

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

EVALUATION OF FUNCTIONAL DATA MODELS

FOR DATABASE DESIGN AND USE

by

KRISHNARAO GURURAO KULKARNI

Ph. D.

University of Edinburgh

1983

To my wife, Rama

and

daughter, Bhuvana

Acknowledgements

I am deeply indebted to my thesis supervisor, Dr. Malcolm Atkinson, for his constant
guidance, help, and encouragement. for his highly incisive comments on the writing of this

thesis, and for a host of other reasons. It is indeed a great pleasure to acknowledge his

contribution. I am also greatly indebted to Dr. David Rees, who supervised me during the

initial six months. His help and guidance during that time was invaluable.

I am thankful to many of my friends In the Department for their kind advice from time to

time. In particular, I would like to thank Paul Cockshott, Ken Chisholm, Pedro Hepp, Segun
Owoso, George Ross, and Rob Procter for many useful discussions. I am also thankful to

Moira Norrie for many useful comments on the content of this thesis.

I am also thankful to many of the database researchers outside Edinburgh for their advice

and comments. In particular, I would like to thank Dr. Peter Gray from Aberdeen, Dr. Peter

Stocker from East Anglia, Dr. Ron Morrison from St. Andrews, and Dr. Jochim Schmidt from

Hamburg.

My thanks go also to the Department of Computer Science at the University of Edinburgh for
providing the necessary resources to conduct this research, to the Commonwealth Scholarship

Commission in the United Kingdom for awarding me a scholarship which provided the
necessary financial support during the entire study period, to the Ministry of Education,

Government of India, for selecting me for the award and to the authorities of Indian

Telephone Industries Ltd. , Bangalore, for granting the study leave.

This research was greatly helped by the PS-algol project and my thanks go to all involved in

it. PS-algol project was partly funded by SERC grants GRA86541, GRC21977 and GRC21960

and a grant from ICL.

Abstract

The problems of design, operation, and maintenance of databases using the three most

popular database management systems (Hierarchical, CQDASYL/DBTG, and Relational) are

well known. Users wishing to use these systems have to make conscious and often complex

mappings between the real-world structures and the data structuring options (data models)

provided by these systems. In addition, much of the semantics associated with the data

either does not get expressed at all or gets embedded procedurally in application programs in

an ad-hoc way.

In recent years, a large number of data models (called semantic data models) have been

proposed with the aim of simplifying database design and use. However, the lack of usable

implementations of these proposals has so far inhibited the widespread use of these concepts.

The present work reports on an effort to evaluate and extend one such semantic model by

means of an implementation. It is based on the functional data model proposed earlier by

Shipman[SHIP81). We call this 'Extended Functional Data Model' (EFDM).

EFDM, like Shipman's proposals, is a marriage of three of the advanced modelling concepts

found in both database and artificial intelligence research: the concept of entity to represent

an object in the real world, the concept of type hierarchy among entity types, and the

concept of derived data for modelling procedural knowledge. The functional notation of the

model lends itself to high level data manipulation languages. The data selection in these

languages is expressed simply as function application. Further, the functional approach makes

it possible to incorporate general purpose computation facilities in the data languages without

having to embed them in procedural languages. In addition to providing the usual database

facilities, the implementation also provides a mechanism to specify multiple user views of the

database.

Table of Contents

Table of Contents

1. Introduction
1.1 Motivation
1.2 Overview of the Thesis

2. Background
2.1 Preliminary Definitions
2.2 Development of the Conceptual Model
2.3 Roles of the Conceptual Model
2.4 Data Models
2.5 Structures

2.5.1 Entities
2.5.2 Designation of Entities
2.5.3 Entity types
2.5.4 Type Hierarchy
2.5.5 Attributes and Domains
2.5.6 Relationships
2.5.7 Entity Types, Attributes, Relationship Types
2.5.8 Time
2.5.9 Conceptual Data Modelling and Knowledge Representation

2.6 Operations
2.7 Rules

2.7.1 Derived Data
2.7.1.1 Classes of Derived Data
2.7.1.2 Applications of Derived Data

2.7.2 Constraints
2.8 Requirements of Data Models
2.9 Classical Data Models

2.9.1 Assessment of Classical Data Models
2.10 Conclusions

3. Semantic Data Models
3.1 Extensions of Classical Data Models

3.1.1 Role Model
3.1.2 Basic Semantic Model
3.1.3 Entity-Relationship Model
3.1.4 Structural model
3.1.5 Abstraction and Generalisation
3.1.6 Extended Relational Model

3.2 Other Data Models
3.2.1 Data Semantics
3.2.2 Data Independent Accessing Model
3.2.3 Binary Relational Models
3.2.4 Object-Role model
3.2.5 Functional Data Models

3.2.5.1 Functional Database Model
3.2.5.2 Functional Dependency Model
3.2.5.3 Functional Data Model (Buneman and Frankel)
3.2.5.4 Functional Data Model (Shipman)
3.2.5.5 Functional Data Model (Katz and Wong)

i

1

2
4

6

25

25
26
26
27
27
27
27
28
28
29
29
30
30
30
31
31
32
32

Table of Contents

3.2.6 Semantic Data Model
3.2.7 Semantic Hierarchy Model
3.2.8 Semantic Network Data Models

3.2.8.1 TAXIS
3.2.8.2 Semantic Binary Relationship Model

3.3 Assessment of Semantic Data Models
3.4 Assessment of Functional Data Models
3.5 Conclusions

4. Functional Data Model
4.1 Structures

4.1.1 Entity Types
4.1.2 Functions
4.1.3 Type Hierarchy
4.1.4 Base and Derived functions
4.1.5 Function Names
4.1.6 Order
4.1.7 Entity Diagram

4.2 Operations
4.2.1 Data Definition
4.2.2 Data Selection and Retrieval

4.2.2.1 Set Expressions
4.2.2.2 Singleton Expressions
4.2.2.3 Aggregate functions
4.2.2.4 Specifying the Expression Role

4.2.3 Database Updating
4.2.3.1 Creating a new entity
4.2.3.2 Assigning or modifying function values

4.3 Derived Functions
4.4 User Views

4.4.1 Operations from Views
4.5 Constraints
4.6 Assessment of Shipman's Proposals

5. Extended Functional Data Model
5.1 Structures
5.2 Operations

5.2.1 Data Definition
5.2.2 Maintaining Schema Consistency
5.2.3 Schema Updating
5.2.4 Meta Data
5.2.5 Data Selection and Retrieval
5.2.6 Packaged Queries
5.2.7 Displaying the Results
5.2.8 Database Updating

5.2.8.1 Extending the set of types of an entity
5.2.8.2 Reducing the set of types of an entity
5.2.8.3 Entity Deletion

5.3 Derived Functions
5.4 User Views

5.4.1 Operations from Views
5.5 Constraints

5.5.1 Constraints on entity identification
5.5.2 Constraints on entity associations
5.5.3 Constraints on the values of the functions
5.5.4 Constraints on cardinality
5.5.5 Constraints on existence

5.6 Comparison with ADAPLEX

6. Implementation of EFDM
6.1 Brief History
6.2 PS-algol Language
6.3 Architecture of EFDM
6.4 Data Structures
6.5 Problems due to Large Data Volumes

7. Applications of EFDM
7.1 Organising small personal information systems using EFDM

M

84
84
85
89
91
94

95

95

Table of Contents iii

7. 1. 1 Designing the Schema 97
7.1.2 Setting Up the Database
7.1.3 Using the Database
7.1.4 Maintaining the Database

7.2 Designing prototypes of large database systems using EFDM

99
100
100
101

8. Directions for Further Research 104

8.1 Deferring View Updates
8.2 Implementing Transactions
8.3 Views with Memory
8.4 Query Optimisation Issues
8.5 Derived Data Control
8.6 The Search for a Uniform Language

104
105
106
107
109
110

9. Conclusions 112

9.1 Summary of the Research 112
9,2 Contributions of the Research 115

Appendix A. DAPLEX Syntactic Specification 117

Appendix B. EFDM Syntactic Specification 119

Appendix C. Functional Specification of EFDM 121

Appendix D. Schema for University Administration 123

References 127

List of Figures

List of Figures

iv

Figure 4-1: Functional Schema for a Student Database 46
Figure 4-2: Entity Diagram for a Student Database 50
Figure 4-3: Relational Schema for the Student Database 61
Figure 5-1: Partial Entity Diagram for Student Database 70
Figure 5-2: The functions to hold meta data of a schema 71
Figure 5-3: The derived functions for querying meta data 72
Figure 5-4: The functions to hold meta data for queries 73
Figure 5-5: The functions to hold the meta data for views 77
Figure 6-1: Block Diagram of EFDM Implementation 90
Figure 6-2: Data Structure for Entities 92
Figure 7-1: Schema for the Paper Database 98
Figure 7-2: Derived functions for the Paper Database 98

Ust of Tables v

List of Tables

Table 3-1: Assessment of Semantic Data Models 37

Introduction 1

Chapter One

Introduction

This thesis is concerned with the evaluation of functional data models for database design

and use and in particular with the implementation of one variant of the functional data model,

proposed earlier by Shipman [Shipman 81]. The implementation termed Extended Functional

Date Model (EFDM) system, can be used as a tool for organising small database systems or

as a prototyping tool for designing large database systems. The data model underlying EFDM

incorporates many modifications which attempt to correct as well as improve some aspects of

the data model proposed by Shipman. The implementation of EFDM is done using a novel

programming language called PS-algol (Atkinson 81a], which has data persistence built into it

as an orthogonal property of the data.

EFDM provides for an interactive language interface which is again based on the DAPLEX

language proposed by Shipman. This interface allows for interactive creation, retrieval, and

modification of both structure and contents of the databases modelled using this data model.

It also provides tools to check for consistency of the schemas so designed. A notable feature

of the implementation is the way it handles general-purpose computation. In contrast to the

current approach of embedding query languages in a compile-and-run procedural languages,

we have chosen to extend the DAPLEX language itself in an applicative way, A number of

database applications have been developed using this implementation. As far as we know, this

is the only complete and interactive implementation of the functional data model.

Introduction 2

1. 1 Motivation

Most of the data-intensive applications benefit immensely from a database management

system (DBMS) to manage the associated collection of data, i.e., the database. Until a few

years ago, the large computing costs associated with the database technology had made it

beyond the reach of many users. However, the situation is changing as the computing costs

are rapidly going down. It is no longer the case that the volume of data has to be massive

before justifying the use of a database. This has in turn resulted in increased demands on

the database management systems. In addition to the tasks related to storing and retrieving

data, a DBMS is also expected to perform other functions which are presently done by system

modules other than DBMS. Such functions include transaction management, exception handling

and checking for consistency of the data as it is updated.

However, the three most popular types of database management systems, i . e . ,

hierarchical, CODASYL/DBTG, and relational, are proving to be inadequate for meeting these

increased expectations, It is difficult as well as time consuming to implement database

systems using these DBMSs. Current state-of-the-art methods for database design are

essentially trial-and-error, supported by neither a scientific foundation nor an engineering

discipline [Yao 78a]. These DBMSs lack tools for the users to express their requirements in

as natural a way as possible, to translate those requirements into an effective design, and to

adapt the design to new and/or changing requirements [Fry 78], Users wishing to use these

systems have to make conscious and often complex mappings between the real world

structures and the data structuring options (data models) provided by these systems.

In addition, the data models provided by these systems are essentially syntactic, i.e., the

data model structures do not explicitly contain any real-world meaning. Much of the

semantics associated with the data either remains unexpressed or gets embedded procedurally

in application programs in an ad-hoc, distributed and often repeated way. Consequently, it is

difficult for the users to interpret the information contained in such databases. The less

explicit the meaning of data, the greater the likelihood that its significance will be

misunderstood.

Using such systems poses another set of difficult problems, Even simple applications

demand the services of expert programmers and the programs are invariably complex, difficult

to design, implement, and maintain, Changes in requirements of the enterprise often cause

massive re-programming, In addition, current database management systems assume little

Introduction 3

responsibility for maintaining the consistency of the data they manage. The fact that data

Integrity is required to be enforced by measures outside the DBMS leads to an immense

software maintenance/ management task whose cost increases much faster than the number of

applications.

These deficiencies have triggered intense research work in the data modelling area. Data

modelling has been one of the major themes of database research for more than ten years

[Kerschberg 76, Tsichrtzis 82]. Various researchers have proposed either extensions to

existing models or a number of new semantic data models. Basically, these models aim to

capture, in a more or less formal way, the meaning of the data so that database design can

become systematic and the database itself can behave intelligently. They do this by modelling

the information in terms of irreducible objects or entities as well as by providing constructs to

show more of the relationships between data objects and the permissible operations upon

them. Consequently, semantic models have the inherent ability to support high level query

languages as well as to respond to queries and other transactions in a more Intelligent

manner [Codd 79].

However, most of the new data models proposed in the literature are incomplete in the

sense that they are concerned primarily with modelling database structure while significantly

less attention is paid to the operators or manipulation aspects of the data they attempt to

describe. To be usable, it is most critical for a data model to have a consistent, complete,

and simple set of operations on the data it models. The quality of the data model cannot be

assessed independently of this set of operations.

In addition, most of these data model proposals are not followed up with actual

implementations and consequently work on the tools for designing or maintaining the databases

based on these models is almost non-existent. It is difficult to determine the efficacy of a

data model without using it in anger over a range of applications. An Implementation, by

allowing the users to actually experiment with the concepts, can draw attention to the power

of the model much more effectively.

It is in this context that the implementation and evaluation of a semantic data model

assumes significance. The work reported here is such an attempt. The principal reasons for

choosing the functional data model proposed earlier by Shipman [Shipman 81] for this task

are its powerful data structuring facilities, the set of operations it provides, and its simplicity.

The data structuring facilities of this model are based on three of the advanced modelling

Introduction 4

concepts found in both database and artificial intelligence research, the concepts being: object

orientation, type hierarchy, and derived or virtual data. By object orientation we mean the

ability to distinguish objects from their external names. By type hierarchy we mean the ability

to describe objects at different levels of abstraction. By derived data we mean the ability to

treat procedural knowledge or rules about the application domain as part of the data.

This data model also meets another of our important criteria, i.e., a complete set of

operations on the data it models. The functional orientation makes it possible to express data

selection in a most natural way as function applications. The object orientation provides natural

units for update and because of this, the referential constraints [Date 81] are automatically

supported.

The most attractive feature of this model, however, is its simplicity and the uniformity of its

notation. It provides a semantically rich modelling power with just two concepts, i.e., entity

and function.

Hence, the major goal of this research was to examine the usefulness of Shipman's

proposals by an actual implementation and suggest a list of explicit modifications required to

make the model and the language usable by a wide variety of users like database designers,

database adiministrators, and end-users.

1. 2 Overview of the Thesis

Chapter 2 represents the author's own perception of the published research material on

conceptual modelling of databases. It starts with the discussion of the elements considered

important for conceptual modelling of real world applications in the context of databases. It

also lists a set of criteria for assessing a particular data model proposal. This chapter also

considers the classical data models in the light of criteria described earlier and points out a

number of problems which make them inadequate for the purpose of conceptual modelling.

Chapter 3 describes, albeit very briefly, twenty one of the semantic data model proposals

and provides a rough assessment of these based on the set of criteria mentioned above.

Chapter 4 discusses the functional data model as proposed by Shipman and shows how it

meets the above set of criteria.

Chapter 5 describes the underlying model of our implementation, EFOM, concentrating on

the modifications and extensions we have made to Shipman's proposals.

Introduction 6

Chapter 6 briefly discusses the persistent algorithmic language PS-algol and the issues

connected with the actual PS-algol structures used for implementing functional model

constructs.

Chapter 7 discusses a few applications of the EFDM. In particular, we show how it provides

a flexible DBMS environment by means of an example. We demonstrate how to design, set

up, operate, and maintain a personal DBMS using the facilities offered by EFDM. We also

show how it can be used as a prototyping tool for designing large database systems.

Chapter 8 discusses some of the topics for further research suggested by our work. We

also discuss a few of the weaknesses of our system and suggest a broad line of attack for

solving some of these problems.

Finally, chapter 9 summarises the important lessons learned from this research.

Background 6

Chapter Two

Background

This chapter establishes the broad context in which the work reported in this thesis fits,

i.e., the conceptual data modelling. That is, to capture and identity the relationships

between the data In the database and the corresponding objects and behaviour in the real

world. For database technology to be used effectively, there is a need for understanding and

visualising the data and the information they represent. Conceptual data modelling is

concerned with this need.

We start this chapter with some preliminary definitions and the research leading to the

three schema architecture proposal by ANSI SPARC. We then give a putative definition of the

data model which acts as a tool to design the conceptual model of a database. We provide a

detailed discussion of the data model elements. We identity a set of requirements which a

data model should satisfy in order to be considered for the purpose of conceptual modelling.

Against this set of requirements, we examine the data models underlying the contemporary

database management systems.

2. 1 Preliminary Definitions

An information system is a means of supplying the information needed by an organisation.

An information system receives the information, stores it, processes it, and provides access

to it at the request of the users. When information is to be stored and processed, it needs

to be coded into some descriptive form. Such coded information is called data. A collection

of data stored on a physical media is termed database. A database system is an information

system involving four major components: database, hardware, software, and users. Users

interact with the data in the database through a number of user interfaces.

Background 7

Data as stored in a database have a certain physical organisation on physical storage media

and a certain logical organisation as seen at the user interface. It is important to insulate the

users from the physical aspects so that they are not distracted by the details of physical

storage and are not inconvenienced if it is changed. A database management system (DBMS)

is a general-purpose tool that accommodates the logical structuring, physical storage, and

control of data, and provides a number of user interfaces,

An application system or an application is a part of the database system that generates the

information required to serve a specific component of an organisation, e.g., accounting. A

view is a part of the database as seen by a processing activity of the application system to

perform a specific function, e.g., accounts payable, accounts receivable, etc.

Databases are primarily concerned with the structured or formatted data, i.e., many

instances of data possess sufficient similarity to classify them into a class or category. This

makes it possible to separate the description of the data from the actual data. The rules that

the instances of a class are expected to obey are specified once, in a schema. Hence, the

schema contains the description of the data.

2. 2 Development of the Conceptual Model

The evolution of database systems from primitive file systems organised sequentially on

magnetic tapes to sophisticated systems using direct access storage technology has been well

documented elsewhere [Fry 76, Atkinson 79]. It was characteristic of the early database

management systems that the user had to view and manipulate the data structures in the

configuration in which they are physically stored. Thus the user was forced to deal with

aspects of physical data organisation, pointers, index tables etc., which, although important

for machine efficiency, are irrelevant to the user's understanding of the data. Any alteration

of that organisation in order to improve efficiency necessarily involved considerable

reprogramming effort.

An important landmark in the development of DBMS was the attempt by the CODASYL

Database Task Group (DBTG) to identify a system based on a network model of data

[CODASYL 71]. It recognised the value of explicit data description and suggested a DBMS

structure which separated the logical structure from the physical structure of the data. It also

recognised the fact that a database system needs to support many different views of the same

database. However, the structure proposed by the CODASYL committee did not make a

complete distinction between the logical and physical aspects.

Background 8

It was the relational model of data proposed by Codd [Codd 70] which allowed a description

to be made exclusively in terms of logical aspects of the data. Further research in this area

has culminated in the ANSI SPARC report [ANSI 75, ANSI 78], which introduced a new

component into the model of the databases called the conceptual schema or the conceptual

model, and their model of a database system is known as a three-level model. The three

levels in the ANSI SPARC report refer to:

1. external level which deals with the model of the real world as seen by an

application;

2. conceptual level which deals with the model of the real world maintained for all

applications;

3. internal level which deals with the physical data maintained for the representation

of the conceptual model.

A fundamental concern behind this proposal is the notion of data independence. Because of

the separation between the conceptual and internal levels, effects due to changes in physical

organisation can be minimised (physical data independence). Similarly, because of the

separation between external and conceptual levels, an application's view is insulated from

changes in the schema of a database (logical data independence). However, ANSI proposal

makes no attempt to define the precise formalisms for the description of the conceptual

model, the description of mappings from one level to another, or the required transforms to

translate the actions at one level to those at another.

2. 3 Roles of the Conceptual Model

As seen above, it is the conceptual model of a database described in logical terms which

represents the information content of that database. It records as precisely, clearly and

unambiguously as possible the intended semantics of the data. Bubenko [Bubenko 80a] lists

the following two main uses of the conceptual model:

1. To act as a basis for discussions and negotiations about how to abstract reality

and which assumptions and rules to build into the model. This includes the

problem of 'integrating' the requirements and 'views' of various information

consumers.

2. To constitute part of a basis for the design of an efficient computer based

information system including structuring of its database.

Background 9

2. 4 Data Models

A data model is the primary tool for designing the conceptual model of a database. The

basic components of such a data model include a set of rules to describe the structure and

meaning of data in a database and the atomic operations that may be performed on the data

in that database. Thus, a data model M can be defined as consisting of two parts: a set of

generating rules, G, and a set of operations, 0 [Tsichritzis 82].

G defines the allowable structures for the data as a set of schemas S. The set of

generating rules G can be partitioned into two parts: the structure specification G. and the

rule specification Gr. The generators Gs generate the categories and structures of a schema

and the generators Gr generate the inferences and the constraints associated with a schema.

A schema S therefore consists of two parts; a structure part Ss and a rule part Sr. The

rule part Sr further consists of an inference part SI and a constraint part S
c

S i is a list of

inference rules that allow one to deduce or compute facts from others. Sc is a list of explicit

constraints that should not be violated.

As well as explicit constraints, a data model can also provide inherent constraints. Inherent

constraints can be associated with a data model by incorporating them in the structure part

Ss, i.e., the structure by its own definition can disallow certain structure instances.

There are many different databases O in terms of occurrences which can correspond to the

schema S. A database state D8S corresponds to a particular database occurrence D. The set

of operations of a data model 0, called a data language, defines the allowable actions that

can be performed on a database occurrence DI to arrive at another database occurrence Dj,,

i.e., each operation 0 maps one database state to another database state 0: DOS7 ->

D8S2.

2. 5 Structures

In discussing information structuring, we find that there is still no mathematically accurate

theory with well defined terms and concepts. Notable work in this area is reported by

Langefors [Langefors 66], Senko [Senko 73], Sundgren [Sundgren 74], Abrial [Abrial 74],

Smith and Smith [Smith 80a], Bubenko [Bubenko 80b], and more recently by the

International Organization for Standardization (ISO) [ISO 82]. Unfortunately, all of them have

adopted their own terminology. Here, we shall employ popular informal terms like "entity",

"entity type", "attribute", "relationship" etc, to describe the structure and the semantics of

information.

Background 10

2.5.1 Entities

An entity can be loosely defined as a thing that exists and is distinguishable [Senko 73, Hall

76a). Examples of entities are person named John, department named Computer Science,

university named University of Edinburgh etc.

Some entities correspond to real world objects while some entities are used as names for

something else. The latter are distinguished by having a lexicographic representation, i.e.,

each such entity is represented by a printable token for itself. For example, strings, integers

etc. We call these lexical entities.

2.5.2 Designation of Entities

When an entity is entering the "perception field" of the model it must identify itself as a

new entity or an already known entity. An easy way to do it is to give a name to any entity

which identifies it without ambiguity. For example, a social security number for a person or a

number for a car. This approach is found to have many disadvantages [Kent 78):

1. An entity may not have any unique name and still be distinguishable.

2. An entity may have more than one unique name.

3. An entity may change its name over a period of time.

Hence, the unique designation of entities should be the responsibility of the conceptual

model. Abrial proposes that each newly created object be assigned an internal name that is

guaranteed to be unique [Abrial 74]. Hall et al. [Hall 76a] use the term surrogates for such

internal names. Such surrogates are characterised by the fact that they are not accessible to

the users. Entities can, of course, have other user-controlled unique names.

2.5.3 Entity types

Certain objects in the real-world invariably share some common properties. For example, all

persons have the properties like name, address, age etc. An entity type or a category is a

conceptual representation that corresponds to a categorisation of real world objects based on

some common characteristics shared by them. As Senko, et at. [Senko 73) note,

recognising and taking advantage of the distinction between entity types (such as sets of

objects) and entities (such as individual objects) offers great power in building database

Background 11

systems. Since information that is common to all instances of a collection is placed into type

descriptions, the concept of entity type provides a powerful method of organising, simplifying,

and condensing the information about groups of objects.

A strict categorization of objects is not always possible in practice [Kent 78, Kent 79].

For example, the same person may be an employee, a stock holder, a customer etc.

Hence, an entity can be a member of more than one entity type, i.e., the extensions of

different entity types can overlap. This corresponds to the idea of roles proposed in the

context of semantic networks [Hayes 77]. A similar idea of roles was introduced by Bachman

and Daya n data models [Bachman 77].

2.5.4 Type Hierarchy

Often, certain objects may share only some properties, while having some properties unique

only to them. For instance, in a personnel information system, some information

requirements may concern all employees and others may concern subsets of employee set,

such as managers, researchers, female members etc. Thus, some entity types are, by

definition, subtypes of others, making a member of one entity type automatically a member of

another. This kind of hierarchical organisation of entity types was first introduced in the

artificial intelligence field as ISA hierarchies in semantic networks [Quillian 68] with the

precise inheritance rules for related types within the hierarchy. A similar notion of type

hierarchy was introduced in the database field by Roussopoulos et al. [Roussopoulos 75] and

by Smith and Smith [Smith 77]. Smith and Smith call this as generalisation hierarchies.

Accommodation of type hierarchy is now accepted as an important element in conceptual

modelling,

It is to be noted that a strict hierarchical organisation of entity types is also not possible in

practice. For example, in a database concerning customers, a customer may be a company,

government agency, or a person. Hence, an entity type may be a subtype of more than one

entity type. This idea of a network of entity types is termed alternative generalisation by Codd

[Codd 79].

Background 12

2.5.5 Attributes and Domains

Attributes of an entity type refer to those properties of objects which can be, in a general

sense, given values [Brown 75]. For example, the person entity can possess attributes like

name, height, date of birth etc. Values are essentially lexical entities like integers, strings

etc.

A Domain is a set of values of similar type [Codd 79]. Domains serve to define sets of

values from which properties of other objects can take values over time. For example,

six-digit numbers form a domain from which salaries of employees can take values. Since

values are lexical entities, domains can also be considered as sets of lexical entities.

2.5.6 Relationships

Relationships represent association between several objects [Kent 78]. Examples of

relationships are person named John works in the university named University of Edinburgh,

person named Peter belongs to the department named Computer Science etc. A relationship

type corresponds to a collection of similar relationships or an aggregation of two or more

entity types. For example, enrolment can be represented as an aggregation of the entity

types student and course.

Relationships can be one-to-one (departments and managers), one-to-many (departments

and employees), many-to-one (employees and managers), and many-to-many (students and

courses). There can be many relationships between the same set of objects and the objects

participating in a relationship may or may not all belong to same entity type. Relationships

can have a single, neutral name such as enrolment or two names, such as course-of in one

direction and students-of in the other direction.

2.5.7 Entity Types. Attributes. Relationship Types

Much discussion has centred around the concepts of entity types, attributes and relationship

types and their representation and materialisation [Kent 78]. There is no absolute distinction

between entity types and attributes or between attributes and relationship types or between

entity types and relationship types. Sometimes an attribute can exist only as related to an

entity type. In a different context, it can be an entity type in its own right. For example, to

a car manufacturing company, a colour is merely an attribute of one of its products; to the

company that made the paint, a colour may well be an entity type [Hall 76a].

Background 13

Similarly, there is no clear distinction between an entity type and a relationship type. In the

above example of relationship between students and courses, it can either be considered as a

relationship between student and course types with grade as a relationship between student,

course and Integer entity types or as an entity type enrolment with grade as the property of

this new entity type.

There is no clear distinction between attributes and relationships either. For example, salary

can be treated either as an attribute of employee or as a relationship between employee and

integer entity types.

2.5.8 Time

Attributes and relationships in the real world do frequently change. So do the set of

participating relevant entities. It is necessary that these properties are given explicit

consideration in the conceptual model. The concept of time is therefore fundamental in the

realm of conceptual models (Langefors 77].

However, time is perhaps the most cumbersome aspect of data modelling. To begin with,

real time implies a certain synchronisation between phenomena which is unrealistic. Also, we

are often more interested in the relative time of phenomena (i.e., one phenomena occurs

before another phenomena) than we are in the real time of occurrence. This aspect of data

can be adequately captured by ordering phenomena rather than recording their real time.

Therefore, the notion of time is often replaced either by other kinds of explicit properties or

by orderings among objects or by the convention that all data relates only to the last

meaningful datum (phenomenon, fact or instance). For instance, the salary attribute of an

employee does not capture the knowledge of all the salaries he or she has ever received,

only the current one. If there is interest in past salaries, this is encoded using a different

property (e.g., salary history). Some data models, however, do treat time as one of the

modelling constructs (Bubenko 77, Breutmann 79, Schiel 83].

2.5.9 Conceptual Data Modelling and Knowledge Representation

There are a number of similarities between the information modelling for establishing

database systems and the knowledge representation problem in artificial intelligence (AI) area

[Roussopoulos 75] . Both databases and Al systems must represent and process knowledge

about the real world. In particular, Al research also assumes that knowledge consists of

Background 14

objects and relationships among them. A knowledge base may be viewed as consisting of a

network of objects (nodes) connected by relations (directed edges). The directed edges are

labelled with the type of each relation. These networks are called semantic networks [Quillian

68]. Some of the concepts in new data model proposals owe their origin to the knowledge

representation research. For example, the concept of subtypes.

However, the goal of these networks is the representation and organisation of general

knowledge of the world as opposed to the information structured in a manner oriented towards

database applications. Specifically, as instances of types appear in semantic network

definitions, schema and data are unified. One implication of this unification is that large

amounts of data cannot be handled conveniently, as the network grows with the addition of

new data (even when no new types or attributes are added).

2. 6 Operations

As defined earlier, the operations of a data model, called a data language, transform a

database state DBSI to another database state D8Sl (or undefined). When we perform

operations on a database, it is a natural restriction to focus them on one small part of the

database. This focusing is important both for user convenience and for the ability to

concentrate on a few narrowly defined tasks at one time. Focusing on a certain part of the

database implies a selection [Earnest 75]. Regardless of the operation that is to be

performed, this selection needs to be specified. For example, the selected database part may

be retrieved or updated, new data may be inserted into it or old data deleted from it.

The operations usually follow a pattern of specifying an action and a selection. The action

specifies what is to be done. The selection selects the part of the database to which the

action is to be applied. An action may correspond to any one of, or a combination of, the

following operations:

1. Retrieve - access the data in the database.

2. Insert - add new data to the database.

3. Delete - remove data from the database.

4. Modify - modify existing data in the database.

Background 15

2. 7 Rules

Rules correspond to the set of inference mechanisms to provide the derived data (see

below) and the set of constraints that limit the number of different facts which can be part of

the model. Rules extend the semantics of the data captured by the structures above,

Bubenko [Bubenko 80a] calls the information captured by such rules as abstract knowledge as

opposed to the concrete knowledge captured by the structures.

The specification of rules is an important part of conceptual modelling as most of the facts

in the real world are mostly derived rather than pure data. As an example, consider the chart

of accounts for a firm. The only pure data needed are original journal entries; all other facts

are derived by manipulating this data.

The proposals of the CODASYL Data Base Task Group include the concepts of database

procedures and virtual data items which are essentially the mechanisms to capture such rules

[CODASYL 71]. A number of other authors are also investigating the deduction mechanisms

for relational databases [Chang 78, Minker 78]. Many recent data model proposals attach a

great importance to the concept of derived data [Hammer 78, Shipman 81].

The concept of rules or inference mechanisms forms an important component of the expert

systems in the artificial intelligence field [Nau 83] and is the basic notation used in the logic

languages such as PROLOG [Kowalski 74].

2.7.1 Derived Data

The derived data or the virtual information can be defined as the information which is

accessible through combinations of algorithms and stored data, but which is not physically

stored in the database. For example, given an employee's department and the manager of a

department, we can infer the employee's manager or given the selling price and buying price

of a product, we can infer the profit one can make.

2.7.1.1 Classes of Derived Data

Two major classes of derived data deal with the issues of extracting factual content: inferred

data, and computed data [Folinus 74].

Inferred data: Consider the two relationships, one between student and tutorial entities and

the other between tutorial and staff entities. It is then a straight-forward matter to infer the

relationship between student and staff entities.

Background 16

When inferring facts this way, an important point should be noted: not all such inferred

relationships may be meaningful or even correct. For example, it a part is available from a

certain warehouse, and a warehouse is serviced by that supplier, we cannot infer that the

part is stocked in that warehouse. Even if it was stocked in that warehouse, it might be a

different supplier who supplied that part to that warehouse. This is the familiar connection

trap [Codd 70] whereby an erroneous inference may be drawn from the join of two

relationships on a common domain. Hence, the need to explicitly identify which inferences

can be made.

Computed data: Whereas inferred data is developed merely by accessing facts available in

the database system, computed data is derived by processing algorithms. For example, given

an entity such as a room whose attributes are length and width, its area could be defined by

the algorithm product (length, width).

2.7.1.2 Applications of Derived Data

Some of the important applications of derived data in the database context are listed below:

1. Derived data as a modelling tool: Derived data mechanisms are useful to

accommodate complex, procedural inter-relationships among data items. For

example, the age of a person, if expressed as a stored data item, requires

continuous updating to reflect the accurate value. On the other hand, derived

data mechanism allows it to be expressed as a formula (current date - date of
birth).

2. Derived data as a means of capturing data semantics: A large part of the
application specific knowledge exists not as stored data but as a set of programs.
By modelling these rules or inference mechanisms as part of the database, the
burden on the users can be much reduced.

3. Derived data as a basis for multiple views: A major application of derived data is

to provide multiple user views of the schema. As no single model of reality may

be appropriate for all users, it is important that the information is structured

according to the properties which are considered relevant by each user. Derived

data makes it possible to provide this logical restructuring of the same stored

data.

4. Derived data as a means of hiding database evolution: In order to provide an

illusion of stability in the face of constant changes, it is important to ensure that
only those users concerned with the changes are affected and the rest are not.
Derived data makes this possible by re-establishing the 'old' view by suitable
transformations.

Background 17

5. Derived data and the distributed database management systems (DORMS) and

database servers: Sharing of information between components in the DDBMS and

database servers will be made easier with the presence of derived data.

Components may easily build upon each others activities without having to

tediously generate the required information from the stored data.

2.7.2 Constraints

There are usually many properties of data that cannot be captured in the form of structures.

These properties essentially serve as additional restrictions on the values of the data and/or

how the data may be related (structured). For example, there may be a restriction that a

department's head must belong to the same department or a student may be required to

attend a minimum of 3 and a maximum of 5 courses to a term. Such restrictions cannot be

expressed in terms of structures, but must be captured by some additional mechanism. These

logical restrictions on data are called constraints.

A constraint is a property which is either true or false. The constraints are expected to be

true always. Constraints are required for semantic and integrity reasons. In terms of

semantics, they permit schemas to reflect more accurately the real-world situation. In terms

of integrity, they permit the DBMS to restrict the possible database states that can be

generated from a given schema to those that meet the constraints.

2. 8 Requirements of Data Models

In order to be useful to design conceptual models of database systems, data models must

meet the following requirements:

1) Object orientation

By object orientation, we mean that a data model should make an explicit distinction

betwoen an object and the name(s) used to identify it. User-defined names of objects

should neither act as unique designators of objects nor should they participate in defining

relationships. Failure to do so results in users being forced to be aware of the mapping from

real-world objects to values which act as tokens for them in the stored data and in some

cases, to invent and maintain such tokens. On the other hand, models which make such

distinction provide many advantages, viz.,

1. Objects can have different names in different applications or may not have any

name at all.

Background 78

2. Names identifying objects can be changed freely.

3. Semantics of both data retrieval and data manipulation operations can be clearly

understood.

4. General rules to guarantee the consistency of the data as It is updated can be

specified easily since the changes in the application environment can be accurately

modelled as operations on the corresponding structures.

2) Semantic expressiveness

A data model should provide sufficient mechanisms to allow a database schema to describe

the meaning of a database. Hammer and Mcleod call this aspect semantic expressiveness

[Hammer 81]. There is, as yet, no proper definition of this concept, nor any yardstick by

which it can be measured. Roughly, it could be considered as the ability to name and

manipulate objects at different levels of abstraction. As we discussed in section 2.5, a data

model should provide constructs to organise entities into entity types, to organise entity types

into subtype-supertype hierarchy, and to establish relationships between two or more entities.

Corresponding to these, Smith and Smith [Smith 80a] list three abstraction mechanisms:

classification, generalisation, and aggregation. Classification collects instances to form 'types'.

Generalisation refers to supertype-subtype hierarchy among types. Aggregation refers to

relationship between two or more entities. In addition to the above three, some more

abstraction mechanisms have been suggested by Hammer and Mcleod [Hammer 78], and

Codd [Codd 79].

3) Ease of design

It should be easy to arrive at a schema, i.e., users should not be forced to make complex

mappings from the real-world structures to the data structures supported by the data model.

4) Neutrality

As discussed in 2.5. 7, a data model should allow a fact to be interpreted either as an

entity, an attribute, or a relationship.

5) Operations

A data model must act as a basis for the development of families of very high level data

languages for data retrieval and data manipulation. A data language should specify the data

selection purely on the basis of logical relationships and not by the physical position of the

data. Additionally, in case many instances of an entity type are to be selected, there should

Background 19

be no necessity to know the path to go from one instance to another (navigation). Explicit

navigation often complicates the selection request.

A data language should provide update operations in terms of objects. It is important to

ensure that objects participating in a new relationship already exist in the database and

whenever an object is deleted, the relationships from the deleted object to all other objects

are removed.

6) Facilities to specify constraints

A data language should provide constructs to specify explicit constraints on the data, As a

general principle, the specification of constraints should be migrated out of the application

programs both to reduce application programming costs and to ensure quality in data and its

use [Nijssen 80],

7) Facilities to specify derived data

A large part of the information exists not as data but as programs. A data model should

allow incorporation of such derived data as part of the schema. To accomodate this, a data

model should treat data and programs in an unified way.

8) Freedom from physical considerations

The structures and operations of a data model should not refer to any physical storage

aspects.

9) Ease of evolution

It must also provide a structure to which the progressive details associated with further

steps in the design can be conveniently attached. This means that a database can be

incrementally designed, which is important for a complex system like a database.

10) Complexity

A data model must not be too complex. The languages it supports must also be easily

usable. Simplicity is attractive to the user in moderating the effort of learning and

comprehension needed, and to the implementor in limiting the size of his task.

Background 20

2. 9 Classical Data Models

By classical data models we mean the three most common and popular data models used in

contemporary database management systems, viz. , hierarchical, network, and relational data

models. The best known implemented system using the hierarchical model [Tsichritris 76] is

IBM's IMS (Information Management System) [IBM 75]. The most comprehensive specification

of a network data model is in the CODASYL DBTG report [CQDASYL 71, Taylor 76], There

are many systems based on these proposals, such as IDS [Honeywell 72], IDMS [Cullinane

75], etc. Examples of systems based on the relational data model [Codd 70] include INGRES

[Stonebraker 76, Stonebraker 80] and System R [Astrahan 76, Blasgen 77].

Briefly, the hierarchical and the network data models incorporate the concept of a record as

a collection of named fields to represent each individual object in the application environment.

In addition, the hierarchical model allows a tree-like set of one-to-many relationships in which

each record occurs at a single specified level of the hierarchy. The CODASYL model provides

the set mechanism to establish one-to-many association between any owner record and a

number of member records, thus allowing a network of relationships. The relational model

accommodates only record types and not explicit links. It is based on the concept of

mathematical relations. Logically, a relation is a collection of instances (tuples) of a record

type in which the sequencing of the instances and the sequencing of the fields within the

record type are unimportant. The relationships between relations are not explicitly specified in

the schema. Logically, relations describe entities and inter-relationships among them.

Inter-relationships which are not represented as tuples can be dynamically established at

access time using the relational data manipulation facilities (joins). Thus, unlike other two

models, the user is not restricted to the pre-defined relationships,

The retrieval and update languages for systems based on the hierarchical and network

models, called data manipulation languages (DML) tend to be navigational, in the sense that a

user must access a database by explicit traversal through a tree or network, rather than by

stating the properties of the data of interest. As a result, users are required to write

complex programs in procedural fashion to carry out retrieval and update functions. In

addition, the exact form of the statements available to the programmer to conduct this

navigation depends on the way the data is stored, which adds to the complexity of these

languages.

Background 21

Data manipulation languages for the relational data model are typically derivatives of

relational calculus or relational algebra [Codd 70]. These languages are essentially

non-procedural, i.e., operations in these languages are specified in terms of names and

values only and hence do not require the knowledge of the physical representation of data.

Detailed descriptions of the significant features of these models are well covered in many

books and surveys [Date 83, Tsichritzis 77, Ullman 82].

2.9.1 Assessment of Classical Data Models

To assess these models, we follow a framework based on the requirements discussed in

2.8.

1) Object orientation

All three classical models lack the object orientation, i.e., these models model the objects

in the real-world through the names or values (keys) associated with those objects.

2) Semantic expressiveness

All three models fail to capture much of the semantics associated with the data. The

problem with the relational model is that it uses a single mechanism (the relation) to model a

collection of entities, to express an association among entities and so forth. This semantic

overloading of the relation makes it difficult for a user to determine the meaning and purpose

of a relation, and obscures the meaning of a database as a whole [Schmid 75]. In addition,

as relationships between relations are not specified in the schema, there are no mechanisms

to guide the user in interpretation of the data. Lack of structure in the relational model also

allows meaningless relationships (Joins) to be formed. In this respect, the hierarchical and

CODASYL models are better than the relational model as they provide for explicit capturing of

at least some of the relationships in the form of trees or networks.

In addition, all three models do not provide adequate mechanisms to specify entity types or

the type hierarchy. Not all records or tuples in these models represent objects [Kent

78, Kent 79] nor is it possible to capture the different roles played by an object. For

example, a record in CODASYL model is an instance of one record type and a tuple in the

relational model belongs to a single relation.

Background

3) Ease of design

22

It is not easy to arrive at a schema for a database using the constructs of any of these

models. Since a data structure in these models (record or relation) may not always

correspond to a single object, these models require complex normalisation procedures [Codd

72] to be carried out in order to ensure that there are no undesirable side-effects of update,

so-called 'update anomalies'. The result is that the database schemas are often difficult to

design. In addition, severe inherent structural constraints in both hierarchical and CODASYL

data models limit the data modelling capability and may force unnatural organisation of data.

Another shortcoming of all the three models is that they force modelling apparently similar

type of inter-object associations in a number of different ways [Kent 78, Kent 79]. For

example, a one-to-one association may be represented as fields of a record representing one

object or the other but not both. A one-to-many association may be represented as a

repeating group, a hierarchy, a CODASYL set or a relation, depending on the model. A

many-to-many association may be represented by creating a separate intersection record or

relation. These multiple ways often cause problems for the users both while accessing and

white updating, requiring them to write different DML code in each case.

4) Neutrality

All three models force a single global perspective of data, i , e. , the data is arranged in a

rigid, inflexible structure and it is not easy to mould a fact into a variety of semantic

interpretations.

5) Operations

All three models provide data languages. However, the problem with the data languages for

the hierarchical and CODASYL models is that they tend to be oriented towards record-at-a-

time access and explicit navigation from one record to another. This complicates the data

selection requests considerably. The relational model is better in this respect as most of the

data selection and modification languages developed for the relational systems are non-

procedural. (It should, however, be pointed out that it is possible to provide navigation-free

data languages for hierarchical and CODASYL models as well, as was demonstrated by the

ASTRID system [Cray 81] for the CODASYL model).

A major problem with all the three models as regards update is that the units of update in

these models (record or relation) do not constitute atomic semantic units. As a result, these

Background 23

models require extensive additional constraints to maintain semantic integrity of the database.

For example, an explicit constraint is necessary to ensure that an object identified by a name

in a relation or record really exists in the database, i.e., the concept of referential integrity

[Codd 79, Date 81].

6) Facilities to specify constraints

Most hierarchical data models do not provide any explicit constraints. An indirect explicit

constraint mechanism is provided in IMS via the definition of logical relationships [IBM 75]. By

means of logical relationships it is possible to assure the consistency of certain data by

constraining the data to be identical in two different definitional trees. The CODASYL model

does propose facilities for specifying constraints via database procedures, but no system has

implemented these. Relational systems provide facilities to specify the constraints using the

constructs of associated query languages [Eswaran 75, Chamberlin 76, Stonebraker 75].

7) Facilities to specify derived data

The hierarchical model provides virtually no facilities to incorporate derived data in the

schema. The CODASYL model provides for incorporation of derived data through the use of

database procedures, but again no system incorporates these. The relational model also

provides facilities to define derived relations (called 'views' in both System R [Astrahan 76]

and INGRES [Stonebraker 76]) but these are rather limited in that such derived data

corresponds only to interred facts and not to computed facts. There are relations, logically

derivable from others, which cannot be expressed by means of the relational algebra. For

example, relations expressed as the result of user operations such as arithmetic operations,

statistical operations etc.

8) Freedom from physical considerations

Both the hierarchical and CODASYL models are heavily biased towards representational

aspects of the data rather than the information content of the data they manage. Inter-

record relationships in these models actually correspond to physical access paths. Because of

this, the information that can be retrieved from these databases is tightly constrained by the

pre-defined relationships. This is not the case with the relational model as it is based on the

concept of mathematical relations.

Background 24

9) Ease of evolution

Because of the presence of a large number of physical constructs, accommodating changes

in the logical structure is a difficult task for databases designed using both hierarchical and

CODASYL data models. Most relational systems provide facilities to add or delete relations as

well as add or drop attributes.

10) Complexity

Both the hierarchical and CODASYL models incorporate many complex features, which make

them difficult to understand. Also, as the data structures in these models are biased towards

a limited class of applications, specifying new applications requires a high degree of computer

expertise. Though the relational model is very simple to understand, the fact that inter-

relationships among objects are not captured in the schema but are formulated at execution

time implies that the users are required to perform a number of explicit relation joins at

run-time. Requiring the users to perform such unnecessary joins complicates their task

considerably.

2. 10 Conclusions

In this chapter, we have presented a detailed discussion on the relationship of the database

to the world it represents (Conceptual Modelling) and the tools to design the logical structure

of the database (Data Models). We identified a set of concepts that are useful to represent

the information and a set of criteria to assess the suitability of data models. Against this set

of criteria, we examined the three classical (hierarchical, CODASYL, and relational) data

models.

Semantic Data Models

Chapter Three

Semantic Data Models

25

In this chapter, we give a brief description of twenty-one data model proposals that have

appeared in the literature over past ten years. There are possibly many other data model

proposals which are worthy of attention, but the lack of space prevents their inclusion here.

There is considerable variation among these models, but all of them have one common goal:

to reflect more of the semantics associated with the application. Hence, we call all of them

semantic data models.

For the purpose of this discussion, we classify these models into two broad categories:

those that were proposed as extensions to classical models and those that are significantly

different from the classical models. We than examine these models against the set of criteria

established in section 2.8 and explain why we consider the functional data models to be most

attractive for the purpose of conceptual data modelling. We conclude this chapter with the

assessment of functional data models that are proposed in the literature.

It is to be noted that the discussion on these models is neither exhaustive nor complete.

References given at the end should be consulted for further details.

3. 1 Extensions of Classical Data Models

We include the following data models under this category:

(1) Role Model
(2) Basic Semantic Model
(3) Entity-Relationship Model
(4) Structural Model
(5) Abstraction and Generalisation
(6) Extended Relational Model

Semantic Date Models 26

3.1.1 Role Model

The role model (Bachman 77] has been developed as an extension of the network data

model. This model introduces the concept of role-segment type to model the different roles a

real-world entity can play, e.g., persons can play the role of customers, employees etc.

Within a data description, constructed according to the role model, the concept of a record

description is augmented by the concept of a role-segment description such that a record

occurrence is a vehicle for one or more role-segment occurrences, each of a different

role-segment type.

The set declarations used within the role model represent a change from those used within

the network model. As in the network model, set relationships may be established with owner

and member declarations with the constraint that only one role-segment description may be

declared as the owner of a set description and only one role-segment description may be

declared as the member of a set description. Unlike the network model, the role model

explicitly recognises that there may be two or more record occurrences concerning the same

entity and possibly even denoting the same role.

3.1.2 Basic Semantic Model

In this model, proposed by Schmid and Swenson (Schmid 75], the real world is considered

as consisting of objects and associations. An object can either be independent or dependent;

the difference is that a dependent object must be "existence-dependent" on some

independent object, whereas independent objects exist in their own right. For example, in a

personnel database, an employee might be independent object, whereas an employee_child

might be dependent object (an employee_child can exist in the database only if the

corresponding employee also exists in the database.) Both dependent and independent objects

can have properties (characteristics). An association is a relationship between independent

objects.

Both objects and associations are represented as relations. In fact, relations in this model

are classified into five different types, according to the type of information they represent.

Associated with this categorisation is a set of integrity rules; for example, an association can

be created only if all associated objects already exist. Conversely, an object cannot be

deleted if it currently participates in any associations.

Semantic Data Models 27

3.1.3 Entity-Relationship Model

The details of this model, proposed by Chen (Chen 76], are almost identical to those of

the Basic Semantic Model, except in terminology. Chen uses the terms regular entity, weak

entity, and relationship in place of independent object, dependent object and association,

respectively. Again, both objects and associations are represented by suitably classified

relations. Like Schmid and Swenson, Chen defines a set of integrity rules; one difference of

detail is that deletion of an entity should cascade to deletion of corresponding relationships,

instead of prohibiting the original deletion it any such relationship exists.

3.1.4 Structural model

In this model, proposed by Weiderhold and EI-Masri [Weederhold 79], entities and attributes

of entities are again represented by relations. Relations are specialised as entity relations if

they define a set of independent objects, as lexicons it they represent one-to-one

correspondence between names, or as associations it they represent many-to-many

relationships among objects. This model also specifies rules for the enforcement of integrity

during the insertion and deletion of tuples.

3.1.5 Abstraction and Generalisation

The proposals of this model, proposed by Smith and Smith [Smith 77], are also based on

representing each object by a relation, Here, inter-object relationships are also considered

as objects in their own right. A type/subtype notion is used to classify objects. Detailed

discussion of this model is not provided here as the Semantic Hierarchy Model by the same

authors, a direct descendant of these proposals, is discussed in detail later.

3.1.6 Extended Relational Model

Extended Relational Model, RM/T, proposed by Codd [Codd 79], represents a synthesis of

many of the extensions to the basic relational model proposed earlier by other researchers.

The basic assumption underlying RM/T, like all other extensions, is that the real world can be

modelled in terms of entities. However, RM/T also has the concept of E-attributes for the

unique designation of entities. An E-attribute uniquely identifies an entity (as opposed to a

tuple) within the entire database. Relations can still have user-controlled and user-defined

keys, but this is no longer required. E-attributes are created and deleted by the system as

Semantic Data Models 28

a result of user operations on the database and can be used in operations such as joins.

However, they are not controlled or seen by the user. E-attributes take their values from a

special domain (E-domain).

Like other extensions, RM/T also classifies relations according to what they represent.

Basically, relations can represent both entity types and relationship types. Entity types are

represented by E-relations and P-relations, both of which are specialised forms of the general

n-ary relation. An E-relation contains a single column that specifies the surrogate for every

instance of that type. A P-relation represents attributes of an entity type by associating entity

surrogate values with property values.

A variety of relationships can exist among entities - for example, two or more entities may

be linked together in an association, or a given entity type may be a subtype of some other

type. A variety of integrity constraints that are implied by the existence of such relationships

are also given. A number of high-level operators are provided to facilitate the manipulation of

the various RM/T ob)ects (E-relations, P-relations and so on).

3. 2 Other Data Models

The significant contributions in this category are:

(1) Data Semantics
(2) Data Independent Accessing Model DIAM II
(3) Binary Relational Models
(4) Ob)ect-Role Model
(5) Functional Data Models
(6) Semantic Data Model
(7) Semantic Hierarchy Model
(8) Semantic Network Models

3.2.1 Data Semantics

This model, proposed by Abrial (Abrial 74], organises various ob)ects in a database into

different categories. Binary relations define atomic links between pairs of ob)ects belonging to

certain categories. The two directions of a binary relation are named uniquely. Each name,

called an access function, corresponds to a binary relation followed in one direction. (It is to

be noted that access functions in this model are not really functions in the mathematical sense

of the word, since their application can yield more than one value.) Relationship types

between more than two categories are represented by generating new categories.

Abrial's model provides for logical access to data by means of elementary operations on

Semantic Data Models 29

access functions via programs. It also provides operations for manipulating objects in a

category (e.g., introducing a new object) and for manipulating connections between objects

(e.g., relating an object in one category to an object in another category). In addition, one

can define operations that take a more general form and affect many objects in many

categories according to a program.

3.2.2 Data Independent Accessing Model

Data Independent Accessing Model (DIAM), proposed by Senko [Senko 75], spans five

different levels: the end-user level, the information level, the string level, the encoding level,

and the physical device level. The end-user level, corresponding to the ANSI/SPARC external

level, consists of entity, property, fact, entity set and enterprise. At the information level,

names of things are dealt with, hence the terms used are attribute name, attribute value,

identifier name, identifier value and fact representation.

A fact representation is a pair of attribute names, also called an association pair, linking'

identifiers. The association pair is symmetric, i.e., one attribute name uses one identifier as

the subject and the other identifier as the value, while the other attribute name does just the

opposite. N-ary and many-to many associations are treated by creating artificial entities. The

language associated with DIAM Il is called FORAL.

3.2.3 Binary Relational Models

The binary relational models, proposed by Brachhi et al. [Brachhi 76], Sharman [Sharman

77], and Munz [Munz 78] use only two kinds of representational concepts: entities and

labelled binary relations. This implies that relationships of a higher order than two will be

considered as entities. Properties of entities are modelled as binary relations between sets of

entities and property values. The domains of these binary relations are all fundamental

domains, i.e., they are not themselves binary relations. This means that nested binary

relations are not allowed.

Semantic Data Models 30

3.2.4 Object-Role model

This model, proposed by [Falkenberg 76], models facts from a particular universe of

discourse by means of objects, roles and associations. Objects are atomic, discrete elements

in nature; the only information represented by them is their existence. Facts concerning an

object correspond to its association with one or more objects. An object performs a role in

every association of which it is a part. Thus associations, which are n-ary in general, are

composed of object-role pairs. An association may be treated as an object in its own right

and may perform a role in another association. The latter is termed a nested association.

Objects are pooled into object types such that objects under one type have at least one role

in common. Associations are also classified into association types which refer to all

associations with identical object-role pairs. Objects and roles may be provided with

significations. An object type named person may be signified by the person's first name. A

number of significations may be provided, e.g., first name, last name, date of birth for the

object type person to make the signification unique. Semantic rules can also be specified as

a means of providing additional constraints for consistency and integrity among data instances.

3.2.5 Functional Data Models

The idea of viewing an information system as a collection of functions was introduced by

Folinus et. at. [Folinus 74]. There are five different functional data model proposals that

have appeared in the literature [Kerschberg 75, Buneman 79, Housel 79, Shipman 81, Katz

83]. All five data model proposals are based on the fundamental concept of function to

model relationships among objects in the real world. All five models also support simple data

manipulation languages using the function and set operators, and one of them, FQL

[Buneman 79], goes even further by integrating data manipulation and general purpose

computation in one language.

3.2.5.1 Functional Database Model

In this model, proposed by Kerschberg and Pacheco [Kerschberg 75], a database schema

is considered as a graph whose vertices represent sets and whose arcs are total functions.

The sets may correspond to either entity sets that model real-world entities or abstract sets

representing associations among entity sets.

A set is described by its name and the functions defined on it. These functions have as

Semantic Data Models 31

ranges other sets, including a distinguished set of data values. In this model, a key for a set

S consists of a non-empty collection of functions of S such that the mapping from S to the

Cartesian product of the function's range sets is one-to-one.

Logical access to the complete functional data model is achieved by means of a high-level

declarative language. Query specification is done by walking (or navigating) through the

graph.

3.2.5.2 Functional Dependency Model

In this model, proposed by Housel et.al [House) 79], a database is viewed as consisting of

sets of values with functions between them. Sets can be either simple or tuple sets. Simple

sets correspond to integers, strings etc. Tuple sets correspond to many-to-many relationships

among sets. Because the domain and range of functions may be tuple sets, relationships

between relationships is supported. This model also supports the concept of "generalisation"

[Smith 77] by treating one value set as the subset of another.

The model provides operators for retrieval, update, insertion and deletion of occurrences in

functions and sets and iterative (FOR loops) and conditional (IF-THEN-ELSE) control

constructs. There are three retrieval primitives: RANGE, which given an occurrence of a

function's domain, returns the corresponding value of its range; DOMAIN, which given an

occurrence of a function's range, returns the ordered set (possibly null) of domain values;

and ENTRY, which given a set name returns the set of values from the named set. There

are also four data manipulation primitives: CREATE, which adds a value to a set; LINK,

which adds a pair of values to the domain and range of a function; UNLINK, which performs

the inverse; and DELETE, which deletes a value from a set.

3.2.5.3 Functional Data Model (Buneman and Frankel)

Buneman and Frankel have proposed a functional data model built into the functional query

language (FQL) [Buneman 79, Buneman 82]. In this work, a database is viewed as a

collection of functions over various data types. The model also provides five operators on

functions: compose, tuple, extend, restrict, and generate which are used to combine functions

to form new functions. FQL has built-in functions for arithmetic and boolean operations for

use in query formulation. Finally, the notation used in FQL is derived from the functional

programming notation advocated by Backus [Backus 78].

Semantic Data Models 32

3.2.5.4 Functional Data Model (Shipman)

In this model, proposed by Shipman [Shipman 81], the database is modelled as a set of

functions mapping entities to entities. Functions in this model can have zero, one, or more

arguments. Functions with no arguments are used to define entity types, and functions with

arguments are used to define attributes of and relationships among entities. Functions can

also be specified as single-valued or multi-valued (i . e . , yielding a set as a result). This is

useful to capture one of the most common type of real-world constraints as part of the

structure itself.

An important concept in this model is the distinction between an entity and its external

names. In addition, entity types in this model are arranged in a type hierarchy with automatic

inheritance of attributes and relationships (i.e., functions) from a supertype to all of its

subtypes.

This data model proposal also incorporates a high level, integrated data definition and data

manipulation language, DAPLEX. In this language, function applications are used to express

queries. In addition, the language includes a FOR EACH statement to iterate through sets,

and a set of update statements. There is also a special operation in DAPLEX, DEFINE, for

incorporating user-defined functions into the schema. Update operations on derived functions

may be specified by the user.

A detailed discussion of this model can be found in the next chapter.

3.2.5.5 Functional Data Model (Katz and Wong)

This model, proposed by Katz and Wong [Wong 79, Katz 83], a database is viewed as

object sets and functions between them. Object sets are either value sets or entity sets. The

primary difference is that value sets never appear in the domain of a function. For example,

the set of employees is an entity set, while the set of employee names is a value set.

Multi-valued (many-to-many) relationships are represented by confluent hierarchies, that is,

by an explicit "relationship" set and functions to map it into the participating entity sets.

Semantic Data Models 33

3.2.6 Semantic Data Model

Semantic Data Model (SDM), proposed by Hammer and McLeod [Hammer 78, Hammer 81],

views a database as a collection of disjoint classes of objects. SDM distinguishes between

non-atomic abstract objects (called entities) and identifiers (names), Database entities and

classes have attributes that describe their characteristics and relate them to other database

entities. Each attribute has a value which is either an entity in the database (a member of

some class) or a collection of such entities. The value of an attribute is selected from its

underlying value class, which contains the permissible values of the attribute.

SDM also supports a notion of IS-A hierarchy among objects and a notion of grouping types:

a grouping type is formed by considering instances of a type to be subtypes, rather than

individual objects. SDM also provides an extensive predicate language for specifying derived

information. This mechanism allows a significant amount of data that would normally have to

be derived at access time to be made a permanent part of the schema.

In SDM, subtypes may be derived from properties of parent types or by stating that a

subtype is an arbitrary, user-chosen group of values. Extensions of subtypes can also overlap.

Attributes may be derived in terms of other attributes, e.g., attributes may be inverses of

each other or the value of an attribute may be declared to be directly assignable by the user.

In addition, classes can be constrained to have members with non-duplicate (unique)

attribute values. The attributes of any class can be constrained to be single- or multi-valued

or to have a non-null value or have values which are not changeable or are exhaustive of its

class. It is also possible to place a constraint on the size of a multi-valued attribute or have

non-overlapping values for different entities of a multi-valued attribute.

Thus SDM provides a rich set of constructs to capture the semantics associated with the

data. However, the complexity of the model makes it difficult to see how it can be used

effectively.

3.2.7 Semantic Hierarchy Model

In this model, proposed by Smith and Smith [Smith 80a], real world information is treated

as consisting of relative structures among all the objects of interest. Three classes of

abstractions are used to determine these structures viz. , classification, generalisation and

aggregation. Classification collects instances to form a new type. Generalisation forms a new

Semantic Data Models 34

type by merging existing types (called categories). These categories can be considered as

subtypes. Aggregation forms an object as a relationship among other objects (called as

components). In general, each object is a type, an aggregate object and a generic object.

An object will be called primitive when it has no instances, components or categories of

interest. When classification, generalisation and aggregation are repeatedly applied to objects,

hierarchies of objects are formed.

To specify such structures a simple type declaration language is used. It lists for each type

in the structure its component types and categories. The attributes of a subtype are inherited

from its parent types, and the subtype may introduce additional attributes as well. Subtypes

of a given type are assumed to be non-overlapping; thus, subtypes partition the instances of

the parent type.

The primitive operations of create, destroy and modify are provided to specify the behaviour

of objects. A first order predicate language is provided for naming individuals in terms of their

structure - their attributes, categories and types. Using these primitive operations, naming

capabilities and simple control structures such as the if-then-else construct of standard

programming languages, functions and procedures can be constructed that describe the

behaviour of the enterprise being modelled.

3.2.8 Semantic Network Data Models

Semantic network data models have been mainly developed by people working in various

branches of artificial intelligence. The basic structures of these data models consist of nodes

and arcs forming a network much as in a binary or network data model. These data models

distinguish between a type and a token and introduce the idea of hierarchy of types.

Hierarchy inheritance deals not only with the inheritance of attributes and their values, but

also with the inheritance of permitted relationship types among types.

We discuss here the following two semantic network data models:

3.2.8.1 TAXIS

TAXIS is a programming language, proposed by Mylopoulos et. a/. [Mylopoulos 80], based

on the concept of semantic network for data and procedure modelling. Here, a database is

modelled in terms of three types of objects: tokens which represent constants; classes which

describe collections of tokens; and metaclasses which describe collections of classes. Classes

Semantic Data Models 35

and tokens have properties through which they can be related to other classes and tokens.

Classes and metaclasses are defined by specifying their name and their properties. TAXIS

provides for organisation of the classes and metaclasses into a hierarchy by defining IS-A

(generalisation) relationship over classes and metaclasses.

TAXIS provides three primitive database state transformation functions, insert-object,

remove-object, and update-object and the procedural attachment which associate directly with

each class the database transformation functions that affect its extension. TAXIS also provides

transactions which are treated as classes except that their body is given in terms of zero or

more prerequisite, action and result properties. Exceptions are raised when a prerequisite or

result expression evaluates to a value other than true. Exception classes are defined and

organised into an IS-A hierarchy, like all other classes.

3.2.8.2 Semantic Binary Relationship Model

Semantic Binary Relationship Model (SBRM), proposed by Azmoodeh and Lavington

[Azmoodeh 82], is a type of semantic network with the nodes representing entities and the

arcs representing relationships between entities. The entities are categorized broadly into

information, meta information, and meta meta information according to their levels of

abstraction.

The information consists of entities and binary relationships between them. The entities may

be grouped together into different classes. Relationships may be categorised in the same

manner. Meta information consists of classes of similar entities or relationships at information

level. The entities at meta meta level denote these classes at meta level. The meta meta

information and its semantics is static and built into the system and invisible to users. Users

only manipulate information and meta-information.

The class membership is achieved via the system defined relationship ISA. (Note that this

use of ISA is different from that usual in semantic networks). The classes may be

overlapping. The interdependency between the classes is represented by means of a subclass

operation. The IS SUB relationship is used to express the subclass operation.

Semantic Data Models

3. 3 Assessment of Semantic Data Models

36

In general, most of the semantic data models describe the real world in terms of units that

are close to the concept of an entity and a few of them carry it through to make a distinction

between an entity and its names, I . e. , what we call as object orientation. Most of the

models organise the modelling units into sets or types and a few of them carry it through to

provide hierarchical type structure. Some models make a distinction between attributes and

relationships while some models treat both as relationships. Some models make a distinction

between entities and relationships while some models force all relationships to be treated as

entities in their own right. Some models limit themselves to binary functional (one-to-one

and many-to-one) relationships forcing creation of "excess" entity sets for modelling n-ary or

non-functional (many-to-many) relationships. Most of the models, however, ignore aspects

such as the provision of a consistent set of operations, facilities to capture rules etc.

An assessment of the semantic data models discussed in this chapter was carried out using

the framework we established in section 2.8. The resulting analysis is shown in Table 3-1. In

this table, the entries like high, medium and low reflect the author's judgement based on the

information that can be gathered from literature. Where the author was unable to form an

opinion from the available information, corresponding entries are shown with a question mark.

It is to be noted that this analysis is necessarily approximate because of the difficulty in

understanding the varied vocabularies and the considerable ambiguity in the way concepts in

one model relate to concepts in another.

Semantic Data Models 37

Table 3-1: Assessment of Semantic Data Models

I ---------------------I ---------I----------I----------I----------I----------
Role I Basic I E - R Struct- Extended
Model I Semantic I Model ural Relati-

Model I Model onal
Model --

IOb)ect Orientation No No No No Yes

---------------------- ---------- ---------- ---------- ---------- ----------
I

(Semantic Express'ness I Medium Medium Medium Medium High
----I

(Ease of Design I Low Medium Medium Medium Low

i------------------------------- I---------- I---------- I---------- I----------
I Neutrality No No No No Yes

I---------------------I----------I----------I----------I----------I----------
I

Operations No No No I No Yes

i--------------------- I---------- I---------- I---------- I---------- I----------
I

I Facilities to specify
(constraints ? ? ? ? ?

--------------------- ----------
I

Facilities to specify
I derived data I? 17 I? ? ?

I --------------------- I ---------- I ---------- I ---------- I ---------- I ----------
I

Freedom from physical I

Iconsiderations No I Yes Yes Yes Yes

i --------------------- I ---------- I ---------- I ---------- I ---------- I ----------
(Ease of Evolution I Low I Medium Medium Medium Medium

I I I I--------------------- I---------- I---------- I---------- i---------- I----------
I

(Complexity High Medium Medium Medium I High

I- -------------------I----------I----------I----------I----------I----------

Semantic Data Models

Table 3-1, continued

Data DIAM Binary 0- R S H M

I Seman- Relat- Model
tics tonal

Models ---
IOblect Orientation Yes No No Yes Yes

--------------------- ---------- ---------- -------- ---------- ----------
(Semantic Express'ness Medium Medium Medium Medium High

I --------------------- I ---------- I ---------- I ---------- I ---------- I ----------
I

j Ease of Design High High High Medium I Low

I --------------------- I ---------- I ---------- I ---------- I ---------- I ----------
I Neutrality No No No No Yes

I---------------------I----------I----------I----------I----------I ---------
I

IOperations Yes Yes Yes Yes Yes
I I I I I---------------------I----------I----------I----------I----------I---------

I

I Facilities to specify
constraints Yes I? I? ? ?

I--------------------- I---------- I---------- I---------- I---------- I----------
l Facilities to specify I

derived data Yes I? I? I? ?

I--------------------- I---------- I---------- I---------- I---------- I----------
I Freedom from physical I

considerations Yes I Yes Yes Yes Yes
I I I I I

I --------------------- I ---------- I ---------- I ---------- I ---------- I ----------
I Ease of Evolution I Medium Medium Medium Medium Medium

I --------------------- I ---------- I ---------- I --------- I ---------- I ----------
(Complexity Low Low Low Low Medium

I --------------------- I ---------- I ----------- I-----------I ---------- I ----------

38

Semantic Data Models

Table 3-1, continued

---------------------I----------I----------I----------I----------I----------
I FDM FDM FDM FDM FDM
I I (Kersc- I (Housel) I (Katz I (Rune- I (Ship-
I hberg) & Wong) I man) man)
I I I I I I

--------------------- ---------- ---------- ---------- ----------
Object Orientation No No Yes Yes Yes

I I I I I I

--------------------- ---------- ---------- ---------- ---------- ----------
I I I I I I

ISemantic Express'ness Medium Medium Medium Medium High
I

I

---------I I I I i

I I I I I

(Ease of Design Medium Medium Medium Medium High
I I I I I I I---------------------I----------I----------I----------I----------I----------
I Neutrality No No No No Yes
I I I I I I I---------------------I----------I----------I----------I----------I----------I
I I I I I I

(Operations No Yes I Yes Yes
I I I I I I I---------------------I----------I----------I----------I----------I----------I
I

Facilities to specify I I I I I

(constraints ? ? ? ? Yes
I I I I I---------------------I----------I----------I----------I-----------I----------I
I I I I I

I Facilities to specify
derived data ? I? ? Yes Yes

I I I I I

--------------------- I---------- I-------- --I----------- I---------- I---------- I
J Freedom from physical I I I I I

(considerations Yes Yes Yes Yes Yes
I I I I I I

I --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- I
I I I I I I

J Ease of Evolution Medium Medium Medium Medium High
I I I I I I I----------------------I----------I----------I----------I----------I----------I

(Complexity I Medium I Medium I Medium I Medium Low I

I I I I I I I---------------------I----------I----------I----------I----------I----------I

39

Semantic Data Models

Table 3-1, continued

I --------------------- I---------- I---------- I---------- ----------
I

S D M TAXIS SBRM

--------------------- ---------- ---------- ----------
Object Orientation I Yes Yes Yes

--------------------- ---------- ---------- ----------
(Semantic Express'ness High High High

I-------------------------------I--------------------
I

J Ease of Design Medium I Medium Medium

I --------------------- I ---------- I ---------- I ----------
I

Neutrality Yes I Yes Yes

I---------------------I----------I----------I----------
I

Operations ? Yes ?

I I I---------------------I----------I----------I----------
I

l Facilities to specify
Iconstraints ? Yes ?

--- --------- --------
I

l Facilities to specify
derived data Yes Yes ?

J Freedom from physical
(considerations I Yes Yes Yes

--------------------- ---------- ---------- ---------- ----------
I

J Ease of Evolution I Medium Medium Medium

--------------------- ---------- ---------- ----------
I

(Complexity High I High High
I

--------------------- ---------- ---------- ----------

40

Semantic Data Models 41

Among all the models discussed above, we consider the functional data models to be most

attractive for the purpose of conceptual data modelling. The following six reasons support this

claim:

1) Functional data models provide a semantically rich modelling environment. Shipman's

proposals show how this can be achieved. The most important feature of these models is

their ability to remove the sharp distinction between data and programs (derived data). All

functions irrespective of whether they are stored functions like name(person) or computable

functions like sine and max have equal rights. Any function may be composed with any other

function of conformable type using the same syntax. Because of this, the information that

can be extracted from such a system corresponds not only to that which can be obtained from

simple access to stored data, but also to that which involves complex traversals of data

structure, and/or computations. Thus, the functional approach makes it possible to "equate

data in the system with what can be extracted, rather than with what is physically stored"

[Kent 78], The advantages of unifying data and programs (derived data) have already been

discussed in section 2.7.

2) Functional data models provide "simple" data manipulation languages. The function

application provides a natural mode of expressing user queries. As Folinus et al. observe,

"the requests for answers, whether made to a processing program or to a stored database,

are essentially requests for a value of a function, given argument values". Because of this,

query formulations in these models are likely to be closer to the natural language form.

3) Functional data models provide data languages in which data manipulation facilities are

neatly integrated with the general-purpose computation facilities. FQL (Buneman 79] shows

how this can be achieved. Existing data manipulation languages, both procedural and

non-procedural, do not provide a complete programming environment. To overcome this

deficiency, these languages are invariably coupled to existing procedural programming

languages. Such coupling is usually provided by either defining special subroutines to execute

database functions or by embedding database constructs into an existing language. A

preprocessor translates these constructs into run-time calls on a database system. Application

programs consist of statements in the host programming language intermixed with statements

in the query language to access the database system when required. Problems with such

approaches include the difficulty of performing type checking across language interfaces, the

trade-off between interpretation and compilation, and the unattractive nature of combining

non-procedural query languages in procedural programming languages. Typical programming

languages and typical query languages differ from each other too much in their description of

Semantic Data Models 42

data structures and this embedding method does not produce a natural programming interface

[Atkinson 78, Pirotte 80].

Of late, a number of efforts have been made to extend programming languages with

database notions, e.g., PASCAL-R (Schmidt 77], RIGEL (Rowe 79], THESEUS [Shopiro 79],

PLAIN (Wasserman 81] etc. The problem with these integrated languages is that they

attempt to extend essentially procedural languages like PASCAL (Wirth 71] with non-

procedural query language constructs. Such languages offer a variety of programming styles

which are not strictly necessary for expressive powers: they range from a navigational style

where database relations are examined one tuple at a time in an order fixed by physical

storage to a style of non-procedural programming similar to that of typical query languages.

Thus the resulting languages have a redundant and hybrid character which does not appear

fully justified nor obviously necessary [Pirotte 80].

A major reason for the unsatisfactory nature of these attempts is the lack of a common

concept between the data models and the programming languages. Functional data models are

well suited to overcome this shortcoming as the concept of function used to model objects and

inter-object associations in these models is also the basis of many programming languages like

LISP [McCarthy 621, KRC [Turner 82], ML (Gordon 79], HOPE [Burstall 80] etc.. Hence,

the data manipulation languages provided for these models can be expected to merge

comfortably with the functional programming languages.

4) Functional data models can support all the three major (hierarchical, CODASYL, and

relational) data models (Sibley 77, Shipman 81, Smith 80b, Gray 83]. This means that

functional data models can be used to provide a global schema through which one can take a

unified view of heterogeneous distributed databases some of which are CODASYL and some

are relational. This is being tried in the heterogeneous distributed database system,

MULTIBASE [Smith 80b]

5) By exploiting the well established mathematical theory of functions [MacLane 67],

functional data models can provide a solid theoretical foundations for databases.

6) Since functions can be considered as logical access paths of a database, there is a strong

possibility of providing efficient implementations of functional data models. In fact, Katz and

Wong use the functional data model to design storage structures for a CODASYL DBMS to

provide the desired access characteristics (Katz 83]. The advances in data flow computers

[Arvind 78] is another factor favouring the functional data models. By exploiting parallelism,

Semantic Data Models 43

these machines promise to provide much higher performance. The great advances in

semiconductor device technology can be harnessed much more effectively in these

architectures. Several groups engaged in data flow research have developed high-level

languages suitable for data flow programming. The primary characteristic of these languages is

that they are functional. It is easy to see that the functional data models will be in a better

position to exploit the advances in this field.

3. 4 Assessment of Functional Data Models

As discussed earlier, there are five different proposals of the functional data model that

have appeared in the literature so far. Table 3-1 summarises the assessment of these

models based on the set of criteria established in section 2.8. Here, we expand on this

assessment.

The functional database model of Kerschberg et al. and the functional dependency model of

Housel fail to meet our first criteria, i.e., the object orientation. They model the objects in

the real world by their names and inter-object relationships in terms of attribute values.

Regarding this, both these models suffer from the same disadvantages as the conventional

name-based models like the CODASYL or the relational model.

Though the functional data model of Buneman and Frankel and the functional data model of

Katz and Wong incorporate the object orientation, semantically they are insufficiently

expressive. They classify entities into types (sets) but do not accommodate subtype-

supertype hierarchy. In addition, they limit themselves to binary functions only. This means

that to model many-to-many and non-binary relationships, they are forced to adopt the excess

entity approach similar to that used in the CODASYL model. That is, they introduce a

"relationship" entity and provide functions to map it into the participating entities. For

example, the many-to-many relationship between students and courses in these models is

represented by an enrolment entity and the two single-valued functions student-of(enrolment)

and course-of (enrolment). Each enrolment entity represents a single relationship between a

student and a course.

Similarly, n-ary relationships in these models are handled by reducing them to binary form

by defining a new artificial entity type corresponding to the relationship and then defining n

binary relationships each corresponding to a relationship between the new entity type and one

of the "components" of the original relationship. For example, the n-ary relationship

Semantic Data Models 44

between a buyer, a seller, and an item is represented by a sale entity and the three

single-valued functions buyer-of(sale), seller-of (sale). and item-ot(sale). The problems

with the excess entity approach are that it obscures the actual relationship, and the artificial

entities so created have no correspondence with the real-world objects. This also forces one

to adopt different techniques to model different types of relationships. Regarding this, both

these models suffer from the same disadvantage as the CODASYL model.

It is the Shipman's model which meets most of our criteria. It has the abstract object

orientation firmly built into it. In addition, it classifies entities into entity types and

incorporates subtype-supertype relationships among entity types. By admitting functions with

multiple arguments and set-valued results, Shipman's model captures all types of inter-object

relationships uniformly. Because of this, mandatory creation of potentially unnatural entity

types is avoided. Shipman's model is also unique in exploiting the main advantage of

functional approach, i.e., the ability to treat data and programs alike, by means of derived

functions. Another important factor that is in favour of Shipman's model is the simplicity of

the associated data language. Detailed assessment of this model appears in the next chapter.

3. 5 Conclusions

Inspite of the many benefits of functional data models listed above, the literature contains

few reports on their implementation and use. In an attempt to fully understand the advantages

and problems of functional database management systems, this research concentrated on the

construction of a full-scale functional database management system. The result of this is the

Extended Functional Data Model (EFDM) system, implemented on a VAX 11/780 hardware

configuration at Edinburgh.

The data model underlying EFDM is very close to the proposals of Shipman, though we have

made some modifications and extensions. We call this Extended Functional Data Model to

distinguish it from the "basic" functional data models proposed by others, which, as we

discussed above, are semantically less expressive. Chapter 4 describes Shipman's proposals

in detail and Chapter 5 elaborates on the modifications and extensions of these proposals

carried out in EFDM.

Functional Data Model

Chapter Four

Functional Data Model

45

In this chapter, we introduce the basic concepts of the functional data model as proposed

by Shipman [Shipman 81]. We illustrate these concepts using the constructs of the

associated data language DAPLEX. The syntax of this language is reproduced in Appendix A.

4. 1 Structures

Functional data model (FDM) models the real-world information as sets of entities and of

functions mapping entities to entities. An entity is some form of token identifying a unique

object in the database and usually representing a unique object in the real world [Gray 83].

For example, FDM models a student in the real world by a unique student entity in the

database. Sets of entities with some common information are classified as entity types (or

simply types). Entity types are arranged in a type hierarchy, so that they are all subtypes of

the type entity, the system-provided type of all entities. Functions map a given entity into a

set of target entities. For example, a function courseof defined to map a particular student

entity to a set of course entities can be used to model the set of courses a student is taking.

The intension of a functional database is specified by a functional schema which consists of

one or more function definitions. A function definition corresponds to a function name followed

by a list of arguments enclosed in brackets followed by a single or double arrow followed by

the result. That is, a function f is denoted as

f1
11,

ai2, ... aim) -> rI

or

ft (a11, ai2, ...aim) ->> rI

where the a1js, not necessarily distinct, refer to argument entities of type aij and rI refers to

result entities of type rI. A single arrow -> implies the function is single-valued and a double

Functional Data Model 46

arrow -> > implies it is multi-valued. Single-valued functions return a single result entity of

type ri on each application and multi-valued functions return a set of entities, all of type rl,

on each application.

The functional schema for a database to represent students and their tuition arrangements is

shown in figure 4-1. The declare and define in this figure correspond to the data definition

statements of DAPLEX language.

declare person()
declare student()

declare staff ()
declare course()
declare event()
declare tutorial ()

declare lecture ()

declare cname (person)
declare sname (person)
declare sex(person)

entity
person
person
entity
entityj
event
event

-> string
-> string
-> string

declare course(student) ->> course
declare tutorial (student) -> tutorial
declare grade (student, course) -> string

declare course(staff)
declare room (staff)
declare phone(staff)

->> course
-> string
-> integer

declare title(course)
declare lecture(course)

declare day(event)
declare time(event)
declare site(event)
declare room (event)

-> string
->> lecture

-> string
-> integer
-> string
-> string

declare staff (tutorial) -> staff

define staff (course) ->> inverse of course(staff)
define lecturer(student) ->> staff(course(student))
define tutor(student) -> staff (tutorial (student))

Figure 4-1: Functional Schema for a Student Database

4.1.1 Entity Types

Consider the function person() shown in figure 4-1. This function evaluates to a set of

entities of type entity. Since it has no arguments, there is only one possible result set.

Shipman uses this fact to say that all members of this set have a distinct type, i.e., it

defines the person entity type. (Note that person is triply overloaded here, i.e., it names

the entity type, the set of person entities, and the function that produces that set.)

Functional Data Model 47

Similarly, the course() function defines the course entity type. Thus, all zero-argument

functions define new entity types.

An important point about this model is that entities represent objects in the real world and

not the numbers or other identifiers associated with the objects. Hence, entities by

themselves cannot be printed. The only exceptions are those belonging to pre-defined entity

types like integer, string etc. They are special in that, as well as being predefined, they

have an established method of lexicographically representing instances of these types. The

actual set of such built-in types is analogous to the base types in a programming language,

and would be chosen for their utility. Other such useful types are boolean, real, date, and

time.

In this model, the extensions of different entity types can overlap, i. e. , a student can

simultaneously be a staff entity as well. The notion of role (See 4.2.2) is used to determine

the type of an entity during evaluation.

4.1.2 Functions

Functions with arguments model both the properties (attributes) of the objects and the

relationships between various objects. For example, the function cname(person) which

returns an entity of type string for each person entity can be considered as modelling a

property of person entities whereas the function course(student) which returns a set of course

entities for each student entity can be considered as modelling the relationship between

student and course entities. Thus, this model makes no distinction between attributes and

relationships.

This model allows multi-argument functions also. For example, the function grade with two

arguments student and course types models the fact that every student-course pair is

associated with a string entity indicating the grade that the student gets for that course. A

difficulty with this function definition is that it specifies the function grade as defined for every

student-course pair, while in fact it should exist only for those courses in which the student is

enroled.

Shipman suggests the following definition to overcome this problem:

declare grade(student, course(student)) -> string

Functional Data Model 48

According to Shipman's proposals, all functions are treated as total. Hence, all single-

valued functions must be explicitly initialised by the user and all multi-valued functions that

are not initialised return the empty set.

4.1.3 Type Hierarchy

Consider the function person() again. The set of person entities returned by this function

is a subset of the set of entity entities. Shipman uses this fact to say that the entity type

person is a subtype of the entity type entity.

This subtype-supertype relationship can be extended to any level. Also, an entity type can

have any number of subtypes. For example, the person entity type above has student and

staff entity types as its subtypes.

An important consequence of this hierarchical relationship of types is that an instance of an

entity type is also an instance of all its supertypes and a subtype inherits all the functions

defined over all of its supertypes. This follows from the tact that a student entity is

necessarily a person entity as well and hence all the functions applicable to person type are

applicable to student entities as well.

4.1.4 Base and Derived functions

A function introduced by declare is called a base function and is represented by physically

storing a table of arguments and results. For example, cname(person) function relating

persons to their Christian names is represented by a table of person and string entities. The

basic algorithm to evaluate these functions is search of the list of arguments, i. e. , a

comparison of the given argument with the list of arguments to determine the corresponding

result value to be selected.

A function introduced by define is called a derived function and is represented by an

algorithm to compute its result. For example, the lecturer(student) function in figure 4-1 is

represented by a derivation procedure. Such functions are evaluated by executing the

corresponding algorithms. Hence, data for these functions does not, conceptually at least,

exist in the stored form in the database. Various mechanisms to define derived functions are

discussed in section 4.3.

Functional Data Model 49

4.1.5 Function Names

FDM allows function name overloading, i.e., more than one function may have the same

name. For example, though the functions course(), course(student) and course(staff) all

have the same name, they are distinguished by their internal names. The internal name of a

function is generated by enclosing in square brackets the external function name and the

argument types over which it was originally specified. Thus the internal names of the above

three functions are [course()], [course(student)], and [course(staft)] respectively.

4.1.6 Order

Multi-valued functions in this model evaluate to sets of entities in the mathematical sense;

that is, the sets are considered unordered and do not contain duplicates. However, order

forms a natural part of the real world information. Hence, DAPLEX provides for explicitly

associating an order with entity types or multi-valued functions by using in order syntax. For

example, to order the staff on their rank, the following declaration can be used:

declare staff () -> > person in order by ascending rank(staff)

In the above declaration, ordering is maintained by the system. Ordering can also be

maintained by users by explicitly specifying the order via update statements. For example, to

maintain user defined ordering for musical notes in a melody, the following declaration can be

used:

declare notes (melody) ->> notes in order

The omission of by clause following order clause indicates that ordering is to be specified by

update statements. More than one by clause can be used to indicate primary ordering,

secondary ordering, tertiary ordering etc.

4.1.7 Entity Diagram

The functional data model admits a neat and concise graphical representation for the entity

types and functions modelling a real-world application. Such a graphical representation is

called the entity diagram.

Figure 4-2 illustrates such an entity diagram for a schema shown in figure 4-1. In this

figure, diamond-shaped enclosures indicate entity types and the arrows indicate functions

mapping their argument types into their result types. A solid arrow indicates a base function

while a dashed arrow indicates a derived function. A single headed arrow indicates a

50

0
E
a
C

lecturer V

tutor

m

grade

title

x
m
H -t -- - - - - - - - - - - - - - I

course

staff
I

I

course string integer

erso

E
0 0 H

time
v

lecture event tutorial

tutorial

Figure 4-2: Entity Diagram for Student Database

Functional Data Model 51

single-valued function while a double headed arrow indicates a multi-valued function. A

double-line arrow indicates subtype-supertype relationship. The multi-argument function grade

is represented by the two arrows from the respective argument types getting merged before

reaching the result type.

It can be seen that the entity diagrams closely resemble the semantic nets used for

knowledge representation in the artificial intelligence field [Quillian 681.

4. 2 Operations

DAPLEX is the integrated data definition and data manipulation language associated with this

model. DAPLEX does not concern itself with the general-purpose computation facilities and

data input/output operations. Shipman envisages DAPLEX to be embedded in a high level

language for these facilities.

4.2.1 Data Definition

A new function can be added to the schema at any time. A declare statement is used to

add a base function or an entity type while a define statement is used to add a derived

function or an entity type.

4.2.2 Data Selection and Retrieval

FOR loop statements and expressions are the basic constructs for data selection. For

example, a query to find out the names of all persons in the database corresponding to figure

4-1 appears as follows:

for each person
print cname (person), sname (person)

where the print statement is assumed to be provided by the high-level language in which

DAPLEX is embedded. In this example, the FOR loop statement iterates over a set of

entities of type person, executing its for-body, the print statement, for each member of the

set.

There are two forms of FOR loop statement (soe Appendix A):

for each set imperative
for singleton imperative

Functional Data Model 52

where set refers to a set expression and singleton refers to a singleton expression and

imperative refers to either a FOR-loop statement, an update statement, or a print statement.

While a set expression evaluates to a set of entities, a singleton expression evaluates to a

single entity.

Every expression has a value, a role, and an order. The expression value is the set of

entities returned by evaluating the expression. The expression order is the ordering

associated with these entities. (it is meaningful for set expressions only.) The expression

role is the entity type under which these entities are to be interpreted. The role of an

expression can always be determined by a static analysis of the expression. An expression's

role can be changed without affecting its value or order by means of the as operator (see

section 4.2.2.4).

4.2.2.1 Set Expressions

Every set expression has associated with it a reference variable. Operators which iterate

over the set, such as for each in the above syntax, successively bind this variable to the

entities in the iteration set. The reference variable typically appears in the body of the

iterating operator and references the particular entity being considered in the current

iteration. DAPLEX provides for the implicitly declared looping variables. For example, in the

above query formulation to find out the names of all persons in the database, the name

person implicitly declares a reference variable person, which actually appears in the body of

the print statement.

DAPLEX also provides for the explicit specification of reference variables by using the in

operator. For example, the above query can also be formulated as:

for each p in person
print cname (p), sname (p)

A set expression can be formed by a name corresponding to an entity type identifier or by a

function application resulting in a set-valued result. For example, consider the function

application course(student) where student is a variable corresponding to a student entity.

Here, the result of the expression corresponds to the set of entities returned by applying

course(student) function to the entity student.

In general, each argument of a function application can be either a set expression or a

singleton expression. When the arguments for a function application are set expressions, the

Functional Data Model 53

result of the function application is obtained by iteratively applying the function to each tuple

of the cross-product of argument sets and taking the union of all results so obtained. For

example, consider the expression

course(student such that sex(student) _ "f")

Here, the result is calculated by taking the union of sets of course entities returned by

applying the course(student) function to each member of the argument set.

A set expression can also be formed by the general set former construction. This has the

from

sell such that predicate

where sell is any set expression and the predicate following such that evaluates to a boolean

result. This form of set expression evaluates to those members of sell for which predicate is

true. In evaluating predicate, the reference variable of sell is bound to the member of sell

being tested. For example, consider the following query:

Find the surnames of all the students with the Christian name Pat.

for each student such that
cname(student) _ "Pat"

print sname (student);

Here only those student entities for which the predicate following such that evaluates to true

are included in the result of the set expression.

DAPI_EX also allows quantification for the formulation of predicates following such that. These

are of the form

for quant set predicate

where the predicate evaluates to a boolean result and quant is any one of the following

quantifiers: some, every, no, at least, at most, or exactly (last three quantifiers must be

followed by a singleton evaluating to an integer result). Such quantified expressions always

evaluate to a boolean value. For example, consider the following example:

Find the Christian name of all the students taking the IS1 course.

for each student such that
for some course(student)
title (course) ="IS t"

print cname(student);

In this query, the expression following such that evaluates to true if at least one course entity

in course(student) set meets the title (course) ="IS t" test.

It is possible to specify the order for the results of set-valued expressions using in order by

syntax as described in section 4.1.6. However, when the by clause is omitted while

specifying order, the ordering is that of existing ordering associated with the evaluated set.

Functional Data Model

4.2.2.2 Singleton Expressions

54

A singleton expression is formed by a constant literal, a variable bound to a particular

entity, or by a function application resulting in a single-valued result.

A singleton expression is also formed by the the operator followed by a set expression. The

result of such an expression is the entity returned by the set expression, only if the result

set has a cardinality of 1. For example, consider the following query:

Find the titles of courses taught by Hamish Dewar.

for the staff such that
cname(staff) = "Hamish" and
sname(staff) = "Dewar"

for each course(staff)
print title(course);

In the above formulation, the ensures that there is only one staff entity with cname as

Hamish and sname as Dewar.

4.2.2.3 Aggregate functions

DAPLEX proposals include the aggregate functions such as count, maximum, minimum,

total, average etc.

count function takes any set-valued expression as the argument and returns the cardinality

of that set in integer form. For example, consider the following request:

Find the number of staff in CS department.

This can be expressed as

print count(staff such that dept (staff)="CS")

maximum and minimum functions take any set-valued expression with numeric type as the

argument and return the maximum/minimum of the values in the argument set.

total and average functions take any multiset valued expression as the argument and return

the total or average value of all the values in the argument set. (A multiset or bag is a set

which may contain duplicate elements.) A special operator over is provided, which when

used with a set-valued expression evaluates to a multiset. For example, consider the

following request:

Find the average salary of staff in the CS department.

Functional Data Model 55

This query can be formulated as follows:

print average (salary (staff) over staff such that
dept (staff) ="CS")

Here, for each member of the staff set, the given expression is evaluated and the resulting

value is included in the average independent of whether or not duplicate values are present.

4.2.2.4 Specifying the Expression Role

The role of an expression can be explicitly specified by means of the as operator. For

example, consider the following request:

Among the students who are also staff, list those who are taking a course they teach.

This query can be formulated as follows:

for each student such that
some course(student) = some course(student as staff)

print cname (student), sname (student)

4.2.3 Database Updating

Update operations in DAPLEX correspond to creation of a new entity, assigning function

values, and modifying function values.

4.2.3.1 Creating a new entity

A new entity is created using a singleton expression

a new set

where set corresponds to a set expression. For example,

a new person

creates a new person entity and associates it with the variable person. When a new entity

belonging to a certain entity type is created, all the supertypes of that entity type get

populated simultaneously with that new entity. For example,

a new student

creates a new entity which is included in the extension of both student and person entity

types.

Functional Data Model 56

4.2.3.2 Assigning or modifying function values

let, include, and exclude statements are used for this purpose. The let statement replaces

the existing function value, if any, by the new value. Otherwise, it assigns the specified

value as the result for the given set of arguments. The include statement extends the

existing result set of a multi-valued function for the given set of arguments. The exclude

statement excludes the specified value set from the result set of a multi-valued function for

the given set of arguments. For example, consider the following requests:

For the student with Christian name 'Moyana' and surname 'Johns', change her current

assignment to tutorial group to that held on Mondays at 2.0 pm in room 2c.

This request can be formulated as follows:

for the student such that
cname(student)="Moyana" and sname (student) ="Johns"

let tutorial (student)= the tutorial such that
day (tutorial)="Monday" and
time (tutorial) =-114-1 and
room (tutorial) =112c";

For the student with Christian name 'Moyana' and surname 'Johns', add the courses CS1 and

181 to her current course assignments.

This request can be formulated as follows:

for the student such that
cname (student) ="Moyana" and sname (student) ="Jo h ns"

include course (student)={the cl in course such that
title (ct)="CS1",
the c2 in course such that
title (c2)=11181"I

For the student with Christian name 'Moyana' and surname 'Johns', drop the course CS1 from

her current course assignments.

This request can be formulated as follows:

for the student such that
cname(student)="Moyana" and sname (student) ="Johns"

exclude course (student)={the c in course such that
title (c) ="CS 1 "}

Functional Data Model

4. 3 Derived Functions

57

Derived functions are defined using define statements. For example, given the two

functions

course(student) ->> course
staff (course) -> > staff

the following derived function

define staff (student) -> > staff (course (student));

returns the set of staff entities for a given student entity by evaluating the composite

function.

A derived entity type is considered as a subtype of the role of the defining expression. For

example, the following derived entity type

define female() ->> person such that sex(person)

defines a subtype of type person, which returns those person entities meeting the

qualification,

DAPLEX provides the following special operators for defining derived functions:

inverse of : In order to define a derived function that relates all the students taking a

particular course for the database of figure 4-1, we can proceed as follows:

define students (course) -> > student such that
for some c in course(student)
c = course

DAPLEX provides a special operator inverse of to simplify the derivation of the above function.

Using this operator, the above function can be defined as

define students(course) ->> inverse of course(student)

Inverse functions can be defined for one-argument functions only. A single valued function

may have the inverse function which is single- or multi-valued. Similarly, a multi-valued

function may have a single- or multi-valued function as its inverse.

transitive of : If there exists a function

manager(employee) -> employee

which returns the manager of a given employee, the following derived function

define superiors (employee) ->> transitive of manager (employee);

returns the set containing the manager of a given employee, the manager's manager, the

manager's manager's manager etc. The transitive of operator can be used to define

one-argument functions only.

Functional Data Model 58

union of, intersection of, difference of : The union of, intersection of, and difference of

operators applied to set-valued expressions can be used to define both entity types and

functions with arguments. If a new entity type is defined, the new type is considered to be

a subtype of each of the types of the set-valued expressions in the right hand side. If, on

the other hand, a function with arguments is defined, then each of the set-valued

expressions in the right-hand side must be of the same type which becomes the type of the

function.

For example, the function,

define customer (->> union of person, company, govtagency

defines the customer entity type consisting of entities belonging to either person, company, or

govtagency entity type.

Similarly, the function,

define studentstaff () -> > intersection of student, staff

defines the studentstaff entity type consisting of entities which belong to both student and

staff entity types, and the function,

define nonteaching () ->> difference of employee, staff

defines the nonteaching entity type which consists of those employee entities which do not

belong to staff type.

compound of : The compound of operator is used to define new entity types only. This

operator creates derived entitles corresponding to the elements of the cartesian product of its

operands. For example, if we have an entity type student and a function

course (student) ->> course

the following derived entity type,

define enrolment() ->> compound of student, course(student)

returns entities of enrolment type. The new type being defined will be a subtype of entity

and will include one entity for each student -course tuple. In addition, the system implicitly

defines the two functions

student(enrolment) -> student
course(enrolment) -> course

which return the student and course entities for each enrolment entity.

Functional Data Model 59

4. 4 User Views

All users of a database system might not want to see the database as defined in the central

schema, The properties which are considered relevant and the mechanisms by which they are

most naturally referenced vary across differing world views. Some users might prefer, for

example, to view the enrolment of a student in a course as an entity having its own

properties, while others might only be interested in the courses taken by a student. For

them, dealing with enrolments as objects would be unnatural and awkward.

Shipman proposes the use of derived functions for defining different user views of a

database. Because complex algorithms can be used in defining derived functions, view

definition through derived functions is especially powerful, To separate the user's name space

from the global name space, Shipman proposes that each user view be defined using a

module or package facility provided by a high level language in which DAPLEX is to be

embedded. Consequently, no details of this facility is included in his proposals.

4.4.1 Operations from Views

For a view to be useful, users must be able to apply retrieval and update operations to it.

These operations from the view must be translated to functionally equivalent operations on the

base functions. Because the mapping from the base functions to derived functions of a view

is functional, retrieval operations from a view can always be mapped into equivalent retrieval

operations on the base functions. However, such a mapping for translating updates from a

view into equivalent updates on base functions may not always exist, and when it does exist,

it may not be unique [Codd 741, Views and updates exist for which no sequence of

operations on the base functions will correspond to view updates (undefined updates) or more

than one sequence of operations on the base functions may correspond to same view update

(ambiguous updates) [Dayal 78]. In general, the ambiguity cannot be resolved automatically.

The strategy adopted here is to disallow updates from views unless the mechanism for that

particular update has been explicitly specified in terms of available update operations. This is

similar to the strategy proposed in the RIGEL [Rowe 79] language. Again, specific details of

this mechanism are not well defined in DAPLEX.

Functional Data Model 60

4. 5 Constraints

Shipman proposes the following forms of constraint specifications:

1) As an instruction to abort any update transaction which causes failure of a given

pre-defined condition. For example, consider the following constraint: a department's head

must belong to the same department.

This is specified as follows:

define constraint nativehead (department) ->
dept (head (department))=department

This statement defines a boolean function nativehead which evaluates to true if the following

condition holds good and false otherwise. and a constraint which instructs the system to abort

any update transactions which leave the function value false for any department.

2) As a trigger facility to execute a specified program whenever any update transaction causes

a given pre-defined condition to be satisfied. For example, consider the following request:

inform the department head whenever more than 45 students are enroled in a class.

This is specified as follows:

define trigger overbooked(class) ->
count (students (class)) > 45
sendmessage (head (dept (class)). "overbooked : ",
name (class))

This statement defines a boolean function overbooked which evaluates to true if the following

condition holds good and false otherwise, and an imperative which is executed whenever that

function evaluates to true for any class.

4. 6 Assessment of Shipman's Proposals

This section provides a detailed assessment of Shipman's proposals based on the set of

criteria discussed in section 2.8.

1) Object orientation: This model makes a clear distinction between entities and names. The

user is not required to be aware of the mapping from real world objects to values which act

as tokens for them in the stored data. User-defined names of objects neither act as

representatives of objects nor do they participate in defining inter-object associations.

Hence, the referential integrity [Codd 79, Date 81] is guaranteed by the model itself. For

example, consider the following update request:

Add CS1 to the set of courses taken by Angela Pearson.

Functional Data Model 61

This is expressed in DAPLEX as follows:

for the student such that
cname(student)="Angela" and sname (student) z"Pearson"

include course(student) = (the course such that
title(course) = "CS1")

The above statement checks that the course entity to be included does indeed exist in the

database. If it is not present, the update statement is not executed and the user informed

about the non-existing entity.

2) Semantic expressiveness: This model organises entities into entity types, which are

themselves organised in a subtype-supertype hierarchy. Each fact about an object is

modelled as a function. Hence, semantically this model is highly expressive. For example, to

a question "what is known about persons?", the functional schema of figure 4-1 provides the

answer that each person is known to have attributes cname (Christian name), snare

(surname), and sex. In addition, it provides the information that a person can be a student

or a staff member. If he/she is a student, the functional schema provides the information

that he/she attends a set of courses (since course(student) is multi-valued) and belongs to a

tutorial group (since tutorial (student) is single-valued). If he/she is a staff, the functional

schema provides the information that he/she teaches a set of courses (since course(staff) is

multi-valued) and each tutorial is run by a staff member (since staff(tutorial) is single-

valued),

student(studentno, cname, sname, sex)
staff (staffno, cname, sname, sex, room, phone)
course (courseno, title)
tutorial (tutonalno, day, time, site, room)
lecture (Iectureno, day, time, site, room)
attends (studentno, courseno, grade)
belongs (studentno, tutorialno)
has (courseno, lectureno)
lectures (staff no, lectureno)
runs (staff no, tutoriaino)

Figure 4-3: Relational Schema for the Student Database

In contrast with this, consider the relational schema for the same database shown in figure

4-3. It is not easy to answer the above question "what is known about persons?" just by

examining the relational schema. Firstly, the information that both students and staff members

are persons is not present in this schema. Secondly, to find out the relevant facts about, say

students, one must first identify the token (key) that stands for students and then examine all

the relations in which that token appears. The correct interpretation of such relationships may

Functional Data Model 62

become a significant problem if the schema has hundreds of relations with some of the

entities having compound keys.

In FDM, extensions of different types can overlap, i. e. , a person entity can belong to both

student and 'staff types. This corresponds to the various roles objects on the real world play.

As discussed in Chapter 2, this fulfills an important requirement of information modelling.

3) Ease of design: It is easy to arrive at a schema using this model. Functions in this

model represent irreducible relations as defined by Hall et al. (Hall 76a] and Biller (Biller

79]. Because of this, the information is canonically modelled, i. e. , the application modelled

as a set of functions in this model cannot be further decomposed, and there is only one fully

decomposed form to represent any given set of facts in a model of real world. As shown in

(Biller 79], such irreducible relations avoid the problems of normalisation present in

record-oriented models.

4) Neutrality: There is no distinction between attributes and relationships in this model. Both

are uniformly modelled as functions. It does, however, distinguish entities from relationships,

but unlike other models which make this kind of distinction, this model allows one to interpret

a relationship as an entity in its own right and vice versa. For example, consider the

following schema:

declare student() ->> entity
declare course() ->> entity
declare course (student) ->> course
declare grade (student, course) -> string

The relationship between students and courses, defined by the function course (student) can

however be interpreted as an entity type by the following derived function:

define enrolment() ->> compound of student, course (student)

Since the definition of the enrolment() function creates two implicitly defined functions

student (enrolment) and course (enrolment) functions (see section 4.3), we can treat the

grade (student, course) function as a property of the enrolment by the following derived

function:

define grade(enrolment) ->
grade (student (enrolment), course (enrolment))

Alternatively, if we had started with the following schema:

declare student () ->> entity
declare course o ->> entity
declare enrolment() ->> entity
declare student(enrolment) -> student
declare course (enrolment) -> course

it is an easy matter to derive the following functions:

Functional Data Model

define course(student) ->> course(e in enrolment
such that student(e) = student)

define grade (student, course) ->
grade(the e in enrolment such that
student(e) = student and course(e) = course)

63

Thus, we see that this model provides for translation between various semantic

interpretations. This feature is very useful for providing multiple user views of the same

database.

In contrast, some of the semantic models advocate modelling both entities and relationships

by a similar mechanism [Smith 80a, Codd 79] in order to provide neutral interpretation. For

example, consider the following object definitions in the Semantic Hierarchy Model of Smith

and Smith [Smith 80a] :

def author : com
name, address,.

end
def paper : com

title,

end
def authorship oom

paper, author
end

That is, the relationship between paper and author is modelled by the object authorship,

which has no correspondence with anything in the real world. Creation of such unnatural

objects is avoided in the functional model, because the relationship between author and paper

in FDM is modelled as a base function,

declare author(paper) -> author

in one direction, and as a derived function,

define paper(author) ->> inverse of author(paper)

in the other direction. Even if the relationship is information-bearing, there is still no

necessity to model the relationship as an entity because of the multi-argument functions

allowed in the model. However, FDM also allows to look at a relationship as an entity by

means of the compound of operation as shown above, if the user so desires.

5) Operations: It supports a complete set of operations. The data selection is purely in

terms of logical properties and no knowledge of storage structures is required to formulate

requests. In addition, the query formulations based on the function application provide a

natural mode of expressing queries. For example, if s denotes an instance of a student,

then the expression cname(s) yields his Christian name, and the expression cname(tutor(s))

yields the Christian name of his tutor.

Because of the functional notation, queries in DAPLEX are close to the natural language

form. For example, consider the following query on the student database of figure 4-1.

Functional Data Model 64

Which female students attending CS1 course belong to the tutorial group run by Malcolm

Atkinson?

This query can be formulated as:

for each student such that
sex(student) _ "female" and
cname(tutor(student)) = "Malcolm" and
sname(tutor(student)) = "Atkinson" and
for some course(student)

title(course) = "CS1"
print cname (student), sname (student)

where tutor(student) refers to a derived function as shown in figure 4-1.

The same query expressed in relational algebra form of ASTRID [Gray 81] for the schema of

figure 4-3 looks as shown below:

malcolm staff selected on [cname = "Malcolm" and
sname = " Atkinson"] projected to staffno;

malgroups := malcolm joined to runs projected to
tutorialno;

female := student selected on [sex = "female"]
projected to studentno, cname, sname;

malstuds := malgroups joined to belongs joined to
female projected to studentno, cname, sname;

csl := course selected on [title = "CS1"] projected to
courseno;

cslstuds := csl joined to attends projected to
studentno;

result := malstuds joined to cslstuds projected to
cname, sname;

output result;

The comparison of two formulations clearly shows the conciseness and clarity of the query

expressed in the functional model.

Another important point about the functional languages is the possibility of relating databases

and programming languages through the common concept of function. As discussed in the

previous chapter, the attempts with the relational model and the CODASYL model have been

hampered by a lack of such a common concept.

6) Facilities to specify the derived data: The derived function mechanism in this model makes

it possible to capture derived data as part of the schema. As discussed in section 2.7.1, this

has many useful applications. One such use of derived functions is to model procedurally-

defined relationships. For example, the full name of a person can be defined as a procedure

define fullname (person) -> cname(person) ++ 11 11 ++ sname (person)

Derived functions also serve as an encoding of inference rules. For example, function

composition shows how two relationships can infer a third as in

Functional Data Model

define tutor(student) -> staff (tutorial (student))

or a function infers its inverse as in

define student (course) ->> inverse of course(student)

65

Another use of derived functions is to break down a complex query into a series of simpler

steps. For example, consider the following query:

What are the names of students who take a course taken by Angela Pearson?

This query formulation can be broken down into a derived function definition and a FOR loop

statement, as shown below:

define samecourse(sl in student,s2 in student) ->
for some cl in course (s1)
for some c2 in course(s2)
cl =c2

for the s1 in student such that
cname(sl) _ "Angela" and sname(sl) = "Pearson"

for each s2 in student such that
samecourse (sl, s2)

print cname(s2),sname(s2);

In effect, the derived function capability allows application semantics to be encoded into the

data description, thereby allowing requests to be expressed directly in terms of those

semantics.

As discussed in section 4.4, another use of derived functions is to provide for the definition

of diverse user views. Collections of derived functions can be packaged to present an

appropriate view of the database to a user.

7) Facilities to specify constraints: As discussed in section 4.5, this model provides facilities

to specify constraints.

8) Ease of evolution: The schemas in this model can gracefully evolve. The functions in this

model represent irreducible facts and hence represent natural increments to the schema. The

declare and define statements of DAPLEX allow dynamic additions to the schema, thus

providing incremental design/update of the database structure.

9) Freedom from physical considerations: Since the users need not be aware of how the

functions are implemented, this model provides a complete freedom from physical

considerations.

10) Complexity: It uses a minimal number of different terms to describe a database, thus

minimising the number of terms that have to be learned by users and implemented in the

system. Hence, it is simple to understand and use.

Extended Functional Data Model

Chapter Five

Extended Functional Data Model

66

In this chapter we discuss the various facilities of our implementation of the functional data

model, Extended Functional Data Model ('EFDM) system, We also provide a brief comparison

of EFDM with the proposed ADAPLEX database management system, currently under

development at Computer Corporation of America (CCA) [Smith 81, CCA 83].

EFOM is an interactive system. Users create, operate, and modify their databases through

interactive commands. Both the model and the language underlying EFDM closely follow the

proposals of Shipman. A significant difference, however, is that instead of embedding

DAPI.EX in a compile-and-run procedural language for a working system, we have formulated

a self-contained language. The syntax of some of the DAPLEX constructs has also been

simplified. The database update facilities are enhanced to provide for the explicit movement

of entities from one entity type to another and explicit deletion of entities from the database.

Schema modification facilities include the explicit deletion of functions.

A number of new features have also been added to provide many useful facilities such as

checks for schema consistency, defining and using views, loading bulk data from the operating

systems, naming and storing user queries, transferring the results of queries to the operating

system files etc.

A brief description of these modifications and extensions is given in the following sections.

More detailed information about EFDM can be found in the user manual [Kulkarni 83]. A

summary of the EFDM syntax appears in Appendix B.

Extended Functional Data Model 67

5. 1 Structures

As in Shipman's proposals, EFDM models the real world information as sets of entities and

functions mapping entities to entities. Likewise, entities have types which are arranged in a

type hierarchy, so that they are all subtypes of the type entity. Functions can again have

zero, one or more arguments and a function may be single-valued or multi-valued. Subtypes

inherit functions defined on their supertypes. A function which is represented by physically

storing a table of arguments and results is called a base function and a function introduced by

an algorithm to compute its result is called a derived function.

We have made two changes to Shipman's proposals as far as data model constructs are

concerned. They are as follows:

1. Unlike Shipman's proposals, single-valued functions in EFDM are assumed to be

partial by default. This has two advantages: a) it is possible to accommodate

objects for which some data is not known, and b) inverses of functions can be

freely defined even if they are only defined on a subset of an entity set.

2. Shipman allows the arguments of functions to be arbitrary expressions. The

reason for this seems to be the problem of handling multi-argument functions with

entity types as arguments, as such functions may not be well defined for all

combinations of argument entity sets. Hence, by adopting expressions as

arguments, one can use them as constraints on the possible combinations of

argument entities, i.e., the function is defined for only those entities evaluated

by the corresponding expressions. In contrast, the arguments of functions in

EFDM, if any, must all be entity types. Since functions in EFDM are allowed to

be partial, entity types acting as arguments for multi-argument functions do not

cause any problems. However, the fact that the function should possess values

for only a subset of the cross-product of argument entity sets can be

accommodated by specifying it as an explicit constraint. (See section 5.5)

5. 2 Operations

EFDM provides operations corresponding to data definition, data manipulation, I/O, and

general-purpose computation. Data definition and data manipulation operations essentially

correspond to those provided in DAPLEX. In addition, EFDM supports arithmetic, string

manipulation, and boolean operations as well as recursion for defining derived functions.

EFDM provides print and output statements for output operations and a bulk load facility for

inputting data from the operating system files [Kulkarni 83],

In contrast, DAPLEX limits itself to data definition and data manipulation operations.

Extended Functional Data Model 68

Shipman envisages embedding DAPLEX in a general purpose high-level language to provide

these facilities, There are two possible criticisms of this approach:

1. There is a considerable mismatch between the normal programming language

objects and the DAPLEX objects. The programming language objects are

characterised by a value and a structure. In contrast, DAPLEX objects have

neither a value nor a structure. They are atomic units which gain definition from

their relationships with other objects. In fact, they can exist independently from

such relationships. Because of this, DAPLEX entity types do not serve the same

purpose as normal programming language types. Hence, embedding DAPLEX in an

algol-like languages violates the principle of data type completeness [Strachey

67]. This is sure to result in a complex language.

2. DAPLEX programs are predominantly applicative or functional in style. Hence,

embedding DAPLEX in a procedural language is sure to result in two different
styles of programming in the same language.

5.2.1 Data Definition

The data structure of an application is described in the form of function definitions using

declare and define statements. The declare statement is used to enter a new base function

or entity type definition and the define statement is used to enter a new derived entity type

or function. Like DAPLEX, we allow the individual function declaration statements to occur at

any time. In addition to entity, three primitive types: string, integer, and boolean are

supported,

5.2.2 Maintaining Schema Consistency

As each new fact is added to the schema, it is necessary to make sure that it is not

inconsistent with the existing information in the database. One possible reason for

inconsistency in the functional schemas is due to the failure on the database designer's part to

ensure that the same fact is not described by more than one base function, For example,

assume that there exists a base function

student (course) ->> student

Suppose now the user intends to add another function

course(student) ->> course

If, in reality, this function is the inverse of the old function, adding it as a base function will

mean that the same fact is represented by two independently updatable functions, and this

will surely lead to inconsistencies in the database, On the other hand, if the new function

Extended Functional Data Model 69

corresponds to a new fact, say relating to the major courses taken by a student, it is to be

added as a base function.

Since there is no way for the system to infer what is intended, EFDM checks with the

user/designer to confirm all base function addition requests. For instance, suppose that the

user intends to add a base function

tutor(student) -> staff

between the student and staff types, where the only functions relating these types are as

shown in the entity diagram corresponding to figure 5-1. If we consider the entity diagram

as an undirected graph with the entity types corresponding to nodes and functions

corresponding to edges, various paths between any two nodes correspond to all the existing

base and derived functions that directly relate the corresponding two types and the possible

implicit functions relating the two types that can be derived using function inversion and

composition. In the present example, various paths between student and staff nodes are listed

below:

course (student), inverse of course(staff)
tutorial (student), staff (tutorial)

That is, there are no functions that directly relate the two types, but there are two possible

implicit paths.

The user can examine the two "paths" and see whether the new function he intends to add

corresponds to any of these "paths". For example, the user may discover that the new

function corresponds to the second path, i. e. , the composition of tutorial(student) and

staff(tutorial) functions. He can then abort the earlier request and define it as a derived

function. On the other hand, if he is sure that the new function does not correspond to any

of the "paths", he can let the function addition proceed as base function.

Thus, EFDM helps the database designers to avoid inconsistencies in the schema by

encouraging them to examine whether each new information that enters the system is 'initial'

or whether it can be derived from other information that already exists. This kind of

exploration also enhances the user understanding by stimulating and generating questions as

to how the reality is abstracted and which assumptions are made. Many incomplete and

inconsistent assumptions are thereby detected leading to a more valid and consistent model.

70

course course
course

student staff

tutorial staff
tutorial

Figure 5-1: Partial Entity Diagram for
Student Database

Extended Functional Data Model 71

5.2.3 Schema Updating

Shipman's proposals are limited to the addition of new functions only. However, users may

also want to drop existing functions if they are no longer interested in maintaining them. For

this purpose, we provide drop statement. For example, to drop the course(student) function,

we use:

drop course (student);

To avoid inconsistencies, drop may cause cascade deletion of functions that depend on the

function being deleted. Prior to executing the request, the user is provided with a list of

such implicit deletions and confirmation is sought to proceed with the execution.

5.2.4 Meta Data

The meta data of the schema corresponding to an application is held in a set of EFDM

functions shown in figure 5-2, These functions are automatically populated and modified when

declare, define or drop statements are processed. Only the document function may be

explicitly updated by the user. The contents of these functions can be retrieved with the usual

retrieval statements. So a user may use such queries to discover the form of a database. To

facilitate this the functions given in figure 5-3 are defined,

function () -> > entity
name (function) -> string
arguments (function) -> > function
result (function) -> function
type (function) -> string
status (function) -> string
text (function) -> string
document(function) -> string

Figure 5-2: The functions to hold meta data of a schema

5.2.5 Data Selection and Retrieval

As in DAPLEX, FOR loop statements and expressions are the basic constructs for data

retrieval. However, there are some differences between the two,

One difference is about the variable declaration associated with set expressions, DAPLEX

provides for an implicit variable to be associated with every set expression. The translator

then decides whether a name refers to a set (entity type) or an instance (variable), We

Extended Functional Data Model 72

entitytype ()

supertype (en titytype)
supertypes (en ti tytype)

subtype (entitytype)

subtypes (entitytype)

fnsover (entitytype)

fnsyielding (entitytype)

-> > f in function such that
nargs (f)

-> resuit(entitytype)
-> > transitive of

supertype (anti tytype)
-> > e in entitytype such that

result(e)= entitytype
-> > transitive of

subtype (entitytype)
-> > f in function such that

nargs(f) -= 0 and
some e in arguments(f) has
(e = entitytype or
some el in
supertypes(entitytype) has
e=el)

-> > f in function such that
nargs(f) -= 0 and
result (f) = entitytype

Figure 5-3: The derived functions for querying meta data

have removed this name overloading and made it compulsory to specify a variable explicitly for

every set expression by means of the in operator.

Another syntactic change from DAPLEX is the avoidance of the use of the for keyword for

expressing quantified set expressions. In EFDM, the keyword for is used for FOR loops only.

Quantified set expressions are specified by the following syntax,

quant set (hasihave) singleton

where the singleton following has or have evaluates to a boolean result and quant is any one

of the following quantifiers: some, all, no, at least, at most, or exactly (last three

quantifiers must be followed by a singleton evaluating to an integer result). For example,

consider the following query used in the previous chapter:

Find the Christian name and surname of all the students taking the IS1 course.

This is expressed using the revised syntax as follows:

for each s in student such that
some c in course(s) has
csnumber(c)="IS1"
print cname(s),sname(s);

Also, EFDM allows the following operators to combine set-valued expressions. (In DAPLEX,

these set operators are allowed for defining derived functions only.)

union for set union
intersection for set intersection
difference for set difference

Extended Functional Data Model 73

In addition, EFDM allows arithmetic, string, and boolean operations. The following

arithmetic operators with usual precedence rules are allowed to combine integer-valued

expressions:

+ for addition
- for subtraction
* for multiplication
rem for remainder

There is only one string operator ++ defined on string-valued expressions. It concatenates

the two operand strings to form a new string.

The following boolean operators are allowed to combine boolean-valued expressions:

and, or, not

Relational operators (<, <=, >, >=, _, "_) are allowed between singleton expressions

only. The first four operators are allowed for integer- or string-valued expressions only.

5.2.6 Packaged Queries

A query can be named by preceding the query statement with

program programid is

For example, the following statement

program females is
for each p in person such that sex(p)=
print cname(p), sname(p);

assigns the name females to the corresponding query. Such a named query can be executed

any time by typing its name in response to the system prompt.

The information about currently defined queries is held in pre-defined EFDM structures.

These are shown in figure 5-4.

query () -> > entity
name (query) -> string
text(query) -> string

Figure 5-4: The functions to hold meta data for queries

These can be queried using the above data retrieval facilities. For example, to list all the

existing query definitions, we can use

for each q in query
print text (q) ;

Extended Functional Data Model 74

Any existing query can be removed using the drop statement. For example, the following

statement,

drop females;

removes the above query definition.

5.2.7 Displaying the Results

The print statement is used to display the results. This has the following syntax:

print singleton { singleton }

where each singleton expression yields printable entities, i.e., strings, integers or boolean

values.

The results of a query normally appear on the screen. It the results are to be stored in a

file, it is necessary to package the query using the program statement as above. The

command

output programed filename;

executes the query, creates a file with the specified name and directs the output to that file

instead of the screen.

5.2.8 Database Updating

As in DAPLEX, the update facilities in EFDM include the creation of new entities and

assigning or modifying function values. However, unlike DAPLEX, EFDM provides operations to

move entities from one entity type to another. In other words, EFDM allows extending or

reducing the set of types for a given entity. This kind of facility is necessary in cases, say,

the user has created a person entity and that person becomes a student at some later date,

or the user has created a student entity and that student ceases to be a student at some

later date.

Again, unlike DAPLEX, EFDM allows explicit deletion of entities from the database. DAPLEX

assumes that entities get effectively deleted when the users take away all references to it.

However, in our experience the users are often interested in the opposite, i. e. , specifying

an entity deletion in one step so that the system removes all references to it automatically,

In addition, unlike DAPLEX, EFDM does not insist that values for all single-valued functions

applicable to an entity be provided with values at the time of its creation itself. This is

Extended Functional Data Model 75

because the functions in EFDM are assumed to be partial by default. However, to be able to

assign values at a later time, it should be possible to identity the newly created entity.

Hence, at least one function (or a group of functions) must be populated which distinguishes

that entity from all the existing entities in that type.

5.2.8.1 Extending the set of types of an entity

The syntax for including an existing entity into the extension of a specified entity type is the

same as that used to include entities into multi-valued function extensions. For example, to

include a student with Christian name 'John' and surname 'Smith' into staff type, we use

include staff = {the s in student such that
) cname (s)="John" and sname (s) ="Smith"

5.2.8.2 Reducing the set of types of an entity

The syntax for this case also is the same as that used to exclude entities from the

multi-valued function extensions. For example, to exclude the student with Christian name

'Moyana' and surname 'Johns' from the staff type, we use,

exclude staff = {the s in student such that
cname (s)="Moyana" and sname (s)="Johns")

Excluding an entity from the extension of a type results in removing its reference from the

extensions of all subtypes of that type, if any, and from all functions in which it is

participating either as an argument or result. Hence, before carrying out the operation, a

list of these implicit updates is displayed and the user is asked to confirm the request.

It is to be noted that excluding an entity from the extension of an entity type which has

other user-defined supertypes only removes a specialisation of that entity and the entity itself

continues to exist in the database. For example, the above operation only removes the

specified entity from the staff type, while the entity itself continues to exist in the database

as student entity. Removal of an entity from the extension of an entity type which has no

other user-defined supertypes results in deleting that entity from the database itself. The

same effect can be achieved by delete syntax described below.

5.2.8.3 Entity Deletion

Entities can be deleted using

delete singleton

which deletes the specified entity and causes a cascade deletion of all functions which

reference this entity and all its subtype entities, again consulting the user before the cascade

Extended Functional Data Model 76

proceeds. For example, to delete a student with Christian name 'Moyana' and surname

'Johns' from the database, we use

delete the s in student such that
cname(s) = "Moyana" and sname(s) _ "Johns";

The difference between this statement and the exclude statement is that while exclude

removes a specified entity from the specified type and its subtypes, delete removes a

specified entity from the specified type, its subtypes and its supertypes.

5. 3 Derived Functions

As in OAPLEX, derived functions are defined using define statements. However, there are

two differences:

1. EFOM provides the union, intersection, and difference as general set operators,

instead of being specific to defining derived functions;

2. EFOM allows recursion while defining general-purpose derived functions. For

example, we can define functions like:

define power(i in integer, i in integer) ->
if lO then 1

if i>0 then i*power(i, i-1);

5.4 User Views

EFOM provides a view mechanism which while providing a different perspective of the global

information, also acts as an authorisation mechanism. Using this mechanism a central

database administrator who has access to the entire database can define different overlapping

user views. The underlying assumptions of this mechanism are:

1. There exists a global view from which all user views are derived. That is, we

assume the structure and contents of this global view are arrived at by integrating

the different application views to one common community view.

2. The global view encompasses all the information required by all the users. If

certain information required by a user is not in his view, he must request a

central authority (database administrator) to include it in his view, who will, in

turn examine whether the information requested by him is already available in the

global view and if not, he will take steps to include it in the global view and then

include it in the user's view.

Views are defined using deduce statements. For example, for the student database of

figure 4-1, we can define a view called malestudents as

Extended Functional Data Model 77

view malestudents is

deduce male () -> > entity using student
such that sex (student) ="m"

deduce name(male) -> string using name(student)
end

All functions introduced by deduce are treated as derived functions. Notice that deduce is

used to define view functions instead of define. This is because view function definitions

involve change of name space; names before the using keyword refer to names in the local

name space whereas names after the using keyword refer to names in the global name

space. In fact, every view definition automatically creates a different name space, which is

completely independent of the global name space as well as the name spaces of other views.

The users of a particular view are not allowed to see the global name space or the name

spaces of other views.

Views can be dropped with the

drop viewname

command.

The information about currently defined views is held in pre-defined EFOM structures. These

are shown in figure 5-5.

view O -> > entity
name (view) -> string
context(view) -> view
text (view) -> > string
password (view) -> string
document(view) -> string

Figure 5-5: The functions to hold the meta data for views

Extended Functional Data Model 78

5.4.1 Operations from Views

On initiating the system, the user is prompted for the view name, which is in effect a

password. If the view corresponding to the user-specified name exists in the database, the

name space corresponding to that view is made available to the user. If the view

corresponding to the user-specified name does not exist in the database, a message is given

to the user and the session is terminated. The user can then request the central database

administrator to create the view.

Once within a view, users can pose the usual EFDM requests to carry out the database

operations using the names available in their name space. Each query statement issued from

a user view is translated into a corresponding query on the global name space by recursively

applying the view definition mapping.

Since all the functions in a view are treated as derived functions, updating through view

functions is allowed only if procedures for updating the corresponding global data are provided

for each view function. Shipman's proposals in this regard are incomplete in the sense that

they cover only those cases in which a view update results in a single update action on stored

data. In general, the situation is more complicated and a view update may result in multiple

updates on stored data. For example, creation of new entities from views may result in

creation of new entities in the global view with simultaneous updates on some function values.

To handle this case, the language needs a construct to specify the execution of group of

statements executed in a particular order. Hence, presently updating through views is not

allowed.

The only schema changes that are allowed from a view are either defining derived functions

from the set of functions they are allowed to have access to or dropping the derived functions

they have created. This is in keeping with the assumption that the global view has all the

information required by different users. This means that the individual users are not allowed

to introduce any base functions or stored data of their own.

5. 5 Constraints

The management of the semantic integrity of a database has four components:

1. Expression of constraints: This is usually done as assertions that apply to the

database. An assertion also includes the qualification of the units of data, or
variables to which the constraint applies. Variables are qualified by the conjunction

Extended Functional Data Model 79

of their type and values. A qualification may specify one or more or all instances

of a type.

2. Checking for constraint violations: The database integrity is potentially threatened

by every update, and therefore, every update is associated with some checking.

3. Maintenance t. e. , enforcement) of constraints: The maintenance of constraints

usually consists of rejecting or undoing updates which cause violations or of
performing further updates to compensate for the faulty ones.

4. Reporting constraint violations: The reporting of constraint violations involves

informing the user details about entities that fail to meet a particular constraint at

the time of its specification or about constraints that are violated as a result of
particular update action.

Shipman's proposals include a few tentative suggestions on how to specify the constraints,

but these are not exhaustive. In what follows, we report our investigations on identifying an

useful set of constraints. However, we have not been able to implement a general constraint

handling facility and hence, no definite syntax is proposed to specify these constraints.

5.5.1 Constraints on entity identification

For a given database, the users may be interested in distinguishing individual entities so

that they can refer to an entity in an unambiguous manner. This can be specified as an

integrity constraint. This is in contrast to some of the existing data models where the object

identification mechanisms are made part of the conceptual structure itself, e.g., the concept

of key in relational model. In some of these models, once specified in the conceptual

structure, the users cannot drop or change these specifications.

In FDM, an object can be identified by a group of function values taken together. Thus,

certain sets of functions associated with a given entity type can be designated as unique,

i. e. , no two entities of that entity type can have the same combination of values for those

functions. In practice, there may be more than one set of such functions which uniquely

designate the objects of that type. For example, employees in an organisation may be

uniquely identified both by their employee numbers and national insurance numbers.

Since subtypes inherit all the functions associated with their supertypes, it follows that if an

entity type has unique functions specified for it, all its subtypes also inherit those unique

functions. Hence, it is not necessary to specify unique functions for any of the subtypes of a

given entity type. However, the users may optionally define additional sets of unique

functions for some or all subtypes of a given entity type,

Extended Functional Data Model 80

It is not necessary that all entity types in the database have unique functions specified for

them. In case an entity type has no unique functions specified for it, the objects belonging to

that entity type cannot be directly distinguished. However, they may be indirectly

distinguished by their association with other objects. To refer to such objects, the users may

have to go via their associated objects.

5.5.2 Constraints on entity associations

There are two cases of such types of constraints. These are:

1. It is often the case that every object belonging to an entity type must, at all

times be associated with another object in the database. For example, an

employee must always belong to a department. These constraints can be modelled

by specifying the corresponding functions as total, i.e., these functions must be

provided with values (not necessarily distinct) for each entity belonging to their
argument types.

2. In general, extensions of different entity types can overlap. There may be cases

when such overlap is not permitted. For example, when no constraint to the
contrary exists, a given person entity can have both student and staff types
simultaneously. It this is not acceptable, it can be prevented by a corresponding
constraint which specifies them to be disjoint.

5.5.3 Constraints on the values of the functions

There are two cases for such types of constraints. These are:

1. Certain functions may be constrained to have fixed values, i. e. , the function

value for a given entity can only be assigned at the time it is created and this
value cannot be changed throughout the life time of that entity. For example, an

employee's employee number can only be assigned at the time of hiring him and

cannot, in general, be changed during his employment.

2. Certain functions may be constrained to have certain values or range of values for

every argument value. For example, consider the following constraints:

a. A department's head must belong to the same department.

b. The salary of an employee must be greater than a certain prescribed

minimum and be less than a certain prescribed maximum which depends on

his status.

c. The course entity in the multi-argument function grade(student, course)
must correspond to those provided by the course(student) function.

Extended Functional Data Model 81

Such constraints can be expressed as general predicates associated with the
corresponding functions.

5.5.4 Constraints on cardinality

This type of constraint specifies the number of possible values for the population of entity

types and multi-valued functions. For example, there may be a constraint that the number of

managers must be less than the number of non-managers, or the number of courses a

student can take must be a minimum of 3 and a maximum of 5.

5.5.5 Constraints on existence

This type of constraint specifies that certain objects exist in the database only if some other

objects also exist. For example, there may be a constraint that the details about an

employee's children can exist in the database only if the details about the corresponding

employee exist in the database, or the jobt,tle attribute of an employee can exist only if he is

assigned to a department etc.

5. 6 Comparison with ADAPLEX

ADAPLEX is the proposed Ada-compatible database management system which supports a

composite language called ADAPLEX [Smith 81, CCA 83]. ADAPLEX is an embedding of a

subset of DAPLEX into the language ADA [ichbiah 79]. In choosing ADA as the host

language, ADAPLEX hopes to exploit the modules, tasks, and generics etc, of ADA to provide

some of the encapsulation needed for supporting a number of concurrent users.

For specifying the database structure, ADAPLEX adds two new type constructors to ADA.

These are: set types and entity types. A set type encapsulates the mathematical notion of a

set. An entity type is similar to an access-to-record type, in that, it has named components

and may be created dynamically. However, unlike the access-to-record type, each

component of an entity type is designated by an entity function. An example of an entity type

declaration in ADAPLEX is:

type person is entity
name : STRING (1. .30);
age : INtEGER
phone: set of STRING (1..11);

end entity;

In an earlier specification of ADAPLEX [Smith 81], the subtype relationship between entity

Extended Functional Data Model 82

types was specified by the contain statement and the extent overlap among entity types was

specified by the share statement. For example,

contain staff in person;
contain student in person;
share staff with student;

specifies that both staff and student are subtypes of person type, i. e. , both staff members

and students are persons and some staff members may also be students and vice versa. In

this version, when there was no specific overlap between two entity types, the two types

were constrained by default to be disjoint (i . e. , non-overlapping).

In the latest specification of ADAPLEX [CCA 83], the above declarations would be written

as:

subtype staff is person;
subtype student is person;
overlap staff with student;

In addition, the new version specifies that the collection of subtypes for a supertype must

cover their supertype, i. e. , an entity value belonging to a supertype must also belong to one

or more of its subtypes.

ADAPLEX has also introduced new constructs for specifying uniqueness constraints. A

uniqueness constraint specifies, for a particular entity type or subtype, a collection of

components whose values are conjointly unique in every value of that type or subtype. A

given entity type can have zero, one, or more uniqueness specifications.

Data manipulation constructs in ADAPLEX closely follow those of DAPLEX with some minor

modifications.

Compared to the approach adopted in EFDM, we can list the following problems with

ADAPLEX approach:

1. Problems with the data model: Firstly, in order to make the entity type

definitions compatible with ADA type definitions, ADAPLEX has made a substantial

change in the semantics of the DAPLEX entity types. In complete opposition to

the spirit of DAPLEX, the entity functions cannot be introduced dynamically in

ADAPLEX. Secondly, the lack of multi-argument functions in ADAPLEX means

that it is necessary to adopt the excess entity approach used in the CODASYL

model to model n-ary relationships. Thirdly, it is rather strange to insist that a

supertype must be covered by its subtypes. This prevents the accommodation of,

say those persons who are neither staff members nor students if staff and student

are the only subtypes of person entity type. Fourthly, ADAPLEX does not support

the derived function mechanism. As we saw earlier, the functional approach

gains considerable modelling power by means of the derived function mechanism.

Extended Functional Data Model

By failing to exploit this, ADAPLEX falls short of the modelling power achieved in

EFDM.

2. Lack of data type completeness: In ADAPLEX, all database types, type

constructors and operators become available in the ADA language, but the inverse

is not entirely true. For example, ADAPLEX allows the construction of sets of

entities, strings, and scalar types but prohibits the construction of sets of objects

of any other type. Though the Ada access-to record types took much like

database entity types, the semantics of the two are entirely different. First,

each entity type is associated explicitly with the collection of dynamically created

objects of the type. Second, entity types are allowed a much richer subtype

structure than access-to-record types. Third, a strong discipline is imposed on

the components that entity types may contain. The language contains a number

of such exceptions and special rules. Because of this, it is a complex and

confusing language.

3. Different styles in the same language: As an example of this, consider the

syntax for accessing the component attribute of an entity. Though the syntax for

entity type declarations is clearly based upon that for access-to-record
declarations, the syntax for accessing a component attribute of an entity is based

upon the DAPLEX syntax. For example, the name field of an entity p of the
person type defined above would be represented as:

name (p) -,

rather than as

p. name;

In addition, since the underlying data types of ADA are not obviously amenable to

the DAPLEX function and set operators, it will not occur to most programmers

that many of the procedural forms of Ada could be replaced by DAPLEX

statements.

83

Implementation of EFDM

Chapter Six

Implementation of EFDM

84

In this chapter, we discuss issues connected with the implementation of EFDM. First, we

provide a brief history of the activities leading to the choice of the persistent algorithmic

language, PS-algol [Atkinson 81a, Atkinson 83a, Atkinson 83b] as the implementation

language for EFDM. We then present the software architecture of the implementation

followed by a short discussion of the particular implementation strategy we have chosen and

the problems that arise due to large volumes of data.

6. 1 Brief History

The implementation of the functional data model started with the development of a prototype

supporting almost all the basic concepts of the functional data model and a substantial subset

of the DAPLEX. It was developed using the PASCAL language [Wirth 71]. This

implementation provided an interactive user interface, using which users could enter base or

derived functions, populate the base functions with data using update statements, and retrieve

and display the data from the database using FOR loop statements. Access to meta data was

also provided by a special set of pre-defined functions (see 5.2.4), which users could query

using the usual FOR loop statements.

In this version, all the data structures were core based and hence, there was no provision

to support persistent data. In order to support persistent data, an attempt was made to

interface this system to an existing low-level persistent data space management system called

Chunk Management System (CMS) [Atkinson 83c]. CMS is a set of routines that manage a

large disk-based heap upon which variable size chunks of untyped data may be securely

stored. It provides the atomic operations of creating, writing, reading, extending, or deleting

a chunk of storage. It also provides a secure multi-user transaction facility to effect these

atomic operations.

Implementation of EFDM 85

By providing a machine and operating system independent environment, the CMS simplifies

the task of implementing database management software. However, CMS does not record any

structural information associated with the data and it is the programmer's responsibility to

ensure type consistency and provide adequate structural transformations.

At the same time, the work of the Data Curator Group resulted in the persistent algorithmic

language, PS-algol [Atkinson 81a]. By abstracting the storage management, PS-algol allows

one to treat all data as though it is in the main store. Because of this, there is no necessity

for programs written in this language to explicitly interface with a low-level data handler.

This made it unnecessary to continue the above implementation strategy and the system was

completely re-written in PS-algol language. Another consequence of switching over to PS-algol

was the significant reduction of the source code (about one third) compared to the earlier

PASCAL version. Reduced code volume meant reduced coding times and this had a better

than proportional effect on debugging times.

The following section decribes this language in more detail.

6. 2 PS-algol Language

PS-algol is an algol-like language derived from the strongly typed programming language

S-algol [Morrison 79]. S-algol stands somewhere between Algol W [Wirth 66] and Algol 68

[van Wijngaarden 69]. It was designed using three principles first outlined by Strachey

[Strachey 67] and Landin [Landin 66]. These are:

1. The principle of correspondence.

2. The principle of abstraction.

3. The principle of data type completeness.

S-algol data types comprise of the usual scalar types, vectors and structures with any

number of fields, and any data type in each field. However, the unusual features of the

S-algol language universe of discourse are that it has strings as a simple data type [Morrison

82a], pictures as compound objects [Morrison 82b] and run time checking of structure

classes. Because of the last facility, a pointer may roam freely over the world of structures,

i. e. , a pointer is not bound to a structure class. However, when a pointer is dereferenced,

a run time check occurs to ensure the pointer is pointing at a structure with the appropriate

field. S-algol provides the operators is and isnt to check the class referenced by a pointer.

Implementation of EFDM 66

In addition, S-algol identifier declarations are initialising, i.e., the programmer must specify

the initial value for an identifier at the time of its declaration. By forcing the user to specify

an initial value one type of error, that of an uninitialised name, is completely eliminated.

Another useful feature of the language is that a programmer may specify whether the value of

an identifier is constant or variable. A constant may be manipulated in exactly the same

manner as a variable except that it may not be updated.

Syntactically, PS-algol is exactly identical to S-algot. However, the mayor difference

between the two languages is the way they manage the heap provided for automatic storage

management facilities. The S-algol heap contains only transient data whereas the PS-algol

heap may contain some persistent data. That is, the data defined on the S-algol heap is lost

when the program terminates. If a data structure built upon the heap is to be preserved until

another run of the same program, or used in a different program, the data must be

converted to some other representation and output to a file. In contrast, PS-algol supports a

persistent heap on which a data structure built in one run of a program may be preserved to

be used in other runs of the same or other programs.

The persistence of the data in PS-algol is achieved by storing that part of the heap

identified as persistent in a database with its type and pointer structure intact. The means of

identifying persistent data in PS-algol is the same as those used in languages like S-algot for

identifying limited data persistence during the run of a program, viz., data reachability. In

these languages, garbage collection preserves all data that is reachable from some other

data. PS-algol extends this principle by introducing a new origin for the transitive closure of

references, under explicit user control, which differentiates persistent data and transient data.

Thus when a transaction is committed, it is possible to identify a root ob)ect from which all

persistent data is reachable. Hence the preservation of data is a consequence of arranging

that there is a way of using that data.

The movement of persistent data between main store and backing store is handled by the

PS-algol run-time support system. On the first dereference of a pointer to a structure

containing persistent data, that structure is copied to the heap from the secondary storage,

possibly carrying out minor translations. Thereafter it is operated on by the same mechanism

as for any other data on the heap. When a transaction is committed, all the data on the heap

that is reachable from the persistent ob)ects used during the transaction are transferred back

to the disk.

Implementation of EFOM 87

This feature makes it possible for PS-algol to provide persistence as an orthogonal property

of data and further simplifies the provision of access to persistent data. PS-algol also

provides a library of routines to manipulate special structure classes called tables. A table is

an ordered set of pairs. Each pair consists of a key and a value. A key may be an integer or

string value, and the value is a pointer to a structure instance or table. The set of

procedures to manipulate the tables include creation of an empty table, storing a pair, a

mechanism for associative lookup implemented as B-trees [Bayer 72] or equivalent

algorithms, and iteration over tables.

The following two programs illustrate some of the facilities of PS-algol.

The first program uses the PS-algol tables facilities to create a database of persons. The

database is created as a PS-algol table structure with the person's name as key and a

structure containing the name of a person's manager and his salary as the associated entry.

! Declare structure class "person"
structure person (string manager; int salary)

!create the database as a table
let person. db table
let name ""
let finished : = false
while - finished do
begin

let p person (I'll, 0)
write " Name : "; name = reads
write " Manager: "; p (manager) reads
write " Salary : "; p (salary) readi
write "'n More persons (y/n) ? "
finished := read "_ "y"
!enter p into the database with name as the key
enter (name, person, db, p)

end
structures accessible from the root table
are made persistent; so enter person.db
into root table.

enter ("Persons", root. table, person. db)
!end of transaction,
commit

The next program, given the name of a person, retrieves the name of his manager, his

manager's manager, etc.

implementation of EFDM

structure person (string manager; int salary)
! get the persons table from the database
let person. db := lookup ("Persons", root. table)

procedure print.manager (string name)

begin
let p = lookup (name,person.db)
if p = nil

then write "'nManager of ",name," not found"
else
begin

write I"nManager of ",name,": ", p(manager)
print. manager (p(manager))

end
end

!Main Program
write " Name of person:
print. manager (reads)

88

Compared with ordinary high level languages, PS-algol offers the following attractive benefits

for implementing applications involving persistent data, such as database management

systems:

1. In conventional implementations of database management systems, a major part of

the code is devoted to organising data movement. In contrast, the programmers

using PS-algol never explicitly organise data movement; it happens automatically

when they try to use data. Because of this reason, source code volumes are

much reduced. Reduced code volumes imply reduced coding times as well as

reduced debugging times. All of this leads to the possibility of implementing a

complex system like a database management system in a much shorter time than

hitherto was possible and more importantly, with much less effort.

2. In conventional implementations of database management systems, much space

and time is taken up by code to perform translations between the program's form

of data and the form used for the long term storage medium. In addition, the
data type protection offered by the programming languages on its data is often
lost across the mapping. Both these problems are solved in PS-algol because

both the type and structure of the data is preserved in its persistent heap.

3. Often in a conventional system, to simplify program structure, large portions of

data are transferred and translated, prior to any data being used. This results in

redundant I/O and data translation in both directions which is a significant

overhead if a small part of a large data structure is being read or changed. This

does not happen with PS-algol.

4. In a traditional system, every access to database items passes through many

layers of subroutine calls and mappings. This increases the execution time
considerably. PS-algol avoids such layering costs as the first use of a data item

automatically brings it to the heap in the right form for the current program.
Thereafter, access is direct.

Implementation of EFOM 89

5, In traditional DBMS implementations, data movement is organised separately from

the programs accessing the data. To increase the probability that related data is

still in the buffer pool, such systems mainly depend on statistically based

disk-buffer caches, Often this is not effective enough, In contrast, PS-algol

collects only the actively required data, thus giving better control on the data

movement. In addition, as the user behaviour usually has only a slowly shifting

focus of interest, it is probable the collection of data on the heap will have a

high relevance to the present computation.

The above five factors coupled with the fact that PS-algol is the only implemented persistent

algorithmic language, and we wished to evaluate it, were instrumental in deciding to choose it

for implementing EFDM.

6. 3 Architecture of EFDM

The block-diagrammatic representation of EFDM implementation is shown in figure 6-1.

User requests formulated using the EFDM syntax go through the lexical analysis and the syntax

analysis phases. The syntax analyser produces a syntax tree for each successfully analysed

statement, In addition, it handles all schema modification requests by issuing appropriate

calls to the database handler to manipulate the underlying data structures. Other types of

requests, i.e. data retrieval and update requests, are passed down to the interpreter. The

interpreter traverses the syntax tree formed by the syntax analyser issuing calls to the

database handler whenever interaction with the database is required. The database handler

provides storage and retrieval facilities for all the data stored in the system, This includes

both user data and system data such as meta data.

The lexical analyser, syntax analyser, interpreter, and the database handler are all written

in PS-algol language. Appendix 4 gives a list of routines that constitute the database

handler. Because the PS-algol language itself takes care of the run-time movement of data

between secondary store and main store, the database handler routines manipulate the data

structures as though all data is in the main store. Consequently, the complexity of the

database handler is much reduced,

90

User Requests

Lexical
Analyser

Syntax
Analyser

Database
Handler

Interpreter

Figure 6-1: Block Diagram of EFDM

implementation of EFOM 91

6. 4 Data Structures

The data structures to implement the data model essentially fall into one of the following

four categories:

1. Representation of individual entities.

2. Representation of sets of entities.

3. Representation of entity type hierarchy.

4. Representation of functions mapping entities to entities.

It is the choice of data structures for representing functions which is most important. The

efficiency of the implementation critically depends on how the function values are stored and

how the function values for a given entity are evaluated. In addition, it is imperative that

entities are internally identifiable irrespective of how they are identified externally. Therefore,

the implementation must have a mechanism which assigns a unique entity identifier to each

entity upon creation.

In the PASCAL version, the entity identifiers were integer numbers, assigned and

maintained by the system and each function was stored as a binary or n-ary relation consisting

of such entity identifies. Though this makes it easy to accommodate schema changes, it

suffers from an excessive storage overhead. For example, if there are ten binary functions

applicable to an entity , the entity identifier must be stored in all the ten binary relations. In

addition, it results in an overly fragmented database and since it is frequently the case that

values for multiple functions applied to the same entity are often needed together, this has

an adverse effect on performance of the system,

Hence, we have adopted a different implementation strategy in the PS-algol version. Here,

the values of all one-argument non-inherited functions applicable to an entity are stored at

one place in a record-like structure shown in figure 6-2. To access the values of functions

defined on the supertype, a pointer to its immediate super-entity is included in each entity

structure. As the language itself ensures that a pointer to each structure is unique, we have

chosen the pointer to each entity structure as its entity identifier. This avoids us having to

invent and maintain unique entity identifiers. All multi-argument functions are then

implemented separately as unnormalised n-ary tables involving such entity identifiers. It may

be noted that the designers of ADAPLEX DBMS have also advocated a similar implementation

strategy [Chan 82].

92

Link to Value for Value for Value for
Super function function function
Entity 1 2 3

Value for
function
n

Figure 6-2: Entity Data Structure

implementation of EFDM 93

The corresponding PS-algol structure for an entity is shown in Appendix C. We represent

the group of function values corresponding to an entity as a vector, the upper bound of which

varies dynamically as functions get added or dropped. (We can also store the group of

function values as a linked list; we rejected this because: 1) linked lists require more

storage compared to vectors; 2) accessing individual function values in a linked list is slower

compared to vectors; and 3) accommodating schema changes is more complicated in a linked

list from compared to vector form.) The elements of such a vector are of type pntr as, in

general, the EFDM functions yield entities as result. Sets of entities are currently

implemented as linked lists of such structures. However, to allow fast access on some

function values, it is proposed to provide an indexed structure.

Creating a new entity results in creation of such a structure and adding it to the

corresponding linked list. Deletion of an entity results in removing all references to the

corresponding structure and finally the entity structure itself from the corresponding linked list.

The above data structures refer to the base functions only. The data for a derived

functions is calculated every time it is accessed. To facilitate this, the pointer to the syntax

tree corresponding to its definition is stored along with each derived function, The user

queries involving derived functions are processed by replacing the references to those

functions by the corresponding definition tree. The resulting syntax tree is then executed

against the base functions of the database.

To handle the incremental schema changes, the implementation adopts different techniques

depending on the number of arguments the function has and the nature of the function. The

addition or deletion of a one-argument base function results in creating the new instances of

the modified entity structure and copying corresponding values from the old instances to the

new instances. On the other hand, the addition or deletion of a multi-argument base function

results in the addition or deletion of a table without affecting the existing entity structures.

The addition or deletion of derived functions has no effect on the stored entity structures.

The meta data corresponding to a schema is held in two forms: one as PS-algol structures

and the other as EFDM functions (see Section 5.2.4). The latter form is necessary so that

the users can query the information about the schema using EFDM syntax. The meta data in

the form of PS-algol structures is maintained to provide fast access to the structures during

run time. Both forms are updated automatically as the users modify the schema.

Compared to the PASCAL version, the implementation scheme adopted in PS-algol version

Implementation of EFOM 94

has many advantages. Firstly, in the scheme we have chosen, the entity identifier is not

stored in each function representation and this results in reduced storage requirements.

Secondly, the values of one-argument functions for a given entity are provided simply by field

dereference instead of table lookup. Thirdly, function composition is achieved by pointer

following instead of an expensive "join-like" operation. Both these factors result in faster

execution times. Fourthly, several tables must be touched in PASCAL implementation if

several functions of an entity participate either in query formulation or in updating. In

contrast, PS-algol scheme results in less access to disk as many function values for an entity

are brought in simultaneously.

6. 5 Problems due to large Data Volumes

The data structures discussed in the previous section are suitable for moderate volumes of

data, typically found in personal data bases. For larger data volumes, the performance will

depend more on the "access methods" of the PS-algol run-time system. Since there are no

language constructs to influence the efficiency of the run-time system, it may be necessary to

adopt different implementation architectures as the data volumes grow.

The mechanisms to accommodate and contain schema changes will also need careful thought

as data becomes large. In the current implementation, we modify the data description and

repopulate the data everytime a function is added or dropped. Obviously, this will not be

acceptable for large scale data. In fact, such a strategy may not even be necessary, as

Atkinson et al. point out in their proposal for a new persistent language, NEPAL, [Atkinson

81 b]

In a database describing 300 000 race horses (many of which are dead) a change
to the data describing horses need not propagate immediately to all horses, since
most of them will never be referenced, or will not be referenced before the next
change in the data description.

Hence, it should be possible to accommodate changes without catastrophic consequences

rippling through the rest of the system. The solution suggested in the NEPAL language

proposal consists of creating new versions of structures with transition rules between the

current and the preceding versions. Whenever a structure is referenced, the transitions are

applied to yield the appropriate instance to work on. As a side effect of the transition the

instances migrate to the later versions. Clearly, some such strategy will be useful in this

context also.

Applications of EFOM

Chapter Seven

Applications of EFDM

95

In this chapter, we present a few practical applications of EFDM. The first application is

about organising a database system for personal use. We show how to design, set up, use

and maintain the database system using EFDM. The second application concerns the use of

EFDM as a prototyping tool during the design of a large database system.

7. 1 Organising small personal information systems using EFDM

By small information systems, we mean those systems which are designed for personal use.

These are characterised by small amounts of data and processing needs. These systems may

or may not have a complex structure, but one distinguishing feature of such systems is that

the same person acts as both the designer and the final user of the system. If the database

management systems are to be useful for such users, they must most a number of special

requirements. These are as follows:

1. It should be possible to devise a quick implementation of the system as soon as

the logical structure has been specified. It should provide data structuring
facilities without insisting on the decisions about how to physically store, address,

or relate the data elements.

2. It should support a simple design methodology. Users should not be required to

learn a large number of disparate concepts, nor should they be required to

choose from different design alternatives. The data structures should reflect the
semantics of the application. The underlying data model should also guarantee a

minimum consistency of data.

3. It should be interactive and easy to use. It should provide an integrated language

using which they should be able to create their databases, retrieve information

from their databases, modify the structure or contents of their databases or carry

out general-purpose computation. Users should not be required to learn different

Applications of EFDM

languages for different activities, i . e . , one language for data definition, another
for data manipulation, another for general-purpose computation etc.

4. Such systems should be flexible, i.e., users should be able to change the

schema without much effort. Users typically wish to implement only a part of the
intended system and based on the experience gained, make several modifications

by trial and error until they are satisfied with the result. Even after the system

comes into use, it may often have to be modified to reflect the changing needs

of the user/designer. As the system evolves, users may like to add new

elements to the structure, modify existing structures or drop some elements for
which they do not have sufficient data.

5. The system must be self-documenting, i. e. , users should be able to find out

what is in the system as easily as they can query about the data.

96

EFDM is eminently suitable for such users. The particular benefits of EFDM for this

purpose are:

1. EFDM enables a quick and economical implementation of a planned system as

soon as the logical data structure has been specified. _

2. It supports a simple design methodology. The logical design of a database can

be easily done using the concepts of the functional data model. In many cases,

the structure in terms of functions may be "obvious", i. e. , users are not
required to carry out complicated mappings from the conceptual structures to the
data structures of the model. EFDM structures also captures a large part of the
data semantics. Referential integrity is guaranteed by the model itself.

3. It is interactive and simple to use. It provides all the facilities like data definition
and data manipulation and general-purpose computation in one language. Users

can set up, use, and maintain the database using simple, interactive commands,

4. It is flexible, i.e., structure can be modified interactively at any time. The

declare and define constructs of EFDM provide a natural way to describe
increments to the schema. This information can be easily integrated with earlier
stored information. Any existing information can be deleted using drop without
making the database inconsistent.

5. It is self-documenting. An annotated schema is made a part of the database

itself and a distinguished entity type called function is provided to store the meta

data which gets updated automatically as the schema changes. This makes it
possible to examine the database structure interactively.

We will now illustrate the use of EFDM for managing the personal collections of reference

papers, Every researcher collects a huge number of research publications over a period of

Applications of EFDM 97

time. Keeping track of the details of individual papers by means of manual methods is often a

difficult problem. The following sections describe in step by step how to design, set up,

operate, and maintain a database for this application using EFDM.

7.1.1 Designing the Schema

The first step in designing the schema is to prepare a list of entity types corresponding to

the objects of interest in the application. Such entity types can often be identified by listing

the objects that have some identifiable attributes. For example, in the present application

such objects are papers, authors, journals etc. Another means of identifying the entity types

is to list the objects that act as units of database update. For example, in the present

application the most common database update is likely to be entering the details of a new

paper whenever the person receives one. Next step in the design process is to assign

meaningful names to the entity types so identified. For the present application, the following

constitute the list of entity types: i) paper ii) author, iii) topic, and iv) journal.

Next, we identify various properties or attributes of these objects and the relationships

between them. The examination of the most likely queries will give an important insight into

such properties and relationships. For example, for each paper we would be interested in

knowing the title, abstract, list of authors who wrote it, and the journal in which it is

published. In addition, we would like to know the list of topics under which it is classified.

We model each such attribute and relationship as a function with the proper number of

arguments and result. In addition, we examine each function to see whether it is single-

valued or multi-valued. For example, there can be more than one author for a paper. Hence

the function relating the paper and author entity types should be multi-valued. Similarly, a

paper can be classified in more than one topic. For example, the paper on the TAXIS

language can be classified under query languages, semantic data models, Al techniques etc.

Hence, the function relating the paper and topic entity types has to be multi-valued, On the

other hand, a paper can appear in one journal only. Hence, the function relating these two

entity types must be single-valued.

At this stage, we examine whether some of the objects classified under different entity

types share any properties or relationships, If so, we can invent a common supertype for the

corresponding entity types, remove all the functions common to those entity types, and

associate them with the supertype. In the present example, we have no such relationships.

Hence, the final schema for this example is as shown in figure 7-1.

Applications of CFDM

declare paper() -> > entity
declare title(paper) -> string
declare abstract(paper) -> string

declare author() ->> entity
declare name(author) -> string
declare address(author) -> string

declare journal () ->> entity
declare name(journal) -> string
declare details (journal) -> string

declare topic() ->> entity
declare name (topic) -> string

declare author(paper) ->> author
declare journal(paper) -> journal
declare topic(paper) ->> topic

Figure 7-1: Schema for the Paper Database

98

Next, we examine the schema to see whether we can arrive at some useful derived

functions using function composition or special operators like inverse of, transitive of etc. For

example, in the present example, we can define a derived function relating author and journal

entity types as the composition of journal(paper) function and the inverse of author(paper)

function, which gives a list of all journals in which a particular author has published. Figure

7-2 gives a complete list of such derived functions,

define papers(author)
define topics(author)
define journals (author)

->> inverse of author(paper)
->> topic (papers (author))
->> journal(papers(author))

define papers(topic)
define authors(topic)
define journals(topic)

define papers(journal)
define authors(journal)
define topics(journal)

->> inverse of topic(paper)
->> author (papers (topic))
->> journal (papers (topic))

-> > inverse of journal (paper)
->> author(papers(journal))
->> topic (papers (journal))

Figure 7-2: Derived functions for the Paper Database

Applications of EFOM

7.1.2 Setting Up the Database

99

We can now set up the database system corresponding to the above schema. Each function

is interactively entered into the system using declare or define command. Each of the base

functions is then populated with the corresponding data, For this purpose, we can use the

update statements provided by EFDM. Again, this can be done interactively. For example,

to enter the data about a paper with the title "Database Systems" written by M. P. Atkinson

and published in "Journal of Documentation" we use the following update statement:

for a new p in paper
let title(p) = "Database Systems"
let author(p) = {the p1 in author such that

name(pl)="M, P. Atkinson")
let journal(p)= the j in journal such that

name (j)="Journal of Documentation";

The above statement checks that the entities corresponding to the author named

M.P.Atkinson and the journal named "Journal of Documentation" do already exist in the

database. If any of these entities are not present, the update statement will not be executed

and the user is informed about the missing entities, The user can then create new entities

corresponding to the unknown author or journal and then submit the above statement again.

Thus, the concept of referential integrity [Codd 79] is automatically guaranteed by the

system.

Note that it is not necessary to input all the data about an entity at the time of its creation

itself. For example, to assign the above paper to topics "Data models", and "Natural

language interfaces" at a later time, we use the following update statement:

for the p in paper such that title (p) ="Database Systems"
let topic(p)= {the ti in topic such that

name(tl)="Data models",
the t2 in topic such that
name (t2)='Natural language interfaces");

If the initial data is rather large, the above method of creating a database may seem rather

laborious. In such a case, users can make use of the bulk load facility provided by the system

[Kulkarni 83]. This allows the user/designer to create his database from two operating

system files, one containing the function declarations and the other containing the data

arranged in the form of tables. Once the database is created, it is likely that this system will

be updated sporadically, i.e., whenever the person receives a new paper and hence, it will

be more convenient to enter the data interactively as demonstrated above.

Applications of EFDM

7.1.3 Using the Database

Once the database is set up, we can pose queries like:

01. What are the papers by the author 'x?

for the m In author such that name (m) = "x"
for each p in papers (m) print title (p);

Q2. What are the papers by the author 'x' in topic 'y'?

for the m in author such that name (m) _ "x"
for each p in papers(m) such that
some t in topic(p) has name(t) = "y"
print title(p);

03. What are the papers by the author 'x' in topic y' published in journal 'z?

for the m in author such that name (m) = "x"
for each p in papers(m) such that

name (journal (p))='z" and
some t In topic (p) has
name(t) = "y"

print title(p);

04. What are the papers in topic 'x' ?

for the t in topic such that name (topic) _ "x"
for each p in papers(t) print title(p);

100

EFDM also allows one to name the queries and store them in the database itself or to

output the results of a query to an operating system file.

7.1.4 Maintaining the Database

EFDM allows one to modify the database structure interactively at any time. For example,

it the user wants to assign a grade attribute for each paper, he can do so simply by adding

the following function:

declare grade(paper) -> integer;

and populate that function, either interactively or by using the bulk load facility.

It the user wants to extend the database to hold the information about papers held by his

friends, he can simply create another entity type with its own attributes like name of the

friend, his room number and the telephone extension etc. and add another function relating

Applications of EFDM 101

the paper type with the newly created entity type. The following function declarations illustrate

this:

declare friend () -> > entity
declare name (friend) -> string
declare room (friend) -> integer
declare phone (friend) -> integer
declare held.by(paper) -> friend;

If the user finds that certain functions are no longer of interest, he can remove them from

the database. For example, to drop the grade function, he can simply issue a command like,

drop grade(paper);

and the system will remove the function as well as all the data associated with it. If the

removal is going to create any inconsistency in the database, the system will warn the user

about it.

The notable feature of this method of managing information is the speed and flexibility

provided by EFDM. It took the author a few minutes to design the schema and another few

hours to create the database using EFDM, most of which was spent on creating the data file.

7. 2 Designing prototypes of large database systems using EFDM

By large database systems we mean those systems which are designed for a community of

users. These are characterised by a large amount of data and processing needs. These

systems will also have a complex structure. Typically, persons who design such systems will

be different from those who will eventually use them. Database management systems suitable

for such systems will have to meet different requirements from those discussed in the

previous section. Issues like efficiency, sophisticated report generators, statistical analysis

packages, security and safe concurrent operations assume higher priority over ease of use or

ease of design.

Today there are a number of database management systems available in the market for

handling large amounts of data, and satisfying the requirements like efficiency, security and

concurrent operations. But the major problem with using these systems is that they are

highly inflexible and it is immensely expensive to effect any changes once the database is in

operation.

Hence, it is important that the initial specifications are so formulated as to meet all the

requirements of the community of users they are intended to serve. However, as we

Applications of EFDM 102

mentioned above, people who design these systems are different from the people who finally

use them, and it is impossible to meet this aim. Serious problems in design arise from false

perception of reality resulting from a natural language barrier between the database naive user

and the application naive database designer and the lack of appropriate tools for

communication between them.

To bridge this gap, current design methodologies recognise the value of a good requirement

gathering /analysing procedure with emphasis on the consultation with the eventual users [Yao

78b]. The need for this is recognised by most authors [Kahn 76, Bubenko 761 but is carried

through only by a few. The main problem is that no proper techniques have emerged to aid

this phase. Frequently emphasis is put on the development of requirement specification

languages and automated analysis procedures [Teichroew 77] which are helpful only when the

physical reality has been correctly perceived. Another problem with such methods is the

inherent inability to perceive all the needs in the initial stages. The users are often unable

to foresee all the implications and interactions in such systems.

Using a prototype of the final system in the design process is an effective solution to this

problem. Being able to use even a crude system allows the user and the database designer

to converse in more real terms. Prior to a full implementation, the prototype is generated

and loaded with small amounts of data. Users then try out the system and identify the

problems in the schema design and propose changes. This possibility to be able to see the

system running at an early stage in a system development project may save a great deal of

money as the user gets a chance to re-specify his needs before large resources have been

spent on a tailor-made and highly effective implementation. The prototype approach can be

tried as a first step to any schema design using the existing facilities of the target system. It

is better, however, to use a design tool that has been built specifically for this purpose.

An important requirement for such a tool is that it should be simple to use. Communication

with and feedback from the users are crucial to the success of the requirements analysis

step. This implies understanding of the description of the database by unsophisticated users.

The description cannot therefore be initially in terms of a very complicated and difficult-to-

understand data model. Another important requirement of such a tool is that it should possess

fast and economical means to effect changes. It is important that the users are able to see

the effects of their comments as early as possible.

EFDM is eminently suitable as such a tool. A particular advantage of EFDM for this kind of

Applications of EFDM 103

application is the simplicity of the data model, and its ability to effect quick schema changes.

As demonstrated in the previous section, the schemas designed using this model reflect the

structure of the real world in a fairly "obvious" way, and hence such schemas should be easy

to understand by unsophisticated users. Another useful feature of EFDM for this kind of

applications is the facility it provides for maintaining the consistency of the schema.

An example of such an application is the design of a database system for overall

administration of the University of Edinburgh. A possible schema for this application using

EFDM is shown in Appendix D. As pointed out earlier, a prototype system corresponding to

such a schema can form an effective tool to start the dialogue between database designers

and the eventual users to gather the requirements for the actual database system.

In a complicated example such as this, the process of designing the schema itself can be

made more systematic by a computer-aided design system. In fact, a database design and

Integration tool based on another variant of the functional data model [Housel 79] has been

reported recently [Yao 82]. The schema design can even be automated on the lines similar

to Gerritsen's method [Gerritsen 75], which takes the names of entities, data item

descriptions, and the queries that must be supported as input and arrives at a schema for the

CODASYL database management systems.

This method of developing prototypes presupposes that an EFDM schema can be correctly

translated to the target DBMS data structures. Currently, such target DBMS are restricted to

one of the three systems, viz. , hierarchical, CODASYL, and the relational systems.

Preliminary investigations into translating the functional schemas to the CODASYL and the

relational model have been reported by [Shipman 81, Smith Sob, Gray 83, Hepp 83]. The

ADAPLEX database management system [Smith SOb], when it becomes available, will be the

nearest system to EFDM, although the data model underlying ADAPLEX DBMS is not as

powerful as the data model underlying EFDM.

Directions for Further Research

Chapter Eight

Directions for Further Research

104

This chapter presents some broad directions for extending our work to address some serious

problems in the database field that have defied solution so far. We also present a brief

discussion of some of the problems that have not been addressed in this thesis.

8. 1 Deferring View Updates

An important continuation of this work would be to extend the view mechanism discussed in

Chapter 5. As they are implemented at present, updates may be made through a view if

update procedures are defined. It is also assumed that all updates done from a view will be

applied immediately, i. e.. propagated up to the global view. However, in order to conduct

experiments of 'what-if' nature on databases appropriate in management and design, we need

to have a mechanism which allows updates from a view to appear to have happened within

that view but from outside that view they appear not to have happened. This can be achieved

easily if we allow the update procedures for view functions to be modified by preceding them

with the word defer. We can interpret this as meaning that each time an update is

requested, the system records enough data to permit it to be done later. Thus, a user can

experiment with the data by making complex and extended updates without interfering with

other people's work until he chooses to do so.

Two new operations are then required:

apply viewname
reset viewname

When a view is created the set of deferred updates is empty. As successive user sessions

operate on this view a sequence of updates will be accumulated. The interaction of the

operations in the sequence of updates is examined and an equivalent net effect sequence is

built. apply causes this accumulated sequence of updates to be applied in the view's context,

Directions for Further Research 105

and the stored sequence of updates to be set empty. reset explicitly abandons a sequence of

updates.

We anticipate using a differential hie mechanism [Severance 76] to implement this, (Ross

[Ross 83] discusses this technique more fully.) In fact, a more subtle implementation is

necessary in this context, The reason being that a deferred update may no longer be

applicable due to changes in the database since it was recorded. At present we see that as a

user problem. People will normally avoid such situations by agreeing on the territory each

works, as they do now when teams are involved in design and management. But such a

division of tasks is never perfect, and must in any case be checked. When it is checked, the

apply is aborted with the sequence left unchanged, and the user informed of the problem.

(Note that it is difficult to describe the problem such that the error message is meaningful to

the user. This is a research challenge,) When the user has understood the real world

problem of two people's work interfering, he will decide as to how to resolve it, and update

his view or get someone to modify the main body of data. Subsequent application of the view

should not come across the same problem.

Note that this is related to the idea of optimistic concurrency control [Kung 81, Agrawal 82]

but it is packaged linguistically to permit experiments with updates to the data, and the

possibility of making revisions and retrying when an attempt to apply the view results in a

clash with other changes.

8. 2 Implementing Transactions

As well as creating, using, and dropping a view, users can also establish a view as the

context for subsequent operations. To do this, three statements are necessary:

quote <string>
open <viewname>
dose <viewname>

At the start of a session the database holds no quoted passwords, each time quote is

encountered the value of the string expression which follows is added to the set of quoted

passwords.

open then makes the specified view as the current context for operations if there is no

constraint on its use, or if one of the passwords which enable its use has been quoted. The

only names then available are names provided by that view. Subsequent operations, define

definitions, queries, updates and new view definitions are interpreted in, and modify the

name space of that current view.

Directions for Further Research 106

The opening and closing of views can be used to define transactions. A transaction starts

when a view is opened, and is committed when the close statement is encountered. If no

close is encountered the operations will not be recorded.

8.3 Views with Memory

As they stand in Chapter 5, views are memoryless. define and deduce statements may

extend their name space, drop may reduce it, but no other updates on the structure of a

view are possible. However, the different views might also want different versions of the

meta-data, i.e., base relations, and there might be no intention of merging the data. This

can be achieved by allowing declare statements to be used within a view. This would then

associate base functions (i.e., explicitly stored data) with the view. These would only be

usable from this view and its descendants, but could be manipulated in the usual way.

This allows more general variants of the same database. It also allows people to possess

private data, optionally related to the original data, without any commitment to pass on, or to

allow access to others. This seems to give an equivalent to the proposed federated

architectures [Hiembigner 81, Mcleod 80], except that there may be many layers of

federation.

If every use of a view starts with an explicit open command and ends with an explicit close

command, we then have a mechanism for providing transient data. declare statements

occurring in a view in the current session, which is never closed will store data during the

session, but the data will vanish at the end of it. Thus we have a mechanism for

differentiating transient and persistent data.

Its one drawback seems to be the laboriousness of defining views so that all the external

names wanted are imported. The alternative is to introduce another concept for access control

which seems less attractive. We believe the problem is best overcome by having a good cut

and paste screen editor at the user interface.

Note that with the one concept of view, and the avoidance of exceptions as to where

declare, define etc. may be written, we have in one uniform and simple language achieved a

number of effects, which have hitherto required different notations and treatment and have

hence either been omitted or led to a more complex language. These effects are: i) views,

ii) meta-data edits, in) 'what-if' experimental grouping of operations on the data, iv)

protected data spaces, v) federations, vi) identification of persistence. Although it looks

feasible, the implementation of this approach has yet to be researched.

Directions for Further Research 107

8. 4 Query Optimisation Issues

High level query languages such as the one provided by EFDM allow one to write queries

whose execution time can be reduced greatly if the query language processor rephrases the

query before executing it. Such improvements are called optimisations and a great deal of

literature has grown around this concept, mainly in the context of relational query languages

[Astrahan 76. Smith 75, Hall 76b, Wong 76].

Ullman [Ullman 82] categorises the optimisation ideas into two groups. One group consists

of algebraic manipulations - transformations that are applied with little or no concern as to

how the data model constructs are stored. The second group consists of strategies to take

advantage of the storage of the data model constructs such as indices etc. In addition, Hall

[Hall 76b] describes a third type of technique based on delayed evaluation of algebraic

expressions.

The only work on optimisation in the context of functional data model has been reported by

Buneman et al, [Buneman 82]. Their implementation of the functional query language, FQL,

exploits the lazy evaluation technique (Friedman 76, Henderson 76], which is somewhat

similar to the delayed evaluation technique mentioned above. This technique achieves a

reduction in both the main storage space and the number of accesses to the secondary

storage by delaying the evaluation of expressions until their values are needed. For example,

consider a query that finds the names of employees who are under 30 years of age and are

paid more than the average salary for all employees. We can expressing this query in EFDM

as follows:

for each e in employee such that
age(e) < 30 and
salary(e) > average (salary (el

over el in employee)
print name(e);

Under the lazy evaluation technique, the average salary is calculated only if some employee is

under 30, otherwise the average salary is not calculated at all.

Buneman et al. also report on an algebraic optimisation technique based on the compile-

time detection of "constant-valued" sub-expressions. This do-loop optimisation is well known

to compiler writers, and consists of moving expressions in hierarchic iterative structures

outward as far as possible. Thus, in the statement

for each x in person
for each y in person such that
mother(y) = sister(x)

print name (x), name (y)

Directions for Further Research 108

the expression sister(x) can be considered as a constant expression for the inner loop and

thus is a candidate for moving it outside that loop.

There are basically two means for this: the first is a pre-pass over the query which

identifies constant expressions and moves them creating temporary variables as needed. In

the second method, each expression, when evaluated, replaces itself on the expression tree.

Before every iteration, those expressions dependent upon the iteration variable get restored in

the tree. Thus constants, relative to that particular iterative block, get evaluated only once

the first time through. This is the technique used by Buneman et al. Similar schemes in

which expressions are replaced by their values have been described by Henderson and Morris

[Henderson 76] and Turner [Turner 79].

A second algebraic optimisation technique deals with ordering of simultaneous comparison

expressions in the query formulations involving objects that satisfy multiple relationship

constraints [Greenfeld 74]. The problem concerns finding an optimum evaluation order. A

simple example is that of finding the sons of Bill:

for each p in person such that
name (father (p)) = "Bill" and
sex (p) = "male"

print name(p);

The order in which the clauses are processed may have a marked effect on performance,

since it is expected that there will be many more males than children of Bill. But the analysis

is much more complex, depending in part upon the asymmetries of access.

Another algebraic optimisation technique, identified but not implemented by Buneman et al.

[Buneman 82], deals with the syntactic manipulation of expressions. This involves the

transformation of a query into another, more efficient representation. For example, consider

the query that prints the names of those employees who earn more than the average salary

of the employees in their department:

for each e in employee such that
salary(e) > average(salary(e1) over el in employee

such that dept(e) = dept (e 1

print name(e);

Straight-forward evaluation of this query results in recomputing the average for each

employee. However, the evaluation can be made more efficient if the query is subjected to a

set of syntactic transformations leading to:

for each d in department
for each e in employees (d) such that
salary(e) > average (salary (e1) over el in employees(d))

print name (e)

which will prevent recomputation of average for each employee because it can now be

recognised as a constant subexpression in the inner loop.

Directions for Further Research 109

8. 5 Derived Data Control

Derived data control means the materialisation of derived data [Koenig 81]. In the current

implementation, derived data is recalculated whenever it is referenced. All references to

derived functions used in a query are replaced by the corresponding function definitions and

the resulting query is then executed against the base functions of the schema. Relational

systems that provide derived relations or views of the relational model have also based the

materialisation of derived data on a similar recalculation strategy. Both System R [Astrahan

76] and INGRES [Stonebraker 76] store only the view definition.

Such a strategy for derived data control may not be acceptable when accesses to derived

functions are frequent or the required computations are costly. Two techniques have appeared

in the literature which promise a better performance. The technique proposed in PRTV [Todd

76] improves on the recalculate when accessed approach by storing a newly recalculated

derived relation R until a subsequent modification is made to the base relations in terms of

which R is defined, at which time the previously calculated value is destroyed. References to

R prior to such a modification to base relations are directed to the previously calculated value

of R, thereby saving the cost of recalculation. While references to R following such a

modification are resolved by recalculating R and saving its value for future references. The

actual improvement from this approach depends upon the usage patterns of the database, in

particular the ratio of derived relation accesses to base relation modifications.

The technique proposed by Koenig and Paige [Koenig 81] improves on the PRTV approach

in some cases by "maintaining" the stored value of a derived variable V whenever any

definitional parameter of V is modified instead of destroying it. That is, V is incrementally

updated to reflect changes to the definitional parameters of V. Thus, all references to the

derived variable V may be directed to its currently stored value. This approach will be more

efficient compared to the PRTV technique only if the execution costs of the code required to

maintain a derived variable V is less than the cost of the periodic recalculations of V.

Investigations of similar techniques in the context of functional systems is a serious research

issue.

Directions for Further Research 110

8. 6 The Search for a Uniform Language

As we mentioned in Chapter 5, it is important for a database management system to

provide a language which in one continuous spectrum would provide simple general queries,

updates, and the power of a general purpose programming language. FQL [Buneman 79]

has already demonstrated how powerful this can be and our language has comparable

capabilities. The main difference is that FQL adopts the formalism of sequences while our

language is based on sets.

The main advantage of sets over sequences is that most of the database operations can be

expressed in terms of set operations. For example, adding a person entity into an entity type

or a relationship can be specified as a set union operation. Similarly, removal of an object

from the database can be specified as a set difference operation. However, the main problem

with sets is that there is no notion of repetetion in its members, as in sequences.

Sometimes the repetetion of an object as the output of an operation is meaningful. For

example, if we want to calculate the sum of the salaries of all employees, we need to allow

the repetetion of the same number. Sequences are useful in this context. It is an important

research issue to decide whether both sets and sequences are needed in a language, or

given one, whether the other can be provided easily.

Another issue in the language design is that of base types. Databases designed to model

abstractions of real-world systems do not just deal with integers or strings. Attributes in a

database, for example, weight or salary may both well be measured by integer values.

Nevertheless, they are interpreted in different ways and should therefore be treated as

different types. The weak type checking and compatibility rules of most programming

languages are not adequate for database problems. For example, in Pascal [Wirth 71] and

Euclid [Lampson 77] the following two types are the same, hence, compatible

type height = 1..100

type weight = 1.. 100

Consequently, meaningless operations, such as comparing height and weight, cannot be

detected automatically by considering the operands of comparison. In the database world,

some work has been done in the context of relational languages [Schmidt 78, Brodie

80, McLeod 761. Providing such base types in functional languages like DAPLEX is an

important area of research.

The concept of type hierarchy also needs further investigation. At present, an entity type

Directions for Further Research 111

can have only one supertype. However, there may be cases when an entity type has more

than one supertype. For example, a customer can be a person, a company, or a

government agency. Though this can be handled as a derived entity type using set union

operator, the semantics of such types needs to be investigated. Even within a strict type

hierarchy, implicit property inheritance from supertypes to subtypes, as it happens in the

present implementation, may not be acceptable in some cases. It may be necessary to

specify explicitly which properties of the supertype are to be inherited by a subtype.

However, the main challenge for functional data languages arises from adequately modelling

and packaging update and I/O operations without disharmony. Essentially the idea of explicitly

controlling the implementation or propagation of updates is antithetical to pure functional

programming. Yet organising the storage of data and hence updates is a dominant computing

activity central to databases. It is necessary to investigate whether the set of system-provided

functions can be expanded to include I/O operations and whether a convenient and consistent

language can be developed to satisfy the range of programming needs using the functional

parameter handling mechanisms. It is also necessary to investigate whether the present

syntactic form of the language can be retained or whether it is necessary to adopt a form

closer to familiar programming styles.

Conclusions

Chapter Nine

Conclusions

112

In this chapter, we present a brief summary of the research work reported in this thesis.

We also list what we feel are the important lessons learned from it.

9. 1 Summary of the Research

Conceptual data modelling forms an important stage in the design of a database system.

Data modelling has been an active area of research for the past few years. What prompted

this activity is the fact that the present generation of database management systems are

based on concepts that are far from being 'natural'. The user needs to map his thought

processes to the data structures provided by these models in complex ways, and the design

process itself is based on ad-hoc methodologies.

To overcome these problems, data modelling researchers have proposed a number of new

data models. Based on this research, we identify a set of concepts that are 'natural' for

modelling data (chapter 2). Broadly, these concepts are based on the set of entities

corresponding to the objects on the real world, a classification of those entities into entity

types, the identification of attributes of and relationships among such entity types, and a set

of constraints that help to maintain the data consistency. There is also an increasing

recognition of the importance of organising types into a type hierarchy, and the rules or

inference mechanisms, ideas borrowed from the artificial intelligence field.

Chapter 2 also lists a set of criteria to assess the merits of different data models. To be

able to act as a tool to design conceptual schemas, we require a data model to:

1. be based on object orientation;

Conclusions

2. be semantically expressive;

3, provide a simple database design methodology;

4. provide constructs that have a neutral interpretation;

5. have a well defined set of operations;

6. provide facilities to specify constraints;

7. provide facilities to accommodate derived data;

8. be free from physical considerations;

9. provide constructs that can evolve gracefully;

10. be simple and easy to use.

113

Against this set of criteria, we assess the conventional data modelling approaches based on

the hierarchical, CODASYL/DBTG, and the relational data models. We Identify a number of

significant problems with these approaches. (Chapter 2.) These are as follows:

1. They lack object orientation.

2. Semantically, they are insufficiently expressive.

3. It is difficult to design databases.

4. The constructs of these models lack neutrality of interpretation.

5. They fail to accommodate derived data.

6. It is difficult to accommodate database evolution.

In addition to these, CODASYL and the hierarchical systems suffer from the following

additional problems:

1. They tend to provide navigational, element-at-a-time operations.

2. They lack proper constructs to specify explicit constraints.

3. They do not provide a complete separation between logical and physical aspects.

4. They are difficult to understand.

In chapter 3, we provide a brief description of twenty-one semantic data models and follow

Conclusions 114

it up with a rough assessment based on the set of criteria mentioned above, Out of these

models, we select the functional data models for further investigation because:

1. They can provide a semantically rich modelling power by removing the distinction

betwoen programs and data.

2. They can provide high-level data languages based on function application.

3. They can provide data manipulation and general-purpose computation in one

language.

4. They are based on solid mathematical foundations.

5. They can support most of the conventional data models, which means that the
functional data models can be used to provide a global schema in a

heterogeneous distributed database system.

6. They are easy to implement. In fact, these models have the inherent ability to

provide highly efficient implementations by exploiting parallel processing

architectures,

A number of functional data models with varying capabilities and associated data languages

have been reported in the literature, We choose the one proposed by Shipman as it is based

on a simple set of concepts. It is object based and incorporates the idea of type hierarchy.

The definition of both the schema and its extension is around atomic units of information,

i.e., irreducible relationships. It accommodates the concept of derived data naturally by

means of intensionally defined functions, which are manipulated in the same way as those

defined extensionally. In addition, it provides a well defined set of operations on the data it

models. Chapter 4 describes this model and the associated data language in greater detail.

Chapter 5 provides the logical details of our implementation based on this model. This

chapter also provides a critical examination of the model and the language proposed by

Shipman, and describes a series of changes to the model, as well as improvements and

extensions to the language. We show how a simple device to control the visible name space

forms the basis for providing multiple views of a database. We also introduce new features

like specification of integrity constraints and describe their use,

We were greatly helped in the implementation task by the availability of the persistent

algorithmic language, PS-algol. Chapter 6 gives a brief description of the PS-algol language

and explains how it helps in implementing database systems. The implementation details are

covered in Chapter 6.

Conclusions 115

Chapter 7 discusses how the implementation can be used as a personal database

management system for managing moderate volumes of data and as a dynamically reorganising

schema design tool for prototyping of large database systems. A particular attraction of EFDM

is its ability to permit users to design their schemas in an incremental fashion, checking for

consistency of the schema at each stage. This way users are forced to examine their

assumptions and the way the reality is abstracted before committing themselves for a

particular database implementation. The resulting schema can also serve as a complete

documentation of the contents and meaning of the database it is modelling. To facilitate this,

the annotated model of the schema itself is made part of the database.

Chapter 8 lists a number of directions in which the research reported here can be

extended. For example, it discusses how the same concept of view promises simple provision

of experiments, version management, federations and nested transactions. It also discusses

few Issues connected with the query optimisation and the derived data materialisation.

Chapter 8 also lists some of the extensions to our language, especially the issues connected

with base types and type hierarchy.

9. 2 Contributions of the Research

The principal contribution of this research work is the critical discussion of semantic data

models in general, and of the functional data model proposed by Shipman, in particular. This

work examines both the data model and the language proposed by Shipman and discusses a

series of changes to the model and improvements to the language, culminating in an

interactive system suitable for implementing personal information systems or as a dynamically

re-organising schema design tool.

This work clearly demonstrates the fact that the functional approach to data modelling, in

addition to being amenable to computer processing, can also accommodate the semantic data

modelling concepts, concepts such as entity orientation, type hierarchy, and derived data.

The use of the last concept to model programs as data, though not novel in other fields, is

certainly novel in the database context. The presence of these derived functions helps to

simplify the formulation of user queries to the databases and to provide multiple user views.

Our work also shows how the functional data model and the language implemented in the

present work is neatly extensible to handle integrated data languages, views, experiments and

federations.

Conclusions 116

This work also demonstrates the efficacy of the use of persistent algorithmic languages like

PS-algol for implementing database management systems. The database researchers have so

far been deterred by the lack of proper tools to carry out implementations of novel data

models in order to assess them. The use of conventional languages for implementation work

implies duplicating the complex storage management software for each implementation task.

It is hoped that future languages will increasingly recognise the merit of treating the

persistence as an orthogonal property of the data.

Our work clearly demonstrates that the functional data model with advanced modelling

constructs is indeed implementable. Other semantic data modelling approaches have also

succeeded in providing semantically rich modelling constructs, but it has not been easy to see

how they can be implemented. As a result, there is an impression that semantic data

models, in general, are too abstract and hence they can only be used to design enterprise

descriptions solely to aid human understanding [Chen 76]. Some of them are so complex

that, even if they can be implemented, they are clearly unsuitable for the majority of the

users. Codd, in his proposal of the Extended Relational Data Model, RM/T [Codd 79], even

suggests that the extensions in RM/T are primarily intended for the minority consisting of

database designers and sophisticated users. It is hoped that the present work will dispel such

impressions and demonstrate that a semantic data model with advanced data modelling

constructs can be implemented and can be used by both sophisticated and non-sophisticated

users.

To date, the shortcomings of the data models underlying present generation of database

management systems has been discussed only at the academic level. It is hoped that the use

of EFDM will generate sufficient interest in semantic data modelling concepts, and convince

the users of the shortcomings of classical data models. If there is to be a wide spread use

of the semantic data modelling concepts, it is imperative that systems incorporating such

concepts and simple enough to be used by a large user community are made available widely.

DAPLEX Syntactic Specification

Appendix A

DAPLEX Syntactic Specification

program = [statement).
statement = declarative I imperative
declarative = declare funspec ("->" I "-> > ") expr[order] I

define funspec ("->" I "->),11)
(expr I

inverse of funcspec I

transitive of expr I

compound of tuple I

(intersection I union) of expr {", "expr} I

difference of expr "," exprI
[order]

define constraint funcspec "->" boolean I

define trigger funcspec "->" boolean imperative l
perform update using imperative.

funcspec = funcid "(" [tuple] ")".
tuple = expr {"."expr}.
expr = set I singleton.
set = mvfuncall I typeid I

"{"[singleton {","singleton}]
set such that pred I
set comp (singleton I quant set) I
identifier in set I expr as typeid I
"(" set ")"Igpaingleton.

singleton = constant I vbad I svfuncallI aggcallI
predI the set I a new typeid I
the set (preceding I following) singleton j
"(" singleton ")"Igpsingleton.

svfuncall = funcall.
mvfuncall = funcall.
funcall = funcid "(" [tuple]")".
aggcall = aggid "(" bag
bag = exprIsingleton over tuple.
pred = boolean I

for (singleton I quant set) pred I
(singleton I quant set) comp (singleton I quant set) l

quant set (existlexists).
comp = ..>.T.< "I"="Ieglnelitlgtllelge.
quant = someleverylnol

(at (least I most) I exactly) integer.
integer = singleton.
string = singleton.
boolean = singleton.
constant = int l str I bool.
mt = digit [digit).
str = """" character (character) """"
bool = true l false .

imperative = forloop I update I gpimperative.

117

DAPLEX Syntactic Specification

forloop = for each set [order] imperatives
for singleton imperative.

order = in order
{by [(ascending I descending) singleton).

update = let svfuncall "=' singletons
(let sinclude dexclude) mvfuncall "=" exprI
insert mvfuncall "=' (singleton set [order])

(preceding following) singleton.
vblid = identifier.
typeid = identifier,
funcid = identifier.
aggid = identifier.

118

NOTE: The syntax specification appearing in this and the next appendix is described in terms

of the syntax specification language proposed by Wirth [Wirth 77). Terminals are represented

by bold-face words, and by non-alphanumeric symbols enclosed in quote marks (and, if a

quote mark appears as a terminal itself, it is written twice). Syntactic categories are

represented by lower case italic words. Repetetion is denoted by curly brackets, i.e., (a)

stands for E a l as I aaa I Optionality is expressed by square brackets, i . e. , [a] stands

for al E. Parantheses merely serve for grouping, e.g., (alb)c stands for acIbc.

EFOM Syntactic Specification

Appendix B

EFDM Syntactic Specification

command = imperative)
declare funspec I typeidl
define funspec ("->" I "->>") fundefl
program programed is imperative)
output programed fileid l
view viewed is
(deduce funcspec ("->"I"->>") typeid using
fundef) end.

drop (funspec l programed
I viewed) l

load
programed,

imperative = for each set imperative)
for singleton Imperative)
updateI print stuple.

set = vblid in sell
[such that predicate] (as typeid]

sell = mvfuncalll typeid l "("stu le")"I
"(I' set ((union I intersection

I difference) set)
singleton = expi for expi)
expi = exp2 (and exp2)
exp2 = [not] exp3
exp3 = exp4 [compop exp4]
exp4 = (prefix] exp5 (addop exp5)
exp5 = exp6 (mulop exp6)
exp6 = exp7 [as typeid]
exp 7 = constant I vblid I svfuncall

I aggcall
the set I a new typeid I
quant set (haslhave) predicatel
"(" singleton "Y'.

svfuncall = funcid "(" stuple ")".
mvfuncall = funcid "(" mtuple
stuple = singleton (","singleton).
mtuple = expr (","expr).
expr = set l singleton .

aggcall = (countlmaxlmm) ,(,, Set ")"I
(totallaverage) "(" singleton over mtuple

update = let funcall "_" expr
include (funcallltypeld) -,=@, sell
exclude (funcallltypeid) ,=to sell
delete singleton.

funcall = funcid "(" stuple
fundef =

(expr I

inverse of funcspec I

transitive of expr I

compound of tuple.

119

EFDM Syntactic Specification

funcspec = funcid "(" [arglist] ":i .

arglist = typeid (","?ypeid).
compop = ">.T.<...._..I ..>=" I ..<=..I.....
quant = some (all I no

(at (leastI most) (exactly) integer.
integer = singleton,
predicate = singleton.
constant = intjstrjboot.
mnt = digit [digit).
str = """" character (character)'""M.
boo! = true ifalse.
vblid = identifier.
typeid = identifier.
funcid = identifier.
programed = Identifier,
wew'd = identifier.
identifier = letter ((letter I digit
prefix = ..+...._..
addop = .+...._....*+..
mulop = ..*......rem.

120

Functional Specification of EFDM

Appendix C

Functional Specification of EFOM

1. Data Structures

1) structure str. struct(string str)
2) structure int.struct(int val)
3) structure bool,struct (boot bval)
4) structure list. struct(pntr head, tail)
5) structure fun. struct (string fname, type, status, ftext;

int nargs, fnno;
pntr args, result, uses, used, fnson,

cons, fval, mptr, nextfn)

121

This structure is used to represent functions of the data model. The various components of

this structure have the following meaning:

(name -- name of the function
type -- "svfun" for single-valued functions

"mvfun" for multivalued functions
status -- "base" for base functions

"derived" for derived functions
"system" for those functions used by the system to
store meta data, etc.

(text -- text of the function declaration
nargs -- number of arguments the function has
fnno -- the total number of base, non-inherited,

one-argument functions if the function is
an entity type declaration,
a number indicating the index into the
vector of function values if the function
base one-argument function,
0, otherwise.

args -- arguments of the function arranged as a list structure.
must have the type Iist.struct where the individual
elements of list have the type fun.struct.
Elements in the list must be ordered according to the
order of arguments in function.

res result of the function with the type fun.struct.
uses -- list of functions used in the definition of this function;

must be of of type list.struct where the individual
elements must be of type Fun. struct; order is not
important.

used -- list of functions that use this function in their
definition. Same comments as above.

fnson -- nil if functions has arguments, otherwise a list of
functions that have this entity type as
one of the arguments. must be of type list.struct.

Functional Specification of EFOM

order not important.

6) structure ent.struct(pntr otype,super,nextobj; *pntr ftup)

122

This structure is used to represent data model entities. Description of the components of this

structure is as follows:

otype -- pointer to the entity type of the entity, must point to
an instance of fun.struct.

super -- pointer to another entity belonging to the immediate
supertype of the entity type of the entity. must point
to an instance of ent.struct.

nextobj-- ponter to the next entity belonging to the same
entity type, must point to an instance of ent.struct.

ftup -- a vector containing values for
one-argument, non-inherited functions.
Individual elements may be of type str.struct,
int.struct, bool.struct, or ent.struct for
single-valued functions, and list. struct for
multi-valued functions.

7) structure mvfunval. struct (pntr avallist, rval list, nextval)

This structure is used to represent function values for multiargument functions. Description of

the components of this structure is as follows:

avallist-- list of argument entities. must be of type
list. struct with individual elements
ordered according to the argument position.

rvallist-- pointer to an instance of str. struct or
int.struct or bool.struct or ent.struct for
single-valued functions and an instance of
list. struct for multi-valued functions.
order not important.

2. Database Handler Routines

1) procedure appendfn (string name, type, stat; pntr args, res -> pntr)

2) Procedure deletefn(pntr fnp)

3) procedure create. entity (pntr trip)

4) procedure include. entity (pntr ent,fnp)

5) Procedure exclude. entity (pntr ent, fnp)

6) Procedure appendfnval (pntr fnp, argvallist, resvallist)

7) Procedure addfnval (pntr fnp, argvallist, resvallist)

8) Procedure deletefnval (pntr fnp, argvallist, resvallist)

9) Procedure getfn(string name; pntr args -> pntr)

10) procedure getfnval(pntr fnp,argvallist -> pntr)

Schema for University Administration

Appendix D

Schema for University Administration

declare organisation ()
declare university()

declare admin.office()
declare service. unit()
declare faculty()
declare department()

-> > entity
-> > organisation
-> > organisation
-> > organisation
-> > organisation

-> > organisation

declare name (organisation) -> string
declare address (organisation) -> address
declare phone (organisation) -> > phone

[Administering faculties]

declare degree() -> > entity
declare diploma() -> > entity
declare certificate() -> > entity
declare subject. type () -> > entity
declare subject() -> > entity
declare course() -> > entity

declare dean (faculty) -> teaching. staff
declare associate. dean (faculty) ->> teaching, staff
declare sao (faculty) -> nonteaching. staff
declare secretary (faculty) -> nonteaching. staff
declare department(faculty) ->> department
declare degree(faculty) ->> degree
declare diploma (faculty) -> > diploma
declare certificate(faculty) ->> certificate
declare subjecttypes(faculty) ->> subject.type
declare subject(faculty) -> > subject

declare name (subject. type) -> string
declare directors. of. studies (subject. type) ->> teaching. staff

declare name (subject) -> string
declare subjecttype (subject) -> subject. type

declare name (degree)
declare prereq (degree)
define offer (degree)
declare courseyear(degree)
declare subject(degree)

-> string
->> degree

-> > inverse of degree (faculty)
->> course.year
->> subject

[Administering departments]

declare course. year() -> > entity
declare term () -> > entity

123

Schema for University Admrnrstratron

declare task()

declare assignment()

declare exam()
declare project()
declare document()

declare head (department)
define faculty(department)
declare course (department)
declare project (department)

-> > entity
-> > task
-> > task

-> > entity
-> > entity

-> teaching, staff
->> inverse of department (faculty)
-> > course
-> > project

declare tasks (course, year) ->> task
declare name(course.year) -> string
declare course (course. year) -> > course
declare coordinator (course. year) -> teaching. staff
declare exams (course, year) ->> exam
declare assignments (course. year)->> assignment

declare weight(task) -> task.weight
declare sets.task(task) -> teaching. staff
declare marks. task (task) -> teaching. staff

declare date. set(assignment) -> date
declare deadline (assignment) -> date

declare date(exam)
declare term (exam)
declare held.at(exam)

declare name (project)
declare startdate(project)
declare deadline(project)
declare budget(project)
declare funding(project)
declare report(project)

declare name(document)
declare issuedate(document)
declare abstract(document)
declare author(document)

[Administering personnel]

declare person()
declare student()

declare ugmsc. student()

declare science. ug. student()
declare research. student()
declare staff ()

declare teaching. staff()
declare nonteaching. staff ()

define tutor()

define demonstrator()

declare surname(person)
declare firstname (person)
declare middlenames(person)
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare
declare

-> date
-> term
-> room

-> string
-> date
-> date
-> money

-> > organisation
-> > document

-> string
-> date
-> string
-> > person

-> > entity
->> person
-> > student

-> > ugmsc. student
-> > student

-> > person
-> > staff
-> > staff
-> > teaching, staff UNION

research. student
-> > teaching, staff UNION student

-> string
-> string

-> > string
sex(person) -> sex
birthday(person) -> date
number(person) -> integer
extension (person) -> phone. extension
home. address (person) -> > address
marital. status (person) -> marital, status
spouse(person) -> person
qualification (person) ->> degree
country, of, birth (person) -> country
nationality(person) -> country
permanent, domicile (person) -> country

124

Schema for University Administration

[Administering staff]

declare works. for(staff) -> organisation
declare room(staff) -> room
declare designation (staff) -> designation
declare current. appt. date (staff) -> date
declare increment. date (staff) -> date
declare scale. code (staff) -> scale. code
declare annual. salary (staff) -> money
declare other. payments (staff) -> money
declare date, of. review (staff) -> date
declare income. tax. month (staff) -> month
declare income. tax, code (staff) -> income,tax.code
declare account. number (staff) -> account. number
declare national, insurance, no (staff)-> integer
declare union. affiliation (staff) -> union
declare union, subscription (staff) -> money
declare staff. club. member, no (staff) -> integer
declare staff. club. subs (staff) -> money
declare retirement. age (staff) -> year
declare employment. history(staff) ->> employ, history

[Administering students]

declare enrollment. number(student) -> eno
declare term. residence (student) -> address
declare year. of. first. entry (student) -> year
declare year. of. course. entry (student) -> monthyear
declare year. of. course (student) -> course.year
declare date. of. enrollment (student) -> date
declare status (student) -> student. status
declare fee (student) -> money
declare type. of fee (student) -> fee. type
declare from. university (student) -> university
declare grant. awarding. body (student) ->> grant. body
declare last, full. time. school(student) -> school. detail
declare other, institutes. attended (student) ->> school. detail
declare previous. school. results (student) ->> school, results
declare degree. awarded (student) -> degree

declare course (ugmsc. student) ->> course
declare tutorial (ugmsc. student) -> tutorial
declare grade (ugmsc. student, task) -> marks
declare final. result (ugmsc. student, course. year) -> result

declare lab. session (science. ug. student) -> lab, session

declare supervisor (research. student) ->> staff
declare period. of, study (research. student) -> integer
declare date. of. starting. study (research. student) -> date
declare research. costs. charged (research. student) -> money
declare research. costs. collected (research. student) -> money

[Administering teaching]

declare teaching.event() ->> entity
declare lecture O -> > teaching. unit
declare tutorial O -> > teaching. unit
declare lab. session () -> > teaching. unit

declare time (teaching, event) -> time
declare day (teaching. event) -> day
declare room (teaching, event) -> room

declare demonstrator (lab, session) -> demonstrator

declare tutor(tutorial) -> tutor
declare parity(tutorial) -> parity

125

declare lecturer (lecture) -> teaching. staff

Schema for University Administration

[Miscellaneous]

declare committee()

declare member(committee)
declare convener(committee)

-> > entity

-> > person
-> > person

declare date. of. entry (school. detail) -> date
declare date. of. leaving (school. detail)-> date
declare sublect(school. detail) -> > subject

declare board (school. result)
declare date(school. result)
declare grade (school. result)

-> organisation
-> monthyear
-> degree

declare sex ()
) declare address o

declare text(address)
) declare building o

declare name(building)
declare room ()
declare number(room)
declare extension (room)
declare building(room)
declare country()
declare name(country)
declare designation ()
declare marital, status ()
declare money()
declare union ()
declare month ()
declare year()
declare monthyear()
declare income. tax. code ()
declare account, number()
declare scale. code ()
declare student. status ()
declare fee. type ()
declare grant. body()
declare phone()
declare phone, extension ()
declare task.weight()
declare employ. history()
declare eno ()

) declare marks o

declare result()

declare parity()

-> > entity
-> > entity
-> string
->> entity
-> string
-> > entity
-> integer

-> integer
-> building
-> > entity
-> string

-). > entity
-> > entity

-> > entity
-> > entity
-> > entity

-> > entity
-> > entity
-> > entity
-> > entity

-> > entity
->> entity [part time/full time]
-> > entity [home, overseas etc.]
->> entity
-> > entity
->> entity

->> entity
->> entity
->> entity
-> > entity

-> > entity
->> entity [odd/even]

126

References

References

[Abrial 74]

[Ag rawal 82]

[ANSI 75]

127

Abrial, J, R.
Data Semantics.
In Klimbie,J.W and Koffman K.L. (editor), Database Management, . North-

Holland, 1974.

Agrawal, R. and DeWitt, D. J.
Further optimism in optimistic methods of concurrency control.
Technical Report #470, Computer Science Department, University of

Wisconsin-Madison, 1982.

ANSI/X3/SPARC Study Group on Database Management Systems.
Interim Report.
FDT 13(2), 1975.

[ANSI 78] Tsichritzis, D. C. , and Kiug, A.
ANSI/X3/SPARC DBMS Framework: Report of the Study Group on Database

Management Systems.
Information Systems 3, 1978.

[Arvind 78] Arvind, K.P. and Gostelow, W.P.
An Asynchronous Programming Language and Computing Machine.
Technical Report, University of California at Irvine, 1978.

[Astrahan 76] Astrahan, M. M. et al.
System R: relational approach to database management.
ACM Transactions on Database Systems 1:97-137, June, 1976.

[Atkinson 78] Atkinson, M. P.
Programming languages and databases.
Technical Report CSR-26-78, Computer Science Department, University of

Edinburgh, 1978.
Also in Proceedings of the Fourth International Conference on Very Large

Databases (1978).

[Atkinson 79]

[Atkinson 81a]

Atkinson, M. P.
Database Systems.
Journal of Documentation 35 (1) : 49-91, March, 1979.

Atkinson, M. P. , Chisholm, K.J. and Cockshott, W . P.
PS-algol: an Algol with a Persistent Heap.
ACM SIGPLAN Notices 17(7), July, 1981.

[Atkinson 81b] Atkinson,M.P (editor).
Data Bases.
In lnfotech State of the Art Report. Database, . Pergamon Infotech, 1981.

[Atkinson 83a] Atkinson, M.P., Chisholm, K.J., Cockshott, W. P. and Marshall, R. M.
Algorithms for a Persistent Heap.
Software Practice and Experience 13(7), March, 1983.

References 128

[Atkinson 83b]

[Atkinson 83c]

Atkinson, M . P. , Bailey, P. J . , Chisholm, K . J . , Cockshott, W . P. and Morrison,R.
An Approach to Persistent Programming.
Computer Journal 26, 1983.

Atkinson, M. P. Chisholm, K.J. and Cockshott, W. P.
CMS-A Chunk Management System.
Software-Practice and Experience 13:273-285, 1983.

[Azmoodeh 82] Azmoodeh, M. and Lavington, S.H.
A Scheme for Representing Information and its Implications for Storage

Technology.
Technical Report IFS/2/82, University of Manchester, 1982.

[Bachman 77]

[Backus 78]

[Bayer 72]

[Biller 79]

Bachman, C.W. and Daya, M.
The Role Concept in Database Models.
In Proceedings of International Conference on Very Large Data Bases. ACM,

1977.

Backus, J.
Can Programming be Liberated from the von Neumann style? A functional

Style and its algebra of Programs.
Communications of ACM 21 (8), August, 1978.

Bayer, B. and McCreight, A.
Organisation and Maintenance of Large Ordered Indexes.
Acts Informatica 1:173-189, 1972.

Biller, H.
On the notion of irreducible relations.
In Brachhi, G. and Nijssen, G.M. (editor), Data Base Architecture, pages

277-296. North-Holland, 1979.

[Blasgen 77] Blasgen, M. W. et al.
System R: an architectural overview.
IBM Systems Journal 20:41-62, 1977.

[Brachhi 76] Brachhi, G. , Paolini, P. , and Pelagatti,G.
Binary Logical Associations in Data Modelling.
In Nilssen,G.M. (editor), Modelling in Database Management Systems.

North-Holland, 1976.

[Breutmann 79] Breutmann, B., Falkenberg, E., and Mauer, R.
CSL: A Language for Defining Conceptual Schemas.
In Brachhi, G. and Nilssen, G.M. (editor), Database Architecture. North-

Holland, 1979.

[Brodie 80] Brodie, M.L.
Application of Data Types to Database Semantic Integrity.
Information Systems 5:287-296, 1980.

[Brown 75] Brown, A.P.G.
Modelling a Real World System and Designing a Schema to Represent it.
In Douque, B,C.M., and Nslssen, G.M. (editor), Data Base Description.

North-Holland, 1975.

[Bubenko 76] Bubenko,J.A., et at.
From Information Requirements to DBTG data structures.
In Proceedings of ACM SIGMOD SIGPLAN Cont. on Data: Absract,on,

Definition and Structures. ACM, 1976.

[Bubenko 77] Bubenko, J.A.
Validity and Verification Aspects of Information Modelling.
In Proceedings of International Conference on Very Large Data Bases. ACM,

19/7.

[Bubenko 80a] Bubenko,J.A.
Data Models and their Semantics.
In Atkinson,M. (editor), Infotech State of the Art Report on Database,

Infotech, 1980.

References 129

[Bubenko 80b] Bubenko, J.A.
Information Modelling in the Context of System Development.
In Proceedings of IFIP Congress 80, . North-Holland, 1980.

[Buneman 79] Buneman,P. and Frankel, R. E.
FOL - A Functional Query Language.
In Procoedings of International Conference on Management of Data. ACM-

SIGMOD, 1979.

[Buneman 82] Buneman, P. , Frankel, R. E. and Nikhil,R.
An Implementation Technique for Database Query Languages.
ACM Transactions on Database Management 7(2), June, 1982.

[Burstall 80] Burstall, R . M. , MacQueen, D.B., and Sannella, D.T.
HOPE: An Experimental Applicative Language.
Technical Report CSR-62-80, University Of Edinburgh, 1980.

[CCA 83] ADAPLEX: Rationale and Reference Manual
1983.
Computer Corporation Of America.

(Chamberlin 76] Chamberlin, D. D.
Relational data-base management systems.
ACM Computing Surveys 8:43-66, March, 1976.

(Chan 82]

[Chang 78]

[Chen 76]

(CODASYL 71)

[Codd 70]

(Codd 72)

[Codd 74]

[Codd 79]

(Cullinane 75)

Chan, A., et. al.
Storage and Access Structures to Support a Semantic Data Model.
In Proceedings of Eighth International Conference on Very Large Data Bases,

ACM, 1982.

Chang, A.

DEDUCE 2: Further Investigations of Deduction in Relational Databases.
In Gallaire, H. and Mmker, J. (editor), Logic and Databases, pages

201-236. Plenum Press, 1978.

Chen, P.P.S.
The Entity-Relationship Model: Towards a Unified View of Data.
ACM Transactions on Database Systems 11(1), March, 1976.

Codasyl Committee on Data System Languages.
CODASYL Data Base Task Group Report.
Technical Report, ACM, 1971.

Codd, E. F.
A Relational Model for Large Shared Databanks.
Communications ACM 13(6):377-387, 1970.

Codd, E. F.
Further Normalisation of the Data Base Relational Model.
In Data Base Systems, Courant Computer Science Symposia Series, Vol. 6. ,

. Prentice-Hall, 1972.

Codd, E.F.
Recent Investigations in a Relational Database System.
In Information Processing 74, pages 1017-1021. North-Holland, 1974.

Codd, E. F.
Extending the Relational Model of Data to Capture More Meaning.

ACM Transactions on Database Systems 4(4), December, 1979.

Integrated Database Management System (IDMS) Data Definition Languages,
Utilities and GCI Reference Guide and Data Manipulation Language
Programmer's Guide
1975.

[Date 81] Date,C,J.
Referential Integrity.
In Proceedings of 7th International Conference on Very Large Data Bases.

VLDB, 1981.

References 130

[Date 83] Date, C. J.
The Systems Programming. Volume 2: An Introduction to Database Systems.
Addison-Wesley, 1983.

[Dayal 78] Dayal,U. and Bernstein,P.A.
On the Updatability of Relational Views,
In Proceedings of 4th International Conference on Very Large Data Bases.

ACM, 1978.

[Earnest 75] Earnest, C.P.
Selection and higher level structures in networks.
In Douque, B.C. and Nijssen, G.M. (editor), Data Base Description,

North-Holland, 1975.

[Eswaran 75]

[Falkenberg 76]

Eswaran, K.P., and Chamberlin, D.D.
Functional Specifications of a Subsystem for Database Integrity.
In Proceedings of International Conference on Very Large Data Bases. ACM,

1975.

Falkenberg, E.D.
Concepts for Modelling Information.
In Nilssen, G.M. (editor), Modelling in Data base Management Systems.

North-Holland, 1976.

[Folinus 74] Folinus, J . J. , Madnick, S. E. , and Shutzmann, H. B.
Virtual Information in Database Systems.
FDT, SIGFIDET 6, 1974.

[Friedman 76] Friedman, D.P. and Wise, D.S.
CONS should not evaluate its arguments.
In Automata, Languages, and Programming, . Edinburgh University Press,

1976.

[Fry 76] Fry, J. P, and Sibley, E. H.
Evolution of data-base management systems.
ACM Computing Surveys 8: 7-42, March, 1976.

[Fry 78] Fry,J.P., and Teorey,T.J.
Design and Performance Tools for Improving Database Usability and

Responsiveness.
In Shneiderman,B. (editor), Databases: Improving Usability and

Responsiveness, . Academic Press, 1978.

[Gerrttsen 75] Gerritsen, R.
A Preliminary System for the Design of DBTG data structures.
Communications of ACM 1800), October, 1915.

[Gordon 79] Gordon, M. J., Milner, A. J. R. G., and Wadsworth, C. P.
Lecture Notes in Computer Science. Volume 78: Edinburgh LCF.
Springer-Verlag, 1979.

[Gray 81] Gray, P. M. D.
Use of automatic programming and simulation to facilitate operations on

CODASYL databases.
In M. P. Atkinson (editor), Database, pages 345-369. Pergamon Infotech,

1981,

[Gray 83] Gray, P.M.D.
The Functional Data Model Related to the CODASYL Model.
In Stocker, P. (editor), Databases: Role and Structure, . Cambridge

University Press, 1983.
To be published.

[Groenfeld 74] Groenfeld, N.R.
Quantifiers in a Relational Data System.
In Proceedings of AFIPS National Computer Conference, . AFIPS, 1974.

References 131

[Hall 76a] Hall,P.J.,Owlett,J., and Todd,S.
Relations and Entities.
In Nijssen,G.M. (editor), Modelling in Database Management Systems.

North-Holland, 1976.

[Hall 76b] Hall, P.A.V.
Optimisation of a Single Relational Expression in a Relational Database.
IBM Journal of Research and Development 20(3):244-257, 1976.

[Hammer 78] Hammer, M. and McLeod,D.
The Semantic Data Model: a Modelling Mechanism for Database Applications,
In Proceedings of International Conference on the Management of Data.

ACM-SIGMOD, 1978.

[Hammer 81] Hammer,M. and McLeod,D.
Database Description with SDM: A Semantic Database Model.
ACM Transactions on Database Systems 6(3), Sept, 1981.

[Hayes 77] Hayes, P.J.
On Semantic Nets, Frames, and Associations.
In Proceedings of 5th International Joint Conference on Artificial Intelligence,

pages 99-107. , 1917.

[Henderson 76] Henderson, P. and Morris, J.H.
A Lazy Evaluator.
In 3rd ACM Symposium on Principles of Programming Languages, pages

95-103. ACM, 1976.

[Hepp 83] Hepp, P.

A DBS Architecture Supporting Coexisting Query Languages and Data Models.
PhD thesis, University Of Edinburgh, 1983.
to be submitted.

[Hiembigner 81] Hiembigner, D. and Mcleod,D.
Federated Information Bases (A Preliminary Report).
Technical Report TR-105, University of Southern California, October, 1981.

[Honeywell 72] Integrated Data Store Reference Manual
1972.
BR69.

[Housel 79] Housel, B. C . , Waddle, V . , and Yao, S . B.
The Functional Dependency Model for Logical Database Design.
In Proceedings of 5th International Conference on Very Large Databases.

VLDB, 1979.

Information Management System Virtual Store (IMS/VS) Reference Manual
1975.
G H 120-1260-3.

Ichbiah et al.
Rationale of the Design of the Programming Language Ada.
ACM Sigplan Notices 14(6), 1979.

ISO TC97/SC5/WG3.
Concepts and Terminology for the Conceptual Schema and the Information

Base.
Technical Report ISO/TC97/SC5 - N695, ISO, 1982.

[Kahn 76] Kahn, B.K.
A method for Describing the Information Required by the Database Design

Process.
In Proceedings of ACM SIGMOD International Conference on Management of

Data, . ACM SIGMOD, 1976.

[Katz 83] Katz, R. H. and Wong, E.
Resolving Conflicts in Global Storage Design Through Replication.
ACM Transactions on Database Systems 8(l):110-135, March, 1983.

References 132

[Kent 78]

[Kent 79]

Kent, W.
Data and Reality.
North-Holland, 1978.

Kent, W,
Limitations of Record-based Information Models.
ACM Transactions on Database Systems 4(l), 1979.

[Kerschberg 75]Kershberg,L, and Pacheco,J.E.S.
A Functional Database Model.
Technical Report, Pontificia Universidade Catolica, Rio de Janeiro, 1975.

[Kerschberg 76] Kerschberg, L. , Klug,A., and Tscichritzis, D.
A Taxonomy of Data Models.
Technical Report CSRG-70, University of Toronto, 1976.

[Koenig 81] Koenig, S. and Paige, R.
A Transformational Framework for the Automatic Control of Derived Data.
In Proceedings of the 7th International Conference on Very Large Data Bases.

ACM, 1981.

[Kowalski 74] Kowalski, R.
Predicate Language as Programming Language.

K lk 83]

In Information Processing 74, pages 569-574. North-Holland, 1974.

K lk K G [u arm u arni, . .

[Kung 81]

Extended Functional Data Model - User Manual.
Technical Report, University of Edinburgh, June, 1983.

Kung, H. T. and Robinson, J. T.
On optimistic methods for concurrency control.
ACM Transactions on Database Systems 6:213-22, June, 1981.

[Lampson 77] Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., and Popek,
G L

Landin 66]

[Langefors 66]

. .

Report on the programming language EUCLID.
SIGPLAN Notices 12(2), 1977.

Landin, P.J.
The Next 700 Programming Languages.
Communication of ACM 9(3):157-164, 1966.

Langefors, B.
Theoretical Analysis of Information Systems.
1966.

[Langefors 77]

[MacLane 67]

[McCarthy 62]

Studentlitteratur, Lund.

Langefors, B.
Information Systems Theory.
Information Systems 2(2), 1977.

Maclane, S. and Birkhoff, G.
Algebra.
The Macmillan Co., New York, 1967.

McCarthy, J . , et al.
LISP 1.5 Programmer's Manual
1962.

[McLeod 76]

MIT Press.

McLeod, D.J.
High Level Domain Definitions in a Relational Data Base System.
In Proceedings of ACM SIGMOD-SIGPLAN Conference On Data. CM, 1976.

d 80 M L d Heimbi Mcleod D er D] [c eo . an , gn , .

A Federated Architecture for Database Systems.
In Proceedings of the National Computer Conference. AFIPS, 1980.

References 133

[blinker 78] Minker, J.
An Experimental Relational Database System Based on Logic.
In Gallaire. H. and Minker, J. (editor), Logic and Databases, pages

107-147. Plenum Press, 1978,

[Morrison 79] Morrison, St.
S-algol Language Reference Manual.
Technical Report CS/79/1, University of St. Andrews, 1979.

[Morrison 82a] Morrison, R.
The String as a Simple Data Type.
ACM SIGPLAN Notices 17(3), 1982,

[Morrison 82b] Morrison, R.
Low Cost Computer Graphics for Micro Computers,
Software, Practice and Experience 12:767-776, 1982.

[Munz 78] Munz, R.
The WELL System: A Multi-user Database System Based on Binary

Relationships and Graph-Pattern-Matching.
Information Systems 3:99-115, 1978.

[Mylopoulos 80] Mylopoulos, J. , Bernstein, P. A. and Wong, H. K. T.
A Language Facility for Designing Database Intensive Applications.
ACM Transactions on Database Systems 5(2), June, 1980.

[Nau 83] Nau, D.S.
Expert Computer Systems.
Computer 16(2), 1983.

[Nijssen 80]

[Pirotte 80]

[Quillian 68]

[Ross 83]

Nijssen, G . M.
Database Semantics.
In Atkinson,M. (editor), Infotech State of the Art Report on Database,

Infotech, 1980.

Pirotte, A. and Lacroix, M.
User Interfaces for Database Application Programming,
In Infotech State of the Art Conference on Database, . Infotech Limited,

1980.

Quillian, M. R.
Semantic Memory.
In Minsky, M. (editor), Semantic Information Processing, . MIT Press,

1968.

Ross, G.D.M.
Virtual Files: A Framework for Experimental Design.
PhD thesis, University of Edinburgh, 1983.
to be submitted.

[Roussopoulos 75]
Roussopoulos,N. and Mylopoulos,J.
Using Semantic Networks for Database Management.
In Proceedings of International Conference on Very Large Data Bases. ACM,

1975.

[Rowe 79] Rowe, L., and Shoens, K.
Data Abstraction, Views and Updates in RIGEL.
In Proceedings of ACM SIGMOD International Conference on Management of

Data, pages 71-81. ACM-SIGMOD, 1979.

[Schiel 83] Schiel, U.
A Semantic Data Model and its Mapping to an Internal Relational Data Model,
In Stocker, P. (editor), Databases: Role and Structure. Cambridge

University Press, 1983.
To be published.

References 134

[Schmid 75] Schmid, H . A. , and Swenson, J . R .

On the Semantics of the Relational Model.
In Proceedings of International Conference on the Management of Data.

ACM-SIGMOD, 1915.

[Schmidt 77] Schmidt, J.W.
Some High Level Language Constructs for Data of Type Relation.
ACM Transactions on Database Systems 2(3):247-281, September, 1977.

[Schmidt 78] Schmidt, J.W.
Type Concepts for Database Definition.
In Shne,derman, B. (editor), Databases: Improving Usability and

Responsiveness, . Academic Press, 1978.

[Senko 73] Senko, M.E., Altman, E., Astrahan, M., and Fehder, P.
Data Structures and Accessing in Data Base Systems.
IBM Systems Journal 12(l), 1973.

[Senko 75] Senko, M.E.
The DDL in the Context of a Multilevel Structured Description: DIAM II with

FORAL.
In Douque, B.C.M. and Nijssen, G.M. (editor), Data Base Description.

North-Holland, 1975.

[Severance 76] Severance, D. and Lohman, G .

Differential files: Their Application to the Maintenance of Large Databases.
ACM Transactions on Database Systems 1:256-267, September, 1976.

[Sharman 77] Sharman, G.C.H.
Update-by-Dialogue: An Interactive Approach to Database Modification.
In Proceedings of ACM SIGMOD International Conference on Management of

Data. ACM-SIGMOD, 191'7.

[Shipman 81]

[Shopiro 79]

[Sibley 77]

[Smith 75]

[Smith 77]

[Smith 80a]

Shipman, D.W.
The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems 6(l):140-173, March, 1981.

Shopiro, J.E.
THESEUS - A Programming Language for Relational Databases.
ACM Transactions on Database Systems 4(4), December, 1979.

Sibley, E.H., Kerschberg, L.
Data Architecture and Data Model Considerations.
In Proceedings of AFIPS National Computer Conference, pages 85-96.

AFIPS, 1977.

Smith, J.M. and Chang, P.Y.
Optimising the Performance of a Relational Algebra Database Interface.
Communications of ACM 18(10):568-579t 1975.

Smith, J. M. and Smith, D. C. P.
Database Abstractions - Aggregation and Generalisation.
ACM Transactions on Database Systems 2(2), June, 1977.

Smith, J. M. and Smith, D. C. P.
Conceptual Database Design.
In Atkinson, M. (editor), Infotech State of the Art Report on Database,

Infotech, 1980.

[Smith 80b] Smith, J . M. , Bernstein, P. A. , et. al.
Basic Architecture of Multibase.
Technical Report, Computer Corporationof America, November, 1980.

[Smith 81] Smith, J . M. , Fox, S. and Landers, T.
Reference Manual for ADAPLEX.
Technical Report, Computer Corporation of America, January, 1981.

References 135

[Stonebraker 75]
Stonebraker, M.
Implementation of Integrity Constraints and Views by Query Modification.
In Proceedings of ACM S!GMOD International Conference on the Management

of Data. ACM, 1975.

[Stonebraker 76]
Stonebraker, M. , Wong, E. , Kreps, P. , and Held, G.
The Design and Implementation of INGRES.
ACM TODS 1(3):189-222, September, 1976.

[Stonebraker 80]
Stonebraker, M.
Retrospective on a database system.
ACM Transactions on Database Systems 5:225-240, June, 1980.

[Strachey 67] Strachey, C.
Fundamental Concepts in Programming Languages.
Oxford University, 1967.

[Sundgren 74] Sundgren, B.
Conceptual Foundation of the tnfological Approach to Data Bases.
In Klimbie, J.W. and Koffeman, K.I. (editor), Data Base Management,

North-Holland, 1974.

[Taylor 76]

[Teichroert 77]

[Todd 76]

[Tsichntz,s 76]

[Tsichritzis 77]

[Tsichntzis 82]

[Turner 79]

[Turner 82]

[Ullman 82]

Taylor, R. W. and Frank, R. L.
CODASYL data-base management systems.
ACM Computing Surveys 8:67-103, March, 1976.

Teichroew, D. and Hershey, E.A.
PSL/PSA: A computer Aided Technique for Structured Documentation and

Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering , 1977.

Todd, S.
The Peterlee Relational Test Vehicle - A System Overview.
IBM Systems Journal 15(4):285-307, 1976.

Tsichritzis, D. C. and Lochovsky, F. H.
Hierarchical data-base management: a survey.
ACM Computing Surveys 8:105-123, March, 1976.

Tsichritzis, D. C. and Lochovsky, F. H.
Data base management systems.
Academic Press, 1977.

Tsichritzis, D. C. , and Lochovsky, F. H.
Data Models.
Prentice-Hall, Inc., 1982.

Turner, D.A.
A new implementation technique for applicative languages.
Software - Practice and Experience 9:31-49, 1979.

Turner, D.A.
Recursion Equations as a Programming Language.
In Functional Programming and its Applications, . Cambridge University

Press, 1982.

Ullman, J. D.
Principles of Database Systems.
Pitman, 1982.
Second Edition.

[van Wi)ngaarden 69J
van Wijngaarden, A., et al.
Report on the Algorithmic Language Algol 68.
Numerische Mathematik 14: 79-218, 1969.

References 136

[Wasserman

[Wiederhold

[Wirth 66]

[Wirth 71]

[Wirth 77]

81] Wasserman, A.L., Shertz, D.D., Kersten, M.L., Reit,
Dippe, M.D.
Revised Report on the Programming Language PLAIN.
ACM SIGPLAN Notices , 1981.

79] Wiederhold, G. and El-Masri, R.
Structural Model for Database Design.
In Proceedings of International Conference on the Entity-Relationship Approach

to Systems Analysis and Design. North-Holland, 1979.

Wirth, N. and Hoare, C.A.R.
A Contribution to the Development of Algol.
Communications of ACM 9(6):413-431, 1966.

Wirth, N.
The Programming Language PASCAL.
ACTA lnformatica 1, 1971.

Wirth, N.
What Can We Do About the Unnecessary Diversity of Notation for Syntactic

Definition.
Communications of ACM 20(11):822-823, November, 1977.

R.P., and van de

[Wong 76] Wong, E. and Youssefi, K.
Decomposition- a Strategy for Query Processing.
ACM Transactions on Database Systems 1(3):223-241, 1976.

[Wong 79] Wong, E. and Katz, R.H.
Logical Design and Schema Conversion for Relational and DBTG Databases.
In Proceedings of International Conference on Entity-Relationship Approach to

Systems Analysis and Design, . North-Holland, 1979.

Yao, S. B. , et al.
Data-Base Systems.
Computer 11(9):46-60, September, 1978.

Yao, S.B., Navathe, S.B. and Weldon, J.L.
An Integrated Approach to Logical Database Design.
In NYU Symposium on Logical Database Design, . NYU, 1978.

Yao, S.B., Waddle, V., and Houses, B.
Database Design and Integration using a Functional Data Model and a

Transactions Specification Language.
IEEE Transactions on Software Engineering , 1982.

	PhD coversheet April 2012
	EDI-INF-PHD-83-007.pdf

