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Abstract 

The Electrically Erasable Programmable ROM (EEPROM) is used in applica-

tions such as micro controllers and mass storage media. Each of these markets is 

rapidly expanding. However, EEPROMs are particularly susceptible to reliability 

problems, since they must survive severe voltage and current stressing. This has a 

knock on effect, since operating speed must be reduced, to increase reliability. Mo-

torola's implementation of the EEPROM is the Floating Gate Electron Tunnelling 

MOS (FETMOS), which has been adopted for study in this thesis. 

An analytic model has been developed for the FETMOS, which encompasses 

transient response, threshold window and reliability. A good correlation has been 

shown between modelled data and experimental results, testifying to the model's 

accuracy. The effect of basic design parameters upon threshold window has been 

characterised, thus indicating how processing variations may be used to tailor 

the EEPROM threshold window. Equally, the model may be used to predict the 

effect of sizing down a circuit - this is important as integration densities escalate. 

Program endurance is the most pressing reliability issue. Modelling has indicated 

that, large improvements may be made in this by increasing the floating gate/drain 

overlap, with little effect on threshold window. 

An novel experiment has then been devised to monitor the effect of floating 

gate/drain overlap and doping species, upon EEPROM reliability. For this, tran-

sistor arrays with a spectrum of well defined gate/drain offsets have been produced. 

The results of these are consistent with the model. It has also been found that 

the chemistry of the dopant has only a tangential effect upon reliability. 

In conclusion, it is proposed that an increase in the tilt angle of the drain 

implant would be the most suitable method to increase the overlap, since no 

adjustment is then required in the thermal budget of the process. An increase in 

the drain doping density could also be used, to similar effect. 
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Chapter 1 

Introduction 

The microelectronics industry ebbs and flows on a tide of technical innovation, 

particularly so in today's climate of economic aggression. As silicon processing 

technology becomes more sophisticated, so transistor geometries have shrunk and 

integration densities increased. The Dynamic Random Access Memory (DRAM) 

rides the crest of this technological wave, with the highest transistor count per 

chip. The quest for ever shrinking device geometries is lead primarily by insatiable 

thirst of the microcomputer for more memory. However, the DRAM does have a 

draw back in terms of its volatility, ie. it looses data when the power is turned 

off. For this reason magnetic storage media are required, although these have slow 

read/write and access times. The paradigm would be a nonvolatile semiconductor 

memory, and this is indeed a description of the Electrically Erasable Programmable 

Read Only Memory (EEPROM). The EEPROM is one of the more sophisticated 

types of semiconductor memories available, and has been adopted for study in this 

thesis. To recap, it offers: 

Non-volatility. In common with magnetic storage media, the EEPROM re-

tains data when the power supply is switched off. 

Electrical programmability and erasability. As for the ubiquitous DRAM, 

data is updated electrically. 

A broad spectrum of technologies may be included under the EEPROM banner. 

Amongst these are: MNOS devices (metal-nitride-oxide-semiconductor) for space 

1 
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and military applications [1], devices using ferroelectric materials [2] [3], and novel 

micro-machined designs [4]. However, the most dominant technologies are the 

"Floating Gate" technologies, which are readily compatible with main stream MOS 

processes. This project will be limited solely to these devices. A generic floating 

gate EEPROM structure is illustrated in figure 1-1. This is similar to ordinary 

MOSFETs, but for the addition of a floating gate, which is electrically isolated. 

To program or erase the EEPROM charge is injected onto the floating gate, and 

(depending on its polarity) the underlying channel will go into either inversion 

or accumulation. Thus, by modulating the threshold voltage, a logic 1 or logic 

o is defined 1 . This is equivalent to the operation of EPROM. However, the 

EPROM must be illuminated in U.V. light for charge removal from the floating 

gate, whereas the EEPROM allows both program and erase electrically. 

Control Interlevel 
Gate —Oxide 

Floating
----4 TL 

Tunnel 
Oxide 

-/ Drain 
Sourcé 

Substrate 

Figure 1-1: Cross Section Illustrating a Generic EEPROM Design. 

1 A programmed EEPROM may be defined as one with either positive or negative 

charge on the floating gate. In literature no rule has been adopted. In tths thesis 

"programmed" describes an EEPROM with positive charge on the floating gate, and 

"erased" indicates injected electrons. This is irrespective of the nomenclature used in a 

referenced paper. 
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1.1 Floating Gate Technologies 

Many designs have been realised using the floating gate [1] [5]. From these, three 

have been singled out for discussion. 

The Floating Gate Electron Tunnelling MOS (FETMOS). This is the EEP -

ROM fabricated by Motorola for their micro controllers, at East Kilbride, 

and features most strongly in this work. 

The Floating gate Tunnel Oxide (FLOTOX). This device is the most popular 

of the mature technologies [6] [7]. 

The flash EEPROM. These devices have a very "bright" future [8] [9]. 

Both FLOTOX and flash EEPROMs share features of the FETMOS [10]. Each 

technology will be described below, and contrasts will be made. 

1.1.1 The FETMOS Device 

A cross section of the FETMOS transistor is given in in figure 1-2 [11], the sim- 

plicity of which is evident. Table 1-1 summarises the program, erase and read 

voltages. The high voltages are usually produced "on chip" with charge pumping 

techniques [12]. 

Control 	- nterlevel 
Gate Oxide 

Floating _j-__1 Tunnel 
Oxide Gate 	 L 	- 

- Drain 
Source 

Substrate 

Figure 1-2: Cross Section of FETMOS Device. This is Realised in NMOS. 
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FETMOS Operational Voltages  

Control Gate Drain Source Substrate 

Program OV 18V Floating OV 

Erase 18V OV OV OV 

Read OV 1V OV OV 

Table 1-1: FETMOS Operating Voltages. 

For programming a positive potential is applied to the drain. Through capaci-

tively coupling, an electric field is generated across the tunnel oxide [13]. Providing 

the field is high enough, electrons may then cross the tunnel oxide, from the float-

ing gate to the drain. Electron transport is by Fowler-Nordheim tunnelling [11], 

which is discussed in more detail in chapter 2. Thus positive charge is left on the 

floating gate, which shifts the FETMOS threshold voltage negatively, to —5V 

[14]. To ensure a large enough field 7MVcm', a thin tunnel oxide of 110A is 

used. Notice that a transistor with a negative threshold will be effectively switched 

on. Hence the source is allowed to float, avoiding the onset of a channel current, 

which would otherwise retard the programming operation. Once sufficient charge 

has collected on the floating gate, the voltage across the tunnel oxide falls, and 

tunnelling will stop. Thus the process is self limiting. 

Erase is a similar operation, but the electric field now falls between the sub-

strate and floating gate, and electrons flow onto the floating gate. This gives a 

positive shift in the FETMOS threshold voltage, to +5V [14]. Such a device is 

said to have a "Threshold Window" of ±5V. 

To read stored data it is sufficient to apply 1V to the drain. Current flow (or 

absents) indicates the threshold voltage of the device, hence defining a logic 1 or 

0. It would be possible to upset the threshold condition of the FETMOS during 

read, since the applied voltages could act as a "small program operation". This 

effect is called read disturb, and is minimised by limiting the read voltage to the 

lowest possible value [11]. One should also remember that, due to the thin gate 
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oxide, the drain voltage couples strongly to the floating gate. Thus the measured 

threshold voltage is sensitive to drain voltage. 

In a complete memory cell, an enhancement select transistor is added in series 

with a FETMOS device. The select transistor provides cell isolation during read 

and allows program/erase of individual words of data. 

1.1.2 The FLOTOX Device 

A cross section of the FLOTOX transistor is given in in figure 1-3 [15], and 

operating voltages in table 1-2 [16] [7]. This is similar to the FETMOS, but the 

tunnel oxide of 11 OA is located above the drain. 

Control 	..fl 	 Interlevel 
Gate 	 7Oxide 

Floating 	
\ 	

Tunnel 
Gate 	 Oxide 

. 

Source 	 Drain 

Substrate 

Figure 1-3: Cross Section of FLOTOX Device. This is Realised in NMOS. 

FLOTOX Operational Voltages  

Control Gate Drain Source Substrate 

Program OV 18V Floating OV 

Erase 18V OV OV OV 

Read OV 1V OV OV 

Table 1-2: FLOTOX Operational Voltages. 

In programming, electrons pass from the floating gate to the drain by Fowler- 

Nordheim tunnelling, to give a negative threshold voltage shift of —4V [16] [7]. 



Chapter 1. Introduction 	 6 

For erase the electric field again falls between the drain and floating gate. However, 

electrons flow onto the floating gate, to leave a positive threshold voltage of +8V 

[16] 

A FLOTOX device is read in the same way as a FETMOS, and a select tran-

sistor is added to form a complete memory cell. 

1.1.3 The Flash EEPROM 

There are many suppliers of the flash EEPROM, and each has taken a slightly 

different approach to the device. The main suppliers are Intel, Seeq and Toshiba, 

all producing iMbit size arrays [9]. Figure 1-4 [10] illustrates the designs from 

these manufacturers. It is interesting to notice that the simplest device, by Intel, 

has the fastest access time, 120ns, and the best reliability, 10 program/erase 

cycles. This compares with access times for Seeq and Toshiba of 200ns and 170n.s 

respectively, and reliabilities of 10 and 10 2  program/erase cycles, respectively. 

Flash EEPROMs are programmed by Fowler-Nordheim tunnelling [10] 2,  in 

a similar manner to the FETMOS. However, memory cells are all programmed 

simultaneously, from which stems the name flash. In the SEEQ device for example, 

the drain is raised to +19V, while the control gate is grounded and the source 

is left floating [17]. Electrons pass from the floating gate to the drain, giving a 

negative threshold voltage shift. 

Most flash EEPROMs are erased using a hot-electron injection technique [10]. 

An electrons is said to become hot when its drift velocity is comparable to its 

thermal velocity [18]. Thus, erasing requires a large voltage of +20V [17] on the 

drain and control gate, while the source and substrate are grounded [10]. Channel 

hot electrons are created in the high electric field near the drain junction. Since 

2 For consistency within this thesis, program will describe the condition with stored 

positive charge on the floating gate. However, many flash EEPR.OM manufacturers 

consider program to denote stored electrons. 
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Select 	 Intel Device 

Gate 

Floating 	- P 	 Gate 

Gate 	 I 	
] 	 Oxide 

Source-
7 	 Drain 

Substrate 

Seeq Device 
Phantom 	- 

Transistor 

Gate
______ Floating 

	

Oxide 	
j-Gate 

Sourcef 	
_______ Drain 

Substrate 

Toshiba Device 

	

Control 	 Erase 
Gate 	I 	Gate 

Floating  
Gate 

Gate 
 

Oxide  

Looking From 
Source to Drain 

Substrate 

Figure 1-4: Flash EEPROM Designs. These are Realised in NMOS. 
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the oxide field favours injection, the electrons are then transported to the floating 

gate [1]. A positive threshold voltage shift results. Of course, channel hot electron 

injection can only bring electrons onto the floating gate. 

The read operation resembles that of the FETMOS, where the threshold volt-

age defines either a logic 1 or 0. 

1.1.4 Contrast Between FETMOS/FLOTOX and Flash 

Memory technology in general is driven by cell size, and this will form the frame-

work this discussion. 

Flash EEPROM 

To achieve a smaller cell in flash memories, the select transistor is omitted. Flash 

memories thus forgo the ability to be programmed in small sections, eg. in words. 

Instead they must be programmed in large blocks, this is known as bulk program-

ming. From a practical view this is the main distinction between flash cells and 

FETMOS/FLOTOX cells. 

FETMOS and FLOTOX 

From the viewpoint of integration the FETMOS structure exhibits a number ad-

vantages over the FLOTOX [19]: 

. A smaller cell area, which allows denser memory circuits to be produced. 

A simpler cell structure, which is compatible with easier scaling 

of dimensions [1]. 

• One less photomask layer is required during processing. 

The FLOTOX requires tighter lithographic control, for defining extremely 

small tunnel oxide dimensions. 
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A recognised drawback of the FETMOS is that it allows a higher substrate current 

during programming [20]. This is due to its low drain junction breakdown voltage 

[19]. Thus it draws more current than the FLOTOX during the program operation. 

Logic circuits including relatively small FETMOS arrays are generally unaffected 

by the higher current requirement [20]. However, for large arrays, special attention 

to charge pump design is needed. A number of other limitations have been cited 

for the FETMOS including: 

. Threshold voltage shifts due to charge trapping in the tunnel oxide. 

. Reduced endurance due to the inclusion of low integrity field oxide edges in 

the tunnel area. 

However, the significance of these concerns remains a moot point [19]. 

1.2 Utility of the EEPROM 

Let us now discuss the most popular uses for the EEPROM. There are two major 

driving forces in the development of EEPROM technology. One is for high density 

memories requiring low cell size and lowest cost per bit. The other requirement 

is in non-volatile low density memories, for micro-controllers and programmable 

logic type applications. 

1.2.1 Program/Data Storage Media 

EEPROM technologies of all kinds have been produced simply as memory chips 

[1] [11], as such they were intended mainly to displace the EPROM [1]. However, 

flash EEPROMs are now beginning to have a far reaching impact. With their 

high densities they are winning an increasing market share from magnetic tape 

and disc storage media. 
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Advantages of EEPROM over magnetic media include: 

• Physical ruggedness. 

• Light weight. 

• Low power consumption. 

Flash EEPROM replacements for the hard disc will be available very soon in the 

form of memory cards 20Mbyte [8]. The effect on portable computers is to 

increase battery life from 4 hours to between 30 and 60 hours. Weight is also 

reduced, from 7 pounds to between 1 and 2 pounds [8]. The optimism felt by the 

industry for this technology may be summed up in a quote from Intel's marketing 

manager (made in 1990) [9]: " We understood DRAMs to be the smallest and 

simplest memory device available but now flash is that and non-volatile too. The 

Intel iMbit flash EEPROM is smaller than the NEC iMbit DRAM"... 

1.2.2 Embedded Systems 

EEPROMs may be embedded into logic circuits, such as microcontrollers. These 

are close cousins of the microprocessor, but have added features such as A to 

D conversion and EEPROM memory. In a microcontroller the EEPROM is often 

used to store the configuration of a machine, before power down. FETMOS devices 

are produced by Motorola on there HC1 1 micro-controller, in a block of 512 Bytes 

[21]. This has a large share in the lucrative automotive market, for self-tuning 

engine systems, where the EEPROM stores the engine configuration when the 

journey is over. 

1.2.3 Embryonic Technologies 

EEPROMs offer advantages in many of tomorrow's technologies such as artificial 

intelligence, self adaptive systems [1]. The elegance of an EEPROM solution to a 

problem is epitomised in Neural Networks. Briefly, these are systems which mimic 
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the brain. Information is transmitted between neurons as discrete nerve impulses, 

with information encoded as an analogue potential: an "impulse density" [22]. 

Neurons receive impulses at "synaptic sites" and an arriving impulse generates 

an analogue potential, which is scaled in proportion to a "synaptic weight". Ar-

riving potentials are summed , and when the summed potential exceeds a given 

threshold, nerve impulses are generated and transmitted to other neurons. At face 

value such a system may not appear very powerful, and an individual neuron does 

only very simple tasks. The high computing power of neural systems arise from 

the collective behaviour of large, highly interconnected, fine grain networks [23]. 

The learning function of neural networks originates from their ability to change 

the synaptic weights. Responses of the system may then optimised to solve a 

particular problem, eg. pattern recognition. In VLSI neural network circuitry 

the synaptic weight is commonly stored in a shift register [22], which is costly in 

terms of chip area. Alternatively however, an EEPROM may be used to store the 

synaptic weight, as an analogue charge on the floating gate [24]. Thus the number 

of transistors required per neuron is reduced, and a finer network produced. Natu-

rally there are problems in such an implementation: program/erase characteristics 

of EEPROMs tend to vary across a wafer; and reliable EEPROMs are required, 

for which the program/erase characteristics remain stable with use [24]. 

1.3 Reliability 

Since the first integrated circuits were made (around 1959) the maximum number 

of devices that can be successfully integrated into a single chip of silicon has risen 

steadily. This trend in increasing transistor counts was vocalised by Moore, who 

predicted in 1964 that the number of transistors would at least double every two 

years. The validity of this is born out in Figure 1-5 [25], which gives the transistor 

3 A "feedback-based" programming method has been used to over come these problem, 

though its slowness limits the usefulness of the EEPROM in the system [24]. 



Chapter 1. Introduction 
	 12 

counts per die for the densest examples of memory circuits, the DRAM. With more 

transistors available, it has become possible to produce logic circuits such as micro-

controllers, with ever greater functionality. Indeed, as the level of integration on 

logic circuitry swells, so more of the transistor budget may be allocated to memory 

structures [25]. 

Increase In DRAM Memory Size With Time 

1 E+09 

1 E+08 

C.) 
1E+07 

0. 

1E+06 

1E+05 

1E+04 

1E+03 

IE-f02 -I- 

1970 1980 	 1990 	 2000 

Year 

Figure 1-5: Increase in Integration Levels Over a Period of Years. 

1.3.1 Shrinking Geometries 

While there are many technologies available, MOS devices are at the leading edge 

of VLSI in terms of packing density, and will receive sole attention here. Integra-

tion levels may be increased in a number of ways [26]: 

Increasing Die Area. Unfortunately this also makes the circuits more prone 

to defects, so reducing yield. 

Design Improvements. Use of more efficient circuit architectures, which re-

quires less components. 

Circuit Layout. Careful attention to the layout can give a reduction in the 

area needed by a circuit. 
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4. Scaling down device feature size. In its simplest form this simply means 

reducing all dimensionrby  a factor a 

Scaling makes the largest contribution to the increasing complexity of integrated 

circuits [26]. Although there must be a limit beyond which further integration 

becomes uneconomic. In the the early 1980s it was argued that pushing minimum 

geometries below 0.5im would yield only diminishing returns [27]. In the inter-

im improvements in device design and fabrication technology have reduced this 

limit. Today's research have yielded silicon MOSFETS in the deep-sub-micron 

regime, with channel lengths of 0.15nn [28]. Meanwhile, state of the art circuits 

in commercial production have critical dimensions of 0.81Lm [28] 

1.3.2 Reliability In General 

As transistor density escalates so do reliability problems. Integrated circuits gen-

erally have very long life expectancies '-' decades. Never the less they do suffer 

from reliability problems. General reliability problems come in many guises, but 

two principal classes are: 

Electromigratioü in metal interconnections [29] 

Transistor threshold shift and gate oxide rupture, due to hot electron effects 

[30]. These can be minimised by careful engineering of the drain region. 

In a logic circuit, the failure of only one device may cause the entire circuit to fail. 

Reliability may be measured in terms of FITs, where 1 FIT represents 1 failure 

in 10 device hours. (eg: if iO transistors are tested for an hour, and one fails, 

we have 1 FIT). Currently acceptable failure rates are considered to be -' 100 

FITs [31]. Clearly however, as transistor counts grow, so FIT rates must fall. A 

daunting 0.1 FIT rate has been proposed as a reliability goal for the year 2001, 

by The Semiconductor Research Council [32]. Thus, methods of improving device 

reliability are a major concern to the semiconductor industry as a whole. 
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1.3.3 Reliability and the EEPROM 

Due to the tunnelling of electrons through the gate oxide, EEPROMs are espe-

cially susceptible to reliability problems. FETMOS devices have a maximum life 

expectancy of only 10 program/erase cycles [11], while flash EEPROMs have a 

life expectancy of 10 1  cycles [10], depending on the manufacturer. In addition, 

EEPROMs are sensitive to fabrication conditions and may not display an accept-

able threshold window, so lowering yield. Accurate control of the processing and 

reduction of impurities obviously help. Beyond this, two areas are of interest: 

It would be useful to know exactly how a change in processing effects the 

threshold window and reliability of an EEPROM. For instance, a smaller 

floating gate may give a higher threshold voltage, or improved reliability. 

With this knowledge, some degree of process optimisation may be possible. 

It would also be beneficial to design a device with a higher innate reliability. 

These then, form the joint objectives of this thesis. 

1.4 Thesis Plan 

Before tackling either of the above problems however, it will be necessary to more 

closely examine the mechanics of the EEPROM. This will be the subject for Chap-

ter 2. In chapter 3 a model is derived for the FETMOS device, and in chapter 4 

this is used to analyse FETMOS threshold window and reliability. In chapter 5 

the fabrication of novel test structures is described, which are equivalent to a set 

of FETMOS devices. In chapter 6 these test structures are used to analyse FET-

MOS reliability. Finally, in chapter 7 results are summarised, overall conclusions 

are drawn, and recommendations are made regarding improved FETMOS design. 
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Chapter 2 

EEPROM Physics and Reliability 

-r 	11 	• 	r-i- 	 11. 2.1 Fowler-INoraneim iunneiiing 

Fowler-Nordheim tunnelling describes a quantum mechanical effect, implicitly 

linked with theories produced by quantum physicists during the early twentieth 

century. Although Fowler-Nordheim (FN) tunnelling is often mentioned in litera-

ture, the underlying physics of the effect only ever receive a cursory consideration. 

In this thesis FN tunnelling is met both in the analysis of test structures and in 

the modelling of the EEPROM cell. As such, FN tunnelling is central to the fabric 

of the thesis and merits a closer examination. With a clear understanding of the 

FN tunnelling mechanism, the physical accuracy of any model for the EEPROM 

cell may be assessed with greater confidence. The relationship between the FN 

tunnel current and parameters within a test structure (eg. gate oxide thickness) 

may also be better understood. Quantum mechanics is a very broad subject and 

only the salient features relating to FN tunnelling will be examined. 

2.1.1 Wave Particle Duality 

Following Einstein's theory (in 1905) that light may exhibit both a wave and a 

particle nature, de Brogue (in 1924) extended the idea of dualism, to suggest that 

particles may also exhibit a wave nature. This is to say particles such as electrons 

also behave as waves [1]. Their wavelength is given by: 

7-nv 
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Where: 

• = Wave length 

• h = Planck's constant = 6.625 x 10 34 Js 

. rn= Mass of the particle (eg. rest mass of an electron = 9.1091 x 1031  Kg) 

• v= Velocity of the particle 

Waves normally conjure up an image of a moving entity (ea. sea waves trav-

elling towards the shore), and a free electron will fit such a description. However, 

an electron bound within a silicon atom will be stationary, and as such it can exist 

only as a standing wave. An analogy for this regime is that of a guitar string fixed 

at both ends, in which a stationary wave may also be produced. 

All waves may be described by an appropriate set of equations (eg. Maxwell's 

equations for electromagnetic radiation). It was Schrödinger (in 1925) who devel-

oped an equation to describe the wave nature of particles [2]. Even though the 

mathematics is quite complex, it is interesting to include a version of Schrödinger's 

equation, if only to introduce the variable T. Hence, the standing wave associated 

with an electron (for a one dimensional case) may be described by [2]: 

_!! + VW = ET 
2m dx 2  

Where: 

= The quantity which varies in the wave. 

• h = -- = Reduced Planck's constant = 1.054 x 10 34 Js 
2ir 

• in = Mass of the electron 

• x = Position 

• f /t2  dP\ = Kinetic energy of the electron. 
2m dX2 
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. V = Potential energy of the electron 

. E = Total energy of the electron 

The concept of kP itself is an abstract one, but was given a tangible interpreta-

tion by Born, who proposed that IIhI 2  dx represents the probability of finding an 

electron between a distance x and x + dx from an origin. As an example, consider 

an electron bound within a single hydrogen atom. For the electron in its lowest 

energy level I
ii! 2  dx is illustrated in Figure 2-1 

c 50% 	
Probability 

2 	 Asymptotically 
Approaches 
Zer in 

rNAp 
0 

LL 

Distance from the Centre of the Hydrogen Atom (Angstroms) 

Figure 2-1: Probability of Finding an Electron at a Distance x From the Center 

of a Hydrogen Atom. 

The salient feature to note is that at large radii, I
WI2  dx decreases asymptot-

ically, but never reaches zero. There is a possibility that the electron could be 

found ay_-wIIere, either inside or outside the atom. In fact, one can never be 

certain where an electron is at any time. 

2.1.2 Fowler-Nordheim Tunnelling in MOS Structures 

The energy band diagram for a MOS structure is given in figure 2-2 [3] This 

is equivalent to the region in a FETMOS device where the floating gate and 

drain overlap. Electrons in the polysilicon conduction band meet a large energy 

barrier at the polysilicon/oxide interface, whose height is 3.1eV. Application of a 

small voltage to the drain, 	1V, will cause the energy bands to bend, with the 
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majority of the voltage falling across the oxide. However, in the dark and at room 

temperature, few electrons have sufficient energy to surmount the barrier, and 

current flow will be negligible. Remembering the function 
I Xp I 2 , it can be said that 

Electrons Are Unable Polyslilcon ' 	
to Tunnel into 

at 	N the Oxide 

Ground Potential 	 Conduction Band 

EC 

Silicon Drain 

at 

Low Positive 
Voltage 

EC 

EV 

Tunnel Oxide 

110 Angstroms Thick 

Region 
Illustrated 
in Band Diagram 

Figure 2-2: Energy Band Diagram for a MOS Structure, Under a Small Applied 

Bias. This is Equivalent to the Floating Gate/Drain Overlap Region of a FETMOS 

Device. 

there is a possibility of the electrons leaving the polysilicon gate and reaching the 

drain. The probability of this increases for thinner tunnel oxides, and at 60A the 

probability is sufficiently high for the current to become significant. This process 

is known as quantum mechanical tunnelling. It places a theoretical limit on the 

minimum oxide thickness suitable for a floating gate EEPROM. Oxides below 601 

would readily leak charge, giving data retention problems. However, for a 1101 

tunnel oxide the current flow is negligible. 

As the drain voltage is raised so band bending becomes more pronounced. 

This represents a lowering in the energy level of the oxide conduction band. Once 



Chapter 2. EEPROM Physics and Reliability 	 22 

band bending has become sufficient, electrons can cross into the oxide conduction 

band. This is Fowler-Nordheim tunnelling, which becomes significant for an oxide 

electric field of "-j  7MVcrrr' or greater. Here, the polysilicon gate/oxide interface 

is referred to as the "injecting interface". Tunnelling electrons are then accelerated 

to the drain, and as they travel electrons loose energy in collisions with atoms in 

the oxide, this is illustrated in figure 2-3. Since the energy barrier between holes 

and the oxide valence band, 4.3eV [4], is larger than that between electrons and 

the oxide conduction band, 3.1eV, the hole current is negligible in comparison. 

The electrical characteristic for a MOS structure under a voltage ramp is given in 

figure 2-4. 

Polysiflcon Gate 	
Electrons May Now 

Path 

at 	 Tunnel Into 

u• IC Ground Potential 	 Oxide 
Conduction Band 

EC 

EF 	

Electron 

Silicon Drain 

at 
High Voltage 

Bc 

El 

By 

Tunnel Oxide 

110 Angstroms Thick 

Figure 2-3: Energy Band Diagram Illustrating Fowler-Nordheim Tunnelling in 

a MOS Structure. 

2.1.3 Factors Which Affect Fowler-Nordheim Tunnelling 

Fowler- Nord heim tunnelling is an electrode limited process, as opposed to a bulk 

limited process [5]. Thus, the tunnelling current will be varied by phenomena at 

the injecting interface. Some effects are negligible, such as image force barrier 

lowering, which tends to "round off" of top of the polysilicon/oxide energy barrier 
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Fowler-Nordhelm Tunnelling 
In a MOS Structure 
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Figure 2-4: Electrical Characteristic for a MOS Structure Under a Voltage 

Ramp. This measurement was made on a MOS capacitor of area 2.5 x 10_ 1 07-1 2  

[6] [7]. This has little effect since electrons are mainly distributed at the base of the 

energy barrier, whereas rounding is confined to the top of the barrier. The energy 

of incident electrons may be increased by temperature or illumination, at higher 

energies these electrons have a shorter distance to tunnel. However, the majority 

of factors are process dependent, such as doping density of the polysilicon. This 

may be used to increase the number of electrons incident on the silicon surface, 

and hence the tunnel current. Indeed, the polysilicon/oxide interface itself is not 

well defined, rather there is a transition region of 10)1 which consists of silicon 

rich oxide [8]. This region contains silicon "islands" at which the electric field is 

locally enhanced, increasing the tunnel current [9]. It has also been noticed, that 

the Fowler-Nordheim coefficients A and B increase as oxides become thicker, in 

the range 60)1 to 140)1, but saturate towards thicker oxides [10]. While there is 

no good argument to explain this, it may be that the thin transition region at 

the 8/8102 interface becomes more influential for thinner oxides [10]. Defects of 

various descriptions will also effect tunnelling [11] [12], these are discussed further 

in chapter 5. However, two of the most significant influences on Fowler-Nordheim 

tunnelling are charge trapping, and field enhancement due to asperities. 
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Charge Generation and Trapping in the Oxide 

A proportion of the electrons being accelerated towards the drain experience im-

pact ionisation events in the oxide, which produce electron/hole pairs [13]. The 

holes are then accelerated towards the gate, and electrons continue towards the 

drain. A proportion of each charge species becomes trapped in the oxide, which 

affects the field at the injecting interface [14], as illustrated in figure 2-5. Hole 

trapping enhances the field at the injecting interface, whereas electron trapping 

reduces it. 
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Ev Th 

In the 
Oxide are 	 EC 

Distorted 
by Trapped 
Charge 

Ev 

Tunnel Oxide 

Figure 2-5: Energy Band Diagram for a MOS Structure After Charge Trapping. 

Asperities at the Injecting Interface 

The crystals which make up polysilicon form a rough surface with many ridges, 

or "asperities" [14], as illustrated in figure 2-6 [15]. These bend the electric field 

lines which become crowded at the asperities, since electric field lines always lie 

normal to the surface of a conductor [7]. Thus, asperities at the injecting interface 

will locally enhance the electric field [14], usually by a factor of 3 to 5 times [16]. 

Therefore the tunnelling current becomes locally enhanced, as will the associated 
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charge trapping. In some devices asperities are enhanced during processing, to 

give so called textured surfaces. These devices use much thicker tunnel oxides, of 

600A to 1000A [16], while still providing the required tunnel currents. Although 

a thin tunnel oxide is no longer necessary, charge trapping becomes enhanced, 

which reduces any benefits [17]. 

AW 

Figure 2-6: Quantum funnelling Micrograph, Illustrating Asperities on a 

Polysilicon Surface. 

2.1.4 An Equation to Describe Fowler-Nordheim Tun-

nelling 

Fowler-Nordheim tunnelling is described by equation (2.1): 

J = AE 2 exp() 
	

(2.1) 

Where: 

• J= Current density flowing through the oxide. 

• E= Electric field strength across the oxide. 
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. A and B = Fowler-Nordheim Coefficients. 

The Fowler-Nordheim coefficients may calculated either experimentally [18], or 

theoretically [6] [5]. For theoretical calculations A and B are expressed in terms of 

fundamental parameters such as the height of the polysilicon/oxide energy barrier. 

To give greater accuracy modifying factors may also be added, to account for such 

effects as image barrier lowering [5]. Even so, no theoretical expression has been 

developed to include all factors which effect Fowler-Nordheim tunnelling, such as 

trapping of carriers in the oxide [13]. In addition, oxide processing has a significant 

effect on tunnelling characteristics. Accurate values for A and B should therefore 

be extracted from experimental data. This is considered in chapter 3. 

2.2 Reliability Issues 

2.2.1 Oxide Breakdown 

Since EEPROM failures result almost exclusively from tunnel oxide degradation, 

we shall first review tunnel oxide reliability. As with all VLSI processes, manufac-

turers take much trouble to produce good quality oxides, and over the small area 

of one EEPROM cell the oxide should be of uniformly good integrity. Therefore, 

we will be concerned largely with defect free oxides in our review. 

The reliability of thin oxide films is of great importance to the MOS semicon-

ductor industry, since oxide failures make up a large proportion of yield loss. For 

this reason, a wealth of material has been published on the subject. Never the less, 

the mechanism of oxide failure is not well understood, and there are a number of 

competing theories in existence. To give a feel for the processes associated with 

oxide degradation, the impact ionisation model has been chosen for consideration 

[13] [19] [20]. This is a well established model for which supporting evidence is still 

being produced today [21]. The hole trapping phenomenon this proposes, would 

explain why radiation hard processing techniques, as used in this work, produce 

oxides of superior quality. 



Chapter 2. EEPROM Physics and Reliability 
	 27 

Methods of Oxide Stressing 

An oxide must be stressed to assess its reliability, and the stressing techniques 

may be subdivided into two categories [22]: 

TZDB: Time Zero Dielectric Breakdown. This is essentially field dependent 

stress. 

TDDB: Time Dependent Dielectric Breakdown. This is essentially time de-

pendent stress. 

TZDB: A ramped voltage is applied to the oxide causing it to rupture. The 

steep rise in current observed at breakdown then gives a convenient and unambigu-

ous signal that rupture has occurred. The quality of the oxide will be indicated 

by the electric field required for breakdown, given in MVcm'. TZDB can be 

categorised into three modes [11] [23]: 

A mode. This is attributed to pin holes in the gate oxide because of the 

nearly zero breakdown field of EBD < lMVcrri 1 . 

B mode. This is caused by a defect, giving intermediate breakdown field of 

1MVcm 1  <EBD < 8MVcm'. The upper limit of the B mode breakdown 

voltage is determined self-healing energy, which is necessary to explosively 

evaporate the gate polysilicon layer above the B mode defect. The lower 

limit for this breakdown is determined by thermal breakdown. Breakdown 

happens when the Joule heating due to conduction, for which power= PR, 

exceeds the rate of energy dissipation. 

C mode. This failure mode is due to intrinsic breakdown of the oxide, and 

typically occurs for EBD > 8MVcm 1 . 

The field at which intrinsic breakdown occurs defines the "dielectric strength" of 

the oxide sample. Note that for oxides thinner than 1501, it becomes difficult 

to distinguish between B and C mode failures [23]. 
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TDDB: A constant voltage, or constant current, is applied to the oxide until 

it ruptures. In essence, there is no qualitative difference between constant current 

or constant voltage stressing [13], and for this review constant voltage stressing 

will be considered, as this method of testing is used in this project. The applied 

voltage should be sufficient to produce a Fowler-Nordheim tunnel current in the 

oxide, while still remaining below the oxide's dielectric strength. Again, the steep 

rise in current observed at breakdown gives an unambiguous signal that rupture 

has occurred. In this case, however, oxide quality is indicated by the amount of 

charge which has passed through the oxide before breakdown. On a practical level, 

this will be the integral of current as a function of time, referred to as QBD. 

Although one EEPROM program/erase operation is short lived (s.d  lOms), over 

the life time of an EEPROM many such operations will take place, and the net 

length of time spent in programming/ erasing will be up to 10 times as long [24]. 

Thus constant current or voltage stressing will roughly emulate conditions during 

programming/ erasing of an EEPROM [13]. TDDB has therefore been chosen as 

the principle method of investigating the relative reliabilities of devices fabricated 

in this work. 

The Impact Ionisation Model 

The Impact lonisation Model sets out principally to explain TDDB, although 

literature suggests that breakdown mechanisms for TDDB and TZDB are the 

same [25]. Conceptually TDDB can be thought of as a two stage process: 

Build up. 

Runaway. 

Figure 2-7 shows a graph of current against time (I/t), for a constant voltage TD-

DB test. Since the runaway stage takes only fractions of a second to be completed, 

it is the build up stage which determines the life time of the oxide. 

During the build up stage, electrons will pass into the oxide conduction band 

by Fowler-Nordheim tunnelling. The salient feature of this build up stage is a 
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Figure 2-7: Current Against Time for a Constant Voltage TDDB Test. 

decrease in tunnel current with time, which is widely accepted to be a result of 

electron trapping in the oxide. Electrons will become trapped over a wide range of 

distances from the injecting interface, or cathode. However, trapped electrons may 

be modelled as a charge sheet, whose centroid lies at XN,  as illustrated in figure 

2-8 . The effect of trapped electrons is to reduce the field at the cathode, while 

increasing the anode field. This reduction in cathode field is responsible for the 

reduction in tunnel current. Notice also, that the slope of the TDDB curve never 

becomes level, indicating that electron trapping continues throughout the entire 

test, ie. the traps are never completely filled. This non-saturating behaviour is a 

general feature of TDDB testing, and is believed to be due to the generation of 

electron traps during the test, under the influence of the high field. 

A proportion of the injected electrons gain sufficient energy to cause impact 

ionisation and generate electron/hole pairs E261.  Generated electrons then continue 

to the anode, while holes are swept back towards the cathode. A number of these 

holes become trapped in the oxide, also illustrated in figure 2-8 . Again, hole 

trapping proceeds over a range of distances from the cathode. This may also be 

modelled as a charge sheet, whose centroid lies at Xp. By enhancing the cathode 

field trapped holes tend to raise the magnitude of tunnel current, and so have a 

contrary effect to trapped electrons. Thus the question is raised, why should the 

effect of electron trapping dominate? It has been proposed that the hole trapping 

proceeds only over a small area of the oxide, and experiment has indicated that 
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Figure 2-8: Energy Band Diagram to Illustrate Charge Trapping During Voltage 

Stressing of the Oxide. 

hole trapping is localised to approximately 1 part in 106  of the total oxide area 

[13]. 

Even in a good quality oxide there will be a degree of inhomogeneity, hence we 

may subdivide areas into two categories, connected in parallel: 

"Robust areas". These are relatively un-susceptible to hole trapping at the 

cathode. 

"Weak areas". These are relatively susceptible to hole trapping at the cath-

ode. 

A positive feedback loop evolves in the weak areas, since the increased current 

produces a larger number holes through impact ionisation, which enhances the 

cathode field .....and so on. Associated with this will be a localised increase in 

the rate of electron trapping, which locally raises the anode field. Given that the 

impact ionisation coefficient has a strong field dependence, this phenomenon will 

provide an added fillip to the positive feedback cycle. Once the localised current 
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density obtains a "critical value" runaway will begin, this is stage two of the 

TDDB process. Current instability then leads to electrical and thermal runaway, 

associated with catastrophic failure. 

Early breakdowns, resulting from defects, may also be described by the impact 

ionisation model [13]. Such defects are assumed to suffer from a combination of 

one or more of the following ailments: 

A high density of hole traps. 

. A large hole capture cross section. 

. A lower effective tunnelling barrier height. 

2.2.2 Analysis of Reliability Data 

Consider a batch of wafers, on which thin SO capacitors have been fabricated. 

The reliability of the batch as a whole, will be an aggregate of of the reliability of 

individual capacitors. Some capacitors will be more reliable than others, and this 

spread will have a random nature. Therefore, many capacitors should be tested 

to access the reliability of the batch, and statistical validity will improve as larger 

sample sizes are used. 

Historically, the microelectronics industry has used the "bathtub curve" when 

discussing reliability [27]. The results which could be expected from a TDDB test 

over a large sample of oxide capacitors is illustrated in figure 2-9. This curve is 

characterised by three regions [28]: 

A high initial failure rate, the so called "infant mortality" period. 

A low but nonzero midlife failure rate, attributed to random failures. This 

region represents the useful life of the capacitor. 

3. An increasing failure rate at end-of-life, due to intrinsic wearout mechanisms. 
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Figure 2-9: "Bathtub Curve". 

The overall shape of the bathtub curve will vary, depending on the processing 

conditions of the oxide. The entire curve may be characterised using a Weibull 

distribution [29] [30], and equation (2.2) gives a simple form of this: 

F(t) = 1 - e(') 	 (2.2) 

where: 

• F = Cumulative probability of failure. 

• t = Time to breakdown. 

• a = Constant 

• For / < 1 the failure rate decreases with time. 

For P = 1 the failure rate is constant. 

For / > 1 the failure rate increases with time. 

Of course, low infant mortality and midlife failure rates are preferable. How-

ever, for this project intrinsic reliability problems are of chief interest, associated 

with end-of-life failure. For previous researchers the intrinsic breakdown of SO 2  

has been shown to have a log-normal distribution [20]. This gives it the bell shaped 

Gaussian curve, observed when a logarithmic x-axis is used, as in figure 2-10. This 

distribution is characterised by two parameters: 
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The median time to failure. This is the time taken for half of the sample to 

fail. 

The shape factor c A low value of a indicates a failure distribution which 

is tightly grouped in time. 

Time Qog-scale) 

Figure 2-10: A Gaussian Distribution. 

The validity of this model for the failure distribution can be checked by plotting 

the results on a log-normal graph. The graph can then be scrutinised, to ensure 

all points lie on a straight line. Significant nonlinearity may indicate that more 

than one failure mechanism is at play [29]. The shape factor o will be the slope 

of this line. 

2.2.3 Accelerated Testing 

Clearly, the bathtub curve is produced by testing capacitors to destruction. How-

ever, if normal operating conditions were used for stressing, tests would take an in-

ordinate length of time. A method for accelerating wearout is obviously required, 

and for this the semiconductor industry commonly uses increased temperature, 

voltage, current density or humidity [29]. The reliability under normal operation 

can then be calculated from the accelerated test, using an acceleration factor. The 

great majority of accelerated life tests for semiconductors use temperature acceler -

ation. However, high temperature acceleration is not always the most appropriate 

stress, since "threshold triggered" mechanisms may be encountered [30]. These 
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are failure mechanisms which are only encountered above a certain threshold tem-

perature. It is possible to detect the onset of a threshold triggered mechanism, by 

testing reliability at sequentially raised temperatures. This methodology is called 

"step-stress". It should also be remembered that while high stressing condition-

s will be suited to detecting wearout mechanisms with high activation energies, 

there is a risk that a low activation energy mechanism may be concealed. Here 

again step-stress methodology can be used to detect low activation energy mech-

anisms. Now, Fowler-Nordheim tunnelling is primarily driven by an increase in 

electric field, while the integrity of an oxide is judged by its charge to breakdown. 

Therefore, voltage acceleration has been chosen for use in this project. 

2.2.4 EEPROM Reliability Issues 

Long Term Charge Retention 

For good long term reliability of the EEPROM it is essential that less than 10% 

of the stored charge leaks away in 10 years [31]. The key to avoiding leakage is the 

strong dependence of tunnel current on voltage across the oxide, as characterised 

by the Fowler-Nordheim tunnelling curve. The current rises by an order of mag-

nitude for every 0.8V increase in applied voltage. Simple arithmetic can be used 

to prove the long term retention of any EEPROM, as follows [31]: 

• Programming voltage = 18V. 

• Average programming current 1 x 10'°A [32]. 

• Average charge stored on floating gate 8 x 10 14 C [31]. 

• Read voltage = 1V. 

• Ratio of read disturb current to programming current 

- (18V-1V) 20 orders of magnitude. 
- 	0.8 	- 

• Read disturb current = 1x10'° = 1 x 10 30 A. ix 1020 
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• Now imagine the EEPROM is read for 10 years (3 x 108  seconds). 

The charge lost will be = 3 x 108  x 1 x 100 = 3 x 10 22 C 

3x10_22 x 100 = 3.7 x 10-1%  of the charge is lost. e As a percentage, only 8x10-14 

Evidently then, charge leakage is negligible. 

Endurance 

During a life time of being continually programmed and erased, the threshold 

voltages of an EEPROM will vary. The program/erase endurance characteristics 

of a typical FETMOS device is given in figure 2-11, this shows program/erase 

threshold against the number of program/erase cycles [24]. 

Erase 

2+21 
CD 

Number of 
Program/Erase 

Ii 	110 	1100 	IlK 	I1OK 	lOOK 	
cIas 

a  -2 
IE 

Program 

Figure 2-11: Typical Endurance Characteristic for a FETMOS Device. 

The endurance characteristic can be divided into 4 regions: 

1. Initially the width of the threshold window increases as positive charge is 

trapped during program/erase operations [24], this regime lasts for 10 

cycles. 

2. The width remains constant for 1 x 10 cycles. 
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After 1 x iO cycles the effect of electron trapping during program/erase 

operations becomes evident. This trapped negative charge reduces the Fowler-

Nordheim tunnel current and closes the threshold window, this process is 

called "trap-up". 

After 1 x 10 5  cycles the effect of electron trap-up has closed the threshold 

window to such an extent, that programmed and erased devices may no 

longer be distinguished. The EEPROM has now failed. 

One should notice that an EEPROM failure occurs even before the tunnel oxide 

has ruptured. Programming is more susceptible to trap-up than erasing, since 

the program current is localised, whereas the erase current is distributed over the 

entire channel region [33]. 

Firm Errors 

lonising radiation incident on an EEPROM, may excite the stored electrons. Thus, 

providing them with sufficient energy to leave the floating-gate. Conversely, elec-

trons may be provided with sufficient energy to pass into a floating gate where 

positive charge is stored. Over an extended period of time many such ionising 

events would cause the data to be lost. Outside space or military applications, the 

most common source for this radiation is actually the integrated circuit package 

[4] 

Soft Errors 

lonising radiation may also upset the sense circuitry, which reads the EEPROM 

cells. A single ionising event is enough to cause a soft error, but the error can be 

corrected by simply re-reading the data [4] 

Logic Circuits with Embedded EEPROM 

In a system containing embedded EEPROM, high voltage transistors are required 

for the programming/ erasing circuitry. In order to reduce the number of masking 
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steps and make the process economic, high voltage transistors and logic transistors 

use the same gate oxide [34]. Clearly there is a trade off, since logic transistor 

require thin oxide .-' 200A for speed and density, whereas high voltage transistors 

require thick gate oxide 400A for reliability. Thus the inclusion of EEPROM has 

an effect on the whole circuit. 

2.3 Improving EEPROM Operation 

and Reliability 

Two avenues lie open for investigation of the EEPROM, either computer simula-

tion or the fabrication of a set of test devices. Once set up,a simulations a11os a 

large amount of data to be produced relatively quickly. Thus, the effect of varying 

all parameters in an EEPROM can be assessed, and the most significant identified. 

Once an important parameter has been isolated, eg. gate/drain overlap, a set of 

test structures may be fabricated to assess model predictions. 

Therefore, it has been decided to produce a model for the FETMOS, in terms 

of its basic design parameters, such as oxide thickness and gate/drain overlap. 

The effect of these parameters on FETMOS operation and reliability can then be 

assessed. No model for the FETMOS currently exists, nor does a suitable method-

ology for modelling reliability. The development of a new model is discussed in 

chapters 3 and 4. 

Already it has been observed at Motorola that FETMOS devices fabricat-

ed with phosphorus drains, are more reliable than those fabricated with arsenic. 

Phosphorus has a greater mobility in silicon, than does arsenic, and produces a 

larger gate/drain overlap. Although one may conjecture that improved reliabili-

ty is due to increased tunnel area, there is nothing to prove that chemistry does 

not account for improved reliability. Conjecture is an insubstantial foundation on 

which to base costly commercial semiconductor technologies. This is especially 

true in today's climate of economic aggression [35]. It would be interesting to 

clarify the reason for this reliability improvement scientifically. To this authors 
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knowledge, the relationship between doping or gate/drain overlap, and device re-

liability has not been investigated in previous research. The fabrication of devices 

to test this will be the subject of chapters 5 and 6. 
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Chapter 3 

Derivation of a FETMOS Model 

3.1 Overview 

In the words of Einstein "A model should be as simple as possible, but no simpler". 

In adopting this approach to modelling, it is hoped to place interesting effects 

in the lime-light, without clouding results with more subtle (but unimportant) 

phenomena. Reliability is a key area [1], and it is proposed to model this, in terms 

of fundamental physical parameters, such as gate oxide thickness and gate length. 

It will then be possible to vary each parameter, and find the most influential. In 

this way a means to enhance FETMOS endurance can be found. The dependence 

of the threshold window upon fundamental parameters is also of interest. Even in a 

well established process the threshold window varies 1,  and may stray outside limits 

required by accompanying circuitry. It is therefore desirable that the model can 

predict parameter variations, which can be used to restore the threshold window, 

to its original value. Finally, the model should also provide the capability to probe 

internal currents and fields, during program and erase operations. 

Endurance is a key reliability issue for the EEPROM. However, no suitable 

methodology currently exists to access this. No model exists for the FETMOS 

either, although models have been developed for a variety of other EEPROM 

devices. Hence, a new methodology for calculating reliability and a new model 

for the FETMOS are required. Previously, models have been produced for both 

'As noted in discussion with Motorola. 
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avalanche type electron injection devices [2], and Fowler-Nordheim type injection 

devices [3,4,5,6,7]. These models are all based on the capacitive equivalent circuit 

for the cell. However, only two of the models, [6] and [7], account for parasitic 

resistances and the ramped nature of the program/erase voltage. Inclusion of 

these parasitic values allows an accurate transient analysis to be made. This will 

be important in deriving a methodology to calculate reliability. Suciu's model for 

the FLOTOX [7] was deemed to be the best of these, since it includes parasitic 

factors most elegantly into the model equations. The FETMOS can be described 

by a capacitor network, which is equivalent to the FLOTOX. Therefore, Suciu's 

FLOTOX model may be used as the basis for the FETMOS model. 

However, before deriving the model it will be useful to consider a simple Ca-

pacitor network containing injected charge. Thus, assumptions made during the 

derivation will be have a solid foundation. 

3.2 Distribution of Injected Charge 

in a Capacitor System 

The FETMOS device is to be studied in terms of a lumped capacitor network, 

containing injected charge. Thus, information is required regarding the charge 

distribution. How much injected charge resides on each capacitor? Furthermore, 

will an applied voltage cause the injected charge to re-distribute itself? These 

questions can be answered by considering the simple case of two series capacitors. 

Figure 3-1 shows two series capacitors without any injected charge. An applied 

voltage induces an equal charge on each capacitor. We have: 

Q1 = Qio 

Q2 = Q20 

Va V1+V2 	 (3.1) 
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Va 

V1 

 -I- 
WI T 2  

Figure 3-1: Two Series Capacitors, With an Applied Voltage. 

V. — , 	C2  - 
— —o 	 (3.2) 

Where: 

• Qi = Net charge on Ci. 

• Q2 =Net Charge on C2. 

• Qio = Induced charge on C1 . 

• Q2o = Induced charge on C2 . 

• Va  =Applied voltage. 

• V1  = Voltage across C1 . 

• V2 = Voltage across C2 . 

Now consider the same system, with injected charge. The charge on C1  will 

have changed by a factor Qi,  and the charge on C2  will have changed by a factor 

Q2,. Here, Qic and Q2 are arbitrary factors, whose value is unknown. Thus: 

Q1 = Qio + Q1 

Q2 = Q2o + Q2c 

Dividing through by capacitance gives: 

QiQio+Qic 
C, 	C1 	C1 
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Vi=+91E 	 (3.3) ã  

And 

C2  C2 	C2  

2=
Q c (3.4) 

C2 
 

Equations (3.3) and (3.4) may be substituted into equation (3.1), to give: 

Q1. 	Q2c 

Cl 	C1 	C2 	C2 

Q2c 
a 	

C1
(3.5) 

1 	C2   

From equation (3.2), we know that the left hand side of equation (3.5) is zero. 

Thus 

Cl 	C2  

Q ic - Q2 

C1_ C2  

Qi_ Cl  
Q2c 	C2  

This equation is unrelated to the applied voltage. It is deduced that Ql  and 

Qc2 are only due to the injected charge, which distributes itself in the ratio of the 

capacitors. Hence: 
Qit_ Cl  

Q2i_ C2  
(3.6) 

Where: 

• Qiz = Amount of injected charge on C1 . 

• Q21 = Amount of injected charge on C2 . 

The injected charge will occupy the bottom plate of C1  and the top plate of 

C2 . This effectively adds charges of opposite polarity to each capacitor, and the 

equation therefore contains a minus sign. Note that these equations would not be 
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valid for a system in which one of the nodes was floating. If in equation (3.4) Q2c 

is now replaced by Q21,  we have: 

V2= 
C2 C2 

v2 =v20 +v2i 	 (3.7) 

Where: 

. V20  = Induced voltage on C2 . 

V 2i = Voltage on C2  due to injected charge. 

Hence, the voltages due to induced and injected charge add linearly in the capacitor 

system. 

3.3 Derivation of Equations to Describe 

the FETMOS Device 

3.3.1 Equivalent Capacitive Circuit for the 

FETMOS Device 

Equivalent capacitive circuits are required for both the program and erase opera-

tions. To simplify the analysis only capacitances having the most significant effect 

on FETMOS operation are included [7], see figures 3-2 and 3-3. In the program 

operation charge may not flow onto Cf, , as the source is floating. It may therefore 

be argued that C1 3  should be excluded from the modelling of the program opera-

tion. However C1 = 1.2. f  which is insignificant compared to other parameters, 

eg. C19  = 54.6 f  It will therefore be included in this derivation, to simplify 

equations. 

I 
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In figures 3-2 and 3-3: 

• Cf, = Capacitance between the control gate and floating gate. 

• C1 d = Capacitance between the drain and floating gate. 

• C1 = Capacitance between the source and floating gate. 

• Cf , = Capacitance between the channel and floating gate. 

• Cpara = Parasitic capacitance. 

• Rpara = Parasitic resistance. 

• Vp, = Applied program/erase step pulse. 

3.3.2 Coupling Ratios 

The program/erase voltage, Vpe, generates a high electric field across the tunnel 

oxide. The proportion of V which falls across the tunnel oxide is defined as the 

coupling ratio [6]. Let: 

C=Cf9 +Cf+Cf+Cfd 

Then the erase coupling ratio is given by: 

Cf g  
Ci  

The program coupling ratio is given by: 

Ct — Cj d 
Ci  

The higher the coupling ratio, the higher the field across the tunnel oxide. 
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3.3.3 The Electric Field as a Function of Time 

A set of equations are required, which give the electric field, E, across the tunnel 

oxide, as a function of time. 

The Effect of the Voltage Ramp and Parasitics 

Rather than model the voltage on the drain or gate as a unit step, an exponential 

rise is used. This waveshape represents realistically changing voltages in a memory 

circuit [8], and is included by adding an RC time constant T. We have: 

T = RparaCpara 

For the program operation the potential of the drain, Vd,  is given by: 

Vd = 	- exp) 

	

Yd = Vpe - Vp e exp 	 (3.8) 

For the erase operation the potential of the gate, V9 , is given by: 

V9  = V(1 - exp) 

	

= Vp e - Vp e exp 	 (3.9) 

The Potential of the Floating Gate 

For a tunnel oxide of thickness X 0 , the voltage across it is given by E X 0 . Thus, 

for the program operation the potential of the floating gate, V1, is given by: 

	

V1 =Vd—EX. 	 (3.10) 

For the erase operation the potential of the floating gate is given by: 

Vf=EX, 	 (3.11) 
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The Tunnelling Current 

Charge conservation tells us that [7]: 

dQ, 
dt 

Also 

I=PJ 

Hence, for the program operation: 

dQ,  
dt

= 1-J  

For the erase operation 

	

dt 
= —Pi 	 (3.13) 

Where: 

• I = Tunnelling current. 

J = Tunnelling current density. 

• P = Tunnelling area. 

• Q i  = Net injected charge on the floating gate. 

Fowler-Nordheim Tunnelling Equation 

The tunnelling current may be described by the Fowler-Nordheim equation 

( 3.14) where A and B are constants [3]. 

	

J = AE 2 exp_ 	 (3.14) 
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Net Injected Charge 

The equivalent circuits of figures 3-2 and 3-3 may each be reduced to the form 

of two series capacitors, as in figure 3-4. The amount of charge injected into the 

system, is equal to the difference in the charge on each capacitor. 

Drain 
Vd 

VVf t 	
Cfd 

TCp 

Program 

Control 
Gate 

Vf 

Cal 

Erase 

Figure 3-4: Reduced Forms of the Equivalent Capacitive Circuits for the FET-

MOS Device. 

Where: 

• C, = C 9  + C1 + Cfc = "Program Capacitance". 

• Ce = C1 d + Cf3  + C = "Erase Capacitance". 

• Ct = Cf d + C1 + C1 g + Cf c = "Total capacitance". 

• Qi  =Net injected charge. 

• Qcfd =Charge on Cf d• 

• Qj9  =Charge on Cf9 . 

• Q, =Charge on C,. 

• Qce =Charge on Ce. 

In the program operation positive charge is injected onto the floating gate. This 

is given by: 

Qz = Qcp - Qcfd 	 (3.15) 
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Now: 

Qq,=VJCp  

Qcfd = (Vd - Vf)Cfd 

Substituting for Q and Qcfd  in equation (3.15) gives: 

= V1 C, - (V - Vf)Cfd 

Qj = V(Cp + C1 d) - VdCfd 

Qi = V1 C - VC1 	 (3.16) 

In the erase operation negative charge is injected onto the floating gate. This 

is given by: 

Qi = Qce - Qi9 	 (3.17) 

Now: 

Qce = V1C 

Qcf9  = ( V - Vf)Cf9  

Substituting for Qj9 and  Q in equation (3.17) gives: 

= Vf C. - (V9  - V1 )C19  

Q=Vj(C+Cj9)—V9 Cj9  

Qi = VfCt - V9 Cf9 	 (3.18) 

Programming Field as a Function of Time 

These equations are now combined to give programming field as a function of time. 

Recalling equation (3.16): 

Qi = V C - VdCfd 

Substituting for V using equation (3.10) gives: 

Qi = (Vd - EX0)C - VdCfd 
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Substituting for Vd using equation (3.8) gives: 

Qi = ((Vpe  - Vpeexp) - EX.,) C - (V pe  - Vpe exp) Cf d 

Qi = VpeCi - Vpe expCt  EX0C1 - VpeCfd + V pe eXpCfd 

Qi = Vpe(Ct - Cfd) - Vp e exp(Ct - Cfd) - EX 0 C1  

Now from equation (3.12), where Pa is program tunnelling area: 

dQi  
=PaJ 

Substituting for Q2 gives: 

( Vpe(Ct - Cf d)) - ( Vp e cxp(Ci - Cid)) - (EX 0 C1 ) = PaJ
dt 

Differentiating with respect to t gives: 

dE 
Vpeexp (C

i  —Cf d) - X O CI  = Pli 

Substituting for J using equation (3.14) gives: 

—i IC 1  —C1 d) - 	= PaAE 2 eXp_ VpeCXP 

Rearranging gives: 

dE t (Ct  - Cf d\ PaAE 2  
d = Vexp 	

XC 1  ) - 	
exp E 

- -exp ( C1 d\ P
aAE 2  

dt - X 0r 	- C1 ) - x0C, __
P  -y 	(3.19) 

This is equivalent to Suciu's equation, derived for discharging the FLOTOX 

cell 2•  It is a first order non-linear differential equation, and a program was written 

to solve this numerically, see appendix B. The 4 1 h order Runge-Kutta method was 

used for this solution [9]. 

'Due to a typographical error, a r was missed out in reference [7]. 
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Erasing Field as a Function of Time 

These equations are combined to give the erasing field, as a function of time. 

Recalling equation (3.18): 

Q• = V1 C2  - V9 Ce9  

Substituting for Vf using equation (3.11) gives: 

Q j  = EX0 C2  - Vg Cf g  

Substituting for V using equation (3.9) gives: 

Qi = EXo C - (Vpe  Vp e Xp) Cj 

Qj  = EX0C - VpeCi g  + Vpe 6XpCf g  

Now from equation (3.13), where Ea is the erase tunnelling area: 

dQj  
dt = EaJ 

Substituting for Q j  gives: 

(VC) + j (Vp e expCi g) + (EX0C) = EaJ
dt 

Differentiating with respect to t gives: 

_ 1 C19  dE 
Vp eexp - + --X 0C2  = —EJ 

Substituting for J using equation (3.14) gives: 

Vpe exp 2  + XO C2  = _EaAE 2 ex p 

Rearranging gives: 

dEV c Cfg 	i EaAE 2  - 

dt - X 0  C2  r 	X 0C2  

	

exp r - 	exp 2 	 (3.20) 

This is equivalent to Suciu's equation for charging [7]. Again, a program was 

written to solve this numerically, see appendix B. 
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3.3.4 Threshold Voltage as a Function of Electric Field 

Producing a General Equation for the Threshold Voltage 

A general expression for threshold voltage will be derived, which may then be 

applied to the program and erase operations separately. Figure 3-5 gives the 

equivalent capacitive circuits, for the program and erase operations. 

Drain 

Vd 

va-vte __L_ 
I 	Cfd 

tTCP 

Program 

Control 
Gate 

Vg-VT 
Ctg 	I 

C9TI 
Erase 

Figure 3-5: Equivalent Capacitive Circuits for the FETMOS Device. 

For a FETMOS device with a voltage on the drain, the capacitors will each 

have the same induced charge, hence: 

Qcfd = Qcp 

Cfd (Yd —Vf)=CVf 

Vf=VdCfd +c)
(

Cfd 
	 (3.21) 

For a FETMOS device with a voltage on the control gate, the capacitors will have 

induced charge: 

Q19 = Qce 

Cj9 (V9 V1)CeV1 

Vf = V
, ( Cf9 

	V-' ( Cf 
 Ce+Cfg)_ 

— 
	ct 

(3.22) 

Voltages add linearly in a FETMOS device. Thus, combining equations (3.21) and 

(3.22) gives: 

Vf= Yd Ci +V9- 
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Add to this the effect of injected charge and we have: 

VJVd+Vg +Vfo 

Lfd+VgLfg+Vfo_VfO—Vf 	 (3.23) 

Where Vfo  is the potential of the floating gate due to injected charge. In the 

threshold regime we may re-write equation (3.22) as: 

— vf —v t 	to(
Ccftg  / 

(3.24) 

Where V1 t  is the potential of the floating gate when the FETMOS is in the thresh-

old regime, and Vto  is the threshold voltage of the FETMOS without any injected 

charge. If injected charge is added by Fowler-Nordheim tunnelling, a term must 

be added to equation (3.24), and we have: 

vjt = v 
'Ct 

 + Vf0 	 (3.25) 

Where V is the threshold voltage of the FETMOS device. Equating equations 

(3.24) and (3.25) gives: 

Vt ( 'Ct  ) + Vf 
o = Vt o 

( Ccftg  ) 

	

Vt () + Vf - V (Ji.)  =0 	 (3.26) o 	toL ,- 
\' L' 

Equating equations (3.23) and (3.26) gives: 

i'C19 \ 

Vt  ( 'Ct 
 )+vfO_vO()=vd()+VfO_vf+v—ã_) 

(
2fd ) 

p19 	jgi 
—V1L 7 ---1+V9  

= (:fd

) 
	I Lic\ 

V Vd 	- Vf ;—) + 1/ + 	 ( 3.27) 
Cj9 	\fgJ 

Equation (3.27) provides a general expression for threshold voltage, which may be 

applied to the program and erase cases separately. 
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Erased Threshold Voltage 

During the erase operation Vd = 0, and equation (3.27) becomes: 

Vt = - Vf 
(Ccftg  ) 

+ V9  + Vt. 

Substituting for V using equation (3.11) gives: 

14 = _EX 0 (!-)+V+V0  
Cfg 

Substituting for V. using equation (3.9) gives: 

( Cfg )
c

= —EX 0  	+ Vpe (i - exp) + 14 	 (3.28) 

The electric field E may be calculated from equation (3.20) and substituted into 

equation (3.28) to give V, after any duration of erasing pulse. 

Programmed Threshold Voltage 

During the program operation V = 0, and equation (3.27) becomes: 

Vt=Vd () -Vf  

( Ct ) + V  
Cf 9  

Substituting for V1 using equation (3.10) gives: 

	

(Efd) 	 / c \ 

=
fc\ 

V Vd —Vd(--1+  EX 
-

(~—fd )
Cf 9 	'\ Cfg ) 	\ Cf g ) 

14 
V fCfd—Ct\ 	I c\ 

= d 	 + EX 
19 	

EX,,+ Vt0 
 Cfg 

Substituting for Vd using equation (3.8) gives: 

	

=-t ) 	fC\ 

	

14 =  VP  (i - exp) 
	c9 ) + 

 EX.  I—) + Vt,, 	(3.29) 

Again the electric field E may be calculated from 3.19 and substituted into equa-

tion (3.29) to give V, after any duration of programming pulse. 
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3.3.5 Initial Electric Field 

The electric field across the tunnel oxide prior to a program or erase operation, E, 

forms a boundary condition for the solution of dE . If Vtj  is the threshold voltage dt 

at the beginning of a program/erase operation, then for the erase case equation 

(3.28) gives:

( Ccftg ) 
V =—EX 0 	+ 	( i - exp) + Vt. 

At t = 0, (1 - exp) = 0. This gives: 

14 = —EX 2 0 (L'\ + T4 
c19 ) 

I Ct  
14, = —E1X0 + V0  

E 	
(C19 ) (

V - 14) 	 (3.30) 
= x0c 

For the program case equation (3.29) gives: 

-t (Cfd — Ct\ 	Ic\ 

 Cfg 
V= Vpe (i - expj 	 ) + EX0 	+ V0 

Again at t = 0, (1 - exp) = 0, hence: 

/ c " 
V=EX 0 —)+Vi0  

Rfg) 
14,EX0+ 140 

Ei = (
Cf9)(VV) 	 (3.31) 

— \x 0 Ct 

3.3.6 Summary of Equations 

We require a set of equations to model the FETMOS in terms of fundamental 

design parameters, such as effective width. The electric field E, across the tun- 

nel oxide is given by equations (3.19) and (3.20), for programming and erasing 

respectively. 	
C1 d '\ 	PaAE2 

exp E dE = - 
r  
—exp (i - - o;-) - x 0c dt  X0 
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dE VC f9 	EO AE 2 	n 
-= 	ex r- 	 ex 
dt 	X 0 C -r 	X 0  

These first order non-linear differential equations may be solved numerically. 

The necessary boundary conditions are the initial time 0 seconds, and the initial 

electric field Ei  across the tunnel oxide. Equations (3.31) and (3.30) give Ej  for 

programming and erasing respectively. 

\ ( 
Ei=_ / Cf9 

xc)Vto_Vti) 

E, = (Cf9\ ( x0c,)vi _ V ) 

Tunnelling current density is given by: 

J = AE 2exp _ 

The threshold voltage 14,  may be calculated by substituting the electric field 

E into equations (3.29) and (3.28) for programming and erasing respectively. 

-t 

 (Cfd_Ct\ 
14= V (i - exp) 	

Cf9 ) + EX. 
-) 

+ 140 

(ft- ) Vt =_EX0 +Ve(1—ex)+Vio 

Finally program tunnel area Pa  erase tunnel area Ea , and capacitances, can be 

calculated as follows; 

Pa = GDover  X Wejj 

Ea = L9  X We11 

C19 - Af
9E 0 1de0 

	

- 	 xin t 

Well GDover Eox ide E o  

	

Cfd=C13= 	xo 

Cf 	
W'e11(L g  - 2 X GDover )6o ide6o  

X0 

Where: 

GDover  is the floating gate/drain overlap. 
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• AFG is the floating gate area. 

• L 9  is the gate length. 

• Wejj is the effective width. 

• X0  is the tunnel oxide thickness. 

• X i,, t  is the inter-level oxide thickness,. 

cxide is the relative permittivity of SO 2 . 

60 is the primary electric constant. 

Thus we have a set of equations for FETMOS analysis, in terms of basic design 

parameters. 

3.4 Calculation of FETMOS Parameters 

3.4.1 Overview 

A set of parameters must be derived for the FETMOS device. On wafers contain-

ing the HC11 microcontroller [10], test structures are provided within the scribe 

grid. Of these, test structure "SCPC8#" 3 provides FETMOS devices with ac-

cess to the gate, drain, source and substrate. In addition, "SGPC8#" provides a 

2.5 x 10 4 cm 2  tunnel oxide capacitor, for Fowler-Nordheim measurements. Many / 

of the parameters are fixed, eg. dimensions drawn on reticle, while other vary dur-

ing processing, eg. tunnel oxide thickness. Now, tunnelling during program/erase 

operations is strongly dependent on oxide thickness, X 0 . Hence a sample of devices 

with uniform X0  was needed, to allow accurate fitting of the model to experimental 

3Described in Motorola internal documentation. 
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data. The uniformity of X 0 , and indeed of the Fowler-Nordheim tunnelling coef-

ficients, can be optimised by taking results from a single wafer . This wafer was 

taken from a batch showing no EEPROM defects, and having a typical threshold 

window. 

3.4.2 Geometry of the FETMOS Device 

The FETMOS dimensions are as follows: 

. Gate width as drawn on the reticle. ..Wd = 2.5im 

. Field oxide thickness ... Xj = 0.6m 

. Effective gate width ... W eff = Wd - (2 X X 1 ) = 1.3,Llm 

The width is reduced due to "Bird's Beaking" [11] - the encroachment of 

field oxide on either side of the gate. 

• Floating gate/drain overlap.. .GDove ,. = 0.3pm 

The source/drain implantation diffuses laterally during fabrication, to give 

the gate-drain overlap. This will be in the order of 0.3im [12]. 

• Gate length as drawn on the reticle.. .L9  = 2.8 urn 

• Channel length ... L chan  = L9  - (2 X GDover ) = 2.2/Lm 

This is approximately equal to the gate length, but the gate-drain and gate-

source overlaps must be subtracted. 

• Tunnel oxide thickness. ..X0  = 108 A 
This was measured using an automatic ellipsometer, with an accuracy better 

than ±ioA [13]. 

• Interlevel oxide thickness. .. Xi nt  =400 A 
This is also measured using automatic ellipsometery. 
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• Floating gate area.. .A 19  = 50m2  

An optical micrograph was taken of the floating gate and surrounding area. 

The dimension of a large feature (the distance between contact holes) was 

measured using a Vicker Photoplan. This provided calibration, from which 

the dimensions and area of the floating gate were calculated. 

• Tunnel area during programming.. .Pa = GDovcr  X Wqf = 0.39pm 2  

During programming, tunnel current flows between the gate and drain. 

• Tunnel area during erasing.. .Ea  = L 9  x Wff = 3.64pm 2  

During erasing, tunnel current flows across the entire length of the gate. 

3.4.3 Calculation of Capacitances 

Capacitances may be calculated from the dimensions of the FETMOS device. 

c, -  

9 — 	xi.t 
C19 = 50/L2X3.9X8.85X1012 	43.1fF 

400A 

C1 d = We ii GDovereoxt de €o 
x o  

Cf d = 
1.3xO.3x3.9x8.85x1O12 = 1.2fF 

108A 

Cf., = C d = 1.2fF 

c - 

C- 	 X0 

CfC 
= 1.3x2.2x3.9x8.85x1O12 = 9.1fF 

108A 

Ct  = C 9  + Cj d + Cf., + Cf c = 54.6fF 
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3.4.4 Measurement of Fowler-Nordheim Coefficients 

The Fowler-Nordheim coefficients, A and B, may be extracted from I-V char-

acteristics of the tunnel oxide. The two major problems in determining these 

characteristics are oxide thickness measurement and charge trapping [6]. Oxide 

thickness was measured using an automatic ellipsometer, with an accuracy better 

than ±ioA. The I-V characteristics will vary, depending upon how much charge 

has been trapped in the oxide. In common with previous authors, 0.lCcm 2  of 

charge were passed through the oxide before coefficient measurement [6]. This is 

sufficient to allow saturation of positive charge trapping, and the rate of electron 

trapping will remain relatively small during any subsequent endurance analysis. 

An electric field of 1 1MVcm 1  was used to force this charge, which is of the same 

order as the field during program/erase [7]. Figure 3-6 gives the experimental 

set-up, including a Hewlett-Packard 4145B Semiconductor Parameter Analyser, 

controlled from a Hewlett-Packard Series 300 computer. To reduce noise, devices 

were packaged, and held in a Hewlett-Packard 16085 Test Fixture [14]. Ten sites 

on "SGPC8#" were tested, and an example of the I-V characteristics is given in 

figure 3-7. 

HPIB 
Triaxai 	Interface  

I 	 'Cable' I I HP 16085 I 	I HP 4145B 	 HP 9000 
I Shielded r 	Semiconductor (') Series 300 

Test Fixture 	Parameter Controller 
Analyser  

Figure 3-6: Block Scheme of Experimental Set-Up. 
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Figure 3-7: Fowler-Nordheim Current in an Oxide Capacitor of 

Area 2.5 x 10 4 crn 2 . 

Processed Fowler-Nordeim Tunnel Data 
(With A Linear Curve Fitted) 
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Figure 3-8: Manipulated Data from Fowler-Nordheim Tunnelling Plot of Oxide. 
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The resulting data was then manipulated, to produce a graph of log10  J/E2  
against 1/E, as shown in figure 3-8. To this a linear graph may be fitted, with: 

Slope ... M = —1.22 x 108  Vcm 

- intercept".. .0 = —5.65 log(AV 2 ) 

This may be related to the equation for Fowler-Nordheim tunnelling as follows: 

J = AE2 exp I 

J 
=AexpE 

Taking logarithms of each side: 

log10  (J
) 

= logio (A) + log10  (exp) 

10910 (:) = 	logio(exp1) + logio (A) 

Comparing this to the general expression for a straight line (y = mx + c) we have: 

- intercept"...0 = logio (A) 

Slope ... M = —B log io (exp') 

Thus 

A = 10C = 10_5 .65  = 2.2 x 10_6 AV - 2 

M 	1.22 x 1010  

B = logio(exp 1 ) = logio(exp') = 
2.8 x 108  Vcm' 

These values compare with A=1.88x10 6 AV 2  and B=2.55 x108 Vcm, calcu-

lated by previous authors [6]. Since, current flows in different directions during 

the program and erase operations, two sets of tunnel coefficients are required (one 

for each interface). To account for this, the value of A used for erase modelling is 

doubled, as by previous authors [7]. Hence: 

For programming: Apr g  = 2.2 x 10_6  AV - 2  and Bprg  = 2.8 x 108  Vcm' 

• For erasing: A ers = 4.4 x 10 6  AV - 2  and Bp,, = 2.8 x iO Vcm 
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3.4.5 Measurement of Threshold Voltage 

The gate voltage at which the transistor first begins to conduct may be given as 

the threshold voltage [15]. A less ambiguous criterion would be to say that the 

channel region, at the silicon surface, should as strongly n-type as the substrate 

is p-type [16]. This requires a bending of the Fermi level from its position above 

the intrinsic Fermi level in the substrate, to a position of equal distance below the 

intrinsic Fermi level, at the silicon surface. This is the widely used "2" criterion, 

which may also be used to define "strong inversion" [16], where 4b f  is the potential 

between the intrinsic and extrinsic Fermi levels. 

Threshold voltage measurement is complicated by the physics of the MOS 

device, which does not turn on abruptly. The simplest technique, is to measure 

the gate voltage required for a predetermined drain current to flow, arbitrarily 

taken ,-1tA [17]. However, the parameter values used must give the minimum 

error between model predictions and experiment. Therefore, it was decided to 

assume the SPICE standard transistor model for threshold voltage determination 

[17]. For measurement of V, this may be implemented by applying a low voltage 

to the drain, O.1V [17], and sweeping the gate from -6V to 6V. Figure 3-

9 illustrates such a plot. A tangent is fitted to this curve where the slope is 

maximum. Projecting this tangent back to the horizontal axis, we find a value of 

gate voltage at which the gate current is zero, V 0 . The threshold voltage is then 

given by equation (3.32) [17]: 

(3.32) 

The principle advantage of this technique is that the value of V can be considered 

to be independent of the device width or length. It is also includes a degree of 

physical meaning, since it is derived from the equation for a MOSFET in the linear 

regime [18]: 
&( 	Vd 3  

Id, 	Co —Vd3 

Vd3\ Idea 	
=(l/ 8 —v — ----) 

t C0  b VdS 

If Id, = 0, this can be reduced to the form of equation (3.32), where: 
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LSIS 

Threshold Voltage Plot 
(For FETMOS In Natural State) 

Figure 3-9: Drain Current as a Function of Control Gate Voltage, for Calculation 

of Threshold Voltage. 

• Ids = Drain current. 

• IL = Surface mobility. 

• C0  = Gate oxide capacitance. 

• A = Aspect ratio (effective width/ channel length). 

Measurements were made using a Hewlett-Packard 4145B Semiconductor Pa-

rameter Analyser and a Wentworth Laboratories Manual Probe Station, as illus-

trated in figure 3-10. Note that when measuring a programmed or erased device, 

it is important to limit read disturb error. This can be minimised by beginning 

each measurement at OV, and sweeping to either —1OV or +1OV, for programmed 

or erased devices respectively. A program was written to carry out the measure-

ment and extract threshold voltages, using the SPICE algorithm. This was written 

in HP BASIC 5.1 and is given in appendix C. To ensure that hole trapping in the 

oxide had saturated, each FETMOS was cycled 20 times prior to measurement, 

this feature was included in the BASIC program. Results were taken from 10 

random sites across a single wafer, yielding average threshold voltages of: 
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TiiaxIaJ 
	

Interface 

Figure 3-10: Block Scheme of Experimental Set-Up. 

. Vc =0.5V 

• Programmed threshold voltage, V = —7.5V 

. Erased threshold voltage, Vte = 5.5V 

These values compare favourably with designed threshold voltages of V0 = OV, 

Vtp  = — 5V and V = +5V [19]. 

3.4.6 Calculation of RC Time Constant, 7' 

It was intended to compare model results with experimentally obtained threshold 

values. The RC time constant of the electrical measurement set up was therefore 

used. The largest resistance in the circuit is that of the FETMOS source/drain 

extension regions: 

. Sheet resistance = 50 1/0 

As given Motorola internal documentation. 

• Area = 1.3im x 10pm = 8 squares. 

Dimensions were taken from an optical micrograph. 

This gives a source/drain extension resistance of 50 x 8 = 800ft The largest 

parasitic capacitance in the circuit was that of the chuck, estimated to be 0.21tF. 

This gave an estimated time constant of 800 x 0.2SF '-.' 0.lms, as compared 

to 0.4rns used by previous authors [7]. Figure 3-11 illustrates the variation in 

modelled threshold window, as a function of r. The values are insensitive to r, 
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provided r lies within the range 20is to lrns. This indicates that there is a wide 

leeway in acceptable values of r. 

FETMOS Program/Erase Threshold Voltages 
- 	 (As A Function Of RC Time Constant Tau) 

0 

0 

tO 

16 

12 
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4 

0 

-4 

-8 

-12 

l A 

Erase 

Program 

i.OE-05 	 1.OE-04 	 1.OE-03 	 1.0E-02 

Tau (seconds) 

Figure 3-11: Threshold Window as a Function of the RC time constant r, 
for a programming time of lOms. 

3.5 Verification of the FETMOS Model 

Against Experimental Results 

3.5.1 Overview 

The methodology used to produce this model has already been successfully applied 

to the FLOTOX device [7]. Equally, a good agreement between experimental and 

modelled data might be expected here. Solution of the model equations using the 

parameters calculated above, gave V = 5.536 V and Vtp  = — 7.448 V, compared 

to average experimental values of Vt, = 5.8 V and V 1, = — 7.5 V. The error in the 

modelled results is < 5%, testifying to the models validity. Further evidence is 

supplied in chapter 4, where the tunnel current during program/erase operations, 

is seen to have the same form as that obtained experimentally [20]. 

'C 
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3.5.2 Comparison of Model Predictions and 

Experimental Results 

The model is intended for investigation of the threshold window, as a function of 

varying parameters. A test was therefore made, to compare predicted trends in the 

threshold window, with experimental values. To provide a large number of well 

defined data points, the program/erase voltage (V,e ) was used as a variable. A 

minimum V of 14V was used. This lies at the lower limit of FETMOS operation, 

where the threshold window has nearly closed. The standard operating voltage of 

18V was set as the upper limit. Voltages above this were rejected, as they would 

lead to the onset of reliability problems - such as rupture of the tunnel oxide, and 

tunnelling in the interlevel dielectric. 

A lOms program/erase time was used, in common with commercial circuits 

containing the FETMOS [19]. Devices were given 10 program/erase cycles before 

hand, to saturate hole traps. Results were taken at 10 sites over a single wafer, and 

threshold voltages were calculated assuming the standard SPICE transistor model 

[17]. Measurements were made using a Hewlett-Packard 4145B Semiconductor 

Parameter Analyser and a Wentworth Laboratories Manual Probe Station, as 

illustrated in figure 3-12. A program was written in HP Basic 5.1 to measure the 

threshold window for a range of program/erase voltages, this is given in appendix 

C. A spread is observed in experimental data, as illustrated in figure 3-13. This 

is due to a variation in parameters such as oxide thicknesses, impurity doping 

levels and effective dimensions. Even so, trends in modelled program and erase 

thresholds, largely match experimental results. 

HPLB 
Caaxa1 Tnaxlai  Irflertace  

I Cable 
____________ 

Cable I 
Wentworth Trlaxlai To ] HP 4145B HP 9000 
Manual h ..... 	 . .............. . ...  Coaxial -- - Semiconductor Series 300 
Probe F--H 

. 
Connection  Parameter <~*  Controller 

Station I I 	Box Analyser 

Figure 3-12: Block Scheme of Experimental Set-Up. 
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Threshold Window 
(As A Function Of Program/Erase Voltage) 

I 
. S ............................... ............ ................  

- 	. 

..,,,.,,.,,................. ..................................................................... . . 

- 

Exp. 
Results 

S 

Model 
Values 

p 

14 	15 	16 	17 	18 

Program/Erase Voltage (Volts) 

Figure 3-13: FETMOS Program/Erase Threshold Window. 
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For the erase operation all experimental and modelled data matched closely. 

This would indicate that model parameters are voltage independent, at least for 

the erase case. The program operation also fitted model predictions well, between 

18V and 15.5V. However, for programming voltages below 15.5V, experimental 

threshold voltages fall more steeply than modelled ones. It seems that a new 

phenomena, not included in the model, now becomes visible. This effect has also 

been noted in the FLOTOX device [6], and has been attributed to deep depletion 

under the gate and tunnel oxide. However, it is considered to lie sufficiently far 

outside the normal operating regime of the FETMOS, to be neglected from this 

11 
1110 aei. 

3.6 Conclusion 

An analytic model has been developed for the operation of the FETMOS de-

vice. Basic parameters such as effective width and parasitic resistance are used to 

describe the FETMOS, and currents are modelled with the Fowler-Nordheim tun-

nelling equation. The model is verified against experimental data, and is found to 

be in good agreement. This may now be used to investigate the internal working 

of the FETMOS, and a methodology developed to calculate FETMOS reliability. 

These avenues are dealt with in chapter 4. 
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Chapter 4 

Analysis Using the FETMOS Model 

4.1 Transient Analysis of the FETMOS Device 

Inclusion of a time constant T, allows accurate modelling of transient response, for 

the FETMOS device. This helps to increase the accuracy of subsequent reliability 

analysis, as will be seen. 

4.1.1 Threshold Window as a Function of Time 

Program/Erase Threshold Voltages 
(As A Function or lime) 

Program 

Erase 

-o 

1.OE-05 	 1.OE-04 	 1.OE-03 	 1.OE-02 

Time (Seconds) 

Figure 4-1: Program and Erase Threshold Voltages. 

The variation in the program and erase threshold voltages are given as a func-

tion of time, in figure 4-1. These curves have the same form as those derived 

76 
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experimentally [1]. Before programming, a device will be in the erased state, 

with a threshold voltage of 5.536V. Conversely, before erase a device will have a 

threshold voltage of -7.448V. For the first 50is there is no change in the state of 

the FETMOS, since capacitances are charging up. Once the RC time constant 

of 100s has been reached, the rate of change of threshold voltage arrives at its 

maximum. At lms the threshold voltages move more slowly to their final values, 

and at lOrns the program/erase operations are stopped. 

4.1.2 Electric Fields as a Function of Time 

Electric Fields Across Tunnel Oxide 
(As A Function Of flme) 
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Figure 4-2: Electric Fields Across the Tunnel Oxide, During Program and Erase. 

Both Shown Positive For Comparison Sake. 

Electric fields across the tunnel oxide are illustrated in figure 4-2, as a function 

of time. At the beginning of each operation, the initial electric fields are given by 

equations 3.30 and 1 3.31. The initial program field is given by: 

( Cfg  '\ 
E, = - 

___ 	
- 

( 

41.3fF 

= - 108A ____IF) 
(0.5 - 5.536) = 3.5MVcm 1  

The initial erase field is given by: 

E, = (
C19) 
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(_ 	 (0.5 - 7.448) = —4.87MVcm 1  
\108A 54.6fF) 

In each case the field rises to a peak value at around 100ts, then falls away. 

Since the program coupling ratio is larger than the erase coupling ratio, a larger 

voltage is coupled across the oxide during programming. Hence, the programming 

field reaches the highest peak value. Any oxide rupture which occurs, would be 

expected to coincide with the peak field. Thus, the program operation appears 

to be most prone to such failure. We have a peak field during programming of 

13.87MVcm 1 , and a peak field during erasing of 12.30MVcm 1 . 

4.1.3 Current Densities as a Function of Time 

Current Density Through Tunnel Oxide 
(As A Function Of Time) 
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Figure 4-3: Current Densities in the Tunnel Oxide, During Programming And 

Erasing. Both Shown Positive for Comparison Sake. 

Current densities in the tunnel oxide are illustrated in figure 4-3, as a function 

of time. These curves have the same form as tunnel currents observed experimen-

tally [1], which helps to confirm the model's validity. Here again, the program 

current density is highest, since the program operation produces the highest elec- 
,1 

tric fields. Hower, the tunnelling area is smallest for the program operation. 
("(I 

Thus, the final charge packet on the floating gate, is similar in both the program 
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and erase case. The charge packet may be calculated using equation (4.1) [2]: 

Qi= Cf g (Vt o Vtp) 	 (4.1) 

For the program case: 

Qj  = 43.1fF(0.5 - —7.448) = 3.43 x 10 1 C = 2.13 x.10 6  holes 

For the erase case: 

Q, = 43.1fF(0.5 - 5.536) = —2.17 x 10 13 C = 1.35 x 106  electrons 

The total charge to pass through the tunnel oxide during programming, is the sum 

of negative charge, which must be removed, plus the positive charge which must 

be added. This is given by equation 4.2 

3.43 x 10 13  + 2.17 x 10_13 = 5.6 x 10 13 C 	 (4.2) 

This figure is the same for erase, although for erase charge tunnels over a wider 

area. 

4.1.4 Charge Densities as a Function of Time 

By integrating the current density as a function of time, the charge density 

to pass through the oxide can be calculated. This is illustrated in figure 4-4. 

Integration of the current density over a complete program or erase operation 

gives the net charge density to pass through the oxide. For a program operation 

net charge density, Qdp = 1.441 x 10 4 Ccm 2 ; and for an erase operation net 

charge density, Qde = 0.1522 x 10 4 Ccm 2 . These figures are used in assessing 

EEPROM reliability. 
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(As A Function Of Time) 
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Figure 4-4: Charge Density to Pass Through the Tunnel Oxide, During Pro-

gramming and Erasing. Both Shown Positive for Comparison Sake. 

4.2 A Methodology for Modelling EEPROM 

Endurance 

Three phenomena determine EEPROM program/erase endurance [3] [4]: 

Trap Up, causing threshold window closure. 

Time Dependent Dielectric Breakdown (TDDB) of the tunnel oxide. 

Time Zero Dielectric Breakdown (TZDB) of the tunnel oxide. 

A percentage of the electrons passing through the tunnel oxide become trapped 

there [5]. These reduce the electric fields at the injecting interfaces, so reducing the 

tunnel currents and associated threshold shifts. Eventually the threshold window 

closes to such an extent that the state of the EEPROM may no longer be read. 

This is the trap up failure mode [4]. Trap up represents less of a problem for 

erase endurance than for program endurance, since electron injection is distributed 
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uniformly over the whole gate area during erase [6]. Hence, a method will be 

presented for investigating the programming endurance, although this method is 

equally applicable to the erase case. 

Assuming EEPROM failure is due to trap up during programming, the en-

durance may be described by equation 4.3: 

	

QI = Qi X Ncycies 
	 (4.3) 

Where: 

• Nc y cies = The number of program/erase cycles an EEPROM can withstand, 

before the programmed threshold window closes. This defines the program 

endurance of the device, and is typically .-' iO cycles [7]. 

• Q, = The charge which passes though the tunnel oxide, during each program 

operation. In equation 4.3, it is assumed that Q, is constant throughout the 

lifetime of the EEPROM. However, Qp  will depend upon the trapping in 

the oxide. During the first 10 cycles of EEPROM operation positive charge 

trapping will cause Qp  to increase [7]. Thereafter electron trapping will 

dominate, and Qp will slowly reduce. An average value of 5.6 x 10 13 C was 

calculated in section 4.3.1, which would be true of a midlife value. 

• Q f  = 5.6 x 10 13 C x 10 = 5.6 x 10 8 C 

This is the total charge to pass through the tunnel oxide, during all program 

operations, before failure. This depends upon oxide integrity, and a typical 

value has been given. 

Let: 

Qip = 	 (4.4) 
 

QP  

 Pa 

Qdf = 	 (4.5) 
Pa 

Then, equation 4.3 can be re-written as: 

Qdf X Pa  = Qdp X Pa  x Ne ycies 	 (4.6) 
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Area cancels out, to give: 

(dp = 	 4.7 
I Vcycles 

Where: 

S Pa  = Tunnelling area during programming. 

• Qdp = The net charge density which flows during one program operation. 

(This is the charge fluence, for one program operation [81.) 

• Qdf = The net charge density which flows after Ncycie 
105 program oper-

ations. 

Thus, it has been shown that Qdp  is inversely proportional to the endurance, 

Ncycies. For instance, if Qdp is halved then the endurance is doubled, since Ncyc jes 

must be doubled to maintain the equality of 4.7. It may be said that endurance 

variations are the reciprocal of Qdp  variations. Percentage variations in Qdp  will 

be calculated using equation 4.8: 

- ( 	

Qp 	x 100 	 (4.8) Rqdp 
- Qdpstandard) 

Where: 

I Qcip = Qdp for an EEPROM in which a parameter, such as gate/drain over-

lap, is varied. 

• Qdp standard = Qdp for an EEPROM with standard parameter values. 

• R q dp = Relative Qdp. 

The mechanisms which lead to time dependent dielectric breakdown are related 
I 	) 

to those which give trap up [3]. Thus, the relative susceptibility of a device to time 

dependent breakdown can also be described by variations in Qdp.  On the other 

hand, Time Zero Dielectric Breakdown (TZDB) is caused by electric field stress. 

Susceptibility to this is determined by the oxide dielectric strength, and the peak 

program or erase field. The percentage change in peak field, caused by allowing 
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parameters to vary, may also calculated. However, the growth of high integrity 

oxides, and production prescreening, ensure that TZDB is insignificant compared 
C 	) 

to trap up. 

Finally, it should be appreciated that charge trapping is a complex phenomena. 

In chapter 2 the impact ionisation model was discussed [3]. However, there are 

conflicting views [9] [8], and the mechanisms involved are not properly understood. 

It seems likely that after a program or erase operation, the trapped charge relaxes. 

Thus, some trapped positive and negative charge is lost, or detrapped [10]. Higher 

current density (or higher oxide field) is expected to cause more impact ionisation 

inside the oxide, and increase the hole trapping rate [8]. 

Were the above phenomena understood, one could derive a function for charge 

trapping. This could be included in an EEPROM model, and absolute EEPROM 

endurance could be calculated. For instance, the threshold window after 104  pro-

gram/erase cycles could be found. Even then, oxide reliability is acutely sensitive 

to processing conditions, such as preoxidation clean [11] [12] and purity of gas 

supplies. Temperature also is known to accelerate degradation phenomena [13]. 

EEPROM operating temperature depends upon the frequency of the logic circuit-

ry, in which it is embedded. These parameters would need to be accounted for in 

such a model. 

Given the wide disagreement concerning oxide degradation mechanisms, one 

should question the wisdom of including them in an EEPROM model. One should 

also question the merit, since the absolute endurance is already known, from ex-

perimental measurements [7]. What is of interest is the variation in endurance, 

caused by change in any parameter. In essence this is a sensitivity analysis, and 

such a methodology has been proposed in this thesis. The author believes this to 

be the best engineering solution to the problem. 
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4.3 Analysis of the Threshold Window and En-

durance 

4.3.1 Effect of Varying Floating Gate/Drain Overlap 

A number of interesting effects are seen when parameters are allowed to vary. 

Figure 4-5 illustrates the variation in program threshold voltage, as a function of 

floating gate/drain overlap. Varying overlap has two opposing effects: 

By reducing the area available for tunnelling, smaller overlaps give less charge 

flow, which reduces the threshold voltage. 

By increasing the program coupling ratio, smaller overlaps increase the tun-

nelling field, which will increase the charge flow and threshold voltage. 

The two effects counteract one another, the first one dominates below 0.31pm 

overlap, and the second one dominates above 0.3liirn overlap. This said, the 

threshold voltage remains relatively constant above 0.31im. Note, that varying 

overlap has no effect on the erase operation. 

Figure 4-6 gives the variation in net charge density for the program opera-

tion 1 . It is seen that increasing floating gate/drain overlap improves reliability 

substantially, ie by 30% for a 0.1m increase in overlap. The peak field and 

threshold voltage are also included in the figure, both of which remain constant 

as overlap is increased. Hence, the threshold window is unaffected by increasing 

overlap. (The erase operation is immune to overlap variations). Therefore, any 

increase in overlap promises to pay substantial dividends, in terms of reliability 

improvement. 

It is proposed that overlap could be increased by increasing the tilt angle of 

the drain implantation. No increase would then be needed to the thermal budget 

'A decrease in net charge density is equivalent, to an increase in endurance. 
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of the process. This is significant, since the trend in VLSI processes is towards low 

thermal budgets. Overlap could also be increased t6by,ar(increasing the drain 

doping density, or he use of a more diffusive dopant. Table 4-1 summarises the 

effects of a variation in floating gate/drain overlap. 

FETMOS Program Threshold Voltage 
(As A Function Of Gate/Drain Overlap) 

.6.4 

-7 
0 
0 

• 7 

IE 	74 

-7.8 
0 
	

0.1 	02 	0.3 	0.4 	0.5 	0.6 

Gate/Drain Overlap (microns) 

Figure 4-5: FETMOS Program Threshold Voltage as a Function of GDovr . 

Percentage Variation In Program Parameters 
(As A Function Of Gate/Drain Overlap) 

Figure 4-6: Percentage Variation in Program Parameters as a Function of 

GDover . Note, a Decrease in Charge Density is Equivalent to an Increase in En-

durance. 



Chapter 4. Analysis Using the FETMOS Model 
	

M. 

Parameter Reduce Floating 

Gate/Drain 

Overlap 

Increase Floating 

Gate/Drain 

Overlap 

Cf 9  

Cf d 

dc  

Program Coupling Ratio ft 

Program Tunnel Area * 
Program Endurance ft (Steep Rise) 

Vt,  JJ. (Shallow Fall) 

Erase Coupling Ratio 0 0 

Erase Tunnel Area 0 

Erase Endurance 0 0 

0 0 

Table 4-1: Effect of Floating Gate/Drain Overlap Variation, About the Target 

Value of 0.3mm. Symbols Represent: Increase ft, Decrease 4 , No Change 0. 
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4.3.2 Effect of Varying Effective Width 

Figure 4-7 illustrates the variation in threshold window, as a function of effective 

width, Weff. A decrease in this reduces the tunnel areas and capacitances C1 d, 

C13  and C1,:, but has no effect on C19 . A decrease in W11 has two opposing effects: 

By reducing the area available for tunnelling, a smaller Weff gives less charge 

flow, which reduces program and erase threshold voltages. 

By increasing the coupling ratios, a smaller Weff increases charge flow, which 

increases program and erase threshold voltages. 

The two effects counteract one another, this situation is similar to a variation 

in floating gate/drain overlap. In the erase case, the increase in coupling ratio 

dominates, and the threshold voltage rises as We/f is reduced. In the program 

case, for which the coupling ratio is much larger, the reduction in tunnelling area 

dominates. Thus program threshold voltage falls, as W1j is reduced. Since both 

coupling ratios increase as W1 f  is reduced, the program and erase endurance both 

decrease, as illustrated in figures 4-8 and 4-9. 

Weff may be varied either in the reticle design, or by growing a thicker field 

oxide, so increasing the degree of birds beaking. Table 4-2 summarises the effect 

of variations in We11. 
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Figure 4-8: Percentage Variation in Program Parameters as a Function of Wj j. 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 
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Percenatge Variation In Erase Parameters 
(As A Function Of Effective Width) 
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Figure 4-9: Percentage Variation in Erase Parameters as a Function of Weff. 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 

Parameter Reduce 

Effective Width 

Increase 

Effective Width 

Cf9  0 

C d 

Cf 8  

C1 

Program Coupling Ratio  

Program Tunnel Area  

Program Endurance JL ft 

vip 

Erase Coupling Ratio ft JJ. 

Erase Tunnel Area  

Erase Endurance ft 

Vie  

Table 4-2: Effect of Effective Width Variation, About the Target Value of 1.3i. 

Symbols Represent: Increase ft, Decrease 4 , No Change 0. 
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4.3.3 Effect of Varying Floating Gate Area 

Figure 4-10 illustrates the variation in program and erase threshold voltages, as a 

function of floating gate area. An increase in floating gate area will increase C19 , 

which has two opposing effects: 

As C19  increases so the erase and program coupling ratios are increased, 

therefore the charge flow and threshold voltages increase. 

Increasing C1, causes a redistribution of injected charge on the floating gate, 

and the threshold voltage will reduce [14], according to the equation: 

Vi=Vto—; 
 

Qi  

These two effects work in opposition to one another. In the erase case, the increase 

in coupling ratio dominates, and threshold voltage rises as floating gate area is 

increased. In the program case, for which the coupling ratio is much larger, the 

redistribution of charge dominates, hence the threshold voltage falls as floating 

gate area is increased. 

Figure 4-11 illustrates program endurance and program threshold voltage, and 

suggests that both can be enhanced by reducing A 19 . Figure 4-12 gives erase 

endurance and erase threshold voltage. Although decreasing A 19  improves the 

erase endurance, it will also reduce the erase threshold voltage. Thus there is a 

trade off when reducing A f9 , between: 

Enhanced endurance and program threshold voltage. 

Reduced erase threshold voltage. 

It is important therefore, to consider endurance and threshold window together, 

when assessing the effect of any parameters. A 9  may be varied either during the 

reticle design, or by varying exposure time during photo-lithography. Table 4-3 

summarises the effects of a variation in A19. 
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FETMOS Program/Erase Threshold Voltages 
(As A Function Of Floating Gate Area) 
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Figure 4-10: FETMOS Threshold Window as a Function of A 19 . 
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Figure 4-11: Percentage Variation in Program Parameters as a Function of A1 9 . 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 
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Percenatge Variation In Erase Parameters 
(As A Function Of Floating Gate Area) 
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Figure 4-12: Percentage Variation in Erase Parameters as a Function of A g . 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 

Parameter Reduce Floating 

Gate Area 

Increase Floating 

Gate Area 

Cf 9   * 
Cf d 0 0 

Cf 8  0 0 

Cf,  0 0 

Program Coupling Ratio 'ft 

Program Tunnel Area 0 0 

Program Endurance JL 

V tp  

Erase Coupling Ratio  

Erase Tunnel Area 0 0 

Erase Endurance * 
Vie  

Erase 

Peak 
Field 

Charge 
Density 

Table 4-3: Effect of Floating Gate Area Variation, About the Target Value of 

5Oiim2  . Symbols Represent: Increase fr, Decrease 4 , No Change 0. 
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4.3.4 Effect of Varying Interlevel Oxide Thickness 

A reduction in interlevel oxide thickness, X,,,, increases C1 9 . Thus, the effect of 

reducing Xi,, t  is directly equivalent to increasing the floating gate area. Figure 

4-13 illustrates the threshold window as a function of X11t,  while figures 4-14 and 

4-15 illustrate the endurance. It should be remembered, that thin interlevel oxides 

can give rise to long term retention problems. This is due to the onset of tunnelling 

at asperities. Table 4-4 summarises the effects of a variation in interlevel oxide 

thickness. 

FETMOS Program/Erase Threshold Voltages 
(As A Function Of Interlevel Oxide Thickness) 
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Figure 4-13: FETMOS Threshold Window as a Function of 
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Percentage Variation In Program Parameters 
(As A Function Of interievel Oxide Thickness) 
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Figure 4-14: Percentage Variation in Program Parameters as a Function of X. 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 

Percenatge Variation In Erase Parameters 
(As A Function Of interlevel Oxide Thickness) 
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Figure 4-15: Percentage Variation in Erase Parameters as a Function of Xj,,. 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 
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Parameter Reduce Interlevel 

Oxide Thickness 

Increase Interlevel 

Oxide Thickness 

Cjg  

C1 d 

C13  0 0 

dc 0 0 

Program Coupling Ratio  

Program Tunnel Area 0 0 

Program Endurance fr 
Vtp  

Erase Coupling Ratio  

Erase Tunnel Area 0 0 

Erase Endurance cr 
Vie  

Table 4-4: Effect Of Interlevel Oxide Thickness Variation, About The Target 

Value Of 400A. Symbols Represent: Increase 4 , Decrease fr, No Change 0. 
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4.3.5 Effect of Varying Floating Gate Length 

Figure 4-16 illustrates the variation in program and erase threshold voltages, as 

a function of floating gate length, L9 . An increase in L. increases Cf,  c and the 

channel length. This has opposite effects on the program and erase operations: 

Increasing L 9  increases the program coupling ratio, and leaves the tunnel 

area unchanged. Therefore, the charge flow and program threshold voltage 

increase. Program coupling ratio is given by equation 4.9 [2]: 

Ct - Cfd 

Ct 
(4.9) 

Increasing L. increases the erase tunnel area but reduces the erase coupling 

ratio. Now, the reduction in coupling ratio dominates. Thus, charge flow 

and erase threshold voltage both decrease. Erase coupling ratio is given by 

equation 4.10 [2]: 
Cf g 

Ct 
(4.10) 

In figure 4-17 it is seen that as L9  increases, so program threshold voltages in-

creases, but endurance falls. In figure 4-18 it is seen that as L. increases, erase 

threshold voltages falls, but endurance increases. 

Gate length may be varied either in the reticle design, or during lithogra-

phy. Over-exposure or under-exposure during photolithography, will modulate the 

amount of photoresist developed. This varies the amount of polysilicon removed 

by subsequent etching. Table 4-5 summarises the effects of varying L9. 
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Figure 4-16: FETMOS Threshold Voltage as a Function of L9 . 
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Figure 4-17: Percentage Variation in Program Parameters as a Function of L9  

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 
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Percenatge Variation In Erase Parameters 
(As A Function Of Gate Length) 
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Figure 4-18: Percentage Variation in Erase Parameters as a Function of L9 . 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 

Parameter Reduce 

Gate Length 

Increase 

Gate Length 

Cf g  0 0 

Cfd 0 0 

Cf 8  0 0 

rcf, :  

Program Coupling Ratio  

Program Tunnel Area 0 0 

Program Endurance 

vp  

Erase Coupling Ratio  

Erase Tunnel Area 

Erase Endurance 

Vte  

Table 4-5: Effect of Gate Length Variation, About The Target Value of 2.8nn. 

Symbols Represent: Increase (t, Decrease .iJ., No Change 0. 
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4.3.6 Effect of Varying Gate Oxide Thickness 

Although the optimum thickness for good gate oxide integrity is 110A [151, there 

will always be some variation during fabrication. Figure 4-19 illustrates the pro-

gram and erase threshold voltages as a function of oxide thickness, X 0 . Increasing 

X0  has two opposing effects: 

An increase in X0  reduces capacitances C1 d,  C1 and C1 3 , but leaves C19  un-

changed. This increases coupling ratios, and hence charge flow and threshold 

voltages. 

An increase in Xc reduces the electric field across the tunnel oxide, since: 

E xo  

This reduces charge flow and threshold voltages. 

The second effect dominates, hence program and erase voltages are both reduced 

by thicker oxides. There is a corresponding increase in endurance, as illustrated 

in figures 4-20 and 4-21. In table 4-6 the effects of gate oxide variation are 

summarised. Note, a change in oxide thickness could also produce a change in the 

Fowler-Nordheim coefficients [16]. 
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FETMOS Program/Erase Threshold Voltages 
(As A Function Of Gate Oxide Thickness) 
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Figure 4-19: FETMOS Threshold Window as a Function of X 0 . 

Percentage Variation in Program Parameters 
(As A Function Of Gate Oxide Thickness) 
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Figure 4-20: Percentage Variation in Erase Parameters as a Function of X 0 . 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 
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Percenatge Variation In Erase Parameters 
(As A Function Of Gate Oxide Thickness) 
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Figure 4-21: Percentage Variation in Program Parameters as a Function of X 0 . 

Note, a Decrease in Charge Density is Equivalent to an Increase in Endurance. 

Parameter Thinner 

Gate Oxide 

Thicker 

Gate Oxide 

Cf 9  0 0 

Cf d 

Cfs  

1f C f 

Program Coupling Ratio  

Program Area 0 0 

Program Endurance 

VtP  

Erase Coupling Ratio ft 
Erase Area 0 

Erase Endurance 'ft 

Vi e  

Table 4-6: Effect of Gate Oxide Variation, About the Target Value of 110A. 

Symbols Represent: Increase , Decrease 4 , No Change ®. 
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4.3.7 Effect of Varying Fowler-Nordheim 

Coefficients, A and B 

To appreciate the sensitivity of FETMOS operation to these coefficients, a study 

has been made, although the value of these coefficients is not usually a consid-

eration in the design of an EEPROM process. In figure 4-22 program and erase 

threshold voltages are seen to fall dramatically with increasing B. However, figure 

4-23 shows threshold voltages to rise with increasing A. 

In figures 4-24, 4-25, 4-26 and 4-27, it is seen that a reduction in current 

density is allied to an marked increase in the peak electric field. Both these effects 

are associated with an increased opposition to tunnelling through the oxide. Since 

the peak electric field also varies as A and B vary, reliability is not simply a function 

of charge density. Fowler-Nordheim coefficients will be effected by asperities at the 

injecting interface, doping concentration, oxide thickness and the degree of charge 

trapping. Table 4-7 summarises the effect of varying A and B. 
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FETMOS Program/Erase Threshold Voltages 
(As A Function Of Fowler-Nordhelm ConstantB) 

Figure 4-22: FETMOS Threshold Window as a Function of Fowler-Nordheim 

Coefficient B. 

FETMOS Program/Erase Threshold Voltages 
(As A Function Of Fowler-Nordeim ConstantA) 
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Figure 4-23: FETMOS Threshold Window as a Function of Fowler-Nordheim 

Coefficient A. 
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Percentage Variation In Program Parameters 
(As A Function Of Fowler-Nordhelm ConstantB) 
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Figure 4-24: Percentage Variation in Program Parameters as a Function of B. 
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Figure 4-25: Percentage Variation in Program Parameters as a Function of A. 
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Percenatge Variation In Erase Parameters 
(As A Function Of Fowler-Nordhelm ConstantB) 
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Figure 4-26: Percentage Variation in Erase Parameters as a Function of B. 
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Figure 4-27: Percentage Variation in Erase Parameters as a Function of A. 



Chapter 4. Analysis Using the FETMOS Model 
	

106 

El_Parameter Reduce A Increase A Reduce B Increase B 

Cf 9  

Cf d 0 0 0 0 

Cf 8  0 0 0 0 

Cf 0 0 0 0 

Program Coupling Ratio 0 0 0 

Program Tunnel Area 0 0 0 0 

IL 
VtP 

Erase Coupling Ratio 0 0 0 

Erase Tunnel Area 0 0 

V  'ft 'U' 

Table 4-7: Effect of Fowler-Nordheim Coefficient Variation, About Their Mea-

sured Values. Symbols Represent: Increase 4 , Decrease , No Change 0. 
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4.4 Conclusion 

A model has been developed for the FETMOS cell, which encompasses transient 

response, threshold window and reliability. A good correlation has been shown 

between modelled data and experimental results, testifying to the model's ac-

curacy. The effect of basic design parameters upon threshold window has been 

characterised, thus indicating how processing variations may be used to tailor the 

threshold window. Equally, the model can be used to predict the effect of sizing 

down a circuit. In general, any change in coupling ratio has a significant effect on 

the erase threshold voltage, whereas the program threshold voltage is more suscep-

tible to changes in tunnelling area. It has been seen that the floating gate/drain 

overlap effects both the program tunnel area and program coupling ratio. Howev-

er, the two effects act in opposition, and the threshold window is stable as overlap 

is increased. 

Reliability has been modelled in terms of peak electric field and endurance. 

Parameter variations were seen to have little effect on the peak field. In contrast, 

endurance had a strong dependence on parameter variations. Program endurance 

is of particular concern [6], and large improvements can be made in this by increas-

ing the floating gate/drain overlap (with little effect on threshold window). The 

overlap is therefore is a promising avenue for improvement of FETMOS endurance. 

Modern VLSI processes require low thermal budgets. Thus, it is proposed that 

overlap could be increased by increasing the tilt angle of the drain implantation, 

increasing the drain doping density, or the use of a more diffusive dopant. 
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Chapter 5 

Fabrication of EEPROM Structures 

Modelling of the EEPROM has shown that an increase in the floating gate/drain 

overlap, can be used to improve reliability. This result will now be investigated 

experimentally. A DC tunnel current between the floating gate and drain may be 

used to emulate programming [1]. Both the fabrication and testing can therefore 

be simplified, since a complete EEPROM is not required. Simple MOS transistors 

with a single gate may be used, providing they have a high integrity tunnel oxide. A 

batch of MOS transistors, with a range of gate/drain overlaps, have been fabricated 

using the Progressional OffseT (POT) technique [2]. 

It has been observed by Motorola, that phosphorus doped EEPROMs are more 

reliable than their arsenic counterparts. To examine this effect two sets of POT 

transistors have been designed, one in arsenic and one in phosphorus. These have 

the same doping profiles, eg. equal junction depthes, so that results may easily be 

compared. Computer simulation has been used to design these profiles. 

5.1 The Progressional Offset Technique 

The Progressional OffseT (POT) technique has been implemented in a number 

ways [3] [4] [2]. Briefly, a column of MOS transistors is fabricated, in which 

gate/drain overlap covers a range of values. The idea can be expressed most 

succinctly in terms of a diagram, see figure 5-1. 

110 



Chapter 5. Fabrication of EEPROM Structures 
	

111 

Gap at 
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The Gate 

Symmetrical is 
Device *...  Incremented 
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2OthJ 

The Source and Drain 
Positions Are Fixed 

Figure 5-1: Schematic Diagram Illustrating a Column of Progressional Offset 

Transistors. 

All transistors have the same dimensions, but the location of the gate is incre-

mented by an equal step from one device to the next. Transistors at either end of 

the column have a source gap, or drain gap, whereas transistors in the centre are 

symmetrical. The gapped and symmetrical transistors may be distinguished, by 

comparing electrical characteristics, such as subthreshold or substrate current [3] 

[4]. Even a slight variation in gate/drain overlap can have a significant effect on 

electric fields within a device [5], so small step sizes are generally preferable. 
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5.2 Processing 

5.2.1 Overview 

A new process has been developed to reliably produce the POT transistors. This 

includes several novel features. Polysilicon gates are deposited in two stages 1,  as 

in advanced BiCMOS processes [6], and for this reason it is named the Bi-Poly 

process. A new oxidation recipe has also been developed, which uses a long-time 

postanneal to ensure oxide integrity [7]. In addition, many steps are adapted from 

the Edinburgh Microfabrication Facility's 1.511 and 6.0ui NMOS processes. Much 

of the processing, such as wet etching, plasma etching and furnace oxidation, was 

carried out by the author. 

5.2.2 The Bi-Poly Process 

This is a non-aligned process, which may be summarised in terms of the lithogra-

phy stages required. In optical lithography light is projected onto a silicon wafer 

though a patterned mask. The mask pattern exposes photographically sensitive 

material, and this defines transistor features. The Bi-Poly process requires 5 pho-

tomasks, or reticles. 

Photo mask 1 

Active regions are defined: Illustrated in figure 5-2. 

o 

1 300A are initially deposited, while the remaining 6000A are added later. 
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Active Region 	 Field 
Gate _- /_/ / / / // 

Substrate - 

Figure 

Oxide 

Figure 5-2: Definition of Active Regions. 

Photornask2 

Definition of Phantom gates Transistor gates are defined in photoresist. These 

provide a ixiask during source-drain implantation, see figure 5-3. After implanta-

tion the phantom gates are removed. 

Photoresist 
Phantom Gate 

Source 	I 	Drain 
1;rx1ii1., 

.. I  ..  

Figure 5-3: Phantom Gate Definition, for Implantation of Drain Regions. 

P hot omask3 

Definition of polysilicon gates: The real polysilicon gates are defined, see figure 

5-4 

Polysilicon 
Gate 

Source ______ Drain  

Figure 5-4: Definition of the Polysilicon Gate. 
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At this stage the gate/drain overlaps are defined - since the gate may be posi-

tioned anywhere. The registration accuracy between one mask layer and the next 

is 0.2tm. Therefore, the POT column will be skewed to the left or right, as 

illustrated in figure 5-5. 

POT POT POT 
Column Column Column 

5th 5th 5th 

&h Sth 

2Oth 2Oth 2Oth 

Gate Gate Gate 
Skew Exactly Skew 
to the Aligned to the 
Left Right 

Figure 5-5: Schematic Diagram Illustrating Three POT Columns: Two Skewed 

and One Symmetrical. 

Photo mask 4 

Definition of contact holes: The contacts allow connection from the metal layer to 

the source,drain and gate. As illustrated in figure 5-6. 

Contact  

e4e4  M~,J 
Figure 5-6: Definition of Contact Holes. 
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Photomask5 

Definition of metallisation: The metal layer connects transistors to probe pads, 

see figure 5-7. 

MetalUsation 

Figure 5-7: Metal Layer. 

5.2.3 Growth of High Integrity Thin Oxide Films 

The most challenging aspect of the process, is the growth of a high integrity thin 

oxide film. The oxide recipe developed for this purpose is illustrated in figure 5-8. 

Ramp up 	Long-time Ramp Down 
Temperature 	Post Anneal Temperature 
for 50mins 	120rnins 	for 50mins 

9OcY c 

60(f C 	Hcl 

E 02 	02  02 
a 

I 
Grow 	12mins1Omins 
20A 	Grow 
Oxide 	Tunnel 
30mins 	Oxide 

02 

Time- 

Re-oxidation 
lOmins 

Figure 5-8: Thin Oxidation Process. 
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Chemical Pre-Clean 

To remove contamination before oxidation, a chemical pre-clean is required. The 

EMF uses a four stage RCA clean: 

.5:1:1, H2 0:H2 02 :NH4 0H 

Wafers are boiled at 80°C in a solution of hydrogen peroxide and ammonia, 

which removes organic material. 

.4:1, HF:H2 0 

Hydrofluoric acid removes nascent oxide. 

.5:1:1, H2 0:H2 02 :HCL 

Wafers are boiled at 80°C in a solution of hydrogen peroxide and hydrochloric 

acid, which to remove heavy metals and mobile contaminants (eg. Na+). 

.4:1, HF:H2 0 

Hydrofluoric acid removes nascent oxide. 

Silicon oxidation in the thin regime is highly sensitive to treatments given to the 

silicon wafers before oxidation [8] [9]. For this reason it is important to use an 

identical clean for each batch of wafers. 

Furnace Loading Conditions 

Wafers are loaded at 600°C in oxygen, and remain there for 20 minutes to allow 

the growth of a thin oxide. They are then ramped to 900' C in N2 . During the 

ramp the oxide layer protects the silicon from attack by the N2  [10]. 

Hole Trap Generation 

Oxide breakdown under TDDB stress has been linked to hole trapping [1], greater 

reliability may therefore be obtained by limiting the number of hole traps gener- 

ated during processing. It is believed that hole traps (formed during processing) 
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result from a deficiency of oxygen in the Si02  [11]. Trap generation occurs during 

high temperature steps, and is believed to be caused by the diffusion of Si from 

the substrate/gate oxide interface into the Si0 2  [12]. Temperature is the primary 

driving force for this diffusion, which argues for the use of low temperatures wher-

ever possible. It should also be remembered, that high temperature processing 

steps subsequent to the gate oxidation will be equally effective in generating hole 

traps. 

Stacking Faults 

Oxidation induced stacking faults (OSF) may lead to poorer oxide quality, al-

though the correlation between dielectric strength and OFS is not straightforward 

[13]. A stacking fault is a dislocation in the silicon crystal lattice, which may be-

come decorated with metallic impurities and may also result in a thinning of the 

oxide in the immediate vicinity. The metallic impurities provide a path of least 

resistance to electrical field lines, resulting in a convergence of field lines in that 

region and a proportionally higher field. High temperatures 1000°C) propa-

gate these stacking faults, and lowering the processing temperature will lessen the 

problem [14]. Careful wafer handling will also help to avoid surface damage which 

may "seed" stacking faults. 

Thickness Uniformity 

Uniformity and reproducibility of oxide thickness are important to the operation 

of circuits including EEPROMs. This is especially so during the Program/Erase 

operation, when the thickness determines the size of tunnelling field experienced 

by the oxide, and therefore the size of the tunnelling current. To simplify com-

parisons between wafers in the experiments, a uniform and reproducible oxide is 

also needed. A temperature in the order of 900°C will give a slow and controlled 

growth rate. 
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Mobile Ions 

Mobile ion contamination (eg. Na) has a dual effect on device reliability. It 

can of itself lead to oxide failure, but will also to cause threshold voltages to vary 

as it moves within the gate oxide. HC1 is the standard treatment, added during 

oxidation to getter mobile ions [15]. However, attention should be given to the 

reaction between HC1 and bare silicon at 9000C. This tends to pit the Si 

surface, and HCI should only be added following the growth of a thin protective 

layer of Si0 2  

Long-Time Postanneal 

Inhomogeneities in the oxide film thickness can lead to low field breakdown events 

lMVcm'. These inhomogeneities are most pronounced in the form of pin 

holes, as illustrated in figure 5-9. 

Figure 5-9: Quantum Tunnelling Micrograph of a Thin Oxide, Revealing Pin 

Holes. 

It has been found that a long anneal given subsequent to oxidation significantly 

reduces the fraction of such events [7]. These long-time postanneals should be given 

at the oxidation temperature (900°C) for several hours. Thermal relaxation of the 
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oxide, due to viscous flow, has been proposed as the mechanism responsible for 

improved integrity. In the light of other work it seems reasonable to assume that 

plastic flow also plays a role in this relaxation [16]. Not only does relaxation give 

a more homogeneous oxide film, but it also reduces the thermal stress between 

the oxide and Si substrate [17] [18]. Such stress would otherwise degrade oxide 

integrity [19]. A long time is required for relaxation to take place, since the 

viscosity of the oxide at 900°C is relatively high. 

Hole trap formation is the only detrimental effect of such a long anneal. These 

traps may be removed through the use of a second oxidation step, "re-oxidation", 

at 900°C for 10 minutes at the end of the anneal [7] [20] [12]. Re-oxidation provides 

02, which reacts with any SiO, which is thought to cause the hole traps. 

Wafer Cooling 

Withdrawal of the wafers from the furnace results in the formation of a stressed 

region between the Si substrate and the oxide film, due to the mismatch in the 

coefficients of their thermal expansivity. To mitigate this effect, wafers may be 

cooled to 6000 C before unloading. Wafers withdrawn in such a manner have shown 

a lower infant mortality rate and a substantially higher dielectric strength [7]. The 

furnace then sits at 600°C. 

Polysilicon Deposition 

After oxidation, wafers should be immediately transferred to the polysilicon de-

position furnace, where ' -i  300A of polysilicon is deposited. This protects the 

oxide layer from contamination during further steps. It will also provide a path 

to ground for static charge which tends to build up during ion implantation. A 

thicker polysilicon layer could not be used at this stage, as implanted arsenic and 

phosphorus ions must be able to penetrate through it, to form the source and 

drain. This step is also used in advanced BiCMOS processes [6]. 
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5.2.4 Complete Process Flow 

• Starting Point. 

3 inch, P-type, Czochralski, silicon substrates were used, with a resistivity 

in the range 14.0 to 20.0 0 cm and a (100) crystal orientation. 

. STEP 1. Initial Clean. 

Wafers should be free from organic films, metals and particulates. New 

wafers, as used here, usually require no treatment. 

• STEP 2. Pad Oxide. 

A 350 A oxide is grown at 950°C. 

• STEP 3. Silicon Nitride Deposition. 

A 1000 A layer of silicon nitride (Si 3N4 ) is deposited at 800°C, by low 

pressure chemical vapour deposition (LPCVD). 

• STEP 4 ]St  Photomask. 

Active regions are defined, using optical lithography. 

• STEP 5. Silicon Nitride RIE. 

Reactive ion etching (RIE) is used to remove Si 3 N4  from areas unprotected 

by photoresist. 

• STEP 6. Silicon Nitride RIE. 

Repeat RIE with wafers face down to etch Si 3 N4  from wafer backs. 

• STEP 7. Channel Stop Implant. 

To increase the threshold voltage of the field oxide regions, boron is implant-

ed. This prevents the creation of a conduction path under the field oxide, 

between active regions. 

- Boron dose=1x10 13atoms cm 2 , energy=100 keV. 

Values for dose and energy are based on those used in the Edinburgh Micro- 

fabrication Facility's 6.01Lrn process. This step is illustrated in figure 5-10. 
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Channel 

Substrate 

Figure 5-10: Step 7. Implant Boron to Create Channel Stop. 

• STEP 8. Photoresist Strip in Oxygen Plasma. 

Exposure to an oxygen plasma removes photoresist. 

• STEP 9. Photoresist Strip in Fuming Nitric Acid. 

Any remaining photoresist is removed in fuming nitric acid. 

• STEP 10. Field Oxide Growth. 

15 hours 45 minutes at 950°C in steam grows a 13000A field oxide. A thick 

oxide is desired to reduce the capacitance of field oxide regions. This step is 

illustrated in figure 5-11. 

• STEP 11. Photoresist Coat. 

This protects field oxide on the front of the wafers. 

• STEP 12. 4:1 HF Dip. 

A 4:1 mixture of ammonium fluoride (NH 3F) and hydrofluoric acid (HF) 

etches oxide from wafer backs. 

. STEP 13. Photoresist Strip in Fuming Nitric Acid. 

• STEP 14. 4:1 HF Dip. 

The oxide film on the Si 3 N 4  surface is removed. The field oxide will be etched 

simultaneously, so a short etch time is used. 
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Figure 5-11: Step 10. Field Oxidation. 

. STEP 15. Silicon Nitride Wet Etch. 

Ortho-phosphoric acid (H 3 PO 4 ) [21] at 165°C, is used to remove the Si 3 N 4 . 

. STEP 16. Threshold Adjust Implant. 

Boron is implanted through the pad oxide, to raise the P-type dopant con-

centration at the silicon surface. This gives the transistor channel regions a 

positive threshold voltage. 

- Boron dose=2x 1012  atoms cm 2, energy=50 keV. 

The required doses and energies are simulated in section 5.4. Note that these 

simulations cannot be performed in context, until the full process has been 

established. 

• STEP 17. 4:1 HF Dip. 

The pad oxide is removed. 

• STEP 18. Sacrificial Oxide Growth. 

A 300A sacrificial oxide is grown at 950°C. This consumes the silicon surface, 

so lifting away contamination. In addition, it offers the surface protection 
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Figure 5-12: Step 18. Growth of Sacrificial Oxide. 

from contamination prior to gate oxidation. This step is illustrated in figure 

5-12. 

• STEP 19. 4:1 HF Dip. 

Remove sacrificial oxide. 

• STEP 20. RCA Clean. 

Any remaining contamination is removed from the wafer. 

• STEP 21. Gate Oxidation. 

A 1 10A oxide of high integrity is grown at 9000C,  using the recipe described 

earlier. Note: steps 20, 21, 22 and 23 should be carried out in immediate 

succession, on the same day, to minimise the possibility of oxide contamina-

tion. 

• STEP 22. 3001 Polysilicon Deposition. 

Wafers are immediately transferred to the polysilicon deposition furnace, 

where -300A of polysilicon are deposited by LPCVD. This provides protec-

tion for the thin oxide film, and acts as a path to earth during ion implan-

tation. 

• STEP 23. 2   Photomask. 

The "phantom gates" are defined in photoresist. These mask transistor 
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Drain 
Polysilicon  

Figure 5-13: Step 24. Implantation of the Source and Drain Regions. 

channel regions, during implantation of the source and drain. A high tem-

perature photoresist (OFPR 800) is needed, since energy is dissipated in the 

photoresist as it absorbs incoming ions. 

• STEP 24. Ion Implantation of Source-Drain Regions. 

Source-drain regions are formed by ion implantation. The polysilicon layer 

deposited in step 23, provides a path to ground for static charge 2 . This 

protects the gate oxide from static discharge. A thin polysilicon layer is 

used, so that ions may pass through without needing excessive acceleration 

energies. Two sets of implantations are required, one for arsenic transistors 

and one for phosphorus. This step is illustrated in figure 5-13. 

- Split 1. Arsenic dose=2x10 5  atoms cm 2 , energy= l6OkeV. 

- Split 2. Phosphorus dose=2x 10 15  atoms cm 2 , energy=75keV. 

Doses and energies are simulated in section 5.4. 

• STEP 25. Photoresist Strip in Oxygen Plasma. 

2 A single rupture or pin hole in the gate oxide will be sufficient to connect the 300A 

polysilicon layer to the earthed substrate. Once this low resistance path to earth is 

established, all subsequent static charge build up will be conducted through it. 



Chapter 5. Fabrication of EEPROM Structures 	 125 

. STEP 26. Photoresist Strip in Fuming Nitric Acid. 

. STEP 27. 10% HCL Clean. 

A 10:1 solution of H 2 0:HCL removes any sodium contamination from the 

wafer surface. 

• STEP 28. 10% HF Dip. 

A 10:1 solution of H 2 0:HF removes nascent oxide immediately prior to fur-

ther polysilicon deposition. A short etch time 1 second is sufficient to 

remove nascent oxide. 

• STEP 29. Polysilicon Deposition. 

LPCVD is used to deposit a further 6000A of polysilicon, for the transistor 

gates. 

• STEP 30. Ion Implantation to Dope the Polysilicon. 

The polysilicon is doped by ion implantation in two batches, one for arsenic 

transistors and one for phosphorus. 

- Split 1. Arsenic, dose=2x10 16  atoms cm 2, energy=50keV. 

- Split 2. Phosphorus, dose=4x 1014  atoms cm 2 , energy=50keV. 

Doses and energies are simulated in section 5.4. 

• STEP 31. High Temperature Anneal. 

A high temperature anneal in N2  causes the source-drain implantations to 

diffuse laterally and vertically. To lessen any stress induced in the wafers, 

the temperature is ramped up to its anneal value, over 30 minutes, before 

the 60 minute anneal begins. Temperature is also ramped down after the 

anneal. Two anneals are given, one for each species of dopant. 

- Split 1. Arsenic, 60 minutes at 1072°C. 

- Split 2. Phosphorus, 60 minutes at 984°C. 

Times and temperatures are simulated in section 5.4. 
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Figure 5-14: Step 30. Ion Implantation to Dope Polysilicon. 

. STEP 32. Photoresist Coat. 

This protects the front of the wafers. 

. STEP 33. Polysilicon Wet Etch. 

Polysilicon is removed from the wafer backs. 

. STEP 34. Photoresist Strip in Fuming Nitric Acid. 

. STEP 35. 3rd Photomask. 

The polysilicon gates are defined. 

• STEP 36. Polysilicon RIE. 

RIE is used to etch vertically into the polysilicon so forming the gates. Care 

is needed to stop etching before the gate oxide is removed. Since plasma 

etching is more rapid at the wafer edges, dice at the wafer perimeter may 

be over etched, while those at the center may be under etched. This step is 

illustrated in figure 5-15. 

• STEP 37. Photoresist Strip in Oxygen Plasma. 

• STEP 38. Photoresist Strip in Fuming Nitric Acid. 
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Figure 5-15: Step 36. Polysilicon RIE Etch. 

• STEP 39. Interlevel Oxidation. 

350A of oxide are grown at 950°C in steam and 5% HCL. This is equivalent 

to the interlevel oxide grown in an EEPROM process. Associated with this 

oxidation is a degree of "bird's beaking" under the gate, resulting in the so 

called Graded Gate Oxide (GGO) structure [22]. In addition, this step will 

remove any moisture or mobile ions from the wafer surface. 

• STEP 40. Silicon Nitride Deposition. 

Wafers are immediately transferred to the nitride furnace, before any mois-

ture can collect. A 2000A layer of Si 3 N 4  is deposited at 800°C, which will 

faithfully trace the contours of the surface. This will act as passivation, to 

protect the underlying devices, by providing a barrier to moisture and to 

the diffusion of mobile ions [21]. One feature which made Si 3 N4  particularly 

suitable, was the low temperature, 800°C. Contrast this to phosphosilicate 

glass which requires a reflow at 1050°C [23], and would upset the doping 

profiles tailored during the high temperature anneal. 

• STEP 41. Oxidation. 

An oxide film is grown on the nitride surface, which takes 5 minutes at 950°C 

in steam. This is used to promote adherence between the nitride layer and 

the overlying metallisation. 
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Figure 5-16: Step 43. Silicon Nitride RIE Etch. 

• STEP 42. 4th  Photomask. 

Contact holes are defined, for connection between the source, drain, gate 

and the metal layer. 

• STEP 43. Silicon Nitride RIE. 

Silicon Nitride is removed from the contact holes. This etch also removes 

oxide from the contact holes, as illustrated in figure 5-16. 

• STEP 44. Silicon Nitride RIE. 

Repeat with wafers face down to etch Si 3 N 4  from backs. 

• STEP 45. Photoresist Strip in Oxygen Plasma. 

• STEP 46. Photoresist Strip in Fuming Nitric Acid. 

• STEP 47. 25:1 HF Dip. 

A 25:1,NH4 :HF solution is used to clear contact holes of nascent oxide. 
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. STEP 48. Aluminium Deposition. 

A 1im thick aluminium layer is deposited using a sputterer. Due to the large 

size of the contact holes (4itmx4um), step coverage presents no problem. 

. STEP 49. 5 1' Photomask. 

The metal interconnection pattern and probe pads are defined. 

. STEP 50. Aluminium RIE. 

RIE is used to etch vertically into the aluminium, so forming the probe pads 

and connections to the transistors. 

. STEP 51. Aluminium Wet Etch. 

Any remaining aluminium is removed with a wet etch solution containing 

orthophosphoric acid. 

. STEP 52. Photoresist Coat. 

This protects the wafer front surface. 

. STEP 53. 4:1 HF Dip. 

Oxide is removed from the wafer backs, immediately before aluminium de- 

position. 

. STEP 54. Aluminium Deposition. 

To give good contact to the substrate, aluminium is sputtered onto the wafer 

backs. 

• STEP 55. Photoresist Strip in Fuming Nitric Acid. 

• STEP 56 Sinter. 

A 20 minute sinter is given in forming gas at 430°C, to promote good contact 

between the aluminium and silicon. This is the final step of the process, the 

finished transistor is illustrated in figure 5-17 
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Figure 5-17: Step 56. Section Through a Completed Transistor. 
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5.3 Circuit Design 

5.3.1 Reticle Production 

The circuit was designed using the CAESAR, a software package for computer 

aided design. A reticle set was then made using an electron beam pattern genera-

tor, whose resolution was 0.167irn. On a silicon wafer this would give a resolution 

of 0.0167,um, since dimensions are reduced by a factor of 10 during optical lithog-

raphy. To remain well within the pattern generators operating limits, 0.05jtrn was 

used as the minimum dimension during design work 3 . For practical purposes, this 

limited the increment possible in a POT array to 0.05jm. 

A design area of 5mm by 5mm was used, and due to the high cost of reticle 

production, optimum use was made of the available space. For this reason, a large 

number of transistor arrays and test structures were included. Figure 5-18 gives 

a schematic view of the design, while figure 5-19 is a plot of the design itself. 

5.3.2 Transistor Design 

Each POT column contains 20 transistors, which are closely grouped together. A 

single array covers a distance of only 9601irn. During fabrication, processing pa-

rameters such as photoresist thickness and photographic illumination vary across 

the wafer [4]. Close grouping helps to minimise the variation in processing param-

eters from one transistor to another. The dimensions of the POT transistors are 

summarised in table 5-1. 

'CAESAR can only create dimensions in units of 0.02jim. To overcome this, the de-

sign was drawn lOx oversize, then reduced during its loading into the pattern generator. 
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Figure 5-18: Schematic Diagram of Reticle Design 
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Figure 5-19: Plot of the Reticle Design 
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Array Length of Length of Width of Lateral POT 

Phantom Polysilicon the Drain Step 

Gate Gate Transistor Diffusion Size 

A 31im 2.6tm 5pm 0.45pm 0.051im 

B 61Lm 5.6pm 50pm 0.45pm 0.05prn 

Table 5-1: Design Parameters for Transistor Arrays 

• Array A. This contains small geometry transistors, 2.6pm long by 5.0pm 

wide, which are directly equivalent to the EEPROM. With their small gate 

areas array A devices should be relatively insusceptible to oxide defects. 

• Array B. These transistors are 5.6pm long by 50.Opm wide, which will in-

crease tunnel currents by an order of magnitude during testing. These de-

vices were included, should the tunnel currents in array A devices prove 

difficult to monitor. However, array B devices will be more susceptible to 

tunnel oxide defects. 

Diffusion of the Source-Drain Regions 

Following ion implantation a high temperature anneal is given, which causes the 

the source-drain regions to diffuse laterally. One would like to test reliability over 

a wide range of overlap values, and a large lateral diffusion is therefore preferred 

. A lateral diffusion of 0.45pm was chosen, as compared to 0.3pm gate/drain 

overlap in an EEPROM. This gave a large overlap, while still retaining a realistic 

profile. 

4 0xide outside the laterally diffused regions has been damaged during ion implanta-

tion, and may not give meaningful results. 
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Processing Friendly POT 

In principle a POT array should have gapped devices at the beginning and end, 

and fully overlapped devices at the centre [3]. However, processing can be un-

predictable and may give a smaller or larger source-drain diffusion than designed. 

By drawing the polysilicon gate 0.4jim shorter than the phantom gate, the design 

will tolerate a variation of ±0.25nn. Thus, the leeway for process variation is 

optimised for either circumstance, this is illustrated in figure 5-20. 

POT 
Column 

Ion Implantation 

Phantom 
Gate 

En 
0.45um 0.45um 

O.25um 
Polysilicon Gate 

hfl H1h 

0.25um 0.25um 

77 20th 

0.25um 

Figure 5-20: Processing Friendly POT. 

5.3.3 Interconnection Scheme 

A "dog legged" scheme was used for metal interconnections between transistors 

and probe pads, which allowed more space on the reticle for other structures. Met-

allisation and contact holes were designed in accordance with the Edinburgh Mi-

crofabrication Facility's 6um design rules, and standard EMF pad sizes of 1201im 

by 120pm were used. These conservative design rules ensure that defects in met-

allisation are minimised. 



Chapter 5. Fabrication of EEPROM Structures 	 136 

5.3.4 Test Structures 

Sample Transistor 

To quickly identify working dice during testing, a sample transistor was included. 

This was an ordinary, fully overlapped transistor, whose good operation indicates 

a successful process. In order to ensure a fully overlapped transistor, the real 

polysilicon gate was longer than the phantom photoresist gate. 

Kelvin Bridges And Cross Bridge Structures 

Standard test structures were reproduced directly from the Edinburgh Microfab-

rication Facility's test strip [24]. These were added as a precaution, to help in 

analysing problems, should any transistors display aberrant characteristics. 

Kelvin Bridges are designed to monitor metal-polysilicon and metal-drain 

contact resistances. 

Cross Bridge Structures are designed to monitor polysilicon and drain sheet 

resistances. 

5.4 Simulation 

Once the required doping profiles have been determined, the implantation pa-

rameters and thermal budget to meet this specification must be calculated. In 

general, the commitment of a semiconductor process to silicon is a costly and time 

consuming affair. However, with careful simulation, the process may be tailored 

beforehand, to give the desired results. Although the full gamut of process steps 

can be simulated with today's programs, simulations offer the most help when 

deciding: 

1. Thermal Budget. 

Allocation of anneal temperatures, anneal times, etc. 
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Implantation Energies. 

Implantation Doses. 

In contrast, parameters such as gate oxide thickness are very sensitive to small 

fluctuations in processing conditions. These include the temperature within a 

furnace [8], which is never uniform, traces of moisture in the oxidising ambient 

[9] and the pre-oxidation clean [25]. Here, a simulator would need to be finely 

calibrated to a given fabrication facility, before reliable results could be produced. 

Even with the aid of software tools, the designer must use his intuition during the 

design process. 

Technology Modelling Associates (TMA) software was used throughout this 

project. They offer two packages for process simulation: 

SUPREM-3. For one dimensional simulations. 

TSUPREM-4. For two dimensional simulations. 

One dimensional simulations give faster results than two dimensional simulation. 

This is because, the size of a 1D simulation is by its nature much smaller than for 

2D. SUPREM-3 can be used to calculate electrical parameters, such as thresh-

old voltage and sheet resistance. For these reasons, SUPREM3 was used in the 

majority of simulations. Four sets of parameters must be decided for each batch: 

Drain implantation, dose and energy. 

Polysilicon gate implantation, dose and energy. 

Anneal temperature and time. 

Threshold adjust implant ation,dose and energy. 
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Irr1ant Profiles: Arsenic Device, Drain 
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Figure 5-21: Implantation to Form Arsenic Drain Region. 

5.4.1 1 Dimensional Simulation of Arsenic Transistors 

Drain Implantation Energy 

The drain implantation passes through a 500A thick sandwich, of Si0 2  and polysil-

icon, before reaching the substrate. A high energy ( 160keV) was therefore re-

quired. This was near the limit of the ion implanter's capability, and gave a 

junction depth of O.225i.m, as illustrated in figure 5-21. 

To a first approximation, diffusion may be assumed to be isotropic [26] [27]. 

Thus, the veiclè junction depth calculated by SUPREM-3, can be used to esti-

mate the degree of lateral diffusion. Tithe drain profile diffuses 0.45 pm vertically, it 

will also diffuse 0.45/Lm laterally. Since the required lateral diffusion is 0.45jim, 

the required junction depth will be give by equation 5.1: 

in 

* 

0.80 	1.00 	1.20 
Distance (Microns) 

1.40 	1.60 	1.80 	2.0 

Junction depth 0.225gm + 0.45jim = 0.6751rn 	(5.1) 
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Figure 5-22: Junction Depth as a Function of Anneal Temperature and Implan-

tation Dose. 

Drain Implantation Dose and Anneal Conditions 

An anneal time of 60 minutes was chosen, leaving the anneal temperature and 

implant dose to be decided. The phantom gate is composed of high temperature 

photoresist, which must absorb energy from the incoming ions, during implanta-

tion. To reduce the power dissipated in this resist, and so reduce the possibility 

of it charring, a low dose is preferred. A low dose will also help in emulating the 

profiles of a standard EEPROM, which has a high drain resistance [28]. However, 

a low temperature has the advantage of maintaining oxide quality [11]. Figure 5-22 

illustrates how implantation dose and anneal temperature are related to junction 

depth. A dose of 2.0 x 10 15atoms cin 2  was chosen, requiring an anneal tempera-

ture of 1080°C. This gives a junction depth of 0.6751Lm, which is equivalent to a 

lateral diffusion of 	0.45tm. 
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Gate Implantation 

The polysilicon gate is implanted with arsenic to increase its conductivity, and an 

energy of 50keV was used. Figure 5-23 indicates that a dose of2x 1016 atoms cm 2 , 

gives a sheet resistance of — 501)/1. 

Polysilicon Sheet Resistance: Arsenic Device 

Anneal tamp: 1080 

?.nnea]. time: 60 xnlna 

0 3- 	 implant 

I 

0 1 

 14 
	

15 	 1.6 	 17 
Arsenic Implant Dose log (atarefari2) 

Figure 5-23: Polysilicon Sheet Resistance as a Function of Implant Dose. 

Drain Profile 

In the finished anneal recipe, the temperature was ramped up to the required value, 

over 30 minutes. It was then ramped down for 30 mills at the end. These ramps 

are introduced to improve the oxide quality [7]. Figure 5-24 gives the resulting one 

dimensional drain doping profile. The anneal conditions required to give 0.675gm 

junction depth, was calculated automatically by SUPREM-3, giving: 

30 min ramp, 922°C 	1072°C 

60 min anneal, 1072°C 
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Doping Profiles: Arsenic Device, Drain 
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Figure 5-24: Doping Profiles of the Drain Region. 

3. 30 min ramp, 1072°C = 922°C 

The program for this simulation is given in appendix D. 

Threshold Adjust Implantation 

Threshold implant dose and energy were based on the Edinburgh Microfabrication 

Facility's 6m process. The channel region doping profile, and threshold voltage 

of the transistor are given in figures 5-25 and 5-26 respectively. It is seen that 

arsenic diffusion through the gate oxide is negligible, and the threshold voltage is 

positive. 
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Doping Profiles: Arsenic Device, Channel 
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Figure 5-25: Doping Profiles of the Channel Region. 
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Figure 5-26: Threshold Voltage Plot for the Arsenic Transistor. 
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5.4.2 1 Dimensional Simulation of the Phosphorus Tran-

sistors 

Drain Implantation 

The phosphorus transistors should have the same doping profiles as the arsenic 

transistors. For this reason, the same implantation dose is used for each, 2 x 

1015 atoms cm - '. SUPREM-3 is then used to automatically calculate the required 

energy. An energy of 75Kev gave an junction depth of 0.225iirn, see figure 5-27. 
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Figure 5-27: Implantation Profile of Phosphorus Transistor. 

Gate Implantation 

For phosphorus and arsenic devices to be equivalent, each should each have the 

same polysilicon sheet resistance. Again, an energy of 50keV was used. A dose of 

4 x 1015  atoms cm - 2  gives a sheet resistance of '-' 501/0, as illustrated in figure 

-.1 

0.80 	1.00 	1.20 	1.40 	1.60 	1.80 	2 
Distance (microns) 

5-28. 
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Polysilicon Sheet Resistance: Phosphorus Device 
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Figure 5-28: Polysilicon Sheet Resistance, as a Function of Implant Dose. 

Anneal Conditions 

Figure 5-29 shows the profiles for the phosphorus drain region. The anneal condi-

tions required to give 0.6751im junction depth, were calculated automatically by 

SUPREM-3, giving: 

30 min ramp, 836°C = 986°C 

60 min anneal, 986°C 

30 min ramp, 986°C = 836°C 

Threshold Adjust Implantation 

The same threshold adjust implant was given for each set of transistors. The 

doping profiles for the phosphorus device channel region is given in figure 5-30, 

indicating that phosphorus diffusion though the gate oxide is insignificant. Figure 

5-31 indicates that these have a threshold voltage 160mV. 
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Doping Profiles: Phosphorus Device, Drain 
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Figure 5-29: Drain Profiles for Phosphorus Transistor. 
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Figure 5-30: Doping Profile of Channel Region. 
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Figure 5-31: Threshold Voltage Plot of Channel Region. 

5.4.3 2 Dimensional Simulation of Transistors 

The gate/drain overlaps were checked using TSUPREM-4. Although this cannot 

extract electrical parameters, and is time consuming, it can simulate in two dimen-

sions. Figure 5-32 gives a two dimensional plot of the drain region. Figure 5-33 

illustrates the doping concentrations, along a line taken horizontally though the 

channel and drain. This indicates a gate/drain overlap of 0.46/Am, the program 

used to simulate this is given in appendix D. 
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5.5 Conclusion 

A process has been designed, to produce an array of progressional offset transistors. 

Special emphasis is placed on the producing and maintaining a good integrity 

oxide, as in standard EEPROM devices. These may now be used to assess the 

improvement in programming reliability, caused by an increase in the gate/drain 

overlap. A contrast between the reliability of phosphorus and arsenic transistors 

may also be made. 
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Chapter 6 

Analysis of EEPROM Structures 

The novel test structures described in chapter 5 may be used to investigate EEP-

ROM reliability. Avenues for exploration are two fold: 

Results from phosphorus and arsenic doped devices should be compared, in 

order to evaluate the effect of chemistry upon reliability. 

The effect of floating gate/drain overlap upon reliability should be studied. A 

contrast may then be made between model predictions, produced in chapter 

4, and experimental data. Thus, any phenomena which were not detected 

in the model may behigh- lighted. 

Of principle interest is the end-of-life wearout, hence devices of good integrity are 

required. A discussion of transistor characteristics and quality, will therefore be 

useful. 

6.1 Process Quality 

IC quality is not to be confused with IC reliability. Quality describes how closely an 

IC conforms to its specifications, directly after completion of the process, and is a 

manufacturing concern. Whereas, reliability describes how closely an IC continues 

to conform to its specifications over years of use [1]. 

152 
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6.1.1 Wafer Yield 

In all 8 wafers were processed, each containing 88 dice, from which there was a 

degree of yield loss. A sample MOS transistor was included on every die. If this 

displayed good characteristics then the die as a whole was assumed to be good. To 

test this the drain was held at 2.OV, the gate ramped from O.OV to 2.OV, and the 

source and substrate were earthed. A good working device was one which gave: 

. Drain current < 1 x 10'°A, for OV gate voltage. 

. Drain current > 1 x 10 7 A, for 2V gate voltage. 

The test was automated using a KLA Automatic Wafer Prober and a Hewlett-

Packard 4062B Semiconductor Parametric Test System. This allowed every sample 

transistor to be measured efficiently. A map of working dies was produced for each 

wafer, of which the highest yielding is illustrated in figure 6-1. 

040.1 57-5! INS 

Figure 6-1: Map of Working Dies on a Wafer. 

Devices around the perimeter of the wafer work well, while those at the cen- 

ter had a short circuit between the source and drain. This indicates that some 
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polysilicon has been left behind, during gate etching. Inhomogeneity of plasma 

etching would account for this result, since plasma etching acts more quickly at 

the perimeter of a wafer than it does at the center [2]. This type of yield loss was 

a common feature of the batch. In figure 6-1 55 dicewere good, giving a yield of 

60%. 

6.1.2 Gate Oxide Thickness 

A bare wafer was included in the batch during gate oxidation, in order to measure 

gate oxide thickness. Figure 6-2 gives a map of oxide thickness, measured using a 

GRQ Instruments E-Probe 200, automatic ellipsometer. The oxide has an average 

thickness of 119A, which compares favourably with the target value of 11 OA, and 

a good uniformity. 

6.1.3 Threshold Voltage 

During reliability testing, a positive voltage is applied to the n-type drain, while 

the gate is earthed. A current should then flow between the drain and gate, to 

emulate EEPROM programming [3]. However, no current should flow between the 

channel and gate. A positive threshold voltage is therefore required, so that the p-

type channel does not enter inversion. The threshold voltage may be defined as the 

gate voltage at which a transistor begins to conduct. A more physically meaningful 

criterion is given by assuming the SPICE standard transistor model for threshold 

voltage determination [4]. This method was adopted to measure threshold voltage 

on each wafer. The drain was held at 0.1V, the gate was ramped from OV to 

1V, while the source and substrate were earthed. Results gave similar threshold 

voltages for both arsenic and phosphorus devices, 0.6V. It was expected that 

threshold voltages should be similar, since all wafers received the same threshold 

adjust implant. Figure 6-3 gives a typical threshold plot, for a transistor in the 

centre of a POT array. 
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Threshold Voltage Plot 
(Far Progressional Offset Device) 
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Figure 6-3: Threshold Characteristic for a POT Transistor, 5tm Wide. 

6.1.4 Drain Characteristics 

Drain characteristics helped verify the correct operation of the transistors. For 

these the drain was ramped from OV to 4V, the gate voltage was incremented 

in steps of 1.OV, while the source and substrate were earthed. Phosphorus and 

arsenic devices each gave similar characteristics, which was to be expected as their 

geometries were equal. A typical characteristic is given in figure 6-4, taken from 

a device in the centre of a POT array. 

6.2 Assessment of POT Array Symmetry 

To recap, a POT array contains 20 transistors, which have a range of gate/drain 

overlaps. Ideally the 10th device in an array should be symmetrical, with equal 

gate/drain and gate/source overlaps. However, inaccuracies are introduced dur-

ing optical lithography. These result in a skew arrays, as illustrated in figure 6-5. 

Locating the symmetrical device is the first step in analysing a POT array. 

This problem has been given detailed attention by previous authors [] [6] 

[7]. Asymmetrical transistors, with unequal gate/drain and gate/source overlaps, 
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Drain Characteristics 
(For Progressional Offset Device) 
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Figure 6-4: Drain Characteristic for a POT Transistor, 51zm Wide. 
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Figure 6-5: Schematic Diagram, Illustrating the Gate/Drain Overlap in Three 

POT Columns. 
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have different electrical characteristics when the source and drain are exchanged. 

The difference is especially pronounced when a gap appears between the gate and 

drain, or source. The subthreshold current of a transistor may be used to indicate 

whether the device has drain end gap, or source end gap. This technique provides 

a particularly sensitive test [6]. 

In the subthreshold regime, the channel is in weak inversion, and the drain 

current is dominated by diffusion [8] [9]. For a drain voltage Vd > 3KT , current 

is independent of Vd,  and rises rises exponentially with gate voltage V. [10]. This 

mode of operation is equivalent to a bipolar transistor, where the source, gate and 

drain are equivalent to the emitter base and collector respectively [8]. 

In a POT transistor, a gap at the source end will cause a significant drop 

in the subthreshold current. This is due to an increase in the series resistance, 

and a reduction in the "emitter efficiency". However, a gap at the drain end has 

a less marked effect on current, since there is no change in "emitter efficiency". 

These phenomena have been verified using computer simulation [6]. Thus, in a 

gapped device, swapping the drain and source terminals will cause a change in 

subthreshold current. 

Figures 6-6 and 6-7 give subthreshold characteristics for two POT devices, one 

with a gap, one without. The device without a gap, shows no change in current 

when source and drain are reversed. Whereas, the gapped device with a shows a 

large difference when terminals are reversed. 

The difference between forward and reverse currents needs to be quantified, so 

that devices in an array can be compared. For this subthreshold currents were 

measured, with 0.5V on the drain, 0.4V on the gate, and other terminals earthed. 

Measurements were then taken with the source and drain swapped to give I and 

12 respectively. Equation 6.1 was used to calculate 'dill,  which is proportional to 

the gap size. 

'dill = Logio(Ii) - Logio(I2 ) 	 (6.1) 

Figure 6-8 gives the results for three POT arrays. 
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Subthreshold Currrent 
(For Progressional Offest Device) 
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Figure 6-6: Subthreshold Characteristic for a POT Transistor 511m Wide, Which 

has No Gap. Drain Voltage= 0.5V, Gate Voltage is Ramped from = O.1V to 

= O.4V, Source and Substrate Voltage= OV. 
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Figure 6-7: Subthreshold Characteristic for a POT Transistor 5pm Wide, Which 

Has a Gap. Drain Voltage= 0.5V, Gate Voltage is Ramped from = O.1V to 

= O.4V, Source and Substrate Voltage= OV. 
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Figure 6-8: Symmetry Analysis of Three POT Arrays, Using Comparison of 

Subthreshold Voltage. 

Array 1 is symmetrical about the 10th transistor, Ty 10 . Inspection reveals that 

the 1st and 19th transistors, Ty, and Ty 19 , have the same value of Idiff.  Thus, 

one may move along the array by 9 transistors from Ty, or Ty 19 , to arrive at 

Ty 10 . Arrays 2 and 3 are both asymmetric. However, one may stilliocate the 

symmetrical device. It is assumed that a device with Idif r > 1.7 is 9 steps away 

from the symmetrical device, and one with 'diff > 2.8 is 10 steps away from the 

symmetrical device. An algorithm was written to analyse a POT array and return 

the symmetrical device, based on this set of criteria, see appendix E. This was 

included in a test program written for the KLA Automatic Wafer Prober and HP 

4062 Semiconductor Parameter Test System. Infact, lithography is unlikely to 

produce an error of exactly 0.05zm. Hence, there may be no exactly symmetrical 

device in an array. Even so, it is necessary to group transistors into discrete sets, 

for statistical analysis. The above criteria were used to find the closest transistor 

to symmetricality. Once the symmetrical device has been located, the gate/drain 

overlaps of all other devices can be found, knowing: 

1. Gate/drain overlap of symmetrical device is designed to be 0.25pm, see 

chapter 5. 
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2. Step size in the POT array is 0.051irn 

6.3 Reliability Analysis 

6.3.1 Test Methodology 

Of interest is the EEPROM programming operation. Constant voltage stressing 

between the drain and gate may be used to emulate this [3], with the substrate 

earthed and the source floating. This produces current flow between the gate and 

drain, which stresses the oxide. Current stress leads to charge trapping and eventu-

al oxide rupture [3]. The charge to breakdown, QBD,  then indicates the reliability 

of the device [11]. Ten volts was applied to the drain, the gate and substrate were 

earthed, and the source was allowed to float. This produced 8.4MVcm' across 

the 119A gate oxide. 

Two types of POT transistor were designed, one 5m wide, and one 50m. 

Reliability tests revealed that the 50prn wide devices had a substantial infant 

mortality rate. The 5m devices were therefore chosen as the most suitable for 

reliability analysis. For a gate drain/overlap of 0.3pm, 8.4MVcm' gave a current 

of 0.2nA, and time to breakdown of 3 minutes. QBD  was calculated by 

integrating gate current as a function of time. It should be noted that the channel 

was in depletion during testing, hence only the gate/drain region was stressed. 

As discussed in chapter 5, a symmetrical POT device will have a gate/drain 

overlap of 0.25m. A range of gate/drain overlaps may be evaluated by test-

ing transistors on either side of the symmetrical device. In order to double the 

population of data points for statistical analysis, both the gate/drain and the 

gate/source regions were stressed. This was possible because the channel region 

was in depeton during testing, so the source and drain were isolated from one 

another. A program was written to perform these tests using a KLA automatic 

wafer prober and an HP 4062 semiconductor parameter test system, see appendix 

E. Figure 6-9 illustrates the test set-up. 
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Figure 6-9: Block Scheme of Test Set-Up. 

6.3.2 Reliability of Progressional Offset Transistors 

In all 37 arsenic die and 83 phosphorus die were tested, for which both the 

gate/drain, and the source/drain regions, were stressed. In analysing results from 

POT arrays, it is important to appreciate that they exhibit the same features as 

any other population of oxide capacitors. In such a population, time to break-

down shows a lognormal distribution. This is true for both constant voltage and 

constant current stressing [12]. Unfortunately, because the POT transistors had 

different tunnel areas, time to breakdown did not offer a means of comparing relia-

bility. Instead charge to breakdown was used, which should also show a lognormal 

distribution. Figures 6-10 and 6-11 gives the charge to breakdown for 20 arsenic 

and 20 phosphorus dies, as a function of gate/drain overlap. These display a wide 

range of values, indicative of such a lognormal distribution. 

For each overlap value there is a percentage of infant mortality, which was 

defined as a device which ruptured before t = 5 seconds. In devices with a small 

overlap, the gate only extends over high integrity oxide. However, in devices with 

large overlaps of > 0.5prn, the gate extends over oxide which was damaged during 

implantation. This oxide has a reduced dielectric strength, which was unable to 

support the stressing field of 8.4MVcnr* Hence, devices with an overlap? 0.5im 

show high infant mortality. 

Figures 6-12 and 6-13 present the same QBD  data on a logarithmic axis. Here, 

the spread in the data become more uniform. 
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Charge to Breakdown 
(As a Function of Gate/Drain Overlap) 
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Figure 6-10: Charge to Breakdown of Arsenic Transistors, as a Function of 

Gate/Drain Overlap. These Gate/Drain Overlap Values Were Simulated in Chap-

ter 5. 
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Figure 6-11: Charge to Breakdown of Phosphorus Transistors, as a Function 

of Gate/Drain Overlap. These Gate/Drain Overlap Values Were Simulated in 

Chapter 5. 
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Charge to Breakdown 
(As a Function of Gate/Drain Overlap) 
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Figure 6-12: Charge to Breakdown of Arsenic Transistors, as a Function of 

Gate/Drain Overlap. These Gate/Drain Overlap Values Were Simulated in Chap-

ter 5 
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Figure 6-13: Charge to Breakdown of Phosphorus Transistors, as a Function 

of Gate/Drain Overlap. These Gate/Drain Overlap Values Were Simulated in 

Chapter 5. 
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To verify the lognormal nature of the results, data may be plotted on a lognor-

mal graph [13]. Figures 6-14 and 6-15 give lognormal plots of QBD,  for a gate/drain 

overlap 0.3m. The linearity of graphs, confirms the lognormal distribution of the 

results. Data for other overlap values also displayed this linearity. 

6.3.3 Average Charge to Breakdown 

The average value of QBD  for each overlap was calculated using equation 6.2, 

assuming a lognormal distribution. 

lAV 	
-... 1 y0910 BD = 

>: 	
n 
	 (6.2) 

Where: 

• QAV =Average charge to breakdown. 

• i=Integer. 

• n=Number of data points, excluding infant mortalities. 

Figure 6-16 illustrates average values of QBD,  for arsenic and phosphorus devices, 

as a function of gate/drain overlap. The average values were calculated using 

all data points, other than infant mortalities. To these graphs, straight lines 

were fitted by linear regression. For arsenic devices with 0.31m overlap, QAV = 

2.5561 x 10 -8 C. Whereas, for phosphorus devices with 0.3zm overlap, QAV = 

2.6954 x 10 8 C. Now, the tunnel area is given by: 

0.3/m x 5.0trn = 1.5 x 10 8cm 2  

Thus the charge densities to breakdown may be calculated: 

• For arsenic, charge density to breakdown = 1.704Ccm 2 . 

• For phosphorus, charge density to breakdown = 1.797Ccm2 

LI 
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Figure 6-14: Lognormal Distribution of QBD,  for Arsenic Devices. 
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Figure 6-15: Lognormal Distribution of QBD,  for Phosphorus Devices. 
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These values are relatively low, suggesting that the integrity was compromised 

during fabrication. A thin polysilicon layer was deposited directly after gate oxi-

dation, to provide protection. Even so, it is conjectured that the oxide experienced 

mechanical stress during steps involving the phantom gate, see chapter 5. The thin 

polysilicon layer was given a 1 second etch in a 10% solution of hydrofluoric acid, 

prior to deposition of further polysilicon. However, it is possible that pin holes 

in the polysilicon film, allowed hydrofluoric acid to impair the underlying oxide. 

A degree of contamination may also have been residual, even after the extensive 

cleaning sequence given to each wafer. 

Charge to Breakdown 
(As a Function of Gate/Drain Overlap) 

Figure 6-16: Average QBD  as a Function of Gate/Drain Overlap. These 

Gate/Drain Overlap Values Were Simulated in Chapter 5. 

6.3.4 Calculation of Lateral Diffusion 

Process simulation indicated a lateral diffusion of 0.45pm. However, the exper- 

imental values may be derived from figure 6-16. As gate/drain overlap is reduced, 

so charge to breakdown falls linearly. In the limit, when gate/drain overlap is zero, 
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then charge flow is zero . Strictly speaking such a device would not breakdown. 

However, QAV = 0.0 does indicate the point where gate/drain overlap is zero. 

In figure 6-16 the arsenic line intercepts the horizontal axis at 0.03iiin, hence: 

Lateral diffusion of arsenic devices = 0.45 - 0.03 = 0.42prn. 

In figure 6-16 the phosphorus line intercepts the horizontal axis at 0.02pm, hence: 

Lateral diffusion of phosphorus devices = 0.45 - 0.02 = 0.43prn. 

Figure 6-17 illustrates QAV,  as a function of these derived overlap values. 

Charge to Breakdown 
(As a Function of Gate/Drain Overlap) 

Figure 6-17: Average QAV  as a Function of Derived Gate/Drain Overlap. 

The arsenic devices here, are less reliable than phosphorus ones. For an over-

lap of 0.3im, arsenic devices have 7% lower QAV,  than phosphorus devices. 

However, this is believed to be due to the higher thermal budget experienced by 

the arsenic batch in processing. High thermal budgets are known to lower oxide 

integrity [14]. 

The results were not perfectly linear, but showed a dip in QAV,  at large over-

laps. During photolithography a mask will be aligned to the previous layer, to an 

accuracy of within 0.2im. In a non-aligned process, some error is therefore added 

1 lnfact there is a very small charge flow, but this is dwarfed by the 3pA noise in the 

system. 
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to the value of the gate/drain overlap [6]. The data has been organised into a 

number of discrete sets, for 0.02jim overlap, 0.07zrn overlap . . .etc. However, the 

0.42m set will include data from transistors with overlaps in the range 0.395m 

to 0.445im. Thus, some arsenic devices with derived overlaps of 0.42im (and 

phosphorus devices of 0.43pm) will have gates which overlap implant damaged 

oxide. It is tunnelling though this oxide which increases infant mortality, and 

reduces QAV. 

6.3.5 Prediction of EEPROM Endurance from Experi-

mental Results 

Programming endurance will be considered. This is the major reliability issue for 

the FETMOS, since current densities and electric fields are highest, as described 

in chapter 4. A similar methodology will be used to investigate endurance, as was 

used in chapter 4. Thus program endurance of the FETMOS may be described 

by equation 6.3: 

Q f = 	x N 3 	 (6.3) 

Where: 

• Nc y cjes = The number of program/erase cycles the FETMOS can withstand, 

before the programmed threshold window closes. This defines the program 

endurance of the device and is typically '-' iO cycles [15]. 

• Qp = The charge which passes through the floating gate/drain overlap re-

gion, during each program operation. An average midlife value was calcu-

lated in chapter 4, this was 5.6 x 10 13 C. 

• 	= 5.6 x 10 3 C x iO = 5.6 x 10 8 C 

This is the total charge to pass through the floating gate/drain overlap re-

gion, during programming, before failure. This value depends upon oxide 

integrity, and a typical value has been given. 
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The POT transistors gave QBD  as a function of overlap. For endurance analy-

sis, QBD  will be assumed to be equivalent to Qj . Some approximations would be 

needed to calculate the absolute endurance, since: 

. FETMOS programming is a dynamic operation. At the end of each opera-

tion the trapped charge relaxes, and some will be "detrapped" [16]. Thus, 

degradation would occur more slowly under dynamic stress [16]. 

. Stressing in the FETMOS is bi-directional, since the field is reversed during 

erasing. This has been found to further enhance detrapping [16]. 

EEPROMs are programmed at a higher field strength than were used in 

stressing POT transistors. Higher fields would be expected accelerate the 

degradation rate [11]. 

• Trap up is the principal failure mode in the FETMOS, whereas QBD  gives 

the charge to dielectric breakdown. However, related charge trapping mech-

anisms are responsible for each failure mode [3]. 

Infact, absolute values for the degradation rate need not be calculated. It is the 

relative improvement in endurance which is of interest. It is seen in equation 6.3 

that Qj  is directly proportional to endurance, N1 63 . Thus, if Qf  doubles Ncycies 

must double, to maintain the equality of equation 6.3. Percentage variations in 

endurance will be calculated using equation 6.4: 

	

QBD 	x 100 	 (6.4) 
/ 

Rendurance 
= QBD(forO.3pm)) 

Where: 

• Ren durance = Relative endurance of a FETMOS, compared to one with the 

standard floating gate/drain overlap, of 0.3gm. 

• QBD(f or 0.3im) = Charge to breakdown for a POT transistor, with a gate/drain 

overlap of 0.3prn. 



Chapter 6. Analysis of EEPROM Structures 
	 171 

• QBD = Charge to breakdown for a POT transistor, in which the gate/drain 

overlap is variable. 

At an overlap of 0.3zm, Rendurance = 100%, this is the endurance of a standard 

FETMOS. At an overlap of 0.4trn, Rendurance = 130%, so the endurance has 

increased by 30%. Figure 6-18 gives endurance as a function of overlap, calculated 

from arsenic and phosphorus POT devices. 

In chapter 4, the charge density passing through the EEPROM during pro-

gramming was modelled. Endurance was said to be the reciprocal of this. Hence, 

modelled results for endurance can also be included in figure 6-18. These are in 

agreement with experimental results, proving overall consistency within the thesis. 

6.4 Conclusion 

An experiment has been conducted to measure EEPROM reliability, as a function 

of floating gate/drain overlap and doping species. It has been seen that, doping 

species has little effect on reliability, but that overlap has an important role to 

play. Endurance was shown to be proportional to floating gate/drain overlap. 
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Percentage Variation in Endurance 
(As a Function of Gate/Drain Overlap) 
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Figure 6-18: Relative Endurance of a FETMOS, Compared to one with the 

Standard Floating Gate/Drain Overlap of 0.31tm. 
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Chapter 7 

Conclusion 

Reliability problems are a key concern in EEPROM design, due to the extreme 

voltage and current stressing conditions under which they operate. These problems 

also limit the operating speed of the EEPROM, since an increase in speed reduces 

the reliability. In this thesis reliability has been investigated both experimentally, 

and through modelling. Thus, a consistent picture of EEPROM reliability has 

emerged. 

It has been seen that, an increase in the floating gate/drain overlap will improve 

reliability substantially. Modelling has also shown that the threshold window re-

mains stable as floating gate/drain overlap is increased. Increasing the tilt angle 

during drain implantation, would be the most suitable method for improving over-

lap, since the thermal budget of the process may then be conserved. An increase 

in the doping density could also be used, to similar effect. Chemistry has not been 

seen to play a major role in EEPROM reliability, although phosphorus should be 

used, to extend floating gate/drain overlap. These results will now be expanded 

upon. 

( 
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7.1 Modelling 

7.1.1 Discussion of Results 

A new model for the FETMOS has been developed, and has been verified against 

experimental measurements. With this it is possible to predict the variations in 

threshold window, caused by a change in processing conditions. Until now such 

variations had been investigated using split-lots, in which wafers were fabricated 

using different processing parameters. These wafers were destined for sale, so the 

variations in process parameters had to be finely judged. The model will allow the 

most promising process parameters to be varied, and will ensure that the split-lots 

are saleable. 

A new methodology has also been developed to model EEPROM endurance. 

This is elegant, has a sound footing on established principles, and has not been 

used before, to the authors knowledge. Here again, results of endurance modelling 

have been verified against experimental data. Program reliability is of principal 

concern, since programming fields and current densities are highest. It has been 

shown that a 30% improvement in reliability can be expected, for a 0.lpm increase 

in floating gate/drain overlap. This is significant, since modelling has also shown 

that the threshold window remains open, as overlap increases. Thus, larger overlap 

has a wholly beneficial effect. 

7.1.2 Areas for Further Modelling 

Modelling FETMOS Program/Erase Time 

The model developed in chapter 3 includes an RC time constant, which enables 

dynamic program/erase operations to be investigated. Hence, the model could 

be used to investigate program/erase time, as a function of parameter variations. 

Instead of calculating the threshold window after lOrn.s, the time required for the 

program/erase threshold voltages to reach ±5V, would be investigated. Parameter 
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variations which increase speed could be found, while the endurance was monitored 

to ensure devices remained sufficiently reliable. This approach is complimentary 

to that adopted in chapter 4, and would help provide a fuller picture of FETMOS 

operation. 

Modelling of Flash EEPROMs 

Given the growing popularity of flash EEPROMs, and their low endurance [1], 

modelling flash EEPROM reliability would be a useful area of research. 

All flash EEPROMs use Fowler-Nordheim tunnelling for programming 1,  where 

electrons are removed from the floating gate [1]. In this thesis a model has been 

developed to investigate EEPROM reliability, which includes equations to describe 

Fowler-Nordheim tunnelling. This model may be applied directly to many flash 

designs. Simple flash structures, such as the Intel and Seeq devices, are equivalent 

to the the FETMOS, and could be described by a similar capacitive network. 

However, more complex structures, such as the Toshiba device, use three gates [1]. 

Care would be needed in the analysis of this capacitor network, before it could be 

reduced to the form used in the model. 

The majority of flash EEPROMs use channel hot electron injection, for erasing. 

The hot electron current density Jhe,  during erase, can be written as [2]: 

t+00 

Jh = —qJ 	v j (f)f(c)g(€)d 	 (7.1) 

where: 

• q = the charge on an electron. 

• € = the electron energy. 

1 For consistency within this thesis, program describes the condition with electrons 

removed from the floating gate. However, many flash EEPROM manufacturers consider 

program to denote stored electrons. 
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= the height of the Si/S10 2  barrier. 

. v 1 (c) = the energy dependent electron velocity normal to the interface. 

. f(e) = the electron energy distribution, which is non-Maxwellian in the high 

electric field regime. 

• g() = the density of allowable electron states. 

Two dimensional device simulators such as TMA MEDICI and HFIELDS [2] 

may be used °solve these equations, in a finite mesh analysis. MEDICI allows the 

inclusion of a floating gate in the structure, and the extraction of all relevant data, 

such as threshold voltage and charge on the floating gate. A transient analysis 

could be made, after which the charge density passing though the oxide could be 

extracted. Thus a reliability analysis could be conducted using the methodology 

developed in chapter 4. Finite mesh analysis is is costly in terms of computing 

time, and care would needed to collect results in an efficient manner. 

Modelling at Circuit Level 

EEPROMs are being included in many nascent technologies, such as artificial 

intelligence, self adaptive systems and neural networks [3] [4]. In these applications 

the EEPROM is no longer confined to a regimented memory array, but plays a 

more active role in circuit operation. In such a system, EEPROM reliability 

become difficult to quantify, since the EEPROM operating environment is more 

complex. Thus, reliability should not only be simulated at device level, but also 

at circuit level. 

The Berkeley Reliability Tool (BERT) contains models for reliability phenom-

ena such as elect romigration and hot electron degradation [5]. This is linked to 

SPICE [6], and may be used to locate reliability hot spots in a new circuit. The 

model for time dependent dielectric is based on DC stress data [7]. Thus, it 

would not necessarily be applicable to the EEPROM, for which dynamic, high 
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field, trapping/detrapping mechanisms would be important [8] [9]. It would there-

fore be interesting, to include the EEPROM reliability methodology developed in 

chapter 4, within BERT. 

This would be a particularly useful aid in the design of neural networks. Here 

analogue weights are stored on the EEPROM. However, the threshold window of 

a device narrows with cycling, which necessitates the use of a feedback based pro-

gramming scheme [4]. BERT could thus be used to provide a better understanding 

of these circuits. 

7.2 Experimental 

7.2.1 Discussion of Results 

A new methodology has been developed for investigating EEPROM reliability, 

using the progressional offset technique. With this, an array of transistors was 

produced, which had a spectrum of gate drain overlaps. It was shown that relia-

bility of the EEPROM is directly proportional to the floating gate/drain overlap, 

this result was consistent with model predictions. 

Degradation phenomena are believed to take place in the bulk of the oxide 

[10] [9], as opposed to the interfaces. These phenomena are not well understood, 

and the effect of chemical species, which diffused into the oxide from the gate and 

drain, was investigated. Infact, chemistry was seen to play only a minor role in 

reliability, since arsenic devices were only 7% less reliable than phosphorus ones. 

It is likely that this reduction in reliability was caused by the higher temperatures, 

experienced by arsenic devices during fabrication [11]. 
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7.2.2 Areas for Further Experimental Investigation 

Methods for Increasing Floating Gate/Drain Overlap 

The two most promising methods for increasing floating gate/drain overlap, would 

be an increase in the drain implant angle and an increase in the implant dose. T-

MA TSUPREM-4 allows two dimensional process simulation, and could be used to 

carry out an extensive investigation of these parameters. Suitable combinations of 

implant angle and doping density, could then be tested experimentally. Commer -

cial EEPROM structures would offer a good test ground for such an experiment. 

Definitive values for the improvement in reliability, could thus be obtained. 

Improvement in Dielectric Integrity 

Despite extreme care during fabrication, the oxides produced for the POT experi-

ment had a relatively low integrity. This highlights the concern for improvement of 

dielectric reliability. Moves to improve dielectric integrity are being made in sever-

al directions. The inclusion of nitrogen in oxide films is an option which currently 

receiving much attention [12] [13] [14]. Nitrided oxides are generally formed by 

exposing an oxide thin film to an NO 2  ambient, either in a furnace environment at 

900°C [13], or in a rapid thermal processing (FtTP) chamber at 1050°C [15]. 

Furnace nitridation is similar to the long-time postanneal described in chapter 5 

[16], in that each process uses a reoxidation step to remove charge trapping sites 

[14]. Nitrided oxides exhibit improved hot-carrier reliability, lower charge trapping 

rates and higher charge to breakdown [12]. Such qualities would be of benefit to 

EEPROM technologies [15], and to any future POT experiment. 

Preoxidation cleaning can also effect oxide induced stacking faults and dielec-

tric properties [17]. It has been seen that incorporation of fluorine into the S/S0 2  

interface, dramatically improves the oxide's resistance to hot-electron damage and 

its dielectric strength [18] [19]. Fluorine may be introduced by immersion in an 

solution of hydrofluoric acid, prior to oxidation [19], or by ion implantation. This 

may provide another path for dielectric improvement. 
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Three Dimensional EEPROM Structures 

So far, EEPROM designers have only thought in two dimensions. This is in 

contrast to the more mature DRAM technologies, which use three dimensional 

trenches to form storage capacitors [20]. The author believes that a three di-

mensional EEPROM structure would have very significant advantages. Such an 

EEPROM would have a high floating gate, rising in one or more vertically ridges 

above the channel region of the device. A large capacitance could then be derived 

from the vertical walls of the floating gate. Care would be needed, to ensure that 

canaeifivp iniirlini hpt.wepn cnnt.rnl aatp.q nf dffrnt 11PflflM,wc rnnrnpt-1 

Plasma enhanced chemical vapour deposition could then be used to planarise the 

surface, while maintaining a low thermal budget [21] [22]. The advantages would 

be two fold: 

Integration density would be increased, due to the reduced cell area. 

A three dimensional structure could be used to increase coupling ratios. 

High oxide fields could then be generated across tunnel oxides, using lower 

operating voltages. Thus, EEPROMs could be embedded more easily into 

logic circuitry. 

A number of other avenues have been investigated for DRAM improvement, 

but could be applied to the EEPROM. The floating gate capacitance may also 

be increased, by the inclusion of a film with a high dielectric constant, such as 

TaOs or SiO4 , in a sandwich with the interlevel oxide [23]. Another possibility 

would be to "roughen" the top surface of the floating gate, thus increasing its 

effective area [23]. Photoresist particles would be used as masks, during plasma 

etching of the surface. The deposition of silicon in hemispherical grains, in a layer 

covering the floating gate, is another possibility. This is a low temperature process 

producing hemispherical grains with a diameter 0.1jtrn [23]. This has provided 

a capacitance increase of 30% in tests using the DRAM [23]. 
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7.3 Concluding Remarks 

This thesis has produced many interesting results, some of which are currently 

the subject of a patent application with Motorola. A paper has been accepted for 

presentation at the IEEE sponsored International Conference on Microelectronic 

Test Structures, to be held in California, 1994. A summary of the paper is provided 

in appendix A. Finally, it is planned to continue this research in association with 

Motorola. 
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Appendix A 

Summary of Paper 

A summary of the paper accepted for presentation, at the 1994 IEEE International 

Conference on Microelectronic Test Structures, is given below. 

Experimental Investigation of EEPROM Reliability Issues 

A. J. Chester and A. J. Walton, 

Edinburgh Microfabrication Facility, 

Department of Electrical Engineering, 

University of Edinburgh, 

Edinburgh, EH9 3JL, UK. 

P. Tuohy, 

Motorola Ltd., 

MOS Memory and Microprocessor Division, 

Kelvin Industrial Estate, 

East Kilbride, C75 OTC )  UK. 

Abstract 

A set of novel EEPROM test structures have been designed and fabricated, in 

which gate/drain overlap is incremented in a number of well defined steps. These 
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have been used to emulate EEPROM programming conditions, and measure en-

durance. The structures have enabled EEPROM endurance to be investigated as a 

function of drain doping species (As and P), for a spectrum of floating gate/drain 

overlaps. 

Introduction 

Demand for Electrically Erasable Programmable Read Only Memories (EEPROM-

s) is growing inexorably, in applications such as lap-top PCs and micro controllers. 

These devices work under stressful operating conditions, which lead to current 

induced failure modes, and limits their useful life. Customers normally require a 

fast memory. However, the price paid for increased speed, is reduced reliability. 

Reliability is therefore a vital consideration, when introducing EEPROM technol-

ogy to a system. In this paper a test structure has been designed to evaluate 

EEPROM reliability, as a function of gate/drain overlap and doping species (As 

or F). 

The Floating Gate Electron Tunnelling MOS (FETMOS) used by Motorola, 

has been chosen for study. It has been observed that FETMOS devices fabricated 

with a phosphorus drain, are more reliable than equivalent arsenic devices. It is 

therefore of great interest to clarify whether this results from the differing pro-

gramming areas, or whether it relates directly to the chemistry. To identify the 

important reliability factors, a set of test devices with both arsenic and phospho-

rus drains have been fabricated. These each have the same degree of gate/drain 

overlap, so that meaningful comparisons can be made. 

Design and Fabrication of EEPROM Test Structures 

MOS transistors with a thin gate oxide, can be used as test structures for compar-

ing the reliability of EEPROMs, with arsenic and phosphorus drains. A column of 

test transistors, in which the gate/drain overlap is incremented, can be produced 

using the Progressional Offset (POT) Technique, as shown in figure A—i. This 

uses a non-aligned process, in which the source-drain regions, and the polysilicon 

gate, are defined at separate steps. Each POT column contains 20 devices, with 
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0.05iin difference between the position of each gate. Within a column, one of the 

devices will be symmetrical, while those about it will be skewed to the left or right. 

The location of the symmetrical device may be determined electrically. Although 

the batches with phosphorus and arsenic drains use different thermal budgets, the 

POT technique allows performance comparisons to be made for the two different 

species, since devices with equal degrees of overlap are available. 

Gap at 
Source  

1st 

' 5th 
Symmetrical 
Device 

1'10th" 	j 

I 
The Gate 
Is 
Incremented 
In Equal 
Steps 
Between 
Transistors 

15th  
Large Large 
Source 	

________ Overlap  
20th 

The Source and Drain 
Positions Are Fixed 

Figure A—i: Schematic Diagram Illustrating a Column of Progressional Offset 

Transistors. 

Detecting Symmetry of a POT Column 

The symmetry of a device is detected by comparing its electrical characteristics 

in the forward and reverse directions, where a reverse bias device has its source 

and drain swapped. Both current drive and subthreshold voltage have been used 

to conduct such tests. The subthreshold test has been well characterised, and was 

used for this study. 
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Endurance of POT Column 

Ten volts was applied to the drain, with the gate and substrate grounded, and 

the source floating. This produces a field of 8.4MVcm 1  between the gate and 

drain, which causes Fowler-Nordheim tunnelling through the oxide. This mea-

surement was performed using a Hewlett-Packard 4062 Semiconductor Parametric 

Test System and a KLA automatic probe station, with gate current integrated as 

a function of time, to obtain charge to breakdown, QBD.  Figure A-2 gives the 

results obtained for QBD,  as a function of gate/drain overlap. Figure A-3 shows 

the average QED  (as suming a lognormal distribution) for phosphorus and arsenic 

devices, as a function of gate/drain overlap. In each figure, the gate drain overlap 

values are those predicted by process simulation, using TMA TSUPREM4. 

There is some uncertainty over the overlap predicted by process simulation. 

However the experimental gate/drain overlap may be calculated from figure A-

3. As gate/drain overlap is reduced, so charge to breakdown falls linearly. In the 

limit, when gate/drain overlap is zero, then charge flow is zero . Strictly speaking 

such a device would not breakdown. However, QAV = 0.0 does indicate the point 

where gate/drain overlap is zero. 

In figure A-3 the arsenic line intercepts the horizontal axis at 0.03im, hence: 

Lateral diffusion of arsenic devices = 0.45 - 0.03 = 0.42iim. 

The phosphorus line intercepts the horizontal axis at 0.02uim, hence: 

Lateral diffusion of phosphorus devices = 0.45 - 0.02 = 0.43 4 m. 

Figure A-4 illustrates QAV,  as a function of the derived overlap values. 

Conclusion 

It is seen that the reliability of phosphorus and arsenic devices are comparable. 

Chemistry appears have a less significant role in the reliability of the devices, than 
14 

1 lnfact there is a very small charge flow, but this is dwarfed by the 3pA noise in the 

system. 
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Figure A-2: Charge to Breakdown of Arsenic Transistors, as a Function of 

Gate/Drain Overlap. 

the effect of gate/drain overlap. It is conjectured that the reliability of arsenic 

devices may be reduced, due to the increased thermal budget they experienced, 

since this is known to have a detrimental effect on reliability. 
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Charge to Breakdown 
(As a Function of Gate/Drain Overlap) 

Figure A-3: Average Charge to Breakdown, as a Function of Gate/Drain Over-

lap. 

Charge to Breakdown 
(As a Function of Gate/Drain Overlap) 

Figure A-4: Average QDD  as a Function of Derived Gate/Drain Overlap. 



Appendix B 

Program in C to Model the EEPROM 

The following is a program in C. This uses the Runge-Kutta algorithm to solve 

differential equations describing the EEPROM. 

#include <math.h> 
/ 	ew.c 

SOLVES DIFFERENTIAL EQUATION USING 4th 
ORDER RUNGE-KUTTA METHOD 	For Program/Erase 	/ 

double FNDiff_equatione(dOubLe Xdouble Y); 
double FNDiff equationp(double X,double Y); 

I 
mt i1; 
mt j=1; 
1*................................................................ 
double Nos1000; 
double TO=1.OE-6; 
double Tfinl.Oe-2; 
double Tau1.0E-4; 
1*................................................................ 
double Eee3.9; 
double Eoo8.85E-12; 
1*................................................................ 
double Weff,Leff,L9,Latdif,Od,AerS,BerS,APrO9,BPrO9,XO,Xtht,DePl 
double Ei,Pp,Pe,Rp,Re,Afg,CfC,Cfd,CfS,Cfg,Ct 
double Jintp,Jprog,Vtnat,Vpe,Vtp,Vte,Vtei,VtPi 
double Tr,Er,Olderror,NewerrOr,EXpttau,Vteil,VtPil 
double Eepeak,Eppeak,Qde,Qdp,EXpbee.EXpeP,EB.EBPr9,VarY 
double Eepeakcent,EppeakCeflt,Odeceflt,Qdpceflt.VteCeflt,VtPCeflt 
1* 	---------------------------------------------------------- ----- *1 

FILE *data; 
main(argc,argv) 
mt argc; 
char *argv; 
( 

if ((data=fopen(argv(1] ,"r"))=NULL) 
( 

prmntf("fopen faited\n"); 
exit (0); 

) 

fscanf (data,"%lf %Lf %lf %lf %tf %lf %lf %lf %lf %Lf %lf %Lf 
&Aers, &Bers, &Aprog ,&Bprog ,&Vtflat,&XO,&Xmflt,&Weff,&Lg,&Latdif,&Afg,&DePl) 
1* printf (11\n%.5g %.5g %.5g %.5g %.5g %.5g %.59 %.5g %.5g %.5g %.5g %.59 11 , 

Aers ,Bers ,Aprog ,Bprog,Vtflat,XO,Xiflt,Weff,L9,Latdif,Afg,DePt) *1 

vii 
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yin 

VaryO .0; 
for (j=1;j<100;j++) 

VaryVary+0. 03E-6; 
Weff=Vary; 

LeffLg(2*Latdi f); 
Cf g (Afg*Eee*Eoo)/Xiflt; 
Cfd=(Weff*Latdi f*Eee*Eoo)/Xo; 
Cf s=(Weff*Latdi f*E ee*Eoo)/Xo; 
Cf c (Weff*Leff*Eee*Eoo)/XO; 

Ct=(Cfg+Cfd+CfS+CfC); 
Pp=Latdi f*Weff; 
Pe Lg*Weff ;  

Rp=Cfd/(Cfg+Cfd+CfS+Cf C); 

ReCfg/(Cfg+Cfd+CfS+CfC) 
OdLatdi f-Oepl; 
1* printf ("\n%.5g %.5g %.5g %.5g %.5g %.5g %.5g",Cfg,Cfd,Cfs,Cfc,Pp,PeLeff); *1 

Vteil=-7.5; 
El =( (Cfg/Ct )*(Vtnat_Vtei 1) )/Xo; 
Vpe18; 
Solve differeneo; 

Vtpi=(Vpe*(1.0exp(.Tr/TaU)))((XO*Er*Ct)/Cf9)Vtnat 
El ((Cfg/Ct)*(VtnatVtpi ) )/Xo; 

Vpe= 18; 
Sotve_differenpO; 

Vtp= (Vpe*(1.0 exp(Tr/TaU))*((CfdCt)/Cf9)).((XO*Er*Ct)/Cf9)+Vtfl3t 
Newerror(Vtp+7. 5)*(Vtp+75); 
OlderroroLderrOr+NeWerrOr; 

Vtp115.8; 
Ei=((_Cfg/Ct)*(Vtnat_Vtpil ))/Xo; 
Vpe18; 
Sotve_di fferenp(); 

Vtei=(Vpe*(1 .0exp(Tr/Tau))*((CfdCt)/CfY) )+((Xo*Er*Ct)/Cfg)+Vtnat; 
El =((Cfg/Ct)*(VtflatVtei ))/Xo; 

Vpe=18; 
Sotve_differeneO; 

Vte=(Vpe*(1.0exp(Tr/TaU)))((XO*Er*Ct)/Cf9)Vtflat 
Newer ror=(Vte5.8)*(Vte5.8) 

Vtpcent(Vtp/-7.4481 )*100; 
Qdpcent(Qdp/1 .4405)*100; 
Eppeakcent(Eppeak/1 .3867E9)*100; 

Vtecent(Vte/5 .5326)*100; 
Qdecent(Ode/0. 15223)*100; 
Eepeakcent(Eepeak/1 .2296E9)*100; 

printf ("\n%.5g %.5g %.5g %.5g X.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.59 %.5g", 
,Vtpi); 

) 

) 

) 

1* 

 

##### ############################################## *1 
Sotve_di fferene() 
C 

double K1,K2,K3,K4,Sth,T,E,TCaLC.ECaLC,X,Y 

EepeakO .0; 
QdeO.0; 
Sth=(Tfin-T0)/Nos; 
TcaLcTO; 1* !The 1st vaLues of 
EcaLcEi; / !Runge-Kutta) are 

E and I to be processed (using / 
the initiaL conditions. / 

for (i=1;i<Nos;ii+1) 

C 
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T=Tcatc; 
E=EcaLc; 

1* !Given two coordinates for E and 1, the next adjacent coordinates are 
'calculated using the Runge-Kutta method. */ 

XT; 
YE; 
K1=Sth*FND i ff equat I one(X, Y); 
X=T+(Sth/2); 
Y=E+(K1/2); 
K2=Sth*FNDi ff_equatione(X,Y); 
X=T+(Sth/2); 
YE+(K2/2); 
K3=Sth*FND i ff_equat ione(X,Y); 
X=T+Sth; 
Y=E+K3; 
K4=Sth*FND i ff_equat ione(X,Y); 
TcaLcT+Sth; 
EcalcE+( (K1+(K2*2)+(K3*2)+K4)/6); 

if (Eepeak>Ecalc) goto Eepeaksame; 
EepeakEcatc; 
E epeaksame: 

if (Ecalc<1.OE-200) goto Odesame; 
EB=Bers/Ecatc; 
if (EB>300) ExpbeeO; 
else Expbee=exp(-EB); 
Ode=Qde+(Aers*Eca Lc*Eca Lc*Expbee*Sth); 
Odesame: 

) 

Tr=Tcatc; 
ErEcaLc; 

1* --------------------------------------------------------------------*1 
Solve_di fferenp() 
( 

double K1K2,K3,K4,Sth,T,E,TcaLc,EcaLc,X,Y; 

Eppeak=0 .0; 
QdpO.0; 
Sth=(Tfin-T0)/Nos; 
TcaLcrT0; 1* !The 1st values of E and I to be processed (using *1 
EcalcEi; / !Runge-Kutta) are the initial conditions. */ 

for (i=1;icNos;ii+1) 
{ 

T=Tca I C; 

E=Ecatc; 
1* l3'fl two coordinates for E and I, the next adjacent coordinates are 
!calculated using the Runge-Kutta method. */ 

X1; 
YE; 
KlSth*FNDi ff_equationp(X,Y); 
XT+(Sth/2); 
YE+(K1/2); 
K2=Sth*FNDi ff_equationp(X,Y); 
x=T+(Sth/2); 
Y=E+(K2/2); 
K3=Sth*FNDi ff_equationp(X,Y); 
X=T+Sth; 
YE+K3; 
K4=Sth*FNDi ff_equationp(X,Y); 
TcaLcT+Sth; 
EcaLcE+((K1+(K2*2)+(K3*2)+K4)/6) 

if (Eppeak>Ecatc) goto Eppeaksame; 
Eppeak=Ecatc; 
Eppeaksame: 



Appendix B. Program in C to Model the EEPROM 

if (Ecalc<1.OE-200) goto Qdpsame; 
EBprg=Bprog/EcaIC; 
if (EBprg>300) Expbep0; 
else Expbepexp(-EBprg); 
Qdp=Qdp+(Aprog*Eca L cEca lc*Expbep*Sth); 
Qdpsame: 

) 

Tr=TcaLc; 
Er=Ecalc; 

1* ----------------------------------------- - - -- - ----------------------*1 

double FNDiff_equatione(X,Y) 
double X,Y; 
( 

double Dedt,Dedtl,Dedt2,EE,TT; 
double Dedt3,Expbeint,EBiflt; 

/* !Y=EE 	X=TT 
!To prvent an underfLow, (-B/E) and (-luau) are calculated individually. 
!If the magnitude of (-B/E) is greater than 300, EXP(-B/E) will not be 
!calculated, but is taken to be 0 - and Likewise for EXP(-T/Tau). / 
EErY; 
TTrX; 
Expttauexp( -TT/Tau); 
if (EEc1.OE-200) goto notunnetperse; 

EBBers/EE; 
if (EB>300) Expbee0; 
else Expbeeexp(-EB); 
Dedtl=(Vpe*Cfg*EXpttau)/(Ct*XO*Tau) 
Dedt2((Pe*AerS*EE*EE*EXPbee)/(XO*Ct)) 
Oedt=Dedtl -Dedt2; 
goto returners; 

notunnelperse: 
Dedt(Vpe*Cfg*Expttau)/(Ct*XO*TaU); 
returners: 
return( Dedt); 
) 

1* ----------------------------------------------------------------- --- *1 

double FNDiff_equationp(X,Y) 
double X,Y; 
C 

double Dedt,Dedtl,Dedt2,EE,TT; 
double Dedt3; 

1* 'Y=EE 	XTT 
To prvent an underf low, (-B/E) and (-luau) are calculated individually. 
!If the magnitude of (-B/E) is greater than 300, EXP(-B/E) will not be 
!calculated, but is taken to be 0 - and likewise for EXP(-T/Tau). / 
EEY; 
TTX; 
Expttauexp( -TT/Tau); 
if (EE<1.OE-200) goto notunnelatall; 

EBprgBprog/EE; 
if (EBprg>300) Expbepo; 
else Expbep=exp( - EBprg); 
Dedtl(Vpe*(1 .0(Cfd/Ct))*EXpttau)/(XO*Tau) 
Oedt2( (Pp*Aprog*EE*EE*EXPbeP)/(XO*Ct)) 
Dedt=Dedtl-Dedt2; 
goto returnprg; 

notunnelatal I: 
Dedt(Vpe*(1 .0.(Cfd/Ct))*Expttau)/(XO*Tau) 
returnprg: 
return(Dedt); 
} 

x 



Appendix C 

Program to Measure Threshold 

Voltage 

The following is a program in HP Basic, written to control an HP 4145 Semi-

conductor Parameter Analyser. This will program and erase an EEPROM, then 

measure the resulting threshold voltage. 

10 	110 
20 	OPTION BASE I 
30 	DIM S(201 ),A(201 
40 	Tic3 
60 	)oltae18.0 
60 	PRINTER IS 701 
70 	PRINT 
80 	PRINT 	 TI0 
90 	PRINTER IS CRT 
100 
110 	GOSUB Vtn3 
120 	Idxldvtn(Pt) 
130 	GOSUB List5 
140 	I ----------------- 
150 	GOSUB Pr3 
160 	GOSUB Er53 
170 	GOSUB Pr3 
180 	GOSUB Er53 
190 	GOSUB PrQ3 
200 	GOSUB Er53 
210 	GOSUB Prq3 
220 	GOSUB Er53 
240 	Volt age= 14.0 
250 	GOSUB Prg3 
260 	GOSUB Er53 
270 	! --------------- 

xi 
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280 Lioltage=13.5 
290 FOR Jj=1 	TO 9 
300 tJoltae=Voltage+.5 
310 
320 GOSUB PrQ3 
330 GOSUB Ers3 
340 Vtp=O 
350 VteO 
380 FOR 	11=1 	TO 2 
370 
380 GOSUB Pr3 
390 GOSUB Vtpa3 
400 Idxldvtp(Pfl 
410 Vtp=Vtp+Ut 
420 GOSUB L15t5 
430 WAIT 	.1 
440 
450 GOSUB Ers3 
460 GOSUB Vtee3 
470 Idx=Idvte(Pt) 
480 tjte=Vte+Vt 
490 GOSUB Li5t5 
500 WAIT 	.1 
510 
520 NEXT Ii 
540 NEXT Jj 
560 GOTO Endd 
660 
570 Utna3: 
680 !VTNA3 	10.6.92 
590 DIM 	Idvtn(201 
600 PRINT "SET UP 4145° 
610 !CHANNEL DEFINITION 
620 OUTPUT 	717;"DE 	CH1 ,'VCGVTN' ,.'ICGUTN' ,1,1 	StIU1 ') 	VAR1 

630 OUTPUT 717;"DE CH2, 1 VDUTN' ,IDVTN' ,1 ,3 	!SMU2 	U CONSI 
640 OUTPUT 717;°DE 	CH3,'VSRUTN' ,'ISRVTN' ,3,3" 	!SMU3 COM CONST 

650 OUTPUT 717;'DE 	CH4,'VSUB' ,'ISUB' ,3,3 	'SMU4 	CON CONST 

660 OUTPUT 717;'VS1;US2;VM1;VM2" 	OTHERS NOT USED 

670 OUTPUT 717,'IT2 CAI 	DRO BC" 	'CAL ON, BUFFER CLEAR, MED 

680 'SOURCE SETUP 
690 OUTPUT 717;'SS 	URI 	-6.0,5.0,0.06,1 .0E-3" 	ISMUI 

700 OUTPUT 	717;"SS 	VC2,0.1 ,10.0E-3° 	 !SMU2 

710 'MEASUREMENT AND DISPLAY 
720 OUTPUT 	717;"SS 	SM DM1 	XN 	'VC6VTN' ,1 ,-6.0,6.0° 'X-AXIS 

730 OUTPUT 717;'SS 	SM 	DM1 	VA 	'IDVTN',l ,0.0,50.OE-E" !Y-AXIS 

740 PRINT "MAKE MEASUREMENT" 

750 OUTPUT 717;"MD MEl" 
760 Lbe11: 	FinnSPOLL(717) 
770 IF BIT(Finn,0)0 THEN Labell 
780 BEEP 700,1 
790 PRINT 'FETCH DATA" 
800 OUTPUT 717;'DO 	'IDVTN'° 
810 ENTER 717;Idvtn(*) 
820 PRINT "CALCULATION" 
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	 xlii 

830 	CALCULATE SLOPES 
840 	FOR J=1 TO 200 
850 	J2=J+1 
860 	S(J)(Idvtn(J2)-Idvtfl(J))/.06 !.06VOLTAGE STEP 

870 	NEXT J 
880 	CALCUATE AVERAGES OF SLOPES AND SIFT OUT LARGEST OF THESE 

890 	A(1)=(.S(1)+S(2)+S(3))/3.0 
900 	AraxA( 1) 
910 	Pt=2.0 
920 	FOR J=2 TO 196 
930 	PvJ-1 
940 	NxJ+2 
950 	A(J)=A(Pv)+NS(Nx)-S(Pv))/3.0) REMOVE 1ST SLOPE ADD NEXT 

960 	SIFT OUT LARGEST SLOPE 

970 	IF A(J)>Arax THEN 
980 
990 	Pt=J+1 .0 CENTER POINT = 3RD ONE ALONG IN GROUP OF S 

1000 	END IF 
1010 NEXT J 
1020 	USE Y=MX+C TO CALCULATE Vt , EXTRAPOLATE TANGENT TO IdvtnO 

1030 Vd=-6.0+( .0GPt 
1040 Ut=(((Arnax*Vd)-Idvtn(Pt))/AMa<) - .05 !Vt=V95-Vd5/2 
1060 PRINT Vt=';Vt," Idvtn";Idvtn(Pt);" S1ope;Amx;" Pt;Pt 
1060 WAIT 2 
1070 RETURN 
1080 1! !! H 1 I I H I I! I ! H 
1090 Prg3: 
1100 	PRG3 10.6.92 
1110 PRINT PROGRAM 
1120 	CHANNEL DEFINITION 
1130 OUTPUT 717;'ITl CAI DRO BC" CAL ON, BUFFER CLEAR, SHORT 
1140 OUTPUT 717;DE CHI ,'VCGPRG' ,'ICGPRG' ,3,3" SMU1 COM CONST 
1150 OUTPUT 717;DE CH2,'VDPRG','IDPRG' ,1 ,3" !SMU2 V CONST 
1180 OUTPUT 717;"DE CH4,'VSUB' ,'ISUB' ,3,3" !SMU4 COM CONST 
1170 OUTPUT 717;'CH3;VS1;VS2;L'M1;VM2' OTHERS NOT USED 

1180 	SOURCE SETUP 
1190 OUTPUT 717;'SS 'JC2,";Voltage;',1.0E3" 	!SMU2 

1200 	MEASUREMENT AND DISPLAY 
1210 OUTPUT 717;"SM WT 0.0' 
1220 OUTPUT 717;"SM IN 0.01' 
1230 OUTPUT 717;SM NR ;Tir 
1240 OUTPUT 717;DM2 LI 'IDPRG'" 
1250 OUTPUT 717;"MO MEl" 
1260 Labelal: FjnnSPOLL(717) 
1270 	 IF BIT(Finn,0)0 THEN Labelal 
1280 RETURN 
1290 	I!I!!!I!!!!!! 	I!! 	 !!HH!HH 

1300 Vtpa3: 
1310 	IVTPA3 10.6.92 
1320 DIM Idvtp(201 
1330 PRINT "SET UP 4145" 
1340 'CHANNEL DEFINITION 
1350 OUTPUT 717;OE CH1 ,'VCGVTP' ,'ICGVTP' ,1 ,1 	!SMUI V VAR1 
1360 OUTPUT 717;'DE CH2,'VDVTP' ,'IDVTP' ,1 ,3" !SMU2 V CONST 
1370 OUTPUT 717;'DE CH3,'VSRVTP' ,'ISRVTP' ,3,3" ISMU3 COM CONST 
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1380 OUTPUT 717;"DE CH4,'VSUB' ,'ISUB' ,3,3" !SMU4 COM CONST 
1390 OUTPUT 717;"DE VS1;VS2;VM1;VM2" OTHERS NOT USED 
1400 OUTPUT 717;"1T2 CAI DRO BC" 'CAL ON, BUFFER CLEAR, MED 
1410 !SOURCE SETUP 
1420 OUTPUT 717;"SSUR1,0.0 ; -10.0,-0.05,1.0E3" 	SMU1 

1430 OUTPUT 717;"SS VC2,0.1 ,1 .OE-2" 	 !SMU2 

1440 !MEASUREMENT AND DISPLAY 
1450 OUTPUT 717;"SS SM DM1 XN 'VCGVTP' ,1 ,0.0,-10.0" 	!X-AXIS 
1460 OUTPUT 717;SS SM DM1 VA 'IOVTP' ,1 ,0.0,S0.OE-6"!Y-AXIS 
1470 PRINT "MAKE MEASUREMENT 
1480 OUTPUT 717;'MD MEl" 
1490 Labe12: Finp=SPOLL(717) 
1500 	 IF BIT(Finp,0)=0 THEN Lbe12 
1510 	 BEEP 700,.1 
1520 PRINT "FETCH DATA' 
1530 OUTPUT 717;"DO 'IDVTP'" 
1540 ENTER 717;Idvtp(*) 
1550 PRINT 'CALCULATION" 
1560 	CALCULATE SLOPES 
1970 FOR J=1 TO 200 
1580 	J2=J+1 
1590 	S(J)(Idvtp(J2)-Idvtp(J))/(-.05) -.OSVOLTAGE STEP 
1600 NEXT J 
1610 'CALCUATE AVERAGES OF SLOPES AND SIFT OUT LARGEST OF THESE 
1620 	fj(1)=(S(1)+S(2)+S(3))/3.0 
1630 Ariax=A(1 
1640 Pt=2.0 
1650 FOR J=2 TO 196 
1660 	PvJ-1 
1670 	NxJ+2 
1680 	A(J)=A(Pv)+((S(Nx)-S(Pv))/3.0) REMOVE 1ST SLOPE ADD NEXT 
1690 	SIFT OUT LARGEST SLOPE 
1700 	IF A(J)>Amax THEN 
1710 	AmaxA(J) 
1720 	Pt=J+1.0 CENTER POINT = 2R0 ONE ALONG IN GROUP OF 3 
1730 	END IF 
1740 NEXT J 
1750 'USE Y=MX+C TO CALCULATE Vt, EXTRAPOLATE TANGENT TO 1=0 
1760 Vd=- .05*Pt 
1770 Ut=(((Amax*Vd)-Idvtp(Pt))/Amax)-.05 'Ut=VQS-Vd5/2 
1780 	PRINT "Vt=";Vt," Idvtp";Idvtp(Pt);" Slope";Pirnax;" Pt";Pt 
1790 RETURN 
1800 	I 	! ! 	! 	I ! 	I 	I 	I I! I I 	I 	I 	I 	I 	I 	I 	! ! 
1810 Er53: 
1820 	!ERS3 10.6.92 
1830 PRINT "ERASE 
1840 	CHANNEL DEFINITION 
1850 OUTPUT 717;"IT1 CAI DRO BC" 'CAL ON, BUFFER CLEAR, SHORT 
1860 OUTPUT 717;"DE CH1 ,'VCGERS' ,'ICGERS' ,1 ,3" ISMU1 V CONST 
1870 OUTPUT 717;"DE CH2,'VDERS' ,'IDERS' ,3,3" ISMU2 COM CONST 
1880 OUTPUT 717;"DE CH3.'VSRERS' ,'ISRERS' ,3,3" ISMU3 COM CONST 
1890 OUTPUT 717;'DE CH4,'VSUB' ,'ISUB' ,3,3" ISMU4 COM CONST 
1900 OUTPUT 717;"VS1;VS2;VM1;VM2" !OTHERS NOT USED 
1910 !SOURCE SETUP 
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1920 OUTPUT 717;"SS UCI ,";Voltage;" ,1.OE-3' 	'SMUl 

1930 	MEASUREMENT AND DISPLAY 
1940 OUTPUT 717;"SM UT 0.0 
1950 OUTPUT 717;"SM IN 0.01 
1960 OUTPUT 717;"SM NR ';Tir 
1970 OUTPUT 717;"DM2 LI 'ICGERS'" 
1980 OUTPUT 717;"MD MEl' 
1990 Labela2 	Finn=SPOLL(717) 

2000 	 IF BIT(Finri 3 O)=0 THEN LbeIa2 
2010 RETURN 
2020 	1! 	! 	I! I! 	I 	1!! 	1! 	! ! 	1! 	H! 

2030 Vte83: 
2040 	VTEA3 10.6.92 
2050 DIM Idvte(201 
2060 PRINT SET UP 4145' 
2070 'CHANNEL DEFINITION 
2080 OUTPUT 717;'DE CH1 ,'UCGVTE' ,'ICGVJE' ,1 ,1" !SMU1 U VAR1 
2090 OUTPUT 717;"DE CH2,'VDVTE' ,'IDVTE' ,1 ,3" !SMU2 V CONST 
2100 OUTPUT 717;'DE CH3,'VSRVTE' ,'LSRVTE' ,3,3" !SMU3 COM CONST 
2110 OUTPUT 717;"DE CH4,'VSUB' ,'ISUB' ,3,3" !SMU4 COM CONST 
2120 OUTPUT 717;'VS1 ;US2;UM1 ;VM2" !OTHERS NOT USED 
2130 OUTPUT 717;"1T2 CAI DRO BC 	CAL ON, BUFFER CLEAR, MED 

2140 !SOURCE SETUP 
2150 OUTPUT 717;"SSUR1,0.0,10.0,0.OS,I.063" 	!SMUI 

2160 OUTPUT 717'SS VC2,0.1 ,1 .OE-2" 	 !SMU2 

2170 	MEASUREMENT AND DISPLAY 
2180 OUTPUT 717;"SS SM DM1 XN 'VCGVTE',l,O.O,lO.O" 	!X-AXIS 

2190 OUTPUT 717;'SS SM DM1 VA IDVTE' ,1 ,0.0,50.OE-6"!Y-AXIS 

2200 PRINT "MAKE MEASUREMENT" 
2210 OUTPUT 717;"MD MEl' 
2220 LabeI3: F1neSPOLL(717) 

2230 	 IF BIT(Fine,0)0 THEN Labe13 

2240 	 BEEP 700,.1 
2250 PRINT "FETCH DATA" 
2260 OUTPUT 717;'DO 'IDUTE'" 
2270 ENTER 717;Idvte(*) 
2280 PRINT "CALCULATION" 
2290 !CALCULATE SLOPES 
2300 FOR J=1 TO 200 
2310 	J2=J+1 
2320 	S(J)=(Idvte(J2)-Idvte(J))/(.05) !.OSVOLTAGE STEP 

2330 NEXT J 
2340 !CALCUATE AVERAGES OF SLOPES AND SIFT OUT LARGEST OF THESE 

2350 A(1)=(S(1)+S(2)+S(3))/3.ø 
2360 Arnax=A( 1) 
2370 Pt=2.0 
2380 FOR J=2 TO 196 
2390 	PyJ-1 
2400 	NxJ+2 
2410 	A(J)=A(Pv)+((S(Nx)S(Pv))/3.0) REMOVE 1ST SLOPE ADO NEXT 

2420 	!SIFT OUT LARGEST SLOPE 

2430 	IF A(J)>Amax THEN 
2440 	AaxA(J) 
2450 	Pt=J+1.0 !CENTER POINT = 2RD ONE ALONG IN GROUP OF 3 

2460 	END IF 
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2470 NEXT 3 
2480 !USE Y=MX+C TO CALCULATE Vt EXTRAPOLATE TANGENT TO 1=0 
2490 Vd=.05*Pt !STEP HEIGHT*NUMBER OF STEPS 
2500 Vt=(((8max*Vd)-Idvie(Pt))/Arnax).05 tVtVg5-Vd5/2 
2510 PRINT V";Vt, 	Idvte";Idvte(Pt);" S1ope;Ax; 	Pt°;Pt 
2520 RETURN 
2530 	I I 	! ! 	I 	I 	I 	I 	I I 	I 	! ! 	 I I 
2540 Lists: 
2550 PRINTER IS 701 
2560 Tire(Tim*.01 )-01 
2670 PRINT "Vt;Vt, 	Voltage;Voltse,Id;Idx,°Tir'te;Time 
2580 PRINTER IS CRT 
2690 RETURN 
2600 	!III!IHI!!!!!!IHIIHI! 
2610 Listsv: 
2520 PRINTER IS 701 
2630 VtpVtp/(Ii-1 
2640 Vte(Vte/(Ii-1 ))12 
2650 PRINT "Vtp average" ;Uip , 	Vte 8verage ;Vte 
2660 PRINT 
2670 PRINTER IS CRT 
2680 RETURN 
2690 	I 	! 	! I 	! 	I I I 	I 	I 	I 	I 	I 	I 	I ! I I 	! 	I I I I 	! 	I 	I 	I I 
2700 Endd: 
2710 PRINT END 
2720 END 
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Process Simulation 

Two process simulation programs follow. The first is for TMA SUPREM-3, and 

the second for TSUPREM-4. 

TITLE 	LL4B.DAT 

INITIALIZE 	<100> SILICON BORON=8E14 
+ 	 THICKNESS=2.0 DX=.001 XDX=0.02 SPACES=240 

COMMENT 	2. pad oxide aim for 350A 
DIFFUSION 	TIME=5 TEMPERATURE=950 DRY02 HCL%=5 
DIFFUSION 	TIME=5 TEMPERATURE=950 STEAM HCL%=5 
DIFFUSION 	TIME=5 TEMPERATURE=950 DRY02 HCL%=0 

COMMENT 	3. nitride deposition 
DEPOSITION 	NITRIDE THICKNESS=0.1 DX=0.005 SPACES=20 
DIFFUSION 	TIME=100 TEMPERATURE=800 INERT 

COMMENT 	8. field oxidation 
DIFFUSION 	TIME=5 TEFERATUBE=950 DRY02 HCL%=5 
DIFFUSION 	TIME=30 TEMPERATUBE=950 STEAM HCL%=5 
DIFFUSION 	TIME=930 TEMPERATURE=950 STEAM HCL%=0 
DIFFUSION 	TIME=5 TEMPERATURE=950 DRY02 HCL%=0 

COMMENT 	12. and 13. 4:1 etch and nitride wet etch 
ETCH 	 OXIDE 
ETCH 	 NITRIDE 

COMMENT 	14. boron implant 
IMPLANT 	BORON DOSE=2E12 ENERGY=50 

COMMENT 	15. remove pad oxide 
ETCH 	 OXIDE 

COMMENT 	17. sacrificial oxide 
DIFFUSION 	TIME=5 TEMPERATURE=950 DRY02 HCL%=5 
DIFFUSION 	TIME=5 TEMPERATURE=950 STEAM HCL%=5 
DIFFUSION 	TIME=5 TEMPERATURE=950 DRY02 HCL%=0 

COMMENT 	19. remove sacrificial oxide 
ETCH 	 OXIDE 

xvii 
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COMMENT gate oxide 	(tonox) 
DIFFUSION TIME=20 TEMPERATURE=800 T.FINAL=900 INERT 
DIFFUSION TIME=5 TEMPERATURE=900 DRY02 HCL%=O 
LOOP OPTIMIZE 
ASSIGN NANE=TM N.VALUE=O LOWER=1 UPPER=100 OPTIMIZE 
DIFFUSION TIME=O+@TM TEMPERATURE=900 DRY02 HCL%=5 
EXTRACT NAME=TOX THICKNESS LAYER'2 TARGET=0.011 
L . END 
DIFFUSION TIME=10 TEMPERATURE=900 INERT 
DIFFUSION TIME=20 TEMPERATUBE=900 T.FINAL=800 INERT 

COMMENT poly deposition 
DEPOSIT POLYSILICON THICKNESS=0.039 TEMPERATUP.E=600 

COMMENT aresnic implant 
IMPLANT ARSENIC DOSE=2E15 ENERGY=160 

CONT 	22. poly deposition 
DEPOSIT 	POLYSILICON THICKNESS0.6 TEMPERATURE=600 

COMMENT 	23. implant to dope gate 
IMPLANT 	ARSENIC DOSE=2E16 ENERGY=50 

COMMENT 25. high temp 
LOOP OPTIMIZE 
ASSIGN NAME=TMP N.VALUE=1000 LOWER=1000 UPPER=1100 OPTIMIZE 
DIFFUSION TIME=30 TEMP=@TMP-150 T.FINAL=@TMP INERT 
DIFFUSION TIME=60 TEMP=@TMP INERT 
DIFFUSION TIME=30 TEMP=@TMP T.FINAL=@TMP-150 INERT 
DIFFUSION TIME=5 TEMPERATURE=950 INERT 
DIFFUSION TIME=5 TEMPERATUPE=950 INERT 
DIFFUSION TIME=5 TEMPERATURE=950 INERT 
EXTRACT NAME=AJ NET ACTIVE X . EXTRACT LAYER=1 
+ Y=O.O TARGET=0.675 
L . END 

COMMENT calculate poly sheet res, use zero bias analysis 
ELECTRICAL 
END 

EXTRACT NAME=SR LAYER=3 E.RESIST 
EXTRACT NAME=AR MIN.REGI=2 LAYER=1 E.RESIST 
EXTRACT NAME=AJ NET ACTIVE LAYER=1 X.EXTRACT Y=O 
EXTRACT NAME=TX LAYER=2 THICKNESS 
EXTRACT NANE=TP LAYER= 3 THICKNESS 
PLOT ACTIVE BORON LINE=2 DEVICE=l/postscript 
+ TITLE="Doping Profiles: Arsenic Device, Drain" 
PLOT ACTIVE ARSENIC ADD LINE=3 
LABEL LABEL="Arsenic" 	START.RI LX.F=2.0 LINE=3 X=1.2 Y=3E20 
LABEL LABEL="Boron" 	START.RI LX.F=2.0 LINE=2 
LABEL LABEL="Arsenic junction depth: "@AJ" urn" 
LABEL LABEL="Drain sheet res.: 	"@AR" ohms/square" 
LABEL LABEL="Polysilicon thickness: 	"@TP" urn" 
LABEL LABEL="Polysilicon sheet res.: 	"@SR" ohms/square" 
LABEL LABEL="Gate Oxide thickness: "@TX" urn" 
LABEL LABEL="Anneal temperature : "@TMP 
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DEFINE 	GDENS 12 
LINE X 	LOCATION=0.0 SPACING=(0.2/ GDENS 
LINE X 	LOCATION=1.2 SPACING=(0.2/ GDENS 
LINE Y 	LOCATION=0.0 SPACING=(0.2/ GDENS 
LINE Y 	LOCATION=1.0 SPACING=(0.2/ GDENS 
LINE Y 	LOCATION=2.0 SPACING=(0.4/ GDENS 

INITIALIZE <100> BORON=8E14 

METHOD 	VERTICAL 

DIFFUSION TIME=5 TEMP=950 DRY HCL=5 
DIFFUSION TIME=5 TEMP=950 STEAM HCL=5 
DIFFUSION TIME=5 TEMP=950 DRY HCL=0 

DEPOSIT 	NITRIDE THICKNESS=.1 
DIFFUSION TIME=100 TEMP=800 INERT 

DIFFUSION TIME=5 TEMP=950 INERT 
DIFFUSION TIME=30 TEMP=950 INERT 
DIFFUSION TIME=930 TEMP=950 INERT 
DIFFUSION TIME=5 TEMP=950 INERT 

ETCH 	NITRIDE ALL 

IMPLANT 	BORON DOSE=2E12 ENERGY=50 

ETCH 	OXIDE ALL 

DIFFUSION TIME=5 TEMP=950 DRY HCL=5 
DIFFUSION TIME=5 TEMP=950 STEAM HCL=5 
DIFFUSION TIME=5 TEMP=950 DRY HCL=0 

ETCH 	OXIDE ALL 

DIFFUSION TIME=20 TEMP=800 T.FINAL=900 INERT 
DIFFUSION TIME=10 TEMP=900 DRY HCL=0 
DIFFUSION TIME=12 TEMP=900 DRY HCL=5 
DIFFUSION TIME=60 TEMP=900 INERT 
DIFFUSION TIME=20 TEMP=900 T.FINAL=800 INERT 
ETCH 	OXIDE ALL 
DEPOSIT 	OXIDE THICKNESS=0.011 SPACES=1 

DEPOSIT 	POLYSILICON THICKNES=0.039 SPACES=4 

DEPOSIT 	PHOTORES THICKNES=1.0 SPACES=5 
ETCH 	PHOTORES RIGHT P1.X=0.8 P2.X=0.8 

IMPLANT 	ARSENIC DOSE=2E15 ENERGY=160 

ETCH 	PHOTORES ALL 
DEPOSIT 	POLYSILI THICKNESS=0.6 SPACES=6 

IMPLANT 	ARSENIC DOSE=2.0E16 ENERGY=50 

DIFFUSION TIME=30 TEMP=922 T.FINAL=1072 INERT 
DIFFUSION TIME=60 TEMP=1072 INERT 
DIFFUSION TIME=30 TEMP=1072 T.FINAL=922 INERT 

ETCH 	OXIDE RIGHT P1.X=0.8 P2.X=0.8 
ETCH 	POLYSILI ALL 
ETCH 	OXIDE RIGHT P1.x=0.8 P2.X=0.8 

DEPOSIT 	PHOTORES THICKNESS=0.6 SPACES=6 
ETCH 	PHOTORES RIGHT P1.X=0.8 P2.X=0.8 
STRUCTURE OUTFILE=KEEPASR 



Appendix E 

Program to Analyse POT Devices 

The following gives the key sections of a program in HP BASIC, written to control 

an HP 4062 Semiconductor Parameter Test System, and KLA Automatic Wafer 

Prober. This conducts subthreshold and time dependent dielectric tests on POT 

devices. 

830 
840 
850 Auto: 1  first set up chip positions to be tested 
851 	OpenO 
860 	DIM Cdatax(50),Cdatay(50) 
870 	DATA 4S,6,88,8,9j0j0,10,10,10 	!CX 
880 	DATA 10,10,10,1,9,10,2,3,4,56,7 	!CY 
910 
911 	FOR 1=1 10 12 
920 	READ Cdtax(I) 
930 	NEXT I 
940 	FOR 1=1 TO 12 
960 	READ Cdatay(I) 
960 	NEXT I 
1000 
1001 FOR Chip=! TO 12 
1010 Hst CONDUCT SYMMETRY ANALYSIS 
1023 FOR Tyyyl TO 20 
1024 Proq$( 1 )="C" 
1026 Prog$(2)=VAL$(Cdatsx(Chip)) 
1027 Prog$( 3 )VAL$( Cdat5y( Chip)) 
1028 Prog$(4)'T' 
1029 Prog$(5)'2 
1030 ProQ$( 6 )VAL$( Tyyy) 
1031 	Proq(7)7" 
1032 Prog$(8)=N1 
1033 Prog$(9)" 
1034 Prog$(10)= 
1035 Prog$( 11 )° 
1038 GOTO Menu—execute !rust leave this for next loop to do test 

xx 
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1042 Next_testl: 	return 	to 	for next 	loop 	at this 	label 

1045 NEXT Tyyy 
1050 ProS( 1 )="7S" 
1051 ProQ$(2)"N4 
1052 GOTO Menu execute 	iust 	leave this 	for next 	loop 	to do test 
1053 Next_test4: 	Ireturn 	to 	for next 	loop 	at this 	label 

1059 I 
1062 !TDOB ON GATE/DRAIN OVERLAP 
1063 Orainruptl 
1064 SourceruptO 
1065 idover0 
1087 FOR Tyyylysynm-4 TO Tysymn+S 
1088 Gdover=Gdover+.05 
1069 Pro$(1 )"C" 
1070 Prog$(2)VAL$(Cdatax(Chip)) 
1071 Prog$( 3 )=VAL( Cdetay( Chip)) 
1072 Pro$(4)I 
1073 Prog$(5)'2" 
1074 Prog$( 8 )=VAL$( Tyyy) 
1075 Pro$(7)3" 
1076 Prog$(8)=3S" 
1077 Prog$(9)=N2 
1078 Prog$(10) 
1080 8010 Menu execute 	!must 	leave this 	for next 	loop 	to do test 
1081 Next_test2: 	return to for next 	loop at this 	label 
1084 NEXT Tyyy 
1284 
1285 110DB SOURCE/GATE OVERLAP 
1288 Drainrupt=0 
1287 Sourceruptl 
1288 Gdover=0 
1290 FOR TyyyTysyMci+4 TO Ty5yrnm-5 STEP -1 
1291 6dover=Gdover+05 
1292 Prog$(1 )=C" 
1294 Prog$(2)VAL$(Cdatax(Chip)) 
1295 ProQ$(3)=VAL$(Cdatay(Chip)) 
1296 Prog$(4)='T 
1297 ProQ$(5)2 
1298 ProQ$( 6 )VAL$( Tyyy) 
1299 Proq$(7)"3" 
1300 Prog$(8)3S 
1301 Prog$(9)'N3" 
1302 Pro$(10) 	0 

1303 Proq$(11 ) 
1304 6010 Menu—execute 	!must 	leave this 	for next 	loop to do test 
1305 Next_test3: 	return to for next 	loop at this 	label 
1309 NEXT Iyyy 
1312 
1313 NEXT Chip 
1314 ASSIGN @Path TO * 
1318 RETURN 
1316 Skip_auto: 	1 
1317  I ------------------------------------------------------------------ 
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2086 
2088 Start —test?: SUBTHRESHOLD 
2089 	 TWO Vt SWEEPS, ONE FROM DRAIN, THE OTHER SOURCE 
2090 Poinf12 
2091 MAT Rdng (0) 
2092 MAT Inp (0) 
2093 Test code$"G" 
2094 Forrevdiff(Ty)0 
2095 Devbust(Ty )=0 
2096 Num2Number of sweeps for characteritics 
2097 	!NB ... Nuri is used in curve_plot, line 5230, and must be given a value. 
2098 VoidxTx 
2099 IF Voidx MOD 2.0=0 THEN 
2100 Txeven7: 	 115t determin whether the ty is odd or even 
2101 Void=Ty 	 MOD only returns real result for real arguments. 
2102 IF Void MOD 2.0=0. THEN MOD returns the remainder of a division. 
2103 Drain=10 
2104 Gatell 	 Even 
2106 Source14 
2106 S5ub44 
2107 ELSE 	 Odd 
2108 DrainlO 
2109 Gatell 
2110 Source14 
2111 	S.sub44 
2112 END IF 
2113 ELSE 
2114 Txodd7: 	 115t determin whether the ty is odd or even 
2115 VoidTy 	 MOD only returns real result for real arguments. 
2116 IF Void MOD 200. THEN MOD returns the remainder of a division. 
2117 Drainll 
2118 &ate14 	 Even 
2119 Source16 
2120 Ssub44 
2121 ELSE 	 Odd 
2122 Drainll 
2123 Sate14 
2124 Source16 
2125 5sub44 
2126 END IF 
2127 END IF 
2128 
2129 Vd=.5 
2130 Vb=0. 
2131 	Vstart.1 
2132 Vstop.4 
2133 Vstep(Vstop-Vstart )/(Point-1 
2134 Compliancel .E-3 
2136 Integ_time.2 
2136 
2137 mit_system 
2138 Set_smu(Integ_time) 
2139 Connect( FNSmu(1 ),Gate) 
2140 Connect(FNSmu(2) ,Drain) 
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2141 	Connect(FNGnd,Source) 
2142 Connect(FNSmu(3)S5ub 
2143 Force_v(Drein,Vd0,9.0E2) 
2144 Force_v(SsubVb,0,9.0E2) 
2.145 	Set_iv(6e,1,0,V5trt,V5tOP,POiflt,0,0,C0P1ience) 
2146 gp_jv(Drajn,2,0,Rid7(*),Rvg7(*)) 

2147 Di5eble_port 
2148 Connect 
2149 
12.150 	Init_.syste 
2151 	Set _srnu(Inte_tire) 
2152 Connect(FNSriu(1 )6ate) 
2153 Connect(FNSnd,Drain) 
2154 Connect(FNSriu(2) ,Source) 
2155 Connect(FNSMu(3),S5Ub) 
2156 Force_v(Source,Vd 090E-2) 
2157 Force_v(S5ub,Vb,0,9.OE - 2) 
2158 Set_iv(Gete,1 ,0,L)5tart,'Jstop,Point,O,O,COrlplienCe) 
2159 Sweep_i v (Source,2,0,Ri57(*),RVQ7(*)) 
2160 Di5b1e_port 
2161 	Connect 
2162 
2166 Forrevdiff(Ty)(LGT(ABS(Rid7(POiflt)))) - (LGT(ABS(Ri57(P01nt)))) 
2167 Forrevdiff(Ty)ABS(Forrevdiff(TY)) 
2169 	IF (Rid7(1 )>2.E9) AND (Ri57(1 )>2E-9) THEN Devbu5t(Ty)1 !SC 
2170 IF (R1d7(Point)<2.E9) AND (Ris7(Point)<2.E-9) THEN Devbu5t(Ty)1 	OC 

2- 	I 

2173HPRINT Rid7(Point),Ri57(Point),Oevbu5t(Ty),FOrreVdiff(TY) 
2175 RETURN 
2176 
2177 Start_test75:! SORT RESULTS OF SUB-THRESHOLD 
2189 FOR TysortlO TO 20 
2190 IF (Devbust(Tysort )1 ) THEN 6OTO Next devicel 
2191 	IF (1 .7<Forrevdiff(Tysort)) THEN 
2192 IF (2.8<Forrevdiff(Ty5ort)) THEN 
2193 Ty5yNTy5ort-10 
2194 6010 End-of-sorting 
2195 END IF 
2196 TysynrnTy5ort-9 
2197 6010 End _ofsorting 
2198 END IF 
2199 Next_devicel: NEXT Ty8ort 
2200 
2201 
2202 FOR TysortlO TO 1 STEP -1 
2203 IF (Devbu5t(Ty5ort )=1 ) THEN 6010 Next_device2 
2.204 IF (1 .7<Forrevdiff(Tysort)) THEN 
2205 IF (2.8<Forrevdiff(Ty5ort)) THEN 
2206 Ty5ymmlysort+1 0 
2207 6010 End-of-sorting 
2208 END IF 
2209 1y5ymrvTysort+9 
2210 GOTO End _of_sorting 
2211 	END IF 
2212 Next device2: NEXT Ty5ort 
2213 End-of-sorting: 
2214 RETURN 
2215 I 
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1745 
1748 Start_test3:! 	STRESS TEST 	TDDB 
1747 vgO vsubO v.sFloat 	vdCONSTANT 
1748 Point300 	10 MINUTES MAX 
1749 Trupt=0 
1750 Charge30 
1751 MAT 	Inp 	(0) 
1752 MAT Rdng 	(0) 
1753 Num=1 	Number of 	sweeps 	for characteritics 
1754 NB.. .Num 	is used 	in curve—plot 
1755 VoidxTx 
1756 IF Voidx MOD 2.0=0 THEN 
1757 Txeven3: 	 15t 	determin whether the ty is odd or even 
1758 Voidly 	 !MOD only returns real 	result for real 	arguments. 
1759 IF Void MOD 2.0=0. 	THEN 	'MOO returns the remainder of 	a 	division. 
1760 DrainlO 
1761 Gate=11 	 Even 
1762 Source14 
1763 S5ub44 
1764 ELSE 	 !Odd 
1765 DrainlO 
1766 Gate=11 
1767 Source14 
1768 S5ub44 
1769 END IF 
1770 ELSE 
1771 Txodd3: 	 list 	determin whether the ty is odd or even 
1772 VoidTy 	 MOO only returns real result for real 	arguments. 
1773 IF Void MOD 2.00. 	THEN 	MOD returns 	the remainder of 	a 	division. 
1774 Drainll 
1775 Gate14 	 !Even 
1776 Source16 
1777 Ssub44 
1778 ELSE 	 !Odd 
1779 Drainll 
1780 6ate14 
1781 Source16 
1782 S5ub44 
1783 END IF 
1784 END IF 
1785 
1786 IF Drainruptl 	THEN 
1787 PRINT 	"DRAIN STRESS" 
1788 !STRESS DRAIN/GATE OVERLAP 
1789 Vd=10.0 
1790 Vg0. 
1791 Vb=0. 
1792 
1793 Compliance=1 .E-4 
1794 Integ_time=2 	I 	INTEGRATION 
1795 Init_system 
1796 Set_srviu( Integ_t ime) 	!INTEGRATION 
1797 Connect(FNSmu(1 ),Gate) 
1798 Connect(FNSmu(2 ) Drain) 
1799 Connect(FNSmu(3),S5ub) 
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1800 Force_v(Ssub ,Vb ,0 ,Coripliance) 
1801 Force_v(Gate,VQ,0,COPPlianCe) 
1802 I 
1803 Charge30. 
1804 MAT Rig3 (0.) 
1805 MAT Rtm3= (0. 
1806 Start_t1rieTIMEDATE 
1807 Force _v(Draln,Vd,0,COlPliance) 
1808 FOR 1=2 TO Point 
1809 Measure_i(Gaie ,RiQ3( I ),0) 
1810 Rtr3( I )=TIMEDATE-Start_time 
1811 Pointcounterl 
1812 IF ABS(Ri3(I))>1.E-8 AND 1>5 THEN 
1813 Charge30 
1814 GOTO Endtddbdrain3 
1815 END IF 
1816 Charge3Charge3+(Ri3(I)*(Rtm3(I)Rt3(I1 )1) 
1817 WAIT 2.0 
1818 NEXT I 
1819 Endtddbdrain3: 
1820 Di5able_port 
1821 Connect 
1822 END IF 
1823 	I 
1824 IF Sourceruptl THEN 
1825 PRINT "SOURCE STRESS" 
1829 !STRESS SOURCE/GATE OVERLAP 
1835 Ve=10.0 
1836 V=0. 
1837 Vb=0. 
1838 	I 
1839 Conpliancel .E-4 
1840 IniegtiMe2 I 	INTEGRATION 
1841 	Init_5y5tec 
1842 Set_s,u(Integ_time) !INTEGRATION 
1843 Connect(FNSnu(1 ),Gate) 
1844 Connect ( FNSiu( 2 ) ,Source) 
1845 Connect(FNSr'iu(3),Ssub) 
1846 Force_v(S5ub,Ub ,0,Complince) 
1847 Force_v(Gate,Vg,0,ComplioflCe) 
1848 I 
1849 Charge30. 
1850 MAT Rig3 (0.) 
1851 	MAT Rtrn3= (0.) 
1852 Start_tirieTIMEDATE 
1853 Force_v( Source ,Vd ,0 ,Coip1 lance) 
1854 FOR 1=2 TO Point 
1855 Mea5ure_i(Gate,Riq3(I),0) 
1856 Rtm3( I )=TIMEDATE-Start_tie 
1857 Pointcounterl 
1858 IF ABS(Rig3(I))>1.E8 AND 1>5 THEN 
1859 Chare3'"0 
1860 GOTO Endtddb5ource3 
1861 END IF 
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1863 Charge3=Charqe3+( Riq3( I )*(Rtrn3( I )-Rtm3( I-i ) ) 
1 864 WAIT 2.0 
1 866 NEXT I 
1 866 Endtddb5ource3: 
1867 0i5able_port 
1 868 Connect 
1 869 END IF 
1 870 
1871 PointPo intcounter 
1 876 TruptRtm3(Pointcounter) 
1 886 1 !PRINT PointcounterRi3(Pointcounter),Trupt ,Charge3 
1890 RETURN 
1891 

2943 Store_re5_qbd: 
2944 FilenaNe$ASL48C" 
2945 IF Open=ø THEN 
2946 CREATE ASCII Filenare$,20 
2947 ASSIGN @Path TO Filename$ 
2948 Openl 
2949 END IF 
2950 Already_open: 
2955 OUTPUT K1$ USING ".DD;Gdover 
2966 OUTPUT K2$ USING 	,D.4DE;Trupt 
2967 OUTPUT K3$ USING 	,D.4DEQbd 
2968 K2o$K1$& ,&K2$ ,&K3$ 
2959 OUTPUT @Path;K2o$ 
2960 RETURN 
2961 


