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Abstract 

The problems of design, operation, and maintenance of databases using the three most 

popular database management systems (Hierarchical, CQDASYL/DBTG, and Relational) are 

well known. Users wishing to use these systems have to make conscious and often complex 

mappings between the real-world structures and the data structuring options (data models) 

provided by these systems. In addition, much of the semantics associated with the data 

either does not get expressed at all or gets embedded procedurally in application programs in 

an ad-hoc way. 

In recent years, a large number of data models (called semantic data models) have been 

proposed with the aim of simplifying database design and use. However, the lack of usable 

implementations of these proposals has so far inhibited the widespread use of these concepts. 

The present work reports on an effort to evaluate and extend one such semantic model by 

means of an implementation. It is based on the functional data model proposed earlier by 

Shipman[SHIP81). We call this 'Extended Functional Data Model' (EFDM). 

EFDM, like Shipman's proposals, is a marriage of three of the advanced modelling concepts 

found in both database and artificial intelligence research: the concept of entity to represent 

an object in the real world, the concept of type hierarchy among entity types, and the 

concept of derived data for modelling procedural knowledge. The functional notation of the 

model lends itself to high level data manipulation languages. The data selection in these 

languages is expressed simply as function application. Further, the functional approach makes 

it possible to incorporate general purpose computation facilities in the data languages without 

having to embed them in procedural languages. In addition to providing the usual database 

facilities, the implementation also provides a mechanism to specify multiple user views of the 

database. 
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Chapter One 

Introduction 

This thesis is concerned with the evaluation of functional data models for database design 

and use and in particular with the implementation of one variant of the functional data model, 

proposed earlier by Shipman [Shipman 81]. The implementation termed Extended Functional 

Date Model (EFDM) system, can be used as a tool for organising small database systems or 

as a prototyping tool for designing large database systems. The data model underlying EFDM 

incorporates many modifications which attempt to correct as well as improve some aspects of 

the data model proposed by Shipman. The implementation of EFDM is done using a novel 

programming language called PS-algol (Atkinson 81a], which has data persistence built into it 

as an orthogonal property of the data. 

EFDM provides for an interactive language interface which is again based on the DAPLEX 

language proposed by Shipman. This interface allows for interactive creation, retrieval, and 

modification of both structure and contents of the databases modelled using this data model. 

It also provides tools to check for consistency of the schemas so designed. A notable feature 

of the implementation is the way it handles general-purpose computation. In contrast to the 

current approach of embedding query languages in a compile-and-run procedural languages, 

we have chosen to extend the DAPLEX language itself in an applicative way, A number of 

database applications have been developed using this implementation. As far as we know, this 

is the only complete and interactive implementation of the functional data model. 
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1. 1 Motivation 

Most of the data-intensive applications benefit immensely from a database management 

system (DBMS) to manage the associated collection of data, i.e., the database. Until a few 

years ago, the large computing costs associated with the database technology had made it 

beyond the reach of many users. However, the situation is changing as the computing costs 

are rapidly going down. It is no longer the case that the volume of data has to be massive 

before justifying the use of a database. This has in turn resulted in increased demands on 

the database management systems. In addition to the tasks related to storing and retrieving 

data, a DBMS is also expected to perform other functions which are presently done by system 

modules other than DBMS. Such functions include transaction management, exception handling 

and checking for consistency of the data as it is updated. 

However, the three most popular types of database management systems, i . e . , 

hierarchical, CODASYL/DBTG, and relational, are proving to be inadequate for meeting these 

increased expectations, It is difficult as well as time consuming to implement database 

systems using these DBMSs. Current state-of-the-art methods for database design are 

essentially trial-and-error, supported by neither a scientific foundation nor an engineering 

discipline [Yao 78a]. These DBMSs lack tools for the users to express their requirements in 

as natural a way as possible, to translate those requirements into an effective design, and to 

adapt the design to new and/or changing requirements [Fry 78], Users wishing to use these 

systems have to make conscious and often complex mappings between the real world 

structures and the data structuring options (data models) provided by these systems. 

In addition, the data models provided by these systems are essentially syntactic, i.e., the 

data model structures do not explicitly contain any real-world meaning. Much of the 

semantics associated with the data either remains unexpressed or gets embedded procedurally 

in application programs in an ad-hoc, distributed and often repeated way. Consequently, it is 

difficult for the users to interpret the information contained in such databases. The less 

explicit the meaning of data, the greater the likelihood that its significance will be 

misunderstood. 

Using such systems poses another set of difficult problems, Even simple applications 

demand the services of expert programmers and the programs are invariably complex, difficult 

to design, implement, and maintain, Changes in requirements of the enterprise often cause 

massive re-programming, In addition, current database management systems assume little 
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responsibility for maintaining the consistency of the data they manage. The fact that data 

Integrity is required to be enforced by measures outside the DBMS leads to an immense 

software maintenance/ management task whose cost increases much faster than the number of 

applications. 

These deficiencies have triggered intense research work in the data modelling area. Data 

modelling has been one of the major themes of database research for more than ten years 

[Kerschberg 76, Tsichrtzis 82]. Various researchers have proposed either extensions to 

existing models or a number of new semantic data models. Basically, these models aim to 

capture, in a more or less formal way, the meaning of the data so that database design can 

become systematic and the database itself can behave intelligently. They do this by modelling 

the information in terms of irreducible objects or entities as well as by providing constructs to 

show more of the relationships between data objects and the permissible operations upon 

them. Consequently, semantic models have the inherent ability to support high level query 

languages as well as to respond to queries and other transactions in a more Intelligent 

manner [Codd 79]. 

However, most of the new data models proposed in the literature are incomplete in the 

sense that they are concerned primarily with modelling database structure while significantly 

less attention is paid to the operators or manipulation aspects of the data they attempt to 

describe. To be usable, it is most critical for a data model to have a consistent, complete, 

and simple set of operations on the data it models. The quality of the data model cannot be 

assessed independently of this set of operations. 

In addition, most of these data model proposals are not followed up with actual 

implementations and consequently work on the tools for designing or maintaining the databases 

based on these models is almost non-existent. It is difficult to determine the efficacy of a 

data model without using it in anger over a range of applications. An Implementation, by 

allowing the users to actually experiment with the concepts, can draw attention to the power 

of the model much more effectively. 

It is in this context that the implementation and evaluation of a semantic data model 

assumes significance. The work reported here is such an attempt. The principal reasons for 

choosing the functional data model proposed earlier by Shipman [Shipman 81] for this task 

are its powerful data structuring facilities, the set of operations it provides, and its simplicity. 

The data structuring facilities of this model are based on three of the advanced modelling 
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concepts found in both database and artificial intelligence research, the concepts being: object 

orientation, type hierarchy, and derived or virtual data. By object orientation we mean the 

ability to distinguish objects from their external names. By type hierarchy we mean the ability 

to describe objects at different levels of abstraction. By derived data we mean the ability to 

treat procedural knowledge or rules about the application domain as part of the data. 

This data model also meets another of our important criteria, i.e., a complete set of 

operations on the data it models. The functional orientation makes it possible to express data 

selection in a most natural way as function applications. The object orientation provides natural 

units for update and because of this, the referential constraints [Date 81] are automatically 

supported. 

The most attractive feature of this model, however, is its simplicity and the uniformity of its 

notation. It provides a semantically rich modelling power with just two concepts, i.e., entity 

and function. 

Hence, the major goal of this research was to examine the usefulness of Shipman's 

proposals by an actual implementation and suggest a list of explicit modifications required to 

make the model and the language usable by a wide variety of users like database designers, 

database adiministrators, and end-users. 

1. 2 Overview of the Thesis 

Chapter 2 represents the author's own perception of the published research material on 

conceptual modelling of databases. It starts with the discussion of the elements considered 

important for conceptual modelling of real world applications in the context of databases. It 

also lists a set of criteria for assessing a particular data model proposal. This chapter also 

considers the classical data models in the light of criteria described earlier and points out a 

number of problems which make them inadequate for the purpose of conceptual modelling. 

Chapter 3 describes, albeit very briefly, twenty one of the semantic data model proposals 

and provides a rough assessment of these based on the set of criteria mentioned above. 

Chapter 4 discusses the functional data model as proposed by Shipman and shows how it 

meets the above set of criteria. 

Chapter 5 describes the underlying model of our implementation, EFOM, concentrating on 

the modifications and extensions we have made to Shipman's proposals. 
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Chapter 6 briefly discusses the persistent algorithmic language PS-algol and the issues 

connected with the actual PS-algol structures used for implementing functional model 

constructs. 

Chapter 7 discusses a few applications of the EFDM. In particular, we show how it provides 

a flexible DBMS environment by means of an example. We demonstrate how to design, set 

up, operate, and maintain a personal DBMS using the facilities offered by EFDM. We also 

show how it can be used as a prototyping tool for designing large database systems. 

Chapter 8 discusses some of the topics for further research suggested by our work. We 

also discuss a few of the weaknesses of our system and suggest a broad line of attack for 

solving some of these problems. 

Finally, chapter 9 summarises the important lessons learned from this research. 
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Chapter Two 

Background 

This chapter establishes the broad context in which the work reported in this thesis fits, 

i.e., the conceptual data modelling. That is, to capture and identity the relationships 

between the data In the database and the corresponding objects and behaviour in the real 

world. For database technology to be used effectively, there is a need for understanding and 

visualising the data and the information they represent. Conceptual data modelling is 

concerned with this need. 

We start this chapter with some preliminary definitions and the research leading to the 

three schema architecture proposal by ANSI SPARC. We then give a putative definition of the 

data model which acts as a tool to design the conceptual model of a database. We provide a 

detailed discussion of the data model elements. We identity a set of requirements which a 

data model should satisfy in order to be considered for the purpose of conceptual modelling. 

Against this set of requirements, we examine the data models underlying the contemporary 

database management systems. 

2. 1 Preliminary Definitions 

An information system is a means of supplying the information needed by an organisation. 

An information system receives the information, stores it, processes it, and provides access 

to it at the request of the users. When information is to be stored and processed, it needs 

to be coded into some descriptive form. Such coded information is called data. A collection 

of data stored on a physical media is termed database. A database system is an information 

system involving four major components: database, hardware, software, and users. Users 

interact with the data in the database through a number of user interfaces. 
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Data as stored in a database have a certain physical organisation on physical storage media 

and a certain logical organisation as seen at the user interface. It is important to insulate the 

users from the physical aspects so that they are not distracted by the details of physical 

storage and are not inconvenienced if it is changed. A database management system (DBMS) 

is a general-purpose tool that accommodates the logical structuring, physical storage, and 

control of data, and provides a number of user interfaces, 

An application system or an application is a part of the database system that generates the 

information required to serve a specific component of an organisation, e.g., accounting. A 

view is a part of the database as seen by a processing activity of the application system to 

perform a specific function, e.g., accounts payable, accounts receivable, etc. 

Databases are primarily concerned with the structured or formatted data, i.e., many 

instances of data possess sufficient similarity to classify them into a class or category. This 

makes it possible to separate the description of the data from the actual data. The rules that 

the instances of a class are expected to obey are specified once, in a schema. Hence, the 

schema contains the description of the data. 

2. 2 Development of the Conceptual Model 

The evolution of database systems from primitive file systems organised sequentially on 

magnetic tapes to sophisticated systems using direct access storage technology has been well 

documented elsewhere [Fry 76, Atkinson 79]. It was characteristic of the early database 

management systems that the user had to view and manipulate the data structures in the 

configuration in which they are physically stored. Thus the user was forced to deal with 

aspects of physical data organisation, pointers, index tables etc., which, although important 

for machine efficiency, are irrelevant to the user's understanding of the data. Any alteration 

of that organisation in order to improve efficiency necessarily involved considerable 

reprogramming effort. 

An important landmark in the development of DBMS was the attempt by the CODASYL 

Database Task Group (DBTG) to identify a system based on a network model of data 

[CODASYL 71]. It recognised the value of explicit data description and suggested a DBMS 

structure which separated the logical structure from the physical structure of the data. It also 

recognised the fact that a database system needs to support many different views of the same 

database. However, the structure proposed by the CODASYL committee did not make a 

complete distinction between the logical and physical aspects. 
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It was the relational model of data proposed by Codd [Codd 70] which allowed a description 

to be made exclusively in terms of logical aspects of the data. Further research in this area 

has culminated in the ANSI SPARC report [ANSI 75, ANSI 78], which introduced a new 

component into the model of the databases called the conceptual schema or the conceptual 

model, and their model of a database system is known as a three-level model. The three 

levels in the ANSI SPARC report refer to: 

1. external level which deals with the model of the real world as seen by an 

application; 

2. conceptual level which deals with the model of the real world maintained for all 

applications; 

3. internal level which deals with the physical data maintained for the representation 

of the conceptual model. 

A fundamental concern behind this proposal is the notion of data independence. Because of 

the separation between the conceptual and internal levels, effects due to changes in physical 

organisation can be minimised (physical data independence). Similarly, because of the 

separation between external and conceptual levels, an application's view is insulated from 

changes in the schema of a database (logical data independence). However, ANSI proposal 

makes no attempt to define the precise formalisms for the description of the conceptual 

model, the description of mappings from one level to another, or the required transforms to 

translate the actions at one level to those at another. 

2. 3 Roles of the Conceptual Model 

As seen above, it is the conceptual model of a database described in logical terms which 

represents the information content of that database. It records as precisely, clearly and 

unambiguously as possible the intended semantics of the data. Bubenko [Bubenko 80a] lists 

the following two main uses of the conceptual model: 

1. To act as a basis for discussions and negotiations about how to abstract reality 

and which assumptions and rules to build into the model. This includes the 

problem of 'integrating' the requirements and 'views' of various information 

consumers. 

2. To constitute part of a basis for the design of an efficient computer based 

information system including structuring of its database. 
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2. 4 Data Models 

A data model is the primary tool for designing the conceptual model of a database. The 

basic components of such a data model include a set of rules to describe the structure and 

meaning of data in a database and the atomic operations that may be performed on the data 

in that database. Thus, a data model M can be defined as consisting of two parts: a set of 

generating rules, G, and a set of operations, 0 [Tsichritzis 82]. 

G defines the allowable structures for the data as a set of schemas S. The set of 

generating rules G can be partitioned into two parts: the structure specification G. and the 

rule specification Gr. The generators Gs generate the categories and structures of a schema 

and the generators Gr generate the inferences and the constraints associated with a schema. 

A schema S therefore consists of two parts; a structure part Ss and a rule part Sr. The 

rule part Sr further consists of an inference part SI and a constraint part S 
c 

S i is a list of 

inference rules that allow one to deduce or compute facts from others. Sc is a list of explicit 

constraints that should not be violated. 

As well as explicit constraints, a data model can also provide inherent constraints. Inherent 

constraints can be associated with a data model by incorporating them in the structure part 

Ss, i.e., the structure by its own definition can disallow certain structure instances. 

There are many different databases O in terms of occurrences which can correspond to the 

schema S. A database state D8S corresponds to a particular database occurrence D. The set 

of operations of a data model 0, called a data language, defines the allowable actions that 

can be performed on a database occurrence DI to arrive at another database occurrence Dj,, 

i.e., each operation 0 maps one database state to another database state 0: DOS7 -> 

D8S2. 

2. 5 Structures 

In discussing information structuring, we find that there is still no mathematically accurate 

theory with well defined terms and concepts. Notable work in this area is reported by 

Langefors [Langefors 66], Senko [Senko 73], Sundgren [Sundgren 74], Abrial [Abrial 74], 

Smith and Smith [Smith 80a], Bubenko [Bubenko 80b], and more recently by the 

International Organization for Standardization (ISO) [ISO 82]. Unfortunately, all of them have 

adopted their own terminology. Here, we shall employ popular informal terms like "entity", 

"entity type", "attribute", "relationship" etc, to describe the structure and the semantics of 

information. 
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2.5.1 Entities 

An entity can be loosely defined as a thing that exists and is distinguishable [Senko 73, Hall 

76a). Examples of entities are person named John, department named Computer Science, 

university named University of Edinburgh etc. 

Some entities correspond to real world objects while some entities are used as names for 

something else. The latter are distinguished by having a lexicographic representation, i.e., 

each such entity is represented by a printable token for itself. For example, strings, integers 

etc. We call these lexical entities. 

2.5.2 Designation of Entities 

When an entity is entering the "perception field" of the model it must identify itself as a 

new entity or an already known entity. An easy way to do it is to give a name to any entity 

which identifies it without ambiguity. For example, a social security number for a person or a 

number for a car. This approach is found to have many disadvantages [Kent 78): 

1. An entity may not have any unique name and still be distinguishable. 

2. An entity may have more than one unique name. 

3. An entity may change its name over a period of time. 

Hence, the unique designation of entities should be the responsibility of the conceptual 

model. Abrial proposes that each newly created object be assigned an internal name that is 

guaranteed to be unique [Abrial 74]. Hall et al. [Hall 76a] use the term surrogates for such 

internal names. Such surrogates are characterised by the fact that they are not accessible to 

the users. Entities can, of course, have other user-controlled unique names. 

2.5.3 Entity types 

Certain objects in the real-world invariably share some common properties. For example, all 

persons have the properties like name, address, age etc. An entity type or a category is a 

conceptual representation that corresponds to a categorisation of real world objects based on 

some common characteristics shared by them. As Senko, et at. [Senko 73) note, 

recognising and taking advantage of the distinction between entity types (such as sets of 

objects) and entities (such as individual objects) offers great power in building database 
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systems. Since information that is common to all instances of a collection is placed into type 

descriptions, the concept of entity type provides a powerful method of organising, simplifying, 

and condensing the information about groups of objects. 

A strict categorization of objects is not always possible in practice [Kent 78, Kent 79]. 

For example, the same person may be an employee, a stock holder, a customer etc. 

Hence, an entity can be a member of more than one entity type, i.e., the extensions of 

different entity types can overlap. This corresponds to the idea of roles proposed in the 

context of semantic networks [Hayes 77]. A similar idea of roles was introduced by Bachman 

and Daya n data models [Bachman 77]. 

2.5.4 Type Hierarchy 

Often, certain objects may share only some properties, while having some properties unique 

only to them. For instance, in a personnel information system, some information 

requirements may concern all employees and others may concern subsets of employee set, 

such as managers, researchers, female members etc. Thus, some entity types are, by 

definition, subtypes of others, making a member of one entity type automatically a member of 

another. This kind of hierarchical organisation of entity types was first introduced in the 

artificial intelligence field as ISA hierarchies in semantic networks [Quillian 68] with the 

precise inheritance rules for related types within the hierarchy. A similar notion of type 

hierarchy was introduced in the database field by Roussopoulos et al. [Roussopoulos 75] and 

by Smith and Smith [Smith 77]. Smith and Smith call this as generalisation hierarchies. 

Accommodation of type hierarchy is now accepted as an important element in conceptual 

modelling, 

It is to be noted that a strict hierarchical organisation of entity types is also not possible in 

practice. For example, in a database concerning customers, a customer may be a company, 

government agency, or a person. Hence, an entity type may be a subtype of more than one 

entity type. This idea of a network of entity types is termed alternative generalisation by Codd 

[Codd 79]. 
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2.5.5 Attributes and Domains 

Attributes of an entity type refer to those properties of objects which can be, in a general 

sense, given values [Brown 75]. For example, the person entity can possess attributes like 

name, height, date of birth etc. Values are essentially lexical entities like integers, strings 

etc. 

A Domain is a set of values of similar type [Codd 79]. Domains serve to define sets of 

values from which properties of other objects can take values over time. For example, 

six-digit numbers form a domain from which salaries of employees can take values. Since 

values are lexical entities, domains can also be considered as sets of lexical entities. 

2.5.6 Relationships 

Relationships represent association between several objects [Kent 78]. Examples of 

relationships are person named John works in the university named University of Edinburgh, 

person named Peter belongs to the department named Computer Science etc. A relationship 

type corresponds to a collection of similar relationships or an aggregation of two or more 

entity types. For example, enrolment can be represented as an aggregation of the entity 

types student and course. 

Relationships can be one-to-one (departments and managers), one-to-many (departments 

and employees), many-to-one (employees and managers), and many-to-many (students and 

courses). There can be many relationships between the same set of objects and the objects 

participating in a relationship may or may not all belong to same entity type. Relationships 

can have a single, neutral name such as enrolment or two names, such as course-of in one 

direction and students-of in the other direction. 

2.5.7 Entity Types. Attributes. Relationship Types 

Much discussion has centred around the concepts of entity types, attributes and relationship 

types and their representation and materialisation [Kent 78]. There is no absolute distinction 

between entity types and attributes or between attributes and relationship types or between 

entity types and relationship types. Sometimes an attribute can exist only as related to an 

entity type. In a different context, it can be an entity type in its own right. For example, to 

a car manufacturing company, a colour is merely an attribute of one of its products; to the 

company that made the paint, a colour may well be an entity type [Hall 76a]. 



Background 13 

Similarly, there is no clear distinction between an entity type and a relationship type. In the 

above example of relationship between students and courses, it can either be considered as a 

relationship between student and course types with grade as a relationship between student, 

course and Integer entity types or as an entity type enrolment with grade as the property of 

this new entity type. 

There is no clear distinction between attributes and relationships either. For example, salary 

can be treated either as an attribute of employee or as a relationship between employee and 

integer entity types. 

2.5.8 Time 

Attributes and relationships in the real world do frequently change. So do the set of 

participating relevant entities. It is necessary that these properties are given explicit 

consideration in the conceptual model. The concept of time is therefore fundamental in the 

realm of conceptual models (Langefors 77]. 

However, time is perhaps the most cumbersome aspect of data modelling. To begin with, 

real time implies a certain synchronisation between phenomena which is unrealistic. Also, we 

are often more interested in the relative time of phenomena (i.e., one phenomena occurs 

before another phenomena) than we are in the real time of occurrence. This aspect of data 

can be adequately captured by ordering phenomena rather than recording their real time. 

Therefore, the notion of time is often replaced either by other kinds of explicit properties or 

by orderings among objects or by the convention that all data relates only to the last 

meaningful datum (phenomenon, fact or instance). For instance, the salary attribute of an 

employee does not capture the knowledge of all the salaries he or she has ever received, 

only the current one. If there is interest in past salaries, this is encoded using a different 

property (e.g., salary history). Some data models, however, do treat time as one of the 

modelling constructs (Bubenko 77, Breutmann 79, Schiel 83]. 

2.5.9 Conceptual Data Modelling and Knowledge Representation 

There are a number of similarities between the information modelling for establishing 

database systems and the knowledge representation problem in artificial intelligence (AI) area 

[Roussopoulos 75] . Both databases and Al systems must represent and process knowledge 

about the real world. In particular, Al research also assumes that knowledge consists of 
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objects and relationships among them. A knowledge base may be viewed as consisting of a 

network of objects (nodes) connected by relations (directed edges). The directed edges are 

labelled with the type of each relation. These networks are called semantic networks [Quillian 

68]. Some of the concepts in new data model proposals owe their origin to the knowledge 

representation research. For example, the concept of subtypes. 

However, the goal of these networks is the representation and organisation of general 

knowledge of the world as opposed to the information structured in a manner oriented towards 

database applications. Specifically, as instances of types appear in semantic network 

definitions, schema and data are unified. One implication of this unification is that large 

amounts of data cannot be handled conveniently, as the network grows with the addition of 

new data (even when no new types or attributes are added). 

2. 6 Operations 

As defined earlier, the operations of a data model, called a data language, transform a 

database state DBSI to another database state D8Sl (or undefined). When we perform 

operations on a database, it is a natural restriction to focus them on one small part of the 

database. This focusing is important both for user convenience and for the ability to 

concentrate on a few narrowly defined tasks at one time. Focusing on a certain part of the 

database implies a selection [Earnest 75]. Regardless of the operation that is to be 

performed, this selection needs to be specified. For example, the selected database part may 

be retrieved or updated, new data may be inserted into it or old data deleted from it. 

The operations usually follow a pattern of specifying an action and a selection. The action 

specifies what is to be done. The selection selects the part of the database to which the 

action is to be applied. An action may correspond to any one of, or a combination of, the 

following operations: 

1. Retrieve - access the data in the database. 

2. Insert - add new data to the database. 

3. Delete - remove data from the database. 

4. Modify - modify existing data in the database. 
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2. 7 Rules 

Rules correspond to the set of inference mechanisms to provide the derived data (see 

below) and the set of constraints that limit the number of different facts which can be part of 

the model. Rules extend the semantics of the data captured by the structures above, 

Bubenko [Bubenko 80a] calls the information captured by such rules as abstract knowledge as 

opposed to the concrete knowledge captured by the structures. 

The specification of rules is an important part of conceptual modelling as most of the facts 

in the real world are mostly derived rather than pure data. As an example, consider the chart 

of accounts for a firm. The only pure data needed are original journal entries; all other facts 

are derived by manipulating this data. 

The proposals of the CODASYL Data Base Task Group include the concepts of database 

procedures and virtual data items which are essentially the mechanisms to capture such rules 

[CODASYL 71]. A number of other authors are also investigating the deduction mechanisms 

for relational databases [Chang 78, Minker 78]. Many recent data model proposals attach a 

great importance to the concept of derived data [Hammer 78, Shipman 81]. 

The concept of rules or inference mechanisms forms an important component of the expert 

systems in the artificial intelligence field [Nau 83] and is the basic notation used in the logic 

languages such as PROLOG [Kowalski 74]. 

2.7.1 Derived Data 

The derived data or the virtual information can be defined as the information which is 

accessible through combinations of algorithms and stored data, but which is not physically 

stored in the database. For example, given an employee's department and the manager of a 

department, we can infer the employee's manager or given the selling price and buying price 

of a product, we can infer the profit one can make. 

2.7.1.1 Classes of Derived Data 

Two major classes of derived data deal with the issues of extracting factual content: inferred 

data, and computed data [Folinus 74]. 

Inferred data: Consider the two relationships, one between student and tutorial entities and 

the other between tutorial and staff entities. It is then a straight-forward matter to infer the 

relationship between student and staff entities. 
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When inferring facts this way, an important point should be noted: not all such inferred 

relationships may be meaningful or even correct. For example, it a part is available from a 

certain warehouse, and a warehouse is serviced by that supplier, we cannot infer that the 

part is stocked in that warehouse. Even if it was stocked in that warehouse, it might be a 

different supplier who supplied that part to that warehouse. This is the familiar connection 

trap [Codd 70] whereby an erroneous inference may be drawn from the join of two 

relationships on a common domain. Hence, the need to explicitly identify which inferences 

can be made. 

Computed data: Whereas inferred data is developed merely by accessing facts available in 

the database system, computed data is derived by processing algorithms. For example, given 

an entity such as a room whose attributes are length and width, its area could be defined by 

the algorithm product (length, width). 

2.7.1.2 Applications of Derived Data 

Some of the important applications of derived data in the database context are listed below: 

1. Derived data as a modelling tool: Derived data mechanisms are useful to 

accommodate complex, procedural inter-relationships among data items. For 

example, the age of a person, if expressed as a stored data item, requires 

continuous updating to reflect the accurate value. On the other hand, derived 

data mechanism allows it to be expressed as a formula (current date - date of 
birth). 

2. Derived data as a means of capturing data semantics: A large part of the 
application specific knowledge exists not as stored data but as a set of programs. 
By modelling these rules or inference mechanisms as part of the database, the 
burden on the users can be much reduced. 

3. Derived data as a basis for multiple views: A major application of derived data is 

to provide multiple user views of the schema. As no single model of reality may 

be appropriate for all users, it is important that the information is structured 

according to the properties which are considered relevant by each user. Derived 

data makes it possible to provide this logical restructuring of the same stored 

data. 

4. Derived data as a means of hiding database evolution: In order to provide an 

illusion of stability in the face of constant changes, it is important to ensure that 
only those users concerned with the changes are affected and the rest are not. 
Derived data makes this possible by re-establishing the 'old' view by suitable 
transformations. 
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5. Derived data and the distributed database management systems (DORMS) and 

database servers: Sharing of information between components in the DDBMS and 

database servers will be made easier with the presence of derived data. 

Components may easily build upon each others activities without having to 

tediously generate the required information from the stored data. 

2.7.2 Constraints 

There are usually many properties of data that cannot be captured in the form of structures. 

These properties essentially serve as additional restrictions on the values of the data and/or 

how the data may be related (structured). For example, there may be a restriction that a 

department's head must belong to the same department or a student may be required to 

attend a minimum of 3 and a maximum of 5 courses to a term. Such restrictions cannot be 

expressed in terms of structures, but must be captured by some additional mechanism. These 

logical restrictions on data are called constraints. 

A constraint is a property which is either true or false. The constraints are expected to be 

true always. Constraints are required for semantic and integrity reasons. In terms of 

semantics, they permit schemas to reflect more accurately the real-world situation. In terms 

of integrity, they permit the DBMS to restrict the possible database states that can be 

generated from a given schema to those that meet the constraints. 

2. 8 Requirements of Data Models 

In order to be useful to design conceptual models of database systems, data models must 

meet the following requirements: 

1) Object orientation 

By object orientation, we mean that a data model should make an explicit distinction 

betwoen an object and the name(s) used to identify it. User-defined names of objects 

should neither act as unique designators of objects nor should they participate in defining 

relationships. Failure to do so results in users being forced to be aware of the mapping from 

real-world objects to values which act as tokens for them in the stored data and in some 

cases, to invent and maintain such tokens. On the other hand, models which make such 

distinction provide many advantages, viz., 

1. Objects can have different names in different applications or may not have any 

name at all. 
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2. Names identifying objects can be changed freely. 

3. Semantics of both data retrieval and data manipulation operations can be clearly 

understood. 

4. General rules to guarantee the consistency of the data as It is updated can be 

specified easily since the changes in the application environment can be accurately 

modelled as operations on the corresponding structures. 

2) Semantic expressiveness 

A data model should provide sufficient mechanisms to allow a database schema to describe 

the meaning of a database. Hammer and Mcleod call this aspect semantic expressiveness 

[Hammer 81]. There is, as yet, no proper definition of this concept, nor any yardstick by 

which it can be measured. Roughly, it could be considered as the ability to name and 

manipulate objects at different levels of abstraction. As we discussed in section 2.5, a data 

model should provide constructs to organise entities into entity types, to organise entity types 

into subtype-supertype hierarchy, and to establish relationships between two or more entities. 

Corresponding to these, Smith and Smith [Smith 80a] list three abstraction mechanisms: 

classification, generalisation, and aggregation. Classification collects instances to form 'types'. 

Generalisation refers to supertype-subtype hierarchy among types. Aggregation refers to 

relationship between two or more entities. In addition to the above three, some more 

abstraction mechanisms have been suggested by Hammer and Mcleod [Hammer 78], and 

Codd [Codd 79]. 

3) Ease of design 

It should be easy to arrive at a schema, i.e., users should not be forced to make complex 

mappings from the real-world structures to the data structures supported by the data model. 

4) Neutrality 

As discussed in 2.5. 7, a data model should allow a fact to be interpreted either as an 

entity, an attribute, or a relationship. 

5) Operations 

A data model must act as a basis for the development of families of very high level data 

languages for data retrieval and data manipulation. A data language should specify the data 

selection purely on the basis of logical relationships and not by the physical position of the 

data. Additionally, in case many instances of an entity type are to be selected, there should 
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be no necessity to know the path to go from one instance to another (navigation). Explicit 

navigation often complicates the selection request. 

A data language should provide update operations in terms of objects. It is important to 

ensure that objects participating in a new relationship already exist in the database and 

whenever an object is deleted, the relationships from the deleted object to all other objects 

are removed. 

6) Facilities to specify constraints 

A data language should provide constructs to specify explicit constraints on the data, As a 

general principle, the specification of constraints should be migrated out of the application 

programs both to reduce application programming costs and to ensure quality in data and its 

use [Nijssen 80], 

7) Facilities to specify derived data 

A large part of the information exists not as data but as programs. A data model should 

allow incorporation of such derived data as part of the schema. To accomodate this, a data 

model should treat data and programs in an unified way. 

8) Freedom from physical considerations 

The structures and operations of a data model should not refer to any physical storage 

aspects. 

9) Ease of evolution 

It must also provide a structure to which the progressive details associated with further 

steps in the design can be conveniently attached. This means that a database can be 

incrementally designed, which is important for a complex system like a database. 

10) Complexity 

A data model must not be too complex. The languages it supports must also be easily 

usable. Simplicity is attractive to the user in moderating the effort of learning and 

comprehension needed, and to the implementor in limiting the size of his task. 
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2. 9 Classical Data Models 

By classical data models we mean the three most common and popular data models used in 

contemporary database management systems, viz. , hierarchical, network, and relational data 

models. The best known implemented system using the hierarchical model [Tsichritris 76] is 

IBM's IMS (Information Management System) [IBM 75]. The most comprehensive specification 

of a network data model is in the CODASYL DBTG report [CQDASYL 71, Taylor 76], There 

are many systems based on these proposals, such as IDS [Honeywell 72], IDMS [Cullinane 

75], etc. Examples of systems based on the relational data model [Codd 70] include INGRES 

[Stonebraker 76, Stonebraker 80] and System R [Astrahan 76, Blasgen 77]. 

Briefly, the hierarchical and the network data models incorporate the concept of a record as 

a collection of named fields to represent each individual object in the application environment. 

In addition, the hierarchical model allows a tree-like set of one-to-many relationships in which 

each record occurs at a single specified level of the hierarchy. The CODASYL model provides 

the set mechanism to establish one-to-many association between any owner record and a 

number of member records, thus allowing a network of relationships. The relational model 

accommodates only record types and not explicit links. It is based on the concept of 

mathematical relations. Logically, a relation is a collection of instances (tuples) of a record 

type in which the sequencing of the instances and the sequencing of the fields within the 

record type are unimportant. The relationships between relations are not explicitly specified in 

the schema. Logically, relations describe entities and inter-relationships among them. 

Inter-relationships which are not represented as tuples can be dynamically established at 

access time using the relational data manipulation facilities (joins). Thus, unlike other two 

models, the user is not restricted to the pre-defined relationships, 

The retrieval and update languages for systems based on the hierarchical and network 

models, called data manipulation languages (DML) tend to be navigational, in the sense that a 

user must access a database by explicit traversal through a tree or network, rather than by 

stating the properties of the data of interest. As a result, users are required to write 

complex programs in procedural fashion to carry out retrieval and update functions. In 

addition, the exact form of the statements available to the programmer to conduct this 

navigation depends on the way the data is stored, which adds to the complexity of these 

languages. 



Background 21 

Data manipulation languages for the relational data model are typically derivatives of 

relational calculus or relational algebra [Codd 70]. These languages are essentially 

non-procedural, i.e., operations in these languages are specified in terms of names and 

values only and hence do not require the knowledge of the physical representation of data. 

Detailed descriptions of the significant features of these models are well covered in many 

books and surveys [Date 83, Tsichritzis 77, Ullman 82]. 

2.9.1 Assessment of Classical Data Models 

To assess these models, we follow a framework based on the requirements discussed in 

2.8. 

1) Object orientation 

All three classical models lack the object orientation, i.e., these models model the objects 

in the real-world through the names or values (keys) associated with those objects. 

2) Semantic expressiveness 

All three models fail to capture much of the semantics associated with the data. The 

problem with the relational model is that it uses a single mechanism (the relation) to model a 

collection of entities, to express an association among entities and so forth. This semantic 

overloading of the relation makes it difficult for a user to determine the meaning and purpose 

of a relation, and obscures the meaning of a database as a whole [Schmid 75]. In addition, 

as relationships between relations are not specified in the schema, there are no mechanisms 

to guide the user in interpretation of the data. Lack of structure in the relational model also 

allows meaningless relationships (Joins) to be formed. In this respect, the hierarchical and 

CODASYL models are better than the relational model as they provide for explicit capturing of 

at least some of the relationships in the form of trees or networks. 

In addition, all three models do not provide adequate mechanisms to specify entity types or 

the type hierarchy. Not all records or tuples in these models represent objects [Kent 

78, Kent 79] nor is it possible to capture the different roles played by an object. For 

example, a record in CODASYL model is an instance of one record type and a tuple in the 

relational model belongs to a single relation. 
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It is not easy to arrive at a schema for a database using the constructs of any of these 

models. Since a data structure in these models (record or relation) may not always 

correspond to a single object, these models require complex normalisation procedures [Codd 

72] to be carried out in order to ensure that there are no undesirable side-effects of update, 

so-called 'update anomalies'. The result is that the database schemas are often difficult to 

design. In addition, severe inherent structural constraints in both hierarchical and CODASYL 

data models limit the data modelling capability and may force unnatural organisation of data. 

Another shortcoming of all the three models is that they force modelling apparently similar 

type of inter-object associations in a number of different ways [Kent 78, Kent 79]. For 

example, a one-to-one association may be represented as fields of a record representing one 

object or the other but not both. A one-to-many association may be represented as a 

repeating group, a hierarchy, a CODASYL set or a relation, depending on the model. A 

many-to-many association may be represented by creating a separate intersection record or 

relation. These multiple ways often cause problems for the users both while accessing and 

white updating, requiring them to write different DML code in each case. 

4) Neutrality 

All three models force a single global perspective of data, i , e. , the data is arranged in a 

rigid, inflexible structure and it is not easy to mould a fact into a variety of semantic 

interpretations. 

5) Operations 

All three models provide data languages. However, the problem with the data languages for 

the hierarchical and CODASYL models is that they tend to be oriented towards record-at-a- 

time access and explicit navigation from one record to another. This complicates the data 

selection requests considerably. The relational model is better in this respect as most of the 

data selection and modification languages developed for the relational systems are non- 

procedural. (It should, however, be pointed out that it is possible to provide navigation-free 

data languages for hierarchical and CODASYL models as well, as was demonstrated by the 

ASTRID system [Cray 81] for the CODASYL model). 

A major problem with all the three models as regards update is that the units of update in 

these models (record or relation) do not constitute atomic semantic units. As a result, these 
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models require extensive additional constraints to maintain semantic integrity of the database. 

For example, an explicit constraint is necessary to ensure that an object identified by a name 

in a relation or record really exists in the database, i.e., the concept of referential integrity 

[Codd 79, Date 81]. 

6) Facilities to specify constraints 

Most hierarchical data models do not provide any explicit constraints. An indirect explicit 

constraint mechanism is provided in IMS via the definition of logical relationships [IBM 75]. By 

means of logical relationships it is possible to assure the consistency of certain data by 

constraining the data to be identical in two different definitional trees. The CODASYL model 

does propose facilities for specifying constraints via database procedures, but no system has 

implemented these. Relational systems provide facilities to specify the constraints using the 

constructs of associated query languages [Eswaran 75, Chamberlin 76, Stonebraker 75]. 

7) Facilities to specify derived data 

The hierarchical model provides virtually no facilities to incorporate derived data in the 

schema. The CODASYL model provides for incorporation of derived data through the use of 

database procedures, but again no system incorporates these. The relational model also 

provides facilities to define derived relations (called 'views' in both System R [Astrahan 76] 

and INGRES [Stonebraker 76]) but these are rather limited in that such derived data 

corresponds only to interred facts and not to computed facts. There are relations, logically 

derivable from others, which cannot be expressed by means of the relational algebra. For 

example, relations expressed as the result of user operations such as arithmetic operations, 

statistical operations etc. 

8) Freedom from physical considerations 

Both the hierarchical and CODASYL models are heavily biased towards representational 

aspects of the data rather than the information content of the data they manage. Inter- 

record relationships in these models actually correspond to physical access paths. Because of 

this, the information that can be retrieved from these databases is tightly constrained by the 

pre-defined relationships. This is not the case with the relational model as it is based on the 

concept of mathematical relations. 
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9) Ease of evolution 

Because of the presence of a large number of physical constructs, accommodating changes 

in the logical structure is a difficult task for databases designed using both hierarchical and 

CODASYL data models. Most relational systems provide facilities to add or delete relations as 

well as add or drop attributes. 

10) Complexity 

Both the hierarchical and CODASYL models incorporate many complex features, which make 

them difficult to understand. Also, as the data structures in these models are biased towards 

a limited class of applications, specifying new applications requires a high degree of computer 

expertise. Though the relational model is very simple to understand, the fact that inter- 

relationships among objects are not captured in the schema but are formulated at execution 

time implies that the users are required to perform a number of explicit relation joins at 

run-time. Requiring the users to perform such unnecessary joins complicates their task 

considerably. 

2. 10 Conclusions 

In this chapter, we have presented a detailed discussion on the relationship of the database 

to the world it represents (Conceptual Modelling) and the tools to design the logical structure 

of the database (Data Models). We identified a set of concepts that are useful to represent 

the information and a set of criteria to assess the suitability of data models. Against this set 

of criteria, we examined the three classical (hierarchical, CODASYL, and relational) data 

models. 
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In this chapter, we give a brief description of twenty-one data model proposals that have 

appeared in the literature over past ten years. There are possibly many other data model 

proposals which are worthy of attention, but the lack of space prevents their inclusion here. 

There is considerable variation among these models, but all of them have one common goal: 

to reflect more of the semantics associated with the application. Hence, we call all of them 

semantic data models. 

For the purpose of this discussion, we classify these models into two broad categories: 

those that were proposed as extensions to classical models and those that are significantly 

different from the classical models. We than examine these models against the set of criteria 

established in section 2.8 and explain why we consider the functional data models to be most 

attractive for the purpose of conceptual data modelling. We conclude this chapter with the 

assessment of functional data models that are proposed in the literature. 

It is to be noted that the discussion on these models is neither exhaustive nor complete. 

References given at the end should be consulted for further details. 

3. 1 Extensions of Classical Data Models 

We include the following data models under this category: 

(1) Role Model 
(2) Basic Semantic Model 
(3) Entity-Relationship Model 
(4) Structural Model 
(5) Abstraction and Generalisation 
(6) Extended Relational Model 
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3.1.1 Role Model 

The role model (Bachman 77] has been developed as an extension of the network data 

model. This model introduces the concept of role-segment type to model the different roles a 

real-world entity can play, e.g., persons can play the role of customers, employees etc. 

Within a data description, constructed according to the role model, the concept of a record 

description is augmented by the concept of a role-segment description such that a record 

occurrence is a vehicle for one or more role-segment occurrences, each of a different 

role-segment type. 

The set declarations used within the role model represent a change from those used within 

the network model. As in the network model, set relationships may be established with owner 

and member declarations with the constraint that only one role-segment description may be 

declared as the owner of a set description and only one role-segment description may be 

declared as the member of a set description. Unlike the network model, the role model 

explicitly recognises that there may be two or more record occurrences concerning the same 

entity and possibly even denoting the same role. 

3.1.2 Basic Semantic Model 

In this model, proposed by Schmid and Swenson (Schmid 75], the real world is considered 

as consisting of objects and associations. An object can either be independent or dependent; 

the difference is that a dependent object must be "existence-dependent" on some 

independent object, whereas independent objects exist in their own right. For example, in a 

personnel database, an employee might be independent object, whereas an employee_child 

might be dependent object (an employee_child can exist in the database only if the 

corresponding employee also exists in the database.) Both dependent and independent objects 

can have properties (characteristics). An association is a relationship between independent 

objects. 

Both objects and associations are represented as relations. In fact, relations in this model 

are classified into five different types, according to the type of information they represent. 

Associated with this categorisation is a set of integrity rules; for example, an association can 

be created only if all associated objects already exist. Conversely, an object cannot be 

deleted if it currently participates in any associations. 
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3.1.3 Entity-Relationship Model 

The details of this model, proposed by Chen (Chen 76], are almost identical to those of 

the Basic Semantic Model, except in terminology. Chen uses the terms regular entity, weak 

entity, and relationship in place of independent object, dependent object and association, 

respectively. Again, both objects and associations are represented by suitably classified 

relations. Like Schmid and Swenson, Chen defines a set of integrity rules; one difference of 

detail is that deletion of an entity should cascade to deletion of corresponding relationships, 

instead of prohibiting the original deletion it any such relationship exists. 

3.1.4 Structural model 

In this model, proposed by Weiderhold and EI-Masri [Weederhold 79], entities and attributes 

of entities are again represented by relations. Relations are specialised as entity relations if 

they define a set of independent objects, as lexicons it they represent one-to-one 

correspondence between names, or as associations it they represent many-to-many 

relationships among objects. This model also specifies rules for the enforcement of integrity 

during the insertion and deletion of tuples. 

3.1.5 Abstraction and Generalisation 

The proposals of this model, proposed by Smith and Smith [Smith 77], are also based on 

representing each object by a relation, Here, inter-object relationships are also considered 

as objects in their own right. A type/subtype notion is used to classify objects. Detailed 

discussion of this model is not provided here as the Semantic Hierarchy Model by the same 

authors, a direct descendant of these proposals, is discussed in detail later. 

3.1.6 Extended Relational Model 

Extended Relational Model, RM/T, proposed by Codd [Codd 79], represents a synthesis of 

many of the extensions to the basic relational model proposed earlier by other researchers. 

The basic assumption underlying RM/T, like all other extensions, is that the real world can be 

modelled in terms of entities. However, RM/T also has the concept of E-attributes for the 

unique designation of entities. An E-attribute uniquely identifies an entity (as opposed to a 

tuple) within the entire database. Relations can still have user-controlled and user-defined 

keys, but this is no longer required. E-attributes are created and deleted by the system as 
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a result of user operations on the database and can be used in operations such as joins. 

However, they are not controlled or seen by the user. E-attributes take their values from a 

special domain (E-domain). 

Like other extensions, RM/T also classifies relations according to what they represent. 

Basically, relations can represent both entity types and relationship types. Entity types are 

represented by E-relations and P-relations, both of which are specialised forms of the general 

n-ary relation. An E-relation contains a single column that specifies the surrogate for every 

instance of that type. A P-relation represents attributes of an entity type by associating entity 

surrogate values with property values. 

A variety of relationships can exist among entities - for example, two or more entities may 

be linked together in an association, or a given entity type may be a subtype of some other 

type. A variety of integrity constraints that are implied by the existence of such relationships 

are also given. A number of high-level operators are provided to facilitate the manipulation of 

the various RM/T ob)ects (E-relations, P-relations and so on). 

3. 2 Other Data Models 

The significant contributions in this category are: 

(1) Data Semantics 
(2) Data Independent Accessing Model DIAM II 
(3) Binary Relational Models 
(4) Ob)ect-Role Model 
(5) Functional Data Models 
(6) Semantic Data Model 
(7) Semantic Hierarchy Model 
(8) Semantic Network Models 

3.2.1 Data Semantics 

This model, proposed by Abrial (Abrial 74], organises various ob)ects in a database into 

different categories. Binary relations define atomic links between pairs of ob)ects belonging to 

certain categories. The two directions of a binary relation are named uniquely. Each name, 

called an access function, corresponds to a binary relation followed in one direction. (It is to 

be noted that access functions in this model are not really functions in the mathematical sense 

of the word, since their application can yield more than one value.) Relationship types 

between more than two categories are represented by generating new categories. 

Abrial's model provides for logical access to data by means of elementary operations on 
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access functions via programs. It also provides operations for manipulating objects in a 

category (e.g., introducing a new object) and for manipulating connections between objects 

(e.g., relating an object in one category to an object in another category). In addition, one 

can define operations that take a more general form and affect many objects in many 

categories according to a program. 

3.2.2 Data Independent Accessing Model 

Data Independent Accessing Model (DIAM), proposed by Senko [Senko 75], spans five 

different levels: the end-user level, the information level, the string level, the encoding level, 

and the physical device level. The end-user level, corresponding to the ANSI/SPARC external 

level, consists of entity, property, fact, entity set and enterprise. At the information level, 

names of things are dealt with, hence the terms used are attribute name, attribute value, 

identifier name, identifier value and fact representation. 

A fact representation is a pair of attribute names, also called an association pair, linking' 

identifiers. The association pair is symmetric, i.e., one attribute name uses one identifier as 

the subject and the other identifier as the value, while the other attribute name does just the 

opposite. N-ary and many-to many associations are treated by creating artificial entities. The 

language associated with DIAM Il is called FORAL. 

3.2.3 Binary Relational Models 

The binary relational models, proposed by Brachhi et al. [Brachhi 76], Sharman [Sharman 

77], and Munz [Munz 78] use only two kinds of representational concepts: entities and 

labelled binary relations. This implies that relationships of a higher order than two will be 

considered as entities. Properties of entities are modelled as binary relations between sets of 

entities and property values. The domains of these binary relations are all fundamental 

domains, i.e., they are not themselves binary relations. This means that nested binary 

relations are not allowed. 
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3.2.4 Object-Role model 

This model, proposed by [Falkenberg 76], models facts from a particular universe of 

discourse by means of objects, roles and associations. Objects are atomic, discrete elements 

in nature; the only information represented by them is their existence. Facts concerning an 

object correspond to its association with one or more objects. An object performs a role in 

every association of which it is a part. Thus associations, which are n-ary in general, are 

composed of object-role pairs. An association may be treated as an object in its own right 

and may perform a role in another association. The latter is termed a nested association. 

Objects are pooled into object types such that objects under one type have at least one role 

in common. Associations are also classified into association types which refer to all 

associations with identical object-role pairs. Objects and roles may be provided with 

significations. An object type named person may be signified by the person's first name. A 

number of significations may be provided, e.g., first name, last name, date of birth for the 

object type person to make the signification unique. Semantic rules can also be specified as 

a means of providing additional constraints for consistency and integrity among data instances. 

3.2.5 Functional Data Models 

The idea of viewing an information system as a collection of functions was introduced by 

Folinus et. at. [Folinus 74]. There are five different functional data model proposals that 

have appeared in the literature [Kerschberg 75, Buneman 79, Housel 79, Shipman 81, Katz 

83]. All five data model proposals are based on the fundamental concept of function to 

model relationships among objects in the real world. All five models also support simple data 

manipulation languages using the function and set operators, and one of them, FQL 

[Buneman 79], goes even further by integrating data manipulation and general purpose 

computation in one language. 

3.2.5.1 Functional Database Model 

In this model, proposed by Kerschberg and Pacheco [Kerschberg 75], a database schema 

is considered as a graph whose vertices represent sets and whose arcs are total functions. 

The sets may correspond to either entity sets that model real-world entities or abstract sets 

representing associations among entity sets. 

A set is described by its name and the functions defined on it. These functions have as 
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ranges other sets, including a distinguished set of data values. In this model, a key for a set 

S consists of a non-empty collection of functions of S such that the mapping from S to the 

Cartesian product of the function's range sets is one-to-one. 

Logical access to the complete functional data model is achieved by means of a high-level 

declarative language. Query specification is done by walking (or navigating) through the 

graph. 

3.2.5.2 Functional Dependency Model 

In this model, proposed by Housel et.al [House) 79], a database is viewed as consisting of 

sets of values with functions between them. Sets can be either simple or tuple sets. Simple 

sets correspond to integers, strings etc. Tuple sets correspond to many-to-many relationships 

among sets. Because the domain and range of functions may be tuple sets, relationships 

between relationships is supported. This model also supports the concept of "generalisation" 

[Smith 77] by treating one value set as the subset of another. 

The model provides operators for retrieval, update, insertion and deletion of occurrences in 

functions and sets and iterative (FOR loops) and conditional (IF-THEN-ELSE) control 

constructs. There are three retrieval primitives: RANGE, which given an occurrence of a 

function's domain, returns the corresponding value of its range; DOMAIN, which given an 

occurrence of a function's range, returns the ordered set (possibly null) of domain values; 

and ENTRY, which given a set name returns the set of values from the named set. There 

are also four data manipulation primitives: CREATE, which adds a value to a set; LINK, 

which adds a pair of values to the domain and range of a function; UNLINK, which performs 

the inverse; and DELETE, which deletes a value from a set. 

3.2.5.3 Functional Data Model (Buneman and Frankel) 

Buneman and Frankel have proposed a functional data model built into the functional query 

language (FQL) [Buneman 79, Buneman 82]. In this work, a database is viewed as a 

collection of functions over various data types. The model also provides five operators on 

functions: compose, tuple, extend, restrict, and generate which are used to combine functions 

to form new functions. FQL has built-in functions for arithmetic and boolean operations for 

use in query formulation. Finally, the notation used in FQL is derived from the functional 

programming notation advocated by Backus [Backus 78]. 
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3.2.5.4 Functional Data Model (Shipman) 

In this model, proposed by Shipman [Shipman 81], the database is modelled as a set of 

functions mapping entities to entities. Functions in this model can have zero, one, or more 

arguments. Functions with no arguments are used to define entity types, and functions with 

arguments are used to define attributes of and relationships among entities. Functions can 

also be specified as single-valued or multi-valued (i . e . , yielding a set as a result). This is 

useful to capture one of the most common type of real-world constraints as part of the 

structure itself. 

An important concept in this model is the distinction between an entity and its external 

names. In addition, entity types in this model are arranged in a type hierarchy with automatic 

inheritance of attributes and relationships (i.e., functions) from a supertype to all of its 

subtypes. 

This data model proposal also incorporates a high level, integrated data definition and data 

manipulation language, DAPLEX. In this language, function applications are used to express 

queries. In addition, the language includes a FOR EACH statement to iterate through sets, 

and a set of update statements. There is also a special operation in DAPLEX, DEFINE, for 

incorporating user-defined functions into the schema. Update operations on derived functions 

may be specified by the user. 

A detailed discussion of this model can be found in the next chapter. 

3.2.5.5 Functional Data Model (Katz and Wong) 

This model, proposed by Katz and Wong [Wong 79, Katz 83], a database is viewed as 

object sets and functions between them. Object sets are either value sets or entity sets. The 

primary difference is that value sets never appear in the domain of a function. For example, 

the set of employees is an entity set, while the set of employee names is a value set. 

Multi-valued (many-to-many) relationships are represented by confluent hierarchies, that is, 

by an explicit "relationship" set and functions to map it into the participating entity sets. 
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3.2.6 Semantic Data Model 

Semantic Data Model (SDM), proposed by Hammer and McLeod [Hammer 78, Hammer 81], 

views a database as a collection of disjoint classes of objects. SDM distinguishes between 

non-atomic abstract objects (called entities) and identifiers (names), Database entities and 

classes have attributes that describe their characteristics and relate them to other database 

entities. Each attribute has a value which is either an entity in the database (a member of 

some class) or a collection of such entities. The value of an attribute is selected from its 

underlying value class, which contains the permissible values of the attribute. 

SDM also supports a notion of IS-A hierarchy among objects and a notion of grouping types: 

a grouping type is formed by considering instances of a type to be subtypes, rather than 

individual objects. SDM also provides an extensive predicate language for specifying derived 

information. This mechanism allows a significant amount of data that would normally have to 

be derived at access time to be made a permanent part of the schema. 

In SDM, subtypes may be derived from properties of parent types or by stating that a 

subtype is an arbitrary, user-chosen group of values. Extensions of subtypes can also overlap. 

Attributes may be derived in terms of other attributes, e.g., attributes may be inverses of 

each other or the value of an attribute may be declared to be directly assignable by the user. 

In addition, classes can be constrained to have members with non-duplicate (unique) 

attribute values. The attributes of any class can be constrained to be single- or multi-valued 

or to have a non-null value or have values which are not changeable or are exhaustive of its 

class. It is also possible to place a constraint on the size of a multi-valued attribute or have 

non-overlapping values for different entities of a multi-valued attribute. 

Thus SDM provides a rich set of constructs to capture the semantics associated with the 

data. However, the complexity of the model makes it difficult to see how it can be used 

effectively. 

3.2.7 Semantic Hierarchy Model 

In this model, proposed by Smith and Smith [Smith 80a], real world information is treated 

as consisting of relative structures among all the objects of interest. Three classes of 

abstractions are used to determine these structures viz. , classification, generalisation and 

aggregation. Classification collects instances to form a new type. Generalisation forms a new 
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type by merging existing types (called categories). These categories can be considered as 

subtypes. Aggregation forms an object as a relationship among other objects (called as 

components). In general, each object is a type, an aggregate object and a generic object. 

An object will be called primitive when it has no instances, components or categories of 

interest. When classification, generalisation and aggregation are repeatedly applied to objects, 

hierarchies of objects are formed. 

To specify such structures a simple type declaration language is used. It lists for each type 

in the structure its component types and categories. The attributes of a subtype are inherited 

from its parent types, and the subtype may introduce additional attributes as well. Subtypes 

of a given type are assumed to be non-overlapping; thus, subtypes partition the instances of 

the parent type. 

The primitive operations of create, destroy and modify are provided to specify the behaviour 

of objects. A first order predicate language is provided for naming individuals in terms of their 

structure - their attributes, categories and types. Using these primitive operations, naming 

capabilities and simple control structures such as the if-then-else construct of standard 

programming languages, functions and procedures can be constructed that describe the 

behaviour of the enterprise being modelled. 

3.2.8 Semantic Network Data Models 

Semantic network data models have been mainly developed by people working in various 

branches of artificial intelligence. The basic structures of these data models consist of nodes 

and arcs forming a network much as in a binary or network data model. These data models 

distinguish between a type and a token and introduce the idea of hierarchy of types. 

Hierarchy inheritance deals not only with the inheritance of attributes and their values, but 

also with the inheritance of permitted relationship types among types. 

We discuss here the following two semantic network data models: 

3.2.8.1 TAXIS 

TAXIS is a programming language, proposed by Mylopoulos et. a/. [Mylopoulos 80], based 

on the concept of semantic network for data and procedure modelling. Here, a database is 

modelled in terms of three types of objects: tokens which represent constants; classes which 

describe collections of tokens; and metaclasses which describe collections of classes. Classes 
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and tokens have properties through which they can be related to other classes and tokens. 

Classes and metaclasses are defined by specifying their name and their properties. TAXIS 

provides for organisation of the classes and metaclasses into a hierarchy by defining IS-A 

(generalisation) relationship over classes and metaclasses. 

TAXIS provides three primitive database state transformation functions, insert-object, 

remove-object, and update-object and the procedural attachment which associate directly with 

each class the database transformation functions that affect its extension. TAXIS also provides 

transactions which are treated as classes except that their body is given in terms of zero or 

more prerequisite, action and result properties. Exceptions are raised when a prerequisite or 

result expression evaluates to a value other than true. Exception classes are defined and 

organised into an IS-A hierarchy, like all other classes. 

3.2.8.2 Semantic Binary Relationship Model 

Semantic Binary Relationship Model (SBRM), proposed by Azmoodeh and Lavington 

[Azmoodeh 82], is a type of semantic network with the nodes representing entities and the 

arcs representing relationships between entities. The entities are categorized broadly into 

information, meta information, and meta meta information according to their levels of 

abstraction. 

The information consists of entities and binary relationships between them. The entities may 

be grouped together into different classes. Relationships may be categorised in the same 

manner. Meta information consists of classes of similar entities or relationships at information 

level. The entities at meta meta level denote these classes at meta level. The meta meta 

information and its semantics is static and built into the system and invisible to users. Users 

only manipulate information and meta-information. 

The class membership is achieved via the system defined relationship ISA. (Note that this 

use of ISA is different from that usual in semantic networks). The classes may be 

overlapping. The interdependency between the classes is represented by means of a subclass 

operation. The IS SUB relationship is used to express the subclass operation. 
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3. 3 Assessment of Semantic Data Models 

36 

In general, most of the semantic data models describe the real world in terms of units that 

are close to the concept of an entity and a few of them carry it through to make a distinction 

between an entity and its names, I . e. , what we call as object orientation. Most of the 

models organise the modelling units into sets or types and a few of them carry it through to 

provide hierarchical type structure. Some models make a distinction between attributes and 

relationships while some models treat both as relationships. Some models make a distinction 

between entities and relationships while some models force all relationships to be treated as 

entities in their own right. Some models limit themselves to binary functional (one-to-one 

and many-to-one) relationships forcing creation of "excess" entity sets for modelling n-ary or 

non-functional (many-to-many) relationships. Most of the models, however, ignore aspects 

such as the provision of a consistent set of operations, facilities to capture rules etc. 

An assessment of the semantic data models discussed in this chapter was carried out using 

the framework we established in section 2.8. The resulting analysis is shown in Table 3-1. In 

this table, the entries like high, medium and low reflect the author's judgement based on the 

information that can be gathered from literature. Where the author was unable to form an 

opinion from the available information, corresponding entries are shown with a question mark. 

It is to be noted that this analysis is necessarily approximate because of the difficulty in 

understanding the varied vocabularies and the considerable ambiguity in the way concepts in 

one model relate to concepts in another. 
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Table 3-1: Assessment of Semantic Data Models 

I ---------------------I ---------I----------I----------I----------I---------- 
Role I Basic I E - R Struct- Extended 
Model I Semantic I Model ural Relati- 

Model I Model onal 
Model ------------------------------------------------------------------------ 

IOb)ect Orientation No No No No Yes 

---------------------- ---------- ---------- ---------- ---------- ---------- 
I 

(Semantic Express'ness I Medium Medium Medium Medium High 
----I 

(Ease of Design I Low Medium Medium Medium Low 

i------------------------------- I---------- I---------- I---------- I---------- 
I Neutrality No No No No Yes 

I---------------------I----------I----------I----------I----------I---------- 
I 

Operations No No No I No Yes 

i--------------------- I---------- I---------- I---------- I---------- I---------- 
I 

I Facilities to specify 
(constraints ? ? ? ? ? 

--------------------- ---------- 
I 

Facilities to specify 
I derived data I? 17 I? ? ? 

I --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- 
I 

Freedom from physical I 

Iconsiderations No I Yes Yes Yes Yes 

i --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- 
(Ease of Evolution I Low I Medium Medium Medium Medium 

I I I I--------------------- I---------- I---------- I---------- i---------- I---------- 
I 

(Complexity High Medium Medium Medium I High 

I- -------------------I----------I----------I----------I----------I---------- 
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Table 3-1, continued 

----------------------------------------------------------------------- 
Data DIAM Binary 0- R S H M 

I Seman- Relat- Model 
tics tonal 

Models ----------------------------------------------------------------------- 
IOblect Orientation Yes No No Yes Yes 

--------------------- ---------- ---------- -------- ---------- ---------- 
(Semantic Express'ness Medium Medium Medium Medium High 

I --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- 
I 

j Ease of Design High High High Medium I Low 

I --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- 
I Neutrality No No No No Yes 

I---------------------I----------I----------I----------I----------I --------- 
I 

IOperations Yes Yes Yes Yes Yes 
I I I I I---------------------I----------I----------I----------I----------I--------- 

I 

I Facilities to specify 
constraints Yes I? I? ? ? 

I--------------------- I---------- I---------- I---------- I---------- I---------- 
l Facilities to specify I 

derived data Yes I? I? I? ? 

I--------------------- I---------- I---------- I---------- I---------- I---------- 
I Freedom from physical I 

considerations Yes I Yes Yes Yes Yes 
I I I I I 

I --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- 
I Ease of Evolution I Medium Medium Medium Medium Medium 

I --------------------- I ---------- I ---------- I --------- I ---------- I ---------- 
(Complexity Low Low Low Low Medium 

I --------------------- I ---------- I ----------- I-----------I ---------- I ---------- 

38 
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Table 3-1, continued 

---------------------I----------I----------I----------I----------I---------- 
I FDM FDM FDM FDM FDM 
I I (Kersc- I (Housel) I (Katz I (Rune- I (Ship- 
I hberg) & Wong) I man) man) 
I I I I I I 

--------------------- ---------- ---------- ---------- ---------- 
Object Orientation No No Yes Yes Yes 

I I I I I I 

--------------------- ---------- ---------- ---------- ---------- ---------- 
I I I I I I 

ISemantic Express'ness Medium Medium Medium Medium High 
I 

I 

---------I I I I i 

I I I I I 

(Ease of Design Medium Medium Medium Medium High 
I I I I I I I---------------------I----------I----------I----------I----------I---------- 
I Neutrality No No No No Yes 
I I I I I I I---------------------I----------I----------I----------I----------I----------I 
I I I I I I 

(Operations No Yes I Yes Yes 
I I I I I I I---------------------I----------I----------I----------I----------I----------I 
I 

Facilities to specify I I I I I 

(constraints ? ? ? ? Yes 
I I I I I---------------------I----------I----------I----------I-----------I----------I 
I I I I I 

I Facilities to specify 
derived data ? I? ? Yes Yes 

I I I I I 

--------------------- I---------- I-------- --I----------- I---------- I---------- I 
J Freedom from physical I I I I I 

(considerations Yes Yes Yes Yes Yes 
I I I I I I 

I --------------------- I ---------- I ---------- I ---------- I ---------- I ---------- I 
I I I I I I 

J Ease of Evolution Medium Medium Medium Medium High 
I I I I I I I----------------------I----------I----------I----------I----------I----------I 

(Complexity I Medium I Medium I Medium I Medium Low I 

I I I I I I I---------------------I----------I----------I----------I----------I----------I 
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Table 3-1, continued 

I --------------------- I---------- I---------- I---------- ---------- 
I 

S D M TAXIS SBRM 

--------------------- ---------- ---------- ---------- 
Object Orientation I Yes Yes Yes 

--------------------- ---------- ---------- ---------- 
(Semantic Express'ness High High High 

I-------------------------------I-------------------- 
I 

J Ease of Design Medium I Medium Medium 

I --------------------- I ---------- I ---------- I ---------- 
I 

Neutrality Yes I Yes Yes 

I---------------------I----------I----------I---------- 
I 

Operations ? Yes ? 

I I I---------------------I----------I----------I---------- 
I 

l Facilities to specify 
Iconstraints ? Yes ? 

----------------------------------------- --------- -------- 
I 

l Facilities to specify 
derived data Yes Yes ? 

---------- 
J Freedom from physical 
(considerations I Yes Yes Yes 

--------------------- ---------- ---------- ---------- ---------- 
I 

J Ease of Evolution I Medium Medium Medium 

--------------------- ---------- ---------- ---------- 
I 

(Complexity High I High High 
I 

--------------------- ---------- ---------- ---------- 

40 
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Among all the models discussed above, we consider the functional data models to be most 

attractive for the purpose of conceptual data modelling. The following six reasons support this 

claim: 

1) Functional data models provide a semantically rich modelling environment. Shipman's 

proposals show how this can be achieved. The most important feature of these models is 

their ability to remove the sharp distinction between data and programs (derived data). All 

functions irrespective of whether they are stored functions like name(person) or computable 

functions like sine and max have equal rights. Any function may be composed with any other 

function of conformable type using the same syntax. Because of this, the information that 

can be extracted from such a system corresponds not only to that which can be obtained from 

simple access to stored data, but also to that which involves complex traversals of data 

structure, and/or computations. Thus, the functional approach makes it possible to "equate 

data in the system with what can be extracted, rather than with what is physically stored" 

[Kent 78], The advantages of unifying data and programs (derived data) have already been 

discussed in section 2.7. 

2) Functional data models provide "simple" data manipulation languages. The function 

application provides a natural mode of expressing user queries. As Folinus et al. observe, 

"the requests for answers, whether made to a processing program or to a stored database, 

are essentially requests for a value of a function, given argument values". Because of this, 

query formulations in these models are likely to be closer to the natural language form. 

3) Functional data models provide data languages in which data manipulation facilities are 

neatly integrated with the general-purpose computation facilities. FQL (Buneman 79] shows 

how this can be achieved. Existing data manipulation languages, both procedural and 

non-procedural, do not provide a complete programming environment. To overcome this 

deficiency, these languages are invariably coupled to existing procedural programming 

languages. Such coupling is usually provided by either defining special subroutines to execute 

database functions or by embedding database constructs into an existing language. A 

preprocessor translates these constructs into run-time calls on a database system. Application 

programs consist of statements in the host programming language intermixed with statements 

in the query language to access the database system when required. Problems with such 

approaches include the difficulty of performing type checking across language interfaces, the 

trade-off between interpretation and compilation, and the unattractive nature of combining 

non-procedural query languages in procedural programming languages. Typical programming 

languages and typical query languages differ from each other too much in their description of 
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data structures and this embedding method does not produce a natural programming interface 

[Atkinson 78, Pirotte 80]. 

Of late, a number of efforts have been made to extend programming languages with 

database notions, e.g., PASCAL-R (Schmidt 77], RIGEL (Rowe 79], THESEUS [Shopiro 79], 

PLAIN (Wasserman 81] etc. The problem with these integrated languages is that they 

attempt to extend essentially procedural languages like PASCAL (Wirth 71] with non- 

procedural query language constructs. Such languages offer a variety of programming styles 

which are not strictly necessary for expressive powers: they range from a navigational style 

where database relations are examined one tuple at a time in an order fixed by physical 

storage to a style of non-procedural programming similar to that of typical query languages. 

Thus the resulting languages have a redundant and hybrid character which does not appear 

fully justified nor obviously necessary [Pirotte 80]. 

A major reason for the unsatisfactory nature of these attempts is the lack of a common 

concept between the data models and the programming languages. Functional data models are 

well suited to overcome this shortcoming as the concept of function used to model objects and 

inter-object associations in these models is also the basis of many programming languages like 

LISP [McCarthy 621, KRC [Turner 82], ML (Gordon 79], HOPE [Burstall 80] etc.. Hence, 

the data manipulation languages provided for these models can be expected to merge 

comfortably with the functional programming languages. 

4) Functional data models can support all the three major (hierarchical, CODASYL, and 

relational) data models (Sibley 77, Shipman 81, Smith 80b, Gray 83]. This means that 

functional data models can be used to provide a global schema through which one can take a 

unified view of heterogeneous distributed databases some of which are CODASYL and some 

are relational. This is being tried in the heterogeneous distributed database system, 

MULTIBASE [Smith 80b] 

5) By exploiting the well established mathematical theory of functions [MacLane 67], 

functional data models can provide a solid theoretical foundations for databases. 

6) Since functions can be considered as logical access paths of a database, there is a strong 

possibility of providing efficient implementations of functional data models. In fact, Katz and 

Wong use the functional data model to design storage structures for a CODASYL DBMS to 

provide the desired access characteristics (Katz 83]. The advances in data flow computers 

[Arvind 78] is another factor favouring the functional data models. By exploiting parallelism, 
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these machines promise to provide much higher performance. The great advances in 

semiconductor device technology can be harnessed much more effectively in these 

architectures. Several groups engaged in data flow research have developed high-level 

languages suitable for data flow programming. The primary characteristic of these languages is 

that they are functional. It is easy to see that the functional data models will be in a better 

position to exploit the advances in this field. 

3. 4 Assessment of Functional Data Models 

As discussed earlier, there are five different proposals of the functional data model that 

have appeared in the literature so far. Table 3-1 summarises the assessment of these 

models based on the set of criteria established in section 2.8. Here, we expand on this 

assessment. 

The functional database model of Kerschberg et al. and the functional dependency model of 

Housel fail to meet our first criteria, i.e., the object orientation. They model the objects in 

the real world by their names and inter-object relationships in terms of attribute values. 

Regarding this, both these models suffer from the same disadvantages as the conventional 

name-based models like the CODASYL or the relational model. 

Though the functional data model of Buneman and Frankel and the functional data model of 

Katz and Wong incorporate the object orientation, semantically they are insufficiently 

expressive. They classify entities into types (sets) but do not accommodate subtype- 

supertype hierarchy. In addition, they limit themselves to binary functions only. This means 

that to model many-to-many and non-binary relationships, they are forced to adopt the excess 

entity approach similar to that used in the CODASYL model. That is, they introduce a 

"relationship" entity and provide functions to map it into the participating entities. For 

example, the many-to-many relationship between students and courses in these models is 

represented by an enrolment entity and the two single-valued functions student-of(enrolment) 

and course-of (enrolment). Each enrolment entity represents a single relationship between a 

student and a course. 

Similarly, n-ary relationships in these models are handled by reducing them to binary form 

by defining a new artificial entity type corresponding to the relationship and then defining n 

binary relationships each corresponding to a relationship between the new entity type and one 

of the "components" of the original relationship. For example, the n-ary relationship 
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between a buyer, a seller, and an item is represented by a sale entity and the three 

single-valued functions buyer-of(sale), seller-of (sale). and item-ot(sale). The problems 

with the excess entity approach are that it obscures the actual relationship, and the artificial 

entities so created have no correspondence with the real-world objects. This also forces one 

to adopt different techniques to model different types of relationships. Regarding this, both 

these models suffer from the same disadvantage as the CODASYL model. 

It is the Shipman's model which meets most of our criteria. It has the abstract object 

orientation firmly built into it. In addition, it classifies entities into entity types and 

incorporates subtype-supertype relationships among entity types. By admitting functions with 

multiple arguments and set-valued results, Shipman's model captures all types of inter-object 

relationships uniformly. Because of this, mandatory creation of potentially unnatural entity 

types is avoided. Shipman's model is also unique in exploiting the main advantage of 

functional approach, i.e., the ability to treat data and programs alike, by means of derived 

functions. Another important factor that is in favour of Shipman's model is the simplicity of 

the associated data language. Detailed assessment of this model appears in the next chapter. 

3. 5 Conclusions 

Inspite of the many benefits of functional data models listed above, the literature contains 

few reports on their implementation and use. In an attempt to fully understand the advantages 

and problems of functional database management systems, this research concentrated on the 

construction of a full-scale functional database management system. The result of this is the 

Extended Functional Data Model (EFDM) system, implemented on a VAX 11/780 hardware 

configuration at Edinburgh. 

The data model underlying EFDM is very close to the proposals of Shipman, though we have 

made some modifications and extensions. We call this Extended Functional Data Model to 

distinguish it from the "basic" functional data models proposed by others, which, as we 

discussed above, are semantically less expressive. Chapter 4 describes Shipman's proposals 

in detail and Chapter 5 elaborates on the modifications and extensions of these proposals 

carried out in EFDM. 
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In this chapter, we introduce the basic concepts of the functional data model as proposed 

by Shipman [Shipman 81]. We illustrate these concepts using the constructs of the 

associated data language DAPLEX. The syntax of this language is reproduced in Appendix A. 

4. 1 Structures 

Functional data model (FDM) models the real-world information as sets of entities and of 

functions mapping entities to entities. An entity is some form of token identifying a unique 

object in the database and usually representing a unique object in the real world [Gray 83]. 

For example, FDM models a student in the real world by a unique student entity in the 

database. Sets of entities with some common information are classified as entity types (or 

simply types). Entity types are arranged in a type hierarchy, so that they are all subtypes of 

the type entity, the system-provided type of all entities. Functions map a given entity into a 

set of target entities. For example, a function courseof defined to map a particular student 

entity to a set of course entities can be used to model the set of courses a student is taking. 

The intension of a functional database is specified by a functional schema which consists of 

one or more function definitions. A function definition corresponds to a function name followed 

by a list of arguments enclosed in brackets followed by a single or double arrow followed by 

the result. That is, a function f is denoted as 

f1 
11, 

ai2, ... aim ) -> rI 

or 

ft (a11, ai2, ...aim ) ->> rI 

where the a1js, not necessarily distinct, refer to argument entities of type aij and rI refers to 

result entities of type rI. A single arrow -> implies the function is single-valued and a double 
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arrow -> > implies it is multi-valued. Single-valued functions return a single result entity of 

type ri on each application and multi-valued functions return a set of entities, all of type rl, 

on each application. 

The functional schema for a database to represent students and their tuition arrangements is 

shown in figure 4-1. The declare and define in this figure correspond to the data definition 

statements of DAPLEX language. 

declare person() 
declare student( ) 

declare staff ( ) 
declare course() 
declare event() 
declare tutorial ( ) 

declare lecture ( ) 

declare cname (person) 
declare sname (person ) 
declare sex(person) 

entity 
person 
person 
entity 
entityj 
event 
event 

-> string 
-> string 
-> string 

declare course(student) ->> course 
declare tutorial (student) -> tutorial 
declare grade (student, course) -> string 

declare course(staff) 
declare room (staff ) 
declare phone(staff) 

->> course 
-> string 
-> integer 

declare title(course) 
declare lecture(course) 

declare day(event) 
declare time(event) 
declare site(event) 
declare room (event) 

-> string 
->> lecture 

-> string 
-> integer 
-> string 
-> string 

declare staff (tutorial) -> staff 

define staff (course) ->> inverse of course(staff) 
define lecturer(student) ->> staff(course(student)) 
define tutor(student) -> staff (tutorial (student)) 

Figure 4-1: Functional Schema for a Student Database 

4.1.1 Entity Types 

Consider the function person() shown in figure 4-1. This function evaluates to a set of 

entities of type entity. Since it has no arguments, there is only one possible result set. 

Shipman uses this fact to say that all members of this set have a distinct type, i.e., it 

defines the person entity type. (Note that person is triply overloaded here, i.e., it names 

the entity type, the set of person entities, and the function that produces that set. ) 
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Similarly, the course() function defines the course entity type. Thus, all zero-argument 

functions define new entity types. 

An important point about this model is that entities represent objects in the real world and 

not the numbers or other identifiers associated with the objects. Hence, entities by 

themselves cannot be printed. The only exceptions are those belonging to pre-defined entity 

types like integer, string etc. They are special in that, as well as being predefined, they 

have an established method of lexicographically representing instances of these types. The 

actual set of such built-in types is analogous to the base types in a programming language, 

and would be chosen for their utility. Other such useful types are boolean, real, date, and 

time. 

In this model, the extensions of different entity types can overlap, i. e. , a student can 

simultaneously be a staff entity as well. The notion of role (See 4.2.2) is used to determine 

the type of an entity during evaluation. 

4.1.2 Functions 

Functions with arguments model both the properties (attributes) of the objects and the 

relationships between various objects. For example, the function cname(person) which 

returns an entity of type string for each person entity can be considered as modelling a 

property of person entities whereas the function course(student) which returns a set of course 

entities for each student entity can be considered as modelling the relationship between 

student and course entities. Thus, this model makes no distinction between attributes and 

relationships. 

This model allows multi-argument functions also. For example, the function grade with two 

arguments student and course types models the fact that every student-course pair is 

associated with a string entity indicating the grade that the student gets for that course. A 

difficulty with this function definition is that it specifies the function grade as defined for every 

student-course pair, while in fact it should exist only for those courses in which the student is 

enroled. 

Shipman suggests the following definition to overcome this problem: 

declare grade(student, course(student)) -> string 
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According to Shipman's proposals, all functions are treated as total. Hence, all single- 

valued functions must be explicitly initialised by the user and all multi-valued functions that 

are not initialised return the empty set. 

4.1.3 Type Hierarchy 

Consider the function person() again. The set of person entities returned by this function 

is a subset of the set of entity entities. Shipman uses this fact to say that the entity type 

person is a subtype of the entity type entity. 

This subtype-supertype relationship can be extended to any level. Also, an entity type can 

have any number of subtypes. For example, the person entity type above has student and 

staff entity types as its subtypes. 

An important consequence of this hierarchical relationship of types is that an instance of an 

entity type is also an instance of all its supertypes and a subtype inherits all the functions 

defined over all of its supertypes. This follows from the tact that a student entity is 

necessarily a person entity as well and hence all the functions applicable to person type are 

applicable to student entities as well. 

4.1.4 Base and Derived functions 

A function introduced by declare is called a base function and is represented by physically 

storing a table of arguments and results. For example, cname(person) function relating 

persons to their Christian names is represented by a table of person and string entities. The 

basic algorithm to evaluate these functions is search of the list of arguments, i. e. , a 

comparison of the given argument with the list of arguments to determine the corresponding 

result value to be selected. 

A function introduced by define is called a derived function and is represented by an 

algorithm to compute its result. For example, the lecturer(student) function in figure 4-1 is 

represented by a derivation procedure. Such functions are evaluated by executing the 

corresponding algorithms. Hence, data for these functions does not, conceptually at least, 

exist in the stored form in the database. Various mechanisms to define derived functions are 

discussed in section 4.3. 
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4.1.5 Function Names 

FDM allows function name overloading, i.e., more than one function may have the same 

name. For example, though the functions course(), course(student) and course(staff) all 

have the same name, they are distinguished by their internal names. The internal name of a 

function is generated by enclosing in square brackets the external function name and the 

argument types over which it was originally specified. Thus the internal names of the above 

three functions are [course()], [course(student)], and [course(staft)] respectively. 

4.1.6 Order 

Multi-valued functions in this model evaluate to sets of entities in the mathematical sense; 

that is, the sets are considered unordered and do not contain duplicates. However, order 

forms a natural part of the real world information. Hence, DAPLEX provides for explicitly 

associating an order with entity types or multi-valued functions by using in order syntax. For 

example, to order the staff on their rank, the following declaration can be used: 

declare staff () -> > person in order by ascending rank(staff) 

In the above declaration, ordering is maintained by the system. Ordering can also be 

maintained by users by explicitly specifying the order via update statements. For example, to 

maintain user defined ordering for musical notes in a melody, the following declaration can be 

used: 

declare notes (melody) ->> notes in order 

The omission of by clause following order clause indicates that ordering is to be specified by 

update statements. More than one by clause can be used to indicate primary ordering, 

secondary ordering, tertiary ordering etc. 

4.1.7 Entity Diagram 

The functional data model admits a neat and concise graphical representation for the entity 

types and functions modelling a real-world application. Such a graphical representation is 

called the entity diagram. 

Figure 4-2 illustrates such an entity diagram for a schema shown in figure 4-1. In this 

figure, diamond-shaped enclosures indicate entity types and the arrows indicate functions 

mapping their argument types into their result types. A solid arrow indicates a base function 

while a dashed arrow indicates a derived function. A single headed arrow indicates a 
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single-valued function while a double headed arrow indicates a multi-valued function. A 

double-line arrow indicates subtype-supertype relationship. The multi-argument function grade 

is represented by the two arrows from the respective argument types getting merged before 

reaching the result type. 

It can be seen that the entity diagrams closely resemble the semantic nets used for 

knowledge representation in the artificial intelligence field [Quillian 681. 

4. 2 Operations 

DAPLEX is the integrated data definition and data manipulation language associated with this 

model. DAPLEX does not concern itself with the general-purpose computation facilities and 

data input/output operations. Shipman envisages DAPLEX to be embedded in a high level 

language for these facilities. 

4.2.1 Data Definition 

A new function can be added to the schema at any time. A declare statement is used to 

add a base function or an entity type while a define statement is used to add a derived 

function or an entity type. 

4.2.2 Data Selection and Retrieval 

FOR loop statements and expressions are the basic constructs for data selection. For 

example, a query to find out the names of all persons in the database corresponding to figure 

4-1 appears as follows: 

for each person 
print cname (person), sname (person) 

where the print statement is assumed to be provided by the high-level language in which 

DAPLEX is embedded. In this example, the FOR loop statement iterates over a set of 

entities of type person, executing its for-body, the print statement, for each member of the 

set. 

There are two forms of FOR loop statement (soe Appendix A): 

for each set imperative 
for singleton imperative 
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where set refers to a set expression and singleton refers to a singleton expression and 

imperative refers to either a FOR-loop statement, an update statement, or a print statement. 

While a set expression evaluates to a set of entities, a singleton expression evaluates to a 

single entity. 

Every expression has a value, a role, and an order. The expression value is the set of 

entities returned by evaluating the expression. The expression order is the ordering 

associated with these entities. (it is meaningful for set expressions only. ) The expression 

role is the entity type under which these entities are to be interpreted. The role of an 

expression can always be determined by a static analysis of the expression. An expression's 

role can be changed without affecting its value or order by means of the as operator (see 

section 4.2.2.4). 

4.2.2.1 Set Expressions 

Every set expression has associated with it a reference variable. Operators which iterate 

over the set, such as for each in the above syntax, successively bind this variable to the 

entities in the iteration set. The reference variable typically appears in the body of the 

iterating operator and references the particular entity being considered in the current 

iteration. DAPLEX provides for the implicitly declared looping variables. For example, in the 

above query formulation to find out the names of all persons in the database, the name 

person implicitly declares a reference variable person, which actually appears in the body of 

the print statement. 

DAPLEX also provides for the explicit specification of reference variables by using the in 

operator. For example, the above query can also be formulated as: 

for each p in person 
print cname (p), sname (p) 

A set expression can be formed by a name corresponding to an entity type identifier or by a 

function application resulting in a set-valued result. For example, consider the function 

application course(student) where student is a variable corresponding to a student entity. 

Here, the result of the expression corresponds to the set of entities returned by applying 

course(student) function to the entity student. 

In general, each argument of a function application can be either a set expression or a 

singleton expression. When the arguments for a function application are set expressions, the 
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result of the function application is obtained by iteratively applying the function to each tuple 

of the cross-product of argument sets and taking the union of all results so obtained. For 

example, consider the expression 

course(student such that sex(student) _ "f") 

Here, the result is calculated by taking the union of sets of course entities returned by 

applying the course(student) function to each member of the argument set. 

A set expression can also be formed by the general set former construction. This has the 

from 

sell such that predicate 

where sell is any set expression and the predicate following such that evaluates to a boolean 

result. This form of set expression evaluates to those members of sell for which predicate is 

true. In evaluating predicate, the reference variable of sell is bound to the member of sell 

being tested. For example, consider the following query: 

Find the surnames of all the students with the Christian name Pat. 

for each student such that 
cname(student) _ "Pat" 

print sname (student); 

Here only those student entities for which the predicate following such that evaluates to true 

are included in the result of the set expression. 

DAPI_EX also allows quantification for the formulation of predicates following such that. These 

are of the form 

for quant set predicate 

where the predicate evaluates to a boolean result and quant is any one of the following 

quantifiers: some, every, no, at least, at most, or exactly (last three quantifiers must be 

followed by a singleton evaluating to an integer result). Such quantified expressions always 

evaluate to a boolean value. For example, consider the following example: 

Find the Christian name of all the students taking the IS1 course. 

for each student such that 
for some course(student) 
title (course) ="IS t" 

print cname(student); 

In this query, the expression following such that evaluates to true if at least one course entity 

in course(student) set meets the title (course) ="IS t" test. 

It is possible to specify the order for the results of set-valued expressions using in order by 

syntax as described in section 4.1.6. However, when the by clause is omitted while 

specifying order, the ordering is that of existing ordering associated with the evaluated set. 
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4.2.2.2 Singleton Expressions 
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A singleton expression is formed by a constant literal, a variable bound to a particular 

entity, or by a function application resulting in a single-valued result. 

A singleton expression is also formed by the the operator followed by a set expression. The 

result of such an expression is the entity returned by the set expression, only if the result 

set has a cardinality of 1. For example, consider the following query: 

Find the titles of courses taught by Hamish Dewar. 

for the staff such that 
cname(staff) = "Hamish" and 
sname(staff) = "Dewar" 

for each course(staff) 
print title(course); 

In the above formulation, the ensures that there is only one staff entity with cname as 

Hamish and sname as Dewar. 

4.2.2.3 Aggregate functions 

DAPLEX proposals include the aggregate functions such as count, maximum, minimum, 

total, average etc. 

count function takes any set-valued expression as the argument and returns the cardinality 

of that set in integer form. For example, consider the following request: 

Find the number of staff in CS department. 

This can be expressed as 

print count(staff such that dept (staff )="CS") 

maximum and minimum functions take any set-valued expression with numeric type as the 

argument and return the maximum/minimum of the values in the argument set. 

total and average functions take any multiset valued expression as the argument and return 

the total or average value of all the values in the argument set. (A multiset or bag is a set 

which may contain duplicate elements.) A special operator over is provided, which when 

used with a set-valued expression evaluates to a multiset. For example, consider the 

following request: 

Find the average salary of staff in the CS department. 
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This query can be formulated as follows: 

print average (salary (staff) over staff such that 
dept (staff) ="CS" ) 

Here, for each member of the staff set, the given expression is evaluated and the resulting 

value is included in the average independent of whether or not duplicate values are present. 

4.2.2.4 Specifying the Expression Role 

The role of an expression can be explicitly specified by means of the as operator. For 

example, consider the following request: 

Among the students who are also staff, list those who are taking a course they teach. 

This query can be formulated as follows: 

for each student such that 
some course(student) = some course(student as staff) 

print cname (student), sname (student) 

4.2.3 Database Updating 

Update operations in DAPLEX correspond to creation of a new entity, assigning function 

values, and modifying function values. 

4.2.3.1 Creating a new entity 

A new entity is created using a singleton expression 

a new set 

where set corresponds to a set expression. For example, 

a new person 

creates a new person entity and associates it with the variable person. When a new entity 

belonging to a certain entity type is created, all the supertypes of that entity type get 

populated simultaneously with that new entity. For example, 

a new student 

creates a new entity which is included in the extension of both student and person entity 

types. 
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4.2.3.2 Assigning or modifying function values 

let, include, and exclude statements are used for this purpose. The let statement replaces 

the existing function value, if any, by the new value. Otherwise, it assigns the specified 

value as the result for the given set of arguments. The include statement extends the 

existing result set of a multi-valued function for the given set of arguments. The exclude 

statement excludes the specified value set from the result set of a multi-valued function for 

the given set of arguments. For example, consider the following requests: 

For the student with Christian name 'Moyana' and surname 'Johns', change her current 

assignment to tutorial group to that held on Mondays at 2.0 pm in room 2c. 

This request can be formulated as follows: 

for the student such that 
cname(student)="Moyana" and sname (student) ="Johns" 

let tutorial (student )= the tutorial such that 
day (tutorial )="Monday" and 
time (tutorial) =-114-1 and 
room (tutorial) =112c"; 

For the student with Christian name 'Moyana' and surname 'Johns', add the courses CS1 and 

181 to her current course assignments. 

This request can be formulated as follows: 

for the student such that 
cname (student) ="Moyana" and sname (student) ="Jo h ns" 

include course (student)={the cl in course such that 
title (ct )="CS1", 
the c2 in course such that 
title (c2)=11181"I 

For the student with Christian name 'Moyana' and surname 'Johns', drop the course CS1 from 

her current course assignments. 

This request can be formulated as follows: 

for the student such that 
cname(student)="Moyana" and sname (student) ="Johns" 

exclude course (student)={the c in course such that 
title (c) ="CS 1 "} 
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Derived functions are defined using define statements. For example, given the two 

functions 

course(student) ->> course 
staff (course) -> > staff 

the following derived function 

define staff (student) -> > staff (course (student) ); 

returns the set of staff entities for a given student entity by evaluating the composite 

function. 

A derived entity type is considered as a subtype of the role of the defining expression. For 

example, the following derived entity type 

define female() ->> person such that sex(person) 

defines a subtype of type person, which returns those person entities meeting the 

qualification, 

DAPLEX provides the following special operators for defining derived functions: 

inverse of : In order to define a derived function that relates all the students taking a 

particular course for the database of figure 4-1, we can proceed as follows: 

define students (course) -> > student such that 
for some c in course(student) 
c = course 

DAPLEX provides a special operator inverse of to simplify the derivation of the above function. 

Using this operator, the above function can be defined as 

define students(course) ->> inverse of course(student) 

Inverse functions can be defined for one-argument functions only. A single valued function 

may have the inverse function which is single- or multi-valued. Similarly, a multi-valued 

function may have a single- or multi-valued function as its inverse. 

transitive of : If there exists a function 

manager(employee) -> employee 

which returns the manager of a given employee, the following derived function 

define superiors (employee) ->> transitive of manager (employee); 

returns the set containing the manager of a given employee, the manager's manager, the 

manager's manager's manager etc. The transitive of operator can be used to define 

one-argument functions only. 
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union of, intersection of, difference of : The union of, intersection of, and difference of 

operators applied to set-valued expressions can be used to define both entity types and 

functions with arguments. If a new entity type is defined, the new type is considered to be 

a subtype of each of the types of the set-valued expressions in the right hand side. If, on 

the other hand, a function with arguments is defined, then each of the set-valued 

expressions in the right-hand side must be of the same type which becomes the type of the 

function. 

For example, the function, 

define customer ( ->> union of person, company, govtagency 

defines the customer entity type consisting of entities belonging to either person, company, or 

govtagency entity type. 

Similarly, the function, 

define studentstaff () -> > intersection of student, staff 

defines the studentstaff entity type consisting of entities which belong to both student and 

staff entity types, and the function, 

define nonteaching () ->> difference of employee, staff 

defines the nonteaching entity type which consists of those employee entities which do not 

belong to staff type. 

compound of : The compound of operator is used to define new entity types only. This 

operator creates derived entitles corresponding to the elements of the cartesian product of its 

operands. For example, if we have an entity type student and a function 

course (student) ->> course 

the following derived entity type, 

define enrolment() ->> compound of student, course(student) 

returns entities of enrolment type. The new type being defined will be a subtype of entity 

and will include one entity for each student -course tuple. In addition, the system implicitly 

defines the two functions 

student(enrolment) -> student 
course(enrolment) -> course 

which return the student and course entities for each enrolment entity. 



Functional Data Model 59 

4. 4 User Views 

All users of a database system might not want to see the database as defined in the central 

schema, The properties which are considered relevant and the mechanisms by which they are 

most naturally referenced vary across differing world views. Some users might prefer, for 

example, to view the enrolment of a student in a course as an entity having its own 

properties, while others might only be interested in the courses taken by a student. For 

them, dealing with enrolments as objects would be unnatural and awkward. 

Shipman proposes the use of derived functions for defining different user views of a 

database. Because complex algorithms can be used in defining derived functions, view 

definition through derived functions is especially powerful, To separate the user's name space 

from the global name space, Shipman proposes that each user view be defined using a 

module or package facility provided by a high level language in which DAPLEX is to be 

embedded. Consequently, no details of this facility is included in his proposals. 

4.4.1 Operations from Views 

For a view to be useful, users must be able to apply retrieval and update operations to it. 

These operations from the view must be translated to functionally equivalent operations on the 

base functions. Because the mapping from the base functions to derived functions of a view 

is functional, retrieval operations from a view can always be mapped into equivalent retrieval 

operations on the base functions. However, such a mapping for translating updates from a 

view into equivalent updates on base functions may not always exist, and when it does exist, 

it may not be unique [Codd 741, Views and updates exist for which no sequence of 

operations on the base functions will correspond to view updates (undefined updates) or more 

than one sequence of operations on the base functions may correspond to same view update 

(ambiguous updates) [Dayal 78]. In general, the ambiguity cannot be resolved automatically. 

The strategy adopted here is to disallow updates from views unless the mechanism for that 

particular update has been explicitly specified in terms of available update operations. This is 

similar to the strategy proposed in the RIGEL [Rowe 79] language. Again, specific details of 

this mechanism are not well defined in DAPLEX. 
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4. 5 Constraints 

Shipman proposes the following forms of constraint specifications: 

1) As an instruction to abort any update transaction which causes failure of a given 

pre-defined condition. For example, consider the following constraint: a department's head 

must belong to the same department. 

This is specified as follows: 

define constraint nativehead (department) -> 
dept (head (department) )=department 

This statement defines a boolean function nativehead which evaluates to true if the following 

condition holds good and false otherwise. and a constraint which instructs the system to abort 

any update transactions which leave the function value false for any department. 

2) As a trigger facility to execute a specified program whenever any update transaction causes 

a given pre-defined condition to be satisfied. For example, consider the following request: 

inform the department head whenever more than 45 students are enroled in a class. 

This is specified as follows: 

define trigger overbooked(class) -> 
count (students (class)) > 45 
sendmessage (head (dept (class)). "overbooked : ", 
name (class) ) 

This statement defines a boolean function overbooked which evaluates to true if the following 

condition holds good and false otherwise, and an imperative which is executed whenever that 

function evaluates to true for any class. 

4. 6 Assessment of Shipman's Proposals 

This section provides a detailed assessment of Shipman's proposals based on the set of 

criteria discussed in section 2.8. 

1) Object orientation: This model makes a clear distinction between entities and names. The 

user is not required to be aware of the mapping from real world objects to values which act 

as tokens for them in the stored data. User-defined names of objects neither act as 

representatives of objects nor do they participate in defining inter-object associations. 

Hence, the referential integrity [Codd 79, Date 81] is guaranteed by the model itself. For 

example, consider the following update request: 

Add CS1 to the set of courses taken by Angela Pearson. 
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This is expressed in DAPLEX as follows: 

for the student such that 
cname(student)="Angela" and sname (student) z"Pearson" 

include course(student) = (the course such that 
title(course) = "CS1") 

The above statement checks that the course entity to be included does indeed exist in the 

database. If it is not present, the update statement is not executed and the user informed 

about the non-existing entity. 

2) Semantic expressiveness: This model organises entities into entity types, which are 

themselves organised in a subtype-supertype hierarchy. Each fact about an object is 

modelled as a function. Hence, semantically this model is highly expressive. For example, to 

a question "what is known about persons?", the functional schema of figure 4-1 provides the 

answer that each person is known to have attributes cname (Christian name), snare 

(surname), and sex. In addition, it provides the information that a person can be a student 

or a staff member. If he/she is a student, the functional schema provides the information 

that he/she attends a set of courses (since course(student) is multi-valued) and belongs to a 

tutorial group (since tutorial (student) is single-valued). If he/she is a staff, the functional 

schema provides the information that he/she teaches a set of courses (since course(staff) is 

multi-valued) and each tutorial is run by a staff member (since staff(tutorial) is single- 

valued), 

student(studentno, cname, sname, sex) 
staff (staffno, cname, sname, sex, room, phone) 
course (courseno, title) 
tutorial (tutonalno, day, time, site, room ) 
lecture (Iectureno, day, time, site, room) 
attends (studentno, courseno, grade) 
belongs (studentno, tutorialno ) 
has (courseno, lectureno ) 
lectures (staff no, lectureno ) 
runs (staff no, tutoriaino ) 

Figure 4-3: Relational Schema for the Student Database 

In contrast with this, consider the relational schema for the same database shown in figure 

4-3. It is not easy to answer the above question "what is known about persons?" just by 

examining the relational schema. Firstly, the information that both students and staff members 

are persons is not present in this schema. Secondly, to find out the relevant facts about, say 

students, one must first identify the token (key) that stands for students and then examine all 

the relations in which that token appears. The correct interpretation of such relationships may 
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become a significant problem if the schema has hundreds of relations with some of the 

entities having compound keys. 

In FDM, extensions of different types can overlap, i. e. , a person entity can belong to both 

student and 'staff types. This corresponds to the various roles objects on the real world play. 

As discussed in Chapter 2, this fulfills an important requirement of information modelling. 

3) Ease of design: It is easy to arrive at a schema using this model. Functions in this 

model represent irreducible relations as defined by Hall et al. (Hall 76a] and Biller (Biller 

79]. Because of this, the information is canonically modelled, i. e. , the application modelled 

as a set of functions in this model cannot be further decomposed, and there is only one fully 

decomposed form to represent any given set of facts in a model of real world. As shown in 

(Biller 79], such irreducible relations avoid the problems of normalisation present in 

record-oriented models. 

4) Neutrality: There is no distinction between attributes and relationships in this model. Both 

are uniformly modelled as functions. It does, however, distinguish entities from relationships, 

but unlike other models which make this kind of distinction, this model allows one to interpret 

a relationship as an entity in its own right and vice versa. For example, consider the 

following schema: 

declare student() ->> entity 
declare course() ->> entity 
declare course (student) ->> course 
declare grade (student, course) -> string 

The relationship between students and courses, defined by the function course (student) can 

however be interpreted as an entity type by the following derived function: 

define enrolment() ->> compound of student, course (student) 

Since the definition of the enrolment() function creates two implicitly defined functions 

student (enrolment) and course (enrolment) functions (see section 4.3), we can treat the 

grade (student, course) function as a property of the enrolment by the following derived 

function: 

define grade(enrolment) -> 
grade (student (enrolment), course (enrolment) ) 

Alternatively, if we had started with the following schema: 

declare student () ->> entity 
declare course o ->> entity 
declare enrolment() ->> entity 
declare student(enrolment) -> student 
declare course (enrolment) -> course 

it is an easy matter to derive the following functions: 
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define course(student) ->> course(e in enrolment 
such that student(e) = student) 

define grade (student, course) -> 
grade(the e in enrolment such that 
student(e) = student and course(e) = course) 
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Thus, we see that this model provides for translation between various semantic 

interpretations. This feature is very useful for providing multiple user views of the same 

database. 

In contrast, some of the semantic models advocate modelling both entities and relationships 

by a similar mechanism [Smith 80a, Codd 79] in order to provide neutral interpretation. For 

example, consider the following object definitions in the Semantic Hierarchy Model of Smith 

and Smith [Smith 80a] : 

def author : com 
name, address,. 

end 
def paper : com 

title, .... . 

end 
def authorship oom 

paper, author 
end 

That is, the relationship between paper and author is modelled by the object authorship, 

which has no correspondence with anything in the real world. Creation of such unnatural 

objects is avoided in the functional model, because the relationship between author and paper 

in FDM is modelled as a base function, 

declare author(paper) -> author 

in one direction, and as a derived function, 

define paper(author) ->> inverse of author(paper) 

in the other direction. Even if the relationship is information-bearing, there is still no 

necessity to model the relationship as an entity because of the multi-argument functions 

allowed in the model. However, FDM also allows to look at a relationship as an entity by 

means of the compound of operation as shown above, if the user so desires. 

5) Operations: It supports a complete set of operations. The data selection is purely in 

terms of logical properties and no knowledge of storage structures is required to formulate 

requests. In addition, the query formulations based on the function application provide a 

natural mode of expressing queries. For example, if s denotes an instance of a student, 

then the expression cname(s) yields his Christian name, and the expression cname(tutor(s)) 

yields the Christian name of his tutor. 

Because of the functional notation, queries in DAPLEX are close to the natural language 

form. For example, consider the following query on the student database of figure 4-1. 
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Which female students attending CS1 course belong to the tutorial group run by Malcolm 

Atkinson? 

This query can be formulated as: 

for each student such that 
sex(student) _ "female" and 
cname(tutor(student)) = "Malcolm" and 
sname(tutor(student)) = "Atkinson" and 
for some course(student) 

title(course) = "CS1" 
print cname (student), sname (student) 

where tutor(student) refers to a derived function as shown in figure 4-1. 

The same query expressed in relational algebra form of ASTRID [Gray 81] for the schema of 

figure 4-3 looks as shown below: 

malcolm staff selected on [cname = "Malcolm" and 
sname = " Atkinson"] projected to staffno; 

malgroups := malcolm joined to runs projected to 
tutorialno; 

female := student selected on [sex = "female"] 
projected to studentno, cname, sname; 

malstuds := malgroups joined to belongs joined to 
female projected to studentno, cname, sname; 

csl := course selected on [title = "CS1"] projected to 
courseno; 

cslstuds := csl joined to attends projected to 
studentno; 

result := malstuds joined to cslstuds projected to 
cname, sname; 

output result; 

The comparison of two formulations clearly shows the conciseness and clarity of the query 

expressed in the functional model. 

Another important point about the functional languages is the possibility of relating databases 

and programming languages through the common concept of function. As discussed in the 

previous chapter, the attempts with the relational model and the CODASYL model have been 

hampered by a lack of such a common concept. 

6) Facilities to specify the derived data: The derived function mechanism in this model makes 

it possible to capture derived data as part of the schema. As discussed in section 2.7.1, this 

has many useful applications. One such use of derived functions is to model procedurally- 

defined relationships. For example, the full name of a person can be defined as a procedure 

define fullname (person) -> cname(person) ++ 11 11 ++ sname (person ) 

Derived functions also serve as an encoding of inference rules. For example, function 

composition shows how two relationships can infer a third as in 
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define tutor(student) -> staff (tutorial (student)) 

or a function infers its inverse as in 

define student (course) ->> inverse of course(student) 
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Another use of derived functions is to break down a complex query into a series of simpler 

steps. For example, consider the following query: 

What are the names of students who take a course taken by Angela Pearson? 

This query formulation can be broken down into a derived function definition and a FOR loop 

statement, as shown below: 

define samecourse(sl in student,s2 in student) -> 
for some cl in course (s1 ) 
for some c2 in course(s2) 
cl =c2 

for the s1 in student such that 
cname(sl) _ "Angela" and sname(sl) = "Pearson" 

for each s2 in student such that 
samecourse (sl, s2) 

print cname(s2),sname(s2); 

In effect, the derived function capability allows application semantics to be encoded into the 

data description, thereby allowing requests to be expressed directly in terms of those 

semantics. 

As discussed in section 4.4, another use of derived functions is to provide for the definition 

of diverse user views. Collections of derived functions can be packaged to present an 

appropriate view of the database to a user. 

7) Facilities to specify constraints: As discussed in section 4.5, this model provides facilities 

to specify constraints. 

8) Ease of evolution: The schemas in this model can gracefully evolve. The functions in this 

model represent irreducible facts and hence represent natural increments to the schema. The 

declare and define statements of DAPLEX allow dynamic additions to the schema, thus 

providing incremental design/update of the database structure. 

9) Freedom from physical considerations: Since the users need not be aware of how the 

functions are implemented, this model provides a complete freedom from physical 

considerations. 

10) Complexity: It uses a minimal number of different terms to describe a database, thus 

minimising the number of terms that have to be learned by users and implemented in the 

system. Hence, it is simple to understand and use. 
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Chapter Five 

Extended Functional Data Model 
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In this chapter we discuss the various facilities of our implementation of the functional data 

model, Extended Functional Data Model ('EFDM) system, We also provide a brief comparison 

of EFDM with the proposed ADAPLEX database management system, currently under 

development at Computer Corporation of America (CCA) [Smith 81, CCA 83]. 

EFOM is an interactive system. Users create, operate, and modify their databases through 

interactive commands. Both the model and the language underlying EFDM closely follow the 

proposals of Shipman. A significant difference, however, is that instead of embedding 

DAPI.EX in a compile-and-run procedural language for a working system, we have formulated 

a self-contained language. The syntax of some of the DAPLEX constructs has also been 

simplified. The database update facilities are enhanced to provide for the explicit movement 

of entities from one entity type to another and explicit deletion of entities from the database. 

Schema modification facilities include the explicit deletion of functions. 

A number of new features have also been added to provide many useful facilities such as 

checks for schema consistency, defining and using views, loading bulk data from the operating 

systems, naming and storing user queries, transferring the results of queries to the operating 

system files etc. 

A brief description of these modifications and extensions is given in the following sections. 

More detailed information about EFDM can be found in the user manual [Kulkarni 83]. A 

summary of the EFDM syntax appears in Appendix B. 
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5. 1 Structures 

As in Shipman's proposals, EFDM models the real world information as sets of entities and 

functions mapping entities to entities. Likewise, entities have types which are arranged in a 

type hierarchy, so that they are all subtypes of the type entity. Functions can again have 

zero, one or more arguments and a function may be single-valued or multi-valued. Subtypes 

inherit functions defined on their supertypes. A function which is represented by physically 

storing a table of arguments and results is called a base function and a function introduced by 

an algorithm to compute its result is called a derived function. 

We have made two changes to Shipman's proposals as far as data model constructs are 

concerned. They are as follows: 

1. Unlike Shipman's proposals, single-valued functions in EFDM are assumed to be 

partial by default. This has two advantages: a) it is possible to accommodate 

objects for which some data is not known, and b) inverses of functions can be 

freely defined even if they are only defined on a subset of an entity set. 

2. Shipman allows the arguments of functions to be arbitrary expressions. The 

reason for this seems to be the problem of handling multi-argument functions with 

entity types as arguments, as such functions may not be well defined for all 

combinations of argument entity sets. Hence, by adopting expressions as 

arguments, one can use them as constraints on the possible combinations of 

argument entities, i.e., the function is defined for only those entities evaluated 

by the corresponding expressions. In contrast, the arguments of functions in 

EFDM, if any, must all be entity types. Since functions in EFDM are allowed to 

be partial, entity types acting as arguments for multi-argument functions do not 

cause any problems. However, the fact that the function should possess values 

for only a subset of the cross-product of argument entity sets can be 

accommodated by specifying it as an explicit constraint. (See section 5.5) 

5. 2 Operations 

EFDM provides operations corresponding to data definition, data manipulation, I/O, and 

general-purpose computation. Data definition and data manipulation operations essentially 

correspond to those provided in DAPLEX. In addition, EFDM supports arithmetic, string 

manipulation, and boolean operations as well as recursion for defining derived functions. 

EFDM provides print and output statements for output operations and a bulk load facility for 

inputting data from the operating system files [Kulkarni 83], 

In contrast, DAPLEX limits itself to data definition and data manipulation operations. 
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Shipman envisages embedding DAPLEX in a general purpose high-level language to provide 

these facilities, There are two possible criticisms of this approach: 

1. There is a considerable mismatch between the normal programming language 

objects and the DAPLEX objects. The programming language objects are 

characterised by a value and a structure. In contrast, DAPLEX objects have 

neither a value nor a structure. They are atomic units which gain definition from 

their relationships with other objects. In fact, they can exist independently from 

such relationships. Because of this, DAPLEX entity types do not serve the same 

purpose as normal programming language types. Hence, embedding DAPLEX in an 

algol-like languages violates the principle of data type completeness [Strachey 

67]. This is sure to result in a complex language. 

2. DAPLEX programs are predominantly applicative or functional in style. Hence, 

embedding DAPLEX in a procedural language is sure to result in two different 
styles of programming in the same language. 

5.2.1 Data Definition 

The data structure of an application is described in the form of function definitions using 

declare and define statements. The declare statement is used to enter a new base function 

or entity type definition and the define statement is used to enter a new derived entity type 

or function. Like DAPLEX, we allow the individual function declaration statements to occur at 

any time. In addition to entity, three primitive types: string, integer, and boolean are 

supported, 

5.2.2 Maintaining Schema Consistency 

As each new fact is added to the schema, it is necessary to make sure that it is not 

inconsistent with the existing information in the database. One possible reason for 

inconsistency in the functional schemas is due to the failure on the database designer's part to 

ensure that the same fact is not described by more than one base function, For example, 

assume that there exists a base function 

student (course) ->> student 

Suppose now the user intends to add another function 

course(student) ->> course 

If, in reality, this function is the inverse of the old function, adding it as a base function will 

mean that the same fact is represented by two independently updatable functions, and this 

will surely lead to inconsistencies in the database, On the other hand, if the new function 
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corresponds to a new fact, say relating to the major courses taken by a student, it is to be 

added as a base function. 

Since there is no way for the system to infer what is intended, EFDM checks with the 

user/designer to confirm all base function addition requests. For instance, suppose that the 

user intends to add a base function 

tutor(student) -> staff 

between the student and staff types, where the only functions relating these types are as 

shown in the entity diagram corresponding to figure 5-1. If we consider the entity diagram 

as an undirected graph with the entity types corresponding to nodes and functions 

corresponding to edges, various paths between any two nodes correspond to all the existing 

base and derived functions that directly relate the corresponding two types and the possible 

implicit functions relating the two types that can be derived using function inversion and 

composition. In the present example, various paths between student and staff nodes are listed 

below: 

course (student), inverse of course(staff) 
tutorial (student), staff (tutorial) 

That is, there are no functions that directly relate the two types, but there are two possible 

implicit paths. 

The user can examine the two "paths" and see whether the new function he intends to add 

corresponds to any of these "paths". For example, the user may discover that the new 

function corresponds to the second path, i. e. , the composition of tutorial(student) and 

staff(tutorial) functions. He can then abort the earlier request and define it as a derived 

function. On the other hand, if he is sure that the new function does not correspond to any 

of the "paths", he can let the function addition proceed as base function. 

Thus, EFDM helps the database designers to avoid inconsistencies in the schema by 

encouraging them to examine whether each new information that enters the system is 'initial' 

or whether it can be derived from other information that already exists. This kind of 

exploration also enhances the user understanding by stimulating and generating questions as 

to how the reality is abstracted and which assumptions are made. Many incomplete and 

inconsistent assumptions are thereby detected leading to a more valid and consistent model. 
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course course 
course 

student staff 

tutorial staff 
tutorial 

Figure 5-1: Partial Entity Diagram for 
Student Database 
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5.2.3 Schema Updating 

Shipman's proposals are limited to the addition of new functions only. However, users may 

also want to drop existing functions if they are no longer interested in maintaining them. For 

this purpose, we provide drop statement. For example, to drop the course(student) function, 

we use: 

drop course (student); 

To avoid inconsistencies, drop may cause cascade deletion of functions that depend on the 

function being deleted. Prior to executing the request, the user is provided with a list of 

such implicit deletions and confirmation is sought to proceed with the execution. 

5.2.4 Meta Data 

The meta data of the schema corresponding to an application is held in a set of EFDM 

functions shown in figure 5-2, These functions are automatically populated and modified when 

declare, define or drop statements are processed. Only the document function may be 

explicitly updated by the user. The contents of these functions can be retrieved with the usual 

retrieval statements. So a user may use such queries to discover the form of a database. To 

facilitate this the functions given in figure 5-3 are defined, 

function ( ) -> > entity 
name (function) -> string 
arguments (function) -> > function 
result (function) -> function 
type (function) -> string 
status (function) -> string 
text (function) -> string 
document(function) -> string 

Figure 5-2: The functions to hold meta data of a schema 

5.2.5 Data Selection and Retrieval 

As in DAPLEX, FOR loop statements and expressions are the basic constructs for data 

retrieval. However, there are some differences between the two, 

One difference is about the variable declaration associated with set expressions, DAPLEX 

provides for an implicit variable to be associated with every set expression. The translator 

then decides whether a name refers to a set (entity type) or an instance (variable), We 
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entitytype ( ) 

supertype (en titytype ) 
supertypes (en ti tytype ) 

subtype (entitytype) 

subtypes (entitytype) 

fnsover (entitytype ) 

fnsyielding (entitytype ) 

-> > f in function such that 
nargs (f) 

-> resuit(entitytype) 
-> > transitive of 

supertype (anti tytype ) 
-> > e in entitytype such that 

result(e)= entitytype 
-> > transitive of 

subtype (entitytype) 
-> > f in function such that 

nargs(f) -= 0 and 
some e in arguments(f) has 
(e = entitytype or 
some el in 
supertypes(entitytype) has 
e=el ) 

-> > f in function such that 
nargs(f) -= 0 and 
result (f) = entitytype 

Figure 5-3: The derived functions for querying meta data 

have removed this name overloading and made it compulsory to specify a variable explicitly for 

every set expression by means of the in operator. 

Another syntactic change from DAPLEX is the avoidance of the use of the for keyword for 

expressing quantified set expressions. In EFDM, the keyword for is used for FOR loops only. 

Quantified set expressions are specified by the following syntax, 

quant set (hasihave) singleton 

where the singleton following has or have evaluates to a boolean result and quant is any one 

of the following quantifiers: some, all, no, at least, at most, or exactly (last three 

quantifiers must be followed by a singleton evaluating to an integer result). For example, 

consider the following query used in the previous chapter: 

Find the Christian name and surname of all the students taking the IS1 course. 

This is expressed using the revised syntax as follows: 

for each s in student such that 
some c in course(s) has 
csnumber(c)="IS1" 
print cname(s),sname(s); 

Also, EFDM allows the following operators to combine set-valued expressions. (In DAPLEX, 

these set operators are allowed for defining derived functions only. ) 

union for set union 
intersection for set intersection 
difference for set difference 
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In addition, EFDM allows arithmetic, string, and boolean operations. The following 

arithmetic operators with usual precedence rules are allowed to combine integer-valued 

expressions: 

+ for addition 
- for subtraction 
* for multiplication 
rem for remainder 

There is only one string operator ++ defined on string-valued expressions. It concatenates 

the two operand strings to form a new string. 

The following boolean operators are allowed to combine boolean-valued expressions: 

and, or, not 

Relational operators ( <, <=, >, >=, _, "_) are allowed between singleton expressions 

only. The first four operators are allowed for integer- or string-valued expressions only. 

5.2.6 Packaged Queries 

A query can be named by preceding the query statement with 

program programid is 

For example, the following statement 

program females is 
for each p in person such that sex(p)= 
print cname(p), sname(p); 

assigns the name females to the corresponding query. Such a named query can be executed 

any time by typing its name in response to the system prompt. 

The information about currently defined queries is held in pre-defined EFDM structures. 

These are shown in figure 5-4. 

query () -> > entity 
name (query) -> string 
text(query) -> string 

Figure 5-4: The functions to hold meta data for queries 

These can be queried using the above data retrieval facilities. For example, to list all the 

existing query definitions, we can use 

for each q in query 
print text (q) ; 
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Any existing query can be removed using the drop statement. For example, the following 

statement, 

drop females; 

removes the above query definition. 

5.2.7 Displaying the Results 

The print statement is used to display the results. This has the following syntax: 

print singleton { singleton } 

where each singleton expression yields printable entities, i.e., strings, integers or boolean 

values. 

The results of a query normally appear on the screen. It the results are to be stored in a 

file, it is necessary to package the query using the program statement as above. The 

command 

output programed filename; 

executes the query, creates a file with the specified name and directs the output to that file 

instead of the screen. 

5.2.8 Database Updating 

As in DAPLEX, the update facilities in EFDM include the creation of new entities and 

assigning or modifying function values. However, unlike DAPLEX, EFDM provides operations to 

move entities from one entity type to another. In other words, EFDM allows extending or 

reducing the set of types for a given entity. This kind of facility is necessary in cases, say, 

the user has created a person entity and that person becomes a student at some later date, 

or the user has created a student entity and that student ceases to be a student at some 

later date. 

Again, unlike DAPLEX, EFDM allows explicit deletion of entities from the database. DAPLEX 

assumes that entities get effectively deleted when the users take away all references to it. 

However, in our experience the users are often interested in the opposite, i. e. , specifying 

an entity deletion in one step so that the system removes all references to it automatically, 

In addition, unlike DAPLEX, EFDM does not insist that values for all single-valued functions 

applicable to an entity be provided with values at the time of its creation itself. This is 
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because the functions in EFDM are assumed to be partial by default. However, to be able to 

assign values at a later time, it should be possible to identity the newly created entity. 

Hence, at least one function (or a group of functions) must be populated which distinguishes 

that entity from all the existing entities in that type. 

5.2.8.1 Extending the set of types of an entity 

The syntax for including an existing entity into the extension of a specified entity type is the 

same as that used to include entities into multi-valued function extensions. For example, to 

include a student with Christian name 'John' and surname 'Smith' into staff type, we use 

include staff = {the s in student such that 
) cname (s )="John" and sname (s) ="Smith" 

5.2.8.2 Reducing the set of types of an entity 

The syntax for this case also is the same as that used to exclude entities from the 

multi-valued function extensions. For example, to exclude the student with Christian name 

'Moyana' and surname 'Johns' from the staff type, we use, 

exclude staff = {the s in student such that 
cname (s )="Moyana" and sname (s)="Johns") 

Excluding an entity from the extension of a type results in removing its reference from the 

extensions of all subtypes of that type, if any, and from all functions in which it is 

participating either as an argument or result. Hence, before carrying out the operation, a 

list of these implicit updates is displayed and the user is asked to confirm the request. 

It is to be noted that excluding an entity from the extension of an entity type which has 

other user-defined supertypes only removes a specialisation of that entity and the entity itself 

continues to exist in the database. For example, the above operation only removes the 

specified entity from the staff type, while the entity itself continues to exist in the database 

as student entity. Removal of an entity from the extension of an entity type which has no 

other user-defined supertypes results in deleting that entity from the database itself. The 

same effect can be achieved by delete syntax described below. 

5.2.8.3 Entity Deletion 

Entities can be deleted using 

delete singleton 

which deletes the specified entity and causes a cascade deletion of all functions which 

reference this entity and all its subtype entities, again consulting the user before the cascade 
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proceeds. For example, to delete a student with Christian name 'Moyana' and surname 

'Johns' from the database, we use 

delete the s in student such that 
cname(s) = "Moyana" and sname(s) _ "Johns"; 

The difference between this statement and the exclude statement is that while exclude 

removes a specified entity from the specified type and its subtypes, delete removes a 

specified entity from the specified type, its subtypes and its supertypes. 

5. 3 Derived Functions 

As in OAPLEX, derived functions are defined using define statements. However, there are 

two differences: 

1. EFOM provides the union, intersection, and difference as general set operators, 

instead of being specific to defining derived functions; 

2. EFOM allows recursion while defining general-purpose derived functions. For 

example, we can define functions like: 

define power(i in integer, i in integer) -> 
if lO then 1 

if i>0 then i*power(i, i-1); 

5.4 User Views 

EFOM provides a view mechanism which while providing a different perspective of the global 

information, also acts as an authorisation mechanism. Using this mechanism a central 

database administrator who has access to the entire database can define different overlapping 

user views. The underlying assumptions of this mechanism are: 

1. There exists a global view from which all user views are derived. That is, we 

assume the structure and contents of this global view are arrived at by integrating 

the different application views to one common community view. 

2. The global view encompasses all the information required by all the users. If 

certain information required by a user is not in his view, he must request a 

central authority (database administrator) to include it in his view, who will, in 

turn examine whether the information requested by him is already available in the 

global view and if not, he will take steps to include it in the global view and then 

include it in the user's view. 

Views are defined using deduce statements. For example, for the student database of 

figure 4-1, we can define a view called malestudents as 
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view malestudents is 

deduce male () -> > entity using student 
such that sex (student) ="m" 

deduce name(male) -> string using name(student) 
end 

All functions introduced by deduce are treated as derived functions. Notice that deduce is 

used to define view functions instead of define. This is because view function definitions 

involve change of name space; names before the using keyword refer to names in the local 

name space whereas names after the using keyword refer to names in the global name 

space. In fact, every view definition automatically creates a different name space, which is 

completely independent of the global name space as well as the name spaces of other views. 

The users of a particular view are not allowed to see the global name space or the name 

spaces of other views. 

Views can be dropped with the 

drop viewname 

command. 

The information about currently defined views is held in pre-defined EFOM structures. These 

are shown in figure 5-5. 

view O -> > entity 
name (view) -> string 
context(view) -> view 
text (view) -> > string 
password (view) -> string 
document(view) -> string 

Figure 5-5: The functions to hold the meta data for views 
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5.4.1 Operations from Views 

On initiating the system, the user is prompted for the view name, which is in effect a 

password. If the view corresponding to the user-specified name exists in the database, the 

name space corresponding to that view is made available to the user. If the view 

corresponding to the user-specified name does not exist in the database, a message is given 

to the user and the session is terminated. The user can then request the central database 

administrator to create the view. 

Once within a view, users can pose the usual EFDM requests to carry out the database 

operations using the names available in their name space. Each query statement issued from 

a user view is translated into a corresponding query on the global name space by recursively 

applying the view definition mapping. 

Since all the functions in a view are treated as derived functions, updating through view 

functions is allowed only if procedures for updating the corresponding global data are provided 

for each view function. Shipman's proposals in this regard are incomplete in the sense that 

they cover only those cases in which a view update results in a single update action on stored 

data. In general, the situation is more complicated and a view update may result in multiple 

updates on stored data. For example, creation of new entities from views may result in 

creation of new entities in the global view with simultaneous updates on some function values. 

To handle this case, the language needs a construct to specify the execution of group of 

statements executed in a particular order. Hence, presently updating through views is not 

allowed. 

The only schema changes that are allowed from a view are either defining derived functions 

from the set of functions they are allowed to have access to or dropping the derived functions 

they have created. This is in keeping with the assumption that the global view has all the 

information required by different users. This means that the individual users are not allowed 

to introduce any base functions or stored data of their own. 

5. 5 Constraints 

The management of the semantic integrity of a database has four components: 

1. Expression of constraints: This is usually done as assertions that apply to the 

database. An assertion also includes the qualification of the units of data, or 
variables to which the constraint applies. Variables are qualified by the conjunction 
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of their type and values. A qualification may specify one or more or all instances 

of a type. 

2. Checking for constraint violations: The database integrity is potentially threatened 

by every update, and therefore, every update is associated with some checking. 

3. Maintenance t. e. , enforcement) of constraints: The maintenance of constraints 

usually consists of rejecting or undoing updates which cause violations or of 
performing further updates to compensate for the faulty ones. 

4. Reporting constraint violations: The reporting of constraint violations involves 

informing the user details about entities that fail to meet a particular constraint at 

the time of its specification or about constraints that are violated as a result of 
particular update action. 

Shipman's proposals include a few tentative suggestions on how to specify the constraints, 

but these are not exhaustive. In what follows, we report our investigations on identifying an 

useful set of constraints. However, we have not been able to implement a general constraint 

handling facility and hence, no definite syntax is proposed to specify these constraints. 

5.5.1 Constraints on entity identification 

For a given database, the users may be interested in distinguishing individual entities so 

that they can refer to an entity in an unambiguous manner. This can be specified as an 

integrity constraint. This is in contrast to some of the existing data models where the object 

identification mechanisms are made part of the conceptual structure itself, e.g., the concept 

of key in relational model. In some of these models, once specified in the conceptual 

structure, the users cannot drop or change these specifications. 

In FDM, an object can be identified by a group of function values taken together. Thus, 

certain sets of functions associated with a given entity type can be designated as unique, 

i. e. , no two entities of that entity type can have the same combination of values for those 

functions. In practice, there may be more than one set of such functions which uniquely 

designate the objects of that type. For example, employees in an organisation may be 

uniquely identified both by their employee numbers and national insurance numbers. 

Since subtypes inherit all the functions associated with their supertypes, it follows that if an 

entity type has unique functions specified for it, all its subtypes also inherit those unique 

functions. Hence, it is not necessary to specify unique functions for any of the subtypes of a 

given entity type. However, the users may optionally define additional sets of unique 

functions for some or all subtypes of a given entity type, 
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It is not necessary that all entity types in the database have unique functions specified for 

them. In case an entity type has no unique functions specified for it, the objects belonging to 

that entity type cannot be directly distinguished. However, they may be indirectly 

distinguished by their association with other objects. To refer to such objects, the users may 

have to go via their associated objects. 

5.5.2 Constraints on entity associations 

There are two cases of such types of constraints. These are: 

1. It is often the case that every object belonging to an entity type must, at all 

times be associated with another object in the database. For example, an 

employee must always belong to a department. These constraints can be modelled 

by specifying the corresponding functions as total, i.e., these functions must be 

provided with values (not necessarily distinct) for each entity belonging to their 
argument types. 

2. In general, extensions of different entity types can overlap. There may be cases 

when such overlap is not permitted. For example, when no constraint to the 
contrary exists, a given person entity can have both student and staff types 
simultaneously. It this is not acceptable, it can be prevented by a corresponding 
constraint which specifies them to be disjoint. 

5.5.3 Constraints on the values of the functions 

There are two cases for such types of constraints. These are: 

1. Certain functions may be constrained to have fixed values, i. e. , the function 

value for a given entity can only be assigned at the time it is created and this 
value cannot be changed throughout the life time of that entity. For example, an 

employee's employee number can only be assigned at the time of hiring him and 

cannot, in general, be changed during his employment. 

2. Certain functions may be constrained to have certain values or range of values for 

every argument value. For example, consider the following constraints: 

a. A department's head must belong to the same department. 

b. The salary of an employee must be greater than a certain prescribed 

minimum and be less than a certain prescribed maximum which depends on 

his status. 

c. The course entity in the multi-argument function grade(student, course) 
must correspond to those provided by the course(student) function. 



Extended Functional Data Model 81 

Such constraints can be expressed as general predicates associated with the 
corresponding functions. 

5.5.4 Constraints on cardinality 

This type of constraint specifies the number of possible values for the population of entity 

types and multi-valued functions. For example, there may be a constraint that the number of 

managers must be less than the number of non-managers, or the number of courses a 

student can take must be a minimum of 3 and a maximum of 5. 

5.5.5 Constraints on existence 

This type of constraint specifies that certain objects exist in the database only if some other 

objects also exist. For example, there may be a constraint that the details about an 

employee's children can exist in the database only if the details about the corresponding 

employee exist in the database, or the jobt,tle attribute of an employee can exist only if he is 

assigned to a department etc. 

5. 6 Comparison with ADAPLEX 

ADAPLEX is the proposed Ada-compatible database management system which supports a 

composite language called ADAPLEX [Smith 81, CCA 83]. ADAPLEX is an embedding of a 

subset of DAPLEX into the language ADA [ichbiah 79]. In choosing ADA as the host 

language, ADAPLEX hopes to exploit the modules, tasks, and generics etc, of ADA to provide 

some of the encapsulation needed for supporting a number of concurrent users. 

For specifying the database structure, ADAPLEX adds two new type constructors to ADA. 

These are: set types and entity types. A set type encapsulates the mathematical notion of a 

set. An entity type is similar to an access-to-record type, in that, it has named components 

and may be created dynamically. However, unlike the access-to-record type, each 

component of an entity type is designated by an entity function. An example of an entity type 

declaration in ADAPLEX is: 

type person is entity 
name : STRING (1. .30); 
age : INtEGER 
phone: set of STRING (1..11); 

end entity; 

In an earlier specification of ADAPLEX [Smith 81], the subtype relationship between entity 
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types was specified by the contain statement and the extent overlap among entity types was 

specified by the share statement. For example, 

contain staff in person; 
contain student in person; 
share staff with student; 

specifies that both staff and student are subtypes of person type, i. e. , both staff members 

and students are persons and some staff members may also be students and vice versa. In 

this version, when there was no specific overlap between two entity types, the two types 

were constrained by default to be disjoint (i . e. , non-overlapping). 

In the latest specification of ADAPLEX [CCA 83], the above declarations would be written 

as: 

subtype staff is person; 
subtype student is person; 
overlap staff with student; 

In addition, the new version specifies that the collection of subtypes for a supertype must 

cover their supertype, i. e. , an entity value belonging to a supertype must also belong to one 

or more of its subtypes. 

ADAPLEX has also introduced new constructs for specifying uniqueness constraints. A 

uniqueness constraint specifies, for a particular entity type or subtype, a collection of 

components whose values are conjointly unique in every value of that type or subtype. A 

given entity type can have zero, one, or more uniqueness specifications. 

Data manipulation constructs in ADAPLEX closely follow those of DAPLEX with some minor 

modifications. 

Compared to the approach adopted in EFDM, we can list the following problems with 

ADAPLEX approach: 

1. Problems with the data model: Firstly, in order to make the entity type 

definitions compatible with ADA type definitions, ADAPLEX has made a substantial 

change in the semantics of the DAPLEX entity types. In complete opposition to 

the spirit of DAPLEX, the entity functions cannot be introduced dynamically in 

ADAPLEX. Secondly, the lack of multi-argument functions in ADAPLEX means 

that it is necessary to adopt the excess entity approach used in the CODASYL 

model to model n-ary relationships. Thirdly, it is rather strange to insist that a 

supertype must be covered by its subtypes. This prevents the accommodation of, 

say those persons who are neither staff members nor students if staff and student 

are the only subtypes of person entity type. Fourthly, ADAPLEX does not support 

the derived function mechanism. As we saw earlier, the functional approach 

gains considerable modelling power by means of the derived function mechanism. 
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By failing to exploit this, ADAPLEX falls short of the modelling power achieved in 

EFDM. 

2. Lack of data type completeness: In ADAPLEX, all database types, type 

constructors and operators become available in the ADA language, but the inverse 

is not entirely true. For example, ADAPLEX allows the construction of sets of 

entities, strings, and scalar types but prohibits the construction of sets of objects 

of any other type. Though the Ada access-to record types took much like 

database entity types, the semantics of the two are entirely different. First, 

each entity type is associated explicitly with the collection of dynamically created 

objects of the type. Second, entity types are allowed a much richer subtype 

structure than access-to-record types. Third, a strong discipline is imposed on 

the components that entity types may contain. The language contains a number 

of such exceptions and special rules. Because of this, it is a complex and 

confusing language. 

3. Different styles in the same language: As an example of this, consider the 

syntax for accessing the component attribute of an entity. Though the syntax for 

entity type declarations is clearly based upon that for access-to-record 
declarations, the syntax for accessing a component attribute of an entity is based 

upon the DAPLEX syntax. For example, the name field of an entity p of the 
person type defined above would be represented as: 

name (p) -, 

rather than as 

p. name; 

In addition, since the underlying data types of ADA are not obviously amenable to 

the DAPLEX function and set operators, it will not occur to most programmers 

that many of the procedural forms of Ada could be replaced by DAPLEX 

statements. 
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In this chapter, we discuss issues connected with the implementation of EFDM. First, we 

provide a brief history of the activities leading to the choice of the persistent algorithmic 

language, PS-algol [Atkinson 81a, Atkinson 83a, Atkinson 83b] as the implementation 

language for EFDM. We then present the software architecture of the implementation 

followed by a short discussion of the particular implementation strategy we have chosen and 

the problems that arise due to large volumes of data. 

6. 1 Brief History 

The implementation of the functional data model started with the development of a prototype 

supporting almost all the basic concepts of the functional data model and a substantial subset 

of the DAPLEX. It was developed using the PASCAL language [Wirth 71]. This 

implementation provided an interactive user interface, using which users could enter base or 

derived functions, populate the base functions with data using update statements, and retrieve 

and display the data from the database using FOR loop statements. Access to meta data was 

also provided by a special set of pre-defined functions (see 5.2.4), which users could query 

using the usual FOR loop statements. 

In this version, all the data structures were core based and hence, there was no provision 

to support persistent data. In order to support persistent data, an attempt was made to 

interface this system to an existing low-level persistent data space management system called 

Chunk Management System (CMS) [Atkinson 83c]. CMS is a set of routines that manage a 

large disk-based heap upon which variable size chunks of untyped data may be securely 

stored. It provides the atomic operations of creating, writing, reading, extending, or deleting 

a chunk of storage. It also provides a secure multi-user transaction facility to effect these 

atomic operations. 
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By providing a machine and operating system independent environment, the CMS simplifies 

the task of implementing database management software. However, CMS does not record any 

structural information associated with the data and it is the programmer's responsibility to 

ensure type consistency and provide adequate structural transformations. 

At the same time, the work of the Data Curator Group resulted in the persistent algorithmic 

language, PS-algol [Atkinson 81a]. By abstracting the storage management, PS-algol allows 

one to treat all data as though it is in the main store. Because of this, there is no necessity 

for programs written in this language to explicitly interface with a low-level data handler. 

This made it unnecessary to continue the above implementation strategy and the system was 

completely re-written in PS-algol language. Another consequence of switching over to PS-algol 

was the significant reduction of the source code (about one third) compared to the earlier 

PASCAL version. Reduced code volume meant reduced coding times and this had a better 

than proportional effect on debugging times. 

The following section decribes this language in more detail. 

6. 2 PS-algol Language 

PS-algol is an algol-like language derived from the strongly typed programming language 

S-algol [Morrison 79]. S-algol stands somewhere between Algol W [Wirth 66] and Algol 68 

[van Wijngaarden 69]. It was designed using three principles first outlined by Strachey 

[Strachey 67] and Landin [Landin 66]. These are: 

1. The principle of correspondence. 

2. The principle of abstraction. 

3. The principle of data type completeness. 

S-algol data types comprise of the usual scalar types, vectors and structures with any 

number of fields, and any data type in each field. However, the unusual features of the 

S-algol language universe of discourse are that it has strings as a simple data type [Morrison 

82a], pictures as compound objects [Morrison 82b] and run time checking of structure 

classes. Because of the last facility, a pointer may roam freely over the world of structures, 

i. e. , a pointer is not bound to a structure class. However, when a pointer is dereferenced, 

a run time check occurs to ensure the pointer is pointing at a structure with the appropriate 

field. S-algol provides the operators is and isnt to check the class referenced by a pointer. 
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In addition, S-algol identifier declarations are initialising, i.e., the programmer must specify 

the initial value for an identifier at the time of its declaration. By forcing the user to specify 

an initial value one type of error, that of an uninitialised name, is completely eliminated. 

Another useful feature of the language is that a programmer may specify whether the value of 

an identifier is constant or variable. A constant may be manipulated in exactly the same 

manner as a variable except that it may not be updated. 

Syntactically, PS-algol is exactly identical to S-algot. However, the mayor difference 

between the two languages is the way they manage the heap provided for automatic storage 

management facilities. The S-algol heap contains only transient data whereas the PS-algol 

heap may contain some persistent data. That is, the data defined on the S-algol heap is lost 

when the program terminates. If a data structure built upon the heap is to be preserved until 

another run of the same program, or used in a different program, the data must be 

converted to some other representation and output to a file. In contrast, PS-algol supports a 

persistent heap on which a data structure built in one run of a program may be preserved to 

be used in other runs of the same or other programs. 

The persistence of the data in PS-algol is achieved by storing that part of the heap 

identified as persistent in a database with its type and pointer structure intact. The means of 

identifying persistent data in PS-algol is the same as those used in languages like S-algot for 

identifying limited data persistence during the run of a program, viz., data reachability. In 

these languages, garbage collection preserves all data that is reachable from some other 

data. PS-algol extends this principle by introducing a new origin for the transitive closure of 

references, under explicit user control, which differentiates persistent data and transient data. 

Thus when a transaction is committed, it is possible to identify a root ob)ect from which all 

persistent data is reachable. Hence the preservation of data is a consequence of arranging 

that there is a way of using that data. 

The movement of persistent data between main store and backing store is handled by the 

PS-algol run-time support system. On the first dereference of a pointer to a structure 

containing persistent data, that structure is copied to the heap from the secondary storage, 

possibly carrying out minor translations. Thereafter it is operated on by the same mechanism 

as for any other data on the heap. When a transaction is committed, all the data on the heap 

that is reachable from the persistent ob)ects used during the transaction are transferred back 

to the disk. 
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This feature makes it possible for PS-algol to provide persistence as an orthogonal property 

of data and further simplifies the provision of access to persistent data. PS-algol also 

provides a library of routines to manipulate special structure classes called tables. A table is 

an ordered set of pairs. Each pair consists of a key and a value. A key may be an integer or 

string value, and the value is a pointer to a structure instance or table. The set of 

procedures to manipulate the tables include creation of an empty table, storing a pair, a 

mechanism for associative lookup implemented as B-trees [Bayer 72] or equivalent 

algorithms, and iteration over tables. 

The following two programs illustrate some of the facilities of PS-algol. 

The first program uses the PS-algol tables facilities to create a database of persons. The 

database is created as a PS-algol table structure with the person's name as key and a 

structure containing the name of a person's manager and his salary as the associated entry. 

! Declare structure class "person" 
structure person (string manager; int salary) 

!create the database as a table 
let person. db table 
let name "" 
let finished : = false 
while - finished do 
begin 

let p person (I'll, 0) 
write " Name : "; name = reads 
write " Manager: "; p (manager) reads 
write " Salary : "; p (salary) readi 
write "'n More persons (y/n) ? " 
finished := read "_ "y" 
!enter p into the database with name as the key 
enter (name, person, db, p) 

end 
structures accessible from the root table 
are made persistent; so enter person.db 
into root table. 

enter ("Persons", root. table, person. db) 
!end of transaction, 
commit 

The next program, given the name of a person, retrieves the name of his manager, his 

manager's manager, etc. 
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structure person (string manager; int salary) 
! get the persons table from the database 
let person. db := lookup ("Persons", root. table) 

procedure print.manager (string name) 
------------------------- 

begin 
let p = lookup (name,person.db) 
if p = nil 

then write "'nManager of ",name," not found" 
else 
begin 

write I"nManager of ",name,": ", p(manager) 
print. manager (p(manager) ) 

end 
end 

!Main Program 
write " Name of person: 
print. manager (reads) 

88 

Compared with ordinary high level languages, PS-algol offers the following attractive benefits 

for implementing applications involving persistent data, such as database management 

systems: 

1. In conventional implementations of database management systems, a major part of 

the code is devoted to organising data movement. In contrast, the programmers 

using PS-algol never explicitly organise data movement; it happens automatically 

when they try to use data. Because of this reason, source code volumes are 

much reduced. Reduced code volumes imply reduced coding times as well as 

reduced debugging times. All of this leads to the possibility of implementing a 

complex system like a database management system in a much shorter time than 

hitherto was possible and more importantly, with much less effort. 

2. In conventional implementations of database management systems, much space 

and time is taken up by code to perform translations between the program's form 

of data and the form used for the long term storage medium. In addition, the 
data type protection offered by the programming languages on its data is often 
lost across the mapping. Both these problems are solved in PS-algol because 

both the type and structure of the data is preserved in its persistent heap. 

3. Often in a conventional system, to simplify program structure, large portions of 

data are transferred and translated, prior to any data being used. This results in 

redundant I/O and data translation in both directions which is a significant 

overhead if a small part of a large data structure is being read or changed. This 

does not happen with PS-algol. 

4. In a traditional system, every access to database items passes through many 

layers of subroutine calls and mappings. This increases the execution time 
considerably. PS-algol avoids such layering costs as the first use of a data item 

automatically brings it to the heap in the right form for the current program. 
Thereafter, access is direct. 
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5, In traditional DBMS implementations, data movement is organised separately from 

the programs accessing the data. To increase the probability that related data is 

still in the buffer pool, such systems mainly depend on statistically based 

disk-buffer caches, Often this is not effective enough, In contrast, PS-algol 

collects only the actively required data, thus giving better control on the data 

movement. In addition, as the user behaviour usually has only a slowly shifting 

focus of interest, it is probable the collection of data on the heap will have a 

high relevance to the present computation. 

The above five factors coupled with the fact that PS-algol is the only implemented persistent 

algorithmic language, and we wished to evaluate it, were instrumental in deciding to choose it 

for implementing EFDM. 

6. 3 Architecture of EFDM 

The block-diagrammatic representation of EFDM implementation is shown in figure 6-1. 

User requests formulated using the EFDM syntax go through the lexical analysis and the syntax 

analysis phases. The syntax analyser produces a syntax tree for each successfully analysed 

statement, In addition, it handles all schema modification requests by issuing appropriate 

calls to the database handler to manipulate the underlying data structures. Other types of 

requests, i.e. data retrieval and update requests, are passed down to the interpreter. The 

interpreter traverses the syntax tree formed by the syntax analyser issuing calls to the 

database handler whenever interaction with the database is required. The database handler 

provides storage and retrieval facilities for all the data stored in the system, This includes 

both user data and system data such as meta data. 

The lexical analyser, syntax analyser, interpreter, and the database handler are all written 

in PS-algol language. Appendix 4 gives a list of routines that constitute the database 

handler. Because the PS-algol language itself takes care of the run-time movement of data 

between secondary store and main store, the database handler routines manipulate the data 

structures as though all data is in the main store. Consequently, the complexity of the 

database handler is much reduced, 
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Figure 6-1: Block Diagram of EFDM 
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6. 4 Data Structures 

The data structures to implement the data model essentially fall into one of the following 

four categories: 

1. Representation of individual entities. 

2. Representation of sets of entities. 

3. Representation of entity type hierarchy. 

4. Representation of functions mapping entities to entities. 

It is the choice of data structures for representing functions which is most important. The 

efficiency of the implementation critically depends on how the function values are stored and 

how the function values for a given entity are evaluated. In addition, it is imperative that 

entities are internally identifiable irrespective of how they are identified externally. Therefore, 

the implementation must have a mechanism which assigns a unique entity identifier to each 

entity upon creation. 

In the PASCAL version, the entity identifiers were integer numbers, assigned and 

maintained by the system and each function was stored as a binary or n-ary relation consisting 

of such entity identifies. Though this makes it easy to accommodate schema changes, it 

suffers from an excessive storage overhead. For example, if there are ten binary functions 

applicable to an entity , the entity identifier must be stored in all the ten binary relations. In 

addition, it results in an overly fragmented database and since it is frequently the case that 

values for multiple functions applied to the same entity are often needed together, this has 

an adverse effect on performance of the system, 

Hence, we have adopted a different implementation strategy in the PS-algol version. Here, 

the values of all one-argument non-inherited functions applicable to an entity are stored at 

one place in a record-like structure shown in figure 6-2. To access the values of functions 

defined on the supertype, a pointer to its immediate super-entity is included in each entity 

structure. As the language itself ensures that a pointer to each structure is unique, we have 

chosen the pointer to each entity structure as its entity identifier. This avoids us having to 

invent and maintain unique entity identifiers. All multi-argument functions are then 

implemented separately as unnormalised n-ary tables involving such entity identifiers. It may 

be noted that the designers of ADAPLEX DBMS have also advocated a similar implementation 

strategy [Chan 82]. 
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Figure 6-2: Entity Data Structure 
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The corresponding PS-algol structure for an entity is shown in Appendix C. We represent 

the group of function values corresponding to an entity as a vector, the upper bound of which 

varies dynamically as functions get added or dropped. (We can also store the group of 

function values as a linked list; we rejected this because: 1) linked lists require more 

storage compared to vectors; 2) accessing individual function values in a linked list is slower 

compared to vectors; and 3) accommodating schema changes is more complicated in a linked 

list from compared to vector form.) The elements of such a vector are of type pntr as, in 

general, the EFDM functions yield entities as result. Sets of entities are currently 

implemented as linked lists of such structures. However, to allow fast access on some 

function values, it is proposed to provide an indexed structure. 

Creating a new entity results in creation of such a structure and adding it to the 

corresponding linked list. Deletion of an entity results in removing all references to the 

corresponding structure and finally the entity structure itself from the corresponding linked list. 

The above data structures refer to the base functions only. The data for a derived 

functions is calculated every time it is accessed. To facilitate this, the pointer to the syntax 

tree corresponding to its definition is stored along with each derived function, The user 

queries involving derived functions are processed by replacing the references to those 

functions by the corresponding definition tree. The resulting syntax tree is then executed 

against the base functions of the database. 

To handle the incremental schema changes, the implementation adopts different techniques 

depending on the number of arguments the function has and the nature of the function. The 

addition or deletion of a one-argument base function results in creating the new instances of 

the modified entity structure and copying corresponding values from the old instances to the 

new instances. On the other hand, the addition or deletion of a multi-argument base function 

results in the addition or deletion of a table without affecting the existing entity structures. 

The addition or deletion of derived functions has no effect on the stored entity structures. 

The meta data corresponding to a schema is held in two forms: one as PS-algol structures 

and the other as EFDM functions (see Section 5.2.4). The latter form is necessary so that 

the users can query the information about the schema using EFDM syntax. The meta data in 

the form of PS-algol structures is maintained to provide fast access to the structures during 

run time. Both forms are updated automatically as the users modify the schema. 

Compared to the PASCAL version, the implementation scheme adopted in PS-algol version 
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has many advantages. Firstly, in the scheme we have chosen, the entity identifier is not 

stored in each function representation and this results in reduced storage requirements. 

Secondly, the values of one-argument functions for a given entity are provided simply by field 

dereference instead of table lookup. Thirdly, function composition is achieved by pointer 

following instead of an expensive "join-like" operation. Both these factors result in faster 

execution times. Fourthly, several tables must be touched in PASCAL implementation if 

several functions of an entity participate either in query formulation or in updating. In 

contrast, PS-algol scheme results in less access to disk as many function values for an entity 

are brought in simultaneously. 

6. 5 Problems due to large Data Volumes 

The data structures discussed in the previous section are suitable for moderate volumes of 

data, typically found in personal data bases. For larger data volumes, the performance will 

depend more on the "access methods" of the PS-algol run-time system. Since there are no 

language constructs to influence the efficiency of the run-time system, it may be necessary to 

adopt different implementation architectures as the data volumes grow. 

The mechanisms to accommodate and contain schema changes will also need careful thought 

as data becomes large. In the current implementation, we modify the data description and 

repopulate the data everytime a function is added or dropped. Obviously, this will not be 

acceptable for large scale data. In fact, such a strategy may not even be necessary, as 

Atkinson et al. point out in their proposal for a new persistent language, NEPAL, [Atkinson 

81 b] 

In a database describing 300 000 race horses (many of which are dead) a change 
to the data describing horses need not propagate immediately to all horses, since 
most of them will never be referenced, or will not be referenced before the next 
change in the data description. 

Hence, it should be possible to accommodate changes without catastrophic consequences 

rippling through the rest of the system. The solution suggested in the NEPAL language 

proposal consists of creating new versions of structures with transition rules between the 

current and the preceding versions. Whenever a structure is referenced, the transitions are 

applied to yield the appropriate instance to work on. As a side effect of the transition the 

instances migrate to the later versions. Clearly, some such strategy will be useful in this 

context also. 
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In this chapter, we present a few practical applications of EFDM. The first application is 

about organising a database system for personal use. We show how to design, set up, use 

and maintain the database system using EFDM. The second application concerns the use of 

EFDM as a prototyping tool during the design of a large database system. 

7. 1 Organising small personal information systems using EFDM 

By small information systems, we mean those systems which are designed for personal use. 

These are characterised by small amounts of data and processing needs. These systems may 

or may not have a complex structure, but one distinguishing feature of such systems is that 

the same person acts as both the designer and the final user of the system. If the database 

management systems are to be useful for such users, they must most a number of special 

requirements. These are as follows: 

1. It should be possible to devise a quick implementation of the system as soon as 

the logical structure has been specified. It should provide data structuring 
facilities without insisting on the decisions about how to physically store, address, 

or relate the data elements. 

2. It should support a simple design methodology. Users should not be required to 

learn a large number of disparate concepts, nor should they be required to 

choose from different design alternatives. The data structures should reflect the 
semantics of the application. The underlying data model should also guarantee a 

minimum consistency of data. 

3. It should be interactive and easy to use. It should provide an integrated language 

using which they should be able to create their databases, retrieve information 

from their databases, modify the structure or contents of their databases or carry 

out general-purpose computation. Users should not be required to learn different 
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languages for different activities, i . e . , one language for data definition, another 
for data manipulation, another for general-purpose computation etc. 

4. Such systems should be flexible, i.e., users should be able to change the 

schema without much effort. Users typically wish to implement only a part of the 
intended system and based on the experience gained, make several modifications 

by trial and error until they are satisfied with the result. Even after the system 

comes into use, it may often have to be modified to reflect the changing needs 

of the user/designer. As the system evolves, users may like to add new 

elements to the structure, modify existing structures or drop some elements for 
which they do not have sufficient data. 

5. The system must be self-documenting, i. e. , users should be able to find out 

what is in the system as easily as they can query about the data. 
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EFDM is eminently suitable for such users. The particular benefits of EFDM for this 

purpose are: 

1. EFDM enables a quick and economical implementation of a planned system as 

soon as the logical data structure has been specified. _ 

2. It supports a simple design methodology. The logical design of a database can 

be easily done using the concepts of the functional data model. In many cases, 

the structure in terms of functions may be "obvious", i. e. , users are not 
required to carry out complicated mappings from the conceptual structures to the 
data structures of the model. EFDM structures also captures a large part of the 
data semantics. Referential integrity is guaranteed by the model itself. 

3. It is interactive and simple to use. It provides all the facilities like data definition 
and data manipulation and general-purpose computation in one language. Users 

can set up, use, and maintain the database using simple, interactive commands, 

4. It is flexible, i.e., structure can be modified interactively at any time. The 

declare and define constructs of EFDM provide a natural way to describe 
increments to the schema. This information can be easily integrated with earlier 
stored information. Any existing information can be deleted using drop without 
making the database inconsistent. 

5. It is self-documenting. An annotated schema is made a part of the database 

itself and a distinguished entity type called function is provided to store the meta 

data which gets updated automatically as the schema changes. This makes it 
possible to examine the database structure interactively. 

We will now illustrate the use of EFDM for managing the personal collections of reference 

papers, Every researcher collects a huge number of research publications over a period of 
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time. Keeping track of the details of individual papers by means of manual methods is often a 

difficult problem. The following sections describe in step by step how to design, set up, 

operate, and maintain a database for this application using EFDM. 

7.1.1 Designing the Schema 

The first step in designing the schema is to prepare a list of entity types corresponding to 

the objects of interest in the application. Such entity types can often be identified by listing 

the objects that have some identifiable attributes. For example, in the present application 

such objects are papers, authors, journals etc. Another means of identifying the entity types 

is to list the objects that act as units of database update. For example, in the present 

application the most common database update is likely to be entering the details of a new 

paper whenever the person receives one. Next step in the design process is to assign 

meaningful names to the entity types so identified. For the present application, the following 

constitute the list of entity types: i) paper ii) author, iii) topic, and iv) journal. 

Next, we identify various properties or attributes of these objects and the relationships 

between them. The examination of the most likely queries will give an important insight into 

such properties and relationships. For example, for each paper we would be interested in 

knowing the title, abstract, list of authors who wrote it, and the journal in which it is 

published. In addition, we would like to know the list of topics under which it is classified. 

We model each such attribute and relationship as a function with the proper number of 

arguments and result. In addition, we examine each function to see whether it is single- 

valued or multi-valued. For example, there can be more than one author for a paper. Hence 

the function relating the paper and author entity types should be multi-valued. Similarly, a 

paper can be classified in more than one topic. For example, the paper on the TAXIS 

language can be classified under query languages, semantic data models, Al techniques etc. 

Hence, the function relating the paper and topic entity types has to be multi-valued, On the 

other hand, a paper can appear in one journal only. Hence, the function relating these two 

entity types must be single-valued. 

At this stage, we examine whether some of the objects classified under different entity 

types share any properties or relationships, If so, we can invent a common supertype for the 

corresponding entity types, remove all the functions common to those entity types, and 

associate them with the supertype. In the present example, we have no such relationships. 

Hence, the final schema for this example is as shown in figure 7-1. 
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declare paper() -> > entity 
declare title(paper) -> string 
declare abstract(paper) -> string 

declare author() ->> entity 
declare name(author) -> string 
declare address(author) -> string 

declare journal () ->> entity 
declare name(journal) -> string 
declare details (journal) -> string 

declare topic( ) ->> entity 
declare name (topic) -> string 

declare author(paper) ->> author 
declare journal(paper) -> journal 
declare topic(paper) ->> topic 

Figure 7-1: Schema for the Paper Database 
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Next, we examine the schema to see whether we can arrive at some useful derived 

functions using function composition or special operators like inverse of, transitive of etc. For 

example, in the present example, we can define a derived function relating author and journal 

entity types as the composition of journal(paper) function and the inverse of author(paper) 

function, which gives a list of all journals in which a particular author has published. Figure 

7-2 gives a complete list of such derived functions, 

define papers(author) 
define topics(author) 
define journals (author) 

->> inverse of author(paper) 
->> topic (papers (author) ) 
->> journal(papers(author)) 

define papers(topic) 
define authors(topic) 
define journals(topic) 

define papers(journal) 
define authors(journal) 
define topics(journal) 

->> inverse of topic(paper) 
->> author (papers (topic) ) 
->> journal (papers (topic) ) 

-> > inverse of journal (paper) 
->> author(papers(journal)) 
->> topic (papers (journal) ) 

Figure 7-2: Derived functions for the Paper Database 
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7.1.2 Setting Up the Database 
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We can now set up the database system corresponding to the above schema. Each function 

is interactively entered into the system using declare or define command. Each of the base 

functions is then populated with the corresponding data, For this purpose, we can use the 

update statements provided by EFDM. Again, this can be done interactively. For example, 

to enter the data about a paper with the title "Database Systems" written by M. P. Atkinson 

and published in "Journal of Documentation" we use the following update statement: 

for a new p in paper 
let title(p) = "Database Systems" 
let author(p) = {the p1 in author such that 

name(pl )="M, P. Atkinson") 
let journal(p)= the j in journal such that 

name (j)="Journal of Documentation"; 

The above statement checks that the entities corresponding to the author named 

M.P.Atkinson and the journal named "Journal of Documentation" do already exist in the 

database. If any of these entities are not present, the update statement will not be executed 

and the user is informed about the missing entities, The user can then create new entities 

corresponding to the unknown author or journal and then submit the above statement again. 

Thus, the concept of referential integrity [Codd 79] is automatically guaranteed by the 

system. 

Note that it is not necessary to input all the data about an entity at the time of its creation 

itself. For example, to assign the above paper to topics "Data models", and "Natural 

language interfaces" at a later time, we use the following update statement: 

for the p in paper such that title (p) ="Database Systems" 
let topic(p)= {the ti in topic such that 

name(tl )="Data models", 
the t2 in topic such that 
name (t2)='Natural language interfaces"); 

If the initial data is rather large, the above method of creating a database may seem rather 

laborious. In such a case, users can make use of the bulk load facility provided by the system 

[Kulkarni 83]. This allows the user/designer to create his database from two operating 

system files, one containing the function declarations and the other containing the data 

arranged in the form of tables. Once the database is created, it is likely that this system will 

be updated sporadically, i.e., whenever the person receives a new paper and hence, it will 

be more convenient to enter the data interactively as demonstrated above. 
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7.1.3 Using the Database 

Once the database is set up, we can pose queries like: 

01. What are the papers by the author 'x? 

for the m In author such that name (m) = "x" 
for each p in papers (m) print title (p ); 

Q2. What are the papers by the author 'x' in topic 'y'? 

for the m in author such that name (m) _ "x" 
for each p in papers(m) such that 
some t in topic(p) has name(t) = "y" 
print title(p); 

03. What are the papers by the author 'x' in topic y' published in journal 'z? 

for the m in author such that name (m) = "x" 
for each p in papers(m) such that 

name (journal (p))='z" and 
some t In topic (p) has 
name(t) = "y" 

print title(p); 

04. What are the papers in topic 'x' ? 

for the t in topic such that name (topic) _ "x" 
for each p in papers(t) print title(p); 
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EFDM also allows one to name the queries and store them in the database itself or to 

output the results of a query to an operating system file. 

7.1.4 Maintaining the Database 

EFDM allows one to modify the database structure interactively at any time. For example, 

it the user wants to assign a grade attribute for each paper, he can do so simply by adding 

the following function: 

declare grade(paper) -> integer; 

and populate that function, either interactively or by using the bulk load facility. 

It the user wants to extend the database to hold the information about papers held by his 

friends, he can simply create another entity type with its own attributes like name of the 

friend, his room number and the telephone extension etc. and add another function relating 
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the paper type with the newly created entity type. The following function declarations illustrate 

this: 

declare friend () -> > entity 
declare name (friend) -> string 
declare room (friend) -> integer 
declare phone (friend) -> integer 
declare held.by(paper) -> friend; 

If the user finds that certain functions are no longer of interest, he can remove them from 

the database. For example, to drop the grade function, he can simply issue a command like, 

drop grade(paper); 

and the system will remove the function as well as all the data associated with it. If the 

removal is going to create any inconsistency in the database, the system will warn the user 

about it. 

The notable feature of this method of managing information is the speed and flexibility 

provided by EFDM. It took the author a few minutes to design the schema and another few 

hours to create the database using EFDM, most of which was spent on creating the data file. 

7. 2 Designing prototypes of large database systems using EFDM 

By large database systems we mean those systems which are designed for a community of 

users. These are characterised by a large amount of data and processing needs. These 

systems will also have a complex structure. Typically, persons who design such systems will 

be different from those who will eventually use them. Database management systems suitable 

for such systems will have to meet different requirements from those discussed in the 

previous section. Issues like efficiency, sophisticated report generators, statistical analysis 

packages, security and safe concurrent operations assume higher priority over ease of use or 

ease of design. 

Today there are a number of database management systems available in the market for 

handling large amounts of data, and satisfying the requirements like efficiency, security and 

concurrent operations. But the major problem with using these systems is that they are 

highly inflexible and it is immensely expensive to effect any changes once the database is in 

operation. 

Hence, it is important that the initial specifications are so formulated as to meet all the 

requirements of the community of users they are intended to serve. However, as we 
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mentioned above, people who design these systems are different from the people who finally 

use them, and it is impossible to meet this aim. Serious problems in design arise from false 

perception of reality resulting from a natural language barrier between the database naive user 

and the application naive database designer and the lack of appropriate tools for 

communication between them. 

To bridge this gap, current design methodologies recognise the value of a good requirement 

gathering /analysing procedure with emphasis on the consultation with the eventual users [Yao 

78b]. The need for this is recognised by most authors [Kahn 76, Bubenko 761 but is carried 

through only by a few. The main problem is that no proper techniques have emerged to aid 

this phase. Frequently emphasis is put on the development of requirement specification 

languages and automated analysis procedures [Teichroew 77] which are helpful only when the 

physical reality has been correctly perceived. Another problem with such methods is the 

inherent inability to perceive all the needs in the initial stages. The users are often unable 

to foresee all the implications and interactions in such systems. 

Using a prototype of the final system in the design process is an effective solution to this 

problem. Being able to use even a crude system allows the user and the database designer 

to converse in more real terms. Prior to a full implementation, the prototype is generated 

and loaded with small amounts of data. Users then try out the system and identify the 

problems in the schema design and propose changes. This possibility to be able to see the 

system running at an early stage in a system development project may save a great deal of 

money as the user gets a chance to re-specify his needs before large resources have been 

spent on a tailor-made and highly effective implementation. The prototype approach can be 

tried as a first step to any schema design using the existing facilities of the target system. It 

is better, however, to use a design tool that has been built specifically for this purpose. 

An important requirement for such a tool is that it should be simple to use. Communication 

with and feedback from the users are crucial to the success of the requirements analysis 

step. This implies understanding of the description of the database by unsophisticated users. 

The description cannot therefore be initially in terms of a very complicated and difficult-to- 

understand data model. Another important requirement of such a tool is that it should possess 

fast and economical means to effect changes. It is important that the users are able to see 

the effects of their comments as early as possible. 

EFDM is eminently suitable as such a tool. A particular advantage of EFDM for this kind of 
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application is the simplicity of the data model, and its ability to effect quick schema changes. 

As demonstrated in the previous section, the schemas designed using this model reflect the 

structure of the real world in a fairly "obvious" way, and hence such schemas should be easy 

to understand by unsophisticated users. Another useful feature of EFDM for this kind of 

applications is the facility it provides for maintaining the consistency of the schema. 

An example of such an application is the design of a database system for overall 

administration of the University of Edinburgh. A possible schema for this application using 

EFDM is shown in Appendix D. As pointed out earlier, a prototype system corresponding to 

such a schema can form an effective tool to start the dialogue between database designers 

and the eventual users to gather the requirements for the actual database system. 

In a complicated example such as this, the process of designing the schema itself can be 

made more systematic by a computer-aided design system. In fact, a database design and 

Integration tool based on another variant of the functional data model [Housel 79] has been 

reported recently [Yao 82]. The schema design can even be automated on the lines similar 

to Gerritsen's method [Gerritsen 75], which takes the names of entities, data item 

descriptions, and the queries that must be supported as input and arrives at a schema for the 

CODASYL database management systems. 

This method of developing prototypes presupposes that an EFDM schema can be correctly 

translated to the target DBMS data structures. Currently, such target DBMS are restricted to 

one of the three systems, viz. , hierarchical, CODASYL, and the relational systems. 

Preliminary investigations into translating the functional schemas to the CODASYL and the 

relational model have been reported by [Shipman 81, Smith Sob, Gray 83, Hepp 83]. The 

ADAPLEX database management system [Smith SOb], when it becomes available, will be the 

nearest system to EFDM, although the data model underlying ADAPLEX DBMS is not as 

powerful as the data model underlying EFDM. 
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This chapter presents some broad directions for extending our work to address some serious 

problems in the database field that have defied solution so far. We also present a brief 

discussion of some of the problems that have not been addressed in this thesis. 

8. 1 Deferring View Updates 

An important continuation of this work would be to extend the view mechanism discussed in 

Chapter 5. As they are implemented at present, updates may be made through a view if 

update procedures are defined. It is also assumed that all updates done from a view will be 

applied immediately, i. e.. propagated up to the global view. However, in order to conduct 

experiments of 'what-if' nature on databases appropriate in management and design, we need 

to have a mechanism which allows updates from a view to appear to have happened within 

that view but from outside that view they appear not to have happened. This can be achieved 

easily if we allow the update procedures for view functions to be modified by preceding them 

with the word defer. We can interpret this as meaning that each time an update is 

requested, the system records enough data to permit it to be done later. Thus, a user can 

experiment with the data by making complex and extended updates without interfering with 

other people's work until he chooses to do so. 

Two new operations are then required: 

apply viewname 
reset viewname 

When a view is created the set of deferred updates is empty. As successive user sessions 

operate on this view a sequence of updates will be accumulated. The interaction of the 

operations in the sequence of updates is examined and an equivalent net effect sequence is 

built. apply causes this accumulated sequence of updates to be applied in the view's context, 
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and the stored sequence of updates to be set empty. reset explicitly abandons a sequence of 

updates. 

We anticipate using a differential hie mechanism [Severance 76] to implement this, (Ross 

[Ross 83] discusses this technique more fully.) In fact, a more subtle implementation is 

necessary in this context, The reason being that a deferred update may no longer be 

applicable due to changes in the database since it was recorded. At present we see that as a 

user problem. People will normally avoid such situations by agreeing on the territory each 

works, as they do now when teams are involved in design and management. But such a 

division of tasks is never perfect, and must in any case be checked. When it is checked, the 

apply is aborted with the sequence left unchanged, and the user informed of the problem. 

(Note that it is difficult to describe the problem such that the error message is meaningful to 

the user. This is a research challenge,) When the user has understood the real world 

problem of two people's work interfering, he will decide as to how to resolve it, and update 

his view or get someone to modify the main body of data. Subsequent application of the view 

should not come across the same problem. 

Note that this is related to the idea of optimistic concurrency control [Kung 81, Agrawal 82] 

but it is packaged linguistically to permit experiments with updates to the data, and the 

possibility of making revisions and retrying when an attempt to apply the view results in a 

clash with other changes. 

8. 2 Implementing Transactions 

As well as creating, using, and dropping a view, users can also establish a view as the 

context for subsequent operations. To do this, three statements are necessary: 

quote <string> 
open <viewname> 
dose <viewname> 

At the start of a session the database holds no quoted passwords, each time quote is 

encountered the value of the string expression which follows is added to the set of quoted 

passwords. 

open then makes the specified view as the current context for operations if there is no 

constraint on its use, or if one of the passwords which enable its use has been quoted. The 

only names then available are names provided by that view. Subsequent operations, define 

definitions, queries, updates and new view definitions are interpreted in, and modify the 

name space of that current view. 
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The opening and closing of views can be used to define transactions. A transaction starts 

when a view is opened, and is committed when the close statement is encountered. If no 

close is encountered the operations will not be recorded. 

8.3 Views with Memory 

As they stand in Chapter 5, views are memoryless. define and deduce statements may 

extend their name space, drop may reduce it, but no other updates on the structure of a 

view are possible. However, the different views might also want different versions of the 

meta-data, i.e., base relations, and there might be no intention of merging the data. This 

can be achieved by allowing declare statements to be used within a view. This would then 

associate base functions (i.e., explicitly stored data) with the view. These would only be 

usable from this view and its descendants, but could be manipulated in the usual way. 

This allows more general variants of the same database. It also allows people to possess 

private data, optionally related to the original data, without any commitment to pass on, or to 

allow access to others. This seems to give an equivalent to the proposed federated 

architectures [Hiembigner 81, Mcleod 80], except that there may be many layers of 

federation. 

If every use of a view starts with an explicit open command and ends with an explicit close 

command, we then have a mechanism for providing transient data. declare statements 

occurring in a view in the current session, which is never closed will store data during the 

session, but the data will vanish at the end of it. Thus we have a mechanism for 

differentiating transient and persistent data. 

Its one drawback seems to be the laboriousness of defining views so that all the external 

names wanted are imported. The alternative is to introduce another concept for access control 

which seems less attractive. We believe the problem is best overcome by having a good cut 

and paste screen editor at the user interface. 

Note that with the one concept of view, and the avoidance of exceptions as to where 

declare, define etc. may be written, we have in one uniform and simple language achieved a 

number of effects, which have hitherto required different notations and treatment and have 

hence either been omitted or led to a more complex language. These effects are: i) views, 

ii) meta-data edits, in) 'what-if' experimental grouping of operations on the data, iv) 

protected data spaces, v) federations, vi) identification of persistence. Although it looks 

feasible, the implementation of this approach has yet to be researched. 
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8. 4 Query Optimisation Issues 

High level query languages such as the one provided by EFDM allow one to write queries 

whose execution time can be reduced greatly if the query language processor rephrases the 

query before executing it. Such improvements are called optimisations and a great deal of 

literature has grown around this concept, mainly in the context of relational query languages 

[Astrahan 76. Smith 75, Hall 76b, Wong 76]. 

Ullman [Ullman 82] categorises the optimisation ideas into two groups. One group consists 

of algebraic manipulations - transformations that are applied with little or no concern as to 

how the data model constructs are stored. The second group consists of strategies to take 

advantage of the storage of the data model constructs such as indices etc. In addition, Hall 

[Hall 76b] describes a third type of technique based on delayed evaluation of algebraic 

expressions. 

The only work on optimisation in the context of functional data model has been reported by 

Buneman et al, [Buneman 82]. Their implementation of the functional query language, FQL, 

exploits the lazy evaluation technique (Friedman 76, Henderson 76], which is somewhat 

similar to the delayed evaluation technique mentioned above. This technique achieves a 

reduction in both the main storage space and the number of accesses to the secondary 

storage by delaying the evaluation of expressions until their values are needed. For example, 

consider a query that finds the names of employees who are under 30 years of age and are 

paid more than the average salary for all employees. We can expressing this query in EFDM 

as follows: 

for each e in employee such that 
age(e) < 30 and 
salary(e) > average (salary (el 

over el in employee) 
print name(e); 

Under the lazy evaluation technique, the average salary is calculated only if some employee is 

under 30, otherwise the average salary is not calculated at all. 

Buneman et al. also report on an algebraic optimisation technique based on the compile- 

time detection of "constant-valued" sub-expressions. This do-loop optimisation is well known 

to compiler writers, and consists of moving expressions in hierarchic iterative structures 

outward as far as possible. Thus, in the statement 

for each x in person 
for each y in person such that 
mother(y) = sister(x) 

print name (x), name (y) 
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the expression sister(x) can be considered as a constant expression for the inner loop and 

thus is a candidate for moving it outside that loop. 

There are basically two means for this: the first is a pre-pass over the query which 

identifies constant expressions and moves them creating temporary variables as needed. In 

the second method, each expression, when evaluated, replaces itself on the expression tree. 

Before every iteration, those expressions dependent upon the iteration variable get restored in 

the tree. Thus constants, relative to that particular iterative block, get evaluated only once 

the first time through. This is the technique used by Buneman et al. Similar schemes in 

which expressions are replaced by their values have been described by Henderson and Morris 

[Henderson 76] and Turner [Turner 79]. 

A second algebraic optimisation technique deals with ordering of simultaneous comparison 

expressions in the query formulations involving objects that satisfy multiple relationship 

constraints [Greenfeld 74]. The problem concerns finding an optimum evaluation order. A 

simple example is that of finding the sons of Bill: 

for each p in person such that 
name (father (p)) = "Bill" and 
sex (p) = "male" 

print name(p); 

The order in which the clauses are processed may have a marked effect on performance, 

since it is expected that there will be many more males than children of Bill. But the analysis 

is much more complex, depending in part upon the asymmetries of access. 

Another algebraic optimisation technique, identified but not implemented by Buneman et al. 

[Buneman 82], deals with the syntactic manipulation of expressions. This involves the 

transformation of a query into another, more efficient representation. For example, consider 

the query that prints the names of those employees who earn more than the average salary 

of the employees in their department: 

for each e in employee such that 
salary(e) > average(salary(e1) over el in employee 

such that dept(e) = dept (e 1 

print name(e); 

Straight-forward evaluation of this query results in recomputing the average for each 

employee. However, the evaluation can be made more efficient if the query is subjected to a 

set of syntactic transformations leading to: 

for each d in department 
for each e in employees (d) such that 
salary(e) > average (salary (e1) over el in employees(d)) 

print name (e) 

which will prevent recomputation of average for each employee because it can now be 

recognised as a constant subexpression in the inner loop. 
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8. 5 Derived Data Control 

Derived data control means the materialisation of derived data [Koenig 81]. In the current 

implementation, derived data is recalculated whenever it is referenced. All references to 

derived functions used in a query are replaced by the corresponding function definitions and 

the resulting query is then executed against the base functions of the schema. Relational 

systems that provide derived relations or views of the relational model have also based the 

materialisation of derived data on a similar recalculation strategy. Both System R [Astrahan 

76] and INGRES [Stonebraker 76] store only the view definition. 

Such a strategy for derived data control may not be acceptable when accesses to derived 

functions are frequent or the required computations are costly. Two techniques have appeared 

in the literature which promise a better performance. The technique proposed in PRTV [Todd 

76] improves on the recalculate when accessed approach by storing a newly recalculated 

derived relation R until a subsequent modification is made to the base relations in terms of 

which R is defined, at which time the previously calculated value is destroyed. References to 

R prior to such a modification to base relations are directed to the previously calculated value 

of R, thereby saving the cost of recalculation. While references to R following such a 

modification are resolved by recalculating R and saving its value for future references. The 

actual improvement from this approach depends upon the usage patterns of the database, in 

particular the ratio of derived relation accesses to base relation modifications. 

The technique proposed by Koenig and Paige [Koenig 81] improves on the PRTV approach 

in some cases by "maintaining" the stored value of a derived variable V whenever any 

definitional parameter of V is modified instead of destroying it. That is, V is incrementally 

updated to reflect changes to the definitional parameters of V. Thus, all references to the 

derived variable V may be directed to its currently stored value. This approach will be more 

efficient compared to the PRTV technique only if the execution costs of the code required to 

maintain a derived variable V is less than the cost of the periodic recalculations of V. 

Investigations of similar techniques in the context of functional systems is a serious research 

issue. 
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8. 6 The Search for a Uniform Language 

As we mentioned in Chapter 5, it is important for a database management system to 

provide a language which in one continuous spectrum would provide simple general queries, 

updates, and the power of a general purpose programming language. FQL [Buneman 79] 

has already demonstrated how powerful this can be and our language has comparable 

capabilities. The main difference is that FQL adopts the formalism of sequences while our 

language is based on sets. 

The main advantage of sets over sequences is that most of the database operations can be 

expressed in terms of set operations. For example, adding a person entity into an entity type 

or a relationship can be specified as a set union operation. Similarly, removal of an object 

from the database can be specified as a set difference operation. However, the main problem 

with sets is that there is no notion of repetetion in its members, as in sequences. 

Sometimes the repetetion of an object as the output of an operation is meaningful. For 

example, if we want to calculate the sum of the salaries of all employees, we need to allow 

the repetetion of the same number. Sequences are useful in this context. It is an important 

research issue to decide whether both sets and sequences are needed in a language, or 

given one, whether the other can be provided easily. 

Another issue in the language design is that of base types. Databases designed to model 

abstractions of real-world systems do not just deal with integers or strings. Attributes in a 

database, for example, weight or salary may both well be measured by integer values. 

Nevertheless, they are interpreted in different ways and should therefore be treated as 

different types. The weak type checking and compatibility rules of most programming 

languages are not adequate for database problems. For example, in Pascal [Wirth 71] and 

Euclid [Lampson 77] the following two types are the same, hence, compatible 

type height = 1..100 

type weight = 1.. 100 

Consequently, meaningless operations, such as comparing height and weight, cannot be 

detected automatically by considering the operands of comparison. In the database world, 

some work has been done in the context of relational languages [Schmidt 78, Brodie 

80, McLeod 761. Providing such base types in functional languages like DAPLEX is an 

important area of research. 

The concept of type hierarchy also needs further investigation. At present, an entity type 
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can have only one supertype. However, there may be cases when an entity type has more 

than one supertype. For example, a customer can be a person, a company, or a 

government agency. Though this can be handled as a derived entity type using set union 

operator, the semantics of such types needs to be investigated. Even within a strict type 

hierarchy, implicit property inheritance from supertypes to subtypes, as it happens in the 

present implementation, may not be acceptable in some cases. It may be necessary to 

specify explicitly which properties of the supertype are to be inherited by a subtype. 

However, the main challenge for functional data languages arises from adequately modelling 

and packaging update and I/O operations without disharmony. Essentially the idea of explicitly 

controlling the implementation or propagation of updates is antithetical to pure functional 

programming. Yet organising the storage of data and hence updates is a dominant computing 

activity central to databases. It is necessary to investigate whether the set of system-provided 

functions can be expanded to include I/O operations and whether a convenient and consistent 

language can be developed to satisfy the range of programming needs using the functional 

parameter handling mechanisms. It is also necessary to investigate whether the present 

syntactic form of the language can be retained or whether it is necessary to adopt a form 

closer to familiar programming styles. 
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In this chapter, we present a brief summary of the research work reported in this thesis. 

We also list what we feel are the important lessons learned from it. 

9. 1 Summary of the Research 

Conceptual data modelling forms an important stage in the design of a database system. 

Data modelling has been an active area of research for the past few years. What prompted 

this activity is the fact that the present generation of database management systems are 

based on concepts that are far from being 'natural'. The user needs to map his thought 

processes to the data structures provided by these models in complex ways, and the design 

process itself is based on ad-hoc methodologies. 

To overcome these problems, data modelling researchers have proposed a number of new 

data models. Based on this research, we identify a set of concepts that are 'natural' for 

modelling data (chapter 2). Broadly, these concepts are based on the set of entities 

corresponding to the objects on the real world, a classification of those entities into entity 

types, the identification of attributes of and relationships among such entity types, and a set 

of constraints that help to maintain the data consistency. There is also an increasing 

recognition of the importance of organising types into a type hierarchy, and the rules or 

inference mechanisms, ideas borrowed from the artificial intelligence field. 

Chapter 2 also lists a set of criteria to assess the merits of different data models. To be 

able to act as a tool to design conceptual schemas, we require a data model to: 

1. be based on object orientation; 
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2. be semantically expressive; 

3, provide a simple database design methodology; 

4. provide constructs that have a neutral interpretation; 

5. have a well defined set of operations; 

6. provide facilities to specify constraints; 

7. provide facilities to accommodate derived data; 

8. be free from physical considerations; 

9. provide constructs that can evolve gracefully; 

10. be simple and easy to use. 
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Against this set of criteria, we assess the conventional data modelling approaches based on 

the hierarchical, CODASYL/DBTG, and the relational data models. We Identify a number of 

significant problems with these approaches. (Chapter 2.) These are as follows: 

1. They lack object orientation. 

2. Semantically, they are insufficiently expressive. 

3. It is difficult to design databases. 

4. The constructs of these models lack neutrality of interpretation. 

5. They fail to accommodate derived data. 

6. It is difficult to accommodate database evolution. 

In addition to these, CODASYL and the hierarchical systems suffer from the following 

additional problems: 

1. They tend to provide navigational, element-at-a-time operations. 

2. They lack proper constructs to specify explicit constraints. 

3. They do not provide a complete separation between logical and physical aspects. 

4. They are difficult to understand. 

In chapter 3, we provide a brief description of twenty-one semantic data models and follow 
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it up with a rough assessment based on the set of criteria mentioned above, Out of these 

models, we select the functional data models for further investigation because: 

1. They can provide a semantically rich modelling power by removing the distinction 

betwoen programs and data. 

2. They can provide high-level data languages based on function application. 

3. They can provide data manipulation and general-purpose computation in one 

language. 

4. They are based on solid mathematical foundations. 

5. They can support most of the conventional data models, which means that the 
functional data models can be used to provide a global schema in a 

heterogeneous distributed database system. 

6. They are easy to implement. In fact, these models have the inherent ability to 

provide highly efficient implementations by exploiting parallel processing 

architectures, 

A number of functional data models with varying capabilities and associated data languages 

have been reported in the literature, We choose the one proposed by Shipman as it is based 

on a simple set of concepts. It is object based and incorporates the idea of type hierarchy. 

The definition of both the schema and its extension is around atomic units of information, 

i.e., irreducible relationships. It accommodates the concept of derived data naturally by 

means of intensionally defined functions, which are manipulated in the same way as those 

defined extensionally. In addition, it provides a well defined set of operations on the data it 

models. Chapter 4 describes this model and the associated data language in greater detail. 

Chapter 5 provides the logical details of our implementation based on this model. This 

chapter also provides a critical examination of the model and the language proposed by 

Shipman, and describes a series of changes to the model, as well as improvements and 

extensions to the language. We show how a simple device to control the visible name space 

forms the basis for providing multiple views of a database. We also introduce new features 

like specification of integrity constraints and describe their use, 

We were greatly helped in the implementation task by the availability of the persistent 

algorithmic language, PS-algol. Chapter 6 gives a brief description of the PS-algol language 

and explains how it helps in implementing database systems. The implementation details are 

covered in Chapter 6. 
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Chapter 7 discusses how the implementation can be used as a personal database 

management system for managing moderate volumes of data and as a dynamically reorganising 

schema design tool for prototyping of large database systems. A particular attraction of EFDM 

is its ability to permit users to design their schemas in an incremental fashion, checking for 

consistency of the schema at each stage. This way users are forced to examine their 

assumptions and the way the reality is abstracted before committing themselves for a 

particular database implementation. The resulting schema can also serve as a complete 

documentation of the contents and meaning of the database it is modelling. To facilitate this, 

the annotated model of the schema itself is made part of the database. 

Chapter 8 lists a number of directions in which the research reported here can be 

extended. For example, it discusses how the same concept of view promises simple provision 

of experiments, version management, federations and nested transactions. It also discusses 

few Issues connected with the query optimisation and the derived data materialisation. 

Chapter 8 also lists some of the extensions to our language, especially the issues connected 

with base types and type hierarchy. 

9. 2 Contributions of the Research 

The principal contribution of this research work is the critical discussion of semantic data 

models in general, and of the functional data model proposed by Shipman, in particular. This 

work examines both the data model and the language proposed by Shipman and discusses a 

series of changes to the model and improvements to the language, culminating in an 

interactive system suitable for implementing personal information systems or as a dynamically 

re-organising schema design tool. 

This work clearly demonstrates the fact that the functional approach to data modelling, in 

addition to being amenable to computer processing, can also accommodate the semantic data 

modelling concepts, concepts such as entity orientation, type hierarchy, and derived data. 

The use of the last concept to model programs as data, though not novel in other fields, is 

certainly novel in the database context. The presence of these derived functions helps to 

simplify the formulation of user queries to the databases and to provide multiple user views. 

Our work also shows how the functional data model and the language implemented in the 

present work is neatly extensible to handle integrated data languages, views, experiments and 

federations. 



Conclusions 116 

This work also demonstrates the efficacy of the use of persistent algorithmic languages like 

PS-algol for implementing database management systems. The database researchers have so 

far been deterred by the lack of proper tools to carry out implementations of novel data 

models in order to assess them. The use of conventional languages for implementation work 

implies duplicating the complex storage management software for each implementation task. 

It is hoped that future languages will increasingly recognise the merit of treating the 

persistence as an orthogonal property of the data. 

Our work clearly demonstrates that the functional data model with advanced modelling 

constructs is indeed implementable. Other semantic data modelling approaches have also 

succeeded in providing semantically rich modelling constructs, but it has not been easy to see 

how they can be implemented. As a result, there is an impression that semantic data 

models, in general, are too abstract and hence they can only be used to design enterprise 

descriptions solely to aid human understanding [Chen 76]. Some of them are so complex 

that, even if they can be implemented, they are clearly unsuitable for the majority of the 

users. Codd, in his proposal of the Extended Relational Data Model, RM/T [Codd 79], even 

suggests that the extensions in RM/T are primarily intended for the minority consisting of 

database designers and sophisticated users. It is hoped that the present work will dispel such 

impressions and demonstrate that a semantic data model with advanced data modelling 

constructs can be implemented and can be used by both sophisticated and non-sophisticated 

users. 

To date, the shortcomings of the data models underlying present generation of database 

management systems has been discussed only at the academic level. It is hoped that the use 

of EFDM will generate sufficient interest in semantic data modelling concepts, and convince 

the users of the shortcomings of classical data models. If there is to be a wide spread use 

of the semantic data modelling concepts, it is imperative that systems incorporating such 

concepts and simple enough to be used by a large user community are made available widely. 
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DAPLEX Syntactic Specification 

program = [statement). 
statement = declarative I imperative 
declarative = declare funspec ("->" I "-> > ") expr[order] I 

define funspec ("->" I "->),11) 
(expr I 

inverse of funcspec I 

transitive of expr I 

compound of tuple I 

(intersection I union) of expr {", "expr} I 

difference of expr "," exprI 
[order] 

define constraint funcspec "->" boolean I 

define trigger funcspec "->" boolean imperative l 
perform update using imperative. 

funcspec = funcid "(" [tuple] ")". 
tuple = expr {"."expr}. 
expr = set I singleton. 
set = mvfuncall I typeid I 

"{"[singleton {","singleton}] 
set such that pred I 
set comp (singleton I quant set) I 
identifier in set I expr as typeid I 
"(" set ")"Igpaingleton. 

singleton = constant I vbad I svfuncallI aggcallI 
predI the set I a new typeid I 
the set (preceding I following) singleton j 
"(" singleton ")"Igpsingleton. 

svfuncall = funcall. 
mvfuncall = funcall. 
funcall = funcid "(" [tuple]")". 
aggcall = aggid "(" bag 
bag = exprIsingleton over tuple. 
pred = boolean I 

for (singleton I quant set) pred I 
(singleton I quant set) comp (singleton I quant set) l 

quant set (existlexists). 
comp = ..>.T.< "I"="Ieglnelitlgtllelge. 
quant = someleverylnol 

(at (least I most) I exactly) integer. 
integer = singleton. 
string = singleton. 
boolean = singleton. 
constant = int l str I bool. 
mt = digit [digit). 
str = """" character (character) """" 
bool = true l false . 

imperative = forloop I update I gpimperative. 
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forloop = for each set [order] imperatives 
for singleton imperative. 

order = in order 
{by [(ascending I descending) singleton). 

update = let svfuncall "=' singletons 
(let sinclude dexclude) mvfuncall "=" exprI 
insert mvfuncall "=' (singleton set [order] ) 

(preceding following) singleton. 
vblid = identifier. 
typeid = identifier, 
funcid = identifier. 
aggid = identifier. 
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NOTE: The syntax specification appearing in this and the next appendix is described in terms 

of the syntax specification language proposed by Wirth [Wirth 77). Terminals are represented 

by bold-face words, and by non-alphanumeric symbols enclosed in quote marks (and, if a 

quote mark appears as a terminal itself, it is written twice). Syntactic categories are 

represented by lower case italic words. Repetetion is denoted by curly brackets, i.e., (a) 

stands for E a l as I aaa I .... Optionality is expressed by square brackets, i . e. , [a] stands 

for al E. Parantheses merely serve for grouping, e.g., (alb)c stands for acIbc. 
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EFDM Syntactic Specification 

command = imperative) 
declare funspec I typeidl 
define funspec ("->" I "->>") fundefl 
program programed is imperative) 
output programed fileid l 
view viewed is 
(deduce funcspec ("->"I"->>") typeid using 
fundef) end. 

drop (funspec l programed 
I viewed) l 

load 
programed, 

imperative = for each set imperative) 
for singleton Imperative) 
updateI print stuple. 

set = vblid in sell 
[such that predicate] (as typeid] 

sell = mvfuncalll typeid l "("stu le")"I 
"(I' set ((union I intersection 

I difference) set) 
singleton = expi for expi) 
expi = exp2 (and exp2) 
exp2 = [ not] exp3 
exp3 = exp4 [compop exp4] 
exp4 = (prefix] exp5 (addop exp5) 
exp5 = exp6 (mulop exp6) 
exp6 = exp7 [as typeid] 
exp 7 = constant I vblid I svfuncall 

I aggcall 
the set I a new typeid I 
quant set (haslhave) predicatel 
"(" singleton "Y'. 

svfuncall = funcid "(" stuple ")". 
mvfuncall = funcid "(" mtuple 
stuple = singleton (","singleton). 
mtuple = expr (","expr). 
expr = set l singleton . 

aggcall = (countlmaxlmm) ,(,, Set ")"I 
(totallaverage) "(" singleton over mtuple 

update = let funcall "_" expr 
include (funcallltypeld) -,=@, sell 
exclude (funcallltypeid) ,=to sell 
delete singleton. 

funcall = funcid "(" stuple 
fundef = 

(expr I 

inverse of funcspec I 

transitive of expr I 

compound of tuple. 
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funcspec = funcid "(" [arglist] ":i . 

arglist = typeid (","?ypeid). 
compop = ">.T.<...._..I ..>=" I ..<=..I..... 
quant = some ( all I no 

(at (leastI most) ( exactly) integer. 
integer = singleton, 
predicate = singleton. 
constant = intjstrjboot. 
mnt = digit [digit). 
str = """" character (character)'""M. 
boo! = true ifalse. 
vblid = identifier. 
typeid = identifier. 
funcid = identifier. 
programed = Identifier, 
wew'd = identifier. 
identifier = letter ((letter I digit 
prefix = ..+...._.. 
addop = .+...._....*+.. 
mulop = ..*......rem. 
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Functional Specification of EFOM 

1. Data Structures 

1) structure str. struct(string str) 
2) structure int.struct(int val) 
3) structure bool,struct (boot bval) 
4) structure list. struct(pntr head, tail) 
5) structure fun. struct (string fname, type, status, ftext; 

int nargs, fnno; 
pntr args, result, uses, used, fnson, 

cons, fval, mptr, nextfn) 
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This structure is used to represent functions of the data model. The various components of 

this structure have the following meaning: 

(name -- name of the function 
type -- "svfun" for single-valued functions 

"mvfun" for multivalued functions 
status -- "base" for base functions 

"derived" for derived functions 
"system" for those functions used by the system to 
store meta data, etc. 

(text -- text of the function declaration 
nargs -- number of arguments the function has 
fnno -- the total number of base, non-inherited, 

one-argument functions if the function is 
an entity type declaration, 
a number indicating the index into the 
vector of function values if the function 
base one-argument function, 
0, otherwise. 

args -- arguments of the function arranged as a list structure. 
must have the type Iist.struct where the individual 
elements of list have the type fun.struct. 
Elements in the list must be ordered according to the 
order of arguments in function. 

res result of the function with the type fun.struct. 
uses -- list of functions used in the definition of this function; 

must be of of type list.struct where the individual 
elements must be of type Fun. struct; order is not 
important. 

used -- list of functions that use this function in their 
definition. Same comments as above. 

fnson -- nil if functions has arguments, otherwise a list of 
functions that have this entity type as 
one of the arguments. must be of type list.struct. 
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order not important. 

6) structure ent.struct(pntr otype,super,nextobj; *pntr ftup) 
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This structure is used to represent data model entities. Description of the components of this 

structure is as follows: 

otype -- pointer to the entity type of the entity, must point to 
an instance of fun.struct. 

super -- pointer to another entity belonging to the immediate 
supertype of the entity type of the entity. must point 
to an instance of ent.struct. 

nextobj-- ponter to the next entity belonging to the same 
entity type, must point to an instance of ent.struct. 

ftup -- a vector containing values for 
one-argument, non-inherited functions. 
Individual elements may be of type str.struct, 
int.struct, bool.struct, or ent.struct for 
single-valued functions, and list. struct for 
multi-valued functions. 

7) structure mvfunval. struct (pntr avallist, rval list, nextval ) 

This structure is used to represent function values for multiargument functions. Description of 

the components of this structure is as follows: 

avallist-- list of argument entities. must be of type 
list. struct with individual elements 
ordered according to the argument position. 

rvallist-- pointer to an instance of str. struct or 
int.struct or bool.struct or ent.struct for 
single-valued functions and an instance of 
list. struct for multi-valued functions. 
order not important. 

2. Database Handler Routines 

1) procedure appendfn (string name, type, stat; pntr args, res -> pntr) 

2) Procedure deletefn(pntr fnp) 

3) procedure create. entity (pntr trip) 

4) procedure include. entity (pntr ent,fnp) 

5) Procedure exclude. entity (pntr ent, fnp ) 

6) Procedure appendfnval (pntr fnp, argvallist, resvallist) 

7) Procedure addfnval (pntr fnp, argvallist, resvallist) 

8) Procedure deletefnval (pntr fnp, argvallist, resvallist) 

9) Procedure getfn(string name; pntr args -> pntr) 

10) procedure getfnval(pntr fnp,argvallist -> pntr) 
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Schema for University Administration 

declare organisation ( ) 
declare university( ) 

declare admin.office() 
declare service. unit( ) 
declare faculty( ) 
declare department( ) 

-> > entity 
-> > organisation 
-> > organisation 
-> > organisation 
-> > organisation 

-> > organisation 

declare name (organisation) -> string 
declare address (organisation) -> address 
declare phone (organisation) -> > phone 

[Administering faculties] 

declare degree() -> > entity 
declare diploma() -> > entity 
declare certificate( ) -> > entity 
declare subject. type () -> > entity 
declare subject() -> > entity 
declare course() -> > entity 

declare dean (faculty) -> teaching. staff 
declare associate. dean (faculty) ->> teaching, staff 
declare sao (faculty) -> nonteaching. staff 
declare secretary (faculty) -> nonteaching. staff 
declare department(faculty) ->> department 
declare degree(faculty) ->> degree 
declare diploma (faculty) -> > diploma 
declare certificate(faculty) ->> certificate 
declare subjecttypes(faculty) ->> subject.type 
declare subject(faculty) -> > subject 

declare name (subject. type) -> string 
declare directors. of. studies (subject. type) ->> teaching. staff 

declare name (subject) -> string 
declare subjecttype (subject) -> subject. type 

declare name (degree) 
declare prereq (degree) 
define offer (degree) 
declare courseyear(degree) 
declare subject(degree) 

-> string 
->> degree 

-> > inverse of degree (faculty) 
->> course.year 
->> subject 

[Administering departments] 

declare course. year( ) -> > entity 
declare term () -> > entity 
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declare task( ) 

declare assignment( ) 

declare exam() 
declare project( ) 
declare document( ) 

declare head (department) 
define faculty(department) 
declare course (department) 
declare project (department) 

-> > entity 
-> > task 
-> > task 

-> > entity 
-> > entity 

-> teaching, staff 
->> inverse of department (faculty) 
-> > course 
-> > project 

declare tasks (course, year) ->> task 
declare name(course.year) -> string 
declare course (course. year) -> > course 
declare coordinator (course. year) -> teaching. staff 
declare exams (course, year) ->> exam 
declare assignments (course. year)->> assignment 

declare weight(task) -> task.weight 
declare sets.task(task) -> teaching. staff 
declare marks. task (task) -> teaching. staff 

declare date. set(assignment) -> date 
declare deadline (assignment) -> date 

declare date(exam) 
declare term (exam) 
declare held.at(exam) 

declare name (project) 
declare startdate(project) 
declare deadline(project) 
declare budget(project) 
declare funding(project) 
declare report(project) 

declare name(document) 
declare issuedate(document) 
declare abstract(document) 
declare author(document) 

[Administering personnel] 

declare person() 
declare student( ) 

declare ugmsc. student( ) 

declare science. ug. student( ) 
declare research. student() 
declare staff ( ) 

declare teaching. staff() 
declare nonteaching. staff ( ) 

define tutor() 

define demonstrator( ) 

declare surname(person) 
declare firstname (person) 
declare middlenames(person) 
declare 
declare 
declare 
declare 
declare 
declare 
declare 
declare 
declare 
declare 
declare 

-> date 
-> term 
-> room 

-> string 
-> date 
-> date 
-> money 

-> > organisation 
-> > document 

-> string 
-> date 
-> string 
-> > person 

-> > entity 
->> person 
-> > student 

-> > ugmsc. student 
-> > student 

-> > person 
-> > staff 
-> > staff 
-> > teaching, staff UNION 

research. student 
-> > teaching, staff UNION student 

-> string 
-> string 

-> > string 
sex(person) -> sex 
birthday(person) -> date 
number(person) -> integer 
extension (person) -> phone. extension 
home. address (person) -> > address 
marital. status (person) -> marital, status 
spouse(person) -> person 
qualification (person) ->> degree 
country, of, birth (person) -> country 
nationality(person) -> country 
permanent, domicile (person) -> country 
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[Administering staff] 

declare works. for(staff) -> organisation 
declare room(staff) -> room 
declare designation (staff) -> designation 
declare current. appt. date (staff) -> date 
declare increment. date (staff) -> date 
declare scale. code (staff) -> scale. code 
declare annual. salary (staff) -> money 
declare other. payments (staff ) -> money 
declare date, of. review (staff) -> date 
declare income. tax. month (staff) -> month 
declare income. tax, code (staff) -> income,tax.code 
declare account. number (staff) -> account. number 
declare national, insurance, no (staff)-> integer 
declare union. affiliation (staff) -> union 
declare union, subscription (staff) -> money 
declare staff. club. member, no (staff) -> integer 
declare staff. club. subs (staff) -> money 
declare retirement. age (staff) -> year 
declare employment. history(staff) ->> employ, history 

[Administering students] 

declare enrollment. number(student) -> eno 
declare term. residence (student) -> address 
declare year. of. first. entry (student) -> year 
declare year. of. course. entry (student) -> monthyear 
declare year. of. course (student) -> course.year 
declare date. of. enrollment (student) -> date 
declare status (student) -> student. status 
declare fee (student) -> money 
declare type. of fee (student) -> fee. type 
declare from. university (student) -> university 
declare grant. awarding. body (student) ->> grant. body 
declare last, full. time. school(student) -> school. detail 
declare other, institutes. attended (student) ->> school. detail 
declare previous. school. results (student) ->> school, results 
declare degree. awarded (student) -> degree 

declare course (ugmsc. student) ->> course 
declare tutorial (ugmsc. student) -> tutorial 
declare grade (ugmsc. student, task) -> marks 
declare final. result (ugmsc. student, course. year) -> result 

declare lab. session (science. ug. student) -> lab, session 

declare supervisor (research. student) ->> staff 
declare period. of, study (research. student) -> integer 
declare date. of. starting. study (research. student) -> date 
declare research. costs. charged (research. student) -> money 
declare research. costs. collected (research. student) -> money 

[Administering teaching] 

declare teaching.event() ->> entity 
declare lecture O -> > teaching. unit 
declare tutorial O -> > teaching. unit 
declare lab. session () -> > teaching. unit 

declare time (teaching, event) -> time 
declare day (teaching. event) -> day 
declare room (teaching, event) -> room 

declare demonstrator (lab, session) -> demonstrator 

declare tutor(tutorial) -> tutor 
declare parity(tutorial) -> parity 
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declare lecturer (lecture) -> teaching. staff 
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[Miscellaneous] 

declare committee() 

declare member(committee) 
declare convener(committee) 

-> > entity 

-> > person 
-> > person 

declare date. of. entry (school. detail) -> date 
declare date. of. leaving (school. detail)-> date 
declare sublect(school. detail) -> > subject 

declare board (school. result) 
declare date(school. result) 
declare grade (school. result) 

-> organisation 
-> monthyear 
-> degree 

declare sex ( ) 
) declare address o 

declare text(address) 
) declare building o 

declare name(building) 
declare room ( ) 
declare number(room) 
declare extension (room) 
declare building(room) 
declare country( ) 
declare name(country) 
declare designation ( ) 
declare marital, status ( ) 
declare money( ) 
declare union ( ) 
declare month ( ) 
declare year( ) 
declare monthyear() 
declare income. tax. code ( ) 
declare account, number( ) 
declare scale. code ( ) 
declare student. status ( ) 
declare fee. type ( ) 
declare grant. body( ) 
declare phone() 
declare phone, extension ( ) 
declare task.weight() 
declare employ. history() 
declare eno ( ) 

) declare marks o 

declare result( ) 

declare parity( ) 

-> > entity 
-> > entity 
-> string 
->> entity 
-> string 
-> > entity 
-> integer 

-> integer 
-> building 
-> > entity 
-> string 

-). > entity 
-> > entity 

-> > entity 
-> > entity 
-> > entity 

-> > entity 
-> > entity 
-> > entity 
-> > entity 

-> > entity 
->> entity [part time/full time] 
-> > entity [home, overseas etc.] 
->> entity 
-> > entity 
->> entity 

->> entity 
->> entity 
->> entity 
-> > entity 

-> > entity 
->> entity [odd/even] 
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