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Abstract 

 

In both the legume symbiont Sinorhizobium meliloti and the mammalian pathogen 

Brucella abortus, the inner membrane BacA protein is essential for host persistence.  

In free-living S. meliloti and B. abortus loss of the BacA protein also results in an 

increased resistance to the glycopeptide bleomycin and a ~ 50% decrease in the 

lipopolysaccharide (LPS) very-long-chain-fatty-acid (VLCFA) content.  

Consequently, it was proposed that BacA may be involved in transport of peptides 

into the cell and/or that BacA may be involved in the VLCFA modification of the 

LPS.   

During this work it was determined that the increased resistance observed in 

an S. meliloti ∆bacA mutant to bleomycin and to the truncated eukaryotic peptide 

Bac7(1-16), is independent of the VLCFA modification.  These data support a model 

for BacA having multiple non-overlapping functions.  Using flow cytometry studies 

with fluorescently labelled forms of bleomycin and Bac7(1-16) it was found that the 

BacA protein  plays a role in the uptake of bleomycin.  However, BacA was shown 

to be essential for the uptake of Bac7(1-16).  Additionally, it was determined that 

two symbiotically defective bacA site directed mutants with known reductions in 

their VLCFA could still take up Bac7, suggesting that the BacA function that leads to 

the VLCFA modification could also play a key role in host persistence.   

To investigate further the role of BacA in the VLCFA modification and 

where in the cell envelope the lipid A is modified with the VLCFA, the role of the 

putative lipid trafficking protein MsbA2 was investigated.  Interestingly, it was 

discovered that S. meliloti lacking the MsbA2 protein, is unable to enter host cells 

and induces a plant defence response more characteristic of a pathogen.  To 

investigate the importance of the VLCFA modification during the symbiosis             

S. meliloti mutants lacking either the AcpXL (VLCFA acyl carrier protein) or LpxXL 

(VLCFA acyl transferase protein) were characterized in the host.  Although not 

essential for host persistence, loss of each of the proteins did result in distinct 

defects, suggesting the VLCFA modification is important during the symbiosis. 

Since there are hundreds of nodule specific cysteine-rich peptides produced by the 

host plant Medicago truncatula, the BacA mediated uptake of one of these peptides 
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combined with the VLCFA modification may account for the essential role of the 

BacA protein in the legume symbiosis.  
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1.1. Chronic bacterial host interactions 

Several bacterial pathogens have evolved a variety of strategies to invade and survive 

long-term within eukaryotic cells, often resulting in chronic infections within their 

hosts.  Chronic bacterial infections pose serious threats to human health, yet 

compared to acute bacterial infections, their molecular basis is poorly understood 

(Monack et al., 2004; Rhen et al., 2003).   

Two intracellular pathogens which can cause chronic infections and result in 

much mortality and morbidity world wide are Salmonella enterica serovar Typhi and 

Mycobacterium tuberculosis.  S. Typhi is a human specific pathogen and currently 

causes some 21.5 million cases of typhoid fever each year (http://www. cdc.gov/) 

and around  6% of these patients become chronically infected (Parry et al., 2002).  

These chronic carriers will continue to shed infective S. Typhi (Parry et al., 2002) 

and are also at an increased risk of  developing hepatobiliary cancer (Welton et al., 

1979).  M. tuberculosis, which causes tuberculosis, a chronic disease of humans, 

results in more than 2 million deaths annually (Domenech et al., 2008).  Additionally 

it is estimated latent infection with M. tuberculosis affects more than one-third of the 

total human population, providing an enormous reservoir for future infections 

(Young et al., 2008).  Today, a growing problem is the emergence of strains of M. 

tuberculosis resistant to drugs, with approximately 400,000 cases of multidrug-

resistant tuberculosis occurring each year (Young et al., 2008). Furthermore, there is 

now the emergence of what is essentially an untreatable form of tuberculosis, known 

as extensively drug-resistant tuberculosis (Young et al., 2008).     

  

1.2. The alpha-proteobacteria 

The alpha-proteobacteria are a large and diverse of group of gram-negative bacteria, 

many of which establish long term chronic infections within eukaryotic cells 

(Kersters et al., 2003).  The bacteria within this group display a wide range of 

lifestyles (Batut et al., 2004) and include Rickettsia and Wolbachia which are 

obligate intracellular pathogens of mammals and arthropods (Cowan, 2000; Werren 

et al., 2008).  Also included within this group are Bartonella and Brucella which are 

both facultative intracellular pathogens of mammals (Dehio, 2005; Moreno & 
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Moriyón, 2001).  However, this group also includes the soil bacteria Rhizobia which 

actually form a beneficial association with their host, whereby they engage in 

symbioses with the roots of leguminous host plants (Gibson et al., 2008).  

 

1.3. Sinorhizobium meliloti  

Sinorhizobium meliloti is one of the best known Rhizobia as a consequence of being 

studied by a large number of research groups worldwide.  S. meliloti can either be 

found free-living in the rhizosphere or in a symbiotic relationship with leguminous 

plants such as Medicago sativia (alfalfa) and Medicago truncatula, where the 

bacteria are found in specialized structures on the root known as nodules (Niner & 

Hirsch, 1998).  Together,  S. meliloti and the model plant host M. truncatula are one 

of the most important symbiosis model systems (Becker et al., 2008).  Various 

research groups have helped to develop a set of powerful genetic tools for S. meliloti 

(Glazebrook & Walker, 1991) and the S. meliloti genome was published in 2001 

(Galibert et al., 2001).  The S. meliloti genome contains over 6000 protein coding 

genes, distributed into 3 replicons, consisting of a circular chromosome (3.65 Mb) 

and two megaplasmids, pSymA (1.36 Mb) and pSymB (1.68 Mb).  

 

1.4. The S. meliloti-legume symbiosis 

The symbiosis between leguminous plants and S. meliloti to form a nitrogen fixing 

nodule is a complex and unique interaction and begins with a specific molecular 

signal exchange between the legume and free-living S. meliloti.  

  

1.4.1. Nod factors  

Flavonoid compounds (2-phenyl-1, 4-benzopyrone derivatives) produced by 

leguminous plants are the first signal exchanged (Perret et al., 2000) and are released 

when the soil is limited for nitrogen.  Flavonoids are recognised by bacterial NodD 

proteins, which are members of the LysR family of transcriptional regulators (Schell, 

1993).  The N-terminus of NodD binds to the promoter regions of several of the 

bacterial nodulation related (nod) genes, thereby inducing their expression (Long, 
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1996; Perret et al., 2000).  Nod factors, which are essential signalling molecules, are 

synthesized by the products of some of these nod genes (Oldroyd & Downie, 2004) .  

Nod factors consist of a backbone of β-1,4-linked N-acetyl-D-glucosamine residues, 

with a long acyl chain attached to the terminal glucosamine (Perret et al., 2000) (Fig. 

1-1). The size and saturation state of this lipid chain varies in a species-specific 

manner (Gibson et al., 2008) and nod factors can be further modified with a variety 

of chemical substituents, including acetyl, arabinosyl, fucosyl and sulfuryl additions  

(Gibson et al., 2008).  

 Nod factors induce multiple plant responses that are essential for bacterial 

invasion (Oldroyd & Downie, 2004).  One of the first plant responses to occur is a 

rapid calcium influx in root hairs which is followed by oscillations in the cytosolic 

calcium concentration (calcium spiking) (Oldroyd & Downie, 2004).  This is  

followed by root hair curling, whereby the bacteria which have attached to the root 

hair become trapped within tightly curled root hairs (Esseling et al., 2003; Gage, 

2004) (Fig. 1-2).  At the same time the Nod factors stimulate the initiation of cell 

division in regions of the root inner cortex. These cells form the nodule primordium 

and give rise to the cells which will receive the invading bacteria (Foucher & 

Kondorosi, 2000) (Fig. 1-2).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1.The Nod factor produced by S. meliloti.  Also shown are the Nod proteins 
involved in Nod factor biosynthesis. (Gibson et al., 2008).  
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1.4.2. Infection thread development 

The bacteria trapped within the curled root hair tip induce the formation of a host 

derived inwardly growing tubular compartment known as an infection thread 

(Brewin, 2004; Gage, 2004) (Fig. 1-2).  S. meliloti produces the exopolysaccharides 

succinoglycan (also known as exopolysaccharide I) and galactoglucan 

(exopolysaccharide II), which facilitate infection thread formation (Glazebrook & 

Walker, 1989; Pellock et al., 2000).  The bacteria enter and divide within the 

infection thread, which traverses the entire root hair and outer cortical cells to reach 

the inner cortex (Fig. 1-2).  The path followed by the infection thread within the 

cortex is predetermined by cytoplasmic bridges or pre-infection threads (Timmers et 

al., 1999; van Brussel et al., 1992).  The infection thread branches as it grows 

through the root and enters the nodule primodium, which increases the number of 

sites from which the bacteria can exit the threads (Gage, 2004) (Fig. 1-2).  As an 

infection thread ceases growth, unwalled droplets of infection thread matrix material 

(infection droplets) containing the bacteria are formed (Brewin, 2004).  These 

infection droplets extrude from the infection threads and are engulfed by the plant 

host plasma membrane, forming symbiosomes by an endocytosis like process 

(Brewin, 2004) (Fig.1-3).  After endocytosis the bacteria divide together with the 

symbiosome membrane, before differentiating into non-dividing nitrogen fixing 

bacteroids (Robertson & Lyttleton, 1984) (Fig. 1-3).  
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Figure 1-2. Schematic model of nodule development in the S. meliloti legume 

symbiosis.  (a-b) The host legume releases flavonoids which trigger bacterial Nod factor 

production. Nod factor induces various responses in the host legume such as root hair 

curling which is followed by root hair invasion.  In addition to Nod factors and bacterial 

exopolysaccharide (EPS) root hair invasion requires reactive oxygen species (ROS), which 

are required for optimal progression of infection threads though the root hair.  The Nod 

factors also induce cell division in the root cortex (shown in blue), which leads to the 

formation of a nodule meristem. Indeterminate nodules form on alfalfa which originate from 

the root inner cortex and have a persistent meristem (Zone I). Each nodule also contains an 

invasion zone (Zone II) and a nitrogen fixing zone (Zone III).  In older nodules there is a 

senescent zone (Zone IV), where both the plant and bacterial cells degenerate (Gibson et 

al., 2008).    

 

1.4.3. Nitrogen fixation 

Expression of the bacterial nitrogenase synthesis (nif) and microoxic respiration (fix) 

genes are required for successful nitrogen fixation (Gong et al., 2006).  Nitrogenase 

is the two component enzyme complex responsible for nitrogen fixation and its 

structure is highly conserved throughout nitrogen fixing bacteria (Dixon & Kahn, 

2004).  The expression of plant proteins is also necessary to support nitrogen 
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fixation.  One such protein is leghaemoglobin, an oxygen binding protein.  

Leghaemoglobin is required to maintain a microaerobic environment within the 

nodule, since the nitrogenase enzyme is irreversibly inactivated by oxygen, yet the 

bacteria require oxygen for use in respiration (Appleby, 1984).  Indeed, it is 

leghaemoglobin that imparts the pink/red colour displayed by healthy nitrogen fixing 

nodules.  Nitrogenase produced by the bacteroids converts nitrogen (N2) into 

ammonia (NH3).  The formula for nitrogen fixation is as follows: 

     N2 + 8H
+ 

+ 8e- + 16 ATP    �    2NH3 + H2 + 16 ADP + 16 Pi  

In this process, two moles of NH3 are produced from one mole of N2 at the expense 

of 16 molecules of ATP and a supply of electrons and protons (hydrogen ions) 

(O'Brian, 1996).  The ammonia produced by the nitrogenase enzyme is then secreted 

by the bacteroid, at which point it is thought to be taken up by the plant through NH3 

channels that have been detected in the plant membrane (Day et al., 2001; Prell & 

Poole, 2006).  

 Throughout the symbiosis a constant carbon supply is required to provide 

metabolites and energy for bacteroid differentiation and nitrogen fixation (Day et al., 

2001; Prell & Poole, 2006).  Polyhydroxybutyrate (PHB) granules produced by S. 

meliloti are degraded during bacteroid differentiation and appear to be preferentially 

used as a carbon source (Willis & Walker, 1998).  The plant host also provides 

carbon to the bacteroids in the form of dicarboxylic acids, such as malate, though the 

bacterial dicarboxylate transport (DCT) system (Poole & Allaway, 2000; Ronson et 

al., 1981), which can then be used for respiration by the bacteria in the tricarboxylic 

acid (TCA) cycle (Poole & Allaway, 2000).  Despite the fact the S. meliloti-legume 

symbiosis is beneficial to both partners, it can be regarded as a chronic infection as 

the bacteroids persist within the membrane-bound acidic compartments in the plant 

cells for extensive periods of time (Campbell et al., 2002). 
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Figure 1-3. Endocytosis of S. meliloti into the plant cell and bacteroid differentiation.    

The bacterium is taken up into the host cell by an endocytosis like process and is engulfed 

by the plant host plasma membrane, forming a symbiosome. The bacterium will initially 

divide synchronously with the symbiosome membrane, after which it will differentiate into a 

nitrogen fixing bacteroid (Jones et al., 2007).   

 

1.5. S. meliloti-legume symbiosis as a model system for chronic 

infection 

Although S. meliloti establishes an agriculturally important and beneficial symbiosis 

with leguminous plants (Niner & Hirsch, 1998), the bacteria are closely related to the 

Brucella species, which are chronic mammalian pathogens.  This was initially 

revealed by RNA homology, with S. meliloti and Brucella species found to differ less 

than 7% in their 16S RNA sequences (Ugalde, 1999).  This close relatedness has 

more recently been confirmed by genome sequencing of S. meliloti and several of the 

Brucella species (DelVecchio et al., 2002; Galibert et al., 2001; Halling et al., 2005; 

Paulsen et al., 2002).  Despite the two very different outcomes of infection, 

experimental evidence has been accumulating over recent years suggesting parallels 

exist in the way S. meliloti and B. abortus survive within their respective hosts 

(Ferguson et al., 2004; LeVier et al., 2000; Roop et al., 2002).  

 

1.6. The Brucellae 

1.6.1. Brucella species and brucellosis  

Brucellosis is the most common zoonotic infection worldwide (Pappas et al., 2006b) 

and has a significant impact on both animal and human health.  Infections in animals 

result in abortion and infertility, while human infection will often result in a chronic, 
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debilitating disease known as undulant fever (Acha & Szyfres, 1980).  There are 

seven species of Brucella, based on host specificity; B. melitensis (goats), B. abortus 

(cattle), B. suis (swine), B. canis (dogs), B. ovis (sheep), B. neotomae (desert mice) 

and B. pinnipediae and B. cetaceae (marine mammals) (Pappas et al., 2005).  To 

date, the genomes of  B. melitensis (DelVecchio et al., 2002), B. abortus (Halling et 

al., 2005), and B. suis (Paulsen et al., 2002) have been sequenced and published.  

Among the four Brucella species known to cause disease in humans (B. melitensis, 

B. abortus, B. suis and B. canis),  it is B. melitensis which is the most prevalent world 

wide (Dizbay et al., 2007).  Additionally this species is also considered to be the 

most virulent (Eschenbrenner et al., 2002).  Humans acquire brucellosis through 

direct contact with infected animals or animal products, the most common means of 

transmission is consumption of unpasteurized dairy products such as milk and soft 

cheese (Nicoletti, 1989; Pappas et al., 2006a).  In areas of the world where 

brucellosis has not been eradicated but successful eradication programs are in effect, 

human brucellosis has become primarily an occupational hazard for animal handlers, 

slaughterhouse workers and veterinarians.  Contrastingly in regions where 

brucellosis is endemic in goats, sheep and cattle, human brucellosis remains a serious 

public health problem.  The most common symptom of brucellosis is one of a flu-like 

illness with fever, malaise, anorexia and muscle weakness (Young, 1989).  

Additionally, serious complications such as endocarditis (Hadjinikolaou et al., 2001) 

and neurological disorders may also occur (Shakir et al., 1987).  

 

1.6.2. Treatment and prevention of brucellosis 

Treatment of human brucellosis is difficult due to the intracellular nature of the 

infection, and prolonged antibiotic therapy is necessary (Young, 1989).  The 

development of a brucellosis vaccine suitable for humans would be an ideal solution 

to the problems of inadequate veterinary control in many countries and the problems 

associated with antibiotic treatment.  Unfortunately, the live attenuated vaccines that 

have been essential components of the successful eradication programs in farm 

animals, made from B. abortus strain 19 and B. melitensis  Rev1 strain, are virulent 

for humans (Spink et al., 1962).  Additionally, the virulence of the newly instituted 

bovine vaccine strain B. abortus RB51 is presently unknown (Kahler, 1998).  
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Consequently there is no safe effective vaccine available for use in humans, and 

control of human disease therefore relies on preventing exposure.  

 

1.6.3. The Brucellae as bio-warfare/terrorism agents 

There are also several features of the brucellae that make them a threat as potential 

bio-warfare/terrorism agents (Valderas & Roop, 2006)  Firstly, they are highly 

infectious by the aerosol route, with an infectious dose estimated to be at 

approximately 10 to 100 organisms (Franz et al., 2001).  Secondly, since brucellosis 

results in low mortality, it can be very effectively used as an incapacitating agent and 

could soon overwhelm hospitals and other medical care facilities if used as an agent 

(Valderas & Roop, 2006).  Thirdly, as discussed previously successful treatment of 

human brucellosis requires prolonged antibiotic therapy (Young, 2000), and relapse 

rates after apparently successful treatment are reported to be as great as 30% (Franco 

et al., 2007).  Finally, as previously stated there is no safe and effective vaccine 

available for use in humans.  Due to the risk of Brucella species being used as agents 

of  bio-warefare/terrorism, B. melitensis, B. suis and  B. abortus are included on the 

class B list of select agents as defined by the Centers for Disease Control and 

Prevention (Valderas & Roop, 2006).  

 

1.6.4. Survival of Brucella species within the host  

Brucella infections in both their natural animal hosts and in humans are characterized 

by their chronic nature (Baldwin & Roop, 1999; Enright, 1990) with many natural 

hosts remaining infected for life (Enright, 1990).  The brucellae primarily reside 

within macrophages in their animal and human hosts (Kohler et al., 2003; Roop et 

al., 2004).  It is the capacity for the brucellae to survive within these host phagocytes 

that is responsible for their chronic nature (Baldwin & Roop, 1999).  Upon ingestion 

by host macrophages the brucellae reside in an acidified compartment that fuses with 

components of the early endosomal pathway (Celli et al., 2003; Porte et al., 2003), at 

which point the bacteria are also exposed to the oxidative burst (Jiang & Baldwin, 

1993; Phillips & Roop, 2001).  Although opsonisation of  the bacteria with specific 

IgG or activation with IFN-γ has been shown to enhance the bactericidal action of 
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cultured macrophages (Eze et al., 2000; Jiang & Baldwin, 1993), virulent strains of 

Brucella can still resist killing by these cells and in time display net intracellular 

replication.  The progression of Brucella-containing vacuoles down the endosomal-

lysosomal pathway is limited (Celli et al., 2003) and virulent Brucella strains are 

trafficked to intracellular compartments that are favourable for intracellular survival 

and replication.  The composition of these intracellular compartments, known as 

replicative phagosomes is enriched in membrane components originating from the 

endoplasmic reticulum (ER) of the host macrophages.  The expression of the 

Brucella type IV secretion system appears to be essential for maintaining this 

continual interaction between the Brucella containing vacuole and the ER (Celli et 

al., 2003).  Although the replicative phagosome is a favourable environment for 

intracellular survival, Brucella still need to make major physiological adaptations to 

withstand the environmental stresses during long term residence in the host 

macrophage (Valderas & Roop, 2006).   

 

1.7. Host invasion parallels between S. meliloti and Brucella species  

Both S. meliloti and Brucella species persist in eukaryotic cells within a host derived 

membrane bound acidic compartment (LeVier et al., 2000; Mellor, 1989; Niner & 

Hirsch, 1998).  As previously stated, experimental evidence has been accumulating 

over recent years suggesting parallels exist in the way S. meliloti and B. abortus 

survive within their respective hosts (Ferguson et al., 2004; LeVier et al., 2000; 

Roop et al., 2002).  For example the production of periplasmic cyclic β-glucans is 

required for S. meliloti to adhere to root hairs and B. abortus species to survive 

within their intracellular compartments in the host macrophage (Arellano-Reynoso et 

al., 2005; Dickstein et al., 1988).  There is also conservation of regulatory genes 

between Brucella species and S. meliloti which are important for either invasion or 

persistence within their respective hosts.  For example, the B. abortus bvrS/bvrR 

sensor kinase/response regulator system is necessary for the intracellular survival of 

the bacteria  (Sola-Landa et al., 1998).  Although it has not been possible to make 

null mutants in the S. meliloti homologues of these genes, demonstrating they are 

essential (Cheng & Walker, 1998; Keating, 2007), an S. meliloti mutant that 
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produces a constitutively active ExoS sensor kinase is compromised in its ability to 

infect root hairs (Cheng & Walker, 1998; Yao et al., 2004; Zhang & Cheng, 2006). 

One major parallel in the lifestyle of S. meliloti and B. abortus bacteria is the 

requirement for the bacterial encoded BacA protein, which is critical for both 

bacteria to chronically infect their respective hosts.     

 

1.8. The BacA protein  

 

1.8.1. The BacA protein is essential for chronic infection of both S. 

meliloti and B. abortus  

The S. meliloti bacA mutant Rm8368 was initially identified by a TnphoA 

mutagenesis screen, as a mutant defective in establishing a symbiosis with alfalfa 

plants (Long et al., 1988).  The S. meliloti bacA Rm8368 mutant could infect and 

invade the root hairs and developing nodule though the infection thread and be 

successfully endocytosed into the host cell.  However, unlike the Rm8002 parent 

which successfully differentiated into a nitrogen fixing bacteroid (Fig. 1-4A),  the 

bacA mutant was unable to successfully differentiate and was found to undergo 

senescence (Fig. 1-4B)  (Glazebrook et al., 1993).  Thus, the mutated locus strain 

was named bacA (bacteroid development factor A).   

 

 

 

 

 

Figure 1-4. Transmission electron micrographs of nodule sections induced by the      

S. meliloti parent strain and the bacA mutant. (A)  In nodules induced by the S. meliloti 

Rm8002 parent strain, healthy regular shaped bacteroids are visible, as highlighted by the 

arrows. (B) Contrastingly, in nodules induced by the S. meliloti bacA mutant Rm8386 the 

bacteroids highlighted by the arrows appear very intensely stained and irregularly shaped 

indicating they are senescent (Glazebrook et al., 1993). Bars, 1 µm.  
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Subsequently, an isogenic B. abortus  bacA mutant was constructed (LeVier et al., 

2000).  The mutant, which was designated KL7, initially colonized the livers and 

spleens of experimentally infected BALB/c mice up to 2 weeks post infection 

(LeVier et al., 2000).  However, after this time the KL7 mutant was rapidly cleared 

from mice, while the B. abortus parent strain could successfully maintain chronic 

infection in these organs (LeVier et al., 2000).  Additionally the B. abortus KL7 

mutant appeared much less resistant to cultured murine macrophages, relative to the 

parental strain (LeVier et al., 2000).  Thus, these studies demonstrated that although 

both the S. meliloti and B. abortus bacA mutants can establish an intracellular 

infection within their hosts, neither can maintain a long term residence in their 

intracellular niche.  Interestingly a recent study found that disruption of the Rv1819 

gene in the M. tuberculosis, which encodes a BacA related protein (see section 1.8.2) 

resulted in the bacteria being unable to maintain chronic infection in mice 

(Domenech et al., 2008).  

 

1.8.2. bacA encodes an inner membrane protein  

The S. meliloti bacA gene encodes a 420 amino acid inner membrane  protein, which 

is predicted to have seven membrane spanning domains (Glazebrook et al., 1993) 

(Fig. 1-5) and shows 82% similarity and 67% identity to the B. abortus BacA protein 

(LeVier et al., 2000).  The BacA homolog in E. coli SbmA is 79% similar and 64% 

identical to S. meliloti BacA (Ichige & Walker, 1997).  It was suggested some years 

ago by Southern blot analysis, that the genomes of  several bacteria encode proteins 

that appear to be related to the S. meliloti bacA gene (Glazebrook et al., 1993).  In 

subsequent years, BLAST searches of sequence databases have revealed there is a 

second class of proteins related to BacA/SbmA, referred to as BacA related proteins 

(LeVier & Walker, 2001).  The BacA related proteins are more diverged from S. 

meliloti BacA (38-59% similarity) but do show large blocks of similar residues.  

These proteins are also around 200 amino acids longer than BacA/SbmA, with highly 

conserved motifs common to bacterial ATP binding cassette (ABC transport) 

proteins (Fath & Kolter, 1993).  The BacA/SbmA gene products themselves are 

classified as one of the subunits of a putative transport protein belonging to the ABC 

superfamily (Mattiuzzo et al., 2007).  ABC-transport systems are widely distributed 
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in all living organisms and mediate the uptake or export of a wide variety of 

substances across cell membranes  (Biemans-Oldehinkel et al., 2006; Davidson & 

Chen, 2004; Locher, 2004). 

 

 

 

 

 

 

 

 

 

 

       Figure 1-5. The proposed topology of the S. meliloti BacA inner membrane protein 

      (Glazebrook et al., 1993). 

 

1.8.3. BacA is proposed to be involved in peptide uptake 

E. coli sbmA was first identified as a gene that mediated sensitivity of bacteria to the 

microcins B17 and J25 and the glycopeptide antibiotic bleomycin (Lavina et al., 

1986; Salomon & Farias, 1995; Yorgey et al., 1994).  These observations led to the 

proposal that the SbmA protein could be a peptide transporter.  It was subsequently 

found that the S. meliloti and B. abortus bacA mutants displayed an increased 

resistance to the glycopeptide bleomycin (Ferguson et al., 2002; Ichige & Walker, 

1997; LeVier et al., 2000).  Additionally, the finding that E. coli sbmA deficient 

mutants could be complemented by the S. meliloti bacA gene (refer to section 3.1 for 

more details) suggested a functional similarity between the two proteins (Ichige & 

Walker, 1997).  Hence, it was proposed that like SbmA, BacA could be involved in 

the transport of peptides, such as bleomycin, into the cell.  Interestingly, a more 

recent study found that the E. coli SbmA protein is involved in the uptake of Bac7, 

which is a proline-rich antimicrobial peptide (AMP) of mammalian origin (Mattiuzzo 

et al., 2007).  Two gene families (glycine rich proteins and cysteine rich peptides), 

which encode secreted AMPs, have been identified to have nodule-specific 
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expression in M. truncatula, a legume host of S. meliloti (Alunni et al., 2007; Kevei 

et al., 2002; Mergaert et al., 2003; Mergaert et al., 2006).  It has been suggested 

previously that these peptides could play a role in initiating bacteroid development 

(Mergaert et al., 2003; Mergaert et al., 2006).  Hence, it may be possible that BacA 

could be involved in the uptake of a host derived peptide essential for bacteroid 

differentiation (Fig. 1-6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6. Proposed model for BacA function. Once peptides have reached the 

periplasmic space they could be directly transported across the cytoplasmic membrane by 

the BacA protein. A schematic of the S. meliloti cell envelope is shown.  

 

1.8.4. BacA also affects the lipid A VLCFA modification  

Free-living S. meliloti bacA mutants were also shown to display an increased  

sensitivity to detergents and cell envelope-disrupting agents (Ferguson et al., 2002).  

This finding supports a model whereby the function of BacA could affect the 

integrity of the bacterial cell envelope.  Consistent with this model, the BacA protein 

was found to be distantly related to a family of peroxisomal-membrane proteins, 

including the human adrenoleukodystrophy protein (hALDP) (Ferguson et al., 2004).  

Several members of this family are proposed to be involved in the transport of either 

very-long-chain fatty acids (VLCFAs) or long chain fatty acids out of the cytoplasm 

into the peroxisome, where they can then be degraded (Braiterman et al., 1999; 
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Footitt et al., 2002; Verleur et al., 1997; Zolman et al., 2001).  One member of this 

family, hALDP is affected in patients with X-linked adrenoleukodystrophy.  This 

neurological disorder is caused by a mutation in the ABCD1 gene (which encodes 

hALDP), which results in defects in peroxisomal β-oxidation (Braiterman et al., 

1999) and the accumulation of VLCFAs in all tissues of the body (Valianpour et al., 

2003).  Interestingly, it was also determined that four site directed mutations of the 

BacA protein that prevent S. meliloti from forming a successful symbiosis with 

alfalfa are also conserved amino acids in hALDP (Ferguson et al., 2004).  This 

finding combined with the free-living phenotypes of the S. meliloti and B. abortus 

bacA mutants (Ferguson et al., 2002; Roop et al., 2002) led to the discovery that the 

BacA protein affects the VLCFA lipid A content in both S. meliloti and B. abortus 

(Ferguson et al., 2004).   

The lipid A is a component of the lipopolysaccharide (LPS), which forms the 

outermost leaflet of the outer membrane in gram negative bacteria (Fig. 1-6). The 

LPS is composed of the O-chain polysaccharide, the core oligosaccharide and the 

lipid A which is the moiety that anchors the molecule into the outer leaflet of the 

outer membrane (Fig. 1-6).  The lipid A of the LPS of both S. meliloti and B. abortus 

parent strains in the free living state is modified with a VLCFA of either 27-

OHC28:0, 27-O (βOmeC4:O) C28:0 or 29-OHC30:0 (Bhat et al., 1991; Ferguson et 

al., 2004) (Fig. 1-7 ).  Contrastingly, the S. meliloti and B. abortus bacA mutants 

produce a mixture of lipid A molecules with and without the VLCFA modification 

(Ferguson et al., 2004).  Therefore, in the absence of the BacA protein S. meliloti and 

B. abortus can only transfer the VLCFA onto a portion of the lipid A molecules. This 

led to the proposal of a model whereby the BacA protein transports VLCFAs out of 

the cytoplasm into the periplasm, where they then can be used to modify the lipid A 

in the outer membrane (Ferguson et al., 2004) (Fig.1-8). 
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Figure 1-7.  Major lipid A species in free-living S. meliloti. The lipid A molecule shown is 

modified by 27-OHC28:0, which can be replaced by 27-O (βOMeC4:0) C28:0 (forming 

another major species) or 29-OHC30:0 (forming a minor species) (Ferguson et al., 2004). 
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Figure 1-8. Second proposed model for BacA function.  The BacA protein could 

transport VLCFAs out of the cytoplasm into the periplasm, where they then can be used to 

modify the lipid A in the outer membrane. 

 

1.9. Biosynthesis of VLCFA lipid A modifications 

To determine if the reduction in the VLCFA modification was responsible for the 

host persistence defect in the S. meliloti bacA mutant and to gain a better 

understanding of the role of VLCFA modifications in the symbiosis, the biosynthesis 

of the VLCFA-modified LPS was investigated.  Mutants were constructed with 

disruptions in the acpXL and lpxXL genes (Ferguson et al., 2005) which encode 

proteins directly involved in the biosynthesis of VLCFA-modified LPS.  The 

VLCFAs are synthesized while attached to a cytoplasmic C28-acyl carrier protein 

(AcpXL) (Brozek et al., 1996) and transferred onto a 3-deoxy-D-manno-octulosonic 

acid (Kdo)2-lipid IVA by an inner membrane-associated C28-acyl transferase 

(LpxXL) protein (Basu et al., 2002).  Although the LPS of the acpXL and lpxXL free-
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living mutants completely lacks the VLCFA modification in complex media, it was 

determined the mutants were able to form a chronic infection with alfalfa (Ferguson 

et al., 2005). This suggested that unlike the BacA protein, these proteins were not 

essential for the alfalfa symbiosis.  

 

1.10. The S. meliloti acpXL and lpxXL mutants show defects in the 

alfalfa symbiosis 

Although the AcpXL and LpxXL proteins were not essential for the alfalfa symbiosis 

(Ferguson et al., 2005), S. meliloti lacking these proteins were found to be 

substantially less competitive in alfalfa co-inoculation experiments with the parent 

strain.  Additionally, the S. meliloti acpXL mutant showed a delay in nodulation, 

relative to the parent strain (Ferguson et al., 2005; Sharypova et al., 2003).  Work 

performed on the related bacterium Rhizobium leguminosarum, found that cells 

lacking the AcpXL protein were delayed in the onset of nitrogen fixation, relative to 

the parent strain (Vedam et al., 2004).  Additionally, transmission electron 

microscopy (TEM) of R. leguminosarum acpXL mutant infected pea nodules showed 

the bacteroids had major defects, compared to the parent strain, whereby the 

bacteroids were oddly shaped and multiple bacteroids could be found within a single 

symbiosome (Vedam et al., 2004).  Therefore, despite not being essential for the 

symbiosis, these data would suggest the VLCFA modification could still play a key 

role.  Furthermore VLCFAs are produced by a number of other bacterial species, 

which also form persistent bacterial-host interactions. Hence, it has previously been 

hypothesized that VLCFAs may play an important role in host persistence (Bhat et 

al., 1991; Vedam et al., 2003). 

 

1.11. Could additional host induced VLCFA modifications be occurring 

in S. meliloti? 

However, there still remains the unresolved question as to why the bacA mutant, 

which only has a partial reduction in the VLCFA lipid A content, is defective in the 

symbiosis, whereas the acpXL and lpxXL mutants which completely lack the 

modification are able to persist within the plant.  One possibility is that S. meliloti 
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LPS is further modified with VLCFAs during the legume symbiosis and that the 

BacA protein, not AcpXL and LpxXL, could be essential for these host-induced LPS 

changes (Ferguson et al., 2005).  Evidence for this stems from work performed in     

R. leguminosarum, where it was found that despite lacking the VLCFA modification 

in the free-living state, the lipid A of the acpXL mutant was partially modified with a 

VLCFA when extracted from the pea plant (Vedam et al., 2006).  Furthermore, 

experimental evidence has also shown that the LPS hydrophobity increases in           

S. meliloti during the alfalfa symbiosis, consistent with a increase in VLCFAs 

(Ferguson et al., 2005).  Additionally, the genome of S. meliloti encodes multiple 

acyl carrier and transferase genes whose products could potentially be involved in 

host induced LPS changes (Geiger & Lopez-Lara, 2002).  Intriguingly the S. meliloti 

smb20651 gene encodes a potential acyl carrier protein which is located in an operon 

with putative long-chain fatty acid CoA ligase (Geiger & Lopez-Lara, 2002) (for 

more details refer to section 6.2.1.5).  Thus, Smb20651 could be a potential 

candidate for host induced lipid A changes in S. meliloti.  In addition to the BacA 

protein playing some role in host induced lipid A changes, it is possible that one or 

more of these additional proteins could partially compensate for the loss of AcpXL 

and LpxXL in planta. 

 

1.12. LPS transport 

However, if the proposed model that BacA plays some role in the transport of 

activated VLCFAs out of the cytoplasm onto the lipid A in the outer membrane 

(Ferguson et al., 2004) is correct, then the LPS would need to be transported across 

the inner membrane before the lipid A could be modified with a VLCFA.  However, 

the process by which LPS and other lipid containing macromolecules are transported 

from their site of synthesis on the inner face of the inner membrane to the outer 

membrane is still a poorly understood process (Doerrler, 2006; Ruiz et al., 2006).  

                     

1.12.1. The MsbA protein is involved in LPS transport in E. coli  

In E. coli, the transport of newly synthesized rough LPS (containing lipid A and the 

core oligosaccharide) from the inner to the outer membrane is dependent upon the 
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inner membrane ABC transporter MsbA protein by a proposed flip-flop mechanism 

(Doerrler et al., 2001; Zhou et al., 1998) (Fig.1-9).  The msbA gene was first 

identified in E. coli as a multicopy suppressor of a mutation in the htrB (lpxXL) gene, 

which encodes an enzyme involved in a late step of the biosynthesis of the lipid A 

(Clementz et al., 1996; Karow & Georgopoulos, 1993).  Although this protein is 

essential for E. coli growth (Doerrler et al., 2001), a temperature-sensitive msbA 

mutant has been shown to accumulate LPS in the inner membrane at a non-

permissive temperature (Doerrler et al., 2001; Doerrler et al., 2004).  The E. coli 

MsbA protein is also proposed to be involved in the transport of phospholipids across 

the inner membrane (Doerrler et al., 2001).  Additionally in the bacterium Neisseria 

meningitidis deletion of the sole msbA gene prevents LPS transport, although in this 

case phospholipid transport was not found to be affected.  Therefore, there is still 

some debate regarding the role of MsbA proteins in phospholipid transport (Tefsen et 

al., 2005).  A protein implicated in the LPS targeting to the outer membrane is the 

IMP (increased membrane permeability) protein, a �-barrel outer membrane protein, 

the IMP protein has been shown to be essential in E. coli and its depletion results in 

abnormalities in outer membrane assembly (Braun & Silhavy, 2002).  Additionally, 

it has been proposed that two E. coli essential genes lptA and lptB participate in LPS 

biogenesis. These two genes have been proposed to play a role in transport of LPS 

from the outer face of the inner membrane to the outer membrane (Sperandeo et al., 

2007). 
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Figure 1-9.  Schematic showing steps of lipid movement through the envelope of       

E. coli. �Phospholipids and rough LPS (Ra LPS) are synthesized in the cytoplasm and at the 

inner leaflet of the inner membrane.  These molecules are then transported across the inner 

membrane.  The MsbA protein plays a major role in this process.  LPS is transported across 

the inner membrane by an ATP dependent transport mechanism involving MsbA. The O-

antigen is added to Ra LPS on the periplasmic face of the inner membrane. The transport 

mechanism across the periplasm is still unclear. Once LPS reaches the outer membrane it is 

thought to be transported to the extracellular side of the outer membrane by an ATP 

independent transport system, presumably involving the IMP protein (Doerrler, 2006).  

 

1.12.2. The S. meliloti genome encodes multiple MsbA like proteins 

Interestingly, the S. meliloti Rm1021 genome (Galibert et al., 2001) encodes multiple 

proteins which share between 26-34% identity (47-58% similarity) and 23-32% 

identity (44-54% similarity) over their entire length with the E. coli and N. 

meningitidis MsbA proteins respectively (Beck et al., 2008).  It has previously been 

shown that the S. meliloti MsbA like protein, ExsA affects the molecular weight 

distribution of the exopolysaccharide (EPS) succinoglycan and so has been proposed 

to be a transporter of succinoglycan across the inner membrane (Becker et al., 1995). 

Although the S. meliloti exsA mutant can form a symbiosis with legumes, in B. 

abortus loss of the exsA gene resulted in decreased survival of the bacteria in 

BALB/c mice relative to the parent strain (Rosinha et al., 2002) demonstrating that 
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the ExsA protein is critical for full bacterial virulence.  Additionally, the exsA mutant 

strain induced improved protective immunity in B. abortus infected mice compared 

to the protective immunity induced by the current commercially available S19 

vaccine strain (Rosinha et al., 2002).  Furthermore, the S. meliloti and B. abortus 

MsbA like potein, NdvA (known as Cgt in B. abortus) is involved in the transport of 

cyclic β−(1,2) glucan and is essential for the host interaction (Dickstein et al., 1988; 

Roset et al., 2004; Stanfield et al., 1988).  Together these findings raise the 

possibility that other S. meliloti MsbA-like proteins could also be playing a role in 

the transport of polysaccharide or lipid-containing polysaccharide such as LPS and 

these processes could play an important role in the host interaction.  Additionally by 

investigating lipid trafficking in S. meliloti and by characterizing the role of the           

S. meliloti MsbA like proteins more could potentially be learnt regarding the possible 

role of the BacA protein in the VLCFA modification of the lipid A and where in the 

cell envelope this process may occur.      

 

1.13. Loss of the BacA protein in S. meliloti may result in other lipid A 

independent changes  

In addition to the proposed roles for the BacA protein in peptide uptake and VLCFA 

transport (Figs 1-6 & 1-8), there also remains the possibility that loss of BacA could 

result in other alterations to the cell.  For example the free-living S. meliloti bacA 

mutant has an increased sensitivity to the hydrophobic dye Crystal Violet (Ferguson 

et al., 2002).  To date this phenotype has not been shown to be due to the VLCFA 

alteration and could be consistent with other alterations occurring in the S. meliloti 

cell envelope.  It has been shown that the BacA homologue SbmA in Salmonella 

enterica serovar Typhimurium is encoded in an operon with yaiW, which is thought 

to encode a lipoprotein (K.Tan and G.P. Ferguson, unpublished data).  Although      

S. Typhimurium SbmA is not essential for chronic persistence, YaiW is essential (S. 

Eriksson and G.P. Ferguson, unpublished data).  While BacA is not part of an operon 

(refer to section 7.1 for more details) and no YaiW homologue has been found in S. 

meliloti, there are multiple lipoproteins encoded in the genome of S. meliloti 

(Galibert et al., 2001).  This raises the possibility that in addition to affecting the 

VLCFA modification, BacA could also effect the lipid modification of another cell 
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envelope component.  Interestingly it has also been shown in E. coli that a functional 

SbmA protein is required for full efficiency of the tetracycline exporter TetA (de 

Cristobal et al., 2008).  This finding too is consistent with the idea that BacA 

function may similarly affect the activity of one or more membrane proteins.         

 

1.14. Aims of PhD project 

The overall aim of this PhD was to use the S. meliloti legume symbiosis as a model 

system to learn more about bacterial factors that are important for chronic infection.  

 

The specific aims of this project were: 

1. To investigate if the S. meliloti BacA protein is involved in peptide uptake and 

determine if this may be linked to the essential role of BacA in chronic infection 

 

2.  To investigate the role and the biosynthesis of LPS in free-living and symbiotic S. 

meliloti to determine the importance of the VLCFA modification in chronic infection 

 

3. To determine if there are any other alterations occurring in S. meliloti upon loss of 

the BacA protein, which could also be linked to the host persistence defect 
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Chapter 2: Materials and Methods 
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2.1. Bacterial strains and plasmids 

All S. meliloti and E. coli bacterial strains used in this work are described in tables   

2-1 and 2-2, respectively.  Plasmids used in this work are described in table 2-3. 

 

2.2. Growth conditions and media  

Luria-Bertani (LB) (Sambrook et al., 1989) broth was prepared by dissolving 10 g of 

tryptone, 5 g of yeast extract and 10 g of NaCl, in a final volume of 1 litre of  

distilled water.  The pH of the solution was then adjusted to 7.5, followed by 

autoclaving.  Muller Hinton broth (Mueller & Hinton, 1941) containing 2.0 g of meat 

infusion, 17.5 g of casein hydrolystate and 1.5 g of starch per litre was purchased 

from Merck and prepared according to the manufacturer’s instructions.  To prepare 

LB and Muller Hinton agar, 15 g of Bacto agar was added per litre of broth, prior to 

autoclaving.  For experiments, unless otherwise stated S. meliloti strains were grown 

from -80°C frozen stocks and incubated at 30°C with aeration at 200 rpm, in LB 

broth supplemented with 2.5mM CaCl2 and 2.5mM MgSO4 (LBMC) for 48 hours.   

E. coli strains were grown from - 80ºC frozen stocks and incubated in either LB or 

Mueller Hinton broth at 37°C with aeration at 200 rpm for 16 hours.  When required 

antibiotics were used at the defined concentrations (table 2-4), unless stated 

otherwise.  Prior to use, antibiotics were filter sterilized and stored at -20ºC.  Both S. 

meliloti and E. coli strains were stored long-term at -80ºC with 10% v/v DMSO. 
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Table 2-1. S. meliloti strains used in this study 

 r
 denotes antibiotic resistance  

* Insertional mutation not yet confirmed by PCR  

 

 

 
 
 

S. meliloti strains Relevant characteristics  Source and reference 

Rm1021 Sm
r
 derivative of SU47 (Meade et al., 1982) 

Rm8002 Wild type; Rm1021 (SU47 Sm
r
) pho (Long et al., 1988) 

Rm8654 Rm8002 bacA654::Spc
r
 (Ichige & Walker, 1997) 

SmGF1 Rm1021, bacA654::Spc
r
 (Ferguson et al., 2002) 

SmGF4 Rm1021, acpXL::pK18mobGII Nm
r
 (Ferguson et al., 2005) 

SmGF5 Rm1021, bacA654::Spc
r
, 

acpXL::pK18mobGII Nm
r           

 

(Ferguson et al., 2005) 

SmGF6 Rm1021, lpxXL::pHJ104 Nm
r  

Hm
r
 (Ferguson et al., 2005) 

SmGF7 Rm1021, bacA654::Spc
r
,                  

lpxXL:: pHJ104 Nm
r  

Hm
r      

 

(Ferguson et al., 2005) 

SmGF8 Rm1021, acpXL::pK18mobGII,  

lpxXL:: pHJ104 Nm
r 
Hm

r
 

(Ferguson et al., 2005) 

SmGW1 Rm1021, recA::Tn5::233  Gm
r  

Spc
r
 G. Walker 

SmVM1 Rm1021, bacA654::Spc
r
,    

recA::Tn5::233 Gm
r 
Spc

r
 

This study 

ALR30B1 Rm1021, smb20651::Spc
r
 (Ramos-Vega et al., 2009) 

SmVM2 Rm1021, smb20651::Spc
r
, 

acpXL::pK18mobGII Nm
r
 

This study 

SmgshA Rm1021, gshA::pJHgshA Nm
r
 (Harrison et al., 2005) 

SmgshB Rm1021, gshB::pCMgshB Tc
r
 (Harrison et al., 2005) 

SmgshB2 Rm1021, smb21586::pK19mob2�HMB 

Nm
r
 

A. Becker 

SmVM3 Rm1021, bacA654::Spc
r
,   

gshA::pJHgshA Nm
r
 

This Study 

SmVM4 Rm1021, gshB::pCMgshB Tc
r
, 

bacA654::Spc 

This study 

SmVM5* Rm1021, gshA::pK19mob2�HMB Nm
r
 This Study 

SmVM7 Rm1021, gshB::pCMgshB Tc
r 

smb21586::pK19mob2�HMB Nm
r
 

This study 

SmVM8* Rm1021, smb21275::pK19mob2�HMB 

Nm
r
 

This Study 

SmVM9* Rm1021, smb21273::pK19mob2�HMB 

Nm
r
 

This Study 

SmVM10 Rm1021, Smc04266:: pHJ104 Nm
r 
Hm

r
 This study 

SmVM11 Rm1021, Smc04266:: pHJ104 Nm
r 
Hm

r
, 

bacA654::Spc 

This study 

SmSB1 Rm1021, msbA2::pHJ104 Nm
r 
Hm

r
 (Beck et al., 2008) 

SmSB1 Rm1021, msbA1::pHJ104 Nm
r 
Hm

r
 S. Beck  

SmVM12 Rm1021, msbA2::pHJ104 Nm
r 
Hm

r
, 

bacA654::Spc 

This study 

SmVM13 Rm1021, msbA1::pHJ104 Nm
r 
Hm

r
, 

bacA654::Spc 

This study 
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Table 2-2. E. coli strains used in this study 

 

r
 denotes antibiotic resistance  

 
 
       

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. coli  strains Relevant characteristics Source or reference 

DH5� supE44�lacU169 (�80lacZ�M15) 

hsdR17 recA1 endA1 gyrA96 thi-1 relA1 

Bethesda Research 

Laboratory  

MT616 MM294A recA56 (pRK600) Cm
r
 (Finan et al., 1986) 

MM294A pro-82 thi-1 endA1 hsdR17 supE44 (Finan et al., 1986) 

One Shot® TOP10 

competent cells  

F- mcrA �(mrr-hsdRMS-mcrBC) 

�80lacZ�M15 �lacX74 recA1 araD139 

�(ara-leu) 7697 galU galK rpsL (Sm
r
) 

endA1 nupG 

 Invitrogen  

NEB 5-alpha 

competent cells 

 

huA2 �(argF-lacZ)U169 phoA glnV44 

	80� (lacZ)M15 gyrA96 recA1 relA1 

endA1 thi-1 hsdR17 

New England Biolabs 

S17-1 
 
thi pro hsdR

+
 recA/RP4-2 Tc::Mu, 

Km::Tn7 (RP4 to 2 =RP4∆Tn1) 

 (Simon et al., 1983)         

MJF274 F2
-
 ∆kdpABC5 thi rha lacI lacZ trkD1  (Elmore et al., 1990) 

MJF335 
 
MJF276 gshA::Tn10 Kan

r
  (Miller et al., 1997)      

RYC1000 MC4100  ∆rbs-7 recA56 gyrA  (Genilloud et al., 1984) 

RYC1001 RYC1000 sbmA (spontaneous)   F. Moreno 
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Table 2-3. Plasmids used in this study 
 

Plasmid Relevant characteristics Source or reference 

pRK404 Broad host range control plasmid Tc
r
 (Ditta et al., 1985) 

pJG51A pRK404 carrying the SmbacA gene (Glazebrook et al., 1993) 

pAI351 

 

pRK404 carrying the EcSbmA gene 

under control of the S. meliloti bacA  

promoter 

(Ichige & Walker, 1997) 

K8G  pRK404 with bacA K8G  (LeVier & Walker, 2001) 

W57G pRK404 with bacA W57G  (LeVier & Walker, 2001) 

S83G pRK404 with bacA S83G  (LeVier & Walker, 2001) 

W87G pRK404 with bacA W87G  (LeVier & Walker, 2001) 

Y120G pRK404 with bacA Y120G  (LeVier & Walker, 2001) 

N159G  pRK404 with bacA N159G  (LeVier & Walker, 2001) 

H165G pRK404 with bacA H165G  (LeVier & Walker, 2001) 

W182G pRK404 with bacA W182G  (LeVier & Walker, 2001) 

Q193G pRK404 with bacA Q193G  (LeVier & Walker, 2001) 

R194G pRK404 with bacA R194G  (LeVier & Walker, 2001) 

D198G pRK404 with bacA D198G  (LeVier & Walker, 2001) 

F223G pRK404 with bacA F223G  (LeVier & Walker, 2001) 

S231G pRK404 with bacA S231G  (LeVier & Walker, 2001) 

T259G pRK404 with bacA T259G  (LeVier & Walker, 2001) 

R284G  pRK404 with bacA R284G  (LeVier & Walker, 2001) 

Q332G  pRK404 with bacA Q332G  (LeVier & Walker, 2001) 

K350G  pRK404 with bacA K350G  (LeVier & Walker, 2001) 

F363G  pRK404 with bacA F363G  (LeVier & Walker, 2001) 

pMM100 Derivative of pACYC184 that expresses the 

LacI repressor Tc
r
 

(Lavina et al., 1986) 

pWSK29 pSC101/bla/- , low copy number vector 

Amp
r
 

(Wang & Kushner, 1991) 

pWSK29-MtbacA pWSK29, carrying the M. tuberculosis bacA 

gene under the control of the lac promoter   

(Domenech et al., 2008) 

 

pJN105 araC-PBAD casette cloned in pBBR1MCS5, 

Gm
r
 

(Newman & Fuqua, 

1999) 

pmsbA2G97A pJN105 carrying the entire msbA2  gene 

containing a G97A mutation and 90 bps 

upstream Gm
r
 

(Beck et al., 2008) 

pRK600 pRK2013 npt ::Tn9 Cm
r
 (Finan et al., 1986) 

pRF771 pTE3 with an alternative polylinker Tc
r
 (Wells & Long, 2002) 

pJG176 pRF771, Ptrp::msbA2 (Griffitts et al., 2008) 

pJH104 S. meliloti suicide plasmid Nm
r 
Hm

r
 (Davies & Walker, 2007) 

pCR 2.1-TOPO  TA PCR cloning vector containing lacZ, 

Amp
r
 kan

r
/Nm

r
 

Invitrogen 

pTOPO-

smc04266in 

pCR 2.1-TOPO carrying a 267 bp 

smc04266 internal fragment 

This study 

pJH104-

smc04266in 

pJH104 carrying a 267 bp smc04266 

internal fragment 

This study 

pBBR1MCS-5 Derivate of pBBR1-MCS Gm
r
 (Kovach et al., 1994) 

pgshAc pBBR1MCS-5 with a 1,500 bp PCR 

fragment of gshA 

(Harrison et al., 2005) 

pK19mob2�HMB

-smb21275in 

pK19mob2�HMB carrying 309bp  

smb21275 internal fragment Nm
r
 

A. Becker 
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pK19mob2�HMB

-smb21273in 

 

pK19mob2�HMB carrying 334 bp 

smb21273 internal fragment Nm
r
 

 

A. Becker 

pK19mob2�HMB

-gshAin 

pK19mob2�HMB carrying 330 bp gshA 

internal fragment Nm
r
 

A. Becker 

r
 denotes antibiotic resistance  

 

 
Table 2-4. Antibiotics used in this study. 
 

Final concentration (µg.ml
-1

) Antibiotic 

E. coli S. meliloti 

Solvent 

Ampicillin 50 - Water 

Chloramphenicol 12.5 20 100% Ethanol 

Gentamycin
a,b

 5 50 Water 

Hygromycin - 100 (in LB) 

150 (in LBMC) 

Water 

Kanamycin 50 - Water 

Neomycin
c
 - 200 Water 

Spectinomycin
a
 20 100 Water 

Streptomycin 100 500 Water 

Tetracycline 10 10 50% Ethanol 
a 
When used in combination for S. meliloti, gentamycin was used at a final                           

concentration of 20 µg.ml
-1

 and spectinomycin was used at a final concentration of                                

50 µg.ml
-1 

b
 When used for the S. meliloti gshA & pgshAc and S. meliloti gshA & pBBR1MCS-5 mutants a 

concentration of 10 µg.ml
-1

 was used.  
c
 When used for the S. meliloti gshA & pgshAc and S. meliloti gshA & pBBR1MCS-5 mutants a 

concentration of 100 µg.ml
-1

 was used. 
 

2.3. Molecular techniques  

 

2.3.1. Plasmid Purification 

Early stationary phase E. coli cultures (OD600 ~2.5) containing the desired plasmid 

were harvested by centrifugation at 2264 x g for 10 minutes. The plasmids were 

isolated using the QIAprep Spin Miniprep Kit (Qiagen) and a microcentrifuge 

according to the manufacturer’s instructions, with the exception that in the final step 

the DNA was eluted into 30 µl of molecular grade water (Sigma). The plasmid DNA 

was then stored at -20ºC.  
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2.3.2. Agarose gel electrophoresis  

Purified DNA was analysed on 1.0% (w/v) agarose (Seakem LE agarose, Cambrex) 

gels in 1 x TAE buffer (50 x TAE buffer: 242 g Tris, 100 ml of 0.5 M Na2 EDTA 

[pH 8.0] and 57.1 ml glacial acetic acid, adjusted to 1 litre with distilled water).  Five 

parts DNA were typically added to one part 6 x loading buffer (30% v/v glycerol, 

0.25% w/v bromophenol blue and 0.25% w/v xylene cyanol), prior to loading the gel. 

A 1 kb or 100 bp DNA ladder (both, New England Biolabs) were used according to 

the manufacturers instructions to size the DNA products. Each gel was run at 80V, 

until adequate migration had occurred, as determined by the position of the leading 

dye front. The gel was then stained with ethidium bromide (0.5 µg.ml
-1

) for 30 

minutes, the DNA fragments were visualized using a UV light source and then 

photographed. When required DNA was extracted from gels and purified using the 

QIAquick Gel Extraction Kit (Qiagen) and a microcentrifuge according to the 

manufacturer’s instructions.  

 

2.3.3. Restriction digests 

Restriction digests were performed to digest the pHJ104 vector prior to ligation with 

the smc04266 internal gene fragment and additionally to check the pCR-2.1 TOPO 

and pJH104 vectors for presence of the smc04266 insert.  The XhoI and AvrII 

restriction enzymes were used (New England Biolabs).  Reactions were prepared 

according to the manufacturer’s instructions using 1 µl of each restriction enzyme, 2 

µl of 10 x NEBuffer 2, 100 µg.ml
-1 

of BSA, the appropriate amount of DNA and the 

reaction was made up to a final volume of 20 µl with molecular grade water (Sigma). 

The reaction was incubated at 37ºC for 2 hours, after which the products were run on 

an agarose gel and if necessary the products were immediately gel purified to 

eliminate the enzymes.  
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2.3.4. Polymerase chain reaction (PCR) 

Primers used in this study are detailed in section 2.3.6. Primers were either designed 

by hand or by using MacVector software, version 9.5 and were purchased from 

MWG-Biotech AG.  To amplify DNA, Taq polymerase (New England Biolabs) was 

used according to the manufacture’s protocol.  A typical PCR reaction was set up as 

follows: 

2.5 µl of forward primer (10 pmol/µl) 

2.5 µl of reverse primer (10 pmol/µl) 

2    µl of 10 x ThermoPol buffer 

1    µl of dNTPs (10 mM each, Roche) 

1    µl of template (bacterial colony diluted in 20 µl of molecular water)  

1    µl of Taq DNA polymerase (5 units) 

10  µl of molecular water (Sigma) 

 

The PCR reactions were run on an Eppendorf mastercycler gradient PCR machine 

and PCR conditions were as follows: 

1. 94 ºC for 4 minutes (initial denaturation) 

2. 94 ºC for 1 minute (denaturation) 

3. 54 ºC for 50 seconds (annealing) 

4. 72 ºC for 1 minute (extension) 

Steps 2-4, 30 cycles 

5. 72 ºC for 10 minutes (final extension) 

Samples were then held at 4 ºC, until required.  

The samples were then run on an agarose gel to determine that the PCR product was 

of the correct size. When required DNA was extracted from gels and purified 

(section 2.3.2) 

 

2.3.5. Transformation of DNA into bacterial cells 

Plasmid DNA was transformed into Top 10 (Invitrogen) and NEB-5-alpha cells 

(New England Biolabs) according to the enclosed protocols.  DNA was incubated 

with the cells on ice for 30 minutes and then heat shocked at 42ºC for 30 seconds and 
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placed on ice for 5 minutes. The mixture was then incubated with SOC medium (2% 

tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4 and 20 mM glucose) at 37ºC for 1 hour with shaking, before being plated 

onto LB plates with the appropriate antibiotics and X-gal (40 µg.ml
-1

) if necessary.     

 

2.3.6. Construction of the S. meliloti smc04266 insertional mutant 

2.3.6.1 Gene amplification  

A 267 bp smc04266 internal fragment was amplified by PCR (section 2.3.4) using 

the primers Smc04266-8F-Avr II (5’-TAACCTAGGGCAAAGGTAACGAAAAC 

G-3’) and Smc04266-267R-XhoI (5’-GGCCTCGAGGGAAGGTGAAGATAGGC 

TTG-3’).  The Taq DNA polymerase enzyme (New England biolabs) was used to 

ensure 3’ adenine overhangs for subsequent cloning into the TOPO vector.  The PCR 

product was confirmed as being of the correct size by gel electrophoresis and was gel 

purified (section 2.3.2). 

 

2.3.6.2. TOPO TA cloning 

The purified PCR fragment was ligated into the pCR-2.1 TOPO vector provided with 

the TOPO TA cloning kit (Invitrogen), according to the manufacturer’s instructions. 

The ligation mixtures were transformed into one shot Top 10 cells, provided with the 

kit (section 2.3.5) and plated onto LB plates containing kanamycin and X-gal (40 µl 

of a 40 mg.ml
-1

stock per plate).  White colonies were picked and grown in LB and 

kanamycin and the pCR-2.1 TOPO vector was extracted from the clones using the 

QIAprep Spin Miniprep Kit (Qiagen). The purified vector was then digested with 

AvrII and XhoI (section 2.3.3), to identify positive clones. Subsequently the 

smc04266 PCR fragment was released from the pCR-2.1 TOPO vector by digestion 

and gel purified.  Use of the TOPO TA cloning kit ensured that the PCR fragment 

was completely digested, prior to its ligation into the pJH104 vector.  
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2.3.6.3. Ligation, screening and conjugation 

The pJH104 plasmid was purified from DH5α cells using the QIAprep Spin 

Miniprep Kit (Qiagen) kit. Then the plasmid was digested using AvrII and XhoI 

(section 2.3.3), followed by gel purification. The plasmid was next treated with 

Antarctic phosphatase (New England Biolabs), according to the manufacturer’s 

instructions, followed by further gel purification.  The restricted smc04266 internal 

gene fragment and pHJ104 vector were ligated using T4 DNA ligase (Promega), 

according to the guidelines supplied. A 10 µl reaction was set up containing 100 ng 

of pHJ104 vector, 17 ng of the smc04266 internal gene fragment, 1 µl of the 10 x 

ligase buffer and 1 µl of T4 DNA ligase.  The reaction was incubated overnight at 

4ºC. In addition controls were set up with the gene fragment alone and with vector 

minus the gene fragment. The ligation reaction was subsequently transformed 

(section 2.3.5) into 5-alpha competent E. coli (New England Biolabs).  Potential 

positive clones were then purified on LB, plus kanamycin and positive clones were 

next identified. This was achieved by a PCR screen of the clones and restriction 

digest of the extracted plasmid.  For the PCR screen the Smc04266-8F-Avr II (5’-

TAACCT AGGGCAAAGGTAACGACA AACG-3’) primer was used, specific for 

the internal gene fragment and the pJH104 gusR (5’-GAGTTTTTTGATTTCA 

CGGGTT-3’) primer was used specific for the pJH104 vector. With this primer pair 

positive clones where identified by a PCR product of 309 bp. For the restriction 

digest, the plasmid was extracted from the purified clones and the plasmid was 

digested with XhoI and AvrII to check for presence of the insert.    

The pJH104 vector containing the smc04266 insert (pJH104-smc04266in) 

was then transferred into Rm1021 using tri-parental mating (section 2.4). The 

pJH104 vector is able to replicate in E. coli but not in S. meliloti, so the smc04266 

genomic DNA is disrupted by homologus recombination upon transfer of pJH104-

smc04266in into Rm1021. The disrupted smc04266 gene was confirmed by PCR 

using the primers Sm04266-297F (5’-ACGGCGACGAGTGGATCG-3’), designed 

297 bp upstream of the smc04266 gene and pJH104 gusR (5’-GAGTTTT 

TTGATTTCA CGGGTT-3’, specific for the vector. Disruption of the gene was 

confirmed by a PCR product of 640 bp using this primer pair.  
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2.4. Conjugation of plasmids into S. meliloti Rm1021 by triparental 

mating 

The S. meliloti Rm1021 recipient strain was grown up for 48 hours to late 

exponential phase (OD600 ~3.0), and the E. coli donor and MM294A helper strain 

(pRK600) were grown for 16 hours to early stationary phase (OD600 ~2.5).  Prior to 

setting up the conjugation reaction all strains were washed in LB media 3 times, to 

remove all antibiotics. A 40 µl aliquot of each culture was then mixed in a 1:1:1 ratio 

and the mixture (120 µl) was spotted on the centre of an LBMC plate. Additionally, 

as a control 40 µl of each of the cultures were spotted individually onto an LBMC 

plate. The plates were incubated for 16 hours at 30 ºC, after which the mating 

mixture and the 3 negative controls were purified onto LBMC agar with the 

appropriate antibiotic.  Additionally to avoid contamination with the E. coli donor 

strains, a final concentration of 1 mg.ml
-1

 streptomycin was used in the selection 

agar.   

 

2.5. S. meliloti mutant library 

Construction of the Rm1021 smb21275, smb21273 and the gshA insertional mutants 

was achieved by use of a S. meliloti plasmid integration mutant library, purchased 

from the University of Bielefeld, Germany (Rüberg and Becker; Capela et al., 

unpublished). The library contains E. coli S17-1 clones carrying the mobilizable 

vector pK19mob2�HMB (Luo et al., 2005b), each containing an S. meliloti internal 

gene fragment (200-350 bp in length).  The pK19mob2�HMB vector can replicate in 

E. coli but is unable to replicate in S. meliloti and integrates into the target gene by 

homologous recombination. To conjugate the plasmids into S. meliloti Rm1021, a 

biparental mating was performed, since E. coli S17-1 contains a chromosomally 

integrated copy of RP4 that supplies the transfer functions (Simon et al., 1983), so a 

helper strain is not necessary. The biparental matings were performed exactly as 

described for the triparental mating, with the exception that a 1:1 ratio of the 

Rm1021 recipient and E. coli S17-1 strains were used.      
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2.6. Preparation of S. meliloti phage lystates  

This procedure was performed as described previously (Finan et al., 1984), with 

minor modifications. A late exponential phase culture (OD600 ~3.0) of the desired     

S. meliloti strain was diluted 10-fold in 5 ml total of LBMC, incubated at 30°C for 2 

hours and then 100 µl of M12 phage  (~1 x 10
9
 pfu.ml

-1
) was added to the culture, 

which was incubated for 16 hours at 30°C.  Upon lysis of the S. meliloti cells 10% 

CHCl3 was added, followed by centrifugation at 2264 x g for 10 minutes to remove 

cellular debris. The prepared lysate was stored at 4°C with 10% CHCl3.  

 

2.7. S. meliloti transductions using M12 phage 

S. meliloti phage transductions were performed based on a modification of a 

previously described method (Finan et al., 1984).  A late exponential phase culture 

(OD600 ~3.0) of the recipient strain was mixed at a 1:1 ratio with undiluted, 10
-1

and 

10
-2

 dilutions of the appropriate phage lysate, in a final volume of 200 µl LB.  After 

gentle mixing the samples were incubated at 30°C for 2 hours, followed by 

incubation at room temperature for 30 minutes.  The bacterial cells were then 

pelleted by centrifugation at 9447 x g for 3 minutes, washed and then re-suspended 

in the same volume of LB.  The cells were then recovered by incubation at 30°C and 

200 rpm for 1.5 hours.  The transduced cells were plated onto LB agar containing the 

appropriate antibiotics and incubated at 30ºC for 72 hours or until single colonies 

appeared.  The colonies were purified twice, initially on LB agar plus antibiotics 

followed by the third purification performed using LBMC agar with antibiotics.   

 

2.8. Preparation of Bac7(1-16) peptides  

The N-terminal fragment 1-16 of Bac7 was synthesized by Monica Benincasa, at the 

University of Trieste, Italy as previously described (Benincasa et al., 2004).  A 

fluorescently-labelled version of Bac7(1-16), Bac71-16-BY, was prepared by the 

linkage of the thiol reactive dye BODIPY


FL N-(2-aminethyl)maleimide 
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(Invitrogen) to an additional C-terminal cysteine residue as reported previously 

(Scocchi et al., 2008). This work was also performed by Monica Benincasa.  When 

the peptides were received they were dissolved in sterile distilled water and stored at 

-20
o
C until use. 

 

2.9. Preparation of fluorescently labelled bleomycin A5 (F-BLM) 

 

2.9.1. Coupling reaction and agarose gel electrophoresis 

F-BLM was prepared as described previously (Aouida et al., 2004) with some 

modifications.  100 µl aliquot of 2.1 mM of the fluorescent molecule 5-(and-6)-

carboxyfluorescein, succinimidyl ester [5(6)-FAM, SE] (Molecular Probes, C-1311) 

prepared in 0.2 M NaHCO3 (pH 9.0) was added to 300 µl of 0.6 mM Bleomycin A5 

(LTK labs USA), prepared in 0.2 M NaHCO3 (pH 8.3). The mixture was incubated 

for 2 hours at 25°C and the reaction was stopped by the addition of 10 µl of 1.5 M 

hydroxylamine (pH 8.5).  The reaction products were resolved on a 1% (w/v) agarose 

(Seakem LE agarose, Cambrex) gel (2 hours, 80 V) using 40 mM 2-(N-morpholino) 

ethanesulfonic acid hydrate (MES) buffer, pH 6.0 (Sigma).  F-BLM (the fluorescent 

band, which migrates towards the cathode) was visualized by UV light (Fig. 2-1). 

Since the free bleomycin is positively charged and will migrate towards the cathode 

and completely out of the gel and the free 5(6)-FAM, SE is negatively charged and 

will migrate towards the anode (Fig. 2-1), the F-BLM would not be expected to be 

contaminated with any starting products.   

 

2.9.2. Purification of F-BLM from agarose 

In each case the F-BLM band was carefully excised from the gel and the agarose 

removed following a modification of a previously published procedure (Tautz, 

1983).  The excised agar band was cut into small pieces and frozen at -80°C in glass 

wool plugged (~5 mm depth) 0.5 ml tubes.  The F-BLM was collected in a 1.5 ml 

tube by centrifugation (9447 x g, 10 minutes at 4ºC) of the pierced 0.5 ml tube.  This 

step was repeated several times until only the agarose was left in the glass wool plug.  
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The F-BLM was then freeze-dried and re-suspended in sterile water to the 

appropriate concentration. 

  

2.9.3. Quantification of F-BLM 

Electrospray ionisation-mass spectrometry analysis revealed that the F-BLM 

produced contains a 2:1 ratio of 5(6)-FAM, SE linked per bleomycin A5 molecule 

(M. Scocchi and G. P. Ferguson, unpublished data).  The F-BLM was quantified by 

making a series of 5(6)-FAM, SE standards diluted in 0.2 M NaHCO3 (pH 9.0).  

These standards were read in a fluostar optima plate reader (BMG Labtech) 

(Excitation 495 nm and Emission 520 nm) and from these readings, 5(6)-FAM, SE 

standard curves were constructed to calculate an approximate concentration of the F-

BLM stocks (Fig. 2-2A &B).  Over the course of this work two independent stocks 

of F-BLM were produced; since the second stock was at a much higher concentration 

than the first, two calibration curves were produced. The reading for the first F-BLM 

stock produced was 22500 fluorescence units and so reading from the calibration 

curve (Fig. 2-2A) and taking into account the 2:1 ratio of 5(6)-FAM, SE, per 

bleomycin molecule the concentration of F-BLM stock 1 was found to be 4 µg.ml
-1

. 

The reading from the second stock made (diluted 1 in 6) was 18700 fluorescence 

units and so the concentration of the second stock, as read from the calibration curve 

(Fig. 2-2A) was found to be 17.4 µg.ml
-1

. After quantification F-BLM was aliquoted 

and stored at −20°C, until required.  The preparation and purification of F-BLM was 

performed in the dark and F-BLM was kept on ice wherever possible. 
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Figure 2-1. Resolution of F-BLM by agarose gel electrophoresis. After the conjugation 

reaction was stopped the product was loaded into a 1% agarose gel in 40 mM MES buffer 

and run for 2 hours at 80 V. The bands were then detected by UV light.  The white arrow 

head shows the position of the loading well and the filled arrows show the position of the 

products resolved. Since the uncoupled bleomycin is positively charged it migrates towards 

cathode and completely out of the gel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Calibration curves used to quantify the F-BLM stocks. Standards of 5(6)-

FAM, SE were prepared and measured in a BMG LABTECH Fluostar optima 96 well plate 

reader (Excitation 495 nm and Emission 520 nm). These samples were either measured 

neat (A) or diluted 1/6 (B).  The fluorescence readings obtained were then used to produce a 

calibration curve. 
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2.10. Stress assays  

 

2.10.1. Filter disc assays  

The required S. meliloti strains were grown in LBMC to late exponential phase 

(OD600 ~3.0) for 48 hours and the E. coli strains were grown to early stationary phase 

(OD600 ~2.5) for 16 hours.  All strains were then washed 3 times in LB and re-

suspended to an OD600 of 0.2.  100 µl of culture was added to 3ml of LB soft agar 

(0.8 g of agar per 100 ml LB broth), cooled to ~ 45ºC and poured onto LB plates (25 

ml).  Where stated in the text the bottom layer of LB was supplemented with 2.5mM 

CaCl2 and 2.5mM MgSO4.  After 30 minutes, a sterile paper disc (6-mm diameter; 

Becton Dickinson) was applied to the centre of each plate and 5 µl of the agent to be 

tested was applied.  The plates were then incubated at 30°C for 72 hours for S. 

meliloti and 37°C for 16 hours for E. coli, and the diameter of growth inhibition was 

recorded. The growth inhibition zone from at least three plates for each strain and 

each set of conditions was measured.  The results were then averaged, and the error 

bars shown represent the standard deviation from the mean for one experiment.  

 

2.10.2. Gradient assays  

For the sodium deoxycholate (DOC) gradient assay S. meliloti cells were grown and 

prepared exactly as described for the filter disc assays.  Large square plastic plates 

were used (22.5 cm in length) and 200 ml of LB media was used for preparation of 

each layer. The bottom layer, which was poured on a slant, contained no DOC. To 

create gradients of DOC, the top layer of agar contained 24 mM DOC. Where 

appropriate the LB was supplemented with 2.5mM CaCl2 and 2.5mM MgSO4, in this 

case to avoid precipitation, LBMC agar used for the top layer was cooled to 45ºC 

prior to DOC addition. The cultures to be tested were streaked (10 
l-aliquots) 

evenly across the plates.  The plates were then incubated at 30°C for 72 hours, and 

the length of the growth inhibition zone was then recorded.  The growth inhibition 

zone from at least three plates for each strain and each set of conditions was 
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measured.  The results were then averaged, and the error bars shown represent the 

standard deviation from the mean for one experiment.  

 

2.10.3. Liquid viability assays 

The liquid viability assays, unless stated otherwise, were performed with late 

exponential phase S. meliloti cultures (OD600 ~3.0) and early stationary phase OD600 

~2.5) E. coli cells.  The cells were washed 3 times in LB and diluted to an OD600 of 

0.1 in LB medium. After addition of the defined agent at the appropriate 

concentration, the S. meliloti cultures were incubated at 30°C and the E. coli cultures 

at 37°C.  At defined times, samples were removed, serially diluted in LB medium, 

then 10 
l aliquots plated in triplicate on LB agar plates or LBMC agar plates where 

stated in the text.  Colony forming units (cfus) were calculated after 16 hours at 37
o
C 

for E. coli and 72 hours at 30
o
C for S. meliloti.  The mean cfu ml

-1
 in the three 10 µl 

aliquots was plotted and the error bars represent the standard deviation from the 

mean for one experiment. 

 

2.11. Bac7(1-16), Bac71-16-BY and F-BLM sensitivity assays 

The required S. meliloti strains were grown to late exponential phase (OD600~3.0) for 

48 hours and the E. coli strains were grown to early stationary phase (OD600 ~2.5) for 

16 hours. The strains were then sub–cultured so they would be in mid-exponential 

phase (OD600 ~0.9) prior to the assay.  The defined mid-exponential phase strains 

were harvested, washed 3 times in LB and diluted to an OD600 of 0.05 in fresh LB 

medium.  After the addition of either the Bac7(1-16), Bac71-16-BY or F-BLM to the 

defined concentrations, the S. meliloti cultures were incubated at 30°C and E. coli 

cultures were incubated at 37°C.  At defined times, samples were removed, serially 

diluted in LB medium, then 10 µl aliquots plated in triplicate on LB agar plates.  

Colony forming units (cfus) were calculated after 72 hours at 30
o
C for S. meliloti and 

after 16 hours at 37ºC for E. coli.  The mean cfu ml
-1

 in the three 10 µl aliquots was 

plotted and the error bars represent the standard deviation from the mean. 
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The sensitivity of the E. coli RYC1001 strain carrying the pWSK29-MtbacA 

vector (expressing M. tuberculosis BacA) and the appropriate control strains to Bac7 

(1-16) was assessed as follows: Stationary phase cells were diluted to an OD600 of 0.1 

in Mueller Hinton broth with the appropriate antibiotics and the cells were then 

grown at 37ºC to an OD600 of 0.3, at which point  IPTG (0.4 mM) was added to 

induce transcription of the M. tuberculosis BacA protein, which is under control of 

the lac promoter.  Cells were induced for 2 hours, and were then re-suspended to an 

OD600 of 0.035 (with 0.4 mM IPTG and the appropriate antibiotics) and the Bac7 (1-

16) peptide was added at the defined concentration and the cultures were incubated at 

37°C.  At defined times, samples were removed, serially diluted in Mueller Hinton 

medium, then 10 µl aliquots plated in triplicate on Mueller Hinton agar plates. 

Colony forming units (cfus) were calculated after 16 hours at 37
o
C. 

 

2.12. Bac71-16-BY and F-BLM uptake assays 

 

2.12.1. Peptide treatment 

Prior to performing each assay, fresh 50 mM sodium phosphate buffer was made, 

since this buffer was shown to deteriorate with time.  Initially, a 0.1 M sodium 

phosphate buffer stock was made as follows: A 1 M stock of Na2HPO4 and a 1 M 

stock of NaH2PO4 were made, after which 57.7 ml of 1 M Na2HPO4 and 42.3 ml of 

NaH2PO4 were added into final volume of 1 litre of distilled water.  This was then 

diluted 1 in 2 to make a 50 mM stock, the pH of the buffer was then checked to 

ensure it was 7.0 and the buffer was filter sterilised.  

For the assay mid-exponential phase cultures (OD600 ~0.9) of the defined 

strains were harvested, washed 3 times and re-suspended to an OD600 of 0.05 in fresh 

filtered LB medium. After the addition of the defined fluorescently labelled peptide 

at the appropriate concentration, the S. meliloti cultures were incubated at 30°C and 

E. coli at 37°C, both in a water bath. At the defined times the cells were washed 

twice in LB filtered medium to remove extracellular labelled peptide and then re-

suspended in filtered 50 mM sodium phosphate buffer pH 7.0.  To account for 

extracellular binding of the labelled peptide to the cells, the cultures were treated 
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with and without 1 mg.ml
-1

 of the extracellular quencher of fluorescence Trypan blue 

(Sigma, 4 mg.ml
-1

 filter sterilized stock) for 10 minutes at room temperature, prior to 

flow cytometry analysis. 

 

2.12.2. Flow cytometry  

A Beckon Dickinson (BD) LSR II flow cytometer equipped with a 488 nm laser was 

used to measure the fluorescence parameter of single cells after treatment with the F-

BLM and Bac71-16-BY labelled peptides. Both 5(6)-FAM, SE and BODIPY® FL 

maleimide (505/513) fluorescence were measured using a 530/30 nm band pass filter 

(FL1). To assess 5(6)-FAM, SE fluorescence for the F-BLM uptake experiments the 

following parameters were used: forward scatter set to 894 V (linear scale), side 

scatter set to 341 V (linear scale) and  FL1 set to 500 V (logarithmic scale) with the 

FSC threshold set to 5,000. To assess BODIPY® FL maleimide fluorescence for the 

Bac71-16-BY uptake experiments the following parameters were used: forward scatter 

set to 500 V (logarithmic scale), side scatter set to 250 V (logarithmic scale) and  

FL1 set to 450 V (logarithmic scale) with the FSC and SSC thresholds set to 900 and 

200, respectively. In both cases 10,000 events were collected for each analysis. Data 

were acquired and analyzed using the BD FACSDiva and FlowJo (Tree Star Inc.) 

software respectively. 

 

2.13. S. meliloti bleomycin treatment to assess DNA damage 

The required strains were grown to late exponential phase (OD600 ~3.0) for 48 hours. 

The strains were then sub–cultured (5 ml volume) the day prior to the bleomycin 

treatment so they would be in mid-exponential phase of growth when required 

(OD600 ~0.9).  The mid-exponential phase cultures were harvested, washed 3 times 

with LB and the cell pellet was re-suspended in a final volume of 2 ml of LB (OD600 

~2.3).  For each strain to be assessed the 2 ml culture was then split into two tubes (1 

ml per tube) and to one tube bleomycin A5 (20 µg.ml
-1

) was added and the second 

tube served as an untreated control.  All tubes were incubated at 30ºC for two hours 

with shaking.  After incubation the cells were then washed once in LB and recovered 
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by centrifugation at 2264 x g (10 minutes). The cell pellets were then frozen at -80ºC 

until the genomic extraction was performed.  

 

2.13.1. Genomic DNA Extraction  

This method was a modification of a previously published protocol (Wilson, 1987).  

Prior to performing the assay, the Hexadecyltrimethylammonium bromide (CTAB) 

/NaCl solution was made as follows: 4.1 g of NaCl was dissolved  in 80 ml of 

distilled water, the solution was heated to 65ºC and 10 g of CTAB was slowly added 

with stirring.  When the CTAB had dissolved, the final volume was adjusted to 100 

ml.   

To perform the  DNA extraction the cell pellets were removed from -80ºC 

and thawed on ice, then each cell pellet was re-suspended in 567 µl of TE buffer (10 

mM Tris-Cl, 1 mM EDTA, pH 7.5) by pipetting, then 30 µl of 10% (w/v) SDS and 3 

µl of proteinase K (20 mg.ml
-1

) were added. The samples were then mixed and 

incubated for 1 hour at 37ºC. 100 µl of 5 M NaCl was added and mixed well, 

followed by 80 µl of the prepared CTAB/NaCl solution and the samples were then 

incubated for 10 min at 65ºC. Next an equal volume of chloroform was added, mixed 

well and the sample centrifuged at 9447 x g for 5 mins.  After centrifugation, the top 

layer was carefully moved into to a fresh tube.  An equal volume of  1:1 

phenol:chloroform was added, mixed well and centrifuged as before for 5 mins.  The 

top layer was then moved into a clean tube and the genomic DNA was then 

precipitated with a 0.6 volume of isopropanol (mixed by inversion). The sample was 

then centrifuged at 9447 x g for 5 mins to pellet the DNA.  After carefully removing  

the isopropanol the DNA pellet was washed once by centrifugation (9447 x g, 2 

minutes) with 70% ethanol. The DNA pellets were then air dried and re-suspended in 

25 µl of molecular water (Sigma) and the DNA quantified by UV spectrometry using 

a Beckman DU 650 spectrophotometer.  
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2.13.2. 4',6-diamidino-2-phenylindole (DAPI) staining of S. meliloti 

genomic DNA 

Cells were treated with and without bleomycin A5 exactly as for the genomic DNA 

preparations (section 2.13) except that following the final centrifugation step, the cell 

pellet was re-suspended in 100 µl of 1% (v/v) toluene, vortexed and stored at 4ºC. 

The DAPI assay was performed following the modification of a previously published 

protocol  (Johnson, 1994). Cells were diluted to an OD600 of 0.08 in dilution buffer 

(10 mM NaCl, 6.6 mM Na2SO4, 5 mM HEPES pH 7.0) and 100 µl of each sample 

was placed in a 96 well plate and DAPI was added at a final concentration of 0.1µg 

ml
-1

 and the samples were incubated overnight at 4ºC.  Following incubation the 

fluorescence intensity of each sample was measured using a Fluostar optima plate 

reader (BMG Labtech) with excitation and emission at 350 and 450 nm respectively.  

 

2.14. Transmission electron (TEM) microscopy of bleomycin treated 

cells 

Cells were treated with and without bleomycin A5 exactly as for the genomic DNA 

preparations (section 2.13), except after the final centrifugation step, the bacterial 

pellet was re-suspended in 1 ml of fixative (2.5% w/v gluteraldehyde in 0.1 M 

cacodylate buffer pH 7.4) for 1 hour.  The cells were washed twice in 0.1 M 

cacodylate buffer pH 7.4, re-suspended in 500 µl of this buffer and stored at 4ºC. The 

fixed cells were then given to Alastair McKinnon (Electron Microscopy Facility, 

University of Aberdeen) who processed the samples as follows: The samples were 

pelleted by centrifugation at 9447 x g for 3 min, then  2% (w/v) low gelling point 

agar (dissolved at ~ 70ºC) was cooled and added to the cell pellet at 35ºC. The agar 

cell suspension pellet was left to fix overnight at 4ºC then trimmed to EM block size 

(~ 2x2mm x 1mm thick) before loading onto a Leica EMTP tissue processor.  In the 

tissue processor the pellets received a secondary fix in 1% OsO4, dehydration in 

graded concentrations of ethanol to 100%, followed by immersion in increasing 

concentrations of acetone/spurr mixture before completing the infiltration with pure 

spurr resin. The pellets were next embedded in fresh spurr in 8mm polyethylene 

truncated pyramid capsules (TAAB Laboratory Equipment) and then polymerised in 
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a vacuum-embedding oven at 60ºC for 24 hours.  Semi-thin (0.5 µm) light 

microscopy survey sections were cut using a Reichert Ultracut microtome and 

stained with 1% (w/v) Toluidine blue (hotplate at ~ 80ºC).  Areas were selected for 

ultra-thin sectioning (silver/gold-80nm) using a Diatome diamond knife on a Leica 

UC6 ultramicrotome.  The sections were collected onto 200 mesh fine bar copper 

grids and stained to provide electron contrast using uranyl acetate and lead citrate. 

The ultrathin sections were examined with a Philips CM10 TEM and imaged with a 

Gatan Bioscan CCD camera. 

 

2.15. Lipolysaccharide (LPS) preparations  

 

2.15.1 Extraction of LPS by SDS lysis 

 Isolation of S. meliloti LPS was performed using late exponential phase cultures 

(OD600 ~ 3.0).  1 ml of the bacterial culture was pelleted by centrifugation at 9447 x 

g for 3 minutes and the pellet re-suspended in 30 
l of lysis buffer (1M Tris-HCL pH 

6.8, 2% w/v SDS, 4% v/v β-mercaptoethanol, 10 % v/v glycerol and 0.005% w/v 

bromophenol blue).  The sample was then boiled at 100°C for 10 minutes, then 

cooled to room temperature at which point 10 
l of proteinase K (2.5 mg.ml
-1

 stock 

in lysis buffer) was added and the samples were incubated at 60°C for 1 hour.  Two 

volumes of sample buffer (120mM Tris-HCL pH 6.8, 3% w/v SDS, 9% v/v β-

mercaptoethanol, 30% v/v glycerol and 0.03% w/v bromophenol blue) were then 

added, at which point the sample was either loaded into the SDS-PAGE gel 

immediately or stored at -80°C, until use. 
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2.15.2. Analysis of LPS by SDS-PAGE  

SDS-PAGE gel analysis was performed using the Bio-rad mini-protean II 

electrophoresis cell system according to the manufacturer’s instructions. The gel 

buffer contained 3M Tris and 0.3% (w/v) SDS, pH adjusted to 8.45.  The gel 

solutions (to make two gels) were made up as follows: 

Separating/resolving gel                                Concentrating gel  

(15.5 % acrylamide)              (2.3 % acrylamide) 

2.3 ml H2O                                                     4.2 ml H2O 

3.3 ml gel buffer                                            1.5 ml gel buffer 

1 ml glycerol                                                  500 
l acrylamide/bisacrylamide  

3.3 ml acrylamide/bisacrylamide                   30 
l ammonium persulphate (10% w/v) 

40 
l ammonium persulphate (10% w/v)       7.3 
l TEMED 

4 
l TEMED 

 

The Acrylamide/Bisacrylamide solution contained 93 g of an acrylamide solution 

and 6 g of bisacrylamide solution per 200 ml of distilled water.  

 

The running buffers were prepared as follows: 

Anode buffer: 0.2 M Tris-HCl, pH 8.9 

Cathode Buffer: 0.1 M Tris, 0.1 M Tricine and 0.1% w/v SDS 

Gels were run at approximately 100 V until adequate migration had occurred.  

 

2.15.3. Fixing and staining of LPS SDS-PAGE gels 

For sodium-m-periodate staining, the gel was fixed overnight in fixative solution 

(40% v/v ethanol and 5% v/v glacial acetic acid). For alcian blue staining, the gel 

was fixed overnight in alcian blue (0.05% w/v alcian blue in fixative solution).  After 

fixing, for sodium-m-periodate staining, the gel was incubated in 50 ml of oxidiser 

(0.7% w/v sodium-meta-periodate in fixative solution) for 5 mins. For both staining 

procedures the gels were washed three times for 15 mins in distilled water.  The gels 

were then incubated in silver stain (2 ml 25% ammonium hydroxide solution, 128 µl 

10 N NaOH and 140 ml of distilled water; 1 g silver nitrate semi-dissolved in 5 ml 
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dH2O added dropwise for 5 mins).  This was followed by three, 10 minute washes 

with distilled water.  The gels were then incubated with development solution 

(0.02% w/v formaldehyde and 50 µg.ml
-1

citric acid) until the bands appeared 

(approximately 2-10 mins).  Once the bands were clear the reaction was stopped with 

0.5 % acetic acid for 1 min. 

 

2.16. Preparation of S. meliloti cells for two-dimensional gel analysis 

The S. meliloti cells were prepared for two-dimensional (2D) gel analysis using an 

empirical protocol from the University of Aberdeen proteomics facility. A 5 ml late 

exponential phase culture (OD600 ~3.0) was washed 3 times with and finally re-

suspended in 1 ml of PBS.  The OD605 of the cells (diluted 1/50 in PBS) was 

measured and the 1 ml culture (in PBS) was pelleted by centrifugation at 9447 x g 

for 3 minutes and re-suspended in a volume of lysis buffer (7 M urea, 2 M thiourea, 

4% w/v CHAPS, 0.3% dithiothreitol, 1% v/v pH 4-7 IPG buffer [GE healthcare] and 

0.002% w/v bromophenol blue), that was equal (in ml) to the OD605 reading i.e 0.270 

ml would be used for an OD600 reading of 0.270.  The cell pellet re-suspended in 

lysis buffer was left on ice for 30 minutes and then pelleted by centrifugation at 9447 

x g for 5 minutes and the supernatant was collected and stored at -20°C until use by 

the proteomics facility. 

 

2.17. S. meliloti-alfalfa interaction experiments  

 

2.17.1 Germination of seedlings  

Alfalfa (Medicago sativa cv. Iroquois) seedlings were surface sterilized for 15 

minutes in 50% v/v bleach (Unilever UK), followed by several washes with sterile 

water, until the smell of bleach was no longer detectable.  The seedlings 

(approximately 20 per plate) were then placed onto the top half of a 1% Bacto agar 

plate with 1 ml of sterile water. The plates were then wrapped with parafilm and 

covered in foil and the seedlings left to germinate upright in the dark at 22°C for 72 

hours.  
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2.17.2. Inoculation of alfalfa plants  

The three day old seedlings had their seed coats carefully removed with sterile 

forceps and were then placed onto a petri dish containing 40 ml of Jensen’s agar 

(section 2.17.4).  Prior to inoculation each culture was grown to late exponential 

phase (OD600 ~3.0) in LBMC, washed 3 times and re-suspended to an OD600 of 0.05 

in sterile water.  The seedlings were inoculated with 1 ml of the appropriate culture 

or 500 µl of each culture for competition assays. Notches had previously been melted 

into the edge of the Petri dish and lid, through which the plant would emerge. The 

plates were wrapped in parafilm, making sure the notch was not covered and the 

plants were then incubated at 22°C on a 16 hour day cycle.  Plant growth and nodule 

characteristics were determined after a four week period and in addition when 

required nodules were harvested from the growing plants.  Nitrogen fixation and 

successful symbiosis was determined by dark green plants and the appearance of 

cylindrical pink nodules. 

 

2.17.3. Extraction of bacteria from nodules 

To confirm that the S. meliloti mutants were not reverting during the symbiosis and 

to determine the numbers of parent strain and mutant bacteria for the competition 

assays individual nodules were sampled and bacteria were extracted as follows: 

Using a 96 well plate each nodule was surface sterilized for 50 seconds in 50% v/v 

bleach and then crushed in 200 
l of LBMC supplemented with 0.3 M glucose.  The 

released bacteria were next serially diluted and 10 
l aliquots from each dilution 

spotted in triplicate onto LBMC agar plates with and without the appropriate 

antibiotics to select for the mutants.   

 

2.17.4. Medium for plant growth 

To make Jensen’s medium the following ingredients were placed into a 2 litre flask 

containing 500 ml of distilled water and a stir bar: 

1 g CaHPO4 

0.1 g FeCl3.6H2O 

100 µl 10M NaOH 
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1 ml of trace minerals (see below)  

0.2 g of MgSO4.7H2O 

0.2 g of K2HPO4 

0.2 g of NaCl 

The final volume was then made up to 1 litre with distilled water and the solution 

was left to stir overnight.  The next day 15 g of Bacto agar was added to the media, 

prior to autoclaving (performed with the stir bar in the flask).  After autoclaving the 

Jensen’s agar was mixed for 20 mins and then the plates were poured immediately, 

each containing 40 ml of Jensen’s agar.  

To make 500 ml of trace minerals for the Jensen’s agar, the following 

ingredients were added to 200 ml of distilled water:  

0.5 g H3BO3 

0.5 g ZnSO4.7H2O 

0.25 g CuSO4.5H2O 

0.25 g MnCl2.4H2O 

0.5 g NaMoO4.2H2O 

The solution was then mixed and made up to 500 ml with distilled water.  The trace 

minerals were stored long term at 4ºC and mixed well before use. 

 

2.18. Detection of plant polyphenolics 

 

2.18.1. Histochemical staining  

This method is a modification  from a previously published protocol (Vasse et al., 

1994). The buffer and stains were made up fresh on the day of use, each time the 

procedure was performed. 10 mM PIPES buffer was made as follows:  0.3 g of 

PIPES sodium salt purchased from Sigma was dissolved in a final volume of 100 ml 

of distilled water and then the pH was adjusted to 7.2.  The 0.04% potassium 

permanganate solution was made as follows: A 4% stock solution was made by 

dissolving 2 g of potassium permanganate powder, purchased from Sigma into a final 

volume of 50 ml of distilled water and 1/100 dilution was then made to give a 0.04 % 

(w/v) solution.  Finally, a 0.01% solution of methylene blue was made as follows: 



                                                                57 

0.5 g of methylene blue powder, purchased from Sigma was dissolved in 50 ml of 

distilled water, and then diluted 1/100 to give a 0.01% (w/v) solution.   

Prior to staining, individual nodules were removed and sliced longitudinally 

using a scalpel.  After slicing the nodules were fixed in 2.5 % (w/v) glutaraldehyde 

and 10 mM PIPES (pH 7.2) for 1 hour.  The nodule slices were then immersed in 

0.04 % (w/v) potassium permanganate for 1 hour, rinsed in 10 mM PIPES and then 

stained with 0.01 % (w/v) methylene blue for 2 minutes.  The nodule slices were then 

immersed in 50 % (v/v) bleach for 3 mins and visualised using bright field optics (10 

x magnification, Zeiss Axioskop microscope). Images were obtained by photography 

with a Zeiss Axiocan camera and processed using Axio Vision software. 

 

2.18.2. Fluorescence microscopy  

Prior to fluorescence microscopy individual nodules were sampled, sliced and fixed 

as described for the polyphenolic staining. The nodule slices were then cleared by 

soaking in 50% (v/v) bleach for 3 mins, followed by 3 washes in sterile distilled 

water and then visualised for fluorescent polyphenolics by microscopy (10 x 

magnification, Zeiss Axioskop microscope) using UV excitation.  Images were 

obtained and processed as described for the histochemical staining.  

 

2.19. Transmission electron microscopy of nodules  

Nodules were sampled from the alfalfa plants at the defined time points, the nodules 

were then halved and fixed in 2.5% (w/v) glutaraldehyde in 0.1 M sodium cacodylate 

(pH 7.0) overnight at 4ºC.  The fixed nodules were then sent to Euan James 

(University of Dundee) who processed the samples as follows:  The fixed nodules 

were either dehydrated in an ethanol series and embedded in LR White acrylic resin 

(Agar Scientific) for light microscopy or post-fixed in 1% OsO4 (w/v), dehydrated in 

an ethanol series, and then embedded in Durcupan epoxy resin (Sigma) for 

conventional TEM. Semi-thin sections (1 mm) and ultrathin sections (70 nm) were 

taken from the resinembedded samples (LR White and Durcupan) using a Reichert 

Ultracut E ultramicrotome. The semi-thin sections were collected on glass slides and 

stained with 1% (w/v) toluidine blue in sodium borate and viewed and photographed 
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using a Zeiss Axioskop optical microscope fitted with an AxioCamdigital camera 

(Carl Zeiss Imaging). The ultrathin sections for conventional TEM were collected on 

pioloform-coated copper grids and stained with uranyl acetate (10 min) and lead 

citrate (5 min) before being viewed with a JEOL 1200 EX transmission electron 

microscope. 

 

2.20. Statistical analysis 

 

Where shown, the significance of differences among bacterial strains was assessed 

by using the students unpaired t-test using Microsoft Excel 2003. Values of P < 0.05 

were considered statistically significant. 
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Chapter 3: The Effect of the Glycopeptide Bleomycin on S. meliloti 
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3.1. Introduction  

As previously discussed, although the exact function of the BacA protein is still 

unknown, loss of the protein in S. meliloti results in a 50% reduction in the amount 

of lipid A species modified with a VLCFA, relative to the parent, in which all the 

lipid A molecules are modified with a VLCFA (Ferguson et al., 2002; Ferguson et 

al., 2004).   However, in addition to affecting the lipid A, loss of BacA in S. meliloti 

results in a number of altered sensitivities to different stresses and agents in the free-

living state, relative to the parent strain (Ferguson et al., 2002; Glazebrook et al., 

1993; Ichige & Walker, 1997), one of which is an increased resistance to the 

glycopeptide bleomycin.  Hence, the work in this chapter set out to investigate how 

the BacA protein sensitizes S. meliloti towards bleomycin. 

The glycopeptide antibiotic bleomycin was initially isolated from 

Streptomyces verticillus (Umezawa et al., 1966) and was subsequently found to be an 

important anti-tumour agent, owing mainly to its ability to damage DNA (Blum et 

al., 1973; Burger et al., 1981; Stubbe & Kozarich, 1987; Umezawa, 1974).  The 

structure of bleomycin is characterized by metal- and DNA-binding domains, a 

carbohydrate moiety and an R-group, which varies depending upon the form of 

bleomycin used (Fig. 3-1).  Unlike the other domains, very little is known about the 

carbohydrate moiety, except that bleomycin lacking this region exerts a much less 

powerful genotoxic effect (Tounekti et al., 2001).  Bleomycin binds to Fe II and in 

the presence of oxygen, forms a free radical reactive complex that attacks both DNA 

and RNA (Burger et al., 1979).  Bleomycin induced DNA damage can result in both 

single and double strand breaks (Burger, 1998; Giloni et al., 1981; Worth et al., 

1993). 

 In prokaryotic cells, much work has been performed looking at the effects of 

bleomycin on E. coli cells, where it has been shown to inhibit both DNA and RNA 

synthesis (Suzuki et al., 1968) and induce DNA damage   Bleomycin sensitivity of E. 

coli is increased by either lexA or recA mutations (Yamamoto & Hutchinson, 1979).  

Since the RecA protein and the LexA repressor are key regulators in the SOS 

response, which is induced in E. coli upon DNA damage (Brent & Ptashne, 1981; 

Little et al., 1980; Little et al., 1981), this would suggest in E. coli the SOS response 

is an important mechanism bacterial cells use to inhibit the toxic effects of the drug 
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(Yamamoto & Hutchinson, 1984).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. The structure of bleomycin A5 and the R-groups of the A2 and B2 forms. 

Depiction of the structure of bleomycin A5. The R-groups of bleomycin A2 and B2 are also 

shown.  All structures were prepared by Hazel Phillips using ChemDraw Std 10.0. 

 

In E. coli, a mutant lacking the BacA homologue, SbmA, is also resistant to 

bleomycin and microcin antibiotics (Ichige & Walker, 1997; Salomon & Farias, 

1995).  However, the E. coli sbmA mutant was found to be as sensitive to internally- 

synthesized microcins as the parent strain.  Therefore, a model was proposed 

whereby SbmA could be involved in the uptake of certain classes of peptides (Lavina 

et al., 1986; Salomon & Farias, 1995).  Subsequently it was determined that when 

expressed in E .coli, the S. meliloti bacA gene suppressed all known defects of the E. 

coli sbmA mutants, namely the increased resistance to bleomycin and microcin 

antibiotics.  Additionally, when placed under the control of the S. meliloti bacA gene 

promoter, the E. coli sbmA gene suppressed all the S. meliloti bacA mutant 

phenotypes (Ichige & Walker, 1997).  Combined these findings demonstrated a 

functional similarity between the two proteins and it was proposed that like SbmA, 

BacA may also be involved in uptake of bleomycin (Fig. 3-2), either directly        

(Fig. 3-2A) or indirectly (Fig. 3-2B).  There also remained the possibility that the 

VLCFA reduction in the Rm1021 ∆bacA mutant could be linked to the bleomycin 

phenotype.  However, this seemed unlikely since the same phenotype is observed in 

the E. coli sbmA mutant (Ichige & Walker, 1997; Salomon & Farias, 1995) despite 



                                                                62 

the fact that the lipid A of E. coli is not modified with VLCFA (Raetz & Whitfield, 

2002).  In a more recent study transposon mutagenesis was performed under 

saturating conditions to select for S. meliloti bleomycin resistant mutants.  In this 

selection only S. meliloti mutants with disruptions in their bacA gene were isolated 

(Ferguson et al., 2006).  Therefore, these findings are consistent with a model 

whereby the BacA protein may be involved in bleomycin uptake into S. meliloti. 

They also suggest that either an additional bleomycin uptake system does not exist or 

that it is essential for growth or functionally redundant.  Interestingly, recent work 

has been able to show that SbmA is involved in the intracellular accumulation of a 

proline-rich peptide, Bac7 in E. coli (Mattiuzzo et al., 2007).  

Thus, in order to examine a possible role for the S. meliloti BacA protein in 

the uptake of bleomycin the aims of this chapter were to further investigate the effect 

of bleomycin on S. meliloti, investigate the intracellular accumulation of 

fluorescently labelled bleomycin and to characterise the bleomycin resistance 

determinants of S. meliloti.  

 

 

 

 

 

 

 

 

 

 

Figure 3-2. Proposed model for BacA function. Once the glycopeptide bleomycin has 

reached the periplasmic space it could then be directly transported across the cytoplasmic 

membrane by the BacA protein (A) or alternatively BacA may be having an effect on an 

unknown protein involved in bleomycin uptake (B).  
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3.2. Results 

 

3.2.1. BacA mediated bleomycin sensitivity is independent of the 

VLCFA modification 

The first question to address was to determine if the increased resistance to 

bleomycin observed in an S. meliloti ∆bacAmutant was linked to the reduction in the 

amount of lipid A modified with a VLCFA, relative to the parent strain.  Recent 

work had revealed that the lipid A species produced by the S. meliloti acpXL and 

lpxXL insertional mutants in LB medium supplemented with 2.5mM MgSO4 and 

2.5mM CaCl2 completely lacked the lipid A VLCFA modifications (Ferguson et al., 

2005).  The acpXL and lpxXL gene products encode a VLCFA-acyl carrier protein 

(Brozek et al., 1996) and an acyl transferase protein (Basu et al., 2002), respectively.  

Therefore, these mutants provided a means to investigate how the complete absence 

of the lipid A modification in S. meliloti influences bleomycin sensitivity.  

Bleomycin A2 filter disc assays were performed to assess the sensitivity of the 

Rm1021 �bacA, acpXL, and lpxXL single mutants to bleomycin, relative to the 

parent strain.  However,  in contrast to the Rm1021 �bacA mutant which exhibits  

resistance to bleomycin, both the Rm1021 acpXL and Rm1021 lpxXL insertional 

mutants display an increased sensitivity towards bleomycin A2 relative to the 

Rm1021 parent strain (Fig. 3-3A) (Ferguson et al., 2006).  The lpxXL mutant was 

shown to be more sensitive to bleomycin than the acpXL mutant, since despite 

lacking the VLCFA modification, the acpXL mutant is still able to transfer a shorter 

chain C16:0 or C18:0 unhydroxylated fatty acid not normally found in the S. meliloti 

LPS, onto a portion of its lipid A molecules  (Ferguson et al., 2005).  Therefore, the 

acpXL mutant is still able to produce a significant portion of its lipid A molecules in 

the pentaacylated state (Ferguson et al., 2005), which must confer some protection 

against bleomycin.  Thus these data show that in the complete absence of the 

VLCFA modification, S. meliloti is more sensitive to bleomycin A2 and the 

bleomycin phenotype of the S. meliloti ∆bacA mutant is unlikely to be due to a 

reduction in the lipid A VLCFA modification content.    

To provide further evidence that the bleomycin resistance phenotype occurs 

independently of the lipid A modification in the Rm1021 �bacA mutant, the 
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bleomycin sensitivity of the Rm1021 acpXL/�bacA and Rm1021 lpxXL/�bacA 

double mutants were compared to their respective single mutants (Fig. 3-3B & C, 

respectively) (Ferguson et al., 2006).  Previous work has demonstrated the 

acpXL/bacA and lpxXL/bacA double mutants have identical lipid A profiles to that of 

their acpXL and lpxXL single mutants (Ferguson et al., 2005), and that their lipid A 

molecules completely lack the VLCFA modification.  However, it was observed that 

deletion of bacA in an S. meliloti acpXL and lpxXL mutant background still confers 

resistance against bleomycin compared to the respective acpXL and lpxXL single 

mutants, despite the fact that the single and double mutants have identical lipid A 

profiles.  Therefore these data show that the BacA mediated sensitivity to bleomycin 

is independent of the VLCFA modification. 
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Figure 3-3. Sensitivity of the Rm1021 acpXL and lpxXL mutants to bleomycin A2 in the 

presence and absence of the bacA gene. (A) The defined S. meliloti strains were exposed 

to bleomycin A2 (5 µl of a 5 mg.ml
-1

 aqueous stock solution) on LBMC. The significant values 

(***P<0.001) shown, represent comparisons of the ∆bacA mutant to the Rm1021 parent 

strain and the acpXL::pk18mobGII and lpxXL::pJH104 mutants to the ∆bacA mutant. (B) As 

(A), except the significant values (***P<0.001) shown, represent comparisons of the 

∆bacA/acpXL::pk18mobGII double mutant to the acpXL::pk18mobGII single mutant. (C) As 

(A), except the significant values (***P<0.001) shown, represent comparisons of the 

∆bacA/lpxXL::pJH104 mutant to the lpxXL::pJH104 mutant.  For each dataset the numbers 

above the bars indicate the percentage of the lipid A modified with VLCFAs in each strain 

(Ferguson et al., 2005). Each dataset shown is representative of the trends observed in two 

independent experiments and in each case the error bars represent the standard deviation 

from the mean (n=3) for one experiment. (Ferguson et al., 2006).  
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3.2.2. The BacA protein confers sensitivity of S. meliloti towards 

different forms of bleomycin independent of the nature of the R-group 

Different forms of bleomycin vary in the nature of their R-group (Fig. 3-1).  Previous 

studies investigating the role of the S. meliloti BacA protein in conferring bleomycin 

sensitivity had used the A2 form of the drug (Ferguson et al., 2006; Ichige & Walker, 

1997; LeVier & Walker, 2001).  Therefore, the sensitivity of the Rm1021 parent and 

the Rm1021 �bacA mutant towards different forms of bleomycin (Fig. 3-1) was 

assessed using a disc diffusion assay (Fig. 3-4A).  For this assay, cells were exposed 

to bleomycin A5, A2, B2 and the sulphate form.  Bleomycin sulphate is a mixture of 

glycopeptides, the two principle components of the mixture are A2 (55-70%) and B2 

(25-32%).   From these data it can be determined that the presence of the BacA 

protein confers an increased sensitivity to S. meliloti against all forms of bleomycin, 

irrespective of the nature of the bleomycin R-group (Fig. 3-4 A).  Additionally, cell 

viability was assessed after bleomycin addition, where it was also found that both 

bleomycin sulphate and bleomycin A5 reduce the viability of S. meliloti.  As 

observed for the filter disc assays, the presence of the BacA protein conferred an 

increased sensitivity towards these drugs (Fig. 3-4B & C, respectively). Combined, 

these findings would suggest that if the BacA protein is involved in bleomycin 

uptake, then it is involved in the uptake of all forms of bleomycin since BacA-

mediated increased sensitivity of S. meliloti towards bleomycin appears to be 

independent of the nature of the bleomycin R-group. 
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Figure 3-4. Growth inhibition and viability of the Rm1021 parent strain and Rm1021 

∆∆∆∆bacA mutant after exposure to different forms of bleomycin. (A) Growth inhibition for 

the S. meliloti Rm1021 parent strain (open bars) and Rm1021 ∆bacA mutant (shaded bars) 

exposed to the defined forms of bleomycin (For forms A2, B2 and sulphate 5 µl of a 5 mg.ml
–1

 

aqueous stock solution was used and for A5  5 µl of a 2 mg.ml
-1

 aqueous stock solution was 

used). (B) The Rm1021 parent strain (closed circles) and the ∆bacA mutant (open circles) 

were treated with bleomycin sulphate (15 µg.ml
-1

) and viability was determined at the defined 

times. (C) As in (B) except cells were treated with bleomycin A5 (3 µg.ml
-1

), the arrow 

represents complete loss of viability.  The significant values shown (*P <0.05; **P<0.01; 

***P<0.001) represent comparisons of the Rm1021 ∆bacA mutant and the Rm1021 parent.  

All datasets shown are representative of trends observed in two independent experiments 

and in each case the error bars represent the standard deviation from the mean (n=3) for 

one experiment. 

 

3.2.3. Presence of the BacA protein results in an increased level of 

bleomycin induced DNA degradation in S. meliloti  

Bleomycin treatment is known to cause DNA damage in bacterial cells (Yamamoto 

& Hutchinson, 1984).  Since labelled bleomycin was unavailable commercially, 

bleomycin A5 induced DNA degradation was next assessed as a means to quantify 

bleomycin uptake into S. meliloti.  To assess DNA damage mid-exponential phase    

S. meliloti cells were exposed to bleomycin A5 over 2 hours, then the genomic DNA 
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was extracted and analysed by agarose gel electrophoresis, relative to genomic DNA 

extracted from untreated cells.  These data clearly show that in the Rm1021 parent 

strain, after bleomycin treatment, the genomic DNA appears degraded (Fig. 3-5A), 

relative to untreated cells (Fig. 3-5B).  This degradation is shown by the 

disappearance of the DNA.  Contrastingly, in the absence of the BacA protein there 

appears to be minimal DNA degradation (Fig. 3-5A), relative to the DNA from the 

untreated control culture (Fig. 3-5B).  Additionally, it was observed that presence of 

the pJG51A plasmid (containing the S. meliloti bacA gene) in the Rm1021 ∆bacA 

mutant, resulted in complete degradation of the DNA (Fig. 3-5C), relative to the 

untreated cells (Fig. 3-5D).  Contrastingly, in Rm1021 ∆bacA mutant cells carrying 

the pRK404 control plasmid, minimal degradation was observed (Fig. 3-5C).  

Despite the fact that little DNA degradation is observed in strains lacking the BacA 

protein, these cells did lose viability, with less than 1% of the Rm1021 ∆bacA and 

Rm1021 ∆bacA & pRK404 viable cells remaining after treatment.  Overall these data 

show that in S. meliloti there is more bleomycin induced DNA damage in the 

presence of the BacA protein which is consistent with a role for BacA in bleomycin 

uptake.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5. Agarose gel electrophoresis of S. meliloti genomic DNA extracted from 

bleomycin treated and untreated cells.  Cultures of the defined strains in LB were treated 

with (A and C) and without (B and D) bleomycin A5 (20 µg.ml
-1

) in LB.  The genomic DNA 

was then extracted and 2 µg analysed on a 1% (w/v) agarose gel. The symbols + and – refer 

to bleomycin treated and untreated DNA, respectively.  
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To rule out the possibility that bleomycin treatment may have caused changes to the 

genomic DNA, which may have resulted in its loss during the isolation procedure, a 

method to assess DNA degradation was used which did not rely on the isolation of 

the DNA.  For this purpose, 4’,6’-diamidino-2-phenylindole 2HCl (DAPI) was used.  

DAPI is a specific dye that forms a fluorescent complex upon binding DNA, with the 

advantage that it can be used to measure DNA in fixed bacterial cells (Ferguson et 

al., 2000).  Again cells were treated with bleomycin exactly as for the genomic DNA 

extraction.  However, following treatment the cell pellets were re-suspended in 

toluene to permeabilise the cells.  Subsequently the cells were incubated with DAPI 

overnight and the fluorescence of the treated cells was assessed, relative to the 

untreated control (Fig. 3-6).  It could be observed that in the Rm1021 parent strain 

and the Rm1021 ∆bacA strain with pJG51A (encoding the S. meliloti bacA gene in 

pRK404), there was a substantial decrease in DAPI fluorescence, relative to the 

untreated control.  Contrastingly the decrease in DAPI fluorescence in the Rm1021 

∆bacA with and without the pRK404 control plasmid was much smaller.  So these 

data would also suggest that in S. meliloti there is more bleomycin induced DNA 

damage in the presence of the BacA protein.  However, since there was a decrease in 

DAPI fluorescence in the Rm1021 ∆bacA strains with and without the pRK404 

vector, indicative of genomic DNA loss, this would suggest there must be a BacA 

independent route of bleomycin entry into S. meliloti.   
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Figure 3-6.  DAPI staining of fixed S. meliloti cells after bleomycin treatment, relative 

to untreated cells. Cultures of the defined strains were treated with and without bleomycin 

A5 as in figure 3-5, and then the DNA was stained with 4’,6-diamidino-2-phenylindole.2HCl 

(DAPI) and the fluorescence intensity of each strain was compared to that of untreated cells. 

The fluorescence intensity for each bleomycin treated strain is shown as a percentage 

relative to that of the untreated control. The significant values (**P<0.01) represent 

comparisons of the Rm1021 ∆bacA mutant with the parent strain and the Rm1021∆bacA 

mutant carrying pJG51A with the Rm1021 ∆bacA mutant carrying pRK404. The error bars 

represent the standard deviation from the mean (n=3) for one experiment.  The dataset 

shows preliminary data. 

 

3.2.4. Transmission electron microscopy of S. meliloti cells treated with 

bleomycin reveals no observable signs of membrane damage or lysis 

In eukaryotic cells bleomycin is able to cause cell damage independent from its 

effect on DNA by inducing lipid peroxidation (Hay et al., 1991).  Transmission 

electron microscopy (TEM) analysis of S. cerevisiae following bleomycin treatment 

revealed extensive lesions in the yeast cell wall (Moore et al., 1992).  To rule out that 

the loss of genomic DNA observed after bleomycin treatment of S. meliloti (Figs 3-5 

& 3-6) was due to membrane damage and/or cell lysis, cultures of the Rm1021 

parent strain and the bacA mutant were treated with and without bleomycin A5 and 

then analysed by TEM.  Here, the bleomycin treatment was performed using the 

exact same conditions as for the genomic DNA extraction and the DAPI experiment 

(Figs 3-5 & 3-6, respectively).  Additionally, the viability of the samples was also 

assessed and it was observed that there was complete loss of viability for the 
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Rm1021 parent strain and less then 1% of the Rm1021 ∆bacA cells remained viable.  

Under these conditions no visible signs of bleomycin-induced lesions were detected 

in the cell envelope of either the Rm1021 parent (Fig. 3-7A &B) or the Rm1021 

∆bacA mutant (Fig. 3-7C & D), relative to the untreated control cultures (Fig 3-7E, 

F, G & H).  Additionally, it was observed that bleomycin treatment of S. meliloti 

strains with and without the BacA protein, under the same conditions, did not lead to 

cell lysis since the OD600 of the cultures remained constant throughout the time 

course of the experiment (Fig. 3-8).  Taken together these results would suggest that 

bleomycin A5 treatment does not lead to cell envelope damage in S. meliloti.  

 However, during the TEM analysis it could be observed that cells of the S. 

meliloti Rm1021 ∆bacA mutant contained increased amounts of white granules after 

bleomycin treatment relative to the Rm1021 parent strain (Fig. 3-7CD and AB, 

respectively).  These granules were absent in the untreated control cells (Fig. 3-7E, F, 

G and H).  The chemical composition of these white granules will require further 

investigation.    
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Figure 3-7. TEM micrographs of S. meliloti cells treated with and without Bleomycin 

A5.  The defined strains were treated with (A, B, C and D) and without (E, F, G and H) 

bleomycin A5 (20 µg.ml
-1

) in LB medium for 2 hours. Bars: 1 µm (A, C, E and G) and 0.2 µM 

(B, D, F and H).  
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Figure 3-8.  Optical density of S. meliloti strains exposed to Bleomycin A5. Mid-

exponential phase cultures of the Rm1021 parent (open circles), the ∆bacA mutant (filled 

circles, ∆bacA & pRK404 (open triangles) and ∆bacA & pJG51A (filled triangles) were 

exposed to bleomycin A5 (20 µg.ml
-1

) for 2 hours and the optical density of the cultures was 

measured at the defined time points.  

 

3.2.5. The BacA protein does not increase the sensitivity of S. meliloti 

towards other DNA damaging agents  

Although the data presented so far are consistent with a role for BacA in bleomycin 

uptake, it may be possible that the BacA protein could also be affecting S. meliloti 

DNA resulting in an increased sensitivity towards bleomycin A5-induced DNA 

damage.  Hence, the sensitivity of the Rm1021 parent strain and the Rm1021 ∆bacA 

mutant towards three other DNA damaging agents, methylglyoxal (Ferguson et al., 

2000), mitomycin C (Otsuji & Murayama, 1972) and methyl methane sulfonate 

(MMS)  (Grzesiuk & Janion, 1996), previously shown to induce DNA damage in         

E. coli, was next assessed.  The Rm1021 parent cells and the Rm1021 ∆bacA mutant 

were exposed to these agents by filter disc assay (Fig. 3-9) and growth inhibition was 

assessed.  However, it was observed that presence of the BacA protein did not 

sensitize S. meliloti cells to any of the agents tested.  In fact loss of the BacA protein 

appeared to slightly sensitize S. meliloti cells to mitomycin C induced damage (Fig. 

3-9B).  
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Figure 3-9. Sensitivity of the Rm1021 parent and Rm1021 ∆∆∆∆bacA mutant exposed DNA 

damaging agents by disc diffusion assay. The defined strains were exposed to 

methylglyoxal (5 µl of a 40% w/v aqueous solution) (A), mitomycin C (5 µl of a 0.3 mg.ml
-1

 

aqueous stock solution) (B) and methyl methane sulfonate (5 µl of a 50 % v/v solution) (C) 

on LB agar.  The error bars represent the standard deviation from the mean (n=3) for one 

experiment.  For (A) and (B) the datasets shown are representative of the trends seen in two 

independent experiments and (C) shows preliminary data.  

 

Additionally, the genomic DNA content of S. meliloti strains with and without the 

BacA protein, after exposure to the DNA damaging agent MMS, was next examined.  

Mid-exponential phase cells were exposed to MMS and the genomic DNA was 

extracted and analysed as described previously.  Upon exposure of the Rm1021 

parent and Rm1021 ∆bacA mutant to 1% (v/v) MMS for 2 hours (Fig. 3-10A), 

complete degradation of the genomic DNA was observed for both strains, relative to 

the untreated control (Fig. 3-10C), with no differences observed in the presence and 

absence of the BacA protein.  Next, cells were exposed a lower dose of 0.25% (v/v) 

MMS for 30 minutes (Fig. 3-10B), DNA degradation was observed in the Rm1021 

parent strain (Fig. 3-10B), relative to the untreated cells (Fig. 3-10C) with slightly 

less degradation occurring in the Rm1021 �bacA mutant.  The genomic DNA of the 

Rm1021 ∆bacA mutant carrying the pRK404 control plasmid and pJG51A (encoding 

the S. meliloti bacA gene in pRK404) was next assessed.  Upon exposure to 1% (v/v) 
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MMS for 2 hours, complete genomic DNA degradation was observed for both strains 

(Fig. 3-10D), relative to the untreated cells (Fig. 3-10F).   However, when the cells 

were exposed to a lower dose of 0.25% (v/v) MMS for 30 minutes (Fig. 3-10E), 

more genomic DNA degradation was apparent in the Rm1021 �bacA mutant 

carrying the pRK404 vector than in the Rm1021∆bacA mutant carrying pJG51A. 

Therefore, taken together these data would suggest that MMS induced DNA 

degradation is not BacA dependent.  

Furthermore the viability of the strains was assessed after exposure to 0.5% 

(v/v) MMS for 2 hours.  In this case, for all four strains no viable cells remained at 

the end of the treatment. Viability was also assessed after treatment of the cells with 

0.3% MMS (v/v) for 2 hours.  In this case, no differences were observed in the 

presence and absence of the BacA gene with 0.03-0.05% of viable cells remaining 

after the treatment, for all strains. Therefore, taken together these data provide 

evidence that the BacA protein specifically sensitizes S. meliloti DNA towards 

bleomycin A5-induced damage and are consistent with the BacA protein playing a 

role in uptake of bleomycin into cells, rather than exerting its affect at the level of the 

DNA.  

 

 

 

 

 

 

 

 

 

 

Figure 3-10. Agarose gel electrophoresis of S. meliloti genomic DNA extracted from 

MMS treated and untreated cells.  Mid-exponential phase cells of the defined strains were 

exposed to 1% MMS (v/v) (A) and (D) for 2 hours, 0.25% MMS (v/v) (B) and (E) for 30 

minutes or grown in LB for 2 hours (C) and (F).  After treatment, genomic DNA was extracted 

and 2 µg was resolved on a 1% agarose gel. The symbols + and – refer to MMS treated and 

untreated DNA respectively. The dataset shows preliminary data.  
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3.2.6. The RecA protein protects S. meliloti against bleomycin damage 

but loss of bacA still confers protection in the absence of the RecA 

protein   

As previously discussed the RecA protein is a key regulator in the SOS response, 

which is induced in E. coli upon DNA damage (Brent & Ptashne, 1981; Little et al., 

1980; Little et al., 1981).  In E. coli it has been demonstrated that the RecA protein is 

involved in the repair process of bleomycin induced DNA damage (Yamamoto et al., 

1984).  The sensitivity of S. meliloti cells lacking the RecA protein to bleomycin was 

next investigated.  It was found that the S. meliloti Rm1021 recA::Tn5-233 mutant 

did display an increased level of growth inhibition when exposed to both bleomycin 

A5 and A2, relative to the Rm1021 parent strain (Fig. 3-11A & B, respectively). 

Therefore, these data provide further evidence that bleomycin can enter into S. 

meliloti causing DNA damage which would be repaired by RecA.  To investigate if 

the RecA protein is essential for the increased level of bleomycin resistance observed 

in the Rm1021 ∆bacA mutant, the recA::Tn5-233 insertion was next transduced into 

the Rm1021 ∆bacA mutant background using M12 phage (Finan et al., 1984).   It 

was observed that the S. meliloti Rm1021 ∆bacA/recA::Tn5-233  double mutant 

displayed an decreased level of growth inhibition, relative to the Rm1021 recA::Tn5-

233 single mutant (Fig. 3-11A & B).  Therefore, this would suggest that the BacA 

protein is not increasing bleomycin-induced DNA damage through an effect on the 

RecA protein.  However, since the S. meliloti Rm1021 ∆bacA/recA::Tn5-233  double 

mutant is more sensitive to bleomycin than the S. meliloti Rm1021 ∆bacA single 

mutant, this suggests that some bleomycin can still enter S. meliloti in the absence of 

BacA and cause damage, which would normally be repaired by RecA.  

In order to confirm these findings, the viability of the same strains was 

assessed over 60 minutes, upon exposure to bleomycin A5 (Fig. 3-11C) in liquid 

culture.  Here, the strains showed the same levels of sensitivity as for the filter disc 

assays, in that overall the Rm1021 ∆bacA mutant displayed an increased resistance to 

bleomycin relative to the Rm1021 parent strain, and the Rm1021 recA::Tn5-233 

mutant exhibits the greatest sensitivity, which is reduced by loss of the BacA protein.  
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Figure 3-11. Sensitivity of the S. meliloti Rm1021 recA::Tn5-233 mutant to bleomycin 

in the presence and the absence of the BacA protein. Growth inhibition for the defined 

strains exposed to bleomycin A5 (5 µl of a 2 mg.ml
-1

 stock) (A) and bleomycin A2 (5 µl of a 5 

mg.ml
-1

 stock) (B). The defined strains were exposed to bleomycin A5 (3 µg.ml
-1

) over 60 

minutes and viability assessed at the defined times (C).  All the datasets shown are 

representative of the trends seen in two independent experiments.  In each case the error 

bars represent the standard deviation from the mean (n=3) for one experiment. In (A) and 

(B) the significant values (***P<0.001) represent comparisons of the Rm1021 recA::Tn5-233 

mutant to the Rm1021 parent strain and comparisons of the Rm1021 ∆bacA/recA::Tn5-233 

double mutant to the Rm1021 recA::Tn5-233 mutant. In (C) upon comparison of the Rm1021 

recA::Tn5-233 mutant to the Rm1021 parent strain, a significant value of at least (*P<0.05) 

was observed for each time point and for comparison of the  Rm1021 ∆bacA/recA::Tn5-233 

double mutant to the Rm1021 recA::Tn5-233 mutant a significant value was at least 

(***P<0.001) was observed for each time point. In data set (C) the arrow represents 

complete loss of viability.  
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3.2.7. Glutathione protects S. meliloti against bleomycin but protection 

is independent of the BacA protein   

The data presented so far in this chapter, would suggest the BacA protein is involved 

but not essential for bleomycin uptake.  However, it may be possible that less 

bleomycin accumulates in the Rm1021 ∆bacA mutant, resulting in less DNA damage 

due to an increase in bleomycin detoxification, relative to the parent strain.  Hence it 

was important to rule out the possibility that the BacA protein was affecting a 

detoxification process.  Several studies have implicated a role for the tri-peptide 

glutathione in detoxification of bleomycin in eukaryotic cells.  The hypersensitivity 

of Chinese hamster ovary cells to bleomycin was found to be due to a lack of 

glutathione S-transferase activity (Giaccia et al., 1991) and cellular glutathione levels 

were also found to be up-regulated by bleomycin in bovine pulmonary endothelial 

cells (Day et al., 2002).  In a previous study intracellular glutathione has been shown 

to be necessary for a successful symbiosis of S. meliloti with alfalfa (Harrison et al., 

2005). Glutathione is the most abundant non-protein thiol found in many organisms 

(Fahey et al., 1978; Fahey & Sundquist, 1991; Penninckx & Elskens, 1993) (refer to 

section 5.1 for more details).  Hence, it was next investigated if the presence of 

glutathione was important for protection in S. meliloti from bleomycin toxicity.    

The S. meliloti gshA mutant (defective in the �-glutamyl cysteine synthetase 

enzyme) which lacks intracellular glutathione (Harrison et al., 2005) was found to 

display an increased level of sensitivity to bleomycin A5.  This would suggest a role 

for glutathione in detoxification of bleomycin in S. meliloti (Fig. 3-12).  Next, to 

determine if glutathione was important for the increased resistance observed in the 

Rm1021 ∆bacA mutant the gshA insertion was transduced into the Rm1021 ∆bacA 

mutant using M12 phage (Finan et al., 1984).  However, since the S. meliloti 

∆bacA/gshA double mutant displayed an increased level of resistance, relative to the 

Rm1021 gshA single mutant (Fig. 3-12), these data would suggest that the presence 

of glutathione is not essential for the increased resistance towards bleomycin in the 

absence of the BacA protein. Yet, it does appear the loss of BacA confers less 

protection in S. meliloti in the absence of glutathione.  However, these data do 

provide further evidence that the reduced level of bleomycin induced DNA 
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degradation observed in the absence of the BacA protein is due to a reduced level of 

bleomycin uptake, relative to the Rm1021 parent strain.  

 

 

 

 

 

 

 

 

 

 

Figure 3-12. Sensitivity of the S. meliloti glutathione mutant to bleomycin A5. Growth 

inhibition of the defined strains exposed to bleomycin A5 (2 µl of a 2 mg.ml
-1

 stock) on LB 

agar.  The significant values (***P<0.001) shown, represent comparisons between the 

Rm1021gshA mutant and the Rm1021 parent strain and the Rm1021 ∆bacA/gshA double 

mutant was compared to the Rm1021 gshA single mutant.  In each case the error bars 

represent the standard deviation from the mean (n=3) for one experiment.  The dataset 

shown is representative of the trends seen in two independent experiments. 

 

3.2.8. The BacA protein plays a role but is not essential for the uptake 

of fluorescently labelled bleomycin 

To investigate further the possible role of the BacA protein in bleomycin uptake, 

fluorescently labelled bleomycin A5 (F-BLM) was prepared by conjugation of 

bleomycin A5 and the fluorescent molecule 5-(and-6)-carboxyfluorescein, 

succinimidyl ester [5(6)-FAM, SE] (chapter 2, section 2.9).  A viability assay was 

initially performed to determine if the presence of the BacA protein also conferred an 

increased sensitivity of S. meliloti towards F-BLM.  The number of viable cells for 

the Rm1021 parent strain and the Rm1021 �bacA mutant were determined after 

exposure to 1.5 µg.ml
-1

 of F-BLM (Fig. 3-13 A) and a higher dose of F-BLM (Fig. 3-

13 B) over one hour.  These data show that F-BLM reduces the viability of S. 

meliloti and that the presence of the BacA protein confers an increased sensitivity 
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towards this labelled form of the drug, thus confirming that F-BLM would be 

suitable to use as an indicator of bleomycin entry into S. meliloti cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13.  Cell viability of the Rm1021 parent strain and ∆∆∆∆bacA mutant after 

exposure to F-BLM. For (A) and (B) mid-exponential phase cultures of the defined strains 

were exposed to F-BLM as defined and cell viability was determined before (open bars) and 

60 mins (shaded bars) after addition.  The significant values shown (**P<0.01; ***P<0.001) 

represent comparisons of the Rm1021 �bacA mutant and the Rm1021 parent strain. Dataset 

(A) is representative of the trends observed in two independent experiments. Dataset (B) 

shows preliminary data.  In each case the error bars represent the standard deviation from 

the mean (n=3) for one experiment.   

 

A previous study investigating bleomycin uptake in the yeast Saccharomyces 

cerevisiae assessed F-BLM uptake using a fluorometer (Aouida et al., 2004).  Thus, 

in this work initial F-BLM uptake experiments were attempted using a fluorometer, 

to measure intracellular fluorescence.  However, this methodology did not prove to 

be sensitive enough to accurately detect intracellular F-BLM in S. meliloti.  Instead, 

it was decided to examine accumulation of F-BLM in S. meliloti by flow cytometry 

analysis, since this method had been shown to be sensitive enough to accurately 
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assess uptake of a fluorescent labelled form of the proline rich peptide Bac7 in E. 

coli cells (Mattiuzzo et al., 2007).  

For the flow cytometry experiments, mid-exponential phase cells were 

exposed to F-BLM, after which, the cells were washed in LB medium, finally re-

suspended in sodium phosphate buffer and analysed immediately.  An initial flow 

cytometry experiment determined that following treatment for 15 minutes with F-

BLM, Rm1021 parent cells showed detectable cell-associated fluorescence, relative 

to untreated cells (Fig. 3-14A).  Additionally treatment of Rm1021 cells with the 

5(6)-FAM, SE label alone did not increase the fluorescence above the untreated 

control (Fig. 3-14B), thus providing evidence that an increase in fluorescence in the 

F-BLM treated cells was not due to unspecific interaction of 5(6)-FAM, SE with the 

cells.  These data would therefore suggest that F-BLM can associate with S. meliloti 

cells.  To examine if the BacA protein is involved in the association of F-BLM with 

S. meliloti, flow cytometry analysis was next performed with the Rm1021 �bacA 

mutant cells after exposure to F-BLM for 15 minutes (Fig. 3-14C).  These data show 

that in the absence of the BacA protein, a smaller number of cells increase their 

fluorescence after F-BLM exposure (Fig. 3-14C) compared to cells of the Rm1021 

parent strain (Fig. 3-14B). Thus, these data show that F-BLM can associate with S. 

meliloti cells, even in the absence of the BacA protein.   

 

 

 

 

 

 

 

 

Figure 3-14. Flow cytometry analysis of S. meliloti cells exposed to F-BLM and 5 (6)-

FAM, SE for 15 minutes. Mid-exponential phase cells of the defined strains were treated 

with (shaded histograms) or without (empty histograms) 1.5 µg.ml
-1 of F-BLM (A) and (C) or 

3 µg.ml
-1

 of 5(6)-FAM, SE (B).  Treatment in all cases was for 15 minutes. All datasets are 

representative of the trends observed in two independent experiments. 

 

Fluorescence FL1 (530/30)

C
e
ll 

n
u

m
b
e

r

A.                Rm1021 B. Rm1021 &

5(6)-FAM, SE 
C. Rm1021 ∆bacA

Fluorescence FL1 (530/30)

C
e
ll 

n
u

m
b
e

r

A.                Rm1021 B. Rm1021 &

5(6)-FAM, SE 
C. Rm1021 ∆bacA



                                                                82 

Next the Rm1021 parent strain and Rm1021 �bacA mutant were incubated with F-

BLM for a longer time period of 60 minutes. From these data it can also be observed 

that both the Rm1021 parent strain and the Rm1021 ∆bacA mutant show cell 

associated fluorescence, relative to the untreated control (Fig. 3-15A &B, 

respectively). Again it can be observed the Rm1021 ∆bacA mutant has a slightly 

lower number of cells showing cell associated fluorescence relative to the Rm1021 

parent strain (Fig. 3-15A & B, respectively). 

However, it can also be noted that as observed for the 15 minute time point 

(Fig. 3-14A &C) in both the Rm1021 parent and Rm1021 ∆bacA mutant, not all the 

cell population appears to become associated with F-BLM (Fig. 3-15A & B).  

Interestingly, a study looking at the uptake of radio-labelled bleomycin A2, in            

S. cerevisiae also found that not all cells took up bleomycin, when a cell population 

was assessed (Moore et al., 1992).  

 

 

 

 

 

 

 

 

Figure 3-15.  Flow cytometry analysis of S. meliloti cells exposed to F-BLM for 1 hour.    

Mid-exponential phase cultures of the defined strains (A) and (B) were treated with (shaded 

histograms) or without (empty histograms) F-BLM (1.5 µg.ml
-1) for 1 hour. The datasets are 

representative of the trends observed in three independent experiments.  

 

The data presented so far provide evidence that F-BLM can associate with S. meliloti 

cells and that this association is not dependent upon the presence of the BacA 

protein.  However, the data does not differentiate between intracellular and 

extracellular accumulation of F-BLM.  Although the S. meliloti cells were washed 

prior to flow cytometry analysis to remove any surface-attached F-BLM, cells were 

next pre-treated with the extracellular quencher Trypan Blue (TB).  A recent study 

had established and optimized the use of TB as an extracellular fluorescence 
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quencher in bacterial cells (Mattiuzzo et al, 2007).  By using fluorescently labelled 

polymyxin B, a antibiotic peptide known to interact with cells through binding to 

LPS on the outer membrane, it was possible to show that TB specifically quenched 

fluorescence that originated from the outer surfaces of E. coli cells (Mattiuzzo et al, 

2007).  

 Treatment of both the Rm1021 parent and Rm1021 ∆bacA mutant cells with 

TB prior to analysis, did result in a significant reduction in fluorescence of the cells 

(Fig. 3-16A & C, respectively), when compared to the Rm1021 parent and Rm1021 

∆bacA mutant cells without TB treatment (Fig. 3-16B &D, respectively). Hence this 

would suggest a large amount of the fluorescence observed was due to extracellular 

binding.  However, following TB treatment, it can still be observed that less Rm1021 

∆bacA mutant cells appear to accumulate F-BLM, relative to the Rm1021 parent 

(Fig. 3-16A & C). These data therefore suggest that the BacA protein plays some 

role in the uptake of F-BLM, but it does not appear to be essential for uptake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-16. Flow cytometry analysis of S. meliloti cells exposed to F-BLM for 1 hour. 

The defined strains were treated with (shaded histograms) or without (empty histograms)             

6.2 µg.ml
-1

 of F-BLM for 60 minutes and analysed by flow cytometry with (A & C) and without 

(B & D) trypan blue (TB) (1 mg.ml
-1

) treatment for 10 minutes.  The datasets show 

preliminary data. 
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3.2.9. The polyamine spermine protects S. meliloti against bleomycin 

independently of the nature of the R-group and the BacA protein 

As discussed previously, different forms of bleomycin vary in the nature of their R-

group (Section 3.1 and fig. 3-1).  In the yeast S. cerevisiae, the bleomycin A5 R-

group has been implicated to be important for bleomycin uptake (Aouida et al., 

2004).  The bleomycin A5 R-group has a structure similar to polyamines (Fig. 3-1 & 

3-17).  The same study found that deletion of a protein kinase ptk2 in S. cerevisiae 

which positively regulates polyamine transport prevented uptake of fluorescently 

labelled bleomycin A5 (Aouida et al., 2004).  So in yeast it was hypothesized 

bleomycin A5 may enter yeast cells through a polyamine transport system.  

Additionally, the study found that a 16 hour pre-incubation of the cells with both the 

polyamines spermine and spermidine reduced the uptake of fluorescently labelled 

bleomycin-A5 in a concentration dependent manner.  Thus, it was next investigated if 

spermine protects S. meliloti against bleomycin damage.  

 

 

 

 

 

 

 

 

Figure 3-17. Depiction of the polyamines spermine and spermidine. Structures were 

prepared by Hazel Phillips using ChemDraw Std 10.0.   

 

Sensitivity of the Rm1021 parent strain to bleomycin A5 was assessed in liquid 

culture in the presence of 1 mM spermine and indeed it could be observed that 

presence of this polyamine did confer protection from bleomycin A5 killing, relative 

to cells without spermine (Fig. 3-18). 
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Figure 3-18. Sensitivity of the Rm1021 parent exposed to bleomycin A5 in liquid 

culture in the presence of 1 mM spermine. The Rm1021 parent was exposed to 

bleomycin A5 (6 µg.ml
-1

) in LB alone (closed circles), and LB supplemented with 1mM 

spermine (open circles) and viability was assessed at the defined times.  In each case the 

error bars represent the standard deviation from the mean (n=3) for one experiment. The 

dataset shows preliminary data. The significant values (***P<0.001) represent comparisons 

of the Rm1021 parent in LB and in LB plus 1 mM spermine.  

 

Having demonstrated that the presence of spermine increases the resistance of the      

S. meliloti Rm1021 parent strain to bleomycin, it was next important to determine if 

there was any interplay between the protection by the polyamine spermine and 

protection in the absence of the BacA protein.  The sensitivity of the Rm1021 ∆bacA 

mutant to bleomycin in the presence of spermine was next assessed.  Like the 

Rm1021 parent (Fig. 3-19A), the Rm1021 ∆bacA mutant (Fig. 3-19B) also exhibits 

an increased resistance to bleomycin in the presence of spermine, providing evidence 

spermine protects S. meliloti even in the absence of the bacA gene. Thus, these data 

would suggest that protection by spermine is independent of the BacA protein. 

Additionally, for both the Rm1021 parent (Fig. 3-19A) and the bacA mutant         

(Fig. 3-19B), it was possible to demonstrate that the presence of spermine was able 

to protect against different forms of bleomycin, showing protection by spermine 

occurs independently of the nature of the R-group.   
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Figure 3-19. Sensitivity of the Rm1021 parent and the Rm1021 ∆∆∆∆bacA mutant to 

bleomycin in the presence of spermine. (A) Growth inhibition for the S. meliloti Rm1021 

parent strain exposed to bleomycin on LB (empty bars), and LB supplemented with 1 mM 

spermine (filled bars). For bleomycin forms A2, B2 and sulphate, cells were exposed to 5 µl of 

a 5 mg.ml
–1

 aqueous stock solution and for bleomycin A5 cells were exposed to 5 µl of a 2 

mg.ml
-1

 aqueous stock solution. (B) As in (A) but data for the ∆bacA mutant is shown.  In 

each case the error bars represent the standard deviation from the mean (n=3) for one 

experiment.  The significant values (***P<0.001) represent comparisons of sensitivity on LB 

and LB plus spermine. For the B2 form of bleomycin the datasets shown are preliminary.   

 

Thus, combined these data show that polyamines can protect S. meliloti when present 

in the growth media and that protection occurs independently of the BacA protein 

and of the bleomycin R-group.  

 

3.2.10. Preliminary investigation into a putative polyamine ABC 

transport system in S. meliloti 

As discussed, a common uptake system has been implicated for both bleomycin and 

polyamine uptake in yeast (Aouida et al., 2004).  These data presented thus far have 

demonstrated that in S. meliloti spermine protects against bleomycin damage 

independently of the BacA protein.  Additionally, it has been shown that in the 
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absence of the BacA protein bleomycin is still able to enter S. meliloti.  Thus, it was 

next investigated if disruption of a putative polyamine uptake system in S. meliloti 

would affect sensitivity to bleomycin.  In E. coli the rate of polyamine uptake is in 

the order: putrescine> spermidine> spermine (Kashiwagi et al., 1990).  Uptake is 

mainly catalysed by two polyamine uptake systems, the spermidine-preferential 

potABCD operon, (Furuchi et al., 1991; Kashiwagi et al., 1990), and the putrescine-

specific system potFGHI (Kashiwagi et al., 1990; Pistocchi et al., 1993).  Both of 

these operons encode ATP binding cassette (ABC) polyamine uptake systems (Fig. 

3-20).  

 

                 

 

 

 

 

 

 

 

 

 

Figure 3-20. Polyamine transport systems in E. coli.  (Igarashi & Kashiwagi, 1999) 

SPD=Spermidine. PUT=Putrescine.  

 

At the time when the experiments were performed for this chapter, the S. meliloti 

genome (http://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi) had four genes 

smb21273, smb21274, smb21275 and smb21276 annotated as potD, potB, potC and 

potA respectively.  However, in June 2008 due to new resources and data made 

available there was an annotation update in the S. meliloti genome (Becker et al., 

2008), resulting in changes in annotation and some genes being removed. 

Subsequently, the smb21276 gene annotation was removed and the smb21273 gene 

was re-annotated as encoding an ABC transporter periplasmic solute binding protein 

and smb21274 and smb21275 genes were re-annotated as encoding ABC transporter 

permease components (Fig. 3-21).  Collectively these three genes are still annotated 

as an ABC transport system, and are located downstream of a putative transcriptional 
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regulator (Fig. 3-21), with the smb21273 gene (formerly annotated potD) still 

thought to encode a solute binding protein and the smb21275 gene (formerly 

annotated potC) still thought to encode a permease component.  When protein 

BLAST searches (http://blast.ncbi.nlm. nih.gov/Blast.cgi) were performed with the 

smb21273 and smb21275 sequences against either the S. meliloti protein database or 

against all bacterial protein databases, proteins with a high sequence similarity and 

identity were annotated as polyamine transporters.  

 

 

 

Figure 3-21.  Diagrammatic representation of the smb21273, smb21274 and smb21275 

gene operon. The genes within this region are smb21272 (annotated as encoding a putative 

LacI family transcriptional regulator), smb21273 (annotated as encoding an ABC transporter 

periplasmic solute binding protein) and smb21274 and smb21275 (annotated as encoding 

ABC transporter permease components).  The numbers shown above in base pairs are the 

distances between each gene.  (iant.toulouse.inra.fr/bacteria/ annotation/cgi/rhime.cgi). 

 

With the view of making mutants in the putative S. meliloti pot operon, the plasmid 

integration mutant library (http://www.cebitec.uni Bielefeld .de /transcriptomics/sm- 

genome/sm-mutagenesis.html), purchased from the University of Bielefeld (chapter 

2, section 2.5) was used.  In this case two E. coli S17-1 clones, one containing a 334 

bp internal fragment of the smb21273 gene and the second containing a 309 bp 

internal fragment of  smb21275 gene in the pK19mob2ΩHMB mobilizable suicide 

vector were available in the library and these were mobilized into Rm1021 via 

conjugation. The recombinant clones were then selected by purification onto the 

appropriate antibiotics. 

Due to time constraints it was not possible to confirm disruption of the 

smb21275 and smb21273 genes by PCR.  It was observed that neither the putative 

smb21275 mutant nor the putative smb21273 mutant appeared to have an increased 

resistance to bleomycin A5 (Fig. 3-22).  However, the mutants did appear to have an 

increased sensitivity to bleomycin, relative to the Rm1021 parent. When exogenous 

spermine was added to the LB agar it was shown to still confer protection in the 

putative mutants against bleomycin (Fig. 3-22).  It should be noted that there are 

multiple predicted polyamine uptake systems encoded in the genome of S. meliloti   
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(http://iant.toulouse.inra.fr/ bacteria/ annotation /cgi/ rhime.cgi).  However, these 

preliminary data have shown that these putative mutants display an increased 

sensitivity to bleomycin, relative to the Rm1021 parent strain. Therefore, this may 

suggest this ABC transport system may be involved in uptake of a particular solute(s) 

able to protect against bleomycin induced damage.  However, these two putative 

mutants require confirmation by PCR, before further speculation.  

  

 

 

 

 

 

 

 

 

Figure 3-22.  Bleomycin sensitivity of mutants which carry disruptions in the predicted 

ABC transport operon, in the presence and absence of 1mM spermine.  Growth 

inhibition of the defined strains exposed to bleomycin A5 (5 µl of a 2 mg.ml
-1

stock) on LB 

plates (empty bars), and LB plates supplemented with 1 mM spermine (filled bars).  In each 

case the error bars represent the standard deviation from the mean (n=3) for one 

experiment. The dataset shows preliminary data. The significant values (***P<0.001) 

represent comparisons of the smb21275 and smb21273 mutants to the Rm1021 parent 

strain 

 

3.2.11. Loss of the putative glyoxalase/bleomycin resistance protein 

(Smc04266) in S. meliloti does not result in an increased sensitivity to 

bleomycin 

Interestingly in the S. meliloti genome, there is a gene, smc04266, located in the 

same region as the lpxXL and acpXL genes (Fig. 3-23), annotated as encoding a 

putative glyoxalase /bleomycin resistance protein.  It was next investigated if this 

protein plays any role in S. meliloti in protection against bleomycin.  Initially, 

BLAST searches (http://blast.ncbi.nlm. nih.gov/Blast.cgi) were performed using the 

Smc04266 protein sequence against all bacterial protein sequence databases.  It was 

found that proteins with a significant identity and similarity to Smc04266 are also 
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annotated as putative glyoxalase/bleomycin resistance proteins.  The protein 

sequence was then compared to the E. coli bleomycin resistance protein (Tn5 ble), 

the Streptococcus aureus bleomycin resistance protein (Sh ble) and the S. meliloti 

and E. coli glyoxalase I proteins (Table 3-1). The protein with the greatest 

similarity/identity to Smc04266 was the S. aureus bleomycin resistance protein (Berg 

et al., 1998), with 36% identity and 40% similarity.   

 

 

 

 

Figure 3-23. Diagrammatic representation of the genomic region surrounding the 

smc04266 gene. Genes surrounding smc04266 are smc04263 (encoding a putative 

sodium:alanine symporter family protein), smc04264 (encoding a putative transcriptional 

regulator), Smc04265 (encoding a conserved hypothetical protein). Genes on the opposite 

stand are lpxXL (encoding a lipid A biosynthesis C28-acyltransferase) and adhA2 (encoding 

a probable alcohol dehydrogenase).  Another nearby gene not shown includes acpXL 

(encoding an acyl carrier protein, involved in the transfer of long hydroxylated fatty acids to 

lipid A). (iant.toulouse.inra.fr/bacteria/ annotation/cgi/rhime.cgi) 

 

 

Table 3.1 Identity and similarity of the S. meliloti Smc04266 protein sequence to the 

sequences of the defined proteins.  

Protein Identity (%) 
 

Similarity (%) 

E. coli bleomycin resistance protein (Tn5 ble) 

(Yamamoto, 2006) 

33 40 

S. aureus bleomycin resistance protein (Sh ble) 

(Berg et al., 1998) 

36 40 

S .meliloti glyoxalase I (gloA) 

(Galibert et al., 2001) 

9 21 

E.coli  glyoxalase I (gloA) 

(Blattner et al., 1997) 

16 30 

 

To determine if the Smc04266 protein played any role in sensitivity of S. meliloti to 

bleomycin, the gene was disrupted in the Rm1021 parent strain using a 267 bp 

internal gene fragment of the smc04266 gene, cloned into the pJH104 suicide vector 

(chapter 2, section 2.3.6).  Additionally the smc04266 disruption was transduced into 

the Rm1021 ∆bacA background using M12 phage (Finan et al., 1984), since if a role 

for the Smc04266 protein in bleomycin resistance was found, it would be important 
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to determine if there was any interplay with BacA.  However, it was observed that 

disruption of smc04266 did not result in an increased sensitivity to bleomycin A5 (Fig 

3-24A), relative to the Rm1021 parent strain, suggesting that the Smc04266 protein 

did not play a role in bleomycin resistance in S. meliloti.  Loss of the Smc04266 

protein in the Rm1021 ∆bacA background resulted in the same level of resistance as 

seen in the Rm1021 ∆bacA single mutant (Fig 3.24A). Since Smc04266 is also 

annotated as a putative glyoxalase and  glyoxalase enzymes are involved the 

detoxification of methylglyoxal (Inoue & Kimura, 1995), sensitivity of the mutant to 

methylglyoxal  was next assessed.  It was observed that disruption of the gene did 

not result in an increased resistance to methglyoxal.  Taken together these data would 

suggest that despite being annotated as a putative glyoxalase/bleomycin resistance 

protein, the Smc04266 protein does not appear to play a role in bleomycin resistance 

or methylglyoxal detoxification in S. meliloti.  

 

 

. 

 

 

 

 

 

 

 

 

 

 

Figure 3-24. Sensitivity of the smc04266 mutant to bleomycin A5 and methylglyoxal by 

filter disc assay.  Growth inhibition of the defined strains exposed to bleomycin A5 (5 µl of a 

2 mg.ml
-1

stock) on LB plates (A) and growth inhibition of the defined strains to methylglyoxal 

(40 % aqueous stock solution) on LB plates (B).  In each case the error bars represent the 

standard deviation from the mean (n=3) for one experiment.  The dataset shows preliminary 

data.  
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To determine if the Smc04266 protein was important for the S. meliloti legume 

symbiosis, the mutant was inoculated into alfalfa plants and plant growth and nodule 

characteristics were recorded after a four week period (Table 3-2 and Fig. 3-25). It 

was determined that S. meliloti cells lacking the Smc04266 protein could form a 

successful symbiosis, in fact it appeared that alfalfa plants inoculated with the 

Rm1021 smc04266 mutant appeared to have enhanced growth and often the plants 

appeared darker green in colour (Table 3.2 and Fig. 3-25),  relative to the Rm1021 

parent strain.  However, unfortunately there were only 7 Rm1021 parent strain 

inoculated plants available for assessment, relative to 34 Rm1021 smc04266 mutant 

inoculated plants, since several Rm1021 plants had been used for nodule sampling 

prior to week 4.  Thus, to confirm this preliminary data the Rm1021 smc04266 

mutant will need to be assessed in the plant relative to a larger number of Rm1021 

parent strain inoculated plants. 

 

Table 3-2. Effect of loss of the Smc04266 protein on the alfalfa symbiosis 

Bacterial strain Symbiosis Plant height 

(cm) 

Plant 

colour 

Mean no. of pink nodules 

per plant 

Rm1021 parent
a
 Yes 11.2 ± 1.2 Dark green 12.3 ± 3.3 

Rm1021 

smc04266
b
 

Yes 14.1 ± 2.0 Dark green 12.0 ± 5.0 

± shows the standard derivation from the mean
 

a 
7 plants were analysed containing the Rm1021 parent strain  

b 34 plants were analysed containing the Rm1021 smc04266 mutant 

 

 

 

 

 

 

 

Figure 3-25. Alfalfa seedlings after inoculation with the Rm1021 parent and the S. 

meliloti smc04266 mutant.   Alfalfa seedlings were inoculated with either the Rm1021 

parent strain (A) or the Rm1021 smc04266 mutant (B). Plant growth was photographed 4 

weeks post infection.  

A BA B
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3.2.12. The S. meliloti ∆∆∆∆bacA mutant displays an increased resistance to 

the glycopeptide vancomycin on solid media  

It was next investigated if the BacA protein sensitized S. meliloti to another 

glycopeptide.  Vancomycin (Fig. 3-26) is produced by the bacterium Amycolatopsis 

orientalis  (Griffith, 1984) and became available for use over 50 years ago and is 

active against most gram positive bacteria.   In more recent years due to the spread of 

methicillin-resistant Staphylococcus aureus and penicillin resistant Streptococcus 

pneumoniae (Peacock et al., 1980), there has been a resurgence in vancomycin use.  

In gram positive bacteria the toxic action of vancomycin resides in its ability to bind 

to the C-terminal D-Ala–D-Ala peptides of the polymeric lipid-PP-disaccharide-

pentapeptides.  Consequently, this interferes with the cross-linking of these chains in 

the growing peptidoglycan cell wall (Barna & Williams, 1984; Reynolds, 1989) 

resulting in a weak point in the resulting cell wall which makes the bacterial cell 

susceptible to lysis.  

Most gram negative bacteria are resistant to the action of vancomycin, when 

exposed to clinically relevant doses, typically 30 µg infiltrated vancomycin discs are 

used (Woodford et al., 1995).  However, growth inhibition was observed in S. 

meliloti when a higher dose was used in the disc diffusion assay (Fig. 3-27A).  

Additionally, it was determined that disruption of bacA in S. meliloti did result in an 

increased level of resistance to vancomycin, relative to the Rm1021 parent strain 

(Fig. 3-27A).  However, when viability of the Rm1021 parent and Rm1021 ∆bacA 

mutant were assessed in liquid media (Fig. 3-27B), no difference in sensitivity was 

observed.  Therefore, these preliminary data would suggest that the disruption of 

bacA in S. meliloti cells results in an increased resistance to the glycopeptide 

vancomycin on solid media.  
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                Figure 3-26. Structure of the glycopeptide vancomycin 

               (Schafer et al., 1996) 

                                                                                                                   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-27. Sensitivity of the Rm1021 parent strain and the Rm1021 ∆∆∆∆bacA mutant to 

the glycopeptide vancomycin on solid and in liquid media. The defined strains were 

exposed to vancomycin (5 µl of 20 mg.ml-1 stock solution) by filter disc assay and growth 

inhibition was assessed (A). The Rm1021 parent (closed circles) and the Rm1021 ∆bacA 

mutant (open circles) were exposed to vancomycin (300 µg.ml 
-1

) and cell viability was 

assessed at the defined times (B).  In (A) the significant value (***P<0.001) represents a 

comparison of the Rm1021 ∆bacA strain and the Rm1021 parent strain.  In each case the 

error bars represent the standard deviation from the mean (n=3) for one experiment.  Both 

datasets show preliminary data.    
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3.3. Discussion 

Work in this chapter has shown that the presence of the S. meliloti BacA protein 

dramatically increased the amount of bleomycin induced DNA degradation.  

Contrastingly BacA did not sensitize S. meliloti towards other DNA damaging 

agents, suggesting the BacA induced sensitization to DNA damage is specific for 

bleomycin.  It was also observed that the presence of both the RecA protein and 

intracellular glutathione protected S. meliloti against bleomycin damage.  However, it 

was determined that the increased resistance to bleomycin observed in the absence of 

the BacA protein is independent of RecA mediated DNA repair.  It was also shown 

the presence of glutathione was not essential for the increased resistance to 

bleomycin observed in the absence of BacA.  Furthermore, it was possible to show 

that loss of the BacA protein reduced the amount of F-BLM taken up by S. meliloti 

cells.  These data are all consistent with a role for the BacA protein in bleomycin 

uptake.  However, since F-BLM still accumulated in S. meliloti in the absence of the 

BacA protein, these data also show there must be a BacA independent mode of 

bleomycin uptake into S. meliloti cells (Fig. 3-28).  

 

 

 

 

 

 

 

 

 

Figure 3-28.  Illustration of the S. meliloti cell summarising the major findings of this 

chapter.  The presence of the BacA protein increases the amount of bleomycin induced 

DNA degradation.  However, in the absence of BacA, bleomycin is still able to enter S. 

meliloti.  Both the RecA protein and intracellular glutathione protect S. meliloti against 

bleomycin damage.  However, glutathione and RecA mediated DNA repair are not essential 

for the increased resistance to bleomycin observed in the absence of the BacA protein.  

Presence of the BacA protein was shown to increase the amount of F-BLM taken up by S. 

meliloti cells. 
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3.3.1. The increased resistance to bleomycin in the absence of the BacA 

protein is independent of the altered VLCFA   

Although previous work has shown that loss of the BacA protein in both S. meliloti 

and B. abortus results in a reduction in the VLCFA content of the lipid A (Ferguson 

et al., 2004).  Work in this chapter was able to show the increased resistance to 

bleomycin in the absence of BacA was not as a consequence of the altered lipid A.  It 

was shown that the Rm1021 acpXL and lpxXL mutants, which completely lack the 

VLCFA modification (Ferguson et al., 2005),  actually display an increased level of 

sensitivity to bleomycin.  It has previously been shown that the Rm1021 

acpXL/∆bacA and lpxXL/∆bacA double mutants have identical lipid A profiles to 

their respective acpXL and lpxXL single mutants.  However, it was observed that loss 

of the BacA protein in the acpXL and lpxXL mutant backgrounds still conferred 

resistance against bleomycin.  Thus, these findings confirmed that the increased 

resistance to bleomycin in the absence of the BacA protein is independent of the 

altered lipid A.  Additionally, unlike S. meliloti the lipid A of E. coli is not modified 

with VLCFAs, yet loss of the BacA homolog SbmA has also been shown to cause an 

increased resistance to bleomycin.  Moreover, recent work has found that loss of a 

BacA related protein (Rv1819c) in M. tuberculosis,  as well as compromising 

chronic infection also results in an increased resistance to bleomycin (Domenech et 

al., 2008).  Although the cell envelope of M. tuberculosis does not contain LPS, very 

long chain fatty acids are present (C60-C90), known as the mycolic acids (Brennan & 

Nikaido, 1995).  However it was observed that loss of the BacA like protein in M. 

tuberculosis did not result in any detectable changes in the abundance or structure of 

the mycolic acids (Domenech et al., 2008). 

 

3.3.2. The increased resistance of S. meliloti to bleomycin is 

independent of the nature of the R-group  

In the yeast S. cerevisiae it has been proposed that the bleomycin R-group may be 

important for uptake (Aouida et al., 2004).  To date, this is the only study implicating 

a particular domain of the bleomycin molecule as being important in uptake, since to 

date relatively little is known concerning bleomycin uptake in both eukaryotic and 
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prokaryotic cells.  However, in this work it was found that the BacA protein 

conferred sensitivity to all forms of bleomycin, suggesting that the R-group is not 

important for BacA-dependent uptake.  It may be possible that another bleomycin 

domain is important or even crucial for BacA induced uptake. Deglyco-bleomycin 

A2 is a bleomycin derivative, which lacks the carbohydrate moiety (Oppenheimer et 

al., 1982).  Research has shown that although loss of the carbohydrate moiety does 

not seem to affect the ability of bleomycin A2 to recognise sequences on the DNA 

and produce breaks (Bailly et al., 1995), when exposed to Chinese hamster 

fibroblasts, it did induce significantly less toxicity (Tounekti et al., 2001).  It was 

hoped to obtain some deglyco-bleomycin A2, to determine if the carbohydrate moiety 

was important for BacA mediated uptake, however it was unfortunate that a source 

was not available during the course of this work.  

 

3.3.3. BacA sensitizes S. meliloti to bleomycin induced DNA damage 

Extraction and analysis of S. meliloti genomic DNA by agarose gel electrophoresis 

following bleomycin treatment clearly demonstrated that in the presence of the BacA 

protein there was a substantial loss of genomic DNA.  Contrastingly, there appeared 

to be no significant loss of genomic DNA in the Rm1021 ∆bacA mutant. However, 

in situ staining of the genomic DNA with DAPI following bleomycin treatment 

under the same conditions did reveal some DNA degradation in the Rm1021 ∆bacA 

mutant, albeit to a smaller extent than the parent.  This would suggest that the DAPI 

method was a more sensitive means of analysis.  Since genomic DNA damage was 

used as a means to assess intracellular bleomycin, taken together these data are 

consistent with a role for BacA in uptake.  However, since DNA degradation also 

occurred in the absence of the Rm1021 BacA protein the data also suggests 

bleomycin can enter the cells in a BacA independent manner.  The observation that 

the BacA protein did not sensitize S. meliloti cells to three other DNA damaging 

agents (methylglyoxal, mitomycin C and MMS), or enhance MMS induced DNA 

degradation ruled out the possibility that BacA could be affecting S. meliloti genomic 

DNA, leading to an increased susceptibility towards DNA damaging agents, thus 

confirming that BacA-mediated sensitivity was specific for bleomycin.   
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However, since bleomycin requires a reduced transition metal, either Fe
2+

 or 

Cu
2+

 for activity  (Chen & Stubbe, 2005), it is possible that BacA instead of having a 

role in bleomycin transport, could be necessary for the transport of one of these 

metals. Unlike bleomycin, metal co-factors do not appear to be necessary for 

methylglyoxal, mitomycin C and MMS induced DNA damage, although, an in vitro 

study with methylglyoxal demonstrated that when plasmid DNA was incubated with 

methylglyoxal and lysine, Cu
2+ 

enhanced DNA stand breakage induced by the 

glycation reaction of methylglyoxal and lysine (Kang, 2003).  Additionally, an in 

vitro study performed some years ago with mitomycin C found that iron chelators 

reduced the degradation of DNA, under low oxygen conditions (Gutteridge et al., 

1984).  However,  the proposal that BacA could be involved in iron transport has 

recently been investigated in M. tuberculosis (Domenech et al., 2008).  As discussed, 

this study found that loss of the BacA like protein in M. tuberculosis results in an 

increased resistance to bleomycin.  Also in this study 
55

FeCl3 accumulation assays 

were performed using the parental and BacA deficient strains.  However, it was 

observed that both strains had the same rate of 
55

FeCl3 accumulation, therefore 

showing that in M. tuberculosis iron uptake was independent of BacA.  Moreover, 

work investigating the increased bleomycin resistance of the B. abortus bacA mutant, 

has also shown that iron uptake is independent of BacA (R.M. Roop, unpublished 

data).  Therefore, taken together these data do not support a role for BacA in the 

uptake of iron.  

 

3.3.4. Bleomycin treatment did not appear to induce membrane lysis in 

S. meliloti  

The observation that no membrane damage or cell lysis occurred in S. meliloti, 

following bleomycin treatment was able to show that the DNA degradation observed 

was not as a result of cell envelope damage.  Moreover, since no membrane damage 

or cell lysis was apparent, this would also suggest that BacA independent uptake of 

bleomycin, is unlikely to occur in a non specific manner, suggesting another 

transport system is likely to be involved.  It was also interesting to note the 

appearance of white granules in the Rm1021 ∆bacA cells treated cells, relative to the 

Rm1021 parent treated cells and these granules were absent in the untreated cells.  
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Poly-3-hydroxybutyrate (PHB) granules, whose accumulation, degradation and 

utilization have been shown to be increased under stress conditions in bacteria (Okon 

et al., 1992), appear as white granules.  PHB granules have been well characterised 

in S. meliloti, where they are used to store excess carbon (Tombolini et al., 1995). 

However, future work looking at a S. meliloti mutant in PHB biosynthesis could 

determine if these granules are in fact PHB granules.  Additionally, further work 

involving elemental TEM may allow more to be learnt regarding the composition of 

these granules. Yet at this point it is interesting to speculate that the appearance of 

these white granules in the absence of the BacA protein may be linked to the altered 

bleomycin sensitivity observed, relative to the Rm1021 parent strain. 

 

3.3.5. Glutathione appears to protect against bleomycin induced 

damage and this protection is independent of the BacA protein  

The observation that glutathione protects S. meliloti against bleomycin, suggests that 

S. meliloti has a glutathione-dependent bleomycin detoxification system.  The 

hypersensitivity of Chinese hamster ovary cells to bleomycin was found to be due to 

a lack of glutathione S-transferase activity (Giaccia et al., 1991).  Glutathione-S-

transferases catalyse the nucleophilic conjugation of both xenobiotic and endogenous 

electrophiles with glutathione, thereby decreasing their reactivity (Armstrong, 1997). 

S. meliloti has several glutathione S-tranferases annotated in the genome 

(http://iant.toulouse.inra. fr/bacteria/annotation /cgi/rhime.cgi).  Thus, it may be 

possible that detoxification of bleomycin in S. meliloti is catalysed by glutathione S-

transferases.   However, since deletion of bacA still conferred protection of an S. 

meliloti mutant lacking glutathione against bleomycin, this provided evidence that 

the reduced amount of bleomycin-induced DNA degradation observed in the absence 

of BacA is not due to an increase in glutathione-dependent bleomycin detoxification. 

Furthermore, the fact that the Rm1021 ∆bacA/gshA double mutant displayed an 

increased level of sensitivity, relative to the Rm1021 ∆bacA mutant provides further 

evidence that bleomycin is able to enter S. meliloti in the absence of BacA protein.   
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3.3.6. In the absence of the BacA protein S. meliloti appears to 

accumulate less F-BLM 

Whilst investigating the uptake of F-BLM, use of the extracellular quencher TB did 

reveal that a proportion of the F-BLM associated with S. meliloti cells was 

membrane bound.  However, a proportion of the cells did still maintain cell 

associated fluorescence, following TB treatment.  Therefore, these data suggest that 

F-BLM is able to enter S. meliloti cells.  It was hoped to confirm these findings by 

fluorescence microscopy to visualise F-BLM within the cells, additionally use of a 

fluorescent membrane dye would enable confirmation that F-BLM had entered the 

cell cytoplasm and not just the cell envelope.  Unfortunately, in this case 

fluorescence microscopy did not prove a sensitive enough means to detect F-BLM in 

S. meliloti.  However, following TB incubation it was still observed that in the 

presence of the BacA protein more F-BLM appeared to accumulate in S. meliloti, 

consistent with a role for BacA in uptake.   

The viability experiments with F-BLM also showed that the presence of the 

BacA protein conferred increased sensitivity to F-BLM.  However, there still remains 

the possibility that labelling of the bleomycin A5, with the 5(6)-FAM, SE 

fluorophore may have affected the toxicity or mechanism of action of the bleomycin 

A5.  Unfortunately at the time of this work, the F-BLM produced had not been 

analysed further following purification, and upon the advice of another research 

group, also working with F-BLM, a one to one ratio of 5(6)-FAM, SE  to bleomycin 

was assumed (M. Aouida, personal communication).  However, more recently 

electrospray ionisation-mass spectrometry analysis determined that F-BLM contains 

a 2:1 ratio of 5(6)-FAM, SE (M. Scocchi and G.P.Ferguson, unpublished data). This 

analysis also determined the molecular weight of F-BLM. Subsequently, work is 

currently under way in the laboratory using equal molar concentrations of F-BLM 

and bleomycin A5 to assess sensitivity of the Rm1021 parent and Rm1021 ∆bacA and 

to determine if the labelling has affected the toxicity.  Additionally DNA degradation 

is currently being assessed in the Rm1021 parent and Rm1021 ∆bacA mutant, 

following treatment with F-BLM, under the same conditions as used for the flow 

cytometry experiments.  However, the data obtained thus far assessing F-BLM 

uptake are consistent with a role for BacA in bleomycin uptake.   
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3.3.7. The Role of the BacA protein in bleomycin uptake 

Although only S. meliloti bacA transposon mutants were isolated after screening of a 

S. meliloti  transposon library for bleomycin resistant mutants (Ferguson et al., 

2006), there may be still other bleomycin uptake systems, that are either essential for 

S. meliloti growth, or may have functional redundancy.  In the yeast S. cerevisiae, a 

study found that deletion of a protein kinase  ptk2 which positively regulates 

polyamine transport prevented uptake of F-BLM (Aouida et al., 2004).  So in yeast it 

was hypothesized that bleomycin A5 may enter yeast cells through a polyamine 

transport system. This finding combined with the structural similarity of the 

bleomycin A5 R-group to polyamines, led the authors to propose that the R-group of 

bleomycin may be important in uptake (Aouida et al., 2004).  However, it should be 

noted there are no data stating if S. cerevisiae was sensitive to other forms of 

bleomycin, where the polyamine like R-group would be absent.  Consistent with the 

work in yeast it was also found that the polyamine spermine protected against 

bleomycin A5 damage in S. meliloti.  This protection was shown to be independent of 

the nature of the bleomycin R-group.  Since spermine protected against bleomycin in 

S. meliloti and there appeared to be a BacA independent mode of uptake, it was 

hoped to investigate if disruption of a polyamine uptake system in S. meliloti would 

result in an increased resistance to bleomycin.  Disruptions were made in what was 

thought to be the S. meliloti  potABCD operon, whose role in polyamine uptake is 

very well characterised in E. coli (Furuchi et al., 1991; Kashiwagi et al., 1990).  

However, re-annotation of the S. meliloti genome has meant this operon is now 

annotated as encoding a ABC transporter only.  Interestingly a previous study in S. 

meliloti, using transcriptional fusions found that this operon is induced by glucose-6-

phosphate and glycerol-3-phosphate (Mauchline et al., 2006), perhaps suggesting it 

plays a role in the uptake of sugar phosphates.   It was observed that the two putative 

mutants smc21272 and smc21275 did not display an increased resistance to 

bleomycin, therefore once these disruptions are verified, this will enable the 

assumption to be made that this transport system is not involved in bleomycin 

uptake.  It was unfortunate that the mutants could not be verified in the course of this 

work.  However, the increased level of sensitivity to bleomycin observed in the 

putative mutants may suggest this operon is involved in the uptake of a solute(s) 



                                                                102 

involved in protection against bleomycin induced damage. The genome of S. meliloti 

encodes multiple polyamine uptake systems (iant.toulouse.inra.fr/bacteria/ 

annotation/cgi/rhime.cgi), further work will be necessary to determine if one or more 

of these systems is involved in bleomycin uptake. However, since polyamine induced 

protection still occurred in the absence of BacA, this would suggest polyamines are 

not protecting S. meliloti by reducing the amount of BacA mediated uptake.   

However, it is quite possible polyamines may be inducing their protective effect by 

some other means independent of uptake.  Indeed polyamines have multiple 

physiological functions in bacteria (Shah & Swiatlo, 2008) and have been shown to 

protect DNA against the formation of radiation-induced double stranded breaks (Oh 

& Kim, 1998) so a role for spermine in protection against bleomycin induced DNA 

damage in S. meliloti cannot be ruled out.   

 

3.3.8 Disruption of the putative glyoxalase/bleomycin resistance protein 

did not result in an increased sensitivity to bleomycin 

The discovery of the smc04266 gene encoding the putative glyoxalase/bleomycin 

resistance protein came about since it is located in the same genome region as the 

acpXL and lxpXL genes, (iant.toulouse.inra. fr/ bacteria/ annotation/cgi/rhime.cgi), 

which have been studied in the laboratory for several years.  Performing BLAST 

analysis revealed a low level of protein sequence similarity to other well 

characterised bleomycin resistance proteins or glyoxalase enzymes.  Upon re-

annotation of the S. meliloti genome in June 2008, the annotation of smc04266 was 

updated, to encode a putative glyoxalase/bleomycin resistance/dioxygenase protein.   

Further research revealed there is a superfamily of glyoxalase/bleomycin resistance/ 

dioxygenase proteins (http://supfam.cs.bris.ac.uk/SUPERFAMILY/index.html), 

which are grouped together based on domain similarity.  Several bacterial species are 

thought to encode similar proteins belonging to this family. The S. meliloti 

Smc04266 protein is included in this superfamily, in fact the S. meliloti genome is 

thought to encode 23 proteins belonging to this superfamily. Further work would be 

required to determine if any of these proteins are involved in bleomycin resistance.  

However, in this work it was found the Smc04266 protein was not important for 

bleomycin resistance or methglyoxal detoxification.  
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Interestingly, preliminary data suggested loss of this protein may confer an 

advantage to S. meliloti in the alfalfa host interaction. It was found alfalfa plants 

inoculated with the Rm1021 smc04266 mutant appeared to have enhanced growth 

relative to the Rm1021 parent strain. Work is currently underway in the laboratory to 

see if the phenotype is reproducible and if so to investigate this further.  

 

3.3.9. The S. meliloti ∆∆∆∆bacA mutant displays an increased resistance to 

the glycopeptide vancomycin on solid media 

It is well documented that the glycopeptide vancomycin is unable to enter most gram 

negative bacteria, as due to its size it is thought to be unable to pass though the 

porins of the gram negative outer membrane (Rida et al., 1996).  However, by using 

a high dose of vancomycin it was possible to observe both growth inhibition on solid 

media and cell death in S. meliloti when exposed in liquid culture.  It may be possible 

that at higher doses vancomycin may have a different effect on bacterial cells which 

results in growth inhibition and cell death.  However, to date all the literature 

detailing the mechanism of vancomycin damage only describes the drug’s 

interference with the cross-linking of peptide chains in the growing peptidoglycan 

cell wall (Barna & Williams, 1984; Reynolds, 1989).  It was interesting to observe 

that the S. meliloti ∆bacA mutant displayed a reduced level of growth inhibition to 

vancomycin, relative to the parent strain, although at the concentration tested no 

differences were observed in the actual cell death between the S. meliloti ∆bacA 

mutant and the Rm1021 parent.  It may be possible that only an increased resistance 

to growth inhibition, not cell death is observed in the S. meliloti ∆bacA mutant, 

relative to the Rm1021 parent strain.  However, further experiments using different 

concentrations of vancomycin in the liquid viability experiments would be necessary 

to confirm this.   

Before one is able to speculate as to why the S. meliloti ∆bacA mutant 

displays decreased growth inhibition, relative to the parent strain when exposed to 

vancomycin, it will be essential to determine if this is dependent or independent of 

the VLCFA alteration.  
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3.3.10. Could uptake of a molecule similar to bleomycin be important for 

host persistence? 

Bleomycin was initially isolated from the soil bacterium  Streptomyces verticillus 

(Umezawa et al., 1966).  Since S. meliloti can also be found free-living in the soil, 

these findings may suggest that BacA will increase the susceptibility of S. meliloti 

towards bleomycin and other peptide antibiotics found within the soil.  It was 

previously hypothesized the critical role of the BacA protein may be linked to its role 

in the uptake of a peptide with structural similarities to bleomycin, essential for 

persistence within the host  (Ichige & Walker, 1997).  However, since this work has 

shown there is a BacA independent route of bleomycin uptake, this seems unlikely.  

Peptides with a similar structure to bleomycin have to date not been identified in 

nodules.  Interestingly, transcriptome analysis of another S. meliloti host, Medicago 

truncatula has revealed the presence of hundreds of cysteine-rich peptides within the 

nodules (Alunni et al., 2007; Mergaert et al., 2003; Mergaert et al., 2006).  Although 

the function of these peptides is currently unknown,  it has been proposed they may 

play a role in S. meliloti bacteroid development (Mergaert et al., 2006).  The BacA 

homolog in E. coli SbmA has been proposed for several years to be involved in the 

uptake of  bleomycin and microcin antibiotics (Ichige & Walker, 1997; Salomon & 

Farias, 1995). However, more recently SbmA has been found to be involved in the 

uptake of a proline rich peptide Bac7 (Mattiuzzo et al., 2007).  Since this suggests 

that SbmA may be involved in the uptake of structurally diverse peptides, it may be 

possible within the host that BacA may play a role in the uptake of one of these 

cysteine-rich peptides, whose uptake is essential for successful bacteroid 

development.  

  Future studies will be necessary to determine the precise function of BacA in 

peptide uptake and the contribution of this process to the chronic infection process. 

However, since both B. abortus and M. tuberculosis lacking the BacA protein also 

display an increased resistance to bleomycin and since antimicrobial peptides are 

known to be present in mammalian cells, these findings further support a model 

whereby BacA may be essential for the uptake of a host derived peptide, which may 

play an important role in the outcome of an infection.   
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Chapter 4: Investigation into the Role of the BacA Protein in the Uptake 
of the Proline Rich Peptide Bac7(1-16) 
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4.1. Introduction 

The BacA protein has been proposed for some time to be involved in the uptake of 

an essential peptide and it is hypothesized that this may be linked to its crucial role in 

host persistence (Glazebrook et al., 1993; Ichige & Walker, 1997).  The presence of 

the BacA protein sensitizes both S. meliloti and B. abortus to the glycopeptide 

bleomycin (Ferguson et al., 2002; Ferguson et al., 2006; Ichige & Walker, 1997; 

LeVier et al., 2000; LeVier & Walker, 2001) and E. coli mutants lacking the BacA 

homologue, SbmA, are also resistant to bleomycin (Ichige & Walker, 1997).  Thus, 

in chapter 3 the role of the S. meliloti BacA protein in the uptake of bleomycin was 

investigated.  However, it was determined that BacA was not essential for the uptake 

of a fluorescently labelled form of bleomycin in S. meliloti, since uptake still 

occurred in the absence of the BacA protein, although it was found that in the 

absence of the BacA protein, fewer cells appeared to accumulate fluorescently 

labelled bleomycin, suggesting BacA may play some role in uptake.  However, since 

the BacA protein does not appear to be the direct route of bleomycin uptake in S. 

meliloti, this would make it highly unlikely that the uptake of a peptide with 

structural similarities to bleomycin is essential for host persistence. 

Interestingly, recent work has shown the E. coli SbmA protein is involved in 

the intracellular accumulation of a proline-rich, fluorescently labelled peptide, 

Bac7(1-35) in E. coli (Mattiuzzo et al., 2007).  Full length Bac7 is a linear 

antimicrobial peptide (AMP), characterised by a high content of proline and arginine 

residues.  The full length Bac7 peptide was originally isolated from bovine 

neutrophils as a 60 amino acid peptide (Frank et al., 1990).  However, truncated 

forms of this peptide, Bac7(1-35) and (1-16), still maintain full antimicrobial activity 

against E. coli (Benincasa et al., 2004). The Bac7 peptide is predominantly active 

against gram-negative bacterial species (Gennaro et al., 2002; Otvos, 2002) and has 

been shown to exert its cytotoxic effect by a non-lytic mechanism, that depends on 

the penetration of the peptide into bacterial cells (Podda et al., 2006). Research is 

currently underway to define the nature of this putative intracellular target in E. coli 

(Scocchi et al., 2008).  This mechanism of action is unusual for AMPs, as most exert 
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their cytotoxic effects through perturbing and permeabilizing membranes of both 

gram negative and gram positive bacterial species (Andreu & Rivas, 1998; Brogden, 

2005).  

The SbmA protein can functionally compensate for the absence of S. meliloti 

BacA (Ichige & Walker, 1997) and the S. meliloti BacA protein is 79% similar (64% 

identical) to the E. coli SbmA protein.  Hence, it may be possible that like SbmA, the 

BacA protein may also play a role in the uptake of the Bac7 peptide (Fig. 4-1).   

Interestingly, two gene families (glycine rich proteins and cysteine rich peptides), 

which encode secreted AMPs, have been identified to have nodule-specific 

expression in M. truncatula, a legume host of S. meliloti (Alunni et al., 2007; Kevei 

et al., 2002; Mergaert et al., 2003; Mergaert et al., 2006).  It has been suggested 

previously that these peptides could play a role in initiating bacteroid development 

(Mergaert et al., 2003; Mergaert et al., 2006).  Additionally, as the full length Bac7 

peptide was originally isolated from bovine neutrophils (Frank et al., 1990), it is 

plausible that B. abortus may encounter proline rich peptides within its mammalian 

host.  Thus, the uptake of a peptide could also be important for signalling the 

transition from the acute to chronic state of B. abortus infection.  Since the S. meliloti 

and B. abortus BacA proteins are 68% identical and the B. abortus bacA mutant also 

displays an increased resistance to bleomycin, (LeVier et al., 2000) it is highly likely 

that the B. abortus BacA protein may also be involved in peptide uptake. 

 Therefore, in this chapter the hypothesis that the S. meliloti BacA protein may 

play a role in Bac7(1-16) uptake (Fig. 4-1) and that the uptake of a peptide may be 

linked to its essential role in chronic infection was investigated.  
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Figure 4-1. Proposed model for BacA function. The S. meliloti cell envelope is shown.             

Once the proline-rich peptide Bac7 has reached the periplasmic space, it could then be 

transported across the cytoplasmic membrane by the BacA protein.  

4.2. Results  

4.2.1. The S. meliloti BacA or the E. coli SbmA proteins sensitize S. 

meliloti towards Bac7(1-16) 

A previous study demonstrated that the BacA homolog, SbmA, increases the 

sensitivity of E. coli towards truncated forms of the proline-rich peptide, Bac7 

(Mattiuzzo et al., 2007).  Thus, it was first investigated whether the BacA protein 

was also involved in sensitizing S. meliloti towards the truncated Bac7 peptide, Bac7 

(1-16; RRIRPRPPRLPRPRPR).  Viability of S. meliloti cells, after treatment with 

the Bac7(1-16) peptide was initially assessed.  It was determined that treatment of 

the Rm1021 parent cells with 0.25 µM Bac7(1-16) for 1 hour resulted in loss of cell 

viability (Fig. 4-2A).  Contrastingly, when the viability of Rm1021 ∆bacA mutant 

cells were assessed under the same treatment conditions, no loss in cell viability 

occurred (Fig. 4-2A). Additionally, when cells were exposed to 1 µM Bac7(1-16), 

the Rm1021 ∆bacA mutant was still completely resistant to the killing effects of the 

peptide (Fig. 4-2B) and the Rm1021 parent strain showed even more sensitivity to 

this higher dose of the peptide (Fig. 4-2B). Thus, these data suggest that the S. 

meliloti BacA protein sensitizes S. meliloti to Bac7(1-16).  
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To confirm the role of the BacA protein, sensitivity of the Rm1021 ∆bacA 

mutant with pJG51A (pRK404 plasmid carrying the S. meliloti wild-type bacA gene), 

was assessed after treatment with 0.25 and 1 µM Bac7(1-16) (Fig. 4-2A & B, 

respectively).  Indeed, it could be seen that presence of the pJG5IA plasmid 

increased the sensitivity of the Rm1021 ∆bacA mutant to Bac7(1-16). However, the 

Rm1021 ∆bacA mutant carrying the pRK404 control plasmid remained resistant to 

the killing effects of Bac7(1-16) (Fig. 4-2A & B).  Furthermore, it was also 

determined that the Rm1021 ∆bacA mutant with pAI351 (pRK404 plasmid carrying 

the E. coli sbmA gene), also displayed an increased sensitivity to Bac7(1-16).   

Overall, these data show that either the presence of the BacA protein or the E. coli 

SbmA protein are essential for S. meliloti to be sensitive to killing by the Bac7(1-16) 

peptide.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2. Sensitivity of S. meliloti strains with and without either BacA or SbmA 

proteins to Bac7(1-16). Cultures of the defined strains were exposed to either 0.25 µM (A) 

or 1 µM Bac7(1-16) (B) and cell viability determined before (open bars) and 1 hour (shaded 

bars) after addition.  The significant values (***P<0.001) represent comparisons of the 

Rm1021 ∆bacA mutant with the Rm1021 parent strain and the Rm1021 ∆bacA mutant with 

either pJG5IA (S. meliloti bacA gene cloned into pRK404) or pAI351 (E. coli sbmA gene 

cloned in pRK404) to pRK404 (control plasmid with no insert). The datasets shown are 

representative of the trends observed in two independent experiments and in each case the 

error bars represent the standard deviation from the mean (n=3) for one experiment. 
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4.2.2. BacA-mediated sensitivity of S. meliloti towards Bac7(1-16) is 

independent of the VLCFA modification 

It had previously been shown that the Rm1021 ∆bacA mutant has a 50% reduction in 

the amount of lipid A species modified with a VLCFA, relative to the Rm1021 

parent strain (Ferguson et al., 2004).  Hence, it was essential to investigate if this 

lipid A alteration was involved in the increased resistance of the Rm1021 ∆bacA 

mutant to Bac7(1-16). A previous study had revealed that the lipid A species 

produced by the S. meliloti Rm1021 acpXL mutant in LB medium, under standard 

growth conditions, completely lacks the lipid A VLCFA modification (Ferguson et 

al., 2005).  The AcpXL protein is an acyl carrier protein, which plays an essential 

role in the biosynthesis of the lipid A VLCFA in free-living S. meliloti (Brozek et al., 

1996).  This mutant therefore provided a means to investigate how the absence of the 

lipid A modification in S. meliloti influences Bac7(1-16) sensitivity.  In contrast to 

the Rm1021 ∆bacA mutant it was found that the Rm1021 acpXL mutant did not 

display an increased resistance to Bac7(1-16) (Fig. 4-3), with the mutant displaying 

the same level of sensitivity as the Rm1021 parent.  These data therefore provide 

evidence that complete loss of VLCFA modification does not affect the sensitivity of 

S. meliloti cells to the peptide, suggesting that the VLCFA alteration in the Rm1021 

∆bacA mutant was not accounting for the increased resistance to Bac7(1-16). 

Previous work has demonstrated that the Rm1021 acpXL mutant and Rm1021 

∆bacA/acpXL double mutant have identical lipid A profiles and that their lipid A 

molecules completely lack the VLCFA modification.  However, it was observed that 

deletion of bacA in an Rm1021 acpXL background conferred resistance to Bac7(1-

16) (Fig. 4-3). Therefore, the data provided so far would support the hypothesis that 

the BacA protein is involved in the uptake of Bac7(1-16) in S. meliloti.   
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Figure 4-3. Sensitivity of the Rm1021 acpXL mutant to Bac7(1-16) in the presence and 

absence of the bacA gene. Mid-exponential phase cultures of the Rm1021 ∆bacA (open 

squares), Rm1021 acpXL::pk18mobGII (open triangles), Rm1021 ∆bacA 

/acpXL::pk18mobGII (filled triangles) mutant strains and parent strain, Rm1021 (filled 

squares) were treated with 0.25 µM Bac7(1-16) and cell viability determined at the defined 

times. The dataset shown is representative of the trends observed in two independent 

experiments and in each case the error bars represent the standard deviation from the mean 

(n=3) for one experiment. 

 

4.2.3. The BacA protein is essential for the uptake of fluorescently 

labelled Bac71-16-BODIPY  

To determine if the BacA protein is involved in the uptake of the Bac7 peptide, a 

fluorescent derivative of Bac7(1–16) was used, which was labelled at a C-terminal 

cysteine residue with the fluorophore BODIPY (Bac71-16 –BY)  (Scocchi et al., 

2008).  As was the case for unlabelled Bac7(1-16) (Fig. 4-2) it could be observed that 

S. meliloti possessing either the S. meliloti bacA or E. coli sbmA gene were highly 

sensitive to killing by Bac71-16-BY, whereas S. meliloti lacking either BacA or SbmA 

were resistant (Fig. 4-4). If the viability data is compared for exposure of the cells to 

0.25 µM unlabeled Bac7 (Fig. 4-2A) and the labelled form (Fig. 4-4), it appears that 

the labelled form is more toxic to the cells, under these conditions.  However, since 

the fluorescent labelling of Bac7(1-16) did not interfere with BacA-mediated 

sensitivity towards this peptide in S. meliloti, it was next used to monitor Bac7(1-16) 

uptake. 
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Figure 4-4. Effect of Bac71-16-BY on the viability of Rm1021 strains with and without 

the BacA protein.  Cultures of the defined strains were exposed to 0.25 µM Bac71-16-BY 

and cell viability determined before (open bars) and 1 hour (shaded bars) after addition.  The 

significant values (***P<0.001) represent comparisons of the Rm1021∆bacA mutant with the 

Rm1021 parent strain and the Rm1021∆bacA mutant with either pJG5IA (S. meliloti bacA 

gene cloned into pRK404) or pAI351 (E. coli sbmA gene cloned in pRK404) to pRK404 

(control plasmid with no insert). The datasets shown are representative of the trends 

observed in two independent experiments and in each case the error bars represent the 

standard deviation from the mean (n=3) for one experiment. 

 

Using flow cytometry analysis, uptake of Bac71-16-BY by S. meliloti cells was next 

investigated.  It could be clearly observed that incubation of Rm1021 parent cells 

with Bac71-16-BY resulted in all of the cell population displaying increased cell 

associated fluorescence, relative to the untreated control cells (Fig. 4-5A). Although 

the cells had been washed after Bac71-16-BY treatment, to discriminate between 

membrane bound and internalised peptide the extracellular quencher trypan blue 

(TB) was employed.  Pre-treatment of E. coli bacterial cells with this dye has been 

successfully shown to quench extracellular fluorescence in a recent study (Mattiuzzo 

et al., 2007) . It could be observed that treatment of the Rm1021 parent cells with TB 

prior to analysis had only a slight effect on the fluorescence of the cells (Fig. 4-5B), 

thus confirming that the fluorescence profile observed is due to the intracellular 

accumulation of Bac71-16-BY in the Rm1021 parent cells.  

Next flow cytometry analysis was performed with the Rm1021 ∆bacA mutant 

cells treated under the same conditions (Fig. 4-5C &D).  In contrast to the Rm1021 
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fluorescence of the Rm1021 ∆bacA mutant cells after treatment (Fig. 4-5C).  

However, after pre-treatment of the Rm1021 ∆bacA cells with TB this increased 

fluorescence was abolished (Fig. 4-5D), suggesting this was due to extracellular 

binding of the peptide.  

As discussed, it has been hypothesized in S. meliloti that the BacA protein 

may be essential for the uptake of a peptide involved in the differentiation of the cells 

into nitrogen fixing bacteroids (Mergaert et al., 2003; Mergaert et al., 2006).  Since 

upon differentiation into bacteroids S. meliloti increase in cell size and DNA content 

(Mergaert et al., 2006) it was next logical to determine if exposure to the Bac7 

peptide resulted in an increase in cell size.  Thus, the dot plot profiles of untreated 

(Fig. 4-6A& B) and treated cells (Fig. 4-6C& D) of the Rm1021 parent                 

(Fig. 4-6A& C) and Rm1021 ∆bacA (Fig. 4-6B& D) mutant are presented. These dot 

plots show forward scatter (FSC-A), which relates to cell size, versus side scatter 

(SSC-A), which relates to granularity of the cells.  Hence, these profiles show the 

distribution of cells based upon size.  However, it can be seen that under these 

conditions, for both the Rm1021 parent (Fig. 4-6A& C) and the Rm1021 ∆bacA 

mutant (Fig. 4-6B& D) treatment with Bac71-16-BY does not appear to result in any 

major change in cell size.  

Overall, these data show that under these conditions, the presence of the S. 

meliloti BacA protein appears to be essential for the intracellular accumulation of the 

truncated form of Bac71-16-BY.     
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Figure 4-5. Flow cytometry analysis of Rm1021 parent cells and Rm1021 �bacA 

mutant cells exposed to Bac71-16-BY.  Mid-exponential phase cells of the defined strains 

were treated with (shaded histograms) or without (empty histograms) 0.25 µM of the      

Bac71-16-BY for 1 hour and analysed by flow cytometry with (B & D) and without (A & C)   

trypan blue (TB) pre-incubation as indicated. The datasets shown are representative of the 

trends observed in two independent experiments. 
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Figure 4-6. Flow cytometry analysis of Rm1021 parent cells and Rm1021 �bacA 

mutant cells exposed to Bac71-16-BY.  Dot plot profiles showing forward scatter (FSC-A), 

which is an indicator of cell size, against side scatter (SSC-A), which is an indicator of 

granularity of the cells. The Rm1021 parent (A & C) and Rm1021 �bacA mutant (B & D) 

untreated and treated respectively are shown.  The datasets shown are representative of the 

trends observed in two independent experiments. 

 

4.2.4. BacA or E. coli SbmA complement the Bac71-16-BY uptake defect 

of the S. meliloti ∆∆∆∆bacA mutant 

To confirm that the differences observed by flow cytometry (Fig. 4-5) were due to 

the BacA protein, uptake of Bac71-16-BY into the Rm1021 ∆bacA mutant with either 

a control plasmid (pRK404) (Fig. 4-7A & B) or pJG51A (containing the S. meliloti 

wild-type bacA gene) (Fig. 4-7C & D) was next assessed.  As seen for the Rm1021 

∆bacA mutant  (Fig. 4-5C), an increased fluorescence of Rm1021 ∆bacA with the 

pRK404 control plasmid after Bac71-16-BY addition was observed (Fig. 4-7A) but 

this was eliminated by TB incubation (Fig. 4-7B), suggesting it was extracellular 

binding.  In contrast, a dramatic increase in the fluorescence of the Rm1021 �bacA 

mutant with pJG51A after incubation with Bac71-16-BY was observed both with and 

without subsequent incubation with TB (Fig. 4-7C & D respectively).   
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Since it had previously been determined that the E. coli SbmA protein could 

compensate for the absence of BacA in sensitizing S. meliloti towards Bac7(1-16) 

and Bac71-16-BY it was next assessed whether the E. coli SbmA protein could also 

compensate for the role of BacA in Bac71-16-BY uptake (Fig. 4-8E & F). It could be 

observed that the E. coli SbmA protein could restore the ability of S. meliloti lacking 

BacA to accumulate Bac71-16-BY. Thus, these data show that presence of either the 

S. meliloti bacA gene or the E. coli sbmA gene restores the ability of a S. meliloti 

strain lacking BacA to accumulate Bac7(1-16).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7. Flow cytometry analysis of Rm1021 �bacA mutant cells with and without 

the BacA protein exposed to Bac71-16-BY. Mid-exponential phase cultures of the Rm1021 

�bacA mutant cells with the defined plasmid were treated with (shaded histograms) or 

without (empty histograms) 0.25 µM of the Bac71-16-BY for 1 hour and analysed by flow 

cytometry with and without trypan blue (TB) pre-incubation as indicated. The datasets shown 

are representative of the trends observed in two independent experiments.  
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4.2.5. Site-directed mutations in the bacA gene affect the sensitivity of 

S. meliloti towards Bac7(1-16) and the uptake of Bac7 

As already mentioned it has been shown previously that antimicrobial peptides can 

be found in the root nodules of legumes and mammalian cells (Alunni et al., 2007; 

Frank et al., 1990; Kevei et al., 2002; Mergaert et al., 2003).  Hence, to investigate 

whether the ability of the S. meliloti BacA protein to take up a host-derived 

peptide(s) is linked to its essential role in host persistence, a set of plasmid-borne 

site-directed mutants (SDMs) were next assessed.  These SDMs had been previously 

constructed (LeVier & Walker, 2001) in the Rm8002 parent background and 

characterized in terms of their symbiotic ability with alfalfa (LeVier & Walker, 

2001).  Thus to be consistent with previously published data (LeVier & Walker, 

2001) the Rm8002 background was also used in this work.  In these SDMs conserved 

residues had been mutated to glycines.  Interestingly, four of the amino acids 

changed in this mutant set (Q193G, D198G, R284G and R389G) were found to be 

conserved within the human adrenoleukodystrophy protein (Ferguson et al., 2004).  

It has also previously been shown that these four site-directed mutants were 

symbiotically defective in the alfalfa host (LeVier & Walker, 2001) and have a 

reduction in their lipid A VLCFA content relative to the Rm1021 parent strain 

(Ferguson et al., 2004).  The sensitivity of the nine SDMs which had previously been 

shown to be symbiotically defective in alfalfa (LeVier & Walker, 2001), to     

Bac7(1-16) was assessed, relative to the Rm8002 ∆bacA mutant with the pRK404 

control vector and Rm8002 ∆bacA with pJG51A (containing the S. meliloti bacA 

gene)  (Fig. 4-8A). It was found that 7 out of the 9 site-directed mutants, including 

the D198G and R284G mutants, were highly resistant to the killing effects of 

Bac7(1-16), as no reduction in viability was observed (Fig. 4-8A).  However, the 

bacA site-directed mutants Q193G and R389G were sensitive to the toxic effects of 

the peptide (Fig. 4-8A).  To confirm that sensitivity of these SDMs to Bac7(1-16) 

was linked to uptake, Bac71-16-BY intracellular accumulation in Q193G, D198G, 

R284G and R389G was next assessed, relative to Rm8002 ∆bacA with the pRK404 

control plasmid and Rm8002 bacA with pJG51A (Fig. 4-8 B).  Here, prior to flow 

cytometry, all cells were pre-treated with TB. Consistent with the viability data (Fig. 

4-8 A), D198G and R284G were completely defective in Bac71-16-BY uptake.  
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However, Q193G and R389G were able to accumulate Bac71-16-BY (Fig. 4-8B).  

Hence, since the symbiotically defective mutants Q193G and R389G can still take up 

Bac7(1-16), this suggests that the essential role of BacA in peptide uptake is unlikely 

to fully account for its essential role in the intracellular persistence of S. meliloti.  

Since it was shown previously that the Q193G and R389G mutants have reductions 

in their VLCFA contents (Ferguson et al., 2004), these data suggest that the loss of 

BacA function necessary for lipid A VLCFA modification may account for their 

symbiotic defects.  

However, when the remaining site-directed mutants, which had previously 

been shown to be symbiotically competent in alfalfa (LeVier & Walker, 2001) were 

next assessed for their sensitivity to Bac7(1-16) (Fig. 4-9A), all mutants were found 

to be sensitive to Bac7(1-16) induced killing (Fig. 4-9A).  Additionally, when a 

selection of these mutants were analysed by flow cytometry they were all found to 

accumulate Bac71-16-BY (Fig. 4-9B). So taken together, all these data would support 

a model whereby both the role of the BacA protein in peptide uptake and in affecting 

the VLCFA modification could account for its crucial role in chronic infection.   
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Figure 4-8. Symbiotically defective site-directed mutants were assessed for sensitivity 

to Bac7(1-16) and ability to accumulate Bac71-16-BY. (A) Cultures of the Rm8002 ∆bacA 

mutant with pRK404 (control vector), Rm8002 ∆bacA with pJG51A (containing the S. meliloti 

bacA gene) or the defined symbiotically defective bacA site directed mutants, were exposed 

to 1 µM Bac7(1-16) and the cell viability was determined before (open bars) and 1 hour 

(shaded bars) after addition. The significant values shown represent comparisons of the 

Rm8002 ∆bacA mutant strain with either Q193G or R389G compared with pRK404 (control 

vector).  Mutants which have been previously shown to have a reduction in their lipid A 

VLCFA content (Ferguson et al., 2004) are highlighted under the graph.  (B) As in A, except 

cultures were treated with (shaded profiles) and without (open profiles) 0.25 µM Bac71-16-BY 

for 1 hour and analysed by flow cytometry. In all profiles shown cells had been pre-incubated 

with TB prior to analysis. Dataset A is representative of the trends observed in two 

independent experiments and dataset B shows preliminary data.   
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Figure 4-9. Symbiotically competent site-directed mutants were assessed for 

sensitivity to Bac7(1-16) and ability to accumulate Bac71-16-BY. (A) Cultures of the 

Rm8002 ∆bacA mutant with pRK404 (control vector), Rm8002 ∆bacA mutant with pJG51A 

(pRK404 vector with the S. meliloti bacA gene) or the defined symbiotically competent bacA 

site directed mutants, were exposed to 1 µM Bac7 (1-16) and the cell viability was 

determined before (open bars) and 1 hour (shaded bars) after addition.  (B) As in A, except 

cultures were treated with (shaded profiles) and without (open profiles) 0.25 µM Bac71-16-BY 

for 1 hour and analysed by flow cytometry. In all profiles shown cells had been pre-incubated 

with TB prior to analysis. Dataset A is representative of the trends observed in two 

independent experiments and dataset B shows preliminary data. 
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4.2.6. Expression of the Mycobacterium tuberculosis BacA homolog in 

the E. coli RYC1001 sbmA mutant did not result in an increased 

intracellular accumulation of Bac71-16-BY 

A recent study found that like the S. meliloti and B. abortus BacA proteins, the BacA 

like protein in M. tuberculosis plays an essential role in maintaining chronic infection 

(Domenech et al., 2008). Likewise, disruption of the M. tuberculosis bacA gene also 

resulted in an increased resistance to the glycopeptide bleomycin. Additionally, it has 

been found that expression of the M. tuberculosis BacA homolog in the E. coli 

RYC1001 sbmA mutant sensitised the sbmA mutant to Bac7(1-16). Interestingly, the 

M. tuberculosis BacA like protein is predicted to be an ABC transporter (Domenech 

et al., 2008). Hence, these findings would suggest that like the S. meliloti BacA and 

E. coli SbmA proteins, the M. tuberculosis BacA protein may play a role in peptide 

uptake. 

To investigate the hypothesis that the M. tuberculosis BacA protein may play 

a role in Bac7(1-16) uptake, sensitivity of cells to Bac7(1-16) over 1 hour (Fig. 4-10) 

was firstly determined. The strains assessed were the E. coli RYC1001 parent strain, 

the RYC1001 sbmA (spontaneous) mutant, the RYC1001 sbmA (spontaneous) 

mutant carrying the pWSK29 control plasmid and the sbmA (spontaneous) mutant 

carrying pWSK-MtbacA (expressing M. tuberculosis BacA).  In the case of the latter 

two strains, the cells were induced with 0.4 mM IPTG for 2 hours prior to the assay 

and additionally during exposure to the peptide.  The presence of IPTG should 

induce transcription of the M. tuberculosis BacA protein, which was under control of 

the lac promoter (Domenech et al., 2008).   However, it can be seen that upon 

exposure of the cells to 10 µM Bac7(1-16) under these conditions, no killing was 

observed in any of the four strains (Fig. 4-10). Thus, this data would suggest that 

under these conditions E. coli appears more resistant (Fig. 4-10) to Bac7(1-16), than 

S. meliloti (Fig. 4-2A & B).  Unfortunately due to a limited stock of the Bac7(1-16) 

peptides, at the time of the assay, it was not possible to repeat the assay with a higher 

concentration of Bac7(1-16).  Since it had not been determined if the RYC1001 

sbmA mutant displayed an increased resistance to Bac7(1-16), relative to the 

RYC1001 parent, it was not possible to investigate if the presence of the M. 

tuberculosis bacA gene sensitized cells to the Bac7 peptide, under these conditions.  
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Figure 4-10. Effect of Bac7(1-16) on the viability of E. coli strains with and without the 

SbmA protein.  Cultures of the defined strains were exposed to 10 µM Bac7(1-16) and cell 

viability determined before (open bars) and 1 hour (shaded bars) after addition.  The dataset 

shows preliminary data. The error bars represent the standard deviation from the mean 

(n=3) for one experiment. 

 

It had previously been observed in E. coli that a higher dose of Bac7(1-16) was 

required to induce killing of the cells (Podda et al., 2006), relative to the 

concentration used for S. meliloti in this work.  Yet,  in E .coli uptake of Bac7 was 

still observed at concentrations which did not induce cell death (Mattiuzzo et al., 

2007).  Hence, despite the fact no killing had been observed (Fig. 4-10) uptake of 

Bac71-16-BY was next assessed in the E. coli strains.  In this case all cells were pre-

treated with TB, prior to analysis (Fig. 4-11).  It was observed that like the RYC1001 

parent strain (Fig. 4-11A), the RYC1001 sbmA mutant cells (Fig. 4-11B) showed an 

increased fluorescence, relative to the untreated control cells, suggesting that the E. 

coli cells took up Bac71-16-BY, even in the absence of SbmA.  Although the 

histrogram profiles of the RYC1001 plus control vector (Fig. 4-11C) and RYC1001 

plus M. tuberculosis bacA gene (Fig. 4-11D) are shown, since the RYC1001 sbmA 

mutant cells did not display any phenotype, it could not be investigated if the 

presence of the M. tuberculosis bacA gene resulted in an increased level of     

Bac7(1-16) uptake.   

Thus, unfortunately it was not possible under these conditions to assess the 

role of the M. tuberculosis bacA gene in uptake of the Bac7(1-16) peptide.  
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Figure 4-11. Flow cytometry analysis of E. coli cells with and without the SbmA and 

BacA proteins exposed to Bac71-16-BY.  Mid-exponential phase cultures of the defined 

strains were treated with (shaded histograms) or without (empty histograms) 0.25 µM of the 

Bac71-16-BY for 1 hour and analysed by flow cytometry followed by TB pre-incubation. The 

datasets shown are preliminary data.  

 

4.3. Discussion  

The work in this chapter has clearly shown that the S. meliloti BacA protein is 

essential for uptake of the truncated eukaryotic peptide Bac7(1-16). This is a 

significant finding, since for several years BacA has been implicated in the uptake of 

the glycopeptide bleomycin (Ichige & Walker, 1997).  The essential role found for 

BacA in the uptake of this truncated eukaryotic peptide helps to rationalise the 

crucial role for the BacA protein in host persistence. Additionally, the finding that 

two symbiotically defective bacA site directed mutants (Q193G and R389G) which 

had previously been shown to have VLCFA reductions (Ferguson et al., 2004), could 

take up the peptide, suggest that the BacA function that leads to the VLCFA 

modification may also play an essential role in the chronic infection.    
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4.3.1. The BacA protein is essential for the uptake of Bac7(1-16) 

A previous study with E. coli found that the BacA homolog SbmA, also plays a role 

in the uptake of  a truncated form of Bac7, Bac71-35-BY (Mattiuzzo et al., 2007).  

However, some sensitivity to the peptide and lower level of uptake was observed in 

the absence of SbmA, suggesting possible involvement of another transport system. 

Yet, at concentrations of the Bac7(1-16) peptide tested in this work, no killing was 

observed and no uptake was seen in the absence of the S. meliloti BacA protein.  

Additionally, recent work has shown the S. meliloti ∆bacA mutant is also resistant to 

the killing effects of the longer truncated form of the drug Bac7(1-35), even though 

exposure resulted in a total loss in cell viability in the Rm1021 parent strain 

(A.F.Haag and G.P.Ferguson, unpublished data).  Since the S. meliloti ∆bacA mutant 

is unable to take up the peptide and is completely resistant to the killing effects of the 

peptide, this is also consistent with the cytotoxic effects of Bac7 being due to 

interaction with a cellular target as proposed previously (Scocchi et al., 2008).  

However, the exact molecular targets of the Bac7 peptide are currently unknown.  

The proline-rich AMPs pyrrhocoricin and drosocin, which were isolated from 

insects, are better characterised and have been shown to kill bacterial cells by 

inhibition of the chaperone protein DnaK (Kragol et al., 2001; Kragol et al., 2002). 

Additionally, the proline rich AMP PR-39, isolated from pigs is known to inhibit 

protein and DNA synthesis in bacteria (Boman et al., 1993).   

 

4.3.2. Sensitivity to Bac7(1-16) is independent of the VLCFA 

modification  

Although loss of the BacA protein in S. meliloti and B. abortus results in a reduction 

in the VLCFA content of the lipid A (Ferguson et al., 2004), this work was able to 

show that resistance to Bac7(1-16) was not as a consequence of this altered VLCFA. 

Firstly, it was shown that the Rm1021 acpXL mutant, which completely lacks the 

VLCFA modification (Ferguson et al., 2005),  displayed the same level of sensitivity 

to Bac7(1-16) as the Rm1021 parent strain. Additionally, the Rm1021 acpXL and 

Rm1021 acpXL/∆bacA mutants have previously been shown to have the exact same 

lipid A profile (Ferguson et al., 2005), yet deletion of bacA in a acpXL mutant 
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background resulted in an increased resistance to Bac7(1-16).  Additionally, unlike S. 

meliloti the lipid A of E. coli does not contain the VLCFA modification, yet the E. 

coli SbmA protein has been shown to have a role in Bac7 uptake in both E. coli and 

S. meliloti.  Moreover, the finding that two symbiotically defective mutants (Q193G 

and R389G mutations), previously shown to be to have a reduced VLCFA content, 

relative to the parent were sensitive to the effects of the peptide further confirmed 

that the increased resistance of the Rm1021 ∆bacA mutant is not an indirect result of 

the lipid A VLCFA reduction.   

 

4.3.3. The role of the VLCFA modification in the symbiosis 

When Bac7(1-16) uptake was assessed in the Q193G and R389G SDMs, it was 

confirmed that despite being symbiotically defective, these mutants were able to take 

up the peptide. Therefore, this would suggest that the role of BacA in peptide uptake 

cannot solely account for the essential role of this protein in the symbiosis.  Instead, 

it would suggest that the function of BacA that affects the lipid A VLCFA 

modification also plays an essential role in the symbiosis.  Previous studies 

characterising the in planta phenotypes of the S. meliloti acpXL and lpxXL mutants 

which completely lack the VLCFA modification, have shown that although they 

form a symbiosis, they are less competitive in the host, relative to the parent strain 

(Ferguson et al., 2005; Sharypova et al., 2003).  These data suggest that, although 

not essential, the VLCFA modification does play an important role in the symbiosis.   

Additionally, in the closely related bacterium R. leguminosarum, an acpXL 

mutant which also completely lacks the VLCFA  in the free-living state was found to 

have the VLCFA modification partially restored after passage though the plant 

(Vedam et al., 2006). This suggests that in an R. leguminosarum mutant lacking 

AcpXL there may be host induced lipid A modifications occurring.  Taken together, 

these data highlight the importance of the VLCFA modification, suggesting that the 

reduction in the Rm1021 ∆bacA mutant VLCFA content may affect the symbiosis. 

However, the importance of the VLCFA modification in the symbiosis is 

investigated in chapter 6 where the in planta phenotypes of the S. meliloti acpXL and 

lpxXL mutants are further characterised. 
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4.3.4. Root nodule peptides have been hypothesized to play an 

important role in bacteroid development  

It has been proposed that peptides produced in root nodules may play an important 

role in bacteroid development (Mergaert et al., 2003).  Work investigating the 

differentiation of bacteroids in the S. meliloti-legume symbiosis (Mergaert et al., 

2006) found that repeated DNA replication occurs leading to amplification of the      

S. meliloti genome and elongation of the cell (Mergaert et al., 2006).  However, it 

was observed that the S. meliloti bacteroids lacking the BacA protein were not 

elongated and did not amplify their genome (Mergaert et al., 2006). This finding is 

consistent with the BacA protein been involved in the uptake of a peptide that may 

be essential for bacteroid differentiation and ultimate survival within the host.  

Although in this study, the truncated peptide Bac7(1-16) results in cell death 

in the legume host, the BacA protein could be important for uptake of a related but 

non-lethal eukaryotic peptide essential for bacteroid differentiation.  Transcriptome 

analysis of Medicago truncatula nodules identified a family of genes called nodule-

specific cysteine rich (NCR), with over 300 genes in the family (Alunni et al., 2007; 

Mergaert et al., 2003). The encoded polypeptides are typically 60-90 amino acids 

long and reveal extensive sequence divergence, aside from a conserved cysteine 

motif. Expression of the peptides is mainly restricted to developing and mature 

nodules (Mergaert et al., 2003), which is consistent with  a role for these peptides in 

the symbiosis.   

In the legume Medicago truncatula RNA interference studies revealed a role 

for two host genes ENOD40-1 and ENOD40-2 in bacteroid development (Wan et al., 

2007). Interestingly, these ENOD40 genes are thought to encode peptides, one of the 

open reading frames of the ENOD40-1 gene has been shown to encode a 13 amino 

acid peptide (MKLLCWEKSIHGS). Therefore, peptides produced by the ENDO40 

genes could be potential candidates for BacA mediated uptake leading to bacteroid 

differentiation.  

Although to date proline rich peptides have not been identified in legume 

nodules, several nodule specific genes have been shown to encode proline rich 

proteins (Nap & Bisseling, 1990).  In Medicago truncatula one member of the 

proline rich gene family MtPRP4 has been characterised (Wilson et al., 1994). The 
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mature protein encoded by MtPRP4 consists of a repetitive pentapeptide domain rich 

in proline, lysine and tyrosine. Proline rich proteins are thought to be components of 

the host cell wall and it is hypothesized that they may play a role in remodelling of 

the extracellular matrix upon infection by S. meliloti. Since these proline rich 

proteins have been shown to be expressed early in nodule development it is tempting 

to speculate that the turn-over or cleavage of these proteins may be a source of 

proline rich peptides for S. meliloti at the beginning of the symbiosis.  

  

4.3.5. The full length Bac7 peptide was isolated from bovine neutrophils 

Although in this work a truncated form of the eukaryotic peptide Bac7(1-16) was 

used, the full length 60 amino acid Bac7 was isolated from bovine neutrophils (Frank 

et al., 1990). Since B. abortus is a pathogen of cattle, the peptide may have a 

biological relevance. Although the truncated Bac7(1-16) was toxic to S. meliloti 

under the conditions tested, perhaps in bovine host cells the B. abortus BacA protein 

may be essential for uptake of the full length peptide where it may be important in 

signalling the transition from the acute to chronic state of infection.  Despite the fact 

the B. abortus BacA mutant is attenuated in infection in BALB/c mice (LeVier et al., 

2000), in another mouse host strain C57BL/6, infection with the B. abortus bacA 

mutant was actually found to be more pathogenic (Parent et al., 2007),  relative to the 

parent strain.  Since these two mice strains are known to have differences in their 

immune responses (Parent et al., 2007), they may also have differences in the types 

of peptides produced.  Therefore, BacA mediated peptide uptake may be essential for 

the chronic infection of B. abortus in BALB/c but not C57BL/6 mice.  

 

4.3.6. Role of the BacA protein in peptide uptake  

Although this work has shown that presence of the BacA protein is essential for Bac7 

uptake, it is not known whether BacA is directly or indirectly involved in peptide 

uptake. As discussed in the case of E. coli,  some Bac7 uptake did still occur in the 

absence of the SbmA protein (Mattiuzzo et al., 2007), suggesting another transport 

system may be involved. The distant sequence relationship between BacA and a 

family of eukaryotic peroxisomal membrane proteins including the 
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adrenoleukodystrophy protein (Ferguson et al., 2004), led to the proposal whereby 

BacA could be directly involved in the transport of activated VLCFAs out of the 

cytoplasm across the inner membrane where they are used to modify the lipid A. If 

this model is true and BacA also directly transports Bac7(1-16), then the BacA 

protein would need to be capable of transporting two completely different molecules 

in opposite directions (Fig. 4-12A).  Alternatively, the BacA protein may affect the 

VLCFA modification indirectly by action of another protein (Fig. 4-12B).  In 

addition, there also remains the possibility that BacA may affect uptake of a peptide 

by some action on another inner membrane protein (Fig. 4-12B).     

 

 

 

 

 

 

 

 

 

Figure 4-12. Proposed models for BacA function. (A) The BacA protein is capable of 

transporting two different molecules in opposite directions, the Bac7 peptide into and 

VLCFAs out of the cytoplasm. (B) Alternatively, the BacA protein may affect the VLCFA 

modification indirectly by the action of another protein and there also remains the possibility 

that BacA may affect Bac7 peptide uptake by some action on another inner membrane 

protein.  

 

4.3.7. Future studies 

As discussed hundreds of cysteine rich peptides have been shown to be produced in 

legume nodules (Alunni et al., 2007; Mergaert et al., 2003).  Future work 

investigating these peptides should determine if their uptake is important for 

bacteroid differentiation.  However, actual synthesis of cysteine rich peptides is very 

difficult (Juskowiak et al., 2008) and so studies in this direction may take several 

years.  Since the Bac7 peptide may have biological significance in B. abortus 

infection, it will be very informative to determine if the B. abortus BacA gene 
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sensitizes cells to Bac7 and is essential for uptake.  Cross linking studies with BacA 

and selection for further S. meliloti Bac7 resistance mutants may help to establish if 

BacA plays a direct role in Bac7 transport and if any other proteins are involved in 

Bac7 uptake.   

Interestingly, an M. tuberculosis mutant lacking a bacA like gene ( Rv1819c) 

is compromised in chronic infection of mice and shows an increased resistance to the 

glycopeptide, bleomycin (Domenech et al., 2008).  Additionally, it was found 

previously,  that expression of the M. tuberculosis BacA homolog in an E. coli sbmA 

mutant sensitized this mutant strain to Bac7(1-16) (Domenech et al., 2008). It is 

unfortunate that due to lack of time it was not possible to investigate the role of the 

M. tuberculosis BacA like protein in Bac7(1-16)-BY uptake in this work. Since it was 

not possible to induce sensitivity to Bac7(1-16) in the E. coli strain used, any future 

assays using this E. coli strain should be performed using a higher dose of the Bac7 

peptide. Additionally, it may be advantageous to try a different E. coli parent strain 

and respective sbmA mutant for the expression of the M. tuberculosis BacA like 

protein.  However, the findings published to date (Domenech et al., 2008) raise the 

possibility that the M. tuberculosis BacA like protein may also be involved in the 

uptake of a host derived peptide, which may play an important role in the outcome of 

M. tuberculosis infections which today remain a leading cause of mortality 

worldwide. 
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Chapter 5: Investigation into the Role of Glutathione in Protection of     
S. meliloti from Toxic Compounds 
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5.1. Introduction 

In chapter 3 it was determined that the absence of the BacA protein results in a 

decreased accumulation of fluorescently labelled bleomycin A5 in S. meliloti cells, 

consistent with the hypothesis that BacA plays some role in bleomycin uptake.  To 

rule out the possibility that BacA was affecting a detoxification process, the role of 

the tri-peptide glutathione in protection against bleomycin A5 by filter disc assay was 

investigated. It was found that glutathione did confer protection in S. meliloti against 

bleomycin.  Additionally, this protection still occurred in the absence of the BacA 

protein, suggesting the protection by glutathione was not dependent upon the 

presence of BacA.  In a previous study, intracellular glutathione has been shown to 

be necessary for a successful symbiosis of S. meliloti with alfalfa (Harrison et al., 

2005). However, little is known about the role of glutathione in free-living S. 

meliloti, in protection against toxic compounds. Hence, this chapter details a 

preliminary study into the role of glutathione in protection of free-living S. meliloti 

from toxic compounds and compares the findings to the well-characterised 

glutathione system in E. coli (Ferguson & Booth, 1998; Ferguson et al., 1998; 

MacLean et al., 1998) 

Glutathione is the most abundant non-protein thiol found in many organisms 

(Fahey et al., 1978; Fahey & Sundquist, 1991; Penninckx & Elskens, 1993) and is 

synthesized by a two-step process (Fig. 5-1).  

  

 

 

 

 

 

 

Figure 5-1.  Synthesis of glutathione.  In the first step; glutamate and cysteine are 

conjugated by γ-glutamyl cysteine synthetase (encoded by the gshA gene) to form γ-glutamyl 

cysteine (i). In a second step, glycine is added to γ-glutamyl cysteine to form glutathione in a 

reaction catalyzed by glutathione synthetase (encoded by the gshB gene) (ii) (Adapted from 

(Masip et al., 2006).  
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In both eukaryotic and prokaryotic cells glutathione plays a critical role in protecting 

cells from oxidative damage and maintaining redox homeostasis (Forman et al., 

2008; Oktyabrsky & Smirnova, 2007).  The exclusion of many toxic compounds 

from cells can be achieved through conjugation with glutathione followed by 

secretion of the adduct (Boyland & Chasseaud, 1969).  An enzyme called glutathione 

S-transferase catalyses this conjugation reaction (Tsuchida & Sato, 1992). 

Glutathione is also required for the glyoxalase I and II enzymes that detoxify the 

toxic electrophile methylglyoxal (Inoue & Kimura, 1995).  In E. coli, the role of 

glutathione in the detoxification of the toxic electrophile methylglyoxal is 

particularly well-characterised (Ferguson & Booth, 1998). Consistent with the 

findings for S. meliloti in chapter 4, several studies have implicated a role for 

glutathione in detoxification of bleomycin in eukaryotic cells. The hypersensitivity of 

Chinese hamster ovary cells to bleomycin was found to be due to a lack of 

glutathione S-transferase activity (Giaccia et al., 1991) and cellular glutathione levels 

were also found to be up-regulated by bleomycin in bovine pulmonary endothelial 

cells (Day et al., 2002). 

 A previous study (Harrison et al., 2005),  identified the genes involved in 

glutathione synthesis in S. meliloti. The open reading frame smc00825 (gshA) was 

found to encode γ-glutamyl cysteine synthetase and the open reading frame 

smc00419 (gshB) was found to encode glutathione synthetase. The functions of these 

two gene products were confirmed by HPLC analysis of the total cellular content of 

the respective S. meliloti mutants. It was found the gshA mutant strain did not 

accumulate γ-glutamyl cysteine or glutathione and the gshB mutant accumulated γ-

glutamyl cysteine.  Thus, this provided evidence that no other genes code for 

functions able to replace the sequences altered in the mutants. 

 Work in this chapter begins with further investigation into the sensitivity of 

the S. meliloti gshA mutant exposed to bleomycin A5.  
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5.2. Results 

5.2.1. The S. meliloti gshA mutant displays an increased resistance to 

bleomycin A5 in liquid culture  

The data presented in chapter 3 had assessed only growth inhibition of the S. meliloti 

Rm1021 gshA mutant exposed to bleomycin on solid media (Fig. 3-12).  Actual 

killing was next assessed by recovery of viable cells after exposure to bleomycin A5 

in LB broth (Fig. 5-2).  It was anticipated that the S. meliloti Rm1021 gshA mutant 

would be more sensitive to killing, than the Rm1021 parent, when exposed to 

bleomycin A5.  Surprisingly, it was observed that in LB liquid culture, the S. meliloti 

Rm1021 gshA mutant displays an increased level of resistance to bleomycin A5, 

relative to the Rm1021 parent strain (Fig. 5-2).  As previously determined in chapter 

3 (Fig. 3-4C), the S. meliloti Rm1021 ∆bacA mutant displays an increased resistance 

to bleomycin A5 in liquid culture, relative to the Rm1021 parent. The Rm1021 gshA 

and Rm1021 ∆bacA single mutants showed a similar level of sensitivity over the first 

180 minutes of the assay.  However, after this point the Rm1021 gshA mutant 

showed an increased level of sensitivity relative to the Rm1021 ∆bacA mutant.  The 

Rm1021 ∆bacA/gshA double mutant showed an increased level of resistance to 

bleomycin A5, from 60 minutes onwards, relative to the respective single mutants 

(Fig. 5-2). This would suggest in the double mutant there is an additive effect of 

protection by disruption of gshA and bacA.  Additionally, in this assay the Rm1021 

gshA and Rm1021 ∆bacA/gshA mutant cells were recovered onto agar plates 

containing neomycin, since in these two mutants the gshA gene contains an 

insertional mutation with a neomycin resistance marker (Harrison et al., 2005).  

Hence, recovery on neomycin confirmed that the gshA gene disruption was 

maintained throughout the time course of the assay.  Overall, these data suggest that 

disruption of the gshA gene in S. meliloti results in an increased resistance of the 

cells to bleomycin A5 in liquid culture.  
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Figure 5-2.  Sensitivity of the S. meliloti glutathione mutant strains to bleomycin A5 in 

liquid culture. Cultures of Rm1021 (closed triangles), Rm1021 ∆bacA (open squares), 

Rm1021 gshA (filled squares) and the Rm1021 ∆bacA/gshA double mutant (open triangles) 

were exposed to bleomycin A5 (0.72 µg.ml
-1

) and cell viability determined at the defined 

times. In this case cells were recovered onto LBMC plates containing the appropriate 

antibiotics.  A significant difference of (***P<0.001) was found when the Rm1021 parent 

strain and gshA mutant were compared and a significant difference of (**P<0.01) was found 

when the Rm1021 ∆bacA and Rm1021 ∆bacA/gshA double mutant were compared from 60 

mins onwards. The datasets shown for the Rm1021 parent and Rm1021gshA mutant are 

representative of trends observed in two independent experiments and the data sets shown 

for the Rm1021 ∆bacA mutant and the Rm1021 ∆bacA/gshA double mutant show 

preliminary data. The error bars represent the standard deviation from the mean (n=3) for 

one experiment. 

 

5.2.2. Complementation with the S. meliloti gshA gene increases the 

sensitivity of the gshA mutant to bleomycin 

It was next important to confirm that disruption of the gshA gene was responsible for 

the liquid bleomycin resistant phenotype observed. The S. meliloti gshA gene is 

located on the chromosome and does not appear to be located in the same region as 

the gshB gene. This seems to be common in many bacteria, whereby glutathione 

synthesis occurs through the consecutive action of the two physically separate 

enzymes encoded by gshA and gshB genes (Gopal et al., 2005).  Since the S. meliloti 

gshA gene is located nearby other genes, which are transcribed in the same direction 
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(Fig. 5-3), it is possible that the gshA gene may be part of an operon, so disruption of 

the gshA gene might have a polar effect on the downstream gene smc00824.   

 

 

 

Figure 5-3. The genomic region surrounding the S. meliloti gshA gene. The gshA 

(smc00825) gene encoding γ-glutamyl cysteine synthetase could be part of a gene operon, 

with nearby genes encoded on the same strand. Surrounding genes are smc00829 

(encoding a probable transcriptional regulator), smc00828 (encoding a conserved 

hypothetical protein), pit2 (encoding a probable phosphate permease), smc00826 (encoding 

a hypothetical protein) and smc00824 (encoding a hypothetical protein). The numbers shown 

above in base pairs are the distances between each genes. (http://iant.toulouse.inra.fr/ 

bacteria/annotation/cgi/rhime.cgi). 

 

To confirm that disruption of the S. meliloti gshA gene was responsible for the liquid 

bleomycin resistence phenotype observed, the sensitivity of the Rm1021 gshA 

mutant carrying the pgshAc plasmid (pBBR1 control plasmid expressing the S. 

meliloti gshA gene constitutively) (Harrison et al., 2005) to bleomycin A5 was next 

assessed (Fig. 5-4).  Additionally, the sensitivity of the Rm1021 gshA mutant 

carrying the pBBR1 control plasmid only was also assessed (Harrison et al., 2005) 

(Fig. 5-4).  It was observed that presence of the pgshAc plasmid carrying gshA 

results in the Rm1021 gshA mutant displaying an increased sensitivity to bleomycin 

A5, whereas the Rm1021 gshA mutant strain carrying the control plasmid remained 

resistant to bleomycin A5, displaying a  similar level of sensitivity as the Rm1021 

gshA mutant (Fig. 5-4). Therefore, these data confirm that disruption of the gshA 

gene in S. meliloti is resulting in an increased resistance to bleomycin A5 in liquid 

culture, relative to the Rm1021 parent strain.  Additionally, the Rm1021 gshA 

mutants carrying the pgshAc and pBBBR1 plasmids were recovered onto plates with 

neomycin and gentamycin, since the plasmids carry gentamycin resistance. Thus, 

confirming that the two mutants were maintaining both the gshA mutation and the 

plasmids.  
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Figure 5-4. Sensitivity of the complemented Rm1021 gshA mutant to bleomycin A5 in 

liquid culture. Cultures of the Rm1021 parent (closed triangles), the Rm1021gshA mutant 

(closed squares), the Rm1021 gshA mutant & pgshAc (gshA
+
) (open squares) and the gshA 

mutant & the control plasmid pBBR1 (open triangles) were exposed to bleomycin A5          

(0.72 µg.ml
-1

) and cell viability was determined at the defined times. In this case cells were 

recovered onto LBMC plates containing the appropriate antibiotics.  A significant difference 

of (***P<0.001) was found when the Rm1021 gshA mutant & pgshAc (gshA
+
) and the gshA 

mutant & the control plasmid pBBR1 were compared. The datasets for the Rm1021 parent, 

the Rm1021 gshA mutant and the Rm1021 gshA & pgshAc are representative of trends 

shown in two independent experiments. The dataset for the Rm1021 gshA mutant & pBBR1 

shows preliminary data. The error bars represent the standard deviation from the mean 

(n=3) for one experiment. 

 

A disc diffusion assay was also performed to confirm that the increased sensitivity 

that was observed for the Rm1021 gshA mutant to bleomycin A5 on solid media in 

chapter 3 (Fig. 3-12) was due to disruption of the gshA gene.  It was observed that 

the Rm1021 gshA mutant carrying the pgshAc plasmid containing the gshA gene had 

an increased level of resistance to bleomycin A5 (Fig. 5-5), relative to the Rm1021 

gshA mutant, not carrying the plasmid. Complementation of the gshA mutant resulted 

in a similar level of sensitivity to bleomycin A5 as observed in the Rm1021 parent. 

Therefore these data confirm that disruption of the S. meliloti gshA gene is 

responsible for increased sensitivity of the Rm1021 gshA mutant observed on solid 

media, relative to the parent strain (Fig. 3-12 & Fig. 5-5).   
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Figure 5-5. Growth inhibition of S. meliloti gshA complemented mutant exposed to 

bleomycin A5. Cultures of the defined strains were exposed to bleomycin A5 (2 µl of a 

2mg.ml
-1

 aqueous stock solution) on LB agar.  The significant values (***P<0.001) represent 

comparisons of the Rm1021 gshA mutant to the Rm1021 parent strain and the Rm1021 

gshA mutant & pgshAc to the Rm1021 gshA mutant.  Data shown for the Rm1021 parent 

and the Rm1021 gshA mutant is representative of the trends observed in two independent 

experiments. Data shown for Rm1021 gshA mutant & pgshAc shows preliminary data. The 

error bars represent the standard deviation from the mean (n=3) for one experiment. 

 

Since the S. meliloti gshA liquid phenotype had been successfully complemented 

(Fig. 5-4), this confirmed that disruption of the gshA gene was resulting in the 

increased resistance to bleomycin A5 observed in liquid culture, relative to the parent 

strain.  However, it was possible to verify this further by assessing the sensitivity of a 

second independent gshA insertional mutant. This was made possible by taking 

advantage of an S. meliloti plasmid integration mutant library (http://www.cebitec. 

uni Bielefeld .de /transcriptomics/sm-genome/sm-mutagenesis.html), purchased from 

the University of Bielefeld (chapter 2, section 2.5). In this case, an E. coli S17-1 

clone carrying the mobilizable suicide vector pK19mob2ΩHMB, containing a 330 bp 

internal fragment of the S. meliloti gshA gene was available in the library and was 

mobilized into Rm1021 via conjugation.  The recombinant clones were then selected 

by purification onto the appropriate antibiotics and after purification, 3 clones were 

assessed for their sensitivity to bleomycin A5 in liquid culture, alongside the Rm1021 

parent and the original Rm1021 gshA mutant.  It was observed that all the 3 putative 

Rm1021 gshA mutant clones despite having varying levels of sensitivity compared to 

one another, displayed an increased level of resistance to bleomycin A5 in liquid 

culture (Fig. 5-6), relative to the Rm1021 parent strain.  It should be noted that the 

putative Rm1021 gshA mutant clone 2, lost viability after 180 minutes, however up 
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until this point the putative mutant displayed an increased level of resistance, relative 

to the Rm1021 parent strain.  The original Rm1021 gshA mutant (Harrison et al., 

2005) displayed an increased level of resistance to bleomycin A5, as previously 

shown (Figs. 5-2  & 5-4).  Thus, together all these data confirm that disruption of the 

gshA gene results in an increased resistance of S. meliloti cells to bleomycin A5 in 

liquid LB medium.  

 

 

 

 

 

 

 

 

 

Figure 5-6. Sensitivity of the S. meliloti Rm1021 parent strain, the Rm1021 gshA 

mutant and 3 clones of a putative gshA independent mutant, to bleomycin A5 in liquid 

culture. Cultures of the Rm1021 parent (closed triangles), the Rm1021 gshA mutant 

(Harrison et al, 2005) (closed squares) and the putative gshA mutants, clone 1 (closed 

circles), clone 2 (open triangles) and clone 3 (open squares) were all exposed to bleomycin 

A5 (0.72 µg.ml
-1

).  Cell viability was determined at the defined times. In this case cells were 

recovered onto LBMC plates containing the appropriate antibiotics.  The datasets for the 

Rm1021 parent and the Rm1021 gshA mutant (Harrison et al., 2005) are representative of 

trends shown in two independent experiments. The datasets for the 3 putative gshA mutants 

show preliminary data. The error bars represent the standard deviation from the mean (n=3) 

for one experiment.  The sensitivity of the Rm1021 gshA mutant and the 3 putative mutants 

were compared to that of the Rm1021 parent and in each case a significant difference of at 

least *P <0.05 was found. 

 

5.2.3. The S. meliloti gshA mutant displays an increased resistance to 

methylglyoxal in liquid culture 

To further investigate the liquid phenotype observed in the S. meliloti gshA mutant it 

was important to determine if this was specific to bleomycin A5. Glutathione is 

known to play a major role in detoxification of the toxic electrophile methylglyoxal 
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(Inoue & Kimura, 1995) and like bleomycin, methylglyoxal has been shown to 

degrade bacterial DNA (Ferguson et al., 2000).  Thus, due to these similarities one 

might expect the S. meliloti Rm1021 gshA mutant to also have an increased 

resistance when exposed to methylglyoxal in liquid culture.  When the cells were 

exposed to methylglyoxal by disc diffusion assay, the S. meliloti Rm1021 gshA 

mutant showed an increased level of sensitivity, relative to the Rm1021 parent, on 

solid media (Fig. 5-7A) as was observed for bleomycin A5.  Upon exposure of the    

S. meliloti Rm1021 gshA mutant to 0.7 mM methylglyoxal in liquid culture          

(Fig. 5-7B) the mutant was resistant to the toxic effects of the agent, whereas a 

decrease in cell viability was seen for the Rm1021 parent strain. The cells were next 

exposed to a higher dose of 1 mM methylglyoxal over a longer time period           

(Fig. 5-7C).  In this case over the first 60 minutes of exposure the Rm1021 gshA 

mutant showed a similar level of sensitivity to methylglyoxal as the Rm1021 parent 

strain (Fig. 5-7C). However, after 60 minutes of exposure to methylglyoxal, the 

Rm1021 gshA strain then began to display an increased level of resistance to 

methylglyoxal (Fig. 5-7C).  
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Figure 5-7. Sensitivity of the S. meliloti Rm1021 parent strain and the Rm1021 gshA 

mutant strain to methylglyoxal on solid media and in liquid culture.  Growth inhibition of 

the defined strains exposed to methylglyoxal (5 µl of a 40% aqueous stock solution) on LB 

agar (A). Cultures of the Rm1021 parent (closed squares) and the Rm1021 gshA mutant 

(closed triangles) were exposed to 0.7 mM methylglyoxal (B) and 1mM methylglyoxal (C) 

and cell viability was determined at the defined times. The datasets shown in (A) are 

representative of trends shown in two independent experiments and (B) and (C) show 

preliminary data. The error bars represent the standard deviation from the mean (n=3) for 

one experiment.  The significant values shown (**P<0.01; ***P<0.001) represent 

comparisons of the Rm1021 parent and the Rm1021 gshA mutant.   

 

These data show in S. meliloti disruption of the gshA gene also results in an increased 

resistance to methylglyoxal in liquid culture, relative to the parent strain. 

Furthermore, it was possible to confirm that disruption of the S. meliloti gshA gene 

was responsible for the increased resistance to methylglyoxal, as sensitivity of the 

gshA mutant carrying the pgshAc plasmid (pBBR1 expressing the S. meliloti gshA 

gene constitutively) was next assessed (Fig. 5-8).  Indeed it was found that presence 

of the pgshAc plasmid resulted in an increased sensitivity of the gshA mutant to 

methylglyoxal, relative to the Rm1021 gshA mutant strain not carrying the plasmid 

(Fig. 5-8). As previously observed the Rm1021 parent showed an increased level of 

sensitivity to methylglyoxal, relative to the Rm1021 gshA mutant.   
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Figure 5-8. Sensitivity the Rm1021 gshA complemented strain to methylglyoxal in 

liquid culture. Cultures of the Rm1021 parent (closed squares), the Rm1021 gshA mutant 

(closed triangles) and the Rm1021 gshA & pgshAc (open triangles) were exposed to 

methylglyoxal (3mM aqueous stock solution) and cell viability was determined at the defined 

times.  In this case cells were recovered onto LBMC plates containing the appropriate 

antibiotics.  The dataset shows preliminary data. The significant values shown                    

(*P <0.05; **P<0.01; ***P<0.001) represent comparisons of the Rm1021 gshA mutant with 

the Rm1021 parent strain and the Rm1021 gshA mutant & pgshAc with the gshA mutant 

without the plasmid. The error bars represent the standard deviation from the mean (n=3) for 

one experiment. 

 

Taken together all the data presented so far show that disruption of the gshA gene in 

S. meliloti results in an increased sensitivity to the toxic compounds bleomycin A5 

and methylglyoxal on solid media.  However, in LB liquid culture, disruption of the 

gene results in the S. meliloti cells displaying an increased level of resistance to both 

toxic compounds. 

 

5.2.4. The E. coli gshA mutant does not display an increased resistance 

to bleomycin in liquid culture 

A previous study has shown that an E. coli gshA mutant displays an increased 

sensitivity to methylglyoxal in liquid culture, relative to the parental strain (Ferguson 

& Booth, 1998), suggesting that the liquid phenotype observed in this work may be 

specific to S. meliloti.  However, in the study the viability assay was performed in a 

minimal medium (Ferguson & Booth, 1998).  So, it was important to next investigate 

the sensitivity of E. coli to bleomycin A5 and methylglyoxal under the same 

conditions as used for S. meliloti, in LB medium.  As observed in S. meliloti, the      
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E. coli gshA::Tn10 mutant displayed an increased level of sensitivity to bleomycin 

A5 on solid media, relative to the MJF274 parent strain (Fig. 5-9A). Two datasets       

(Fig. 5-9B & D) are shown for exposure of the E. coli strains to bleomycin A5 in 

liquid culture, each done under the same conditions.    In both datasets the sensitivity 

profile of the E. coli gshA::Tn10 mutant was similar. However, in the first dataset 

(Fig. 5-9B) the MJF274 parent strain appeared more sensitive to bleomycin than in 

the second dataset (Fig. 5-9C).  However, despite the experimental variation shown 

(Fig. 5-9B &C) overall in both datasets the E. coli gshA::Tn10 mutant appeared more 

sensitive to bleomycin A5 in liquid media, relative to the MJF274 parent strain. Thus, 

it seems unlike in the case of S. meliloti the E. coli gshA mutant displays an increased 

sensitivity to bleomycin A5, both in solid and liquid media.   
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Figure 5-9. Sensitivity of the E. coli MJF274 parent strain the gshA::Tn10 mutant to   

bleomycin A5 on solid media and in liquid culture.  Growth inhibition of the defined 

strains exposed to bleomycin A5 (2 µl of a 2mg.ml
-1

 stock solution) on LB agar (A). Cultures 

of the MJF274 parent (closed circles) and the gshA mutant (open circles) were exposed to 

bleomycin A5 (0.72 µg.ml
-1

) and cell viability was determined at the defined times (B) and (C) 

The datasets shown in (A) are representative of the trends observed in two independent 

experiments. Datasets (B) and (C) show two biological repeats and the arrows represent 

complete loss of viability. The error bars represent the standard deviation from the mean 

(n=3) for one experiment. In (A) the significant value of ***P<0.001 represents comparisons 

of the MJF274 parent and the gshA::Tn10 mutant in (C) the significant value of ***P<0.001 

was found upon comparison of MJF274 parent and the gshA::Tn10 mutant.  

 

5.2.5 The E. coli gshA mutant shows the same level of sensitivity to 

methglyoxal in liquid culture as the parent strain 

When the E. coli MJF274 parent strain and the E. coli gshA::Tn10 mutant were 

exposed to methylglyoxal on solid media, the gshA::Tn10 mutant showed an 

increased level of sensitivity (Fig. 5-10A), relative to the MJF274 parent strain, as 

was previously seen for S. meliloti (Fig. 5-7A).  However, when the cells were 

exposed to 0.7 mM methylglyoxal in LB liquid culture the E. coli gshA::Tn10 mutant 
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displayed a similar level of sensitivity as the MJF274 parent strain (Fig. 5-10B). The 

cells were next exposed to higher doses of 2 mM and 3 mM methylglyoxal (Figs.     

5-10C and 5-10D, respectively) and it was observed that the E. coli gshA::Tn10 

mutant displayed the same level of sensitivity to methylglyoxal as was observed as 

for the MJF274 parent strain. Overall, these data show that loss of the gshA gene in 

E. coli results in an increased sensitivity to methylglyoxal when the cells are exposed 

on solid LB medium.  Contrastingly when exposed in LB liquid the disruption of the 

E. coli gshA gene does not result in an increased sensitivity to methylglyoxal, relative 

to the parent strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10. Sensitivity of the E. coli MJF274 parent strain and the gshA::Tn10 mutant 

to methylglyoxal on solid media and in liquid culture.  Growth inhibition of the defined 

strains exposed to methylglyoxal (5 µl of a 20 % aqueous stock solution) on LB agar (A). 

Cultures of the MJF274 parent (closed circles) and the gshA mutant (open circles) were 

exposed to 0.7 mM methylglyoxal and cell viability was determined at the defined times (B). 

As in (B) except cells were exposed to 2mM methylglyoxal (C). As (B) except cells were 

exposed to a 3 mM methylglyoxal (D). The datasets shown in (A) and (B) are representative 

of the trends observed in two independent experiments and datasets (C) and (D) show 

preliminary data. In (D) the arrow represents complete loss of viability. The error bars 

represent the standard deviation from the mean (n=3) for one experiment. In (A) the 

significant value of ***P<0.001 represents comparisons of the MJF274 parent and the 

gshA::Tn10 mutant.  
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5.2.6. Preliminary data reveals the S. meliloti gshA mutant still displays 

an increased resistance to bleomycin A5 in liquid culture under reduced 

oxygen conditions 

The increased resistance to bleomycin A5 and methylglyoxal observed in liquid 

media upon disruption of the gshA gene in S. meliloti would suggest that upon loss of 

GshA function, the cells are able to utilize another means to confer protection, which 

is not induced or effective on solid media.   For E. coli, the data also suggests that 

upon disruption of GshA function another mechanism is able to protect the cells 

against methylglyoxal damage in liquid media. 

Thus, it was next important to consider physiological differences in the 

environment of liquid and solid media. Undoubtedly, there will be numerous 

differences but one possibility is that there may be differences in aeration. When the 

cells are exposed to the agents on solid media they grow as a lawn in soft (0.8 % 

w/v) agar.  In this case the cells will be more tightly packed than in liquid and so may 

be exposed to lower levels of oxygen.  Thus, if higher levels of oxygen are available 

in liquid culture this may affect the way S. meliloti responds to bleomycin A5 and 

methylglyoxal, in the absence of gshA.  In the presence of oxygen bleomycin has 

been shown to generate reactive oxygen species such as superoxide and hydrogen 

peroxide (Sugiura & Kikuchi, 1978), which contribute to cellular damage. 

Additionally methylglyoxal treatment of eukaryotic cells under aerobic conditions 

has been shown to induce the formation of reactive oxygen species (Kalapos et al., 

1993).  Interestingly in both S. meliloti  and E. coli the presence of hydrogen 

peroxide has been shown to induce the expression of catalase (Luo et al., 2005a), 

which is necessary for the decomposition of hydrogen peroxide in both  S. meliloti 

(Jamet et al., 2003) and E. coli (Claiborne & Fridovich, 1979; Claiborne et al., 1979; 

Sak et al., 1989).  Taken together this led to the hypothesis that when S. meliloti cells 

are exposed to bleomycin and methylglyoxal in liquid media, the higher levels of  

reactive oxygen species produced, relative to those on solid medium,  induce the 

expression of catalase in the absence of glutathione, which is able to protect against 

damage.  Due to the preliminary nature of this study, this hypothesis was investigated 

using only S. meliloti.     
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To investigate this hypothesis, an assay was performed whereby the Rm1021 

parent and Rm1021 gshA mutant were exposed to bleomycin A5 in liquid culture 

with no aeration (Fig. 5-11), with the view that this would expose the cells to 

bleomycin A5 under conditions of reduced oxygen, relative to previous conditions 

used.  Under these experimental conditions, it can be seen that the Rm1021 gshA 

mutant still displays an increased level of resistance to bleomycin A5 relative to the 

Rm1021 parent (Fig. 5-11).  However, if the overall sensitivity of both strains is 

compared to a previous assay (Fig. 5-2) where the cultures were aerated, it seems 

under these conditions, overall less killing occurred.  

 

 

 

 

 

 

 

 

 

Figure 5-11. Preliminary assay assessing the sensitivity of the Rm1021 parent and the 

Rm1021 gshA mutant to bleomycin A5 under reduced oxygen conditions.  Cultures of 

the Rm1021 parent (closed squares), the gshA mutant (closed triangles) were exposed to 

bleomycin A5 (0.72 µg.ml
-1

) and viability was determined at the defined times. Cells were 

recovered onto LBMC plates containing the appropriate antibiotics. The dataset shows 

preliminary data. The error bars represent the standard deviation from the mean (n=3) for 

one experiment. 

  

 

5.2.7. The S. meliloti gshB mutant displays an increased resistance to 

bleomycin A5, on solid media relative to the parent strain  

A previous study has shown that the S. meliloti gshB mutant which is defective in the 

glutathione synthetase enzyme has an accumulation of γ-glutamyl cysteine (Harrison 

et al., 2005).  Hence, it was next investigated if this glutathione precursor is able to 

confer any protection against bleomycin induced damage in S. meliloti.  Sensitivity 
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to bleomycin A5 was assessed and it was observed that the Rm1021 gshB mutant 

displayed an increased resistance to bleomycin A5, relative to the Rm1021 parent 

(Fig. 5-12A). Thus, these data might suggest that under these conditions the 

glutathione precursor γ-glutamyl cysteine can protect against bleomycin A5.  When 

the bacA mutation was transduced into the Rm1021 gshB mutant by M12 phage , it 

could be observed that loss of the BacA protein in a gshB mutant background still 

conferred further protection against bleomycin A5 (Fig. 5-12A).  It was next 

investigated if γ-glutamyl cysteine could also protect S. meliloti against the toxic 

effects of methylglyoxal.  It was observed that relative to the parent strain, the 

Rm1021 gshB mutant did display an increased sensitivity to methylglyoxal (Fig. 5-

12B). However, since the Rm1021 gshB mutant was not as sensitive to 

methylglyoxal as the Rm1021 gshA mutant on solid media (Fig. 5-12B) this would 

suggest γ-glutamyl cysteine does confer some protection against methylglyoxal.  

 

 

 

 

 

 

 

 

 

Figure 5-12. Growth inhibition of S. meliloti glutathione mutants exposed to bleomycin 

A5 and methylglyoxal. Cultures of the defined strains were exposed to bleomycin A5 (2 µl of 

a 2mg.ml
-1

 aqueous stock solution) (A) and methylglyoxal (5 µl of a 40% aqueous stock 

solution) (B) on LB using a filter disc assay.  In (A) the significant values (***P<0.001) 

represent comparisons of the gshB mutant to the Rm1021 parent strain and the gshB/∆bacA 

double mutant to that of the gshB single mutant. In (B) the significant values (***P<0.001) 

represent comparisons of the gshA mutant to the Rm1021 parent strain and comparison of 

the gshB mutant to the Rm1021 parent strain.  The significant value (# P<0.001) represents 

a comparison of the gshB and gshA mutants. Dataset (A) shows preliminary data and 

dataset (B) is representative of the trends observed in two independent experiments.  In 

each case the error bars represent the standard deviation from the mean (n=3) for one 

experiment. 
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5.2.8. The S. meliloti gshB mutant displays an increased resistance to 

bleomycin A5 in liquid culture 

The liquid sensitivity of the Rm1021 gshB mutant was next assessed by recovery of 

viable cells after exposure to bleomycin A5 in LB broth (Fig. 5-13).  Upon exposure 

of the cells to 0.72 µg.ml
-1

 of bleomycin A5 (Fig. 5-13A), the Rm1021 gshB mutant 

appeared resistant to the killing effects of the drug, contrastingly for the Rm1021 

parent as previously observed, the cells were killed over the time course of the 

experiment (Fig. 5-13A).  Next, a higher dose of 3 µg.ml
-1

of bleomycin was used and 

in this case the Rm1021 gshB mutant still displayed an increased level of resistance 

to bleomycin A5 relative to the Rm1021 parent, which was rapidly killed during the 

first 30 minutes of the assay (Fig. 5-13B). Overall, these data show that the Rm1021 

gshB mutant like the Rm1021 gshA mutant displayed an increased level of resistance 

to bleomycin A5, relative to the parent strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

5-13. Sensitivity of the S. meliloti Rm1021 parent strain and the gshB mutant, to 

bleomycin A5 in liquid culture. Cultures of the Rm1021 parent (closed triangles) and the 

gshB mutant (open triangles) were exposed to bleomycin A5 (0.72 µg.ml
-1

) (A).  Cultures of 

the Rm1021 parent (closed squares) and the gshB mutant (open squares) were exposed to 

bleomycin A5 (3 µg.ml
-1

). (B) Cell viability was determined at the defined times. In this case 

cells were recovered onto LBMC plates containing the appropriate antibiotics.  The dataset is 

representative of the trends observed in two independent experiments. The error bars 

represent the standard deviation from the mean (n=3) for one experiment.  
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Additionally, comparison of figures 5-2 and 5-6 with 5-13B, would suggest that the 

S. meliloti gshB mutant appears more resistant to bleomycin A5 in liquid culture than 

the Rm1021 gshA mutant. 

 

5.3. Discussion 

The work presented in this chapter describes a preliminary investigation into the role 

of glutathione in the protection of free-living S. meliloti against bleomycin and 

methylglyoxal toxicity and compares it to the well characterised system of E. coli 

(Ferguson & Booth, 1998; Ferguson et al., 1998; MacLean et al., 1998). The key 

finding in this study was that although glutathione appears to be important in S. 

meliloti for detoxification of bleomycin and methylglyoxal on solid media, cells 

lacking glutathione actually appeared more resistant to these two toxic compounds, 

when exposed in liquid culture.   

 

5.3.1. Intracellular glutathione protects both S. meliloti and E. coli 

against methylglyoxal on solid media 

In both S. meliloti and E. coli, loss of the gshA gene, encoding γ-glutamylcysteine 

synthetase, results in an increased level of sensitivity to methylglyoxal on solid 

media, thus suggesting in both bacterial species that the presence of intracellular 

glutathione is important for protection against methylglyoxal under these conditions 

(Fig. 5-14). Detoxification of methylglyoxal by the glutathione dependent glyoxalase 

I and II enzymes is very well characterised in E. coli  (Inoue & Kimura, 1995).  

Although to date this system has not been characterised in S. meliloti, the genome 

contains two genes, Smc00290 and Smc00708, annotated putatively as encoding 

glyoxalase I and glyoxalase II respectively (http://iant.toulouse.inra.fr/ bacteria/ 

annotation /cgi/rhime.cgi), which could potentially be involved in glutathione 

dependent methylglyoxal detoxification (Fig. 5-14).   

 

 

 

 



                                                                150 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-14. Proposed model for protection of S. meliloti from methylglyoxal on solid 

media.  In E. coli the detoxification of methylglyoxal to D-lactate and free glutathione by the 

glutathione dependent glyoxalase I and II enzymes is well characterised (Inoue & Kimura, 

1995). Additionally it has been shown in E. coli that exposure to methylglyoxal results in DNA 

degradation (Ferguson et al., 2000).  Hence, it is proposed in the S. meliloti parent the 

glutathione dependent glyoxalase I-II detoxification system may play an important role in 

protection against methylglyoxal on solid media. However, in the S. meliloti gshA mutant due 

to the absence of intracellular glutathione, methylglyoxal will not be effectively detoxified.  

Therefore, the accumulation in methylglyoxal will result in an increased level of sensitivity, 

perhaps due to DNA damage. 

 

5.3.2. Intracellular glutathione protects both S. meliloti and E. coli 

against bleomycin damage on solid media 

Loss of the gshA gene in S. meliloti and E. coli also results in an increased sensitivity 

to bleomycin A5 on solid media. It was anticipated that glutathione may play a role in 

bleomycin detoxification in S. meliloti and E. coli since several studies have 

suggested a role for glutathione in detoxification of bleomycin in eukaryotic cells.  

One study found that in pulmonary endothelial cells bleomycin treatment was shown 

to result in up-regulation of the cellular levels of glutathione and expression of γ-

glutamylcysteine synthetase (Day et al., 2002).  Additionally, the hypersensitivity of 

Chinese hamster ovary cells to bleomycin was found to be due to lack of glutathione 
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S-transferase activity (Giaccia et al., 1991).  Glutathione S-transferases catalyse the 

nucleophilic conjugation of both xenobiotic and endogenous electrophiles with 

glutathione, thereby decreasing their reactivity (Armstrong, 1997).  Both S. meliloti 

and E. coli have several glutathione S-tranferases annotated in their genomes 

(http://iant.toulouse.inra. fr/bacteria/annotation /cgi/rhime.cgi and 

http://www.genome. wisc.edu /sequencing/k12.htm, respectively).  Thus, it may be 

possible in S. meliloti and E. coli that detoxification of bleomycin may be catalyzed 

by glutathione-S-transferases, perhaps by catalyzing the conjugation of bleomycin to 

glutathione (Fig. 5-15).  Alternatively or additionally glutathione S-transferases may 

catalyse the addition of  glutathione to a metabolic by-product of bleomycin damage 

(Fig. 5-15), for example base propenals are derived after cleavage of DNA by 

bleomcyin (Grollman et al., 1985; Steighner & Povirk, 1990) and preliminary 

analysis has revealed they would be likely substrates for glutathione-S-transferases 

(Giaccia et al., 1991).  

 

 

 

 

  

 

 

 

 

 

 

Figure 5-15. Proposed model for the protection of S. meliloti and E. coli against 

bleomycin damage on solid media. Upon exposure of the S. meliloti and E. coli parent 

cells to bleomycin it is thought that glutathione-S-transferases may catalase the addition of 

glutathione to bleomycin, thereby decreasing its toxicity and possibly resulting in its 

elimination from the cell.  Alternatively or additionally glutathione S-transferases may 

catalyse the addition of glutathione to a metabolic by-product of bleomycin damage. 

However in the absence of glutathione, bleomycin and/or its metabolic products will not be 

effectively detoxified in the gshA mutant cells, which may lead to an increased level of 

bleomycin induced DNA damage, relative to the parent strain. Key: BLM=bleomycin.    
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5.3.3. Could the increased resistance of the S. meliloti gshA mutant to 

bleomycin in liquid media be due to higher levels of oxygen, relative to 

those on solid media?  

The finding that S. meliloti lacking a functional gshA gene displayed an increased 

resistance to bleomycin in liquid culture was a surprising result.  It was proposed 

during this study that this phenotype may arise from physiological differences 

between liquid and solid LB media.  LB media contains yeast extract and thus some 

glutathione (Helbig et al., 2008), thus one could spectulate perhaps in liquid culture 

that this glutathione is more accessible to the bacteria than on solid media, hence the 

S. meliloti gshA mutant is protected against bleomycin.  However, a study assessed 

the cytoplasmic contents of an E.coli gshA mutant grown in LB and found that 

glutathione levels were less than 5% of the levels found in the parent strain (Helbig 

et al., 2008), making this unlikely.  Perhaps in liquid media higher levels of oxygen 

may be present than on solid media.  These higher oxygen levels may affect the 

toxicity of bleomycin.   

In vitro studies with bleomycin have postulated that following its interaction 

with Fe (II) in the presence of oxygen an activated bleomycin complex is formed 

(Sugiura et al., 1982).  The activated complex is then thought to cause double DNA 

strand breaks, during which superoxide, hydroxyl radicals and hydrogen peroxide are 

generated (Oberley & Buettner, 1979; Sugiura et al., 1982).  It has been shown that 

the S. meliloti gshA mutant has a seven fold higher catalase enzyme activity at the 

end of the exponential growth phase, relative to the Rm1021 parent strain (Harrison 

et al., 2005).  Since late exponential phase cells were used for the liquid assays in 

this work, it is possible the increased levels of catalase activity in the Rm1021 gshA 

mutant may breakdown the hydrogen peroxide generated by the bleomycin damage, 

lessening its toxic effect.  Overall this may provide more protection against 

bleomycin damage than the intracellular glutathione present in the parent strain (Fig. 

5-16).  Additionally, it has been shown that the presence of superoxide and hydrogen 

peroxide may reactivate bleomycin to cause more damage (Oberley & Buettner, 

1979; Sugiura et al., 1982). Hence, an up-regulation of catalase, resulting in 

breakdown of hydrogen peroxide, under these conditions could be very beneficial to 

S. meliloti. 
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Three catalase eyzymes in S. meliloti known to be involved in the breakdown 

of hydrogen peroxide are KatA, KatB and KatC (Herouart et al., 1996; Jamet et al., 

2003; Sigaud et al., 1999).  Using catalase activity gels it was determined that late 

exponential phase Rm1021 gshA mutant cells express enhanced levels of KatA and 

KatB, relative to the Rm1021 parent strain.  Additionally,  some KatC activity was 

detected, that was not present in the parent strain (Harrison et al., 2005).  

Furthermore,  Kat A activity in S. meliloti has been shown to be induced by the 

presence of hydrogen peroxide (Herouart et al., 1996).  Therefore, this increased 

level of KatA activity may further contribute to the increased resistance of the S. 

meliloti gshA mutant to bleomycin.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16.  Proposed model to account for the increased resistance of the S. meliloti 

gshA mutant to bleomycin in liquid media.   When S. meliloti cells are exposed to 

bleomycin in liquid media, the higher levels of oxygen contribute to the production of reactive 

oxygen species such as hydrogen peroxide which damage the cell and can also re-activate 

bleomycin (Oberley & Buettner, 1979; Sugiura et al., 1982).  In the S. meliloti parent cell 

glutathione will protect against bleomycin damage. However, in the gshA mutant cells the 

enhanced expression of the catalase enzymes will result in the breakdown of hydrogen 

peroxide, so conferring increased protection to bleomycin damage, relative to that provided 

by glutathione in the parent strain. Key: BLM=bleomycin. 
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5.3.4. Up regulation of catalase activity in the S. meliloti gshA mutant 

may not be beneficial when exposed to bleomycin on solid media  

Contrastingly, when S. meliloti gshA cells were exposed to bleomycin on solid 

medium where lower levels of oxygen may be present, it is possible that lower levels 

of reactive oxygen species are formed.  Thus, although late exponential phase cells 

were used, the enhanced level of catalase expression, relative to the parent, under 

these conditions may be less beneficial in protection against bleomycin. Therefore 

the Rm1021 gshA mutant displays an increased sensitivity to bleomycin, relative to 

the parent.   

Another important consideration is that although it is hypothesized based on 

previous studies (Harrison et al., 2005) that the Rm1021 gshA mutant cells harvested 

for use in the assays would already have an up-regulation of catalase activity, it is 

likely the Rm1021 gshA cells in the liquid assay will be under oxidative stress due to 

the higher oxygen levels in the liquid and would thus continue to express higher 

levels of catalase, independently from that induced by bleomycin, compared to the 

cells placed on solid agar where the oxygen levels are hypothesized to be lower. 

 

5.3.5. Preliminary data reveal that the S. meliloti gshA mutant still 

displays an increased resistance to bleomycin A5 in liquid culture with 

no aeration  

To investigate if the increased resistance of the S. meliloti gshA mutant to bleomycin 

in liquid culture was as a result of higher oxygen levels, relative to those on solid 

media, a bleomycin liquid assay was performed with the Rm1021 gshA mutant and 

the Rm1021 parent but under conditions of reduced oxygen.  Instead of exposing the 

cells to bleomycin with aeration, in this case the cells were exposed to bleomycin in 

an eppendorf tube, with no airspace and incubated in a water bath, rather than a 

shaking incubator.  However, under these conditions the Rm1021 gshA mutant still 

displayed an increased resistance to bleomycin, relative to the parent strain.  Thus, 

this would suggest that if the protective effect observed is due to enhanced catalase 

activity, then this is still occurring in the Rm1021 gshA mutant cells under these 
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conditions and/or is still having a beneficial effect i.e. reactive oxygen species are 

still being formed. 

 In retrospect, this was a fairly crude assay with no means of measuring actual 

oxygen levels.  If time had allowed a genetic approach may have been a more direct 

way to test this hypothesis.  As discussed, it has been shown the katA and katB genes 

are up-regulated in the gshA mutant, additionally the katA gene is induced by 

hydrogen peroxide (Herouart et al., 1996).  Thus, the construction of Rm1021 

gshA/katA and gshA/katB double mutants and a gshA/katA/katB treble mutant and 

subsequent investigation into their sensitivity to bleomycin and methylglyoxal, 

relative to the Rm1021 gshA mutant would be very informative. Additionally, 

catalase activity gels could be performed on S. meliloti cells harvested from liquid 

and solid media in the presence and absence of bleomycin to determine if there is an 

increased level of catalase activity in liquid media, relative to solid media upon 

exposure to the toxic compounds.  

 

5.3.6. Catalases have also been shown to protect against methylglyoxal 

damage  

It was also observed that the S. meliloti gshA mutant displayed an increased 

resistance to methylglyoxal in liquid media, relative to the parent strain. 

Interestingly, a study with the plant pathogen Xanthomonas campestris pv. phaseoli 

found that bacteria harbouring  an expression vector carrying a catalase gene were 

over 100 fold more resistant to methylglyoxal than bacteria without the plasmid; 

although in this case it is less clear how catalase induces protection against 

methylglyoxal toxicity (Vattanaviboon et al., 2001).  Additionally, it also was found 

that addition of 10 mM sodium pyruvate, which chemically inactivates peroxide 

(Nath et al., 1995), to the growth medium, increased X. campestris pv. phaseoli 

resistance levels more than 100-fold to methylglyoxal  killing (Vattanaviboon et al., 

2001).  Thus, this study would be consistent with catalase also playing a role in 

protection against methylglyoxal induced damage in S. meliloti in liquid media.  

The presence of methylglyoxal can be determined in a spectrophotometric 

assay using the chemical compound 2,4-dinitrophenylhydrazine (Gilbert & Brandt, 

1975). This has been successfully used in a previous study to measure the 
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disappearance of methylglyoxal from a culture medium with E. coli cells in the 

presence and absence of intracellular glutathione (Ferguson & Booth, 1998). In this 

work it was attempted to perform this assay to determine if methylglyoxal was been 

detoxified in the Rm1021 gshA mutant and to compare this to the detoxification rate 

of the Rm1021 parent strain.  However, problems were encountered with the use of 

LB as a medium, since the LB appeared to react with 2,4-dinitrophenylhydrazine.  So 

in future studies, a different growth medium would have to be used.  

 

5.3.7. The E. coli gshA mutant also displays an altered phenotype in 

liquid culture when exposed to methylglyoxal, relative to that observed 

on solid media 

In E. coli disruption of the gshA gene did not result in an increased sensitivity to 

methylglyoxal in liquid culture, relative to the parent strain.  Therefore, this would 

suggest in the absence of glutathione, like S. meliloti, the E. coli cells have another 

mechanism to protect against methylglyoxal damage.  Indeed, a previous study has 

shown that an E. coli gshA mutant was also found to have an up-regulation of 

catalase expression, both in the presence and absence of hydrogen peroxide 

(Oktyabrsky et al., 2001).  Therefore, one can hypothesize that catalase induced 

protection may too be occurring in the E. coli gshA mutant when exposed to 

methylglyoxal in liquid culture.  A previous study, which assessed the sensitivity of 

an E. coli gshA::Tn10 mutant to methylglyoxal in liquid media, found that the gshA 

mutant cells were more sensitive to methylglyoxal, relative to the parent strain. 

However, different conditions were used in this assay, one of which was that a 

minimal medium was used containing 0.2% (w/v) glucose as a carbon source 

(Ferguson & Booth, 1998).  Interestingly it has been shown that in E. coli, glucose 

actually represses catalase expression (Hassan & Fridovich, 1978).  However, the 

assays performed in this chapter were done in LB, which does not contain glucose 

(Sezonov et al., 2007).  Thus, these findings are consistent with the hypothesis that 

the protective effect against methylglyoxal observed in liquid is due to an up-

regulation of catalase genes.  However, in E. coli the same was not true of bleomycin 

treatment as the gshA mutant was more sensitive to bleomycin, relative to the parent 
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strain in liquid culture.  Perhaps this can be accounted for by differences in the 

catalase systems in E. coli and S. meliloti, as in contrast to S. meliloti, which has 

three characterised catalase enzymes, only two catalases have been characterised in 

E. coli, the katG gene which is induced in response to hydrogen peroxide (Storz et 

al., 1990) and also katE, which is activated in the stationary phase of growth  (Sak et 

al., 1989).   

 

5.3.8. Disruption of the S. meliloti gshB gene results in an increased 

resistance to bleomycin both on solid and in liquid culture 

When the S. meliloti gshB mutant (lacking the enzyme glutathione synthetase) was 

exposed to bleomycin on solid media, an increased level of resistance, relative to the 

Rm1021 parent was observed.  This mutant has previously been shown to 

accumulate γ-glutamyl cysteine (Harrison et al., 2005).  However, to the best of my 

knowledge there is no known literature suggesting a role for γ-glutamyl cysteine in 

detoxification of toxic compounds. It may be possible that the increased levels of γ-

glutamyl cysteine in the S. meliloti gshB mutant result in another change i.e. up-

regulation of another gene which may encode a protein conferring resistance to 

bleomycin (Fig. 5-17).  However, this phenotype would need to be complemented to 

confirm that it is definitely due to disruption of the gshB gene. 
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Figure 5-17.  Proposed model to account for the increased resistance of the S. meliloti 

gshB mutant to bleomycin on solid media. In the absence of glutathione in the S. meliloti 

gshB mutant the accumulation of γ-glutamyl cysteine protects the cells against bleomycin 

damage either directly by some unknown mechanism or indirectly i.e. by up-regulation of 

another gene which may encode a protein conferring resistance to bleomycin. This 

mechanism of protection in the S. meliloti gshB mutant appears more effective than 

glutathione induced protection in the parent cell. Key: BLM=bleomycin.   

 

The S. meliloti gshB mutant was also found to be resistant to bleomycin in liquid 

culture, relative to the parent strain. In fact, when the Rm1021 gshB mutant cells 

were exposed to same concentration of bleomycin under the same conditions as the 

Rm1021 gshA mutant they appeared much more resistant.  Late exponential phase 

cells of the Rm1021 gshB mutant have also been shown to have a three to four fold 

up-regulation of catalase activity (Harrison et al., 2005). Additionally, catalase 

activity gels revealed increased activity of all three catalases (Harrison et al., 2005), 

relative to the parent strain.  Thus, it is possible that the increased catalase activity 

combined with the as yet unknown protective effect of γ-glutamyl cysteine results in 

the increased resistence of S. meliloti gshB mutant to bleomycin (Fig. 5-18).   
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Figure 5-18.  Proposed model to account for the increased resistance of the S. meliloti 

gshB mutant to bleomycin in liquid culture. In the S. meliloti parent cell glutathione will 

protect cells against bleomycin damage.  However in the gshB mutant the combined 

protective effect of γ-glutamyl cysteine (as described in Fig. 5-17) and also the enhanced 

expression of the catalase enzymes, resulting in the breakdown of hydrogen peroxide, will 

confer enhanced protection against bleomycin.  Key: BLM=bleomycin.  

 

Interestingly there is a second gshB like gene (smb21586) named gshB2, annotated as 

a putative glutathione synthetase in the S. meliloti genome (iant.toulouse.inra.fr/ 

bacteria/annotation/cgi/rhime.cgi), which is 34% identical and 50% similar 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) at the protein sequence level, to the GshB 

protein identified in the previous study (Harrison et al., 2005). Since the gshB mutant 

has been shown to lack intracellular glutathione under normal growth conditions 

(Harrison et al, 2005), this suggests no other gene product is able to compensate for 

lack of gshB.  However, under some stress conditions i.e. exposure to toxic 

compounds the gshB2 gene may play a role in glutathione synthesis. To investigate 

this hypothesis, a gshB/gshB2 double mutant was created by transduction with M12 

phage. Unfortunately due to time constraints it was not possible to assess the 

sensitivity of this double mutant to bleomycin.  However, this can be undertaken in 

future studies within the laboratory.    
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5.3.9. Future work 

Overall this preliminary study into the role of glutathione in protection of free-living 

S. meliloti from bleomycin and methylglyoxal revealed some unexpected and 

interesting phenotypes. To continue this study, further physiological assays could be 

performed to attempt to gain clues as to what is occurring in the absence of the          

S. meliloti gshA and gshB genes. However, the quickest way to address this question 

would be to perform microarray analysis on the two S. meliloti glutathione mutants 

under varying conditions i.e. taken from growth on solid and in liquid media, in the 

presence and absence of both bleomycin and methylglyoxal. This should be 

happening in the laboratory in the near future and may provide very valuable insights 

into the mechanisms of protection occurring in the absence of glutathione in the S. 

meliloti gshA and gshB mutants, under certain conditions.  
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Chapter 6: Investigating the Role and Biosynthesis of the 
Lipopolysaccharide in Free-Living and Symbiotic S. meliloti 
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6.1. Introduction 

In both S. meliloti and B. abortus loss of BacA function results in a ~50% reduction 

in the amount of LPS lipid A molecules that are modified with very-long-chain fatty 

acids (VLCFAs) (Ferguson et al., 2004).  Interestingly the BacA protein is distantly 

related to the adrenoleukodystrophy family of eukaryotic proteins, thought to be 

involved in the transport of VLCFAs (Ferguson et al., 2004). Combined these 

findings led to the proposal that BacA could be involved in the transport of VLCFAs 

out of the cytoplasm where they could then be used to modify the lipid A in the outer 

membrane. 

  Since the mechanism by which BacA leads to the lipid A VLCFA 

modification is still unresolved S. meliloti  mutants were constructed  in the acpXL 

and lpxXL genes (Ferguson et al., 2005), which are directly involved in the 

biosynthesis of VLCFA-modified LPS.  The lpxXL gene encodes an VLCFA acyl 

transferase (Basu et al., 2002) and the acpXL gene encodes an VLCFA acyl carrier 

protein (Brozek et al., 1996) (Fig. 6-1).  Although the LPS of the acpXL and lpxXL 

free-living mutants completely lack the VLCFA modification in complex media they 

are able to form a successful symbiosis with alfalfa (Ferguson et al., 2005).  

However, since the acpXL and lpxXL mutants are substantially less competitive in 

co-inoculation experiments with the Rm1021 parent strain (Ferguson et al., 2005), 

this would suggest the AcpXL and LpxXL proteins play important roles in at least 

one stage of the alfalfa symbiosis.  

 

 

 

 

 

 

 

Figure 6-1. The Biosynthesis of the VLCFA-modified Lipid A.  The VLCFA is synthesised 

on the acyl carrier protein AcpXL and attached to a lipid A precursor by the acyl transferase 

LpxXL. Lack of any of these two proteins results in the complete loss of all VLCFAs 

(Ferguson et al., 2005; Sharypova et al., 2003).  
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A study performed on the related bacterium Rhizobium leguminosarum found that 

although the acpXL mutant completely lacks the VLCFA modification in the free-

living state, the lipid A of this mutant becomes partially modified with VLCFA 

during passage though peas (Vedam et al., 2006).  Experimental evidence in S. 

meliloti has also shown that the LPS hydrophobity increases in S. meliloti during the 

alfalfa symbiosis (Ferguson et al., 2005), which may be indicative of VLCFA 

addition.  Therefore, these findings raise the possibility that the S. meliloti acpXL and 

lpxXL mutants may undergo further changes in the plant.  Additionally, unlike E. coli 

which has only one acyl carrier protein, the genome of S. meliloti encodes multiple 

acyl carrier and transferase genes whose products could potentially be involved in 

host induced LPS changes (Geiger & Lopez-Lara, 2002).  Therefore it may be 

possible that one or more of these additional proteins could partially compensate for 

the loss of AcpXL and LpxXL in planta.  

If the proposed model that BacA plays some role in the transport of activated 

VLCFAs out of the cytoplasm onto the lipid A in the outer membrane (Ferguson et 

al., 2004) is correct then the LPS would need to be transported across the inner 

membrane before the lipid A could be modified with a VLCFA.  In E. coli, the 

transport of newly synthesized rough LPS (containing lipid A and the core 

oligosaccharide) from the inner to the outer membrane is dependent upon the inner 

membrane ABC transporter MsbA protein (Doerrler et al., 2001; Zhou et al., 1998).  

The S. meliloti Rm1021 genome (Galibert et al., 2001) encodes multiple proteins, 

which share protein similarity and identity over their entire length with the E. coli  

MsbA proteins (Beck et al., 2008).  Thus, it may be possible that S. meliloti MsbA-

like proteins could also be playing a role in the transport of polysaccharide or lipid-

containing polysaccharide such as LPS and these processes could play an important 

role in the host interaction.  

Thus, the aims of the work presented in this chapter were as follows: firstly, 

to determine the importance of the VLCFA modifications in the S. meliloti alfalfa 

symbiosis by investigating the free-living and in planta phenotypes of the S. meliloti 

acpXL and lpxXL mutants and a putative acyl carrier protein mutant.  Secondly, to 

investigate the roles of potential MsbA-like proteins in free-living and symbiotic        
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S. meliloti which may eventually lead to further clues as to the proposed role of 

BacA in the transport of VLCFAs.   

6.2. Results  

 

6.2.1. Investigation into the importance of VLCFA modifications in free-

living and symbiotic S. meliloti 

 

6.2.1.1. Free-living acpXL and lpxXL mutants display an altered LPS 

profile by SDS PAGE 

It has been previously shown that the S. meliloti acpXL and lpxXL mutants display an 

increased level of sensitivity to cell envelope disrupting agents such as DOC and 

SDS, relative to the Rm1021 parent strain (Ferguson et al., 2005), thus suggesting 

that the AcpXL/LpxXL-dependent VLCFA modifications of S. meliloti LPS are 

important for free-living stress resistance (Ferguson et al., 2005).  As a first step to 

investigate any other LPS changes in the free-living S. meliloti acpXL and lpxXL 

mutants, LPS samples were extracted from the mutants using an SDS lysis method.  

The samples were then analyzed by SDS-PAGE, followed by staining with sodium-

m-periodate, which stains oxidized sugar residues (Fig. 6-2).  As previously shown 

using this method of analysis (Ferguson et al., 2002) there are no detectable 

differences in the LPS profile of the Rm1021 ∆bacA mutant, relative to the Rm1021 

parent strain  (Fig. 6-2, lanes 1 and 2, respectively).  Contrastingly, in the Rm1021 

acpXL and lpxXL mutants, it could be observed that the higher molecular weight 

band (I) was absent (Fig. 6-2, lanes 3 and 4, respectively), relative to the Rm1021 

parent.  The LPS profile observed for the S. meliloti acpXL mutant in this work is 

consistent with previous published findings (Sharypova et al., 2003).  However, this 

work shows for the first time that the S. meliloti lpxXL mutant too displays an altered 

LPS profile, relative to the Rm1021 parent strain.  This higher molecular weight 

band (I) may correspond to smooth LPS (lipid A, core polysaccharide and the O-

antigen), whereas the lower molecular weight band (II) may represent rough LPS, 

lacking the O-antigen.  Thus, these data showing that the LPS profiles of the 

Rm1021 acpXL and lpxXL mutants are missing the higher molecular weight band 
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could be interpreted as an inability of these mutants to express O antigen.  However, 

the glycosyl composition of the LPS of these mutants has been analysed and was 

found to be very similar to that of the Rm1021 parent strain (R.W. Carlson and G.P 

Ferguson, unpublished data) suggesting there are no differences in the O-antigen of 

these mutants, relative to the Rm1021 parent strain. 

 

 

 

                       

 

 

 
 
 

Figure 6-2. SDS-PAGE gel of LPS extracted from the Rm1021 parent strain, ∆∆∆∆bacA, 

acpXL and lpxXL mutants.  Profiles shown are the Rm1021 parent stain (1), the ∆bacA 

mutant (2), the acpXl::pk18mobGII mutant (3) and the lpxXL::pJH104 mutant (4). The gel 

was then stained using the periodate-silver staining method. Band I represents a high-

molecular weight form of LPS and band II represents the lower molecular weight, faster 

migrating form. 

       
 

6.2.1.2. Within the host the S. meliloti acpXL mutant is delayed in 

infection droplet release and the nodules prematurely senesce  

As previously discussed,  work performed with the related bacterium                         

R. leguminosarum found an acpXL mutant also lacks the VLCFA modification in the 

free-living state but like the S. meliloti acpXL mutant can form a successful 

symbiosis (Vedam et al., 2003).  However, TEM of pea infected nodules revealed 

that R. leguminosarum lacking the AcpXL protein showed defects in the host, 

relative to the parent, suggesting an important role for AcpXL in bacteroid 

development (Vedam et al., 2004). Thus, it may be possible that the S. meliloti 

AcpXL protein may also be involved in bacteroid development.  To investigate this, 

the Rm1021 acpXL mutant and the Rm1021 parent strain were inoculated onto 

alfalfa plants.  Nodules were removed from plants at 1 and 4 weeks post infection 

and fixed and analysed by TEM (Fig. 6-3).  At 1 week post infection very few 
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Rm1021 acpXL mutant bacteroid containing cells were observed in the nodule 

sections (Fig. 6-3A & B), relative to the Rm1021 parent strain (Fig. 6-3C).  Instead 

the majority of Rm1021 acpXL mutant bacteroids were still in the infection droplets 

(Fig. 6-3A & B), of which there were multiple.  

 At four weeks post infection defects observed in the Rm1021 acpXL induced 

nodules (Fig. 6-3D & E), relative to the Rm1021 parent (Fig. 6-3F) were even more 

pronounced. At this time point the plant cells appeared quite disorganised (Fig. 6-3D 

& E), relative to the plant cells induced by the Rm1021 parent (Fig. 6-3F) strain.  

The presence of multiple Rm1021 acpXL mutant bacteroids per symbiosome could 

also be observed (Fig. 6-3D & E), here the bacteroids could be seen to be retracting 

from the peribacteroid membrane. Contrastingly, in the parent strain (Fig. 6-3F), only 

one bacteroid per symbiosome was ever observed.  Additionally, lytic vesicles could 

be observed (Fig. 6-3D) containing multiple odd shaped bacteroids.  Taken together 

these data would suggest that the S. meliloti AcpXL protein plays an important role 

in the host interaction at both the early and late stages of the symbiosis.  
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Figure 6-3. TEM Micrographs of the Rm1021 parent and Rm1021 acpXL mutant. The 

alfalfa nodules induced by the defined strains one (A-C) and four (D-F) weeks post infection 

were analyzed by TEM.  The arrows in D & E show the presence of multiple bacteroids 

within a single membrane compartment. Abbreviations: bacteroid (b), infection droplet (id), 

infection thread (it), nucleus (n), nucleolus (nu), lytic vesicle (lv), starch grain (s), and vacuole 

(v). TEM analysis was performed by Euan James, at the University of Dundee.  This project 

was performed in collaboration with Andreas Haag at the University of Aberdeen.  
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6.2.1.3. The S. meliloti Rm1021 lpxXL mutant bacteroids also show 

abnormalities throughout the entire infection process  

Previous work had shown that the free-living Rm1021 lpxXL mutant was found to be 

more sensitive than the Rm1021 acpXL mutant to cell envelope disrupting agents 

SDS and DOC (Ferguson et al., 2005), since despite lacking the VLCFA 

modification, the Rm1021 acpXL mutant is still able to transfer a shorter chain C16:0 

or C18:0 unhydroxylated fatty acid not normally found in the S. meliloti LPS, onto a 

portion of its lipid A molecules (Ferguson et al., 2002).  Therefore, the Rm1021 

acpXL mutant is still able to produce a significant portion of its lipid A molecules in 

the pentaacylated state (Ferguson et al., 2005), relative to the Rm1021 lpxXL mutant 

which does not.  Thus, it may be possible that due to the altered lipid A in the 

Rm1021 lpxXL mutant, differences may be observed relative to the Rm1021 acpXL 

mutant in the host symbiosis.  To investigate this possibility, the Rm1021 lpxXL 

mutant was inoculated onto alfalfa plants.  Nodules were removed from plants at 1 to 

4 weeks post infection and fixed and analysed by TEM (Fig. 6-4).  At 1 week post 

infection, there appeared to be more Rm1021 lpxXL mutant bacteroids present within 

the plant cells (Fig. 6-4A), relative to what was observed for the Rm1021 acpXL 

mutant (Fig. 6-3A & B). However, throughout the 4 week period very odd shaped 

bacteroids were observed, often appearing very enlarged (Fig. 6-4B & C) and 

showing branching and bulges (Fig. 6-4A, B, C &D).  Contrastingly, these very odd 

shaped bacteroids were never present in the Rm1021 parent strain (Fig. 6-3C&F and 

6-4E&F) or the Rm1021 acpXL mutant (Fig. 6-3A, B, D & E). These data therefore 

suggest that the S. meliloti LpxXL protein also has an important role in bacteroid 

development.  However, since the Rm1021 lpxXL mutant had a phenotype distinct 

from the Rm1021 acpXL mutant, this could suggest the AcpXL and LpxXL proteins 

play important but different roles in bacteroid development.  
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Figure 6-4. TEM-Micrographs of the Rm1021 lpxXL mutant and the Rm1021 parent. The 

alfalfa nodules induced by the defined strains either one (A & E), two (B), three (C) or four (D 

& F) weeks post infection were analysed by TEM. The arrows shown in A-D indicate the 

abnormally shaped bacteroids. Abbreviations: bacteroid (b), endoplasmic reticulum (er), 

mitochondria (m),nucleus (n), nucleolus (nu), starch grain (s), cell wall (w) and vacuole (v). 

TEM analysis was performed by Euan James, at the University of Dundee. This project was 

performed in collaboration with Andreas Haag at the University of Aberdeen.  
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6.2.1.4. The S. meliloti acpXL/lpxXL double mutant bacteroids display 

similar phenotypes to both the acpXL and lpxXL single mutants 

It had previously been shown that the Rm1021 lpxXL mutant and the Rm1021 

acpXL/lpxXL double mutant have identical lipid A profiles in their free-living forms 

(Ferguson et al., 2005).  However, the free-living Rm1021 acpXL/lpxXL double 

mutant showed a slight increased sensitivity to certain stresses i.e. detergents DOC 

and SDS, compared to the Rm1021 lpxXL single mutant. Thus, this raised the 

possibility that the double mutant may display more pronounced defects in the plant.  

To investigate this, TEM analysis was performed on 1 and 4 week nodules induced 

by the S. meliloti acpXL/lpxXL double mutant (Fig. 6-5).  At 1 week post infection it 

could be observed that in nodules induced by the Rm1021 acpXL/lpxXL double 

mutant there were less bacteria present in the plant cells (Fig. 6-5A & B) relative to 

the Rm1021 lpxXL single mutant (Fig. 6-4A) and the Rm1021 parent strain (Fig. 6-

3C). However, this phenotype was not as pronounced as had been observed in the 

Rm1021 acpXL mutant (Fig. 6-3 A & B).  Additionally at week 1 post infection there 

was also the presence of odd-shaped bacteroids (Fig. 6-5B), as was observed for the 

Rm1021 lpxXL single mutant. These odd shaped bacteroids were still present at 4 

weeks post infection (Fig. 6-5C &D) and additionally, lytic vesicles and multiple 

bacteroids per symbiosome were also evident (Fig. 6-5C &D), as observed in the 

Rm1021 acpXL mutant.  Thus, these data show that interestingly the Rm1021 

acpXL/lpxXL mutant displays phenotypes of both the Rm1021 acpXL and Rm1021 

lpxXL single mutants.  
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Figure 6-5. TEM-Micrographs of the Rm1021 acpXL/lpxXL double mutant. The alfalfa 

nodules induced the S. meliloti Rm1021 acpXL/ lpxXL double mutant either at one (A & B) or 

four (C & D) weeks post infection were analysed by TEM.  The abnormally shaped 

bacteroids are indicated by arrows (B-D) and the arrows with dots (D) show the presence of 

multiple bacteroids within a single membrane compartment.  Abbreviations: bacteroid (b) 

endoplasmic reticulum (er), mitochondria (m), lytic vesicle (lv), nucleus (n), nucleolus (nu), 

starch grain (s). TEM analysis was performed by Euan James, at the University of Dundee. 

This project was performed in collaboration with Andreas Haag at the University of 

Aberdeen.  
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6.2.1.5. Preliminary in planta analysis suggests the putative acyl carrier 

protein Smb20651 does not compensate for the loss of the AcpXL 

protein   

Previous work with the R. leguminosarum acpXL mutant showed that despite lacking 

the VLCFA modification in the free-living state, the lipid A of this mutant was 

partially modified with VLCFA when extracted back from the host (Vedam et al., 

2006).  Analysis of the bacteroid lipid A revealed that 56% of the lipid A was found 

to contain the VLCFA modification (Vedam et al., 2006).  Thus, it was possible that 

the S. meliloti acpXL mutant may also undergo further lipid A changes in the plant.  

Although a role has been proposed for the BacA protein in these host induced 

changes, additional proteins could also be involved in the biosynthesis of host-

induced LPS VLCFA modifications (Geiger & Lopez-Lara, 2002).  It is possible that 

one or more proteins could partially compensate for the loss of AcpXL in planta.  

Intriguingly in S. meliloti the smb20651 gene encodes a potential acyl carrier protein 

which is located in an operon with putative long-chain fatty acid CoA ligase (Geiger 

& Lopez-Lara, 2002) (Fig. 6-6).  Thus, the protein encoded by smb20651 could be a 

potential candidate for host induced lipid A changes in the S. meliloti acpXL mutant 

(Geiger & Lopez-Lara, 2002).  To investigate this possibility, the free-living and in 

planta phenotype of the S. meliloti Rm1021 smb20651 mutant (Ramos-Vega et al., 

2009) in the presence and absence of the AcpXL protein was assessed.  

 

 

 

 

 

 

Figure 6-6. Genetic organization around the genes coding for the proposed acyl 

carrier protein Smb20651. smb20654: encodes hypothetical protein, asnB:  encodes 

putative asparagine synthetase, smb20650: putative long-chain fatty acid CoA ligase, 

nadE1: encodes putative NH3-dependent NAD
+
 synthetase, and smb20648: encodes 

putative oxido/reductase. (Geiger & Lopez-Lara, 2002). 
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Initially, an LPS sample was extracted from the free-living Rm1021 �smb20651 

mutant using the SDS lysis method and analyzed by SDS-PAGE to determine if loss 

of this putative acyl carrier protein Smb20651 resulted in an altered LPS profile. 

However, it was observed that there were no detectable differences in the banding 

pattern of the Rm1021�smb20651 mutant relative to the Rm1021 parent strain (Fig. 

6-7 lanes 2 and 1, respectively), with the Rm1021 �smb20651 mutant profile 

displaying both the upper and lower migrating bands (Fig. 6-7 lane 2).  The 

∆smb20651 background was next transduced into the Rm1021 acpXL mutant, using   

M12 phage.  The resulting Rm1021 acpXL/∆Smb20651 double mutant displayed an 

LPS profile identical to that of the acpXL single mutant (Fig. 6-2).  Therefore, if loss 

of the Smb20651 protein in S. meliloti affects the LPS, it is not detectable by this 

means of analysis.  

 

 

 

 

 

 

 

 

 

Figure 6-7. SDS-PAGE gels of LPS extracted from the Rm1021 parent strain, the 

putative acyl carrier protein mutant ∆∆∆∆smb20651 and the ∆∆∆∆smb20651/acpXL double 

mutant. Profiles shown are the Rm1021 parent stain (1), the Rm1021 �smb20651 mutant 

(2), and the Rm1021 ∆smb20651/acpXL double mutant (3). The gel was then stained using 

the periodate-silver staining method. Band I represents a high-molecular weight form of LPS 

and band II represents the lower molecular weight, faster migrating form. 

 

To investigate the possibility that the Smb20651 protein may be involved in host-

induced LPS changes in the absence of the acpXL gene, alfalfa seedlings were 

inoculated with the Rm1021 ∆smb20651 single mutant and Rm1021 acpXL/ 

∆smb20651 double mutant and plant growth and nodule characteristics were 

recorded after a four week period.  Alfalfa seedlings were also inoculated with the 

Rm1021 parent strain and the Rm1021 acpXL mutant.  Despite the disruption of the 
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smb20651 gene, in both the Rm1021 parent and Rm1021 acpXL mutant background, 

both mutant strains were able to form a symbiosis with alfalfa plants (Table 6-1).  

Thus, these data would suggest that in S. meliloti the putative acyl carrier protein 

Smb20651 does not appear to compensate for the loss of the AcpXL protein in the 

alfalfa symbiosis.  

 
 
 
Table 6-1. Effect of the loss of putative acyl carrier protein Smb20651 on the alfalfa 
symbiosis  
 

 

 

± shows the standard derivation from the mean 
a
 10 plants were analysed per S. meliloti strain  

* lighter leaves present on 2 out of 10 plants analysed, relative to dark green leaves of plants infected 

with the parent strain which are indicative of a successful symbiosis  

 

6.2.1.6. The Smb20651 protein confers a significant competitive 

advantage to S. meliloti in the alfalfa symbiosis  

Since previous work had shown that the Rm1021 acpXL mutant was able to form a 

symbiosis but was substantially less competitive than the Rm1021 parent strain 

(Ferguson et al., 2005), it was next investigated if Smb20651 function conferred a 

competitive advantage during the symbiosis.  A series of competition assays were set 

up with alfalfa plants.  In each case two different S. meliloti strains were inoculated 

simultaneously in a 1:1 ratio onto the alfalfa seedlings.  After 4 weeks, the bacteria 

were recovered from pink nodules and the numbers of each S. meliloti strain present 

in each nodule were identified by selection of the appropriate antibiotic resistance 

markers (table 6-2). 

Bacterial 

Strain 

Symbiosis Plant 

heighta 

(cm) 

Plant 

colour 

Mean No. of 

pink 

nodules per 

plant 

Mean No. of 

white 

nodules per 

plant 
Rm1021 parent Yes 9.2 ± 1.6 Dark green 9.3 ± 2.1 0 

acpXL Yes 7.9 ± 1.8 Dark green 5.6 ± 2.2 0.8 ± 1.1 

∆smb20651 Yes 9.0 ± 1.8 Dark green 8.9 ± 4.2 3.3 ± 2.2 

acpXL/∆smb20651 Yes 7.2 ± 1.4 Dark & 

lighter* 

green 

7.3 ± 3.2 0.9 ± 1.2 
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Analysis of nodules inoculated with the Rm1021 parent strain and the 

Rm1021 ∆smb20651 mutant found that for each nodule analysed, the Rm1021 parent 

strain represented over 99% of bacteria recovered, and the same was true of the 

Rm1021 parent strain versus the Rm1021 acpXL/∆smb20651 double mutant 

competition.  The Rm1021 acpXL/∆smb20651 double mutant was also found to be 

significantly less competitive than either respective single mutant alone (table 6-2).  

Although the presence of the Smb20651 protein does not appear to be essential for S. 

meliloti to form a successful symbiosis these data suggest it confers a very significant 

competitive advantage.  Upon recovery of nodules inoculated with the Rm1021 

acpXL and Rm1021 ∆smb20651 single mutants, it was observed that in 4 out of 5 

nodules analysed the Rm1021 ∆smb20651 mutant represented over 99% of the 

recovered bacteria.  Therefore it appears that under the conditions tested loss of the 

acpXL gene was more detrimental in the alfalfa symbiosis than loss of the smb20651 

gene. 

 
 
Table 6-2.  Effect of loss of the putative acyl carrier protein Smb20651 on the alfalfa 
symbiosis  
 

 

 

± shows the standard derivation from the mean 
a
 10 plant nodules were analysed per competition assay, with the exception of acpXL versus 

Smb20651 where only 5 nodules were analysed.  

* With the exception that one nodule analysed, 84% of the acpXL mutant and 16% of the 

Smb20651/acpXL mutant were recovered. 

† With the exception that one nodule analysed, 75.1% of the acpXL mutant and 24.9% of the 

Smb20651 mutant were recovered.  

 

Competition Percentage of each strain recovered from nodulea 
Rm1021 versus smb20651 Rm1021 (99.9 ± 0.14) smb20651 (0.1 ± 0.14) 

Rm1021 versus smb20651/acpXL Rm1021 (99.9±0.13) smb20651/acpXL (0.1 ±0.13) 

acpXL versus smb20651/acpXL acpXL (98.7±1.3) * smb20651/acpXL (1.3 ±1.3)* 

smb20651 versus smb20651/acpXL smb20651 (99.8 ± 0.17) smb20651/acpXL (0.2± 0.17) 

acpXL versus smb20651 smb20651 (99.7± 0.53)
†
 acpXL (0.3 ± 0.53) 
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6.2.1.7. Preliminary data suggests that passage through the host does 

not restore the NaCl tolerance of the Rm1021 lpxXL mutant 

As previously discussed, analysis of the lipid A from R. leguminosarum acpXL 

mutant bacteroids revealed unlike the free-living acpXL mutant, the bacteroid lipid A 

was found to contain some VLCFA (Vedam et al., 2006).  However, when R. 

leguminosarum acpXL ex-nodule isolates were grown both under standard laboratory 

conditions and in the presence of 0.5% (w/v) NaCl, no VLCFA was found on the 

lipid A of these mutants.  So these data suggest that whatever mechanism is 

responsible for the addition of the VLCFA in the absence of the AcpXL protein, it 

appears to be only induced in the host environment.  However, the finding that the R. 

leguminosarum acpXL ex-nodule isolates were able to grow in the presence of 0.5% 

NaCl unlike the free-living acpXL mutant, suggested that passage through the plant 

had restored the salt tolerance of the acpXL mutant.  Therefore, it was next 

investigated if passage though the plant could restore the salt sensitivity of the S. 

meliloti lpxXL mutant. 

Growth of free-living and ex-nodule S. meliloti was assessed on different salt 

concentrations (Fig. 6-8).  However, it was observed that relative to the free-living 

lpxXL mutant the ex-planta lpxXL mutant strain did not display an increased salt 

resistance.  Like the free-living mutant, the ex-planta lpxXL mutant was also unable 

to grow in the presence of 0.25 % NaCl (Fig. 6-8D).  Thus, these preliminary data 

suggested that at least under the conditions tested passage through the plant did not 

appear to restore the NaCl resistance of the S. meliloti lpxXL mutant. 
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Figure 6-8. NaCl tolerances of free-living and host-extracted S. meliloti lpxXL cells. 

The bacteria were extracted from alfalfa nodules four weeks post inoculation and were 

recovered and pre-grown on LBMC plates. Single ex-nodule and free-living colonies were 

then screened on LBMC plates containing different salt concentrations as indicated by the 

percentages.  

 

6.2.2. Investigation into the role of the MsbA like proteins in S. meliloti 

 

6.2.2.1. S. meliloti msbA1 and msbA2 mutants do not have an increased 

sensitivity to cell envelope disrupting agents 

Thus far in this chapter it has been determined that the AcpXL and LpxXL proteins 

play important roles in bacteroid development.  Additionally, a preliminary study 

suggested that the putative acyl carrier protein Smb20651 does not appear to 

compensate in the host for loss of the AcpXL protein in S. meliloti.  However, there 

still remained the possibility that further host-induced lipid A changes were 

occurring in the S. meliloti acpXL and lpxXL mutants and the BacA protein may play 

some role in these changes.  If the proposed model that BacA is involved in the 

transport of activated VLCFAs out of the cytoplasm onto the lipid A (Ferguson et al., 

2004) is correct then the LPS would need to be transported across the inner 

membrane before the lipid A could be modified with a VLCFA.  In E. coli, the 
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transport of newly synthesized rough LPS (containing lipid A and the core 

oligosaccharide) and phosolipids from the inner to the outer membrane of is 

dependent upon the inner membrane ABC transporter MsbA protein (Doerrler et al., 

2001; Zhou et al., 1998).  Interestingly, the S. meliloti Rm1021 genome contains four 

genes thought to encode MsbA like proteins, msbA1 (smb20813), msbA2 

(smb21191), exsA (smb20941) and y02836 (smc02836) (Galibert et al., 2001).  These 

S. meliloti MsbA like proteins share between 26-34% identity and 47-58% similarity 

over their entire length with the E. coli MsbA protein (Beck et al., 2008). Therefore, 

it may be possible that S. meliloti MsbA-like proteins could also be playing a role in 

the transport of polysaccharide or lipid-containing polysaccharide such as LPS and 

these processes could play an important role in the host interaction.  Thus, 

investigation into the role of the MsbA like proteins in lipid trafficking in S. meliloti 

may eventually lead to more clues about the proposed role of the BacA protein in the 

VLCFA modification and where in the cell envelope this modification occurs.   

To understand more about the roles of potential MsbA-like proteins in S. 

meliloti, msbA1 and msbA2 insertional mutants were constructed by Sebastian Beck, 

a postdoctoral researcher in the laboratory.  To do this internal fragments of the 

respective genes were cloned into the suicide vector pJH104 (Davies & Walker, 

2007). Upon successful construction of the mutants, both were transduced into a 

clean Rm1021 parent background. 

Previous research has shown that S. meliloti LPS mutants display an altered 

sensitivity to cell envelope-disrupting agents such as SDS, DOC and Crystal Violet 

(Davies & Walker, 2007; Ferguson et al., 2002; Ferguson et al., 2005; Ferguson et 

al., 2006).  As a first means to determine if the S. meliloti Rm1021 msbA1::pHJ104 

and msbA2::pHJ104 mutants had LPS alterations, sensitivity of the mutants to cell 

envelope disrupting agents was assessed (Fig. 6-9).  It was observed that unlike the 

Rm1021 ∆bacA mutant, neither the Rm1021 msbA1::pHJ104 or Rm1021 

msbA2::pHJ104 mutants displayed an increased sensitivity to SDS (Fig. 6-9A) or 

Crystal Violet (Fig. 6-9B), when assessed by filter disc assay.  Additionally, when 

the cells were exposed to a DOC gradient, unlike the Rm1021 ∆bacA mutant which 

displays a zone of growth inhibition, relative to the Rm1021 parent, no growth 

inhibition was observed for msbA1::pHJ104 or msbA2::pHJ104 mutants (Fig. 6-9C). 
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These findings would therefore suggest that the Rm1021 msbA1::pHJ104 and 

Rm1021 msbA2::pHJ104 mutants do not appear to have LPS alterations, relative to 

the Rm1021 parent which were detectable under these stress assay conditions.   

The ∆bacA mutation was next transduced into the Rm1021 msbA1 and msbA2 

mutant backgrounds using M12 phage, to determine if loss of BacA increased the 

sensitivity of the msbA mutants to cell envelope disrupting agents.  It could be 

observed that loss of bacA in the msbA1 and msbA2 mutant backgrounds did result in 

an increased sensitivity to SDS (Fig. 6-9A).  Interestingly, it was also observed that 

the Rm1021 msbA1::pHJ104 /∆bacA and msbA2::pHJ104 /∆bacA double mutants 

displayed a reduced level of sensitivity to SDS and Crystal Violet relative to the 

Rm1021 ∆bacA single mutant (Fig. 6-9A & B, respectively).  This phenotype 

seemed to be specific for SDS and Crystal Violet since the msbA1::pHJ104 /∆bacA 

and msbA2::pHJ104 /∆bacA double mutants displayed the same level of sensitivity to 

DOC as observed for the Rm1021 ∆bacA single mutant (Fig. 6-9C).  However, these 

data would suggest that disruption of the msbA1 and msbA2 genes partially 

suppresses the sensitivity phenotype of the Rm1021 ∆bacA mutant to SDS and 

Crystal Violet.  
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Figure 6-9. Sensitivity of the Rm1021 ∆∆∆∆bacA, msbA1 and msbA2 mutants to SDS, 

Crystal Violet and DOC.  The defined strains were exposed to SDS (5 µl of a 10% w/v stock 

solution) using a filter disc assay on LB agar (A).  As in (A), except cells were exposed to 

crystal violet (5 µl of a 4 mg.ml
-1

stock solution) (B). The defined strains were exposed to 

DOC (0-24 mM) using a gradient assay on LB agar (C).  In (A) and (B) the significant values 

(***P<0.001) represent comparisons of the msbA1/∆bacA and msbA2/∆bacA to the ∆bacA 

mutant.   All datasets show are representative of the trends observed in two independent 

experiments. The error bars represent the standard deviation from the mean (n=3) in one 

experiment.  
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6.2.2.2. The S. meliloti msbA2 mutant is defective in the legume 

symbiosis 

To investigate if the MsbA1 or MsbA2 proteins were playing a role in the                 

S. meliloti legume symbiosis, alfalfa seedlings were inoculated with cultures of the 

Rm1021 parent strain, the msbA1::pJH104 and the msbA2::pJH104 mutant.  Plant 

growth and nodule development was assessed 4 weeks post inoculation.  This work 

was performed by Sebastian Beck.  No defects in the alfalfa symbiosis were 

observed for the Rm1021 msbA1::pJH104 mutant, relative to the Rm1021 parent 

strain (S.Beck and G.P.Ferguson, unpublished data).  Contrastingly, plants inoculated 

with the Rm1021 msbA2::pJH104 mutant were stunted and the leaves were paler 

green/yellowish, relative to the dark green leaves of plants induced by the parent 

strain (Beck et al., 2008).  The characteristics displayed by the plants inoculated with 

the Rm1021 msbA2::pJH104 are indicative of an unsuccessful symbiosis (Fig. 6-10).  

Additionally, compared to the pink, elongated, nitrogen fixing root nodules induced 

by the Rm1021 parent strain, the root nodules induced by the Rm1021 

msbA2::pJH104 mutant were shorter and white and stumpy like in appearance with 

brown tinges (Fig. 6-10) (Beck et al., 2008), again indicative of an unsuccessful 

symbiosis. 

                

Figure 6-10.  Alfalfa seedlings after inoculation with the S. meliloti Rm1021 parent and 

the S. meliloti Rm1021 msbA2::pJH104.  Alfalfa seedlings were inoculated with either the 

Rm1021 parent (A & C) or the Rm1021 msbA2::pJH104 mutant (B & D).  Plant growth (A & 

B) and nodule development (C & D) were photographed 4 weeks post infection. Pictures 

were taken 28 days post inoculation. Work performed by Sebastian Beck. Figure adapted 

from Beck et al., 2008. 
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Since an interesting in planta phenotype had been observed for the Rm1021 msbA2:: 

pJH104 mutant, it was decided to now focus on characterisation of this mutant. 

Additionally, the msbA2 gene is located on the pSymB megaplasmid of S. meliloti 

Rm1021 (Beck et al., 2008), which contains many genes whose products are 

involved in the synthesis of cell surface carbohydrates (Finan et al., 2001), and is 

immediately downstream of genes whose products are predicted to be involved in the 

biosynthesis of a lipid linked polysaccharide (Beck et al., 2008) (Fig. 6-11). 

 

 

Figure 6-11. Genomic organisation of the S. meliloti msbA2 gene.  The msbA2 gene 

(smb21191) is likely to be the last gene in a multi-gene operon with smb21188 (encoding a 

putative acyltransferase) and smb21189/smb21190 (encoding putative 

glycosyltransferases). The predicted operon is surrounded by the upstream genes gabT 

(smb21186, encoding a putative 4-aminobutyrate aminotransferase) and smb21187 

(encoding a putative transcriptional regulator) and the downstream gene cbbA2 (smb21192, 

encoding a putative fructose-bisphosphate aldolase) (Beck et al., 2008).  

 

Genes located downstream of the S. meliloti msbA2 gene are on the opposite strand 

in the Rm1021 genome (Fig. 6-11) (Galibert et al., 2001). Therefore, it seemed 

unlikely that disruption of the msbA2 gene would exert a polar effect on any of these 

genes.  Moreover, a second study, using transposon mutagenesis  had independently 

shown that the Rm1021 msbA2 gene was essential for a successful legume symbiosis 

(Griffitts & Long, 2008).  Unfortunately, work performed by Sebastian Beck in the 

laboratory, attempting to clone a wild-type copy of the S. meliloti msbA2 gene into 

several broad-host-range vectors in E. coli was unsuccessful (Beck et al., 2008).  It 

was only possible to clone a mutated form of the msbA2 gene (pmsbA2G97A) into 

pJN105 (Newman & Fuqua, 1999), under control of an arabinose-inducible promoter 

in the presence of 0.1% (w/v) glucose (Beck et al., 2008). The cloned msbA2 gene 

was found to contain a point mutation (G97A), which produced a mutated form of 

the MsbA2 protein, with a subsitiution of asparagine, instead of a serine residue, at 

amino acid position 33 (Beck et al., 2008). 
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In work performed in collaboration with Gail Ferguson, alfalfa seedlings 

were inoculated with the S. meliloti msbA2 mutant carrying pmsbA2G97A in the 

presence of 0.1% (w/v) arabinose.  As a control alfalfa seedlings were inoculated 

with the Rm1021 msbA2 mutant carrying the pJN105 vector only.  At four weeks 

post infection plant growth was assessed. It was observed that in 7 out of 15 plants 

inoculated with the S. meliloti Rm1021 msbA2 mutant containing pmsbA2G97A in 

the presence of 0.1% (w/v) arabinose, the leaf colour remained light green/yellow 

with only brown 7.0 (± 0.7) and white nodules 2 (± 3) evident.  However, 8 out of 15 

plants revealed dark green leaves, indicative of a healthy symbiosis  and had an 

average of 2.6 (± 1.0) pink nitrogen fixing nodules per plant root (Fig. 6-12A & C, 

respectively).  Contrastingly, on plants inoculated with the S. meliloti Rm1021 

msbA2 mutant carrying only the pJN105 control vector (n=9) the leaves remained 

light green/yellow with an average of 5.8 (± 3.5) brown and 1.66 (± 0.52) white 

nodules per plant. No pink nodules were present (Fig. 6-12B & D).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12. Alfalfa seedlings after inoculation with the Rm1021 msbA2::pJH104 

mutant carrying pmsbA2G97A and the pJN105 control vector.  Alfalfa seedlings were 

inoculated with either the msbA2::pJH104 mutant carrying pmsbA2G97A (A and C) or the 

Rm1021 msbA2::pJH104 mutant carrying the pJN105 control vector (B and D).  Plant growth 

(A and B) and nodule development (C and D) were photographed 4 weeks post infection.  All 

plants were grown in the presence of 0.1 % (w/v) arabinose. 
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However, in the independent study previously discussed, which had also identified 

the S. meliloti Rm1021 msbA2 gene as essential for the alfalfa symbiosis (Griffitts & 

Long, 2008), complementation of the msbA2 mutant, using the wild type msbA2 gene 

was successfully achieved.  In this study, a 1.8 kb fragment of the msbA2 open 

reading frame, including the putative ribosomal binding site was cloned into the 

broad host range vector pRF771 (Wells & Long, 2002). The resulting plasmid 

pJG176 (Griffitts & Long, 2008), contains the msbA2 gene under the control of the 

constitutive Ptrp promoter.  E. coli DH5α cells carrying the pRF771 and pJG176 

vectors were received as a kind gift from Joel Griffitts, Brigham Young University, 

USA. These two plasmids were mobilized into the Rm1021 msbA2::pJH104 mutant 

by triparental mating and transconjugants were isolated using antibiotic selection. 

The purified transconjugants were then inoculated into alfalfa seedlings alongside the 

Rm1021 parent and msbA2::pJH104 mutant and plant growth and nodule 

development was assessed after a four week period (Table 6-4 and Fig. 6-13).  Plants 

inoculated with the Rm1021 msbA2::pJH104 mutant carrying pJG176 were tall and 

dark green in colour (Fig. 6-13A and table 6-4) with pink nitrogen fixing nodules, the 

same characteristics as observed for plants inoculated with the Rm1021 parent strain 

(Table 6-3).  Contrastingly, plants inoculated with the msbA2::pJH104 carrying the 

pRF771 control plasmid only, remained short with light green and yellow leaves and 

brown and white nodules evident (Fig. 6-13B and table 6-4).  It should be noted that 

on 1 out of the 10 plants inoculated with msbA2::pJH104 & pRF771 a pink nodule 

was observed.  This phenotype had also been noted in the independent study 

(Griffitts & Long, 2008), where it was observed that in 1 out of 10 plants inoculated, 

the S. meliloti msbA2 mutant would induce a delayed pink nitrogen fixing nodule.   

However, these data show that a cloned wild type copy of the S. meliloti Rm1021 

msbA2 gene successfully complements the symbiotic defect displayed by the 

Rm1021 msbA2:: pJH104 mutant in this work. Thus, these data further confirm that 

the S. meliloti msbA2 gene is essential for a successful symbiosis.   
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Table 6-3. Effect of pRF771 and pJG176 (msbA2
+
) plasmids on the symbiotic 

efficiency of the S. meliloti msbA2::pJH104 mutant. 

Bacterial 

Strain 

Symbiosis Plant 

heighta 

(cm) 

Plant colour Mean no. 

of pink 

nodules 
per plant 

Mean no. 

of white 

nodules 
per plant  

Mean no. 

of  brown 

nodules 
per plant 

Rm1021 parent Yes 12.4 ± 2.1 Dark green 9.3 ± 4.2 0 0 

msbA2::pJH104 No 3.5 ± 1.1 Light 

green/yellow 

0 1 ± 1.1 6.6 ± 4.0 

msbA2::pJH104

& pRF771 

No 3.6 ± 1.0 Light 

green/yellow 

0
#
 1.1 ± 1.1 6.4 ± 2.1 

msbA2::pJH104 

& pJG176 

Yes 11.8 ± 1.9 Dark green 9.5 ± 3.9 0 0 

 

± shows the standard derivation from the mean 
a
 10 plants were analysed per S. meliloti strain 

#
 with the exception that 1 plant contained 1 pink nodule. 

 

 

 

 

 

 

 

 

Figure 6-13. Alfalfa seedlings after inoculation with Rm1021 msbA2::pJH104 & pJG176 

carrying msbA2 and the pRF771 control vector. Alfalfa seedlings were inoculated with 

either with Rm1021 msbA2::pJH104 & pJG176 carrying msbA2 (A) or msbA2::pJH104 

carrying the pRF771 control vector (B). Plant growth was photographed 4 weeks post 

infection.  

 

6.2.2.3. The S. meliloti msbA2 mutant induces a plant defence response 

It had been determined that nodules induced by the Rm1021 msbA2::pJH104 mutant 

were brown and stumpy in appearance (Beck et al., 2008).  Brown nodules have 

previously been shown to be indicative of a host defence response (Veereshlingam et 

al., 2004).  Light microscopy analysis of Rm1021 msbA2::pJH104 mutant nodules 

had revealed a thickened endodermal layer, relative to nodules induced by the 

A BA B
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Rm1021 parent (Beck et al., 2008), which is also indicative of a plant defence 

response. Additionally TEM analysis of nodule sections induced by the Rm1021 

msbA2::pJH104 mutant revealed that the mutant was defective in host cell entry, with 

abortion of the infection occurring whilst the bacteria were still within the infection 

thread (Beck et al., 2008).  Interestingly, a previous study had shown that S. meliloti 

exopolysaccharide mutants which were defective in infection thread development, 

induced a plant defence response in the host plant nodules (Niehaus et al., 1998).  In 

the study the plant defence response was evident by accumulation of phenolic 

compounds in the nodule wall and the presence of autofluorescent material (Niehaus 

et al., 1998).   

 Thus, to investigate if a plant defence response could be detected in nodules 

induced in the S. meliloti msbA2 mutant, alfalfa seedlings were inoculated with the S. 

meliloti msbA2 mutant and the Rm1021 parent to serve as a control.  After 3 weeks 

post infection nodules were removed from the plants and finely sliced and fixed.  

After fixing the nodules, slices were analysed by fluorescence microscopy (Fig 6-

14A & C) or under went histochemical staining (Fig. 6-14B &D) for detection of 

plant polyphenolics.  Indeed it could be observed that nodule slices induced by the S. 

meliloti msbA2 mutant showed a considerable increased level of auto fluorescence 

(Fig. 6-14A), relative to the Rm1021 parent strain (Fig. 6-14C).  Additionally, 

following the histochemical staining with potassium permanganate/methylene blue, 

the nodule slices of the S. meliloti msbA2 mutant were stained blue (Fig. 6-14B), 

relative to the unstained nodule slices induced by the Rm1021 parent strain (Fig. 6-

14D).  Hence these data, combined with TEM analysis showing a thickened 

endodermal layer in nodules induced by the S. meliloti msbA2 mutant  (Beck et al., 

2008), provide evidence that the S. meliloti msbA2 mutant induces a plant defence 

response in alfalfa.  
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Figure 6-14. Microscopic pictures of thin sections of alfalfa nodules showing an 

increased plant defence reaction. Nodules were removed 3 weeks post-infection from 

alfalfa seedlings inoculated with either the S. meliloti Rm1021 msbA2 mutant (A & B) or the 

S. meliloti Rm1021 parent (C & D).  The nodules were thinly sliced and polyphenolic 

compounds were detected by either auto fluorescence (A & C) or histrochemical staining (B 

& D). All bars 10 µm. Taken from Beck et al, 2008.  

 

6.3. Discussion 

The work in this chapter has shown that the presence of the lipid A VLCFA 

modification is important for the S. meliloti-alfalfa symbiosis and that the AcpXL 

and LpxXL proteins play important but distinct roles in S. meliloti bacteroid 

development.  It was also determined that the S. meliloti MsbA2 protein is essential 

for the legume symbiosis.  Additionally, in the absence of the MsbA2 protein S. 

meliloti induces a defence response in alfalfa more characteristic of a pathogen, 

causing browning of plant tissue and an increased production of polyphenolic 

defence compounds.  
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6.3.1. Free-living acpXL and lpxXL mutants display an altered LPS 

profile, relative to the Rm1021 parent  

The free-living S. meliloti acpXL and lpxXL mutants showed an altered LPS profile 

by SDS-PAGE, displaying only a lower molecular weight band, relative to the 

Rm1021 parent, where a higher molecular weight band was also observed.  These 

findings confirm previously published work (Sharypova et al., 2003), where the 

same LPS profile was observed for an independent  S. meliloti Rm1021 acpXL 

mutant (L994).  Additionally, in the published study two independent methods of 

LPS isolation were used and complementation analysis confirmed that disruption of 

the S. meliloti acpXL gene was responsible for this altered LPS profile (Sharypova et 

al., 2003).  In this work it was also shown that the free-living S. meliloti lpxXL 

mutant also has an altered LPS profile, relative to the Rm1021 parent strain.   

An immediate interpretation of the difference observed could be that the LPS 

of the S. meliloti acpXL and lpxXL mutants is missing the O-antigen, since previous 

work has proposed that the higher molecular weight band corresponds to the lipid A, 

core and O–antigen and the lower molecular weight band corresponds to rough LPS 

consisting of only lipid A and core only (Niehaus et al., 1998).  However, it was 

determined that the S. meliloti acpXL and lpxXL mutants do not have an altered 

glycosyl composition, relative to the Rm1021 parent strain (G.P. Ferguson and R.W. 

Carlson, unpublished data), suggesting there are no changes in the O-antigen.  

Moreover, the published study also found that the S. meliloti acpXL mutant (L994) 

does not have an altered glycosyl composition relative to the parent strain 

(Sharypova et al., 2003).   

Interestingly, the authors of the published study have hypothesized an 

alternative explanation for the missing higher molecular weight band in the S. 

meliloti acpXL mutant (Sharypova et al., 2003).  The authors rationalise that, the 

higher molecular weight form of the LPS could in fact be an aggregated form of the 

lower molecular weight LPS, stabilized by the hydrophobic interactions between the 

VLCFA portion of the lipid A.  Subsequently the S. meliloti acpXL and lpxXL 

mutants completely lacking the VLCFA modification would express only the faster 

migrating form of the LPS.  This is an interesting hypothesis, which remains a 
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possibility since the structure of the S. meliloti O-antigen is still unknown and to date 

it has not been demonstrated that the higher molecular weight LPS band contains a 

unique structural domain not present in the lower molecular weight band (Reuhs et 

al., 1999).  

 

6.3.2. The S. meliloti AcpXL and LpxXL proteins play important but 

distinct roles in bacteroid development 

It was determined that the S. meliloti AcpXL and LpxXL proteins play important 

roles in S. meliloti bacteroid development.  At 1 week post infection the majority of 

S. meliloti acpXL mutant bacteroids were still found within infection droplets, 

relative to the Rm1021 parent bacteroids, which had been released into the plant 

cells.  Thus, this would suggest that loss of the AcpXL protein in S. meliloti results in 

delayed infection thread release.  These findings are consistent with the delayed 

nodulation phenotype previously observed for the S. meliloti acpXL (L994) mutant 

(Sharypova et al., 2003).  At 4 weeks post infection the defects observed in the S. 

meliloti acpXL mutant were even more pronounced, with disorganised plant cells 

evident, which  have previously been shown to be indicative of  nodule senescence 

(Paau et al., 1980).  Moreover the presence of lytic vesicles and multiple bacteroids 

per symbiosome, in which the bacteroids were no longer tightly associated with the 

symbiosome compartment, would suggest the S. meliloti acpXL mutant bacteroids 

undergo pre-mature senescence.  In nodules induced by the Rm1021 parent strain, 

these phenotypes were never observed. 

Contrastingly, in nodules induced by the S. meliloti lpxXL mutant the 

bacteroids appeared swollen, with major morphological abnormalities throughout the 

symbiosis, relative to the Rm1021 parent strain. These data would therefore suggest 

the S. meliloti AcpXL and LpxXL proteins both play important but distinct roles in 

bacteroid development.  Interestingly, in a previous TEM study of pea nodules 

induced by the R. leguminosarum acpXL mutant also revealed enlarged, abnormally 

branched and irregular shaped bacteroids (Vedam et al., 2004).  Additionally, in the 

early stages of infection there were  low numbers of bacteria present in the plant 

cells, (Vedam et al., 2004)  and multiple bacteroids per symbiosome observed, 

relative to the R. leguminosarum parent strain. Thus, although the S. meliloti acpXL 
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and lpxXL mutants display distinct defects in the symbiosis, both share similarities 

with defects observed in the R. leguminosarum acpXL mutant bacteroids (Vedam et 

al., 2004).   

TEM of nodules induced by the S. meliloti acpXL/lpxXL double mutant 

revealed phenotypes similar to both the S. meliloti acpXL and lpxXL single mutants. 

Like the S. meliloti acpXL mutant, the S. meliloti acpXL/lpxXL double mutant was 

delayed in infection thread release. Additionally, odd shaped S. meliloti acpXL/lpxXL 

mutant bacteroids were observed, similar to those seen in nodules induced by the S. 

meliloti lpxXL mutant bacteroids.  Therefore, since the free-living S. meliloti 

acpXL/lpxXL double mutant has an identical lipid A profile to that of the S. meliloti 

lpxXL single mutant (Ferguson et al., 2005), yet shows bacteroid phenotypes of both 

the S. meliloti lpxXL and acpXL single mutants, the free-living lipid A profiles cannot 

fully account for the symbiotic phenotype of the double mutant. It was previously 

shown that the S. meliloti acpXL/lpxXL double mutant displays an increased 

sensitivity towards detergents and NaCl in its free-living state, relative to the S. 

meliloti lpxXL single mutant (Ferguson et al., 2005).  These findings provide 

evidence that disruption of acpXL also leads to lipid A independent changes in free-

living S. meliloti.  Additionally, in the host loss of the AcpXL protein in S. meliloti 

may result in further changes that are independent of the LpxXL protein which may 

account for the phenotypic differences between the acpXL and lpxXL mutant 

bacteroids.  

 

6.3.3. Preliminary data suggests the putative acyl carrier protein 

Smb20561 does not appear to compensate for loss of the AcpXL 

protein  

Since it had been shown that despite lacking the VLCFA modification in the free-

living state, the lipid A of the R. leguminosarum acpXL mutant was partially 

modified with VLCFA when extracted back from the host (Vedam et al., 2006), it 

remained a possibility that the S. meliloti acpXL mutant may too undergo further host 

induced lipid A changes. One potential candidate for these host induced lipid A 

changes was the smb20651 gene encoding a potential acyl carrier protein which is 

located in an operon with a putative long-chain fatty acid CoA ligase (Geiger & 
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Lopez-Lara, 2002).   

No differences were detected in the free-living LPS profile of the S. meliloti 

smb20651 mutant, relative to the Rm1021 parent.  Additionally, S. meliloti cells 

lacking the Smb20651 protein in both the Rm1021 and acpXL mutant background 

were still able to form a successful symbiosis. Therefore, these data suggest that the 

Smb20651 protein does not play an essential role in the symbiosis.  However, the 

presence of the Smb20651 protein did appear to confer a significant competitive 

advantage to S. meliloti.  

Subsequent to completion of this work, a study has been published 

characterising the S. meliloti Smb20651 protein (Ramos-Vega et al., 2009).  Findings 

of the study were able to confirm that the Smb20651 protein is expressed in free-

living S. meliloti and is likely to be involved in the formation and transfer of a fatty 

acid.  However, both the function and the target of this molecule are currently 

unknown (Ramos-Vega et al., 2009). The published study also investigated the 

symbiotic phenotype of S. meliloti ∆smb20651 mutant and confirmed the findings in 

this work that the Smb20651 protein is not essential for a successful symbiosis.  

Additionally, the study also investigated free-living phenotypes of the S. meliloti 

∆smb20651 mutant and found that loss of the Smb20651 protein does not result in 

increased sensitivity to cell envelope disrupting agents, relative to the parent 

(Ramos-Vega et al., 2009). This is consistent with findings in this work showing that 

loss of the Smb20651 protein in free-living S. meliloti does not result in an altered 

LPS profile.  However, a previous study using microarray analysis found that the S. 

meliloti Smb20651 protein is repressed during the symbiosis (Becker et al., 2004), 

which is surprising, since preliminary data in this chapter suggests presence of the 

protein confers competitive advantage to S. meliloti in the symbiosis.  However, 

there is a second candidate region of the S. meliloti genome that could potentially be 

involved in potential host induced VLCFA modifications. This region is a cluster of 

four genes (smc04277, smc04275, smc04273 and smc04270) located between acpXL 

and lpxXL, whose products are proposed to be involved in the incorporation of the 

VLCFA onto the lipid A (Sharypova et al., 2003).  S. meliloti mutants have been 

constructed in these genes and their free-living and symbiotic phenotypes are 

currently being investigated in the laboratory.  
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6.3.4. The presence of the VLCFA is important for the legume symbiosis 

The precise reason why loss of the S. meliloti VLCFA modification affects bacteroid 

development requires further investigation. However, it has previously been 

observed that the free-living S. meliloti acpXL and lpxXL mutants display increased 

sensitivity to a number of stresses, relative to the parent strain (Ferguson et al., 

2005). Since VLCFAs have the potential to span the whole outer membrane 

(Ferguson et al., 2004), S. meliloti cells lacking VLCFAs may have an increased 

sensitivity to stresses encountered in the nodule environment such as low pH and 

reactive oxygen species (Hérouart et al., 2002).  Interestingly, another S. meliloti 

LPS mutant which displayed irregular shaped, swollen bacteroids during the M. 

truncatula host interaction (Niehaus et al., 1998) was found to induce a plant defence 

response.  Therefore another possibility may be that the altered lipid A in the S. 

meliloti lpxXL mutant could also induce a plant defence response, which may affect 

bacteroid development.  

Work is currently underway in the laboratory to determine more precisely if 

there are host-induced lipid A changes in the S. meliloti acpXL and lpxXL mutants.  

Recent GC-MS analysis of the S. meliloti lpxXL mutant bacteroid LPS was unable to 

detect the presence of any VLCFA (S.Wehimeier and G.P.Ferguson, unpublished 

data). Thus, these findings suggest that the LpxXL protein plays an essential role in 

the modification of S. meliloti bacteroid LPS with VLCFA.  Additionally, the finding 

that S. meliloti mutant bacteroids completely lack the VLCFA, yet can still undergo a 

successful symbiosis, shows that the VLCFA modification is not essential for the 

host interaction.   However, the very odd shaped bacteroids that were evident in 

nodules induced by the S. meliloti lpxXL mutant suggests the VLCFA do play a role 

in bacteroid development.  These data would suggest that the BacA-mediated lipid A 

VLCFA modification is unlikely to be solely responsible for the essential role of 

BacA in the S. meliloti-alflalfa symbiosis.  In chapter 4, it was found that BacA plays 

an essential role in the uptake of a truncated eukaryotic peptide, Bac7(1-16) in S. 

meliloti.  Since it has been shown that there are hundreds of root nodule-specific 

cysteine-rich peptides produced by the plant host M. truncatula (Mergaert et al., 

2003; Mergaert et al., 2006), the BacA mediated uptake of one of these peptides 
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combined with the BacA-mediated lipid A VLCFA modification may account for the 

essential role of BacA in the legume symbiosis.   

 

6.3.5. The S. meliloti msbA1 and msbA2 mutants do not show increased 

sensitivity to cell envelope disrupting agents relative to the Rm1021 

parent strain 

As an initial means to determine if the S. meliloti MsbA1 or MsbA2 proteins are 

involved in the transport of phosphate containing lipids such as LPS across the inner 

membrane, sensitivity of the S. meliloti msbA1 and msbA2 mutants to cell envelope 

disrupting agents was assessed.  However no altered sensitivities were observed in 

either mutant to DOC, SDS or Crystal Violet, relative to the Rm1021 parent strain. 

Consistent with these data, it was determined that the S. meliloti msbA1 and msbA2 

mutants were not affected in the transport of phosphate containing lipids across the 

inner membrane relative to the Rm1021 parent strain (W.Doerrler and G.P.Ferguson, 

unpublished data and Beck et al., 2008, respectively).  These data therefore suggest 

that neither the S. meliloti MsbA1 nor MsbA2 proteins are essential for transport of 

LPS in S. meliloti.  However, since the genome of S. meliloti encodes other MsbA 

like proteins (Galibert et al., 2001) it may be possible that one of these proteins could 

be masking a role for MsbA1 or MsbA2.  Previous work has characterised the roles 

of the MsbA-like proteins ExsA and NdvA in S. meliloti  (Becker et al., 1995; 

Dickstein et al., 1988; Stanfield et al., 1988).  However, the function of other S. 

meliloti MsbA like proteins still remains to be investigated. The MsbA1 and Y02836 

proteins, show the highest degree of similarity to the E. coli MsbA protein (Beck et 

al., 2008).  Interestingly, the MsbA1 and Y02836 proteins are 91% similar and 84 % 

identical to each other (Beck et al., 2008), therefore it remains a possibility that the 

Y02836 protein is able to compensate for loss of the MsbA1 protein. Work is 

currently under way in the laboratory on the construction of an S. meliloti mutant 

lacking the Y02836 protein.  Moreover, the creation of S. meliloti mutants with 

disruptions in multiple MsbA like genes will allow the individual importance of 

these gene products to be determined.  
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6.3.6. The S. meliloti msbA2 mutant is defective in the legume 

symbiosis and induces a defence like response in the plant 

In the absence of the MsbA2 protein S. meliloti was no longer able to form a 

successful symbiosis with the host.  It was determined that the S. meliloti msbA2 

interaction was aborted at the level of  the infection threads (Beck et al., 2008). It 

was evident that loss of the MsbA2 protein resulted in S. meliloti inducing a defence 

response in the plant more characteristic of a pathogen, causing browning of plant 

tissue and a heightened production of polyphenolic defence compounds.  Moreover, 

light microscopy and TEM analysis had revealed that in nodules induced by the S. 

meliloti msbA2 mutant there was a substantial thickening of the plant endodermis, 

preventing bacterial entry into the plant cell (Beck et al., 2008), also indicative of a 

plant defence response.  Previous studies showing similar plant defence responses, 

along with aborted infection threads has been observed for S. meliloti and R. 

leguminosarum mutants, which are known to have polysaccharide defects (Niehaus 

et al., 1993; Niehaus et al., 1998; Perotto et al., 1994).  Interestingly DOC-PAGE 

analysis of the free-living S. meliloti msbA2 mutant revealed the presence of a phenol 

extractable polysaccharide, not detected in the extracts from the Rm1021 cells (Beck 

et al., 2008).  Thus, it may be possible that this polysaccharide alteration accounts at 

least partly for the symbiotic defects observed.  However, further biochemical studies 

will be necessary to determine the precise polysaccharide affected in the S. meliloti 

msbA2 mutant, since the msbA2 gene appears to be associated with two 

glycosyltransferases and an acyltransferase gene (Fig. 6-11), it is possible that these 

genes form an operon and that the MsbA2 protein may be involved in the transport of 

novel polysaccharide.  Thus, the alteration observed on the DOC-PAGE gel could be 

due to accumulation of this polysaccharide species.  Indeed this would be consistent 

with findings in the second published study characterising the S. meliloti msbA2 

mutant, since in this study it was determined that deletion of the msbA2 linked 

transferase genes (Fig. 6-11) suppressed the symbiotic defect in the msbA2 mutant 

(Griffitts & Long, 2008).  Moreover, deletion of the entire msbA2 gene region did not 

result in a symbiotic defect in S. meliloti.  Thus, these findings support the hypothesis 

that the host defect observed in the S. meliloti could be due to the cytoplasmic 
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accumulation of a novel polysaccharide, encoded by upstream genes, which 

somehow interferes with the legume interaction.  

 However, it remains to be determined how the altered polysaccharide 

observed in the S. meliloti msbA2 mutant may account for the symbiotic defect. 

Previous work has suggested that S. meliloti polysaccharides are essential to suppress 

the host defence response and enable proper infection thread development (Niehaus 

et al., 1993; Niehaus et al., 1998; Perotto et al., 1994).  Thus, it is interesting to 

speculate that the altered polysaccharides in the S. meliloti msbA2 mutant may be 

less effective at suppressing the plant defence response and that the plant would 

perceive this mutant as a pathogen, rather than a symbiont.   

 

6.3.7. Future studies 

Although work in this chapter would suggest that the VLCFA modification is not 

essential for the S. meliloti legume symbiosis, it has been demonstrated that               

S. meliloti lacking these VLCFA modifications display significant defects in the host.  

In addition to Brucella species, lipid A VLCFA modifications are also present on 

several facultative intracellular pathogens that form chronic infections, e.g. 

Bartonella henselae, and Legionella pneumophila (Bhat et al., 1991).  Thus, learning 

more about the biosynthesis of VLCFA and their role in the chronic infection process 

will be very beneficial.  The complete genome sequences of B. melitensis and B. suis 

(DelVecchio et al., 2002; Paulsen et al., 2002) have revealed that both bacteria 

possess sequences highly similar to the S. meliloti acpXL and lpxXL genes (Ferguson 

et al., 2005).  Indeed, the construction of Brucella species acpXL and lpxXL mutants 

could hold potential as vaccine candidates if they exhibit the correct balance between 

attenuation and immunogenicity. 

Interestingly polysaccharides are also thought to play a role in the interaction 

of Brucella species with their host, for instance, cyclic glucans have been proposed 

to be essential for the intracellular trafficking of Brucella species within their host 

(Arellano-Reynoso et al., 2005). Thus, future investigations into the role of MsbA 

like proteins in Brucella species will be very informative.  Future studies 

investigating the potential role of the uncharacterised MsbA like proteins in lipid 

trafficking in S. meliloti may ultimately enable more to be learnt regarding the role of 
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the BacA protein in the lipid A VLCFA modification and where precisely in the S. 

meliloti cell envelope this modification occurs.  
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Chapter 7: Investigation into Other Lipid A Independent Changes 
Occurring in the S. meliloti bacA Mutant 
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7.1. Introduction  

The S. meliloti and B. abortus bacA mutants display a wide range of phenotypes in 

their free-living forms (Ferguson et al., 2002; Roop et al., 2002) (Fig. 7-1), relative 

to their respective parent strains.   It has been shown that the increased resistance of 

the S. meliloti ∆bacA mutant to the glycopeptide bleomycin is independent of the 

altered lipid A (Ferguson et al., 2006).  However, the remaining free-living 

phenotypes have not been further investigated.  It has been hypothesized that the 

increased sensitivity of the S. meliloti ∆bacA mutant to cell envelope disrupting 

agents is as a result of the VLCFA alteration.  However, sensitivity of the S. meliloti 

∆bacA mutant to various agents such as deoxycholate (DOC), sodium dodecyl 

sulphate (SDS) and crystal violet has never been demonstrated to be solely due to the 

VLCFA modification.  Hence, it may be possible that disruption of bacA in S. 

meliloti results in other cellular alterations, independent of the VLCFA alteration, 

which may contribute to these free-living phenotypes.  Additionally, it was 

determined in chapter 3 that the S. meliloti ∆bacA mutant displays an increased 

sensitivity to the DNA damaging agent mitomycin C, relative to the Rm1021 parent 

strain.  

  

 

 

 

 

 

 

 

 

Figure 7-1. The free-living phenotypes of the S. meliloti and B. abortus bacA mutants, 

relative to the Rm1021 parent strain (Ferguson et al., 2002; Roop et al., 2002).   

 

Interestingly, it has been determined that the BacA homologue SbmA in Salmonella 

enterica serovar Typhimurium is encoded in an operon with yaiW (Fig. 7-2A), 

thought to encode a lipoprotein (K. Tan and G.P. Ferguson, unpublished data).  
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Hence it remains a possibility that in addition to affecting the lipid A BacA may also 

affect the lipid modification of another cell envelope component(s).  Although a 

yaiW homologue has not been found in S. meliloti and bacA is not part of an operon 

(Fig. 7-2B), the genome of S. meliloti encodes multiple putative outer membrane 

lipoproteins  (Galibert et al., 2001), which could potentially be affected by the action 

of the BacA protein.   

 

 

 

 

 

 

Figure 7-2. Diagrammatic representation of the genomic region surrounding the                   

S. Typhimurium sbmA gene and the S. meliloti bacA gene. (A) sbmA is in a two gene 

operon with the lipoprotein yaiW (K.Tan and G.P.Ferguson, unpublished data).  The 

surrounding genes include ampH (encoding a penicillin binding protein) and yaiY (encoding 

a putative inner membrane protein) (http://genome.wustl.edu/projects/bacterial                       

/styphimurium/). (B) The S. meliloti bacA gene does not appear to be in an operon. Genes 

surrounding bacA on the same strand are smc21000 (encoding a putative transport protein), 

map2 (encoding a putative methionine aminopeptidase) and smc21003 (encoding a 

probable oxidoreductase). Genes on the opposite strand include smb20998 (encoding a 

hypothetical exported protein) and smc21001 (encoding a hypothetical protein). 

(http://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi). 

 

Hence, it remains a possibility that disruption of bacA could be resulting in 

alterations in S. meliloti, independent of the VLCFA lipid A modification, which 

may also contribute to the host persistence defect.  To investigate if any lipid A 

independent alterations were occurring in S. meliloti upon disruption of bacA, the 

first aim of this chapter was to determine if the altered sensitivity of the Rm1021 

∆bacA mutant to a selection of the agents shown in Fig 7-1 is dependent or 

independent of the altered VLCFA.  Additionally, to investigate other potential 

alterations in the free-living S. meliloti ∆bacA mutant on a genome wide scale, the 

second aim of this chapter was to identify any genes or proteins that were 

differentially expressed, relative to the Rm1021 parent strain.  This was undertaken 
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by performing DNA microarrays and two dimensional (2D) gel analyses on the 

Rm1021 ∆bacA mutant, relative to the Rm1021 parent.  It may be possible that data 

obtained from the microarray and 2D gel analysis may help to account for some of 

the free-living phenotypes of the S. meliloti bacA mutant.  

7.2. Results 

 

7.2.1. The increased sensitivity to DOC and SDS observed in the S. 

meliloti bacA mutant appears to be due to the VLCFA modification   

The free-living Rm1021 ∆bacA mutant has been shown to exhibit an increased 

sensitivity to cell envelope disrupting agents, relative to the parent strain (Ferguson 

et al., 2002).  Thus, to determine if the increased sensitivity to SDS and DOC was 

exclusively due to the reduction in the VLCFA content, sensitivity of the S. meliloti 

acpXL mutant to these two agents was assessed.  The AcpXL protein encodes an acyl 

carrier protein, essential for the biosynthesis of the lipid A VLCFA in free-living S. 

meliloti (Brozek et al., 1996).  Consequently, the S. meliloti acpXL mutant 

completely lacks the VLCFA modification (Ferguson et al., 2005).  It could be 

observed that like the Rm1021 ∆bacA mutant, the Rm1021 acpXL mutant also 

displayed an increased sensitivity to SDS and DOC (Fig. 7-3A &C, respectively), 

relative to the Rm1021 parent strain.  Therefore these data would suggest the 

reduction in the lipid A VLCFA content in the Rm1021 ∆bacA mutant most probably 

accounts for the increased resistance to SDS and DOC.   Additionally, it was 

observed that the Rm1021 acpXL mutant was found to be significantly more 

sensitive to DOC than the Rm1021 ∆bacA mutant (Fig. 7-3C), suggesting that 

complete loss of the VLCFA modification leads to a greater sensitivity to DOC.   

To provide further evidence that the SDS and DOC sensitivity phenotype of 

the Rm1021 ∆bacA mutant is due to the VLCFA alteration, the sensitivity of the 

Rm1021 acpXL mutant and the Rm1021 ∆bacA/acpXL double mutants were 

compared (Fig. 7-3B & D).  Previous work has shown that the Rm1021 

∆bacA/acpXL double mutant has an identical lipid A profile to the Rm1021 acpXL 

single mutant (Ferguson et al., 2005).  Thus, since the VLCFA modification appears 

to be responsible for these phenotypes one would expect the two mutants to display 
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the same level of sensitivity to SDS and DOC.   It was observed that deletion of bacA 

in the Rm1021 acpXL background completely lacking the VLCFA modification 

resulted in a slight increase in sensitivity to DOC and SDS (Fig. 7-3B & D).  Thus, 

the VLCFA alteration in the Rm1021 ∆bacA mutant is likely to account the majority 

of the SDS and DOC sensitivity phenotype.  However, the slight increase observed in 

the Rm1021 ∆bacA/acpXL mutant, relative to the Rm1021 acpXL mutant single 

mutant may suggest disruption of bacA is resulting in an additional alteration to the 

cell which may play a very minor role in the sensitivity to SDS and DOC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3. Sensitivity of the S. meliloti acpXL mutant to the cell envelope disrupting 

agents SDS and DOC, in the presence and absence of the bacA gene. The defined       

S. meliloti strains were exposed to 5 µl of 10% (w/v) SDS by filter disc assay (A & B) or 0-24 

mM of DOC, (C & D) using a gradient assay.  In A & C the significant values shown (***P< 

0.001), represent comparisons of the ∆bacA mutant and acpXL::pK18mobGII mutant to the 

Rm1021 parent strain. In B & D the significant values (***P<0.001) and (**P<0.01) shown 

represent comparisons of the ∆bacA/acpXL::pK18mobGII mutant to that of the 

acpXL::pK18mobGII mutant.  For each dataset the numbers above the bars indicate the 

percentage of the lipid A modified with VLCFAs in each strain (Ferguson et al., 2005). Each 

dataset shown is representative of the trends observed in two independent experiments and 

in each case the error bars represent the standard deviation from the mean (n=3) for one 

experiment.     
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7.2.2. The increased sensitivity to Crystal Violet seen in the absence of 

the BacA protein is independent of the VLCFA modification   

The toxicity of the hydrophobic dye Crystal Violet is thought to be due to its ability 

to enter bacterial cells, where it binds ribosomes which then function less efficiently 

in protein synthesis.  The dye has therefore been used as an indicator of alterations in 

the cell envelope (Gustafsson et al., 1973).  Previous work has shown that the 

Rm1021 ∆bacA mutant has an increased sensitivity to Crystal Violet, relative to the 

Rm1021 parent strain (Ferguson et al., 2002).  Thus, in this case too, comparison of 

the Crystal Violet sensitivity of the Rm1021 acpXL mutant with that of the Rm1021 

∆bacA mutant provided a means to investigate if the increased sensitivity to crystal 

violet is as a result of the reduction of the VLCFA lipid A content.  However, in 

contrast to the Rm1021 ∆bacA mutant, which displays an increased sensitivity to 

crystal violet, no significant increase in sensitivity to Crystal Violet was observed in 

the Rm1021 acpXL mutant (Fig. 7-4A), relative to the Rm1021 parent strain.  These 

data would therefore suggest that the reduction in the VLCFA content does not lead 

to an increased sensitivity to Crystal Violet.   To further confirm that the increased 

sensitivity of the Rm1021 ∆bacA mutant to Crystal Violet occurs independently of 

the VLCFA modification, the Crystal Violet sensitivity of the Rm1021 ∆bacA/acpXL 

double mutant was compared to that of the Rm1021 acpXL single mutant (Fig.7-4B).  

Despite the Rm1021 acpXL and Rm1021 ∆bacA /acpXL mutant having identical 

lipid A profiles, disruption of the bacA gene increases the sensitivity of the Rm1021 

acpXL mutant to Crystal Violet.  Thus these data suggest that the Crystal Violet 

phenotype of the S. meliloti bacA mutant is independent of the VLCFA modification, 

suggesting some other component of the cell envelope may be altered, resulting in 

this increased sensitivity.    
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Figure 7-4. Sensitivity of the S. meliloti acpXL mutant to the hydrophobic dye Crystal 

Violet, in the presence and absence of the bacA gene. The defined S. meliloti strains 

were exposed to Crystal Violet (5 µl of a 4 mg.ml
-1

 stock) on LB by filter disc assay (A & B). 

In (A) the significant value (P***<0.001) shown, represents a comparison of the ∆bacA 

mutant to the Rm1021 parent strain. In (B) the significant value (P***<0.001) shown, 

represents a comparison of the ∆bacA/acpXL::pK18mobGII mutant to that of the 

acpXL::pK18mobGII mutant.  For each dataset the numbers above the bars indicate the 

percentage of the lipid A modified with VLCFAs in each strain (Ferguson et al., 2005). Each 

dataset shown is representative of the trends observed in two independent experiments and 

in each case the error bars represent the standard deviation from the mean (n=3) for one 

experiment.     

 

7.2.3. The increased sensitivity of the S. meliloti bacA mutant to the 

DNA damaging agent mitomycin C appears to be due to the altered 

VLCFA  

Mitomycin C is an alkylating antibiotic which shows strong activity against bacteria 

and tumour cells (Hata et al., 1956; Sugiura, 1959; Wakaki, 1958) and has been 

shown to induce DNA damage in E. coli (Otsuji & Murayama, 1972).  In chapter 3, 

whilst investigating the increased resistance of the S. meliloti bacA mutant to 

bleomycin induced DNA damage it was determined that the S. meliloti ∆bacA mutant 
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displayed an increased sensitivity to mitomycin C, relative to the parent strain.  Thus, 

it was next investigated if this was as a result of the reduction in the VLCFA lipid A 

content.  It was observed that like the Rm1021 ∆bacA mutant the Rm1021 acpXL 

mutant also displays an increased sensitivity to mitomycin C (Fig. 7-5A), suggesting 

that the increased sensitivity observed is as a result of the altered lipid A.  The 

sensitivity of the Rm1021 acpXL mutant was next compared to that of the Rm1021 

∆bacA/ acpXL double mutant (Fig. 7-5B), which both have identical lipid A profiles.  

In this case loss of bacA in the Rm1021 acpXL mutant background appeared to result 

in a slightly increased level of sensitivity, suggesting that disruption of bacA may 

result in an additional cellular alteration, which also contributes to the increased 

sensitivity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-5. Sensitivity of the S. meliloti acpXL mutant to the DNA damaging agent 

mitomycin C, in the presence and absence of the bacA gene. The defined S. meliloti 

strains were exposed to mitomycin C (5 µl of a 0.3 mg.ml
-1

 aqueous stock solution) by filter 

disc assay (A & B). In (A) the significant value (***P <0.001) shown, represents a 

comparison of the ∆bacA mutant to the Rm1021 parent strain. In (B) the significant value 

(***<P 0.001) shown, represents a comparison of the ∆bacA/acpXL::pK18mobGII mutant to 

that of the acpXL::pK18mobGII mutant. For each dataset the numbers above the bars 

indicate the percentage of the lipid A modified with VLCFAs in each strain (Ferguson et al., 

2005). Each dataset shown is representative of the trends observed in two independent 

experiments and in each case the error bars represent the  standard deviation from the 

mean (n=3) for one experiment. 
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7.2.4. The increased resistance of the S. meliloti bacA mutant to 

gentamycin is only partially due to the VLCFA alteration  

Previous work has shown that disruption of bacA in S. meliloti resulted in an 

increased resistance to the aminoglycoside antibiotics gentamycin, netilmicin and 

tobramycin.  However, this study was performed using the S. meliloti Rm8002 strain 

background, in which the first bacA mutant was isolated (Glazebrook et al., 1993; 

Ichige & Walker, 1997; LeVier & Walker, 2001; Long et al., 1988).  Thus, it was 

initially important to determine if the same phenotype was observed upon disruption 

of bacA in the Rm1021 strain background used throughout this work.  To determine 

this, the sensitivity to the aminoglycoside antibiotic gentamycin was investigated.  It 

was observed that the Rm1021 ∆bacA mutant did display an increased resistance to 

gentamycin, relative to the parent strain (Fig. 7-6A), consistent with the findings in 

the Rm8002 background (Ichige & Walker, 1997).  In several bacteria, mutations 

that affect the integrity of the cell envelope have been shown to result in an increased 

resistance to aminoglycoside antibiotics (Taber et al., 1987).  Therefore, it was 

possible the increased resistance observed in the Rm1021 ∆bacA mutant was a result 

of the altered VLCFA.  To investigate this, the sensitivity of the Rm1021 acpXL 

mutant was next assessed.  It was determined that the Rm1021 acpXL mutant did 

display a slightly increased resistance to gentamycin (Fig. 7-6A), however the 

resistance phenotype was not as great as that displayed by the Rm1021 ∆bacA 

mutant.  Since the Rm1021 acpXL mutant has a complete loss of the VLCFA 

modification (Ferguson et al., 2005), relative to the 50% reduction seen in the 

Rm1021 ∆bacA mutant (Ferguson et al., 2004), this would suggest that loss of bacA 

may be resulting in another cellular alteration  that results in an increased resistance 

to aminoglycoside antibiotics. To confirm this further the sensitivity of the Rm1021 

acpXL and Rm1021 ∆bacA/acpXL to gentamycin was next determined.  It could be 

shown that despite having identical lipid A profiles disruption of  bacA in the 

Rm1021 acpXL mutant background, did result in an increased level of resistance to 

gentamycin (Fig. 7-6B). Therefore these data would confirm that the VLCFA 

alteration only partially accounts for the increased resistance to gentamycin making it 

possible that loss of the BacA protein is having another affect on the cell that 

contributes to this phenotype.  
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Figure 7-6. Sensitivity of the S. meliloti acpXL mutant to the aminoglycoside antibiotic 

gentamycin, in the presence and absence of the bacA gene. The defined S. meliloti 

strains were exposed to gentamycin (5 µl of a 5 mg.ml
-1

 aqueous stock solution) by filter disc 

assay (A & B). In (A) the significant value (P***<0.001) shown, represents a comparison of 

the ∆bacA mutant to the Rm1021 parent strain. In (B) the significant value (P***<0.001) 

shown, represents a comparison of the ∆bacA/acpXL::pK18mobGII mutant to that of the 

acpXL::pK18mobGII mutant.  For each dataset the numbers above the bars indicate the 

percentage of the lipid A modified with VLCFAs in each strain (Ferguson et al., 2005). The 

dataset shows preliminary data and in each case the error bars represent the standard 

deviation from the mean (n=3) for one experiment. 

 

7.2.5. Only a few out of some ~6000 genes in the S. meliloti genome 

showed altered expression in the ∆∆∆∆bacA mutant, relative to the Rm1021 

parent strain  

To determine if there was altered expression of any S. meliloti genes upon disruption 

of the bacA gene whole genome microarray analysis was performed.  This was done 

in collaboration with Dr Anke Becker at the University of Bielefeld, where all work 

was performed.  In brief, S. meliloti Rm1021 parent and ∆bacA cells were grown to 
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mid-exponential phase (OD600 ~0.8) in LB media, harvested, RNA isolated, 

fluorescently labelled cDNA prepared and then microarray hybrization and data 

analysis was performed. Out of some ~6000 genes in the S. meliloti genome 

disruption of bacA resulted in the altered expression of just 28 of these genes, with 

21 genes showing increased expression and 7 genes showing decreased expression 

(tables 7-1 and 7-2, respectively). 

Interestingly, several of the genes with altered expression had related 

functions.  The up-regulated genes (table 7-1) included 4 genes encoding proteins 

involved in respiration/metabolic processes, 3 genes annotated as encoding 

transporter proteins, 1 gene encoding a pilus assembly protein, 1 gene annotated as 

encoding a regulatory protein and a gene encoding a symbiotically induced protein.  

Additionally, 10 genes encoding hypothetical proteins were up-regulated.  BLAST 

searches were performed (http://www.ncbi.nlm.nih.gov/sutils/genom_table .cgi) 

using the protein sequences of the 10 hypothetical proteins, against all known 

microbial protein databases.  It was determined that 4 of the hypothetical proteins 

have a high percentage of similarity and identity to bacterial proteins with known 

functions (table 7-3).  

The down-regulated genes (table 7-2) consisted of 3 genes involved in 

respiration/metabolic processes, 3 genes which are part of a fructose uptake operon 

and 1 hypothetical protein.   

 

7.2.5.1. Genes involved in metabolism and respiration are both up and 

down regulated in the S. meliloti ∆∆∆∆bacA mutant, relative to the Rm1021 

parent strain 

Upon disruption of bacA there was up-regulation of genes encoding a probable 

oxidoreductase (smb20103), two dehydrogenases (smb1483 and sma0335) and an 

adenlyate cyclase (sma0464/cyaI2), along with the down regulation of genes 

encoding a quinol oxidase (smc02255/qxtA) and two dehydrogenases (smc02689 and 

sma1296/adhA1). The altered expression of these genes would suggest there are 

some changes, albeit small occurring in respiratory pathways and metabolism, upon 

disruption of the bacA protein.  
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7.2.5.2. Genes encoding ABC transport proteins are both up and down 

regulated in the S. meliloti ∆∆∆∆bacA mutant, relative to the Rm1021 parent 

strain 

Three genes, each proposed to be part of ABC transport systems were observed to be 

up-regulated in S. meliloti upon disruption of bacA.  These genes encode a putative 

sugar transporter (smb20672), a periplasmic solute binding protein forming part of a 

putative myo-inositol ABC transporter (smb20712/ibpA) and a periplasmic nitrate 

binding protein (sma0585/nrtA).  

Additionally, there was down-regulation of 3 genes (smc02173/frcS, 

smc02167/frcK and smc02171/frcB) thought to be part of putative fructose ABC-type 

transport system (Fig. 7-7).  This transport system has been characterized in S. 

meliloti (Lambert et al., 2001)  and consists of six genes, identified as forming two 

putative transcriptional units, composed respectively of two (frcRS) and four 

(frcBCAK) genes transcribed divergently.  The genes have been shown to be induced 

by mannitol and fructose and repressed by succinate (Lambert et al., 2001). The frcB 

and frcK genes are proposed to be a periplasmic component and transport system 

kinase respectively (table 7-2 and fig 7-7).  However, the function of the frcS 

encoded protein remains unknown.  Its amino acid sequence shows 37% identity to 

the E. coli protein FucU, involved in metabolism of fructose and 23% identity to the 

E. coli RbsD protein, part of the D-ribose high-affinity transport system (Bell et al., 

1986; Lambert et al., 2001; Lu & Lin, 1989).   

 

 

 

 

Figure 7-7. Diagrammatic representation of the S. meliloti fructose binding ABC 

transporter operon.  The genes highlighted in blue are those shown to be down regulated 

in the Rm1021 ∆bacA mutant, relative to the Rm1021 parent. The genes are frcS (encoding 

a conserved hypothetical protein), frcR (encoding a transcriptional regulator), frcB (encoding 

periplasmic component), frcC (encoding periplasmic component), frcA (encoding ATPase 

component) and frcK (encoding a transport system kinase). 
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Table 7-1.  S. meliloti genes showing increased expression in the Rm1021 ∆∆∆∆bacA 

mutant, compared to the Rm1021 parent  

Genea Fold change 

in expression 

(+) 

M valueb Function/Annotationc 

smb20103 3.4  1.70 Probable FAD-dependent oxidoreductase 

sma0585
#
 

(nrtA) 

2.82 1.41 Nitrate transporter, periplasmic nitrate binding 

protein 

smb20672
#
 2.56 1.28 Putative sugar ABC transporter 

sma1568 

(cpaF2) 

2.44 1.22 CpaF2 pilus assembly protein 

sma0310 2.36 1.18 lysR transcriptional regulator 

smb20451
#
 2.34 1.17 Conserved hypothetical protein 

smc01774 2.28 1.14 Hypothetical protein signal peptide 

sma1093 2.26 1.13 Hypothetical protein 

sma0464 

(cyaI2) 

2.24 1.12 Adenylate/guanylate cyclase 

smb20712 

(ibpA) 

2.18 1.09 Putative myo-inositol ABC transporter, 

periplasmic solute-binding protein 

sma1077
#
 

(nex18) 

2.16 1.08 Nex18 symbiotically induced conserved protein 

smb21123 2.14 1.07 Hypothetical membrane-anchored protein 

smb20133
#
 2.08 1.04 Conserved hypothetical protein 

smb1483 2.08 1.04 Dehydrogenase 

sma2061
#
 2.08 1.04 Conserved hypothetical protein 

smc01788 2.06 1.03 Hypothetical protein 

sma0335 2.04 1.02 Short chain alcohol dehydrogenase-related 

dehydrogenase 

smb20521 2.04 1.02 Conserved hypothetical protein 

smb21483 1.94 0.97 Hypothetical protein 

smb20359 1.97 0.97 Hypothetical protein 

smc00252 1.92 0.96 Conserved hypothetical protein, signal peptide 

a 
sma, smb, and smc indicate location of genes on S. meliloti megaplasmids pSymA, pSymB and the 

chromosome, respectively 
b
 Genes displaying M-values (log2 ratio) �0.9 were regarded as induced 

c
 Gene function/annotations are taken from  http://bioinfo.genopole-toulouse.prd.fr/ 

annotation/iANT/bacteria/rhime/  
#
 Gene thought to be part of operon. 

Bold text highlights genes encoding proteins with known function/annotation or genes encoding 

hypothetical proteins with high similarity/identity to bacterial proteins of postulated function (shown 

in table 7.3) 
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Table 7-2. S. meliloti genes showing decreased expression in the Rm1021 ∆∆∆∆bacA 

mutant, compared to the Rm1021 parent  

Gene
a
 Fold change 

in expression 

(-) 

M 

value
b
 

Function/Annotation
c
 

smc02255
#
 

(qxtA) 

1.96 -0.98 Putative quinol oxidase subunit I transmembrane 

protein 

smc02173
#
 

(frcS) 

1.98 -0.99 Conserved hypothetical protein (frcS) 

smc01711 2.12 -1.06 Hypothetical protein 

smc02167
#
 

(frcK) 

2.24 -1.12 Fructose transport system kinase 

smc02171
#
 

(frcB) 

2.44 -1.22 Fructose ABC-type transport system, periplasmic 

component 

smc02689 3.14 -1.57 Probable aldehyde dehydrogenase 
sma1296 

(adhA1) 

3.96 -1.98 Alcohol dehydrogenase, Zn-dependent class III 

a 
sma, smb, and smc indicate location of genes on S. meliloti megaplasmids pSymA, pSymB and the 

chromosome, respectively 
b
 Genes displaying M-values (log2 ratio) �0.9 were regarded as induced 

c
 Gene function/annotations are taken from http://bioinfo.genopole-toulouse.prd.fr/ 

annotation/iANT/bacteria/rhime/  
#
 Gene thought to be part of operon 

Bold text highlights genes encoding proteins with known function/annotation or genes encoding 

hypothetical proteins with high similarity/identity to bacterial proteins of postulated function (shown 

in table 7.3) 

 

 

Table 7-3. Up-regulated genes in the S. meliloti ∆∆∆∆bacA mutant encoding hypothetical 

proteins showing significant identity and similarity to bacterial proteins of postulated 

function. 

Gene showing 
increased 

expression 

% identity and similarity of the S. meliloti proteins to bacterial proteins of 
postulated functiona 

 

smb21123 

(+ 2.14) 

90% identity and  95% similarity to endoribonuclease L-PSP  from 

Sinorhizobium medicae WSM419 

 

 

smb20133 

(+ 2.08) 

93% identity and 97% similarity  to  cobalamin biosynthesis protein (CobW) 

from S. medicae WSM419 

 

 

sma2061 

(+ 2.08) 

82% identity and  91% similarity to non-specific serine/threonine protein kinase 

from Rhizobium leguminosarum 

bv. trifolii WSM1325 

 

 

smb20521 

(+ 2.04) 

57 % identity and 72 % similarity to multimeric flavodoxin WrbA from 

Ralstonia eutropha H16 

 
a 
shows the bacterial protein with the highest percentage of similarity and identity to the S. 

meliloti hypothetical protein  
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7.2.6. Two dimensional gel analysis of free-living Rm1021 parent and 

the ∆∆∆∆bacA mutant 

Preliminary 2D gel analysis was performed on cellular proteins extracted from free-

living Rm1021 parent and ∆bacA mutant cells. This analysis was performed by the 

University of Aberdeen proteomics facility (http://www.abdn.ac.uk/ims /proteomics/ 

services.shtml).  Prior to analysis the cells were grown to late exponential phase 

(OD600 ~3.00), harvested and the cell pellets treated with lysis buffer, after which the 

cell supernatants were collected and frozen at -20 ºC, until use by the proteomics 

facility.  Small format 2D gel electrophoresis was performed and the proteins were 

visualized using commassie blue straining (Fig. 7-8).     

       

 

 

 

 

 

 

 

 

 

Figure 7-8. 2D gels showing cellular proteins from the S. meliloti Rm1021 parent (A)  

and the Rm1021 ∆∆∆∆bacA mutant (B) in the pH range 4-7.  Proteins were visualised by 

coomassie blue. Work performed by the University of Aberdeen proteomics facility.  

 

Although no major changes could be detected by eye, these 2D-gels next require 

analysis by computer software e.g. Progenesis software which can detect and 

quantify any changes in the protein spots with high sensitivity.  

 

7.3. Discussion 

Work in this chapter determined that not all the free-living phenotypes displayed by 

the S. meliloti ∆bacA mutant can be accounted for by the VLCFA modification, thus 

suggesting that disruption of bacA may result in other cellular changes in S. meliloti. 
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Preliminary microarray analysis revealed a small number of genes are up and down-

regulated upon disruption of bacA. However, further work is required to confirm 

these changes are real.   

 

7.3.1. The increased sensitivity of the S. meliloti ∆∆∆∆bacA mutant to 

detergents and the DNA damaging agent mitomycin C appears to be 

due to the altered VLCFA  

An altered sensitivity to detergents in bacterial cells is most often an indication of an 

alteration in the cell envelope, in particular bacterial mutants with defects in their 

LPS display increased sensitivity to DOC  (Campbell et al., 2002; Lagares et al., 

1992).  Thus, it was not surprising that stress assays revealed the VLCFA 

modification accounted for the majority of the sensitivity displayed in the S. meliloti 

∆bacA mutant to SDS and DOC.  However, it is interesting to note that disruption of 

bacA in the S. meliloti acpXL mutant background, which completely lacks the 

VLCFA modification, did slightly increase sensitivity of the cells to DOC and SDS. 

Thus, this may be consistent with an additional cellular alteration in the S. meliloti 

∆bacA mutant, which plays a minor role in sensitivity to detergents.       

The increased sensitivity of the S. meliloti ∆bacA mutant to the DNA 

damaging agent mitomycin C also appeared to be largely due to the VLCFA 

alteration, although as for the detergent phenotype, disruption of bacA did increase 

the sensitivity of the Rm1021 acpXL mutant slightly. Work in chapter 3 determined 

that the S. meliloti ∆bacA mutant did not display an increased sensitivity to the other 

DNA damaging agents tested, methylglyoxal and methyl methanesulfonate, thus 

suggesting the increased sensitivity of the S. meliloti ∆bacA mutant to mitomycin C 

is unlikely to be due to an alteration in DNA or a DNA repair process.  To the best of 

my knowledge there appears to be no literature detailing how mitomycin C enters 

bacterial cells.  In the current literature the majority of  bacterial mutants which have 

been isolated showing increased sensitivity to mitomycin C are those defective in 

DNA repair proteins such as E. coli recA and  uvrB mutants (Lusetti et al., 2003; 

Vidal et al., 2006).  However, one study details two E. coli mutants which have an 

altered LPS and display an increased sensitivity to mitomycin C (Coleman & Leive, 
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1979).  Thus, this is consistent with the findings in this work that the altered LPS 

VLCFA results in an increased sensitivity to mitomycin C.   

 

7.3.2. The increased sensitivity of the S. meliloti ∆∆∆∆bacA mutant to 

Crystal Violet is independent of the VLCFA modification 

The increased sensitivity of the S. meliloti ∆bacA mutant to the hydrophobic dye 

Crystal Violet appears to be independent of the altered VLCFA modification, thus 

suggesting that there may be other alterations in the S. meliloti ∆bacA mutant that 

account for this phenotype.  

The toxicity of the Crystal Violet is thought to be due to its ability to enter 

bacterial cells, where it binds ribosomes which then function less efficiently in 

protein synthesis (Gustafsson et al., 1973).  Previous work has shown that in E. coli, 

alterations in the LPS, particularly the carbohydrate content, and alterations in the 

peptidoglycan lead to an increased uptake of  Crystal Violet (Gustafsson et al., 

1973).  Since it has previously been shown that the S. meliloti ∆bacA mutant does not 

have a dramatic alteration in the carbohydrate composition of its LPS (Ferguson et 

al., 2002), it may be possible that the S. meliloti ∆bacA mutant has alterations in the 

peptidoglycan component of the cell envelope.  Consistent with this, E. coli treated 

with agents affecting the cell wall e.g. lysozyme, display an increased uptake of 

crystal violet (Gustafsson et al., 1973).  Indeed, past research has shown that the 

peptidoglycan layer, which is the shape determining component of the bacterial cell, 

is also involved in the barrier function of gram-negative bacteria (Burman et al., 

1972). 

 

7.3.3 The increased resistance of the S. meliloti ∆∆∆∆bacA mutant to the 

aminoglycoside antibiotic gentamycin is only partly due to the VLCFA 

modification  

The bactericidal action of aminoglycoside antibiotics is known to principally occur 

by inhibition of protein synthesis, the antibiotic binds to the 30S ribosomal subunit, 

whereby the ribosome becomes unavailable for translation, resulting in cell death 
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(Kotra et al., 2000).  Upon entry into cells, aminoglycosides first bind to the 

negatively charged outer membrane of gram negative bacteria by electrostatic 

interactions, before diffusing though the outer membrane channels and entering the 

periplasmic space (Hancock et al., 1991).  However, transport across the inner 

membrane requires metabolic energy from electron transport (Hancock et al., 1991).  

Accordingly, cell envelope alterations and defects in electron transport have both 

been shown to reduce aminoglycoside uptake in bacteria (Taber et al., 1987).  Thus, 

it is likely the altered VLCFA modification in the S. meliloti ∆bacA mutant effects 

the movement of gentamycin through the outer membrane, largely accounting for 

increased resistance in the mutant relative to the Rm1021 parent strain.  However, 

disruption of bacA appears to result in an additional increased resistance to 

gentamycin, maybe caused by a lipid A independent alteration, perhaps in the 

periplasmic space or inner membrane.    

   

7.3.4. Microarray analysis revealed a small number of genes showed 

altered expression in the free-living S. meliloti ∆∆∆∆bacA mutant, relative to 

the Rm1021 parent   

It should be noted that the microarray data presented in this chapter is only 

preliminary data, since none of these changes have yet been confirmed by 

quantitative
 
reverse-transcriptase-PCR (qRT-PCR).  Additionally, it should be noted 

that several of the genes with altered expression are thought to be part of operons (as 

indicated in tables 7-1 and 7-2), yet in each case (with the exception of the fructose 

ABC-type transport system), no other genes in these potential operons were 

identified as been altered in expression.  Only a small number of genes were altered 

in their expression in free-living S. meliloti upon disruption of the bacA gene.  

Several of the genes altered in their expression had related functions e.g. 

respiration/metabolism and transport systems.  It was interesting to note both the up 

and down-regulation of ABC transport systems in the S. meliloti ∆bacA mutant, 

relative to the Rm1021 parent.  Since one proposed function of the BacA protein is 

peptide uptake in the host, the up-regulation of ABC transport systems under free-

living conditions in the S. meliloti bacA mutant may suggest a role for BacA in the 



                                                                215 

uptake of some metabolite important for free-living growth.  Up-regulation of the 

putative sugar transporter (smb20672) would be consistent with this hypothesis.  For 

instance if BacA were involved in the uptake of certain amino acids, utilized by the 

cell as a carbon source, then upon loss of BacA it would make sense to induce 

transport systems involved in uptake of an alternative carbon source i.e. sugar 

uptake.  The second transport gene to be up-regulated was a periplasmic solute 

binding protein forming part of a putative myo-inositol ABC transporter 

(smb20712/ibpA).  Indeed, S. meliloti has been shown to utilise myo-inositol as a 

carbon source (Galbraith et al., 1998). So up-regulation of this gene in the Rm1021 

∆bacA mutant is also consistent with BacA being important for uptake of a 

metabolite during free-living growth which may be an important carbon source.  The 

down-regulation of  3 genes encoding proteins forming part of a fructose ABC-type 

transport system (Lambert et al., 2001), may have simply been as a consequence of 

up-regulation of the ABC transport systems,  likewise down-regulation of this 

transport system could have induced their expression.  However, this fructose ABC 

transport system has been characterised (Lambert et al., 2001) and it should be noted 

it has been found not to be essential for the legume symbiosis.  

Very recently, microarray analysis has been performed on the free-living S. 

meliloti acpXL mutant grown under the same conditions and at the same phase of 

growth as the bacA mutant (A.F. Haag, unpublished data).  Although this data has 

yet to be analysed, it would be most interesting to compare the changes in gene 

expression in the S. meliloti ∆bacA and acpXL mutants, since this may enable one to 

determine which alterations, if any are occurring in the S. meliloti ∆bacA mutant as a 

consequence of the VLCFA alteration. This would enable possible changes in gene 

expression which occur independently of the altered VLCFA, to be examined more 

closely.      
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Chapter 8: Concluding Remarks 
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Sinorhizobium meliloti is a beneficial legume symbiont able to survive long term 

within plant cells and is closely related to Brucella abortus, a chronic mammalian 

pathogen (Galibert et al., 2001; Halling et al., 2005; Ugalde, 1999).  Parallels exist 

between strategies employed by both bacteria to survive within their host cells.  One 

such parallel is the requirement for the inner membrane BacA protein, which is 

essential for the persistent infection of S. meliloti and B. abortus within their 

respective hosts (Ferguson et al., 2004; LeVier et al., 2000; Roop et al., 2002).  Free-

living S. meliloti and B. abortus bacA mutants display an increased resistance to the 

glycopeptide bleomycin (Ferguson et al., 2002; Ichige & Walker, 1997; LeVier et 

al., 2000).  Based on this phenotype and the close homology of BacA to the E. coli 

SbmA protein (Glazebrook et al., 1993; Ichige & Walker, 1997), a putative peptide 

transporter, it was hypothesized that BacA could be involved in peptide uptake.  

Subsequently it was also shown that BacA is necessary for the complete modification 

of the lipopolysaccaharide (LPS) with an unusual very-long-chain-fatty-acid 

(VLCFA) modification in free-living S. meliloti and B. abortus (Ferguson et al., 

2004).  Based on the distant similarity between BacA and the adrenoleukodystrophy 

family of eukaryotic proteins (Ferguson et al., 2004), a model was proposed whereby 

BacA could be involved in the transport of VLCFA out of the cytoplasm where they 

then can be used to modify the lipid A in the outer membrane.  

In this work it was determined that the increased resistance of the S. meliloti 

bacA mutant to bleomycin and also to the truncated eukaryotic peptide Bac7(1-16), is 

independent of the VLCFA reduction.  This finding supports a role for BacA having 

multiple non-overlapping functions.  Flow cytometry studies with fluorescently 

labelled bleomycin and Bac7(1-16) revealed that although BacA is involved in 

bleomycin uptake, it is absolutely essential for the uptake of the truncated eukaryotic 

peptide Bac7.  To date peptides with structural similarities to bleomycin or Bac7 

have not been identified in root nodules.  However transcriptome analysis of 

Medicago truncatula root nodules has revealed the presence of over 300 cysteine-

rich peptides (Alunni et al., 2007; Mergaert et al., 2003; Mergaert et al., 2006), 

which have been proposed to play a role in S. meliloti bacteroid development 

(Mergaert et al., 2006).  Since this work has shown BacA is involved in the uptake of 

structurally diverse peptides, it is possible that BacA may play a role in the uptake of 
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one of these peptides in the root nodule.  Additionally, as the full length Bac7 peptide 

was originally isolated from bovine neutrophils (Frank et al., 1990), it is plausible 

that B. abortus may encounter proline rich peptides within its mammalian host.  

Thus, the uptake of a peptide could also be important for signalling the transition 

from the acute to chronic state of B. abortus infection. 

This study revealed that in free-living S. meliloti glutathione only appeared to 

be important for detoxification of the glycopeptide bleomycin when cells were 

exposed on solid media.  However, since glutathione has been shown to play a vital 

role in the S. meliloti legume symbiosis (Harrison et al., 2005), it may be possible 

that glutathione may play a role in the detoxification of  host derived peptides taken 

up by BacA.      

Since two symbiotically defective S. meliloti bacA site directed mutants with 

known reductions in their lipid A VLCFA contents were still capable of Bac7 uptake, 

this suggests that BacA function which leads to the VLCFA modification could also 

play a key role in host persistence. To investigate the importance of the VLCFA 

modification in host persistence, S. meliloti mutants were characterised in the plant 

host lacking either AcpXL (VLCFA acyl carrier protein) or LpxXL (VLCFA acyl 

transferase).  Although it has previously been shown these mutants can persist in the 

host (Ferguson et al., 2005), it was observed that both displayed major defects, 

relative to the parent strain.  The S. meliloti acpXL mutant was delayed in release into 

the host cell and shown to prematurely senesce, whilst the S. meliloti lpxXL mutant 

was aberrantly shaped and swollen, relative to the parent strain.  The precise role the 

VLCFA modification plays in host persistence remains to be investigated.  However, 

since the VLCFA modification has the potential to span the entire bilayer of the outer 

membrane, it may play a role in protection against stresses encountered in the host 

environment such as low pH and reactive oxygen species (Hérouart et al., 2002). 

To learn more about the potential role of the BacA protein in VLCFA 

transport and where in the cell envelope this may occur, the role of two putative lipid 

trafficking proteins MsbA1 and MsbA2 in S. meliloti were investigated.  

Interestingly it was discovered that the S. meliloti MsbA2 protein is essential for the 

legume symbiosis, since the msbA2 mutant was unable to enter host cells and 

induced a plant defence response more characteristic of a pathogen than a symbiont.  
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This was a very interesting finding since it highlights the delicate balance between 

the symbiosis and pathogenesis.  

 It was shown in this work that the increased sensitivity of the S. meliloti 

bacA mutant to the hydrophobic dye crystal violet is independent of the VLCFA 

alteration.  This finding would suggest loss of the BacA protein may be resulting in 

another alteration to the cell envelope.  Thus, it is possible there are other changes 

occurring in the S. meliloti bacA mutant yet to be determined, that may also account 

for the host persistence defect. Below a model for the proposed roles of BacA, the 

VLCFA modification and the MsbA2 protein in host persistence is presented        

(Fig. 8-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 8-1. Model for the proposed roles of the BacA protein, the VLCFA modification 

and the MsbA2 protein in host persistence.  Could the BacA protein be involved in the 

uptake of a host derived peptide essential for host persistence and/or could BacA be 

involved in the transport of VLCFA out of the cytoplasm, where they are then used to modify 

the lipid A, where they are important in stress resistance? If both proposed models for BacA 

function are correct, this would suggest BacA must be able to transport two very different 

molecules in different directions. The MsbA2 protein is essential for host cell entry and its 

loss results in a host defence response.  There also remains the possibility that loss of BacA 

results in another change(s) to the cell which contribute to the host persistence defect.   
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Since Brucella are highly infectious by aerosol inhalation and research requires strict 

biosafety 3 level containment facilities and animal models, using a harmless 

symbiont to gain insights into the basis of Brucella infections is highly beneficial.  In 

addition to Brucella species VLCFA modifications are present in other intracellular 

pathogens that cause chronic infections such as Bartonella henselae, and Legionella 

pneumophila (Bhat et al., 1991) so insights gained from the S. meliloti system may 

prove invaluable.  It has recently been shown that the Mycobacterium tuberculosis 

BacA-related protein (Rv1819c) plays an essential role in maintaining chronic 

infection in mice (Domenech et al., 2008).  Deletion of this gene has also been 

shown to result in an increased resistance to bleomycin and Bac7(1-16), relative to 

the parent strain.  Thus, this finding suggests BacA-mediated peptide uptake may 

also play a key role in latent tuberculosis infections, which affect more than one-third 

of the world’s population.    
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