernst Planck equation 

Nitrate 

Partition 

Pesticides 4, 5, 7 

PhACs 2, 4, 5, 10 

pKa value 21 

Polarity 

POPs  7 

Size exclusion 

Solute membrane affinity 

Sorption-diffusion 

Speciation 

SOCs  4 

Steroid hormones 9, 10, 21 

Stock radius 

Uranium 

Zeta potential 
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