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Abstract

This thesis is a review of research done over the course of the past 4 years, divided

into two unrelated parts.

The first is set in the context of Bagger-Lambert-Gustavsson models, based

on 3-Lie algebras. In particular I will describe theories with metric 3-algebras

of indefinite signature: these present fields with negative kinetic terms. The

problem can be solved by gaugeing away the non-physical degrees of freedom,

to obtain other well understood theories. I will show how this procedure can be

easily applied for 3-algebra metrics of any indefinite signature.

Part II of this thesis focuses on solutions of topologically massive gravity

(TMG): particular attention is devoted to warped AdS3 black holes, which are

discussed in great detail. I will present a novel analysis of the near horizon

geometries of these solutions. I further propose an approach for searching for new

solutions to 3-dimensional gravity based on conformal symmetry. This approach

is able to yield most of the known axisymmetric stationary TMG backgrounds.
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Introduction

The first part of this thesis lays out some of the work done in collaboration with

J. Figueroa-O’Farrill, P. de Medeiros and E. Méndez-Escobar on the study of

the Bagger-Lambert-Gustavsson (BLG) model for coincident M2 branes. This

model introduced the idea of 3-algebras into the world of gauge theories and thus

attracted a lot of attention to the study of such triple systems. The original idea

( [1], [2]) was that of using 3-algebras, i.e. a structure on the space of symmetry

generators that involves a bracket with three slots, in lieu of Lie algebras in a

3-dimensional Chern-Simons theory coupled to matter, thus generating all the

properties expected of a description of a stack of M2 branes.

Let us quickly recall some of the reasons why this proposal was of such great

significance to the community. In the context of M-theory, the strong coupling

limit of type IIA string theory, it had thus far seemed impossible to write a consis-

tent worldsheet action for a stack of M-branes. Basu and Harvey had considered

a stack of M2-branes ending on an M5-brane, and proposed a solution satisfying

a generalised Nahm equation [3]. They could further write out a corresponding

bosonic theory on the M2-brane worldvolume, but it was not clear how to inter-

pret their results from first principles. Attempts to build up a consistent action

from geometric and supersymmetric properties of M-branes always incurred in

the same difficulties:

• M2 branes are the strong coupling limit of D2 branes, and as such are ex-

pected to yield a theory that is the infrared fixed point of a maximally su-

persymmetric 3-dimensional super-Yang-Mills theory. Such a theory, how-

ever, seems impossible to construct: the only interacting gauge theory with

these properties in three dimensions is maximally supersymmetric Yang-

Mills containing one vector field and seven scalars with SO(7) symmetry.

M2-branes need one more degree of freedom, i.e. eight scalars with SO(8)

symmetry. While this problem can be solved for the case of a single brane

(by dualising the vector field from the D2 brane), there is no generalisation
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to the case of N 6= 1.

• The near horizon limit of a stack of N M2-branes is dual to a 3-dimensional

conformal field theory with N
3
2 degrees of freedom.

• There is no free parameter in M-theory, so there is no obvious way in which

to obtain a weakly coupled limit that would correspond to perturbative

quantization of a classical Lagrangian.

The key problem that Bagger, Lamber and Gustavsson tackled, was that of con-

structing a supersymmetric scale invariant theory with manifest SO(8) symmetry.

They set up a Lagrangian containing eight scalar fields XI , I = 1, . . . , 8 taking

values in a non-associative algebra. To discuss the supersymmetry transforma-

tions, they needed a term containing a triple product of these fields, satisfying

certain symmetry requirements. It is precisely this structure that was found to be

a 3-Lie algebra1. The introduction of this 3-bracket also in the equations of mo-

tion allows the supersymmetry algebra to close on world-sheet translations and

a set of bosonic transformations involving the triple product. The new structure

therefore makes its appearance in the Lagrangian as an interaction term, sextic

in the scalar fields XI . One can further gauge the theory by introducing a field

Aµ
a
b, valued in the adjoint of representation of the algebra, which couples to the

theory via a Chern-Simons like term.

The BLG idea generated a flurry of activity in the community, and theories

for various types of 3-algebras were soon written. Indeed one can relax some of

the original conditions (e.g. the total antisymmetry of the 3-bracket) to construct

more general 3-structures resulting in different gauge theories.

My contribution to this topic is encapsulated in two papers: the first focused

on finding the Lie-algebraic origin of 3-algebras [4] and the second on the analysis

of BLG-style models for 3-algebras of indefinite signatures [5]. It is the latter work

that is exposed in detail in this thesis, as we will see after the following quick

review of the results of the former.

In [4] we studied how some types of metric 3-algebras can be deconstructed

and reconstructed from pairs consisting of a metric real Lie algebra and a faithful

unitary representation, (g, V ). This begins to explain, in algebraic terms, how

superconformal Chern-Simons (SCCS) theories which were originally formulated

1If the scalar fields had been Lie-algebra valued, this term in the supersymmetry transfor-
mations would vanish, in which case one could not re-obtain the Basu-Harvey equation from
this construction.
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in terms of 3-algebras, can be rewritten using only Lie algebraic data. This

(de)construction procedure was inspired by a general algebraic construction of

pairs due to Faulkner [6]: the examples of three algebras that have been used

in the literature on the BLG model correspond to the special cases of Faulkner’s

construction where the representation V is real orthogonal or complex unitary.

The real case is shown to correspond to the generalised metric Lie 3-algebras of [7],

appearing in N = 2 theories, while the complex case relates to the hermitian 3-

algebras of [8], which appear in the N = 6 theories (the Faulkner construction

also relates pairs where V is quaternionic unitary and 3-algebras generalising

those which arise in N = 5 SCCS theory). In both cases we show how one

can obtain the pair (g, V ) from the 3-algebra, and conversely how, starting from

the pair, we can reconstruct a corresponding 3-algebra. In the real orthogonal

case, this is in the same class of generalised metric 3-algebras of [7], so that

we establish a one-to-one correspondence between isomorphism classes of such

3-algebras and classes of (g, V ) pairs. Therefore the problem of classification of

generalised metric 3-algebras reduces to that of classifying metric Lie subalgebras

of so(V ). For complex unitary V , the reconstructed 3-algebra is generally in a

class which includes those of [8] as special cases. We showed how these are in

one-to-one correspondence with a class of metric Lie superalgebras.

Another natural question to ask in the context of BLG-models concerns the

signature of the 3-algebra used for the construction. Just like with Lie algebras,

the metric associated to a 3-algebra need not be positive definite. In the BLG

context, where matter fields are valued in the 3-algebra, this of course has con-

sequences for the unitarity of the theory, and a non-zero index of the metric is

expected to cause problems like negative energy states. This issue was addressed

in our second paper [5]and the following two chapters follow precisely the work

presented therein.
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Metric 3-Lie Algebras for Unitary

Bagger-Lambert Theories

The fundamental ingredient in the Bagger–Lambert–Gustavsson (BLG) model

[1,2,9], proposed as the low-energy effective field theory on a stack of coincident

M2-branes, is a metric 3-Lie algebra V on which the matter fields take values.

This means that V is a real vector space with a symmetric inner product 〈−,−〉
and a trilinear, alternating 3-bracket [−,−,−] : V × V × V → V obeying the

fundamental identity [10]

[x, y, [z1, z2, z3]] = [[x, y, z1], z2, z3] + [z1, [x, y, z2], z3] + [z1, z2, [x, y, z3]] , (1)

and the metricity condition

〈[x, y, z1], z2〉 = −〈z1, [x, y, z2]〉 , (2)

for all x, y, zi ∈ V . We say that V is indecomposable if it is not isomorphic to

an orthogonal direct sum of nontrivial metric 3-Lie algebras. Every indecom-

posable metric 3-Lie algebra gives rise to a BLG model and this motivates their

classification. It is natural to attempt this classification in increasing index —

the index of an inner product being the dimension of the maximum negative-

definite subspace. In other words, index 0 inner products are positive-definite

(called euclidean here), index 1 are Lorentzian, et cetera. To this date there is a

classification up to index 2, which we now review.

It was conjectured in [11] and proved in [12] (see also [13,14]) that there exists

a unique nonabelian indecomposable metric 3-Lie algebra of index 0. It is the

simple 3-Lie algebra [10] S4 with underlying vector space R4, orthonormal basis
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e1, e2, e3, e4, and 3-bracket

[ei, ej, ek] =
4∑
`=1

εijk`e` , (3)

where ε = e1 ∧ e2 ∧ e3 ∧ e4. Nonabelian indecomposable 3-Lie algebras of index

1 were classified in [15] and are given either by

• the simple lorentzian 3-Lie algebra S3,1 with underlying vector space R4,

orthonormal basis e0, e1, e2, e3 with e0 timelike, and 3-bracket

[eµ, eν , eρ] =
3∑

σ=0

εµνρσsσeσ , (4)

where s0 = −1 and si = 1 for i = 1, 2, 3; or

• W (g), with underlying vector space g⊕Ru⊕Rv, where g is a semisimple Lie

algebra with a choice of positive-definite invariant inner product, extended

to W (g) by declaring u, v ⊥ g and 〈u, u〉 = 〈v, v〉 = 0 and 〈u, v〉 = 1, and

with 3-brackets

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v , (5)

for all x, y, z ∈ g.

The latter metric 3-Lie algebras were discovered independently in [16, 17, 18] in

the context of the BLG model. The index 2 classification is presented in [19].

There two classes of solutions were found, termed Ia and IIIb. The former class

is of the form W (g), but where g is now a lorentzian semisimple Lie algebra,

whereas the latter class will be recovered as a special case of the results in the

following two chapters and hence will be described in more detail below.

Let us now discuss the BLG model from a 3-algebraic perspective. The V -

valued matter fields in the BLG model [1, 2, 9] comprise eight bosonic scalars X

and eight fermionic Majorana spinors Ψ in three-dimensional Minkowski space

R1,2. Triality allows one to take the scalars X and fermions Ψ to transform respec-

tively in the vector and chiral spinor representations of the so(8) R-symmetry.

These matter fields are coupled to a nondynamical gauge field A which is valued

in Λ2V and described by a so-called twisted Chern–Simons term in the Bagger–

Lambert Lagrangian [1,9]. The inner product 〈−,−〉 on V is used to describe the
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kinetic terms for the matter fields X and Ψ in the Bagger–Lambert lagrangian.

Therefore if the index of V is positive (i.e. not euclidean signature) then the asso-

ciated BLG model is not unitary as a quantum field theory, having ‘wrong’ signs

for the kinetic terms for those matter fields in the negative-definite directions on

V , thus carrying negative energy.

Indeed, for the BLG model based on the index-1 3-Lie algebra W (g), one

encounters just this problem. Remarkably though, as noted in the pioneering

works [16,17,18], here the matter field components Xv and Ψv along precisely one

of the two null directions (u, v) in W (g) never appear in any of the interaction

terms in the Bagger–Lambert Lagrangian. Since the interactions are governed

only by the structure constants of the 3-Lie algebra then this property simply

follows from the absence of v on the left hand side of any of the 3-brackets in

(5). Indeed the one null direction v spans the centre of W (g) and the linear

equations of motion for the matter fields along v force the components Xu and

Ψu in the other null direction u to take constant values (preservation of maximal

supersymmetry in fact requires Ψu = 0). By expanding around this maximally

supersymmetric and gauge-invariant vacuum defined by the constant expectation

value of Xu, one can obtain a unitary quantum field theory. Use of this strategy

in [18] gave the first indication that the resulting theory is nothing but N = 8

super Yang–Mills theory on R1,2 with the euclidean semi-simple gauge algebra

g. The super Yang–Mills theory gauge coupling here being identified with the

SO(8)-norm of the constant Xu. This procedure is somewhat reminiscent of the

novel Higgs mechanism introduced in [20] in the context of the Bagger–Lambert

theory based on the euclidean Lie 3-algebra S4. In that case an N = 8 super

Yang-Mills theory with su(2) gauge algebra is obtained, but with an infinite set

of higher order corrections suppressed by inverse powers of the gauge coupling.

As found in [18], the crucial difference is that there are no such corrections present

in the lorentzian case.

Of course, one must be wary of naively integrating out the free matter fields

Xv and Ψv in this way since their absence in any interaction terms in the Bagger–

Lambert lagrangian gives rise to an enhanced global symmetry that is generated

by shifting them by constant values. To account for this degeneracy in the action

functional, in order to correctly evaluate the partition function, one must gauge

the shift symmetry and perform a BRST quantisation of the resulting theory.

Fixing this gauged shift symmetry allows one to set Xv and Ψv equal to zero while

the equations of motion for the new gauge fields sets Xu constant and Ψu = 0.
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Indeed this more rigorous treatment has been carried out in [21,22] whereby the

perturbative equivalence between the Bagger–Lambert theory based on W (g)

and maximally supersymmetric Yang–Mills theory with euclidean gauge algebra

g was established (see also [23]). Thus the introduction of manifest unitarity in the

quantum field theory has come at the expense of realising an explicit maximal

superconformal symmetry in the BLG model for W (g), i.e. scale-invariance is

broken by a nonzero vacuum expectation value for Xu. It is perhaps worth

pointing out that the super Yang–Mills description seems to have not captured the

intricate structure of a particular ‘degenerate’ branch of the classical maximally

supersymmetric moduli space in the BLG model for W (g) found in [15]. The

occurrence of this branch can be understood to arise from a degenerate limit of

the theory wherein the scale Xu = 0 and maximal superconformal symmetry is

restored. However, as found in [21, 22], the maximally superconformal unitary

theory obtained by expanding around Xu = 0 describes a rather trivial free

theory for eight scalars and fermions, whose moduli space does not describe said

degenerate branch of the original moduli space.

Consider now a general indecomposable metric 3-Lie algebra with index r of

the form V =
⊕r

i=1(Rui⊕Rvi)⊕W , where 〈ui, uj〉 = 0 = 〈vi, vj〉, 〈ui, vj〉 = δij and

W is a euclidean vector space. As explained in section 2.4 of [19], one can ensure

that none of the null components Xvi and Ψvi of the matter fields appear in any

of the interactions in the associated Bagger–Lambert Lagrangian provided that

no vi appear on the left hand side of any of the 3-brackets on V . This guarantees

one has an extra shift symmetry for each of these null components suggesting

that all the associated negative-norm states in the spectrum of this theory can

be consistently decoupled after gauging all the shift symmetries and following

BRST quantisation of the gauged theory. A more invariant way of stating the

aforementioned criterion is that V should admit a maximally isotropic centre:

that is, a subspace Z ⊂ V of dimension equal to the index of the inner product

on V , on which the inner product vanishes identically and which is central, so

that [Z, V, V ] = 0 in the obvious notation. The null directions vi defined above

along which we require the extra shift symmetries are thus taken to provide a

basis for Z. In [19] all indecomposable metric 3-Lie algebras of index 2 with a

maximally isotropic centre were classified. There are nine families of such 3-Lie

algebras, which were termed type IIIb in that paper. In chapter 1 we will prove

a structure theorem for general metric 3-Lie algebras which admit a maximally

isotropic centre, thus characterising them fully. Although the structure theorem
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falls short of a classification, we will argue that it is the best possible result for

this problem. The bosonic contributions to the Bagger–Lambert lagrangians for

such 3-Lie algebras will be computed but we will not perform a rigorous analysis

of the physical theory in the sense of gauging the shift symmetries and BRST

quantisation. We will limit ourselves to expanding the theory around a suitable

maximally supersymmetric and gauge-invariant vacuum defined by a constant

expectation value for Xui (with Ψui = 0). This is the obvious generalisation of

the procedure used in [18] for the lorentzian theory and coincides with that used

more recently in [24] for more general 3-Lie algebras. We will comment explicitly

on how all the finite-dimensional examples considered in section 4 of [24] can be

recovered from our formalism.

As explained in sections 2.5 and 2.6 of [19], two more algebraic conditions

are necessary in order to interpret the BLG model based on a general metric 3-

Lie algebra with maximally isotropic centre as an M2-brane effective field theory.

Firstly, the 3-Lie algebra should admit a (nonisometric) conformal automorphism

that can be used to absorb the formal coupling dependence in the BLG model.

In [19] it is shown that precisely four of the nine IIIb families of index 2 3-Lie

algebras with maximally isotropic centre satisfy this condition. Secondly, parity

invariance of the BLG model requires the 3-Lie algebra to admit an isometric

antiautomorphism. This symmetry is expected of an M2-brane effective field

theory based on the assumption that it should arise as an IR superconformal

fixed point of N = 8 super Yang–Mills theory. In [19] one can see explicitly that

each of the four IIIb families of index 2 3-Lie algebras admitting said conformal

automorphism also admit an isometric antiautomorphism.

It is worth emphasising that the motivation for the two conditions above is

distinct from that which led us to demand a maximally isotropic centre. The first

two are required only for an M-theoretic interpretation while the latter is a basic

physical consistency condition to ensure that the resulting quantum field theory

is unitary. Moreover, even given a BLG model based on a 3-Lie algebra satisfying

all three of these conditions, it is plain to see that the procedure we shall follow

must generically break the initial conformal symmetry since it has introduced

scales into the problem corresponding to the vacuum expectation values of Xui .

It is inevitable that this breaking of scale-invariance will also be a feature resulting

from a more rigorous treatment in terms of gauging shift symmetries and BRST.

Thus we shall concentrate just on the unitarity condition and, for the purposes

of this exposition, we will say that a metric 3-Lie algebra is (physically) admis-
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sible if it is indecomposable and admits a maximally isotropic centre. Chapter 1

will be devoted in essence to characterising finite-dimensional admissible 3-Lie al-

gebras. Chapter 2 will describe the general structure of the gauge theories which

result from expanding the BLG model based on these physically admissible 3-Lie

algebras around a given vacuum expectation value for Xui . Particular attention

will be paid to explaining how the 3-Lie algebraic data translates into physical

parameters of the resulting gauge theories.

Part I of this thesis is therefore organised as follows. Chapter 1 is concerned

with the proof of Theorem 1.2.7, which is outlined in section 1.2.6. The theorem

may be paraphrased as stating that every finite-dimensional admissible 3-Lie

algebra of index r > 0 is constructed via the following procedure. We start with

the set of data:

• for each α = 1, . . . , N , a nonzero vector 0 6= κα ∈ Rr with components καi ,

a positive real number λα > 0 and a compact simple Lie algebra gα;

• for each π = 1, . . . ,M , a two-dimensional euclidean vector space Eπ with a

complex structure Hπ, and two linearly independent vectors ηπ, ζπ ∈ Rr;

• a euclidean vector space E0 and K ∈ Λ3Rr ⊗ E0 obeying the quadratic

equations

〈Kijn, Kk`m〉 − 〈Kijm, Knk`〉+ 〈Kij`, Kmnk〉 − 〈Kijk, K`mn〉 = 0,

where 〈−,−〉 is the inner product on E0;

• and L ∈ Λ4Rr.

On the vector space

V =
r⊕
i=1

(Rui ⊕ Rvi)⊕
N⊕
α=1

gα ⊕
M⊕
π=1

Eπ ⊕ E0,

we define the following inner product extending the inner product on Eπ and E0:

• 〈ui, vj〉 = δij, 〈ui, uj〉 = 0, 〈vi, vj〉 = 0 and ui, vj are orthogonal to the gα,

Eπ and E0; and

• on each gα we take −λα times the Killing form.

12



This makes V above into an inner product space of index r. On V we define the

following 3-brackets, with the tacit assumption that any 3-bracket not listed here

is meant to vanish:

[ui, uj, uk] = Kijk +
r∑
`=1

Lijk`v`

[ui, uj, x0] = −
r∑

k=1

〈Kijk, x0〉 vk

[ui, uj, xπ] = (ηπi ζ
π
j − ηπj ζπi )Hπxπ

[ui, xπ, yπ] = 〈Hπxπ, yπ〉
r∑
j=1

(ηπi ζ
π
j − ηπj ζπi )vj

[ui, xα, yα] = καi [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r∑
i=1

καi vi,

(6)

for all x0 ∈ E0, xπ, yπ ∈ Eπ, and xα, yα, zα ∈ gα. The resulting metric 3-Lie

algebra has a maximally isotropic centre spanned by the vi. It is indecomposable

provided that there is no x0 ∈ E0 which is perpendicular to all the Kijk, whence in

particular dimE0 ≤
(
r
3

)
. The only non-explicit datum in the above construction

are the Kijk since they are subject to certain quadratic equations. However we

will see that these equations are trivially satisfied for r < 5. Hence the above

results constitutes, in principle, a classification for indices 3 and 4, extending the

classification of index 2 in [19].

Using this structure theorem, in chapter 2 we are able to calculate the La-

grangian for the BLG model associated with a general physically admissible 3-Lie

algebra. For the sake of clarity, we shall focus on just the bosonic contributions

since the resulting theories will have a canonical maximally supersymmetric com-

pletion. Upon expanding this theory around the maximally supersymmetric vac-

uum defined by constant expectation values Xui (with all the other fields set to

zero) we will obtain standard N = 8 supersymmetric (but nonconformal) gauge

theories with moduli parametrised by particular combinations of the data ap-

pearing in Theorem 1.2.7 and the vacuum expectation values Xui . It will be

useful to think of the vacuum expectation values Xui as defining a linear map,

also denoted Xui : Rr → R8, sending ξ 7→ Xξ :=
∑r

i=1 ξiX
ui . Indeed it will be

found that the physical gauge theory parameters are naturally expressed in terms

of components in the image of this map. That is, in general, we find that neither
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the data in Theorem 1.2.7 nor the vacuum expectation values Xui on their own

appear as physical parameters which instead arise from certain projections of the

components of the data in Theorem 1.2.7 onto Xui in R8.

The resulting Bagger–Lambert Lagrangian will be found to factorise into a

sum of decoupled maximally supersymmetric gauge theories on each of the eu-

clidean components gα, Eπ and E0. The physical content and moduli on each

component can be summarised as follows:

• On each gα one has an N = 8 super Yang–Mills theory. The gauge symme-

try is based on the simple Lie algebra gα. The coupling constant is given

by ‖Xκα‖, which denotes the SO(8)-norm of the image of κα ∈ Rr under

the linear map Xui . The seven scalar fields take values in the hyperplane

R7 ⊂ R8 which is orthogonal to the direction defined by Xκα . (If Xκα = 0,

for a given value of α, one obtains a degenerate limit corresponding to

a maximally superconformal free theory for eight scalar fields and eight

fermions valued in gα.)

• On each plane Eπ one has a pair of identical free abelian N = 8 massive

vector supermultiplets. The bosonic fields in each such supermultiplet com-

prise a massive vector and six massive scalars. The mass parameter is given

by ‖Xηπ ∧Xζπ‖, which corresponds to the area of the parallelogram in R8

defined by the vectors Xηπ and Xζπ in the image of the map Xui . The six

scalar fields inhabit the R6 ⊂ R8 which is orthogonal to the plane spanned

by Xηπ and Xζπ . (If ‖Xηπ ∧Xζπ‖ = 0, for a given value of π, one obtains

a degenerate massless limit where the vector is dualised to a scalar, again

corresponding to a maximally superconformal free theory for eight scalar

fields and eight fermions valued in Eπ.) Before gauge-fixing, this theory

can be understood as an N = 8 super Yang–Mills theory with gauge sym-

metry based on the four-dimensional Nappi–Witten Lie algebra d(Eπ,R).

Moreover we explain how it can be obtained from a particular truncation

of an N = 8 super Yang-Mills theory with gauge symmetry based on any

euclidean semisimple Lie algebra with rank 2, which may provide a more

natural D-brane interpretation.

• On E0 one has a decoupled N = 8 supersymmetric theory involving eight

free scalar fields and an abelian Chern–Simons term. Since none of the

matter fields are charged under the gauge field in this Chern–Simons term

then its overall contribution is essentially trivial on R1,2.
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Note on simultaneous literature

Contemporarily to our work in this topic, the paper [24] appeared whose results

have noticeable overlap with those described here. In particular, they also de-

scribe the physical properties of BLG models based on certain finite-dimensional

3-Lie algebras with index greater than 1 admitting a maximally isotropic centre.

The structure theorem we prove here for such 3-Lie algebras allows us to extend

some of their results and make general conclusions about the nature of those

unitary gauge theories which arise from BLG models based on physically admis-

sible 3-Lie algebras. In terms of our data in Theorem 1.2.7, the explicit finite-

dimensional examples considered in section 4 of [24] all have Kijk = 0 = Lijkl

with only one Jij nonzero. This is tantamount to taking the index r = 2. The

example in sections 4.1 and 4.2 of [24] has κα = 0 (i.e. no gα part) while the

example in section 4.3 has κα = (1, 0)t. These are isomorphic to two of the four

physically admissible IIIb families of index 2 3-Lie algebras found in [19].
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Divide et impera!

Chapter 1

Towards a classification of

admissible metric 3-Lie algebras

In this chapter we will prove a structure theorem for finite-dimensional indecom-

posable metric 3-Lie algebras admitting a maximally isotropic centre. We think

it is of pedagogical value to first rederive the similar structure theorem for met-

ric Lie algebras using a method similar to the one we will employ in the more

involved case of metric 3-Lie algebras.

1.1 Metric Lie algebras with maximally isotropic

centre

Recall that a Lie algebra g is said to be metric, if it possesses an ad-invariant

scalar product. It is said to be indecomposable if it is not isomorphic to an or-

thogonal direct sum of metric Lie algebras (of positive dimension). Equivalently,

it is indecomposable if there are no proper ideals on which the scalar product

restricts nondegenerately. A metric Lie algebra g is said to have index r, if the

ad-invariant scalar product has index r, which is the same as saying that the

maximally negative-definite subspace of g is r-dimensional. In this section we

will prove a structure theorem for finite-dimensional indecomposable metric Lie

algebras admitting a maximally isotropic centre, a result originally due to Kath

and Olbrich [25].
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1.1.1 Preliminary form of the Lie algebra

Let g be a finite-dimensional indecomposable metric Lie algebra of index r > 0

admitting a maximally isotropic centre. Let vi, i = 1, . . . , r, denote a basis for the

centre. The inner product is such that 〈vi, vj〉 = 0. Since the inner product on g is

nondegenerate, there exist ui, i = 1, . . . , r, which obey 〈ui, vj〉 = δij. It is always

possible to choose the ui such that 〈ui, uj〉 = 0. Indeed, if the ui do not span a

maximally isotropic subspace, then redefine them by ui 7→ ui − 1
2

∑r
j=1 〈ui, uj〉 vj

so that they do. The perpendicular complement to the 2r-dimensional subspace

spanned by the ui and the vj is then positive-definite. In summary, g admits the

following vector space decomposition

g =
r⊕
i=1

(Rui ⊕ Rvi)⊕ r, (1.1)

where r is the positive-definite subspace of g perpendicular to all the ui and vj.

Metricity then implies that the most general Lie brackets on g are of the form

[ui, uj] = Kij +
r∑

k=1

Lijkvk

[ui, x] = Jix−
r∑
j=1

〈Kij, x〉 vj

[x, y] = [x, y]r −
r∑
i=1

〈x, Jiy〉 vi,

(1.2)

whereKij = −Kji ∈ r, Lijk ∈ R is totally skewsymmetric in the indices, Ji ∈ so(r)

and [−,−]r : r × r → r is bilinear and skewsymmetric. Metricity and the fact

that the vi are central, means that no ui can appear on the right-hand side of a

bracket. Finally, metricity also implies that

〈[x, y]r, z〉 = 〈x, [y, z]r〉 , (1.3)

for all x, y, z ∈ r.

It is not hard to demonstrate that the Jacobi identity for g is equivalent to
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the following identities on [−,−]r, Ji and Kij, whereas Lijk is unconstrained:

[x, [y, z]r]r − [[x, y]r, z]r − [y, [x, z]r]r = 0 (1.4a)

Ji[x, y]r − [Jix, y]r − [x, Jiy]r = 0 (1.4b)

JiJjx− JjJix− [Kij, x]r = 0 (1.4c)

JiKjk + JjKki + JkKij = 0 (1.4d)

〈K`i, Kjk〉+ 〈K`j, Kki〉+ 〈K`k, Kij〉 = 0, (1.4e)

for all x, y, z ∈ r.

1.1.2 r is abelian

Equation (1.4a) says that r is a Lie algebra under [−,−]r, which because of equa-

tion (1.3) is metric. Being positive-definite, it is reductive, whence an orthogonal

direct sum r = s⊕ a, where s is semisimple and a is abelian. We will show that

for an indecomposable g, we are forced to take s = 0, by showing that g = s⊕ s⊥

as a metric Lie algebra.

Equation (1.4b) says that Ji is a derivation of r, which we know to be skewsym-

metric. The Lie algebra of skewsymmetric derivations of r is given by ad s⊕so(a).

Therefore under this decomposition, we may write Ji = ad zi+J
a
i , for some unique

zi ∈ s and Ja
i ∈ so(a).

Decompose Kij = Ks
ij +Ka

ij, with Ks
ij ∈ s and Ka

ij ∈ a. Then equation (1.4c)

becomes the following two conditions

[zi, zj]r = Ks
ij (1.5)

and

[Ja
i , J

a
j ] = 0. (1.6)

One can now check that the s-component of the Jacobi identity for g is auto-

matically satisfied, whereas the a-component gives rise to the two equations

Ja
iK

a
jk + Ja

jK
a
ki + Ja

kK
a
ij = 0 (1.7)
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and

〈
Ka
`i, K

a
jk

〉
+
〈
Ka
`j, K

a
ki

〉
+
〈
Ka
`k, K

a
ij

〉
= 0. (1.8)

We will now show that g ∼= s⊕ s⊥, which violates the indecomposability of g

unless s = 0. Consider the isometry ϕ of the vector space g defined by

ϕ(ui) = ui − zi −
1

2

r∑
j=1

〈zi, zj〉 vj

ϕ(vi) = vi

ϕ(x) = x+
r∑
i=1

〈zi, x〉 vi,

(1.9)

for all x ∈ r. Notice that if x ∈ a, then ϕ(x) = x. It is a simple calculation to see

that for all x, y ∈ s,

[ϕ(ui), ϕ(x)] = 0 and [ϕ(x), ϕ(y)] = ϕ([x, y]r). (1.10)

In other words, the image of s under ϕ is a Lie subalgebra of g isomorphic to

s and commuting with its perpendicular complement in g. In other words, as a

metric Lie algebra g ∼= s⊕ s⊥, violating the decomposability of g unless s = 0.

In summary, we have proved the following

Lemma 1.1.1. Let g be a finite-dimensional indecomposable metric Lie algebra

with index r > 0 and admitting a maximally isotropic centre. Then as a vector

space

g =
r⊕
i=1

(Rui ⊕ Rvi)⊕ E, (1.11)

where E is a euclidean space, ui, vi ⊥ E and 〈ui, vj〉 = δij, 〈ui, uj〉 = 〈vi, vj〉 = 0.

Moreover the Lie bracket is given by

[ui, uj] = Kij +
r∑

k=1

Lijkvk

[ui, x] = Jix−
r∑
j=1

〈Kij, x〉 vj

[x, y] = −
r∑
i=1

〈x, Jiy〉 vi,

(1.12)
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where Kij = −Kji ∈ E, Lijk ∈ R is totally skewsymmetric in its indices, Ji ∈
so(E) and in addition obey the following conditions:

JiJj − JjJi = 0 (1.13a)

JiKjk + JjKki + JkKij = 0 (1.13b)

〈K`i, Kjk〉+ 〈K`j, Kki〉+ 〈K`k, Kij〉 = 0. (1.13c)

The analysis of the above equations will take the rest of this section, until we

arrive at the desired structure theorem.

1.1.3 Solving for the Ji

Equation (1.13a) says that the Ji ∈ so(E) are mutually commuting, whence they

span an abelian subalgebra h ⊂ so(E). Since E is positive-definite, E decomposes

as the following orthogonal direct sum as a representation of h:

E =
s⊕

π=1

Eπ ⊕ E0, (1.14)

where

E0 = {x ∈ E|Jix = 0 ∀i} (1.15)

and each Eπ is a two-dimensional real irreducible representation of h with certain

nonzero weight. Let (Hπ) denote the basis for h where

HπH% =

0 if π 6= %,

−Ππ if π = %,
(1.16)

where Ππ ∈ End(E) is the orthogonal projector onto Eπ. Relative to this basis

we can then write Ji =
∑

π J
π
i Hπ, for some real numbers Jπi .

1.1.4 Solving for the Kij

Since Kij ∈ E, we may decompose according to (1.14) as

Kij =
s∑

π=1

Kπ
ij +K0

ij. (1.17)
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We may identify each Eπ with a complex line where Hπ acts by multiplication by

i. This turns the complex number Kπ
ij into one component of a complex bivector

Kπ ∈ Λ2Cr. Equation (1.13b) splits into one equation for each Kπ and that

equation says that

Jπi K
π
jk + Jπj K

π
ki + JπkK

π
ij = 0, (1.18)

or equivalently that Jπ ∧Kπ = 0, which has as unique solution Kπ = Jπ ∧ tπ, for

some tπ ∈ Rr. In other words,

Kπ
ij = Jπi t

π
j − Jπj tπi . (1.19)

Now consider the following vector space isometry ϕ : g→ g, defined by

ϕ(ui) = ui − ti −
1

2

r∑
j=1

〈ti, tj〉 vj

ϕ(vi) = vi

ϕ(x) = x+
r∑
i=1

〈ti, x〉 vi,

(1.20)

for all x ∈ E, where ti ∈ E and hence ti =
∑s

π=1 t
π
i + t0i . Under this isometry the

form of the Lie algebra remains invariant, but Kij changes as

Kij 7→ Kij − Jitj + Jjti (1.21)

and Lijk changes in a manner which need not concern us here. Therefore we

see that Kπ
ij has been put to zero via this transformation, whereas K0

ij remains

unchanged. In other words, we can assume without loss of generality that Kij ∈
E0, so that JiKkl = 0, while still being subject to the quadratic equation (1.13c).

In summary, we have proved the following theorem, originally due to Kath

and Olbrich [25]:

Theorem 1.1.2. Let g be a finite-dimensional indecomposable metric Lie algebra

of index r > 0 admitting a maximally isotropic centre. Then as a vector space

g =
r⊕
i=1

(Rui ⊕ Rvi)⊕
s⊕

π=1

Eπ ⊕ E0, (1.22)

where all direct sums but the one between Rui and Rvi are orthogonal and the

inner product is as in Lemma 1.1.1. Let 0 6= Jπ ∈ Rr, Kij ∈ E0 and Lijk ∈ R
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and assume that the Kij obey the following quadratic relation

〈K`i, Kjk〉+ 〈K`j, Kki〉+ 〈K`k, Kij〉 . = 0. (1.23)

Then the Lie bracket of g is given by

[ui, uj] = Kij +
r∑

k=1

Lijkvk

[ui, x] = Jπi Hπx

[ui, z] = −
r∑
j=1

〈Kij, z〉 vj

[x, y] = −
r∑
i=1

〈x, Jπi Hπy〉 vi,

(1.24)

where x, y ∈ Eπ and z ∈ E0. Furthermore, indecomposability forces the Kij to

span all of E0, whence dimE0 ≤
(
r
2

)
.

It should be remarked that the Lijk are only defined up to the following

transformation

Lijk 7→ Lijk + 〈Kij, tk〉+ 〈Kki, tj〉+ 〈Kjk, ti〉 , (1.25)

for some ti ∈ E0.

It should also be remarked that the quadratic relation (1.23) is automatically

satisfied for index r ≤ 3, whereas for index r ≥ 4 it defines an algebraic variety.

In that sense, the classification problem for indecomposable metric Lie algebras

admitting a maximally isotropic centre is not tame for index r > 3.

1.2 Metric 3-Lie algebras with maximally isotropic

centre

After the above warm-up exercise, we may now tackle the problem of interest,

namely the classification of finite-dimensional indecomposable metric 3-Lie al-

gebras with maximally isotropic centre. The proof is not dissimilar to that of

Theorem 1.1.2, but somewhat more involved and requires new ideas. Let us

summarise the main steps in the proof.
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1. In section 1.2.1 we write down the most general form of a metric 3-Lie al-

gebra V consistent with the existence of a maximally isotropic centre Z.

As a vector space, V = Z ⊕ Z∗ ⊕ W , where Z and Z∗ are nondegener-

ately paired and W is positive-definite. Because Z is central, the 4-form

F (x, y, z, w) := 〈[x, y, z], w〉 on V defines an element in Λ4(W ⊕ Z). The

decomposition

Λ4(W ⊕ Z) = Λ4W ⊕
(
Λ3W ⊗ Z

)
⊕
(
Λ2W ⊗ Λ2Z

)
⊕
(
W ⊗ Λ3Z

)
⊕ Λ4Z

(1.26)

induces a decomposition of F =
∑4

a=0 Fa, where Fa ∈ Λ4−aW ⊗ΛaZ, where

the component F4 is unconstrained.

2. The component F0 defines the structure of a metric 3-Lie algebra on W

which, if V is indecomposable, must be abelian, as shown in section 1.2.2.

3. The component F1 defines a compatible family [−,−]i of reductive Lie al-

gebras on W . In section 1.2.3 we show that they all are proportional to a

reductive Lie algebra structure g⊕ z on W , where g is semisimple and z is

abelian.

4. In section 1.2.4 we show that the component F2 defines a family Jij of

commuting endomorphisms spanning an abelian Lie subalgebra a < so(z).

Under the action of a, z breaks up into a direct sum of irreducible 2-planes

Eπ and a euclidean vector space E0 on which the Jij act trivially.

5. In section 1.2.5 we show that the component F3 defines elements Kijk ∈ E0

which are subject to a quadratic equation.

1.2.1 Preliminary form of the 3-algebra

Let V be a finite-dimensional metric 3-Lie algebra with index r > 0 and admitting

a maximally isotropic centre. Let vi, i = 1, . . . , r, denote a basis for the centre.

Since the centre is (maximally) isotropic, 〈vi, vj〉 = 0, and since the inner prod-

uct on V is nondegenerate, there exists ui, i = 1, . . . , r satisfying 〈ui, vj〉 = δij.

Furthermore, it is possible to choose the ui such that 〈ui, uj〉 = 0. The perpendic-

ular complement W of the 2r-dimensional subspace spanned by the ui and vi is
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therefore positive definite. In other words, V admits a vector space decomposition

V =
r⊕
i=1

(Rui ⊕ Rvi)⊕W. (1.27)

Since the vi are central, metricity of V implies that the ui cannot appear in the

right-hand side of any 3-bracket. The most general form for the 3-bracket for V

consistent with V being a metric 3-Lie algebra is given for all x, y, z ∈ W by

[ui, uj, uk] = Kijk +
r∑
`=1

Lijk`v`

[ui, uj, x] = Jijx−
r∑

k=1

〈Kijk, x〉 vk

[ui, x, y] = [x, y]i −
r∑
j=1

〈x, Jijy〉 vj

[x, y, z] = [x, y, z]W −
r∑
i=1

〈[x, y]i, z〉 vi,

(1.28)

where Jij ∈ so(W ), Kijk ∈ W and Lijk` ∈ R are skewsymmetric in their indices,

[−,−]i : W ×W → W is an alternating bilinear map which in addition obeys

〈[x, y]i, z〉 = 〈x, [y, z]i〉 , (1.29)

and [−,−,−]W : W ×W ×W → W is an alternating trilinear map which obeys

〈[x, y, z]W , w〉 = −〈[x, y, w]W , z〉 . (1.30)

The following lemma is the result of a straightforward, if somewhat lengthy,

calculation.

Lemma 1.2.1. The fundamental identity (1) of the 3-Lie algebra V defined by
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(1.28) is equivalent to the following conditions, for all t, w, x, y, z ∈ W :

[t, w, [x, y, z]W ]W = [[t, w, x]W , y, z]W + [x, [t, w, y]W , z]W

+ [x, y, [t, w, z]W ]W (1.31a)

[w, [x, y, z]W ]i = [[w, x]i, y, z]W + [x, [w, y]i, z]W

+ [x, y, [w, z]i]W (1.31b)

[x, y, [z, t]i]W = [z, t, [x, y]i]W + [[x, y, z]W , t]i

+ [z, [x, y, t]W ]i (1.31c)

Jij[x, y, z]W = [Jijx, y, z]W + [x, Jijy, z]W + [x, y, Jijz]W (1.31d)

Jij[x, y, z]W − [x, y, Jijz]W = [[x, y]i, z]j − [[x, y]j, z]i (1.31e)

[x, y,Kijk]W = Jjk[x, y]i + Jki[x, y]j + Jij[x, y]k (1.31f)

[Jijx, y, z]W = [[x, y]i, z]j + [[y, z]j, x]i + [[z, x]i, y]j (1.31g)

Jij[x, y, z]W = [z, [x, y]j]i + [x, [y, z]j]i + [y, [z, x]j]i (1.31h)

[x, y,Kijk]W = Jij[x, y]k − [Jijx, y]k − [x, Jijy]k (1.31i)

Jik[x, y]j − Jij[x, y]k = [Jjkx, y]i + [x, Jjky]i (1.31j)

[x, Jjky]i = [Jijx, y]k + [Jkix, y]j + Jjk[x, y]i (1.31k)

[Kijk, x]` = [K`ij, x]k + [K`jk, x]i + [K`ki, x]j (1.31l)

[Kijk, x]` − [Kij`, x]k = (JijJk` − Jk`Jij)x (1.31m)

[x,Kjk`]i = (JjkJi` + Jk`Jij + Jj`Jki)x (1.31n)

JimKjk` = JijKk`m + JikK`mj + Ji`Kjkm (1.31o)

JijKk`m = J`mKijk + JmkKij` + Jk`Kijm (1.31p)

〈Kijm, Knk`〉+ 〈Kijk, K`mn〉 = 〈Kijn, Kk`m〉+ 〈Kij`, Kmnk〉 . (1.31q)

Of course, not all of these equations are independent, but we will not attempt

to select a minimal set here, since we will be able to dispense with some of the

equations easily.

1.2.2 W is abelian

Equation (1.31a) says that W becomes a 3-Lie algebra under [−,−,−]W which is

metric by (1.30). Since W is positive-definite, it is reductive [12,13,14,15], whence

isomorphic to an orthogonal direct sum W = S ⊕ A, where S is semisimple and

A is abelian. Furthermore, S is an orthogonal direct sum of several copies of the
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unique positive-definite simple 3-Lie algebra S4 [10, 26]. We will show that as

metric 3-Lie algebras V = S ⊕ S⊥, whence if V is indecomposable then S = 0

and W = A is abelian as a 3-Lie algebra. This is an extension of the result in [15]

by which semisimple 3-Lie algebras S factorise out of one-dimensional double

extensions, and we will, in fact, follow a similar method to the one in [15] by

which we perform an isometry on V which manifestly exhibits a nondegenerate

ideal isomorphic to S as a 3-Lie algebra.

Consider then the isometry ϕ : V → V , defined by

ϕ(vi) = vi ϕ(ui) = ui − si −
1

2

r∑
j=1

〈si, sj〉 vj ϕ(x) = x+
r∑
i=1

〈si, x〉 vi,

(1.32)

for x ∈ W and for some si ∈ W . (This is obtained by extending the linear map

vi → vi and ui 7→ ui − si to an isometry of V .) Under ϕ the 3-brackets (1.28)

take the following form

[ϕ(ui), ϕ(uj), ϕ(uk)] = ϕ(Kϕ
ijk) +

r∑
`=1

Lϕijk`v`

[ϕ(ui), ϕ(uj), ϕ(x)] = ϕ(Jϕijx)−
r∑

k=1

〈
Kϕ
ijk, x

〉
vk

[ϕ(ui), ϕ(x), ϕ(y)] = ϕ([x, y]ϕi )−
r∑
j=1

〈
x, Jϕijy

〉
vj

[ϕ(x), ϕ(y), ϕ(z)] = ϕ([x, y, z]W )−
r∑
i=1

〈[x, y]ϕi , z〉 vi,

(1.33)

where

[x, y]ϕi = [x, y]i + [si, x, y]W

Jϕijx = Jijx+ [si, x]j − [sj, x]i + [si, sj, x]W

Kϕ
ijk = Kijk − Jijsk − Jjksi − Jkisj + [si, sj]k + [sj, sk]i + [sk, si]j − [si, sj, sk]W

Lϕijk` = Lijk` + 〈Kjk`, si〉 − 〈Kk`i, sj〉+ 〈K`ij, sk〉 − 〈Kijk, s`〉

− 〈si, Jk`sj〉 − 〈sk, Jj`si〉 − 〈sj, Ji`sk〉+ 〈s`, Jjksi〉+ 〈s`, Jkisj〉

+ 〈s`, Jijsk〉+ 〈[si, sj]`, sk〉 − 〈[si, sj]k, s`〉 − 〈[sk, si]j, s`〉

− 〈[sj, sk]i, s`〉+ 〈[si, sj, sk]W , s`〉 .
(1.34)

Lemma 1.2.2. There exists si ∈ S such that the following conditions are met
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for all x ∈ S:

[x,−]ϕi = 0 Jϕijx = 0
〈
Kϕ
ijk, x

〉
= 0. (1.35)

Assuming for a moment that this is the case, the only nonzero 3-brackets

involving elements in ϕ(S) are

[ϕ(x), ϕ(y), ϕ(z)] = ϕ([x, y, z]W ), (1.36)

and this means that ϕ(S) is a nondegenerate ideal of V , whence V = ϕ(S) ⊕
ϕ(S)⊥. But this violates the indecomposability of V , unless S = 0.

Proof of the lemma. To show the existence of the si, let us decompose S = S
(1)
4 ⊕

· · · ⊕ S(m)
4 into m copies of the unique simple positive-definite 3-Lie algebra S4.

As shown in [15, §3.2], since Jij and [x,−]i define skewsymmetric derivations of

W , they preserve the decomposition of W into S ⊕ A and that of S into its

simple factors. One consequence of this fact is that Jijx ∈ S for all x ∈ S

and [x, y]i ∈ S for all x, y ∈ S, and similarly if we substitute S for any of its

simple factors in the previous statement. Notice in addition that putting i = j

in equation (1.31g), [−,−]i obeys the Jacobi identity. Hence on any one of the

simple factors of S — let’s call it generically S4 — the bracket [−,−]i defines

the structure of a four-dimensional Lie algebra. This Lie algebra is metric by

equation (1.29) and positive definite. There are (up to isomorphism) precisely

two four-dimensional positive-definite metric Lie algebras: the abelian Lie algebra

and so(3)⊕R. In either case, as shown in [15, §3.2], there exists a unique si ∈ S4

such that [si, x, y]W = [x, y]i for x, y ∈ S4. (In the former case, si = 0.) Since

this is true for all simple factors, we conclude that there exists si ∈ S such that

[si, x, y]W = [x, y]i for x, y ∈ S and for all i.

Now equation (1.31g) says that for all x, y, z ∈ S,

[Jijx, y, z]W = [[x, y]i, z]j + [[y, z]j, x]i + [[z, x]i, y]j

= [sj, [si, x, y]W , z]W + [si, [sj, y, z]W , x]W + [sj, [si, z, x]W , y]W

= [[si, sj, x]W , y, x]W , using (1.31a)

which implies that Jijx− [si, sj, x]W centralises S, and thus is in A. However, for

x ∈ S, both Jijx ∈ S and [si, sj, x]W ∈ S, so that Jijx = [si, sj, x]W . Similarly,
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equation (1.31i) says that for all x, y ∈ S,

[x, y,Kijk]W = Jij[x, y]k − [Jijx, y]k − [x, Jijy]k

= [si, sj, [sk, x, y]W ]W − [sk, [si, sj, x]W , y]W − [sk, x, [si, sjy]W ]W

= [[si, sj, sk]W , x, y]W , using (1.31a)

which implies that Kijk − [si, sj, sk]W centralises S, whence Kijk − [si, sj, sk]W =

KA
ijk ∈ A. Finally, using the explicit formulae for Jϕij and Kϕ

ijk in equation (1.34),

we see that for all all x ∈ S,

Jϕijx = Jijx+ [si, x]j − [sj, x]i + [si, sj, x]W

= [si, sj, x]W + [sj, si, x]W − [si, sj, x]W + [si, sj, x]W = 0

and

Kϕ
ijk = Kijk − Jijsk − Jjksi − Jkisj + [si, sj]k + [sj, sk]i + [sk, si]j − [si, sj, sk]W

= KA
ijk + [si, sj, sk]W − [si, sj, sk]W − [sj, sk, si]W − [sk, si, sj]W

+ [sk, si, sj]W + [si, sj, sk]W + [sj, sk, si]W − [si, sj, sk]W = KA
ijk,

whence
〈
Kϕ
ijk, x

〉
= 0 for all x ∈ S.

We may summarise the above discussion as follows.

Lemma 1.2.3. Let V be a finite-dimensional indecomposable metric 3-Lie alge-

bra of index r > 0 with a maximally isotropic centre. Then as a vector space

V =
r⊕
i=1

(Rui ⊕ Rvi)⊕W, (1.37)

where W is positive-definite, ui, vi ⊥ W , 〈ui, uj〉 = 0, 〈vi, vj〉 = 0 and 〈ui, vj〉 =

δij. The vi span the maximally isotropic centre. The nonzero 3-brackets are given
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by

[ui, uj, uk] = Kijk +
r∑
`=1

Lijk`v`

[ui, uj, x] = Jijx−
r∑

k=1

〈Kijk, x〉 vk

[ui, x, y] = [x, y]i −
r∑
j=1

〈x, Jijy〉 vj

[x, y, z] = −
r∑
i=1

〈[x, y]i, z〉 vi,

(1.38)

for all x, y, z ∈ W and for some Lijk` ∈ R, Kijk ∈ W , Jij ∈ so(W ), all of

which are totally skewsymmetric in their indices, and bilinear alternating brackets

[−,−]i : W ×W → W satisfying equation (1.29). Furthermore, the fundamental

identity of the 3-brackets (1.38) is equivalent to the following conditions on Kijk,

Jij and [−,−]i:

[x, [y, z]i]j = [[x, y]j, z]i + [y, [x, z]j]i (1.39a)

[[x, y]i, z]j = [[x, y]j, z]i (1.39b)

Jij[x, y]k = [Jijx, y]k + [x, Jijy]k (1.39c)

0 = Jj`[x, y]i + J`i[x, y]j + Jij[x, y]` (1.39d)

[Kijk, x]` − [Kij`, x]k = (JijJk` − Jk`Jij)x (1.39e)

[x,Kjk`]i = (JjkJi` + Jk`Jij + Jj`Jki)x (1.39f)

JijKk`m = J`mKijk + JmkKij` + Jk`Kijm (1.39g)

0 = 〈Kijn, Kk`m〉+ 〈Kij`, Kmnk〉

− 〈Kijm, Knk`〉 − 〈Kijk, K`mn〉 . (1.39h)

There are less equations in (1.39) than are obtained from (1.31) by simply

making W abelian. It is not hard to show that the equations in (1.39) imply

the rest. The study of equations (1.39) will take us until the end of this section.

The analysis of these conditions will break naturally into several steps. In the

first step we will solve equations (1.39a) and (1.39b) for the [−,−]i. We will then

solve equations (1.39c) and (1.39d), which will turn allow us to solve equations

(1.39e) and (1.39f) for the Jij. Finally we will solve equation (1.39g). We will

not solve equation (1.39h). In fact, this equation defines an algebraic variety (an

intersection of conics) which parametrises these 3-algebras.
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1.2.3 Solving for the [−,−]i

Condition (1.39a) for i = j says that [−,−]i defines a Lie algebra structure on

W , denoted gi. By equation (1.29), gi is a metric Lie algebra. Since the inner

product on W is positive-definite, gi is reductive, whence gi = [gi, gi]⊕ zi, where

si := [gi, gi] is the semisimple derived ideal of gi and zi is the centre of gi. The

following lemma will prove useful.

Lemma 1.2.4. Let gi, i = 1, . . . , r, be a family of reductive Lie algebras sharing

the same underlying vector space W and let [−,−]i denote the Lie bracket of gi.

Suppose that they satisfy equations (1.39a) and (1.39b) and in addition that one

of these Lie algebras, g1 say, is simple. Then for all x, y ∈ W ,

[x, y]i = κi[x, y]1, (1.40)

where κi ∈ R.

Proof. Equation (1.39a) says that for all x ∈ W , adi x := [x,−]i is a derivation of

gj, for all i, j. In particular, ad1 x is a derivation of gi. Since derivations preserve

the centre, ad1 x : zi → zi, whence the subspace zi is an ideal of g1. Since by

hypothesis, g1 is simple, we must have that either zi = W , in which case gi is

abelian and the lemma holds with κi = 0, or else zi = 0, in which case gi is

semisimple. It remains therefore to study this case.

Equation (1.39a) again says that adi x is a derivation of g1. Since all deriva-

tions of g1 are inner, this means that there is some element y such that adi x =

ad1 y. This element is moreover unique because ad1 has trivial kernel. In other

words, this defines a linear map

ψi : gi → g1 by adi x = ad1 ψix ∀x ∈ W. (1.41)

This linear map is a vector space isomorphism since kerψi ⊂ ker adi = 0, for

gi semisimple. Now suppose that I � gi is an ideal, whence adi(x)I ⊂ I for all

x ∈ gi. This means that ad1(y)I ⊂ I for all y ∈ g1, whence I is also an ideal of

g1. Since g1 is simple, this means that I = 0 or else I = W ; in other words, gi is

simple.
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Now for all x, y, z ∈ W , we have

[ψi[x, y]i, z]1 = [[x, y]i, z]i by equation (1.41)

= [x, [y, z]i]i − [y, [x, z]i]i by the Jacobi identity of gi

= [ψix, [ψiy, z]1]1 − [ψiy, [ψix, z]1]1 by equation (1.41)

= [[ψix, ψiy]1, z]1 by the Jacobi identity of g1

and since g1 has trivial centre, we conclude that

ψi[x, y]i = [ψix, ψiy]1,

whence ψi : gi → g1 is a Lie algebra isomorphism.

Next, condition (1.39b) says that ad1[x, y]i = adi[x, y]1, whence using equation

(1.41), we find that ad1[x, y]i = ad1 ψi[x, y]1, and since ad1 has trivial kernel,

[x, y]i = ψi[x, y]1. We may rewrite this equation as adi x = ψi ad1 x for all x,

which again by virtue of (1.41), becomes ad1 ψix = ψi ad1 x, whence ψi commutes

with the adjoint representation of g1. Since g1 is simple, Schur’s Lemma says that

ψi must be a multiple, κi say, of the identity. In other words, adi x = κi ad1 x,

which proves the lemma.

Let us now consider the general case when none of the gi are simple. Let us

focus on two reductive Lie algebras, gi = zi⊕ si, for i = 1, 2 say, sharing the same

underlying vector space W . We will further decompose si into its simple ideals

si =

Ni⊕
α=1

sαi . (1.42)

For every x ∈ W , ad1 x is a derivation of g2, whence it preserves the centre z2

and each simple ideal sβ2 . This means that z2 and sβ2 are themselves ideals of g1,

whence

z2 = E0 ⊕
⊕
α∈I0

sα1 and sβ2 = Eβ ⊕
⊕
α∈Iβ

sα1 ∀β ∈ {1, 2, . . . , N2} , (1.43)

and where the index sets I0, I1, . . . , IN2 define a partition of {1, . . . , N1}, and

z1 = E0 ⊕ E1 ⊕ · · · ⊕ EN2 (1.44)
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is an orthogonal decomposition of z1. But now notice that the restriction of g1 to

Eβ ⊕
⊕

α∈Iβ sα1 is reductive, whence we may apply Lemma 1.2.4 to each simple

sβ2 in turn. This allows us to conclude that for each β, either sβ2 = Eβ or else

sβ2 = sα1 , for some α ∈ {1, 2, . . . , N1} which depends on β, and in this latter case,

[x, y]sβ2
= κ[x, y]sα1 , for some nonzero constant κ.

This means that, given any one Lie algebra gi, any other Lie algebra gj in the

same family is obtained by multiplying its simple factors by some constants (which

may be different in each factor and may also be zero) and maybe promoting part

of its centre to be semisimple.

The metric Lie algebras gi induce the following orthogonal decomposition of

the underlying vector space W . We let W0 =
⋂r
i=1 zi be the intersection of all the

centres of the reductive Lie algebras gi. Then we have the following orthogonal

direct sum W = W0 ⊕
⊕N

α=1Wα, where restricted to each Wα>0 at least one of

the Lie algebras, gi say, is simple and hence all other Lie algebras gj 6=i are such

that for all x, y ∈ Wα,

[x, y]j = καij[x, y]i ∃καij ∈ R. (1.45)

To simplify the notation, we define a semisimple Lie algebra structure g on

the perpendicular complement of W0, whose Lie bracket [−,−] is defined in such

a way that for all x, y ∈ Wα, [x, y] := [x, y]i, where i ∈ {1, 2, . . . , r} is the smallest

such integer for which the restriction of gi to Wα is simple. (That such an integer

i exists follows from the definition of W0 and of the Wα.) It then follows that the

restriction to Wα of every other gj 6=i is a (possibly zero) multiple of g.

We summarise this discussion in the following lemma, which summarises the

solution of equations (1.39a) and (1.39b).

Lemma 1.2.5. Let gi, i = 1, . . . , r, be a family of metric Lie algebras sharing the

same underlying euclidean vector space W and let [−,−]i denote the Lie bracket

of gi. Suppose that they satisfy equations (1.39a) and (1.39b). Then there is an

orthogonal decomposition

W = W0 ⊕
N⊕
α=1

Wα, (1.46)

where

[x, y]i =

0 if x, y ∈ W0;

καi [x, y] if x, y ∈ Wα,
(1.47)
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for some καi ∈ R and where [−,−] are the Lie brackets of a semisimple Lie algebra

g with underlying vector space
⊕N

α=1Wα.

1.2.4 Solving for the Jij

Next we study the equations (1.39c) and (1.39d), which involve only Jij. Equa-

tion (1.39c) says that each Jij is a derivation over the gk for all i, j, k. Since

derivations preserve the centre, every Jij preserves the centre of every gk and

hence it preserves their intersection W0. Since Jij preserves the inner product, it

also preserves the perpendicular complement of W0 in W , which is the underlying

vector space of the semisimple Lie algebra g of the previous lemma. Equation

(1.39c) does not constrain the component of Jij acting on W0 since all the [−,−]k

vanish there, but it does constrain the components of Jij acting on
⊕N

α=1Wα. Fix

some α and let x, y ∈ Wα. Then by virtue of equation (1.47), equation (1.39c)

says that

καk (Jij[x, y]− [Jijx, y]− [x, Jijy]) = 0. (1.48)

Since, given any α there will be at least some k for which καk 6= 0, we see that

Jij is a derivation of g. Since g is semisimple, this derivation is inner, where

there exists a unique zij ∈ g, such that Jijy = [zij, y] for all y ∈ g. Since the

simple ideals of g are submodules under the adjoint representation, Jij preserves

each of the simple ideals and hence it preserves the decomposition (1.46). Let zαij

denote the component of zij along Wα. Equation (1.39d) can now be rewritten

for x, y ∈ Wα as

καi [zαj`, [x, y]] + καj [zα`i, [x, y]] + κα` [zαij, [x, y]] = 0. (1.49)

Since g has trivial centre, this is equivalent to

καi z
α
j` + καj z

α
`i + κα` z

α
ij = 0, (1.50)

which can be written more suggestively as κα ∧ zα = 0, where κα ∈ Rr and

zα ∈ Λ2Rr ⊗Wα. This equation has as unique solution zα = κα ∧ sα, for some

sα ∈ Rr ⊗Wα, or in indices

zαij = καi s
α
j − καj sαi ∃sαi ∈ Wα. (1.51)
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Let si =
∑

α s
α
i ∈ g and consider now the isometry ϕ : V → V defined by

ϕ(vi) = vi

ϕ(z) = z

ϕ(ui) = ui − si −
1

2

∑
j

〈si, sj〉 vj

ϕ(x) = x+
∑
i

〈si, x〉 vi,

(1.52)

for all z ∈ W0 and all x ∈
⊕N

α=1 Wα. The effect of such a transformation on the

3-brackets (1.38) is an uninteresting modification of Kijk and Lijk` and the more

interesting disappearance of Jij from the 3-brackets involving elements in Wα.

Indeed, for all x ∈ Wα, we have

[ϕ(ui), ϕ(uj), ϕ(x)] = [ui − si, uj − sj, x]

= [ui, uj, x] + [uj, si, x]− [ui, sj, x] + [si, sj, x]

= Jijx+ [si, x]j − [sj, x]i + central terms

= [zαij, x] + καj [sαi , x]− καi [sαj , x] + central terms

= [zαij + καj s
α
i − καi sαj , x] + central terms

= 0 + central terms,

where we have used equation (1.51).

This means that without loss of generality we may assume that Jijx = 0 for

all x ∈ Wα for any α. Now consider equation (1.39f) for x ∈
⊕N

α=1Wα. The right-

hand side vanishes, whence [Kijk, x]` = 0. Also if x ∈ W0, then [Kijk, x]` = 0

because x is central with respect to all g`. Therefore we see that Kijk is central

with respect to all g`, and hence Kijk ∈ W0.

In other words, we have proved the following

Lemma 1.2.6. In the notation of Lemma 1.2.5, the nonzero 3-brackets for V
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may be brought to the form

[ui, uj, uk] = Kijk +
r∑
`=1

Lijk`v`

[ui, uj, x0] = Jijx0 −
r∑

k=1

〈Kijk, x0〉 vk

[ui, x0, y0] = −
r∑
j=1

〈x0, Jijy0〉 vj

[ui, xα, yα] = καi [x, y]

[xα, yα, zα] = −〈[xα, yα], zα〉
r∑
i=1

καi vi,

(1.53)

for all xα, yα, zα ∈ Wα, x0, y0 ∈ W0 and for some Lijk` ∈ R, Kijk ∈ W0 and

Jij ∈ so(W0), all of which are totally skewsymmetric in their indices.

Since their left-hand sides vanish, equations (1.39e) and (1.39f) become con-

ditions on Jij ∈ so(W0):

JijJk` − Jk`Jij = 0, (1.54)

JjkJi` + Jk`Jij + Jj`Jki = 0. (1.55)

The first condition says that the Jij commute, whence since the inner product

on W0 is positive-definite, they must belong to the same Cartan subalgebra h ⊂
so(W0). Let Hπ, for π = 1, . . . , bdimW0

2
c, denote a basis for h, with each Hπ

corresponding to the generator of infinitesimal rotations in mutually orthogonal

2-planes in W0. In particular, this means that HπH% = 0 for π 6= % and that

H2
π = −Ππ, with Ππ the orthogonal projector onto the 2-plane labelled by π.

We write Jπij ∈ R for the component of Jij along Hπ. Fixing π we may think

of Jπij as the components of Jπ ∈ Λ2Rr. Using the relations obeyed by the Hπ,

equation (1.55) separates into bdimW0

2
c equations, one for each value of π, which

in terms of Jπ can be written simply as Jπ ∧ Jπ = 0. This is a special case of a

Plücker relation and says that Jπ is decomposable; that is, Jπ = ηπ ∧ ζπ for some

ηπ, ζπ ∈ Rr. In other words, the solution of equations (1.54) and (1.55) is

Jij =
∑
π

(
ηπi ζ

π
j − ηπj ζπi

)
Hπ (1.56)

living in a Cartan subalgebra h ⊂ so(W0).
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1.2.5 Solving for the Kijk

It remains to solve equations (1.39g) and (1.39h) for Kijk. We shall concentrate

on the linear equation (1.39g). This is a linear equation on K ∈ Λ3Rr ⊗W0 and

says that it is in the kernel of a linear map

Λ3Rr ⊗W0 −−−→ Λ2Rr ⊗ Λ3Rr ⊗W0 (1.57)

defined by

Kijk 7→ JijKk`m − J`mKijk − JmkKij` − Jk`Kijm. (1.58)

The expression in the right-hand side is manifestly skewsymmetric in ij and k`m

separately, whence it belongs to Λ2Rr ⊗ Λ3Rr ⊗W0 as stated above. For generic

r (here r ≥ 5) we may decompose

Λ2Rr ⊗ Λ3Rr = Y Rr ⊕ Y Rr ⊕ Λ5Rr, (1.59)

where Y Young tableau denotes the corresponding Young symmetriser representation.

Then one can see that the right-hand side of (1.58) has no component in the first

of the above summands and hence lives in the remaining two summands, which

are isomorphic to Rr ⊗ Λ4Rr.

We now observe that via an isometry of V of the form

ϕ(vi) = vi

ϕ(xα) = xα

ϕ(ui) = ui + ti −
1

2

∑
j

〈ti, tj〉 vj

ϕ(x0) = x0 −
∑
i

〈x0, ti〉 vi,

(1.60)

for ti ∈ W0, the form of the 3-brackets (1.53) remains invariant, but with Kijk

and Lijk` transforming by

Kijk 7→ Kijk + Jijtk + Jjkti + Jkitj, (1.61)
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and

Lijk` 7→ Lijk` + 〈Kijk, t`〉 − 〈K`ij, tk〉+ 〈Kk`i, tj〉 − 〈Kjk`, ti〉

+ 〈Jijtk, t`〉+ 〈Jkitj, t`〉+ 〈Jjkti, t`〉+ 〈Ji`tj, tk〉

+ 〈Jj`tk, ti〉+ 〈Jk`ti, tj〉 ,

(1.62)

respectively. In particular, this means that there is an ambiguity in Kijk, which

can be thought of as shifting it by the image of the linear map

Rr ⊗W0 −−−→ Λ3Rr ⊗W0 (1.63)

defined by

ti 7→ Jijtk + Jjkti + Jkitj. (1.64)

The two maps (1.57) and (1.63) fit together in a complex

Rr ⊗W0 −−−→ Λ3Rr ⊗W0 −−−→ Rr ⊗ Λ4Rr ⊗W0, (1.65)

where the composition vanishes precisely by virtue of equations (1.54) and (1.55).

We will show that this complex is acyclic away from the kernel of J , which will

mean that without loss of generality we can take Kijk in the kernel of J subject

to the final quadratic equation (1.39h).

Let us decompose W0 into an orthogonal direct sum

W0 =


(dimW0)/2⊕

π=1

Eπ, if dimW0 is even, and

Rw ⊕
(dimW0−1)/2⊕

π=1

Eπ, if dimW0 is odd,

(1.66)

where Eπ are mutually orthogonal 2-planes and, in the second case, w is a vector

perpendicular to all of them. On Eπ the Cartan generator Hπ acts as a complex

structure, and hence we may identify each Eπ with a complex one-dimensional

vector space and Hπ with multiplication by i. This decomposition of Wπ allows

us to decompose Kijk = Kw
ijk +

∑
πK

π
ijk, where the first term is there only in

the odd-dimensional situation and the Kπ
ijk are complex numbers. The complex

(1.65) breaks up into bdimW0

2
c complexes, one for each value of π. If Jπ = 0 then

Kπ
ijk is not constrained there, but if Jπ = ηπ ∧ ζπ 6= 0 the complex turns out to

have no homology, as we now show.
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Without loss of generality we may choose the vectors ηπ and ζπ to be the

elementary vectors e1 and e2 in Rr, so that Jπ has a Jπ12 = 1 and all other Jπij = 0.

Take i = 1 and j = 2 in the cocycle condition (1.57), to obtain

Kπ
k`m = Jπ`mK

π
12k + JπmkK

π
12` + Jπk`K

π
12m. (1.67)

It follows that if any two of k, `,m > 2, then Kπ
k`m = 0. In particular Kπ

1ij =

Kπ
2ij = 0 for all i, j > 2, whence only Kπ

12k for k > 2 can be nonzero. However

for k > 2, Kπ
12k = Jπ12ek, with ek the kth elementary vector in Rr, and hence

Kπ
12k is in the image of the map (1.63); that is, a coboundary. This shows that

we may assume without loss of generality that Kπ
ijk = 0. In summary, the only

components of Kijk which survive are those in the kernel of all the Jij. It is

therefore convenient to split W0 into an orthogonal direct sum

W0 = E0 ⊕
⊕
π

Eπ, (1.68)

where on each 2-plane Eπ, Jπ = ηπ ∧ ζπ 6= 0, whereas Jijx = 0 for all x ∈ E0.

Then we can take Kijk ∈ E0.

Finally it remains to study the quadratic equation (1.39h). First of all we

mention that this equation is automatically satisfied for r ≤ 4. To see this

notice that the equation is skewsymmetric in k, `,m, n, whence if r < 4 it is

automatically zero. When r = 4, we have to take k, `,m, n all different and hence

the equation becomes

〈Kij1, K234〉 − 〈Kij2, K341〉+ 〈Kij3, K412〉 − 〈Kij4, K123〉 = 0,

which is skewsymmetric in i, j. There are six possible choices for i, j but by

symmetry any choice is equal to any other up to relabeling, so without loss of

generality let us take i = 1 and j = 2, whence the first two terms are identically

zero and the two remaining terms satisfy

〈K123, K412〉 − 〈K124, K123〉 = 0,

which is identically true. This means that the cases of index 3 and 4 are classifiable

using our results. By contrast, the case of index 5 and above seems not to be

tame. An example should suffice. So let us take the case of r = 5 and dimE0 = 1,

so that the Kijk can be taken to be real numbers. The solutions to (1.39h) now
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describe the intersection of five quadrics in R10:

K125K134 −K124K135 +K123K145 = 0

K125K234 −K124K235 +K123K245 = 0

K135K234 −K134K235 +K123K345 = 0

K145K234 −K134K245 +K124K345 = 0

K145K235 −K135K245 +K125K345 = 0,

whence the solutions define an algebraic variety. One possible branch is given

by setting K1ij = 0 for all i, j, which leaves undetermined K234, K235, K245

and K345. There are other branches which are linearly related to this one: for

instance, setting K2ij = 0, et cetera, but there are also other branches which are

not linearly related to it.

1.2.6 Summary and conclusions

Let us summarise the above results in terms of the following structure theorem.

Theorem 1.2.7. Let V be a finite-dimensional indecomposable metric 3-Lie al-

gebra of index r > 0 with a maximally isotropic centre. Then V admits a vector

space decomposition into r +M +N + 1 orthogonal subspaces

V =
r⊕
i=1

(Rui ⊕ Rvi)⊕
N⊕
α=1

Wα ⊕
M⊕
π=1

Eπ ⊕ E0, (1.69)

where Wα, Eπ and E0 are positive-definite subspaces with the Eπ being two-

dimensional, and where 〈ui, uj〉 = 〈vi, vj〉 = 0 and 〈ui, vj〉 = δij. The 3-Lie

algebra is defined in terms of the following data:

• 0 6= ηπ ∧ ζπ ∈ Λ2Rr for each π = 1, . . . ,M ,

• 0 6= κα ∈ Rr for each α = 1, . . . , N ,

• a metric simple Lie algebra structure gα on each Wα,

• L ∈ Λ4Rr, and

• K ∈ Λ3Rr ⊗ E0 subject to the equation

〈Kijn, Kk`m〉+ 〈Kij`, Kmnk〉 − 〈Kijm, Knk`〉 − 〈Kijk, K`mn〉 = 0,
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by the following 3-brackets,1

[ui, uj, uk] = Kijk +
r∑
`=1

Lijk`v`

[ui, uj, x0] = −
r∑

k=1

〈Kijk, x0〉 vk

[ui, uj, xπ] = JπijHπxπ

[ui, xπ, yπ] = −
r∑
j=1

〈
xπ, J

π
ijHπyπ

〉
vj

[ui, xα, yα] = καi [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r∑
i=1

καi vi,

(1.70)

for all x0 ∈ E0, xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα, and where Jπij = ηπi ζ
π
j − ηπj ζπi

and Hπ a complex structure on each 2-plane Eπ. The resulting 3-Lie algebra is

indecomposable provided that there is no x0 ∈ E0 which is perpendicular to all

the Kijk, whence in particular dimE0 ≤
(
r
3

)
.

1.3 Examples for low index

Let us now show how to recover the known classifications in index ≤ 2 from

Theorem 1.2.7.

Let us consider the case of minimal positive index r = 1. In that case, the

indices i, j, k, l in Theorem 1.2.7 can only take the value 1 and therefore Jij, Kijk

and Lijkl are not present. Indecomposability of V forces E0 = 0 and Eπ = 0,

whence letting u = u1 and v = v1, we have V = Ru ⊕ Rv ⊕
⊕N

α=1 Wα as a

vector space, with 〈u, u〉 = 〈v, v〉 = 0, 〈u, v〉 = 1 and
⊕N

α=1Wα euclidean. The

3-brackets are:
[u, xα, yα] = [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉 v,
(1.71)

for all xα, yα, zα ∈ Wα and where we have redefined κα[xα, yα]→ [xα, yα], which is

a simple Lie algebra on each Wα. This agrees with the classification of lorentzian

3-Lie algebras in [15] which was reviewed in the introduction.

1We understand tacitly that if a 3-bracket is not listed here it vanishes. Also every summa-
tion is written explicitly, so the summation convention is not in force. In particular, there is no
sum over π in the third and fourth brackets.
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Let us now consider r = 2. According to Theorem 1.2.7, those with a maxi-

mally isotropic centre may now have a nonvanishing J12 while Kijk and Lijkl are

still absent. Indecomposability of V forces E0 = 0. Therefore W0 =
⊕M

π=1Eπ

and, as a vector space, V = Ru1 ⊕ Rv1 ⊕ Ru2 ⊕ Rv2 ⊕ W0 ⊕
⊕N

α=1Wα with

〈ui, uj〉 = 〈vi, vj〉 = 0, 〈ui, vj〉 = δij, ∀i, j = 1, 2 and W0 ⊕
⊕N

α=1Wα is euclidean.

The 3-brackets are now:

[u1, u2, xπ] = Jxπ

[u1, xπ, yπ] = −〈xπ, Jyπ〉 v2

[u2, xπ, yπ] = 〈xπ, Jyπ〉 v1

[u1, xα, yα] = κα1 [xα, yα]

[u2, xα, yα] = κα2 [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉κα1 v1 − 〈[xα, yα], zα〉κα2 v2,

(1.72)

for all xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα. This agrees with the classification

in [19] of finite-dimensional indecomposable 3-Lie algebras of index 2 whose centre

contains a maximally isotropic plane. In that paper such algebras were denoted

VIIIb(E, J, l, h, g, ψ) with underlying vector space R(u, v)⊕R(e+, e−)⊕E⊕l⊕h⊕g

with 〈u, u〉 = 〈v, v〉 = 〈e±, e±〉 = 0, 〈u, v〉 = 1 = 〈e+, e−〉 and all ⊕ orthogonal.

The nonzero Lie 3-brackets are given by

[u, e−, x] = Jx

[u, x, y] = 〈Jx, y〉 e+

[e−, x, y] = −〈Jx, y〉 v

[e−, h1, h2] = [h1, h2]h

[h1, h2, h3] = −〈[h1, h2]h, h3〉 e+

[u, g1, g2] = [ψg1, g2]g

[e−, g1, g2] = [g1, g2]g

[g1, g2, g3] = −〈[g1, g2]g, g3〉 e+

− 〈[ψg1, g2]g, g3〉 v

[u, `1, `2] = [`1, `2]l

[`1, `2, `3] = −〈[`1, `2]l, `3〉 v,

(1.73)

where x, y ∈ E, h, hi ∈ h, gi ∈ g and `i ∈ l.

To see that this family of 3-algebras is of the type (1.72) it is enough to identify

u1 ↔ u v1 ↔ v u2 ↔ e− v2 ↔ e+ (1.74)

as well as

W0 ↔ E and
N⊕
α=1

Wα ↔ l⊕ h⊕ g, (1.75)
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where the last identification is not only as vector spaces but also as Lie algebras,

and set
κ1|h = 0

κ1|l = 1

κ1|gα = ψα

κ2|h = 1

κ2|l = 0

κ2|gα = 1,

(1.76)

to obtain the map between the two families. As shown in [19] there are 9 different

types of such 3-Lie algebras, depending on which of the four ingredients (E, J),

l, h or (g, ψ) are present.

The next case is that of index r = 3, where there are up to 3 nonvanishing Jij

and one K123 := K, while Lijkl is still not present. Indecomposability of V forces

dimE0 ≤ 1. As a vector space, V splits up as

V =
3⊕
i=1

(Rui ⊕ Rvi)⊕
N⊕
α=1

Wα ⊕
M⊕
π=1

Eπ ⊕ E0, (1.77)

where all ⊕ are orthogonal except the second one, Wα. E0 and Eπ are positive-

definite subspaces, dimE0 ≤ 1, Eπ is two-dimensional, and 〈ui, uj〉 = 〈vi, vj〉 = 0

and 〈ui, vj〉 = δij. The 3-brackets are given by

[u1, u2, u3] = K

[ui, uj, x0] = −
r∑

k=1

〈Kijk, x0〉 vk

[ui, uj, xπ] = JπijHπxπ

[ui, xπ, yπ] = −
r∑
j=1

〈
xπ, J

π
ijHπyπ

〉
vj

[ui, xα, yα] = καi [xα, yα]

[xα, yα, zα] = −〈[xα, yα], zα〉
r∑
i=1

καi vi,

(1.78)

for all x0 ∈ E0, xπ, yπ ∈ Eπ and xα, yα, zα ∈ Wα, and where Jπij = ηπi ζ
π
j − ηπj ζπi

and Hπ a complex structure on each 2-plane Eπ.

Finally, let us remark that the family of admissible 3-Lie algebras found in [24]

are included in Theorem 1.2.7. In that paper, a family of solutions to equations

(1.31) was found by setting each of the Lie algebra structures [−,−]i to be nonzero

in orthogonal subspaces of W . This corresponds, in the language used here, to

the particular case of allowing precisely one καi to be nonvanishing in each Wα.
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Notice that, as shown in (1.76), already in [19] there are examples of admissible

3-Lie algebras of index 2 which are not of this form as both κ1 and κ2 might be

nonvanishing in the gα factors.

To solve the rest of the equations, two Ansätze are proposed in [24]:

• the trivial solution with nonvanishing J , i.e. καi = 0, Kijk = 0 for all

i, j, k = 1, . . . , r and for all α; and

• precisely one καi = 1 for each α (and include those Wα’s where all κ’s are

zero in W0) and one Jij := J 6= 0 assumed to be an outer derivation of the

reference Lie algebra defined on W .

As pointed out in that paper, Lijkl is not constrained by the fundamental

identity, so it can in principle take any value, whereas the Ansatz provided for

Kijk is given in terms of solutions of an equation equivalent to (1.39h). In the

Lagrangians considered, both Lijkl and Kijk are set to zero.

One thing to notice is that in all these theories there is certain redundancy

concerning the index of the 3-Lie algebra. If the indices in the nonvanishing

structures καi , Jij, Kijk and Lijkl involve only numbers from 1 to r0, then any

3-Lie algebra with such nonvanishing structures and index r ≥ r0 gives rise to

the equivalent theories.

In this light, in the first Ansatz considered, one can always define the non

vanishing J to be J12 and then the corresponding theory will be equivalent to one

associated to the index-2 3-Lie algebras considered in [19].

In the second case, the fact that J is an outer derivation implies that it must

live on the abelian part of W as a Lie algebra, since the semisimple part does not

possess outer derivations. This coincides with what was shown above, i.e., that

J |Wα = 0 for each α. Notice that each Lie algebra [−,−]i identically vanishes

in W0, therefore the structure constants of the 3-Lie algebra do not mix J and

[−,−]i. The theories in [24] corresponding to this Ansatz also have Kijk = 0,

whence again they are equivalent to the theory corresponding to the index-2

3-Lie algebra which was denoted V (E, J, h) in [19].
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Yet what are all such gaieties to me whose

thoughts are full of indices and surds?
Lewis Carroll

Chapter 2

Indefinite Signature

Bagger–Lambert Lagrangians

In this section we will consider the physical properties of the Bagger–Lambert

theory based on the most general kind of admissible metric 3-Lie algebra, as

described in Theorem 1.2.7.

In particular we will investigate the structure of the expansion of the corre-

sponding Bagger–Lambert Lagrangians around a vacuum wherein the scalars in

half of the null directions of the 3-Lie algebra take the constant values implied

by the equations of motion for the scalars in the remaining null directions, span-

ning the maximally isotropic centre. This technique was also used in [24] and

is somewhat reminiscent of the novel Higgs mechanism that was first introduced

by Mukhi and Papageorgakis [20] in the context of the Bagger–Lambert theory

based on the unique simple euclidean 3-Lie algebra S4. Recall that precisely this

strategy has already been employed in lorentzian signature in [18], for the class

of Bagger–Lambert theories found in [16, 17, 18] based on the unique admissible

lorentzian metric 3-Lie algebra W (g), where it was first appreciated that this

theory is perturbatively equivalent to N = 8 super Yang–Mills theory on R1,2

with the euclidean semisimple gauge algebra g. That is, there are no higher order

corrections to the super Yang–Mills Lagrangian here, in contrast with the infinite

set of corrections (suppressed by inverse powers of the gauge coupling) found

for the super Yang–Mills theory with su(2) gauge algebra arising from higgsing

the Bagger–Lambert theory based on S4 in [20]. This perturbative equivalence

between the Bagger–Lambert theory based on W (g) and maximally supersym-
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metric Yang–Mills theory with euclidean gauge algebra g has since been shown

more rigorously in [21,22,23].

We will show that there exists a similar relation with N = 8 super Yang–Mills

theory after expanding around the aforementioned maximally supersymmetric

vacuum the Bagger–Lambert theories based on the more general physically ad-

missible metric 3-Lie algebras we have considered. However, the gauge symme-

try in the super Yang–Mills theory is generally based on a particular indefinite

signature metric Lie algebra here that will be identified in terms of the data ap-

pearing in Theorem 1.2.7. The physical properties of the these Bagger–Lambert

theories will be shown to describe particular combinations of decoupled super

Yang-Mills multiplets with euclidean gauge algebras and free maximally super-

symmetric massive vector multiplets. We will identify precisely how the physical

moduli relate to the algebraic data in Theorem 1.2.7. We will also note how the

theories resulting from those finite-dimensional indefinite signature 3-Lie algebras

considered in [24] are recovered.

2.1 Review of two gauge theories in indefinite

signature

Before utilising the structural results of the previous section, let us briefly review

some general properties of the maximal N = 8 supersymmetric Bagger–Lambert

and Yang–Mills theories in three-dimensional Minkowski space that will be of

interest to us, when the fields are valued in a vector space V equipped with

a metric of indefinite signature. We shall denote this inner product by 〈−,−〉
and take it to have general indefinite signature (r, r + n). We can then define

a null basis eA = (ui, vi, ea) for V , with i = 1, . . . , r, a = 1, . . . , n, such that

〈ui, vj〉 = δij, 〈ui, uj〉 = 0 = 〈vi, vj〉 and 〈ea, eb〉 = δab.

For the sake of clarity in the forthcoming analysis, we will ignore the fermions

in these theories. Needless to say that they both have a canonical maximally

supersymmetric completion and none of the manipulations we will perform break

any of the supersymmetries of the theories.

2.1.1 Bagger–Lambert theory

Let us begin by reviewing some details of the bosonic field content of the Bagger–

Lambert theory based on the 3-bracket [−,−,−] defining a metric 3-Lie algebra
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structure on V . The components of the canonical 4-form for the metric 3-Lie

algebra are FABCD := 〈[eA, eB, eC ], eD〉 (indices will be lowered and raised using

the metric 〈eA, eB〉 and its inverse). The bosonic fields in the Bagger–Lambert

theory have components XA
I and (Ãµ)AB = FA

BCDA
CD
µ , corresponding respec-

tively to the scalars (I = 1, . . . , 8 in the vector of the so(8) R-symmetry) and the

gauge field (µ = 0, 1, 2 on R1,2 Minkowski space). Although the supersymmetry

transformations and equations of motion can be expressed in terms of (Ãµ)AB, the

Lagrangian requires it to be expressed as above in terms of AABµ .

The bosonic part of the Bagger–Lambert Lagrangian is given by

L = −1

2
〈DµXI , D

µXI〉+ V (X) + LCS , (2.1)

where the scalar potential is

V (X) = − 1
12
〈[XI , XJ , XK ], [XI , XJ , XK ]〉 , (2.2)

the Chern–Simons term is

LCS =
1

2

(
AAB ∧ dÃAB + 2

3
AAB ∧ ÃAC ∧ ÃCB

)
, (2.3)

and Dµφ
A = ∂µφ

A + (Ãµ)ABφ
B defines the action on any field φ valued in V of

the derivative D that is gauge-covariant with respect to ÃAB. The infinitesimal

gauge transformations take the form δφA = −Λ̃A
Bφ

B and δ(Ãµ)AB = ∂µΛ̃A
B +

(Ãµ)ACΛ̃C
B − Λ̃A

C(Ãµ)CB, where Λ̃A
B = FA

BCDΛCD in terms of an arbitrary

skewsymmetric parameter ΛAB = −ΛBA.

If we now assume that the indefinite signature metric 3-Lie algebra above

admits a maximally isotropic centre which we can take to be spanned by the

basis elements vi then the 4-form components FviABC must all vanish identically.

There are two important physical consequences of this assumption. The first is

that the covariant derivative DµX
ui
I = ∂µX

ui
I . The second is that the tensors

FABCD and FABC
GFDEFG = FABC

gFDEFg which govern all the interactions in

the Bagger–Lambert Lagrangian contain no legs in the vi directions. Therefore

the components AviAµ of the gauge field do not appear at all in the Lagrangian

while Xvi
I appear only in the free kinetic term −DµX

ui
I ∂

µXvi
I = −∂µXui

I ∂
µXvi

I .

Thus Xvi
I can be integrated out imposing that each Xui

I be a harmonic function

on R1,2 which must be a constant if the solution is to be nonsingular. (We will

assume this to be the case henceforth but singular monopole-type solutions may
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also be worthy of investigation, as in [27].) It is perhaps just worth noting that,

in addition to setting Xui
I constant, one must also set the fermions in all the ui

directions to zero which is necessary and sufficient for the preservation of maximal

supersymmetry here.

The upshot is that we now have −1
2
〈DµXI , D

µXI〉 = −1
2
DµX

a
ID

µXa
I (with

contraction over only the euclidean directions of V ) and each Xui
I is taken to

be constant in (2.1). Since both Xvi
I and AviAµ are now absent, it will be more

economical to define X i
I := Xui

I and Aiaµ := Auiaµ henceforth.

2.1.2 Super Yang–Mills theory

Let us now perform an analogous review for N = 8 super Yang–Mills theory, with

gauge symmetry based on the Lie bracket [−,−] defining a metric Lie algebra

structure g on V . The components of the canonical 3-form on g are fABC :=

〈[eA, eB], eC〉. The bosonic fields in the theory consist of a gauge field AAµ and

seven scalar fields XA
I (where now I = 1, . . . , 7 in the vector of the so(7) R-

symmetry) with all fields taking values in V . The field strength for the gauge

field takes the canonical form Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] in terms

of the gauge-covariant derivative Dµ = ∂µ + [Aµ,−]. This theory is not scale-

invariant and has a dimensionful coupling constant κ.

The bosonic part of the super Yang-Mills Lagrangian is given by

L SYM(AA, XA
I , κ|g) = −1

2
〈DµXI , D

µXI〉 − 1
4κ2 〈Fµν , F µν〉

− κ2

4
〈[XI , XJ ], [XI , XJ ]〉 . (2.4)

Noting explicitly the dependence on the data on the left hand side will be useful

when we come to consider super Yang-Mills theories with a much more elaborate

gauge structure.

Assuming now that g admits a maximally isotropic centre, again spanned by

the basis elements vi, then the 3-form components fviAB must all vanish identi-

cally. This property implies DXui
I = dXui

I , F ui = dAui and that the tensors fABC

and fAB
EfCDE = fAB

efCDe which govern all the interactions contain no legs in

the vi directions. Therefore Xvi
I and Avi only appear linearly in their respective

free kinetic terms, allowing them to be integrated out imposing that Xui
I is con-

stant and Aui is exact. Setting the fermions in all the ui directions to zero again

ensures the preservation of maximal supersymmetry.
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The resulting structure is that all the inner products using 〈eA, eB〉 in (2.4) are

to be replaced with 〈ea, eb〉 while all Xui
I are to be taken constant and Aui = dφui ,

for some functions φui . With both Xvi
I and Avi now absent, it will be convenient

to define X i
I := Xui

I and φi := φui henceforth.

Let us close this review by looking in a bit more detail at the physical prop-

erties of a particular example of a super Yang–Mills theory in indefinite sig-

nature with maximally isotropic centre, whose relevance will become clear in

the forthcoming sections. Four-dimensional Yang–Mills theories based on such

gauge groups were studied in [28]. The gauge structure of interest is based

on the lorentzian metric Lie algebra defined by the double extension d(E,R)

of an even-dimensional vector space E with euclidean inner product. Writing

V = Ru⊕ Rv ⊕ E as a lorentzian vector space, the nonvanishing Lie brackets of

d(E,R) are given by

[u, x] = Jx , [x, y] = −〈x, Jy〉 v , (2.5)

for all x, y ∈ E where the skewsymmetric endomorphism J ∈ so(E) is part of the

data defining the double extension. The canonical 3-form for d(E,R) therefore

has only the components fuab = Jab with respect to the euclidean basis ea on E.

It will be convenient to take J to be nondegenerate and so the eigenvalues of J2

will be negative-definite.

We shall define the positive number µ2 := Xu
IX

u
I as the SO(7)-norm-squared

of the constant 7-vector Xu
I and the projection operator P u

IJ := δIJ − µ−2Xu
IX

u
J

onto the hyperplane R6 ⊂ R7 orthogonal to Xu
I . It will also be convenient to

define xa := Xu
IX

a
I as the projection of the seventh super Yang–Mills scalar

field along Xu
I and DΦ := dΦ − dφu ∧ JΦ where Φ can be any p-form on R1,2

taking values in E. In terms of this data, the super Yang–Mills Lagrangian

L SYM((dφu, Aa), (Xu
I , X

a
I ), κ|d(E,R)) can be more succinctly expressed as

− 1

2
P u
IJDµX

a
ID

µXa
J + κ2µ2

2
(J2)abP

u
IJX

a
IX

b
J − 1

4κ2 (2 D[µA
a
ν])(2 D[µAν] a)

− 1
2µ2

(
Dµx

a + µ2JabAbµ
) (

Dµxa + µ2JacAµ c
)
. (2.6)

From the first line we see that the six scalar fields P u
IJX

a
J are massive with mass-

squared given by the eigenvalues of the matrix −κ2µ2(J2)ab. All the fields couple

to dφu through the covariant derivative D, but the second line shows that only the

seventh scalar xa couples to the gauge field Aa. However, the gauge symmetry

49



of (2.6) under the transformations δAa = Dλa and δxa = −µ2Jabλb, for any

parameter λa ∈ E, shows that xa is in fact pure gauge and can be removed in (2.6)

by fixing λa = µ−2(J−1)abxb. The remaining gauge symmetry of (2.6) is generated

by the transformations δφu = α and δΦ = αJΦ for all fields Φ ∈ E, where α is

an arbitrary scalar parameter. This is obvious since D = exp(φuJ)dexp(−φuJ)

and therefore, one can take D = d in (2.6) by fixing α = −φu.
Thus, in the gauge defined above, the Lagrangian becomes simply

L SYM((dφu, Aa), (Xu
I , X

a
I ), κ|d(E,R)) = −1

2
P u
IJ∂µX

a
I ∂

µXa
J

+ κ2µ2

2
(J2)abP

u
IJX

a
IX

b
J − 1

4κ2 (2 ∂[µA
a
ν])(2 ∂

[µAν] a) + µ2

2
(J2)abA

a
µA

µ b , (2.7)

describing dimE decoupled free abelian N = 8 supersymmetric massive vector

multiplets, each of which contains bosonic fields given by the respective gauge

field 1
κ
Aaµ plus six scalars P u

IJX
a
I , all with the same mass-squared equal to the

respective eigenvalue of −κ2µ2(J2)ab.

It is worth pointing out that one can also obtain precisely the theory above

from a particular truncation of an N = 8 super Yang–Mills theory with euclidean

semisimple Lie algebra g. If one introduces a projection operator PIJ onto a

hyperplane R6 ⊂ R7 then one can rewrite the seven scalar fields in this euclidean

theory in terms of the six projected fields PIJX
a
J living on the hyperplane plus the

single scalar ya in the complementary direction. Unlike in the lorentzian theory

above however, this seventh scalar is not pure gauge. Indeed, if we expand the

super Yang–Mills Lagrangian (2.4) for this euclidean theory around a vacuum

where ya is constant then this constant appears as a physical modulus of the

effective field theory, namely it gives rise to mass terms for the gauge field Aa and

the six projected scalars PIJX
a
J . If one then truncates the effective field theory to

the Coulomb branch, such that the dynamical fields A and PIJXJ take values in

a Cartan subalgebra t < g (while the constant vacuum expectation value y ∈ g),

then the Lagrangian takes precisely the form (2.7) after making the following

identifications. First one must take E = t whereby the gauge field Aa and coupling

κ are the the same for both theories. Second one must identify the six-dimensional

hyperplanes occupied by the scalars Xa
I in both theories such that P u

IJ in (2.7)

is identified with PIJ here. Finally, the mass matrix for the euclidean theory

is −κ2[(ady)
2]ab which must be identified with −κ2µ2(J2)ab in (2.7). This last

identification requires some words of explanation. We have defined ady Φ := [y,Φ]
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for all Φ ∈ g, where [−,−] denotes the Lie bracket on g. Since we have truncated

the dynamical fields to the Cartan subalgebra t, only the corresponding legs

of (ady)
2 contribute to the mass matrix. However, clearly y must not also be

contained in t or else the resulting mass matrix would vanish identically. Indeed,

without loss of generality, one can take y to live in the orthogonal complement

t⊥ ⊂ g since it is only these components which contribute to the mass matrix.

Thus, although (ady)
2 can be nonvanishing on t, ady cannot. Thus we cannot

go further and equate ady with µJ , even though their squares agree on t. To

summarise all this more succinctly, after the aforementioned gauge-fixing of the

lorentzian theory and truncation of the euclidean theory, we have shown that

L SYM ((dφu, A|E) , (Xu
I , P

u
IJXJ |E, x|E) , κ|d(E,R)) =

= L SYM (A|E, (PIJXJ |E, y|E⊥) , κ|g) , (2.8)

where E = t, y ∈ t⊥ ⊂ g is constant and (ady)
2 = µ2J2 on t. Of course, it is

not obvious that one can always solve this last equation for y in terms of a given

µ and J nor indeed whether this restricts ones choice of g. However, it is the

particular case of dimE = 2 that will be of interest to us in the context of the

Bagger–Lambert theory in 2.2.2 where we shall describe a nontrivial solution for

any rank-2 semisimple Lie algebra g. Obvious generalisations of this solution give

strong evidence that the equation can in fact always be solved.

2.2 Bagger–Lambert theory for admissible met-

ric 3-Lie algebras

We will now substitute the data appearing in Theorem 1.2.7 into the bosonic part

of the Bagger–Lambert Lagrangian (2.1), that is after having integrated out Xvi
I

to set all X i
I := Xui

I constant.

Since we will be dealing with components of the various tensors appearing in

Theorem 1.2.7, we need to introduce some index notation for components of the

euclidean subspace
⊕N

α=1Wα⊕
⊕M

π=1Eπ⊕E0. To this end we partition the basis

ea = (eaα , eaπ , ea0) on the euclidean part of the algebra, where subscripts denote

a basis for the respective euclidean subspaces. For example, aα = 1, . . . , dimWα

whose range can thus be different for each α. Similarly a0 = 1, . . . , dimE0,

while aπ = 1, 2 for each two-dimensional space Eπ. Since the decomposition
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⊕N
α=1Wα ⊕

⊕M
π=1Eπ ⊕ E0 is orthogonal with respect to the euclidean metric

〈ea, eb〉 = δab, we can take only the components 〈eaα , ebα〉 = δaαbα , 〈eaπ , ebπ〉 =

δaπbπ and 〈ea0 , eb0〉 = δa0b0 to be nonvanishing. Since these are all just unit metrics

on the various euclidean factors then we will not need to be careful about raising

and lowering repeated indices, which are to be contracted over the index range

of a fixed value of α, π or 0. Summations of the labels α and π will be made

explicit.

In terms of this notation, we may write the data from Theorem 1.2.7 in terms

of the following nonvanishing components of the canonical 4-form FABCD of the

algebra

Fuiaαbαcα = καi faαbαcα

Fuiujaπbπ =
(
ηπi ζ

π
j − ηπj ζπi

)
εaπbπ

Fuiujuka0 = Kijka0

Fuiujukul = Lijkl ,

(2.9)

where faαbαcα denotes the canonical 3-form for the simple metric Lie algebra

structure gα on Wα and we have used the fact that the 2x2 matrix Hπ has only

components εaπbπ = −εbπaπ , with ε12 = −1, on each 2-plane Eπ.

A final point of notational convenience will be to define Y AB := XA
I X

B
I and

the projection Xξ
I := ξiX

i
I for any ξ ∈ Rr. Combining these definitions allows

us to write certain projections which often appear in the Lagrangian like Y ξς :=

Xξ
IX

ς
I and Y ξa := Xξ

IX
a
I for any ξ, ς ∈ Rr. It will sometimes be useful to write

Y ξξ ≡ ‖Xξ‖2 ≥ 0 where ‖Xξ‖ denotes the SO(8)-norm of the vector Xξ
I . A

similar shorthand will be adopted for projections of components of the gauge

field, so that Aξςµ := ξiςjA
ij
µ and Aξaµ := ξiA

ia
µ .

It will be useful to note that the euclidean components of the covariant deriva-

tive DµX
A
I = ∂µX

A
I + (Ãµ)ABX

B
I from section 2.1.1 can be written

DµX
aα
I = ∂µX

aα
I − κ

α
i f

aαbαcα
(
2Aibαµ Xcα

I + Abαcαµ X i
I

)
=: DµX

aα
I − 2Baα

µ Xκα

I

DµX
aπ
I = ∂µX

aπ
I + 2 ηπi ζ

π
j ε

aπbπ
(
AijµX

bπ
I − A

ibπ
µ Xj

I + Ajbπµ X i
I

)
= ∂µX

aπ
I + 2 εaπbπ

(
Aη

πζπ

µ Xbπ
I − A

ηπbπ
µ Xζπ

I + Aζ
πbπ
µ Xηπ

I

)
DµX

a0
I = ∂µX

a0
I −Kijk

a0AijµX
k
I .

(2.10)

The second line defines two new quantities on each Wα: Baα
µ := 1

2
faαbαcαAbαcαµ and

the covariant derivative DµX
aα
I := ∂µX

aα
I −2 faαbαcακαi A

ibα
µ Xcα

I . The latter object
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is just the canonical covariant derivative with respect to the projected gauge field

A aα
µ := −2Aκ

αaα
µ on each Wα. The associated field strength Fµν = [Dµ,Dν ] has

components

F aα = −2καi
(
dAiaα − καj faαbαcαAibα ∧ Ajcα

)
. (2.11)

Although somewhat involved, the nomenclature above will help us understand

more clearly the structure of the Bagger–Lambert Lagrangian. Let us consider

now the contributions to (2.1) coming from the scalar kinetic terms, the sextic

potential and the Chern–Simons term in turn.

The kinetic terms for the scalar fields give

− 1

2
〈DµXI , D

µXI〉 = −1

2
DµX

a0
I D

µXa0
I

− 1

2

N∑
α=1

DµX
aα
I DµXaα

I −
1

2

M∑
π=1

DµX
aπ
I DµXaπ

I (2.12)

which expands to

N∑
α=1

[
−1

2
DµX

aα
I DµXaα

I + 2Xκα

I Baα
µ DµXaα

I − 2Y κακαBaα
µ Bµaα

]

+
M∑
π=1

[
−1

2
∂µX

aπ
I ∂µXaπ

I − 2 ∂µXaπ
I εaπbπ

(
Aη

πζπ

µ Xbπ
I − A

ηπbπ
µ Xζπ

I + Aζ
πbπ
µ Xηπ

I

)
− 2

(
Aη

πζπ

µ Xaπ
I − A

ηπaπ
µ Xζπ

I + Aζ
πaπ
µ Xηπ

I

)
×
(
Aµ η

πζπXaπ
I − A

µ ηπaπXζπ

I + Aµ ζ
πaπXηπ

I

)]
− 1

2
∂µX

a0
I ∂

µXa0
I +Kijk

a0Aijµ ∂
µY ka0 − 1

2
Kijka0Klmna0Y

klAijµA
µmn . (2.13)

The scalar potential can be written V (X) = V W (X) + V E(X) + V E0(X)

where

V W (X) = −1
4

N∑
α=1

faαbαeαf cαdαeα
(
Y κακαY aαcα − Y καaαY καcα

)
Y bαdα

V E(X) = −1
2

M∑
π=1

{
Y aπaπ

(
Y ηπηπY ζπζπ − (Y ηπζπ)2

)
+ 2Y ηπaπY ζπaπY ηπζπ

−Y ηπaπY ηπaπY ζπζπ − Y ζπaπY ζπaπY ηπηπ
}

V E0(X) = − 1
12
Kijka0Klmna0Y

ilY jmY kn .

(2.14)

Notice that V E0(X) is constant and will be ignored henceforth.
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And finally, the Chern–Simons term can be written LCS = LW
CS +L E

CS +L E0
CS

where

LW
CS = −2

N∑
α=1

Baα ∧F aα

L E
CS = −4

M∑
π=1

{
εaπbπ Aη

πaπ ∧ Aζπbπ + 2Aη
πζπ ∧ Aηπaπ ∧ Aζπaπ

−1

2
εaπbπAaπbπ ∧ dAηπζπ

}
L E0

CS = 2Kijka0A
ij ∧ dAka0 − 1

3
Kikla0Kjmna0A

ij ∧ Akl ∧ Amn +
1

2
LijklA

ij ∧ dAkl .
(2.15)

These expressions are valid only up to total derivative terms that will be dis-

carded.

Clearly there is a certain degree of factorisation for the Bagger–Lambert La-

grangian into separate terms living on the different components of
⊕N

α=1 Wα ⊕⊕M
π=1Eπ⊕E0. Indeed let us define accordingly LW = −1

2

∑N
α=1 DµX

aα
I DµXaα

I +

V W (X) + LW
CS and likewise for E and E0. This is mainly for notational conve-

nience however and one must be wary of the fact that L E and L E0 could have

some fields, namely components of Aij, in common.

To relate the full Lagrangian L with a super Yang-Mills theory, one has first

to identify and integrate out those fields which are auxiliary or appear linearly

as Lagrange multipliers. This will be most easily done by considering LW , L E

and L E0 in turn.

2.2.1 LW

The field Baα appears only algebraically as an auxiliary field in LW . Its equation

of motion implies

2Y κακαBaα = Xκα

I DXaα
I + ∗F aα , (2.16)

for each value of α. Substituting this back into LW then gives

− 1

2

N∑
α=1

DµX
aα
I DµXaα

I + LW
CS =

N∑
α=1

{
−1

2
P κα

IJ DµX
aα
I DµXaα

J − 1
4Y κακα

F aα
µν F µν aα

}
, (2.17)
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where, for each α, P κα

IJ := δIJ −
Xκα

I Xκα

J

Y κακα
is the projection operator onto the

hyperplane R7 ⊂ R8 which is orthogonal to the 8-vector Xκα

I that καi projects the

constant X i
I onto.

Furthermore, in terms of the Lie bracket [−,−]α on gα, the scalar potential

can be written

V W (X) = −1
4

N∑
α=1

Y κακα P κα

IKP
κα

JL [XI , XJ ]aαα [XK , XL]aαα . (2.18)

In conclusion, we have shown that upon integrating out Baα one can identify

LW =
N∑
α=1

L SYM
(
A aα , P κα

IJ X
aα
J , ‖Xκα‖|gα

)
. (2.19)

The identification above with the Lagrangian in (2.4) has revealed a rather in-

tricate relation between the data καi and gα on Wα from Theorem 1.2.7 and the

physical parameters in the super Yang–Mills theory. In particular, the coupling

constant for the super Yang–Mills theory on Wα corresponds to the SO(8)-norm

of Xκα

I . Moreover, the direction of Xκα

I in R8 determines which hyperplane the

seven scalar fields in the super Yang–Mills theory must occupy and thus may be

different on each Wα. The gauge symmetry is based on the euclidean Lie algebra⊕N
α=1 gα.

The main point to emphasise is that it is the projections of the individual καi

onto the vacuum described by constant X i
I (rather than the vacuum expectation

values themselves) which determine the physical moduli in the theory. For ex-

ample, take N = 1 with only one simple Lie algebra structure g = su(n) on W .

The Lagrangian (2.19) then describes precisely the low-energy effective theory

for n coincident D2-branes in type IIA string theory, irrespective of the index r

of the initial 3-Lie algebra. The only difference is that the coupling ‖Xκ‖, to

be interpreted as the perimeter of the M-theory circle, is realised as a different

projection for different values of r.

Thus, in general, we are assuming a suitably generic situation wherein none

of the projections Xκα

I vanish identically. If Xκα

I = 0 for a given value of α

then the Wα part of the scalar potential (2.14) vanishes identically and the only

occurrence of the corresponding Baα is in the Chern–Simons term (2.15). Thus,

for this particular value of α, Baα has become a Lagrange multiplier imposing

F aα = 0 and so A aα is pure gauge. The resulting Lagrangian on thisWα therefore
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describes a free N = 8 supersymmetric theory for the eight scalar fields Xaα
I .

2.2.2 L E

The field εaπbπAaπbπ appears only linearly in one term in L E
CS and is therefore a

Lagrange multiplier imposing the constraint Aη
πζπ = dφη

πζπ , for some some scalar

fields φη
πζπ , for each value of π. The number of distinct scalars φη

πζπ will depend

on the number of linearly independent 2-planes in Rr which the collection of all

ηπ ∧ ζπ span for π = 1, . . . ,M . Let us henceforth call this number k, which is

clearly bounded above by
(
r
2

)
.

Moreover, up to total derivatives, one has a choice of taking just one of the

two gauge fields Aη
πaπ and Aζ

πaπ to be auxiliary in L E. These are linearly

independent gauge fields by virtue of the fact that ηπ∧ζπ span a 2-plane in Rr for

each value of π. Without loss of generality we can take Aη
πaπ to be auxiliary and

integrate it out in favour of Aζ
πaπ . After implementing the Lagrange multiplier

constraint above, one finds that the equation of motion of Aη
πaπ implies

2Y ζπζπAη
πaπ = −εaπbπ

{
Xζπ

I

(
dXbπ

I + 2 εbπcπ
(
Xcπ
I dφ

ηπζπ +Xηπ

I Aζ
πcπ
))

+ 2 ∗
(
dAζ

πbπ + 2 εbπcπdφη
πζπ ∧ Aζπcπ

)}
. (2.20)

Substituting this back into L E then, following a rather lengthy but straightfor-

ward calculation, one finds that

− 1

2

M∑
π=1

DµX
aπ
I DµXaπ

I + L E
CS =

− 1

2

M∑
π=1

P ζπ

IJ

(
∂µX

aπ
I + 2 εaπbπ

(
Xbπ
I ∂µφ

ηπζπ +Xηπ

I Aζ
πbπ
µ

))
×
(
∂µXaπ

J + 2 εaπcπ
(
Xcπ
J ∂

µφη
πζπ +Xηπ

J Aµ ζ
πcπ
))

−
M∑
π=1

4
Y ζπζπ

(
∂[µA

ζπaπ
ν] + 2 εaπbπ∂[µφ

ηπζπAζ
πbπ
ν]

)
×
(
∂µAν ζ

πaπ + 2 εaπcπ∂µφη
πζπAν ζ

πcπ
)
, (2.21)

where, for each π, P ζπ

IJ := δIJ −
Xζπ

I Xζπ

J

Y ζπζπ
projects onto the hyperplane R7 ⊂ R8

orthogonal to the 8-vector Xζπ

I which ζπi projects the constant X i
I onto.

We have deliberately written (2.21) in a way that is suggestive of a super
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Yang–Mills description for the fields on E however, in contrast with the preceding

analysis for W , the gauge structure here is not quite so manifest. To make it

more transparent, let us fix a particular value of π and consider a 4-dimensional

lorentzian vector space of the form Re+ ⊕ Re− ⊕ Eπ, where the particular basis

(e+, e−) for the two null directions obeying 〈e+, e−〉 = 1 and 〈e±, e±〉 = 0 =

〈e±, eaπ〉 can of course depend on the choice of π (we will omit the π label here

though). If we take Eπ to be a euclidean 2-dimensional abelian Lie algebra then

we can define a lorentzian metric Lie algebra structure on Re+⊕Re−⊕Eπ given

by the double extension d(Eπ,R). The nonvanishing Lie brackets of d(Eπ,R) are

[e+, eaπ ] = −εaπbπebπ , [eaπ , ebπ ] = −εaπbπe− . (2.22)

This double extension is precisely the Nappi–Witten Lie algebra.

For each value of π we can collect the following sets of scalars and gauge

fields, Aπ := (2 dφη
πζπ , 0,−2Aζ

πaπ) and XπI := (Xηπ

I , Xζπ

I , X
aπ
I ) respectively, into

elements of the aforementioned vector space Re+ ⊕ Re− ⊕ Eπ. The virtue of

doing so being that if D = d + [A,−], for each value of π, is the canonical

gauge-covariant derivative with respect to each d(Eπ,R) then (DXI)
aπ = dXaπ

I +

2 εaπbπ
(
Xbπ
I dφ

ηπζπ +Xηπ

I Aζ
πbπ
)

while the associated field strength Fµν = [Dµ,Dν ]

has Faπ = −2
(
dAζ

πaπ + 2 εaπbπdφη
πζπ ∧ Aζπbπ

)
. These are exactly the compo-

nents appearing in (2.21)!

Moreover, the scalar potential V E(X) can be written

V E(X) = −1
4

M∑
π=1

Y ζπζπ P ζπ

IKP
ζπ

JL [XI ,XJ ]aπ [XK ,XL]aπ , (2.23)

where [−,−] denotes the Lie bracket on each d(Eπ,R) factor.

Thus it might appear that L E is going to describe a super Yang–Mills theory

whose gauge algebra is
⊕M

π=1 d(Eπ,R), which indeed has a maximally isotropic

centre and so is of the form noted in section 2.1.2. However, this need not be

the case in general since the functions φη
πζπ appearing in the e+ direction of each

Aπ must describe the same degree of freedom for different values of π precisely

when the corresponding 2-planes in Rr spanned by ηπ∧ζπ are linearly dependent.

Consequently we must identify the (e+, e−) directions in all those factors d(Eπ,R)

for which the associated ηπ ∧ ζπ span the same 2-plane in Rr. It is not hard to

see that, with respect to a general basis on
⊕M

π=1Eπ, the resulting Lie algebra k

must take the form
⊕k

[π]=1 d(E[π],R) of an orthogonal direct sum over the number
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of independent 2-planes k spanned by η[π] ∧ ζ [π] of a set of k double extensions

d(E[π],R) of even-dimensional vector spaces E[π], where
⊕M

π=1 Eπ =
⊕k

[π]=1E[π].

That is each [π] can be thought of as encompassing an equivalence class of π

values for which the corresponding 2-forms ηπ ∧ ζπ are all proportional to each

other. The data for k therefore corresponds to a set of k nondegenerate elements

J[π] ∈ so(E[π]) where, for a given value of [π], the relative eigenvalues of J[π]

are precisely the relative proportionality constants for the linearly dependent 2-

forms ηπ ∧ ζπ in the equivalence class. Clearly k therefore has index k, dimension

2
(
k +

[
dimW0

2

])
and admits a maximally isotropic centre.

Putting all this together, we conclude that

L E =
k∑

[π]=1

L SYM
(
A[π], P ζ[π]

IJ X
[π]
J , ‖X

ζ[π]‖
∣∣∣d(E[π],R)

)
. (2.24)

One can check from (2.14) and (2.21) that the contributions to the Bagger–

Lambert Lagrangian on E coming from different Eπ factors, but with π values

in the same equivalence class [π], are precisely accounted for in the expression

(2.24) by the definition above of the elements J[π] defining the double extensions.

The identification above again provides quite an intricate relation between

the data on Eπ from Theorem 1.2.7 and the physical super Yang–Mills param-

eters. However, we know from section 2.1.2 that the physical content of super

Yang–Mills theories whose gauge symmetry is based on a lorentzian Lie algebra

corresponding to a double extension is rather more simple, being described in

terms of free massive vector supermultiplets. Let us therefore apply this preced-

ing analysis to the theory above.

The description above of the Lagrangian on each factor Eπ has involved pro-

jecting degrees of freedom onto the hyperplane R7 ⊂ R8 orthogonal to Xζπ

I . The

natural analogy here of the six-dimensional subspace occupied by the massive

scalar fields in section 2.1.2 is obtained by projecting onto the subspace R6 ⊂ R8

which is orthogonal to the plane in R8 spanned by Xηπ ∧Xζπ , i.e. the image in

Λ2R8 of the 2-form ηπ∧ζπ under the map from Rr → R8 provided by the vacuum

expectation values X i
I . This projection operator can be written

P ηπζπ

IJ = δIJ −Xηπ

I Qηπ

J −X
ζπ

I Q
ζπ

J , (2.25)
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where

Qηπ

I :=
1

(∆ηπζπ)2

(
Y ζπζπXηπ

I − Y
ηπζπXζπ

I

)
Qζπ

I :=
1

(∆ηπζπ)2

(
Y ηπηπXζπ

I − Y
ηπζπXηπ

I

)
,

(2.26)

and

(∆ηπζπ)2 := ‖Xηπ ∧Xζπ‖2 ≡ Y ηπηπY ζπζπ − (Y ηπζπ)2 . (2.27)

The quantities defined in (2.26) are the dual elements to Xηπ

I and Xζπ

I such

that Qηπ

I X
ηπ

I = 1 = Qζπ

I X
ζπ

I and Qηπ

I X
ζπ

I = 0 = Qζπ

I X
ηπ

I . The expression (2.27)

identifies ∆ηπζπ with the area in R8 spanned by Xηπ∧Xζπ . From these definitions,

it follows that P ηπζπ

IJ in (2.25) indeed obeys P ηπζπ

IJ = P ηπζπ

JI , P ηπζπ

IK P ηπζπ

JK = P ηπζπ

IJ

and P ηπζπ

IJ Xηπ

J = 0 = P ηπζπ

IJ Xζπ

J .

The scalar potential (2.23) on E has a natural expression in terms of the

objects defined in (2.25) and (2.27) as

V E(X) = −1
2

M∑
π=1

(∆ηπζπ)2 P ηπζπ

IJ Xaπ
I Xaπ

J . (2.28)

Furthermore, using the identity

P ηπζπ

IJ ≡ P ζπ

IJ −
(∆ηπζπ)2

Y ζπζπ
Qηπ

I Q
ηπ

J , (2.29)

allows one to reexpress the remaining terms

− 1

2

M∑
π=1

DµX
aπ
I DµXaπ

I + L E
CS (2.30)

in (2.21) as

M∑
π=1

−1

2
P ηπζπ

IJ DµX
aπ
I DµXaπ

J − 1
Y ζπζπ

(
2 D[µA

ζπaπ
ν]

) (
2 DµAν ζ

πaπ
)

− 1

2

M∑
π=1

Y ζπζπ

(∆ηπζπ)2

(
Xηπ

I P ζπ

IJ DµX
aπ
J + 2

(∆ηπζπ)2

Y ζπζπ
εaπbπAζ

πbπ
µ

)
×
(
Xηπ

K P ζπ

KLD
µXaπ

L + 2
(∆ηπζπ)2

Y ζπζπ
εaπcπAµ ζ

πcπ

)
, (2.31)

where we have introduced the covariant derivative DΦaπ := dΦaπ+2 εaπbπ dφη
πζπ∧

Φbπ for any differential form Φaπ on R1,2 taking values in Eπ. Similar to what we
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saw in section 2.1.2, the six projected scalars P ηπζπ

IJ Xaπ
J in the first line of (2.31) do

not couple to the gauge field Aζ
πaπ on each Eπ. Moreover, the remaining scalar in

the second line of (2.31) can be eliminated from the Lagrangian, for each Eπ, using

the gauge symmetry under which δAiaπ = DΛiaπ for any parameter Λiaπ to fix

Λζπaπ = −1
2

Y ζ
πζπ

(∆ηπζπ )2
εaπbπXηπ

I P ζπ

IJX
bπ
J . There is a remaining gauge symmetry under

which δφη
πζπ = Ληπζπ and δΦaπ = −2 ΛηπζπεaπbπΦbπ where the gauge parameter

Ληπζπ = ηπi ζ
π
j Λij, under which the derivative D transforms covariantly. This can

also be fixed to set D = d on each Eπ. Notice that one has precisely the right

number of these gauge symmetries to fix all the independent projections φη
πζπ

appearing in the covariant derivatives.

After doing this one combines (2.28) and (2.31) to write

L E =
M∑
π=1

−1

2
P ηπζπ

IJ ∂µX
aπ
I ∂µXaπ

J −
1

2
(∆ηπζπ)2P ηπζπ

IJ Xaπ
I Xaπ

J

+
M∑
π=1

− 1
Y ζπζπ

(2 ∂[µA
ζπaπ
ν] )(2 ∂[µAν] ζπaπ)− 2

Y ζπζπ
(∆ηπζπ)2Aζ

πaπ
µ Aµ ζ

πaπ ,

(2.32)

describing precisely the bosonic part of the Lagrangian for free decoupled abelian

N = 8 massive vector supermultiplets on each Eπ, whose bosonic fields comprise

the six scalars P ηπζπ

IJ Xaπ
J and gauge field −2 1

‖Xζπ‖A
ζπaπ , all with mass ∆ηπζπ on

each Eπ. It is worth stressing that we have presented (2.32) as a sum over all

Eπ just so that the masses ∆ηπζπ on each factor can be written more explicitly.

We could equally well have presented things in terms of a sum over the equiva-

lence classes E[π], as in (2.24), whereby the relative proportionality constants for

the ∆ηπζπ within a given class [π] would be absorbed into the definition of the

corresponding J[π].

The Lagrangian on a given Eπ in the sum (2.32) can also be obtained from the

truncation of an N = 8 super Yang–Mills theory with euclidean gauge algebra

g via the procedure described at the end of section 2.1.2. In particular, let us

identify a given Eπ with the Cartan subalgebra of a semisimple Lie algebra g of

rank two. Then we require−‖Xζπ‖2 (ady)
2 = (∆ηπζπ)2 12 on Eπ for some constant

y ∈ E⊥π ⊂ g. In this case g must be either su(3), so(5), so(4) or g2 and E⊥π is

identified with the root space of g whose dimension is 6, 8, 4 or 12 respectively.

A solution in this case is to take y proportional to the vector with only +1/-1

entries along the positive/negative roots of g. The proportionality constant here

being
∆ηπζπ√
h(g)‖Xζπ‖

where h(g) is the dual Coxeter number of g and equals 3, 3, 2
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or 4 for su(3), so(5), so(4) or g2 respectively (it is assumed that the longest root

has norm-squared equal to 2 with respect to the Killing form in each case).

Recall from [29] that several of these rank two Lie algebras are thought to

correspond to the gauge algebras for N = 8 super Yang–Mills theories whose IR

superconformal fixed points are described by the Bagger–Lambert theory based

on S4 for two M2-branes on R8/Z2 (with Lie algebras so(4), so(5) and g2 corre-

sponding to Chern–Simons levels k = 1, 2, 3). It would interesting to understand

whether there is any relation with the aforementioned truncation beyond just

numerology! The general mass formulae we have obtained are somewhat remi-

niscent of equation (26) in [29] for the BLG model based on S4 which describes

the mass in terms of the area of the triangle formed between the location of the

two M2-branes and the orbifold fixed point on R8/Z2. More generally, it would

be interesting to understand whether there is a specific D-brane configuration for

which L E is the low-energy effective Lagrangian?

2.2.3 L E0

The field Aia0 appears only linearly in one term in L 0
CS and is therefore a Lagrange

multiplier imposing the constraint Kijka0A
jk = dγia0 , where γia0 is a scalar field

on R1,2 taking values in Rr ⊗ E0.

Substituting this condition into the Lagrangian allows us to write

−1

2
DµX

a0
I D

µXa0
I + L E0

CS =− 1

2
∂µ
(
Xa0
I − γi

a0X i
I

)
∂µ
(
Xa0
I − γj

a0Xj
I

)
− 1

3
Aij ∧ dγia0 ∧ dγja0 +

1

2
LijklA

ij ∧ dAkl .
(2.33)

The first line shows that we can simply redefine the scalars Xa0
I such that they

decouple and do not interact with any other fields in the theory.

Notice that none of the projections Aη
πζπ = dφη

πζπ of Aij that appeared in L E

can appear in the second line of (2.33) since the corresponding terms would be

total derivatives. Consequently, our indifference to L E0 in the gauge-fixing that

was described for L E, resulting in (2.32), was indeed legitimate. Furthermore,

there can be no components of Aij along the 2-planes in Rr spanned by the

nonanishing components of Kijka0 here for the same reason.

The contribution coming from the Chern–Simons term in the second line

of (2.33) is therefore completely decoupled from all the other terms in the La-

grangian. It has a rather unusual-looking residual gauge symmetry, inherited from
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that in the original Bagger–Lambert theory, under which δγia0 = σia0 := Kia0klΛ
kl

and Lijkl
(
δAkl − dΛkl

)
= σ[i

a0dγj]a0 for any gauge parameter Λij. In addition to

the second line of (2.33) being invariant under this gauge transformation, one can

easily check that so is the tensor LijkldA
kl − dγia0 ∧ dγja0 . This is perhaps not

surprising since the vanishing of this tensor is precisely the field equation result-

ing from varying Aij in the second line of (2.33). The important point though

is that this gauge-invariant tensor is exact and thus the field equations resulting

from the second line of (2.33) are precisely equivalent to those obtained from

an abelian Chern–Simons term for the gauge field Cij := LijklA
kl − γ[i

a0 ∧ dγj]a0

(where the [ij] indices do not run over any 2-planes in Rr which are spanned by

the nonvanishing components of ηπ[iζ
π
j] and Kijka0).

In summary, up to the aforementioned field redefinitions, we have found that

L E0 = −1

2
∂µX

a0
I ∂

µXa0
I +

1

2
M ijklCij ∧ dCkl , (2.34)

for some constant tensor M ijkl, which can be taken to obey M ijkl = M [ij][kl] =

Mklij, that is generically a complicated function of the components Lijkl and

Kijka0 . Clearly this redefined abelian Chern–Simons term is only well-defined in

a path integral provided the components M ijkl are quantised in suitable integer

units. However, since none of the dynamical fields are charged under Cij then we

conclude that the contribution from L E0 is essentially trivial.

2.3 Examples

Let us end by briefly describing an application of this formalism to describe the

unitary gauge theory resulting from the Bagger–Lambert theory associated with

two of the admissible index-2 3-Lie algebras in the IIIb family from [19] that were

detailed in section 1.3.

2.3.1 VIIIb(0, 0, 0, h, g, ψ)

The data needed for this in Theorem 1.2.7 is κ|h = (0, 1)t, κ|gα = (ψα, 1)t. The

resulting Bagger–Lambert Lagrangian will only get a contribution from LW and

describes a sum of separate N = 8 super Yang–Mills Lagrangians on h and on

each factor gα, with the respective euclidean Lie algebra structures describing

the gauge symmetry. The super Yang–Mills theory on h has coupling ‖Xu2‖ and

62



the seven scalar fields occupy the hyperplane orthogonal to Xu2 in R8. Similarly,

the N = 8 theory on a given gα has coupling ‖ψαXu1 +Xu2‖ with scalars in the

hyperplane orthogonal to ψαX
u1 +Xu2 . This is again generically a super Yang–

Mills theory though it degenerates to a maximally supersymmetric free theory

for all eight scalars if there are any values of α for which ψαX
u1 +Xu2 = 0.

2.3.2 VIIIb(E, J, 0, h, 0, 0)

The data needed for this in Theorem 1.2.7 is κ|h = (0, 1)t and Jπ = ηπ ∧ ζπ

where ηπ and ζπ are 2-vectors spanning R2 for each value of π and E =
⊕M

π=1 Eπ.

The data comprising Jπ can also be understood as a special case of a general

admissible index r 3-Lie algebra having all ηπ ∧ ζπ spanning the same 2-plane in

Rr (when r = 2 this is unavoidable, of course). The resulting Bagger–Lambert

Lagrangian will get one contribution from LW , describing precisely the same

N = 8 super Yang–Mills theory on h we saw above, and one contribution from

L E. The latter being the simplest case of the Lagrangian (2.24) where there

is just one equivalence class of 2-planes spanned by all ηπ ∧ ζπ and the gauge

symmetry is based on the lorentzian Lie algebra d(E,R). The physical degrees

of freedom describe free abelian N = 8 massive vector supermultiplets on each

Eπ with masses ∆ηπζπ as in (2.32). Mutatis mutandis, this example is equivalent

to the Bagger–Lambert theory resulting from the most general finite-dimensional

3-Lie algebra example considered in section 4.3 of [24].
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Summary

In this first part of the thesis we studied admissible metric 3-Lie algebras of

indefinite signature and the corresponding BLG models. In these theories, the

matter fields are valued in the 3-algebra and their kinetic terms, described via

the inner product, can become negative if the signature of the metric is not

positive definite, thus making the model seem non-unitary. This problem was

tackled i.a. by [30], where a 3-algebra with an inner product with one negative

eigenvalue was used in building a BLG model. It was shown there that the

matter fields with values along one of two the null directions decouple (this is

clear from the 3-algebra structure constants), while the fields along the other

are forced to constant values by the equations of motion. If one then expands

around the maximally supersymmetric gauge-invariant vacuum defined by this

constant field, one obtains a unitary theory: an N = 8 super Yang-Mills theory,

with coupling constants defined by the norm of the constant field. This procedure

can be made more rigorous using BRST quantisation, gauging the constant-shift

symmetry of the decoupling fields (i.a. [31]). In any case, the result is a maximally

supersymmetric Yang-Mills theory based on a euclidean gauge algebra, having

broken scale-invariance with respect to the BLG model based on the 3-algebra.

In these first two chapters we generalised this discussion to metric 3-Lie alge-

bras with generic indefinite signature: in chapter 1 we first characterised phys-

ically admissible finite-dimensional 3-Lie algebras, i.e. those that are indecom-

posable and have a maximally isotropic centre. For these, the fields along the

null directions can effectively decouple from the theory. We show how the vector

space on which the 3-algebra is defined factorises into the part spanned by the

null vectors times different types of euclidean sectors. We then use this char-

acterisation, in chapter 2 to calculate the Lagrangian for the general associated

BLG model. This was found to factorise into a sum of decoupled, maximally

supersymmetric gauge theories on the different euclidean components of V .

3-algebras and even n-algebras still constitute an extremely active research
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direction, as more applications to M-theoretic computations are constantly being

discovered.

Going back to the original motivation that lead to the discovery of 3-algebraic

gauge theories, let us also note at this point that significant progress has been

made in the search for model describing stacks of coincident M2 branes. The

restrictions on positive definite signature 3-Lie algebras used in BLG models

result in such a model being able to describe the world-volume theory at best of

2 M2 branes. Indeed, it is shown in [32] that BLG theory with the S4 3-Lie algebra

can be rewritten as a “traditional” Chern-Simons theory with Lie algebra SU(2)×
SU(2), coupled to matter fields valued in the bifundamental representation and

with two Chern-Simons terms of opposite sign preserving parity invariance. The

moduli space of such a theory does not coincide with what is expected of a model

describing a stack of M2 branes. Furthermore, not all the superconformal primary

operators predicted by the AdS/CFT correspondence can be constructed from the

field content of the BLG theory. Consequently, theories based on 3-Lie algebras

could at best describe two coincident branes, the special case in which both these

issues could be resolved.

The key idea in [32], however, inspired the work of [33], the much acclaimed

ABJM theory. Here the SU(2) × SU(2) quiver proposed by Van Raamsdonk is

generalised to a U(N)×U(N) and SU(N)×SU(N) structures, allowing explicit

N = 6 superconformal symmetry. Again one writes d = 3 Chern-Simons theories

at levels k and −k, coupled to bifundamental matter - the theory is expected

to describes the low energy limit of a stack of N M2 branes probing a C4/Zk

singularity. The large N limit would then be dual to M-theory on an AdS4 ×
S7/Zk.

In the special case of N = 2 in the SU(N) × SU(N) theory, one recovers

precisely the BLG theory, as the superconformal symmetry is enhanced to N = 8.

This type of construction obviously sheds some serious doubt on the necessity of

introducing triple structures in the first place, since the same and more general

results can be obtained using direct product Lie algebras. For general N , ABJM

theory at levels k = 1, 2 is still expected to have enhanced N = 8 supersymmetry,

so that it describes a stack of M2 branes probing flat space and R8/Z2 respectively.

Needless to say, a lot of literature focuses on examining the theory for generic k

for different amounts of conserved supersymmetry.

More recently the more general case of ABJ theories has also been developed

beyond the classical level. Such theories are based on Lie algebras of the type
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U(N)×U(M), contain the usual CS factors at levels k and −k and classically have

explicit N = 6 superconformal symmetry. It is argued in [34] that for k = ±2 and

M = N + 1 a hidden N = 8 supersymmetry emerges at the quantum level1. ABJ

theories for these special values of N,M and k have the same moduli space as

U(N)k×U(N)−k ABJM theories, but are not isomorphic to them. BLG theories

for low values of k are found to be isomorphic, at the quantum level, to one or

the other such theories at N = 2.

Finally let us mention one of the most important results following from the

ABJM proposal for a world-sheet theory of coincident M2 branes. We recalled

in the introduction that in the near horizon limit the dual 3-dimensional CFT

has N
3
2 degrees of freedom. Such a result seemed for a long time very difficult to

reproduce via any of the proposed models. The key element that finally allowed

a corresponding calculation of this quantity in ABJM theory, was the realisation

that the partition function and Wilson loop observables of the theory could be

encoded via a zero dimensional super-matrix model (see e.g. [35]). Without go-

ing into the detail of such a model, let us just observe that it allowed for the

calculation, in [36], of the planar free energy, matching at strong coupling that

of classical supergravity action on AdS4 × CP3. Furthermore it reproduces the

correct N
3
2 scaling for the number of degrees of freedom of the M2 brane theory.

The successes and all the activity around ABJM theories over the last few

years have made this a very fertile research ground, not to mention a more and

more probable candidate for the M2 brane description. The techniques that have

been developed around this topic are furthermore leading to interesting mathe-

matical generalisations that will bring a clearer understanding of these theories.

It is not excluded that a more transparent connection to BLG models and 3-

algebras (including the more generic triple structures, beyond 3-Lie algebras)

will be established.

1A hidden parity invariance is also argued to emerge at the quantum level, consistently with
what is expected of N = 8 theories.
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And now for something completely different!

Monty Python

Part II

3-dimensional Gravity
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Introduction

The second part of this work is set in the context of topologically massive grav-

ity (TMG). This is a cosmological gravity theory in 3 dimensions, containing an

Einstein-Hilbert (EH) term with negative cosmological constant − 2
`2

, but also a

gravitational Chern-Simons term. Recall that pure Einstein gravity in 3 dimen-

sions is “trivial”, in the sense that it does not contain any dynamic degrees of

freedom in its linear expansion and its solutions are described solely by their global

properties [37,38]. It is therefore an extremely simple setting in which to analyse

gravity, but of limited use in the quest for quantisation. The same simplicity, how-

ever, together with the hope for a better UV behaviour of perturbative theories

in three dimensions, motivates us to look at generlisations of pure 3-dimensional

gravity including terms of higher order in the derivatives of the metric. In fact, it

turns out that there are two possibilities for such a generalisation that do yield a

physical propagating field in the linearised theory: the addition of a gravitational

Chern-Simons term, as in TMG (see e.g. [39,40,41,42]); the inclusion of specific

higher order derivative terms, going like RµνR
µν and R2, giving rise to what is

known as new massive gravity [43]. Both cases have drawbacks. In particular,

since we are here focusing on TMG, let us point out that it is a parity violating

model, and, even though it does feature a propagating graviton of helicity ±2,

the linearised theory is unitary only for the “wrong” sign of the EH term. Indeed,

using the standard sign on the EH term causes non-unitary propagation of the

spin 2 modes, implying non-unitarity of the boundary CFT [44]. On the other

hand, the opposite sign implies negative mass for black holes in the bulk, which

translates to a negative central charge for the boundary CFT. Nonetheless, the

simplicity of the theory makes it a very useful toy model within which to explore

quantum gravity, not least since it poses considerable interest in the context of

holography, as we will elucidate in the next section.

In what follows, we will first motivate our interest in space-like warped back-

grounds in TMG in a short introductory section, to then proceed into a detailed

analysis of the locally warped AdS3 solutions to the theory. That is, we will

review warped AdS3 and those quotients of it that result in causal singularities

protected by horizons. Our aim in this first part is to present a very clear, ge-

ometrically obvious construction, that will clarify the relation of the emergence

of closed time-like curves to particular choices of coordinates for locally warped

AdS3 spaces. We will proceed to studying these solutions in depth and present
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a detailed analysis of the near horizon limits that can be defined for warped

AdS3 black holes. Here we chose to emphasize how to take such limits from the

quotient construction directly, leading us back to the local parametrizations in-

troduced earlier. The whole process gives a systematic, geometrically motivated

understanding of warped AdS in TMG.

Overall, this work was motivated by our ambition to understand holography

for such backgrounds. Keeping this hope in mind, we propose in the final chapter

a conformal approach to solving TMG via a Kaluza-Klein (KK) reduction. Again,

the aim being some insight into holography in this context, we hoped to find

solutions that interpolate between AdS and warped AdS space. Understanding

such a background could lead to some insight as to what should be expected as

a dual boundary gauge theory for the warped case. Our approach was found to

require too much symmetry to yield such novel solutions, but it does reproduce

most known stationary axisymmetric TMG backgrounds.

Chapters 3 and 4 therefore follow precisely [45]and [46]2 respectively.

2Currently under review for publication in “General Relativity and Gravitation”.
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Let’s do the space-warp again!

Chapter 3

TMG and warped AdS3

3.1 Why warp?

The action of TMG contains an Einstein-Hilbert term with negative cosmological

constant −1/`2 plus a gravitational Chern-Simons term

16πGS[g] =

∫
d3x
√
−g
[(
R +

2

`2

)
+

`

6ν
ελµνΓrλσ

(
∂µΓσrν +

2

3
ΓσµτΓ

τ
νρ

)]
.

In three dimensions, the gravitational constant G has dimension of length and ν

is a dimensionless positive constant that we shall take ν > 1. The equations of

motion are

Rµν −
1

2
Rgµν −

1

`2
gµν = +

`

3ν
εµ
ρσ(Rνρ −

1

4
gνρR);σ ≡ −Cµν ,

where the Cotton tensor Cµν is a measure of conformal flatness. A solution of

TMG is given by a metric along with a preferred orientation of the Levi-Civita

tensor εµνρ. It is clear from the above that AdS3 space is always a solution of

this theory, since it solves both sides of the equations of motion being set to zero

separately.

The theory is worth some attention since its solution space is more relevant to

four-dimensional physics than what one might expect from such a simplification.

The near-horizon geometry of the extremal Kerr black hole [47], at fixed po-

lar angle, is a particular solution of TMG, the self-dual warped AdS3 space in

Poincaré coordinates (see also [48]). The geometry of warped AdS3 therefore

plays a pivotal role in TMG.

The last couple of years have seen a flurry of activity in TMG, due to the con-
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jecture that the black hole solutions obtained by quotients of spacelike warped

AdS3 are dual to a CFT with separate left and right central charges [49]. More

recently, real-time correlators were obtained for the self-dual geometry in accel-

erating coordinates that were chiral [50]. This motivates us to take a tour in the

quotient construction and obtain the self-dual geometry as a spacetime limit of

the black hole quotients.

The next two sections can be read as a review of spacelike warped AdS3 and

the black hole quotients. In section 3.2 we describe warped AdS3 as the universal

cover of SL(2,R) equipped with a “non-round” metric. We give three coordinate

systems that will be of use: the (global) warped AdS3 coordinates, accelerating

coordinates and Poincaré-like coordinates. In section 4.1 we present the black

hole quotient construction following [49] paying particular attention to the case

when causal singularities do exist behind the Killing horizons. As customary, it

is for this case that we shall call the quotient a 3d black hole [38]. We explicitly

write a corresponding inequality on the ADT mass and angular momentum for

the black hole quotients in two commonly used conventions, those of [49] and [51].

We find that the phase space is such that the ratio of left to right temperature

TL/TR has a lower bound, and that there is a critical value of the ratio when the

inner horizon coincides with the causal singularity. In section 4.2 we accordingly

find that the causal diagrams fall into three different classes. These are similar

to those of the non-extremal charged Reissner-Nordström 4d black hole (RN) for

a generic ratio TL/TR, the extremal RN when TR = 0, and the uncharged RN

when the ratio is at its critical value.

In the last section we describe the various spacetime limits that one can take

in the black hole phase space. We describe the regular1 extremal limit, the

near-horizon limit of the extremal black holes, a near-extremal limit TR → 0

for the non-extremal black holes, and the limit when both temperatures TR and

TL go to zero while keeping the Hawking temperature fixed. The extremal and

near-extremal limits give the self-dual warped AdS3 geometry in coordinates that

respect the nature of the horizon. The limit when both temperatures go to zero

while keeping the Hawking temperature fixed gives the vacuum solution and is

universal for all ratios TL/TR.

1regular in the sense of a continuous limit in the ADM metric form.
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3.2 Spacelike warped AdS3

In this section we review the geometry of spacelike warped AdS3. This will

prepare us for a clear understanding of the quotient construction in section 4.1.

We describe the metric in warped, accelerating and Poincaré coordinates. In

summary, the metric will be written in the form

g`,ν =
`2

ν2 + 3
(−f(x)dτ 2 +

dx2

f(x)
+

4ν2

ν2 + 3
(du+ xdτ)2), (3.1)

where

f(x) =


x2 + 1 for warped coordinates,

x2 − 1 for accelerating coordinates,

x2 for Poincaré coordinates.

The metric (3.1) satisfies the TMG equation of motion with ετxu = +
√
−g. We

will use the same labels (τ, x, u) for accelerating and Poincaré coordinates, hoping

this will not cause confusion. For the warped coordinates we will use instead the

coordinate labels (t̃, σ, ũ), where we replace x→ sinhσ, u→ ũ and τ → t̃.

3.2.1 Warped coordinates

Let us start by expressing AdS3 as the universal cover of the special linear group

SL(2,R):

SL(2,R) =

{(
T1 +X1 T2 +X2

X2 − T2 T1 −X1

)
: T 2

1 + T 2
2 −X2

1 −X2
2 = 1

}
.

As a group, SL(2,R) acts on the left and right on the group manifold. We write

the action as SL(2,R)L × SL(2,R)R. We choose a basis of the right- and left-
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invariant vector fields, respectively, la and ra:

l1 (r2) =
1

2

(
−X2

∂

∂T1

− T1
∂

∂X2

± T2
∂

∂X1

±X1
∂

∂T2

)
=

1

2

(
0 −1

−1 0

)
∈ sl(2,R)L(R) ;

l0 (r0) =
1

2

(
−T1

∂

∂T2

+ T2
∂

∂T1

±X1
∂

∂X2

∓X2
∂

∂X1

)
=

1

2

(
0 −1

+1 0

)
∈ sl(2,R)L(R) ;

l2 (r1) =
1

2

(
−X1

∂

∂T1

− T1
∂

∂X1

∓X2
∂

∂T2

∓ T2
∂

∂X2

)
=

1

2

(
−1 0

0 +1

)
∈ sl(2,R)L(R) .

The non-zero commutators of the generators are [la, lb] = ε c
ab lc and [ra, rb] =

ε c
ab rc, where the indices a = 0, 1, 2 are raised with a mostly-plus Lorentzian

signature metric and ε012 = +1. We associate to the bases la and ra the dual

left- and right-invariant one forms θa and θ̄a, so that θa(lb) = δab and θ̄a(rb) = δab .

The Lie derivative therefore acts as Llaθ
b = ε b

a cθ
c and Lra θ̄

b = ε b
a cθ̄

c. The left-

invariant one-forms allow us to write metrics on SL(2,R) with symmetry of rank

3,4 and 6.

The Killing form, or “round” metric, is simply

g` =
`2

4

(
−θ0 ⊗ θ0 + θ1 ⊗ θ1 + θ2 ⊗ θ2

)
.

Let us introduce the parametrization

T1 = cosh σ
2

cosh ũ
2

cos t̃
2

+ sinh σ
2

sinh ũ
2

sin t̃
2
,

T2 = cosh σ
2

cosh ũ
2

sin t̃
2
− sinh σ

2
sinh ũ

2
cos t̃

2
,

X1 = cosh σ
2

sinh ũ
2

cos t̃
2

+ sinh σ
2

cosh ũ
2

sin t̃
2
,

X2 = cosh σ
2

sinh ũ
2

sin t̃
2
− sinh σ

2
cosh ũ

2
cos t̃

2
,

(3.2)

which was shown in [52] to cover the whole of SL(2,R) with ũ, σ ∈ R and t̃ ∼
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t̃ + 4π. These are the hyperbolic asymmetric coordinates of [53]. We use the

conventions in (3.2), so that with the above parametrization the θa are

θ0 = −dt̃ cosh ũ coshσ + dσ sinh ũ, (3.3)

θ1 = −dσ cosh ũ+ dt̃ coshσ sinh ũ, (3.4)

θ2 = dũ+ dt̃ sinhσ , (3.5)

the left-invariant vectors are

r0 = −∂t̃ , (3.6)

r1 = sin t̃ ∂σ + cos t̃ tanhσ ∂t̃ + cos t̃ sechσ ∂ũ , (3.7)

r2 = − cos t̃ ∂σ + sin t̃ tanhσ ∂t̃ + sechσ sin t̃ ∂ũ (3.8)

and the right-invariant vectors are

l0 = − sinh ũ ∂σ − cosh ũ sechσ ∂t̃ + cosh ũ tanhσ ∂ũ , (3.9)

l1 = − cosh ũ ∂σ − sechσ sinh ũ ∂t̃ + sinh ũ tanhσ ∂ũ , (3.10)

l2 = ∂ũ . (3.11)

The round metric becomes

g` =
`2

4

[
− cosh2 σdt̃2 + dσ2 + (dũ+ sinhσdt̃)2

]
. (3.12)

The isometry group of SL(2,R) when endowed with the round metric is

SO(2, 2) = (SL(2,R)L× SL(2,R)R)/Z2, where we take into account that −1l acts

similarly on each side. Unwrapping t̃ ∈ R gives the AdS3 metric in warped coor-

dinates [52], as a hyperbolic fibration over AdS2. The isometry group becomes a

diagonal universal cover of (SL(2,R)L × SL(2,R)R)/Z2.

Keeping the time identification t̃ ∼ t̃+4π, one observes in (3.12) that it covers

twice a quadric base space. This is because the isometry generated by l2 defines

a non-trivial real-line fibration of SL(2,R) over the quadric

T̃ 2
1 + T̃ 2

2 − X̃2 = 1. (3.13)
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Explicitly, the coordinates defined by

T̃1 − X̃ = 2(X1 + T1)(X2 − T2),

T̃1 + X̃ = 2(X1 − T1)(X2 + T2),

T̃2 = 2(T 2
2 −X2

2 )− 1

(3.14)

are invariant under l2 and satisfy (3.13). For every point (T̃1, T̃2, X̃1) that satisfies

the quadric (3.13), there are two different orbits in SL(2,R) compatible with

(3.14). Indeed, (3.14) can be solved depending on the value of T̃2 : if T̃2 < −1

the solutions will cross T2 = 0 and the two orbits are distinguished by the sign

of X2; similarly, if T̃2 > −1 the same happens, but with T2 and X2 exchanged;

if T̃2 = −1 the two orbits are given by T2 = ±X2. One can easily check that

the action of the vector field r0 induces on the quadric base space a rotation of

period 2π:

Lr0(T̃2) = T̃1

Lr0(T̃1) = −T̃2

Lr0(X̃) = 0,

while, from (3.2), it has period 4π in SL(2,R). The double cover is depicted

in figures 3.1(a) and 3.1(b). Note that this is slightly different from the Hopf

fibration of the three-sphere, which covers the two-sphere once. If two complex

numbers z1, z2 are used to describe the three-sphere as |z1|2 + |z2|2 = 1, then the

projection is π(z1, z2) = (2z1z
∗
2 , |z1|2 − |z2|2) ∈ S2. For every point in S2 there is

precisely one orbit given by (z1, z2) 7→ (eiθz1, e
iθz2).

Along these lines we approach the spacelike warped metric

g`,ν =
`2

ν2 + 3

(
−θ0 ⊗ θ0 + θ1 ⊗ θ1 +

4ν2

ν2 + 3
θ2 ⊗ θ2

)
, (3.15)

so that for ν > 1 or ν < 1 we have a respectively stretching or squashing of

the fiber in the direction of l2 [54, 53, 55]. The isometry group is broken to that

generated by the l2 and the ra. In the warped coordinates (t̃, σ, ũ), the warped

metric is

g`,ν =
`2

ν2 + 3

(
− cosh2 σ dt̃2 + dσ2 +

4ν2

ν2 + 3

(
dũ+ sinhσ dt̃

)2
)
, (3.16)
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T̃ 2
1 + T̃ 2

2 − X̃2 = 1

SL(2,R)

(a) The flow of r0 covers twice the
quadric.

(T2, X2)

(b) The fiber is two distinct or-
bits of l2.

Figure 3.1: Hyperbolic fibration

where the coordinate t̃ covers the quadric base space twice. As before, we unwrap

the time coordinate to run over t̃ ∈ R. This is the warped AdS3 geometry in the

global warped coordinates, which was given in (3.1) for f(x) = x2 + 1. The

isometry group is the universal cover ˜SL(2,R)× R.

If we compactify spacelike warped AdS3 along l2, that is ũ ∼ ũ + 2πα, we

obtain the so-called self-dual solution of TMG. In warped coordinates, the metric

is

g`,ν =
`2

ν2 + 3

(
− cosh2 σ dt̃2 + dσ2 +

4ν2

ν2 + 3

(
α dφ̃+ sinhσ dt̃

)2
)
,

with t̃, σ ∈ R and φ̃ ∼ φ̃ + 2π. The isometry group of the self-dual geometry

becomes ˜SL(2,R)× U(1).

3.2.2 Accelerating coordinates

Let us ask how we would write the warped AdS3 metric in other coordinate

systems (τ, x, u) where ∂τ is a linear combination of the ra and l2. Since l2

acts freely we can choose u to be such that ∂u = l2. The metric would have

as a manifest symmetry the translations in τ and u. We still need to make an

appropriate choice for the coordinate x, which should be invariant under ∂τ and

∂u. That is, we require ∂τx = ∂ux = 0. We choose x = (ν2+3)2

4ν2`2
g`,ν(∂u, ∂τ ),

which is indeed invariant because ∂u and ∂τ are commuting Killing vectors. The

coordinate system (τ, x, u) is thus described by the surfaces (u, τ) generated by

the flows of two Killing vectors, and a coordinate x which smoothly labels them.

Under an SL(2,R)R rotation on the ra and an GL(2,R) transformation on
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(u, τ) we can bring ∂τ to one of the following forms: r0, −r2, or r0 ± r2. We

always keep ∂u = l2 as before. The timelike case ∂τ = −r0 corresponds to the

warped coordinates, see (3.6) and (3.11). In this subsection we consider the

second, spacelike case, ∂τ = r2, and in the next subsection we will consider the

null case. Here, we thus have a set of coordinates defined by the action of the

Killing vectors r2 and l2 and their metric product. Using (3.16) and the present

data, we can write the metric

g`,ν =
`2

ν2 + 3

(
−(x2 − 1)dτ 2 +

dx2

x2 − 1
+

4ν2

ν2 + 3
(du+ x dτ)2

)
, (3.17)

where we fixed dx to be orthogonal to the (u, τ) hypersurfaces. This is precisely

the metric (3.1), with f(x) = x2 − 1. The self-dual solution in accelerating

coordinates is obtained by replacing u = αφ in (3.17), with φ ∼ φ+ 2π.

We call this set of coordinates “accelerating” as they have a lot in common

with those of the Rindler spacetime. Accelerating coordinates are those of ob-

servers with proper velocity v = ∂τ
|∂τ | , whose acceleration ∇vv is position depen-

dent. In contrast to Rindler coordinates though, where ∂τ is a Lorentz boost in

Minkowski space, here ∂τ is never timelike with respect to the metric (recall that

it is taken to be r2). Nevertheless, note how the τ =const. surfaces are spacelike.

As expected for metrics expressed in Rindler-like coordinates, there are apparent

Killing horizons appearing at x = ±1. Here the flow of r2 takes us to a line where

r2 becomes collinear to l2. Thus this coordinate system is valid only away from

the Killing horizon. The warped AdS spacetime has an infinite number of such

regions. The figure in 3.2(a) gives a visualisation of the situation2. The value

of the level x tells us where we are with respect to the Killing horizons in each

region, for each of which there is an appropriate isometric embedding of (τ, x, u)

in warped AdS3.

Let us present an explicit embedding as in figure 3.2(b). The region x > 1

with metric (3.17) isometrically embeds in warped AdS under

sinhσ =
√
x2 − 1 cosh τ

cot t̃ = −
√
x2 − 1

x
sinh τ

ũ = u+ tanh−1(
tanh τ

x
) .

(3.18)

2in the figure we take ũ =const., which is possible because ũ is defined globally.
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t̃

σ

−2 −2

0

0

−0.7

−0.7

0.7
22

0.7

−1

−1

1

1

π

2π

(a) Integral curves of r2 in warped AdS3

σ

2π

π

x < −1

x > 1

|x| < 1

t̃

(b) the regions of warped AdS3 covered by (3.18) and (3.19)

Figure 3.2: The (σ, t̃) plane of warped AdS3 at fixed ũ. Each line is the flow of
∂τ and the level numbers are x = coshσ sin t̃. At σ = 0, t̃ = π

2
mod π we have a

fixed point r2 = 0.
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This covers ũ ∈ R, σ > 0, and t̃ ∈ (0, π) with coshσ sin t̃ > 1. The inverse of

(3.18) is

x = coshσ sin t̃

tanh τ = − cothσ cos t̃

u = ũ+ tanh−1 cot t̃

sinhσ
,

which is well-defined for σ > 0, t̃ ∈ (0, π) and∣∣∣∣ cot t̃

sinhσ

∣∣∣∣ < 1⇔ | coshσ sin t̃| > 1 .

Similarly the region |x| < 1 can be embedded with

sinhσ =
√

1− x2 sinh τ

tan t̃ = − x√
1− x2

1

cosh τ

ũ = u+ tanh−1(x tanh τ) ,

(3.19)

whose inverse is
x = coshσ sin t̃

tanh τ = −tanhσ

cos t̃

u = ũ+ tanh−1(sinhσ tan t̃) .

Here we cover σ ∈ R, ũ ∈ R and

∣∣sinhσ tan t̃
∣∣ < 1⇔ | coshσ sin t̃| < 1 .

3.2.3 Poincaré-like coordinates

We can go through the same construction as above, but this time choosing ∂τ =

−r0 + r2. We define as before ∂u = l2 and x = (ν2+3)2

4ν2`2
g`,ν(∂u, ∂τ ). We also use the

freedom to make x hypersurface orthogonal. The metric is

g`,ν =
`2

ν2 + 3

(
−x2dτ 2 +

dx2

x2
+

4ν2

ν2 + 3
(du+ x dτ)2

)
, (3.20)

in what have been called Poincaré coordinates of warped AdS for obvious reasons.

This is the metric in (3.1) with f(x) = x2.

The case ∂τ = r0 + r2 is similar to the above, simply by the warped AdS

82



σ

t̃

x < 0

x > 0

2π

π

Figure 3.3: Isometric embedding in Poincaré coordinates.

discreet symmetry (t̃, ũ) 7→ (−t̃,−ũ) that flips the sign of r0 while preserving

that of r2. Note how rescaling x 7→ eζx and τ 7→ e−ζτ is an isometry. This is

because it is the action of eζr1 , and we can show that r1 = x∂x − τ∂τ by noting

the following:

r1(x) =
(ν2 + 3)2

4ν2`2
Lr1(g`,ν(∂u, ∂τ )) =

(ν2 + 3)2

4ν2`2
g`,ν(∂u, [r1, ∂τ ]) = x ; (3.21)

[r1, ∂τ ] = ∂τ ⇒ ∂τ (r1(τ)) = −1 and ∂τ (r1(u)) = 0 ,

[r1, ∂u] = 0⇒ ∂u(r1(u)) = 0 and ∂u(r1(τ)) = 0 .

In (3.21) we used that r1 is Killing and we have also used the commutation

relations. Compactifying along l2, that is u ∼ u + 2πα, results in the self-dual

solution in Poincaré coordinates

g`,ν =
`2

ν2 + 3

(
−x2dτ 2 +

dx2

x2
+

4ν2

ν2 + 3
(α dφ+ x dτ)2

)
.

An explicit embedding for x ≶ 0 that covers the range sinhσ+sin t̃ coshσ ≶ 0,

as in figure 3.3, is given by

x = sinhσ + sin t̃ coshσ ,

xτ = − cos t̃ coshσ ,

u = ũ+ ln

(
±coshσ/2 cos t/2 + sinh σ/2 sin t/2

coshσ/2 sin t/2 + sinh σ/2 cos t/2

)
.
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The first equation above is the definition of x, while the second follows from

∂tx = −Lr0x = (ν2+3)2

4ν2`2
g`,ν(∂u, r1) ,

where we used the Killing property of r0 and its commutation relations, and we

use the relation r1 = x∂x − τ∂τ described in the previous paragraph. The last

equation relating u− ũ is an integral of sinhσdt̃− xdτ so that x is hypersurface

orthogonal. We easily confirm that x ≶ 0 is equivalent to

coshσ/2 cos t/2 + sinh σ/2 sin t/2

coshσ/2 sin t/2 + sinh σ/2 cos t/2
≶ 0 .

3.3 Warpping up

At the end of this chapter, we are now more than familiar with the warped AdS3

geometry and we are able to describe it in three different sets of coordinates,

according to how we choose our Killing vector ∂τ :

• for ∂τ ∼ r0 timelike, using the parametrization (3.2), we obtain the set

(t̃, σ, ũ), well defined on all of AdS3, of warped coordinates;

• for ∂τ ∼ r2 spacelike, we obtain the set (τ, x, u), exhibiting apparent hori-

zons and therefore only locally well defined, of accelerating coordinates ;

• for ∂τ ∼ r2 + r0 null, similarly, we obtain the set (τ, xu), with apparent

singularity at x = 0, of Poincaré coordinates .

We explicitly derived and listed the isometries that embed the patches of the local

coordinates into the total AdS3 space, for completeness, although the general

form (3.1) visualising all these choices does give the clearest idea of the salient

characteristics of each map. It is precisely this visualisation, together with the

relation between explicit isometries and different coordinate maps, that we want

to keep in mind for the next sections. We will be using these maps as starting

point to construct non-extremal and extremal warped BTZ black holes, where

we hope to clarify how solutions with actual causal singularities are very easily

related to global AdS space via the appropriate coordinate patches.
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Farnsworth: Shizz, baby. So paradox free

time-travel is possible after all.

Bubblegum: Right on. But dig this

multiplicand here.

Farnsworth: The doom field? That must be

what corrects the paradoxes.

Curly Joe: When that momma rises

exponentially, it could rupture the very fabric

of causality!
Futurama

Chapter 4

Black hole quotients

4.1 The quotient construction

Here we will follow the construction of [49], and find the quotients of spacelike

warped AdS that have causal singularities hidden behind Killing horizons. Up to

an SL(2,R)R rotation, we quotient spacelike warped AdS by exp(2π∂θ) with ∂θ

given by

∂θ =

2π` TR r2 + 2π` TL l2 non-extremal black holes

(r2 ± r0) + 2π` TL l2 extremal black holes.
(4.1)

The timelike case ∂θ = Ar0 + B l2 yields naked closed timelike curves (CTCs).

Up to an SL(2R)R rotation, which is an isometry of warped AdS, these three

cases cover all choices of ∂θ.

We pay attention to two points of interest. The first is that singular regions

of a non-extremal quotient can be hidden behind a Killing horizon only when

TL/TR is bigger than a critical value. The second is that the Ansatz for TL and

TR as a function of r+ and r− in [49] is not one-to-one for TL/TR smaller than a

second (different) critical value.

The method we employ is to describe the quotient in accelerating or, for the

case of extremal black holes, Poincaré coordinates. The reason is quite simple:
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other than ∂θ we would like a metric where the remaining isometry ∂t is manifest.

The coordinates (t, θ) should then be given by a GL(2,R) transformation on

the accelerating, respectively Poincaré, coordinates (τ, u). The remaining radial

coordinate r is then any function of x that labels the integral flows of (∂τ , ∂u).

The non-extremal black hole horizons are none other than the Killing horizons of

warped AdS at x = ±1, while the extremal black hole horizon lies on the Poincaré

horizon x = 0.

4.1.1 Non-extremal black holes

Assume the accelerating coordinates (τ, x, u) and the quotient defined by1

(
t

θ

)
=

(
a b

c d

)(
τ

u

)
. (4.2)

The periodicity θ ∼ θ + 2π is preserved under the coordinate transformation(
t′

θ′

)
=

(
A 0

B 1

)
A 6=0

(
t

θ

)
. (4.3)

That is, the quotient matrix in (4.2) is equivalent under(
a b

c d

)
≈

(
Aa Ab

aB + c Bb+ d

)
.

When b = 0 we bring the matrix to the form(
t

θ

)
=

(
1 0

0 d

)(
τ

u

)
. (4.4)

This quotient is the self-dual solution albeit in accelerating coordinates. When

1recall l2 = ∂u and r2 = ∂τ .
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−
√

3(ν2−1)
4ν2 −3(ν2−1)

4ν2

3(ν2−1)
4ν2

√
3(ν2−1)

4ν2

CTCs for x < −1 no CTCs CTCs for x > 1

a

Figure 4.1: CTCs versus the parameter a.

b 6= 0 we bring the matrix to the form(
t

θ

)
=

2ν

ν2 + 3

(
a 1

c 0

)(
τ

u

)
(4.5)

⇔

(
τ

u

)
=
ν2 + 3

2ν

(
0 1/c

1 −a/c

)(
t

θ

)
(4.6)

⇔

(
∂t

∂θ

)
=
ν2 + 3

2ν

(
0 1

1/c −a/c

)(
∂τ

∂u

)
, (4.7)

where our choice is to normalize the length |∂t|2 = `2. Note that 1/c 6= 0 and so

we cannot describe the extremal case TR = 0 regularly.

We now ask when singular regions |∂θ|2 ≤ 0 exist and whether they are hidden

behind the Killing horizon x = 1. By reflecting θ 7→ −θ if necessary, we choose

c > 0. Observe that we have not yet restricted the parameter a in (4.5). A simple

calculation in accelerating coordinates reveals

c2|∂θ|2 = `2ν
2 + 3

4ν2

(
−(x2 − 1) +

4ν2

ν2 + 3
(x− a)2

)
,

with determinant

∆x = `4ν
2 + 3

ν2

(
a2 − 3

ν2 − 1

4ν2

)

and

∂x(c
2|∂θ|2) = `2ν

2 + 3

2ν2

(
3
ν2 − 1

ν2 + 3
x− 4ν2

ν2 + 3
a

)
.

It follows that for |a| <
√

3(ν2−1)

2ν
there are no CTCs, for a < −

√
3(ν2−1)

2ν
CTCs

exist in x < −1 and for a >

√
3(ν2−1)

2ν
there are CTCs after x > 1. This is

summarized in figure 4.1.
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The quotient in [49] is parametrized by

r =
r+ − r−

2
x+

r+ + r−
2

, (4.8)

c =
2

ν(r+ − r−)
, (4.9)

a = −
ν(r+ + r−)−

√
r+r−(ν2 + 3)

ν(r+ − r−)
, (4.10)

so that the right and left temperatures in (4.1) are given by

TR =
(ν2 + 3)(r+ − r−)

8π`
, (4.11)

TL =
ν2 + 3

8π`

(
r+ + r− −

√
r+r−(ν2 + 3)

ν

)
. (4.12)

The local coordinate transformation into the global warped coordinates is2

t̃ = tan−1

(
2
√

(r − r+)(r − r−)

2 r − r+ − r+

sinh

(
1

4
(r+ − r−)(ν2 + 3)θ

))
,

σ = sinh−1

(
2
√

(r − r+)(r − r−)

r+ − r+

cosh(
1

4
(r+ − r−)(ν2 + 3)θ)

)
,

ũ =
ν2 + 3

4ν

(
2 t+

(
ν(r+ + r−)−

√
r+r−(ν2 + 3)

)
θ
)

+ coth−1

(
2r − r+ − r−
r+ − r+

coth

(
1

4
(r+ − r−)(ν2 + 3)θ

))
,

and the Levi-Civita tensor transforms to εtrθ = +
√
−g. The coordinate trans-

formation from the accelerating coordinates allows one to write the black hole

metric in the ADM form

ds2 = `2dt2 + `2R2dθ(dθ + 2N θdt) +
`4dr2

4R2N2

= N2

(
−dt+

`2dr

2RN2

)(
dt+

`2dr

2RN2

)
+ `2R2(dθ +Nθdt)

2 ,

(4.13)

2the transformation in eqs.(5.3)-(5.5) of [49] are defined in r− < r < r+, whereas ours is in
r > r+. Note that we have translated t̃ 7→ t̃+ π

2 with respect to (3.18).
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a(λ)

λ
−1

1 λfλc

−
√

3(ν2−1)
4ν2

Figure 4.2: The parameter a versus the ration λ = r+/r− > 1.

where

R2 =
3(ν2 − 1)

4
r(r − r0) (4.14)

N2 =
`2(ν2 + 3)

4R2
(r − r+)(r − r−) =

`2(ν2 + 3)

3(ν2 − 1)

(r − r−)(r − r+)

r(r − r0)
(4.15)

Nθ =
2νr −

√
r+r−(ν2 + 3)

2R2
(4.16)

r0 =
4ν
√
r+r−(ν2 + 3)− (ν2 + 3)(r+ + r−)

3(ν2 − 1)
. (4.17)

It is instructive to draw the graph of the parameter a in (4.10) as a function

of λ ≡ r+/r− > 1, see figure 4.2. By a suitable choice of r− > 0, the parameter

1/c > 0 is kept arbitrary. We find that a grows from minus infinity until the

maximum at

λf = 1 + 6
ν2 − 1

ν2 + 3

(
1 +

√
3

3

2ν√
ν2 − 1

)
, (4.18)

for which value

a(λf ) = −
√

3(ν2 − 1)

4ν2
> −1 ,

and then asymptotes to −1. There is thus a hidden isometry between the pairs
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λ

r0(λ)

r−

r0(1)

1 λc λf

Figure 4.3: Graph of r0(r+/r−) for fixed (ν, r−).

(r+, r−) in the two regions (λc, λf ) and (λf ,∞), where

λc =
4ν2

ν2 + 3
.

The isometry relates black hole metrics with

r+ =
ν2 + 3

3(ν2 − 1)

(√
r̃− −

2ν√
ν2 + 3

√
r̃+

)2

r− =
ν2 + 3

3(ν2 − 1)

(
2ν√
ν2 + 3

√
r̃− −

√
r̃+

)2

,

for the radial coordinate transform r 7→ r̃ given by

2r − r+ − r−
r+ − r−

=
2r̃ − r̃+ − r̃−
r̃+ − r̃−

= x .

It is worth pointing out that r0 in (4.17), as a function of the ratio λ ≡
r+/r− ≥ 1 with r− fixed, presents a maximum r0(λc) = r− and then decreases

monotonously, see figure 4.3. In particular, r0(λf ) = 0. As a result, the maximum

root of R(r)2, denoted r̄0 hereafter, is

r̄0 =

{
0 if r0 < 0 i.e. λ > λf

r0 if r0 ∈ [0, r−] i.e. 1 ≤ λ ≤ λf ,

and so R(r)2 > 0 for r > r−. The equality R(r−)2 = 0 holds only for r0(λc) = r−,

that is when the inner horizon coincides with the singularity. For later use, let
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us define

R2
± ≡ R(r±)2 =

r±
4

(
2ν
√
r± −

√
(ν2 + 3)r∓

)2

≥ 0.

Altogether, we have that for r > r̄0 the flow of ∂θ is spacelike.

We should stress that we arrive at global results using accelerating coordinates.

This is because ∂θ in (4.1) is a global identification and one can choose to cover

any of the infinite regions discussed in §3.2 using accelerating coordinates. In fact,

the values a >

√
3(ν2−1)

2ν
tell us that x > 1 is an accelerating patch where CTCs

exist. One can then move by the discreet isometry (x, u) 7→ (−x,−u) to the outer

region of the black hole. This essentially flips the sign of a, or equivalently we

choose the region x > 1 to be the outer region as we did here. The lower bound

in TL/TR was discussed in [49, §6.1.1]. Furthermore, the parametrization of TL

and TR in terms of r− and r+ is such that the lower bound is satisfied. A subtle

feature of the parametrization is the isometry in parameter space for r+/r− ≥ λc.

Let us also comment that, by the above analysis, the parameter a = 0 appears

special and disconnected from the region a < −
√

3(ν2−1)

2ν
. We will nevertheless

obtain it as the vacuum limit of the non-extremal black holes in section 4.3.

4.1.2 Extremal black holes

In the quotient given by the matrix in (4.7), observe that the parameter 1/c ∼ TR

is always positive. One can thus never reach the extremal black holes from a

regular quotient of that type. It is clear though that the non-extremal black

holes have an extremal limit given by setting r+ = r− in the non-extremal black

hole metric in ADM form (4.13). We shall later recover this result as a limit of

the non-extremal quotient (4.7).

The quotient that gives the extremal black holes in terms of the second Killing

vector in (4.1) does not present any particular point of interest. We can repeat

the previous derivation mutatis mutandis, where now the coordinates (τ, u) in

(4.2) are the Poincaré coordinates of warped AdS. The case b = 0, see (4.4), is

the self-dual solution in Poincaré coordinates. The case b 6= 0 gives the black

hole solution in ADM form (4.13), when setting r+ = r− in (4.12) and using

x = r − r−. The singular regions are behind r < r− for all values of TL 6= 0,

which can be chosen positive by reflecting θ if necessary. As explained beneath

(4.1), we are free to rescale and normalize the factor in front of ∂τ . We will use

this later in order to obtain the near-horizon limit of the extremal black holes,

which is the self-dual solution in Poincaré coordinates.
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4.1.3 Thermodynamics

We would like to recall here the thermodynamic quantities that were computed

for the spacelike warped black holes in [49]. It is also noteworthy to translate

the condition in (4.18) and the region r+/r− < λf into conventions used in the

literature. However, let us first briefly comment on the ADM form. A general

stationary, axisymmetric, asymptotically-flat black hole uniquely normalizes the

Killing vector

ξ = ∂t − Ω∂θ

that is null on its horizon, by using the asymptotically defined t and θ. For

example, the surface gravity κ0 = 2πTH on its horizon H is given unambiguously

by

∇ξξ = |H κ0ξ .

Were we to use a different time and angle

t′ = Λ t

θ′ = θ + b t ,
(4.19)

the Hawking temperature, angular velocity Ω, and ADT charges [56,57,58,59,60],

here the mass MADT and angular momentum JADT, would transform as

T ′H =
1

Λ
TH ,

Ω′ =
Ω + b

Λ
,

δM ′
ADT =

1

Λ
δMADT −

b

Λ
δJADT ,

δJ ′ADT = δJADT .

On the other hand, the entropy variation in the first law, δS = 1
TH

(δMADT −
ΩδJADT), is seen to be invariant under (4.19). The Wald formula for the entropy

[61] as applied for TMG in [62] (see also [57, §4.2]) depends on the asymptotic

orthonormal frame and its spin connection, and therefore is indeed invariant under

(4.19).

We shall normalize the thermodynamic quantities with respect to the frame

where

g(∂t, ∂t) = `2 .
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This is compatible to the asymptotically warped AdS3 conditions in [51]. In

particular, it fixes both t and θ coordinates as in the ADM form (4.13). From [49],

we have

TH =
ν2 + 3

4π`ν

TR
TL + TR

,

Ω = −ν
2 + 3

4πν

1

TR + TL
,

MADT =
π

3G
`TL ,

JADT =
ν`

3(ν2 + 3)G

(
(2π` TL)2 − 5ν2 + 3

4ν2
(2π` TR)2

)
,

S =
π2`

3

(
5ν2 + 3

ν(ν2 + 3)G
`TR +

4ν

(ν2 + 3)G
`TL

)
.

The CFT correspondence conjecture in [49] allows one to write the entropy

in the form of Cardy’s formula [63] with left/right central extension charges

cR = 5ν2+3
ν(ν2+3)G

` and cL = 4ν
(ν2+3)G

`. The bound in (4.18) and TR ≥ 0 become,

respectively, the left-hand side and right-hand side of

− 8ν`G

ν2 − 1
M2

ADT ≤ JADT ≤
12ν`G

ν2 + 3
M2

ADT .

There is yet another form of the black hole metrics3 that is given in [64], [51]

and [65]. The metric in [64] with parameters (ν ′, J ′, a′, L′) is related to the one

in [51], which we write here

ds2 = dT ′2 + (
3

`2
(ν2 − 1)R′2 − 4j`

ν
+ 12mR′)dθ2

− 4
ν

`
R′dT ′dθ +

dR′2

3+ν2

`2
R′2 − 12mR′ + 4j `

ν

, (4.20)

by j = GJ ′, 6m = 4Gν ′, a′ = −ν/` and L′ =
√

2`/(3− ν2). The metric in (4.20)

is related to (4.13) under the transformation R′ = `2

2
r − `2

4ν

√
r+r−(ν2 + 3) and

T ′ = ` t with

6m =
ν2 + 3

4

(
r+ + r− −

√
r+r−(ν2 + 3)

ν

)
= 2π` TL ,

4j =
5ν2 + 3

16ν
(ν2 + 3)`r−r+ −

(ν2 + 3)
3
2

8
`(r+ + r−)

√
r−r+ .

3the black hole metric was first found in [57] using the dimensionally reduced equations.
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The condition of a Killing horizon is that gR′R′ vanishes4 for some R′. Its deter-

minant ∆R′ with respect to R′ is

∆R′ = (12m)2 − 16j
ν2 + 3

ν`
=

(
ν2 + 3

2
(r+ − r−)

)2

= (4π` TR)2 ≥ 0 .

The condition that there are singularities hidden behind a Killing horizon, that

is TL/TR is bounded from below, is that gθθ vanishes somewhere. The positive

determinant condition of gθθ, or equivalently the upper bound of r+/r− in (4.18),

becomes

j ≥ −3m2ν`/(ν2 − 1) .

For smaller values of j for fixed m we continue in the region where there are no

CTCs.

4.2 Causal structure

In this section we will examine the causal structure of the spacelike warped black

holes in a manner similar to [37]. Although these geometries are ideal (also

referred to as “eternal”, that is symmetric under t → −t, so that they can be

extended to regions including new singularities in the past), they are likely to

appear as the end state of physical processes where chronology is protected. We

will show that the Penrose-Carter diagram of a generic non-extremal or extremal

black hole is similar to the 4d non-extremal, respectively extremal, Reissner-

Nordström black hole. Recall that we uncovered a critical value r0 = r− that is

isometric to r− = 0. We accordingly find that the r− = r0 black hole has a causal

diagram similar to that of the Schwarzschild black hole, that is the uncharged

Reissner-Nordström black hole.

In what follows we will work with the two-dimensional metric g2

g = −N2dt2 +
`4dr2

4R2N2︸ ︷︷ ︸
g2

+`2R2(dθ +Nθdt)
2 .

If a curve γ : [0, 1]→M has tangent vector γ̇ ∈ γ∗TM , then

g2(γ̇, γ̇) > 0 =⇒ g(γ̇, γ̇) > 0 ,

4recall that gR′R′ is inverse proportional to the lapse function squared N2.
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thus a causal curve γ must be non-positive on g2

g(γ̇, γ̇) ≤ 0 =⇒ g2(γ̇, γ̇) ≤ 0 .

On the other hand, any causal curve g2(γ̇, γ̇) ≤ 0 can be lifted to a causal curve

on g, e.g. by choosing the horizontal lift

θ̇ +Nθ ṫ = 0 . (4.21)

Let us note that the metric g2 does not capture the behaviour of causal geodesics,

see e.g. [66]. However null curves on g such that (4.21) holds are geodesic on g2.

They correspond to zero angular momentum pθ = g(γ̇, ∂θ).

The metric g2 then tells us about all causal relations by neglecting the angle θ.

One might wonder why we do not take a θ = const. section. After disentangling

the angle one can indeed find a Kruskal extension, as done generically in [67].

However, the angle is not defined globally on the different Kruskal patches, so

our choice is simpler since the connection dθ+Nθdt is global. Furthermore, a local

θ-section will not give us information on causal relations, nor can it be compatible

with any geodesic. Indeed, observe that for large enough r no Killing vector ∂t′

can be timelike, so the restriction of the metric on a constant angle will always

be positive definite far away from the horizon.

The similarities with the RN black holes are not coincidental. Our method

involves reducing the causal properties to the two-dimensional quotient space

under the angular isometry ∂θ. The difference to the Reissner-Nordström solution

then, other than the dimensionality of the sphere, is a non-trivial connection one-

form dθ +Nθdt, compare e.g. with Carter’s extension in [68].

We will first describe the future horizon ingoing coordinates. This is done

so as to intermediately introduce the Regge-Wheeler tortoise coordinate r∗. We

then write down the Kruskal-Szekeres extension in a straightforward way. We

can finally conformally compactify and draw the causal diagrams. We shall also

use the ingoing coordinates in section 4.3, in order to derive the near-horizon

geometry of extremal black holes.
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4.2.1 Ingoing Eddington-Finkelstein coordinates

To introduce Eddington-Finkelstein coordinates, one first solves for the Regge-

Wheeler tortoise coordinate r∗, which in our case satisfies

dr∗
dr

=
`2

2RN2
=

√
3(ν2 − 1)

ν2 + 3

√
r(r − r0)

(r − r−)(r − r+)
. (4.22)

For r > r̄0 and r+ 6= r−, the solution is branched as follows

r∗ =

√
3(ν2 − 1)

ν2 + 3

[√
r+(r+ − r0)

r+ − r−
ln

(
|r − r+|(√

r
√
r+ − r0 +

√
r − r0

√
r+

)2

)

−
√
r−(r− − r0)

r+ − r−
ln

(
|r − r−|(√

r
√
r− − r0 +

√
r − r0

√
r−
)2

)

+ 2 ln
(√

r +
√
r − r0

) ]
. (4.23)

For the critical value r+/r− = 4ν2/(ν2+3), the solution (4.23) is also well-defined.

For the extremal case r+ = r−, (4.22) becomes

dr∗
dr

=

√
3(ν2 − 1)

ν2 + 3

√
r(r − r0)

(r − r−)2
(4.24)

and its solution is branched as

r∗ =

√
3(ν2 − 1)

ν2 + 3

(
−
√
r(r − r0)

r − r−
+ 2 ln(

√
r +
√
r − r0)

+
1

2

2r− − r0√
r−(−r0 + r−)

ln
|r − r−|

(
√
r(r− − r0) +

√
r−(r − r0))2

)
. (4.25)

The ingoing coordinate is defined as u = t+ r∗.

The coordinates (u, r) are well-defined on and past the future horizon. In

contrast, the angle θ is entangled, that is it diverges for geodesics that cross the
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horizon. For r+ 6= r− and r+/r− 6= 4ν2/(ν2 + 3) we define the angle

θin = θ

+
4ν

ν2 + 3

1

ν(r+ − r−)

(
2νr+ +

√
r+r−(ν2 + 3)

2νr+ −
√
r+r−(ν2 + 3)

ln
(√

r(r+ − r0) +
√
r+(r − r0)

)

−
2νr− +

√
r+r−(ν2 + 3)

|2νr− −
√
r+r−(ν2 + 3)|

ln
(√

r(r− − r0) +
√
r−(r − r0)

))
+Nθ(r+)u ,

while for r+/r− = 4ν2/(ν2 + 3) we define

θin = θ − 4

r−3(ν2 − 1)
ln

(
√
r +

2ν√
3(ν2 − 1)

√
r − r−

)
+Nθ(r+)u .

For the extremal black holes r+ = r− we define

θin = θ +Nθ(r−)u+
4ν√

3(ν2 − 1)(ν2 + 3)

(
−
√
r(r − r0)

r−(r − r−)

+
r0

2r−
√
r−(−r0 + r−)

ln
r − r−

(
√
r(r− − r0) +

√
r−(r − r0))2

)
.

These definitions are such that, in (u, r, θin) coordinates, in all cases the metric

becomes

g = −N2du2 +
`2

R
drdu+ `2R2(dθin +Nθindu)2 , (4.26)

with Nθin(r) = Nθ(r) − Nθ(r+) being zero on the horizon. The coordinates

(u, r, θin) are regular on the future horizon r = r+ and valid until r = r−. The

Hamiltonian of a free-falling particle is

H =
2

`4

(
`2Rpupr +N2R2p2

r +
`2

4R2
p2
θin
− `2RNθinprpθin

)
,

where pθin , pu are constants of motion. Null geodesics, H = 0, satisfy

u̇ =
2

`2
Rpr

and for pθin = 0 the ingoing rays are those with pr ≡ 0.
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Observe that in the critical case, r0 = r−, Nθin simplifies considerably,

Nθin =
4

3

ν

ν2 − 1

(
1

r
− 1

r+

)
.

and for r+ = r− there is of-course a double root in N2,

N2 =
`2(ν2 + 3)

3(ν2 − 1)

(r − r−)2

r(r − r0)
.

As said, we shall use these results later to obtain the near-horizon geometry. The

tortoise coordinate we introduced is however also useful to maximally extend the

spacetime.

4.2.2 Kruskal extension of non-extremal black holes

We first describe the Kruskal extension across r = r+ for the case r+ 6= r−. With

b+ =
ν2 + 3

4

r+ − r−
R+

=
1

2

r+ − r−√
r+(r+ − r0)

ν2 + 3√
3(ν2 − 1)

and ρ(r) = eb+r∗ , define

U = ρ(r)eb+t

V = ρ(r)e−b+t

θ+ = θ − Nθ(r+)

2b+

ln
U

V

 for r > r+ and

U = ρ(r)eb+t

V = −ρ(r)e−b+t

θ+ = θ +
Nθ(r+)

2b+

ln
U

V

 for r− < r < r+ .

The transformation in r− < r < r+ is given so that one can match the Kruskal

patches using (4.13). In these coordinates, the metric becomes

ds2 = Ω2
+dUdV + `2R2 (dθ+ +NUV (V dU − UdV ))2 , (4.27)
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where

Ω2
+ =

4`2

ν2 + 3

r+(r+ − r0)

(r+ − r−)2

(r − r−)
1+

r
r−(r−−r0)

r+(r+−r0)

r(r − r0)
(
√
r
√
r+ − r0 +

√
r − r0

√
r+)2

×
(√

r
√
r− − r0 +

√
r−
√
r − r0

)−2

r
r−(r−−r0)

r+(r+−r0)
(√

r +
√
r − r0

)−2
r+−r−√
r+(r+−r0)

is everywhere positive and NUV can be shown to be regular at r = r+. The

coordinate r is given implicitly by UV = ρ2(r), which is monotonous in r > r+

and, separately, in r− < r ≤ r+. We have the limits limr→+∞ UV = +∞,

limr→r+ UV = 0 and limr→r−+ UV = −∞. We can extend with the isometry

V 7→ −V and U 7→ −U , and the patch K+ = {U, V ∈ R} is regular everywhere

with a metric given by (4.27).

We now build an extension across r− for r+ 6= r− and r− 6= r0. With

b− = −ν
2 + 3

4

r+ − r−
R−

= −1

2

r+ − r−√
r−(r− − r0)

ν2 + 3√
3(ν2 − 1)

and ρ(r) = eb−r∗ , define

Ũ = ρ̃(r)eb−t

Ṽ = ρ̃(r)e−b−t

θ− = θ − Nθ(r−)

2b−
ln
Ũ

Ṽ

 for r̄0 < r < r− and

Ũ = −ρ̃(r)eb−t

Ṽ = ρ̃(r)e−b−t

θ− = θ +
Nθ(r−)

2b−
ln
Ũ

Ṽ

 for r− < r < r+ .

The metric becomes

ds2 = Ω2
−dŨdṼ + `2R2(dθ− +NŨ Ṽ (Ṽ dŨ − ŨdṼ ))2 (4.28)
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with

Ω2
− =

4`2

ν2 + 3

r−(r− − r0)

(r+ − r−)2

(r+ − r)
1+

r
r+(r+−r0)

r−(r−−r0)

r(r − r0)

(√
r
√
r− − r0 +

√
r − r0

√
r−
)2

×
(√

r
√
r+ − r0 +

√
r+

√
r − r0

)−2

r
r+(r+−r0)

r−(r−−r0)
(√

r +
√
r − r0

)2
r+−r−√
r−(r−−r0)

and r is given implicitly by Ũ Ṽ , which is again monotonous in r. We have the

limits limr→r̄0+ Ũ Ṽ = ρ2
0 > 0, limr→r− Ũ Ṽ = 0 and limr→r+− Ũ Ṽ = −∞.

We similarly extend the coordinate range with the isometry U 7→ −U , V 7→
−V . The patch K− = {Ũ , Ṽ ∈ R} is defined regularly throughout with the

metric given in (4.28).

By transforming into the finite-range coordinates tan(u) = U and tan(v) = V ,

and similarly tan(ũ) = ρ0 Ũ and tan(ṽ) = ρ0 Ṽ , we draw in figure 4.4 the Carter-

Penrose diagrams for the two patches. Note that the conformal factor multiplying

the connection one-form in the metric blows up as

R2

U2V 2Ω2
+

∼ O

(
r

r+−r−√
r+(r+−r0)

)
.

To circumvent any ambiguity, we compactify the manifold by using instead the

coordinate system

Û = U z(U)+1

V̂ = V z(V )+1 ,

where the exponent z(x) is a function that is zero for small but positive x and

grows smoothly within a finite range up to the constant value of r+−r−√
r+(r+−r0)

. The

factor multiplying the connection one-form then becomes finite and non-vanishing

in the limit r →∞. The maximal extension is obtained by concutting K+ after

K− ad infinitum, as in figure 4.5.

For the critical value r+/r− = 4ν2/(ν2 + 3) we define the patch K+ as before.

With the special value

b+ =
ν2 + 3

4ν
,
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Figure 4.4: Penrose diagrams of Kruskal patches for r0 6= r− black holes.

Figure 4.5: The Penrose diagram of maximally extended r0 6= r− black holes.
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Figure 4.6: Penrose diagram for r0 = r−.

we find

Ω2
+ =

4`2

3(ν2 − 1)

4ν2

ν2 + 3

1

r

(√
r
√

3(ν2 − 1) + 2ν
√
r − r−

)2

×
(√

r +
√
r − r−

)−√3(ν2−1)
ν

. (4.29)

However, here we do not extend beyond the inner horizon r− where |∂θ|2 < 0.

The Kruskal coordinates have the limits limr→+∞ UV = +∞, limr→r+ UV = 0

and

lim
r→0

UV = −ρ2
0 = − 1

ν2 + 3
r

q
3(ν2−1)

2ν
− .

The Penrose diagram of the critical black hole is drawn in 4.6, where we use

U = ρ0 tan(u) and V = ρ0 tan(v).

4.2.3 Kruskal extension of extremal black holes

Finally, we describe the extremal case. We present the conformal compactification

at once, by using a transformation similar to the one for the extremal Reissner-

Nordström in [68]. However, some care is needed to show that the connection

one-form is also well-defined. Using the tortoise coordinate, define for r > r−

tanU = t+ r∗ , (4.30)

tanV = −t+ r∗ , (4.31)

θUV = θ −Nθ(r−)t− C
(

2 tanh−1 tan
U

2
− 2 tanh−1 tan

V

2

)
, (4.32)
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with the constant

C = − 4ν

(ν2 + 3)
√

3(ν2 − 1)
√
r−(r− − r0)

.

The metric takes the form

g = Ω2dUdV + `2R2(dθUV + ÑUV (dU − dV ))2,

with

Ω2 =
N2

cos2 U cos2 V

and ÑUV is zero on the horizon. We first observe that Ω2 is non-zero on the future

and past horizon. Indeed, the dangerous factor (r−r−)2

cos2 V
in the limit V → 0 goes

like

(
1

cosV

)(
1

r − r−

)−1

−→
(

2
sinV

cos2 V

)(
−

∂r
∂V

(r − r−)2

)−1

−→ 2

√
3(ν2 − 1)

ν2 + 3

√
r−(r− − r0) ,

where the last equation uses the derivative of the tortoise coorindate in (4.24).

It follows that limV→0 Ω2 is finite and non-vanishing on the future horizon, and

similarly on the past horizon. We also defined θUV in (4.32) with the term linear

in C so that a potential pole of g(∂θ, ∂U) ∼ ÑUV in r − r− vanishes. Altogether,

this means that we can use the same transformation on and behind the horizon

but for a different domain of U, V , and by replacing C → −C. The singular

region is at tanU + tanV = 2r∗ which can be brought to zero by a suitable shift

in r∗. The Penrose diagram of the extremal black hole is drawn in 4.7 and the

maximal extension can be obtained with the isometry U − V 7→ U − V + 2πZ.

4.3 Spacetime limits

In the previous sections we explored the geometry of warped AdS, its black hole

quotients and their causal properties. In particular, the extremal black holes

are obtained from a different quotient than their non-extremal counterparts. At

the same time, the extremal black holes are a regular limit of the non-extremal
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Figure 4.7: Penrose diagrams of extremal black holes.

black holes, in the sense that we can set r− = r+ in the ADM form. In this

section we explain this limit in more detail. We also want to ask what other

classical5 limits we can obtain from the warped AdS black holes. We will obtain

the near-horizon geometry of extremal black holes and we will define several other

spacetime limits, which give us the self-dual warped AdS, in either accelerating

or Poincaré coordinates, and warped AdS with a proper time identification.

We find it helpful to recall Geroch’s notion of a spacetime limit [69]. Here

one collects a family of metric spacetimes (ML, gL), where L > 0, and constructs

the augmented manifold M = {(ML, gL, L)L}. A spacetime limit, L → 0, is

invariantly defined on the boundary of M . Spacetime limits are interesting for

the properties of the family (ML, gL) that are inherited in the limit, a typical

example being the rank of Killing vectors and Killing spinors [70]. Naturally, the

spacetime limit (M0, g0) is of interest when its maximal extension is not included

in the original phase space.

An instance of Geroch’s notion is when there is a local isometry fL : ML →
M1, for L > 0, between the metrics gL and g1. The limit can then be said to

be of the metric itself g1 rather than a limit in the family of metrics gL. An

example is the Penrose limit [70]. A metric limit typically involves blowing up a

neighbourhood of the spacetime. Minkowski space is not only a spacetime limit

of 4d black holes, where the mass M ≡ L→ 0, but can also be written in terms

5that is, we consider `, G and ν fixed.
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of a metric limit [69]. In the latter case, one is translating in the limit to the

asymptotically flat region while keeping the mass M fixed. In this paper, we call

a metric limit the near-horizon geometry of g1 when the isometry fL fixes the

outer horizon.

In our case, the metrics are parametrized by (TR, TL) that we take as functions

of L > 0. Each black hole in the phase space is given by the identification Killing

vector ∂θ as written in (4.1). Note, though, that the identification vector in (4.1)

is unique up to SL(2,R)R rotations. The question we ask is, what are the limits

of the non-extremal black holes as TR → 0.

In order to simplify our discussion, we do not ask what happens in the limit be-

hind the outer horizon. We thus take the ML to cover only part of the maximally

extended spacetime. In practice this means we can work with the accelerating,

or Poincaré coordinates, and define the limits explicitly. The coordinates will

thus depend explicitly on L. This description is complementary to the previous

not only for practical reasons, but also because it describes the relation of the

coordinate range of the limit manifold M0 to that of ML>0.

We first describe the near-horizon limit of the extremal black holes, using

the coordinate description in the framework of [71, 72, 73]. We then consider

spacetime limits of non-extremal black holes when TR → 0. There are two such

limits. The first one gives the extremal black holes. The second gives us a

geometry similar to the near-horizon geometry of the non-extremal ones, but in

accelerating coordinates. We call the latter a near-extremal limit because of this

similarity. We also describe the near-horizon geometry of extremal black holes

in the invariant description. Finally, we consider the case when we send TR → 0

while keeping the Hawking temperature fixed.

4.3.1 Near-horizon limit

Let us erect Gaussian null coordinates on the future horizon of a spacelike warped

black hole, as explained in [74]. The ingoing coordinates (u, r, θin) are such that

θin is a well-defined angle on a spacelike section of the horizon and u is the group

parameter of ξ = ∂u. Recall that the metric in ingoing coordinates has the form

(4.26):

g = −N2du2 +
`2

R
drdu+ `2R2(dθin +Nθindu)2 .

We are interested in defining a new coordinate r̄ that is the affine parameter of

a null geodesic congruence γ emanating from the horizon and parametrised by
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(u, θin). We fix its velocity γ̇0 on the future horizon H + to be the normalized

null complement of ∂u and ∂θin with respect to the metric: g(γ̇0, ∂u)|H + = 1/2

and g(γ̇0, ∂θin)|H + = 0. The Hamiltonian of a free-falling particle and its geodesic

equations are

H =
2

`4

(
`2Rpupr +N2R2p2

r +
`2

4R2
p2
θin
− `2RNθinprpθin

)
ṙ =

2

`4

(
`2Rpu + 2N2R2pr

)
θ̇ =

2

`2

( pθin
2R2
−RNθinpr

)
u̇ =

2

`2
Rpr .

The equations can easily be solved. The constraint H = 0 implies pr|H + = pθin =

0 and with pu = 1
2

we find pr ≡ 0, θ̇ = u̇ = 0 and

dr

dr̄
=
R

`2
, (4.33)

where r̄ is the affine parameter. This equation is solved generically by

r = r0 cosh2

(√
3(ν2 − 1)

4`2
r̄ − c

)
, (4.34)

where

cosh c =

√
r+

r0

and c > 0 . (4.35)

The coordinate transformation (4.34) covers the region r ∈ (r0,+∞), which cor-

responds to

r̄ ∈

(
−∞, 4`2√

3(ν2 − 1)
c

)
.

The other coordinates remain u ∈ R and θin periodic.

For r+ 6= r− the metric takes the form

g = −r̄ F (r̄) du2 + dr̄du+ `2R2(r(r̄))(dθin +Nθin(r(r̄)) du)2 , (4.36)

where N2 = r̄ F (r̄) and F (r̄) is regular non-vanishing on the horizon r̄ = 0. It

follows that the near-horizon limit cannot be defined for non-extremal black-holes.
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Indeed, if we assume a diffeomorphism r̄ 7→ r̄/L that zooms in on a neighbourhood

of the horizon, then the component g(∂u, ∂r̄) dictates an appropriate rescaling

u 7→ Lu so that limL→0g(∂u, ∂r̄) remains finite. However, this blows up the

component g(∂u, ∂u).

When r+ = r−, F (r̄) = r̄ H(r̄) where H(r̄) is regular non-vanishing at r̄ = 0.

Introducing the coordinate transformation

r̄′ = r̄/L

u′ = Lu,
(4.37)

and sending L→ 0, gives the metric limit

g =
ν2 + 3

4`2
r̄′2 du′2 + dr̄′du′ + `2R2

−

(
dθin +

dNθin

dr

∣∣∣∣
r−

R−
`2
r̄′du′

)2

, (4.38)

with
dNθin

dr

∣∣∣∣
r−

=
4

r2
−

ν − 2ν2r−r− + ν
√
ν2 + 3r−

(2ν −
√
ν2 + 3)2

.

Observe that as L→ 0, any point r̄ close to r̄ = 0 is pushed away to infinity with

respect to r̄′. The metric in (4.38) is the self-dual solution with α = ν2+3
2ν

R− in

Poincaré coordinates. This can be verified by using the diffeomorphism

u′ = τ − 1

x

r̄′ =
2`2

ν2 + 3
x

φ = θ +
2ν

ν2 + 3

1

R−
lnx .

(4.39)

The above derivation zooms indefinitely into the future horizon of an extremal

black hole along a geodesic congruence. Using the coordinate description we got

the self-dual warped AdS in Poincaré coordinates. This result is universal. We

would not have been able to arrive at the same geometry in, say, accelerating or

warped coordinates. Since the horizon is non-bifurcate the same should be true

for the limit spacetime. One could use equivalently the double null coordinates

(u, v), where u is the ingoing and v = −t + r∗ is the outgoing coordinate. The

description using (u, v) serves to show that we are zooming in on the whole of

the horizon. Finally, we could have used the ADM coordinates (r, t). The limit

is given by r − r− = r′ L and t = t′/L. This description provides an equivalent
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explanation for why the limit is in Poincaré coordinates. This is the case because

t is defined asymptotically by observers who wish to probe the horizon. As such,

the near-horizon inherits a preferred time which is not related to the global warped

time t̃.

We can already ask what properties are inherited in the limit. It is clear that

one such property is the nature of the horizon. The size of the radius of θ on

the horizon is also inherited, this being a consequence of definition (4.37) as an

isometry that fixes the horizon. We will later describe the near-horizon geometry

invariantly, using the identification vector ∂θ, and see that this is related to the

extremal black hole via α = 2π` TL.

4.3.2 Near-extremal limit

Although a non-extremal black hole does not admit a near-horizon limit, we can

consider a limit in the black hole phase space (TL, TR) for TR → 0. This limit

cannot be considered a metric limit because TR is continuously varied. Further-

more, there is more than one way to take the limit. Here we will consider the case

when the limit gives us the self-dual solution in accelerating coordinates. We call

the limit the near-extremal near-horizon limit, or near-extremal limit for short,

and we stress it is a spacetime limit in the phase space of non-extremal black

holes.

A black hole is described by (TR, TL) that enter the definition (4.1) of the

Killing vector ∂θ,

∂θ = 2π` TR r2 + 2π` TL l2 .

There are however two gauge freedoms that we can use in its description. The

first is an active SL(2, R)R rotation that isometrically maps the outer region

as embedded in warped AdS to a new region. The rotation transforms r2 7→
Ar2 ±Br0, with A2 −B2 = 1, and we can use instead the vector

∂θ′ = 2π` TR (Ar2 ±B r0) + 2π` TL l2 . (4.40)

Note that we are considering an active transformation in warped AdS. That is,

the rotation exp(tanh−1(B
A

) r1) is not an isometry of the metric.

The second gauge freedom is how we describe time t. The GL(2,R) diffeo-

morphism in (4.3) keeps the identification vector ∂θ invariant. However, we are

redefining ∂t and so the metric form in the new coordinate system does change.
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It is this freedom that we shall use and fix here. Indeed, notice that if we simply

take TR = 0 in (4.7), that is send 1/c→ 0 and keep a/c fixed in (4.7), we end up

with ∂t collinear with ∂θ. The coordinates (t, θ) are thus ill-defined in the limit.

We use the transformation(
t′

θ′

)
=

(
−1
b
ν2+3

2ν
TR
TL

0
ν2+3

2ν
1

2π` TL
1

)(
t

θ

)
, (4.41)

so that (
∂t′

∂θ′

)
=

(
b 0

2π` TR 2π` TL

)(
∂τ

∂u

)
.

Here we have included an arbitrary b > 0 constant, which is equivalent to b = 1

by diffeomorphism invariance.

The near-extremal limit is now well-defined in coordinates t′ and θ′. By simply

setting TR = 0 we get

∂t′ = b ∂τ

∂θ′ = 2π` TL∂u .

This identification gives the self-dual geometry with α = 2π` TL in accelerating

coordinates. The identification with (3.17) is made by φ = θ′ = u/α and τ = b t′.

It is useful to describe the limit explicitly in coordinates. For this, we reuse

the accelerating coordinate x, which is related to r via (4.8). Recall that x is

given linearly by g(∂τ , ∂u) and so it remains invariant under the transformation

(4.41). We also use the coordinates (θ′, t′) from (4.41). Altogether we have

r =
r+ − r−

2
x+

r+ + r−
2

t = − 2ν

ν2 + 3
b
TL
TR
t′

θ = φ+
b

2π` TR
t′.

(4.42)
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The ADM metric at fixed TL and TR > 0 in (t′, x, φ) coordinates is

g = − `2

ν2 + 3
b2(x2 − 1)

(
4πν` TL

R(r)(ν2 + 3)

)2

dt′2

+
`2

ν2 + 3

dx2

x2 − 1
+ `2R2(r) (dφ+Nt′(r) dt

′)
2
, (4.43)

with

Nt′(r) =
b

2π` TR

(
1− 2ν

ν2 + 3
2π` TL

2νr −
√
r−r+(ν2 + 3)

2R2(r)

)
. (4.44)

Note that in the limit r+ → r−, r(x)→ r++r−
2

. We also have that

R2(
r+ + r−

2
) =

(ν2 + 3)(2π` TR)2 + (4πν` TL)2

(ν2 + 3)2

r+→r−−→
(

4πν` TL
ν2 + 3

)2

.

By using the above, and the equations for TL and TR in (4.11) and (4.12), one

sees that the term in parentheses in (4.44) is zero as r+ → r−. Therefore, it

cancels the pole in TR. In order to find the limit we expand the function

f

(
r+ − r−

2
x+

r+ + r−
2

; r+, r−

)
=

2νr −
√
r−r+(ν2 + 3)

2R2(r)
,

which is symmetric in its last two arguments, in powers of L, with r± = re ± L
and keeping re and x fixed:

f(Lx+ re; re + L, r− − L) = f(re; re, re) + f (1,0,0)(re; re, re)Lx

+ f (0,1,0)(re; re, re)L− f (0,0,1)(re; re, re)L+ O(L2)

= ∂r

(
2νr −

√
r−r+(ν2 + 3)

2R2(r)

)∣∣∣∣∣
r=r−=r+

· r+ − r−
2

x+ O(TR
2) .

After some algebra, we find

lim
r→r+

Nt′(x) =
1

R−

2ν

ν2 + 3
b x .

With R− = 4πν` TL/(ν
2 + 3), we confirm that the metric (4.43) becomes at

r+ → r− the self-dual solution with α = 2π` TL and t′ = b τ .

One might ask whether the transformation in (4.42) can be modified so as to
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describe a metric limit of a fixed geometry TR 6= 0. An immediate guess x 7→ x/L

and t′ 7→ L t′ in (4.43) keeping r− 6= r+ and sending L→ 0 gives us the self-dual

solution in Poincaré coordinates. However, this limit commutes with taking the

same limit after we send r+ → r−.

Observe that the bifurcate nature of the horizon is inherited in accelerating

coordinates. Although this is not a metric limit, in the sense that we have not

fixed a black hole geometry, we intuitively understand (4.42) as zooming in close

to the outer horizon of non-extremal black holes with TR ≈ 0. Finally note that,

in taking TR → 0, we can keep TL or some other combination of TL and TR fixed.

The interpretation of the near-horizon limit in the context of the 4d Planck scale

limit Lp → 0 for Reissner-Nordström black holes has been discussed in [75, 76],

see also [77].

4.3.3 Extremal limit

In the ADM form one can reach the extremal black holes by setting r+ = r− in

(4.13). We can describe this by combining the limit TR → 0 with an SL(2,R)R

transformation,

∂θ′ = 2π` TR (Ar2 ±B r0) + 2π` TL l2, (4.45)

where we set

A =
1

` TR
, B =

√(
1

` TR

)2

− 1 . (4.46)

In the limit TR → 0 we have

∂t =
ν2 + 3

2ν
∂u

∂θ′ = 2π(r2 ± r0) + 2π` TLl2,

which describe precisely the extremal black holes. Here we do not need to use a

GL(2,R) transformation.

We claim that this limit is equivalent to setting r− = r+ in the ADM form.

Indeed, in section 4.1 we only considered the case when ∂θ is a linear combination

of r2 and l2. Since eζr1 is invertible, the identification along ∂θ is equivalent to

the identification along ∂θ′ :

e2π∂θp ∼ p⇐⇒ e2π∂θ′eζr1p ∼ eζr1p
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Figure 4.8: The field r1 is not an isometry of the black hole metric, since it
does not preserve the identification. However, the mapped region is by definition
isometric to the black hole.

for every point p in warped AdS. We can define coordinates (r′, t′, θ′) on the

mapped region by using the (r, t, θ) coordinates of §4.1, with r′ = r, t′ = t,

θ′ = θ, see figure 4.8.

By using the invariant description of the identification vector, it is obvious

that in sending TR → 0, and keeping TL finite, non-extremal black holes can

either limit to the near-extremal geometry with α = 2π` TL, or the extremal

black hole with the same TL. That is, we can either try to keep the term in ∂θ

that is multiplied by TR (the extremal limit) or not (the near-extremal limit).

4.3.4 Near-horizon geometry, again

We are now able to describe the near-horizon geometry of the extremal black

holes, which was given in §4.3.1, in an invariant way. Let us accordingly switch

to Poincaré coordinates (x, τ, u). From (4.1) and by using an SL(2,R)R rotation,

the identification vector is

∂θ = 2π L (r2 + r0) + 2π` TL l2 with L > 0.

It is also necessary to use a matrix transformation as in §4.3.2, so that ∂t is not

collinear with ∂θ in the limit L→ 0. We use a matrix transformation identical in

form to (4.41), but replace TR with L. In the limit L→ 0, we obtain the self-dual

solution in Poincaré coordinates, with α = 2π` TL:

∂t = b∂τ

∂θ = 2π` TL∂u .
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One can use coordinates to describe the above limit. In fact, the coordinate

transformation follows closely §4.3.2, with some minor changes. In (4.42), the

first equation should be replaced with x = L (r− r−), and TR should be replaced

with L in the other two equations. The metric in (r′, t′, φ′) coordinates, (4.43),

becomes

g = − `2

ν2 + 3
b2 x2

(
4πν` TL

R(r)(ν2 + 3)

)2

dt′2

+
`2

ν2 + 3

dx2

x2
+ `2R2(r) (dφ+Nt′(r) dt

′)
2
,

and, in the limit L → 0, the metric limits to the self-dual geometry in Poincaré

coordinates, with α = 2π` TL and t′ = b τ .

It might seem surprising that this is the same limit as in §4.3.1. Observe how-

ever that ∂t′ − ∂φ is proportional to the Killing vector that is null on the horizon.

In using the matrix transformation we are rescaling the ingoing coordinate as

before. The radial coordinate is then rescaled appropriately so that the limit is

finite.

4.3.5 Vacuum limit

We finally consider the limit TR, TL → 0 with the ratio TL/TR kept constant.

This is equivalent to keeping a fixed ratio r+/r− and sending r− → 0. In [49]

this limit was called the vacuum solution. In order to keep ∂θ finite, we use the

SL(2,R)R transformation in (4.45), with the same parameters (4.46), so that in

the limit TR → 0 we obtain

∂t =
ν2 + 3

2ν
∂u

∂θ = 2π(r2 ± r0) .

(4.47)

Note that here we do not need the GL(2,R) transformation. Observe that the

Killing vectors ∂t and ∂θ do not depend on r+/r−. The limit is thus universal.

The geometry we obtain is warped AdS in Poincaré coordinates with a periodic

identification of the proper time τ . We can see this by using coordinates. As in

the extremal limit, we use the metric in ADM form, and we send the parameters
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r− and r+ to zero keeping r+/r− fixed. The metric becomes

lim
r−→0
r+→0

g = −`2 ν2 + 3

3(ν2 − 1)
dt2 +

`2

ν2 + 3

dr2

r2
+ `2 3(ν2 − 1)

4
r2

(
dθ +

4ν

3(ν2 − 1)

1

r
dt

)2

= −`2ν
2 + 3

4
r2dθ2 +

`2

ν2 + 3

dr2

r2
+

4ν2`2

(ν2 + 3)2

(
ν2 + 3

2ν
dt+

ν2 + 3

2
r dθ

)2

. (4.48)

The identification with Poincaré coordinates can be made with x = ν2+3
2
r.

The limit corresponds to sending MADT and JADT to zero while keeping the

Hawking temperature fixed. One can also interpret the limit as a metric limit

to the far-away region. That is, the metric in (4.48) corresponds to keeping the

leading order components of the black hole metric when r � r+.

4.4 Discussion

Having elaborated on the construction of warped AdS3 from first principles in

the previous chapter, we have now set up the quotient construction. We focused

on the case when causal singularities do exist and are hidden behind a Killing

horizon. The geometries are ideal, in the sense that they can be continued to

regions that contain new singularities and new asymptotic regions. We found

the causal structure and showed that the geometries fall into three classes that

resemble the causal structure of the Reissner-Nordström black hole.

We pointed out two features that are usually suppressed in the literature.

The first is that the black hole metric parametrized by r+ and r− presents a

redundancy, in that for a certain region two sets of parameters (r+, r−) describe

the same geometry. The second is that, the ratio of the left to right temperature

is bounded from below, if the geometry is to describe a causal singularity that is

hidden behind Killing horizons. In [51] care was taken to consistently define an

asymptotically Killing algebra [78] that contains a centrally extended Virasoro

algebra with generators Lm, so that L0 has positive spectrum and a central

extension that matches the AdS/CFT expectation [63]. The bound on the ratio

of temperatures TL/TR would then imply an upper bound on L0. Indeed, in

[51] L0 for a black hole goes like c(3
2
m2 − 2

3c
j) (for a specific, field-dependent,

normalisation, which guarantees L0 ≥ 0), for m and j as described in 4.1. We

further saw in 4.1.3 that the lower bound on TL/TR corresponds to a lower bound

on j, so that, for any given m, for too high values of L0 one does not have any
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causal singularities.

We also described various spacetime limits that one can take in the black hole

phase space. We do this by studying the behaviour of the identification vector ∂θ

for different significant limits of the invariants TR, TL and their ratio. We chose

this exposition for the clarity of the geometric interpretation of the limits, and

also to avoid the ambiguities that could come from a coordinate description. In

this description, it is easy to see that the possible limits using this method are

again quotients of warped AdS. Furthermore, the spacetime limits inherit suitable

coordinates that are not global. In particular, we get the self-dual solution in

accelerating or Poincaré coordinates, and warped AdS in Poincaré coordinates

under a proper time identification.

The spacelike stretched black holes are a subset of the general black holes

of cosmological Einstein-Maxwell theory with gravitational and gauge Chern-

Simons couplings, which were presented in [65], with µE/µG = 2/3 and β2 =

(ν3 +3)/(4ν2). There, the causal structure of the general black holes was also first

reported. We have here presented an explicit Kruskal extension, which underlies

the Penrose diagram of the maximal extension. Our derivation focuses on the

metric g2 that is defined on the two-dimensional quotient space of a black hole by

the global isometry ∂θ. One can successively remove detail from our presentation

but retain the reduction on g2, since this captures the essential causal relations

of the 3d spacetime.

Also in [65], local coordinate transformations were given that relate the various

black holes, the self-dual solution, and the vacuum. Here, we only write the local

coordinate transformations between the black holes, or the self-dual solution, and

spacelike warped AdS, which precisely define the first as discrete quotients of the

latter. Furthermore, the vacuum and self-dual solution are obtained here as limits

of the black holes. This was done invariantly using the identification vector, but

also through well-defined coordinate transformations. We note this comparison

so as to highlight the structure of this work. Let us also remark that the limits

we consider are classical, that is ν, G and ` are kept fixed. This does not allow us

to obtain, for instance, the black holes with vanishing cosmological constant [79].

Let us also compare to the construction to the Banados-Teitelboim-Zanelli

black holes of Einstein gravity with a negative cosmological constant. The BTZ

black holes are necessarily asymptotically locally AdS (AlAdS) and so their con-

formal boundary is always timelike. The causal diagrams of the BTZ black holes

fall into two classes, depending on whether the geometry is extremal or not [37,38].
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This is different from the present case, as warped AdS backgrounds are not AlAdS

and exhibit fundamentally different behaviour.

One motivation for this work was to find a non-extremal spacetime limit

where the acceleration coordinate ∂τ would explicitly depend on a parameter b.

This would imply that the limit inherits two parameters rather than the one in

u = 2π` TL φ. Then one could approximate the chiral thermal Green functions

of the near-extremal black holes with those computed in the self-dual warped

AdS space in accelerating coordinates, see [50, 80]. It is for this reason that we

introduced the constant b in (4.43). By diffeomorphism invariance though, we can

set this constant equal to 1. We speculate on whether a suitable set of asymptotic

conditions can break this freedom.

Topological massive gravity is expected to have a rich spectrum and we believe

that the solution space will present new insight in generalisations of the AdS/CFT

correspondence. Indeed AlAdS solutions have been seen to be dual to logarithmic

CFT theories, while even the holography of the non-AlAdS case of null-warped

AdS has been studied in detail. This sets up the motivation for the next chapter,

wherein we investigate a possible Ansatz for the search of new solutions to TMG.
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Wer nicht überzeugen kann, sollte wenigstens

Verwirrung stiften.

Chapter 5

A kinky approach to 2d-Reduced

TMG

We have often mentioned how our interest in TMG solutions, and especially the

warped AdS space studied in Chapter 3, was motivated mainly by the conjecture

of [81] regarding a CFT dual to spacelike warped AdS3 black holes. As a matter

of fact, for a critical value of the theory, the holography of null warped AdS3 has

already been studied extensively in [82], see also [83]. However, spacelike warped

AdS3 has different asymptotics to AdS3 or the Schrödinger background and a

similar analysis cannot be made. In particular it is not asymptotically locally

AdS, so techniques such as a Fefferman-Graham expansion are not applicable.

The largest class of known solutions to TMG is the Kundt class [84], which

includes the TMG wave [85] and spacelike warped AdS3; the odd one out is time-

like warped AdS3, which is not a Kundt spacetime [81]. Various other solutions

can be written up to identifications with one of the above [86]. One of our mo-

tivations here was the search for an “intermediate”, or “interpolating” solution

between AdS3 and spacelike warped AdS3, for generic values of the theory, which

could be relevant to the warped-AdS/CFT correspondence.

Numerical solutions that are asymptotic to warped AdS3 were found in [87],

wherein the same question as ours is posed. Our ambition was further encour-

aged by [88], where an interesting solution was found for the purely gravitational

Chern-Simons term that appears in the TMG action. These solutions can be

related at a local level to kinks with interpolating behaviour, see also [89]. The

hope was to generalise their approach to include the Einstein-Hilbert action, and
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search for a similar solution for the full model.

In [88], the authors used a Kaluza-Klein (KK) dimensional reduction on the

three-dimensional theory, to obtain a system of differential equations in 2 dimen-

sions. For the purely Chern-Simons part of the action, one of the equations of

motion is actually a conformal Killing equation on the gradient of one of the re-

duced fields. It is the presence of this new symmetry that allows a simple solution

to the problem.

We will see below that the approach of [88] does not generalise in a simple

way for the full TMG action. Recalling the classification of Pope et al. [86] and

the Kundt solutions to topologically massive gravity [84], we will show that our

“kinky” approach only leads to a subset of these. The symmetries imposed by

the Ansatz, i.e. an isometry along which to perform the KK-reduction and an

exact conformal Killing symmetry generated by the dilaton, are too restrictive to

yield new solutions. The approach does however yield locally most of the known

stationary axisymmetric solutions of TMG as collected in [87].

Although these solutions are not gravitational kinks, we have retained use of

the word since our method is influenced by [88]. In section 5.1 we set up our

notation and introduce some helpful theorems to streamline our derivation. In

section 5.2 we motivate our Ansatz and in 5.3 we identify the solutions it yields.

We end with concluding remarks.

5.1 Setup and notation

In this first section we derive the equations of motion of the reduced action and

set up some theorems that simplify the ensuing analysis.

5.1.1 2d reduced action

We write the full TMG action as

16πGS[g] =

∫
d3x
√
−g
(
R +

2

`2
+

`

6ν
ελµνΓrλσ

(
∂µΓσrν +

2

3
ΓσµτΓ

τ
νρ

))
.

We follow the usual KK-reduction set-up, starting with a 3-dimensional metric

g(3) = e2αφḡ ± e2φ (dz + A)2 ,
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where we assumed the isometry z 7→ z+ξ. φ is a function and A a one-form on the

remaining two coordinates. We raise/lower the 2-dimensional tensorial indices

a and b with the metric ḡab. The ± sign distinguishes spacelike and timelike

reductions. We could absorb the α parameter above into ḡ, but we choose to

leave this free for now. This freedom will allow us to find various solutions from

one simple Ansatz.

By Da we denote the 2-dimensional covariant derivative and write D2 =

DaD
a. The field strength F = dA = f dvolḡ defines the scalar f in 2 dimen-

sions by its Hodge dual. The 3-dimensional scalar curvature R written in terms

of the 2-dimensional curvature R̄ is given by

R = e−2αφR̄− 2 (α + 1) e−2αφD2φ− 2e−2αφ|dφ|2 +
1

2
e−4αφ+2φf 2 (5.1)

and the Einstein-Hilbert part of the action is therefore

IEH =

∫
dvolḡ

[
eφR̄ + 2αeφ|dφ|2 +

1

2
e(−2α+3)φf 2 − 2(1 + α)Da

(
eφDaφ

)]
.

(5.2)

To KK-reduce the Chern-Simons-like terms in the action, we make use of the

results of [88]. Schematically, in their set-up (α = 1)(
εΓ(

1

2
∂Γ +

1

3
ΓΓ)

)
−→ −1

2

√
−g(FR̄ + F 3) .

This schematic result has to be corrected by exponential factors for generic α.

This can be easily done, since the metric of [88] is conformally related to our

generic one by gab = e2(α−1)φḡab. We thus obtain the action

ICS = ± 1

2µ

∫
dvolḡ

(
e(−2α+2)φfR̄− 2(α− 1)e(−2α+2)φfD2φ+ e(−4α+4)φf 3

)
,

(5.3)

where µ = 3ν/`. Both parts of the action are valid for either sign of the reduction.
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5.1.2 Equations of motion

We can now either vary1 the reduced action, or reduce the 3-dimensional equa-

tions. Either way one obtains the following set of equations of motion:

F : c = ±2µ e(−2α+3β)φf + e2(1−α)φR̄− 2(α− 1)e2(1−α)φD2φ

+3e4(1−α)φf 2,

Dil: − 6
`2

= e−2αφR̄− 2(α + 1)e−2αφD2φ− 2e−2αφ|dφ|2 + 1
2
e(−4α+2β)φf 2,

Kink: 0 = D2eφ + 1
2
e(−2α+3β)φf 2 − 2

`2
e(2α+1β)φ ± 1

2µ

(
D2(e(−2α+2β)φf)

+e(−2α+2β)φfR̄− 2(α− 1)e(−2α+2β)φfD2φ+ 2e(−4α+4β)φf 3
)
,

CKV: 0 = e2αφD(a

(
e−2αφDb)e

φ
)
± 1

2µ
e2(α−1)φD(a

(
e−2(α−1)φDb)(e

−2(α−1)φf)
)

−ḡab
[
e2αφDc

(
e−2αφDce

φ
)

± 1
2µ
e2(α−1)φDc

(
e−2(α−1)φDc(e

−2(α−1)φf)
)]
.

In the F equation c is a constant of integration that a solution will fix. The

CKV equation is the traceless part of the Einstein equation and round brackets

around indices indicate symmetrization of strength one. The trace of the Einstein

equation is what we call the Kink equation. For the dilaton equation (Dil.) we

can equivalently use (5.1) and the constant scalar curvature −6/`2 of the 3d

geometry. The two-dimensional equations have been examined before, e.g. in the

conformal gauge in [90].

These equations exhibit two types of “symmetry”: a scaling of z 7→ ξ z and

a shift of α 7→ α + ξ̃. The former rescales the fields as eφ 7→ ξ2eφ, ḡ 7→ ξ−2αḡ

and f 7→ ξ2α−1f , and can be used to normalize c. The latter transforms fields as

ḡ 7→ e−2ξ̃φḡ and f 7→ e2ξ̃φf , whereas it leaves φ unchanged. Using this, α can be

fixed from the onset but, as mentioned above, we keep this freedom and let it be

fixed by a consistency requirement on our Ansatz.

1the variation of f is δf = 1
2fgµνδ[g

µν ]∓ εµν∂µδAν .
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5.1.3 Conformal Killing vectors

Let us now focus on the last of the above equations of motion, labeled CKV

because of its similarity to a conformal Killing equation. In fact it contains the

conformal Killing equation of [88] for Da(e
−2(α−1)φf), coming from the purely

Chern-Simons part of the action, but is complicated by the similar equation

for Dae
φ coming from the Einstein-Hilbert term. Nevertheless, this equation

motivates us to search for solutions where its content is that of a single conformal

Killing vector equation. This is both for simplicity, but also in the hope of finding

behaviour similar to [88]. Let us first list a set of propositions that will help us

in the subsequent analysis.

The next proposition will be used to fix the metric.

Proposition 5.1.1. If ḡ has a conformal Killing one-form dψ that is non-null

and exact, then the metric can be written in some coordinate system as

ḡ =
dψ(x)

dx
(dx2 − dt2) . (5.4)

Proof. In a conformal gauge, the metric can be written as g = Λ(x, t)dudv , where

conformal Killing vectors are of the form X = g(v)∂v + h(u)∂u . The condition

that ḡ(X) is non null (g(v)h(u) 6= 0), allows us to change coordinates

u 7→
∫

1

h(u)
,

v 7→
∫

1

g(v)
,

so that g = Λ(x, t)(dx2−dt2) with X = ∂x, and ḡ(X) = dψ implies Λ = ψ′(x).

Lemma 5.1.2. If ḡ has a Conformal Killing one-form dψ that is null and exact,

then the metric can be written in some coordinate system as

ḡ = (dx2 − dt2) . (5.5)

Proof. Conformal killing vectors Xψ will have one of the coefficients (h(u) or

g(v)) equal to zero. Pick Xψ = h(u)∂u, so that

ḡ(X,−) = Λ(u, v)h(u)dv = dψ.
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Xψ is null, g(X,X) = 0, so it has to be Xψ = h(u)∂u = ∂x ± ∂t and

ḡ = Λ(u, v)du dv = Λ(x, t)(dx2 − dt2).

Therefore

ḡ(X,−) = dψ = Λ(x, t) (dx∓ dt)

so that

ψ′ = ∓ψ̇ = Λ(u, v).

Furthermore, since dψ = Λ(u, v)h(u)dv, we have that ψ = ψ(v), Λ(u, v) = Λ(v)

and h(u) = κ =const. In other words we get

ḡ = κψ̇(v)du dv → ḡ = dũdṽ = dx̃2 − dt̃2 .

The following proposition will be needed to complete our Ansatz.

Proposition 5.1.3. Assume two non-null conformal Killing one-forms, F1dF2

and dψ, with F1 and F2 functions of x in (5.4). They are necessarily related by

F1 dF2 = k̃ dψ

for some constant k̃.

Proof. F1dF2 is dual to a conformal Killing vector X = g(v)∂v + h(u)∂u , for

some functions g(v) and h(u). Since the left hand side of

F1dF2 =
ψ′(x)

2
((g(x+ t) + h(x− t)) dx+ (g(x+ t)− h(x− t)) dt) .

is a function of x, we have g(x+ t) = h(x− t) = const. .

Finally, we have

Proposition 5.1.4. Take dψ to be the metric dual to a conformal Killing vector

as before. Then in the adapted coordinates we define

Z =
1

ψ′
d

dx

for which

ZD2ψ = −R̄ . (5.6)
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Proof. For g = e2σ(x)(dx2 − dt2), the Laplacian is D2 = e−2σ(x)(∂2
x − ∂2

t ). At the

same time, the curvature scalar is R̄ = −2e−2σ(x)σ′′(x). We substitute ψ′(x) =

e2σ(x).

Equivalent statements for a null one-form dψ can also be written, however our

method for the null case does not lead to any solutions. Proposition 5.1.4 will be

used as in [88] to check for the consistency of a solution.

5.2 A general Ansatz

Before moving onto a general Ansatz involving functions generating conformal

Killing vectors, we glance briefly at the simplest solution to the equations of

motion.

5.2.1 Constant f or φ

From our Kaluza-Klein Ansatz, it is clear that we can obtain known solutions to

TMG by simply setting f and φ to constant values f = f0, φ = φ0. For simplicity,

let us set here α = 1. From the dilaton (Dil.) equation of motion we obtain R̄

in terms of these constants, while the Kink equation becomes

1

2
(eφ0 ± 3

2µ
f0)(f0 −

2

`
eφ0)(f0 +

2

`
eφ0) = 0 , (5.7)

yielding AdS3 or warped AdS3, respectively for f0 = ±2
`
eφ0 and eφ0 = ∓ 3

2µ
f0.

Along these lines, it is interesting to note that constancy for φ implies the

same for f , and vice versa. This can be easily checked by setting one of the two

functions to a constant value and studying the equations of motion for the other.

5.2.2 The Ansatz

Let us focus again on the CKV equation. If we view this as the sum of two

conformal Killing equations coming separately from the Einstein part and Chern-

Simons part, we can only obtain the AdS3 solution. Trying to relax this idea,

we can allow for a “mixing” of the functions appearing in the two gradients. For

instance, focus on the first term

e2αφDa(e
−2αφDbe

φ) = eφ(DaDbφ+ (1− 2α)DaφDbφ),
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and write out the function f as

f = ±2µke(2α−1β)φ + e(2α−2β)φf̃ (5.8)

for a constant k. Inserting this into the second term of the CKV equation yields

± 1

2µ
e(2α−2β)φD(a

(
e(−2α+2β)φDb)(e

(−2α+2β)φf)
)

=

k eφ(DaDbφ+ (−2α + 3)DaφDbφ)± 1

2µ
e(2α−2β)φD(a(e

(−2α+2β)φDb)f̃). (5.9)

The most obvious approach is to impose that f̃ is zero so that we are left

with the conformal Killing vector equation. For k 6= 1−2α
2α−3

the left-hand side of

the equation becomes

eφ(1 + k)

(
DaDbφ+

(1− 2α) + k(−2α + 3)

1 + k
DaφDbφ

)
= e(1−ε)φ1 + k

ε
DaDbe

εφ,

when

ε =
(1− 2α) + k(−2α + 3)

1 + k

is well defined and non-zero. That is, k 6= −1 and k 6= 1−2α
2α−3

. It is then natural to

take dψ = deεφ in proposition 5.1.1. If, on the other hand, we start by imposing

dψ = deεφ, then f̃ appears in the CKV equation that now takes the form of

a conformal Killing vector equation, and so is fixed by using the F equation of

motion to satisfy proposition 5.1.3. This way all fields are fixed and in particular

f = ±2µke(2α−1β)φ + k̃e(4α−4+ε)φ + δe(2α−2β)φ when ε 6= 2− 2α⇔ k 6= 1

(5.10a)

f = ±2µke(2α−1β)φ + e(2α−2β)φ(k̃φ+ δ) when ε = 2− 2α⇔ k = 1 .

(5.10b)

The metric one obtains by choosing the conformal Killing generator to be

ψ = eεφ for some α is equivalent to the one obtained by the choice ψ = φ for

α′ = α + ε/2. Our Ansatz is thus to assume dψ = dφ is a conformal Killing
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one-form. We set

k =
1− 2α

2α− 3
,

and by using proposition 5.1.3, which is satisfied by the F equation of motion, f

is given by

f = ±2µke(2α−1β)φ + k̃e(4α−4β)φ + δe(2α−2β)φ if α 6= 3

2
, 1 (5.11a)

f = ±2µeφ + k̃φ+ δ if α = 1 , (5.11b)

whereas the metric is given by (5.4) with ψ = φ. This way the CKV equation

is automatically satisfied and at the same time all fields are fixed. It remains to

show that the other equations of motion are satisfied for suitable values of α, k̃,

δ and c.

5.3 Solutions

In this section we check the consistency of our Ansatz, namely which functions

f and φ related by our Ansatz satisfy the reduced TMG equations of motion.

Starting with (5.11), we use the equations of section 5.1.2 to calculate the ex-

pressions for |dφ|2, R̄ and D2φ in terms of φ. We then use proposition 5.1.4 and

compare ZD2φ, that is Z acting on the expression for D2φ, with the expression

for −R̄ obtained previously. When the two expressions match, the equation for

D2φ implies that of R̄. Finally, the consistency of the equation for |dφ|2 = φ′ is

checked by the integral of the equation for D2φ = φ′′/φ′.

The resulting conditions are in terms of long expressions involving exponen-

tials of φ, schematically ∑
(m,n)∈S

e(mα+nβ)φ .

Recall the first consistency check is an equation of the type

ZD2φ+ R̄ = 0 .

The simplest approach is to consider all the powers to be different, mα + n 6=
m′α + n′, so that their coefficients have to vanish separately. We thus obtain

three cases:

1. δ = 0, α = 1/2 and k̃, c unconstrained;
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2. c− δ2 = k̃ = α = 0;

3. δ = c = k̃ = 0 and µ2`2(2α + 1)2 = (2α− 3)2 .

One need also check the cases when the powers mentioned above are not all

different. This happens when

α = 0, 1/2, 3/4, 1, 9/8, 7/6, 5/4, 4/3, 11/8, 5/3, 7/4, 2, 5/2, 3.

For each of these values we simplify the result, but again find the same three

possible solutions.

The final check is to verify that the expression for |dφ|2 is also satisfied. We

therefore integrate the expression for D2φ

D2φ = H(φ)→ φ′′ = H(φ)φ′ → |dφ|2 = φ′ =

∫
Hdφ+ d ,

for a function H(φ) of φ, and compare with the expression for |dφ|2. One finds

that for a suitable integration constant d, the two expressions always match for

the three cases above.

We will now write down and identify the three classes of solutions that can

be obtained via our Ansatz.

5.3.1 Case 1: δ = 0, α = 1/2

In this case our generalised Ansatz simply becomes

f = k̃e−2φ ,

so that A = − k̃
2
e−2φdt. Solving the equations of motion we get

D2φ = 1
2
(c∓ 2µk̃)e−φ + 1

`2
eφ − 3

4
k̃2e−3φ,

R̄ = 1
2
(c∓ 2µk̃)e−φ − 1

`2
eφ − 9

4
k̃2e−3φ.

Integrating D2φ = φ′′/φ′

|dφ|2 = φ′ = −1

2
(c∓ 2µk̃)e−φ +

1

`2
eφ +

1

4
k̃2e−3φ + d

and inserting into the dilaton equation (along with D2φ) we find that d = 0.
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The 3-dimensional metric can now be written in the φ coordinate as

g = eφ

(
dφ2

k̃2

4
e−3φ + γ

2
e−φ + 1

`2
eφ
∓ (

k̃2

4
e−3φ +

γ

2
e−φ +

1

`2
eφ)dt2

)

± e2φ(dz − k̃

2
e−2φdt)2. (5.12)

Identifying this and the other metrics is particularly easy due to the classifi-

cation of algebraically special solutions to TMG [86]. We suspect we are dealing

with constant scalar invariant spaces (CSI), after evaluating the first three cur-

vature invariants, in which case they are CSI Kundt, locally homogeneous, or

both [91, 84]. Furthermore, the Ansatz we use implies two commuting symme-

tries ∂t and ∂z. To identify which particular Petrov-Segre class we are in, we

study the Jordan normal form of the tensor

S b
a = R b

a −
1

3
Rδ b

a .

For Case 1, the canonical S b
a turns out to be identically zero, i.e. the solution is

of Petrov class O, corresponding to locally AdS3.

5.3.2 Case 2: c− δ2 = k̃ = α = 0

The Ansatz here boils down to

f = ∓2µ

3
e−φ + δe−2φ,

so that A =

(
±2µ

3
e−φ − 1

2
δe−2φ

)
dt. From the equations of motion we obtain

that

φ′ = ∓2

3
µδe−φ +

1

4
δ2e−2φ + d.

Furthermore we get that d = 3
`2

+ 1
9
µ2 and

R̄ = −δ2e−2φ ± 2

3
µδe−φ.
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The full 3-dimensional metric is then

g3 =
1

∓2
3
µδe−φ + 1

4
δ2e−2φ + d

dφ2 +
(
±2

3
µδe−φ − 1

4
δ2e−2φ − d

)
dt2

+
(
eφdz +

(
±2

3
µ− 1

2
δe−φ

)
dt
)2
.

(5.13)

For this solution, the canonical S b
a is given by

S b
a =


−2(ν2−1)

`2
0 0

0 ν2−1
`2

0

0 0 ν2−1
`2

 ,

placing it into Petrov class D, whence by the theorem in [86] it is locally spacelike

or timelike warped AdS3. In fact, case 2 covers both spacelike and timelike

stretching. One can easily find a diffeomorphism that will bring the metric to

one of the standard forms

g =
`2

ν2 + 3

(
dy2

y2 − δ
∓
(
y2 − δ

)
du2 ± 4ν2

ν2 + 3

(
dt̃+ ydu

)2
)
, (5.14)

where the two values δ = 0, 1 are isometric. The sign above distinguishes spacelike

and timelike stretching and is the same as the one we used to distinguish between

spacelike or timelike KK reduction.

5.3.3 Case 3: δ = c = k̃ = 0 and µ2`2(2α + 1)2 = (2α− 3)2

The general Ansatz here is

f = ±2µ
1− 2α

2α− 3
e(2α−1β)φ,

so that A = ∓ 2µ
2α−3

e(2α−1β)φdt. The equations of motion here yield that

D2φ = 2

(
α

`2
+ µ2 (1− 2α)(2α2 + 3α)

(2α− 3)2

)
e2αφ .

Consistency with the dilaton equation requires a d = 0 integration constant and

φ′ =
4µ2

(2α− 3)2
e2αφ .
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The 3-dimensional metric is therefore given by

g = e2αφ

(
dφ2

4µ2

(2α−3)2
e2αφ

∓ 4µ2

(2α− 3)2
e2αφdt2

)
±e2φ

(
dz ∓ 2µ

2α− 3
e(2α−1β)φdt

)2

.

(5.15)

Again, to identify this solution we look for the Jordan normal form of the

traceless Ricci tensor S b
a , which in this case is

S b
a =


0 1 0

0 0 0

0 0 0

 ,

corresponding to the Petrov class N. When ν 6= ±1/3, a coordinate transforma-

tion can bring the metric to the form of an AdS pp-wave

g =
`2

4

dρ2

ρ2
+ s1ρ

1
2

(1−3ν s2)dz2 + ρ dz dt , (5.16)

where s1 and s2 are uncorrelated signs. The sign s1 keeps track of the sign of the

KK reduction we used and the sign s2 comes from the two possible solutions for

α. When ν = ±1/3, the solution for α is unique and our metric becomes that of

AdS3 in Poincaré coordinates.

The pp-wave (5.16) then corresponds to a TMG wave [85] with two commuting

symmetries. It is locally isometric2 to the Schrödinger sector solutions of [87, §4.2]

for their b = 0, which were found and their causal structure analyzed in [92].

Our Ansatz is thus seen to reproduce locally all known stationary axisymmetric

solutions to TMG [87] for generic values ` and ν, with the exception of the b 6= 0

in [87, §4.2].

5.4 Conclusion

The search for new solutions to TMG has lead us to exploring the power and

range of the “kinky” approach to 3d-gravity as used in [88]. The idea of using an

exact conformal Killing vector to simplify the reduced two-dimensional equations

of motion seems very effective in leading to a whole range of possible solutions

2the diffeomorphism in [85] has an arbitrary function f1(z) that here should be a constant,
see also the appendix in [83].
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depending on a small set of parameters. However, the theorems we used impose

strong restrictions on the Ansatz. A subset of valid parameter values is selected

that corresponds to the already well-known and studied solutions of locally AdS3,

warped AdS3 and the pp-wave.

Appealing as the Kinky Ansatz may look, it requires too much symmetry to

yield any novel solutions. Nonetheless, this is a new, simplified way to obtain the

most symmetric TMG backgrounds. We note how a simple and local Ansatz can

reproduce a large class of the known stationary axisymmetric solutions in [87],

without assumptions on the asymptotics. In this setting, the relationship between

these is in terms of the functional dependence of the generator of a conformal

isometry.

Our Case 3 corresponds to the special case of the family W1 = −2/` of type N

CSI Kundt solutions where the f01(u) in [84] is constant. In this way, their general

solution acquires an extra isometry, which is precisely what our Ansatz requires.

One might wonder whether our Ansatz can be generalized to include other defor-

mations of AdS3 and warped AdS3. Another natural question is whether the core

idea behind this Ansatz, which was to automatically satisfy the traceless part of

the Einstein equation, can be useful in studying other gravitational systems.
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Summary and Outlook

This second part of the thesis was dedicated entirely to topologically massive

gravity and solutions to it exhibiting isometry groups smaller than the maximal

SO(2,2). In particular we dedicated one chapter (3) to a detailed study of warped

AdS3 space, to familiarise with the various possible ways of parametrisation. We

then set up the quotient construction for warped AdS3 black hole solutions to

TMG in chapter 4: we saw how the identification procedure can lead to closed

time-like curves that can be “naked”, or hidden behind event horizons. We also

explained in detail that the temperatures TL and TR, appearing as constant co-

efficients in the quotient construction, are unambiguous parameters by which to

identify the black holes (in contrast with the horizon radii r+ and r−). We pro-

ceeded to a full layout of the causal structure of such solutions and gave a quick

review of their thermodynamics.

Chapter 4 also gives an in-depth study of the near-horizon geometries of

warped AdS3 black holes. The analysis takes place in parameter space, where

the near horizon behaviour is obtained by taking specific limits of the identifying

parameters TL and TR. The salient point of these two chapters is the following:

via an appropriate choice of parametrization, keeping a specific Killing symmetry

“direction” ∂τ manifest, and subsequently quotienting along a similar isometry

(spacelike quotient for a spacelike ∂τ etc.) yields the corresponding black hole

solution. For example: choosing a spacelike ∂τ , i.e. accelerating coordinates with

two apparent horizons, and a spacelike quotient direction, one obtains the met-

ric of a non-extremal black hole. Furthermore, zooming in towards the horizons

gives us back a metric in the originally chosen coordinates, albeit a further iden-

tification yielding the “self-dual” version of these spaces. This is the merit of

our construction and our setup. The analysis of locally warped AdS3 solutions of

TMG and its salient properties can be very easily laid out and understood from

a careful geometrical discussion, toward the most obvious coordinate choices,

via appropriate quotients, leading all the way to the near-horizon properties of
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warped black holes.

We further dedicated chapter 5 to our first attempt at finding new solutions

to topologically massive gravity. We started with a KK dimensional reductions

and hoped to be able to use a conformal isometry on the resulting 2-dimensional

space to simplify the equations of motion. Ultimately we were aiming toward a

“kink”-like solution, a metric that would interpolate in some way between the

known locally AdS3 solutions and warped AdS3. As usual, we were motivated by

our wish to formulate a holography conjecture for warped AdS3 space. We recall

this, so as to motivate the following, describing ideas for future related work.

One possible project emerging from this work, is to continue the above analysis

for other, less symmetric backgrounds. Clearly this will not be straightforward, as

one is dealing with non asymptotically locally AdS spaces, so finding the asymp-

totic boundary metric is a highly non-trivial problem. Since we are familiar with

TMG and spacelike warped AdS solutions, one could start with this case. A lot

of work has been done concerning the asymptotics of different TMG backgrounds

(e.g. [93]), and in particular in [51] the authors give a set of consistent bound-

ary conditions for space- and timelike warped AdS3. Their analysis furthermore

shows that the conserved charges are finite and integrable. One could also try

to compute 1- and 2-point functions on the gravity side from the on-shell action,

hoping to reproduce results from a recognizable gauge theory. This step is clearly

far from obvious and probably such a gauge theory would have to be set up anew

with the information that is known: the symmetry structure, the sources for the

operators and the expected values of the 1- and 2-point correlators.

Within TMG, we are also interested in understanding some of the other

known solutions, referred to as deformed AdS3 and deformed warped AdS3 spaces

(see [86]). As we saw in section 5.3, these belong to the set of Kundt CSI solutions

to TMG. One would first of all have to understand in what sense they are to be

viewed as deformations of the more symmetric solutions, and subsequently try

to understand their asymptotic structure. Here asymptotic boundary conditions

have yet to be defined. Also, it has to be understood whether the most general

conditions will yield finite charges, or if some sort of renormalisation has to take

place. Preliminary results indicate that relaxed asymptotic conditions with finite

charges do exist. Setting up the conditions will require a detailed analysis of all

the symmetries and properties of these solutions, but the charge discussion will be

a purely computational task. If there is anything conceptually well defined about

the deformed adjective, then this could give some intuition about eventually de-
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forming the known dual theories to TMG towards a gauge theory corresponding

to these types of solutions. Considering the rather large class of Kundt CSI back-

grounds in the bulk, one might be justified in expecting to find a corresponding

“class” of dual theories. According to how many parameters are switched on or

off, and how much symmetry is required, this class may split into subsectors: the

most symmetric being CFTs, and the next in line being logarithmic CFT.

Summarising, my recent interests focus on gauge-gravity duality. I choose

to approach the topic via 3-dimensional gravity theories to simplify the analyses

without trivialising the problem, and Part II of this thesis is the result of my first

steps in this direction.
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