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Abstract 

This thesis describes the development and application of models to predict the 

equation of mechanical state of materials from first principles, concentrating on 

the regime of strong shock waves. Most effort was devoted to crystalline solids, 

though extensions to the fluid phase and higher temperatures are proposed. E-

quations of state and phase diagrams were predicted for aluminium, silicon and 

beryllium. 

The method used is based on quantum mechanical treatments of the electrons 

in the solid and of the phonon modes. The importance of anharmonic effects 

(phonon-phonon interactions) was investigated, but was not included rigorously 

because it did not appear to contribute significantly. With fully ab initio methods, 

the equation of state and phase diagram could be predicted to a few percent in 

mass density, the discrepancy being caused mainly by the use of the local density 

approximation in predicting electron states. 

The accuracy of the equation of state could be improved considerably by 

adjusting the internal energy to reproduce the observed mass density at STP. The 

resulting ab fere iritio equation of state could essentially reproduce the observed 

states on the shock Hugoniot to within the scatter in the experimental data. 

Because these equations of state are built on firm quantum mechanical and 

thermodynamic principles, they should allow properties to be predicted accu-

rately away from the principal Hugoniot, unlike traditional empirical equations 

of state. Accurate temperatures are important in the development of models of 

material strength (elasticity and plasticity) based on microstructural phenomena. 

As an illustration of the versatility of the equations of state, hydrocode simula-

tions were made of the splitting of a shock wave in silicon, caused by the phase 

change. The splitting appears to be in reasonable agreement with laser-driven 

shock experiments. 
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1.1 	The equation of mechanical state 

In a mechanical context, the equation of state (EOS) is a relation between the 

thermodynamic variables, used to close the equations of motion in a model of the 

behaviour of materials at the macroscopic (human) scale. 

For example, many continuum mechanics problems can be solved - or at 

least simulated - by considering the evolution in time of variables linked by the 

conservation of mass, momentum and energy. In 31), these comprise five scalar 

equations involving six dependent quantities: mass density p, components of 

momentum [pj, density of internal energy E and pressure p. The EOS may be 

expressed as an additional relation between p, E and p, allowing the system of 

equations to be closed and a solution found. In practice, it is more common to 

use the specific internal energy e rather than E. 

EOS of the form p(p, e) have been and are widely used in mechanical simu-

lations. Since this form of EOS contains only mechanical quantities, it cn 

deduced from mechanical measurements. These are relatively straightforward to 

obtain from shock wave experiments - not easy to do accurately, though! - so 

many such EOS have been published for a wide range of substanc::. [; 

However, some physical processes are better expressed in teri of the local 

temperature T rather than e. Examples include chemical reaction rates, viscosity, 

dislocation activation energies, phase transitions and of course heat flow. The 

simple mechanical EOS is not thermodynamically complete — it does not express 

a thermodynamic potential in terms of its natural variables [2] — and so cannot 

be used to determine the full range of thermodynamic variables. One type of 

'product' from the work described here is the thermodynamically complete EOS, 

from which T and other useful quantities can be found, for a variety of substances. 

With computers of the speed which is readily available nowadays, it is possible 

to predict the EOS more or less from first principles. A scheme has been developed 

which applies - in principle - to any element or compound (encompassing alloys 

etc) and which can treat different polymorphic phases. 

There are many technological applications of the EOS. Shock waves are found 

in several branches of mechanical engineering, such as the design of explosive mu-

nitions and defences against them, the interaction of space debris with satellites, 

spacecraft and asteroids, and the effect of high power radiation sources (e.g. lasers 

and particle beams) with targets. EOS are also used in geology, so determine the 

equilibrium structure of a planet. 
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1.2 	Why calculate equations of state? 

Experiments probing states at densities and temperatures far from those observed 

at STP can be, prohibitively expensive. Calculating the EOS rather than measur-

ing it is an attractive proposition, provided the underlying physics is understood 

and modelled with sufficient accuracy. 

If the physics is tractable enough for the EOS to be expressed in an algebraic 

form, then this form can be used as a fitting function to interpolate between a 

small number of accurate experiments. This approach is not followed here; ! have 

preferred to include the maximum amount of physical content which still allows 

the EOS to be determined in a reasonable time. 

Other uses of theoretical EOS are in estimating parameters which cannot eas-

ily be measured experimentally (such as the temperature deep inside a shocked 

sample), and in predicting the states obtained in candidate experimental geome-

tries (allowing design to be performed calculationally rather than by making an 

entire series of iterative development experiments). Furthermore, theoretical EOS 

can be forced to be a self-consistent representation of the underlying physics 

for example, enforcing thermodynamic consistency. 

Conversely, if a physical model of properties is constructed from assumed 

constituents of a more fundamental nature and then compared with exper.ments, 

the fundamental physics is tested. This use of a composite model is widespread in 

physics, including the quark model of the hadron spectrum, predictions of particle 

scattering and hyperfine binding energies based on quantum field theory, and 

gravitational models of orbital trajectories and periods. The present work can be 

applied as the same process applied to physics at the atomic scale, testing against 

macroscopic mechanical properties. I do not wish to overstate the importance of 

this - atomic structures can be probed by far more sensitive techniques such 

as spectroscopy - but the prediction of an accurate EOS from first principles 

does demonstrate the universality of the fundamental physics, and the EOS is 

a reasonable test of our understanding and models of many-body interactions 

between electrons. 

1.3 	Scope of this work 

EOS can be deduced for densities from zero (atoms arbitrarily far apart) to that of 

a neutron star, and temperatures from absolute zero to values sufficiently large for 
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atoms to be essentially stripped of all their electrons or even nuclei to evaporate. 

This range is far too great to be considered here, so I have restricted the states 

to those which might reasonably be relevant in a 'typical' shock wave experiment 

driven by a few kg of high explosive. 

In compression and heating, the limits chosen are up to 	1 TPa (10 million 

atmospheres) pressure, and 	iO K (1 eV) in temperature. The pressure range 

is covered by compressions of a factor 	2 to 5 in density (up to about 2 in 

interatomic spacing). The EOS are extended down to T = 0, but with a resolution 

of the order of a few degrees or tens of degrees K. For some substances, the 

expansion regime is considered out to the perfect gas regime, but relatively little 

work was devoted to fluid models, so this region of the EOS may be less accurate. 

The substances considered were elements and stoichiometric compounds. The 

latter were constrained to have a similar number density of each species, because 

the computational effort required to predict the EOS increases with the number 

of atoms needed to represent a compound. 

The states and substances chosen restrict the generality of the physical 'build-

ing blocks' required. It was assumed that the atoms were not ionised, but the 

outer electron states were allowed to change under different compressions a--.1d 

polymorphic structures. 

1.4 New aspects 

Many parts of the work presented here include the application of well-developed 

theoretical techniques from atomic and microstructural physics to shock wave 

physics. A large body of empirical and anecdotal data exists for the behaviour 

of materials under shock loading, for which complete and predictive description-

s have not yet been found. Reasons include the transient nature of the states 

obtained, spatial variations, the difficulty of measuring the extreme states pro-

duced (including a lack of standards and references), the cost of each experiment 

(limiting the scope to repeat experiments and determine sensitivities) and the 

difficulty of isolating the effect of competing processes with different length and 

time scales. 

Other groups are very active in the same field, so my work complements and 

overlaps results from other researchers rather than being a unique investigation 

of a new field. It is generally true that each group prefers a different variant of 
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the physical models and numerical schemes used to calculate contributions to the 

EOS. As far as I know, no other group uses quite the same method of calculating a 

complete EOS. To this extent at least, my results validate the underlying physics 

and, taken in conjunction with other people's work, can provide a measure of the 

uncertainty with which the basic physics is modelled. Some aspects of the work 

described here were at the cutting edge of technology when first reported, e.g. ab 

initio phonons for silicon. 

In my own view, a major attraction of the scheme described here for generating 

EOS is its generality. Once a reasonable model has been obtained for atoms of 

an element, it can be used to determine the EOS of the element itself, including 

alternative polymorphic phases, and the EOS of compounds of different elements, 

including alloys. As computing power increases, EOS can be predicted for more 

complicated substances (e.g. with more atoms in the chemical formula) and 

with greater accuracy. The EOS scheme is thus flexible, general and extensible, 

whereas many previous methods have been more specific to particular substances. 

To be of more use in the context of shock wave experiments, and to describe 

the work in a less disjointed fashion, I have attempted to summarise the relevant 

physics where appropriate. These descriptions do not reflect original phy, b'i 

the wording is my own and is intended to offer a slant from the shock wave poi--..-it 

of view. General references are included for these descriptions. 

Otherwise, physics and derivations are my own unless attributed by local 

references. 

In my opinion, the following significant original work was performed in the 

course of this study: 

Developing algorithms based on the Dirac equation to allow the ground 

state energy and electron energy levels to be predicted for one or more 

atoms, isolated or in a lattice. 

Use of the Ql\/I codes cited to calculate energy, stress, restoring force and 

band structures for the materials, structures and densities listed. 

Deriving equations required to deduce EOS from the QM results. This is 

based on accepted physics, but the equations were re-derived in the most 

convenient form for EOS. 

Proposing and developing the time-dependent model of phase transitions. 
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Proposing and developing the model of vacancy concentration for states 

away from p = 0. 

Proposing and developing the high density fluid model. 

Proposing and developing the low density models for solid and fluid. 

Considering time-dependent effects in the EOS. 

Developing the operator split model for phase transitions and equilibration. 

Proposing the model for non-equilibrium excitation of modes during rapid 

deformation of a material. 

Deriving equations and algorithms for fitting various empirical equations to 

data, e.g. the interatomic potentials. 

Deriving numerical schemes for MC and MD simulations. (This has been 

done before, but the schemes used here were derived independently.) 

Deriving equations to construct phase boundaries and an equilibrium EOS 

from a set of free energy surfaces tabulated over v and T. 

Re-expressing the equations for X-ray diffraction from crystals to be suitable 

for predicting powder patterns numerically given the positions of a set of 

atoms from MC or MD simulations. 

Preparing EOS and phase boundaries for the materials listed. 

Comparing the EOS with experimental data, including the prediction of 

shock Hugoniots from each EOS. 

Investigating different methods for adjusting theoretical EOS to reproduce 

experimental data. 

Predicting the splitting of shock waves into multiple-wave structures as in 

the diamond/BCT EOS for silicon, and comparing with experimental data. 

Evaluating different forms of interatomic potential for EOS use. 

Writing software to perform everything but the electron ground state calcu-

lation. The programs used to predict phonon frequencies from forces were 

based work by other people (see Acknowledgements). 



Chapter 2 

Theoretical equations of state 
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2.1 	Structure of an equation of state 

The objective of this work is to predict the isotropic equation of state - or scalar 

compressibility - of macroscopic objects. 'Macroscopic' is a subjective scale, but 

in the present context can be taken to mean 'everyday-sized', say millimetres 

to metres in extent. 

All matter is composed ultimately of fields of fundamental particles. The 

scales which need to be taken into account when predicting properties depend on 

the temperatures or energies of interest. These define an effective 'condensation 

scale' below which no details need be taken into account, or what might be 

regarded as 'good quantum numbers'. 

The present work is concerned with predicting properties for use in hydro-

dynamic systems, driven by energies typically available from chemical systems. 

Plasmas are barely considered, and atomic nuclei are assumed to be unaffected 

by any mechanical deformations. Thus the substructure of the nucleus can be 

ignored, and the effect of nuclei represented by a point mass and electromagnetic 

field. (In most cases, we can also assume that the inner electrons of an atom 

move with the nucleus.) 

The EUS of a substance can be deduced from the variation of specific internal 

energy e with specific volume v and temperature T. Given e(p, T), the laws 

of thermodynamics can be used to deduce the specific entropy s and hence the 

specific free energy f and pressure p. 

The internal energy can be split into the cold curve e(v) (zero temperature 

frozen-ion isotherm) and thermal contributions from the ions e(v, T) and elec-

trons e6 (v, T) In this prescription, isotherm measurements would not tend to e 

as T --~ 0 since the ion-thermal contribution includes the finite zero-point vibra-

tional energy. 

In the procedure developed in the present work, we attempt to retain the most 

physically complete model of the processes underlying each contribution to the 

EOS, within reason and the realities of computational power. Numerical calcu-

lations of the electronic wavefunctions play an essential part; the limitations and 

approximations used in the calculation of the wavefunctions, such as the spatial 

and energy resolution of the basis functions, are well-understood and straightfor-

ward to control. This is in contrast to other approaches to the prediction of EUS, 

where quantum mechanics may be used to predict effective interatomic potentials 

(lAPs) directly [3, 4, .5, 6, 7, 8]. The lAPs are generally easier to use to deduce the 
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EQS (except for the electron-thermal contribution), but the choice of functional 

form for the potential introduces approximations which are difficult to quantify. 

2.1.1 Internal energy of a solid phase 

In crystalline phases, each ion vibrates about a fixed average position. The en-

ergy can be split conveniently into contributions from the frozen-ion cold curve 

e(v), the thermal motion of the atoms ei(v, T) and the thermal excitation of the 

electrons ee(v,T) 

e(v, T) = e(v) + el(v, T) + e(v, T). 	 (2.1) 

The cold curve energy for a phase at some volume is the energy of the systems 

with the electrons in their ground state with respect to the ions. The lattice-

thermal and electron-thermal energies are the result of perturbations of the ion 

positions and electron occupation numbers from their ground state values. 

Other contributions 

Strictly, electron-phonon interactions should be taken into account. Displacemet 

of the atoms from their equilibrium positions alters the electron energy levels, and 

excitation of the electrons from their ground state alters the stiffness of the lattice 

with respect to displacement of the atoms. 

The effect of atomic displacement on the electron energy levels is largely taken 

into account in the calculation of the lattice-thermal energy, as discussed below. 

The variation in lattice-thermal properties with thermal excitations of the elec-

trons was neglected. 

At sufficiently high temperatures, the excitation of the electrons means that 

the separation into cold curve and electron-thermal contribution is not accurate. 

At the temperatures considered here, these interactions mainly affect the thermal 

and electrical conductivity; the contribution to the EQS is much smaller. 

Vacancy population 

For any temperature and density, there is some equilibrium concentration of va-

cancies in the lattice of atoms. The proportion of vacancies f can be calculated 
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given the vacancy formation energy E: 

f(T) = —EV BT e /1 . 	 (2.2) 

Given a population of vacancies, contributions can be calculated to the internal 

energy of the lattice and also to the entropy, since there is a configurational 

entropy associated with the distribution of vacancies over possible sites. 

The vacancy formation energy can be estimated from the mean binding energy 

Eb of atoms in the solid, since to a first approximation (order of magnitude) the 

energy required to form a vacancy is just the energy required to remove an atom 

from the lattice. 

If the EOS is defined such that the cold curve energy e -+ 0 as p —* 0 then 

Eb = eA where A is the mass of an atom. (This calculation is considerably more 

complicated if the material is not an element.) Since e is a function of p it can 

be seen that the E also varies with p. 

This use of the cold curve energy is over-simplistic because 

The crystal lattice deforms around a vacancy, altering the electron distri-

bution and hence the effective formation energy. 

Vacancies can influence the electron energy levels and the phonon modes, 

altering these contributions to the equation of state. These effects depend 

on the vacancy concentration. 

It can be energetically favourable for several vacancies to merge, forming a 

microvoid. 

A more rigorous treatment might consider the effect of the vacancy concentration 

on the other contributions to the EOS, and the variation of E with p, T and f. 

In order to calculate the vacancy formation process properly, consideration 

must be given to the fate of the atom which is removed. This is crucial for 

calculations in compressed states. Vacancy formation can be treated in either of 

the following ways: 

An atom is removed, reducing the mass in the volume under consideration, 

and thus reducing the density for the same nearest-neighbour spacing. (In 

other words, the mean density is reduced for the same density in the un-

perturbed lattice.) The bulk density corresponding to a crystal density of 
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An atom is moved from its initial position to a new region of lattice, and the 

whole lattice is then compressed to fit into the same volume, reducing the 

nearest-neighbour spacing for the same density. (In other words, the mean 

density is held constant whilst increasing the density in the unperturbed 

lattice.) The crystal density corresponding to a bulk density of p is p/(l - 

f). 

In either approach, f is varied iteratively to find the equilibrium population as 

a function of p and T, given the vacancy formation energy E as a function of p 

and T. If E0  is calculated perfectly, both approaches would give the same result 

for a sufficiently large system. If E is somewhat in error, the approaches should 

give an indication of the likely uncertainty in f. 
As the material state changes, it takes a finite time for the equilibrium vacan-

cy population to form. In principle, vacancies can be created and destroyed by 

thermal and mechanical disturbances of the perfect lattice. However, the energy 

barriers to such processes are much higher than for processes involving existing 

defects, such as dislocations [9], grain boundaries and other vacancies. The for-

mation rate for vacancies from an atom on 'site i' can be approximated by a 

family of Arrhenius forms, 

ff1i =
Fj()e_ T  d, 	 (2.3) 

where the integral is over displacement directions F of the atom on the surface 

of a unit sphere 88. The energy barrier E, j  varies with density, and the attempt 

rate F, with density and temperature. In a lattice without defects, Fi  can be 

calculated from the density of phonon states. However, since E is lowest in the 

vicinity of existing defects, it is the corresponding values of F which should be 

used; these are not straightforward to calculate. Near some kinds of defect, e.g. a 

void or grain boundary, F() is likely to be less than in the perfect lattice. Near 

interstitials, atoms are closer together and F() is likely to be greater than in the 

perfect lattice. Near a dislocation, the average density is lower but atoms may 

be closer together in some directions, so F( is likely to be similar to its value in 

the perfect lattice - although the displacement direction(s) most likely to cause 

a vacancy could be considered in more detail. A simple estimate can be made by 

taking an average phonon frequency from the density of states. 

The Arrhenius factor is based on an 'effective temperature' T*  rather than 

simply the local temperature to take account of shock waves. Shocks change the 
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material velocity in a short time. A finite time elapses before the kinetic modes 

reach thermodynamic equilibrium, so energy can be concentrated in certain trans-

lational or vibrational modes before equilibrating. Thus T*  can be significantly 

greater than T for a short period following the passage of a shock. For modes 

parallel with the shock, a plausible relation is Tax i-..' 3T. This superheating 

process is thought to explain some phenomena in the shock initiation of chemical 

reactions [10]. The T*  for any particular process may not be the maximum value; 

it depends on the specific pathway involved and may in fact be less than T, for 

example if driven by one of the modes normal to the direction of the shock. 

The vacancy formation rate may be large during a phase transition, since 

large atomic rearrangements may occur and free energy may be available. 

As well as contributing to the EOS, the vacancy concentration could be used 

to estimate the melt locus by considering contours of constant f in (p, T) space. 

Behaviour at low densities 

It is possible to imagine - and calculate - the effect of expanding a solid isotrop-

ically beyond the equilibrium (p = 0) density. First, the solid experiences a 

tensile stress. Equilibrium positions can still be found for the atoms, and physi-

cal phonons calculated. As the density decreases, the stress initially increases. As 

the density tends to zero, the stress eventually falls to zero. There is thus a maxi-

mum stress, corresponding to the maximum gradient of e(v). For densities below 

this value, the material is mechanically unstable: it is energetically favourable 

for a region of constant density p to split into smaller regions of density po  (the 

p = 0 value) and empty space. As the density decreases, a growing number of 

phonon modes will be imaginary as the crystal becomes unstable with respect to 

the corresponding displacements of the atoms. (Fig. 2.1.) 

In fact, for any density below po  the material is unstable with respect to non-

isotropic (shear) deformations. If the stress contains any non-isotropic component 

(which is almost always the case for real materials in 'engineering' problems) 

then the material may deform plastically, eventually leading to fracture. Cracks 

may open and voids grow even in the case of an isotropic tensile stress. These 

processes are energetically favourable in a sample of sufficient size because the 

strain energy is proportional to the sample volume V, whereas the surface energy 

is proportional to V 2'3. 

These failure modes are time-dependent. In fact, sufficiently small stresses 
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Figure 2.1. Schematic of the 0 K isotherm indicating regions of instability. 

may result in very slow rates of plastic deformation, such as creep and metal 

fatigue. Damage and failure models form a large area of research in their own right 

[11]. An approximate model suitable for extending EOS to the cold expansion 

region in a reasonable way would be to approach p = 0 according to one or more 

relaxation time scales. A separate time scale should be chosen for the shear failure 

compared with the failure, by density instability. The time scale can be made a 

function of density to allow this flexibility; if also a function of temperature then 

it can be used to represent thermally-activated processes such as the motion of 

dislocations. This simple model includes no further dependence on internal state, 

such as a damage parameter or porosity. Porosity is probably the next most 

important improvement. 

Rigorously, the instability to density perturbations should involve an equili-

bration process. In reality, the energy depends on the size distribution of high 

density pieces. 

Strictly, when the density instability takes effect and empty regions nucleate, 

the remaining regions of solid are in equilibrium with a vapour of atoms. This 

contribution to the EOS is not considered further in this work, because 
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Equilibration of cold material with vapour is likely to take place over long 

time scales. 

The effect is almost certainly negligible in the response of most materials 

of current engineering interest for loading at high rates such as in a shock 

wave. 

2.1.2 Internal energy of a fluid phase 

In fluid phases, there may be no static reference configuration of ions on which 

to base the energy contributions at each volume. Some possible approaches and 

models in this more complicated case are discussed below. Attention is concen-

trated on methods which are likely to be valid over a wide range of densities. 

Virial expansions and corrections to the ideal gas EOS (like van der Waals') are 

omitted, since these are known to have a restricted range of validity [2]. 

In the present work, fluids were considered only to extend the range of a 

solid compression EOS in an approximate way for convenience when applying the 

EOS to problems in which the material happened to re-expand. Some methods 

are easier to use in conjunction with the solid EOS calculations than others; for 

example, effective interatomic potentials can be predicted at least approximately 

with some ease. A careful application of the more involved techniques for high 

density fluids, such as integral equations and liquid perturbation theory [12, 13, 

14], are beyond the scope of this work. 

Ion positions 

Depending on the fluid model used, it may be possible to define a 'typical' con-

figuration of ions, as a function of temperature as well as volume. 

An example is if the fluid is viewed as a disordered system. When the average 

interatomic separation is similar to that in a solid, the configuration could be 

represented to some finite accuracy as a periodic array of large lattice cells, each 

of which contains a random arrangement of atoms. The electron ground state, 

density of energy levels and atomic forces could then be found exactly as for a 

crystalline solid. Care would be required to include the configurational entropy 

properly, as this is more important than for near-perfect crystals. A significant 

number of vibrational modes are likely to be imaginary; these should be treated 

as free kinetic modes. 
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The arrangement of atoms is unlikely to be truly random, particularly in a 

dense fluid. However, it may be necessary to consider configurations consisting of 

a large number of atoms in order to reproduce the local structure faithfully enough 

to be representative of the fluid, at each volume and temperature. With a large 

lattice cell, the calculation of each ground state energy is also more demanding 

than in a simple crystalline structure. 

It is unlikely in general that a sufficiently accurate static 'typical' configuration 

can be found. Fluids 'really' consist of a population of atoms whose configuration 

is in a dynamic state which maintains an average pressure and volume at a given 

temperature. The 'natural' state of a fluid is therefore an average over many con-

figurations, each with its own ground state and thermal energies. It is possible to 

sample configurations using Monte-Carlo or molecular dynamic methods,[2] and 

to determine the electron states with respect to the instantaneous configuration 

of the ions. However, this approach is computationally expensive, particularly 

when repeated for a table of densities and temperatures. 

Quasisolid 

A much larger set of configurations for ion positions can be considered given an 

effective interatomic potential (lAP) for the material. The force on each atom 

and the total energy can be calculated far more quickly using an TAP than from 

an electron ground state calculation. [12] 

TAPs can be deduced from more rigorous treatments of the lattice in a variety 

of ways, such as adjusting parameters in an algebraic TAP to reproduce states 

from rigorous calculations, as used elsewhere in the present work. 

Given an lAP, the ion-thermal contribution for atoms in a fluid could be es-

timated by generating a large lattice cell containing a random distribution of 

atoms, and calculating a cold curve and phonons as for the lattice cell in a crys-

talline solid. Some phonon modes are likely to be imaginary; these should be 

associated with free translational modes. 

Some degree of adjustment of the atom positions is necessary to start from 

equilibrium positions with respect to the random configuration. The adjustment 

should be carried out in a heavily-damped fashion, otherwise the atoms may 

gather enough momentum to rearrange themselves into a solid structure. 

If the TAP has a finite range 1 then each simulation need not consider more 

atoms than are contained in a cube of side 21. In this case, it is advisable to 
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perform a number of simulations with different random configurations. It may 

be more convenient to choose a single, much larger configuration and accept 

the penalty in unnecessary phonon calculations. The size is limited by the time 

required to calculate the phonon modes for a system of a given number of atoms 

N, which is determined by the time needed to find the eigenvalues of a 3N >< 3iV 

matrix - orders of magnitude less than the electron ground state calculations. The 

accuracy of a given set of simulations can be tested statistically, to see whether 

the fluid state has converged to a constant value as additional configurations are 

added. 

This 'quasisolid' approach is only possible for fluid at a reasonably high den-

sity, because it assumes that a significant proportion of the thermal energy is in 

collective vibrational modes. As with the solid in tension, this assumption breaks 

down when the expanded material becomes formally unstable, i.e. at a density 

corresponding to the inflexion in the cold curve. Low density fluids are considered 

below. 

Local densities of states 

In a crystalline material, the density of electron energy levels G(E) can be calcu-

lated for the material as a whole. Making some assumptions about the range of 

interactions between atoms, the total density of levels can be expressed as a sum 

over local densities of levels g(E) associated with each atom i:[15] 

G(E) = 	g(E). 

The local density of levels might be parameterised in terms of the environment 

around each atom, e.g. the coordination number, orientation of nearest atoms, 

pair correlation function etc. Depending on the complexity, determining g(E) 

from ground states of the whole system might require these to be found for a 

range of structures at each density. 

The local density of levels is defined formally as 

g(E) f (i k )l 2  S(E - Ek) dEk  

where Wk is the eigenstate of the system with energy Ek [15]. The weighting 

factors (i1TJ k ) contain the information on and assumptions for using the local 

environment. 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 17 

Once the g(E) have been found, the energy of a non-crystalline configuration 

of atoms such as a fluid can be estimated quite quickly, by choosing the g(E) 

which is appropriate for each. This should be far more efficient than calculating 

the electron ground state from scratch. However, since the implicit basis functions 

do not cover the whole system, they may not be mutually orthogonal. This 

inconsistency can affect the accuracy of the predicted band structure, and hence 

the estimates of forces between atoms. 

An analogous procedure can be followed for the density of phonon states. 

Recasting the problem in terms of the local density of states appears to avoid 

the need to express interatomic interactions in terms of an effective interatomic 

potential. Related assumptions are made, such as the range at which atoms 

interact, but the physical framework appears to be more rigorous and easier to 

extend if higher-order terms are needed. However, the vibrational modes deduced 

are not 'normal modes' in the usual sense. Integrated properties such as the atom-

thermal contribution should be predicted with reasonable accuracy, but it may 

not be safe to draw conclusions about detailed properties such as the split between 

stable and unstable vibrational modes. 

Direct numerical simulation 

As with non-linear effects in the solid lattice, the properties of a fluid can be 

investigated by direct numerical simulation of an ensemble of atoms. [12] These 

techniques are discussed in more detail below. 

Limiting forms of the ion-thermal energy 

According to classical statistical thermodynamics [2], each quadratic mode (in-

cluding harmonic potentials, translational and rotational motion) contributes kB 

to the total heat capacity. In quantum mechanics, modes are 'quenched' as the 

temperature T falls below their characteristic temperature, hw/kB, but all such 

modes contribute !hwi  to the total zero-point energy. 

This picture can be complicated to apply in practice. 

Characteristic frequencies wi  vary with density. Fluids exhibit an inhomoge-

neous local density p(). The average density could be used to estimate an 

average frequency Coi , but if dw/dp is non-linear (which is true in general) 

then the mean heat capacity per vibrational mode departs from kB. 
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Composite particles may behave as a point with mass' at low temperatures 

and densities, but dissociate or excite internal modes at high temperatures 

and/or densities. For example, molecules may start to rotate and atoms to 

ionise. This can be a less obvious case of mode quenching. 

Modes may not be quadratic, so the heat capacity may vary from !kB. 

The apparatus of perturbation expansions can be used to correct for smal-

1 anharmonici ties, but such corrections are not in general guaranteed to 

converge to a well-defined answer. 

The crystallite model of the fluid state [16] requires modes and contributions 

to the zero-point energy to be counted for different crystallite size distributions. 

Ionic contributions can be considered in terms of translation, rotation and vibra-

tion of each crystallite. It should be possible to reach the same result - at least 

to some limiting bounds - by considering atoms rather than crystallites, ignoring 

ionisation. Different viewpoints reflect the same physical processes. 

For example, consider the kinetic degrees of freedom of a crystallite consist-

ing of 2 atoms (or a diatomic molecule). Let us assume that individual atoms 

have no rotational degrees of freedom (the moments of inertia being very small 

so these modes are quenched) and that they remain un-ionised and hence may be 

treated as having no structure (no dissociation or internal degrees of freedom). 

An ensemble of N atoms has 3N translational degrees of freedom, giving a heat 

capacity of 3IVkB /2. The crystallite has 3 translational degrees of freedom, 2 

rotational (rotation about the axis is suppressed because the moment of inerti-

a is small) and one vibrational. Therefore, it makes no difference whether the 

degrees of freedom are counted by considering the atoms as separate or in a crys-

tallite. The strength of interaction matters, because the vibrational mode may 

be quenched at sufficiently low temperatures. If not, the interatomic potential 

contributes an additional degree of freedom, giving approximately kB of heat 

capacity for a potential which is approximately quadratic. 

Modifications to the free electron model 

The electron-thermal energy can be estimated crudely by assuming that conduc-

tion electrons are identical non-interacting fermions in a constant background 

potential. [2] As a simple alternative to band or bonding theory, with no guar-

antees of accuracy, free electron theory could be modified in several ways to add 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 19 

some more flexibility and maybe even plausible systematic trends by measures 

such as: 

Model electron interactions, exchange and correlation, by correcting the 

energy with simple functions of electron density. 

Considering the outermost electrons, associate them with an outer limit 

in an isolated atom (r-  the 'atomic radius') and inner limit (representing a 

region from which they are excluded by the presence of the inner electrons). 

As atoms approach, the region of overlap between the outer electron shells 

from each atom defines a total volume for the conduction band. As atoms 

move even closer, the exclusion regions add an extra short-range repulsion. 

The electronic contributions to the energy of different crystallite populations 

could be modelled in this simple geometrical way. 

This model could be extended quite easily to inner electron shells. When 

these start to overlap, more electrons are made available for conduction. 

This process is sometimes called an electron phase transition or Mott tran-

sition, though the latter can also refer specifically to insulator / conductor 

transitions. 

More sophisticated versions of this approach, with electron states based on 

spherical harmonics around each atom rather than waves in a box, have 

been used previously in EUS theory.[17, 18] 

Behaviour at low densities 

The fluid configuration at low densities is dominated by the clustering of atoms 

into small groups, each moving independently in free space of a fixed volume. The 

density in each cluster is close to the p = 0 equilibrium density, so long as the 

overall density is low enough for atoms in each cluster to re-equilibrate between 

inter-cluster collisions. 

The energy can be predicted as a function of temperature for a cluster of a 

known configuration. For small clusters, the normal modes can be calculated in 

the same way as the phonon modes in an infinite solid. For large clusters whose 

internal structure looks like that of a solid, the solid's density of phonon states 

can be applied, with a cutoff for wavelengths greater than the size of the cluster. 
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In principle, the electron energy levels should be calculated for each cluster 

configuration; in practice it may be reasonable to consider only the energy levels in 

an isolated atom, those in an infinite solid (again discarding wavelengths greater 

than the cluster size) and possibly those for 2 or 3 atoms close together. 

As well as their internal energy, each cluster possesses translational kinetic 

energy, and rotational energy if the temperature is high enough to excite these 

modes. 

In principle, the energy of the system at a given p and T should be calculated 

by considering a large set of alternative distributions of atoms into clusters of 

different types. In practice, it is possible to characterise the population in terms 

of a distribution over clusters of different size. 

Various ways can be devised to predict the cluster size distribution as a func-

tion-  of density and temperature [16]. The method proposed here is to consider 

the partition function for a microcanonical ensemble. Consider a .set of possible 

types of cluster, each having a mean binding energy E j  per atom and containing 

N atoms. Ebi  includes the translational and rotational energy, and is a function 

of T. The probability that an atom will be found in a state of energy Ei  is 

f(Ed ) o eEkBT aeT 	 (2.4) 

for some constant a. If the number of clusters of size Niis ni then 

- nN 

	

f(E) - 
N' 
	 (2.5) 

where N is the total number of atoms. Also, 

	

= N, 	 (2.6) 

so 

f(E) = 1 = 	a= [eEjkB _1T] ' . 	 (2.7) 

The distribution can be interpolated smoothly over large clusters (over 1000 

atoms or so), and the distribution over smaller clusters considered explicitly if 

necessary. (There is evidence that small clusters tend to have 'magic numbers' 

of atoms, so the smooth distribution is liable to break down for small numbers.) 

It is probably reasonable to assume that clusters minimise their surface area; 
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protruberances are more likely to be removed in collisions between clusters. Given 

estimates of E(T) for a 'representative' set of clusters, the f(E) can be calculated 

as a function of T, giving e(T). The validity of a given set can be tested by 

extending the set and determining whether a converged result has been obtained. 

It may be possible to include the effect of interatomic potentials in influencing 

neighbouring clusters; this would add extra density-dependent interactions. 

Cluster distributions as calculated above are an equilibrium population. As 

the density and temperature of a vapour changes, a finite time is needed for 

the population to reach equilibrium. It is useful to estimate the time scale for 

equilibration. Unless significantly shorter than the hydrodynamic time scales 

of interest, it may not be accurate to use a unique EUS. The time scale for 

equilibration can be estimated as a function of density and temperature from the 

mean free path of the clusters. To make this calculation more representative, 

the 'starting' distribution could be used as an alternative to the equilibrium 

distribution. 

2.1.3 Completing a single-phase equation of state 

Given the total specific energy e(T) along each isochore, the specific entropy s 

was found by integration of the second law of thermodynamics (de = Tds - pdv): 

T dT' ae 
s(T) = 	 (2.8) 

f 

Since e was represented by a table of values at discrete (v, T) points, the table 

was interpolated by fitting a quadratic to each set of 3 adjacent e(T) points on 

each isochore: 

e = a0  + a1T + a2T 2, 	 (2.9) 

giving 

ôe 
= a1  + 2a2T 	 (2.10) 
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and hence a difference in entropy between successive temperature ordinates T 

and T+1 of 

	

Ls= [ 	—+ 2a2 dT= [a1 lnT+2a2T]'. 	(2.11) 
T+1 (at 	

) 

	

JT 	T 

This formula breaks down for T = 0, for which a should equal zero. In practice 

a1 was very close to zero in the first interval, so the logarithmic term was ignored 

there. Temperature intervals internal to each isochore were spanned by two such 

polynomial fits (with the third point at the next lower or higher temperature). 

The entropy contribution was averaged between these two values. 

The specific free energy f was calculated at each (v, T) point simply by use 

of the formula f = e - Ts. 

The pressure p was calculated by differentiating the free energy f: 

(2.12) 

To calculate p at each (v, T) point, f was fitted at the nearest three specific 

volumes along the isotherm with a quadratic 

f=/30 +/91v+/32 v2, 	 (2.13) 

giving 

p = -(81 + 2/32v). 	 (2.14) 

The EOS were generated in an ASCII version of SESAME 301 format [19]. 

This consists of rectangular tables of pressure p (GPa) and specific internal energy 

e (MJ/kg) as functions of temperature T (K) and density p (Mg/m'). 

2.1.4 Polymorphism 

All atomic matter exists in several polymorphic phases, depending principally on 

the density and temperature. The simplest materials may exist in solid, liquid or 

vapour states, and at higher temperatures the atoms ionise to form plasma. In 

more complicated materials, the solid and liquid phases may be subdivided into 

other phases, e.g. the different crystalline structures. 

Given an equation of state for each phase of a polymorphic substance, it is 
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possible to predict the overall equation of state allowing phase transitions to 

take place. However, the polymorphic equation of state is not unique. Phase 

transitions do not take place instantaneously, so the polymorphic equation of 

state is really time-dependent. 

Because phases may persist outwith the range of states where they are ob-

served in equilibrium, the EOS for each phase should be generated to span a 

wider range of states. 

The approach adopted here is to deduce the EOS for polymorphic materials 

from a thermodynamically complete EOS for each structure. Thus the poly-phase 

EOS is itself thermodynamically complete, and phase boundaries are predicted 

as functions of pressure and temperature. This is a considerable advance over 

calculations of phase boundaries as a function of pressure or compression at T = 

0 [20, 21, 22, 23, 24]. As well as neglecting the variation with temperature, 

calculations at T = 0 in the frozen-ion model also neglect the contribution from 

the zero-point energy of the phonons. In addition, a careful inclusion of the 

thermal contributions can provide insights into the mechanism whereby a phase 

transition takes place, and hence provide estimates of the rate of a phase transition 

[25]. 

Equilibrium mixtures of ideal phases 

The general condition for equilibrium is that the availability 

a=e—a/3 	 (2.15) 

is minimised. a and i  are state parameters whose product has dimensions of 

specific energy, one of which is a property of the surroundings of the system 

under consideration (i.e. a constraint) and the other of which is .a free parameter 

of the equilibrium state. The availability is the work which can be extracted from 

the system with respect to its surroundings. Examples are ao = TRS and a/3 = 

-pRy, where the parameter with subscript R refers to the surrounding reservoir 

(temperature, pressure) and the other parameter may be varied in determining 

the equilibrium state. [2] 

There is no obviously unique way of choosing the {c3} for a general-purpose 

equation of state - it depends upon the intended application. In the present work, 

we consider constraints appropriate for continuum mechanics. The definition of 
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the environment is a source of confusion. In many algorithms used to model con-

tinuum mechanics, the equation of state is used to evaluate the pressure p given 

the density p and specific internal energy e. However, p and e are not necessar-

ily constraints in the sense required to define the availability. The convention 

adopted here is to tabulate the state variables over density p and temperature T, 

i.e. to calculate e and p at a fixed p and T. The energy associated with these 

parameters is the (specific) free energy, 

f 	e - Ts, df = —sdT - pdv. 	 (2.16) 

Note that the Gibbs free energy, 

ge — Ts+pv, 	 (2.17) 

is not the appropriate potential to use because the specific volume of a mixture 

of phases is not free to change to obtain an equilibrium with respect to the 

environmental pressure. 

It can be argued that the real physical process is a dynamic propagation 

of waves driven by differences in temperature T and pressure p, so these are the 

natural constraints for the polymorphic equation of state at any point. A difficulty 

with this line of reasoning is that in a dynamic situation, it is not possible to 

identify a 'reservoir' of constant T and p, and infinite heat capacity and volume, 

surrounding each element of material for which the equation of state must be 

evaluated. The reason for this is that thermodynamic variables are ill-defined 

over sufficiently small regions of space and time. To use a thermodynamically-

based equation of state, we assume implicitly that the intervals of space and time 

over which the physical processes underlying the equation of state take place are 

much smaller than the intervals used to represent the materials in our calculations. 

Consider a hypothetical material consisting of two phases A and B (Fig. 2.2). 

Over most of state space, f is minimised if the material is pure A or pure B. 

However, at intermediate volumes, f can be reduced if the material splits into a 

mixture of A and B. If the regions of pure A and B in the mixture do not interact 

then the free energy is the tangent between the curves for the pure phases. 

For materials usually met in mechanical applications, a necessary condition 

for different phases not to interact over a finite length of time is that they must 

be in pressure and temperature equilibrium. Depending on the material, other 
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pure A 	mixture ofA±B 	pure  

specific volume 

Figure 2.2. Equilibrium mixture of two non-interacting phases. 

constraints may be found. For example, each phase may have a well-defined 

strain, chemical potential, magnetic dipole moment and so on. In principle, 

each of these constraints should be included in finding the equilibrium state. In 

addition, the regions of different phase may interact with each Other, for example 

inducing a surface tension at the interface. 

The interface effects such as surface tension depend on the scale of the re-

gions of each phase. Initially we assume that the domain of interest can be made 

arbitrarily large compared with the regions of pure phase, so that the contribu-

tion of the interfaces is negligible in comparison with the availability of the bulk 

material. In this case the common tangent construction can be used to find the 

proportions of A and B giving the lowest availability. 

An idealised equilibrium polymorphic equation of state {e, p}(p, T) can be 

generated from a set of single-phase equations of state {{e, p}j(p, T)} for each 

(p, T) state as follows: 

1. Calculate the {f(p,  T)} e.g. applying the second law of thermodynamics 

[2] to each {e j(p, T)} in turn to determine {sj(p, T)} as for a single phase 

equation of state. 

2. Consider the set of isotherms {f(p)}  at the desired temperature T, con-

structing the isotherm of minimum f between them: 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 26 

For each pair of isotherms {i, i} construct the compound isotherm 

fij 	= 	 fij 	 (2.18) 

where jj(v) is the common tangent between the isotherm of phases i 

and j, defined only between the points where it intersects its parent 

isotherms. 

Calculate the minimum of all the {f (v)}, and hence the proportion A 

of each phase in the mixture. This is done using the lever rule: Ai = 0 

except for those phases on the lowest of the {f 3(v)}, where the A are 

found from the position of the desired volume v with respect to the 

volumes {i,j}  at which the common tangent intersects the pure-phase 

isotherms: 

Ai  = min[1,max[0,(v—)/(i5—j)]] 

A2  = 1—Ai . 

Since the EOS for each phase is generated separately and then combined to 

find the equilibrium EOS, it contains a complete description of the phase changes 

including the order and latent heat. The procedure is equally valid for compounds 

as well as elements. 

Care is needed when constructing the complete EOS from the equilibrium 

free energy surface that the discontinuities in specific internal energy are treated 

properly. This can be done only approximately with a rectangular e(p, T) table, 

and problems may occur with the interpolation scheme. One area for future 

development is the structure of EOS tables where phase transitions are important. 

One way is to base the EOS on a set of isochores where the temperatures tabulated 

can be different between isochores; in this way, the tabulation can be chosen to 

include a point on each phase boundary. Another way of generalising, described 

below, is to use the set of single-phase EOS explicitly and add a (time-dependent) 

model of polymorphism to transfer between the alternative EOS. 

It has been argued that the common tangent construction for 2-phase equa-

tions of state means that the shock Hugoniot should have a region of constant 

pressure. This is only true in the rather specific circumstance where the slope 

of the common tangent remains constant with temperature; any other depen-

dence will give a varying pressure across the 2-phase region. A region of constant 
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pressure will of course occur during isothermal compression. 

Equilibrium mixtures of real phases 

In general, the different phases present in a mixture may interact. When this 

happens, the availability of the mixture may not be given accurately by the 

common tangent construction. 

If the chemical potentials of the phases are not equal then electrons will trans-

fer between the regions of different phase until the potentials equalise. This alters 

the structure of the Coulomb potential of the material: it may be electrically 

neutral over a longer length scale. The electron-thermal energy may be slightly 

different from the pure phases, since the energy levels will be filled in a slightly 

different way. 

Some other effects can be considered, such as atomic disorder, the scattering of 

electrons and phonons at the boundaries between the phases, different magnetic 

moments (electrons + nuclei), and differences in stress-strain behaviour. However, 

these effects also apply to polycrystalline preparations of pure phases. In the 

present work, effects of this magnitude are ignored. 

As with most 'real' preparations of pure phases, mixtures are prepared in a 

finite time so the regions of each phase may be much smaller than the whole 

system. The entropy of mixing may make a significant contribution to the total 

energy. 

Phase change dynamics 

Phase changes occur at a finite rate, which may depend on temperature, com-

pression and the strain rate. The time required for tens of percent of a material 

to change phase may be significant compared with typical time scales for objects 

mm in size to deform under the influence of a shock driver, particularly if the 

material is a stoichiometric compound rather than an element. 

For a region of material to undergo a polymorphic phase change, atoms must 

rearrange. Usually, the initial structure is stable, and each atom oscillates about 

its equilibrium position. In order to reach the alternative structure, atoms must 

cross a potential energy barrier. The rate at which this happens depends on the 

barrier height, the temperature, the frequency at which the atom oscillates in the 

potential well, and interference effects in the oscillations of neighbouring atoms. 

In the early stages in the formation of an alternative structure, the new positions 
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are usually less stable than the old. Atoms are quite likely to jump back to their 

old position. Once atoms start to nucleate a region of the new structure, the 

effective depth of the potential wells at the new positions becomes deeper. (For 

example, the wavefunctions of electrons in conduction bands can include more 

contributions at longer wavelengths, so the ground state energy decreases.) This 

phase changes occur by a process of nucleation and growth. 

It is possible in principle to find phase changes which do not involve an energy 

barrier of this type. As the lattice deforms, it might be energetically favourable 

for the electrons to rearrange in a Mott transition. Electron transitions take place 

far faster than the nuclear motion, so the atoms could find themselves suddenly 

in positions of static instability. In this situation,, the phase change could take 

place far more quickly. 

Again in principle, phase changes might occur through intermediate struc-

tures. If a large amount of atomic rearrangement is required, it may be that 

some metastable structures occur with significant lifetimes, bridging the gap be-

tween the initial and the alternate structures. 

When the deformation history is driven by shock waves, some other effects 

may matter. Shock waves have a characteristic direction of propagation: in the 

shocked state, the material is hotter and moves with respect to its undisturbed 

state, so the average velocity of the atoms must change and the magnitude of 

variations about the average must increase. Shock waves have a finite thickness, 

reflecting the length scale over which large amplitude variations in density (or 

velocity, etc) can propagate without scattering. Intuitively, disturbances parallel 

to the direction of propagation of the shock should move most quickly - inter-

atomic forces are usually greatest when atoms approach along the line between 

their centres. Thus when a region of material is first affected by a shock wave, 

the longitudinal modes of vibration are likely to be excited first. (This may not 

always be the case. In some materials, angular forces between electronic orbitals 

of higher angular momentum may cause some transverse modes to be excited 

first, over some range of shock pressures.) The effect of the scattering processes 

is to transfer energy from the longitudinal modes to transverse modes, and other 

degrees of freedom. 

Because shock waves cause non-equilibrium excitation, some modes are su-

perheated' for a finite time. This may greatly increase the rate at which atoms 

jump into sites of an alternative structure. This effect depends on the orientation 
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of each crystal with respect to the incident shock. Similarly, the anisotropic strain 

generated by a shock wave may in general cause a phase transition to occur at a 

different (mean) isotropic pressure than in static compression. 

Another estimate of the characteristic time required for a phase change to 

occur at the local level can be obtained by considering the distance which each 

atom must move to reach its new site, divided by the speed at which the atoms 

move at the temperature of interest (and taking into account superheating of 

modes caused by shock compression). Many paths may be possible between the 

initial structure and each alternative; any path or paths may be followed with 

varying probability. The set of possible paths may be estimated by Monte-Carlo 

studies of groups of IVcm  atoms, where Ncm  are common multiples of the numbers 

of atoms in the lattice cell for the initial structure and an alternate. 

Nucleation and growth model 

Polymorphic phase changes occur by the random creation of regions of the alter-

native phase, created by thermal (or mechanical) motion of the atoms. The phase 

change process can be investigated at the microstructural level using direct nu-

merical simulation or statistical models, but it is desirable to have a macroscopic 

model suitable for use in continuum mechanics calculations. 

Consider a material initially in a phase S, with a set {S} phases available 

to it. Each phase has a unique EOS; for the purposes of polymorphism the 

important property if the free energy f(p, T). In order to nucleate a region of a 

given phase j, a region of Sj  must be created within S. This occurs by atomic-

scale fluctuations, generally with an energy barrier Eij . There is also an energy 

barrier Eji  for the reverse transformation; the difference between the barriers 

is the free energy, so the transformation to the phase of lower free energy is 

favoured (Fig. 2.3). The time-dependence of the phase transition is modelled as 

an Arrhenius rate with some associated attempt frequency f, 

7i3- 
= njfjje_3/T1 	 (2.19) 

where nij is the number density of atoms of i which are able to take part in 

this process. As with the model for the vacancy formation rate, an effective 

temperature T*  is used which takes into account non-equilibrium excitation of 

some vibrational modes. 
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In general, several processes may allow Si  to transform to S. For example, Sj 

may nucleate more easily at a dislocation, vacancy, grain boundary or impurity 

than in the bulk material. If multiple processes are possible, 

JZij = 	 (2.20) 
k 

The attempt rates f are related closely to the phonon modes in each phase. 

These and the energy barriers vary with p and T*.  The density of atoms taking 

part, n, depends on the process (e.g. bulk or defect-nucleated). 

Once a region of Sj has formed within the S, it grows outwards to consume 

the rest of the Si.  In general .the growth process is non-isotropic. For finite-sized 

regions of S, there is generally an elastic strain energy as the lattices of Si  and Sj 

will generally need to distort in order to accommodate each other. The number 

of atoms taking part varies as the surface area of the growing region of Si.  If the 

region does not grow isotropically, then nkii  can vary with the volume fraction 

of Sj  according to a shape function (in the simplest case, the surface area of a 

sphere). As with ignition and growth models in reactive flow [26, 27, 28], these 

geometrical terms eventually change from 'growth outwards' to 'growth inwards' 

when the regions of Sj  coalesce to leave isolated regions of S.  Rather than 

including the elastic strain energy explicitly, it is proposed to modify the energy 

barrier as the size of the region of Sj  changes. 

In a compound, the nucleation and growth rates might require atoms to hop 

over more than one barrier, e.g. to diffuse to a new position in a complicated 

structure. The Arrhenius formulation above can be generalised to treat multiple 

jumps. 

Given a calculation of the nucleation rate R it is possible to estimate the 

spacing between each region of S. If the transformation rate is R. per atom, then 

one nucleus of the new phase forms per 

N= V -R dt] _' 	 (2.21) 

atoms. As the initial phase is transformed by growth from existing nuclei, a 

smaller volume is available for new nuclei to form. (The strain field generated 

in the partially transformed mixture might also influence the rate of producing 

new nuclei.) This result can be used to estimate the resulting grain size when the 

material transforms fully to Si. 
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This model is sufficiently general to treat materials with multiple polymor-

phic phases, and energetics of transformation where metastable phases may form. 

At any instant, the material consists of fractions vi of each phase. Each phase 

may in principle transform to any other phase via the set of rates lzij, which 

vary with p and T. (Accurate calculations of the IZij  may require additional 

microstructural information such as the number density of nuclei and the distri-

bution of their sizes.) These rates can be integrated to obtain the time history 

of the transformation. 

As described, the model requires a large amount of calibration against atom-

istic simulations to obtain energy barriers, attempt frequencies near defects etc. 

However, as a first estimate, a single Arrhenius rate can be used for each trans-

formation based on a 'plausible' value for the energy barrier (and using the free 

energies from the EOS to predict the difference between forward and reverse 

rates), attempt frequencies from an average of the phonon frequencies, and sim-

ple geometrical terms for the growth from nuclei of the new phase. If the phase 

transition is diffusive rather than displacive, the Arrhenius rate should represent 

the rate-determining step. 

Condensed/vapour two-phase region 

In the polymorphism approach used here, the liquid/vapour region (Fig. 2.4) (and 

in principle the solid/vapour region, though the effect of the vapour is negligible 

for most materials) is treated in the same way as any other phase transformation. 

Slightly different models were proposed for fluids of high and low density. 

Ideally these should give the same results where they meet at densities around 

the critical point. If not, a spurious additional 'phase transformation' would be 

predicted between the different models. It may be necessary to interpolate or 

to use an alternative way of predicting fluid properties (e.g. direct numerical 

simulation) in this region. 

2.1.5 Non-equilibrium polymorphism in macroscopic sim-

ulations 

If macroscopic simulations are to include the dynamics of phase changes explicitly, 

an EOS must be carried for each phase Si and a rate law IZij  for the transfor-

mation between each pair of phases. Each macroscopic region of material is then 
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described by the set of volume fractions fi of the phases. 

At the microstructural level, phase transitions proceed by the local reconfig-

uration of the atoms. As a small region of material changes phase, in general 

the state will not be in thermal or mechanical equilibrium with its surroundings, 

though the equilibration make take place quickly. In a dynamical situation, the 

external constraints may change during the course of the phase transition, i.e. 

when a mixture of phases is present. Since the different phases have different 

mechanical properties, their thermodynamic state may not change at the same 

rate. The challenge for a macroscopic calculation is, given the instantaneous f 

and thermodynamic state in each phase, calculate the evolution of the f j and 

state in each phase over a finite interval of time. The time integration of the 

phase transformation and equilibration processes may be operator-split from the 

hydrodynamics, as discussed later in the context of hydrocodes. For simplicity, 

it is assumed here that this has been done, and the problem is to predict the 

evolution of the states and fi at constant density and energy. 

The phase change process converts material between types i. Considering 

phase changes independently of hydrodynamics and equilibration, material is 

transferred between components such that the density of the source is unchanged. 

(If phase changes could proceed in either direction then operator splitting could 

be applied to each phase change, or the net phase change calculated between 

each pair i,j and used in the net direction only.) This is a constant volume phase 

change, but the density pj of the product' species will alter with the addition of 

reactant material of density pi: 

(2.22) 

where AAjj is the change in the mass fraction of component i which is added to 

component j (obtained by integrating the phase change rate lj over the time 

interval st'); then 

= 	 = zmj(e + qj), 	 (2.23) 

are the densities of mass and internal energy transferred from i to j, where qij is 

any specific energy released in converting i to j, so 

-~ I. 
fP + 	 fp e + 

p3— - 	 , e -+ 	= 	 (2.24)  p3 	 3 	2 
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The change in a free parameter x required to achieve equilibrium of a depen-

dent parameter 0 can be estimated as 

(2.25) 

where is the average value of ç' which would be achieved in equilibrium. This 

calculation is like a Newton-Raphson approach to the root of an equation. For 

a conserved quantity, E Axi  = 0. This may not be the case in practice because 

of rounding errors. If the residual is some value E Axi  = c say (which should be 

small) then the changes can be made conservative by taking 

	

= Axi - f. 	 (2.26) 

If perfect equilibrium is desired, the parameter x can be changed until qj - 
77 for some tolerance i. For numerical stability, some fraction x of the predict- 

ed 	can be taken and the process repeated until equilibrium is reached. If 

there is a characteristic time r associated with equilibration, then an exponential 

approach to equilibrium can be modelled by taking 

(2.27) 

For operator-split pressure equilibrium, 0 is p, and x is f. Now, 

api  - ii 	. 	- m - m 	 - p 	 - 	- 
af Pi VVf 	 ' 

(2.28) 

where ci is the bulk sound speed. If equilibrium takes place by isentropic ex-

pansion, the change in volume fraction is accompanied by a change in specific 

internal energy, 	 - 

(2.29) 
P 

For operator-split thermal equilibrium, is T j  and x is e. Then 

Aei = _ cv (Ti - 	, 	 (2.30) 

where c,i  is the specific heat capacity of component i at constant volume. 
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2.1.6 Macroscopic model of non-equilibrium vibrations 

As discussed, an effective temperature T*  is needed to relate time-dependent 

processes driven by vibrations during rapid deformations, because anisotropic 

stresses applied at high rates will excite different vibrational modes at different 

rates. The excitation of each mode then equilibrates over a finite length of time, 

essentially at constant energy. 

A complete description of non-equilibrium vibrations would involve the rate 

of change of effective temperature T*  (or excitation level) for each vibrational 

mode as a function of the strain rate tensor 

(2.31) 

with respect to the current orientation of the lattice vectors [108], and the rate 

of change in the occupation of each vibrational mode given the occupation of all 

the other modes. The coupling between T*  for a mode of wavevector k and the 

strain rate tensor has the form 

T*(k) 	 (2.32) 

where the constant of proportionality is chosen so that the integration over all 

modes gives the equilibrium temperature rise T. (More rigorously, the coupling 

depends on the Fourier decomposition of jj  in the k direction.) The coupling 

between different modes can be determined from the phonon-phonon interactions 

(anharmonic lattice contributions), and have the form 

T* o TT* 	 (2.33) 

This level of detail is unnecessary and probably impractical for macroscopic 

simulations, but is important for understanding the processes involved and for 

predicting rates in a given situation. If a particular vibrational mode can be found 

which dominates in the process of interest, it can be followed in isolation. The pa-

rameters needed to describe the non-equilibrium process are then the state (p, e), 

the orientation of the appropriate vibrational mode k (following deformation of 

the material) and the effective temperature T'. 
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Figure 2.3. Directionality of energy barrier to phase transition. The shape of 
the curve alters with p and T. 
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Figure 2.4. Schematic of.the liquid - vapour region.. 
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2.2 Electron ground states 

If the configuration (relative position) of a set of atoms is held constant, the scale 
varied (changing the density), and the ground state of the electrons found with 
respect to stationary ions, the resulting variation of ground state energy with 

density p or specific volume v is called the 'frozen-ion cold curve', e(v). 
Although modern computers are powerful enough to allow reasonable calcula-

tions of systems containing several atoms with all the electrons treated explicitly, 

it is computationally much more efficient to model the core electrons - which are 
affected relatively little by each atom's environment - by simpler techniques. One 
way is to modify the potential in which the outer electrons move. The modified 

potential is called a pseudopotential. 
Pseudopotentials may be applied in real or reciprocal (k) space. They may 

have different components for the different values of the quantum number I of the 

electron's angular momentum, making the potential non-local. 
Pseiidopotentials are typically expressed in an analytic form, and the param-

eters are adjusted so some features of the system reproduce those seen experi-
mentally or by a calculation with the full set of electrons. If as is normal the 
pseudopotential is fitted to an isolated atom, it is then assumed that the core 
states do not change when the atoms are combined to produce condensed states 
- the frozen core approximation. 

Since electrons are fermions, the wavefunctions must be antisymmetric with 
respect to particle exchange. This is an awkward requirement to assure in cal-
culations. The usual way to proceed is to make use of the result [29, 301 that 

the effect of anti symmetrisation and repulsion between electrons (exchange and 
correlation) is exactly equivalent to a contribution in the Hamiltonian which is a 
functional of the electron density - 'density functional theory'. Unfortunately, no 
simple way has been found to obtain the appropriate functional; trial functionals 
are evaluated against explicitly antisymmetric and correlated test cases, such as a 
uniform electron gas. In most multi-atom calculations, the functional is taken to 
be a local function of the total electron density. This is the local density approxi-

mation (LDA). There are several variants of the LDA. The simplest is to assume 
that the effect of exchange and correlation is equal to that for a homogeneous 
electron field of the same density. Better agreement is obtained in some systems 

when the exchange-correlation energy is modelled as a function of the gradient 
of the local electron density, e.g. using the generalised gradient approximation 
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(GGA) [31, 32]. 

In the standard implementation of the pseudopotential method, the exchange-

correlation contribution of the core states is absorbed in the total core energy, and 

the exchange-correlation energy of the outer electrons in the core region calculated 

by in effect making a linear expansion of the exchange-correlation  operator 

ETC (pC  + Po) 	E(p) + E(p0 ). 	 (2.34) 

This approximation is reasonable when the density Po  of the outer electrons in 

the core region is small. 

2.2.1 Dirac band structure 

Although most EOS-related calculations of electron ground states use Schrddinger's 

equation, the Dirac equation [38] is a more accurate representation, as it includes 

relativistic effects. The importance of relativistic effects on EOS properties is 

not intuitively obvious, so it would be useful to at least have the capability of 

including these effects in EOS predictions. Some relativistic effects have been 

included in other EOS predictions [33, 34, 35, 36, 37]. 

The writing of electron ground state programs suitable for EOS work is a long 

process. A Dirac-based program was developed during the course of this work, 

but not to the point where it was suitable for routine EOS calculations - the 

program requires further development before it is efficient enough. The theory 

and algorithms used in the Dirac program are presented here to demonstrate that 

it is possible to start from the Dirac equation - most commonly used for particle 

beams - and calculate atomic binding energies using methods that can be applied 

directly to crystalline materials. 

Electronic wavefunctions 

Following the well-tested standard model of quantum electrodynamics, we de-

scribe electrons in terms of a field ''() of Dirac bispinors [46]. A Dirac bispinor 

consists of two sets of two components: 

( X 	X  = ( , ) , ) 	
: (2.35) 
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describing the intensity of particle (x) and antiparticle () wavefunctions in spin 

+ 1  (t) and - () states. Each of these states is a complex function of position. 

To be used correctly, the antiparticle wavefunctions must be set up with cau-

tion. The equations used here are based on the Feynman interpretation of the 

antiparticle properties of Dirac bispinors, namely that 'real' antiparticle states 

are negative energy eigenvalues of the particle states propagating backwards in 

time. If 'real' antiparticles were required, it would be advisable to check very 

carefully that they were represented properly when their effects - such as the 

sign of the electromagnetic field they generate - were calculated correctly. This 

should not matter when calculating equations of state. 

4-space conventions 

Relativistic effects and electromagnetism were treated in terms of quantities which 

transform as vectors in 4-dimensional space-time ('4-vectors') [44]. There are 

several possible choices for the definition of 4-vectors, so the definitions used here 

are described fully below. 

The contravariant 4-position vector xP is defined as 

(2.36) 

where c is the speed of light, t the time, and F the position vector in 3D space 

[38]. The (covariant) gradient operator in 4-space is [43] 

(9, V) 	. 	 (2.37) 

i90  is therefore 
a 

a(d), 
The scalar product of two 4-vectors is 

A.B = APB41 = ALB. 	 (2.38) 

Einstein's summation convention is used, so repeated indices are summed over so 

long as one is raised (contravariant) and the other lowered (covariant). Thus 

AB 	 (2.39) 
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Contravariant and covariant vectors are related through the spacetime metric 

ru 

A = 	 (2.40) 

A = gA' 	 (2.41) 

= g. 	 (2.42) 

Thus, 

A.B = g,A ABA = 	 (2.43) 

In the absence of masses or energies which are large in a general relativistic sense, 

g = diag(1,-1,-1,-1). 	 (2.44) 

Relativistic electromagnetism 

The electromagnetic 4-potential Ah  is related to the electric (scalar, V) and mag-

netic (3-vector, A) potentials by [44] 

AA = (V/c,A). 	 (2.45) 

A can be found by solving Maxwell's equation [38, 44], 

D2AL = 	 (2.46) 

where G 2  is the d'Alembertian operator ôô and 1acj  is the permeability of free 

space (47r x iO H/rn). j is the 4-current density [44], 

qp(c, ) 	 (2.47) 

where q is the charge on a particle, p the particle density and 5 the particle 

velocity. 

All solutions for the electromagnetic 4-potential satisfy Maxwell's equation. 

If it is desired to calculate the 4-potential from a known 4-current, Maxwell's 

equation is not particularly useful, because any number of solutions can be found 

by adding a constant to the electrostatic potential and a curl-free field to the 
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vector potential. A more practical route is to deduce A directly from the 4-

current density. The standard expressions for Gauss' law and the Blot-Savart 

equation [49] can be combined compactly as 

=d. 	 (2.48) 
47r fV 1P — I 

In effect we are using a Green's function to solve the time-independent Maxwell's 

equations. 

The electromagnetic 4-potential can be used to introduce the effect on a single 

electron of the nuclei and other electrons. The nuclei can be described accurately 

as static charges, contributing to V through the Coulomb potential, 

Ze 
(2.49) A?ons() = 

for a set of nuclei of charge +Ze at positions . Other electrons can be described 

by their associated 4-current and hence a 4-potential through the Biot-Savart 

equation. 

Evolution equation for a single electron 

Electron wavefunctions satisfy the Dirac equation [38, 46] 

(—mc)'=0 
	

(2.50) 

where m is the particle rest-mass. 3 is related to the 4-momentum operator p, 

and the local electromagnetic 4-potential A, by [43] 

(2.51) 

where 'y'-  is a Dirac gamma-matrix and q = — e the charge on an electron. The 

4-momentum operator is [38, 50] 

P;, ihD. 	 (2.52) 

The gamma matrices are [46] 

(2.53) 
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where 

	

= & x o, 	 (2.54) 

in which multiplication is used in the sense that each element of & is multiplied 

by the corresponding matrix o in aj. An example is given below. 

The standard form of the Dirac spin matrices is [46] 

fo i\ 
a1 =L 	)' 	2(. _i) 	

3 = ( 	
(2.55) 

Thee is no unique representation for 3 and &. Standard choices [46] are the 

Dirac-Pauli representation 

( 0 

	

/3=diag(1,1,-1,--1), &= 	
10 ) 	

(2.56) 

and the Weyl representation 

0 i 
0 001 1 	 _1 

I

0 

( 	

). 	
(2.57) 

1 00 

OJ, 0100 

As was stated above, the ai are defined in terms of the product of & and the 
aj in the sense that each element of & is multiplied by the corresponding o, in a. 
For example, in the Weyl representation, 

(o i 0 

I -i 

a2 	
00 0 I = 	 I . 	 (2.58) 

0 0 0 —i 

0 0 i 0) 

Observables of systems described by a bispinor field are given by 

f ~(r (2.59) 
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where 

(2.60) 

and Ot is the transpose of the matrix of complex conjugates of the elements of 

b, i.e. (us,ing [A]ij to denote components i, j of matrix A) 

(2.61) 

The Hamiltonian (total energy) of a particle field is given by the Schrödinger 

relation [50] 

	

H = ih. 	 (2.62) 

Applying this to the Dirac equation, 

H = c(°)1 

( 	
hôa  + qA + mc). 	 (2.63) 

From the properties of the Dirac matrices [46],  several factors cancel to give 

H = —ihc.V + q(V - ca.A) + mc2 /3. 	 (2.64) 

This equation is equivalent to that used in previous work [48], but contains ad-

ditional terms representing the magnetic field A. 

Electrons contribute to the electromagnetic field. Their contribution can be 

found by applying the Biot-Savart equation to the 4-current density j. The 

4-current density from a bispinor field is [46], 

(2.65) 

Bispinors for stationary states 

Stationary states T i satisfy 

	

Hlpi = HW 	 (2.66) 

where H, is the energy of the ith stationary state. This equation applies with the 

same value Hi  to each component of 111. 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 44 

Two approaches may be followed in order to enforce this condition. If the 

basis set for W freely spans each bispinor component then the solution could be 

constrained explicitly, e.g. by the use of a Lagrange multiplier, 

H, + .A 	[HlI1 ] - H['I'] 1, 	 (2.67) 

where the index j runs over the bispinor components. Alternatively, the basis 

functions can be chosen to satisfy the constraint. In the Dirac-Pauli representa-

tion, 

H  = ( 	

qV+rnc2 	—c.(ihV+qA) ( 
	( 

ii+  

—c.(ihV+qA) 	qV- mc2 	J 	
= H 	) . (2.68) 

Positive energy (particle) solutions therefore satisfy 

= -f [.(ihV + q A)] 	 (2.69) 

VT- = (VV) - . {ihV 0 V + q(A® V + V® A)] 1,  (2.70) 

where 

H + rnc2  - qV. 	 (2.71) 

When substituted into the Hamiltonian, the additional contraction with 

leads to the cancellation of the off-diagonal terms in V 0 V, giving 

. [.(V ® V)} 	V2 	 (2.72) 

The resulting kinetic energy term resembles closely the corresponding term in the 

Schrödinger equation. Since the binding energy of an electron is small compared 

with its rest-mass, 

2mc2, 	 (2.73) 

h22  V 2 	---V2W. 
Ti 	 2m 	

(2.74) 

It is interesting that, according to this derivation, the Hamiltonian includes 

contributions from the gradient of each component of the electromagnetic field. 
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Neglecting these and the rest-mass, and substituting in the equation for the minor 

components, the Hamiltonian for the major components becomes 

= ___V2 + qV + 	[ih.V + qA. 	(2.75) 
77 	 77 

Multiple electrons 

It would be nice to follow the quantum field theoretic approach [38, 52] of treating 

iji as a single field representing all the electrons. In this case, IV must be a field 

of Grassmann numbers [52], which are members of an infinite set that anticom-

mute among themselves. Unfortunately, adequate computer representations of 

Grassmann numbers have not yet been developed. 

Instead, a separate wavefunction is calculated for each electron state. The 

wavefunction Oi  of each state is expanded in terms of a basis set {}: 

= 	a jjj , 	 (2.76) 

for some set of real amplitudes a 2 . 

An iterative procedure is used to find the wavefunctions. At each iteration 

n, some guess [n]'/'i  has been made of the wavefunctions, and of the occupation 

number f, for each state. Given [n]i,  the Blot - Savart equation can be used 

to calculate the electromagnetic field generated by an electron in each state. 

Thus the electromagnetic field A experienced by each state can be calculated 

given the Oi  and f. (For each state i, this may be calculated by considering the 

wavefunction and occupation of all other states j 	i, or a mean field may be 

used where the electromagnetic field generated by all the states is included. The 

mean field prescription is appropriate for some conventions of the local density 

approximation.) 

For stability, an under-relaxation procedure is used when calculating the elec-

tromagnetic field experienced by each state at each iteration: 

.\) [ _i}A + 	 (2.77) 

where A({[]?/} is the electromagnetic potential determined from the {[nIi}  and 

\ is the under-relaxation factor. The state occupations are under-relaxed in a 

similar manner. 
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If the Oi are orthonormal, then given [n]i  and 11A, we can use the Hamilto-

nian equation 

Hb, = 
	

(2.78) 

multiply through by O j  and integrate over all space to obtain 

- Sjj Ej   = 0. 

If the Oi  are not orthonormal, then 

(/IfIkb) = 

(/'IH/'i). [('k'j)]' - S 3 E 	= 0- 

(2.79) 

(2.80) 

(2.81) 

The E j  and eigenvectors Qj are found from the solution of this eigenproblem. If 

the Oi  are orthogonal then the eigenproblem is real and symmetric. 

The modified set of eigenstates for use in the next iteration is then 

[n+1]'i = 	[n+1]1ij 	: 	[n+1ii = 	 ( 2.82) 

The local density approximation can be used to find the contribution of ex-

change and correlation to the total energy (it does not affect the individual eigen-

states). As a partial alternative, the exchange integral can be included in the 

calculation of the Hamiltonian matrix. The non-relativistic form is [42, 53]: 

= 	
1 	

(2.83) 

If this term is included with basis functions of the determinantal type [53] then 

a Dirac - Hartree - Fock calculation is obtained. 

The set of states Oi with energies Ej is calculated for a specific set of occupa-

tions f. This prescription works at finite temperatures, since the occupations can 

be calculated so as to correspond to excitation into states above the Fermi energy. 

The algorithm used to estimate the population of each band at finite temperatures 

is described in Section 2.4. Since the electromagnetic potential experienced by 

each state depends on the occupations of all other states (and of the same state, 

in the mean field approximation), the calculation of chemical potential should 

also be calculated self-consistently as part of the iterative scheme. 
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The chemical potential is only located to an accuracy sufficient to constrain 

the total number of electrons. At temperatures which are low compared with the 

spacing between the energy levels, the uncertainty in the chemical potential is 

comparable with the spacing between its adjacent energy levels. 

If this is done then the electron states should be accurate even for tempera-

tures which are high in comparison with the ionisation energies. The band struc-

ture is predicted in any case; the extra information obtained is the temperature-

dependence of the band structure, or a rigorous calculation of the electron-thermal 

energy. However, the local density functionals may not be valid for T> 0. 

A different approach might be possible for calculating the electron energy at 

finite temperatures. A temperature could be defined by modifying the electro-

magnetic background A4  to reflect some appropriate spectrum of photons, e.g. 

a black body spectrum at the desired temperature. The electron ground state 

with respect to this potential may model the excitation of electrons from the 

ground state at zero temperature. The electromagnetic field would have to be 

made complex, reflecting the time-variation of the photon field. 

If the eigenstates are expected to be significantly different from the initial 

guess or the basis set, then the Hamiltonian matrix should be calculated for a 

significantly larger set of states than are needed to contain all the electrons. The 

states obtained comprise the electron band structure. 

At present, the code calculates as many eigenstates as it can. It would be more 

efficient when calculating ground states (though not band structures) to calculate 

only sufficient eigenstates to accommodate all the electrons. This development 

may be worth pursuing in the future. 

Density functional forms 

Functional forms included in the program are [53]: 

Slater 

= an'(i) 	 (2.84) 

for parameters a and b. 

'Standard' Kohn-Sham parameters for exchange are, in atomic units, [41] 

3 
a = 	(3.2)1/3 	 (2.85) 

471 
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b = 4/3 	 (2.86) 

or [53] 

a = 	3(32)1/3 	 (2.87) 

The functional implemented in the software is 

M(3(?))
= —6a 	n(r). 	 (2.88) 

r 

Hedin-Lundqvist 

	

= er( + eer, 	 (2.89) 

where ex  is the Slater functional, and 

ec = —cg(x)n(r) 	 (2.90) 

where 

x = r3/a, 	 (2.91) 

= (2b/7ra)1/3, 	 (2.92) 

77 = (4/9)1/3, 	 (2.93) 

g(x) = (1 +x3)ln(1 + 1/x)+x/2—x 2  - 1/3, 	(2.94) 
4 	3 
mr9 = 1. 	 (2.95) 

Discretisation 

The Dirac equation can be solved using algebraic forms for the field functions 

and A. The algebraic forms can be differentiated, and in principle integrated 

to give the Hamiltonian in closed form. The algebraic approach becomes less 

convenient as the complexity of the system increases. 

The approach followed here is to use a discretised approximation to the field 

equations. If a field function f varies smoothly, it can be approximated to ar-

bitrary accuracy by values averaged over sufficiently small regions SV of space 
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around a set of points {}. The integral of f over all space becomes a summation: 

	

f
f(r)d 	f()SV. 	 (2.96) 

V 

Basis functions 

The set of eigenfunctions {'j}  of the Hamiltonian can sometimes be found in 

algebraic form for sufficiently simple systems. Examples are the harmonic oscil-

lator and the hydrogen atom. If the eigenfunctions are known for a system with a 

single particle, then the ground state is identical to the eigenfunction with lowest 

energy. 

In general, it is not straightforward to find algebraic expressions for the eigen-

functions. However, any function 0 can be rewritten exactly in terms of a set of 

functions {qj} which completely spans the function (Hubert) space containing : 

= E ci0i 	 (2.97) 

for some set of real amplitudes {c}. For example, if b is defined as a C-valued 

function over all of R, then it can be written in terms of the sum of the set of 

plane waves: 

	

= 	ce 	 (2.98) 
k 

where {k} is the set of all wavevectors (points in 73)  and wi  is the frequency of 

the mode ,j, given by its energy, Ei = hw2 . 

The set of basis functions {çj} required to span the space of smooth functions 

over any finite region is infinite - a practical difficulty. However, the objective may 

be to predict the ground state to a finite accuracy; for instance to compare against 

experimental data with a finite accuracy. Any function can be represented to 

some accuracy by expansion in terms of a finite set of basis states, N say: 

N 

(2.99) 

If the {çj} are similar to the eigenstates of the Hamiltonian then only a few terms 

in the expansion may be needed. 

In the presence of nuclei, many of the electron states become localised. Inner 
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electrons are closely bound to the region about the nucleus. Depending on the 

shell structure, outer electrons may be delocalised as in the conduction bands of 

a metal, or localised as in the bonding orbitals of covalent atoms. 

The archetypal series of localised basis states is the spherical harmonics. These 

provide a description of the eigenstates of a (Z— 1)-ionised atom of atomic number 

Z - i.e. a nucleus with a single electron in orbit - which is exact to the accura-

cy of non-relativistic, spin-0 quantum mechanics. Localised states can often be 

described accurately in terms of a few spherical harmonics even when multiple 

electrons are present. 

The archetypal series of delocalised basis states is the plane waves. These can 

be used to describe electron beams very accurately. Plane waves have advantages 

in their computational convenience, as they are fast to compute and it is easy to 

perform Fourier transforms on them. 

Atomic conduction bands contain a significant plane wave element, but can 

also be quite localised. Methods of calculating the electron band structure in con-

densed matter have been developed to handle this effect by combining spherical 

harmonics and plane waves. Such work has resulted in the orthogonalised plane 

wave and pseudopotential techniques. 

The choice of basis function has important consequences for the ability of a 

model to give accurate predictions of the ground state of a system. One way of 

implementing such calculations is to evaluate the basis functions in algebraic form 

at appropriate points in real or reciprocal space. The problem with this approach 

is that it can lead to a scheme which exploits the features of a particular basis 

set to full advantage, and which is therefore restricted to problems which are 

well-described by that basis set. 

The approach followed here is to allow the basis set to be described in a 

discrete fashion in terms of its values at a set of points {}. To solve the Dirac 

equation, the gradient of each basis function must also be supplied at each of the 

points. 

Since the wavefunction describes Dirac bispinors, each basis function describes 

the variation of a Dirac bispinor and its gradient with position. Thus at each 

point, each basis function must be defined as a 4-component array of complex 

numbers, and the gradient must be defined as a 3 x 4 matrix of complex numbers 

(i.e. 3 rows, 4 columns). 

A calculation can be made without spin polarisation by making the spin-up 
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and spin-down components equal in all basis functions. 

Preprocessing programs were written to generate basis functions including 

plane waves, the first few spherical harmonics, Gaussians, or tabulated radial 

functions. In the case of the localised functions, multiple centres could be defined. 

Symmetries and effects of the periodic lattice 

The program calculates electron wavefunctions over a finite region of space. 

Any functions defined over the region should exhibit the correct symmetry 

properties. In the current software implementation, the functions must have the 

appropriate symmetry as defined. This applies to the basis functions and the 

background electromagnetic potential. The symmetry is reflected in the volume 

weightings JVi  associated with 0 at each point. 

Symmetry is also taken into account when calculating the electromagnetic field 

at each point caused by the charge current density at all other points. Applying 

symmetry to the current density is more than just a weighting, because symmetry 

operations can mix the components of the current density. For example, a rotation 

symmetry of 900  anticlockwise about the z-axis maps the x-component to the y-

component, and the y-component to —x. For this reason, a 4 x 4 matrix must 

be defined between each pair of points to relate the current density at one (along 

with all its images from symmetry) to the electromagnetic potential at the other. 

Stand-alone preprocessing programs were written to apply symmetry to fields 

and to calculate electromagnetic contributions. 

An interesting consequence of this approach is that it should be possible to 

use symmetry operators which map to regions moving at different velocities. If 

anyone has an application for a spinning, shearing disc, then this scheme should 

cope. 

The discrete, symmetrised expression of the Blot-Savart equation is 

= [to (2.100) 

where 

d 
-., 	 (2.101) 

IT—ru images of j f8vi  

where the integral is over the region considered to have a wavefunction sufficiently 
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constant to be represented by a single point. The summation over 'images' refers 

to the images of a region obtained by applying the symmetry operations. The 

diagonal components of the matrices, Ijj, are not zero in general. 

To summarise the requirements for using symmetry in the program, the fol-

lowing must be specified: 

Basis functions with the correct symmetry properties. They must join s-

moothly with their images under symmetry. 

The background electromagnetic potential with the correct symmetry. 

The volume associated with each point by symmetry, S1/, so enable the 

integrals of b and p to be calculated correctly. 

The translation matrices which relate the charge current at any point (and 

all its images) to the electromagnetic potential at every other point. 

The scheme for using symmetry described here handles a periodic lattice as 

well as symmetry operations inside each lattice cell. The 'joining smoothly' re-

quirement is the same as applying periodic boundary conditions. The electro-

magnetic contributions from the translation operators which map a single lattice 

cell to the entire lattice add the energy caused by electromagnetic interactions 

between lattice cells. 

Ewald sum 

When the electromagnetic matrices and background field are calculated before 

use by this scheme, the summations must be expressed such that the l/r terms 

from the Coulomb potential associated with the ions and the lowest moment of 

the electron charge distribution in each lattice cell are allowed to cancel exactly. 

This is the continuum version of the 'Ewald sum' performed for the point charges 

in an ionic crystal [40]. If this is not done, the contributions to the electrostatic 

energy of an infinite crystal from both the positive and negative charges will be 

infinite, because the sum over monopoles is divergent. 

Consider the Gauss equation for the electrostatic potential: 

q  [1:  Zi  p(i;') 

 
OV)

= 

	

	
d] 	 (2.102) 

ons rj -f 
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where q is the quantum of charge, Z, is the net charge number of ion i and p() 
is the electron probability density at point F. Choosing a reference point F,, this 
equation can be expressed as 

= 	+ 1(1) 	 (2.103) 

where 

1 	[ 	z - ffr)dr] 	 (2.104) 
47reo IF— r 	I. L1OIIS 

and 

{ 	
1 	

- 1 
1 i(r) 

	

	
J- 	 (2.105) ions 

-Jp() L  

	

11 	1
IF 	IF— i_ 

dr1 

If the net charge on the lattice is zero, then qo = 0 everywhere. 01  consists of 
dipole contributions - the moments of the charge distribution about 	- and is 
therefore better-behaved than the summations in /. 

The 	can be either a single point in space, or a separate point for each lattice 
cell (if each cell is electrically neutral). The latter has the better convergence 
properties, and should be used in practice. 

The first term in 01  defines the electrostatic background. The second term 
defines the potential from the electron distribution. This equation can be gener-
alised slightly to give the 4-potential. 

Background fields 

The external electromagnetic potential is supplied as a constant background field, 
usually used to bring in the effect of atomic nuclei. Additional background fields 
may be supplied for convenience: a 4-current density and constant wavefunctions, 
either of which may be used to represent electron fields which are to take place in 
the calculation only by their electromagnetic field and contribution to the local 

density functional. 
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Units 

The Dirac program is intended to contain no assumptions about units. The values 

to certain physical parameters must be specified when the program is run. The 

parameters include the speed of light c and the permeability of free space go. All 

quantities must be specified in a consistent set of units. 

Particle physics is often performed, and the Dirac equation used, in natural 

units,' where c = h = 1, and quantities such as mass and momentum are measured 

in convenient energy units, such as GeV. It should be possible to run the program 

using natural, SI or any other set of units. The program has so far been tested 

only in natural units. It should be safe to perform calculations in other units, 

but it is possible that some of the necessary constants have been omitted in some 

equations. 

Program structure 

The Dirac band structure program was written in C++, using the WXC++ class 

library. The program operates as follows: 

Input: 

Read physical constants, sigma and gamma matrices, etc. 

Read LDA functional. 

Read problem description: number of field quanta (i.e. electrons), number 

of spatial points, volumes, background 4-potential, background 4-current 

density, electromagnetic connection matrices. 

Read basis functions, then normalise or orthogonalise if requested. 

Read initial guess at electron states (i.e. amplitudes with respect to basis 

functions, and occupation numbers), and choose subset to include in the 

optimisation. 

Read reference energies for calculating the minor components of the bispinor 

in each state. (These are replaced by the state energy in subsequent itera-

tions of the optimisation scheme.) 

Read parameters to control optimisation: maximum change in total energy 

between iterations, numerical bandwidths, maximum numbers of iterations, 

relaxation factors for the 4-potential and occupation numbers. 

Read parameters to control the population of the states at finite tempera-

tures (bisection accuracy and maximum iterations). 
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Prepare initial fields: 

Calculate major spinor field for each state using basis functions and initial 

guess at amplitudes. 

Calculate minor spinor field using guessed reference energies and the back-

ground 4-potential. 

Normalise wavefunctions if requested. 

Add effect of background 4-current to background potential. 

Iterative optimisation: repeat for each iteration: 

Calculate the 4-potential generated by each state. 

Apply the under-relaxation algorithm to each 4-potential. 

Form the Hamiltonian matrix, including the 4-potential seen by each state, 

and adding the Fock term if requested. 

Calculate eigenvalues and eigenvectors, sorting in order of increasing state 

energy. 

Predict occupation numbers at the requested temperature. 

Apply the under-relaxation algorithm to the occupation numbers. 

Calculate major spinor field for each state using basis functions and the 

amplitudes predicted from the eigenvectors of the Hamiltonian matrix. 

Calculate minor spinor field using state energies and the 4-potential seen 

by each state. 

Normalise wavefunctions if requested. 

Calculate new 4-current density. 

Calculate LDA energy and hence total energy. 

Stop if energy has changed little from the previous iteration. 

All electronic manual was written to document the input data more precisely. 

Performance 

As designed, the Dirac program calculates the wavefunction states and occupa-

tions for a set of electrons in a background potential. Arbitrary basis functions 

may be specified. The program makes no logical distinction between electrons 
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around an isolated atom and electrons in a crystalline solid. 1  Thus it should 

be possible to test the physical equations and algorithms in the program by per-

forming calculations of the binding energy of isolated atoms. 

Calculations were performed of H, He+  and He, in natural units with an energy 

scale of 1 eV. The wavefunctions were evaluated at 50 points in a radial line from 

the nucleus, the spacing between the points increasing geometrically. 

It was found to be crucial to use basis functions and wavefunctions that were 

normalised to a high degree of accuracy. Any deviation c from a norm of unity 

resulted in an error of € times the rest energy of the electron - which could be 

much larger than the binding energy. The program was modified to allow basis 

functions and wavefunctions to be normalised during execution, and also to allow 

basis functions to be orthogonalised using a modified Gram - Schmidt scheme 

(Appendix H). These measures cured the problem. (There are complexities 

associated with simply removing the rest-mass from the Dirac Hamiltonian.) 

The He calculations included a spin-up and a spin-down electron, each in the 

He is state. Calculations were performed in which each electron experienced the 

electromagnetic field of the nucleus plus the other electron ('individual fields'), 

and also in which each electron experienced the field of the nucleus plus both 

electrons ('mean field') - i.e. including itself. 

Table 2.1 summarises binding energies obtained in the calculations. The single 

electron calculations were as accurate as might be hoped, given the relatively 

coarse spatial mesh. Multi-electron calculations using the Slater functional in 

the local density approximation gave quite accurate results for He with a .' 2/3 

(2.4 x iO in natural units) and the individual field model. This is a standard 

value for the local density approximation, and indicates that the multi-electron 

model performs correctly. 

Calculations were performed to demonstrate that the energy did not change 

significantly as additional wavefunctions were added. As the number of allowed 

states increased, it seemed necessary to decrease the under-relaxation factors. 

Calculations were performed at temperatures comparable with the difference 

in energy levels. The chemical potential decreased as temperature increased, and 

the occupations spread out among the available states. 

No calculations were made to test the Fock term. 

'At present, however, it is considerably more inconvenient to set up calculations with a 
repeating lattice cell, or with large numbers of basis functions. This should be a relatively 
straightforward task of making the process of setting up more automatic. 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 57 

Table 2.1. Binding energies. 

experiment [54] 
(eV) 

calculation 
(eV)  

notes 

H 13.7 13.61 
He 54.51 54.44 
He 79.21 40.95 individual fields, no LDA 

26.97 mean field, no LDA 
99.30 individual fields, Slater LDA (a = 1) 
31.37 mean field, Slater LDA (a = 1) 
79.33 individual fields, Slater LDA (a '-' 2/3) 

The results obtained suggest that the Dirac-based method developed should 

be capable of predicting ground state energies for atoms of higher atomic number, 

and of treating condensed matter. However, it is likely that improvements will 

have to be made to the numerical scheme to enable it to handle many electrons 

in an efficient and robust manner. 

2.2.2 CASTEP 

CASTEP [55, 56, 57, 58] is a computer program which finds the ground state 

of electrons with respect to a periodic array of potentials. The ground state is 

found from Schrödinger's equation, so CASTEP represents the outer electrons in 

a non-relativistic manner. However, the pseudopotentials may be generated so 

as to include relativistic effects in the inner electrons. 

The wavefunction of the outer electrons is expanded as a series of plane waves. 

LDA and GGA are used to include the effects of exchange and correlation in a 

computationally convenient manner. CASTEP optimises the amplitudes of the 

basis set to find the ground state of the electrons. 

Since the number of basis states is finite, there is an energy cutoff in the 

expansion. Analytic schemes can be used to extrapolate to an infinite cutoff, 

and to interpolate between jumps caused by the changing integral number of 

plane waves used in the basis set as the lattice cell changes size. This additional 

contribution is known as the Pulay stress [59, 60, 20, 61]. 

The electron field is represented on a discrete grid of locations in k-space. A 

high density of k-points is necessary to resolve the Fermi surface accurately in 

metals, although an entropy correcting scheme has been devised to reduce the 
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density required [62]. 

A Gaussian smearing is applied to the electron energy levels during the energy 

minimisation to allow more interaction between states. The Gaussian width is 

decreased between successive iterations of the minimisation process. The effect of 

finite temperature on the outer electron states can be modelled by retaining some 

Gaussian smearing in the energy levels. The width of the Gaussian increases with 

temperature. 

Symmetry operations are used to reduce the amount of computation required, 

permitting a calculation to be made using only those points in the wavefunction 

grid which are not related to each other by symmetry. 

CASTEP can be used to perform fundamental 'molecular dynamics' - inte-

grating forces to find the motion of the atoms - and the lattice cell can be allowed 

to relax to equilibrium with an applied pressure [57]. 

As well as producing the outer electron field at the chosen k-sites, the program 

can calculate several other useful quantities, such as the electronic band structure, 

the Fermi energy, the components of stress on the lattice cell and the force on 

each atom. 

The pseudopotentials can be specified in real or reciprocal (k) space, and 

may have non-local (angular momentum-dependent) contributions. Exchange 

and correlation are modelled using the local density approximation, optionally 

with gradient corrections to the basic density-only approximation [31, 32, 58]. 

Ab initio pseudopotentials can be found by considering the energy levels or 

scattering cross-sections for the outer electrons of an isolated atom. These can 

be obtained from a rigorous all-electron structure calculation using a spherical 

harmonic basis set. The parameters in an empirical pseudopotential can then 

be optimised to reproduce the all-electron results. Pseudopotentials of sufficient 

complexity (e.g. involving an expansion in 1-dependent or non-local terms) have 

been found to be transferable to condensed states. 

The principal concern in using this scheme is the assumption that the pseu-

dopotential does not change with compression. One measure of the validity of 

this 'constant pseudopotential' approximation is that the pseudopotentials should 

not overlap. This consideration places a constraint on the maximum compression 

allowable for each polymorphic phase. 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 59 

2.2.3 INFERNO 

For comparison, some calculations were also made with the INFERNO' code 

[48], which has been used previously for calculating EOS at high temperatures 

and pressures [19]. INFERNO solves the Dirac equation for an atom in jellium 

[41]. Exchange and correlation effects in the electron fields are included through 

the local density approximation (LDA). 

The atom-in-jellium model was developed as a generalisation of Thomas-

Fermi-Dirac (TFD) theory to represent condensed matter at densities between 

those where TED is sufficient and those where band structure calculations are 

normally performed. 

A self-consistent-field (SCF) solution is found for the coupled one-electron 

Dirac equations in a spherical region around the nucleus. The field outside this 

spherical region is modelled as 'jellium' - a uniform electron gas. For compu-

tational convenience, the energy of the jellium is approximated by its volume 

average the muffin-tin approximation. The charge density is represented on a 

finite radial mesh. 

The atom-in-jellium model has been extended to predict approximate lattice 

properties, by displacing the jellium and calculating the restoring force [66]. This 

problem can be solved by perturbation theory. 

Finite temperatures are modelled using the average atom or mean field approx-

imation. Numerical difficulties can be encountered at low temperatures (below 

0.1 eV). 

The atom-in-jellium calculations performed by INFERNO require much less 

computational effort than solving the corresponding band-structure problem. 

However, INFERNO cannot distinguish between different polymorphic phases, 

so it cannot predict phase diagrams. Furthermore, the model of atomic vibra-

tions predicts only a single frequency, which is an extreme simplification of the 

phonon states found in condensed matter. 

Version 80 of INFERNO was used, with slight modifications by the author to 

deal with some compiler complaints. 

Atom-in-jellium models 

The properties of the atom (such as energies) include significant contributions 

from the jellium. When calculating these properties, it is necessary to separate 

the contribution of the continuum electron states in the jellium. Three techniques 
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have been developed to do this [48]: 

Model A : Attribute to the atom the part of each energy integral originating 

inside the atomic sphere. 

Model B : Calculate thermodynamic quantities from the difference in the chem-

ical potential when an atom is inserted in the uniform electron gas, making 

it expand by the volume of the atomic sphere. 

Model T : Calculate thermodynamic quantities from the difference in the total 

system volume when an atom is inserted in the uniform electron gas at 

constant chemical potential. 

Since these techniques are based on fairly arbitrary assumptions, it is difficult 

to choose between them on theoretical grounds. The alternative models were 

compared, as described below. 
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2.3 	Thermal motion of the atoms 

2.3.1 Momentum-space methods: phonons 

In the solid phase, atomic nuclei oscillate about an equilibrium position which 

is unchanged for a long time in comparison with the period of the oscillations. 

The relatively undistorted lattice found in crystalline solids allows displacements 

of the nuclei to propagate for large distances (compared with the interatomic 

spacing). The thermodynamic properties can then be described meaningfully in 

terms of the waves of displacement, rather than the displacement of an individual 

atom. The quanta of these waves are the phonon modes. [63, 40] 

The phonon approach is preferred because it produces accurate results at low 

temperatures where the zero-point vibrational energy is important, and it allows 

comparison with experimental measurements of the phonon dispersion relation 

and density of states. 

If nuclei interact through an effective harmonic potential between nearest 

neighbours, then the underlying group structure is Abelian, and phonons do 

not interact. Such phonons are termed quasiharmonic because although their 

interactions are ignored, the thermal expansivity of the lattice may be non-zero, 

because of the variation of the density of phonon states with compression. Of 

course, the 'harmonic' potential generally varies with density. 

Q uasiharmonic phonons 

Consider a set of atoms {i}, mass m, at positions 7. The total potential energy 

of the system is a function of the . The position of each atom can be decom-

posed into an equilibrium value Oj,  constant for each polymorphic phase, and 

the deviation iti  from equilibrium. 

The equation of motion for each atom is 

4 	0940 
rniui = 

au, 
(2.106) 

can be expressed as a Taylor series in terms of the atomic displacements Z: 

(2.107) 
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where 00  is the frozen-ion cold curve energy. In equilibrium, alo(iL 	0.  
&tLj 

Making the quasiharmonic approximation, terms cubic and higher in the ai  are 

neglected, so for small displacements from equilibrium, 

D( - 	 (2.108) 

If the atomic structure can be represented by N atoms, then D has 9N 2  compo-

nents, covering all possible pairs of atoms and coordinate directions. D can be 

thought of of an N x N matrix of 3 x 3 matrices. In this work, D is referred to 

as the stiffness matrix' of the lattice. This distinguishes it from the dynamical 

matrix for a given phonon mode, defined below. Components of D are referred 

to using Roman letters for the index of each atom (i and j) and Greek indices 

for the coordinate directions (a and 0). 
Normal modes of the atomic motion are found by looking for wave-like solu-

tions 

	

o 	 (2.109) 

where is the polarisation vector, k the wavevector and w the angular frequency 

of the mode with F and k. Normal modes are thus the eigensolutions of 

	

= 
!4) 	

iti . 	 (2.110) 

The matrix on the right-hand side is the dynamical matrix, D: 

a2 
(2.111) 

I 

where square brackets are used to denote an element of a matrix. 

Phonons can be regarded simply as normal modes populated by Bose-Einstein 

statistics [63, 40, 2]. 

The eigenproblem can be solved using wholly real operations by constructing 

the symmetric matrix D' of rank double that of the complex original D [51]: 

('? 	!?) . 	 (2.112) 
\D RD 
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Symmetries of a general lattice 

If 	is a smooth potential, its second derivatives are independent of the order of 
differentiation. Thus 

= 	
(2.113) 

or 

[D]ic , j  = [D],ia. 	 (2.114) 

Phonons represent internal motions of a lattice about its centre of mass. Par-
allel motion of all the atoms - bulk motion of the crystal - is included as three 
zero-frequency modes per atom at k = 0. If the stiffness matrix is not calculated 
perfectly, it may include contributions corresponding to bulk motion. Unfortu-
nately, the stiffness matrix tends to be quite sensitive to inaccuracies and incon-
sistencies in calculating its elements [64]. More reliable results may be obtained 
by applying this constraint, which is simply that phonons exert no net force on 
the lattice, directly to the stiffness matrix: 

[D]ia,j = 0 Vi,,/3. 	 (2.115) 
j 

	

If the point group has inversion symmetry, D( - 	= D(j - ). If U is a 
smooth function of the iii,  the order of differentiation does not matter. Thus 

[D]aij  = [D]cji  = [D] jai j  = [D] jcji 	 (2.116) 

[40], allowing the symmetry condition to be applied simply by recalculating 

[D] ja, j  = [D]ic 	Va,3. 	 (2.117) 

If the point group does not have inversion symmetry, the symmetrisation of 
D cannot proceed in such a straightforward way. Iterative schemes have been 

developed so that the commutivity of partial differentiation can be enforced and 
bulk motions removed from D [64]. In the scheme chosen, each iteration consists 
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of an application of the following assignments in turn: 

+- 
1

([D], + 	 (2.118) 

- 	[D]ja, j  (2.119) 

[D] ([D]irjo  + [D],) (2.120) 

ai + [D],jy (2.121) 

0'2 - (2.122) 

a1  - a2  (2.123) 

if ladl > € then for j 	i: (2.124) 

2(;— 1) 
(2.125) 

[D] jjy  - a (2.126) 

[D] , 	+ a (2.127) 

where € is a numerical cutoff, and the h—' symbol is used in the computational 

'let x = 	sense. This algorithm works by assessing the amount by which the 

relation 

= 	 (2.128) 
i 6 j 

- a consequence of the other symmetry conditions - is violated because of errors 

in calculating D, and adjusting the non-zero elements by the same amount so as 

to satisfy the relation [64]. In practice, a single application of this algorithm was 

sufficient for the symmetry equations to be satisfied to about 1 part in 	in 

amu-A-eV units. 

Calculation of elements in the dynamical matrix 

In principle, elements in the dynamical matrix could be calculated explicitly by 

perturbing pairs of atoms from their equilibrium position and calculating the 

ground state energy in each new configuration: 

D( 	- ) = a2 	[ ID 	- (i3O)] - [(0,7) - (0,0)] 
(2.129) aiz jar j 	 litillitil 
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for sufficiently small displacements i1i  and ü. Unless the ground state can be 
obtained quite quickly, this is likely to be an extremely demanding procedure. 

If the interaction between the atoms can be represented by an interatomic 
potential (lAP), then the forces and stiffness can be obtained by algebraic differ-
entiation. This procedure is very efficient for most common forms of lAP, but is 
limited by the validity of using an lAP. 

Matrix elements can also be obtained without the need to make pairs of dis- 
placements, by calculating the force on each atom if a single atom is perturbed 
from its equilibrium position. The forces can be calculated from the charge dis-
tribution of the electrons, and hence ab initio via the electron ground state. This 
method was preferred as it avoids the need to assume explicit forms for an in-
teratomic potential. It explicitly includes the effect of displacing atoms on the 
electron band structure at T = 0. In principle, the effect of the mean atomic 
displacement on the electron-thermal energy could be taken into account via the 
change in band structure. 

Consider a set of atoms in a calculation of the electron ground state. If a 
calculation is performed with atom i perturbed by some finite displacement i4 

*from its equilibrium position, it is possible to calculate the residual force ci each-
atom 

ach
atom (e.g. from the electron ground state calculation). For a sufficiently small 
value of 'flj, 

D( - i) ¶)1 * 	 (2.130) 
ait, 1 9d 

is simply the force f2 on atom j when atom z is displaced. 
Gui 

Because partial differentiation operators commute for a smooth function, a 
row and column of the eigenproblem can be determined from an electron ground 
state calculation with a displacement iti along one of the coordinate directions, 
by dividing the force on each atom by the displacement. Other elements can be 
generated using symmetry, as described below. In simple terms, a force divided 

by the displacement which caused it is like the spring constant or stiffness of a 
O2  

linear spring. Thus one way of describing 	is to call it the 'stiffness matrix' 
auau 

of the lattice. 

Spatial derivatives of the force on each atom can be obtained directly by in-
cluding the necessary algebraic derivatives internally in the electron ground state 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 66 

code. The restoring forces are then calculated for infinitesimal displacements of 

pairs of atoms from their equilibrium positions. This approach has been demon-

strated for some ground state codes [66], but has not yet been implemented in 

CASTEP. It is an example of adjoint differentiation of a forward model [67]; this 

typically introduces an order of magnitude increase in complexity in a computer 

program. 

In the present work, electron states were calculated for a lattice cell with 

periodic boundary conditions. This meant that the forces were generated not 

only by the perturbation of the atom in the lattice cell but also from the images 

of the perturbed atom in the periodic boundary scheme. The effect of the images 

was reduced by performing the calculations with a supercell consisting of several 

of the lattice cells used to determine the cold curve. Typically, 2 x 2 x 2 lattice 

cells were used. In principle, the forces caused by the perturbation of a single 

atom could be found by repeating these calculations with increasing numbers of 

supercells, N x N x N say, and estimating the f, as N -+ oc. However, each 

calculation with a perturbed atom required far more computational time than the 

corresponding calculation for a perfect lattice, because the perturbation breaks 

the symmetry of the lattice. Another way of removing the effect t ç?tl.rbed 

images- is to assum& that the force is a function of distance from th peuibing 

atoms, f( - i: j ), such as radial dependence J1( — D. The force obtained 

from the electron states is taken to be a superposition of contributions from the 

perturbed atom and its images k: 

= 	f(r — T, k). 	 (2.131) 
k 

Given a functional form for f(), the effect of the images can be removed. The 

form can be estimated by comparing forces for different sizes of supercell, and/or 

looking at systematic variations in for forces between different atoms in a single 

calculation. A simpler approach [65] is to set the fj to zero if atom j is further 

from the perturbed atom than from any of its images, and to divide the force 

by the number of nearest images at an equal distance, to correct their effects on 

atoms lying midway between perturbed atoms (Fig. 2.5). A computer program 

was written to automate this process. 
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- - - - - 	 this force  should be divided by 8 
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perturbed atom 	 this force should be divided by 2 

Figure 2.5. Simple scheme for correcting for the effect of perturbations in the 
position of image atoms. 
(Illustration for 2 x 2 x 2 array of simple cubic cells.) 

Symmetry of a specific lattice 

Each of the perturbed-atom ground state calculations is in principle as straight-

forward as the corresponding calculation of the perfect (.unperturbed) structure 

on the cold curve. However, the perturbation reduces the symmetry of the struc-

ture. For a given number of points in reciprocal space, more are unique. These 

calculations therefore take significantly more computer time. Fortunately, the 

symmetry of the atomic structure allows many of the elements of the eigenprob-

lem matrix to be filled in from a single calculation. For example, in a structure 

with cubic symmetry, a displacement along the (1, 0, 0) direction is equivalent to 

displacements along the (0, 1, 0) and (0, 0, 1) directions. The only difference is 

the orientation of the forces (a simple matrix multiplication) and the indices j of 

the atoms to which each force relates. 

Each symmetry operation on the lattice can be defined as a rotation (matrix) 

and a translation (vector). This primitive description in turn defines a permu-

tation among the indices j of the atoms in a structure with periodic boundary 

conditions. In other words, under the symmetry operation, each atom j maps 

to some atom j' in the repeating lattice cell. When using symmetry operations 
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to propagate the results from a number of calculations of atomic forces to other 

elements of the eigenproblem matrix, it is necessary to consider explicitly only 

the rotation matrices and the permutation of atoms. 

Density of phonon states 

To predict the density of phonon states g() for a structure with a given set 

of lattice parameters, the phonon eigenproblem was solved for each of a set of 

wavevectors k. These were chosen randomly with a uniform distribution over 

the Brillouin zone, by taking the components to be three independent random 

numbers with uniform distribution between 0 and 1. Because these points in 

reciprocal space were random, their number is not reduced by symmetry opera-

tions, i.e. all were unique. This increases the statistical accuracy of the density 

of states. By contrast, if k points are chosen to be distributed evenly in a rectan-

gular array, the symmetry of the lattice means that many of the points may be 

related to each other by symmetry operations, and hence are not unique. 

The rate of convergence of the density of states for different distributions 

of k points was investigated by performing calculations with 10 x 10 x 10 and 

30 x 30 x 30 points distributed evenly, and with 1000 and 10000 points distributed 

randomly. The density of states with 10 x 10 x 10 evenly-spaced points was 

very spiky; much more so than with 1000 randomly-distributed points. Even at 

the level of 30 >< 30 x 30 evenly-spaced points, the density of states from 10000 

randomly-distributed points was significantly smoother. (Fig. 2.6.) 

Although large numbers of k points were needed to obtain a smooth density 

of states, the number needed for a converged equation of state was much smaller. 

This number was estimated by calculating the atom-thermal contribution through 

the density of states with different numbers of k points, and predicting the shock 

Hugoniot for each equation of state. It was found that 1000 k points, collected 

into 100 bins, was adequate for a converged shock Hugoniot. 

Populating the phonon modes 

The variation of lattice-thermal energy with temperature was found by populating 

the phonon modes according to Boltzmann statistics [40]. At a given density, the 
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Figure .2.6. Statistical noise in density of phonon states for different numbers 
and distributions of k points. 
(Illustration for aluminium with an interatomic potential of the Finnis - Sinclair 
form.) 

lattice thermal energy is 

	

E1 (T)= 	g(wj)j + Eg(wj)h. 1' 	
(2.132) 

from which e1 (v, T) can be found by normalising to 3 modes per atom. 
Negative eigenvalues of the dynamical matrix were sometimes found, giving 

imaginary phonon frequencies. Imaginary frequencies indicate an instability in 
the lattice: the force pushes the atom away from its equilibrium position, which 
is a maximum rather than a minimum of energy. This situation may be caused 
by the occurrence of a major phase transition (Fig. 2.7), or a minor perturbation 
of the structure (Fig. 2.8) - infinitesimal displacements will not distinguish be-

tween these possibilities, though finite displacements may be used to investigate 
the structure of the potential field experienced by each atom. In any case, the 
local potential is no longer quadratic, and the quasiharmonic model may not be 
accurate. 
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Figure 2.7. Potential function allowing a major phase change.. 

In the present work, we wish to generate an EOS for each polymorphic phase 

over a wide range of mass density and temperature. This is partly to allow phase 

boundaries to be defined more accurately, and partly so that metastable phases 

can be included (with a rate law for transitionslto the stable state, as discussed 

earlier). We require a prescription for treating phonon states with imaginary 

frequencies, i.e. to allow the internal energy to be predicted when the structure 

is unstable. The following methods were considered: 

Ignore states with imaginary frequencies, either leaving fewer than 3 modes 

per atom or  re-scaling the density of states to give 3 modes per atom. These 

approaches are justified when a minor perturbation occurs to the structure. 

Treat the states as freely translational, contributing  a heat capacity of kB /2 

at all temperatures. 	 . 	 . 

Equilibrium EOS and phase boundaries were found to be insensitive to the 

method chosen. 
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Figure .2.8. Potential function allowing a minor perturbation to the structure.. 

Anharmonicity; effect of different displacements 

If the interatomic potentials were harmonic, then the restoring force on each atom 

would be directly proportional to its displacement from equilibrium. In general, 

there is no reason why interatomic potentials should :be  harmonic: the restoring 

force could increase more or less rapidly than linearly with displacement. 

When calculating the stiffness matrix, atoms are displaced by a finite amount. 

If calculations are made for a series of displacements, a curve can be drawn 

allowing the stiffness to be inferred for infinitesimal displacements. 	. 

In reality, the zero-point energy and any thermal vibration means that the 

mean square displacement of the atoms is finite, so calculations for a finite temper-

ature couldl use some 'effective stiffness matrix' for displacements of the expected 

magnitude This is one way of incorporating anharmonic effects, and is an in-

stance where using linear response theory to predict the stiffness matrix from 

infinitesimal displacements does not help directly. 
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'Typical' displacements 

Given the stiffness, it is possible to estimate the mean displacement of an atom 

from equilibrium as a function of temperature. For the purposes of this estimate, 

all the stiffnesses calculated at any value of the lattice parameter are equivalent, 

as they are quite similar. 

For a harmonic potential, the force f is proportional to the displacement d: 

f = —ad 	 (2.133) 

where a is the stiffness. The potential energy e is given by 

e = eo + ad2 	 (2.134) 

where e0  is the potential energy at the equilibrium position. The classical heat 

capacity of a single potential mode such as this is kB/2,  so the mean potential 

energy at a temperature T is kBT/2.  A mean displacement as a function of 

temperature is therefore 

(2.135) 

The magnitude of displacements may also be of use in relating the breadth of 

a diffracted X-ray beam to the material temperature. 

Interpolating densities of states 

It is computationally expensive to find atomic restoring forces from an electron 

ground state calculation. It would be preferable to avoid performing these cal-

culations for every value of lattice parameter used in the cold curve. With this 

in mind, schemes were considered to enable densities of states to be interpolated 

between a smaller number of rigorous force calculations. 

In principle, the interpolation can be performed at any stage, from the force 

components through the stiffness matrix to the phonon frequencies and the den-

sity of states itself. Processing the forces to give a complete stiffness matrix, and 

then solving the eigenproblem for each of a large number of wavevectors requires 

a significant amount of computer time (though far less than the electron ground 

state calculations). There are some practical problems in trying to interpolate 
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between densities of states, since they tend to vary by a scaling process (which 

makes it awkward to manipulate bins between different lattice spacings) and by 

blocks of modes transferring between regions of the curve, while preserving the 

total number of modes. Accordingly, it was decided to approach the problem 

by interpolating the values of the frequencies themselves between calculations at 

adjacent values of the lattice parameter. These interpolated phonon modes were 

then collected into bins to give g(w) and hence el(T) in exactly the same way as 

the rigorously-calculated modes. 

This technique suffers from potential pitfalls. Numerical schemes used to cal-

culate the eigenvalues which correspond to individual modes do not generally 

find the eigenvalues in order, but locate each one iteratively. Given a guess at an 

eigenvalue, the nearest value to the guess is usually found first. The set of eigen-

values may be found in a random order, so the correspondence between the modes 

at adjacent values of the lattice parameter may be lost ('mode incoherence'). 

The interpolation of frequencies may be carried out in a number of different 

ways. Even choosing linear interpolation, this could be made linear in lattice 

parameter, its reciprocal, other powers (corresponding to density, specific volume, 

etc) or other functions. Various choices of interpolating function were tried and 

evaluated, as discussed later. 

Much of the detail of these messy numerical considerations is lost in the inte-

grations required to generate the EOS. 

2.3.2 Atomic motion 

An alternative way of estimating atom-thermal energies is by direct simulation 

of a large ensemble of atoms. If the motion of atoms from their equilibrium po-

sitions is treated explicitly then co-operative non-linear effects should be treated 

properly. On the other hand, the real-space treatment of atoms is less amenable 

to the inclusion of quantum mechanical effects such as the zero point energy. 

(This can be estimated in a semi-classical way.) 

Direct simulations fall into two main classes: molecular dynamics and Monte-

Carlo. Their use dates back to the 1950s or before; the algorithms are summarised 

in Appendix D. 

In both cases, an ensemble of atoms is defined in the desired structure. The 

ensemble should be large in order to allow long-range co-operative effects to be 



CHAPTER 2. THEORETICAL EQUATIONS OF STATE 	 74 

treated. The accuracy of simulations of a given size is readily tested by perform-
ing occasional simulations of a different size - ideally larger - to determine to 
what extent the result has converged with system size. Choosing a temperature, 
the motion of the atoms is simulated until the energy has settled to a steady 
mean value. (The instantaneous value will generally fluctuate around a steady 

average.) Once the system has equilibrated, observables can be calculated by 
time averaging. [68] 

In the present work, the main observable used was the internal energy, since 
the prescription for calculating EOS produced a consistent pressure given the 
energy. In some cases, the potential energy was observed to decrease significantly 
from the value for a perfect lattice at T = 0. This indicates a phase transition. 
No a priori way was found to predict the orientation of a new phase relative to 
the initial phase - in any case, this is not possible in general. It is not always 
easy to identify a phase by inspection (looking at a picture of the atoms in 
3D), particularly at elevated temperatures where the atoms may be displaced 
significantly from their equilibrium positions. Instead, attempts were made to 
identify new phases by performing 'numerical powder crystallography' on the 
ensemble. To this end, a method was devised for predicting powder diffraction 
patterns from the positions of an ensemble of atoms, as described in Appendix E. 

The ensembles used were too large to be amenable to quantum mechanical 
calculations of the electron ground state, so interatomic potentials were used 
to govern the motion of the atoms. The potentials were fitted to ground state 
calculations of reference states - usually the cold curve for one or more polymor-
phic phases - and were thus fairly consistent with the rigorous treatment of the 
electrons. 
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2.4 	Thermal excitation of the electrons 

The electron-thermal contribution ee(v, T) can be calculated from the electron 

band structure of a. substance. The band structure itself can be obtained by a 

variety of techniques, in particular by finding the eigenvalues of the Hamiltonian 

of the electrons in the presence of a configuration of atoms. 

A simpler can also be obtained using just the Fermi energy and the density 

of levels around that energy, or the effective number of conduction electrons. 

2.4.1 Electron band structure 

Given a particle field T(rj in the presence of a background potential V(), quan-

tum mechanics allows the set of stationary states {()} to be calculated. The 

stationary states are those with a constant energy E. 
The most simple procedure is to calculate the set of energy levels {E} which 

could be occupied by a single particle state. In many applications, in particular 

atomic physics as required in EOS work, multiple particles are present. Almost all 

relevant atomic states possess several (or many) electrons. If the particles did not 

interact other than by the Pauli exclusion principle, then the single particle states 

{b} could simply be populated by as many particles as are actually present in 

the system, iV say. The ground state would be found by occupying the available 

states with the individual particles in order of increasing energy E. The ground 

state energy would bei' E (folding up and down spin states into a single 

series of energies). 

However, electrons do interact with each other through the electromagnetic 

field and the constraint of antisymmetry which must be imposed on the wave-

functions of individual electrons. As a result, the energies {E : 0 < i < N} of 

the individual electrons in the ground state are different to the single particle 

values. Moreover, the energy levels available in excited states {E} depend on 

the excitation state. For example, if inner electrons in an atom are excited to 

higher energies, then all the energy levels may change slightly. The outer levels 

will decrease because the shielding effect of some of the inner electrons - those 

which have been excited - is removed. This effect is most important at high 

temperatures, when a significant proportion of the electrons are in excited states. 

The approach proposed here assumes that a unique (i.e. temperature inde-

pendent) set of energy levels can be found. At lower temperatures, the energy 
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levels predicted using ground state occupations should be quite accurate. At 

high temperatures, it may be possible in some electron programs to recalculate 

the energy levels at an elevated temperature (i.e. with some population of ex-

cited states) and use these modified states for calculating the energy at similar 

temperatures. 

Note that 'low' temperatures are those where the electron-thermal energy is 

unimportant. These may still be several tens of thousands of K. 

The picture of particles occupying a set of states is equally valid for an isolated 

atom, atoms in condensed matter or indeed electrons 'in a box' - i.e. in the 

absence of any nuclei. However, density functional theory as originally developed 

[30] applied to the ground state only; extensions to finite temperatures have been 

developed quite recently. The standard LDA prescription is not strictly applicable 

to finite temperatures. 

In CASTEP, the electron wavefunctions are represented at a finite set of posi-

tions in reciprocal space, {k}. The 'raw' number of these wavevectors is reduced 

by symmetry operations, so as a result each has a weight w. At each wavevector, 

electrons can occupy discrete energy levels. CA STEP is designed to calculate the 

energy of each band at each wavevector, {E 2 }. Each band can contain up to 2 

electrons. This band structure refers to the outer electrons only, i.e. those which 

are not incorporated in the pseudopotential. 

2.4.2 Electron-thermal energy 

Let us assume that a set of occupation-independent electron energy levels {E} 

can be found for a substance with a given arrangement of nuclei (polymorphic 

phase) and density. 

If these energy levels are sufficiently accurate and complete, they may in fact 

be used to calculate the energy on the cold curve e. This is simply the ground 

state energy of the electrons, where the lowest states fully occupied up to a 

maximum at the Fermi energy EF, above which no states are occupied. In this 

case, the cold curve and electron-thermal energy would be combined: 

e(v, T) = ee(v, T) + ei(v, T). 	 (2.136) 

This is not necessary for EOS at 'low' temperatures, where the only energy states 

which matter are those close to EF. 
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If the number of energy levels calculated is very large - as in 'real' systems 
- then it may be represented more efficiently as a distribution function g(E) 

where the number of levels with energy between E and E + AE is g(E)AE. 

The distribution may be obtained from a sufficiently large set of energy levels, 
by obtaining the frequency with which they fall in a series of energy bins as 
finely-spaced as is necessary to resolve the density of levels for any particular 
application. Summations over discrete energy states become integrals over E, 
weighted by g(E). 

The probability of occupation of a fermion state of energy E at a temperature 

T is [2] 

f(E) = 	
1 	

(2.137) 
e()/T + 1' 

where the chemical potential y constrains the total number of electrons: when 
T = 0, f is 1 for states where E < ,u and 0 for states where E > ,a. Thus at 

T = ü, t is equal to the Fermi energy EF- 
For a system described by a density of energy levels g(E), the expectation 

value of the internal energy is 

(E) = L Ef(E)g(E) dE. 	 (2.138) 

This relation allows the internal energy to be calculated as a function of temper-
ature for the EOS. 

Given the density of levels g(E), the chemical potential /2 can be found at any 
temperature T by the constraint on the total number of electrons N: 

f : f(E)g(E) dE = N. 	 (2.139) 

The relation is not readily invertible to find the variation of a with T, so u must 

in general be found by a process such as iteration. At T = 0, a is equal to 

EF. As T —+ oc, t —+ —oo. For temperatures of a few eV or below, u does not 

decrease very much below EF,  and it is possible to choose a constant lower bound 
below which i does not fall over the whole EOS. The precise value of this bound 
does not matter because the population functions vary smoothly with Y. Since 

the values of i must lie between EF and the lower bound, the relation could be 
solved robustly by bisection. At any stage in the iterative solution, if the current 
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value of ji is too great then the resulting number of electrons will be greater than 

the number desired. This can be seen trivially for T = 0, where if ji < EF, 

f(E)g(E) dE < N. 

At low' temperatures, y remains close to EF and its variation can probably 

be ignored. By contrast, g(E) can vary very rapidly with E. This is the reason 

why the electronic specific heat capacity of many metals is significantly different 

to the value predicted by free electron theory [40]. The density of energy levels 

can also change significantly between different polymorphic phases. 

Given an electron structure scheme which operates at finite temperatures, 

a set of energy levels {E} modified by excitations can be determined. This is 

equivalent to a modified density of energy levels g(E, T). A relation of this form 

could be incorporated in the equations above to give an electron-thermal energy 

which should be valid to arbitrarily high temperatures. 

2.4.3 Low temperature behaviour 

If the kBT  is much less than the Fermi energy EF and the density of levels varies 

slowly with E in the region of EF,  then the electronic heat capacity Cve at constant 

volume is approximated well by [40, 15] 

cc  = --g(EF)kT. 	 (2.140) 

The resulting heat capacity may be specific, volumetric or per atom, according 

to the definition of g(E). 

Thus, given EF and g(E), the electronic heat capacity can be calculated quite 

easily at temperatures which are low in comparison to the energy range over 

which g(E) remains effectively constant. 

2.4.4 Quantum free electron model 

If g(EF) is not readily available, then it can be estimated for metals by using the 

Sommerfeld (quantum free electron) model [40, 69]. The Fermi surface overlaps 

the conduction bands, so the density of levels can be estimated by treating the 

conduction electrons as free, non-interacting particles in a box. In this case [69] 
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the density of levels per unit volume is 

	

g(E) - (2me)312 
 VT 	 (2.141) 

- 2ir2h3  

where me  is the mass of an electron and h is Planck's constant h divided by 27r. 

By populating this distribution with electrons up to the Fermi energy, one finds 

that 

g(EF) = 3n 
	

(2.142) 
2 EF 

where n is the density of conduction electrons. The electronic specific heat ca-

pacity is then 

2 kBT nkB 
Cve  = 	 (2.143) 

where p is the mass density. The form given here is convenient as it explicitly 

includes the Fermi energy EF.  Although the derivation is based on free elec-

tron theory, more rigorous calculations of EF can be inserted instead to give an 

alternative estimate of the electron-thermal energy: 

- R 2  kBT n(p)kBT 
e(p,T) - 
	EF(p) 	p 	

(2.144) 

(Arranging the equation in this way emphasises the factor kBT/EF  which reduces 

the number of electrons taking part, and the factor TilVBT which is a measure of 

the thermal energy of ii excited electrons.) 

The number of conduction electrons per atom can be estimated in a variety 

of ways, such as taking the preferred valence Z for the metal. Then, 

zvp 
Ti = 

	

	 ( 2.145) 
ma  

where ma  is the mass of an atom. However, the effective number of conduction 

electrons is also liable to increase with compression, as more electron shells overlap 

between adjacent atoms. 

The 'pure' free electron model results in an inaccurate electronic heat capacity 

for many substances. Postulating that g(EF) is in error, it is possible to use the 

ratio between experimental and free electron heat capacities [40] to adjust the 
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estimates. The ratio of the heat capacities can be applied directly to ee(T). It is 

however a dubious assumption that the same ratio is valid over a wide range of 

densities. 

If EF is not known, then the free electron value can be used [40, 15]: 

h2  k 2  
EF= F 
	 (2.146) 

2711e  

where h = h/22r and kF is the Fermi wavevector, 

kF = (3 2n)'/ 3 	 (2.147) 

Following this sequence of approximations, 

EF= h2 
(3.2  Zp/ ma)2/3  

' 	 (2.148) 
2m,  

so that EF OC  p2!3  with a constant of proportionality 

1 2(37r 2 Zv /ma )213  

2m,
(2.149) 
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2.5 Correcting inadequacies in ab initio calcula-

tions 

It was found that purely ab initio predictions of the EOS over-predicted the 

density at STP by a few percent. This is thought to be a consequence of the use of 

the local density approximation (LDA) to the electronic exchange and correlation, 

i.e. the effect of this simplification of the electron treatment. The predictions were 

not significantly better when the generalised gradient approximation (GGA) was 

used instead. 

The density in static compression and shock wave experiments can be obtained 

to a considerably greater accuracy than this, and it is desirable that EOS used 

for engineering calculations be as accurate as is warranted by the uncertainty in 

the experimental data. For this reason, methods of correcting the ab initio EOS 

were investigated. 

In principle, any amount of experimental data could be used in adjusting an 

EOS. Ideally, only minimal adjustments should be made to a model which is 

supposed to contain a high degree of physical fidelity, otherwise the adjustments 

are may make the model less self-consistent. In the present work, the only ad-

justments considered were a global pressure offset over the whole EOS surface: 

one or two parameters for which the starting values were defined by the ab initio 

model. 

There are many possible ways to adjust an EOS so that it passes through 

a single reference state pr (pr,Tr ), e.g. STP or p = 0, T = 0. The following 

simple methods can be used to remove an inaccuracy in p at Pr  (equivalent to in 

inaccuracy in p at Pr)  if p increases with p in the vicinity of the reference state: 

Pressure offset: Add a constant to the pressure over the whole EOS: 

	

p(p, T) -+ p'(p, T) = p(p, T) + /p. 	 (2.150) 

Density scaling: Scale the density: 

p -+ p' = ap. 	 (2.151) 

Some other possibilities can be discarded on physical grounds. A density offset 

p -+ p + Ap is unphysical in the case of an ab initio model designed (reasonably) 
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to give p = 0, e = 0 as p -+ 0. A pressure scaling p -* cp is undesirable because 
one reference state might be p = 0, where the scaling would have no effect. 

The pressure offset and the density scaling were investigated by applying them 
to an early version of the ab initio EOS for aluminium, adjusting the EOS to 
pass through the density measured at STP. The ambient isotherm and principal 
Hugoniot were then generated from the modified EOS. The pressure offset was 
found to give significantly better agreement over the rest of the EOS than did 
the density scaling. 

It is in any case philosophically desirable to adjust the pressure rather than 
the density. In the EU S- constructingmethod developed here, the density and 
temperature are independent parameters for each value of which the energy and 
pressure are calculated using models of the physics. The models are not perfect 
- the inadequacy of the LDA is a prime example, but not the only one - so it is 
more logical to accept that adjustments should be made to p and e rather than 
p or T. 

The complete EOS is built by first generating e(p, T) and then using it to 
calculate p(p, T). If the pressure offset is applied to p(p, T) only then the pressures 
will no longer be consistent with the energies. A more rigorous approach is to 
apply the correction to the internal energy, and then calculate the pressure using 
the modified internal energy. Given a desired pressure correction Ap, the specific 
internal energy should be modified by adding a linear function of specific volume 
V = l/p: 

e(v, T) -+ e'(v, T) = e(v, T) + ( eo  - vzp), i.e. 	(2.152) 

e(p, T) -* e'(p, T) = e(p, T) + (Leo  - /Xp/p). 	(2.153) 

The energy offset Z.e0  is essentially a free parameter, and can be chosen so that 
the energy remains constant at some reference state. 

An even better approach might be to adjust the exchange-correlation model 
(e.g. the LDA or GGA parameters) until the reference state is matched. This 
would allow the correction to influence the stiffness of the lattice with respect to 

perturbations in atom position, and would also predict a modified electron band 
structure. 

The importance of corrections of this order was estimated for aluminium by 
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generating the lattice-thermal energy via interatomic potentials (lAPs) rather 

than using quantum mechanical calculations of the lattice stiffness. lAPs of the 

Morse form were fitted to the FCC cold curve as described later, and then used 

to predict the density of phonon states. Applying the energy tilt applied to the 

frozen-ion cold curve, a modified lAP was calculated to fit this cold curve, and 

then used to predict modified phonon frequencies. The pressure offset produced 

a small change in phonon frequencies, but the sensitivity of the ambient isotherm 

and principal Hugoniot to the difference in lattice-thermal energy was very small. 
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2.6 Summary of method for predicting equa-

tions of state 

Equations of state were generated by using the steps listed below. The names of 

significant computer programs are also given; electronic manuals were written 

for most new programs. 

For each phase: 

For each density (i.e. set of lattice parameters): 

Find equilibrium state: Calculate electron ground state (using 

CASTEP), varying internal degrees of freedom until the state of 

isotropic stress is found. Energy at this state lies on the frozen-ion 

cold curve. Units are also converted from eV-amu-A to 

Mg-MJ-GPa-mm-,us (using utility program function). 

Electron-thermal contribution: 

Calculate band structure (CASTEP in band structure mode). 

Convert to density of levels (programs BAND2MODE and MODE2DOL). 

Calculate electron-thermal energy at each temperature along 

isochore, by applying Fermi-Dirac statistics and determining the 

chemical potential (program DOL2ET). 

Convert units from eV-amu-A to Mg-MJ-GPa-mm-s (utility 

program function). 

Lattice-thermal contribution: 2 

For each displacement required by symmetry, calculate the force 

on each atom when the appropriate atom is displaced (CASTEP). 

Modify the forces to take account of the finite size of the 

supercell (program PERTFORCE). 

Combine the forces, using symmetry to fill the stiffness matrix 

(program FORCE2PHI). 

Apply translational symmetry to the stiffness matrix (program 

PHISYMNCEN for a centrosymmetric structure, or PHISYMM in 

general). 

'As mentioned in Section 2.3, the calculation of the stiffness matrix and the application of 
lattice symmetries were based on previous work by Stewart Clark, Michele Warren and Graeme 
Ackland at the University of Edinburgh [64, 65]. The programs used here were however written 
from scratch. 
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Calculate the vibrational frequencies for each candidate phonon 

wavevector (program PHI2PHON). 

Collect frequencies into statistical bins, to produce the density of 

states (utility program bin). 

Adjust the density of states to treat imaginary modes as freely 

translational, if desired. 

Calculate atom-thermal energy at each temperature along 

isochore, by applying Maxwell- Boltzmann statistics (program 

PHONS2ET). 

Convert units from eV-amu-A to Mg-MJ-GPa-mm-,as (utility 

program function). 

Collect contributions into tables: 

Cold curve points: set of v, e values (WXC++ 'tableld' format). 

Electron-thermal energy: rectangular array 

number_of_volumes number_Of_temperatures 

For each volume: specific volume 

For each temperature: temperature 

For each volume: For each temperature: specific internal 

energy 

(WXC++ 'table2d' format). 

Atom-thermal energy: as for electron-thermal energy. 

Specific internal energy: combine contributions into a single table (utility 

program combine). 

Free energy: integrate along each isochore to calculate f(T) (program 

ENTROPY) and combine isochore data into a rectangular f(v, T) table. 

Equilibrium surface: Using the free energy f(v, T) for each phase calculated, 

predict the phase diagram (program PHASEDIAG) and equilibrium free energy 

f(v,T) (program EQMEOS). 

Equilibrium equation of state: Given the equilibrium free energy table f(v, T), 

apply thermodynamics to deduce the specific internal energy e(v, T) and 

pressure p(v, T), both in tabular form (program VTF2EOS). 

Ab fere initio equation of state: 

Discrepancy: extract the pressure at the known STP density (programs 

tabinterp for bilinear interpolation or tabinterpi for biquadratic). The 
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discrepancy is the difference between this pressure and 1 atm (i.e. 

i0 GPa). 

Correction: formulate the energy correction and apply to the energy table for 

each phase (repeat with the correcting term in program combine, as 

above). 

Regenerate equation of state: repeat calculations of free energy, 

equilibrium properties and EOS, as above. 

Additional calculations were performed to investigate the sensitivity to reso-

lution in reciprocal space (electrons or phonons), plane wave energy cutoff, atom 

displacement, resolution of binning in density of states, etc. UNIX shell scripts 

were written to carry out common sequences of calculations (such as the gener-

ation of the cold curve, or the thermal contributions along each isochore) auto-

matically. 

In some instances, calculations were performed at a single density with a 

variety of values for the plane wave cutoff energy, in order to determine the Pulay 

stress. In practice, most calculations were performed with a sufficiently large 

number of plane waves that the effect of the Pulay stress was negligible. 

The procedure was modified slightly when investigating the use of interatomic 

potentials for the atom-thermal energy, or simpler electron-thermal models. 

The K290 program was used to deduce the symmetry of each lattice and 

hence find the unique set of points in reciprocal space. The symmetry operations 

were deduced for each lattice type, and also for each unique displacement of 

an atom from equilibrium required when calculating ab initio phonons. The 

symmetry operations used in propagating restoring forces around the elements 

of the dynamical matrix were those deduced with all atoms at their equilibrium 

positions. 

Typically, the density range used was from a little below STP density (e.g. 

90% of STP density) to about double STP density. For each phase, the density 

range was converted to a range of lattice parameters, rounded to 0.1 A. Calcula-

tions were performed on isochores at intervals of 0.1 A. EOS tables then included 

15 to 20 isochores. (Ab initio phonons were typically calculated at larger intervals 

and interpolated onto other isochores. 

The ab initio restoring force calculations were based on displacements of 0.001, 

0.01, 0.0 and -0.001 of the corresponding lattice parameter for the supercell. 

The values of +0.001 represent an infinitesimal' displacement; 0.01 represents a 
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displacement of the same order as would be expected at temperatures 1000 K, as 

predicted along the shock Hugoniot. The sensitivity of the EOS to displacement 

was found to be very small, as discussed in the context of sample materials in 

Chapter 3. 

The temperature range used was 0 to 10000 K. A geometrical series of 200 

intervals was used, with an expansion ratio of 1.01. The smallest interval was 

thus 15.8328 K (i.e. the first two isotherms were at 0 and 15.8328 K) and the 

largest was 114.69 K (i.e. the last two isotherms were at 9885.31 and 10000 K). 

The upper limit of 10000 K was chosen to allow estimates to be made of the 

shock Hugoniot well into the liquid regime. To a first approximation, the EOS 

in the liquid regime at temperatures above the solid-liquid transition is similar 

to the EOS of the solid at the same density [1]. Long-range order is lost in the 

liquid, but short-range order is expected to be similar to that seen in the solid, so 

the cold curve calculated for the nearest solid phase below melt should often be 

reasonable in the liquid. Quasiharmonic phonons are not an appropriate model, 

but it is likely that all vibrational modes are active anyway at or below the 

melt temperature, so the Dulong - Petit value to which the phonon treatment 

asymptotes should be reasonably accurate. Assuming that the electron band 

structure is not perturbed significantly by the changes in atomic configuration 

caused by melting at high pressure, the band structure itself should still be valid 

at such temperatures (10000 K is less than 1 eV). 

The electron ground state calculations typically used an array of 10 x 10>< 10 

points in reciprocal space. Calculations with 5 x 5 >< 5 points were used to check 

the convergence. This limited the resolution in the band structure and densi-

ty of electron energy levels. Because of the relatively small number of points, 

these were typically applied directly in calculating the electron-thermal energy; 

the density of levels being used for graphs only. In contrast, the number of 

(randomly-distributed) points in reciprocal space used to calculate phonon fre-

quencies was varied until the density of states had converged. (The density of 

binning was varied until the density of states looked smooth while preserving 

important features.) Typically, iO to 10 points were used, collected in bins 0.05 

to 0.5 frequency units wide (in eV-amu-A units). 

Both ranges and intervals were chosen so that shock Hugoniots were converged 

to a reasonable accuracy, small in comparison with the range of the Hugoniot and 
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reasonably small compared with the scatter in the experimental data. The reso-

lution was tested by generating EOS with half the resolution. The temperatures 

were certainly fine enough for accurate EOS predictions; the densities were just 

fine enough for reasonable predictions. (It requires much more computational 

effort to add extra isochores than to add extra isotherms.) 

The resulting EOS were in effect optimised for compressions into the strong 

shock regime. The method developed should also allow reasonable predictions 

to be made of, for example, the thermal expansivity near STP; however, the 

tabulations used in the present work were too coarse for such predictions to be 

accurate. 



Chapter 3 

Application to a selection of 
materials 
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3.1 Aluminium 

Aluminium was chosen as the first material to analyse because it is a simple 
metal, forming the FCC structure to at least 200 GPa. A considerable amount 
of experimental data is available. The pseudopotential had been used with good 
results at normal density, and calculations using other techniques have been pub-
lished. Furthermore, aluminium is a metal of technological significance, so an 
accurate and thermodynamically complete EOS would be valuable for a range of 
applications. 

3.1.1 INFERNO isotherms 

In order to evaluate the atom-in-jellium models used in INFERNO (summarised 
in Section 2.2), calculations were made using each model in turn. 

INFERNO's option settings were essentially as recommended [48] (Table 3.1). 
Calculations were made with atomic sphere radii between 1.5 and 4 Bohrs, at 
intervals of 0.01 Bohr, at a temperature of 0.01 eV. No numerical difficulties were 
encountered in the case of aluminium. The calculation of each state required only 
a few iterations; generally under ten. 

The pressure was found by numerical differentiation of the energy - volume 
dependence. States with pressures outside the range 0 and 400 GPa were dis-
carded for the purposes of this study. Calculations were also performed with the 
mesh extending to a smaller radius. This made no difference to the results. Some 
calculations were repeated at a temperature of 0.03 eV to indicate whether the 
electron - ion energy would be likely to change much between 0.01 eV and 0 K. 

The calculated state data were used to infer the density at which p = 0, for 
T 	116K (0.01 eV), and compared with the reference density of 2.77 Mg/rn3  
[110] (Table 3.2). The results from calculations at 116 K and 348 K did not differ 
before the fourth significant figure. 

By far the best match was from Model B, which differed from the data by less 

than 1%. 
The INFERNO calculations were compared with measurements of the ambient 

isotherm to 220 GPa [71]. The difference between calculations at 116 and 348 K 

was not significant - everywhere less than 1 GPa. (Fig. 3.1). 
Model B again produced the best results. Its compression curve lay about 4% 

below the reference curve at v/v0 	0.7, and about 10% below at v/v0 r'.1  0.45. 
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Table 3.1. Important INFERNO option settings. 

Option Setting 
relativity on 
radial mesh exponential: 

mixing parameter 0.3 
effective infinite radius of bound state 75 
convergence criterion 10_6  
mode 1 	(find 	chemical potential 

given atomic volume) 
local density model Hedin-Liindqvist 
parameter in local density exchange model 2/3 (Kohn-Sham) 
Coulombic tail for last electron in atomic off 
sphere 
Lagrange multiplier in charge neutrality type 2 
constraint 
chemical potential of atom relative to 0 
jellium 
energy meshpoints for B-matrix scheme in 5 
continuum 
largest angular momentum quantum num- 5 
her in explicit solution 

The results from the other models lay tens of percent below the reference curve. 

A brief study found that no simple scaling or shift would bring the calculated 

curves into good agreement with the data. 

The Model B' variant of the atom-in-jellium model appeared to produce the 

most accurate cold compression data for aluminium between 0 and 400 GPa. Even 

so, the pressures predicted may be in error by of the order of 10%. 

INFERNO could however calculate a state point about two orders of magni-

tude faster than a band structure code. Although it cannot calculate states at 

0 K, it seemed to operate reliably at temperatures well below 0.1 eV. 

The electron - ion isotherm predicted at a temperature of 0.01 eV was the 

same as that predicted at 0.03 eV to at least three significant figures, suggesting 

that the 0 K isotherm should be represented to at least this accuracy by the 

0.01 eV isotherm. 
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Table 3.2. Densities at p = 0. 

Source density (Mg/m') 
Reference data [110] 2.77 
Model A 2.49 
Model B 2.75 
Model T 2.51 

'+tJLJ 
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Figure 3.1. INFERNO cold curves for aluminium. 

3.1.2 CASTEP cold curve 

A reciprocal-space pseudopotential was used [56], incorporating all but the outer 

3 electrons. It was derived by adjusting its parameters to reproduce the scattering 

properties for the. outer electrons in an isolated atom calculated using all-electron, 

methods [62], and is therefore wholly ab initio. The non-local part of this pseu-

dopotential has contributions for I = 0 and I = 1. 

CASTEP version 5.1 Was used. This version incorporates the entropy correc-

tion to stabilise the convergence of metal calculations performed with Gaussian 
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smearing. The entropy correction was found to make a negligible difference. Ver-

sion 5.1 does not include non-linear core corrections. The program was modified 

to increase the number of k points allowed. 

To find the ground-state of each configuration of interest, the program was 

allowed to perform 45 iterations towards the ground state from a random initial 

state. By then, the energy and stress changed very little between iterations. 

Pulay stresses [59, 60, 20, 61] were taken into account. The total energy Er 

of a 4-atom FCC lattice cell was calculated with an energy cutoff E of 250, 300 

and 350 eV. dET /d(ln Ed ), used by CASTEP in determining the Pulay stress, 

was estimated from the results. The correction to the ground-state energies was 

negligible. 

The effect of the density of points used to represent the electron field in k-

space was investigated by performing sets of calculations with 125 (53)  and 1000 

(10) points in the Brillouin zone. The number of k-points actually required in 

the calculations was considerably less than this, since the Brillouin zone could 

be reduced to a smaller unique wedge by symmetry. The calculations with 125 

k-points produced pressures slightly below those with 1000 k-points, by less than 

1 GPa. This suggests that the calculations with 1000 k-points were converged in 

this respect to better than 1 GPa. 1000 k-points were used as standard. 

The absolute ground-state energy of an isolated atom was found by performing 

calculations on the simple cubic (sc) lattice with a lattice side a of 6, 8 and 10 A. 
The ground-state energy was found to about +0.02 eV by extrapolating to infinite 

cell size using inverse powers of a. 

The effect of the gradient correction to the LDA [31, 32] was investigated 

by repeating calculations of all configurations using this modified model of the 

exchange-correlation energy. This is not strictly a proper treatment, because 

the pseudopotential used was determined with the LDA. It is possible that re-

optimising the pseudopotential using the GGA would produce different results, 

thus the GGA calculations presented here should be regarded with caution. 

Calculations were performed to predict the cold compression curves (energy e 

and pressure p as functions of density p or specific volume v) for aluminium in the 

FCC and BCC structures, using lattice cells containing 4 and 2 atoms respectively. 

Calculations were also performed of the ideal HCP structure, using lattice cells 

containing 2 or 4 atoms (HCP primitive cell or tetragonal cell respectively). The 

calculations predicted that FCC remains the stable phase at T = 0 over the 
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range 1.5 <p ~ 3.0amu/A (2.6 < p < 5.5 Mg/rn3, giving pressures up to about 

200 GPa). When the density exceeds 3 arnu/A (5 Mg/M3) or so, the energy 

curves become too close to distinguish reliably with the calculations presented 

here. (Fig. 3.2.) 

The difference between LDA. and GGA calculations was an offset of 0.01 eV/amu, 

GGA having the higher energy'- riergy 
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Figure 3.2. Predicted ground state energy for. aluminium. 

The ground state calculations also produced values of the Fermi energy (Fig. 3.3) 

and. the electronic band structure. These were used in predicting: the electron-

thermal contribution to the EOS. InCASTEP, the Fermi energy is calculated with 

respect to the band energies; these contain an absolute offset which depends on 

the pseudopotential. The predicted values for Fermi energy could be represented 

accurately by a free electron form (see Section 2.4) incorporating an offset, 

EF_— Eo+cp2"3. 	 (3.1) 

E0 and c were obtained by fitting a straight line to (p213, EF) pairs. E0 : was 

found to be —7.998eV and a 8.678eV.m2/Mg2/3, with a residue (sum of squared 

deviations in EF) of -.0.017. 
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Figure 3.3. Predicted Fermi energy for aluminium, compared with variation for, 
free electrons. 

The value deduced for c would correspond to 5.2 conduction electrons per 

atom (assuming the effective mass is the rest mass of a free electron). The 

valence of aluminium is 3; the difference can be regarded as caused by the con-

centration of the electron wavefunctions into a smaller volume of space by the 

ions or as a smaller effective mass. The :predicted  variation of Fermi energy with 

density cannot be reproduced at all accurately with 3 conduction electrons. This, 

discrepancy demonstrates the need to treat electrons accurately when predicting 

EUS - it is not adequate to assume that electronic effects can be modelled by 

'treating 'the valence electrons as free, as has:  been done previously [16]. 	, 

Grüneisen parameter 

For comparison with empirical EOS, the, Griineisen parameter y(v) was deduced 

from the FCC cold curve using the Dugdale- MacDonald relation [16]. The tem-

perature dependence of y was not considered. 

Analytic functions were fitted to sets of adjacent states:  calculated on the: cold 

p(v) curve. These functions were differentiated to obtain 'y(v). The results were 
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compared with different functional fits to different numbers of adjacent points. 

When the number of points used in  a functional fit was greater than the number 

of fitting parameters, the fit was least squares; otherwise, it passed precisely 

through each point. It was found that quadratics fitted to sets of 3, 4 and 5 

points, and cubics fitted to sets of 4 and 5 points produced y(v) with similar 

behaviour (Fig. 3.4), whereas exponentialls (p =aexp(bv)) fitted to 2, 3, 4 and 

5 points: were quite different. Such exponentials cannot model the region near 

p 	0, but it seems that their behaviour is inadequate even at finite pressures. 

(Fig. 3.4) 
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Figure 3.4. Griineisen y(v) deduced for aluminium. 

The behaviour predicted of 'y(v) indicated a linear region for v < vo, then a 

steep increase. For comparison with empirical EOS optimised for compression 

experiments, the steep increase was ignored and a linear variation obtained from 

the (v,')') points deduced frompolynomial fitting:  

(v) = 0.358 + 3.748v. 	 (3.2) 

It is instructive to compare the deduced y(v) behaviour with results from 
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other workers [19, 70]. The variation derived from polynomial fits was reason-

ably consistent with the accepted behaviour of y. (v) can also be deduced from 

other empirical EOS forms using the Dugdale - Macdonald relationship (see Ap-

pendix G). Here, published parameters for Al were used, obtained by fitting to 

experimental data, rather than by optimising the parameters to reproduce the 

CASTEP calculations. It can be seen that with the exception of the piecewise 

exponential fit to the ab initio calculations, all the other calculations of 'y(v) are 

in reasonable agreement over most of the compression range. There is significant-

ly more variation around equilibrium density; this is also reflected in the wider 

range of values obtained by experiment [19]. Around p = 0, the uncertainties 

in deriving 'y are significantly greater. The calculation of 'y(v) involves the sec-

ond derivative of: the pressure with respect to density. Differentiating tends to 

highlight differences between functional forms. For example, the switch between 

forms used in the EOS by Bushman et al is clearly evident as a sudden drop in 

. (Fig. 3.5) 
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Figure 3.5. Griineisen .y(v) deduced from different models for aluminium. 
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3.1.3 Lattice-thermal contribution 

The lattice-thermal energy el (v, T) was predicted from the restoring forces pre-

dicted ab irjitio by displacing each atom by a finite amount, and also using inter-

atomic potentials deduced from the cold curve. 

In the FCC lattice, the high degree of symmetry allows all elements to be 

obtained by displacing the atom at 0, 0, 0 in the x-direction. The FCC lattice 

has inversion symmetry, so the dynamical matrix could be symmetrised in a 

deterministic way (Section 2.3). 

The density of phonon states at normal: density was compared with experi-, 

mental data deduced from neutron scattering [40] (Fig. 3.6). 
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Figure 3.6. Density of phonon states in aluminium, from neutron scattering 
measurements.  

Interatomic potentials 

If the interaction between atoms can be represented by a potential function, then 

the motion of the atoms can be predicted with much less effort than if a full 

quantum-mechanical calculation is necessary. Simple interatomic potentials are 
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not generally valid for metals, because the energy of the conduction electron-

s should be treated separately. However, simple potentials have been used by 

various workers in predicting the EOS of metals, with some success [16]. Ac-

cordingly, interatomic potentials were assessed for their accuracy in reproducing 

the difference in energy between polymorphic phases and in predicting the den-

sity of phonon states. The functional forms of the lAPs used are described in 

Appendix C. 

Inverse power potentials were obtained by fitting only even powers of r. A de-

terministic method was developed for fitting the inverse power potentials - or any 

linear combination of constant functions of interatomic separation - which was 

capable of using energy, pressure and higher derivatives of volume, as described 

in Appendix C. It was possible to find potentials which reproduced calculated 

LDA or GGA energies. For a given number of terms, the fit to FCC energies was 

more accurate than the fit to the corresponding BCC energies. Lower powers of 

r were found necessary in order to give the maximum accuracy. (Table 3.3.) 

Table 3.3. Inverse power parameters for aluminium. 

fit to   A,  
i=4 i=6 i=8 i=10 i=12 

FCC LDA -83.148 1193.0 -3325.9 3056.5 
-77.527 956.36 -958.33 -6495.4 13903. 

BCC LDA -86.445 1296.7 -3891.6 3871.4 
-95.411 1672.6 1  -7616.6 18657. -21030. 

FCC GGA -70.498 929.25 -2035.9 1016.8 
-59.063 447.88 2780.9 -18417. 28286. 

BCC GGA -72.803 1009.1 -2492.6 1708.8 
-95.849 1975.1 -12067. 39713. -54053. 

Units are such as to give potential energy in eV for distances in A. 

Considering either LDA or GGA, potentials were matched to e(v) calculations 

for a single lattice type. It was found that a potential optimised to match one 

lattice type did not in general match a potential optimised for the other lattice 

type. This effect was smaller with fewer powers of r. Also, a potential optimised 

to match one lattice type did not reproduce energies for the other lattice type - 

in fact, the predicted FCC-BCC energy difference was uniformly much smaller 

than suggested by the quantum mechanical calculations. (Fig. 3.7.) 

For calculating the density of phonon states, the potential used was that 
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Figure 3.7. Transferability of inverse power potentials. 

fitted to LDA FCC energies, with reciprocal powers of 4,6,8,10 and 12 in atomic 

separation. The density of states was calculated for a repeating cubic assemblage 

of FCC lattice cells. Because the inverse power potential has an infinite range, the 

calculations were repeated for an assemblage 3 and 4 FCC cells across, neglecting.  

the potential if atoms were separated by more than 10 and 15 A respectively for 

a lattice parameter of 4.0 A. This procedure explored the degree of convergence 

in finite simulations. The density of states varied only slightly between these 

calculations. 

The density of states predicted from the inverse power potential had the same 

shape as the experimental results, but was stretched out in the frequency axis. 

(Fig. 3.8). 	 . 

Attempts were made to determine 'long-range' Morse parameters, and also: 

parameters for the more common first or second nearest neighbour Morse interac-

tions. The Morse potential becomes negligible at a finite radius. The significance 

of 'long-range' parameters is that the number of neighbours rises with compres-

sion, as more atoms are pushed within :the  range of the potential. By contrast, 

the nth nearest neighbour, potentials can be considered as including a cutoff at. 
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Figure 3.8. Phonon density of states for aluminium, deduced from an inverse 
power potential. 

a finite radius r which contracts with compression, so that only the specified 

neighbours are in range. If the potential is to be used for simulations like molec-

ular dynamics, a variable cutoff is inconvenient because the local density in the 

simulation can vary significantly over a short distance, leading to ambiguities as 

to the value of r to choose for each atom. 	• 

No 'long-range' parameters were found which could match more than the first 

part of the compression curve, to a few GPa. Potentials limited to first or second 

nearest neighbours could be matched accurately to the compression data. for a 

single phase. The match to FCC was better than that to BCC. No potential was 

found which could match the energies for both FCC and • BCC phases together: 

the Morse potential consistently gave too great an energy difference between FCC. 

and BCC. This effect was worse for nearest neighbours only. If the potential was 

allowed to extend beyond second nearest neighbours, the accuracy started to 

reduce. The results for GGA were exactly analogous to those for LDA. (Fig. 3.9.) 

The parameters which accurately reproduced single-phase cold curves are list-

ed in Table 3.4. The number of neighbours was expressed as a cutoff radius, 

calculated using the neighbour distances for the FCC structure. The same cutoff 
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radius was then used for the BCC structure. 

Table 3.4. Morse parameters for aluminium. 

fit to neighbours D (eV) a (1/A) r0  (A) 
LDA FCC first 0.707858 1.10589 2.79103 
LDA FCC first + second 0.562595 1.06324 2.91452 
LDA BCC first 1.03763 1.09652 2.74014 
LDA BCC first + second 0.619085 1.04627 2.87176 
GGA FCC first 0.639054 1.14083 2.79069 
GGA FCC first + second 0.511498 1.09918 2.90785 
GGA BCC first 0.932628 1.13836 2.73625 
GGA BCC first + second 0.558105 1 1.08706 1 2.86544 

For calculating the density of phonon states, Morse potentials extending to 

nearest or next-nearest neighbours and reproducing LDA and GGA FCC energies 

were used. In all cases, the calculated density of states had the correct shape, 

but was stretched out in the frequency axis compared with the experimental 

data, though less so than the densities of states obtained from the inverse power 

potentials. LDA and GGA gave very similar densities of states. (Fig. 3.10.) 

The convergence properties of the Finnis-Sinclair parameters were investigat-

ed by choosing as initial values previously suggested parameters for aluminium 

[56] and also from a set of zeros. The iterations converged to essentially the same 

values in both cases. The iterative program allowed fitting to all data simulta-

neously, with a weight associated with each data point. In this way parameters 

could be optimised to match the data for a single phase independently, or for all 

sets together. 

When starting from a set of zero parameters, a systematic procedure was 

followed to first determine the values of the outermost' (large r) terms in the 

spline fits. The weights for the data points corresponding to greater compressions 

(and therefore sampling smaller values of r) were reduced so that the fitting 

procedure did not choose a 'compromise fit' between different values of r. The 

fitting procedure was then progressively extended to smaller r, increasing the 

weights at higher compressions as extra spline terms were activated. 

Considering the FCC energies for LDA or GGA alone, the Finriis Sinclair 

form could be optimised to reproduce it quite accurately. The potential then re-

produced the BCC energies quite well at small compressions, but under-predicted 
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Figure 3.9. e(v) curves for aluminium from Morse fit to LDA FCC. 

the difference as compression increased. Fitting both data sets together produced 

a compromise fit at intermediate compressions. (Tables 3.5 and 3.6, and Figs 3.11 

and 3.12.) 	 . 

The optimised Finnis-Sinclair parameters gave phonon modes which were al-

most all imaginary. Understating the case, these gave inaccurate predictions of 

the phonon density of states. The reason for this behaviour is probably that 

fitting a  multi-body potential such as the Finnis-Sinclair to isotropic pressure  

data is an ill-conditioned process. In order to fit anything more sophisticated 

than a radial pair potential, non-isotropic data, such as shear modulus or force 

on displaced atoms, should be included. 

A set of empirical parameters was also tried [56]. These reproduced some 

of the observed properties of aluminium close to ambient conditions, :  e.g. the 

compressibility and elastic constants They did not match the predicted abso-

lute potential energy or the behaviour under large compressions. This potential 

reproduced more of the observed features of the density of states, although the 

maximum frequency and the positions of important features were not quite cor-

rect. (Fig. 3.13.) . 
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Figure 3.10. Phonon density of states for aluminium deduced from Morse po-
tentials. 

Inverse power, Morse and Finnis - Sinclair potentials were all capable of pre-

dicting densities of states of roughly the correct shape. The density of states from 

the radial potentials was stretched out in the frequency axis, the inverse power 

form more so that the Morse. This discrepancy may be caused partly by fitting 

different functional forms to discrete energy - volume data, where higher deriva-

tives exaggerate differences in the functional forms and goodness of fit. (The 

density of states is obtained from the second derivative of the potential function.) 

This probably explains the difference between inverse power and Morse, where 

the Morse was found to be a more natural fitting form. The remaining difference 

(between Morse and experiment) is probably caused by multi-body or angular 

terms, and the contribution of the conduction electrons, which depends to a first 

approximation on the density only. In accordance with this explanation, Finnis-

Sinclair potentials appeared more promising, but a better optimisation scheme 

would have to be found to prevent lattice instabilities. 	 - 
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Table 3.5. Finnis-Sinclair parameters for aluminium, fitted to FCC cold curve. 
(Knots are expressed in units of an 4.0503 A, which is the experimental lattice 
parameter for FCC aluminium, but acts as an arbitrary parameter as far as 
the potential function is concerned. The coefficients are in units such that the 
potential is calculated in eV.) 

k 
1 2 3 4 5 6 

rk 1.225 1.18 1.09 1.050 0.9 0.70710678 
LDA ak 

GGA ak 

2.21834 
2.4189 

8.48597 
8.63738 

2.29947 
2.4279 

1.40611 
0.984752 

-5.21263 
-6.12842 

-4.06097 
-8.04307 

k 
1 2 

Rk 1.200 0.93 
LDA Ak 
GGA Ak 

66.074 
59.2106 

452.965 
484.569 

Ab initio restoring forces 

Restoring forces were predicted from electron ground state calculations using a 

periodic cell of 2 x 2 >< 2 FCC cells. This should give reasonable forces out to 

second nearest neighbours. 

The atom at (0, 0, 0) was displaced by a small amount in the x-direction. The 

calculations were otherwise the same as for the perfect FCC structure, except 

that for the 1000 reciprocal space points used to sample the electron states, the 

reduced symmetry meant that 150 were unique rather than the 35 used previously. 

Calculations were performed with the cubic lattice parameter a from 3.0 to 4.0 A, 

at intervals of 0.1 A. The restoring force on the displaced atom was adjusted 

slightly so that the sum of the forces was zero to a higher accuracy. (The sum of 

the craw' forces from CASTEP typically gave a net residual force which, although 

very small, could be made several orders of magnitude smaller by subtraction.) 

The force on atoms equidistant from the perturbed atom and its images was 

scaled by the number of equidistant perturbed atoms. The force on atoms closer 

to one of the perturbed images than to the perturbed atom at the origin was 

set to zero. (This procedure is described in more detail in Section 2.3.) The 

symmetry operations were then used to fill in the rest of the stiffness matrix. 

A large number of iterations toward the ground state was required in order to 
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Table 3.6. Finnis-Sinclair parameters for aluminium, fitted to FCC and BCC 
cold curves simultaneously. 
(Knots are expressed in units of an 4.0503 A, which is the experimental lattice 
parameter for FCC aluminium, but acts as an arbitrary parameter as far as 
the potential function is concerned. The coefficients are in units such that the 
potential is calculated in eV.) 

k 
1 2 3 4 5 6 

1.225 1.18 1.09 1.050 0.9 0.70710678 
LDA ak 
GGA ak 

1.02131 
0.995125 

-7.40168 
-5.50213 

-13.9145 
-18.196 

57.9952 
60.7362 

-26.4662 
-28.7832 

67.6306 
63.4892 

k 
1 2 

Rk 1.200 0.93 
LDA Ak 
GGA Ak 

18.8918 
16.1369 

327.34 
347.002 

obtain a smooth density of states - the forces converged much less quickly than 

the total energy. If non-converged forces were used then additional, unphysical 

structure was predicted in the density of states, and a significant proportion of 

the phonon modes were imaginary. However, considering the density of states 

as a distribution, the first few moments (mean, skewness etc) obtained from 

non-converged calculations were similar to those of the experimental density of 

states. The lattice-thermal energy is found by integrating over the density of 

states, so it is useful to compare moments. It was found that the lattice-thermal 

energy was far less sensitive to the degree of convergence. The density of states 

was reproduced with reasonable accuracy using converged forces (Fig. 3.14), but 

non-converged forces were used in predicting the equation of state. 

Sensitivity to statistics of phonon model 

The effect of the number of frequency bins was investigated by performing calcula-

tions with between 10 and 5000 over the full frequency range at one compression. 

The lattice-thermal energy did not appear to converge unless well over 100 bins 

were used. This result suggests that the Debye or Einstein models of the lattice 

modes [40] are unlikely to be adequate for detailed EUS work. 
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Figure .3.11. e(v) curves, from Finnis-Sinclair potentials fitted to FCC ground, 
state energies. 

The effect of the number of wavevectors was investigated by performing cal-

culations with between 125 and 8000 wavevectors. Graphs of the lattice-thermal 

energy were indistinguishable once about 1000 wavevectors were included. 

Anharmonic contribution . 	 . 	. 

The importance of phonon - phonon interactions was estimated by performing 

Monte-Carlo (MC) calculations of the equilibrium configuration of atoms :in a 

group of 5 x 5 x 5 FCC . cells. These calculations used the .  second-neighbour,  

Morse potential fitted to the GGA cold curve for the FCC structure. 

Calculations were performed for a variety of densities, and a variety of tem-

peratures at each density. In each calculation, the MC algorithm was applied 

until the energy had converged, typically 500 to 1000 iterations, then the total 

energy was averaged over an equal number of iterations. 

For each density, calculations were performed at increasing temperatures, us-

ing the final configuration from the previous temperature as the starting config-

uration for the next temperature. The effect of this procedure was to allow the 
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Figure 3.12. e(v) curves for aluminium from Finnis-Sinclair potentials fitted to, 
FCC and BCC ground state energies. 

simulations at higher temperatures more time to approach equilibrium. 

The anharmonic contribution was estimated for each simulation by comparing 

the potential energy with the kinetic energy - the latter assumed to be 2kBT. 

Neglecting quantum mechanical effects (specifically, the freezing out of modes 

below their excitation energy),  the energies should be equal if each:  atom sees an 

effective, potential which is quadratic.  

For the range of states considered (covering temperatures up to 2000 K), the 

anharmonic contribution was smaller than the statistical noise in the potential 

energy. 

3.1.4 Electron-thermal contribution 

The electron-thermal contribution  was estimated using the simple model based 

on Sommerfeld theory but using the predicted EF(p),  and also with the full band 

structure predicted using CASTEP. 

For the band structure, twice as many energy levels were considered at each 

k-point as would be required on average to contain all the electrons in the ground 
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Figure 3.13. Phonon density of states for aluminium deduced from an empirical 
Finnis- Sinclair potential. 

state. This provided a reasonable number of levels above the Fermi energy for 

the excitation of electrons at finite temperatures. By predicting the occupation 

of each level as a function of temperature, it was found that the range of levels 

deduced should be adequate for temperatures up to 2 eV or so. Above this level, it 

was predicted that appreciable numbersof electrons would be excited to near the 

top of the levels, so the finite number of levels would start to influence the result. 

However, in reality once a significant proportion of electrons become excited, the 

energy levels alter, so the whole treatment loses validity. 

The predicted density of levels exhibited a square root dependency, in agree-

ment with free electron theory- [40]. Compared with the free electron model, the 

energy scale is displaced by the binding energy of the electrons with respect to 

the ions, as represented by the pseudopotentials. For illustration, the densities of 

levels were modelled by a function of the form 

g(E) = 	- E0 ), 	 (33) 
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Figure .3.14. Phonon density of, states for aluminium deduced from atomic 
perturbation in the ab initio ground state calculation. 

where E0  and / were found by least squares fitting of the band structure calcula-

tions in (g2 , E) space (Table 3.7). Subtracting E0  so that the lowest energy level 

is zero as for free electrons, the Fermi energy at a = 4.0A becomes -'11.37eV, in 

reasonable agreement with the free electron value of 11.7eV [40]. (Fig. 3.15) 

As one would expect for a simple metal, the modified Sommerfeld model 

predicted electron-thermal energies which were close to the band structure cal-

culations. This result served as a check that the band structure calculation and 

associated software were performing correctly, and could be used with confidence. 

Table 3.7. Free electron fitting parameters for predicted density of electron 
energy levels in aluminium. 	 . 	 . 

a E0  
(A) (eV) (1/eV3I2.A3) 

4.0 -2.15 4.25 
3.8 -1.43 . 	 . 	5.90 
3.6 -0.70 8.13 
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Figure .3.15. Density of electron energy levels in aluminium :deduced from the 
band structure, over a range of values of the FCC lattice parameter. 
Vertical bars show the Fermi energy for each density of levels. Free electron fits to 
the band structure calculations are, also shown. (Note: the ragged shape reflects 
the relatively coarse resolution of k-points.).. 

for more complicated band structures. (Fig. 3.16.) . 

3.1.5 Equations of state 

An ab initio EUS for the FCC structure was generated by combining the frozen-

ion cold curve, the phonon modes and the electron-thermal energy as described 

above. 

The pressure offset  necessary to correct bring the ab initio EOS into agreement 

with the equilibrium density observed at 293.K was 3.4 GPa (3.3 GPa using linear,  

interpolation) Accordingly, an ab fere initio EUS was generated with the specific 

internal energy tilted by an amount corresponding to 3.4 GPa. 

Rigorously, the energy tilt should also manifest itself as a modification to the: 

force constants in the interatomic interaction, and hence to the phonon modes. 

The effect of this extra correction was evaluated by predicting the lattice-thermal 
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Figure 3.16. Electron-thermal energy predicted from band structure. 

energy with and without the correction by calculating the phonon modes using 

interatomic potentials fitted to the ab initio cold curve or to the adjusted cold 

curve. The difference was found to be negligible. 

3.1.6 Comparison with mechanical data 

The EOS were evaluated by comparison with mechanical data. 

Density at standard temperature and pressure 

The STP density of aluminium is observed to be 2.70 Mg/m3[40]. The ab initio 

EOS gave a density of 2.76 Mg/rn3: .'2% too large, or 0.7% too large in lat-

tice parameter. At 2.75 Mg/rn3, the ab fere initio EOS was in good agreement 

with the experimental value. One would • hope to see perfect agreement since 

this EOS was adjusted to improve the match; the agreement observed confirms 

that the adjustment was made correctly and reflects the uncertainties caused by 

interpolation and truncation errors. 

The accuracy .of the ab. initio EOS was in line with expectations from the use 
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of the local density approximation. 

293 K isotherm 

The 293. K isotherm was extracted from each EOS, using quadratic interpola-

tion between the ordinates. The isotherm was compared against diamond anvil 

measurements [71] (Fig. 3.17). 

The ab fere initio EOS was significantly closer to the data than was the ab 

initio EOS, particularly at lower pressures. The agreement became poorer at 

densities over "-4.5 Mg/m3. This may be a deficiency in the calculations, as the 

electrons are forced progressively into the core region as the density increases, 

making the pseudopotential model less accurate. It is also possible for systematic 

errors to occur in the diamond anvil results, as it becomes more difficult to ensure: 

an isotropic stress at higher pressures. . 
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Figure 3.17. 293 K isotherm for aluminium. 

Shock Hugoniot 

The shock Hugoniot for each EOS was predicted and compared with published 

data on aluminium alloy 1100 [72, 73], which is close to the pure element. 
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The Hugoniot was calculated in terms of the relations between shock speed 

u3  and particle speed u (Fig. 3.18), and pressure p and density p (Fig. 3.19). 

As with the 293 K isotherm, the ab, fere initio EOS was significantly closer 

to the data than was the ab initio EOS. The agreement became slightly poor- 

er at densities over 	Mg/rn3, first falling below the experimental data and 

then rising above. This behaviour is characteristic of an EOS which is too soft: 

eventually the thermal energy increases rapidly. Once the theoretical EOS be-

gins to depart from the experimental cold curve (or 293 K isotherm), Hugoniot 

temperatures predicted by the EOS are likely to be increasingly inaccurate. 

The bilinear interpolation scheme is the probable cause of the undulations 

which show up most clearly in the u3 - u relation. Linear interpolation should 

not cause a cumulative error at higher pressures, because Hugoniot states are. 

found from a root-finding process involving the EOS (see Appendix F). This is 

in contrast to the situation in finding isentropes, which require an integration 

of —p dv, and which therefore would accumulate a contribution from the use of 

linear interpolation. The EOS surface is convex (82p/ap2  > 0) for FCC Al, so 

linear interpolation is an approximation which always lies on or above p(p) and 

hence overestimates the integral of p with p or v. 
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Figure 3.18. Shock speed - particle speed relation for aluminium. 
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3.2 Silicon 

Various current research programmes are developing methods for measuring the 

changes in Bragg reflections of X-rays as a shock wave passes through a crystalline 

material, and hence inferring the mass density [74, 75]. Silicon is a convenient 

material, because large crystals are available relatively cheaply from the semicon-

ductor industry. In order to relate the density to the pressure, the EOS must be 

known. 

The objective was to calculate the EOS up to the relatively modest compres-

sions likely in experiments with shock states up to a few tens of GPa - a few 

tens of percent change in lattice parameter. The core overlap' problem discussed 

above should not occur in this regime. 

3.2.1 Diamond structure 

Cold curve 

CASTEP calculations were made on a single lattice cell of the diamond structure. 

Plane waves with energies up to 400eV were used in the basis set. Electron 

states were calculated at 1000 evenly-distributed points in reciprocal space. The 

cubic symmetry of the diamond structure means that only 35 of these points 

were unique, reducing the amount of calculation required. The Pulay stress, 

previously found to be negligible for aluminium (with a similar pseudopotential 

and a smaller plane wave cutoff), was ignored. 

Electron ground state calculations were performed for values of the cubic 

diamond lattice parameter a between 4 and 55 A, at intervals of 0.1 A. The result 

was a set of discrete points (p, e) on the cold curve (Fig. 3.20). These results 

have an unknown absolute energy offset which could be found by performing a 

calculation with a single isolated atom. The offset was not found in this initial 

study, as it has no effect on any aspect of the EOS in compression. 

Lattice-thermal contribution 

The lattice-thermal contribution el(p, T) was determined by deriving the quasi-

harmonic phonon modes for the lattice. Attempts were made to obtain radial 

pair potentials, but although it was found possible to optimise the parameters in 

a Morse potential to reproduce the cold curve, the resulting potential predicted 
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Figure 3.20. Calculated frozen-ion cold curve. 

many imaginary phonon frequencies for the diamond structure. In principle, this 
might indicate that an atomic structure is unstable with respect to certain dis-
placements of the atoms, and thus that the structure is not the equilibrium one. 
However, non-close-packed structures are stabilised by angular contributions to 
the interatomic potential. Radial pair potentials cannot model these contribu-
tions, and are therefore not suitable for non-close-packed structures. (An extreme 
example is the whole of organic chemistry, where molecules can be visualised as a 
set of atoms connected by localised, directional bonds.) Potential functions such 
as Stillinger - Weber and Tersoff potentials [101] are designed to model direc-
tional bonds. However, as was demonstrated above in the attempts to deduce ab 

initio interatomic potentials of aluminium, the problem of defining all the param-
eters in an multi-body or angular potential from calculations of isotropic stress 

is ill-defined. 
Rather than using empirical angular or n-body potentials for silicon, phonons 

were obtained from direct evaluation of the forces when an atom is perturbed 
from its equilibrium in the electron ground state calculations. 	. 

CASTEP calculations were performed with the atom at (0, 0, 0) displaced by 



CHAPTER 3. APPLICATION TO A SELECTION OF MATERIALS 	118 

a small amount in the x-direction. The calculations were otherwise the same as 

for the perfect diamond structure, except that for the 1000 points in reciprocal 

space, the reduced symmetry meant that 150 were unique. Calculations were 

performed at intervals of 0.5 A in the cubic lattice parameter a between 4.0 and 

5.5 A, and also at intervals of 0.1 A between 5.0 and 5.5 A. The force on the 

displaced atom was adjusted slightly so that the sum of the forces was zero to a 

high accuracy. (The sum of the 'raw' forces from CASTEP typically gave a small 

net residual force.) The force on atoms equidistant from the perturbed atom and 

its images was scaled by the number of equidistant perturbed atoms. The force 

on atoms closer to one of the perturbed images than to the perturbed atom at 

the origin was set to zero. (This procedure is described  in  more  detail in the 

previous chapter.) The symmetry operations were then used to fill in the rest of 

the stiffness matrix, as described in Section 2.3. 

Solving the phonon frequency eigenproblem for each k gave 24 frequencies w 

(three for each atom in the lattice cell). These were collected into regularly-spaced 

bins, giving an approximation to the density of states g(w) (Fig. 3.21). 
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Figure 3.21. Phonon densities of states (displacement of 0.01 a). 

It was found that - unlike the radial pair potential tried initially - the ground 
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state force calculations predicted phonon modes which were entirely real, except 

for a small proportion (about 3 to 4%) at the highest compression, a =4.0 A. 

These were long wavelength modes, signalling the onset of a static, instability of 

the diamond structure in favour of the BCT [78]. 

A table of el  values was calculated from each density of phonon states g(w) for 

0 <T < 10000K. 201 values of  were used, with intervals varying geometrically 

according to a 1% expansion factor: between: adjacent intervals. 

Above about 1000 K, e1  is very close to linear in T. The specific heat capacity 

is by then very close to the Du long and Petit value of 3kB  per atom [40]. 
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Figure 3.22. Variation of lattice-thermal energy with temperature (displacement 
by 0.01 a). 	: 

The variation of el(T) with v (Fig. 3.22) demonstrates the significance of the 

zero-point lattice energy, increasing with compression as the phonon frequencies 

increase. Also demonstrated is the greater temperature necessary for a given rise 

of el  over the zero-point value, as the Boltzmann occupation factor for a given 

mode at a given temperature decreases with increasing cv. To the compressions 

considered, the effect is significant well over 1000 K. 



CHAPTER 3. APPLICATION TO A SELECTION OF MATERIALS 	120 

Anharmonicity: effect of different displacements 

For each value of the lattice parameter a, forces were calculated for displacements 

of the atom at (0,0,0)by0.0011  0.01 and 0.02 of the side of the 2 x 2 x 2 supercell, 

in the x-direction. The stiffness a, defined in Section 2.3, was calculated for each: 

lattice parameter and displacement. The potential well was found to be slightly 

soft, i.e. the stiffness reduced slightly with displacement (Fig. 3.23). 
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Figure 3.23. Variation of the lattice force constant or stiffness with displace-
ment, for different values of the diamond cubic lattice parameter a. 

Using the stiffnesses for a displacement of 0.01 times the lattice parameter, 

the magnitude of the displacement was predicted as a function of temperature 

(Table 3.8). : These are overestimates where the heat capacity is less than the 

classical value, i.e. where the variation of el  with T is curved. The calculations 

indicate that displacements of the order used fall roughly in the same range as 

those anticipated at temperatures in the range of interest. 

The different stiffness matrices gave slightly different densities of states (Fig. 3.24, 

calculated with a relatively coarse set of wavevectors for illustration). The result-

ing variation of e1  with T was quite similar (Fig. 3.25). 

It should be noted that this approach provides at best an indication of the 
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Table 3.8. Estimated atomic displacements in A. 

a(A)  T(K) 
273 1000 10000 

5.5 0.049 0.093 0.294 
5.0 0.033 0.063 0.198 
4.5 0.024 0.045 0.143 
4.0 0.019 0.036 1 	0.113 

sensitivity to anharmonic effects. Rigorously, the variation of stiffness with dis-

placement should be treated as an interaction between quasiharmonic phonons, 

altering the effective frequency of each mode [38]. The population of each mode 

should still be found from Maxwell-Boltzmann statistics, because the modes are 

assumed to be in equilibrium with a heat bath of infinite capacity [2]. 

Interpolating densities of states 

To investigate the accuracy of the interpolation schemes and the resulting accu-

racy of the lattice-thermal energy, interpolations were made over two different 

intervals of lattice spacing and compared with the frequencies {w} from actual 

ground state calculations. The phonon frequencies calculated at a = 4.5 and 5.5 A 

were interpolated to compare the frequencies at a = 5.0 A. The density of states 

obtained by interpolating phonon modes over an interval of 1 A was a poor match 

to the rigorous calculation. This partly reflects the choice of interpolating func-

tion, but is mainly caused by mode incoherence on changing the lattice parameter. 

The latter effect explains the absence of low frequency modes (0 <w < 5 THz) in 

the interpolated density of states, even though the calculations at both ends had 

modes in this range. The infrequently-observed modes in this range have been 

averaged with modes from the more common higher frequencies. 

Similarly, the phonon frequencies calculated at a = 5.0 and 5.5 A, and at 5.2 

and 5.3 A were interpolated to compare the frequencies at a = 5.25 A. The density 

of states obtained by interpolating phonon modes over an interval of 0.5 A or less 

was in much better agreement with the rigorous calculation. 

Comparing the lattice-thermal energy even the poor density of states produced 

a curve which was almost indistinguishable from the rigorous calculation. This 

is evidence that the density of states or phonon dispersion relation are extremely 
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Figure 3.24. Sensitivity of the density of phonon states to the atomic displace-. 
ment. (a = 5.5A) 

sensitive tests of the lattice-thermal contribution to the EOS: the EOS appears: 

insensitive to surprisingly gross changes in the phonon density of states. Other 

aspects such as phase boundaries show a greater sensitivity. 

For the purposes of calculating an EOS, the linear interpolation scheme was 

used to predict approximate phonon frequencies for lattice spacings at intervals of 

0.1 A between the ground .state calculations, which were at intervals of 0.5 A for 

a < 5.0 A. This was deemed reasonable, as an accurate equation of state at higher 

pressures should take polymorphism into account anyway. Phonon interpolation 

was not used at the lower densities, as ground state force calculations were made 

for each point on the cold curve. 

Equations of state 

An ab initio EOS was produced with the lattice-thermal contribution deduced 

from atom displacements of 0.01 a. The equilibrium (p = 0) density was pre-

dicted to be 2.426 Mg/m' at 0 K and 2.422 Mg/m' at 293 K. These densities were 

deduced: using quadratic interpolation between the table ordinates. Using linear 
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Figure 3.25. Variation of lattice-thermal energy with temperature for: different. 
displacements. (a = 55A) 

interpolation, the densities were 2.424 Mg/m' at 0 K and 2.419 Mg/m' at 293 K.: 

(The density:  of condensed matter at 1 atmosphere is practically identical to : that 

at zero pressure.) 

The sensitivity to the magnitude of the atom displacement was investigated 

by repeating the procedure with the lattice-thermal data generated with displace-

ments of 0.001 a.: The predicted values of equilibrium density were 2.424 Mg/m3: 

at OK and 2.421 Mg/m' at 293 K, using quadratic interpolation. . 

The observed density of silicon at ambient temperatures is 2.33 Mg/m3  [40], 

so the ab irtitio densities were just under 4% too large. This is similar to the 

accuracy obtained for aluminium, and has been attributed to deficiencies in the 

use of the LDA for the electron ground state.  

The pressure at the expected equilibrium density was -3.7 GPa using quadratic 

interpolation and -3.6 GPa using linear interpolation. Using interpolated phonon 

modes instead of using the rigorous force calculations between 5.0 and 5.5 A, these 

pressures were -3.4 and -3.3 GPa respectively. This demonstrates further that the 

EOS is relatively,  insensitive to variations in the detail of the density of phonon 
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states. 

The pressure offset necessary to correct bring the ab initio EOS into agreement 

with the equilibrium density observed at 293 K was 3.7 GPa (3.6 GPa using linear 

interpolation). Accordingly, an ab fere initio EOS was generated with the spe-

cific internal energy tilted by an amount corresponding to 3.7 GPa. The normal 

density then agreed with the desired value to better than 0.1%. 

The physical models which were used resulted in a plausible-looking EOS 

for silicon in the diamond structure. The number of ground state calculations 

performed meant that the coverage in the range 0 to 20 GPa or so was relatively 

sparse, so the detailed representation of the regime where the diamond structure 

is known to exist is rather crude. 

The correction which had to be applied to the ab initio EOS was significant 

in comparison with this pressure range. The zero-point energy of the lattice was 

about half as large - an important addition, and evidence of the importance of a 

quantum-mechanical treatment of the lattice-thermal energy. The predicted dif-

ference between the isotherms at 0 and 273 K was comparatively small. Similarly, 

the difference between the shock Hugoniot and the isotherm passing through the 

initial state was predicted to be quite small up to 10 GPa or so. However, the 

Hugoniot was calculated to diverge significantly from the isotherm above a few 

tens of GPa. (Figs 3.26 and 3.27.) 

3.2.2 Body-centred tetragonal structure 

The body-centred tetragonal (13-Sn) structure can be obtained from the diamond 

by compressing along one of the coordinate directions. It has been observed in 

diamond anvil experiments, and predicted by LMTO and pseudopotential calcu-

lation to be energetically favourable under compression at T = 0 [78]. At low 

temperatures, the Imma phase is predicted to be more stable than BCT. 

CASTEP calculations were performed with plane waves up to 300 eV and 1000 

k-points (75 unique under symmetry operations). Calculations were performed 

with a cutoff of 400 eV at the extremes of lattice parameter used in order to 

estimate the significance of this difference, i.e. the importance of more localised 

states. The difference in energy and stress was found to be quite small, suggesting 

that 300 eV was an adequate cutoff to use with this pseudopotential to obtain 

results that were converged over plane waves. 
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Figure 3.26. Comparison between frozen-ion cold curves, .isotherms and Hugo-. 
niot for silicon in the diamond structure. 

Eliminating the internal degree of freedom 

The equation of state desired in  this work is that relating pressure to density. 

The BCT structure has an, internal degree of freedom - the c/a. ratio. For a given 

density, there is likely to be a single value of c/a which gives an isotropic stress. 

This value cannot be predicted a priori, so it is necessary to find it in some way. 

Ideally, a ground state calculation would be performed at the desired c/a ratio 

for each density. In practice, calculations are performed for a range of c/a ratios 

close to the desired value, according to various possible schemes described below. 

These may include a calculation which is sufficiently close to the desired state to 

be used directly, but in practice the robust (simplistic) procedures used over most 

of the density range tended to bracket states of isotropic stress in an interval over 

which the variations in energy, stress and/or lattice parameters were significant. 

The preferred method was to determine the ground state energy and stress 

over a sufficient range of values of c/a that the value giving an isotropic stress 

could be found by interpolation. The energy corresponding to the same interpo-

lated point can then be obtained easily. 
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Figure 3.27. Comparison between frozen-ion cold curves, isotherms and Hugo-, 
niot for silicon in the diamond .structure (detail near p = 0). 

An alternative method can be used if the result need not be so accurate, e.g. 
in regions of, the state which the material is not . expected to reach, for instance 
if it is known that a different state has a lower free energy. The method assumes 
that the elastic constants are all equal (or that the relation between them is 
known). In this case, a series of ground states of non-isotropic stress (e.g. with 
any internal degrees of freedom held constant) can be corrected to predict the 
isotropic states by estimating the strain necessary to relieve the stress deviator, 

estimating the elastic constants from the bulk modulus. 
If a series of calculations was performed over a range of density with the 

internal degrees of freedom held constant, it is straightforward to estimate the 
variation of bulk modulus, with density from the pressure - volume or energy -, 
volume relation. The method then works as follows: 

1. Calculate the ground state energy e and stress o for each of a set of lattice 

parameters related to density p according to some simple prescription for 
the internal degrees of freedom, e.g. hold them constant. 
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Calculate the mean pressure 

	

= —Tro/3 	 (3.4) 

and stress deviator 

	

S = cr+jöl. 	 (3.5) 

Estimate the bulk modulus at each density: 

B = —v
ap  
	 (3.6) 

using smooth functions to interpolate between the set of ground states. 

Estimate the elastic constants c from the bulk modulus, using any knowl-

edge available about their relative magnitudes, e.g. 

	

B13[c] 	 (3.7) 

where the 3 are constants of proportionality for the elastic constants c. 

The assumption about the relative magnitudes might be expressed as a 

constraint that the ai [cli  are constant for some a. If several states were 

obtained at or near the same density, with different values of the free pa-

rameters, then the elastic constants can be determined. quite rigorously. 

Predict the elastic strain required to relieve the stress deviator, e.g. assum-

ing small independent displacements: 

[€] = —[s]/{c]. 	 (3.8) 

Apply the strain c, predicting the density, pressure and energy at the new 

state. 

This method was tried out as a way of correcting a series of calculations of 

constant c/a performed at lower densities than were likely to be required (where 

the diamond structure was predicted to be the equilibrium phase) in order to 

extend the range of the equation of state for the BCT phase without requiring 

much computation. 
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The more general method of deducing elastic constants from stress - strain 

calculations is to use the relation 

[cJj - — 	, 	 (3.9) 
Aci  

where now the elastic constants form a tensor of rank 2 [76, 77]. 

Calculations with constant c/a 

An initial set of calculations was made, varying a for several values of a constant 

c/a ratio. The results demonstrated that the c/a ratio is quite sensitive to a. 

Coincidentally, a single state of roughly isotropic stress was obtained from one of 

the calculations. 

At larger volumes, the states with c/a = 3/4 had the lowest energies. These 

states were used to estimate the ground state with isotropic stress, using the pro-

cedure described above and assuming (unrealistically) that the isotropic elastic 

constants are equal (ai = 1: i E 111, 22,331) and that the second Lamé constant 

/1 = 0. Then B = c : i E 111, 22, 33} [76]. The bulk modulus was estimated from 

the variation of mean pressure with density using piecewise quadratic interpo-

lation. Linear and cubic interpolation produced similar results. The final point 

(a =5.0 A) was over-sensitive to the interpolation scheme, and was disregarded. 

(Fig. 3.28.) 

Box-moving calculations for constant hydrostatic pressure 

A box-moving algorithm was used at lower pressures to obtain c(a) for an isotrop-

ic applied stress. This method assigns an effective mass to the lattice parameters, 

and allows the lattice cell to deform dynamically under the action of the net force 

(difference between applied stress and ground state stress at the instantaneous 

configuration) and a damping term. As well as being an efficient labour-saving de-

vice, this algorithm can converge arbitrarily close to states of the desired isotropic 

stress. 

The algorithm was found to be unreliable at higher pressures - the optimisa-

tion procedure is a tradeoff between minimising the energy for a given structure, 

and reducing the energy by altering the structure. At higher pressures the algo-

rithm tended to allow the structure to change too rapidly, resulting in unstable 

oscillations in a and c between successive iterations. Altering the box-moving 
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Figure 3.28. Cold curves for BCT Si, with a constant c/a ratio. 

timestep, damping factor and effective mass did not provide a realistic solution - 

a lengthy series of these rather time-consuming calculations appeared necessary 

to find suitable values for these pseudo-physical parameters. It was found more 

efficient to simply perform a series of static box calculations covering the expected 

range of c for a given a. 

Exploring discrete (a, c) states 

The most reliable method used to eliminate the internal degree of freedom was 

simply to hold a constant and perform a series of calculations with different 

values of c, until the structure of isotropic stress was bracketed or determined to 

a suitable accuracy. 

Bracketing was used in most cases. The value of c for which the stresses were 

isotropic was estimated by linear and quadratic interpolation. Linear interpola-

tion was found to give the same result as quadratic (to —'0.01% in pressure) so. 

long as the values of c chosen bracketed the case of isotropic stress to within a 

few %. 

There was a little difference between the ground state energies obtained with 
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a cutoff of 400 eV compared with 300 eV, though very small in comparison with 

the range of the data. The difference in stress was also small. The difference 

in ground state energies between calculations with different values for the cutoff 

was roughly constant with compression, suggesting that the difference in wave-

functions occurred close to the atomic nuclei in low-energy states that were not 

affected significantly by changes in the interatomic spacing. As one would expect, 

the ground state energy was slightly lower with a larger cutoff. 

Summary of equilibrium states 

Combining the equilibrium states predicted by the various methods described 

above, the resulting energy - volume curve appears reasonably smooth (Fig. 3.29). 

This indicates that energies calculated using the different methods are consistent 

with one another. 

The variation of c/a with v is much more sensitive to the method of calculation 

(Fig. 3.30) and looks less smooth. Around the energy minimum, the elastic 

constants for the BCT structure are quite small and may have different signs. 

The uncertainty in c/a reflects the sloppiness of the structure in this regime. 

Stress and energy derivatives 

The equation of state based on these ground state calculations requires the pres-

sure to be calculated. At T = 0, this can be either p as determined from the 

stress or —dc/dy. Both methods are equivalent in principle, but are expected to 

be the same to some finite accuracy in numerical work. 

To investigate the accuracy, the stress o calculated by the alternative methods 

described above was compared with estimates of de/dv. To obtain dc/dy, groups 

of adjacent (v, e) ground state points were fitted with polynomials, 

e 	P" (V). 	 (3.10) 

These piecewise continuous fits were then differentiated to give dc/dy. 

Linear fits systematically over-predicted de/dv at smaller volumes, compared 

with smoother functional forms. This is what one would expect for a bulk mod-

ulus which increases monotonically with pressure. Nearer the energy minimum, 

the linear fits exhibited significant oscillations to either side of o. These may 

be connected with the way the results from different methods of calculating the 
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Figure 3.29. Summary of Si BCT ground state energies. 
(Slightly different methods were used to find the equilibrium c/a ratio in different 
compression regimes; this graph summarises the results from all the methods.) 

ground state were combined. The result from linear fits was sensitive to the num 

ber of points included in the fit (2, 3 or 4). The derivatives from quadratic and 

cubic fits were much closer to o, and were less sensitive to the number of points 

included in each group. At high volumes, the results from all the polynomial 

fits fell below o. This demonstrates the finite accuracy of the procedure used to. 

remove the residual components of the stress deviator. (Fig. 3.31.) 

It can be concluded that quadratic or cubic polynomials are an accurate way 

of calculating the pressure from the:  energy in constructing the:  equation of state; 

Linear fits should be avoided for the Si BCT table as they generally under-predict 

the pressure and exhibit some unphysical oscillations in the Si BCT cold curve. 

The ground state calculations are close enough together in v to enable polynomial 

fits to be used with reasonable accuracy. 

These results also indicate that the CASTEP calculation of stress is consistent: 

• 	with the ground state:  energies. 	• 	: 	• 	: 
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Figure 3.30. Predicted variation of c/a with specific volume v for BCT Si. 

Grflneisen model of the lattice-thermal contribution 

The BCT structure has a lower symmetry than cubic, and required a large com-

putational effort to predict the phonons. The lattice-thermal contribution was 

also estimated by a Griineisen model, in order to investigate the accuracy with 

which a phase boundary might be predicted without accurate phonons. 

A couple of variants of the basic BCT equation were tried, in order to inves-

tigate the sensitivity to the thermal model and the correction previously used 

to improve the accuracy of a single-phase equation of state. The parameter var-

ied was the effective number of degrees of freedom in the atomic motion. If all 

vibrational and translational degrees of freedom are excited then the lattice con-

tribution to the specific heat capacity would be 3 kB (6 degrees of freedom) per 

atom. This is the maximum possible value, and may be reduced if phonon modes 

are 
I
quenched at temperatures which are too low to cause excitations. In order to 

investigate the sensitivity to this effect, EOS were generated for the BCT phase; 

with 6 and 3 degrees of freedom. 
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Figure 3.31. de/dv for BCT Si from o and polynomial fits to e(v). 

Ab initio phonons 

Ab initio phonons were calculated by estimating the stiffness of the lattice by 

performing electron ground state calculations with atoms displaced from their 

equilibrium positions, as described in Sections 2.3 and 2.6. To obtain the BCT 

forces, two atoms were displaced in turn, parallel with each of the lattice vectors. 

The BCT calculations required far more computer time than the diamond, so 

the lattice-thermal contribution was generated from restoring forces obtained at 

only three densities. The density of phonon states was estimated at intermediate 

densities by interpolating the frequency of each phonon using a Griineisen-like 

variation [40], 	 . 	 . 

W 0C p'13. 	 . 	 (3.11) 

Equations of state 

EOS were generated by combining the cold curve at isotropic stress with the 

electron-thermal energy and the atom-thermal energy, as described in Section 2.6. 

A separate EOS was generated for each of the Griineisen variants and for the ab 

initio phonons. The same energy tilt was applied to the ab initio EOS as was 

133 

0.9 
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applied for the diamond structure, giving a consistent ab fere initio EOS across 

the two phases. 

3.2.3 Diamond/BCT equation of state 

The diamond and BCT EOS were analysed to predict the equilibrium phase 

diagram, as described in Section 2.6. The ab initio EOS with no adjustment to 

match the STP density was not considered. 

The ab fere initio EOS over-predicted the pressure of the diamond/BCT tran-

sition at low temperatures, compared with previous estimates [78]. In order to 

allow a more meaningful comparison with experiment, a modified version of the 

quasiharmonic EOS was generated with an additional energy offset in the BCT 

phase to bring the transition pressure into better agreement. 

Phase diagram 

The phase diagram of silicon has been investigated previously by static press 

experiments, shock wave studies and various calculational schemes [78]. The 

uncertainty in the data is 	GPa, reflecting hysteresis in the experimental results 

(transition pressure on release compared with compression) and variation between 

different calculational techniques. 

With a constant lattice specific heat capacity of 3kB  per atom (6 degrees of 

freedom) in the BCT phase, the diamond/BCT boundary was significantly steeper 

than the accepted result and tilted the opposite way with increasing temperature. 

Using a Grfineisen equation of state with a lattice specific heat capacity of 1.5kB 

per atom (3 degrees of freedom), the slope of phase boundary moved towards the 

accepted value, though the tilt was still in the opposite sense. The transition 

pressure at T = 0 appeared to be greater than the expected value in all cases. 

The slope obtained with quasiharmonic phonons was significantly more accurate, 

and the additional energy offset applied to the BCT EOS brought the ab fere 

initio EOS into closer agreement. The effect of including the electron-thermal 

contribution was almost negligible. (Fig. 3.32.) 

Shock Hugoniot 

The shock Hugoniot was calculated for each equation of state. The calculat-

ed Hugoniot curves were compared with published experimental data for single 
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Figure 3.32. Predicted diamond/BCT phase boundaries compared with accept-
ed results for silicon. 
All lines are diamond/BCT phase boundaries, except for the additional steeper 
lines showing the.diamond./liquid and BCT/liquid phase boundaries from Young 
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crystals of silicon [79]. 

For. the Griineisen EOS, the variations in the lattice heat capacity had little 

effect. The equilibrium equations of state based on the Griineisen models of 

the BCT lattice-thermal energy matched the data quite well at pressures up to 

-400 GPa. The ab fere initio EOS matched the experimental data equally well, 

but the ab fere initio EOS for which the BCT part was adjusted to match the 

phase diagram more accurately was found to match the Hugoniot data slightly 

less accurately. This discrepancy suggests that there might be some uncertainty 

in either the phase boundary data or the Hugoniot data. (Fig. 3.33.) 

The deviation of the theoretical equations of state above —100 GPa could 

be caused by another phase transition. Silicon is reported to change to the 

FCC structure in this region [78]. (In fact, silicon has other phase changes at 

intermediate pressures, but these have similar densities and compressibilities to 

the BCT structure.) At -80 GPa, the compression is great enough for doubts 
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Figure 3.33. Hugoniot curves (pressure - density plane) compared with exper-
imental data. 

to be raised about the pseudopotential treatment used; it is possible that outer,  

electrons would be forced into the core region at compressions of this order. 
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3.3 Beryllium 

Calculations were performed of beryllium in the HCP (STP [40]), BCC and FCC 

phases. HCP and BCC are observed experimentally to be the equilibrium phases 

below melt, up to at least 6 GPa [78]. Ab initio studies have been performed 

previously at a higher pressure range [80]. 

The simulations used CASTEP V5.1.2. The pseudopotential was an ab initio 

form defined in reciprocal space, modelling the inner 2 electrons. In all cases, the 

code was allowed to perform 45 iterations towards a converged ground state. The 

convergence history of the ground state energy was checked; after this number of 

iterations it barely altered between iterations. 

3.3.1 HCP 

At STP, Be has the HCP structure, with c/a = 1.567 and a = 2.29 A [40], or 

c/a = 1.56 [78]. The atomic mass of Be is 9.012180 amu. 

The HCP structure can be described in several ways, choosing the a and b 

directions 60° or 120° apart in a 2-atom lattice cell, or defining an orthorhombic 

cell containing 4 atoms (see Appendix B). 

Example calculations were performed using each description in order to in-

vestigate the sensitivity of the ground states deduced to the model. This largely 

tests the stability of the computer program, but also provides an indication of the 

importance of finite size effects in that the orthorhombic cell can contain electron 

modes of longer wavelength. 

The K290 symmetry program did not recognise the full symmetry of the 

hexagonal lattice, so the CASTEP calculations were performed with more free-

dom than the desired structure warranted. A perfect calculation should produce 

the same result when assuming lower symmetry, but unnecessary work is done 

in calculating duplicated data. The orthorhombic model also includes an extra 

degree of freedom, since a and b are specified separately. 

The models were found to give the same variation of energy with density, 

though with a slightly different absolute offset. The components of stress in the 

x and y directions were quite close for the orthorhombic model, but significantly 

less so for the hexagonal. For this reason, the orthorhombic model was used as 

standard for generating the EOS. 

Ground states were calculated using the orthorhombic model for a constant 
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c/a ratio of 1.567. 10 x 10 x 10 k-points were used, with a plane wave cutoff of 

750 eV. The stresses deduced were not isotropic, indicating that the c/a ratio for 

compression at isotropic stress is not constant (Fig. 3.34). The stresses in the x 

and y directions were very similar, indicating that the orthorhombic calculation 

reproduced the hexagonal symmetry to an acceptable accuracy. 

a(#) 

Figure 3.34. Predicted stresses on the cold curve for HCP Be with c/a = 1.567. 

For each of a representative set of values of a, the ground state stress was 

calculated as c was varied. In this way, the variation of c with a for isotropic 

stress was estimated (Fig. 3.35). The calculated variation was in good agreement 

with the observed c/a ratio. The c/a ratio was predicted to reach the ideal value 

(1.63 [40]) under compression. Although the difference in ground state energy 

with a was significant (Fig. 3.36), the variation of ground state energy with mass 

density was much smaller (Fig. 3.37). This suggests that it may not be necessary 

to find the state of isotropic stress in order to calculate the frozen-ion cold curve. 

Electron band structure 

The electron band structure was estimated by collecting the band energies cal-

culated .using CASTEP at each weighted k point, as described in Sections 2.4 
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Figure 3.35. Predicted variation of c/a with a for HCP Be.: 

and 2.6. The density of levels exhibited two distinct peaks, quite unlike the free 

electron-like structure for aluminium (Fig. 3.38). This result is consistent with 

previous predictions using explicit orbitals [81], though with a lower resolution. 

The Fermi energy fell close to the minimum between the peaks. The chemi-

cal potential and electron-thermal energy should thus have a more complicated 

dependence on temperature than for a simple metal. 

The band structure at each density was used to predict the chemical potential 

and, hence the electron-thermal energy (Figs 3.39 and 3.40). 

Phonon modes 

Ab initio phonon modes were deduced by displacing the atom at 0,0,0 and using 

the restoring forces predicted from the ground states in CASTEP, as described 

in Sections. 2.3 and 2.6.  

It was sufficient to calculate forces from two perturbations: the x-direction 

and the z-direction. Atoms in the same x - y plane are related to each other by 

translational symmetry. Adjacent atoms in different x - y planes are related by 

translation and inversion. : 	 . 
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Figure 3.36. Predicted variation of ground state energy with a for HCP Be. 

With a varying c/a ratio, the lattice no longer has rotational symmetry about 

the (111) direction through latticepoints, but it still has 3-fold symmetry about 

the (0011) direction through any atom. The 3-fold symmetry can be used to 

convert forces for a perturbation in the x-direction (parallel with the 'tTZ lattice 

vector) to a perturbation parallel to the 9 lattice vector. Here, a orthorhombic 

lattice cell was used, for which the x perturbation cannot be mapped directly 

into the :ydirection  by symmetry. However, the effect  of a perturbation in the y-

direction can be calculated quite accurately by assuming that the restoring forces 

f from a sum of displacement vectors Wi is the same as the sum of the forces 

from each separate displacement: 

JF)
(3.12)  

This is the same as taking the first term in a Taylor expansion for with respect to 

each JFj, and is true for small 	- which is also the condition for quasiharmonic 

phonons. Then, if we calculate f(8) = f(S) (the forces from a displacement 

in the x or iZ direction) and, by symmetry, f() (the forces from a displacement 
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Figure. 3.37. Predicted variation of ground state energy with mass density for 
HCP Be. 

in the 6direction), then we can calculate f(6) from 

	

f(8) a,, f 	+ a, f 	FV = a 	+ c. 	(3.13) 

Choosing TY I = IFul= 	we find that ct,, = —11V3_ and c = 2//. 

3.3.2 BCC 	. 

Under compression and heating, Be changes to the body-centred cubic (BCC) 

phase [78]. Predictions were made of the frozen-ion cold curve, representing the 

BCC structure by a cubic lattice cell with atoms at 0,0,0 and  1/2,1/2,1/2. The 

range of: the lattice parameter a was chosen .to cover the density at STP 

The cold curve was calculated, with 5 x 5 x 5 or 10 x 10 x 10 k-points over 

the Brillouin zone and a plane wave cutoff of 500 or 750 eV, according to the 

procedure described in Section 2.6.. The .results were very similar at specific 

volumes less :than about 0.6 A./amu, but varied significantly at greater volumes. 

The energies obtained with 5 x 5 x 5 k-points exhibited undulations around the: 
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equilibrium volume. The undulations were reduced by including the Pulay stress. 

Interestingly, the stress predictions did not show such a pronounced variation. 

(Figs 3.41 and 3.42.) 

Electron band structure 

The electron band structure was estimated by collecting the band energies calcu-

lated using CASTEP at each weighted k point as described in Sections 2.4 and 

2.6. As for the HCP structure, the density of levels exhibited two distinct peak-

s. The Fermi energy fell close  to the minimum between the peaks. (Fig. 3.43). 

The band structure at each density was used to predict the chemical potential 

(Fig. 3.44) and hence the electron-thermal energy (Figs 345 and 3.46). 

Phonon modes 

Ab initio phonon modes were deduced by displacing the atom at 0,0,0 and using 

the restoring forces predicted from the ground states in CASTEP, as described 
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Figure 3.39. Electron-thermal energy from band structure for HCP Be. 

in Sections 2.3 and 2.6. 
It was sufficient to calculate forces from a single perturbation in the x-direction 

Atoms at 0, 0,0 and, ., are related to each other by translational symmetry. 

3.3.3 FCC 

The frozen-ion cold curve for the FCC structure was calculated in order to verify, 
that the code and pseudopotential reproduced the experimental observation that 

FCC is not the stable structure. These calculations used a plane wave cutoff of 
750 eV, and 10 x:10 x 10 points in k-space, and were performed according to the 
method described in Section 2.6. 

3.3.4 Equilibrium phase diagram 

Considering the frozen-ion cold curves, the first principles calculations predicted 
that HCP is the stable structure around p = 0 (minimum in the energy curves), in 
agreement with observations. The curves became very close under compression, 

and suggest that BCC and then FCC may become stable at a few hundred GPa. 
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Figure 3.40. Electron-thermal energy from band structure for HCP Be. 

(Fig. 3.47.) 

Using the thermodynamically complete EOS for the HCP and BCC phases, 

the classical phase boundary was predicted. This was in reasonable agreemen-

t with results from other,  workers [78]. The phase boundary was found to be 

extremely sensitive to all contributions to the EOS. Great care was required in 

order to generate a phase boundary that agreed to this accuracy. In particular, 

the phonons had to be calculated from forces over a finely-spaced density mesh, 

in comparison with the mesh that had been found necessary in order to predict 

reasonably accurate shock Hugoniots. Electron-thermal effects made a negligible 

contribution to the phase boundary. (Fig. 3.48.) 

3.3.5 Density at STP 

The ab initio EOS predicted an STP density of 1.682 Mg/rn3, compared with 

—p1.84 Mg/m' from experiment [40, 78]. The density for p  =1 atm at :T = 0 K: 

was --'1.69 to 1.70 Mg/rn3, using linear and quadratic interpolation respectively - 

about 8% higher than the observed value. 

For 273 K at 11'1.84 Mg/m3, the ab initio EOS gave a pressure --'5.58 GPa using 
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Figure 3.41. Sensitivity of ground state energy to plane wave cutoff and k-point 
density for BCC Be. 

linear interpolation, or 5.24 GPa using quadratic interpolation. An ab fere initio 

EOS was generated by tilting the specific internal energy, by this pressure. The 

STP density was then 1.847 Mg/rn3, and the density at 0 K became 1.853 Mg/m'. 

3.3.6 Shock Hugoniot 

The shock Hugoniot was predicted using the ab initio and ab fere initio EUS. 

The HCP/BCC transition made no significant difference to the shock Hugoniot 

in the range of pressures considered. 

The 'hydrodynamic shock Hugoniot was in poorer agreement with the experi-

mental data. [72] than for aluminium or silicon. This was probably because beryl-

lium has a relatively high shear modulus -. 150 GPa, compared with -27 GPa 

for aluminium [70]. The longitudinal sound speed CL in an elastic material is 

given by  

	

PC 
2 = K + 	, 	(3.14) 

where K is the bulk modulus and i the shear modulus [76]. The effect of shear, 
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Figure 3.42. Predicted stresses orithe cold curve for: BCC Be. 

modulus on the shock Hugoniot was estimated by including its contribution, s-

caled by 1 - p/Y where p is the hydrodynamic pressure on the Hugoniot and Y 

the yield stress. The: resulting Hugoniot was significantly closer to the experi-

mental data. The predicted Hugoniots exhibited slight undulations; these were 

caused by the relatively coarse tabulation in mass density. (Figs 3.49 and 3 50) 
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Figure 3.43. Density of electron energy levels calculated for BCC Be. Vertical 
bars show the Fermi energy for each density of levels. 
(Note: the ragged shape reflects the relatively coarse resolution of k-points.) 
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Figure 3.46. Electron-thermal energy from band structure for BCC Be. 
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4.1 1D hydrocode 

To demonstrate the application of the EOS tables, and to investigate the effect 
of complicated EOS surfaces on hydrodynamic waves, a 1D continuum mechanics 
program [82, 83] (often known as a hydrocode') was written to simulate the time 

evolution of a multi-material system. A library of material properties functions 
was written, allowing the EOS tables to be used in the hydrocode. 

4.1.1 Continuum equations 

Consider the mechanical response of a material in the continuum approximation. 
Conservation of mass, momentum and energy are expressed by the following 
relations: 

op 

	

+div(pü) = 0 	 (4.1) 

Opu 

	

——+grad(pu2 +p) = 0 	 (4.2) 

	

+div(eZ)+diviZ = 0, 	 (4.3) 
P 

where the mass density p, material velocity il, pressure p and specific internal 

energy e are functions of position F and time i. These are a version of the 
Euler equations [82, 83, 84] describing the motion of material under the action 
of hydrodynamic forces and in the absence of thermal conduction. The stress - 
strain and conduction contributions are straightforward to add, but are outwith 
the scope of the present work. 

The continuum equations are closed using the equation of mechanical state 

p(p, e). They form a hyperbolic initial value problem: given the fields p(r), e() 

and i() at some time to, the variation with time can be found over some region 
{r'} E R. given the variation of ü or p on the boundary 87,N,  where N is the 

number of spatial dimensions considered. In the absence of stress terms (and 
other physical processes such as chemical reactions), the Euler equations have 
characteristics [85] moving at it - corresponding to the local flow - and iZ + ci' 

- a cone of characteristics corresponding to signals travelling at the local sound 
speed in all directions (values of the unit vector i). 

In many cases, and certainly when developing new material models, it is 

convenient to solve the continuum equations in a coordinate system which moves 
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with the material. This (Lagrangian) formulation makes it easier to add models 

of physical processes and associated spatial fields, without having to include in 

the continuum equations contributions from spatial variations in the fields when 

material is not stationary [82, 84]. The Lagrangian formulation of the continuum 

equations is 

Dp 

	

--+pdivu = 0 	 (4.4) 
Dt 

	

p 
Dit  
--+ grad p = 0 	 (4.5) 
Dt 
De 

	

+ pdivi7 = 0, 	 (4.6) 
Dt 

where D/Dt is the Lagrangian derivative operator, 

D ô. 

	

+ u.grad. 	 (4.7) 

The Lagrangian derivative is the time derivative in the frame moving locally with 

the material, i.e. following the characteristics which travels at U1. 

4.1.2 Discrete representation 

The continuum equations were represented in discrete form using a staggered 

mesh [83, 84]. The spatial domain was divided into finite cells, each defined by a 

set of nodes on its boundary. Values of the position F and material speed iZ are 

carried on the nodes; values of the mass density p and specific internal energy e 

are carried in the cells. (A material type is also defined for each cell, for multi-

material problems. A separate equation of state is defined for each material type.) 

(Fig. 4.1.) 

The staggered mesh formulation is convenient in allowing mass and energy to 

be conserved exactly. Since the spatial domain in split into cells with well-defined 

boundaries, and the mass and energy are defined at the cell centres, then it is 

possible to ensure that the products of density and volume, and of specific energy, 

density and volume, are kept constant in the numerical integration. 

In the Lagrangian staggered mesh formulation, the continuum equations be-

come 

= 	—  pdiv{ U-j } 	 (4.8) 
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nodes (position, velocity defined here) 

cell centres (material type, density, energy 
etc defined here) 

Figure 4.1. Staggered. mesh scheme for defining continuum fields. 

du = —4-grad{pi} 	 (4.9) 
t 	p3 
e2 	I 

=  --pdiv{u_ } 	. 	 (4.10) 

dr- (4.11): 
dt 

where the index iruns over the cells and j over the nodes. fij is the mass density 

associated with node j, calculated as the volume-weighted average density in all 

cells containing the node. The differential operators return the divergence, of a 

nodal field at the centre of the cell defined by the nodes, and the gradient of a 

cell-centred field at the node associated with the cells. 

4.1.3 Numerical integration  

The continuum equations were integrated using a predictor-corrector scheme [83]. 

An overall second order update over a time interval St is obtained from a first: 

order forward-time prediction over St/2 followed by a leapfrog step over the full 

St: 

it : 	J(t + St/2) = f(t) + 	J[f(t)] 	 • 	(4.12) 

f(t + St) =' f(t) + Stf[f(t + St/2)] . 	. 	(4.13) 

where f is the set of field variables, f their first order estimates, and f the La-

grangian derivatives calculated using the field values at the appropriate time 

level. 	• 	: 	• 	. 	 : 	• 

If a simulation includes processes which take place on different time, scales, it, 
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can be more efficient to integrate the different sets of equations separately, the 

parameters in each set taken as constant while the other set is updated. For 

example, it might be possible to split the state parameters ir into a collection of 

subsets {7r}. To integrate the state from known conditions at a time t over a 

time interval St, the rate equations 

*(t) = C(ir(t)) 	 (4.14) 

are split in the same way, so 

= 	 (4.15) 

where Frj and I signify that the rj  may have been updated already, before the 7r, 

and hence may refer to a different (constant) time between t and t -- 8t. Each set 

of parameters ri  can be updated using whatever numerical scheme is appropriate. 

This approach, known as operator-splitting, makes it simple to model pro-

cesses with different time scales in the same simulation. There are drawbacks, 

since the integration may not be as accurate as if the variation of all rj  during 

the time interval were taken into account when integrating the ir. Thus, sim-

ulations using operator-splitting may be more sensitive to mesh resolution than 

fully time-accurate simulations. 

Consider a continuum model with a mixture of materials, each of which has a 

state defined by its density and specific internal energy (pd, e) (with corresponding 

equations of state for p, T etc) and a volume fraction f. With operator-splitting, 

the hydrodynamic equations are solved for constant f(), and phase change rates, 

mechanical and thermal equilibration and the changes to any other internal state 

parameters (e.g. defect concentrations) applied separately to adjust the state at 

each position . 

There are many possible ways of applying operator-splitting to the different 

processes. For instance, the phase change could be integrated over the whole time 

step St, and then equilibration applied over the whole time step. Alternatively, 

the phase change process could be split into substeps St' = 8t/N for some N, and 

equilibration applied over each substep M. 



CHAPTER 4. USE IN HYDRODYNAMIC SIMULATIONS 	 158 

4.1.4 Treatment of shock waves 

The numerical scheme described above is fairly standard for continuum mechan-

ics, and is unstable to the build up of shock waves. As is also standard, an 

artificial viscosity was used to stabilise the scheme for the calculation of shock 

waves [83, 85]. In the continuum representation, shock waves are spatial disconti-

nuities in the state. The artificial viscosity spreads a shock wave over a few cells. 

In the energy update, the pressure pi in each cell is replaced by 

pi + qi 	 (4.16) 

where q is a pseudo-viscous pressure calculated from the divergence of material 

velocity: 

q = a2 pdu2  + I3pcdu 	 (4.17) 

where 

du jmin(drdivu,O), 	 (4.18) 

dr is a scale length associated with each cell and a and /9 are global parameters. 

It can be seen that q is nonzero only during compression. The values of a and 

/9 are essentially free; 'standard' values are common for different applications, 

depending (among other considerations) on the amount of shock smearing which 

can be tolerated. 

4.1.5 Time step constraints 

The predictor-corrector is an explicit scheme, so the allowed values of the time 

step St are constrained in order to remain stable. The time step constraints are 

8t 	< dr/c.j (Courant condition) 	 (4.19) 

Stdi < 1/div{iZ2} (divergence condition) 	 (4.20) 

Stqi < dr/(4a2  du + 2/9c) (artificial viscosity condition). 	(4.21) 

The Courant condition ensures that causality is preserved (no hydrodynamic 

signal can travel faster than the local sound speed); the other conditions are 

necessary for accuracy. The maximum time step for each cell is 

St j  = min( cStc j,''dStdj,yq tq j) 	 (4.22) 
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where the 'y are safety factors, necessary because the system of equations is non-

linear. Common choices for the -y  are ' 0.7. 

In principle, the continuum equations could be integrated with different local 

time steps. Again in accordance with normal procedures, a global time step St 

was found at each time t, 

	

St = min(St). 	 (4.23) 

Although less efficient than local time steps, this method is simpler to implement 

and makes it more convenient to calculate the fields at subsequent times. 

4.1.6 Software implementation 

The hydrocode was written in C++ using the WXC++ class library. An object-

oriented structure was adopted; this seemed slightly more awkward to implement 

than a traditional Fortran-style structure, but proved significantly easier to mod-

ify to add alternative material models and spatial fields. 

The hydrocode was 1D in the definition of position and velocity (scalar values 

rather than vectors) and in the calculation of the field derivatives. However, the 

structure was designed to be relatively straightforward to generalise to 2D and 

31), e.g. allowing a list of nodes for each cell. (This comment does not imply 

that the hydrocode would not be prone to multidimensional instabilities without 

further modifications to the numerics.) 

A C++ materials package was developed for use with the hydrocode and other 

scalar codes used in this work, e.g. for predicting Hugoniot and isentrope loci. 

This is fairly general, containing a range of equation of state forms. 

Boundary conditions were defined as a list of nodes at which the velocity his-

tory was prescribed according to an arbitrary function. These nodes are normally 

the outermost in the region of simulation. Pressure boundary conditions can be 

simulated by defining a region of constant 'applied pressure' (one of the material 

types allowed). 

Part of the data is an arbitrary scale function of position o(r), used in calcu-

lating the divergence: 

o(r+i)u+i - o(r._1)u. 1 I 	
(4.24) divu = 

)((r:_) + (r))/2 
. 	 1 2 
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instead of the plane geometry 

U 1-U 2  i 

	

divu = 2+2 	2 	 (4.25) 
x•_L_i - x•_1 

	

2 	22 

By different choices of o, the simulation can be altered between plane, cylindrical 

and spherical symmetry, or indeed to '1D' flow in a profiled duct: 

1 	plane 
o,  (r) = 	1/r 	cylindrical 	 (4.26) 

1/r2 	spherical 

4.1.7 Validation 

The hydrocode was tested by simulating Sod's problem [84, 86]. This consists of 

a notional bursting diaphragm between regions of high and low pressure. A shock 

is driven into the region of low pressure; a rarefaction runs into the region of high 

pressure. Between the shock and the rarefaction lies a contact surface. Across 

this, the pressure and material velocity are constant, but the low pressure material 

has been shocked and the high pressure material released to reach the same 

mechanical state. The density and internal energy at either side are therefore 

different. (Fig. 4.2.) 

The material was a perfect gas with y = 1.4; the high pressure region had 

p = 1 and e = 2.5; the low pressure region had p = 0.125 and e = 2. ' The 

results were compared with analytic values. The discrepancies are: 

Smearing of sharp features (such as the head of the rarefaction fan) by the 

discrete representation of the fields. 

Additional smearing of the shock wave by the artificial viscosity. 

Errors in states where the shock started to form (overheating). 

The accuracy was as satisfactory as would be expected with the numerical scheme 

described above. (Figs 4.3, 4.4, 4.5, 4.6 and 4.7.) 

Simulations were also performed of a piston driving a steady shock into a 

region. The speed and states behind the shock agreed with solutions to the 

Rankine - Hugoniot equations. 

'For hydrodynamics with no time-dependent processes, the units are irrelevant so long as a 
consistent set is used. Alternatively, all quantities can be treated as dimensionless. 
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Figure 4.2. Sod's problem: snapshot during propagation of shock wave. 
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Figure 4.3. Sod's problem: particle velocity at time 0.2. 
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Figure 4.6. Sod's problem: pressure at time 0.2. 
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4.2 Double shock structure in silicon 

4.2.1 Stab ility.of shock waves in polymorphic materials 

The speed u3  of a shock wave with :respect to the undisturbed, material ahead is 

given by the Rankine - Hugoniot equation [1] 

2: 2 P — Po 
Us  = v0 

0 - 	
(4.27) 

If (p - p0)/(vo  v) does not increase monotonically with p then a shock of some 

pressure Pi  may split into a pair of shocks, one moving at maximum speed for 

p < Pi, and with the corresponding pressure pa  say, and a second shock which 

completes the compression to P'  (Fig. 4.8). 

• 	 Hugoniot 

second shock 
to(v,p ) 

'S 

rJ) 
'S 

I) 	 .5 

1 

single shock. faster shock 

-- ------- 

- 	 specific volume 	NO  p) 

Figure 4.8. Shock splitting on a non-monotonic Hugoniot. 

In principle, a single shock to P1  could be maintained. In practice such a shock 

is unstable to perturbations in state. Any small variation of density, temperature 

or shock pressure could trigger the split. - In real materials the variations might be 

impurities, defects, grain boundaries or even just thermal motion of the atoms. 

Below the density corresponding to neutron star formation, the cold curve 
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of any polymorphic phase stiffens with compression. Irrespective of phase tran-

sitions, the shock Hugoniot should ultimately  stiffen The region(s) of pressure 

over which a .shock wave may split should therefore be bounded above and below. 

(Fig. 4.9). 

Hugoniot 	. 

pressure range 
over which 
shock splits 

rI) 

specific volume 	(v PO ) 

Figure 4.9. Range of shock strengths which may split. 

The principal Hugoniot is the locus of states which may be reached by the 

action of a single shock on the undisturbed material. If a shock wave splits into 

a double shock structure, the second shock must produce a state lying on the 

secondary Hugoniot starting at, the state generated by the first shock. In general, 

the state behind a double shock is different to the state behind a single shock 

with the same final pressure; (p'1, e) say, giving the same pressure Pi•  In practice, 

the difference is small for many cases, because the Hugoniot starting at any state 

is in second order contact with the iseritrope through that state. 

	

An analogous effect occurs, when the elastic, constants and flow stress of a 	• 

material are considered. Shock waves of some range of pressures may split into 

an elastic precursor and a plastic wave. The measured profiles of such waves have 

been used to'investigate physical processes contributing to material strength [70]. 
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Table 4.1. Shock splitting in silicon. 

equation of state 	' pressure speed of 
first shock minimum maximum 

(GPa) (GPa) (km/s) 
Griineisen 21 38 6.63 
ab fere initio 23 40. 6.78 
ab fere initio, BCT adjusted 18 . 	 35 6.43 

4.2.2 Equilibrium / isotropic predictions for silicon 

Using the diamond/BCT equations of state calculated for silicon, the range of 

pressures leading to shock splitting was predicted. (Table 4.1 and Fig. 4.10.) The 

predictions fall in a fairly narrow range. The upper limit for splitting caused by 

this phase change may not be observed in practice because other phase changes 

may complicate, the shock structure. 
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Figure 4.10. Hugoniots for silicon (pressure specific volume plane).' 

The pressure range calculated here for shock splitting is based on applying 

the equilibrium equation of state to isotropic hydrodynamics. These calculations 

contain two important simplifications: 
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Phase transitions are instantaneous with no energy barrier. In the case of 

the diamond-to-BCT, the transition can take place by compression of the 

diamond lattice in any of the coordinate directions, so this simplification 

should not matter. 

The stress - strain contribution to the response of the continuum is negli-

gible. 

These corrections are addressed in extensions to this work where the EOS tech-

niques developed here are applied to the calculation of elastic and plastic prop-

erties [87, 88]. 

4.2.3 Comparison with transient X-ray diffraction data 

Measurements of the shock wave structure have been made using a laser to drive 

a plane shock into a sample of material, and an intense source of X-rays to allow 

the time-variation of a crystal diffraction peak to be followed. 

Lasers can also provide convenient source of X-rays. One problem is synchro-

nising the X-rays with the shock; using a laser for both purposes allows accurate 

synchronisation. X-rays can be generated by focusing a laser beam onto a solid. 

The intense energy deposition can produce a hot, dense plasma which is a strong 

emitter of k-line radiation. Other X-ray sources are possible [89], as are different 

methods of generating the shock wave such as gas guns and high explosives. 

Experiments have been performed on silicon using the 'TRIDENT' laser at 

Los Alamos National Laboratory, USA [90]. A single crystal of silicon was used, 

cut in the 001 direction. A thin layer of gold was deposited on the surface to be 

irradiated, in order to reduce electron preheat from the laser energy used to drive 

the shock. X-ray diffraction was measured in the Bragg and Laue configurations, 

using X-ray streak cameras which recorded the angular variation of a diffraction 

peak as a function of time. The diffraction peaks are generated through con-

structive interference of X-ray photons scattered from many atoms in the crystal, 

and the signal recorded at the detector is thus the integral over a finite depth of 

crystal. As the shock wave approaches the free surface, a peak corresponding to 

compressed material is seen before the undisturbed peak disappears, because the 

diffraction pattern probes a finite thickness of material. (Figs 4.11 and 4.12.) 

The X-ray streak cameras operated by converting X-ray photons from a line 

in space into electrons, whose trajectory is deflected by a varying electric field 
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to image the line across a rectangular region of film or CCD array. Some X-rays 

were able to penetrate the'photoconvertor and expose the detector directly. As a' 

result, the TXD images typically exhibit a vertical feature which is a projection 

of the camera slit (i.e. the imaging line) directly onto the streak image with no 

temporal variation. 

.. 
X-ray streak camera 

Laue reflection(s) 

laser beam 
to drive shock 

point source, 
of X-rays 

crystal 

laser beam 
to generate X-rays 	 Bragg reflection(s) 

X-ray streak camera 

Figure 4.11. Schematic of transient X-ray diffraction experiments at 'TRIDEN-
T'. 

The X-ray source consisted of two closely-spaced lines from the helium-like a 

and /3 transitions in the plasma. These could be seen fairly clearly in some of the 

shocked and unshocked signals. 

The pressure generated, by the laser pulse was not known exactly, but esti-

mates have been made given the laser output and calculations of energy deposition 

in the silicon. The laser pulse used to drive the shock wave had a roughly constant 

intensity for a few ns. A constant laser intensity does not necessarily generate a 

shock of constant pressure - some of the results were indicative of a shock whose 

pressure increased slightly with time, producing a ramping increase in the Bragg 

angle from the shocked material. 
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• 	Figure 4.12. Sample result from transient X-ray diffraction experiment. 

For shock pressures greater than about 20 GPa, the diffraction peak from the 

shocked material was observed to split into two distinct lines a finite time after 

the signal from the compressed lattice was first seen. The split was significantly 

different to the fine structure from the a and /3 lines. This shock structure was 

tentatively identified as a phase transition, though perhaps to simple hexagonal 

rather than B CT, as the former is thought  to be energetically more favourable. 

More structure was evident in the traces on release from silicon shocked into 

a different phase; this may indicate the presence of further phases or of planes 

temporarily rotated at a different angle to the shock wave. (Fig 4.13.) 

The split first appeared -2.2 ns after the earliest signal from the shocked 

material in a sample 22 /tm thick, with a driving pressure of somewhat over 20 GPa 

[91]. 	 . 	 . 

The 1D Lagrangian hydrocode was used to simulate the shock wave structure, 

using the quasiharmonic 1' equation of state. The simulations demonstrated the 

formation of  an initial shock, a ramp-like structure in the mixed-phase region, 

and a second shock completing the compression. Each shock was smeared over. 

a few computational cells, because of the artificial viscosity treatment discussed 

above. The first shock had a slightly lumpy structure, probably caused by the 

use of linear interpolation over the relatively coarse tabulation of the equation 
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Figure 4.13. Transient X-ray diffraction traces from 'TRIDENT' experiments 
on silicon. 

of state. Other calculations [78] indicate that the BCT cold curve is similar to 

simple hexagonal in this regime, so the diamond/BCT EOS should provide a: 

reasonable model of the shock structure. (Fig. 4.14.) 	• 

According to the hydrocode calculations, a driving pressure of 25 GPa caused 

a split shock structure where the first shock travelled at -6.5 km/s and the sec-
ond at 4 km/s. The speed of the second shock is quoted with respect to the 

undisturbed material; its speed with respect to the moving material behind the 

first shock is lower. These speeds give a time difference -2 ns after crossing a 

sample 22 1um thick, clearly consistent with the experimental results. A more 

precise comparison is not yet possible, as the shock wave in the experiment needs 

to be characterised more carefully. (The speed of the second shock is relatively 

• sensitive to the pressure.) 

There is further scope for developing the experimental technique. If additional 

diffraction lines are used then it may be possible to identify transient phases with 

more certainty. The temperature and defect density might be obtained from the 

angular width of the diffraction lines. 
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Figure 4.14. Example pressure profiles from hydrocode simulations of shocks in 
silicon with the diamond/BCT equation of state. 
(Driving pressures above and below the threshold for phase transition.) 



Chapter 5 

Conclusions 

Ab initio pseudopotential methods (together with quantum mechanical calcula-

tions of the phonon modes and electron-thermal effects based on the band struc-

ture) allowed equations of state to be predicted to within a few % in density or 

a few GPa in pressure, comparing with the density at STP and measurements 

of the shock Hugoniot. Care was needed that the pseudopotentials were valid 

in the compression range required, as the accuracy became worse as the cores 

approached each other. 

The method was applied to aluminium, silicon (diamond and body-centred 

tetragonal structures) and beryllium (hexagonal and body-centred cubic struc-

tures). For strong materials such as beryllium, it was necessary to take account 

of the elastic modulus and yield stress in order to match the shock Hugoniot. 

This was done in a simple manner. 

The ab initio phonon calculations rely on force calculations for displaced atoms 

in the electron ground state code. These calculations are relatively expensive in 

terms of computational effort, so interpolation schemes were investigated to allow 

the forces to be calculated for a smaller set of lattice parameters than was used 

for the cold curve. Considerable care was needed to allow the phonon properties 

to be interpolated accurately. The more robust scheme was to interpolate the 

lattice-thermal energy rather than the force constants, frequencies or the density 

of states. 

Interatomic potentials were investigated as a means of representing the effec-

tive interatomic interactions in a more compact way. The potentials were ob-

tained by adjusting their parameters to reproduce the energy - volume relations 
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predicted for different structures on the cold curve. Where valid, these poten-

tials allowed phonon modes to be predicted more efficiently, and could be used 

for Monte-Carlo simulations to investigate anharmonic contributions (phonon-

phonon interactions) to the equation of state. Any form of potential seemed 

capable of fitting the cold curve for a single structure, but multi-body potentials 

such as the Finnis-Sinclair were necessary to reproduce the energy difference be-

tween structures. However, fitting of multi-body potentials to cold curve data, 

where the stress is isotropic, was found to be an ill-conditioned process, and the 

lattice bound by the resulting potential was prone to shear instabilities. 

The effect of anharmonic contributions was found to be small over the range 

of states sampled along the shock Hugoniot. 

Considerable computational effort was required to obtain ab initio phonons 

in good agreement with the observed density of states. However, because inte-

grations are performed over the density of states in order to calculate the lattice-

thermal energy, the equation of state is relatively sensitive to the density of states. 

It appeared necessary to ensure only that the first few moments of the density 

of states (mean, variance, skewness) were in agreement. This required much less 

computational effort. 

The accuracy of each equation of state was improved by adding a pressure 

offset to bring the calculated density at some reference state (e.g. STP) into 

agreement with the observed value. The resulting ab fere initio equation of state 

matched isothermal and shock compression data well for the same polymorphic 

phase, up to 50 GPa or more. 

The pressure offset was introduced as an energy tilt to the cold curve. Rigor-

ously, the tilt should also manifest itself as a modification to the force constants 

in the interatomic interaction, and hence to the phonon modes. The effect of 

this extra correction was evaluated by predicting the lattice-thermal energy with 

and without the correction by calculating the phonon modes using interatomic 

potentials fitted to the ab initio cold curve or to the adjusted cold curve. The 

difference was found to be negligible. 

An additional attraction of the ab initio route compared with empirical e-

quations of state is that predictions of quantities contributing to the equation of 

state can be verified by non-mechanical measurements. For example, the density 

of phonon states can be measured by neutron scattering and compared with the 

predictions used to calculate the lattice-thermal energy. 
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The basic method developed allows the equation of state to be predicted for a 

single polymorphic phase. Phase boundaries and transformation pressures can be 

estimated by repeating the procedure for each phase in turn, and constructing the 

surface of minimum free energy in density - temperature space. Phase boundaries 

are extremely sensitive to the precise details of the model used for each phase. 

Different phases should be calculated in as consistent a way as possible in order 

to obtain a reasonable prediction of the phase boundary. 

A model was developed for predicting the time-dependence of polymorphic 

phase transitions. 

Ab fere initio equations of state for silicon, including the diamond/B CT phase 

transition, gave a reasonable match to the observed shock Hugoniot. The equation 

of state also predicted that shocks of between 	and 40 GPa should split into 

a pair of shocks travelling with different speeds. This prediction is in (at least) 

qualitative agreement with observations make using transient X-ray diffraction. 

The overall method seems straightforward to apply to different elements - 

including structures which are not close-packed or metallic - and should work e-

qually well for stoichiometric compounds (including many alloys). This represents 

a considerable extension of the more common approach of predicting properties 

under compression at T = 0. 

The ab initio quantum mechanical method for predicting equations of state 

could be extended in a variety of ways. There is scope for developing the way in 

which the electron ground states are predicted, in the techniques used to derive 

pseudopotentials, all-electron methods and the treatment of multi-electron effects 

such as exchange and correlation. The use of the band structure in estimating 

the electron-thermal energy is only valid for temperatures well below the Fermi 

temperature; it would be possible to predict equations of state at much higher 

temperatures if excited states of the electrons were considered. 

A prototype computer program was written to calculate electron wavefunc-

tions according to the Dirac equation. The program was not made efficient enough 

for routine equation of state calculations, though it was demonstrated to work 

accurately on simple trial systems. In the future, this program or a similar one 

should provide various advantages such as the inclusion of relativistic effects and 

the use of basis functions that are more efficient for equations of state. 

The use of electron ground states in 3D representations of the lattice open-

s up the possibility of making useful predictions of the elastic constants and 
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perhaps the plastic behaviour of a material. This extension to predictions of 

tensor material properties is likely to have important technological application-

s. Elastic constants have been calculated for some elements and compounds, 

[21, 92, 93, 94, 95, 96], but the approach followed here opens up the possibil-

ity of applying a consistent and closely-knit set of techniques to the equation 

of state, phase diagram, elasticity and plasticity [97]. Other properties such as 

the creation energy and diffusion rate of point defects [98] could be calculated 

in a similar way through a mixture of ab initio electronic states and interatomic 

potentials deduced from the electronic states [99, 100]. 



Appendix A 

Units 

In generating equations of state from quantum mechanics, it is convenient to work 

in different sets of units when performing different parts of the calculation. 

It is convenient to perform all calculations at the level of the atomic lattice 

using units based on eV, amu and A. Similarly, when considering applications 

to strong shock, waves, it is convenient to work in units which reflect typical 

characteristics of the applications, with times in us and sizes in mm. In the 

latter case, it is possible to pick a variant of SI units where quantities are scaled 

judiciously by factors of 1000. 

176 



APPENDIX A. UNITS 
	

177 

Table A.1. Units and conversions. 

quantity SI units atomic level strong shock 
length m A mm 
energy J eV MJ 
mass kg amu Mg 

time s A.Jamu/eV Ps 
1.01805466 x 10' s 

speed rn/s mm//1s = km/s 
mass density kg/M3  arnu/A Mg/M3 = g/cm3  
specific energy J/kg eV/amu MJ/kg 
pressure Pa eV/A3  GPa (= 100 kb) 



Appendix B 

Crystallographic structures 

B.1 Introduction 

For convenience, the lattice types used in the EOS calculations are listed below. 

Cubic structures satisfy 48 rotation matrices. This high degree of symmetry 

means that a single displacement - for instance, of the atom at (0, 0, 0) along 

the x-direction - is all that is required to determine the phonon eigenproblem for 

each value of the lattice parameter. 

B.2 Structures 

Face-centred cubic (FCC) 

Lattice parameter a; lattice vectors a,0,0, 0,a,0, 0,0,a. Atoms at (0,0,0), 
(1 1 i\ (1 n 1 i'n 1 1 
"2' 2'''J' 	2'"' 2)' 	' 2' 2 

Body-centred cubic (BCC) 

Lattice parameter a; lattice vectors (a, 0, 0), (0, a, 0), (0, 0, a). Atoms at (0'  0'  0), 
(1 1 1 
"2' 2' 2 

Diamond cubic (DIA) 

Lattice parameter a; lattice vectors (a, 0, 0), (0, a, 0), (0, 0, a) - cubic structure. 
1 1 o (1  0 	

(01 1 12 
11 1 1\ f3 3 1\ 13 1 3\ Ii 3 3\ Atoms at (0,0,0), ( 	2' 1  '2' '2"\ 2' 2" 4' 4' 4) 

Internal translation symmetry: (1' , 1, 1). 
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Simple hexagonal 

Lattice parameters a and c; lattice vectors (a, 0, 0), (a/2, /a/2, 0), (0, 0, c). 

Atom at (0, 0, 0). 

Hexagonal close-packed (HCP) 

Lattice parameters a and C; lattice vectors (a, 0, 0), (a/2, /a/2, 0), (0, 0, c). 

Atoms at (01 01 0), 

Alternative orthorhombic lattice cell 

Lattice vectors (a,0,0), (0,va,0), (0,0,c). Atoms at (0,0,0), (1 1 	(1 1 1)  
2' 2' 1  '2' 

(0a ' '3' i 2 

Body-centred tetragonal (BCT) or 3-Sn 

Lattice parameters a, C; lattice vectors (a,0,0), (0,a,0), (0,0,c). Atoms at 
(fl 	(1 1 1\ [1 	1\ j'- 1 3 
Y'"")' "2' 2' 2)' 2''' 4) Y-'' 2' 4 

Si Imma 

Lattice parameters a, b, C; lattice vectors (a, 0, 0), (0, b, 0), (0, 0, c). Atom at 

(0,, ) where L 	0.386 at 15 GPa. 

To obtain phonon modes, displacements were made of each of the first two 

atoms in each of the x, y and z directions. 



Appendix C 

Interatomic potentials 

C.1 Introduction 

Although realistic quantum mechanical calculations are possible for systems with 

several atoms, they require a large amount of computer storage and time for 

collections of atoms large enough to provide meaningful information on thermal 

behaviour (e.g. the equation of state at finite temperatures) and dynamical ques-

tions (e.g. the rate of a phase transition). 

Another way to proceed is to represent the total interaction energy of the 

collection of nuclei and electrons by an effective potential q  between individu-

al nuclei at positions . Such potentials are intended to represent angular or 

many-body forces and quantum mechanical effects such as exchange and corre-

lation between the electrons. These physical effects give rise to the volume and 

structure-dependence of the total energy. The structure dependence can in prin-

ciple predict both polymorphism and local effects such as defect and disclination 

energies. 

Typically, interatomic potentials are derived by fitting the parameters in an 

empirical form to some property measured experimentally or calculated by a 

different technique. An infinite range of possible empirical forms could be de-

vised. The popular forms considered here were inverse power, Morse [101] and 

Finnis-Sinclair [102]. The potentials were fitted to the energies obtained from the 

ground state calculations, evaluating their ability to represent data for a single 

lattice structure and their transferability between structures. A phonon density 

of states at normal density was generated from each potential, and compared 

against experimental data. 
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Computer programs were written to calculate the total energy of a regular 

lattice given the structure and dimensions of the unit cell, for each of the po-

tentials of interest. Programs were also written to fit coefficients in the inter-

atomic potentials to reproduce datum values of specific internal energy at chosen 

mass densities. Several iterative techniques were used for fitting non-linear co-

efficients, including Gauss-Newton, steepest descents, conjugate gradients, and 

Monte-Carlo [51]. 

C.2 	Forms of potential 

C.2.1 Inverse power 

A common suggestion for trial potentials for the energy between atoms i and j is 

Oi j = 	a2 /r 	 (C.1) 

This encompasses the Lennard-Jones potential used for the noble gases. 

If the powers of r are known, then the fitting of the parameters a to data is a 

linear problem. Previous work [103] has shown that it is straightforward to obtain 

the cij by the solution of a matrix equation. This can be made more efficient by 

the use of structure factors, containing the summation of each power of r over all 

the atoms in each lattice type. The summations need only be performed once. 

The matrix technique is described in Section C.3. 

C.2.2 Morse 

Morse potentials of the form 

oij = D {e_2 	tjjr0) - 2ei 0)] 	 (C.2) 

for the potential energy between atoms i and j have been used for various purposes 

including the study of grain boundaries [101]. D, a and r0  are material-dependent 

parameters. In some cases, an additional scalar constant qo  was added to the 

potential to make it easier to fit some of the quantum mechanical cold curves. 

A hybrid fitting scheme was developed for fitting the Morse coefficients to 

data. The Morse potential is non-linear in a and r0, but linear in D (and Oo, if 
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used). Given values for a and r3 , D and qo  can be found quickly and determin-

istically using the linear fitting method to form a matrix equation (Section C.3). 

Thus the non-linear fitting scheme can be restricted to use a and r0  only. As a 

guide, the difficulty involved in non-linear fitting increases by roughly an order 

of magnitude for each additional parameter, so the hybrid scheme is valuable. It 

was found to be considerably faster and more reliable in practice than optimising 

all the parameters iteratively. 

C.2.3 Finnis-Sinclair 

An interatomic potential has been proposed [102] which mimics some of the N-

body behaviour of the tight-binding approximation in solid state physics. The 

energy ç of atom i can be written [104] 

q= 
I  E V— f(p) 	 (C.3) 

where Vij  is a central pair potential between atoms i and j, f an embedding 

function (taken here to be the square root) and 

Pi = 
	

(C.4) 

The summations extend in principle over all the atoms of the system except atom 

i, but V and 0 are short-ranged functions only of the interatomic distance r 23 . 

Previous work [104] has used cubic splines to model the potentials: 

V(r) =ak(rk—r)O(rk—r) 	 (C.5) 

(r) =Ak(Rk - r)O(Rk - r) 	 (C.6) 

where 0 is the Heaviside step function. The parameters are typically found by fit-

ting to the equilibrium lattice spacing, the cohesive energy, the elastic constants, 

the vacancy formation energy and the stacking fault energy. 
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C.3 	Interatomic pair potentials from bulk prop- 

erties 

In principle, it is possible to infer an effective interatomic pair potential V(r) for 

atoms in a solid from the variation of specific potential energy e with specific 

volume v. The energy e(v) is assumed to depend on spherically symmetric 

interatomic potentials through the following relation: 

e(v) = 
I 
 Y, ViAFi - 	 (C.7) 

where i and j run over all atoms, i?j  and i j  are the position vectors of atoms i and 

j (and hence functions of v), mi is the mass of atom i and the factor i  ensures 

that the contribution from the potential between each pair of atoms is counted 

only once. In general, the potential between atoms i and j might depend on their 

type, so the potential function is denoted l/j. For atoms in a crystalline solid, the 

summation can be performed with respect to a single lattice cell, over the lattice 

parameters k, I and m and over the s atoms (indexed by n) in each lattice cell. 

Consider an atom in lattice cell k, I, m. The origin of the cell is at kiZ + 

I6 + mti, where it, 6 and t5 are the lattice vectors. If atom n has co-ordinates 

Am,, ) with respect to its lattice cell then its position vector is 

rklmn  = (k + /k)'i+ (I + / l)i3+ (m - .m)?i5. 	(C.8) 

The volume of each lattice cell is vector triple product of the lattice vectors 

= [iZ,',tiY] = it. (7A ). 	 (C.9) 

The mass of the cell is 

Mc = Emni 	 (C. 10) 

where ri-is, is the mass of atom n. Thus the specific volume is 

V = V C /Mc = 	 (C.11) 

The position vectors can be found from the specific volume, so long as the 
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lattice vectors remain at constant relative angles and lengths: 

7(v) = a(v)ü'o,ii(v) = c(v)iio,(v) = c(v)ti o, 	 (C.12) 

for some a(v) and constant set of vectors i7, go, to giving a reference specific 

volume v0. Note that 

V = a3 [110, 0,io]/rn = cx3 v0 . 	 (C.13) 

Thus 

	

i'klmn(V) = (v/vo)113 [(k + k)i70  + ( 1 + 1)Vo + (rn + m) o]. 	(C.14) 

The specific potential energy is then 

e, (V) = 
n' klmm 

(C.15) 

where n' runs over the s atoms in the reference cell, and the contribution n = 
when k = I = m = 0 is omitted (as it corresponds to i = A. 

In the discussion below, the equations can be applied easily to the case where a 

single interatomic potential V(r) is used by ignoring the indices nn', i.e. collapsing 

this matrix to a single scalar. This is the procedure for elements of any structure. 

It is assumed V (r) can be expanded as a linear combination of radial func-

tions f(r) 

Vi(r) = 	 (C.16) 

for some set of parameters 	Given a set of n f  fitting functions 	(and 

hence nj unknown values of 	and a value of the specific potential energy 

e at some specific volume v, e can be expressed as the inner product of the 

unknown bnnlj  with summations of the fij over the position of each atom: 

C, (V) = 	
[f

flflhi(rklmfl (v))] 	Mn'- 	(c.17) 
n3 klmn 	 n' 

If the specific energy is known at flf or more specific volumes v, a matrix equation 
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is obtained: 

= Ei 	 (C.18) 
nn!j 

where 

	

Ainn1 j = 	fnnlj(rklmn(vi)) 	 .(C.19) 
n' klmn 

	

= 	2e, (vi ) E  m,-'. 	 (C.20) 

Note that the matrix of rank 3 spanned by the indices nn'] is considered without 

loss of generality to form a column vector with the same number of elements. 

The equation can only be solved for a primitive lattice cell, because the matrix 

A is singular for non-primitive cells - columns with different nn' are equal and 

thus (trivially) linearly dependent. If a non-primitive cell is used, the summations 

over ii' in the energy equation should be performed only for the irreducible set 

of atoms. In the case of elements where all atoms are in the same charge state, 

this means that the summation is performed with respect to a single atom, at 

the origin say. Note that for a radial pair potential, 'primitive' must be taken 

to refer to the radial pair correlation function, and must not take into account 

differences in relative angles between neighbouring atoms. If the primitive lattice 

cell does have more than type of atom or charge state, it is possible in principle 

to deduce different forms of interatomic pair potential between atoms of different 

type, though it may be necessary to constrain the basis functions of the different 

potentials to be unique to prevent A becoming singular. 

If e  is known at more than n1  values of v A least squares approach to deter-

mining the bj  can be found by making a trivial change to the scheme. Instead of 

picking fif values of v and the corresponding values of e to give a square matrix 

use as many values of v as are available, n,  say. The energy equation then 

becomes an overdetermined equation, with ri values of E j  and a rectangular Ai j  

having n rows and n1  columns. The 'Givens rotations' method for solving a 

system of linear equations works equally well for an overdetermined as an exactly 

determined system, in which case the solution calculated can be shown to satisfy 

the 'normal equations' of least-squares fitting with linear coefficients [105]. 
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C.3.1 Structure factors 

The process of calculating Ainnij can be streamlined if the fnn, j  obey a scaling 

law in r: 

fi j(ar) = 	 (C.21) 

The summations can then be performed with respect to a scale-invariant lattice, 

which need be done only once for each fitting function on each lattice type, to 

produce a set of structure factors 

	

= 	fnn'j(.\ictmnn') 	 (C.22) 
klmn 

where 'k1mnn'  is the dimensionless distance of atom n in lattice cell k, 1, rn from 

atom n' in cell 0, 0, 0: 

'klmnn' = 	- k1) 0+ (1+ L1— 	(rn+m— m)wo j. (C.23) 

The elements of the fitting matrix can then be found for any set of specific volumes 

vi  using 

	

Ai.nlj = 	 (C.24) 

where 

a(v) = (v/v0)1/. 	 (C.25) 

Alternative conventions are possible for the definition of the structure factors, 

as discussed below. The fitting functions fnnlj  used so far in this scheme have 

been the powers of r 1: 

f1 (r) = 	 (C.26) 

which obey the scaling law. 

The original proposal was to calculate the structure factors F by summing 

over atoms in a sphere of radius G lattice cells, with a suggested value of G ' 15. 

The cell indices then satisfy 

k 2  + 12  + m 2  < G2 	 (C.27) 

The time to calculate each F is proportional to C3, so it is desirable to use the 

smallest C necessary for a given accuracy. 

Values of F, for the smaller (negative) powers of r converge more slowly; since 
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Table C.I. Comparison of original and modified structure factor scheme.s 

G F1  (original) F1  (modified) 
10 96.442541061199 101.333921648953 
15 98.057281784164 101.343940983543 
25 99.362817190888 101.349903307008 
50 100.353192100431 101.352539439707 

100 100.851866806305 101.353047713695 
200 1 101.102215598279 101.353176506389 

the corresponding f —* 0 more slowly as r —* oc. Numerical investigations 

showed that it takes an impracticably long time for the summation in r 4  (i.e. 
F1) to converge, as shown in Table 1 for a face-centred cubic (FCC) lattice. 

One possible modification is to make a continuum approximation outside the 

sphere defined by k2 +12+M2  = G2 : 

fG 

00
F 	fj(k1mn) + 47r3A 2 f() d\ 	 (C.28) 

klmn 

where the summation is restricted to points inside the sphere. Care should be 

taken to avoid counting the contribution from atoms in the region where k2  + 

12 + m 2  -' G 2  twice or not at all. To make the counting logic simpler, k, I and 
m can be taken over a region greater than the sphere, and the contribution from 

each atom used only if Aklmn G. 

For fitting functions of the inverse power form, the structure factors become 

F > 	+ G3 . 	 (C.29) - 	Aklmn  
klmrt 

The corresponding calculations using this new scheme were found to converge 

more rapidly and provide a greater number of significant figures for a given value 

of G (Table C.1). 

C.3.2 Using derivatives of the specific energy 

Some models can supply derivatives of e, with respect to v. The derivatives can 

be used in a similar way to e in determining parameters for the radial functions 

fj used to fit the interatomic potential. 

For compactness, derivatives with respect to a function's single independent 
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variable are denoted by priming (e.g. e'),  no matter which independent variable 

is used in practice. The context makes it clear whether this is with respect to v, 

r etc. 

The first two differentials of the energy equation with respect to r are 

1 
e(v) = 	 r'(v)V'(r) 	 (C.30) 

2ma  
pairs 

M \ 	
1 

eC V) 
= 2Tfla E [r'(v)]V"(r) + r"(v)V'(r) 	(C.31) 

pairs 

where 

r imn(v) = 1 3(sma)h/3v_2/3)kjmfl = lrklmm 
	

(C.32) 
V 

2 	 2 rklmn 
r'imn(v) = _(sma )h h/3v_5 /3 ),.k1mfl 

 =9 V2  . 	(C.33) 

Expanding V in terms of functions f j  gives two further equations: 

1 	1 Tklmn(  V) 	)1 b 	 (C.34) e(v) = 	 V 	 I Lklmn 
fj 

e'(v) = 	
[ 	

i  (r(v) 2 
	 -' 

) f'(rk1mn) - 2 Pk(mn(V) 

klmn 	 V2 	
f(ri)j b. (C.35) 

Again, these can be regarded as (possibly overdetermined) matrix equations if 

data are available for several specific volumes v: 

= E 1' 	 (C.36) 
.7 

	

A 1b = 	 (C.37) 
.7 

where 

- 	1 Pk1mn(Vi)f( ) 	
(c.38) - klmv. 	vi 	il   

E 1'= 2ma e(vj) 

	

	 (C.39) 
2 

1 ( rk'mn(vi)\ 	

,, 	 2 rklmn(vj) 
A2 - - 	 ) (rklmn(vj)) 	 f(rk1mn(v.i))(C.4O) 

, 	 v ii  
klmn 

E 2' = 2mae(vj). 	 (C.41) 
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If the f3  obey a scaling law as above, the matrix elements can again be found 
in a more efficient form. Again using 

rklmn =aAkl,,n = (smav)h13,\k1mn 	(C.42) 
1 1/3 —2/3 

rlmn  = 	 V Ak(mn 	 (C.43) 

- 
f(rk1mn) - 

fj(Aklmn) f(a) 
	 (C.44) 

'k1mn  

f" 	= fjP'klmn) 
Jj (1  rk1mn) 	

1mn f
'(a) 	 (C.45) 

we find that 

A' - 	ma) h/3v_2/3 f(a(v j))Fj 	 (C.46) 23 - 

[(sma)'If7(a(vi)) - 2v'/3 f(a(v))] F. (C.47) ii — - 

These matrix equations are additional relations to use in determining the b2. 
They can be added as extra rows to the fitting equation. The resulting equation 
can be used to find flf values of bj  given e, de/dv and d2e/dv2  at nj/3 specific 
volumes, or as an even more overdetermined system (with 3n  rows) for least-
squares fitting. 

C.3.3 Orthogonalised fitting functions 

It is often useful when fitting data to use an orthogonal set of functions. If the 
fitting coefficients are calculated using a subset of the available functions, the 
coefficients of these functions should not change when additional functions are 
used in the fit. 

Given a set of functions f3 and a formula for the scalar product (f, f2), an 
orthogonal set of basis functions gj can be constructed [47] such that (gi, g) = 0 
when i J. An important point is that the space over which the scalar product 
is defined should be the one most relevant to the problem (hence the ancient 
proverb 'bases for spaces'). Possible choices for a scalar product space here are 

Co 

 

(ff2)=fr
min 

fjdr 	 (C.48) 
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and 

(f, f) = frmin
fr2f dr, 	 (C.49) 

both of which depend only on rmjn  for functions like r. More defensible choices 

considering where the fitting functions are actually evaluated would seem to be 

the discrete space 

	

(f, f) = 	fj(rklmn(vj'))f2 (rk(mn(vj')) dr 	 (C.50) 
kimni' 

or the corresponding mixed space with contributions from the region of contin-

uum approximation. However, when trial calculations were made with fitting 

functions successfully orthogonalised over the space above, the fitting coefficients 

changed as successive functions were added, suggesting that even this space is 

not appropriate. 

If the use of orthogonalised functions turns out to be necessary, it is still 

possible to streamline the calculation of components in the fitting matrix by 

using structure factors. Suppose we are now looking for fitting coefficients c3  

such that 

V(r) = 	c3g(r) 	 (C.51) 
3 

where 

gj (r) = 	akfk(r) 	 (C.52) 
k 

and a-ij  is the transformation matrix between original and orthogonal bases. The 

(possibly overdetermined) system for the amplitudes of the basis functions is then 

Bijcj = E2 	 (C.53) 

where the matrix B 3  can still be calculated using structure factors of the f: 

Bij= > gj(rklmn(v j)) = 	ck'fk'(a(v)) E fk''k1mn) = 	cjk'fk'(a(v))Fk'. 
klmn 	 k' 	 klmn 	 k' 

(C.54) 

C.3.4 Conventions for structure factors 

If the radial basis functions f(r) obey a scaling law as above, structure factors 

can be calculated once for each function over each lattice type, thus avoiding the 
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need to perform summations over the lattice for each specific volume. 

The structure factor defined above is the simplest possible form: 

[a1 = 	fj(.Aklmn). 	 (C.55) 
klmn 

This is then related to the fitting matrix Aij  by 

Aij = f(a(v))F2 	 (C.56) 

where the cubic lattice parameter is found from 

a(v) = (smav)"3. 	 (C.57) 

Other forms are possible (and all completely equivalent), depending on how 

many of the terms it is desired to take into the summation from the ratio of Tk(mn  

to Aklmn,  i.e. what part of the factor (smav)h/3,  and any other scaling factors. 

Another common choice [40] expresses dimensionless distances as multiples of 

the nearest-neighbour distance rneigh  rather than the lattice spacing a. Defining 

rneigh 
a 

(C.58) 

which is a function only of the lattice type, the structure factors have the form 

= 	f(irnn/'y), 	 (C.59) 
klmn 

giving the fitting matrix 

Aij = fi(rneigh(vi))F (C.60) 

where 

rneigh(v) = '1(smav)113. 	 (C.61) 

The following relations are useful in converting between the forms: 

= f()p[Cl 	 (C.62) 

FN 	f(31/3 y)F[C] = f(1I3)F[a] 	 (C.63) 
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Table C.2. Values of Fl" for f(r) = 

I f 2  (r) FC] (SC) F? C J (BCC) F 	(FCC) 
1 r 4  16.53 22.64 25.34 
2 r 5  10.38 14.76 16.97 
3 r 6  8.40 12.25 14.45 
4 r 7  7.47 11.05 13.36 
5 6.95 10.36 12.80 
6 6.63 9.89 12.49 
7 r 10  6.43 9.56 12.31 
8 r 11  6.29 9.31 12.20 
9 r 2  6.20 9.11 12.13 

10 r 13  6.14 8.95 12.09 
11 r 14  6.10 8.82 12.06 
12 r- 15 6.07 8.70 12.04 
13 r 16  6.05 8.61 12.03 

>14 6+ 12(112) (j+3)12  8+6(3/4) (j+3)/2  12+ 6(i/2)(i+3)/2 

Table C.2, taken from the literature [40] lists values of F2[c]  for simple cubic, 

(SC), body-centred cubic (BCC) and face-centred cubic (FCC) structures whea 

the f2 are powers of r 1 . Note that the Flc j tend to the coordination number (the 

number of nearest neighbours) as the power increases. 

(The formulgiven for j > 14 give results to the same accuracy as the rest of 

the table.) 
[ For comparison, the value of F1a]  calculated for FCC in Table C.1 (101.353) 

implies FC] = 25.338. 



Appendix D 

Direct simulation of ensembles of 

atoms 

D.1 Introduction 

Direct numerical simulation of the interaction between atoms allows complicated 

behaviour (such as lattice anharmonicity) to be investigated by starting with 

simple real-space concepts. Large numbers of calculations are required, making 

the process slow, and the results must be interpreted statistically, introducing 

noise, but the accuracy of the simulations can be measured and understood easily. 

Consider a set of particles at positions . The particles interact with one 

another, such that the total energy is a function of the instantaneous positions 

of the particles, H({r}). 

In the case of atoms, the interaction may be calculated rigorously by finding 

the wavefunction of the electrons. However, direct numerical simulation tends to 

be used for very large ensembles of atoms where a proper treatment of the elec-

trons is not practicable. It is more usual to employ an interatomic ('interparticle') 

potential, V({ - 

For simulations of condensed matter it is usually necessary to model a system 

many orders of magnitude larger than the number of atoms represented explicitly. 

Periodic boundary conditions are used to model an infinite system. 

In condensed matter, the atoms exhibit co-operative motion such as phonon 

modes. Even with periodic boundary conditions, the types of co-operative motion 

which can be simulated are restricted by the number of atoms modelled explicitly. 
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In the case of phonons, this limitation introduces an artificial cutoff on the wave-

length. As the number of atoms in the simulation increases, the states approach 

those in a macroscopic sample of material. The accuracy of a simulation can be 

tested in a straightforward way by repeating the simulation with a larger number 

of atoms N, e.g. a 2 x 2 x 2 supercell of the original simulation. By estimating 

the variation in an observable 0 (e.g. the specific internal energy) with N, e.g. 

dO/d(1/N), for a few different values of N the result can be extrapolated to an 

infinite system (1/N -+ 0). 

Similarly, observables vary during the course of a simulation, eventually fluctu-

ating about a mean value when the system equilibrates. To obtain the expectation 

value of an observable 0, the system is allowed to reach equilibrium (measured 

from the history of 0), and then the simulation is continued to allow 0 to be 

determined with an acceptable statistical uncertainty. This process can break 

down near phase transitions, because the system may remain in one phase for a 

long period, then suddenly change phase with an accompanying abrupt change 

in 0. 

For the EOS work, typical simulations consisted of taking a fixed volume 

containing a fixed number of atoms, and simulating the system as it equilibrated 

at some desired temperature. 

If the particles are classical objects, then the total energy can be split simply 

into potential and kinetic contributions, 

H = E({}) + Ek. 	 (D.1) 

In equilibrium at a temperature T, the classical equipartition theorem [2] allows 

the mean kinetic energy to be calculated simply as 3kB  T/2 per atom. 

D.2 'Molecular' dynamics 

In molecular dynamics (which in the author's opinion would be better called 

'particle dynamics'), equations of motion are developed for the particles, and 

their movement simulated as a function of time. 

The force on each particle can be found from the principle of virtual work: 

1aH({r}) 	
(D.2) 
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Given an interatomic potential or electronic charge distribution, the fi can be 

obtained more directly for each atom. The equations of motion are then 

	

at 
	 (D.3) 

where rn, is the mass of particle i. 
The equations of motion can be integrated using any solver for coupled partial 

differential equations. In the present work, a predictor-corrector scheme [84] was 
used. An overall second order update over a time interval it is obtained from a 
first order forward-time prediction over 81/2 followed by a leapfrog step over the 

full Si: 

E(t + 51/2) = F(t) +
it  
 P[F(t)] 	 (D.4) 

F(t + 81) = F(t) + StF[F(t + 81/2)] 	 (D.5) 

where F is the set of position vectors, P their first order estimates and F the 

derivatives calculated using the position vectors at the appropriate time level. 
The time step to use in the integration can be estimated from the highest 

phonon frequency wmax for a given compression. The time step should be small 

enough for a period of the vibration to take several steps, N3  say 	Thus 

271 N3  

	

Simax 	. 	 (D.6) 
Wmax 

As the simulation proceeds to an equilibrium state, the balance between ki-
netic and potential energy changes. A perfect numerical scheme would conserve 
total energy exactly, so the effective temperature, measured by the mean kinetic 

energy, alters. If the objective is to perform a simulation at some particular tem-
perature, then a correction to the energy is needed to constrain the temperature. 
Furthermore, the predictor-corrector scheme does not conserve energy exactly. 
In fact, in a compressed state the potential energy tends to rise with simulation 
time because of the stiffness of the interatomic potential. Thus it is essential to 

use a numerical thermostat' to hold the temperature to a steady level. 
Various thermostats have been devised [12]. In the present work, the velocity 

vectors ai  are rescaled by a global factor every 'Yr  time steps (where Nr —10 
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to 100): 

I3NkBT 
(D.7) 

2E,,  

where Ek is the mean kinetic energy of the ensemble of atoms, 

P2k = 1lmH 2 	 (D.8) 

A Gaussian frictional thermostat [106] was tried for comparison. 

D.3 Monte-Carlo 

Monte-Carlo simulations sample different configurations of the particles {} with 

no real time integration of the equations of motion. The kinetic energy is taken 

to be 3kBT/2 per particle. Transitions are made between different random static 

configurations with a probability chosen so that the potential energy gradually 

tends to an equilibrium value. 

Consider a configuration {} with potential energy E and an alternative 

configuration {} with potential energy E. At a temperature T, the probability 

that a given configuration (or microstate) will be found is 

Thus the ratio between the probabilities of the alternative microstates is 

= e_'PtT, 	 (D.10) 

where zE = E - E. 

A variant of the Metropolis algorithm [12] was used to control the sequence of 

microstates. Given a configuration {} and a possible new configuration {}, the 

new configuration is always accepted if E < E, and accepted with a probability 

-~ Irip 'D = 	 (D.11) 

if E > E. To accept with a probability Pr,' a random number 1 with uniform 

distribution in the interval 0 < v < 1 (from a standard random number generator 

[51]) and the new configuration accepted if z' < Pr. 
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For each accepted microstate, the next candidate state is generated by adding 

random perturbations to the position vectors: 

(D.12) 

Many prescriptions are possible for choosing the Ai i. In the present work, each 

component was chosen according to the formula 

[i] = 2 (u., -1) Ji 	 (D.13) 

where the v3  are random numbers with uniform distribution in the interval 0 < 

ii < 1 and Jj are scale lengths for each co-ordinate direction (usually equal). The 

effect of the 2(v - ) is to produce random numbers with uniform distribution 

in the interval —1 < u < 1. The random perturbations L thus lie in a cuboid 

of sides 253  centred on the i. 

It would be more aesthetically pleasing (and rotationally invariant) to choose 

perturbations with spherical or ellipsoidal symmetry rather than the cuboids used. 

Similarly, a different distribution could be used as an alternative to the uniform 

one chosen, for instance a Gaussian form allowing large perturbations with a lower 

probability than small ones. However, the cuboidal scheme is computationally 

more efficient than these alternatives. It is probably more important to sample a 

large set of microstates than to make minor adjustments to the distribution form 

of the perturbations. 

The perturbation scales 53  determine the proportion of microstate jumps ac-

cepted or rejected. If the perturbations are large, many of them will be rejected 

(because some atoms will move too close together). If small, a large number of 

jumps will be taken to sample the same range of energies. The 53  were adjusted 

automatically to give reasonable acceptance and rejection rates. If the rejection 

rate R'r was less than some minimum R4 , the 53  were multiplied by a scaling fac-

tor o to give larger jumps. If the rejection rate 7t, exceeded some maximum R.2, 

the 83  were divided by o to give smaller jumps. Typically, 	0.3, it2  '-.' 0.7 

and o ' 2. 
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D.4 Faster calculations 

Using interatomic potentials, a simulation with N interacting atoms requires N 

calculations of an rn-body term in the potential, thus the computational time 

scales like Ntm, making large calculations expensive. If the potential has finite 

range r 50 

V(r) 	0 	: 	r > r, 	 (D.14) 

then the total computational time can be reduced by splitting the spatial domain 

of the simulation into cells of size r or greater. When calculating the potential 

energy, the contribution from atom i in cell k involves a sum over only the other 

atoms in cell k and the atoms in the cells adjacent to k (Fig. D.1). In 3D 

with cubic cells, only theatoms in 27 cellsi need to be considered towards the 

contribution from each atom. The figure of 27 cells remains constant as the total 

number of cells - and therefore atoms - is changed. Thus the computational 

effort scales as N rather than Nm. 

II I kl 111111 
cell k 

neighbours of k 

Figure D.1. Decomposition of the region of simulation into cells of the range of 
the interatomic potential. 

Some book-keeping is required to keep track of the list of atoms in each cell, 

but this is straightforward if the cells have a simple shape. For instance, cuboids 

are convenient if parallel with the co-ordinate axes because the test if 'in-ness' 

is just that each component of an atom's position vector lies between the limits 
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corresponding to the extent of a particular cell. The procedure for updating the 

list of atoms can also be made efficient, by testing cells in the following order: 

The cell previously containing the atom. 

The 6 cells sharing a face with the previous cell. 

The 12 cells sharing an edge with the previous cell. 

The 8 cells sharing a corner with the previous cell. 

Cells in the next shell further out. 

etc. A simpler alternative method is: 

The cell previously containing the atom. 

The 26 cells adjacent to the previous cell. 

The rest of the cells. 

The list is updated every few iterations. If cells are made larger than r, then 

updates can be made less frequently. However, the number of atoms included 

in the calculation of each contribution to the potential energy is correspondingly 

greater. 

Periodic boundary conditions are straightforward to implement using this do-

main decomposition. 



Appendix E 

Crystallographic diffraction 

patterns 

Ed Introduction 

One of the theoretical techniques used in this project was the direct simulation 

of the motion of a collection of atoms, using molecular dynamics or Monte-Carlo 

methods to predict their evolution as a function of temperature. These simu-

lations produce a large amount of data, which can be difficult to interpret. In 

particular, it is difficult to discover by inspection of the positions of the atoms 

whether a phase transformation has occurred, because the new phase may not be 

aligned conveniently with the co-ordinate axes. 

An alternative technique used here is the prediction of the powder diffraction 

pattern which would be produced by the ensemble of atoms, assuming periodic 

boundary conditions. In the formation of a powder pattern, information on the 

orientation of individual crystals in the sample is lost. This can be viewed as a 

form of data reduction technique, as the resulting patterns can be analysed more 

simply than the atom positions themselves to identify the presence of common 

crystal structures. 

The theory of X-ray diffraction is usually presented with emphasis on the 

analysis of an experimentally-measured pattern to obtain an unknown crystal 

structure. Here we summarise diffraction theory from the point of view of the 

prediction of a powder diffraction pattern given the position of the atoms. The 

basic results employed have been published previously by other researchers [107]. 
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E.2 Scattering from a single atom 

A single isolated atom scatters photons with an intensity which varies with direc-

tion. For X-ray diffraction work, photon wavelengths are of the order of 1 A. In 

this regime, various simplifying assumptions can be made. Firstly, it is reason-

able to consider purely elastic phonon scattering. Secondly, the scattering effect 

is dominated by the electrons only, since the classical amplitude scattered from 

a point particle of mass m and charge q at a distance r is 

A0  q2  Ii + cos2  20 

T'IflCV 	2 

where A0  is the incident amplitude and 20 the angle between the incident beam 

(forward direction) and the scattered beam, and hence the contribution from the 

nucleus is much smaller. 

Scattering from a 'real' atom includes contributions resulting from the detailed 

orbital states of all the electrons. However, this can be estimated quite accurately 

from the charge density distribution, i.e. by integrating over the contribution from 

each point of space with its associated electronic charge density. Because of phase 

differences between scattering from different points, this results in a scattering 

intensity which varies with scattering angle. 

It turns out that the ratio between the actual scattering amplitude in a given 

direction and the value for a classical electron is modelled well by a function of 

sin 0/) (where .\ is the wavelength of the X-ray photons). This ratio is called the 

'atomic scattering factor', f, which varies from a maximum close to the atomic 

number Z for sin 0/.\ = 0. 

It should be emphasised that curves of f vary between elements and also 

states of a given element, e.g. different states of ionisation. 

E.3 Coherent scattering from a crystal 

Calculation of the coherent scattering of X-rays by a crystal is made simplest 

by considering the contribution from each lattice plane. In this instance, 'lattice 

plane' refers to planes oriented with respect to the Bravais lattice of repeating 

three-dimensional 'tiles' which make up the crystal. The effect of the lattice basis 

(the atoms which constitute the lattice cell) is taken into account later. 

It is conventional to represent each lattice plane by a set of integers (hkl). 
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The corresponding plane (passing through a set of lattice nodes) is that which 

intercepts the lattice vectors at a7h, b/k and h/I. (This notation is thus inde-

pendent of the relative orientations of the lattice vectors a, b and ö.) Given the 

contribution from a given lattice plane (intensity + angle), the contributions can 

be accumulated over all possible lattice planes, allowing a diffraction pattern to 

be built up. 

Any given set of lattice planes (hkl) will diffract photons if they satisfy the 

(Laue or) Bragg condition: 

= 2dhkl sin 0. 	 (E.2) 

The interplanar spacing dhkt  can be found as follows in the case of a general set 

of lattice vectors, not necessarily orthogonal or of equal length: 

b.c 
cos a = 	(similarly for 3, 'y) 

bIc 
ens A ens 'v - ens n' 

	

cos a* 	 i (similarly for 0* ,  *) 	 (E.4) 
sin 3 sin y 
1 

= 	 (similarly for b*, ) 	 (E.5) 
sin 3 sin 

a 
'*2 = h2Iã* 2  

	

hkl 	 + 2hIb*JI cos a* + corresponding terms 	(E.6) 
1 

dhkl = 
dhkl 

where a is the angle between lattice vectors b and 6, where a*  is the angle between 

reciprocal lattice vectors b*  and , and dkl  is the lattice spacing in reciprocal 

space. 

This analysis is valid for any lattice of repeating cells, whether or not they have 

a motif of several atoms. In general, the intensity of X-rays scattered by plane 

(hkl) is given by the sum over the scattering factors of the constituent atoms, 

taking into account the phase factor between radiation originating at different 

points within the lattice cell (which leads to systematic absences e.g. for BCC 

and FCC lattices): 

I = 	E f(0, )e2 	 (E.8) 
atoms i 

where P is the plane index (hkl), i'j the position of atom i in the lattice cell, with 

respect to the general lattice vectors a', b and - i.e. its absolute position with 

(E.3) 

(E.7) 
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respect to the origin of the lattice cell is 

= [i]+ []2g+ [i] 	 (E.9) 

- and f is the atomic scattering factor for atom i at angle 0 and photon wavelength 

A. 

E.4 Software implementation 

Software was written to implement all the physical processes described above, 

except for the classical electron scattering amplitude. For greatest flexibility, the 

computer program uses atomic scattering factors in tabular form. On calculating 

the intensity of reflection at any angle, the classical factor 

q2 	Cos 2  20 
r—iI (E.10) 

mc2 V 	2 

is omitted from the explicit formulation. If desired, it can be incorporated in the 

atomic scattering factor, or the output simply scaled. 



Appendix F 

Evaluating against experiment 

F.1 Introduction 

EOS generated by the theoretical methods described here are somewhat uncer-

tain because of the approximations, simplifications and finite-size effects used. 

Although the EOS could be adjusted to reproduce the results of experiments 

of arbitrary complexity, it is more useful to compare with data which tests the 

separate ingredients of the EOS and the way in which they are combined. 

F.2 Phonons 

The phonon dispersion relations w(k) and the density of phonon states g(w) can 

be measured by inelastic neutron scattering [40]. 

F.3 Fermi surface 

The shape of the Fermi surface can be obtained from de Haas - van Aiphen 

measurements of the magnetisation of materials at high field strengths [40]. This 

data provides a way of testing predictions of the electron band structure. 

F.4 Equilibrium density 

The density at STP can be obtained to great accuracy by a variety of techniques 

including immersion and X-ray crystallography. 
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For evaluating ab iritio EOS, it is very useful to have a measurement of the 

density or lattice constants near T = 0 (and p = 0 or 1 atm) to compare with the 

cold curve. This can be obtained by X-ray crystallography. 

F.5 Isotherms 

Isotherms can be measured conveniently by static press methods, such as the 

diamond anvil cell and multi-anvil press. The temperature can be controlled most 

easily by holding the apparatus in thermal equilibrium at the desired temperature. 

The lattice type and parameters can be measured by X-ray or neutron diffraction. 

These methods generally rely on a calibrant to determine the pressure. The 

calibrant may be a material of known compressibility whose lattice parameters 

are measured along with those of the sample of interest, or a material with a 

known relation between pressure and optical properties, such as the wavelengths 

of the optical resonances in a ruby. 

F.6 Shock Hugoniots 

A shock wave is a moving interface between regions of different thermodynamic 

state. The region ahead of the shock has a density po,  specific internal energy e0  

and therefore pressure po and temperature To, and moves with a velocity 17 which 

can be taken to be zero by a Galilean velocity transformation. The region behind 

the shock has a density p1,  specific internal energy e1  and therefore pressure p1 

and temperature T1, and moves with a velocity 6,, where 

Ujt10+U, 	 (F.1) 

where C is parallel to the direction of propagation of the shock wave. The shock 

wave can be thought of as the interface between undisturbed material and mate-

rial pushed by a piston moving at a constant speed. (Figs F.1 and F.2.) 

Considering a shock wave as a discontinuity between material in different 

states (p, e, up) (where u is the material velocity), conservation of mass, momen-

tum and energy across the shock leads to the Rankine- Hugoniot equations linking 
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undisturbed material 
T,  p0  

shocked material 
T.1, 	 (stationary: u 0= ° 

U1  > 0 	 direction 
of motion 

shock wave 

Figure F.1. Idealised shock wave. 

the states on: either side and the shock velocity u3: [1] 

= v PO 	 (F.2) 

up 	[(ppo)(vo -v)] . 	 (F.3) 

1 
e = eo+(p+po)(vo—v) . 	 (F.4) 

where subscript '0' denotes material ahead of the shock (with u = 0). Given the 

EOS p(v, e) this set of equations can be closed, allowing the Hugoniot (locus of 

states reached from the initial, state by a single shock) to be calculated. Alterna-

tively, the measurement of two quantities in a steady planar shock is sufficient to 

determine the full mechanical state 

It is possible in principle to measure the density and pressure of the shocked 

material directly. The density can be determined from radiography, inferring the 

areal mass over each point in the radiograph from the attenuation of a photon 

signal. Various types of pressure gauge have been devised, based on the variation 

of resistance 'with compression in a wire embedded in the sample, or piezoelec-

tricity. Howeveri  the most accurate measurements are usually the shock and. 
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I undisturbed material 
(stationary: u = 0) 

: 

shocked material 	 0 
speedu. 1 	 direction 

of motion 

speed u 

piston 
speed u1 	shock wave 

Figure F.2. 1D shock wave produced by a piston. 

particle speed. The shock speed can be determined from the rate at which it 

emerges over an angled surface; the particle speed from the time taken to cross: 

a gap or by the Doppler shift of laser photons reflected from the free surface. 

The pressure and density can be deduced from the shock and particle speeds, 

using the Rankine- Hugoniot relations (in effect assuming that the deformation is 

hydrostatic): 	 : 

P = 	
PO 	 (F5) 

P = p0 + otLpU s . . 	 (F.6) 

Since shock waves at least commence by a uniaxial deformation of each el-

ement of material, the pressure and internal energy:  in materials with a finite 

shear modulus will include non-isotropic contributions from the stress tensor: 

p = —Tr cr/3 [108]. The strain c caused by a uniaxial compression is of the order 

of twice: the compression (p0/p - 1), depending precisely on the model of finite 

strain taken.. The shear modulus of for example aluminium is of the order of 

30 GPa [109], but the effect of strength is limited by the onset of plastic flow with 

a stress of between about 40 and 500 MPa for quasistatic yield [109]. The flow 

stress depends on the compression and loading rate among other things, so it 

can be difficult to disentangle the effects of anisotropic stress from hydrodynamic 
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compression. Because static yield points fall in this relatively low stress range, 
strength effects are usually neglected in analysing Hugoniots [1]. (The validity of 
this approximation is a possible area for future work.) 

Given an EOS of the form p(p, e), the shock Hugoniot from the state (PO'  eo) 
can be constructed as follows: 

Choose a set of values of p at which to calculate the Hugoniot. Note: for 
'normal' materials (for which Op/ôp> 0) p  must be greater than po  for a 
shock wave to exist. 

For each p (in increasing order), increase e until p from the EOS equals p 
from the Rankine - Hugoniot equations, to some reasonable accuracy. If p 
is spanned in increasing order, then the lower limit for e is the value at the 
next larger (i.e. the previous) value of p. e can thus be found by increasing 
from the previous value until PEOS - PRH changes sign, and then finding 
the zero of this function by bisection. 



Appendix G 

Empirical equations of state 

G.1 Introduction 

Empirical EOS assume a functional form, where the parameters are optimised 

to reproduce a set of experimental data. The form of an empirical EOS often 

reflects the data to which it is fitted. 

For shock wave work a convenient source of data is the measured relation 

between shock speed u3  and particle speed u. These parameters are often easiest 

to measure in an experiment. 

G.2 Grüneisen 

Grüneisen EOS comprise a functional fit to a reference curve and a model of the 

mechanical properties away from the reference curve. The Steinberg form of the 

Griineisen EOS [70] comprises a polynomial fit to the shock Hugoniot in u3  - 

space, 
N 

 
i=O 

and an assumed variation of Griineisen's 'y  [40] 

'Yo + bp 	
(G.2)  

1 +it  

where 

(G.3) 
P0 
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This leads to a mechanical EOS 

02 	
- ft 

 

if poCf [i + (i 

-- ) 

	

____  

	
-+ (o + bt)e 	: 	> 0 	

(G.4) 

'Yo 	b 2 I 

FN 	P   p(p, = 
	1 - - 	( i + i)i_1 	

: i < 0 pocf2 + 'yoe 

Given an independent method for obtaining the cold curve (such as a the-

oretical calculation), the Grüneisen parameter -y(v) can be deduced using the 

Dugdale- MacDonald relation [19, 16] 

	

- 	V2 
P/1/2  + vp + PcI 9  (G.5) 

	

- 	vp+2p/3 

where priming denotes differentiation with respect to v. 

G.3 Murnaghan 

The Murnaghan EOS has the form 

	

P  = 	
po 

1() 
- I 	

(G.6) 
Ti [  

where If, is the equilibrium bulk modulus. This EOS is a function of p only - it 

does not take account of thermal excitations. 

G.4 Rose 

The Rose universal' EOS form [15]i  has the form 

P = 	
—3Kg (v/v0)'!3 - 1(1 - 0.15a + 0.05a2 )e_a, 	(G.7) 

(v/v0 ) 2!3  
rws - 

a = rw6s (G.8) 
I 

rrrvs  

'Eq. 1.15 of this reference, defining p(v), appears to be wrong by a factor -1. 
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Thermal contributions can also be included; these were not needed for the present 

work. 

G.5 Bushman et al 

The EOS used by these Russian workers [110] has the form 

I 
—a2cr3 	 :a>

P VO 

( Vj 

= 	--A (am  - 	+ B 
(n - a1) otherwise 	

(G.10) 

V0 

a 	vo/v, 	 (G.11) 
1 	

1
1) 

{B 	 + 1 
	

(G.12) 
M 	

( 	
fl 	Voc 	I 

where voc  is the equilibrium density at absolute zero and e3  the sublimation 

energy. Thermal contributions can also be included; these were not needed for 

the present work. 

G.6 Schulte and Holzapfel 

The H11 form of EOS [111] is 

P = p0 x 5(1 - x)e 	 (G.13) 

X 
	(v/v0 )

1/
3 	 (G.14) 

c = ln(po /3Ke ) 	 (G.15) 
Z 5/3 

Po = a 
(VWS
- 	 (G.16) 

J 
a = (32)2/3h 	

(G.17) 
5m, 

V5 = ma /Po 	 (G.18) 

where ma and m are the mass of an atom and an electron respectively. This 

EOS is a function of p only - it does not take account of thermal excitations. 



Appendix H 

Modified Gram - Schmidt 

Ort hogonalisation 

H.1 Introduction 

Often in mathematics it is desirable to orthogonalise a set of functions. This 
occurs in data fitting for example, when fitting may not work well for the original 
set because changes to one function affect another, or when adding another non-
orthogonal function requires the whole least-squares process to be repeated. The 
Gram - Schmidt method [47] is one possible and effective way of creating an 
orthogonal set of functions (or vectors) from a non-orthogonal set. 

For example, the set of polynomials Xt  are not orthogonal. If you find the 
coefficients for best-fitting straight line to some data and then decide to increase 
the accuracy of the fit by adding a term in x2, the coefficients of the straight 
line will change. If on the other hand you used the Chebyshev (or Tschebycheff) 
polynomials, which are orthogonal, adding higher-order terms leaves the old terms 

unaffected. 
The Gram - Schmidt method allows any set of functions to be combined into 

orthogonal forms. This note describes a modified form of the Gram - Schmidt 
method which is more efficient and easier to code than the straightforward form. 

11.2 Scalar product and orthogonal functions 

The scalar product of two functions 01  and 02  is the integral of their product 

over some space for which both are defined. The space could be for x E [0, 1] C 7 

212 
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(a continuous interval), giving a scalar product 

(1I2) = fo Ot (X) 02 (x) dx; 	 (H.1) 

or for x = {x : i E [1, 3] C I} (a set of ordinates), giving a scalar product 

(1I2) = 	1(x2(xi). 	 (H.2) 

Just like orthogonal vectors, orthogonal functions are ones with zero scalar 

product. Given a set of functions ./'j, they are orthogonal if the matrix of scalar 

products (i0) = diagA, i.e. all zero apart from the main diagonal of terms 

of the form (YjYj) = X. They are orthonormal if all the Ai  = 1. 

If the Oi  are not orthogonal, the matrix (bibJ) will have off-diagonal terms. 

H.3 Gram - Schmidt method 

The essence of the Gram - Schmidt method is to take each function from the 

non-orthogonal set { O j  } in turn and subtract off enough of all previous functions 

to make it orthogonal to them. In this way, an orthogonal set {ç}  is created. 

In practice, the method works as follows: 

(H.3) 

= 	 (11.4) 

By considering ( j çb) and (Jj), it is easy to show that these functions 

are orthogonal. 

The problem with this method as it stands is that to calculate each qj for i > 1 

requires knowledge of all qj for j = 1 to 1 -  1. This is easy enough when working 

with explicit functions on paper, because each O j  has already been written down in 

terms of the original functions. However, when solving the problem numerically 

on a computer, this algebra cannot be performed easily. Each O j  is expressed in 

terms of all previous cbk  for k = 1 to j - 1, each of which is itself expressed in 

terms of all previous 01  for I = 1 to k - 1 and so on. Therefore, calculating any 

reasonably large number of functions involves a huge recursion. 
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H.4 Modified method 

A more compact method of calculating the functions is to make use of the obvious 

statement that the orthogonal set is a linear combination of the functions in the 

original set: 

(H.5) 

for some transformation matrix a. For brevity and since it can be calculated 

from the outset, we define the scalar product matrix of the original functions: 

	

Sij = ( b). 	 (11.6) 

Substituting into the Gram - Schmidt scheme, we find 

(qj 	i) 	- 	jkI-'k cj1'/)1 k/i) 	 (H.7) 
=i (çbjçbj) - j,k,1=1 	(iI.i) 

i-i 

	

aka () 	 (H.8) = 

	

k=1 ,1=1 	
1 	

k 
 

/3ikI-'k 	 (11.9) 

where 

Su   >: 	akc1() 	: i > k 	
(H. 10) ik 	0 	 :i<k 

so 

Oi =aijoj= 	- Ajoj  = (S - / 3jj)'j 	 (H.11) 

and 

aij =sij - 3. 	 (H.12) 

In short, the matrix ,3ij  collects all the recursions in terms of the original 

functions. Note that cj is lower triangular with ones on the main diagonal. 
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The norm of the orthogonalised functions is 

(cbjkbj) = 	 (H.13) 
k,1=1 

This method works because the original functions are added one at a time. 

This is why ajj is lower triangular, and means that row i of /3 depends only on 

rows 1 to i—i of a. Row i of a and /3 and also element i of (j qj) are independent 

of higher rows and elements, so incomplete matrices can be used to calculate qj. 

The modified method is therefore: 

calculate Sij  

set 01  = ,01 so that all  = 1 and (qii) = S11. 

calculate the next row of /3jj and hence at j from the previous row(s). 

calculate the value of (jqj)  for use in row i + 1 and later 

Repeat final two steps for the rest of the original functions. 

Note that the only place where the Oi  come in is in calculating S. This 

method works equally well for orthogonalising a set of vectors {}, with the 

elements Sjj  found from 

Si j  = 

A subroutine was written to implement this scheme, calculating the transfor-

mation matrix aij  given S, from whatever source. 
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