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Abstract

Natural languages display a great variety of different word orders, and one of the

major challenges facing statistical machine translation is in modelling these differ-

ences. This thesis is motivated by a survey of 110 different language pairs drawn

from the Europarl project, which shows that word order differences account for more

variation in translation performance than any other factor. This wide ranging analysis

provides compelling evidence for the importance of research into reordering.

There has already been a great deal of research into improving the quality of the

word order in machine translation output. However, there has been very little analysis

of how best to evaluate this research. Current machine translation metrics are largely

focused on evaluating the words used in translations, and their ability to measure the

quality of word order has not been demonstrated. In this thesis we introduce novel

metrics for quantitatively evaluating reordering.

Our approach isolates the word order in translations by using word alignments.

We reduce alignment information to permutations and apply standard distance met-

rics to compare the word order in the reference to that of the translation. We show

that our metrics correlate more strongly with human judgements of word order quality

than current machine translation metrics. We also show that a combined lexical and

reordering metric, the LRscore, is useful for training translation model parameters.

Humans prefer the output of models trained using the LRscore as the objective func-

tion, over those trained with the de facto standard translation metric, the BLEU score.

The LRscore thus provides researchers with a reliable metric for evaluating the impact

of their research on the quality of word order.
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Chapter 1

Introduction

Machine translation can be viewed as consisting of two interrelated problems: predict-

ing the words in the translation and deciding on their order. Although there is a large

body of research aimed at improving the word order quality of machine translation

systems, there has been surprisingly scant attention paid to how best to evaluate this

research. In this thesis we present methods and metrics which allow researchers to

understand the word ordering challenges facing them, and also to accurately evaluate

the impact of their research.

The rest of this chapter proceeds as follows. First we describe the reasons why

evaluating reordering is important. This leads to a discussion of the current evaluation

methodology and why it fails to adequately measure reordering performance. We then

introduce the general approach taken in this thesis and present the results of the most

important experiments. Finally, we describe the main claims made in this thesis and

we provide a summary of the work which follows.

1.1 Motivation

In this section we address the problem of reordering. We describe experiments which

shows that the quality of the reordering in machine translations is poor, and that the

amount of reordering present in a language pair is one of the most important factors

in predicting the quality of the resulting translation. We then look at the existing auto-

matic machine translation metrics and discuss why they are inadequate.

1



2 Chapter 1. Introduction

1.1.1 Reordering

Finding the correct order for translated words is a difficult problem because of the

computational complexity involved. Searching all possible permutations of the words

in a sentence of n words, requires n! combinations. A complete search is intractable

for all but the shortest sentences. Translation models apply reordering restrictions to

the search, and only a small number of possible word orders are considered. The con-

sequence of this is that translation models are able to perform small, local reorderings

relatively well. However, large differences in word order are still problematic.

delay the overhaul
Human translation: to delay overhaul of America’s antiquated spy network

Machine translation: could delay the old spy network system operation of the overhaul

Figure 1.1: A section of a Chinese sentence with two English translations, one produced

by a human and the other by a machine translation system.

Some language pairs, such as Chinese-English, contain long distance word order

differences. Figure 1.1 shows an example a section of a Chinese sentence with its

human and machine translations. In the Chinese, the translation of the English noun

“overhaul” appears at the end of the sentence while in the English human translation,

the noun appears directly after the verb “delay”. This is because the English preposi-

tional phrase “of America’s antiquated spy network” in Chinese, is in fact a modifier

which occurs before the noun. We can see that the machine translation incorrectly fol-

lows the word order of the original Chinese, and it is therefore incomprehensible. Word

order differences such as these are very frequent in Chinese-English, and consequently

machine translation quality remains poor for this language pair.

1.1.2 Reordering in Parallel Corpora

There has been surprisingly little research done on analysing what word order dif-

ferences exists in human translated corpora. Knowing the reordering characteristics

of human translations is an important first step in successfully designing systems to

model them.

In this thesis we present a novel method for analysing translated corpora (see Chap-

ter 3 for details). Our method relies upon word alignments which connect words in the
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Brown

arrived

in

Shanghai

from

Beijing

late

last

night

.

布
朗

是 昨
天

深
夜

从 北
京

抵
达

上
海

的 。

Figure 1.2: Sentence pair with Chinese source sentence and English target sentence.

Word alignments are shown in black. Two reorderings are also shown, indicated with

different dashed line styles.

source language to their translations in the target language. We define reorderings as

two blocks of words which are adjacent in the source sentence and inverted in order in

the translation. Figure 1.2 shows a word aligned sentence pair which has two reorder-

ings. Each reordering consists of two blocks whose ordering in the target is inverted

with respect to the source. The English target phrases “from Beijing” and “late last

night” are a translation of Chinese source phrases which occur in the reverse order. As

these are two relatively short phrases, and it represents a typical example of short dis-

tance or local reordering. These kinds of reorderings are easier for translation models

to capture. The larger reordering involving “in Shanghai” and “from Beijing late last

night” would be more of a challenge.

In order to determine how well our models are able to capture the reordering be-

haviour of the human translations, we collect statistics for parallel corpora by extract-

ing the size and number of reorderings detected in the aligned sentences. We use the

Chinese-English and Arabic-English language pairs because they are frequently stud-

ied in machine translation and they are important for commercial and strategic reasons.

Table 1.1 shows the average number of reorderings for each sentence pair. This

table shows that for every hundred sentences for the Chinese-English language pair,

there will be 29 word order differences which span more than 15 words, and 93 word
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Language Pair +15 +7

Chinese-English 0.29 0.93

Arabic-English 0.06 0.29

Table 1.1: Frequency of reorderings which affect more than 15 words or more than 7

words in the target language.

order differences which affect more than 7 words. These statistics show that large word

order differences are very frequent in Chinese-English. Arabic-English, however, has

many fewer long distance reorderings. It is common practice for statistical machine

translation models to restrict the distance that words can be reordered to around seven

positions. We can see that for Arabic-English this limit might work reasonably well,

however, it will have a deleterious effect on Chinese-English models.

Apart from investigating the reordering behaviour of different models, we also ap-

ply our analysis of parallel corpora to determine the effect that the amount of reorder-

ing has on translation performance. In Chapter 4, we examine 110 language pairs of

data from the European Parliament Proceedings. This wide-ranging study confirms

the importance of reordering to the quality of machine translations. Variation in the

amount of reordering accounts for 38% of the variation in performance and it has more

influence than other factors, such as language relatedness and the morphological com-

plexity of the source and target languages. We therefore demonstrate the importance

of research aimed at improving the modelling of reordering, and the need for metrics

to evaluate this research.

1.1.3 Machine Translation Metrics

We can only improve the reordering behaviour of translation models if we have reliable

metrics for measuring the impact of our changes. There has recently been a great deal

of interest in developing machine translation metrics. The Workshops on Statistical

Machine Translation (Callison-Burch et al., 2007, 2008, 2009, 2010) and the NIST

Metrics for Machine Translation 2008 Evaluation1 have used human judgement data

to compare a wide spectrum of metrics. Unfortunately there is no clear consensus about

which is the best metric to use, as a variety of metrics perform well under different test

conditions. Most importantly for this thesis, however, is that none of these metrics have

been evaluated on how well they measure the quality of word order in translations.

1http://www.itl.nist.gov/iad/mig/tests/metricsmatr/2008/
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We select three commonly used metrics to highlight the problems that current

machine translation metrics face with regard to measuring reordering performance:

the BLEU score (Papineni et al., 2002); METEOR (Lavie and Agarwal, 2007); and

TER (Snover et al., 2006). None of these metrics take the size of the word order dif-

ferences into account. In Section 6.4 we demonstrate that these metrics are highly

sensitive to the quality of the word choice, but that they are largely insensitive to the

quality of the word order.

1.2 Permutation Distance Metrics

We have looked at the reasons why reordering is important, and we have mentioned

some problems with current machine translation metrics. We now describe our ap-

proach to measuring the quality of word order in translations and we provide an exam-

ple which illustrates the advantages of our approach.

1.2.1 Approach

In Chapter 5 we present a novel reordering metric which is able to isolate the effect of

reordering by operating over alignments, not translations. Although we have already

suggested a method for analysing reordering in parallel corpora, these methods can-

not measure the similarity of the reference and translation alignments. We therefore

suggest a different approach to measuring word order quality.

First, we convert alignments into permutations by iterating over the source words

and extracting the relative order of their aligned target word. Figure 1.3 contains exam-

ples of source sentences (s1,. . . ,s10) which are aligned to target sentences (t1,. . . ,t10)

which have different word orders. The resulting permutations are shown below the

alignments. In example (a) there is a small word order difference, where only two

words are swapped, and in example (b) there is a large word order difference, where

the order of the two halves of the sentence has been swapped.

Formally permutations are defined as sets of ordered data and finding the distance

between ordered sets is one of the fundamental problems of computer science. These

distances have applications in many contexts such as statistics, coding theory, com-

puting, DNA research and so on. In this thesis, we use distance metrics to compare

two permutations: the permutation representing the source-reference alignment and

the permutation representing the source-translation alignment.
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t1

t2

t3

t4

t6

t5

t7

t8

t9

t10

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

(1 2 3 4 • 6 • 5 • 7 8 9 10)

Example (a)

t6

t7

t8

t9

t10

t1

t2

t3

t4

t5

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

(6 7 8 9 10 • 1 2 3 4 5)

Example (b)

Figure 1.3: Synthetic examples of two sentence pairs, showing their word alignment

grids and below them, their permutations. Bullet points represent the non-sequential

gaps in the permutation.

We use two different permutation distance metrics: the Hamming distance and

Kendall’s tau distance. These are well known distance metrics which are sensitive to

the number of words which are out of order. The Hamming distance is an absolute

measure of the amount of disorder between two permutations, and the Kendall’s tau

distance is a measure of the relative disorder. Kendall’s tau distance is sensitive to how

far words are out of order. As it is reasonable to suppose that humans are also sensitive

to the size of reorderings, and not just to their number, we suggest that Kendall’s tau

is the more reliable metric. However, the Hamming distance is a simple and useful

baseline metric.

Our metrics have a number of features which makes them well suited to measuring

reordering in statistical machine translation:

• They measure the number of words which are out of order.

• They correlate with human judgements of reordering.

• The scores are meaningful at the sentence level. This allows researchers to anal-

yse results at different levels of granularity and also makes it easier to inspect

test results.

• They are language independent as they abstract away from the word choice in

the translation. This is important for the metric to be widely useful.
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• They are efficient to calculate. This means that they can be applied as an objec-

tive function for tuning the parameters of translation models.

Our approach to measuring reordering performance is quantitative. We are measur-

ing the amount of the difference in word order. Humans are likely to also be sensitive

to the kinds of words or phrases that are reordered. Taking this into account however,

would require sophisticated linguistic knowledge which would be language dependent

and introduce errors. Instead, we focus on simple intuitive measures.

1.2.2 Example

In order to highlight the problem of the current MT metrics, and to demonstrate the

advantages of using permutation distance metrics, we refer to the two sentence pairs

shown in Figure 1.3. We calculate the scores for these two sentences, the machine

translation metrics and for the permutation distance metrics. The sentences are com-

pared to a monotone reference sentence (t1, . . . ,t10). Table 1.2 presents the results. In

order to facilitate comparison, all metrics are transformed such that 0% represents the

worst possible score, and 100% represents the best possible score.

Example BLEU METEOR TER Hamming Kendall’s tau

(a) 61.8 86.9 90.0 80.0 79.0

(b) 81.3 92.6 90.0 0.0 25.5

Table 1.2: Metric scores for examples in Figure 1.3 which are calculated by comparing

the permutations to the monotone translation.

The example sentence pair in (a) represents a small reordering, and the sentence

pair in (b) a large reordering. However, the machine translation metrics, such as BLEU,

fail to recognise this. They are sensitive to breaks in order, but not to the actual amount

of word order difference. The BLEU score detects three breaks in order in example (a),

shown by the bullet points in the permutation, and assigns it a score of 61.8. There

is only one break in example (b) and therefore more n-grams are matched and it con-

sequently assigns a higher score of 81.3. METEOR counts the number of blocks that

the translation is broken into, in order to align it with the source. (a) is aligned using

four blocks and scores 86.9, whereas (b) is aligned using only two blocks and scores

92.6. TER counts the number of edits, allowing for block shifts. TER applies one
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block shift for each example, resulting in an equal score of 90.0 for both sentences,

thus demonstrating its insensitivity to the amount of reordering.

The reordering metrics correctly assign a lower score to (b) as they recognise the

greater number of words affected by reordering. The Hamming distance detects two

words out of order in (a), resulting in a score of 80.0, and all words are out of order in

(b) and so it assigns the worst score of 0.0. Kendall’s tau is the only metric which takes

the distance words have moved into account. For the sentence in (a), Kendall’s tau

detects only one pair of words which are out of order, resulting a score of 79.0. For the

sentence in (b) there are many more differences in order resulting in the lower score

of 25.5. Even though (b) contains a large reordering, the words inside the two inverted

blocks retain their relative order, and the Kendall’s tau distance recognises this.

The examples in Figure 1.3 assume a perfect lexical match between the references

and the translation. In real translation examples, the machine translation metrics are

further hampered by lexical differences. Words which are not identical in the transla-

tion and the reference, are either considered to be breaks in order, or metrics attempt

to align them using heuristics. Permutation distance metrics improve over current ma-

chine translation metrics, first by isolating the reordering component of the translation,

and then by measuring the actual difference in word order.

1.2.3 Evaluation of Reordering Metrics

Using a rigorous evaluation methodology we demonstrate that permutation distance

metrics are more appropriate than current metrics for measuring the quality of word

order in translation.

Automatic metrics must be validated by human judgements. It is an open research

question as to how best to utilise humans to evaluate translation. Most human evalua-

tions are collected on the varied output of translation systems which makes it difficult

to isolate the effect of reordering. We develop a novel human evaluation task which

specifically measures reordering performance. This experiment shows that humans are

able to distinguish between sentences with different levels of disorder. Furthermore,

human judgements of reordering are shown to correlate strongly with permutation dis-

tance metrics.

Measuring word order differences in isolation is interesting, but for many circum-

stances a comprehensive metric is more appropriate. We present a novel metric, the

Lexical Reordering score (LRscore), which combines these two important aspects of
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machine translation quality. The LRscore is shown to correlate more strongly with

human preference judgements than other machine translation metrics.

We also explore the ability of the LRscore to guide the reordering behaviour of

translation models. We use the LRscore as an objective function during the tuning of

the translation model parameters. We show that humans prefer the output of translation

models trained with the LRscore over those trained with the BLEU score. We also show

that when training with the LRscore, there is no discernible drop in performance with

respect to the BLEU score.

1.3 Overview

The main claims defended in this thesis are the following:

• Reordering is an important factor in determining the overall performance of

translation systems.

• Current machine translation metrics do not adequately measure reordering per-

formance.

• Permutation distance metrics capture the quality of word order better than cur-

rent machine translation metrics.

Current metrics are hampering progress of reseach in machine translation because

they are not able to measure improvements in reordering performance reliably. Per-

mutation distance metrics provide the solution by reflecting the true amount of word

order difference between reference and translation sentences. Our metrics provide the

key to the future development of the field.

1.3.1 Road Map of Thesis

This section contains a short summary the chapters in the rest of this thesis.

Chapter 2 provides background information about models of machine translation and

how they deal with the reordering challenge. This is important for understand-

ing the analysis of the reordering seen in the output of two different translation

models presented in Chapter 3. Chapter 2 also provides a detailed discussion

of the current approaches to evaluating machine translation output. Both human
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evaluation campaigns and automatic evaluation metrics are discussed and their

shortcomings regarding reordering are presented.

Chapter 3 proposes a method for extracting the reorderings seen in aligned parallel

corpora. This results in a set of binary reorderings, where a block of contiguous

words in the source is swapped in order in the target sentence. Using statistics

about the distributions and sizes of the reorderings, we analyse the properties

of two divergent language pairs, Chinese-English and Arabic-English. We then

translate the source sides using two important translation models, the phrase-

based model and a synchronous grammar-based model called the hierarchical

model. We compare the reorderings seen in the output of the translation models

to the human translated references and to each other. Part of this work has been

published in Birch et al. (2008) and Birch et al. (2009).

Chapter 4 presents a survey of 110 different language pairs drawn from the Europarl

project. By including so many language pairs, we are able to provide a “big-

picture” view of the challenges facing machine translation. We start by extract-

ing certain characteristics of the language pairs, such as the amount of reordering

and a measure of language family relatedness. We train translation models and

perform regression analysis, showing that reordering is the factor which cor-

relates most strongly with translation performance. This extends sections of

previous work published in Birch et al. (2008) and Koehn et al. (2009).

Chapter 5 proposes a method of evaluating reordering performance based on per-

mutation distance metrics. We describe how permutations are extracted from

alignments. We then describe two distance metrics, the Hamming distance, and

Kendall’s tau distance and how they are appropriate for comparing the word or-

der seen in a reference sentence with the word order in a translation.

Chapter 6 evaluates the permutation distance metrics using three experiments. The

first establishes that the metrics are able to distinguish human references from

machine translations. The second proposes a novel human evaluation task which

isolates reordering. We then extract the correlation of the permutation distance

metrics and baseline metrics with human judgements of word order quality. Fi-

nally, we examine which aspects of a translation influence the current baseline

machine translation metrics and show that they are largely insensitive to the qual-

ity of word order. Chapters 5 and 6 extend work published in Birch et al. (2010).
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Chapter 7 presents a metric which combines lexical and reordering metrics in a sim-

ple, decomposable metric called the LRscore. We show how this metric is more

meaningful and intuitive than current machine translation metrics and that it cor-

relates better with human rank judgements of overall sentence quality. Prelimi-

nary results for this chapter have been published in Birch and Osborne (2010).

Chapter 8 demonstrates the usefulness of the LRscore. First, we apply the LRscore

while training the parameters of our translation model to see whether informa-

tion on reordering can help guide the translation model to produce better re-

orderings. We show that humans prefer the output of translation models trained

with the LRscore over those trained with the BLEU score. Next, we present a set

of experiments which show how using reordering metrics is more informative

and more accurate than using other machine translation metrics when applying

changes to the reordering behaviour of the model.

Chapter 9 summarises the main contributions made by this thesis, and gives an out-

look on future work.





Chapter 2

Background

In this chapter we introduce statistical machine translation. We describe important

work related to the reordering problem such as reordering models and reordering re-

strictions on the search. We then provide a detailed discussion of evaluation metrics

for machine translation, focusing on their ability to measure reordering performance.

2.1 Statistical Machine Translation

Machine translation is a hard problem because of the highly complex, irregular and

diverse nature of natural language. A principled approach to this problem is to use

statistical methods to make optimum decisions given incomplete data. In statistical

machine translation, we are given the source language sentence consisting of J words,

sJ
1 = s1 · · ·s j · · ·sJ , which is to be translated into the target language sentence, tI

1 =

t1 · · · ti · · · tI , consisting of I words. We must search for the highest probability sentence

amongst all the possible target language sentences:

t̂I
1 = argmax

tI
1

{Pr(tI
1|sJ

1)} (2.1)

The argmax operation denotes the search problem. We use Bayes rule to reformu-

late Equation 2.1:

t̂I
1 = argmaxtI

1

{Pr(tI
1)·Pr(sJ

1|t
I
1)}

Pr(sJ
1)

= argmaxtI
1

{
Pr(tI

1) ·Pr(sJ
1|tI

1)
} (2.2)

The denominator Pr(sJ
1) does not depend on tI

1 and it can therefore be ignored. This

is known as the noisy channel approach and was suggested by Brown et al. (1990). The

13
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noisy channel approach is commonly used in speech recognition and can be traced back

to early information theory (Shannon and Weaver, 1948). It allows for an independent

modelling of the target language model Pr(tI
1) and the translation model Pr(sJ

1|tI
1).

The language model being a measure of how well formed the target sentence is and the

translation model measures the likelihood of the target sentence being a translation of

the source sentence.

The language model can be learned from large amounts of text in the target lan-

guage and is usually based on n-gram frequencies. The translation model must be

learned from parallel texts, or bitexts, where each sentence in one language is paired

with a human translated sentence in the other language. The key to training a transla-

tion model is to use the idea of an alignment. Brown et al. (1990) define an alignment

between a pair of strings as an object indicating for each word in the target string, the

word in the source string from which it arose. The alignment is defined as a function

a : {i→ j}. See Figure 2.1 for an example of a parallel sentence and its word align-

ment. For this sentence, “we” and “did” are aligned to “hemos” a : {1→ 5,2→ 5}
and “not” to “no” a : {3→ 4} and so on.

we

did

not

,

consequently

,

vote

in

favour

of

this

report

.

p
o

r

co
n

si
g

ie
n

te

, n
o

h
em

o
s

vo
ta

d
o

a fa
vo

r

d
e

es
te

in
fo

rm
e

.

Figure 2.1: Spanish-English parallel sentence with word alignments marked in black

squares.
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Alignments are necessary for training translation models. The expectation max-

imisation (EM) algorithm (Dempster et al., 1977) is an iterative learning method that

optimises parameters in situations where there is incomplete data. In this case the in-

complete data is the hidden alignment information which is not directly available in

the parallel corpus. EM calculates the probability of the translation model Pr(sJ
1|tI

1),

by summing over all possible alignments, and then marginalising out the choice of

alignment:

Pr(sJ
1|tI

1) = ∑
aJ

1∈A
Pr(sJ

1,a
J
1|tI

1)} (2.3)

where A is the set of all alignments over the sentence pair. The sum over all

alignments is usually impossible to compute exactly and so it is necessary to restrict

our EM training to considering only a small number of promising alignments that

lie close to the most probable alignment, called the Viterbi alignment. The following

equation defines the Viterbi alignment which depends on pθ, the translation parameters

of the current iteration of EM:

âJ
1 = argmax

aJ
1

pθ(sJ
1,a

J
1|tI

1) (2.4)

The model defined so far operates over words, which is problematic when the rela-

tionship between the source and target words is not one-one. The alignment template

translation model (Och et al., 1999) and others (Marcu and Wong, 2002; Koehn et al.,

2003; Tillmann, 2003) advanced the state of the art by moving from using words as the

basic unit of translation, to using phrases. Phrases in this context need not have any

syntactic value and are simply sequences of words. They allow the translation mod-

els to learn local reorderings and idioms, and account naturally for the insertion and

deletion of words in a local context. Performing EM with phrases is extremely expen-

sive (Marcu and Wong, 2002; Birch et al., 2006) and so phrase pairs are extracted from

sentence pairs where a Viterbi word alignment has been extracted. Phrase pairs are

collected from an alignment by extracting all blocks which include aligned points, and

are internally consistent. Consistent means that all the words within the phrase pair are

only aligned to words within the phrase pair. Counts of the phrases are collected and

used to calculate the probabilities of the phrase-based translation model φ(s|t):

φ(s|t) = count(s, t)
count(s)

(2.5)
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The noisy channel approach struggles to include additional sources of knowledge

in its probabilistic framework. The direct maximum entropy translation model was

suggested by Och and Ney (2002) as an interesting alternative to the noisy channel ap-

proach. This log linear model can be easily extended by adding new feature functions

which are each weighted separately. The log linear model directly models the poste-

rior probability Pr(tI
1|sJ

1) and it allows us to use an arbitrary set of M feature functions

h(tI
1,s

J
1) which are combined using optimised weights λm:

Pr(tI
1|sJ

1) = exp

(
M

∑
m=1

λmhm(tI
1,s

J
1)

)
· 1

Z
(2.6)

Z is the normalisation constant and as it is a sum over all possible tI
1, it is not needed

for the search, and thus we obtain the following decision rule:

t̂I
1 = argmax

tI
1

{
M

∑
m=1

λmhm(tI
1,s

J
1)

}
(2.7)

Equation 2.7 defines the decoding problem that the translation system must solve,

and many alternative approaches have been suggested. Optimal search, such as A*

search (Och et al., 2001) and integer programming (Germann et al., 2001), struggle

to decode long sentences efficiently and greedy search algorithms can commit seri-

ous search errors (Germann et al., 2001). The most successful algorithms are based

on breadth-first search with pruning (Tillmann and Ney, 2003; Och and Ney, 2004).

This is called beam search. The beam search algorithm described by Koehn (2004a)

generates multiple hypotheses which cover the target sentence from left to right. As

the hypotheses grow, their probabilities are updated. Each new hypothesis extends the

coverage of the source sentence. Hypotheses are placed in a stack with other hypothe-

ses with the same number of source words covered. This allows for pruning and only

the best n hypothesis are stored. The hypothesis with the highest probability that cov-

ers the source sentence is the output of the search. Figure 2.2 shows an example of

hypothesis expansion for the Spanish sentence “Maria no daba una bofetada a la bruja

verde”:

Equation 2.7 defines the translation model as a log-linear model, where hm(tI
1,s

J
1)

are the features and λm are the weights that balance the features. In this framework,

the modelling problem amounts to developing suitable feature functions that capture

the properties of the translation task, such as the probability of a target phrase given

a source phrase p(t|s). The training problem amounts to obtaining suitable parameter
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Uncovered Position Covered Position

s:
t:

p: 1

s:
t:

p: 0.534

s:
t:

p: 0.145

Mary

witch

s:
t:

p: 0.121

Mary did not

s:
t:

p: 0.083

Mary slap

s = Maria no daba una bofetada a la bruja verde

Initial hypothesis

Figure 2.2: Hypothesis expansion in the beam search. Each expansion generates a

new target word in the target string (t), marks the covered source words in the source

bitvector (s) and calculates the updated probabilities in (p). From Koehn (2004)

values for λm. Och (2003) demonstrates that when setting these weights, the final eval-

uation metric should be taken into account. This is achieved by choosing the weights

so as to maximise these scores given by the translation metric on a development set. In

order to maximise the scores, a gradient-based optimisation technique cannot be used

as the error surface is not smooth. Och also suggests applying an efficient algorithm to

find good weights. This process is called Minimum Error Rate Training (MERT), and

it is an essential part of the development of many machine translation systems.

We have thus presented an overview of the basic components of a translation sys-

tem. This discussion has provided the context for the following section, which de-

scribes how word order differences are addressed in machine translation.

2.2 Reordering

Natural languages display a great variety of different word orders. The first researchers

in statistical machine translation called this effect distortion but it is also known as re-

ordering (Brown et al., 1990). Part of the reason that reordering is difficult to account

for, is that different language pairs pose different reordering challenges. Many of the

language pairs that have driven research, such as French-English, can on the whole

be translated successfully when reordering is restricting to short, local movements.

Other language pairs are more challenging because of long distance movement, or sig-

nificant differences in syntactic structure. The basic Japanese word order is Subject-

Object-Verb and long distance reordering is required in order to translate correctly into
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English, which is a Subject-Verb-Object language. The computational complexity of

exploring all possible word order differences means that machine translation is only

able to allow a small number of orderings, normally those that are close to the mono-

tone. Long distance reorderings are rarely considered, and even if they are, they would

most likely be assigned a very low probability.

Trying to capture systematic differences in word order in a probabilistic framework

is done using a reordering model. Many kinds of reordering models have been pro-

posed, but most are relatively simple in order to restrict their impact on the size of the

model, and on the efficiency of the search.

Apart from predicting movement of words in translation, restricting the kinds of

movement allowed using reordering restrictions has also been widely studied. Here

the restrictions are imposed primarily to improve the efficiency of the search. Good

restrictions for reordering will allow plausible reorderings and discard large numbers of

implausible reorderings. In practice, restricting the search often improves our chances

of finding good word orderings.

Reordering models separate the ordering information from the translational proba-

bilities. Syntax-based models merge the translation model and the reordering models

in a synchronous grammar. Reordering models are weak and do not guide translation

models to high probability hypotheses, whereas syntax-based model can succinctly en-

code long distance reorderings, by limiting the possible orderings to those seen in the

training data.

The rest of this section will describe previous work done on reordering in statistical

machine translation for different kinds of models. Deficiencies in current research and

relevance to future work will be noted.

2.2.1 Reordering Models

Reordering in statistical machine translation was first proposed in the series of align-

ment models developed at IBM (Brown et al., 1993). These models are important

because they introduced the fundamental concepts of statistical machine translation.

The simplest model, IBM Model 1, considers all possible alignments between

words in the source and target sentences to be equally likely. This unrealistic assump-

tion allows the model to search all possible alignments efficiently. Its parameters are

then used to initialise the more complex alignment models. IBM Models 2 and 3 in-

troduce distortion. Distortion probabilities are based on the absolute positions of the
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source and the target words in their respective sentences, and the length of these sen-

tences. These models do not generalise well since reordering will not often occur in

the same way for the same word position over different sentences. This is especially

true for longer sentences, where any estimates will not be realistic and will be affected

by sparsity. Furthermore, this approach does not take into account the fact that words

tend to move in blocks and not independently. IBM Models 4 and 5 replace absolute

word positions with relative positions: the alignment of a word is dependent on the

alignment of the previous word. The entire source and target vocabularies are reduced

to a small number of classes for the purpose of estimating distortion parameters.

In the IBM Models, the addition of more sophisticated alignment models comes

at the cost of greater complexity for the search algorithm. With Models 3, 4 and 5

certain optimisations can no longer be performed and therefore the search must be

approximated.

Och and Ney (2003) analyse the different IBM alignment models. They show

that first order dependencies in distortion are very important. The most successful

alignment models combined the IBM Model 4 first order dependency in the source

with the Hidden Markov alignment model described by Vogel et al. (1996) which has

a first order dependency in the target. They also note that correct smoothing improves

performance considerably.

Although the word-based translation models have been superseded by phrase-based

and grammar-based models, they are still widely used together with EM to align large

parallel corpora as they are relatively efficient. Corpora are aligned in both source-

target and target-source directions, and the final alignment taken is calculated by com-

bining their intersection and union using heuristics (Koehn et al., 2003).

2.2.2 Reordering Restrictions

Reordering restrictions on the search are necessary because even for the simplest form

of statistical models like IBM Model 1, the decoding problem is NP-complete (Knight,

1999), which means that it is probably exponential in the length of the observed sen-

tence. As Knight (1999) explained, this complexity is due to the combination of factors

not present in other decoding problems: both overlapping bilingual dictionary entries

and the word reordering problem. Efficiency considerations are therefore crucial.

Reordering restrictions for word-based decoders were introduced by Berger et al.

(1996) and Wu (1995). The decoder presented in Berger et al. (1996) is based on the
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A* search algorithm. Figure 2.3 represents a coverage vector over the source sentence

where various different states are represented. Each position in the source sentence

is marked as covered or uncovered. Berger defined a reordering constraint where the

current target word being translated can only be generated from the last k uncovered

source words. In Figure 2.3 k is equal to four and the source words which would

be possible extensions to different hypotheses are marked with question marks. This

constraint is sometimes called the IBM constraint, and it is commonly used today in

phrase-based models. This means that there are (k−1) words in the source that can be

skipped or left untranslated until later in the sentence.

j J

?

?

? ?

?

?

?

?

?

?

?

?

? ?

? ? ?

Uncovered Position Covered Position Possible extension

Figure 2.3: Illustration of IBM constraint: current word can be generated from last 4

words. From Zens and Ney (2003)

This models some distortion problems reasonably well, but not others. Using the

German-English language pair, if we were translating into German, we could leave

the verb untranslated until the end of the sentence, which is often required. However,

in the other direction we would be unable to translate the verb in its correct place in

English, if it was more than k positions further along in the German sentence. Zens

and Ney (2003) show that these constraints allow for a polynomial time search.

Some phrase-based models apply an even stricter reordering constraint. The MOSES

model specifies that the last word in a new phrase must translate the source word which

occurs in a maximum of k (covered or uncovered) positions from the left-most untrans-

lated word. Lopez (2009) compares a number of reordering restrictions and mentions

their complexity.

Wu (1997) described another polynomial time algorithm which allows greater flex-

ibility in ordering. He introduced the inversion transduction grammar (ITG), applying

synchronous context free grammars (SCFG) to machine translation for the first time

(see section 2.2.4 for further discussion on syntax-based models). An ITG is a gram-

mar where each rule produces two streams of output, one for each language. ITG
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allows the output to occur either in the same or in an inverted order. ITGs are reduced

to normal form and a small example grammar is shown in Figure 2.4.

A → [ B C ]

A → < B C >

B → negro / black

C → gato / cat

Figure 2.4: A small example of an inversion transduction grammar with a monotone rule

[] and an inverted rule <>

The rule with the [] brackets indicates that the ordering within the two output

streams is the same, whereas the rule with the <> brackets indicates an inverted order.

In this grammar, [ B C ] would produce “gato negro / cat black”, and < B C > would

produce the correct output “gato negro / black cat”. This is represented graphically in

Figure 2.5.

el / the gato / cat negro / black

Figure 2.5: The graphical parse tree notation for ITG: the inverted rule <> is indicated

with a horizontal line. The Spanish is read in the usual order, but for the English, the

line means that the right subtree is read before the left.

An ITG allows the modelling of long distance dependencies, as a rule can cover a

whole sentence. There are, however, many kinds of reordering that it cannot capture.

ITG requires that the reordering occurs between two child nodes of the same parent and

that the derivation trees between sentences are isomorphic. Two trees are isomorphic

if the structures are identical, and only the order of the child nodes is allowed to vary.

This restriction makes ITGs more efficient, but also less able to model some of the

dependencies between languages.

Zens and Ney (2003) compare the decoding restrictions proposed by Berger et al.

(1996) and Wu (1997). They attempt to investigate the coverage of the two types of
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constraints using Viterbi word alignments. Every sentence is checked to see if the word

alignment satisfies the constraints and the ratio of sentences that satisfy the constraints

to the total number of sentences is referred to as coverage. The IBM constraints result

in higher coverage than the ITG constraints for the French-English Canadian Hansard

corpus, but the coverage was almost the same for the German-English Vermobil task.

German-English has more long distance movement of words due to the verb final na-

ture of German and therefore the ITG constraint is stronger for this corpus. This work

is interesting because it presents an empirical comparison of the reordering capabili-

ties of a finite-state based model and a context-free model. This is something we will

expand upon in the thesis.

2.2.3 Phrase-Base Reordering

The shift from word-based statistical machine translation to phrase-based is largely

motivated by the fact that bilingual phrase pairs, such as the alignment templates de-

scribed by Och and Ney (2004), capture local reorderings. These have been shown

to improve the quality of translations considerably. However, the ordering of phrases

remains a challenge.

The phrase-based model described by Koehn et al. (2003) introduces a relative dis-

tortion model which is based on the assumption that monotone decoding is generally

preferable. It is equivalent to summing over the distance (in the source language) be-

tween phrase pairs that are consecutive in the target language. The function is defined

as ∑
I
i=0 abs(ai−bi−1)−1, where ai denotes the start position of the source phrase that

was translated into the ith target phrase, and bi−1 denotes the end position of the source

phrase translated into the (i− 1)th target phrase. An example is given in Figure 2.6.

For the target phrase “in my opinion” there is a monotone ordering with the start of the

sentence, a1 = 1, and b0 = 0 and thus no distortion is detected. Distortion is detected

for the phrase “current” where a3 = 6 and b2 = 4 and the difference is this 2−1. The

relative distortion model score for this example is equal to two.

en mi opinion   la   situación   actuál   es insostenible

in my opinion   the   current   situation   is  intolerable
1 2 3 4 5

a  = b  =5 a  = b  =64        4 3        3a  =1 b  =31 1 b  =42

Figure 2.6: An example for the relative distortion model.
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Reordering models can benefit from knowing which phrases are being reordered,

and not just their relative distortion. Och et al. (2004) and Tillman (2004) suggest

a lexicalised orientation model for phrases. Phrases pairs are assigned probabilities

which relate to them having monotone, inverse or disjoint orders both with the phrase

pairs that precede them in the sentence (backward direction) and with the phrase pairs

that follow them (forward direction).

In Figure 2.7 we can see a word alignment from which phrases pairs are to be ex-

tracted. The orientations of the phrase pairs will correspond to the word alignments

from which they have been extracted. This will mean that phrase pairs such as “situa-

cion/situation” will learn a tendency for inverse orientation in the backward direction,

and disjoint orientation in the forward direction.
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Figure 2.7: An example of lexicalised orientations with arrows indicating the backward

direction, with three possible orientations (m)onotone, (i)nverse, and (d)isjoint.

Even if lexicalised reordering models have been successfully integrated into state-

of-the-art phrase-based systems, they have some notable limitations. Thy have no

ability to generalise, which is a problematic for unseen words, which are assigned

small non-zero probabilities, and for phrase pairs that have only been seen a few times

and have no reliable orientation statistics. Another important drawback is that the

orientation information is limited to local decisions. The probabilities are assigned

based on the ordering of phrase pairs which occur immediately before or after the

current phrase pair, and therefore provide no information on longer distance reordering.

There have been a number of different papers proposing methods for extending
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the range of reordering models for the phrase-based model. Kumar and Byrne (2005)

suggest learning ordering information within a bigger window, although still limited to

local distances. More recently Galley and Manning (2008) proposed a hierarchical re-

ordering model. They used the shift-reduce parser extract reorderings from alignments,

in a similar fashion to the way we extract reorderings from alignments in Chapter 3.

This model allows longer distance reordering rules to be incorporated into a standard

phrase-based system in an efficient manner.

These reordering models show some improvement over the basic phrase-based

model, but they still do not significantly extend the ability of the model to capture

reordering behaviour. Phrase-based systems still rely heavily on the language model

to select among possible word order choices and reordering models have limited influ-

ence.

2.2.4 Syntax-Based Models

The essentially flat structure of phrase-based models means that they struggle to model

the complex structural differences that can occur between languages. Synchronous

grammars have been extensively investigated for their suitability to statistical machine

translation. The main motivation for using a grammar based formalism is to capture

long-range reorderings between source and target. Due to recursive sharing of sub-

trees among many derivations, we can search for hypotheses in polynomial time using

dynamic programming algorithms (Melamed, 2003).

As introduced in Section 2.2.2, the ITG was the first synchronous context-free

grammar to be proposed for statistical machine translation and it is a restricted case of

syntax-directed grammars which are used in the theory of compilers Aho and Ullman

(1969). ITG requires that the source and target sentences to be isomorphic which

severely restricts the reorderings which are allowed between languages. Figure 2.8

shows the basic sentence structure (subject verb object or SVO) of a source English

sentence. If we restrict ourselves to isomorphic trees in our synchronous grammar, we

can only swap the order of child nodes. We can thus model the “SVO”, or the reordered

“VOS” and “SOV” word order in the target. We cannot, however, model the “VSO”

word order which is the canonical word order for Arabic.

Fox (2002) performed the first empirical study that showed that many common

translation patterns fall outside the scope of the child reordering model. She found that

even relatively similar languages such as English and French suffer from many struc-
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Figure 2.8: A basic English sentence with subject verb object (SVO) word order.

tural differences. For example, the “ne . . . pas” construction wraps around a French

verb so it will usually result in non isomorphic structure. Other languages are expected

to be even more divergent in structure.

The difficulty in modelling non-isomorphic structures is a problem all synchronous

grammars face. One way of dealing with this is to flatten the tree, giving more re-

ordering possibilities amongst the larger number of child nodes as Yamada and Knight

(2001) did. Another way of alleviating the non-isomorphism problem is to use syn-

chronous grammars with richer expressive power, and whose rules apply to larger

fragments of the tree. Eisner (2003) and Galley et al. (2004) use synchronous tree-

substitution grammars which generate more tree relations than synchronous context-

free grammars by using elementary structures beyond the scope of one-level context-

free productions. These would be able to handle the reordering problem posed in

Figure 2.8. Accounting for all non-isomorphic structure can be very difficult how-

ever, for instance, Galley et al. show that to cover all their Chinese-English sentence

alignments, they would need extremely large tree fragments containing up to 43 nodes.

Syntax-based models are widely considered to have the right amount of structural

information to model word order differences, but finding the balance between expres-

sive power and efficiency is a serious challenge. More powerful grammar formalism

are less efficient and often restricting the number of terminals and nonterminals al-

lowed in each rule is necessary.

One approach has been particularly successful in demonstrating the benefit of us-

ing structure. The hierarchical phrase-based model (Chiang, 2005, 2007)) is based on

the intuition that since phrases are good at learning the reordering of words, they can

be used to learn the reordering of phrases too. Chiang defines a model based on hierar-

chical phrases which consist of words and place holders for subphrases. This model is

formally a weighted synchronous context-free grammar but it is learned from a bitext

without any syntactic annotations. The grammar consists of synchronous hierarchical
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phrases where subphrases are marked by the single nonterminal symbol X. This al-

lows the rules to act as both discontinuous phrases and as powerful reordering rules.

Although this model is basically a lexicalised ITG, and its rules are limited to binary

branches, it achieves performance comparable to state-of-the-art phrase-based models.

The reason for this could be that even though it can potentially learn more powerful

reordering rules, it is still able to retain the lexical dependencies that phrase-based sys-

tems retain. Another factor in the hierarchical model’s success could also be its ability

to cross linguistic phrase boundaries, making it more robust to rewording and loose

translations. In Figure 2.9 we can see an example of a hierarchical phrase pair which

is created by replacing subphrases with nonterminal symbols. The extraction process

generates a large number of rules, as all possible subphrases are extracted. The rule

X → (X1 duonianlai de X2 ‖ X2 over X1 years) encodes a reordering over subphrases

indicated by the relative order of the aligned non terminals X1 and X2.

Figure 2.9: Creating a hierarchical phrase pair from word alignments. From Chiang

(2007).

Syntax-based models are much more expressive than phrase-based models, but

have generally lagged behind in terms of performance on large-scale evaluation cam-

paigns. Part of the problem with synchronous grammar is that the size of the grammar

becomes very large and this impacts on the space and time complexity of the decod-

ing algorithm. This is exacerbated by including the language model scores. As soon

as hypotheses with gaps on the target side can be created, all intermediate language

model scores need to be stored until the final score can be calculated. In order to allow

models to scale up to longer sentences and large corpora, aggressive pruning and re-

ordering restrictions are necessary. The hierarchical model, for instance, allows rules

to span a maximum of 10 source words. Rules are then glued together in a monotone

fashion. This means that the model has a complexity which is linear with the length of
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the sentence, and that the maximum reordering limit is of size 10.

Some syntactic models claim to implement global models of ordering. Chang and

Toutanova (2007) present a reordering model which predicts the position of child nodes

relative to their parent nodes using global features. Although their model is in theory

capable of handling global features, in practice only local features are applied.

Syntax-based models are now competing with phrase-based models, as more ef-

ficient search algorithms and optimised pruning strategies such as those described

in Huang and Chiang (2005) have allowed them to scale up to larger corpora.

2.2.5 Monolingual Reordering

Reordering makes decoding a computationally challenging task that cannot be per-

formed exactly. If reordering is treated as a monolingual problem, allowing the de-

coding to be monotone, it has much less impact on efficiency. Monotone decoding

translates words in the same order as they appear in the source language.

Xia and McCord (2004) propose a method to automatically acquire rewrite patterns

that can be applied to any given input sentence so that the rewritten source and target

sentences have similar word order. Apart from being able to perform an exact search,

reordering of the source sentence uses linguistically motivated rules that a phrase-based

model would not be able to incorporate. These linguistic rewrite rules allow for gener-

alisation to unseen words. For instance the rewrite rule “Adj N⇒N Adj” expresses the

fact that in some languages the adjective precedes the noun and in others it follows the

noun. These rewrite patterns are automatically extracted by parsing the source and tar-

get sides of the training parallel corpus. Their approach show a statistically-significant

improvement over a phrase-based monotone decoder for French-English.

Collins et al. (2005) describe a system that is different from Xia and McCord

(2004) in a few respects. They used only a handful of linguistically motivated transfer

rules, rather than over 56,000 automatically learned context-free rules. They consider

German-English which is more challenging than French-English and they were still

able to show a significant improvement of the BLEU score over the normal phrase-

based decoder with the usual reordering capabilities. However, the fact that these rules

cannot be extracted automatically is a major drawback.

Rewriting the input or output sentence, whether using syntactic rules or heuris-

tics, makes difficult decisions that can not be undone by the decoder. For this reason,

reordering is often handled better during the search and as part of the optimisation
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function.

However, a recent two-stage model proposed by Dyer and Resnik (2010) shows

a great deal of promise. In this model the reordering step retains a large number of

possible word order variations because it is encoded as a context-free forest. This

lets the context free part handle mid-to-long range reordering, and lets the finite-state

transducer handle local phrasal correspondences. Unlike SCFGs and phrase-based

models, this model does not impose any distortion limits. Initial results are promising,

but its ability to compete with state-of-the-art models is yet to be shown.

In this section we have examined research dealing with the challenges of reorder-

ing. We have looked at restrictions on the search, reordering models, and synchronous

grammar models. We have seen that there is still no model which is able to perform

long distance reorderings in a principled fashion, and that has lead to work which sep-

arates the ordering problem from the translation problem. We argue that part of the

reason for lack of progress in modelling reordering is that most research is evaluated

on the the BLEU score. This score is certainly useful for certain purposes, but we show

that it is not a reliable metric of word order quality. In the next section we survey

translation metrics which are currently in use, and look at some of their limitations.

2.3 Metrics for Machine Translation

Automatic metrics for evaluating the quality of machine translation are essential for

researchers and developers working in the field. Automatic metrics produce scores for

translations quickly and inexpensively, which means that they can be used to evaluate

large amounts of data with minimal human effort. This makes them an essential tool

for large-scale development of translation systems. One of their principal functions

is allowing researchers to asses the impact of modifications to their systems, but they

also play an important role in training the parameters of translation systems. Here,

development data must be repeatedly translated and evaluated to assess the quality of

the parameter settings.

Automatic metrics measure the similarity of system output with one or several gold

standards. They produce a numeric score which is necessarily a simplification of the

genuine differences that exist between references and translations. Automatic metrics

cannot be considered to be a replacement for human judgement. In fact their usefulness

can only be decided upon through correlation with human evaluations.

There is currently a great deal of interest in developing metrics, in part spurred



2.3. Metrics for Machine Translation 29

on by recent evaluation campaigns. The Workshop on Statistical Machine Transla-

tion (Callison-Burch et al., 2007, 2008, 2009, 2010) and the NIST Metrics for Machine

Translation 2008 Evaluation (Przybocki et al., 2009) have collect human judgements

of translations from different systems, and used them to evaluate a wide spectrum of

translation metrics. With the proliferation of metrics it is not easy to know which one

to use. Unfortunately the evaluation campaigns have not resulted in a consensus over

which is the best metric, as there are many experimental conditions and a variety of

metrics perform well under different conditions. In the rest of this section we describe

different approaches to human and automatic evaluation of translation.

2.3.1 Human Evaluation

Automatic evaluation depends upon human evaluation, but even this is very difficult.

Although there has been 60 years of research into machine translation, there is still no

generally agreed upon methodology for humans to evaluate translations (Hutchins and

Somers, 1992; Przybocki et al., 2009). The most obvious method of testing machine

translation quality is by judging (a) its accuracy, or the amount by which the sentence

contains the same information as the reference, and (b) its fluency, or the degree to

which the sentence is easy to read and grammatical. These are somewhat orthogonal,

as a sentence can be easy to read but distort the original message, and equally the

sentence can be correct, but contain many disfluencies. They also overlap somewhat,

as there is a point at which the sentence is so disfluent that it is no longer intelligible.

Until recently, this was the most widely adopted basis for evaluating machine trans-

lation. Humans were asked to assign values from two five-point scales representing

fluency and adequacy. These scales were developed for the annual NIST Machine

Translation Evaluation Workshop by the Linguistics Data Consortium (LDC, 2005).

There are a number of problems with this approach, however, apart from the difficulty

in separating quality into two scores. A more serious problem with this approach is

the difficulty of assigning consistent scores across a number of different sentences. It

appears that humans have been using these scores as a way of indicating preference of

one translation over another. In other words, they use the scales as relative rather than

absolute (Callison-Burch et al., 2007).

Due to these concerns with accuracy and fluency ratings, another evaluation task

was proposed. Rather than having to assign each translation a value along an arbi-

trary scale, people simply compare different translations of a single sentence and rank
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them. This type of human evaluation has been performed in the last four workshops

on statistical machine translation.

Although it is useful to have a score or a rank for a particular sentence, espe-

cially for evaluating automatic metrics, these ratings are necessarily a simplification

of the real differences between translations. Translations can contain a large number

of different types of errors of varying severity. A simple approach to quantifying the

differences is to count the number of edits a person has to make to correct the sentence.

This is an extrinsic measure of sentence quality because it measures the effort needed

to post edit machine translation output to make it acceptable. Translation for human

post editing is one of the major applications of machine translation in industry (Allen,

2003; Simard et al., 2007).

Another approach is to categorise errors by different types of linguistic phenomenon,

and by relative difficulty in fixing them. This is the approach taken by Vilar et al.

(2006). This kind of fine grained evaluation would be particularly useful for system

developers who need to guarantee a certain level of quality to end users of translation.

Human evaluation is essential for developers to determine how reliable their sys-

tems are. Its is also essential for determining the value of different automatic trans-

lation metrics. To our knowledge, so far there has been no human evaluation method

which has been specifically designed and tested for measuring the quality of word

order in translations.

2.3.2 Automatic metrics

The advent of the BLEU score (Papineni et al., 2002) had an enormous impact on the

field of statistical machine translation. It was the first automated metric to demonstrate

correlation with human judgements of quality. As such, BLEU provided a means for

large scale evaluation and it quickly became the de facto standard metric for machine

translation. Since BLEU was proposed, a number of other metrics have shown to cor-

relate well with human judgements. We describe the most commonly used metrics

below.

2.3.2.1 BLEU

The Bilingual Evaluation Understudy (BLEU) score is the de facto standard in machine

translation evaluation. It measures how well a machine translation overlaps with mul-

tiple human translations using n-gram co-occurrence statistics. N-gram precision pn is
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computed for each n-gram length by summing over the matches for every hypothesis

sentence S in the corpus C as follows:

pn =
∑S∈C ∑ngram∈S Countclipped

∑S∈C ∑ngram∈S Count

Where Countclipped is the maximum number of n-grams co-occurring in a candi-

date translation and a reference translation, and Count is the number of n-grams in the

candidate translation.

The BLEU score is measure of precision, and because recall is important but dif-

ficult to formulate over many references, a brevity penalty is used. This penalises

translations which are too short. The brevity penalty is calculated as:

BP =

{
1 if c > r

e1−r/c if c≤ r

where c is the length of the corpus of hypothesis translations, and r is the reference

corpus length. In the case of multiple references, the reference corpus length is most

commonly set to the length of the reference corpus which is closest to the hypothesis

corpus. However, some researchers use the length of the shortest reference corpus and

a further alternative is to use the average length of the reference sentences.

Thus, the BLEU score is calculated as:

Bleu = BP∗ exp(
4

∑
n=1

wnlogpn)

In the standard application of the BLEU score n = 4 and the weights wn are set to

the uniform 1
n . Shorter n-grams reflect the lexical coverage of the translation and word

order is indirectly evaluated by the higher order n-grams. A BLEU score can range

from 0 to 1, and a score of 1 is assigned when a hypothesis exactly matches one of the

references, or contains all the n-grams that occur in a hypothesis.

Reference: parliament launches action plan to reduce its carbon footprint .

Translation: to reduce the parliament it plans to start its carbon footprint .

Table 2.1: A reference human translations and a machine translation

We will describe how the BLEU score would be calculated for the hypothesis trans-

lation show in Table 2.1. Counting each space separated token, we find that the trans-

lation has 7 out of 12 unigram matches, 4 out of 11 bigram matches, 2 out of 10
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trigram matches and 1 out of 9 4-gram matches. This means that the precisions for

the different n-grams, are as follows: p1 = 0.58, p2 = 0.36, p3 = 0.20, and p4 = 0.11.

The length of the hypothesis is 12, and the reference translation is 10. This test case

does therefore not incur a brevity penalty. The overall BLEU score would therefore be:

1∗ exp(log0.58+ log0.36+ log0.20+ log0.11) = 26.2. Normally the score would be

calculated over an entire document and not over just one sentence.

There are some well known problems with the BLEU score. Not only does this

method of measuring word order differences depend on there being words which ex-

actly match the words in the reference, but it also does not reflect the order that match-

ing n-grams occur in, or the distance that they have moved. The final score is the

geometric mean the of n-gram precisions and a brevity penalty. This makes the score

unreliable at a sentence level: if there are no matching 4-grams the BLEU score is

zero. The BLEU score is really only appropriate for calculating document level scores,

or scores for a collection of sentences.

There is a variation of BLEU called smoothed BLEU (Lin and Och, 2004a) which

can be used to calculate BLEU on a sentence level. The numerator and denominator of

the n-gram precisions for n = (2,3,4) is incremented by 1. The sentence level scores

cannot easily be compared with document level BLEU scores, but we are guaranteed a

positive BLEU score unless no words match in which case even smoothed BLEU will

return zero.

The BLEU score is efficient to calculate, and it requires no additional annotation.

These considerations, as well as comparison with previous benchmarks encourages the

continued use of the BLEU metric. BLEU has been shown to correlate well with hu-

man judgements of translation quality in many instances (Przybocki, 2004). However,

BLEU has also been shown to systematically underestimate the quality of rule-based

translation systems (Koehn and Monz, 2005) which are preferred by human judges.

This is because BLEU does not address overall grammatical coherence, it is only oper-

ates at a local level. This might favour statistical systems which are good at producing

n-grams, but bias it against rule-based systems which address global sentence struc-

ture.

Other issues have been identified by Callison-Burch et al. (2006a), and they argue

that an improvement in BLEU score is neither necessary nor sufcient for achieving an

actual improvement in translation quality. They point out that BLEU admits a huge

amount of variation for identically scored hypotheses. Typically there are millions

of permutations of a translation which can receive the same BLEU score, but all of
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these orderings are clearly not equally good. This aspect of the BLEU score makes it

particularly inappropriate for measuring word order performance.

2.3.2.2 METEOR

The Metric for Evaluation of Translation with Explicit ORdering (METEOR) (Baner-

jee and Lavie, 2005; Lavie and Denkowski, 2009) attempts to address some of the de-

ficiencies of the BLEU score. METEOR does not require exact matching of words be-

tween the reference and the translation. It allows variability in word choice by match-

ing stems and synonyms. It also includes a measure of recall, which is an improvement

over the precision based approach of BLEU.

METEOR evaluates a translation by quantifying the number of words in the trans-

lation that are matched to a given reference translation. If more than one reference

translation is available, the translation is scored against each reference independently,

and the best scoring pair is selected.

Given a pair of strings to be compared, METEOR generates an alignment such that

every word in each string maps to at most one word in the other string. The metric first

matches all identical words, then all unmatched synonyms using WordNet, and then

all unmatched identical stems. The alignment with the greatest number of matched

items is selected, and if there is a tie it chooses the alignment with the least number

of crossings. Based on the number of aligned unigrams found between the two strings

(m), the number of unigrams in the translation (t) and the number of unigrams in the

reference (r), precision P = m
t and recall R = m

r are calculated and combined in an

harmonic mean:

Fmean =
PR

αP+(1−α)R
(2.8)

It therefore has a reasonably sophisticated approach to detecting word correspon-

dences. However, the way it handles word order differences is quite simplistic. It

generates an ordering penalty for a hypothesis based solely on the number of chunks

(ch) the translation needs to be broken into in order to align to the reference:

Penalty = γ(
ch
m
)θ (2.9)

The final score is as follows:

METEOR = (1−Penalty)Fmean (2.10)
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The lowest METEOR score of 0, would be assigned if there were no matching

words found even after applying the modules such as stemming, and METEOR returns

a score of 1 when there is a perfect match between the reference and the hypothesis.

We now return to the example which was used to describe how the BLEU score

was calculated, shown in Table 2.1. The number of exact word matches between the

reference and the translation is 7. The number of stemmed matches is 1, “plan”, and

there are no synonym matches. 8 words match for sentences where the translation is

length 12 and the reference length 10. Precision is therefore 8/12 = 0.666 and recall

8/10 = 0.8. The basic parameter setting for α is 0.8, γ is 0.4 and θ is 2.5. Fmean is

therefore equal to 0.666∗0.8
0.8∗0.666+0.2∗0.8 = 0.769. The translation is broken into 4 chunks

and so the fragmentation penalty is 0.4(4
8)

2.5 = 0.071. The final METEOR score is

therefore 0.715.

The recent workshops on machine translation show that METEOR correlates fairly

well with human judgement when translating into English (Callison-Burch et al., 2010).

One of the major problems with the METEOR score is that the search procedure is

heuristic and likely to be error prone, especially as it relies upon stemming and syn-

onym functions. Another problem with METEOR is that the handling of word order

differences by counting chunks does not take into account the number of words af-

fected by a reordering.

2.3.2.3 TER

The Translation Error Rate (TER) (Snover et al., 2006) score is an improvement of one

of the original machine translation metrics, the Word Error Rate (WER) (Och et al.,

1999). The WER was borrowed from speech recognition where it measures the num-

ber of insertions, deletions and substitutions required to transform the output sentence

into the reference. Unfortunately WER is not as appropriate for evaluating machine

translation, as it does not take reordering into account. This problem motivates the use

of the Position-independent word Error Rate (PER) which does not penalise reorder-

ings. This is also suboptimal, however, because word order differences should not be

completely ignored. TER addresses these problems by allowing block movement of

words within the hypothesis as a low cost edit, a cost of 1, the same as the cost for

inserting, deleting or substituting a word.

When considering multiple references, the reference with which the hypothesis has

the fewest number of edits is deemed the closest, and the number of edits is calculated

relative to this reference. TER performs a greedy search as finding the optimal align-
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ment is NP-hard. The score is calculated as follows:

TER =
Number Edits

Ave Number Reference Words
(2.11)

TER will give a score of 0 for a hypothesis which is identical to the reference.

When translations are very different to the hypothesis, the number of edits required to

transform the hypothesis can be larger than the average number of reference words and

thus TER can be greater than one. In practice TER values over one are uncommon,

and usually only occur when there is a great difference in length between the reference

and the hypothesis. In this case the number of inserts or deletes required can be greater

than the number of words in the reference.

Looking again at the example in Table 2.1, TER calculates that there are two inser-

tions, three substutions and one shift. This makes a total of six edits and because the

reference is of length ten, the TER score is 0.6.

A major drawback of TER is that the block “shift” operation captures word order

differences without taking the size of the block or the distance it has shifted into ac-

count. Another disadvantage of TER is that words are required to match exactly. TER-

Plus (TERp) (Snover et al., 2008, 2009) addresses this problem by allowing for stem,

synonym, and paraphrase substitutions. This flexibility hugely increases the search

space, and in all likelihood, increases errors in aligning the translation and the refer-

ence. Even with these problems, both TER and TERp have shown good correlation

with human judgements in recent evaluation campaigns, especially when translating

out of English.

2.3.2.4 Other

Other metrics which demonstrate good correlation with human ratings combine sim-

ple and complex features such as semantic and dependency overlap. ULC (Giménez

and Màrquez, 2008) is an arithmetic mean over other automatic metrics including ME-

TEOR, Rouge, measures of overlap between constituent parses, dependency parses,

semantic roles, and discourse representations. Rich Textual Entailment (RTE) (Padó

et al., 2009b) is a regression model over a features adapted from textual entailment

systems. Another metric, RTE measure how closely syntactic and semantic structures

are matched between references and translations. These more complex metrics are in-

teresting, but are slow to run, language dependent and difficult to train. RTE took more

than five days to run in the Metrics MATR workshop (Przybocki et al., 2009). Addi-
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tionally, errors are introduced because of the need for multiple layers of processing. In

this thesis we focus on shallow metrics which are more widely useful.

2.3.3 Evaluation of Automatic Metrics

The method for evaluating automatic metrics varies depending on whether we are cor-

relating them with sentence (or segment) level human scores or if we wish to collate

sentence level judgements into a document level score (typically ten or so sentences)

or a system level score (the entire test set).

2.3.3.1 Sentence Level

The most widely used method to compute correlation between two metrics at the sen-

tence level is the Pearson correlation coefficient. It is used as a measure of the strength

of linear dependence between two sets of data points (xi,yi). The Pearsons correlation

coefficient, or rxy is equal to:

rxy =
∑i(xi− x)(yi− y)

(n−1)sxsy
(2.12)

where x, y are the sample means and sx, sy are the sample variances of the variables

x and y.

The correlation coefficient ranges from -1 to 1. Values that are close to 1 or -1,

mean that the linear relationship between x and y is very strong, whereas a value close

to 0 implies that there is no linear correlation between the variables.

Thus an automatic evaluation metric with a higher absolute value for Pearsons

correlation coefficient is making predictions that are more similar to the human judge-

ments. The statistical significance of the correlation is calculated by using an asymp-

totic t-test approximation.

2.3.3.2 System Level

We typically measure the correlation of the automatic metrics with the human judge-

ments of translation quality at the system level using Spearman’s rank correlation co-

efficient ρ. When there are no ties ρ can be calculated using the equation:

ρ = 1−
6dρ

n(n2−1)
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where dρ is the difference between the rank for system i and n is the number of

systems. ρ also ranges between −1 and 1.

2.3.4 Discussion

In this thesis we rely upon three metrics, the BLEU score, METEOR, and TER, as

baseline metrics. These metrics have all performed well in the evaluation campaigns

and they are widely used. They are all shallow metrics as no deep linguistic analysis

is required. This is important as it makes them reasonably language independent and

faster to compute, allowing them to be more widely useful and appropriate for training

systems. METEOR does leverage stems and synonyms, but these modules are optional,

and for languages where they are not available, exact match is used. We also choose

them because they are representative of different types of automatic metrics. Przybocki

et al. (2009) suggest that metrics can be placed in three different categories: n-gram

metrics, edit distance metrics, and linguistic metrics. They state that BLEU, TER and

METEOR are the representative examples of these three respective categories.

Although these metrics are widely used, we argue in this thesis that they are not

appropriate for measuring the word order performance of translation systems. None of

them take the size of the word order differences into account and none of them have

been directly evaluated on a reordering task. Considering the fact that a large amount

of the research in translation is dedicated to improving the quality of the word order,

this is a surprising gap.

2.4 Summary

In this chapter we have briefly described the statistical machine translation task. We

have looked in detail at the reordering component of different translation models and

highlighted reordering models, reordering restrictions and reordering within syntax-

based systems. We then investigated various strategies of human and machine eval-

uation of translations introducing the three baseline metrics we will use throughout

the thesis BLEU, METEOR and TER. Finally we have looked at how to evaluate the

automatic metrics. In the next chapter we examine how we can extract the reordering

characteristics of parallel corpora, and we use this to compare human, phrase-based

and syntax-based machine translation systems.





Chapter 3

Comparison of Reordering in

Translation Models

3.1 Introduction

In the previous chapter, we presented a broad overview of research on reordering. This

chapter provides an in-depth analysis of the reordering capabilities of two important

translation models.

Phrase-based models (Koehn et al., 2003; Och and Ney, 2004) have been a major

paradigm in statistical machine translation over the last seven years, showing state-

of-the-art performance for many language pairs. They search all possible reorderings

within a restricted window, and their output is guided by the language model and a

lexicalised reordering model, both of which are local in scope. However, the lack of

structure in phrase-based models makes it very difficult to model long distance move-

ment of words between languages.

Synchronous context-free grammars can represent long-distance reordering with-

out the exponential complexity which phrase-based models face. However, added

modelling power comes with challenges such as the size of the grammar and spuri-

ous ambiguity. Some grammar-based models such as the hierarchical model (Chiang,

2005) and the syntactified target language phrases model (Marcu et al., 2006) have

been preforming well in recent evaluation campaigns (NIST, 2009).

Exploring translation models with the aim of improve reordering performance has

been the focus of much research in statistical machine translation. However, our un-

derstanding of the variation in reordering performance between phrase-based and syn-

chronous grammar models has largely been limited to relative BLEU scores. Relying

39
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on BLEU scores is problematic, as a very large number of orderings are give the same

score (Callison-Burch et al., 2006a). There has been little direct research on empiri-

cally evaluating the reordering behaviour of different translation models.

This chapter proceeds as follows. Section 3.2 presents a novel method for charac-

terising the word order differences found in parallel corpora. Reorderings are analysed

quantitatively, by recording their frequency and their size. In Section 3.3 we describe

the experimental setup, including the creation of a test set with known reordering prop-

erties. Section 3.4 presents the results of experiments where the performance of the two

translation models are compared to each other, with the hierarchical model perform-

ing slightly better for language pairs with large amounts of reordering. However, both

models are shown to produce largely monotone translations, failing to capture the re-

orderings seen in human translated corpora. Finally, in Section 3.5 we summarise our

contributions and our findings.

3.2 Extracting Reorderings

Until now, we have used the term reordering quite loosely to mean a word order differ-

ence between the source and target language. In this section we will define reordering

and describe the algorithm we use to extract reorderings.

Differences in word order can include ambiguous cases which are not in fact re-

orderings. Perhaps the essential characteristic of a reordering is that the order of two

words, or sequences of words, must be swapped between the two languages. We argue

that it is intuitive to define a reordering as the inversion of the relative ordering of two

words between source and target languages. Figure 3.1 shows a reordering where the

order of the source words “bruja verde” and the target words “green witch” have been

swapped.

the

green

witch

la b
ru

ja

ve
rd

e

Figure 3.1: An example sentence with a reordering.
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Figure 3.2: Example sentences with no reordering.
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Figure 3.3: Example sentence with a discontinuous span and no reordering.

To support this intuition on the nature of reordering, it is helpful to consider cases

where no reordering occurs. The most obvious case where no reorderings occur is

when the sentence is translated in a monotone fashion. Figure 3.2 (a) shows us a simple

example. Differences in the fertility of words also do not constitute reorderings, such as

when a word is translated as two words or it is missed out in a translation, as shown in

Figure 3.2 (b). Furthermore, in our opinion, no reordering exists for a more ambiguous

case, when word is translated as more than one word, with a gap in between, i.e. a

discontinuous alignment. An example of such a case is shown in Figure 3.3. Here,

a word order difference exists, but there is no inversion in order of aligned words

between the source and target.

Our definition of reordering follows this intuition, positioning it at the point where

the difference in order is detected. We define reordering as a binary process occur-

ring between two sequences of words that are adjacent in the source and are swapped

in order in the target This definition agrees with the ITG constraint described in Sec-
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tion 2.2.2. Under most conditions, our approach would essentially extract the spans

defined by the inverse rules in an ITG grammar. Galley and Manning (2008) defined a

method for extracting ITG reordering rules from word alignments using a shift-reduce

parser which is quite similar to the method we use to extract reorderings. The main

difference between these methods is in the manner in which they deal with reorderings

which cannot be broken down into two inverted blocks, or binarized.

Our approach also has some similarities with the TER metric (Snover et al., 2006)

which attempts to find the minimum number of edits to correct a hypothesis, and ad-

mits moving blocks of words. However TER relies upon a sequence of edits which

transform the hypothesis at each application. Our method extracts a hierarchy of em-

bedded reorderings from a fixed sentence pair without the confounding effect of the

insert and delete actions of TER.

Wu (1997) discusses word order differences which cannot be modelled by two in-

verted blocks, of the kind we have defined. For sequences of length four, there are two

out of a possible 24 orderings which are not binarizable, but for sequences of length

16, there are 20× 1012 possible orderings of which only a very few are binarizable.

Figure 3.4 shows the two interleaved reorderings of four words which broken down

into two inverted blocks. Wu argues that these orderings are rare, however others have

found these cases to be reasonably common (Zens and Ney, 2003).

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

Figure 3.4: Example sentences with a reordering involving four interleaved words.

In our approach, we explicitly deal with the non-binarizable cases by extracting

reorderings whenever adjacent source words are aligned to words in the target which

are inverted in order. Our algorithm also differs from that of Galley and Manning

by handling null alignments and discontinuous alignments, which occur frequently in

human translated parallel texts.

The advantage of simplifying reorderings to binary inversions, is that any statistics

thus collected can be used in a wide variety of translation models. Most models include
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a concept of monotone or inverted orderings. The phrase-based models use lexicalised

reordering models where the probabilities of monotone, inverted or disjoint orderings

for a phrase pair are collected. Synchronous grammars perform binarization of rules in

order to improve efficiency and the order of two non-terminals will either be monotone

or inverted across languages. A recent study performed by Zhang et al. (2008) suggests

that binary synchronous grammars are adequate for modelling translation.

3.2.1 Defining Concepts

For the purpose of extracting reorderings we must define exactly what a reordering is.

We give here a strict definition and we use this for the experiments presented in this

chapter and the following chapter, Chapter 4. In the rest of the thesis we will also use

the term reordering to refer to the more general concept, where an inversion in word

order has occurred, but it need not be an inversion between two blocks.

Before describing the extraction of reorderings, we need to define some concepts.

We define a block A over an alignment grid as consisting of a source span, As, which

contains the positions from Asmin to Asmax and is aligned to a set of target words. The

minimum and maximum positions (Atmin and Atmax) of the aligned target words mark

the block’s target span, At . Figure 3.5 shows such a block.

smin smax

tmin

tmax

}Span s}
S
p
a
n
 t

Figure 3.5: The dimensions of a block.

A reordering r consists of the two blocks rA and rB, which are adjacent in the

source and where the relative order of the blocks in the source is reversed in the target.

Figure 3.6 shows an example of a reordering with the two blocks. More formally:

rAs < rBs, rAt > rBt , rAsmax = rBsmin−1

During the process of extracting reorderings, we rely upon the concept of consis-

tency. A block is consistent if all the words which are inside the block are aligned to
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1

2

3

1 2 3

A
B

Figure 3.6: The definition of a reordering with two blocks A and B.

each other, and not to words outside the block. This concept is borrowed from work

on phrase pair extraction from word alignments (Koehn et al., 2003). Figure 3.7 shows

an example of an inconsistent block where target word two is aligned to a word which

outside of the block.

1

2

3

1 2 3

Figure 3.7: Example of an inconsistent block.

3.2.2 Extraction Algorithm

In this section we first describe the extraction algorithm which detects the existence of

a reordering and determines the dimensions of the blocks involved. We then present

some minor additions to the algorithm to handle null alignments and discontinuous

alignments.

The algorithm proceeds as follows. We step through all the source words. We

extract the positions of target words which are aligned to the current source word. We

compare these target positions to the target words aligned to the previous source word.

If they are inverted in order with respect to the source, a reordering has occurred.
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The algorithm first sets the blocks to some initial positions and then grows them to

their final dimensions. The initial position of block A is set to the previous source word

and its aligned target words. Block B is set to the current source word and its aligned

target words. Then we grow the blocks. When reorderings are embedded within each

other the assumption is that they are right branching. This means that block A is grown

to be as large as possible while block B is only grown the minimum necessary for the

reordering as a whole to be consistent. This basic assumption is justified by the fact that

English is considered to be a right branching language because the main verbs precede

the direct objects. There are many languages which are left branching however, such

as Japanese, and even English places prepositions and numerals before nouns. Ideally,

the reordering would be constrained by a parse of the sentences as we do in other

word (Birch et al., 2009).

Figure 3.8 shows the reorderings that are extracted from an alignment with em-

bedded reorderings. Although (c) is not sanctioned by our algorithm, it could be the

preferred reordering as determined by a parse tree. There is an extension of this work

presented in Birch et al. (2009) which selects reorderings detected between child nodes

in a parse tree. We do not pursue this method here as our experiments are quantitative

and do not use the grammatical information that is thus extracted.
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(a) (b) (c)

Figure 3.8: Examples of embedded reorderings. Examples (a) and (b) show two of the

three reorderings supplied by our algorithm for this inverted alignment. Our algorithm

would not produce the reorderings shown in (c).

From the initial dimensions of block A the algorithm attempts to grow block A

from this point towards the source starting position. It extends the source span while

the target span of A is greater than that of block B, and the new block A remains

consistent. Finally, it extends block B towards the source end position, while the target

span of B is less than that of A and the new reordering is inconsistent.
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More formally, we define the algorithm as follows:

1: J← length of source sentence

2: for scurrent = 2 to J do
3: if align(scurrent)< align(scurrent−1) then
4: B = getblock(scurrent ,scurrent)

5: A = getblock(scurrent−1,scurrent−1)

6: G = A

7: x = scurrent−2

8: while x >= 0 and Gt > Bt do
8: G = getblock(x,scurrent−1)

9: if G is consistent then
10: A = G

11: end if
11: decrement x

12: end while
13: G = B

14: x = scurrent +1

15: while x <= J and At > Gt and reordering (A,G) is inconsistent do
15: G = getblock(scurrent ,x)

16: if reordering (A,G) is consistent then
17: B = G

18: end if
18: increment x

19: end while
20: end if
21: end for

See Figure 3.9 for an example of a sentence pair with two reorderings. The al-

gorithm steps through the Chinese source words until it reaches the Chinese word for

“from”. It detects that the previous source word is aligned to a target word which pre-

cedes the current target word “from”. A reordering is thus detected. The algorithm

sets block A to “late” and block B to “from”. It then continues to extend block A to-

wards the start of the source sentence, while all the aligned target word positions are
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Brown

arrived

in

Shanghai

from

Beijing

late

last

night

.

布
朗

是 昨
天

深
夜

从 北
京

抵
达

上
海

的 。

Figure 3.9: A sentence pair from the test corpus, with its alignment. Two reorderings

are shown with two different dash styles.

greater than that of “from”. It therefore stops when it reaches “Brown”. The algorithm

then tests whether the reordering is consistent and it discovers that the word “Beijing”

is aligned to a word outside of the area of the reordering. It therefore grows block

B towards the end of the source sentence. It stops once block B includes “Beijing”.

The next reordering is detected between “arrived in” and “Beijing”, and the blocks are

grown in a similar fashion. We can see that the algorithm attempts to grow A as large

as possible, but it only grows B when the reordering is inconsistent. This algorithm has

the worst case complexity of O(n2

2 ) when the words in the target occur in the inverse

order to the words in the source.

3.2.2.1 Null Alignments

In human translated text, null alignments will be relatively common. The way we deal

with null alignments is to include them in the dimensions of the reordering if they

occur between or inside the reordered blocks, but not if they occur on the outside of

the blocks. This means that in the case of a word not being aligned to a target word,

the next word is examined. Figure 3.10 provides three examples with null alignments

which are included in the reordering blocks. Figure 3.9 includes two source words

which are aligned to null and occur on the edge of reorderings and they are therefore

not included.
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Figure 3.10: Examples of null alignments being included in reorderings.

3.2.2.2 Discontinuous Alignments

We have already discussed discontinuous alignments. We have argued that, although

they represent a word order difference between the source and target, there is no inver-

sion in word order, and therefore they are not considered to be reorderings. We do not

want to extract discontinuous alignments as reorderings and we therefore handle them

in the following manner. We identify the minimum consistent block that surrounds the

discontinuous alignment, and we mark this area off. In Figure 3.11 we can see that the

discontinuous alignment caused an area to blocked off in dark grey. No reorderings

are extracted from within these blocks.
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Figure 3.11: Example sentence with a discontinuous span and no reordering.
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3.2.2.3 Non-binarizable Reorderings

Our approach to extracting reorderings relies upon the assumption that reorderings

consist of two adjacent blocks which are inverted in order in the target. Figure 3.12

shows an example of a Chinese sentence with an interleaved reordering. It also shows

the reorderings that our algorithm detects. There are two inversions and therefore

two reorderings are extracted. The total source and target spans of these individual

reorderings are very similar to the dimensions recorded if one interleaved reordering

were to be extracted.

total

export

value

of

Guangdong

's

processing

trade

广
东
省

整 个 加
工

贸
易

出
口
值

Figure 3.12: An example sentence where the reordering consists of 4 interleaving ele-

ments.

3.2.3 RQuantity

The reordering extraction technique allows us to analyse reorderings in corpora ac-

cording to the distribution of reordering widths. In order to facilitate the comparison

of different corpora, we combine statistics about individual reorderings into a sentence

level metric which is then averaged over a corpus. This metric is defined using reorder-

ing widths over the target side, as the common language in the following experiments

is the target language English.

We define RQuantity as follows:

RQuantity =
∑r∈R |rAt |+ |rBt |

I
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where R is the set of reorderings for a sentence, I is the target sentence length, A and B

are the two blocks involved in the reordering, and |rAs| is the size or span of block A on

the target side. RQuantity is thus the sum of the spans of all the reordering blocks on

the target side, normalised by the length of the target sentence. The minimum RQuan-

tity for a sentence would be 0. The maximum RQuantity occurs where the order of

the sentence is completely inverted and the RQuantity is ∑
I
i=2 i
I . The maximum RQuan-

tity could potentially be greater than 1. For example, Figure 3.9 has an RQuantity of
3+2+5+3

10 = 1.3. RQuantity is not a true metric because it is not symmetric. Measuring

the RQuantity from Chinese to English, could return different results than it would

measuring from English to Chinese. The is partially because of the simplification as-

sumptions needed to extract the reorderings, but also because we are only taking the

length of sentence into account.

3.3 Experimental Design

We have presented our method for extracting reorderings from parallel corpora. We

now apply this method to investigate what kind of reordering occurs in the output of

two important state-of-the-art translation models. We aim to compare the reordering

behaviour of the phrase-based model and the hierarchical model with each other and

with the human translations. We also aim to determine whether the claim that the

hierarchical model is better able to capture reordering is supported, and under what

circumstances this is true.

3.3.1 GALE Data

Characterising the reordering present in different human generated parallel corpora is

crucial to understanding the kinds of reordering we must model in our translations. In

order to extract reorderings, word alignments are needed. The GALE project created

an important and relevant resource which contains human annotated gold standard

word alignments for a large number of Arabic-English (AR-EN) and Chinese-English

(CH-EN) sentences1. A subset of these sentences come from the Arabic and Chinese

treebanks, which provide gold standard parses of these sentences. Table 3.1 shows the

number of sentences and the number of words in these corpora. In this chapter, we

use the subset of the data with parsing information comprising of 3380 CH-EN and

1see LDC corpus LDC2006E93 version GALE-Y1Q4
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4337 AR-EN sentence pairs. The CH-EN corpus aligns English words with Chinese

characters, and we apply the segmentation defined by the parse tree.

Aligned Aligned+Parsed

CH-EN

Sentences 10,407 3,380

CH Words 236,634 84,408

EN Words 289,701 116,220

AR-EN

Sentences 13,263 4,337

AR Words 277,744 140,091

EN Words 383,389 165,128

Table 3.1: GALE-Y1Q4 manually aligned corpus statistics.

Chinese does not contain determiners and the annotation guidelines for the GALE

data indicate that determiners in English are aligned to the head of the noun phrase.

This creates a large number of discontinuous word alignments which result in blocked

off areas, from which no reorderings are extracted. For a significant proportion of the

sentences, these blocked off areas cover large areas of the sentence. We solved this

problem by unaligning determiners in a preprocessing step where we POS tagged the

English side of the corpus using the Stanford POS tagger (Toutanova and Manning,

2000). The results of this preprocessing can be seen in Figure 3.13. In (a) we see

the original sentence with discontinuous alignments and two large blocked off areas

in dark grey. In (b) we see the unaligned determiners are shown in light grey. By

unaligning the determiners, we reduce, and often remove, areas of the sentence which

are blocked off. More reorderings within these previously blocked off areas are now

available for extraction. In Figure 3.13 we can see that a new reordering has been

identified between “open match” and “to take place”.

We apply the reordering extraction algorithm to these corpora. Figure 3.14 shows

the distribution of reorderings in the CH-EN and AR-EN corpora broken down by

the total width of the target span of the reorderings. This figure clearly shows how

different the distributions of reorderings are in the two language pairs. AR-EN has far

fewer reorderings over the medium and long distances, but surprisingly, it has many

more short distance reorderings. We define short, medium or long distance reorderings

to mean that they have a reordering of width of between 2 to 4 words, 5 to 8 and
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Figure 3.13: An example sentence with discontinuous alignments (a) before and (b)

after determiners are unaligned. The resulting reorderings are also indicated.

more than 8 words respectively. These definitions are somewhat arbitrary, but relate

to reordering performance of the current translation models. Most translation models

handle short distance reorderings relatively well. They can also sometimes correctly

perform a reordering over a medium distance, but almost all long distance reorderings

fail. We analysed the reorderings seen in the Chinese-English to see how many of them

were binarizable. For 2990 of the 3380 Chinese-English sentences (88.46%), all the

reorderings comply with the ITG assumption. This is a high percentage of sentences

which do not contain non-binarizable reorderings.

We also investigate what kind of RQuantity values are returned for the corpora.

Figure 3.15 and Figure 3.16 shows the RQuantity for CH-EN and AR-EN for sentences

of different lengths. The size of the standard deviation is indicated by vertical lines.

The CH-EN corpus displays about three times the amount of reordering than the AR-

EN corpus. For CH-EN, the RQuantity increases with sentence length and for AR-EN,

it remains constant. This seems to indicate that for longer CH-EN sentences there are

larger reorderings, but this is not the case for AR-EN. RQuantity is low for very short

sentences.

Al-Onaizan and Papineni (2006) propose an alternative method for comparing re-

ordering in different parallel corpora. They take the reference sentence and reorder it

according to the word order shown by the word alignments. They then measure how

scrambled the sentence is by computing the BLEU score between the original reference
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Figure 3.14: Comparison of reorderings of different widths for the CH-EN and AR-EN

corpora.

sentence and the reordered reference. They show that Arabic-English is more mono-

tone than Chinese-English because it reports a higher BLEU score. Their method is

simple and provides some insight, unfortunately one BLEU score could account for a

vast number of different possible orderings and is therefore not particularly informa-

tive.

3.3.2 Reordering Test Corpus

In order to determine what effect reordering has on translation, we extract a test cor-

pus with specific reordering characteristics. We divide up the sentences into groups

depending on the amount of reordering they display. By separating sentences with

little or no reordering from sentences with a large amount of reordering, we can eval-

uate models on their treatment of sentences that we know contain large amounts of

reordering.

To minimise the impact of sentence length, we select sentences with target sen-

tence lengths of 20 to 39 words inclusive. In this range, the amount of reordering for

different sentence lengths is relatively stable, as shown in Figures 3.15 and 3.15. We

then split these sentences into four different sets. The first set consists of sentences
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Figure 3.15: Average RQuantity, with standard deviation shown, for the CH-EN corpora

for different English sentence lengths.

with no reordering. Some of these sentences have areas which are blocked off due to

discontinuous alignments which can contain unextracted reorderings. On examination,

the blocked off areas are small and most of these sentences do in fact have very little

reordering.

We split the rest of the sentences into groups of equal size. They are divided into

groups depending on their RQuantity and we end up with three sets of sentences:

“low”, “medium” and “high”.

None Low Medium High

RQuantity

CH-EN 0 0.39 0.82 1.51

AR-EN 0 0.10 0.25 0.57

Sentences

CH-EN 105 367 367 367

AR-EN 293 379 379 379

Table 3.2: The RQuantity, and the number of sentences for each reordering test set.

Table 3.2 reports the RQuantity and the number of sentences for each of the four

test sets. It is important to note that although we might name a set “low” or “high”,

this is only relative to the other groups for the same language pair. The “high” AR-EN

set, has a lower RQuantity than the “medium” CH-EN set.

Figure 3.17 shows distribution of the average number of reorderings per sentence
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Figure 3.16: Average RQuantity, with standard deviation shown, for the AR-EN corpora

for different English sentence lengths.

for each of the test sets, broken down by the total span of the reordering on the target

side. As expected, we see more medium and long distance reorderings for Chinese

to English than for Arabic to English. These graphs show that the reorderings in the

higher RQuantity groups have more and longer reorderings.

3.3.3 Translation Models

The following experiments use the MOSES implementation of the phrase-based model (Koehn

et al., 2007), and the hierarchical model is an implementation of Hiero (Chiang, 2007)

with all the default settings. For details please see Appendix A.

We trained both models on subsets of the NIST 2008 data sets, consisting mainly

of news data. Table 3.3 reports the training corpora’s characteristics: the number of

sentences and the number of English and foreign words that they contain. We used a

trigram SRILM language model, interpolated with kndiscount, on the entire English

side (211M words) of the NIST 2008 Chinese-English training corpus. Although a

higher order language model would have slightly increased translation performance

across the board, it would not have changed the behaviour of the models with regard

to the medium or longer distance reorderings, as even a stronger language model still

operates at a local level. Minimum error rate training was performed on the 2002 NIST

test for CH-EN, and the 2004 NIST test set for AR-EN.
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Figure 3.17: Number of reorderings in the (a) CH-EN and (b) AR-EN test set plotted

against the total width of the reorderings.
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CH-EN AR-EN

Sentences 547K 1,069K

CH/AR words 10.2M 23.4M

English words 12.3M 26.9M

Table 3.3: NIST 2008 training data characteristics in thousands of sentences and mil-

lions of words.

3.3.4 Example Translation

Before analysing the results of the translation experiments, it is instructive to look at

an example sentence pair.

Figure 3.18 shows the human annotated alignment of a Chinese sentence with its

reference translation. Figures 3.19 and 3.20 show the translation model output of the

phrase-based MOSES decoder, and the hierarchical HIERO decoder. The alignments

are the actual alignments used by the translation models to construct the translation,

and the reorderings extracted by our extraction algorithm are also shown. Reading the

translations, it is clear that they are very poor. We can see that both models perform

an essentially monotone translation of the source, even though the original human

reference sentence contains a large number of word order differences relative to the

source. Even if we take into account the fact that a certain amount of variation in word

order is permissible in the translation, it seems perfectly clear that the lack of sensible

reordering in the models is contributing to the poor quality of the output. The phrase-

based model does perform some local reorderings, but these account more for lexical

variation between the reference and the translation, than for differences in structure

between the languages. The hierarchical decoder performs even fewer reorderings

than the phrase-based model.

Figure 3.20 also shows some discontinuous alignments, which cause areas of the

sentence to be blocked off. These represent rules in the grammar which have multiple

terminal symbols, or words. These discontinuous alignments occur because the actual

word alignments are not resolved. All words in the source side rule are aligned to all

words in the target side rule. Although it would have been preferable to extract word

alignments from these sentences, we can see here that the discontinuous alignments do

not contain interesting reordering information. Even though we are potentially under-

estimating the number of reorderings seen in the output of the hierarchical model, the

difference between the word order of the human translation and the Hiero translation
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Figure 3.18: An example of a human translated Chinese-English sentence pair.
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Figure 3.19: The phrase-based translation of the Chinese source in Figure 3.18.

is so marked, that we can confidently say that the model is under-performing.

This example highlights the fact that neither model comes close to modelling the

reorderings seen in the human translated texts. Researchers motivate more powerful

models, such as the hierarchical model, by claiming that they can model reordering

better. However, these models are then evaluated using metrics which do not measure

the word order directly.

3.3.5 Manual Analysis

In our experiments, we investigate whether or not reorderings which occur in the ref-

erence, also occur in the translations. The only way to verify the relevance of automat-

ically detecting if reorderings are reproduced, is to use humans to evaluate how many

reproduced and un-reproduced reorderings are correct.

We present human judges with the reference and the translation of 50 randomly
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Figure 3.20: The hierarchical model translation of the Chinese source in Figure 3.18.

selected CH-EN sentences from the reordering test set. We mark the target ranges of

the blocks that are involved in the particular reordering we are analysing, and ask the

evaluator if the word order in the translation is “correct”, “incorrect” or “not appli-

cable”. The judges were told to select the “not applicable” label when the translated

words are so different from the reference, that their ordering is irrelevant.

There were three human evaluators who were approached personally. They were

all fluent English speakers. They each judged 25 CH-EN reorderings which were re-

produced and 25 CH-EN reorderings which were not reproduced. The 50 examples

were presented to the evaluators in the same document which randomly permuted the

reproduced and non-reproduced reorderings. In total 150 judgements were collected.

No experimental software was used. Please see Appendix B for detailed instructions

and an example test case.
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3.4 Results

In the following experiments we explore ways of quantifying the differences between

between the human translation and the machine translations, and between the phrase-

based and hierarchical models.

3.4.1 Performance on Test Sets

The reordering test sets were created to see what effect reordering has on the perfor-

mance of two translation systems. In this section we compare the translation output

for the phrase-based and the hierarchical system using the standard machine translation

metric, the BLEU score.

none low med high all

MOSES
HIERO

14
16

18
20

22

Figure 3.21: BLEU scores and 95% confidence intervals for the different CH-EN re-

ordering test sets and the combination of all the groups for the two translation models.

Figure 3.21 and Figure 3.22 show the BLEU score results of the phrase-based model

and the hierarchical model on the reordering test sets. The 95% confidence interval

for the results is shown, and this was calculated using bootstrap resampling (Koehn,

2004b). We can see that the models display quite different behaviour for the test sets

across the two language pairs.

The hierarchical model outperforms the phrase-based model when applied to the

CH-EN language pair as a whole, but performs significantly worse on the AR-EN

language pair. For the CH-EN test sets, the phrase-based model does a little better on
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Figure 3.22: BLEU scores and 95% confidence intervals for the different AR-EN re-

ordering test sets and the combination of all the groups for the two translation models.

the “none” and “low” test sets, but it performs worse on the “medium” test set. It seems

that the phrase-based system is able to model the shorter distance reorderings, but the

hierarchical model is able to model medium distance reorderings better. The fact that

both model show equal performance on the “high” RQuantity test set suggests that the

hierarchical model has no advantage over the phrase-based model when the reorderings

are long enough and frequent enough. The performance of both systems on the “high”

test set is surprisingly good, but this could also be due the fact that BLEU is unreliable

at capturing reordering performance. This motivates analysing translations specifically

for reordering as we do in the next section. In fact this thesis will propose a metric that

takes into account both ordering and lexical variation, but making it easy to examine

each component score in isolation.

For the AR-EN results (Figure 3.22), the phrase-based system has an advantage

over the hierarchical system. This is because almost all the reorderings in the AR-EN

test sets are reasonably short distance and the phrase-based system seems to handle

these reorderings better than the hierarchical model. The phrase-based model consid-

ers all possible orderings within the distortion limit, whereas the hierarchical model

requires evidence of a reordering occurring in the training corpus. These results indi-

cate that the choice of translation model should be informed by the amount and type

of reordering present in the language pair, and that more structured models are not
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necessarily preferable.

Our results here compliments an empirical comparative study of MOSES and HI-

ERO performed by Zollmann and Venugopal (2006). They tried to ascertain which

is the stronger model under different reordering scenarios by varying distortion lim-

its and the strength of language models. They show that the hierarchical models do

slightly better for Chinese-English systems, but worse for Arabic-English. Although

quite thorough, their study did not pick up the fact that even for Chinese-English,

Moses performs better for sentences with low amounts of reordering and it performs

as well for sentences with very large amounts of reordering.

3.4.2 Reorderings in Translation

Reordering performance can only be partially revealed by the BLEU score, and so we

perform a more detailed analysis. We use our extraction algorithm to extract the set of

reorderings from the output of the translation models.

Figure 3.23 plots the frequency of the reorderings detected in the output of the

phrase-based model, breaking down the analysis based on the total size of the reorder-

ings on the target side. This graph is interesting when read in conjunction with Fig-

ure 3.17, which shows the reorderings that exist in the original reference sentence

pairs.

The Moses translations have far fewer reorderings than the human reference trans-

lations. Those reorderings that do occur are predominantly short or medium length

reorderings and almost no long distance reorderings occur.

Figure 3.24 shows the reorderings contained in the output of the hierarchical model.

The results are very different to both the phrase-based model output (Figures 3.23)

and to the original reference reordering distribution (Figures 3.17), there are many

fewer reorderings. However, the BLEU score performance of this system is better

than that of the phrase-based system for the “medium” test set. As we are missing

some reorderings due to the discontinuous alignments contained within the hierarchical

rules, the numbers here represent a lower-bound on the number of reorderings. Even

so, it is clear that the hierarchical model has failed to capture the reordering behaviour

of the human translated corpus.
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Figure 3.23: Reorderings in the MOSES translations, plotted against the total target

width of the reorderings.
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Figure 3.24: Reorderings in the Hiero translations, plotted against the total target width

of the reorderings.



66 Chapter 3. Comparison of Reordering in Translation Models

3.4.3 Reproducing Alignments

Although we can now quantify the amount of reordering occurring in translations,

we still have no idea whether they are correct or spurious. One way to approach this

question is to investigate whether the reorderings seen in the human reference are being

reproduced in the machine translations.

We proceed as follows. Individual reorderings between the source and reference

sentences in the test set are identified. We then test translations to see whether they

contain the same reorderings as the reference. By doing so, we identify which reorder-

ings are being reproduced by the different translation models.

If a reordering has been translated by one phrase pair, we say that the reordering has

been reproduced because the reordering could exist inside the phrase. If the segmen-

tation is slightly different, but a reordering occurred within the scope of the reference

reordering, we also claim that it has been reproduced. The results are therefore an

upper-bound on how many reorderings were actually reproduced.
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Figure 3.25: Percentage of reorderings reproduced by the phrase-based and hierarchi-

cal models for the combination of all the CH-EN reordering test sets. The data is shown

relative to the length of the total target width of the reordering.

Figure 3.25 shows that the hierarchical model reproduces more reorderings of all

widths than the phrase-based system, but especially for reorderings of width six to ten.

This means that Hiero is performing better reordering than the phrase-based model.
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Both systems retain very few reorderings however, and for distances of more than

ten they reproduce practically none of the reorderings seen in the reference. As both

models impose reordering restrictions, this is not surprising. Moses uses a distortion

limit, and Hiero imposes a maximum source span for a rule, and in this thesis it is

set to ten. As rules are then glued together in a monotone fashion, this means that

no reorderings larger than ten are considered. Thus, any claims about the hierarchical

model being able to perform long distance reorderings are clearly not supported.

3.4.4 Manual Analysis of Reproduced Alignments

We have established what reorderings have been reproduced. However we still need

to determine whether reorderings which are reproduced are more likely to be correct.

The translation model can compensate for not performing a reordering by using differ-

ent lexical items. To judge the relevance of the evaluation performed in the previous

section, Section 3.4.3, we perform a manual evaluation described in Section 3.3.5.

Correct Incorrect NA Total

Participant 1

Reproduced 21 0 4 25

Not Reproduced 12 6 7 25

Participant 2

Reproduced 21 0 4 25

Not Reproduced 11 10 4 25

Participant 3

Reproduced 19 4 2 25

Not Reproduced 9 15 1 25

Total

Reproduced 61 4 10 75

Not Reproduced 32 31 12 75

Table 3.4: Human evaluation of individual reorderings where they were either repro-

duced in the translation or they were not.

The results in Table 3.4 show that the reorderings which were reproduced are gen-

erally judged to be correct. If the reordering is not reproduced, then the evaluators

divided their judgements evenly between the reordering being correct or incorrect. It
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seems that the fact that a reordering is not reproduces does indicate that it is more likely

to be incorrect. The cases where the reordering was reproduces, but it was judged to be

incorrect could either be due to bad choice of words in the translation, or to human er-

ror. We used Fleiss’ Kappa to measure the correlation between annotators. It expresses

the extent to which the amount of agreement between raters is greater than what would

be expected if all raters made their judgements randomly. In this case Fleiss’ kappa is

0.357 which is considered to be a fair correlation.

3.5 Summary

This chapter provides a systematic analysis of reordering both in the original corpus,

and in the output of two state-of-the-art translation models. In order to achieve this we

present a novel method for extracting reorderings from parallel sentences.

This method of analysing reorderings is validated by detecting more and longer

reorderings for the Chinese-English parallel corpus than for the Arabic-English corpus.

More surprisingly, it shows that Arabic-English has more short distance reorderings

than Chinese-English.

Finally, we show that the hierarchical model performs better than the phrase-based

model in situations where there are many longer distance reorderings. However, we

also show that the choice of translation model should be guided by the type of re-

orderings in the language pair, as the phrase-based model outperforms the hierarchical

model where there a many short distance reorderings. Importantly, neither model is

able to capture the reordering behaviour of the reference corpora adequately.



Chapter 4

Impact of Reordering on Translation

Quality

4.1 Introduction

In the previous chapter, we proposed a method for analysing reordering in parallel

corpora and used this to compare the performance of different translation models. In

this chapter, we apply the same methods to a wide coverage study of the impact of

reordering on translation performance.

The performance of machine translation systems varies greatly depending on the

source and target languages involved. Knowing what characteristics of the language

pair contribute to the variation in system performance is key to knowing what aspects

of machine translation need to improve, and which have little impact. We are primarily

interested in what impact reordering has on translation quality, but we also investigate

two other factors: the morphological complexity and the language family similarity

of the two languages. We wish to compare the importance of reordering as a fac-

tor in determining the performance of translation models, with other potential factors.

Morphology and language relatedness were chosen, because they represent fundamen-

tal aspects of the challenge of translation. Morphological complexity makes it much

more difficult to find the right words in translation, and lack of language relatedness

would mean more divergence in language structure and lexical items.

We perform a survey of 110 different language pairs drawn from the Europarl

project (Koehn, 2005). This contains parallel data for 11 official languages of the

European Union and provides a rich variety of data for our experiments. Most re-

search in machine translation only reports results on one or two languages pairs, by

69
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analysing so many language pairs, we are able to provide a much wider perspective on

the challenges facing machine translation.

The rest of the chapter proceeds as follows. In Section 4.2 we describe the Eu-

roparl corpus. Section 4.3 demonstrates the validity of using automatic alignments as

the basis for extracting reorderings. Then the amount of reordering across the language

pairs is investigated. Section 4.4 describes our approach to extracting the morpholog-

ical complexity of a language and the language relatedness of a language pair. In

Section 4.5, we describe the experimental design and, in particular, we describe our

approach to regression analysis. In Section 4.6 we present the results of the analyses

using the BLEU score as our dependent variable and the other factors as our indepen-

dent variables. Finally, in Section 4.7 we discuss the contributions of this chapter.

4.2 Europarl

In order to analyse the influence of different language pair characteristics on translation

performance, we need access to a large variety of comparable parallel corpora. A

good data source for this is the Europarl Corpus (Koehn, 2005). Europarl Version 3

consists of a collection of the proceedings of the European Parliament, including the

years from 1996 to 2006. It consists of up to 44 million words for each of the 11

official languages of the European Union. Table 4.1 lists the languages grouped in

their language families.

Indo-European Non Indo-European

Germanic Romance Greek Finno-Ugric

Swedish sv French fr Greek el Finnish fi

German de Portuguese pt

Dutch nl Italian it

Danish da Spanish es

English en

Table 4.1: Europarl languages and their abbreviations grouped together in their lan-

guage families

In trying to determine the effect of properties of the languages involved in trans-

lation performance, it is important that other confounding factors are minimised. The

Europarl corpus contains data from just one domain, and, with the exception of Greek,
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Figure 4.1: Average size of corpora for language pairs which include the language

specified.

all the corpora have similar sizes.

Figure 4.1 shows the average size of the corpora involved in the experiments. As

there are 110 training corpora, we average the number of sentences in all parallel cor-

pora in which each particular language is either the source or target language.

4.3 Reordering Characteristics

The overall quality of statistical machine translation has improved considerably over

the last decade of intensive research, but some language pairs still result in very poor

translations. Many researchers have postulated on the reasons why machine translation

is hard. However, there has never been, to our knowledge, a systematic analysis of

the effect of different characteristics of the language pairs on translation performance.

Understanding where difficulties lie, allows researchers to focus their efforts on those

aspects of translation that have the most impact on translation quality.

The basic challenges facing statistical machine translation were first outlined by

Brown et al. (1993). The original IBM Models were broken down into separate trans-

lation and distortion models, thus recognising the importance of word order differ-

ences in modelling translation. Brown et al. (1993) also highlighted the importance
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of modelling morphology, both for reducing sparse counts and improving parameter

estimation and for the correct production of translated forms. We see these two factors,

reordering and morphology, as fundamental to the quality of machine translation out-

put, and we would like to quantify their impact on system performance. In this section,

we measure the amount of reordering in a parallel corpora. We do this by adopting the

reordering extraction approach described in the previous chapter, in Section 3.2. We

first justify using automatic alignments, and then we describe the reordering character-

istics of the Europarl corpus.

4.3.1 Automatic Alignments

The major difference between the treatment of reordering in this chapter and the previ-

ous one, (Chapter 3), is that gold standard word alignments are not available. Human

annotated alignments are very expensive to create and only exist for a very small num-

ber of language pairs. We therefore need to rely upon automatic alignements. In order

to justify using reordering data extracted from automatic alignments, we must show

that they are similar to gold standard alignments.

4.3.1.1 Experimental Design

We compare reordering extracted from gold standard alignments and auatomatic align-

ments for the German-English language pair. We select German-English because it

has a reasonably high expected level of reordering. We also have access to a manually

aligned German-English corpus1 which consists of the first 220 sentences of test data

from the 2006 ACL Workshop on Machine Translation (WMT06) test set. This test set

is from a held out portion of the Europarl corpus. The automatic alignments were ex-

tracted by appending the test set onto the German-English training corpus and aligning

using GIZA++ and then applying the grow-final-diag algorithm.

4.3.1.2 Results

In order to use automatic alignments to extract reordering statistics, we need to show

that reorderings from automatic alignments are comparable to those from manual

alignments.

Table 4.2 shows the total amount of reordering for the manually and automatically

aligned WMT06 test corpus and the automatically aligned Europarl training corpus.

1provided by Chris Callison-Burch
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RQuantity

Europarl, automatically aligned 0.62

WMT06 test, automatically aligned 0.65

WMT06 test, manually aligned 0.67

Table 4.2: The total amount of reordering for the different corpora.

The manually aligned test corpus has a slightly higher RQuantity of 0.67, and the

automatically aligned test corpus has a slightly lower RQuantity of 0.65. But all these

results are very similar.
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Figure 4.2: Average number of reorderings per sentence mapped against the total width

of the reorderings for DE-EN.

Figure 4.2 shows the more detailed distributions of the reorderings for the three

corpora. The corpora have very similar distributions with the automatically aligned

test corpus showing slightly more reorderings of length two and the manually aligned

corpus showing more reorderings of lengths greater than 15. These results provide

evidence to support our use of automatic reorderings in lieu of manually annotated

alignments. Firstly, they show that our WMT06 test corpus is very similar to the Eu-

roparl data, which means that conclusions that we reach using the WMT06 test corpus

will hold for the Europarl data. Secondly, they show that the reordering characteris-
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tics of the test corpus is very similar when extracted from automatic or from manual

alignments.

Although we have shown that there are few differences between the manually and

automatically aligned German-English corpus, there is no guarantee that this result

extends to other corpora. Because German-English contains a reasonably large amount

of reordering, it is likely to extend to more langauge pairs. However, there might exist

a language pair whose alignments are very unsuited to the stochastic assumptions of

the IBM or HMM alignment models. In any case, due to the number of language pairs

involved in this study, we are obliged to rely upon automatic alignments.

4.3.2 Amount of reordering for the matrix

We extract RQuantity for the matrix of language pairs in the following manner. We

randomly sampled a subset of 2000 sentences from each of the parallel training cor-

pora. This is a large enough sample to accurately reflect the reordering characteristics

of the whole Europarl training corpus. We then calculated the average RQuantity over

the target side.
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Figure 4.3: RQuantity for the matrix of langauge pairs

Figure 4.3 shows the RQuantity for each of the language pairs. The width of the
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squares are proportional to the RQuantity. Note that the matrix is not quite symmetri-

cal - reordering results differ depending on which language is chosen to measure the

reordering span. The table of values for this Figure is provided in Appendix C.

Lowest RQuantity Highest RQuantity

pt-es 0.202 fr-de 0.613

es-pt 0.216 fi-pt 0.614

da-sv 0.240 fi-es 0.614

sv-da 0.245 de-es 0.624

it-pt 0.246 de-fr 0.637

Table 4.3: The language pairs with the lowest and highest amounts of reordering.

Table 4.3 shows a selection of results from the matrix, highlighting the lowest and

the highest amounts of reordering. The lowest reordering scores are for languages in

the same language group, like Portuguese-Spanish and Danish-Swedish, and the high-

est for languages from different groups, like German-French, and Finnish-Spanish.
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Figure 4.4: Average amount of reordering for each target language.

Figure 4.4 shows the average amount of reordering for each target language. Ger-

man shows the largest amount of reordering overall. This is only partially explained
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by the fact that it is unrelated to the biggest language group, the Romance languages.

German also shows a relatively large amount of reordering for languages with which

it is more closely related, such as Swedish, English and Danish.

Figure 4.5 shows the distribution of the reorderings for language pairs with small

and large amounts of reordering. Here both short distance and long distance reorder-

ings vary with the amount of reordering. Figure 4.6 shows a sample of reordering

distributions where the target language is English. With the source language being

French, there is a relatively large number of short distance reorderings, even though

the total amount of reordering is quite small. This is because of the smaller number of

medium and long distance reorderings as compared to the other two languages, Finnish

and German. RQuantity is more sensitive to these larger reorderings and these are the

ones that translation models struggle to capture. The graphs show researchers the re-

ordering characteristics of language pairs. This allows them to choose appropriate

language pairs for testing their improvements.

4.4 Other Characteristics

We would like to compare the impact of reordering with other important characteristics

of translation. In this section we describe how to extract the morphological complexity

and the language relatedness of a language pair.

4.4.1 Morphological Complexity

The morphological complexity of the languages involved in translation is widely recog-

nised as one of the factors influencing translation performance. However, most statisti-

cal translation systems treat the various inflected forms of the same word as completely

independent of one another. “cat” and “cats”, for example, are treated as unrelated

words. This can result in sparse statistics and poorly estimated models, especially for

languages with rich morphology. Furthermore, using the wrong form of a word may

result in crucial differences in meaning that affect the quality of the translation.

Work on improving treatment of morphology has focused on either reducing word

forms to lemmas to reduce sparsity (Goldwater and McClosky, 2005; Talbot and Os-

borne, 2006) or including morphological information in decoding (Dyer, 2007; Avramidis

and Koehn, 2008). In this chapter we aim to discover the effect that different levels of

morphological complexity has on translation.
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Figure 4.5: Distribution of reorderings in language pairs for cases with small amounts

of reordering (Portuguese-Spanish and Danish-Swedish) and with large amounts of

reordering (German-French and Finnish-Spanish). The reorderings are distributed ac-

cording to the width of the reorderings on the source language side and are normalised

by the number of sentences.
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Figure 4.6: Distribution of reorderings for translation into English for cases with varying

amounts of reordering from small to large (Swedish, French, Finnish and German).

The reorderings are distributed according to the width of the reorderings on the source

language side and are normalised by the number of sentences.
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Some languages seem to be intuitively more complex than others, for instance

Finnish appears more complex than English, but it is difficult to quantify this. One

method of measuring complexity is by choosing a number of hand-picked, intuitive

properties called complexity indicators (Bickel and Nichols, 2005) and then to count

their occurrences. Examples of morphological complexity indicators could be the

number of inflectional categories or morpheme types in a typical sentence. The major

drawback of this method is finding a principled way of choosing which of the many

possible linguistic properties should be included in the list of indicators.

A simple alternative employed by Koehn (2005) is to use vocabulary size as a

measure of morphological complexity. Vocabulary size is strongly influenced by the

number of words forms affected by number, case, tense etc. and its also affected by

the number of agglutinations in the language. The complexity of the morphology of

languages can therefore be approximated by examining vocabulary size.
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Figure 4.7: Average vocabulary size for each language.

Figure 4.7 shows the vocabulary size for our 11 languages. Each language pair

has a slightly different parallel corpus, and so the size of the vocabularies for each lan-

guage needs to be averaged. The size of the Finnish vocabulary is about six times larger

(510,632 words) than the English vocabulary size (88,880 words). Finnish is an ag-

glutinative language with fusional features and it has a highly productive morphology.

It has been estimated that a Finnish noun can have more than 2000 different inflected

and cliticized forms and verb morphology is even more complex (Laine et al., 1994).
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An example of a noun with rich morphological information is shown in Figure 4.8.

Finnish word tulu + i + ssu + ni + ko

Meaning house + plural + inessive + possessive + clitic

English translation in my houses ?

Figure 4.8: A Finnish noun broken down into its component parts. Example provided

by Laine et al. (1994)

4.4.2 Language Relatedness

Comparative linguistics is field of linguistics which aims to determine the historical

or phylogenetic relatedness of languages. Lexicostatistics is an approach to compara-

tive linguistics that is appropriate for our purposes because it results in a quantitative

measure of relatedness (Swadesh, 1955). It does this by comparing lists of lexical

cognates.

The lexicostatistic percentages are extracted as follows. First, a list of universal

culture-free meanings are generated. Words are then collected for these meanings for

each language under consideration. We use the data from Dyen et al. (1992) who

developed a list of 200 meanings for 84 Indo-European languages and calculated their

lexicostatistics.

Cognacy decisions are then made by a trained linguist. For each pair of lists the

cognacy of a form can be positive, negative or indeterminate. Finally, the lexicostatis-

tic percentages is calculated. This percentage is related to the proportion of meanings

for a particular language pair that are cognates, i.e. relative to the total without inde-

terminacy. Factors such as borrowing, tradition and taboo words can skew the results.

We show how the lexicostatistics are generated by using an example. A portion of

the Dyen et al. (1992) data set is shown in Table 4.4. From this we could calculate

the similarity of French, Italian and Spanish with each other as 100% because the

two words are cognates. The Romance languages share one cognate with English,

which means that the lexicostatistic percentage here would be 50%, and no cognates

with the rest of the languages resulting in a score of 0%. We use these lexicostatistic

percentages as our measure of language relatedness for the 55 bidirectional language

pairs.

Figure 4.9 shows the symmetric matrix of language relatedness, where the width of

the squares is proportional to the value of relatedness. The values range from Finnish
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Language “animal” “black”

French animal noir

Italian animale nero

Spanish animal negro

English animal black

German tier schwarz

Swedish djur svart

Danish dyr sort

Dutch dier zwart

Table 4.4: A subset of the Dyen et al. (1992) cognate list.

to other languages, which is 0%, to Spanish-Portuguese, which is 87.4%. The table of

actual values is provided in Appendix C.

Finnish is a Finno-Ugric language and does not form part of the Indo-European

languages. The Dyen data does not include Finnish and we assume that it has 0% sim-

ilarity with other languages. If one considers that English and Hindi are more closely

related than English and Finnish, then this assumption seems justified. However, it is

possible that the actual statistic might be higher than 0% because Finnish is likely to

have borrowed words from neighbouring European languages.

4.5 Experimental Design

We analyse the performance of 110 different translation models drawn from the Eu-

roparl project. The purpose of doing so is to determine the impact of different language

characteristics on translation quality.

The phrase-based model MOSES (Koehn et al., 2007) was used for the experiments

with all the standard settings, including a lexicalised reordering model, and a 5-gram

language model, trained on the target side of the corpora. Tests were run on the ACL

WMT 2008 test set (Callison-Burch et al., 2008).

4.5.1 Evaluation of Translation Performance

We use the BLEU score to evaluate our systems. While BLEU scores are not strictly

comparable across language pairs, they do give an indication of the quality of the

translation. The translation setup is kept constant, with the only important difference
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Figure 4.9: Lexicostatistic measure of langauge relatedness for the matrix

between systems being the language pair in question. This means that BLEU score dif-

ferences should largely reflect the innate difficulty of translating the different language

pairs.

Figure 4.10 shows the BLEU score results for the matrix. The table of values is

provided in Appendix C. Comparing this figure to Figure 4.3 there seems to be a clear

negative correlation between the amount of reordering and translation performance.

4.5.2 Regression Analysis

Linear regression We first perform simple linear regression in order to determine the

relative strength of the relationship between the language characteristics and the

quality of translation. In statistics, regression analysis helps us to understand

how the value of the dependent variable changes when one of the independent

variables is varied. We perform linear regression analyses using measures of

morphological complexity, language relatedness and reordering amount as the

independent variables. The dependent variable is the the BLEU score. We test

how well the simple linear regression models explain the data using the r2 test.

r2 is equal to the square of the Pearson’s correlation coefficient between the
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Figure 4.10: BLEU score performance of the different translation systems

observed and predicted data values. It is of interest because it provides a mea-

sure of how well future outcomes are likely to be predicted by the model. The

two-tailed significance levels of coefficients are also given. We use a t-test to

determine whether the coefficients for the independent variables are reliably dif-

ferent from zero. Significance results for the rest of the thesis are reported as

follows: * means p < 0.05, ** means p < 0.01, and *** means p < 0.001.

Mixed-effects models We next investigate the effect of treating the source and target

languages as random variables. We are interested in the experimental effects of

reordering on languages in general, and not on their effect on a particular source

or target language. Finnish, for instance, has a very high amount of reorder-

ing. The regression model should have the freedom to estimate a higher level of

reordering for Finnish than the other languages. Allowing the model to incorpo-

rate different levels of reordering for different languages allows the final model

to generalise better. In standard logistic regression analysis all features are as-

sumed to be fixed effects, meaning that all possible values for these features are

known, and each value may have an arbitrarily different effect on the outcome.

However some features do not fit this pattern. Mixed-effects models are a gen-
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eralisation of linear regression which allows for the inclusion of random effect,

meaning that the features observed in the data are a random sample from a larger

population (Pinheiro and Bates, 2009). Random effects are often the participants

or items in an experiment, but in our case, they are languages used. We follow

methods described by Baayen et al. (2008), who use linear mixed-effects mod-

els for the analysis of repeated measurement data. We fit our models using the

lme4 package (Bates and Sarkar, 2007) of R (Team, 2009).

Model simplification The mixed-effects model can combine numerous fixed factors.

We initially consider the maximal model which considers all factors and all their

interactions. This results in a large model where many factors are insignificant.

Following the principle of parsimony, we simplify the model using the Akaike

Information Criterion (AIC) (Crawley, 2007). The AIC represents a trade-off

between the fit of the model with the complexity, or degrees of freedom, of the

model. At each step we test the least significant variable, seeing if removing it

leads to a significant increase in deviance (or decrease in AIC) as compared to

the current model. Significance is determined with a χ2 test on the model with

the variable and without it. Variables are removed if they do not significantly

increase deviance. In this fashion we arrive at the minimal adequate model.

Collinearity The coefficients of the variables in the regression model have only lim-

ited usefulness as a measure of the impact of the explanatory variables in the

model. One important factor to consider is that if the explanatory variables are

highly correlated, then the values of the coefficients can be unstable. The model

could attribute more importance to one or the other variable without changing

the overall fit of the model. In our models, for instance, reordering and language

similarity are likely to be correlated. We resolve this problem by residualising

the effects with the correlated predictors in the model if there are high corre-

lations between them (>0.2). Residualisation means to regress the collinear

predictor against correlated predictors. Unfortunately this makes the effect sizes

hard to interpret. The effect sizes now refer to the portion of the main effect that

is not explained by the other correlated predictors.

Outlier Removal The final step is dealing with the problem of outliers. Outliers are

data points that deviate markedly from the others in the sample, and thereby have

an undue influence on the model. We detect outliers by examining residual val-

ues. The residual values of the regression model are the difference between the
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observed values of the dependent variable and the values fitted by the model. We

remove any points whose residual values are greater than 2 standard deviations

from the mean of the distribution of residual values.

4.6 Results

4.6.1 Data Exploration

We start our experiments by investigating the relationship between each of the main

explanatory variables and the BLEU score. We perform simple linear regressions with

just one explanatory variable. We are particularly interested in the strength of the

correlation of the effects with the BLEU score in isolation of each other, and seeing

whether the assumptions of linear regression are valid.

Explanatory Variable r2

Reordering Amount 0.391 ***

Language Similarity 0.366 ***

Target Vocabulary Size 0.387 ***

Source Vocabulary Size 0.043 *

Corpus Size 0.059 *

Table 4.5: The goodness of fit of different simple linear regression models which use

just one explanatory variable. The significance level represents the level of probability

that the regression is appropriate.

Table 4.5 describes the amount of the variance of BLEU explained by the simple re-

gression models with different explanatory variables. This table shows that reordering

shows the highest correlation with the BLEU scores of all the explanatory variables.

The reordering r2 of 0.391 means that reordering can account for 39.1% of the vari-

ance of the BLEU scores. Language similarity and target vocabulary size account for

slightly less variance than reordering does. Source vocabulary size and corpus size

explain much less of the variance than the other variables.
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Figure 4.11 shows the simple regression model over the plot of BLEU scores against

the amount of reordering. This graph clearly shows the impact that reordering has on

performance. With more reordering, the performance of the translation model reduces.

Data points with a large effect on the model are labelled for inspection. These are data

points where the residuals are further than 1.5 standard deviations from the mean of

the distribution of residual values. Data points with low levels of reordering and high

BLEU scores tend to be language pairs where both languages are Romance languages.

High BLEU scores with high levels of reordering tend to have German as the source

language and a Romance language or English as the target.

Figure 4.12 shows the plot of the BLEU score and the other explanatory variables:

source and target vocabulary size, corpus size and language similarity. Target vocabu-

lary size and language similarity are much more important effects than source vocabu-

lary size and corpus size, and their greater correlation with the BLEU score can be seen

in the figure.

Explanatory Variable Lang. Sim. Target Vocab. Source Vocab. Corpus

Reordering Amount -0.48 0.27 0.36 0.22

Language Similarity -0.26 -0.26 0.31

Target Vocabulary Size -0.09 0.12

Source Vocabulary Size 0.12

Table 4.6: Pearsons’ correlation coefficient between predictors.

Table 4.6 shows the correlation of the effects with each other and many of the

effects are relatively highly correlated with one another. Language similarity and re-

ordering are particularly highly correlated with a Pearson’s coefficient of -0.48, which

is not unexpected. The further apart two languages are, the more their structure can

diverge. The simple linear regression models are interesting because they allow us

to gauge the intuitive impact of the different variables 2. However, issues such as

collinearity, outliers and random effects still need to be accounted for and they will be

dealt with in the next experiment.

2 We also fitted minimally adequate multiple regression model using normalised reordering, mor-
phology and language relatedness as our independent variables. The r2 of this model was 0.750 which
means that together these factors explain most of the variability in translation performance.
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Figure 4.12: BLEU score vs. source and target vocabulary size, corpus size and lan-

guage similarity. The fitted models are also shown.



4.6. Results 89

4.6.2 Linear Mixed-Effects Model

We hypothesise that reordering is important to the performance of translation systems.

The simple models are useful to explore the data available, but they do not conclu-

sively demonstrate the unique contributions of the different effects. As described in

Section 4.5, we fit a linear mixed-effects model to the data. In our experiments, we

treat the source and target languages as random effects which means that our model

contains an intercept for each. We also experimented with adding random slopes for

source and target languages, but this failed to increase model fit and they were therefore

discarded.

We start by standardising and centering all the data for the explanatory variables.

As reordering and language similarity are highly correlated, we residualise them against

each other. The initial maximal model includes all the interactions between the main

effects: reordering, language similarity and target vocabulary and we add the corpus

size, source vocabulary size and the square of reordering as additional explanatory

variables. The reason for including the square of the reordering is that an analysis of

the residual values versus predicted values of the simple linear regression model shows

that it makes systematic errors when values are very small or very large. This means

that the relationship between reordering and BLEU is not entirely linear.

Then we fit a minimal adequate model, by removing all terms which do not lead

to a significant increase in the AIC of the model. During this procedure we discarded

all source vocabulary, target vocabulary and corpus size terms. The source and target

language random effects thus adequately account for differences in vocabulary and

corpus size.

The final modification to the model is to remove data points with excessive influ-

ence on the model. Outliers are detected by taking points with residuals which are

greater than 2 times the standard deviation of the distribution of residuals. There were

four such points and removing them meant that the interaction term of reordering and

language similarity, and the square of the reordering were no longer significant factors

in the model.

Figure 4.7 reports the final fixed effects in the linear mixed effects model. The

intercept of the model shows that the mean level of response or BLEU score would

be 24.57. The model also shows the large negative impact that reordering has on

performance where the coefficient is -3.45. This is the coefficient of the standardised,

residualised reordering amount. Language similarity also has an important positive
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Fixed Effects Coefficient Significance

Intercept 24.57 ***

Reordering Amount -3.45 ***

Language Similarity 2.65 ***

Table 4.7: Linear mixed model fixed effects coefficients and their significance.

impact on performance, with a coefficient of 2.65. This model conclusively proves

the importance of reordering and language similarity in determining the success of

the translation model. They are factors which contribute extra information above and

beyond the knowledge of what source and target languages were used.

The conclusions that we draw in this chapter are only strictly relevant to the model

for which this analysis has been performed, the phrase-based model. Models with dif-

ferent reordering capabilities, such as synchronous grammar-based models, might find

that morphology contributes more to performance variability. However, in the previous

chapter, Chapter 3, which addressed the reordering behaviour of different models, we

demonstrated that reordering is still a big challenge for hierarchical models.

4.7 Summary

This chapter explores the amount and distribution of reordering seen across a wide

variety of language pairs. Together with language similarity, reordering was seen to be

a highly significant predictor of translation performance across the 110 language pairs

that were examined.

During an initial exploration of the data, we investigated the simple linear relation-

ship between the BLEU score and reordering, language similarity, source and target

vocabulary size and corpus size. This exploration showed that reordering, language

similarity and target vocabulary size each account for just over a third of the variation

of the BLEU score. However, when applying linear mixed models with the source and

target language as a random effect, then only reordering and language similarity still

explain performance. Indeed, reordering has the largest coefficient, and therefore the

greatest impact on performance. For this thesis we have thus demonstrated the impor-

tance of reordering in machine translation and this motivates further research on how

best to measure translation quality.



Chapter 5

Reordering Metrics

5.1 Introduction

In the preceding chapters, we have presented two important findings: translation mod-

els are still not close to modelling the reordering performance of human translators;

and reordering is an important predictor of the quality of translation output. These

findings motivate the need for both better models of reordering, and also better met-

rics to evaluate them. In this chapter we propose novel metrics of reordering which

directly measure word order differences between human reference sentences and ma-

chine translations.

There is currently a great deal of research dealing with the problem of improv-

ing the reordering performance of translation systems. Reordering models, translation

models, and search constraints have all been extensively investigated. However, this

work is hampered by the fact that automatic machine translation metrics only measure

word order quality indirectly.

We argue that it is important to evaluate reordering performance directly. Our

approach relies upon the assumption that orderings which are close to the word order

of the reference are going to be preferable to orderings which are very different and we

present a method for doing this using permutation distance metrics. We first extract

permutations from alignments, and then we apply standard distance metrics to compare

the reference permutation and the translation permutation. These intuitive measures

are sensitive to the size and frequency of reorderings. They are also efficient, language

independent and they are meaningful at a sentence level. These properties make them

desirable automatic machine translation metrics.

The rest of the chapter proceeds as follows. In Section 5.2 we define permutations

91
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and describe how to convert alignments into ranked data. In Section 5.3 we present

permutation distance metrics and discuss why they are appropriate. In Section 5.4

we explore their properties, with the help of an example, and contrast them with the

machine translation metrics.

5.2 Permutations over Alignments

In machine translation the relative ordering of words in the source and target is en-

coded in alignments. A word alignment over a sentence pair allows us to transcribe the

source word positions in the order of the aligned target words. This results in a permu-

tation on which metrics for ordered encodings can be applied in order to measure and

evaluate reorderings. Permutations have already been applied in machine translation.

Eisner and Tromble (2006) present a reordering model which uses ordering costs to

score possible permutations. Here, however, we use permutations in a novel fashion to

evaluate reordering performance.

The ordering of the words in the target sentence can be seen as a permutation of the

words in the source sentence. The source sentence s of length n consists of the word

positions s0 · · ·si · · ·sn. Using an alignment function where a source word at position i

is mapped to a target word at position j with the function a : {i→ j}, we can reorder

the source word positions to reflect the order of the words in the target. This gives us a

permutation.

A permutation is a bijective function from a set of natural numbers 1,2, · · · ,n to

itself. We name our permutations π and σ. The ith symbol of a permutation π is

denoted as π(i), and the inverse of the permutation π−1 is defined so that if π(i)= j then

π−1( j) = i. The identity, or monotone, permutation id is the permutation for which

id(i) = i for all i. Figure 5.1 contains a number of alignments and their associated

permutations. The permutations are calculated by iterating over the source words, and

recording the relative order of the aligned target words.

Permutations encode one-one relations, whereas alignments contain null align-

ments and one-many, many-one and many-many relations. We make some simplifying

assumptions to allow us to work with permutations:

• Unaligned source words: Source words aligned to null (a(i)→ null) are as-

signed the target word position immediately after the target word position of the

previous source word (π(i) = π(i− 1)+ 1). If the source word is the first word
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t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

(1 2 3 4 5 6 7 8 9 10)

(a)

t1

t2

t3

t4

t6

t5

t7

t8

t9

t10

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

(1 2 3 4 •6 •5 •7 8 9 10)

(b)

t6

t7

t8

t9

t10

t1

t2

t3

t4

t5

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

(6 7 8 9 10 •1 2 3 4 5)

(c)

t10

t1

t2

t3

t4

t5

t6

t7

t8

t9

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

(2 3 4 5 6 7 8 9 10 •1)

(d)

Figure 5.1: Synthetic examples of alignments and their permutations, where bullet

points highlight non-sequential neighbours. (a) is a monotone translation, (b) is a trans-

lation with one short distance word order difference, (c) is a translation where the order

of the two halves has been swapped, and (d) is a translation with a long distance re-

ordering of the last source word.



94 Chapter 5. Reordering Metrics

in the sentence, it is aligned to position 1. Below is an example of how an un-

aligned source word is assigned the position which follows the previous source

word position.

Alignment Permutation

t1

t2

t3
s1 s2 s3

1

2

3

1 2 3

• Unaligned target words: These are ignored.

Alignment Permutation

t1

t2

t3

t4

s1 s2 s3

1

2

3

1 2 3

• Many-to-one source to target alignment: Where multiple source words are

aligned to the same target word or phrase, the target ordering is assumed to be

monotone.

Alignment Permutation

t1

t2

s1 s2 s3 1

2

3

1 2 3

• One-to-many source to target alignment: When one source word is aligned to

multiple target words, the source word is assumed to be aligned to the first target

word.
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Alignment Permutation

t1

t2

t3

t4

s1 s2 s3

1

2

3

1 2 3

These simplifications are applied on the assumption that the default ordering is

monotone, and this reflects the largely monotone ordering of translation output. Mono-

tone orderings avoid introducing spurious reorderings which would occur if one linked

an unaligned source word with, say, the first target position.

Although these simplification assumptions can result in significant changes to the

original alignment, on the whole they are still able to capture the differences in order

between the source and target language. Figure 5.2 presents an example of how the

extraction process works with a non-trivial alignment. Although this sentence pair

contains a complex alignment in (a), in (b) it shows how the simplification assumptions

result in acceptable orderings.

In this section we have discussed the process of converting alignments into per-

mutations. In the next section we describe metrics over these permutations which are

intuitive and useful for machine translation.

5.3 Permutation Distance Metrics

In human languages there is a certain amount of allowable variation in word order. It

is difficult to judge automatically what is a good word order and what is not. How-

ever, we can be reasonably certain that the ordering of the reference sentence must be

acceptable. We therefore compare the ordering of a translation, encoded in the permu-

tation π, with that of the reference sentence, encoded in σ. The underlying assumption

is that most reasonable word orderings should be fairly similar to the reference. This

assumption is a necessary one. All automatic machine translation metrics assume that

the translation should somehow be similar to the reference. We propose using permu-

tation distance metrics to perform the comparison and calculate the difference between

two sequences π and σ.

Permutation distance metrics have been used before in computational linguistics,
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Figure 5.2: An aligned sentence (a) from the CH-EN Gale corpus together with its

permutation (b) and (c), showing the source word positions ordered according to the

aligned target words.
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primarily for measuring the success of information ordering tasks. Ordering infor-

mation is an essential step in applications such as text generation and summarisa-

tion. These tasks involve finding an acceptable ordering for items such as proposi-

tions (Karamanis, 2003), trees (Mellish et al., 1998) or sentences (Lapata, 2003). The

success of these tasks is evaluated by comparing the ordering of the output to a gold

standard ordering.

There are many different ways of measuring distance between two orderings, with

different solutions originating in different domains (statistics, computer science, molec-

ular biology, . . . ). Real numbered data leads to measures such as Euclidean distance

and binary data to measures such as Hamming distance. But for ordered sets, there are

many different options, and the best one depends on the task at hand. We choose two

metrics which are widely used, efficient to calculate and capture the the number of el-

ements which are out of order: the Hamming distance, and the Kendall’s tau distance.

See Deza and Huang (1998) for an in depth survey of metrics on permutations from a

mathematical perspective.

We hypothesise that humans are sensitive to the number of words that are out of

order in a sentence and both the metrics we use measure this. The Hamming distance

is an absolute measure of the amount of disorder between two permutations, and the

Kendall’s tau distance is a measure of the relative disorder. Kendall’s tau distance is

also sensitive to how far words are out of order and this is something we would also

like to capture, as it is reasonable to suppose that humans are sensitive to the size of

reorderings as well as their frequency.

Our approach to measuring reordering performance is quantitative. We are mea-

suring the amount of word order differences. Humans are also likely to be sensitive to

the kinds of constituents that are reordered. Taking this into account however, would

require sophisticated syntactic metrics of the kind discussed in the background chapter,

in Section 2.3.2.4. The problem with these metrics is that they depend on rich source

and target language information. This is particularly problematic if the model does not

generate this information automatically. Extracting syntactic or semantic information

can be difficult, especially when the quality of the translated sentence is poor. The ad-

vantage of using alignments is that they are an intrinsic part of the translation process,

and can easily be produced along with the lexical tokens.

Another advantage of measuring reordering quality with distance metrics, is that

the scores reported have an intrinsic meaning. However, an obvious disadvantage of

this approach is reliable alignments are not available. If accuracy is paramount, test sets
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with gold standard alignments can be used and translation models can output the actual

word alignment used during translation. This approach was followed in Chapter 3.

Alignments can also be generated automatically where gold standard alignments are

not available. This approach was followed in Chapter 4.

We now describe the permutation distance metrics in more detail. Distance met-

rics decrease as the quality of translation increases, whereas many current machine

translation metrics increase as the quality of translation increases. For ease of presen-

tation, we would like all metrics to consistently increase with an increase in quality.

We therefore subtract the distance metrics from one. Distance metrics are normalised

to return distances between the values zero and one, although we report results as per-

centages. Comparing identical permutations thus return 0%, and completely inverted

permutations return 100%.

5.3.1 Hamming Distance

The Hamming distance (Hamming, 1950) measures the number of disagreements be-

tween two permutations. The Hamming distance for permutations was proposed by Ronald

(1998) and is also known as the exact match distance. It is defined as follows:

dh(π,σ) = 1− ∑
n
i=1 xi

n
,xi =

{
0 if π(i) = σ(i)

1 otherwise

where n is the length of the permutation. The Hamming distance will calculate

the percentage of words in the translation which are in exactly the same order as in

the reference sentence. The Hamming distance is the simplest permutation distance

metric and is useful as a baseline. However, it has no concept of the relative ordering

of words and this can lead to unintuitive scores. If all words are out of position by just

one, the score will be zero. The Hamming distance is widely utilised in coding theory

to measure the discrepancy between two binary sequences.

5.3.2 Kendall’s Tau Distance

Kendall’s tau distance is the minimum number of transpositions of two adjacent sym-

bols necessary to transform one permutation into another (Kendall, 1938; Kendall and

Gibbons, 1990). Kendall’s tau seems particularly appropriate for measuring word order

differences because it measures relative differences. It is sensitive to both the number

and the size of the reorderings. Also, Kendall’s tau distance is an intuitive measure of
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strength of relationship between the permutations. It can be interpreted as a function

of the probability of observing concordant and discordant pairs of elements (Kerridge,

1975). In other words it is the probability that two items are in the same order as op-

posed to in different orders, when comparing them between the two permutations π

and σ.

For the case of translation, very few word order differences are completely inverted.

Most word order differences are relatively small, and close to monotone. Because

Kendall’s tau is able to measure very large word order differences, this makes it rather

insensitive to smaller reorderings. Therefore the range of values of Kendall’s tau is

too narrow for our purposes, with the majority of values bunched up close to 1. For

this reason we take the square root of the standard metric and spread out the larger

scores. This allows the metric to be more discerning of smaller word order differences

and reflect more closely the human perception of word order quality. We show in

experiments in Section 6.3.2.3 that the square root of Kendall’s tau is more correlated

with human judgements.

The Kendall’s tau distance is thus defined as follows:

dk(π,σ) = 1−

√
∑

n
i=1 ∑

n
j=1 xi j

Z

where xi j =

{
1 if π(i)< π( j) and σ(i)> σ( j)

0 otherwise

Z =
(n2−n)

2

Note that the distance metric range from 1, a perfect match, to 0 which indicates

maximum disagreement. Normally a distance metric would use 0 to represent identical

items, but we reverse the range so that our reordering metrics increase as the ordering

matches the reference more closely. This makes it easier to compare results where our

reordering distance metrics are presented next to machine translation metrics.

Figure 5.3: A visualisation of Kendall’s tau distance

Figure 5.3 shows an example of two word orderings. The number of transpositions
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can be calculated by counting the number of crossings. The example in Figure 5.3

shows nine crossings resulting in the following Kendall’s tau distance:

dk(π,σ) = 1−
√

9
100−10

2

= 1−
√

0.2 = 55.28%

Without squaring, the score would be 80% instead of 55.28%. Considering the fact

that there is a long distance reordering in this sentence, a score of 80% is perhaps too

high.

In statistics, Kendall’s tau rank correlation coefficient is a widely used non-parametric

measures of association for two variables. Where the Kendall’s tau distance metric

counts the number of discordant pairs, the rank correlation measures the different be-

tween concordant and discordant pairs:

τ =
concordant−discordant

Z

As we are interested in the distance between two permutations, we use the distance

metric formulation, but both measures essentially represent the same information.

In natural language processing research, Kendall’s tau has been used as a means

of estimating the distance between a system-generated and a human-generated gold-

standard order for the sentence ordering task (Lapata, 2003, 2006). Kendall’s tau has

also been used in machine translation as a cost function in a reordering model (Eis-

ner and Tromble, 2006). An MT metric called ROUGE-S (Lin and Och, 2004b) also

measures the accuracy and precision of ordered pairs of words in the translation. This

is similar to a Kendall’s tau metric on lexical items. Our metric abstracts away from

the words in the translation, and is a true measure of the word order similarity of a

translation with a reference sentence.

In this thesis we have considered using two other distance metrics which measure

relative ordering differences: the Ulam distance (Ulam, 1972) and Spearman’s rank

correlation (Diaconis and Graham, 1977). The Ulam distance between two permu-

tations is the minimum number of single item movements required to transform one

permutation into another. This metric does not take the distance a word is out of order

into account and it did not correlate particularly strongly with human judgements. In

statistics, Spearman’s rank correlation is more widely used than Kendall’s tau, and both

metrics have the same sensitivity to detecting the existence of association. Spearman’s
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rank correlation has a number of disadvantages, however, such as the fact that it is a

biased statistic (Kendall and Gibbons, 1990) which means that for smaller samples,

it can often underestimate the strength of the correlation. Lapata (2006) argues that

Kendall’s tau distance is more appropriate for evaluating ordering tasks, and presents

an overview of the differences.

5.4 Comparing Metric Properties

In the previous section, Section 5.3, we presented two permutation distance metrics for

measuring reordering performance. These metrics have different properties and in this

section we explore how appropriate they are for application to machine translation with

the use of examples. We also compare them to commonly used machine translation

metrics and to our previous metric, the RQuantity.

5.4.1 Baseline Metrics

For the rest of this thesis, we apply three metrics as our baselines: the BLEU score (Pa-

pineni et al., 2002); METEOR (Lavie and Agarwal, 2007); and TER (Snover et al.,

2006). These metrics are described in detail in the background chapter, Chapter 2.

BLEU and TER are shallow metrics, as they perform no deep linguistic analysis. Shal-

low metrics are of particular interest because the are reasonably language independent

and fast to compute, and are therefore more generally applicable. METEOR uses op-

tional stemming and synonym matching, but it is still fast to run and applicable to a

variety of target languages. We select our baseline metrics because they are widely

used and representative of the different kinds of metrics.

The BLEU score measures overlapping n-grams. METEOR is the harmonic mean

of unigram precision and recall, and uses stemming and synonyms to allow for lexical

variation. TER measures the number of edits required to change a system output into

one of the references, and allows a block move edit. None of these metrics take the

size of the word order differences into account and they all have parameters which are

difficult to train, making the interpretation of the score more difficult. We adjust the

TER metric by subtracting it from one in order for it to increase with an increase in

translation quality, as all the other metrics do.
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Example Permutation

(a) (1 2 3 4 5 6 7 8 9 10)

(b) (1 2 3 4 •6 •5 •7 8 9 10)

(c) (6 7 8 9 10 •1 2 3 4 5)

(d) (2 3 4 5 6 7 8 9 10 •1)

(e) (2 •1 •4 •3 •6 •5 •8 •7 •10 •9)

(f) (4 •3 •2 •1 •5 6 •9 10 11 12 13 14 15 16 •19 20 •18 •17 •21 22 •
:
7
::
8)

(g) (4 •3 •2 •1 •5 6
:
7
::
8 9 10 11 12 13 14 15 16 •19 20 •18 •17 •21 22 )

Table 5.1: Permutations representing a variety of characteristic reorderings. Most of

these permutations correspond to the alignments shown in Figures 5.1. Example (f)

correspods to the alignment in 5.2 and (g) is a new ordering which differs from (f) only

in the positioning of items 7 and 8, shown with wavy underline.

Example BLEU METEOR TER dh dk dk no sqrt

(a) 100.00 100.00 100.00 100.00 100.00 100.00

(b) 61.80 86.91 90.00 80.00 79.03 97.77

(c) 81.33 92.63 90.00 0.00 25.47 44.44

(d) 91.46 92.63 90.00 0.00 55.28 80.00

(e) 19.30 72.00 50.00 0.00 66.67 88.88

(f) 48.32 80.75 63.64 9.09 58.90 83.11

(g) 63.89 81.90 68.18 63.63 90.25 96.10

Table 5.2: Metric scores for permutations in the previous Table 5.1 calculated by com-

paring the disordered permutations to the monotone identity permutation (a).

5.4.2 Worked Examples

Table 5.1 contains a selection of permutations with a variety of characteristic reorder-

ings. Previously we have shown permutations (a-d) together with their alignments

in Figure 5.1 and (f) in Figure 5.2. The first five permutations are simple examples

showing different ordering cases: (a) is a monotone ordering, (b) contains a small re-

ordering where two words are swapped, (c) has a reordering where the two halves of

the sentence are swapped, (d) is a reordering where the last source word is moved to

the beginning of the target, and (e) is the case where there are many small word swaps.

(f) is the real example sentence and (g) is a variation of that sentence ordering with one

less long distance reordering. Table 5.2 presents the metric scores for the permutations
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when compared to the monotone identity permutation.

We now discuss the scores which different metrics assign to the permutations and

how they match our intuitions of what they should be measuring. We also compare

distance metrics with each other and with other MT metrics. When calculating the MT

metric scores, we assume that the words in the translation are in fact the numbers in the

permutation. This means that all the “words” in the reference occur in the translation,

just in a different order. Normally translations contain a great variety of words which

do not match the reference, and so we are presenting the upper-bound of the metrics’

performance.

Example (a) This permutation is identical to the monotone reference and so it has the

highest scores for all metrics.

Example (b) When scoring (b) against the monotone, intuitively it should get a score

very similar to (a) as it contains a very minor amount of disorder: just two words

are swapped. As we have seen in the motivating examples in the introduction to

this thesis, Section 1.1, BLEU, METEOR and TER fail to recognise that this is a

small reordering and assign relatively poor scores to (b). In particular they score

(b) with worse or equal scores than examples (c) and (d) which have much more

reordering. All the reordering metrics correctly assign a high score to (b), much

higher than examples (c) and (d). The Hamming and Kendall’s tau distances

are both reasonably sensitive to the small reordering. However, Kendall’s tau

with no square root gives a very high score to (b), one that could be problem-

atic when trying to differentiate this permutation from a monotone permutation.

This example illustrates the motivation for taking the square root of the standard

Kendall’s tau metric when applying it to reordering in machine translation.

Example (c) Example (c) is arguably the permutation with the most serious disorder

as all words in the sentence have been moved by a long distance. The machine

translation metrics give (c) a high score, not recognising the large amount of re-

ordering present. The distance metrics are able to correctly measure the quantity

of reordering, giving (c) the lowest (or joint lowest) score of all the permutations.

Example (d) This permutation is another case with a large amount of disorder, al-

though most words have only moved by one position. Kendall’s tau gives (d) a

score which falls between the scores for (b) and (c), which is reasonable. The

Hamming distance, however, measures absolute position and not relative posi-
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tion. As all the elements are out of order it gives a score of zero, which is perhaps

overly harsh. The Hamming distance should take into account that most of the

relative word orders are the same as the reference, and only one word is out of

order. The machine translation metrics give (d) a high score, failing to recognise

the long distance reordering that has occurred. METEOR and TER give (d) the

same score as they do to (c) which has, arguably, more disorder.

Example (e) In this permutation all the items are out of order, but only by a distance of

1. Only Kendall’s tau distance is able to measure the real amount of reordering in

this permutation. All other metrics penalise it heavily. Humans would probably

give this kind of sentence a very low fluency score, but it is not unreasonable to

suppose that they could still understand its meaning.

Example (f) This permutation is a non trivial example from the corpus. There is a lot

of disorder, largely because of the long distance movement of target position (7

8) to the end of the sequence. The metrics can only be compared in relation to

example (g).

Example (g) This permutation is the same as example (f), except (7 8) are no longer

reordered to the end of the sequence. Unsurprisingly, all metrics score (g) better

than (f). There is very little difference between the METEOR and the TER

scores. BLEU and the distance metrics are able to easily distinguish the two

permutations, giving (f) a much higher score than (g). Kendall’s tau with no

square root is much less sensitive to the difference than the Kendall’s tau that we

use dk.

In real translation examples, there will be not only ordering differences, but also

lexical differences to contend with. While the permutation distances are insensitive to

lexical differences, the ability of MT metrics to detect word order differences are fur-

ther hampered by differences in word choice. BLEU will consider every non-matching

word to be a break, and so ordering differences will only be detected if they occur

between words which are identical in the translation and the reference. METEOR will

try to match synonyms and stems which leads to errors in the alignment. TER can

account for differences in word order by using inserts and deletes. All commonly used

MT metrics conflate the lexical and the ordering component of the measure, making it

difficult to know what the actual reordering performance is.
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5.4.3 Comparison with RQuantity

Until now we have used permutation distance metrics to measure the similarity of

a permutation to another permutation, in order to evaluate the quality of the word

order in a translation. By comparing a permutation to the identity permutation, we are

also calculating the total amount of disorder in a sequence, as we do in the previous

examples. This is very similar to the analysis we performed in Chapter 3, where we

proposed a method for extracting reorderings from word aligned sentences. We then

defined a metric for the amount of reordering in a sentence, the RQuantity.

The reason that we have proposed permutation distance metrics is that with the

RQuantity we are unable to extract the distance between two word orderings where

neither are monotone. Permutation distance metrics also handle non-binarizable re-

orderings naturally, as the orderings of interleaved items are taken into account.

Another difference with our reordering extraction method, is it takes both source

and target dimensions into account, whereas with permutations, we are reducing all

the target side properties to a simple ordering over source elements. The consequence

of the two dimensional aspect of the algorithm, is that it was more sensitive to dis-

continuous word alignments than permutations are. With RQuantity, it was important

to unalign determiners or large areas of the sentence could be blocked off and made

unavailable for extracting reorderings.

5.5 Discussion

In this section we discuss a number of related approaches to measuring reordering and

some considerations regarding our approach.

5.5.1 Related Work on Measuring Reordering

There have been a number of studies which have attempted to measure the complexity

of the reorderings in sentences (Fox, 2002; Wellington et al., 2006; Galley et al., 2004).

Much of this work has focused on the rank of the synchronous grammar rules or the

size of the rules necessary to account for all reorderings seen the aligned sentence pairs

in a corpus. These studies provide analyses which are tailored to a particular translation

model and they are not widely applicable.

The permutation distance metrics return measures which are both generally use-

ful, but they also handle all kinds of orderings, including the interleaved reorderings.
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For example the typical non-binarizable reordering pattern of (1 • 3 • 4 • 2), see Fig-

ure 3.12, is easily compared to the monotone using the permutation distance metrics.

Further analysis of permutations could lead to insight into the interleaved reorderings.

A permutation cycle is a subset of a permutation whose elements trade places with one

another. Cycles could be used to perform in depth analysis of more complex reordering

patterns.

5.5.2 Permutations in Machine Translation

The ordering of words in a sentence can quite naturally be translated to a permutation.

However, when you have a sentence pair with a complex many-to-many word align-

ment, a bijective permutation can fail to capture some of the real ordering dependencies

between words. The fact that we only use the first alignment for a word, means that if

subsequent alignments indicate that a reordering has occurred, we will have failed to

identify this. In the case where there is a phrase with a gap such as “ne . . . pas”, we

probably do not want to detect a reordering, as no inversion in order of the words has

occurred. However, for the Chinese-English case where the determiner and the noun in

English is aligned to the noun in the Chinese, because the determiner does not exist in

Chinese, we would use only the alignment to the determiner, and the more important

ordering of the noun is overlooked. Here it is possible that genuine differences in word

order might be missed.

There has already been work which treats reordering as a permutation. Eisner

and Tromble (2006); Tromble and Eisner (2009) propose a Linear Ordering Problem

(LOP) model, which is capable of assigning a different score to every possible per-

mutation of the source language sentence. It uses rich information about the source

words and their relative positions to score different permutations. They describe ways

to efficiently search over an exponentially large subset of sequence permutations using

dynamic programming and apply this as a source reordering preprocessing step, be-

fore running the phrase-based model. Khalilov and Sima’an (2010) extend this work

by introducing a tree-based reordering model which restricts the space of possible per-

mutations by using tree contexts and limiting the permutations to data instances. Both

these papers suggest an interesting approach to modelling reordering, however, in this

thesis we focus on applying permutations as metrics, rather than using them to develop

reordering models.
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5.5.3 Reliance on Alignments

One of the drawbacks of the approach described in this chapter, is that we rely upon

alignments and there is a scarcity of reliable gold standard alignments. Automatic

alignments come with no guarantees about their accuracy or their lack of bias. This

thesis presents a study which demonstrates that German-English gold standard align-

ments and German-English automatic alignments produce very similar reorderings

(Section 4.3). The German-English language pair contains long distance reorderings

so this is encouraging. However, this study cannot be reproduced on a large sample of

language pairs due to shortages of gold standard alignments.

Although reliance on alignments is a drawback, almost all machine translation met-

rics have a similar problem. However, instead of source-target alignments, they create

alignments directly between the translations and the references. These alignments are

likely to be less accurate than alignments derived from standard alignment models, be-

cause metrics do not have the same resources to search for optimal alignments. The

alignment models which generate the bilingual alignments are trained on large amounts

of data and use highly refined search algorithms.

Our distance metrics could also be applied to the alignment between the transla-

tion and the reference sentence. These alignments could be generated using TER, for

instance, and if TER alignments were shown to be reasonably accurate, this approach

could work well. Even so, source-target alignments reflect the nature of the translation

process and might be less ambiguous than alignments between two translations which

were generated by two very different human and machine processes.

5.6 Summary

This chapter presents a method for measuring the quality of the word order in a trans-

lation. We compare the word order of the translation with a reference by using per-

mutation distance metrics. We describe two different metrics: the Hamming distance,

which measures absolute distance, and Kendall’s tau distance, which measures rela-

tive distance. These are intuitive measures which are efficient, language independent

and meaningful at a sentence level. These properties make them desirable machine

translation metrics.

Using a variety of permutations representing reorderings with different properties,

we compare the distance metrics to each other and to commonly used machine transla-
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tion metrics. We show that the Hamming distance is an interesting baseline metric, but

that it can be unreliable. It reports scores which are much lower than expected when a

large number of words are shifted by only one or two positions.

Kendall’s tau metric is indeed capturing the kind of information which we would

like to see reflected in a reordering metric. Because it measures the size of large re-

orderings, it is insensitive to smaller reorderings. We take the square root of the stan-

dard Kendall’s tau metric in order to create more variety in the scores. We show, using

examples, that this leads to a metric which is sensitive to both smaller and larger re-

orderings.

The metrics proposed in this chapter work under the assumption that the number

of words involved in a reordering and the distance that they move is relevant to the

scores that word orders should receive. In the following chapter, Chapter 6, we will

perform experiments to see whether this assumption is valid using experiments with

human judges.



Chapter 6

Experiments with Reordering Metrics

6.1 Introduction

In the previous chapter, Chapter 5, we present novel reordering metrics which mea-

sure the quality of word order in translation. In this chapter, we show that these met-

rics correlate with human judgements of word order quality, and that current machine

translation metrics are largely insensitive to the word order of the translation.

In order to establish the reliability of different metrics with regards to measuring

reordering, it is necessary to collect human judgements on different word orders. We

randomly permute test sentences in order to create several different orderings of each

sentence, and we use these to extract human ratings. This allows us to control for sen-

tence length, difficulty and domain. We then correlate metrics with human judgements

to determine their ability to measure word order performance.

The rest of this chapter proceeds as follows. Section 6.2 presents an experiment

which shows that our reordering metrics can distinguish human translations from ma-

chine translations. Section 6.3 presents a novel human evaluation task which isolates

reordering and then correlates human judgements with current MT metrics and re-

ordering metrics. Finally, in Section 6.4 we measure what percentage of variation of

current MT metrics is due to lexical success and what percentage is due to reordering

performance.

6.2 Distinguishing human and machine translations

Just as there are many different ways that the words in a sentence can be translated,

there are also different ways to order them. A reordering metric must be able to dis-
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tinguish between different word orderings. At the very least, they must be able to

differentiate between the good orderings of human references and the often poor or-

derings of machine translations. The experiment we perform in this section is a sanity

check. In a similar approach to Papineni et al. (2002), we verify that the permuta-

tion distance metrics return significantly better scores for human translations than for

machine translations.

6.2.1 Experimental design

The goal of this experiment is to compare the metric scores for human translations with

those of machine translations. We extract these scores on a standard test set which

comprises of 1998 sentences from the GALE 2008 evaluation1. These are Chinese-

English newswire sentences with four English reference sentences. We need a corpus

with multiple references in order to extract scores comparing one reference to another.

We train a phrase-based model using MOSES (Koehn et al., 2007) on the full

GALE 2008 Chinese-English training corpus. See Appendix A for details. With all

the default options, we generate the translation output in English from the Chinese

source sentence. We then word align the reference and the translated sentences to the

Chinese source using the Berkeley word aligner (Liang et al., 2006) which was also

trained on the full GALE 2008 training corpus. The Berkeley aligner has been shown

to be more robust than using GIZA++ in situations where there are long sentences and

sparse word counts (Koehn et al., 2008). This results in five sentence pairs and five

alignments for each of the 1998 input test sentences. We then extract permutations for

all alignments.

Each of the four references takes a turn as the gold standard. The metrics are ap-

plied, comparing the gold standard to the three other references and to the machine

translation. We extract the set of scores for references and for translations and we

compare them using a paired Wilcoxon signed-rank test (Wilcoxon, 1945). This test

is a non-parametric statistical hypothesis test for the case of two paired samples. The

Wilcoxon signed-rank test involves comparisons of differences between measurements

and requires that the concepts “greater than”, “equal to” and “less than” are meaning-

ful. The metrics scores consist of interval data and these concepts are thus applica-

ble. The Wilcoxon signed-rank test is often used as an alternative to the paired Stu-

dent’s t-test, when the distribution cannot be assumed to be normally distributed. For

1http://www.itl.nist.gov/iad/mig/tests/gale/2008/
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a Wilcoxon signed-rank test the null hypothesis is that the central point would be ex-

pected to be zero, which indicates that there is no significant difference between the

two variables.

We use the Kendall’s tau distance and the Hamming distance as our two permuta-

tion distance metrics (See Section 5.3). They are scaled so that 0% is the worst score

and 100% is the best possible score. We also compare them to the BLEU score and

to extract meaningful BLEU scores at sentence level, we compute smoothed BLEU as

described in Lin and Och (2004a).

6.2.2 Results

Hamming Kendall BLEU

References 62.75 79.51 39.94

Translations 53.52 74.61 20.67

Table 6.1: The mean machine translations scores, compared to the mean scores for

references.

We first report the metric scores which result from comparing the gold standard

to another reference, or to the machine translation. Table 6.1 reports the mean metric

scores. It shows that all metrics give higher scores to human references than to machine

translations. BLEU shows the greatest difference in scores between translations and

references. It is not surprising that BLEU is more sensitive to the differences between

references and translations as it evaluates the words used as well as the word order,

while the reordering metrics are guided purely by word order.

In order to visualise the behaviour of the two different sets of scores, Figure 6.1

contains the histogram plots of the distributions of metric scores. These plots show the

percentage of sentences which give a certain range of scores. These plots also show

that scores for the references are generally higher. Most noticeably, the number of sen-

tences with maximum score of 100% has increased. Some references, especially for

short sentences, are identical. Scores for translations are rarely 100%. The BLEU score

almost never assigns 100% to a translation, which is probably desirable. The transla-

tions to which the Hamming and the Kendall’s tau distance assign 100% to tend to be

monotone translations which are compared to a monotone reference. The distributions

of the scores also reveal interesting properties of the metrics. The Hamming distance

scores are much more spread out than Kendall’s tau and the BLEU score. Some of this
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variation is due to the fact that small differences in order can lead to large differences

in the Hamming distance score.
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Figure 6.1: Distribution of sentence scores comparing a gold reference with either other

references or with translations.

We want to show that the distance metrics are able to significantly distinguish the

scores for the reference sentences from those of the machine translations. The signif-

icance is calculated by using the Wilcoxon signed-rank test. For each of the four gold

references, we have metric scores which compare them to the three other references.

We therefore have 12 sets of scores which are each compared to the set of scores for

the machine translations. For each metric we perform 12 paired Wilcoxon signed-rank

tests. For all metrics, for all tests, we can discard the null hypothesis that the scores

for the references were not higher than the scores for the translations. The significance
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levels of these experiments were all greater than 99.99%.

This experiment shows that the permutation distance metrics are capable of distin-

guishing between human and machine translation, and that these differences are in fact

significant. In the next section, we explore the ability of reordering metrics to measure

reordering performance.

6.3 Human evaluation of reordering

Machine translation metrics have been extensively applied to research on reordering.

These metrics have been evaluated by comparing them to human judgements. How-

ever, these human judgements have not been shown to measure word order differences.

The most widely adopted methodology for humans evaluation of machine transla-

tion output is to assign values along a five-point scales for fluency and adequacy (LDC,

2005). Other popular human evaluation strategies have been to rank translations of a

source sentence (Callison-Burch et al., 2007), or to perform post editing of the machine

translation output (Callison-Burch et al., 2009; NIST, 2008). None of these human

evaluation tasks have addressed the evaluation of reordering. The human scores are

affected by lexical choice, sentence difficulty and sentence length. It is thus difficult

to make any conclusions about the quality of word order in the translated sentences

from these human evaluation experiments. Correlation with the judgements cannot be

claimed to demonstrate that the metrics are able to measure the quality of word order.

In this section we design a novel experiment which isolates the effect of reordering

on human judgements. We take a Chinese-English test set with human references and

we artificially permute the English translation with different amounts of reordering.

We thus control for all other confounding factors and we can say that this experiment

does in fact specifically measure human judgements of word order quality. We then

use this data to test the correlation of metrics with human judgements of reordering.

The rest of this section proceeds as follows. In Section 6.3.1 we describe our

method for assembling a set of experimental materials and collecting human judge-

ments. Then Section 6.3.2 reports the results of the experiments. We confirm that

humans are able to reliably differentiate sentences with varying levels of reorderings

and we show that permutation distance metrics do correlate with human judgements of

reordering.
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6.3.1 Experimental design

To assess whether automatic metrics correlate reliably with human evaluations, we

need to design an experiment which gathers ratings on several different orderings of

the same input. We then examine how well automatic metrics correlate with human

judgements of reordering. A similar experiment for the information ordering task has

been performed: humans judgements of comprehension for differently ordered sen-

tences were collected (Lapata, 2006) and Kendall’s tau was correlated with human

judgements.

Data We use the Chinese-English parallel corpus that is provided by the GALE project2

as it contains human annotated word alignments. Reorderings are extracted ac-

cording to our reordering extraction algorithm, defined in Chapter 3. We cal-

culate the amount of reordering, RQuantity, in a sentence by summing up the

spans of the reorderings on the source sentence and normalised by the length of

the source sentence. We randomly select 40 sentences which have a reasonably

large amount of reordering (RQuantity > 1.3) and where the sentence length is

between 10 and 40 words.

Baseline Metrics We compare the distance based metrics to three baseline metrics:

BLEU, METEOR version 0.7, and TER version 0.7.25. These metrics are de-

scribed in detail in Section 2.3.

Human Judgements During the study the participants were presented with a per-

muted sentence and asked to judge how fluent and comprehensible it was on

a seven-point scale. We therefore collect data with a granularity which is infor-

mative without being unduly precise. The scalar scores do not assume a linear

relationship between reordering amount and human fluency judgements. Rank-

ing experiments would enforce a linear relationship, preventing us from distin-

guishing how much better or worse one reordering is from another.

Experimental Setup The study was conducted remotely over the Internet using We-

bexp 3 software. 28 unpaid volunteers were recruited by emailing the School of

Informatics in the University of Edinburgh. They were all self-reported fluent

speakers of English. Participants were instructed that some sentences would be

perfectly understandable, and others would be scrambled and fairly incoherent.

2see LDC corpus LDC2006E93 version GALE-Y1Q4
3http://www.webexp.info/
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They were shown examples of correctly and badly ordered sentences. Please

see Appendix B for details of the instructions shown, and an example of one

test case. From the set of test sentences we created five lists each consisting of

different versions of the 40 sentences, following a Latin square design. Each

pariticpant was randomly assigned one list which ensured that no user saw more

than one ordering of the same sentence. In total 28∗40 = 1120 judgements were

collected.

Extraction of Test Cases To asses whether our distance metrics reliably correlate with

human judgements, we generate five different orderings of each reference sen-

tence. This means that any preference shown by humans is based solely on word

order differences. We start off by selecting the correctly ordered English refer-

ence sentence as our first test case. We then create the test case with the greatest

amount of disorder. We do this by transforming the reference sentence so that

the English words reflect the word order of the aligned Chinese sentence. We

also generate three intermediate versions of the sentence. Each intermediate ver-

sion falls into a bin with a different amount of reordering. The English word

order of each intermediate version is the result of applying a random subset of

the reorderings that were detected in the original Chinese-English sentence pair.

We choose to explore this particular space of possible word orders because it

represents a wide range of humanly plausible reorderings. If we had explored

the space of orderings that a translation system could produce, this would only

represent a small and biased range of orderings. If, on the other hand, we had

chosen to represent all possible word orderings, from inverted to monotone, this

would represent a vast and totally implausible set of reorderings.

Illustrative Example Figure 6.2 shows an example sentence pair from the experi-

ment. The original sentence pair is shown in (a). In (b) we see the shuffled test

cases. In (c) we see the scores assigned by different metrics and the averaged

human evaluations. The human results are averaged because we collect multiple

ratings for each test case. Five test cases of this sentence were created and each

participant only saw one of these cases. Bin Ref contains the original reference

sentence and Bin 4 contains the reference reordered to reflect the word order

of the aligned Chinese sentence. Test cases in Bins 1, 2, and 3 were created

by applying a random subset of the Chinese-English reorderings shown in the

alignment grid.
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Let us take the test case in Bin 1. Here the scrambled version of the reference

is created by applying a small reordering (with blocks that correspond to the

English “in international competitions” and “before”). We do the same for the

test case in Bin 3. Here we apply a large reordering (with blocks “has won many

championships” and “in international competitions before”).

This example again demonstrates the problem with the current machine transla-

tion metrics. Humans give the test case in Bin 2 a score about one point higher

than the test case in Bin 3, showing that they prefer the sentence with less re-

ordering. Reordering metrics agree with humans and also give a higher score to

Bin 2. BLEU, Meteor and TER however, give higher scores to Bin 3 because

they are not sensitive to the size of the reordered chunks. Looking at Bin 4,

we can see that it is completely garbled, but interestingly, the average humans

judgement of comprehension is quite high. That might be because it is a short

sentence and for simple sentences the meaning can be guessed at.

6.3.2 Results

The question which we address in these experiments is whether we can extract human

judgements of reordering performance reliably, and then whether or not they correlate

with a variety of translation metrics. In Section 6.3.2.1 we present the results of human

judgements for test cases with varying amounts of reordering. In Section 6.3.2.2 we

confirm that humans are able to reliably differentiate sentences with different levels

of reorderings. Finally, in Section 6.3.2.3 we extract correlation statistics between

automatic metrics and human judgements.

6.3.2.1 Human judgements of reordering scenarios

In order to develop automatic metrics of reordering performance we first need to es-

tablish that the amount of disorder in a sentence can be reliably detected by humans.

In this experiment we examine the human judgements made on sentences with differ-

ent levels of reordering. We analyse the fluency and comprehension judgements for

different RQuantity bins. Table 6.2 presents the mean and standard deviation of the

human judgements, for each of the RQuantity bins. We can see that humans are in-

deed sensitive to the amount of reordering. The higher the amount of reordering, the

lower the fluency and comprehension scores are. Additionally, comprehension ratings
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Fengzhu

Xu

has

won

many

championships

in

international

competitions

before

.

徐
奉
洙

曾 在 国
际

比
赛

中 多 次 获
得

过 冠
军

。

(a)

Bin Sentence Test Cases with Permutations

Ref Fengzhu Xu has won many championships in international competitions before .

1 2 3 4 5 6 7 8 9 10 11

1 Fengzhu Xu has won many championships before in international competitions .

1 2 3 4 5 6 •10 •7 8 9 •11

2 Fengzhu Xu many has won championships before in international competitions .

1 2 •5 •3 4 •6 •10 •7 8 9 •11

3 Fengzhu Xu in international competitions before has won many championships .

1 2 •7 8 9 10 •3 4 5 6 •11

4 Fengzhu Xu before in international competitions many has won championships .

1 2 •10 •7 8 9 •5 •3 4 •6 •11

(b)

Bin BLEU METEOR TER dh dk Fluency Comprehension

Ref 100.00 100.00 100.00 100.00 100.00 6.43 6.71

1 66.36 89.69 90.90 63.63 76.64 6.00 6.57

2 31.70 81.67 81.81 36.36 69.84 5.25 6.50

3 59.00 89.69 90.90 27.27 46.06 4.25 6.50

4 31.70 81.67 72.72 27.27 38.20 2.28 5.57

(c)

Figure 6.2: An example of a sentence pair used in the human evaluation campaign.

The sentence pair in (a) is shown with the alignment and the reorderings, displayed

with rectangles of different colours and line styles. Below the alignment in (b), the five

differently ordered test versions of the reference sentence are displayed. Finally at the

bottom in (c), a table with scores for the different test versions are presented, including

metric scores and resulting average human judgements on fluency and comprehension.
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are slightly higher and more variable than fluency ratings. This is because participants

can sometimes understand a sentence even though it is somewhat scrambled. There

is less variability amongst the best and worst bins, and slightly more variability in the

intermediate bins. This is logical as it is easier to agree on an excellent or a terrible

word order example than on an intermediate example.

Bins Mean Fluency Mean Comprehension

Ref 6.11 (1.16) 6.26 (1.21)

1 5.13 (1.80) 5.67 (1.64)

2 3.95 (1.65) 5.01 (1.69)

3 3.37 (1.59) 4.53 (1.72)

4 2.92 (1.42) 4.13 (1.64)

Table 6.2: The mean and standard deviation (in brackets) of human ratings for test items

with different amounts of reordering, as shown in different bins. The Ref bin contains

the reference sentences with RQuantity of 0. Bin 4 contains the most reordering and

these test items have RQuantity of > 1.3.

We analysed the correspondence of human ratings with the RQuantity reordering

bins, by performing an analysis of variance (ANOVA). Our ANOVA analysis had one

factor, the reordering bin which can take one of 5 levels. The ANOVA showed that

this factor was significant in both by-subject (F = 57.381, p < 0.001) and by-item (F =

24.49 , p < 0.001) analyses.

We use the Tukey’s Honestly Significant Difference (HSD) test to determine if

the ratings for sentences versions from different bins are all significantly different.

Tukey’s HSD compares all possible pairs of means and determines which means are

significantly different from one another. It uses a similar distribution to the t-test,

except that it corrects for the fact that the probability of making a type I error increases

for multiple comparisons.

Tukey’s HSD tests indicate that the ratings for sentences versions from different

bins are all significantly different at the 99% level. The only exception is when com-

paring bins 2 and 3, where they are only significantly different at 95% level. We thus

show that humans return low ratings of fluency and comprehension for sentences with

large amounts of reordering, and conversely, that they return high ratings of fluency

and comprehension for sentences with low amounts of reordering.
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6.3.2.2 Reliability of human judgements

Not only must humans be able to detect differences in reordering, they must also show

agreement with one another for the experiment to be useful. Inter-annotator agreement

is also of interest because it acts as the upper-bound for agreement between human and

automatic metrics.

To calculate inter-annotator agreement we use leave-one-out-resampling, which is

a special case of n-fold cross-validation (Weiss and Kulikowski, 1991). For each set of

judgements from a participant, we correlated their ratings with the averaged ratings of

all the other subjects. We did this 28 times as we had 28 participants. In Table 6.3 we

can see that the average human correlation quite high. This result contradicts previ-

ous research (Callison-Burch et al., 2007) which showed a low level of inter-annotator

agreement for judgements on fluency and accuracy, which is a measure similar to com-

prehension. Callison-Burch et al. (2007) used the Kappa coefficient to calculate inter-

annotator agreement, which is only applicable to categorical data. These judgements

represent interval data and therefore the leave-one-out-resampling approach is more

appropriate.

Another reason why we can rely upon the judgements, is that this experiment is

controlled, as only the amount of word order differences vary. Previous human eval-

uations have rated machine translation output with confounding factors (such as word

choice, sentence difficulty, sentence length, domain) all of which make the human

evaluation task more unreliable.

Fluency Comprehension

Correlation 0.780 (0.112) 0.691 (0.106)

Table 6.3: The median and standard deviation (shown in brackets) inter-annotator

agreement as calculated by leave-one-out-resampling with Pearsons correlation.

6.3.2.3 Correlation with permutation distance metrics

The ultimate goal of this experiment is to see if automatic metrics correlate with human

judgements of the quality of word order in a sentence. We use correlation analysis to

explore the linear relationship between human judgements and the metrics. This shows

us if the metrics are indeed appropriate for evaluating reordering, and which metrics

are best at capturing the reordering differences.
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Metric Fluency Comprehension

BLEU 0.779 0.624

METEOR 0.802 0.638

TER 0.712 0.602

Hamming 0.806 0.664
Kendall’s tau 0.795 0.657

Kendall’s tau no sqrt 0.707 0.599

Table 6.4: The Pearsons correlation of metrics with human fluency and comprehension

judgements averaged per test item.

In Table 6.4 we see the Pearson’s correlation coefficients for the baseline and re-

ordering metrics compared to the human fluency and comprehension ratings. As there

are multiple human judgements collected for each item, the fluency and comprehen-

sion scores were averaged per test item. All the correlations are significant to the

99.9% level. We can see that in general correlation is strong, with the Hamming dis-

tance showing the highest correlation with human judgements for both fluency and

comprehension. For fluency, the Hamming distance has a correlation coefficient of

0.802. This is slightly higher than the theoretical upper-bound, the inter-annotator

agreement, which was 0.780. For comprehension, the Hamming distance has a corre-

lation coefficient of 0.664 which is slightly lower than the inter-annotator agreement

of 0.691. The strength of the correlation is generally lower for comprehension. This is

explained by the fact that a sentence can be disfluent but can still be understood, which

is hard to capture in an automatic metric. METEOR and Kendall’s tau distance show

correlations which are almost as strong as the Hamming distance.

We would like to test whether the correlation strengths are significantly different

from another one. The two correlation coefficients are transformed with the Fisher

Z-transform and the null hypothesis is that both samples of pairs show the same corre-

lation strength. Performing significance tests between all pairs of correlation statistics

for both fluency and comprehension, we find few significant differences. The only

significant differences in correlation occur for fluency and are between the highest cor-

relating metrics (METEOR, Hamming and Kendall’s tau) with the lowest correlating

metrics (TER and Kendall’s tau with no square root).

This experiment uses sentences with perfect lexical overlap between the hypothesis

and the reference, giving the baseline metrics, BLEU, METEOR and TER an unrealis-
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tic advantage. When evaluating real translations, these metrics will be hampered by the

fact that the words used in the translation are different to the reference. The reordering

metrics are agnostic about the words used in the translation, as they abstract away from

the words by using alignments. It is remarkable then, that the Hamming distance and

the Kendall’s tau distance show such strong correlation with human judgement in this

experiment.
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Figure 6.3: The Pearsons correlation of metrics with human fluency and comprehension

judgements averaged per test item for each separate reordering bin.

In order to investigate the differences in correlation between metrics, we analyse

the correlation of the metrics across the different reorderings bins. Figure 6.3 shows

that the Hamming distance has the best overall correlation with human judgements of

fluency and comprehension.

The strength of the Hamming distance is in fact somewhat surprising. It measures
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the absolute amount of disorder in a sentence, but it does not measure how far out

of order words are. The baseline metrics also do not measure how far out of order

words are, and this makes us wonder if humans are perhaps more sensitive to the

number of word order differences, than to the distance that they are moved. However,

the difference between the correlation of the Hamming distance and the Kendall’s tau

distance is very small and not statistically significant. Long distance reordering will

negatively affect the comprehension of a translation and translation models are not able

to model them. Shorter distance word order differences would are more likely to be

handled correctly by the translation models, either by reordering or by using different

lexical items.

Kendall’s tau distance is able to take the size of the reordering into account, which

makes it more intuitive than either the baseline metrics or the Hamming distance. We

also report the correlation coefficient of the Kendall’s tau with no square root and this

shows that it correlates much worse than the adjusted version which we suggest in the

previous chapter, in Section 5.3.

METEOR also correlates very well with human judgement, but for large amounts

of reordering it performs particularly badly, reaching negative correlation. TER does

not correlate as well as METEOR but this seems only to affect the bin with the least

amount of reordering. For the bin with the greatest amount of reordering, it performs

better than all metrics, even the reordering metrics.

Figure 6.4 shows the relationship of current metrics to human judgements on flu-

ency. All the plots show a group of points with the metric scores of 1. These are the

reference sentences, which are assigned a variety of fluency scores by the participants.

All metrics correlate very well with human judgements and it is not readily discernible

where one metric is stronger than another. The difference between the plot of Kendall’s

tau and Kendall’s tau without taking the square root, is that without the square root, the

points are heavily clustered around the scores of 90-100% and when taking the square

root, as we do for our Kendall’s tau distance metric, the values are more spread.

6.4 Factors influencing machine translation metrics

In the previous experiments we used human judgements derived from an artificial ex-

periment to evaluate the metrics. We have seen that under artificial test conditions

where there is perfect lexical overlap between the reference and the translation, the

machine translation metrics, BLEU, METEOR and TER, correlate reasonably well
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Figure 6.4: The averaged human fluency judgements for each sentence version com-

pared to selected metrics.
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with human judgements. However, these metrics are expected to perform much worse

where there is lexical variation between reference and translation. We design an exper-

iment to analyse what contribution lexical variation and word order performance have

to the variability of the current machine translation metrics, under real test conditions.

6.4.1 Experimental design

We perform correlation analysis on our metric scores, comparing them with the amount

of lexical overlap and the amount of reordering to see which factor affects them most.

While the permutation distances are insensitive to lexical differences, the ability of MT

metrics to detect word order differences is hampered by differences in word choice.

We used the 1-gram BLEU score, BLEU1, as our measure of lexical overlap. This

is a precision score which takes into account multiple reference sentences and is de-

fined as the number of matched words divided by the length of the translation. We

have demonstrated that we are able to capture the reordering performance of sentences

using the Kendalls tau distance, which measures relative word order and takes the size

of reorderings into account. Multiple references are accounted for by measuring the

distance to the reference with the closest word order.

The test data comprises of 1994 sentences from the GALE 2008 Chinese-English

newswire test set which each have four English reference sentences, also used in Sec-

tion 6.2. We also use the same translation model, training data and alignment model

as described previously in Section 6.2.

6.4.2 Results

r r2

Metric BLEU1 Kendall’s tau Metric BLEU1 Kendall’s tau

BLEU 0.693 0.255 BLEU 0.481 0.065

METEOR 0.609 0.162 METEOR 0.371 0.026

TER 0.736 0.302 TER 0.543 0.091

Table 6.5: The Pearson’s correlation r and the r2 of lexical choice and reordering and

current machine translation metrics. All regressions are significant to the 99.9% level

In this experiment we determine what influence lexical and reordering performance

has on the MT metrics. Table 6.5 shows the Pearsons correlation of the metrics with
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the BLEU1 score and the Kendall’s tau distance metric. The results are all significant

to the 99.9% level.

The correlation coefficients between the baseline metrics and the lexical metric

are much larger than the correlations between the baseline metrics and the amount of

reordering. The largest correlation of 0.736 is given by comparing TER and the lexical

metric BLEU1. The largest correspondence between the amount of reordering, the

Kendall’s tau, and the MT metrics is also for the TER metric and it is 0.302. This is

a weak, if significant, correlation. The results in this table show that the metrics are

much more sensitive to the words used in translations than to their order.

Although the correlation coefficient r is a good indication of the strength of the

relationship, taking it’s square results in the r2 which has an extremely useful interpre-

tation. The r2 allows us to describe the proportion of variability of the metric which

is directly attributable to the variability in BLEU1 or Kendall’s tau. The results for

r2 emphasise the fact that almost none of the variability in the metric scores can be

attributed to reordering. The highest r2 value for correspondence with Kendall’s tau,

is not even 10% for TER, and the lowest value is for METEOR, which is 2.6%.

Reordering seems to have a minimal effect on all of the metrics and we thus have

evidence for one of the major claims made in this thesis. This can be visualised by

looking at the plots in Figure 6.5 where the correlation between lexical overlap and

machine translation metrics can clearly be seen, whereas the relationship between re-

ordering and the metrics is minimal.

Finally, it is interesting to note that TER is more correlated with both lexical choice

and reordering than the other two metrics. This indicates that TER is a more reliable

measure of lexical and reordering success. METEOR is less correlated than the other

two metrics, possibly due to errors introduced when matching stems and synonyms.

6.5 Summary

This chapter presents a number of experiments which justify using reordering metrics

to evaluate word order quality in translations. First we show that our permutation

distance metrics are able to distinguish between human and machine translations. Then

we present a novel human evaluation experiment which specifically isolates the effect

of word order differences. With this experiment we are able to show that humans are

able to reliably discriminate between sentences with different levels of disorder. These

judgements are then used to correlate with the MT and the reordering metrics. The
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Figure 6.5: The lexical overlap and reordering amount plotted against MT metrics.
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Hamming distance and the Kendall’s tau distance are shown to correlate well with

human judgements than the MT metrics, even in an artificial setting where the MT

metrics have an unrealistic advantage.

Finally, we presented an experiment which shows that the current machine trans-

lation metrics are largely driven by the words used in the translation, and that they are

quite insensitive to the order in which they appear.

Although reordering metrics which measure the quality of word order can be im-

portant for validating research aimed at improving reordering, they can never be con-

sidered a comprehensive metric as they only measure one aspect of translation quality.

In the next chapter we propose a simple, intuitive combined lexical and reordering

metric.





Chapter 7

LRscore: Combining Reordering and

Lexical Metrics

7.1 Introduction

Research in machine translation has focused broadly on two main goals, improving

word choice and improving word order in translation output and measuring the quality

of these two aspects of translation is of fundamental importance. In the previous two

chapters we proposed novel reordering metrics which we have shown correlate with

human judgements of word order quality. We have also demonstrated that current

metrics are relatively insensitive to word order quality. However, reordering metrics

will always need to be used in conjunction with measures of the quality of word choice

to be considered comprehensive metrics. In this chapter we present a novel metric, the

Lexical Reordering score (LRscore), which explicitly combines a measure of lexical

success with a reordering metric to provide a complete machine translation metric.

Apart from their inability to adequately measure reordering performance, a com-

mon criticism of current automatic MT metrics is that a particular score does not pro-

vide insight into quality (Przybocki et al., 2009) because they have no intrinsic signif-

icance. Ideally, the scores that the metrics report would be meaningful and stand on

their own. For current MT metrics one can say that a higher score is better for accuracy

metrics and a lower score is better for distance metrics, but it is very hard to extract

any further insight. We argue that the LRscore is intuitive and meaningful because it is

a simple, decomposable metric with only one parameter to train. The reordering com-

ponent has an intrinsic significance. For the Hamming distance is represents absolute

order and for Kendall’s tau distance it represents relative order.

129
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Ultimately, all automatic metrics need to be verified by correlating them with hu-

man judgements. We present experiments where human preference judgements are

used to compare the LRscore with other existing metrics and we show that the LRscore

is more consistent with humans judgements than other baseline metrics.

The rest of this chapter proceeds as follows. In Section 7.2 we start by describing

the LRscore and its properties. In Section 7.3 we describe how to train the parameter

of the metric using greedy hill-climbing. We also show that the LRscore is more con-

sistent with human preference judgements than other commonly used MT metrics. In

Section 7.4 we discuss the results and finally in Section 7.5 we summarise the main

findings and contributions of the chapter.

7.2 LRscore

The main purpose of machine translation evaluation is to determine “to what extent

the makers of a system have succeeded in mimicking the human translator” (Krauwer,

1993). Automatic evaluation assumes access to one or more reference translations

created by humans. The task is to compare the system output with the references.

However, unlike many natural language processing applications, machine translation

has no unique “ground truth” as there are typically many possible correct translations.

It is frequently impossible to judge automatically whether a translation is incorrect or

simply unknown. It is even harder to judge how incorrect it is. Even so, automatic

metrics are a necessary tool for developing machine translation systems. They allow

developers to assess the impact of system modifications, and are critical for tuning

statistical MT systems, for example in Minimum Error Rate Training (MERT).

There is a great deal of interest in developing automatic machine translation met-

rics. There have been a number of evaluation campaigns where metrics have been

compared under different conditions, such as in the Workshops on Machine Trans-

lation (Callison-Burch et al., 2007, 2008, 2009) and the NIST Metrics for Machine

Translation Challenge (MetricsMATR) (Przybocki et al., 2009). Although a large va-

riety of metrics have been proposed, none of them specifically address the issue of

reordering performance.

In this chapter we present the novel LRscore which includes a permutation distance

metric which has been demonstrated to correlate strongly with human judgements of

word order quality (see Section 6.3). It is a shallow metric which is quick to run

and language independent. It is therefore an appealing metric for machine translation
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researchers.

The LRscore is a linear interpolation of a reordering metric with a lexical metric,

and each part of the score can be inspected independently if desired. Separating these

two aspects of translation performance is somewhat simplistic, as word order affects

word choice and vice-versa. However, decomposing a complex problem into two sim-

pler, more manageable parts is an essential technique for solving scientific problems.

The LRscore is a weighted average of the reordering and lexical component and is

defined as follows:

LRscore = α∗R+(1−α)L (7.1)

The only weight present in the metric is α, which balances the contribution of the

reordering metric, R, and the lexical metric, L. R is a permutation distance metric

adjusted by the brevity penalty, and over a set of sentences S, it is calculated as follows:

R =
∑s∈S ds ∗BPs

|S|
(7.2)

where d is the permutation distance score and BP is the brevity penalty. R is thus the

average of the distance metrics, adjusted by the brevity penalty, over a set of sentences.

In the following experiments d is either the Hamming distance or the Kendall’s tau

distance (see Section 5.3 for details).

The brevity penalty is calculated in the same manner as for the BLEU score:

BP =

{
1 if t > r

e1−r/t if t ≤ r
(7.3)

where t is the length of the translation, and r is the length of the closest reference. If the

reference sentence is slightly longer than the translation, then the brevity penalty will

be a fraction somewhat smaller than 1. This has the effect of penalising translations

that are shorter than the reference. The brevity penalty is necessary as the reordering

metric provides the same score for a one word translation as it would a much longer

monotone translation.

In these experiments, the lexical metric is the BLEU score, which is a product of the

precisions of different n-gram lengths. We use two versions of the score: the 1-gram

BLEU score, BLEU1, results in a lexical metric with no word order information; and

the 4-gram BLEU score includes some measure of the local reordering success in the

precision scores of the longer n-grams. BLEU is an important baseline, and improving

on it by including a reordering metric is an interesting result.
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Here we use the BLEU score, but the lexical component of the LRscore could be

any metric which is meaningful for a particular target language. If a researcher was

interested in morphologically rich languages, perhaps a metric which scores partially

correct words would be more appropriate. We could, for example, apply METEOR

which matches stems.

The LRscore returns both sentence level and system level scores. The only differ-

ence between the two is that the sentence level scores use smoothed BLEU (Lin and

Och, 2004a), as BLEU is not stable at the sentence level.

The LRscore is not the first metric to be composed of a word choice and a word

order component. Wong and Kit (2009, 2010) proposed the ATEC metric which also

combines these two aspects of translation quality. ATEC is described as an F-measure

which uses a matching function M to calculate precision and recall. M combines the

number of matched words, weighted by their tfidf importance, with a measure of their

position difference. The position difference score is the average difference of absolute

and relative word positions and has no clear interpretation. ATEC also subtracts a score

for unmatched words which undermines the interpretation of the supposed F-measure.

The ATEC score is not intuitive nor easily decomposable. In fact it is more similar to

METEOR than to the LRscore, because it mixes synonym and stem functionality with

a reordering penalty.

7.3 Predicting Human Judgements

Even though the LRscore has many desirable properties, it must ultimately be judged

on how well it correlates with with human judgements. This section explores how

consistent the LRscore is with human judgements at the sentence and the system level.

In order to obtain optimal correlation with human judgement, the weight of the in-

terpolation parameter must be set. We present experiments where we use a randomised

hill climbing search for different language pairs, in order to train the LRscore.

Having to repeat this training for new language pairs requires access to human

judgement data, which is not available for most test scenarios. We therefore investigate

setting the parameter, based on the amount of reordering seen in the test set as a corpus

with more reordering might require a higher weighting for the reordering component

of the score. This is a novel approach to training a machine translation metric.
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Language Pair Pairwise

Judgements

Ties

German-English 7,444 1,062

Spanish-English 4,808 702

French-English 7,772 1,504

Czech-English 3,150 899

English-German 7,351 788

English-Spanish 3,732 483

English-French 3,854 887

English-Czech 14,154 2,912

Total 52,265 9,237

Table 7.1: The number of human pairwise sentence rank judgements and the number

of these judgements which were tied. They were collected in the 2009 Workshop on

Machine Translation.

7.3.1 Experimental Design

Automatic metrics must be validated by correlating their scores with human judge-

ments. We train the metric parameter to optimise consistency with human preference

judgements across different language pairs and then we show that the LRscore is more

consistent with humans than our baseline metrics.

7.3.1.1 Human Judgement Data

In the research community, there has recently been a lot of interest in developing au-

tomatic machine translation metrics and all metrics need to be validated by correlation

with human judgements. However, the question of which is the best way of extracting

human judgements, is still an open question. Various different human evaluation tasks

have been evaluated for inter- and intra-annotator agreement, and ranking sentences

was shown to be faster and more reliable than other human judgement tasks (Callison-

Burch et al., 2007). Ranking has been chosen as the official determinant of translation

quality for the 2009 Workshop on Machine Translation (Callison-Burch et al., 2009).

We used human ranking data from this workshop to evaluate the LRscore.

Table 7.1 reports the number of pairwise ranking judgements for each language

pair. The instructions provided to the annotators were: “Rank translations from Best

to Worst relative to the other choices (ties are allowed).” Annotators were presented
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Language Pair No. Sentences No. Words

German-English 1.58 41.15

Spanish-English 1.67 42.91

French-English 1.69 43.75

Czech-English 2.49 30.41

Table 7.2: The number of sentences and words (in millions) in the parallel corpora used

for training the Berkeley alignment models.

with at most five translations at a time. Although there were more than five competing

systems, there was no attempt to get a complete ordering over systems. The workshop

organisers compiled a random selection and relied upon a reasonably large sample size

to make the comparisons fair.

7.3.1.2 Alignments

Our reordering metric relies upon word alignments that are generated between source

and reference sentences, and between source and translated sentences. In an ideal

scenario, the translation system provides the actual alignments used to generate trans-

lations and the reference has gold standard human alignments. However, the human

judgements have been collected for data which does not provide gold standard align-

ments, and we must resort to automatic alignments

We used version two of the Berkeley alignment model (Liang et al., 2006), with the

posterior threshold set at 0.5. Our Spanish-, French- and German-English alignment

models are trained using Europarl version 5 (Koehn, 2005). The Czech-English align-

ment model is trained on sections 0-2 of the Czech-English Parallel Corpus, version

0.9 (Bojar and Zabokrtsky, 2009). In Table 7.2 we can see the characteristics of the

corpora used to train the alignment models.

7.3.1.3 Test Data

The metric scores are calculated for the test set from the 2009 workshop on machine

translation. It comprises of 2525 sentences in English, French, German, Spanish and

Czech. These sentences have been translated by different machine translation systems

and the output submitted to the workshop. The system output along with human eval-

uations can be downloaded from the results section of the website of the Workshop on

Machine Translation 2009. Participants used the training, development and test data
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Language Pair No. Systems Kendall’s tau

German-English 15 73.9

Spanish-English 9 80.5

French-English 14 80.4

Czech-English 3 81.1

English-German 11 73.9

English-Spanish 9 80.7

English-French 12 80.5

English-Czech 5 81.0

Table 7.3: The number of systems for which there are translations for each language

pair. The average Kendall’s tau reordering distance between the test and reference

sentences is also reported.

provided by the workshop to train their particular translation system.

Table 7.3 reports the number of different translation systems which are provided

by the workshop for download. The table also shows the amount of reordering that

is present between the source and reference sentences. Remember that a higher score

means less reordering. The amount of reordering for each language pair affects the

importance of the reordering component of the score. The German-English language

pairs have considerably more reordering than the other language pairs, because the

Kendall’s tau score is lower than for other language pairs.

7.3.1.4 System Level Correlation

Ultimately metrics are used to measure if one translation system is better than another.

This is usually done over a test set consisting of a few thousand test sentences. When

one score is reported for a whole test set, this is commonly called a system level score.

It is useful to have a measure which can produce a meaningful system level score which

correlates well with human judgements. System level correlations however suffer from

having few data points and significant differences in metrics will be rare. Table 7.3

shows that the maximum number of data points is just 15 for German-English. We

therefore use sentence level consistency, as described in the next section, as our main

method of comparison.

To measure the correlation of the automatic metrics with the human judgements of

translation quality at the system-level we use Spearmans rank correlation coefficient ρ.
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We converted the raw scores assigned to each system into ranks. We follow Callison-

Burch et al. (2009) in assigning an overall human ranking to each system based on

the percent of time that their translations were judged to be better than or equal to the

translations of any other system in the manual evaluation.

7.3.1.5 Sentence Level Consistency

Although we ultimately want a metric which outputs system level scores which corre-

late well with human judgements, a sentence level score is often more useful. Human

judgements are not collected over whole collections of test sets, they are collected at

the sentence level. There is a large amount of variability in human judgements between

sentences and considering just one collective measure at the system level means that

we loose a large amount of information. It is also interesting for researchers to have

access to metrics which output sentence level scores in order to analyse translation

output and determine the effect their changes have. One side effect, however, of look-

ing at sentence level scores, is that shorter sentences are given the same importance

as longer sentences. This is not necessarily undesirable, as the human judgements of

shorter sentences are probably more reliable.

Utilizing sentence rank judgements is not as straightforward as using absolute

scores of fluency and adequacy, for which correlation can be easily calculated. Lavie

and Agarwal (2008) trained the parameters of the METEOR metric on rank data by cal-

culating Spearman’s rho correlation for the small number of rank judgements available

for each sentence. They then take the average of the correlations across all sentences.

This is an undesirable strategy because the correlations for small numbers of items

are unreliable and correlation coefficients cannot simply be averaged as the correla-

tion coefficient is not a linear function of the magnitude of the relation between the

variables.

We therefore adopt the method used in the 2009 workshop on machine transla-

tion (Callison-Burch et al., 2009). We ascertain how consistent the automatic metrics

are with human judgements by examining each pairwise comparison of translation

output for single sentences by a particular judge. We then record whether or not the

metrics are consistent with the human ranking (i.e. we counted cases where both the

metric and the human judge agreed that one system is better than another). We divided

this by the total number of pairwise comparisons to get a percentage which we call the

consistency of a metric. There were many ties in the human data, but metrics rarely

give the same score to two different translations. We therefore excluded pairs that the
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human annotators ranked as ties.

It is important to be able to determine when a difference in consistency scores

between two metrics represents a significant difference in their performance. Koehn

(2004b) describes a method to compute statistical confidence intervals for automatic

metrics using bootstrap resampling (Efron and Gong, 1983). Bootstrapping is a sta-

tistical technique for estimating the sampling distribution of a variable by sampling

with replacement (i.e. allowing repetition of the values) from the original sample. The

method has the practical advantage of being easy to implement and the theoretical ad-

vantage of not presupposing anything about the underlying distribution of the variable.

A simple programming routine can calculate the estimators of the mean, variance,

etc., of any random variable distribution. We use bootstrap resampling to estimate the

95%confidence intervals of the consistency of metrics with human judgements. If the

intervals for different metrics do not overlap, we can say that one metric is significantly

more consistent than another.

Given the consistency result of m, we would like to compute with a confidence q

that the true consistency score lies in an interval [a,b]. We draw a test set from the

space of all possible test cases, and we then calculate consistency. We do this for a

large number test sets, and we sort the corresponding consistency scores. We drop the

top 2.5% and the bottom 2.5% of the scores, and this leaves us with the remaining

scores within an interval [a,b]. Our overall consistency score m is the mean of all the

samples. The law of large numbers dictates, that with an increasingly large number of

samples, the interval [a,b] approaches the 95% confidence interval. We do not have

access to the space of all possible test cases, and so we assume that estimating the

confidence interval from a large number of test sets with n test cases drawn from a set

of n test cases with replacement is as good as sampling n test cases from an infinite set

of test cases.

7.3.1.6 Baseline Metrics

In order to evaluate the LRscore, it must be compared to our baseline metrics, BLEU,

METEOR and TER. The BLEU score has five parameters, one for each n-gram, and

one for the brevity penalty. These parameters are set to a default uniform value as is

standard. When results are reported for system level scores, the BLEU score is used.

When results are reported for sentence level scores, the smoothed BLEU score is used.

METEOR has 3 parameters which have been trained twice, once for human judge-

ments of adequacy and fluency (Lavie and Agarwal, 2007) and once for human judge-
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Metric Name Reordering Metric Lexical Metric

LR-HB1 Hamming BLEU1

LR-HB4 Hamming smoothed BLEU

LR-KB1 Kendall BLEU1

LR-KB4 Kendall smoothed BLEU

Table 7.4: The test conditions for the LRscore

ments of rank (Lavie and Agarwal, 2008). METEOR version 0.7 was used. The param-

eters optimised for adequacy and fluency have been used, these were applied separately

for each of target languages. For English as the target language the exact match, porter

stem and synonymy modules were used. For Czech as the target language the exact

match module was used, and for the rest of the languages we used exact match and

porter stem.

The other baseline metric used was TER version 0.7.25. As in previous chapters,

we adapt TER by subtracting it from one, so that all metric increases mean an im-

provement in the translation. The TER metric has five parameters which have not been

trained.

We test the LRscore with two reordering metrics, the Hamming distance and Kendall’s

tau distance. We also apply two lexical metrics, the 1-gram BLEU score, BLEU1, and

the standard 4-gram BLEU score with uniform weight. See Table 7.4 for the breakdown

of the LRscore variations.

7.3.1.7 Optimisation of Metrics

Automatic metrics of translation all have different components which are combined to

form a complete metric. Training metric parameters is difficult as we rely upon human

evaluation data, and many metrics either perform no optimisation of their parameters,

or are optimised only once for a particular language pair and domain. Even the metrics

which have been trained for a particular target language are not necessarily optimal

for other language pairs or domains. For example, if the metric is trained on Arabic-

English data, where there is little reordering, the word order component might receive

a lower weight than it would for another language pair with more reordering.

Our first approach to optimising the LRscore is to train the parameter separately

for each of the eight language pairs. We use greedy hill climbing in order to find the

optimal setting. We optimise for sentence level consistency of the metric. As hill



7.3. Predicting Human Judgements 139

climbing can end in a local minima, we perform 20 random restarts, and retain only

the parameter value with the best consistency result. Random-restart hill climbing is a

surprisingly effective algorithm in many cases. A reasonably good local maxima can

often be found with a relatively small number of restarts (Russell et al., 1995).

The brevity penalty applies to both the reordering metric and the BLEU score. We

do not set a parameter to regulate the impact of the brevity penalty, as we want to retain

BLEU scores that are comparable with BLEU scores computed in published research.

7.3.1.8 Optimisation Across Language Pairs

There is very little human evaluation data available for training metrics and it is time

consuming to train metric parameters for each new data set. It is therefore desirable to

be able to set the metric parameters by simply calculating some characteristic of the

language pair. The LRscore is simple and requires setting only one parameter which

balances reordering and lexical metrics. It is logical to suppose that this parameter

depends to a large degree on the importance of reordering in the language pair in

question. A language pair with little or no reordering will have little use for a metric

which measures this.

We propose a novel method for setting the metric parameter. First we train a lan-

guage independent parameter which is then adjusted by the amount of reordering that

exists in the test set. In order to apply the LRscore, the test set has to have been aligned

to the reference sentences, and so extracting the amount of reordering with the LRscore

is quick and simple. Researchers using our metric will thus be able to determine the

reordering amount for each language pair and domain they wish to test with very lit-

tle extra effort. The amount of reordering is calculated as the Kendall’s tau distance

between the source and the reference sentences as compared to dummy monotone sen-

tences. The language independent parameter (θ) is adjusted by applying the reordering

amount (dk) as an exponent. This works in a similar way to the brevity penalty. With

more reordering, the dk becomes smaller. This leads to an increase of the final weight

of α, which represents the percentage contribution of the reordering component in the

LRscore:

α = θ
dk (7.4)

The language independent parameter θ is trained once, over multiple language

pairs. This procedure optimises the average of the consistency results across the differ-
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ent language pairs. The validity of this approach can be demonstrated by comparing

the optimised consistency results obtained here, with those obtained when training is

performed for each language pair individually. Once θ is trained on a particular set of

language pairs, we then use it for new language pairs for which we have calculated the

dk. Thus, α can be set easily for any new language pair or domain.

7.3.2 Results

In the following experiments we aim to:

• Optimise the parameter the LRscore metric with respect to human judgements

of rank.

• Compare the consistency of the LRscore with baseline metrics and show that the

LRscore corresponds better with human judgement.

• Explore which combination of lexical and reordering components in the LRscore

is more consistent with human judgements.

• Find the system level correlation of the LRscore with human judgements.

• Optimise the metric parameter using characteristics of the language pair instead

of needing to train with human judgements for each test case.

7.3.2.1 Sentence Level Consistency

This experiment performs randomised hill-climbing for each of the language pairs in

order to optimise the LRscore’s sentence level consistency with human judgements.

Once optimised, the consistency of the LRscore is compared with that of the baseline

metrics.

Table 7.5 reports the optimal consistency of the LRscore and baseline metrics with

human judgements for each language pair. The table also reports the results for the

individual components of the LRscore in isolation.

The first thing to note in Table 7.5 is that, apart from Czech-English, the LRscore is

the metric which is most consistent with human judgement. This is an important result

which shows that combining lexical and reordering information makes for a stronger

metric. The language pairs with the most reordering are the German-English and

English-German pairs (as shown Table 7.3) and for these language pairs it seems that
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Metric de-en es-en fr-en cz-en en-de en-es en-fr en-cz ave

METEOR 58.6 58.3 58.3 59.4 52.6 55.7 61.23 55.6 57.5

TER 53.2 50.1 52.6 47.5 48.6 49.6 58.3 45.8 50.7

BLEU1 56.1 57.0 56.7 52.5 52.1 54.2 62.3 53.3 55.6

BLEU 58.7 55.5 57.7 57.2 54.1 56.7 63.7 53.1 57.1

Hamming 51.1 42.6 38.7 36.4 42.4 38.3 47.4 35.5 41.5

Kendall 53.2 44.6 40.5 42.1 45.6 39.2 49.2 37.3 44.0

LR-HB1 60.4 60.6 58.6 53.7 54.8 55.8 63.9 55.0 57.8

LR-HB4 60.5 58.9 58.8 57.7 55.0 57.5 63.7 55.1 58.4

LR-KB1 60.7 58.5 58.5 54.2 54.7 55.6 62.3 55.1 57.5

LR-KB4 61.1 59.9 58.6 58.9 55.2 57.4 63.7 55.3 58.7

Table 7.5: The percentage consistency between human judgements of rank and met-

rics. The LRscore variations (LR-*) are optimised for consistency for each language

pair. A random baseline metric would get a 50% consistency score.

LR-KB4 is the best metric. This suggests that the Kendall’s tau metric is more appro-

priate for language pairs with a reasonable amount of reordering. After the LRscore,

METEOR shows the highest consistency, however for German-English and English-

German, METEOR lags behind the BLEU score, suggesting that it is less appropriate

for language pairs which contain a lot of reordering. The TER score shows the lowest

consistency of all the complete metrics and it might be hampered by lack of tuning

to the data set. The reordering metrics in isolation are clearly deficient. As reorder-

ing metrics were never intended to be used in isolation, their poor correlation is not a

concern.

LR-HB1 is meant as a baseline metric, but it performs best for the Spanish-English

language pair. This suggests that for this language pair, the longer n-grams are not

important for human judgements of rank. However, for most other language pairs,

using the full BLEU score does improve correspondence. Both LR-HB4 and LR-KB4

perform very well in this experiment, but LR-KB4 performs best for 5 language pairs,

as opposed to LR-HB4 performing best for only 3 language pairs. Also, LR-KB4

performs best for the language pairs with the largest amount of reordering (those into

and out of German) and we therefore select this as our preferred metric.

In order to judge the significance of these results, in Figure 7.1 we show 95% con-

fidence interval for the consistency scores, extracted using bootstrap resampling. We
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Metric de-en es-en fr-en cz-en en-de en-es en-fr en-cz

LR-HB1 36.44 22.42 19.45 06.60 18.63 14.67 21.34 52.13

LR-HB4 09.28 80.15 04.29 00.88 06.82 03.38 00.19 44.93

LR-KB1 47.98 29.21 05.94 07.44 22.67 16.90 51.49 59.56

LR-KB4 22.41 81.03 18.85 19.97 12.01 00.62 00.19 44.51

Table 7.6: The optimal parameter setting for each language pair and direction when

trained with randomised hill climbing. This parameter refers to the percentage contribu-

tion of the reordering component in the linearly interpolated LRscore.

can see that the mean consistency for the LRscores is greater than that of the baseline

metrics. However, the confidence interval of these results overlap significantly for ME-

TEOR and BLEU. This means that we cannot assert that the LRscore is significantly

more consistent with human judgements than either BLEU or METEOR. Even without

significance, the higher consistency of the LRscore and its ability to capture reordering

make it an attractive choice for evaluating machine translation research.

In Table 7.6 we report the optimal parameter setting of α for the LRscore for each

language pair and LRscore test condition. The parameter refers to the percentage con-

tribution of the reordering component of the linearly interpolated LRscore. There is

a great deal of variation between the settings. The largest setting of α is 81.03 for

Spanish-English for LR-KB4 and the smallest is 00.19 for English-French LR-HB4.

However, while training α we noticed that the range of values for consistency is quite

narrow, varying from about 55% to the results seen in Table 7.5. We also noticed

that these parameter setting are quite stable on random restarts. Looking at German-

English, which has more reordering than other language pairs, it seems that the re-

ordering component contributes more when the lexical component includes no notion

of reordering, when the 1-gram BLEU score is used, as expected. When the 4-gram

BLEU score is used, the reordering component is weighted less. Also, comparing the

Hamming distance and the Kendall’s tau distance metrics, it seems that for German-

English, Kendall’s tau is preferred. For the languages translating into English, the

results are more mixed. Translating out of English, the contribution of reordering is

slightly lower. For English-French and English-Spanish when using 4-gram BLEU, the

contribution of reordering is close to zero. Perhaps languages with more morphology

need to place a higher emphasis on the lexical component of the metric.
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Figure 7.1: The mean consistency of metrics with their 95% confidence intervals ex-

tracted via bootstrap resampling.
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Rank Human LR-HB4 LR-KB4 METEOR TER BLEU

1 rbmt2 (29) google google google umd google

2 google (26) uka uka uka google uka

3 rbmt3 (24) umd uedin stuttgt uka umd

4 systran (22) uedin umd uedin rwth uedin

5 uka (21) stuttgt stuttgt systran stuttgt stuttgt

6 umd (21) liu liu umd uedin liu

7 uedin (20) rwth systran rbmt3 systran rwth

8 rbmt4 (19) systran rwth rbmt2 liu systran

9 rbmt1 (14) rbmt3 rbmt3 liu rbmt3 rbmt3

10 stuttgt (14) usaar usaar usaar usaar rbmt2

11 rwth (10) rbmt2 rbmt4 rbmt1 rbmt2 usaar

12 usaar (9) rbmt4 rbmt2 rwth rbmt4 rbmt4

13 liu (8) rbmt1 rbmt1 rbmt4 rbmt1 rbmt1

14 geneva (4) geneva geneva geneva geneva geneva

15 jhu (3) jhu jhu jhu jhu jhu

Table 7.7: The German-English translation systems ranked in order of preference for

human judgements and for the automatic metrics. The human ranks are calculated

by counting the number of sentences which are judged as best or tied as best for a

particular machine translation system. This count is reported in brackets along with the

human ranked systems.

7.3.2.2 System Level Correlation

The most common method of applying an MT metric is to compare the performance

of two systems on a particular test set. This motivates the following experiment where

system level correlations of metrics with human judgements are presented. In Table 7.7

we can see the ranking of the different German-English machine translation systems.

The human ranks are based on the number of times that humans judged their transla-

tions to be better than or equal to the translations of any other system. These counts

are shown in brackets next to the human ranks. The different automatic metrics are in

broad agreement. They all disfavour the commercial rule based machine translation

systems of “rbmt” and “systrans” which are highly regarded by humans. It seems that

all automatic metrics struggle to mimic human preferences.

In Table 7.8 we report the system level Spearman’s rho correlation between the hu-
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man ranking and the metric ranking. The number of systems that are used to calculate

the correlation were reported in Table 7.3.

Table 7.8 shows that the correlation of the LRscore metrics are comparable to the

BLEU score correlation. Few of these correlations are statistically significant, because

there are relatively few systems to be ranked, with the largest number being 15 systems

for German-English. The Czech-English and English-Czech language pair only has

three and five systems respectively. This makes is hard to gain any useful insight

into the performance of the metrics. Furthermore, looking at the number of human

judgements used to create the human ranking in Table 7.7, we see that the number of

times that systems are judged as the best are quite small. This brings into question the

value of this type of evaluation.

Even so, looking at the correlation data in Table 7.8, it seems that the LRscore cor-

relates reasonably well with human data when compared to the BLEU score and with

METEOR. In fact the average correlation of LR-HB4 and LR-KB4 is higher than that

of the BLEU score, and only slightly lower than that of the METEOR metric. The re-

sults for the LRscore variations which use BLEU1, and therefore rely entirely on the re-

ordering component of the metric for evaluating word order, are much better than those

of BLEU1 and not much worse than BLEU, which shows that the reordering compo-

nent is correctly contributing information on word order quality. In fact if you look at

the reordering metrics in isolation, they seem correlate worse than all other metrics for

French-English and Spanish-English, but they also correlate better than other metrics

for English-German and English-Spanish. In fact for English-German, the reordering

metrics are the only ones that are positively correlated with human judgements. This

is likely to be partly due to the randomness of the small number of systems compared,

but the reordering metrics could be contributing useful knowledge which is distinct

from the information available to the other metrics.

7.3.2.3 Optimising across Language Pairs

It is time consuming and costly to optimise metric parameters, especially when there is

no human evaluation data for a particular language pair or domain. We have proposed

setting this parameter automatically based on the amount of reordering in the test set.

This experiment aims to determining whether our approach is valid by comparing the

consistency results obtained when optimising for each language pair, with the con-

sistency results when optimising the language independent parameter θ over multiple

language pairs.
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Metric de-en es-en fr-en cz-en en-de en-es en-fr en-cz ave

MET. 0.67 0.70* 0.66* 1.00 -0.25 0.23 0.88*** 0.60 0.56

TER 0.44 0.41 0.50 1.00 -0.51 0.35 0.74** 0.10 0.38

BLEU1 0.46 0.40 0.58* 1.00 -0.45 0.38 0.87*** 0.20 0.43

BLEU 0.49 0.60 0.65* 1.00 -0.29 0.37 0.86*** 0.50 0.52

Hamming 0.45 0.33 0.11 -0.50 0.48 0.82* 0.78** 0.40 0.36

Kendall 0.25 0.05 -0.16 -0.50 0.78** 0.52 0.62* 0.70 0.28

LR-HB1 0.39 0.58 0.58* 1.00 -0.40 0.38 0.89*** 0.60 0.50

LR-HB4 0.45 0.61 0.66* 1.00 -0.22 0.37 0.86*** 0.70 0.55

LR-KB1 0.46 0.46 0.58* 1.00 -0.45 0.38 0.88*** 0.70 0.50

LR-KB4 0.45 0.33 0.61* 1.00 -0.13 0.37 0.86*** 0.70 0.52

Table 7.8: Spearman’s rho correlation for system level evaluation of metrics with human

judgements of the best or tied best translation.

Metric θ de-en α = θdk

LR-HB1 13.32 22.54

LR-HB4 01.86 05.26

LR-KB1 28.20 39.24

LR-KB4 13.19 22.38

Table 7.9: The language independent parameter θ for each LRscore test condition, and

the final parameter α for the German-English task after applying the reordering amount

dk of 0.739 to θ.

We perform a randomised hill climbing search for the best setting of θ. At each

step instead of calculating the consistency for only one language pair, we calculate it

for all language pairs and take the average. For this experiment, θ is adjusted for each

language pair by applying as an exponent the Kendall’s tau reordering amount shown

in Table 7.3.

In Table 7.9 we can see the optimised language independent parameter θ for each

LRscore setting. This is used to calculate α and α is then used to calculate the con-

sistency of each metric for each language pair. Table 7.9 shows that the contribution

of the reordering component is small for LR-HB4, but for the rest of the metrics, it is

more important. The final parameter α is higher than the value in this table. We also

provide the final α value for German-English, where the dk of 0.739 was applied as an
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Metric de-en es-en fr-en cz-en en-de en-es en-fr en-cz ave

LR-HB1 59.7 60.0 58.6 53.2 54.6 55.5 63.7 54.5 57.5

LR-HB4 60.4 57.3 58.7 57.2 54.8 57.3 63.3 53.8 57.9

LR-KB1 60.4 59.7 57.9 54.0 54.1 54.7 63.4 54.9 57.5

LR-KB4 61.0 57.2 58.5 58.6 54.8 56.8 63.1 54.9 58.7

Table 7.10: The result of using a parameter setting based on language pair character-

istics.

exponent. This Kendall’s tau value was extracted from Table 7.3.

Table 7.10 reports the consistency for each language pair when using the language

independent parameter. The average consistency is also reported, and this is value

which is optimised. The results in this table should be compared with Table 7.5. This

comparison shows that the consistency figures are only very slightly lower when train-

ing across language pairs. This leads us to conclude that we can reliably use the lan-

guage independent parameter together with the amount of reordering in the test set to

configure the LRscore for new language pairs and domains.

7.4 Discussion

In the previous experiments we have shown that the LRscore is consistent with human

judgements of rank. We chose to use this human evaluation data because, as com-

pared to accuracy and fluency judgements, it eliminates some confounding factors. As

the person is simply comparing translations of the same source sentence, the origi-

nal sentence length, sentence difficulty or sentence domain are kept constant. Even

so, different translations will contain a variety of errors in both the words used in the

translations and the word orderings. It is therefore not clear whether human preference

judgements are indeed measuring the quality of the word order in the translation.

We have already established in a previous experiment (in Section 6.3) that we can

reliably extract human judgements on word order and that permutation distance metrics

are highly correlated with these human judgements. Although in this experiment we

are evaluating the metrics on how well they correlate with human judgements, we

can, in fact, also judge the human evaluation setup on how well they correlate with

permutation distance metrics. The fact that the reordering metrics by themselves are

not highly correlated with human rank judgements, see Table 7.5, indicates that these
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human experiments are not especially sensitive to the quality of the word order. In

fact, except for the case of German-English, the distance metrics agree with humans

less than the random baseline would (50%). Although this human judgement data is

not ideal, it is still the best we have available to evaluate the LRscore metrics of overall

translation quality.

7.5 Summary

In this chapter, we present a novel metric called the LRscore. The main motivation for

this metric is the fact that it measures the reordering quality of MT output by using

permutation distance metrics. It is a simple, decomposable metric which interpolates

the reordering component with a lexical component, the BLEU score.

This chapter demonstrates that the LRscore metric correlates better with human

preference judgements of machine translation quality than other machine translation

metrics. We show that combining two largely orthogonal information sources results

in a superior combined metric.

We also demonstrate that the weight of the metric can be optimised on fairly small

amounts of human judgement data when training each language pair individually. Fur-

thermore, we present a novel approach to training a language independent parameter

which is optimised across multiple language pairs. Combining the language indepen-

dent parameter with a measure of the amount of reordering in the test set, displays

correlation with human judgements which is comparable to that of training on each

language pair. This makes it easy to tune the LRscore parameter without needing hu-

man judgements for each new language pair or domain.

In the next chapter we show that the LRscore is more sensitive to changes in re-

ordering conditions than other baseline metrics. We also show that adding reordering

to the objective function while training translation model parameters improves transla-

tion quality as judged by humans.



Chapter 8

Experiments with LRscore

8.1 Introduction

In the previous chapter, Chapter 7, we presented the LRscore. This metric is moti-

vated by its ability to accurately measure reordering performance and the fact that the

individual components of the score can be examined separately.

Automatic metrics are necessary for evaluating the quality of the output. However,

an equally important function of automatic metrics is to provide an objective function

for training the weights of the log linear translation model. In this chapter we apply

the LRscore during minimum error rate training (MERT) (Och, 2003) in order reward

the translation model for producing better reorderings. We show that humans prefer

the output of translation models trained with the LRscore over those trained with the

BLEU score. We also show that when training with the LRscore, there is no discernible

drop in performance with respect to the BLEU score.

Another important characteristic of a good automatic metric is its ability to dis-

criminate between systems of varying quality. The results must be sensitive enough

to differentiate systems which are fairly close in quality. In this chapter we have de-

signed a set of experiments which show that reordering metrics are more informative

and more accurate than other machine translation metrics when conditions affecting

reordering are varied.

The rest of this chapter proceeds as follows. In Section 8.2 we use the LRscore as

the objective function during MERT training. Then, in Section 8.3, we describe exper-

iments where we examine how sensitive metrics are at detecting changes in reordering

conditions. Finally, in Section 8.4 we summarise the contributions and findings of the

chapter.

149
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8.2 Optimising Translation Models

The parameters of log linear translation models are commonly tuned using MERT.

MERT searches for the parameter setting which maximises some objective function,

typically an automatic translation metric such as BLEU, which is applied to the out-

put of a translation model. The success of MERT therefore depends heavily on the

evaluation metric, and the BLEU score is not particularly informative regarding the

word order performance of the hypotheses. A model with optimised feature weights is

likely to exhibit the properties that the metric rewards, but it will be blind to aspects of

translation quality that are not captured by the metric. We apply the LRscore during

MERT training in order to inject knowledge about reordering behaviour into the train-

ing process. If we are able to improve reordering, there could also be improvements in

comprehension, grammaticality and the overall quality of the output.

Cer et al. (2010) explore how optimizing toward various automatic evaluation met-

rics (BLEU, METEOR, NIST, TER) affects the behaviour of the resulting model. They

show that the although other metrics might correlate better with human judgements

than the BLEU score, when used for training translation models, the BLEU score

trained model is preferred by humans. They conclude that when using a metric to

train a translation model, it can only be useful to the extent that the MT models struc-

ture and features allow it to take advantage of the metric. We therefore adopt the BLEU

score as a strong baseline.

8.2.1 Experimental Design

We hypothesise that the LRscore is a good metric for training translation model weights.

We test this hypothesis by evaluating the output of the tuned models, first with auto-

matic metrics, and then by using human evaluation. We choose to run the experiment

with the Chinese-English language pair as it contains a large amount of medium and

long distance reorderings.

8.2.1.1 Experimental Conditions

We apply four variations of the LRscore as an objective function: BLEU1 and the

complete BLEU score are used together with the Hamming distance and Kendall’s

tau distance. BLEU and BLEU1 are also applied on their own as baseline objective

functions.
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8.2.1.2 Data

It is very important that these experiments are as similar as possible to experiments

that would be performed by researchers in the machine translation community. We

therefore use the GALE 2008 Chinese-English data, which is a standard training set

on which state-of-the-art models have been trained upon. We use the official test set of

the 2006 NIST evaluation (1994 sentences). For the development test set, we used the

evaluation set from the GALE 2008 evaluation (2010 sentences). Both development

set and test set have four references. The translation model was built from 1.727M

parallel sentences from the GALE 2008 training data.

8.2.1.3 Models

The MOSES phrase-based translation model was used, with a distortion limit of 6.

See Appendix A for details. The SRILM language modelling toolkit (Stolcke, 2002)

was used, with interpolated Kneser-Ney discounting to train three separate trigram

language models. These were trained on the English side of parallel corpus, the AFP

part of the Gigaword corpus, and the Xinhua part of the Gigaword corpus. For the

final experiment we also added a 5-gram language model, trained on English side the

parallel corpus. A lexicalised reordering model was used with the msd-bidirectional-

fe option. The output was re-cased using a recaser trained as a monotone translation

model.

The reordering metrics require alignments. Thus the development, test and trans-

lated sentences had to be aligned to the source. We did this using the Berkeley word

alignment package version 1.1 (Liang et al., 2006), with the posterior probability set

to being 0.5.

8.2.1.4 Baseline Metrics

We use the same baseline metrics as those described in Section 7.3.1.6.

8.2.1.5 LRscore parameter setting

We need to set the weight which balances the contribution of the lexical and the re-

ordering component of the score. We use the language independent method described

above in Section 7.3.2.3. We first extract the amount of reordering in the test set by

calculating the Kendall’s tau distance from the monotone. This value is 66.06% which

is lower than any of the other language pairs seen so far, which means the translation
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LR-HB1 LR-HB4 LR-KB1 LR-KB4

26.40 07.19 43.33 26.23

Table 8.1: The parameter setting representing the % impact of the reordering compo-

nent for the different versions of the LRscore metric.

are further from the source ordering or that there is more reordering. We then calcu-

late the optimal parameter setting by using the values from Table 7.10 for each of the

four LRscore versions. We apply these adjusted parameters by using the reordering

amount as a power exponent. Table 8.1 shows the final parameter settings we used in

the following experiments. These parameters represent the percentage contribution of

the reordering component of the LRscore metric.

8.2.1.6 Human Evaluation Setup

Human judgements of translation quality are necessary to determine whether humans

prefer sentences from models trained with the BLEU score or with the LRscore. There

have been some recent studies which have used the on-line micro-market, Amazons

Mechanical Turk, to collect human annotations (Snow et al., 2008; Callison-Burch,

2009). While some of the data thus generated is very noisy, invalid responses are

largely due to certain workers (Kittur et al., 2008). We use Mechanical Turk and we

simulate expert-level quality by collecting multiple judgements, and eliminating work-

ers who do not achieve a minimum level of performance on gold standard questions.

In previous human experiments, we recruited volunteers to evaluate translations on

a web based interface. The advantage of Mechanical Turk is that a large amount of

data can be collected from workers all over the world in a very short period of time and

for relatively small amounts of money. This experiment was completed in one hour for

a cost of about $30.

Our test data was generated by randomly selecting sentences from the test set for

presentation to the judges. These sentences had to be between 15 and 30 words long.

Shorter sentences were avoided as they tend to have uninteresting differences, and

longer sentences may have many conflicting differences. We also eliminated sentences

where the translation output was identical between the two systems. We selected 60

sentences for comparing BLEU with the LRscore using the Hamming distance (LR-

HB4), and another 60 for comparing BLEU with the LRscore using Kendall’s tau

distance (LR-KB4). Workers were presented with randomly ordered test cases and
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Reference By providing free vocational skill training to the rural labor-

ers, the city has removed 1,017 laborers out of the farmland

for new jobs during the year.

Option A through the rural labor force to free vocational skills train-

ing, as a whole, the transfer of 1,017 total labor force.

Option B through the rural labor force to free vocational skills train-

ing, as a whole, the total labor force and 1,017.

Explanation A contains ‘the transfer of’ which parallels the concept ‘re-

moved’ that is present in the reference.

Table 8.2: An example of a gold test unit where Option A was labelled as correct.

completed as many examples as they wanted. Only one worker completed more than

30.

The instructions given to the workers were to read the reference sentence, and then

to carefully compare the two translations. They should then select whether they pre-

ferred translation option A or translation option B, and only if there was no difference

in quality should they select the final option “Don’t Know”. Option A and option B

were randomly assigned either a translation from the BLEU score trained system or

from the LRscore trained system. They were then given an example to clarify the

instructions. Please see Appendix B for details.

Workers were screened to guarantee reasonable judgement quality. 20 sentence

pairs were randomly selected from the 120 test units and annotated as gold standard

questions. Workers who got less than 60% of these gold questions correct were dis-

qualified and their judgements discarded.

After getting a gold question wrong, a worker is presented with the right answer

and an explanation. This guides the worker on how to perform the task and motivates

them to be more accurate. We used the Crowdflower1 interface to Mechanical Turk,

which implemented the gold functionality for us.

Table 8.2 shows as example of an annotated gold test unit. Option A was labelled

as correct and 82% of the workers chose A as their preferred option. 6% chose B and

12% chose “Don’t Know”. Humans disagree on which translations they prefer, and so

a relatively low threshold of 60% agreement was chosen. Users were able to express

their disagreement with the gold standard annotations and one worker who had selected

1http://www.crowdflower.com
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“Don’t Know” objected to the classification of A being preferred by saying “Neither

is even close to the meaning, or to being grammatically correct.”. Even though experts

can disagree on preference judgements, gold standard labels are necessary to weed

out the substandard workers. There were 21 trusted workers who achieved an average

accuracy of 91% on the gold. There were also 96 untrusted workers who averaged

29% accuracy on the gold and their judgements were discarded. Three judgements

were collected from the trusted workers for each of the 120 test sentences. More than

three judgements for the gold questions were collected, but only the first three were

used so that all sentences are equally weighted.

8.2.2 Results

8.2.2.1 Automatic Metrics

In this experiment we demonstrate that the reordering metrics can be used as learning

criterion in minimum error rate training to improve parameter estimation for machine

translation.
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Table 8.3 reports the results of the MERT training with different objective func-

tions. The lexical metrics BLEU1 and BLEU are used as objective functions in iso-

lation, and also as part of the LRscore together with the Hamming distance (shown

with prefix LR-H) and Kendall’s tau distance (shown with prefix LR-K). The B1 suffix

means BLEU1 has been used, and B4 means BLEU has been used. All the systems are

trained using the objective functions and they are then evaluated using the automatic

metrics reported in the columns. We test models using our different objective functions

and we also apply distance metrics and the TER and METEOR scores. Tuning using

reordering metrics resulted in very poor performance as would be expected as they are

not complete metrics.

The first thing we note in Table 8.3 is that we would expect that the diagonal would

report the highest scores, as MERT maximises the objective function on the develop-

ment data set. This is not the case however. The best results, across the board, are

reported for the LR-HB4 objective function which uses the Hamming distance. The

only exception to this is that the reordering metrics report the highest scores when

using the LR-HB1 objective function. This is an important result, even though the dif-

ference in scores is not large, as it shows that by training with the LRscore objective

function, BLEU scores do not decrease. Although this is surprising, it can be explained

by the fact that BLEU allows multiple solutions with the same score, and the LRscore

allows us to select the one which has better reordering. The reordering metrics and

the lexical metrics are orthogonal information sources, and combining them results in

better performing systems. These results are reinforced in the next section where we

show that humans also prefer the LRscore translations.

Another interesting finding reported in Table 8.3, is that there is very little dif-

ference between using BLEU1 and BLEU as the objective function. It seems that the

higher order n-grams do not have a large impact on the performance of the trained

models. This is surprising as higher order n-grams provide all of the BLEU score’s

ability to measure word order, and BLEU1 is a metric which only measures lexical

success.

MERT does not find a global optimum, and it is possible that our training procedure

found a poor local optimum. We therefore repeat MERT experiments two more times

with different random starting points. Table 8.4 shows the outcome of three different

MERT runs. Test scores are averaged and the standard deviation is shown in brackets.

This table shows that the scores are relatively stable across different optimizations, as

the standard deviations are quite small. METEOR changes the most between different



8.2. Optimising Translation Models 157

MetricsHH
HHH

HObj.Func. BLEU LR-HB4 LR-KB4 TER METEOR

BLEU 31.1 (0.0) 32.1 (0.0) 41.0 (0.1) 60.7 (0.1) 55.5 (0.3)

LRHB4 31.1 (0.2) 32.2 (0.1) 41.3 (0.1) 60.6 (0.2) 55.7 (0.2)

LRKB4 31.0 (0.2) 32.2 (0.2) 41.2 (0.2) 61.0 (0.5) 55.8 (0.4)

Table 8.4: Average results and standard deviation (in brackets) of three different MERT

runs for different objective functions.

MERT runs, and has a standard deviation of 0.4 percentage points. These results do

not contradict the initial results reported in Table 8.3. When using the LRscore as an

objective function, the other metrics’ scores are not depressed. The best scores are now

shared between the LRHB4 and the LRKB4 metrics.

MetricsHHH
HHHObj.Func. BLEU LR-HB4 LR-KB4 TER METEOR

BLEU 32.2 33.2 41.9 60.4 55.9
LRHB4 31.9 32.7 41.7 60.9 55.6

LRKB4 32.1 33.2 42.0 60.7 55.4

Table 8.5: Results for different objective functions with the addition of a large 5-gram

language model.

The results in this chapter have been extracted from models using three trigram

language models. Although these LM models improve local orderings, it is not antic-

ipated that stronger language models change the findings of the experiment. Table 8.5

shows the results of an additional experiment where the models were trained and tested

using a more powerful 5-gram language model as well as to the three trigram language

models. We can see that all the scores improve in comparison to Table 8.4. The im-

portant result here is that there is still no notable drop in the BLEU score performance

when training the model with the LRscore.

To better understand the impact of the different objective functions, Table 8.6

shows the translation model and reordering model weights that resulted from the MERT

experiments shown in Table 8.3. When training the model with different objective

functions, the only notable difference in the translation model weights is with the

phrase penalty weight, where the LRscore leads to a much higher phrase penalty. A

larger phrase penalty means that the model prefers translations which are composed
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Translation Model Weights

Obj.Func. p(f|e) lex(f|e) p(e|f) lex(e|f) ph.penalty w.penalty

BLEU 0.027 0.062 0.061 0.029 0.035 -0.231

LR-HB4 0.043 0.056 0.041 0.015 0.085 -0.150

LR-KB4 0.040 0.063 0.056 0.024 0.097 -0.195

Reordering Model Weights

Obj.Func. monof swapf discontf monob swapb discontb dist. cost

BLEU 0.006 0.012 0.049 0.189 0.085 0.023 0.104

LR-HB4 0.017 0.045 0.002 0.316 0.041 0.070 0.038

LR-KB4 0.022 0.047 0.023 0.213 0.040 0.046 0.048

Table 8.6: The weights of the models when training with different objective functions.

Obj. Funcs Prefer LR Prefer BLEU Don’t Know Total

LR-KB4 vs. BLEU 96 (53.3%) 79 (43.9%) 5 180

LR-HB4 vs. BLEU 93 (51.7%) 79 (43.9%) 8 180

Total LR vs. BLEU 189 (52.5%) 158 (43.9%) 13 360

Table 8.7: The number of times human judges preferred the output of systems trained

either with the LRscore or with the BLEU score, or were unable to choose.

of a smaller number of longer phrases. The reordering model weights are also quite

mixed. The LRscore prefers the monotone orderings and the swap forward orderings.

The BLEU score prefers the discontinuous forward ordering and the swap backwards

ordering. These differences might not be very important, but the fact that the distortion

cost is considerably lower is interesting. The LRscore trained models thus assign a

lower cost to distortions.

8.2.2.2 Human Evaluation

Although it is interesting to consider the automatic metric scores and the model weights,

any final conclusion on the impact of the metrics on training must use human evalu-

ation of translation quality. We collect human preference judgements on the output

of systems trained using the BLEU score and the LRscore. We thus aim to determine

whether training with the LRscore leads to genuine improvements in translation qual-

ity. Table 8.7 presents the results of our human evaluation experiment. For both the



8.2. Optimising Translation Models 159

LR-KB4 vs. BLEU and the LR-HB4 vs. BLEU scenarios, humans show a greater

preference for the output for systems trained with the LRscore. The difference in the

number of times humans preferred the LRscore (189) vs the BLEU score (158) is quite

large and it seems like reordering information genuinely improves the quality of the

trained translation system.

The sign test can be used to determine whether the difference in preference is sig-

nificant. The null hypothesis is that the probability of a human preferring the LRscore

trained output is the same as that of preferring the BLEU trained output. The one-tailed

alternative hypothesis is that humans prefer the LRscore output. If the null hypothesis

is true, then there is only a probability of 0.048 that 189 out of 347 (189+158) people

will select the LRscore output. We therefore discard the null hypothesis and the human

preference for the output of the LRscore trained system is significant to the 95% level.

In order to judge how reliable our judgements are we calculate the inter-annotator

agreement. This is given by the Kappa coefficient (K):

K =
P(A)−P(E)

1−P(E)

where P(A) is the proportion of time that the workers agree, and P(E) is the propor-

tion of time that they would agree by chance. Inter-annotator agreement was 64.28%

and the expected agreement is 33.33%. The Kappa coefficient is therefore 0.464 which

is considered to be a moderate level of agreement.

We expect that more substantial gains can be made in the future by using reordering

metrics to train models which have more powerful reordering capabilities. A richer set

of reordering features, and a model capable of longer distance reordering would better

leverage metrics which reward good word orderings. Even though the phrase-based

model struggles to model reordering, when analysing the output sentence, we found

that output from the system trained with the LRscore tended to have better structure.

In Table 8.8 we see a typical example. The word order of the sentence trained with

BLEU is mangled, whereas the LR-KB4 model outputs a very clear translation which

closely matches the reference. It also garners higher reordering and BLEU scores. The

scores shown are calculated with all four references, not only the one reference that is

shown.
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Type Sentence Sm.BLEU dk

Reference silicon valley is still a rich area in the united

states. the average salary in the area was us

$62,400 a year, which was 64% higher than the

american average.

na. na.

LR-KB4 silicon valley is still an affluent area of the

united states, the regional labor with an average

annual salary of 6.24 million us dollars, higher

than the average level of 60 per cent.

34.6 78.2

BLEU silicon valley is still in the united states in the

region in an affluent area of the workforce, the

average annual salary of 6.24 million us dollars,

higher than the average level of 60 per cent

31.4 76.4

Table 8.8: A reference sentence is compared with output from models trained with BLEU

and with the LR-KB4 lrscore.

8.3 Metric Sensitivity to Reordering Conditions

We have just demonstrated the value of the LRscore as an objective function for tuning

the parameters of a translation model. In our final experiments, we demonstrate the

LRscore’s ability to evaluate research on different reordering conditions.

The following experiments vary factors which affect the reordering performance of

the models. Distortion limits, lexicalised reordering models and language models are

all examined. Although we know that these factors affect the word order of the output,

it is not clear exactly what the effect is. Allowing some distortion is desirable, but how

much does it improve translation and how much distortion should we allow? How does

the lexicalised reordering model help translation? Does it encourage more reorderings,

or fewer, but better chosen reorderings? These kinds of questions are very difficult to

answer with current translation metrics. Using the LRscore and its individual score

components, we gain insight into the effect that these conditions have on translation.

The experiments in this chapter are aimed at supporting research into reordering.

As we are not sure of the actual effect of varying reordering conditions, metrics

are not evaluated on their ability to measure a certain effect. Instead we evaluate the

metrics based on their sensitivity to change. We aim to determine if they are able to

detect differences in conditions reliably.
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8.3.1 Experimental Design

The experiments performed in this section use the same experimental design as those

described in the previous section. Please see Section 8.2.1 for details. Additionally,

a small language model was trained on 100,000 lines of text from the English side of

the GALE corpus. The BLEU score is used as our objective function so that results

will be comparable with other work. Additionally, the individual n-gram precisions of

the BLEU metric have been calculated. We report these scores as 1BLEU - 4BLEU.

BLEU1 applies a brevity penalty but 1BLEU does not. When these precision scores are

reported as a sentence level metric they are smoothed, and when they are reported as a

document level metric they are not smoothed.

8.3.1.1 Experimental Conditions

We present experiments which explore the effect of varying the following reordering

conditions:

• Search Restrictions

As described in Section 2.2.2, reordering restrictions on the search for the best

translation hypothesis are necessary in order to make decoding tractable. Al-

though some reordering is undoubtedly desirable, when searching through a vast

number of possible orderings, the number of search errors made by the decoder

could grow. In practice a distortion limit of six is generally considered the best

setting.

• Lexicalised Reordering Model

Many phrase-based translation models apply a lexicalised reordering. This mod-

els the probability that a phrase is monotone, inverted or disjoint with respect to

the preceding and following phrases (see Section 2.2.3 for details). The lexi-

calised reordering model generally improves translation quality as it provides

more information for the decoder, however the effect of this model is limited in

scope to local adjacency decisions.

• Language Model



162 Chapter 8. Experiments with LRscore

Language models are crucial for producing fluent translations. The effect of the

language model on the quality of the output of the translation model is also lo-

cal and limited to the n-gram length of the model. It assigns probabilities to

consecutive segments of the translated sentences. Most MT models rely heavily

on language model probabilities to influence the word order of the target sen-

tence. The problem with relying on the language model is that it incorporates

no knowledge of the source sentence. Over-reliance on the language model can

lead to fluent but meaningless or confusing sentences.

There are other factors which influence word order such as the maximum phrase

length, and the distance-based reordering model, which encodes the monotone as-

sumption inherent in most translation models. However, since these factors are less

important, we have not investigated them.

8.3.1.2 Statistical Significance

The main goal of this experiment is to test the sensitivity of the metrics to incremen-

tal changes. We test for the significance of the differences between two sets of sen-

tence level metric values by using the Wilcoxon signed-rank test (Wilcoxon, 1945).

As described in Section 6.2.2, this test is appropriate when the distribution cannot be

assumed to be normally distributed. Our experimental results are mostly presented at

the document level, but sentence level scores are used for significance testing.

8.3.2 Results

8.3.2.1 More Reordering

The distortion limit in the phrase-based models controls the amount of reordering that

the translation model is allowed to perform. By increasing the distortion limit, we

should initially see an improvement as the model is allowed to discover good sequences

of target phrases. However beyond a certain limit, the model can be overwhelmed by

the possible permutations and is not longer able to distinguish good orderings from

poor ones. We increased the distortion limit from zero (forcing monotone translation)

to twelve to see how this affects the metric scores. The word order of the hypothesis is

guided by the language model and the default distance based reordering model which

penalises reorderings. For this initial experiment, the lexicalised reordering model is

not applied.
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In Table 8.9 we can see the metric scores for translation models with different

distortion limits. The absolute scores are of interest, but we are more concerned with

how these scores change as we increase the amount of reordering. We therefore present

the differences in scores between the adjacent distortion limits in brackets, along with

the significance of their difference.

The baseline metrics BLEU, METEOR and TER seem to give better scores for

translations with larger distortion limits. Allowing reordering to occur is obviously

beneficial, however some metrics, for example METEOR and TER, only show im-

provements over a distortion level of zero when the distortion limit reaches nine. The

three baseline metrics show their best results for the maximum distortion level of 12.

This is interesting because most reordering experiments set the limit to 6. We look

at the permutation distance scores and broken down BLEU scores to gain insight into

what is occurring.

The broken down BLEU scores show that small amounts of reordering, with a dis-

tortion level of three, slightly reduce the scores for all the n-gram BLEU scores. This

is surprising and could be due to the fact that the Chinese-English language pair has a

large proportion of longer distance reorderings (See Chapter 3) which cannot be cov-

ered by the distortion limit of three. Only with a distortion limits of six or more, is the

language model able to find better matches for the longer ngrams 2BLEU, 3BLEU and

4BLEU. The purely lexical metric 1BLEU only seems to benefit with a distortion limit

of nine or more.

Lexical metrics alone do not fully explain the differences between different distor-

tion limits. The Kendall’s tau distances show us that with increased reordering, the

word order of the translation diverges more and more from the word order of the clos-

est reference. It is only with a distortion limit of 12 that the scores improve a bit, even

though they are still lower than when the distortion level is zero. The Hamming dis-

tance, however, shows improved scores for each increase in distortion. It seems that

absolute order improves with more reordering, but not relative order.

There are slightly more correct bi-grams, tri-grams and 4-grams with larger amounts

of reordering. The language model allows the translation model to find better local re-

orderings. However, this is offset by the overall increase in error in longer distance

reorderings.

Combining lexical and reordering metrics into one score here seems less informa-

tive than looking at them separately. LRHB4 largely reflects the BLEU score perfor-

mance and LRKB4 cancels the increases in BLEU with decreases in the Kendall tau’s
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dl0 dl3 dl6 dl9 dl12 Ref.s

Hamming 81.8 78.9 65.2 58.5 59.4 41.9

Kendall 91.2 89.6 83.1 79.3 79.3 67.8

Table 8.10: The amount of reordering: distances calculated by comparing the word

order in the translations and references to the monotone. Values closer to 100 are

closer to monotone.

distance metric. The LRscore was designed so that the individual components of the

score would be easy to examine.

Apart from judging the quality of the word order in the translations, we can also

look at the quantity of reordering in the translations and indeed the references. We do

this by calculating the distance to the monotone, and by doing this, we gain insight

into the nature of the effect of the different test conditions on the translations.

In Table 8.10 we can see that the reordering metrics reflect the fact that with larger

distortion limits, more reordering is performed as the score drops and the translations

get further and further away from the monotone. This trend reverses at a distortion limit

of 12, where the scores increases again slightly. The translations are not completely

monotone with a distortion level of zero due to reorderings within phrase pairs and

possible automatic word alignment effects. What is interesting to note here is that

even though translations are far from monotone, they are still much closer to monotone

than the reference. This means that we not only have to increase the quality of the

reorderings to match human translations, but we have to increase their quantity. This

insight is not available with the other translation metrics.

8.3.2.2 More Informed Reordering

Much research in reordering involves proposing better models of reordering. In this

section we present an experiment where we apply an additional reordering model to

the experiment in the previous section. The additional lexicalised reordering model

provides adjacent phrase ordering information during the search for the best hypothe-

sis. Typically applying lexicalised reordering models improves the translation quality,

however, the effect of the lexicalised reordering model has usually been measured by

indirect measures of word order performance, such as the BLEU score.

We argue that research in reordering requires explicit measures of success. Here

we show that our permutation distance metrics are more sensitive and more reliable at
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detecting the difference in word order performance than the MT metrics. We also show

that part of the reason that there is better reordering, is that less incorrect reordering is

occurring.
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Table 8.11 shows the metric scores for different distortion limits where we have

applied a lexicalised reordering model. The important information in this table is how

these results compare to the case without the lexicalised reordering model, shown in

Table 8.9. To highlight the comparison, the differences between the scores in this ta-

ble with lexicalised reordering and without lexicalised reordering, from Table 8.11,

are shown in brackets. A positive score indicates an improvement in translations with

the addition of the lexicalised reordering model. We also include the statistical signifi-

cance of the difference over sentence level scores between the models with and without

lexicalised reordering.

We can see that the addition of lexicalised reordering generally improves the qual-

ity of translations as judged by the metrics. The fact that scores go down slightly for

the case of no distortion could be due to the fact that the lexicalised reordering model is

causing non-optimal phrase pairs to be selected to try to fit the monotone ordering. For

the case of the distortion limit of three, there is generally an improvement in scores,

but it is not very significant. All metrics show very significant increases in scores with

lexicalised reordering for the distortion limit of six, although it seems that absolute

word order has deteriorated as measured by the Hamming distance. This amount of

reordering seems to allow the model to make good use the ordering information from

the reordering model. When the distortion limit reaches nine and twelve, the reorder-

ing metrics and the higher order n-gram metrics are the only metrics which are very

sensitive to the effect of the reordering model. Overall the LRscores are slightly more

sensitive to the effect of the reordering model across all distortion limits.

In Figure 8.1 we see a breakdown of the differences in scores between the lexi-

calised reordering and the non-lexicalised reordering scores for a distortion of level 6.

These histograms group sentences into 20 groups according to their assigned scores.

Firstly, it is interesting to see the distribution of scores assigned to the Chinese-English

translations. But more relevant to this experiment, one can see the change in distribu-

tion with the addition of the lexicalised reordering metric. With lexicalised reordering,

more sentences have higher scores for all metrics.

We would like to know whether the amount of reordering has changed. Table 8.12

shows the difference in word order between the translation with the reordering model

and the monotone. We show the difference in amount of reordering in brackets for the

case without the reordering model. Many differences are positive which means that

less reordering is occurring. We would expect that when we introduce the reordering

model, the translation model learns that it can place more trust in reorderings, and
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Figure 8.1: Comparing the distribution of scores for the baseline metrics, with and

without the lexicalised reordering model, where the distortion level is 6.
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dl0 dl3 dl6 dl9 dl12 Ref.s

Hamming 81.4 (-0.4) 79.5 (0.6) 68.8 (3.6) 61.9 (3.4) 53.0 (-6.4) 41.9

Kendall 90.2 (-1.0) 89.4 (-0.2) 84.9 (1.8) 80.3 (1.0) 75.8 (-3.5) 67.8

Table 8.12: The amount of reordering occurring in output from models with lexicalised

reordering. 100 means monotone ordering in the output. The differences in amounts of

reordering with and without lexicalised reordering (see Table 8.10) are shown in brack-

ets. A positive number indicates that the addition of the reordering model decreased

the total amount of reordering in the translations, i.e. that the sentences with lexicalised

reordering are closer to the monotone.

therefore and perform more of them. Instead, it is actually performing less reordering.

However, when the distortion limit is zero or 12, then more reordering does occur.

As we can see in this section, BLEU, METEOR and TER are sensitive to both

more reordering and more informed reordering. However, they do not reveal what

causes the difference between two test conditions. Using reordering metrics, combined

with lexical metrics, one can see exactly what changes in the output. We can detect

improvements in word order. We can detect increases or decreases in the amount of

reordering. We can also see if lexical choice improves. Using this method of analysis,

we can provide strong support for claims that, for example, a new reordering model is

improving the word order of translations.

8.3.2.3 Language Modelling

The language model is one of the largest contributors to the word order of a translation.

We investigate what the effect is of applying language models of different quality and

whether metrics are able to measure this.

In Table 8.13 we see the results of two systems where one system applies a very

small trigram language model, and the other applies three large trigram language mod-

els, the ones used by the preceding experiments. Both models use a distortion limit of

six and a lexicalised reordering model.

The baseline metrics improve considerably with higher quality language models.

The greatest increase of 4.2 is reported for the BLEU score. The reordering metrics

are largely unaffected by the large improvement in the language model. Kendalls tau

improves by 0.6 but the Hamming distance even goes down slightly by -0.6. This is

explained by the fact that they are not sensitive to the improved lexical choice that
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Small LM Large LM Difference

BLEU 23.9 28.1 (4.2) ***

METEOR 51.9 55.0 (3.1) ***

TER 34.9 38.5 (3.6) ***

1BLEU 68.1 70.8 (2.7) ***

2BLEU 33.7 38.1 (4.4) ***

3BLEU 17.1 21.1 (4.0) ***

4BLEU 9.0 11.8 (2.8) ***

Hamming 71.3 70.7 (-0.6) ***

Kendall 72.2 72.8 (0.6) ***

LR-HB4 23.3 26.5 (3.2) ***

LR-KB4 34.4 37.0 (2.6) ***

Table 8.13: The document level metric scores for systems with different sized language

models.

the language model provides. The language model also, however, affects local word

orderings. The Kendalls tau could benefit slightly from this because it is sensitive to

relative word order, but the Hamming distance sees no benefit in absolute word order

with the larger language models.

The effect of a larger language model on the broken down BLEU scores is more

revealing. We can see that the language model improves the longer n-gram scores the

most. We can see that 2BLEU gets the greatest increase of 4.4 points. Even 4BLEU

improves more than 1BLEU. This shows us that the impact of the language model

does not just improve lexical choice, which would have been demonstrated by a larger

1BLEU increase. The most important effect of the language model is to improve local

ordering.

Local orderings are important to the quality of translation, however, they cannot

adequately account for the large number of longer distance reorderings seen in the

Chinese-English language pair. The MT metrics, and BLEU in particular, are most

sensitive to improvements in local reorderings. The only way to get an idea of how the

reordering has changed in the sentence as a whole is to use the reordering metrics.
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8.3.3 Related Work

There have been very few studies which isolate the impact of design decisions on trans-

lation quality. Zollmann et al. (2008) perform a study where they vary the distortion

limit of a phrase-based model and compare it to the hierarchical translation model.

This work shows the persistent, although small, advantage of SCFG approaches. The

problem with this study is that it assumes that the BLEU score is able to measure dif-

ferences in reordering. In our experiments, we apply reordering metrics and a combi-

nation of baseline metrics (BLEU, METEOR and TER) to determine how appropriate

the metrics are for this kind of research. We also examine the quantity of distortion, by

comparing word order to the monotone. In this way we can see how much reordering

is occurring and gain a deeper insight into the effect of the changes.

8.4 Summary

In this chapter we explore the usefulness of the LRscore metric. First we examine the

effect of using the LRscore as an objective function while training translation model

parameters. As a trained model is likely to exhibit the properties that the metric re-

wards, the goal was to improve the reordering behaviour of the model. We show that

when training a phrase-based translation model with the LRscore, the model retains its

performance as measured by the baseline metrics, in particular the BLEU score.

In order to determine whether the LRscore leads to real improvements in transla-

tion quality, we designed an experiment using human judges. We show that humans

prefer the output of models trained with the LRscore, and thus confirm the value of the

permutation distance metrics.

These experiments use the MOSES phrase-based decoder which is very limited in

its ability to model long distance reordering. Apart from the restrictions on search, it

also only applies local models of ordering. More powerful translation models, such

as syntax-based models, which allow for longer distance reordering and have more

structured models to guide their word order choice, would benefit even more from

using the LRscore while tuning.

Tuning translation models is important, but researchers also need metrics which are

sensitive to changes in reordering conditions for evaluating their research. We present

experiments which demonstrate that reordering metrics are superior to current metrics

both because of their sensitivity to changes in reordering conditions and because of the
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insights reordering metrics can provide.

BLEU is heavily influenced by local word orderings, and it is thus sensitive to

factors such as language models. However, it has little ability to capture long distance

improvements in reordering. Our reordering metrics can measure both global and local

reorderings and they can also measure either absolute order or relative word orderings.

They can also be used to measure how much reordering is occurring which leads to

new insight into the effect of lexicalised reordering models and language models.

It is important to note, however, that reordering metrics are not as sensitive as the

broken down BLEU metrics to small, local reordering improvements. These improve-

ments might be important for readability, but user comprehension is unlikely to be as

affected by local reorderings as by larger reorderings which affect the structure of the

sentence. We therefore conclude that the best approach is to apply the LRscore and to

examine the individual lexical and a reordering scores that it provides. Looking at the

breakdown of the score components will allow researchers to better judge the impact

of a change to reordering conditions.

In the next and final chapter, we review the contributions of this thesis and we

discuss future directions for research.





Chapter 9

Conclusion and Future Work

In this thesis we have introduced methods and metrics for quantitatively analysing

reordering in parallel corpora.

The main claims defended in this thesis are:

• We have shown that reordering is an important factor in determining the perfor-

mance of translation systems. We performed a regression analysis of translation

systems over 110 language pairs which showed that the amount of reordering

in a parallel corpus affects translation performance more than morphological

complexity and language similarity. This wide ranging analysis provides strong

evidence for the importance of research into reordering.

• We have shown that current machine translation metrics do not adequately mea-

sure reordering performance. We have described the limitations of the approaches

that three commonly used shallow metrics take to measuring the quality of word

order. Using examples, we demonstrate their failure to measure the amount of

difference in word order between references and translations. Finally, we per-

form an experiment where metric scores are correlated with measures of lexical

and reordering quality. Metric scores were very strongly correlated with lexical

measures, and only slightly correlated with measures of reordering quality. This

shows that current machine translation metrics are primarily responding to dif-

ferences in the words used in translation, and that they are largely insensitive to

word order quality.

• A large part of this thesis is dedicated to demonstrating that permutation distance

metrics capture the quality of word order better than current machine translation

metrics. We start by describing the properties of the distance metrics and their

175
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advantages with respect to the current metrics. Of primary importance is the fact

that they measure the number of words which are out of order. We design a novel

human evaluation which isolates the effect of word order differences on fluency

and comprehension judgements. We show that permutation distance metrics cor-

relate more strongly with these judgements than the current machine translation

metrics, even under conditions which favour the current machine translation met-

rics (perfect lexical overlap). We also show that the simple combined metric,

the LRscore, correlates better with human preference judgements, of the overall

quality of sentences. Finally, we show that the LRscore improves the quality

of translation models when used as the objective function while training model

parameters. Humans prefer the output of models trained using the LRscore over

models trained using the BLEU score.

This thesis has contributed to our understanding of the challenges involved in mod-

elling reordering. We have highlighted how poorly our current state-of-the-art models

are performing and we have also shown that there is a great range of different distri-

butions of reorderings amongst European languages and Chinese-English and Arabic-

English. These findings allow researchers to select appropriate language pairs in order

to test their theories, and to choose reasonable model parameters for those languages.

If, for instance, someone makes a claim about improving long distance reordering, a

language with a large number long distance reorderings can be selected.

The most significant contribution that this thesis makes to the field of statistical

machine translation, however, is that it provides tools for measuring reordering per-

formance. The permutation distance metrics, in particular the Kendall’s tau distance,

provide reliable, accurate measures of the amount of relative disorder between the

translation and the reference sentences. Both small and large word order differences

are detected and reported. These metrics have been rigorously evaluated and have

shown to correlate well with human judgements of word order quality, and when com-

bined with lexical metrics, with human judgements of overall quality. The code for

these metrics is available as a standalone metric which has been distributed to vari-

ous researchers on request. The code which incorporates the distance metrics and the

LRscore is included as part of the open-source code base of the MOSES project and

this promotes the diffusion and impact of the research described in this thesis. The code

for the metric, independent of the MOSES optimisation module, is also available 1.

1see http://homepages.inf.ed.ac.uk/abmayne/
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9.1 Contributions

A list of the major contributions of the thesis follows:

Methods for analysing corpora.
By defining a reordering as a pair of inverted blocks over the word alignment

grid, as extracted by our reordering extraction algorithm, we are able to collect

useful statistics over parallel sentences and corpora.

Comparison of human, phrase-based and hierarchical reorderings
We analyse the output of two different state-of-the-art translation models and

show that neither of them are capable of capturing the great majority of the

reorderings that exist in the reference sentences.

Analysis of reordering and its impact across many language pairs.
We show the great variety of reordering characteristics in different language

pairs, highlighting languages that are particularly problematic, such as German-

English and Chinese-English. Common parameter settings in state-of-the-art

translation models have been shown to be inadequate, such as the distortion limit

of 6 for the phrase-based model. We also demonstrate that the amount of reorder-

ing is the biggest factor influencing the performance of translation models.

Creation of a human evaluation which isolates reordering performance.
We create a human evaluation task which specifically isolates word order by

artificially permuting a reference sentence with different amounts of disorder.

This allows us to evaluate metrics on their correlation with human judgements

of word order quality, something which no other human evaluation has been

demonstrated to achieve.

Demonstrating that humans are sensitive to different amounts of reordering.
We show that humans can reliably distinguish sentences with different levels of

reordering. This provides further confirmation that metrics should also measure

this.

Definition of Permutation Distance Metrics for evaluating reordering.
We define novel reordering metrics based on permutation distance metrics which

use word alignments to measure the quality of the word order in isolation from

the actual words used in the translation.
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Showing that reordering metrics correlate with human judgements of reordering.
Permutation distance metrics are strongly correlated with human judgements of

word order quality.

Showing that machine translation metrics are largely insensitive to reordering.
We show that current machine translation metrics primarily measure the success

of word choice and that they are largely insensitive to word order differences.

Definition of LRscore.
We present a complete machine translation metric which combines lexical and

reordering metrics. We show that the LRscore correlates better with human pref-

erence judgements than baseline metrics.

Integration of the LRscore into the training of the translation model parameters.

When using the LRscore as the objective function for tuning the translation

model parameters, translation quality improves. This is shown by the fact that

humans prefer the output of models trained with the LRscore, over the output

from the model trained with the BLEU score.

9.2 Discussion

Although our metrics are clearly better at measuring reordering performance than pre-

vious machine translation metrics, an obvious concern is the fact that two sets of word

alignments are required: one for the source-reference sentence, and one for the source-

translation. This need not be a major obstacle, however. Gold standard alignments

are scarce, but if accuracy is paramount, a test set with manually annotated alignments

could be selected. Also, the translation systems can output the word alignments that

were used to generate the translation. This approach was followed in Chapter 3. Un-

fortunately gold standard alignments are often not available. Alignments can also be

automatically generated using the alignment model that aligns the training data. This

approach was followed in Chapter 4 where 110 translation models were analysed.

Apart from alignments, another issue to consider with regard to our method, is that

we rely upon the assumption that word orderings should be close to reference. This

is a strong assumption and might hold true for target languages with strict constraints

on word order, but for languages with freer word order, such as Russian, it is not clear



9.3. Future Directions 179

that we will be successful. Essentially, we are aiming to capture the grammaticality

and even more importantly, the accuracy of the translation, and word order is only a

small part of this equation. It seems that, certainly for Chinese-English, a large part of

the reordering problem exists at the clause level. Differences in ordering at this level

lead to problems understanding how the parts of the sentence fit together.

There is some scope to believe that if the ordering of clauses in the translation was

similar to the ordering in the reference, that these sentences are more likely be more

comprehensible. Word order is not everything, however, and even if the order is cor-

rect, the linking words might not be. A more sophisticated metric, which could analyse

the relationships between clauses, would arguably be a better reflection of the quality

of the translation. Metrics such as textual entailment metrics (Padó et al., 2009a),

which measures argument structure overlap, have already been proposed. Unfortu-

nately, textual entailment metrics are slow and complex, sometimes more complex

than the translation models themselves. Our approach is simple and efficient and will

therefore be useful even in the event of a more knowledgeable metric becoming widely

adopted.

I will make one final comment on the relative merits of different shallow metrics.

The BLEU score is surprisingly good at measuring small, incremental improvements in

the ordering capabilities of a translation system. If it matches even a few more n-grams

between source and target sentences in a document, it will report improved scores. The

problem with BLEU is that it is insensitive to large differences in word order, and it is

therefore inappropriate to use it to compare systems which are very different. This

is the same conclusion that was reached by Callison-Burch et al. (2006b). So if you

wished to improve the lexicalised reordering model of the phrase-based paradigm, then

perhaps the BLEU score is adequate. However, if you are proposing a new translation

model, which, for example, solves the long distance ordering of the verb final phe-

nomenon of German, BLEU would not be the best choice of metric. Under these

circumstances, you would need to use the LRscore.

9.3 Future Directions

Our work on reordering is clearly an improvement on previous approaches. However,

there is still more work to be done. A major drawback of the permutation distance

metrics is that they rely upon a simplified representation of the alignment function.

We could work around some of the assumptions if we adapt the metrics to partially
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ranked data (Critchlow, 1985; Fagin et al., 2003), which are able to represent null and

many-one alignments. However, metrics for partially ranked data require unintuitive

extensions to handle ties. We could also abandon permutations and simply compare the

aligned target word indexes using rank correlations, which would measure the strength

of association between the two arrays. This approach would still be incapable of han-

dling many-one alignments.

Developing distance metrics directly over the alignment grid would avoid this prob-

lem. Measuring the similarity of graphs is important for machine learning applications

in diverse areas such as molecular biology, telecommunications, and social network

analysis. This algorithmic problem has therefore received extensive attention. Graph

kernels have been proposed as a theoretically sound and promising approach to the

problem of graph comparison (Borgwardt, 2007), and can be efficient for graphs which

are not excessively large, such as those found in sentence alignments.

Apart from improvements to the reordering metrics themselves, another important

avenue of research is that of applying these metrics to translation models which actu-

ally model long distance reordering in an efficient manner. The phrase-based model

was used for much of the research in this thesis, and the benefit of applying the re-

ordering metric for training and evaluation of this model is limited to potential that the

phrase-based model has for improvement. A syntax-based model which incorporates

a strong model of reordering would potentially benefit more from having its weights

trained using a reordering metric.

A large body of research into the problem of reordering has been evaluated using

metrics which have been shown to be insensitive to the quality of word order. This

thesis provides metrics which allow researchers to reliably evaluate their work. We

believe that these metrics will be the key to driving significant improvements in the

field.
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This appendix describes the details of the translation and alignment models used

for experiments in the thesis.

A.1 MOSES

The MOSES translation system is one of the most widely used open-source machine

translation projects. It has an extensive homepage1. This thesis used the phrase-based

model which was initially the only decoder included in the project. It can be down-

loaded from the Sourceforge code repository2. In the following sections we describe

the implementation details of MOSES for the experimental sections of the thesis. Any

differences from these settings are clearly discussed in the experimental design sec-

tions of the chapters containing translation experiments. No factors were used with

Moses in this thesis.

Distortion Limit 6

Drop Unknown Yes

NBest list 100

Alignment symmetrization grow-diag-final

Lexicalised Reordering msd-bidirectional-fe

Table A.1: MOSES settings

We extracted phrases as in Koehn et al. (2003) by running GIZA++ in both di-

rections and merging alignments with the grow-diag-final heuristic. This instance of

Moses contained 14 real-valued features:

• 1 language model feature

• 4 translation model features as described in Koehn et al. (2007)

• Phrase Penalty

• Word Penalty

• 6 lexicalised reordering features as described in Koehn et al. (2005)

• Distortion penalty

1http://www.statmt.org/moses/
2http://sourceforge.net/projects/mosesdecoder/
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All settings of Moses are used irrespective of the language pair involved. The

only changes which are not specified in the experimental design sections, are the exact

versions of MOSES used in the experiments.

Chapter Version

Chapter 3 2008-02-20

Chapter 4 2007-12-04

Chapter 6 2008-09-23

Chapter 8 2009-11-25

Table A.2: MOSES versions used in different experiments

In Table A.2 we can see the dates that the MOSES model was downloaded from

the source control system, corresponding to different versions of the source code. For

the MERT experiments in Chapter 8, we developed a novel version of the MERT code,

in order to use the LRscore as the objective function. This is freely availables in the

Sourceforge repository in the “mert-mtm5” branch.

A.2 HIERO

For the grammmar-based model experiments in Chapter 3, the Hiero hierarchical phrase-

based decoder was used. The code was kindly provided by David Chiang.

Version 2006-05-02 Version 1.0

Minimum hole length 2

Maximum rule length 5

Maximum phrase length 10

Number unaligned words at edges 0

Beam threshold 15

Stack limit for chart pruning 30

Drop Unknown Yes

NBest list 100

Table A.3: HIERO settings

This instance of Hiero contained 6 real-valued features:

• 1 language model feature
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• 4 translation model features as described in Chiang (2005)

• Phrase Penalty

A.3 Berkeley Aligner

For some experiments, we use the Berkeley Aligner (Liang et al., 2006) to word align

parallel sentence pairs, instead of GIZA++ aligner. The Berkeley aligner has been

shown to be more robust than using GIZA++ in situations where there are long sen-

tences and sparse word counts (Koehn et al., 2008). This software can be obtained

from Google code3. In Chapter 6 and Chapter 7, we used version 2 and in Chapter 8,

we used version 1.1. In both cases, the posterior threshold set at 0.5.

3http://code.google.com/p/berkeleyaligner/
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This appendix includes the experimental instructions and an example of the mate-

rials that were shown to judges in the experiments involving humans.

B.1 Reproduced Reorderings: Section 3.3.5

In Figure B.1 we can see the instructions given to human judges for the experiment

described in Section 3.3.5.

You will be presented with a reference translation and a machine translation of the same

unseen source sentence. They will each have two sequences of words, show with different

underline styles. Please compare the ordering of these two sequences of words between

the reference and the machine translation, and judge whether their order with respect to

each other in the translation is “Correct” or “Incorrect”. Please select “Not Applicable”

only when the translated words are so different from the reference that their ordering is

irrelevant.

Figure B.1: The instructions given for manual evaluation.

Figure B.2 shows an example of a test case presented to the workers. The spans of

the reordering are marked with different underline styles. In this example the ordering

of the underlined phrases in the reference and the translation are different, showing

that in this case the reordering was not reproduced.

Reference
corporations which drain contamination

:
in

:::::
huai

::::::
river

:::::::::
drainage

::::
area

:::::::::::
tributaries must im-

plement a treatment deadline, and by the end of 1997, at the latest, stop draining contam-

ination into tributaries.

Translation
for all

:
to

::::
the

:::::
huai

:::::
river

::::::
basin

:::::
river pollution enterprises, to conduct a management at the

end of 1997, the latest organisation to stop pollution.

Figure B.2: An example test case from the manual evaluation of word order task. The

ordering under consideration is marked with double and wavy underlines.
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B.2 Human Sensitivity to Reordering: Section 6.3

In Figure B.3 we can see the first page of instructions given to human judges for the

experiment described in Section 6.3. Figure B.5 describes the experimental proceedure

for the human judges. Figure B.4 shows the examples given to human judges to clarify

the instructions. Figure B.6 shows an example of a test case presented to the workers.

Thanks for taking part in this experiment!

Please only participate if you consider your level of English to be fluent.

Please read through the instructions below before starting.

In this experiment you are asked to judge how fluent and how comprehensible sentences

are on a scale of 1 to 7.

Fluency refers to whether the sentences are grammatical and well-formed in English.

• If the sentence is grammatical, then you should rate the sentence high in terms of

fluency.

• If the sentences are something like word salad, then you should give the sentence a

low number.

Comprehension refers to how understandable the sentences are.

• If the sentence is almost impossible to understand, then you should give it a low

number.

• If the sentence is readily understandable, coherent and doesn’t require any effort on

the reader’s part, then you should give it a high number.

• If a sentence is ungrammatical, but with effort you can make out what it means,

then you should give it a medium to high score.

Try to use a wide range of numbers and to distinguish as many degrees of acceptability as

possible.

Figure B.3: Basic instructions given for manual evaluation.
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Suppose you were given the following sentence:

He had achieved complete victory in nine games with Chinese Go players before .

Then, you may rate it high in terms of fluency (e.g., 6 or 7) as the sentence is well-formed

and grammatical. It would be also given a high comprehension score (e.g., 6 or 7) as it

makes sense.

Now, take the following example:

This war , in including from Germany . those European countries from a total died
of four million people

This sentence is much harder to read than the previous example. It contains grammati-

cal errors and the individual words do not make sense together. So you would rate this

sentence low in terms of fluency (e.g., 1 or 2). This sentence also lacks coherence. It is

very difficult to figure out how the different parts of the sentence fit together. Overall the

sentence is not comprehensible and would receive a low score (e.g., 1 or 2).

Awarding ceremony the was at The Philippines Cultural Center solemnly held .

This sentence is not grammatical but its meaning is reasonalby clear. This would get a

low fluency score (e.g., 1 or 2), and a higher comprehension score (e.g., 5 or 6).

Figure B.4: Examples given for instructions in manual evaluation.



B.2. Human Sensitivity to Reordering: Section 6.3 189

Procedure
When you start the experiment below you will be asked to enter your personal details.

Next, you will be presented with 40 sentences to evaluate in the manner described above.

Once you have completed your rating, click the button at the bottom of that page to

advance to the next sentence.

Things to remember:

• Full-screen your web browser before starting the experiment.

• Keep this page open so that you can refer back to it if you are at all unsure of how

to rate a sentence.

• Higher numbers represent a positive opinion of the sentence and lower numbers a

negative one.

• Do not spend too long analysing the sentences; you should be able to rate them

once you have read them for the first time.

• There is no right or wrong answer, so use your own judgement when rating each

sentence.

Figure B.5: Proceedure given for manual evaluation.

This is the the Holland Trade Promotion Association

has established in China first representative office

that.

How fluent is the sentence?

1 2 3 4 5 6 7

How comprehensible is the sentence?

1 2 3 4 5 6 7

Figure B.6: Example of test case for manual evaluation.
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B.3 Human Preference for LRscore output: Section 8.2.1.6

In Figure B.7 we can see a screen shot of the instructions. Figure B.8 shows an example

of a test case presented to the workers.

Figure B.7: The instructions shown to workers on Amazon’s Mechanical Turk.

Figure B.8: An example of the judgements solicited from the workers on Amazon’s

Mechanical Turk.
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This appendix presents the values of the characteristics of different language pairs

for the Europarl experiments reported with graphics in Chapter 4.

el it pt es fr en sv da nl de fi

el - 178 167 167 157 162 183 183 188 188 0

it 178 - 773 788 803 247 254 263 260 265 0

pt 167 773 - 874 709 240 241 250 253 247 0

es 167 788 874 - 734 240 241 250 258 253 0

fr 157 803 709 734 - 236 242 241 244 244 0

en 162 247 240 240 236 - 591 593 608 578 0

sv 183 254 241 241 242 591 - 830 648 631 0

da 183 263 250 250 241 593 830 - 663 707 0

nl 188 260 253 258 244 608 648 663 - 838 0

de 188 265 247 253 244 578 631 707 838 - 0

fi 0 0 0 0 0 0 0 0 0 0 -

Table C.1: The language similarity for Europarl matrix of languages.The rows represent

the source language and the columns the target language.
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