

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429736532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heuristic Methods for Solving Two

Discrete Optimization Problems

José Xavier Cabezas Garćıa

Doctor of Philosophy

University of Edinburgh

2018

Declaration

I declare that this thesis was composed by myself and that the work contained therein is my
own, except where explicitly stated otherwise in the text.

(José Xavier Cabezas Garćıa)

Acknowledgements

Firstly I thank God for all the good things that I have received during all the years of my life.
I would like to say thanks to each of the people and institutions that have contributed to this
achievement. I thank my supervisor Sergio Garćıa Quiles, who has helped me during all these
years either in my research or in my daily concerns. He also raised my interest in location
problems, which is currently one of the most important parts of my work. I wish to say thank
you to my second supervisor Joerg Kalcsics with whom, alongside Sergio, we have shared several
conferences and seminars.

My very special thanks to Julian Hall that without his help, support and encouragement,
my arrival and adaptation to Scotland could have been much more difficult. The Hibs is my
Scottish football team thanks to him. I thank Jacek Gondzio, head of our research group. I am
particularly grateful for his support for the several academic activities that we have attempted
to make, trying to contribute to the linear programming field. Thanks to Kerem Akartunali my
external examiner for his valuable advices. I cannot neglect also to mention Gill Law for her
invaluable help to me and other PhD students, she was always ready to help.

I am very thankful to the Government of Ecuador whom, through Senescyt (Secretaŕıa
Nacional de Ciencia y Tecnoloǵıa) has supported my research with a generous scholarship.
Furthermore, I wish to say thanks to ESPOL (Escuela Superior Politéctica del Litoral), my
alma mater, that has also supported these years of work by a economic aid that permitted my
family to join me in this journey.

I also want to thank all my friends that I have made during these years for the unforgettable
moments that we spent together and that will be in my memory all my life: Wenyi, Minerva,
Mook, Ivet, Basak, Marie, Marion, Jakub, Tom, Lukas, Rodrigo, Dominik, Nicolas, Robert and
many others.

I have no words to say thanks to the people of this city. They are funny, kind and open
minded. Edinburgh is such an organized city and culture is breathed everywhere. I am par-
ticũlarly thankful to my source of energy and well-being, Lian Pu, the best chinese restaurant
in the city, highly recommended! Thanks Edinburgh, thanks Scotland.

Thanks to my family, here and in Guayaquil-Ecuador, for their continued unconditional
support.

Thanks Daniela and Xavier Eduardo, my lovely kids, for behaving so well all these years.
This has been a great experience for them. And thanks Lena for allowing me to follow my
dreams with you. I love you.

Xavier Cabezas
Edinburgh, 2018

To my beloved family

Abstract

In this thesis we study two discrete optimization problems: Traffic Light Synchronization and
Location with Customers Orderings. A widely used approach to solve the synchronization of
traffic lights on transport networks is the maximization of the time during which cars start
at one end of a street and can go to the other without stopping for a red light (bandwidth
maximization). The mixed integer linear model found in the literature, named MAXBAND,
can be solved by optimization solvers only for small instances. In this manuscript we review in
detail all the constraints of the original linear model, including those that describe all the cyclic
routes in the graph, and we generalize some bounds for integer variables which so far had been
presented only for problems that do not consider cycles. Furthermore, we summarized the first
systematic algorithm to solve a simpler version of the problem on a single street. We also propose
a solution algorithm that uses Tabu Search and Variable Neighbourhood Search and we carry
out a computational study. In addition we propose a linear formulation for the shortest path
problem with traffic lights constraints (SPTL). On the other hand, the simple plant location
problem with order (SPLPO) is a variant of the simple plant location problem (SPLP) where
the customers have preferences on the facilities which will serve them. In particular, customers
define their preferences by ranking each of the potential facilities. Even though the SPLP has
been widely studied in the literature, the SPLPO has been studied much less and the size of
the instances that can be solved is very limited. In this manuscript, we propose a heuristic
that uses a Lagrangean relaxation output as a starting point of a semi-Lagrangean relaxation
algorithm to find good feasible solutions (often the optimal solution). We also carry out a
computational study to illustrate the good performance of our method. Last, we introduce the
partial and stochastic versions of SPLPO and apply the Lagrangean algorithm proposed for the
deterministic case to then show examples and results.

5

Lay Summary

This thesis focuses on two important discrete optimization problems: Traffic Lights Synchro-
nization and The Simple Plant Location with Order. Traffic lights are primarily used in cities
for the purpose of avoiding traffic accidents by controlling the flow of vehicles in motion. This
allows pedestrians to cross the street while cars wait for the duration of a red light. The benefit
of using traffic lights is clear, but its use also leads to problems, such as: Time delay when
moving from one place to another, or increased pollution due to changes in the speeds of the
vehicles. This problem is particularly difficult when studied on a network due to the inclusion
of loops in the possible vehicles movements. The interval time where vehicles can pass through
two corners of a single street without stopping for a traffic light (red time) is called bandwidth
and it is preferable to be as large as possible. However it is not always possible to find a good
bandwidth scheme on a whole network. The current more efficient methods prefer to use another
measure to address the optimization, such as the total delay time of vehicles. In this work, we
study the possibility to solve the bandwidth maximization on networks by a heuristic approach.
We thoroughly study all the involved constraints and we give special attention to those involving
loops.

Another very important issue for some firms in their business activities is to identify an
optimal set of facilities that will be open and located in given possible sites in order to provide
a service and cover the demands of a group of customers. It is possible that customers have
preferences on what current open facilities will serve them. They can either rank the elements
of the whole facilities set or only a subset of it. Furthermore, those preferences can be changed
by the customers due to multiple circumstances, the order given can be considered a random
variable that gives rise to a stochastic model. Clearly, the problem has two decisions to be made
that can be seen as two decision stages: what facility will be open and the distribution of these
to the customers. Studies about location without order have provided us a light about how to
face the customer order case. These bases have allowed us to extend some classical results and
adapt some solution schemes.

6

Contents

Abstract 5

Lay Summary 6

1 Introduction 9

1.1 Two Important Discrete Problems . 9
1.2 Research Questions . 11
1.3 Contributions . 11
1.4 Outline of the Thesis . 11

I Traffic Light Synchronization 13

2 The Traffic Light Synchronization Problem 14

2.1 Introduction to Traffic Lights Synchronization . 14
2.2 Preliminaries . 16
2.3 The MAXBAND Model for a Network . 20

2.3.1 Objective Function . 24
2.3.2 Arterial Constraints . 24
2.3.3 Loop Constraints . 26
2.3.4 Computing Intranode Offset . 27

2.4 Bounds for Integer Variables . 29
2.5 The First Systematic Algorithm for the Arterial Case 31

2.5.1 The Theory . 31
2.5.2 The Algorithm . 34
2.5.3 Examples . 39
2.5.4 Conclusions . 42

2.6 An MILP-Based Heuristic with Tabu Search for MAXBAND 42
2.6.1 Computational Results . 45
2.6.2 Conclusions . 50

3 An MILP model for a Related Problem to TLSP 51

3.1 Introduction . 51
3.1.1 Notation for SPPTL . 52

3.2 The Linear Model for SPPTL . 52
3.3 An Illustrative Example . 54
3.4 Conclusions, Remarks and Future Work . 56

7

II Simple Plant Location Problem with Order 57

4 A Lagrangean Relaxation Algorithm for the SPLPO 58

4.1 Introduction . 58
4.2 Preliminaries . 60

4.2.1 A Review of Lagrangean Relaxation . 60
4.2.2 A Review of Semi-Lagrangean Relaxation 62

4.3 A Lagrangean Relaxation for SPLPO . 63
4.3.1 Subgradient Method for the Lagrangean Dual LDµλ 65

4.4 A Semi-Lagrangean Relaxation for SPLPO . 67
4.4.1 Dual Ascent Method for the Semi-Lagrangean Dual SLDγ 68

4.5 Speeding Up the Search for the Optimal Solution 69
4.6 Computational Results . 70
4.7 Conclusions . 76

5 The Stochastic Simple Plant Location Problem with Partial Order 77

5.1 Introduction . 77
5.2 Preliminaries . 78

5.2.1 Events, Random Variables and Probability 78
5.2.2 Two-Stage Stochastic Program . 79

5.3 Simple Plant Location Problem with Partial Order 80
5.4 A Stochastic Formulation for SPLPPO . 81
5.5 Computational Results for 2S-SPLPPO . 83
5.6 Conclusions . 88

6 Final Conclusions, Remarks and Future Work 89

A Aditional Computational Experiments for 2S-SPLPPO 95

8

Chapter 1

Introduction

We start with a general introduction to this dissertation. We give our motivations and introduce
the problems to be faced. The outline of the whole document is provided as well as the main
contributions.

1.1 Two Important Discrete Problems

The users of a public or private service require a high level of quality and of course they expect
that this has a price commensurate with its benefit. The main challenge for service suppliers
is to create a product that considers all components that define the concept of quality for their
customers, and at the same time be profitable for their interests. However, this is not an easy
task as from the point of view of the consumer the value of a product depends on several
variables; this includes service location (proximity), time of service, quality of the final product.
Furthermore, service providers face problems arising from population growth, changing market
developments or environmental demands, along with the fact that customers often expect service
to improve over time. In this work, we would like to place ourselves within a context of win-win
between suppliers and clients in problems with a strong impact on society and that until now
continue to be challenging for researchers. We want to make this idea our main motivation.

This thesis focuses on two important discrete optimization problems: Traffic Lights Syn-
chronization and The Simple Plant Location with Order. Traffic lights are primarily used in
cities for the purpose of avoiding traffic accidents by controlling the flow of vehicles in motion.
This allows pedestrians to cross the street while cars wait for the duration of a red light. The
benefit of using traffic lights is clear, but its use also leads to problems, such as: Time delay
when moving from one place to another, or increased pollution due to changes in the speeds
of the vehicles. Our interest in this problem comes from the fact that it has been a subject of
interest for several studies since the invention of traffic lights in the late 19th century, especially
since urban traffic increased significantly after Henry Ford unveiled his Model T in 1908. This
problem is particularly difficult when studied on a network due to the inclusion of loops in the
possible vehicles movements. The interval time where vehicles can pass through two corners
of a single street without stopping for a traffic light (red time) is called bandwidth and it is
preferable to be as large as possible. However it is not always possible to find a good bandwidth
scheme on a whole network, at least one that meets the logical requirements of all users of the
transport network, since it is logical to assume that all users always want to go faster using the
most comfortable route. The methodology used to solve this problem must consider this fact.

Another very important issue for some firms in their business activities is to identify an
optimal set of facilities that will be open and located in given possible sites in order to provide

9

a service and cover the demands of a group of customers. It is possible that customers have
preferences on what current open facilities will serve them. They can either rank the elements
of the whole facilities set or only a subset of it. Furthermore, those preferences can be changed
by the customers due to multiple circumstances, the order given can be considered a random
variable that gives rise to a stochastic model. Clearly, the problem has two decisions to be made
that can be seen as two decision stages: what facility will be open and the distribution of these
to the customers. Studies about location without order have provided us a light about how to
face the customer order case. These bases have allowed us to extend some classical results and
adapt some solution schemes.

The following are general definitions of the mentioned problems:

Definition 1 (Traffic Light Synchronization Problem). The Traffic Light Synchronization Prob-
lem (TLSP) consists in the maximization on a network of the time during which cars start at one
end of a street and can go to the other without stopping for a red light (bandwidth maximization).

Definition 2 (Simple Plant Location Problem with Order). The Simple Plant Location Problem
with order (SPLPO) is a variant of the simple plant location problem (SPLP) where the cus-
tomers have preferences on the facilities which will serve them. In particular, customers define
their preferences by ranking each of the potential facilities.

Certainly these combinatorial problems are different in many aspects. Their modelling, for
example, differ since TLSP is based on the intrinsic geometry of the transport networks, whilst
SPLPO is concerned with this aspect only when it takes into account a cost measure of the
distances between customers and suppliers. However, they both have things in common: Both
are studied on a network and can be modelled as a linear integer program.

Our interest is in designing and implementing algorithms that solve both problems for in-
stances that have not been solved so far in an approximate way. We base this on the fact that in
both cases, large instances cannot be solved exactly in a reasonable time; indeed both problems
are NP-hard problems.

The current most used and successful method for timing traffic lights is given by a commercial
software which, rather than bandwidth, uses another measure to address the optimization, such
as the total delay time of vehicles or the total fuel consumption. The software uses simulation
to generate a possible traffic state and other components that allows it to emulate the behaviour
of the network and evolutionary algorithms to improve an index of the performance measure
used. Indeed, this method provides an approximate solution, i.e., this is a heuristic. Heuristic
algorithms for bandwidth maximization have been less studied and, as far as we know, it is
still a challenge for researchers. In this work, we study the possibility of solving the bandwidth
maximization by a heuristic approach that uses algorithmic structures that have shown to be
successful in other combinatorial problems. We also thoroughly study all the involved constraints
and we give special attention to those involving loops.

On the other hand, even when large instances for the SPLP have been solved efficiently by
exact methods, when customers’ preferences are considered, small instances for this case become
large instances for the SPLPO, as we noted in the literature. SPLP has been widely studied and
a solution method usually applied involves the analysis of possible relaxations to the problem
whose bounds are improved through iterative procedures. As it will be seen in later chapters,
this approach can be found since the earliest papers related to this topic with good results.
The contributions for the SPLPO are very few but of general interest for any future solution
method. The most relevant ones try to strengthen the linear formulation of the problem by
including new constraints that work as cuts of the feasible region and then use it in a branch
and bound procedure. We seek to take advantage of the successful results obtained for the SPLP
particularly with the use of Lagrangean relaxation and extend its use to the SPLPO.

10

We have been careful not to neglect the mathematics behind these two problems by proving
theorems either related with different aspects of the modelling or related with the properties of
the adapted procedures used in the design of the algorithms. Part of our contribution is indeed
to prove that some results that have been used in more basic problems can be used in more
general cases. In summary, the methods we propose are a mix of exact and heuristic approaches,
all of them MILP (Mixed Integer Linear Programming) based algorithms. We tried to exploit
this mathematical structure to apply approximation procedures which in turn rely on simple
applications of either classical metaheuristic methods or simple variable fixing heuristics.

1.2 Research Questions

As mentioned above, the combinatorial nature of both problems suggests that heuristic methods
are a valid and justified alternative solution. Looking at these methods, we find in the literature
few research related to TLSP (bandwidth maximization) and SPLPO. However, some studies
using MILP-based algorithms for the TLSP and for the version without customer preferences of
the SPLPO are known. Under this scenario, the following research questions emerge: How can
the results previously obtained in either similar problems or less restricted problems be extended
to those studied in this work? Are MILP-based heuristic algorithms to these two problems
comparable to the established commercial software MILP algorithms? The contribution of this
work will depend on whether these questions are answered successfully.

1.3 Contributions

Some results for TLSP and SPLP have been extended to more general cases. In TLSP we give
bounds over integer variables used in its linear formulation. They are based in others given
when the problem is solved over a single avenue. Likewise, we were able to prove that results
obtained for SPLP in the area of Lagrangean and semi-Lagrangean relaxation can be extended
to SPLPO. Making use of this we developed algorithms for both problems addressed. They
are within a heuristic class of procedures that use either linear programming, fixing variables
or both. Numerical experiments have been carried out to verify their performance in larger
instances than those found in the literature.

Additionally, we introduce a novel formulation for the Shortest Path Problem with Traffic
Light Constraints (SPPTL). This problem has been solved before by using a variation of a
known labelled-based algorithm but, as far as we know, no linear models have been defined.
Our model uses the flow-based formulation for the Shortest Path Problem (SPP) as a template
and the traffic light behaviour is modelled by periodic time windows. Also, since customers in
SPLPO can have preferences over a subset of facilities instead all of them we introduced a linear
formulation for the Simple Plant Location Problem with Partial Order (SPLPPO). Furthermore
a stochastic version of SPLPO was studied by considering the order given by the customers as
an uncertain event that can be modelled by scenarios. A Two-Stage stochastic model for this
case (S-SPLPPO) is given.

1.4 Outline of the Thesis

Since we deal with two problems that differ in most of their characteristics, this thesis can be
read in two parts independently.

11

Part I: Traffic Light Synchronization

Chapter 2: The Traffic Light Synchronization Problem

First we provide the main concepts of graph theory that will be used in this chapter as well as an
algebraic treatment of cycle basis that are important in the modelling of TLSP. In Section 2.3 we
review MAXBAND, a bandwidth maximization model for TLSP. We give a detailed explanation
of all its elements and introduce the notation used. Particularly, in Section 2.3.4 we show how
to model the loop constraints, presented in the MAXBAND linear model, with a small number
of binary variables. In Section 2.4 we generalize the bounds for integer variables that can be
found on the literature. The first known systematic algorithm for the TLSP without loops is
reviewed in Section 2.5. In Section 2.6 we propose a new MILP-based heuristic algorithm using
tabu search and variable neighbourhood search. We carry out a computational study to show
that our method performs very well for large instances. Some conclusions and ideas for future
research are discussed in Section 2.6.2. Finally, in Section 3 we propose a linear model for the
Shortest Path Problem with Traffic Light Constraints (SPPTL).

Chapter 3: An MILP model for a Related Problem to TLSP

There are other related problems where traffic lights have an important role, one of them is
studied in Section 3.1. We defined the notation for the SPPTL in Section 3.1.1 to then introduce
a MILP model in Section 3.2. We tested the proposed model in Section 3.3 by running an
example that helps to understand the notation better. In Section 3.4 we give final conclusions
and remarks.

Part II: Simple Plant Location Problem with Order

Chapter 4: A Lagrangean Relaxation Algorithm for the SPLPO

This chapter starts with Section 4.2.1 where we review Lagrangean and semi-Lagrangean re-
laxation. The SPLPO version of those models are shown in Section 4.3, 4.3.1, 4.4 and 4.4.1,
along with the methods that will be used later to solve their respective dual problems. The
complete procedure that we propose to solve the SPLPO is presented in Section 4.5, where all
the algorithms given in previous sections will be gathered to build a heuristic procedure that
uses few parameters to be set up. In Section 4.6 the whole method is tested over a group of
large instances. Some conclusions are given in Section 4.7.

Chapter 5: The Stochastic Simple Plant Location Problem with Partial Order

In Section 5.3.1 we defined the Simple Plant Location Problem with Partial Order (SPLPPO)and
discussed its linear formulation. Then, we present a two-stage stochastic version of this problem
(S-SPLPPO) in Section 5.4 and finally some experiments are carried out in Section 5.5.

12

Part I

Traffic Light Synchronization

Chapter 2

The Traffic Light Synchronization

Problem

The main goal of this chapter is threefold. First we establish the theoretical framework that we
will use throughout this part of the document. We give an brief literature review of traffic light
synchronization problem, introduce the concept of bandwidth maximization and define a mixed
integer linear formulation that models the problem on a transport network. Second we study a
classical algorithm to solve the problem along a single artery that does not consider any turns to
any other street. Finally we address the more general case and propose an algorithm to solve it.
With this algorithm we try to take advantage of the linear formulation by taking into account
bounds on the integer variables in a fixing variable iterative procedure with memory structure.

2.1 Introduction to Traffic Lights Synchronization

Traffic lights have been with us for a long time (since late in the 19th century) and they are used
in cities to control the flow of vehicles. But its use also leads to some problems such as time
delays when moving from one place to another and increased pollution due to changes in the
speeds of the vehicles. Because of the increase in urban traffic year by year, its timing has been
a topic of interest for many researchers. Most of the papers focus on two aspects: minimizing
some measure to assess the performance of the traffic (e.g, delays) and maximizing the time that
vehicles can drive without stopping for red lights (bandwidth maximization).

With respect to traffic flow measures, it has been usual to minimize either the overall delay
or the number of stops of the vehicles. One of the first models was developed by Gartner et al.
(1975). This study demonstrated the feasibility of using mixed integer linear programming to
optimize traffic signal settings for practical but small size road networks. In that work a convex
nonlinear objective function and linear constraints were considered, but a piecewise linearisation
in the objective can be done by increasing the number of constraints in the formulation. The
objective function measures the overflow queue wich represents the number of vehicles that are
not able to clear an intersection during the preceding green time and the constraints consider the
possible loops in which a platoon of vehicles could incur when navigating in a network. However,
some realistic constraints were not considered in this case. As an example, different patterns of
light changes at street junctions were not taken into account; this would allow to consider either
crosswalk times or the synchronization of traffic lights towards cross streets. This method was
also used by Wünsch (2008) to show a similar linear model with some differences. One is that
the model is able to decide among different predetermined signal timing plans. Another is that
the assumption of a common red-green period width at the signals is relaxed. However, it is not

14

a hard constraint because in that case the least common multiple of all red-green periods could
be used as a uniform period, as mentioned in Köhler and Strehler (2015). The linear model
was tested on a family of real-world transport networks of up to 146 nodes and 399 arcs. Also
Wünsch (2008) showed a formal proof of the NP-completeness of the signals timing problem.
Another reference can be found in Improta and Sforza (1982), the authors defined a linear model
similar to the one proposed by Gartner et al. (1975) and additionally developed a branch and
bound procedure with backtracking to solve it which relaxes some assumptions imposed in the
original model. Unfortunately, only small examples are reported (up to 9 nodes and 16 arcs).

With regard to bandwidth maximization, one of the first papers was Morgan and Little
(1964). In that paper, the authors presented a geometric and intuitive method for bandwidth
maximization on a two-way street with a given fixed and common red-green time period on each
signal and preassigned vehicle velocities. Even though there had been some geometric methods
developed earlier, this paper presented a systematic algorithm easy to implement. A couple of
years later, Little (1966) proposed for the first time a mixed integer linear program (MILP) to
solve a new version of the problem (more complete) which does not assume a fixed red-green
time period, but this is chosen by the model between some given bounds. Upper and lower
limits on velocity between adjacent signals and changes in speed are also considered. Solving
the model yields a common signal red-green period, velocities between signals and maximal
bandwidths on the streets. An extension is provided to solve the same problem on general
networks, but only very small instances could be solved. On networks the problem is more
difficult because it is necessary to introduce the so-called loop constraints, which permit to model
the circular movements that vehicles can do. Some years later, Little et al. (1981) introduced
a generalization that includes left turns at junctions. This linear model is traditionally called
MAXBAND even though this is the name of the code developed to solve it. The first version
of MAXBAND could handle problems on networks with only 3 arteries and up to 17 traffic
signals. Later Gartner et al. (1991) extended the MAXBAND model by working with variable
bandwidth for each street segment (MULTIBAND). This change allowed to incorporate a traffic
factor on the objective function. More recently Zhang et al. (2015) proposed a new version of
MULTIBAND called AM-BAND. This model tries to use better the available green times on
both road directions by relaxing a symmetric assumption with respect to the progression line
given in the MULTIBAND linear model. In Xianyu et al. (2012) and Xianyu et al. (2013) a
variable bandwidths is also considered, their approach uses the criteria of partitioning a large
system into smaller subsystems and takes into account the impact of speed variation. However,
this method is not based on integer programming.

The use of heuristics to solve traffic light synchronization problems is common, specially
due to the influence of the very successful commercial software for synchronization of traffic
signals and traffic management named TRANSYT (Cohen, 1983), which is an implementation
of a method introduced by Robertson (1969). TRANSYT provides a heuristic solution for
a very complete and robust objective function by using microscopic simulation of traffic be-
haviour and genetic algorithms. Other references of using evolutionary methods can be seen in
Braun and Weichenmeier (2005) and Singh et al. (2009). Gartner and Stamatiadis (2002) pro-
posed a heuristic method for the MAXBAND network problem that in a first stage solves a tree
subproblem which considers a measure of interest. Then, the integer variables are fixed to the
values obtained and used in a second stage to solve the whole problem. As far as we know there
is no other reference about solving the MAXBAND on a complete network.

Since MAXBAND can only be solved by optimization solvers for very small instances, the
main aim of this work is to develop a heuristic algorithm for bandwidth maximization. As the
algorithm is based on the MAXBAND formulation, first we review the constraints in detail.
Later, we generalize some existing bounds based on the ideas outlined in Little (1966). Then,

15

we propose a metaheuristic algorithm to solve the problem on complete networks. We carry out
some computational experiments to verify how efficient the method is. The method we propose
starts with a feasible solution of the problem and uses basic Tabu Search (Glover, 1986) ideas
such as the use of a memory structure within an iterative local search process that allows that
solutions found during execution to be more diverse. In addition, the search is intensified by
a sequence of neighbour solutions search processes, just as in Variable Neighbourhood Search
(VNS), see Mladenović and Hansen (1997).

One of the key factors that influence the performance of any of the methods mentioned
above is the large amount of information they require from the network. Transport networks
in the real world are, in some cases, similar to a grid of streets that intersect with each other
(grid graph). Therefore, each intersection may have traffic lights for possible vehicle entrances
from four different directions. Information of the red and green light times on each of these
can be required, as is the case of MAXBAND. Additional data such as the length of the queue
of vehicles that wait to cross or turn to another street are also necessary. If real data is not
available, a simulation of the network information must be carried out. The parameters to be
generated must be consistent to allow feasible solutions; for example, green lights at the same
time can not be allowed for all signals that are in the same junction of streets. Unfortunately,
we have not been able to access real data and therefore we have opted to simulate them.

The rest of the chapter is structured as follows. First we provide the main concepts of graph
theory that will be used in this chapter as well as an algebraic treatment of cycle basis which
will be used in the modelling of TLSP. Then, we review the MAXBAND model in Section 2.3,
where we give a detailed explanation of all its elements and introduce the notation that will
be used. Particularly, in Section 2.3.4 we show how to model the loop constraints with a small
number of binary variables. In Section 2.4 we generalize the bounds for arterial integer variables
that were originally presented by Little (1966) for graphs that do not consider loops and extend
them for general networks. The first known systematic algorithm for TLSP without loops is
reviewed in Section 2.5, since this method gives us a deep understanding of the geometry related
to the formulation of MAXBAND for the case without loops. In Section 2.6 we propose a new
MILP-based heuristic algorithm that uses Tabu Search and Variable Neighbourhood search. We
carry out a computational study to show that our method performs very well for large instances
when an initial feasible solution is provided. Some conclusions and ideas for future research are
discussed in Section 2.6.2.

2.2 Preliminaries

In this section we will review fundamental concepts of cycle bases which are important to the
TLSP modelling, as can be seen later. The notation and theoretical basis used are based on
Diestel (2000) and Kavitha et al. (2009).

Undirected Graph

A Finite Undirected Graph is a pair G = (V,E) where V is a finite set and E is a finite family of
pairs of elements of V . The elements of V are called vertices or nodes (more commonly vertices)
and the elements of E are called edges. V (G) and E(G) will be the notations to specify that V
and E correspond to a specified graph G. A pair e = {u, v} ∈ E(G) can appears more than one
time in E(G) (this justifies use the term family to refer to set of edges as is pointed in Schrijver
(1986)), in this case e is called a multiple edge. A loop is an edge {e, e}. If a graph doesn’t have
multiple edges or loops it is called a simple graph. u and v in e = {u, v} are called ends and it
is said e is incident to u and v. Frequently we use uv to refer to edge {u, v}. The degree of a

16

vertex v is noted by δ(v) and represents the number of the edges incidents to v if there is not a
loop vv, otherwise the loop counts twice.

The union and intersection between two graphs G = (V,E) and G′ = (V ′, E′) are set as
G ∪ G′ = (V ∪ V ′, E ∪ E′) and G ∩ G′ = (V ∩ V ′, E ∩ E′). G \ G′ is the difference between G
and G′ and results form removing the vertices V (G) ∩ V (G′) and their incidents edges from G.
If V ⊂ V ′ and E ⊂ E′ we say G ⊂ G′ also G is a subgraph of G′. An induced graph de G is an
subgraph that is the result of removing a subset of vertices of V (G) and the edges incidents to
them.

A path in a graph G = (V,E) is a subgraph P of G where V (P) = {v0, v1, . . . , vk} and
E(P) = {vov1, v1v2, . . . , vk−1vk}, the notation P (v0, vk) is used to call the path from v0 to vk.
The length of a path is the number of edges in the path. A path P (v0, vk) is closed if vk = v0.
The graph G = (V,E) is connected if there is at least a path between any pair of vertices,
otherwise is disconnected. If a graph is disconnected then it is formed by connected subgraphs,
each one of them is called connected component of G. If a graph T is connected and has no
cycles it is called a tree. A forest is an undirected graph in which all of its connected components
are trees. An spanning tree T of an undirected graph G is a subgraph of G that is a tree which
includes all of the vertices of G.

A cycle ζ in G is a subgraph of a graph G with even δ(v) for all v ∈ ζ. Just as in Kavitha et al.
(2009), we will call a circuit if it is a connected cycle and each one of its vertices has degree two,
i.e if it is a simple connected cycle.

Directed Graph

A Finite Directed Graph (finite digraph) is a pair D = (V,A) where V is a finite set and A is
a finite family of ordered pairs of elements of V . Again the elements of V are called vertices or
nodes (more commonly nodes) and the elements of A are called edges or arcs (more commonly
arcs). In the pair e = (u, v) ∈ A(D), u and v are refereed to as tail and head respectively,
it makes sense to represent sometimes (u, v) as u → v. The number of arcs of the form (u, v)
is called indegree δ−(v) of the vertex v, and the number of arcs of the form (v, t) outdegree
δ+(v). A directed path Pd(v0, vk) of a directed graph D = (V,A) is a subgraph Pd of D where
V (Pd) = {v0, v1, . . . , vk} and A(Pd) = {(vo, v1), (v1, v2), . . . , (vk−1, vk)}. Analogously to the
case undirected the length of a directed path is the number of the arcs that forms the path.

Every directed graph has an underline graph which is undirected, taking the directions on
the edges out. Analogously all undirected graph becomes a directed one if it is added up an
arbitrary orientation on every edge in the graph. There are undirected paths P (v0, vk) on a
directed graph D = (V,E) with edges (arcs) with two possible orientations forward or backward,
in the same way D may have also undirected cycles. A directed cycle is then a cycle where every
edge can be either forward or backward. In this context we can also define directed spanning
tree.

κ-cycle

In order to follow to Liebchen and Rizzi (2007) and Kavitha et al. (2009) and to give a more
algebraic treatment to directed cycles we provide the next definition. A κ-cycle ζ over a field
κ is a subgraph of a directed graph D = (V,A) that can be represented by a vector ζ =
[ζ(1), ζ(2), . . . , ζ(|A(ζ)|)]T ∈ κ|A(ζ)| such that

∑

e∈δ+(v) ζ(e) =
∑

e∈δ−(v) ζ(e) for all v ∈ V (D)
(flow conservation), κ-cycles sometimes are called circulations.

It is commonly assumed that κ = Q, then we can assign a positive value to ζ(e) if e is
forward and a negative value if e is backward in a subgraph of D. If this assignment is possible
such that the subgraph becomes a circulation, then we have a Q-cycle. A simple κ-cycle is one

17

represented by a vector with every component in the set {−1, 0, 1 } (if the field allows it). It
makes sense if it is decided that the values of the field κ represent the times that an arc can be
repeated if we “circulate” from a node to another (this means all flows have integer values). If a
simple κ-cycle is connected and every vertex has just two incident arcs it is called circuit, which
“geometrically” looks like a connected directed cycle, see Figure 2.1b.

(a) A circulation with 5 nodes. (b) Circulation (no simple) with all nodes
visited 20 times.

Figure 2.1: Circulations of 5 nodes over κ = Q and a no simple cycle subgraph.

If in Figure 2.1b we change the flow over the edges (v1, v2), (v4, v2), and (v1, v4) by -1,1 and
1 respectively, it becomes a circuit (a directed cycle).

Let us consider a Q-cycle ζ with integral components. Then π(ζ) = ζ(e) mod 2 will be the
projection of ζ with entries in the field κ = F2 = { 0, 1 }, this means it becomes an F2-cycle. An
F2-cycle is a good representation for an undirected cycle of the underline undirected graph D′

of the directed graph G = (V,A).
In the next section we show in more detail the algebra of F2-cycles.

Cycle basis on undirected graphs

As is mentioned in Kavitha et al. (2009) the study of cycle basis dates back to the early days of
graph theory, as an example MacLane (1937) gave a characterization of planar graphs in terms
of Cycle basis. However, we will show results given by Kavitha et al. (2009) and Schrijver (1986)
as these are simpler and understandable.

Let G = (V,E) be a graph where V represents a set of vertices { v1, v2, . . . , vn } with |V | = n
and E represents a set of edges { e1, e2, . . . , em } with |E| = m. It is possible to define a
vector space (vertex space) V(G) on the vertices of G and the field F2. Let V(G) be the
set of all functions of the form V : V → F2 , this means that V(G) is the power set of V ,
because any of these functions maps vertices to numbers 0 or 1 and thinking the elements
of F2 like values of an indicator variable. The operations + : V(G) × V(G) → V(G) and
· : F2 × V(G) → V(G) are defined too, such that ν1 + ν2 = ν1△ν2 where △ represents the
symmetric difference (ν1\ν2)∪(ν2\ν1). Also, k·ν = ν if k = 1 and k·ν = ∅ if k = 0. It is clear that
the neutral element is ∅ and that for each ν ∈ V(G) its inverse element is the same ν, therefore
ν = −ν. A basis of V(G), actually a canonical basis, will then be { { v1 } , { v2 } , . . . , { vn } } and
therefore dimV(G) = |V | = n.

In the same way an edge space E(G) of all functions of the form E : E → F2 can be defined,
under the same field F2 and under the same closed operations + : E(G) × E(G) → E(G),
ε1 + ε2 = ε1△ε2 and · : F2 × E(G) → E(G), k · ε ∈ { ε,∅ } as above. E(G) is then the

18

power set of E. Furthermore a canonical basis of this space is { { e1 } , { e2 } , . . . , { em } } and
dimE(G) = |E| = m.

(a) ε1 = { e1, e3 } (b) ε2 = { e2, e3 }

Figure 2.2: Example of two functions in E(G) with ε1 + ε2 = ε1△ε2 = { e1, e2 }.

Let the column array [k1, k2, . . . , km]T be the coordinate of the vector ε ∈ E(G) on the
canonical basis, i.e., [ε]B(E(G)) = [k1, k2, . . . , km]T whenever ε = k1 { e1 } + k2 { e2 } + . . . +
km { em }. Now it is possible to define an inner product between two vectors in E(G) as
〈ε1, ε2〉 = [ε1]

T
B(E(G))[ε2]B(E(G)) = k11k

2
1 + k12k

2
2 + . . . + k1mk

2
m. It is not a proper inner prod-

uct because 〈ε, ε〉 can be zero even though ε 6= ∅, which is why it is called indefinite inner
product, see Hotovy et al. (2015). According to the example of Figure 2.2, the inner product
between 〈ε1, ε2〉 = [1, 0, 1][0, 1, 1]T = 0+0+1 = 1, but 〈ε2, ε2〉 = [0, 1, 1][0, 1, 1]T = 0+1+1 = 0
even when ε2 is different from the zero vector ∅. It can be seen that 〈ε1, ε2〉 = 0 ∈ F2 if and
only if ε1 and ε2 have an even number of edges in common.

There is one important subspace of E(G) to be considered, the cycle space C(G) which
contains all the cycles in G. On a connected graph G = (V,E) with a spanning tree T we can
see an important property. It is true if an arc that is not in the tree is added, this yields one
and only one cycle, see Figure 2.3. That cycle is called Fundamental Cycle with respect to T
and by adding one by one the arcs in G\T it results in a set of fundamental cycles that spans
the Cycle Space C(G) that is linearly independent.

Theorem 1 (Kavitha et al. (2009)). The set of fundamental cycles of a connected graph G =
(V,E) with a spanning tree T , |V | = n and |E| = m is a basis for the cycle space C(G) of length
m− n+ 1.

Proof. By definition and construction of fundamental cycles with respect to a fix spanning tree T
none of them can be obtained as linear combinations of the others, it is because each fundamental
cycle ζi of G will have one edge e that is not in any other fundamental cycle ζj . That edge e
is of course one which forms the cycle and belongs to G\T . This proves the independence.
Furthermore, since any spanning tree T in G has n− 1 edges there are m− (n− 1) e’s to form
fundamental cycles.

Let ζi be a fundamental cycle in G with respect to T , ei the edge in G\T that forms ζi and
ζ an arbitrary cycle in C(G). Then k1ζ1 + k2ζ2 + . . . + km−n+1ζm−n+1 = ζ. Indeed it happens
because each ζ contains one edge that is not in T and that does not belong to any other cycle,
then the sum k1ζ1 + k2ζ2 + . . . + km−n+1ζm−n+1 + ζ = ∅, which is also a cycle, contains only
arcs in T , and it means that the right hand of the equation is an acyclic graph and the only
acyclic cycle in C(G) is ∅.

19

(a) ζ11 = { e1, e2, e3, e4 } (b) ζ12 = { e4, e5, e6, e7 }

(c) ζ21 = { e1, e2, e3, e5, e6, e7 } (d) ζ22 = { e4, e5, e6, e7 }

Figure 2.3: Two Spanning Tree and its Fundamental Cycles.

Figure 2.3 shows an example with two different spanning trees, T1 in Figure 2.3a and 2.3b,
and T2 in Figure 2.3c and 2.3d. The basis of the cycle space C(G) with respect to T1 is { ζ11, ζ12 }
and with respect to T2 is { ζ21, ζ22 }.

2.3 The MAXBAND Model for a Network

Now we define the MAXBAND model notation and give a complete explanation of all variables
and constraints involved. Particularly, we discuss in detail how loops are modelled.

Let us consider a group of two-way arteries (streets) that meet each other in junctions
forming a transport network. This network has some traffic signals in order to regulate traffic.
They work with a common period that is split in red and green times, this will be used as unit of
measurement of time. It is sometimes called cycle length, although we will try to avoid the use
of this term because it can be confused with the loops (also known as cycles) that are present in
the network and which play a very important role in the formulation of the problem, as we will
see later. Instead, we will use the name period length. The distances (time units) that allow to
measure the relative location between two signals on the same artery and on different arteries
are called internode offset and intranode offset respectively. A list of offsets for the signals is
said to be a synchronization.

The MAXBAND model is based on the geometry that we can see in Figure 2.4. Information
is provided for two signals Sai and Saj on an artery a. The notation used is essentially the same
than in Little et al. (1981). The different variables and parameters are defined as follows:

20

Parameters in Figure 2.4:

• T : Period length, in seconds.

• na: Number of traffic lights (signals) on artery a.

• rai (rai): Outbound (inbound) red time of signal i on artery a, in a fraction of the period.

• τai (τ ai): An advancement of the outbound (inbound) bandwidth upon leaving Si, in a
fraction of the period.

Variables in Figure 2.4:

• z: Signal frequency, in periods per second.

• ba (ba): Outbound (inbound) bandwidth on artery a, in a fraction of the period.

• taij (t
a
ij): Travel time from Sai to Saj in outbound (from Saj to Sai in inbound) direction,

in periods.

• φaij (φ
a
ij): Time from the center of red at Sai to the center of red at Saj , in periods. The

two reds are chosen so that each is immediately to the left (right) of the same outbound
(inbound) green band. φaij (φ

a
ij) is positive if Saj ’s center of red lies to the right (left) of

Sai’s.

• wai (wai): Time from the right (left) side of Sai’s red to the left (right) side of green band
in outbound (inbound) direction, in a fraction of the period.

• ∆ai : Time from center of rai to the nearest center of rai, in periods. It is positive from
left to right.

In Figure 2.4 a two direction (outbound and inbound) street (artery) is depicted in a space-
time plane. The continuous lines formed by the union of red and green segments (a period),
shown above the signals Sai and Saj, represent the periodic behaviour of the traffic lights over
time in the outbound direction, while the dash lines correspond to inbound. On each signal
both lines do not necessarily overlap. This makes sense since it is possible to consider different
movement patterns of vehicles to cross streets from the considered artery and vice versa, as we
will see in Section 2.3.2. If these schemes are not taken into account both lines will coincide,
as is the case of long roads where the red lights must be present only to allow the crossing of
pedestrians in certain points of the road. Points A, B, C and D will be useful to define the
different relationships between the variables and parameters necessary for the formulation.

The complete formulation for MAXBAND on a network can be seen in LM 2.3.1. It has
additional parameters and variables (not showed in Figure 2.4), jointly with the constraints,
these are explained next. Similar to Little et al. (1981), in this thesis we do not write αa

i,i+1 but
αa
i for any parameter or variable α and their corresponding names with bars for the opposite

direction on an artery.

21

Figure 2.4: Geometry for MAXBAND model on artery a.

22

LM 2.3.1 MAXBAND, Maximal Bandwidth Formulation

Maximize
∑

a∈A

(

kaba + kaba
)

(2.1)

subject to :

1

T2
≤ z ≤

1

T1
, (2.2)

wai + ba ≤ 1− rai, ∀a ∈ A, ∀i = 1, . . . , na, (2.3)

wai + ba ≤ 1− rai, ∀a ∈ A, ∀i = 1, . . . , na, (2.4)

(wai + wai)− (wa,i+1 + wa,i+1) + (tai + t
a
i)

+(δaiℓai − δaiℓai)− (δa,i+1ℓa,i+1 − δa,i+1ℓa,i+1) + (rai − ra,i+1)

−(τa,i+1 + τai) = m
a
i , ∀a ∈ A, ∀i = 1, . . . , na − 1, (2.5)

(

dai
fa
i

)

z ≤ t
a
i ≤

(

dai
eai

)

z, ∀a ∈ A, ∀i = 1, . . . , na − 1, (2.6)

(

d
a

i

f
a

i

)

z ≤ t
a
i ≤

(

d
a

i

eai

)

z, ∀a ∈ A, ∀i = 1, . . . , na − 1, (2.7)

(

dai
ha
i

)

z ≤

(

dai
dai+1

)

t
a
i+1 − t

a
i ≤

(

dai
gai

)

z, ∀a ∈ A, ∀i = 1, . . . , na − 2, (2.8)

(

d
a

i

h
a

i

)

z ≤

(

d
a

i

d
a

i+1

)

t
a
i+1 − t

a
i ≤

(

d
a

i

gai

)

z, ∀a ∈ A, ∀i = 1, . . . , na − 2, (2.9)

∑

(i,j):a∈AF
ζ

φ
a
ij −

∑

(i,j):a∈AB
ζ

φ
a
ij +

∑

(b,j,i,c,k)∈Jζ

Ψi
Sbj,Sck

= Cζ , ∀ζ ∈ Bζ , (2.10)

Cζ ∈ Z, ∀ζ ∈ Bζ , (2.11)

m
a
i ∈ Z, ∀a ∈ A, ∀i = 1, . . . , na − 1, (2.12)

δai, δai ∈ {0, 1}, ∀a ∈ A, ∀i = 1, . . . , na − 1, (2.13)

ba, ba, t
a
i , t

a
i , wai, wai, z ≥ 0, ∀a ∈ A, ∀i = 1, . . . , na − 1. (2.14)

Furthermore, we consider only networks that can be represented by two dimensional grid
graphs Gr×c(V,E), where r and c are the number of rows and columns, respectively. V is the
set of nodes, E is the set of edges, |V | = n = rc and |E| = m = 2rc − r − c. Grid graphs are
a good representation of many real-world networks. An example is shown in Figure 2.5 with
n = 12 and m = 17.

Figure 2.5: A grid graph G3×4(V,E).

23

2.3.1 Objective Function

In terms of level of vehicular congestion, in real urban networks some streets or avenues can
be more important than others. If this is the case, these important arteries must be explicitly
prioritized in the model. This can be reached by giving different weights on every artery in the
network. This discrimination of arteries will produce a decrease in the efficiency of the use of
traffic lights in those less important in favour of those weighted more highly. Therefore, the
calibration of these parameters must be careful and based on traffic volume statistics.

Let A be the set of arteries on the network. We define ka and ka as the weights for the out-
bound and inbound bandwidth at artery a, respectively. The objective function to be maximized
is then:

∑

a∈A

(
kaba + kaba

)
.

2.3.2 Arterial Constraints

As said before, we assume that all signals work into a common signal period whose length is
introduced in the model as a decision variable. It must lie in an interval [T1, T2], see (2.2).
Decision variable z is the reciprocal of the period length, that is, z = 1/T . Inequalities (2.3)-
(2.4) ensure that the bandwidth remains within the green time. The velocities vai between each
signal on each artery are decision variables and bounded, with eai and fai representing the lower
and upper limits, respectively, and dai is the distance between two consecutive arteries, see (2.6)-
(2.7). In order to avoid sudden changes in the velocities between consecutive signals, they are
limited by imposing lower and upper bounds 1/hai and 1/gai on changes in reciprocal velocities.
The reason for using reciprocal bounds for velocities and changes in velocities is that linear
constraints can be obtained in this way. It is not possible to consider directly the inequalities
eai ≤ vai ≤ fai because the period length is also a variable. Thus, if we try to pass from vai
in meters/second to vai in meters/period, we will have eai T ≤ vai T ≤ fai T , which are nonlinear
constraints. Therefore, we use the reciprocals of eai and fai ,

eai ≤ vai ≤ fai →
dai
fai

≤
dai
vai

≤
dai
eai

→
dai
fai
z ≤ tai ≤

dai
eai
z.

The same applies to the changes of velocities.

It can be seen in Figure 2.4 that T imeA-B = ∆ai+integer number of periods+φaij and that

T imeA-B =integer number of periods−φ
a
ij+integer number of periods+∆aj. Therefore:

φaij + φ
a
ij +∆ai −∆aj = ma

ij , (2.15)

where ma
ij is an integer decision variable (number of periods). Also, T imeC-D = φaij +

1
2raj +

waj + τaj =
1
2rai + wai + taij and T imeE-F = φ

a
ij +

1
2raj + waj =

1
2rai + wai − τai + t

a
ij . So, if we

now substitute in (2.15), we have that

taij + t
a
ij +

1

2
(rai + rai) + (wai + wai)−

1

2
(raj + raj)− (waj + waj)− (τaj + τai)

+ (∆ai −∆aj) = ma
ij.

(2.16)

Equation (2.16) is named arterial loop constraint for artery a between signals Sai and Saj .

24

Figure 2.6: Patterns of left turn phases.

In addition, there are constraints that model left turn decisions if it is allowed by green
lights. The MAXBAND allows to decide among four possible patterns of left turns which can
be seen in Figure 2.6 (see Little et al. (1981) for more details).

Parameters ℓai and ℓai in Figure 2.6 represent, for a signal i on an artery a, the time (periods)
of outbound and inbound left turn phases respectively. R is the common red time. For instance,
Figure 2.7 shows the three possible movements for vehicles on a main street in three different
moments. As can be seen at area 2, the traffic lights are green for outbound and inbound
directions, so no car in the horizontal street can cross to the other side. On the common red
time R a possible different left turn pattern can be given for cross street.

Furthermore, ∆ai can be expressed as a function of ℓai and ℓai. For example, if we consider
Pattern 1 and we calculate the difference between the center of total red time of outbound and
the total red of inbound (in that order), we have that

∆ai =
ℓai +R

2
−

(
R+ ℓai

2
+ ℓai

)

= −
ℓai + ℓai

2
.

The results for the other left turn phases are shown in Table 2.1. All these expressions can
be obtained with the formula:

∆ai =
1

2
[(2δai − 1)ℓai − (2δai − 1)ℓai], (2.17)

where δai, δai ∈ { 0, 1 } are additional binary variables. The decisions on left turns are included
in the model by substituting equation (2.17) in (2.16), as can be seen in constraint (2.5).

25

1 2 3

1 2 3

Figure 2.7: Left turn phase example with Pattern 1.

Table 2.1: Expressions for ∆ai’s.

Pattern ∆ai δai δai

1 −
ℓai + ℓai

2
0 1

2
ℓai + ℓai

2
1 0

3 −
ℓai − ℓai

2
0 0

4
ℓai − ℓai

2
1 1

2.3.3 Loop Constraints

The network case is a natural generalization of the arterial case and the corresponding model
includes all the constraints for each artery as shown before. The arterial loop constraints (2.16)
can be seen as a cycle for two nodes because it represents the movement of going to and returning
from a signal. If we extend this idea to larger cycles, it is clear that the sum of all the offsets in
the cycle must be an integer number as well.

In order to see how to write the equation of the cycle constraints, let us start with an
example. A cycle with 4 arteries A = {a, b, c, d} and 4 junctions J = {J1, J2, J3, J4} is shown in
Figure 2.8. Each artery a ∈ A has signals Saj , where j is the index for signals on a increasing
in the outbound direction given by the arrows. Heading in the clockwise direction and starting
from junction J1, the cycle constraint for this example is:

φbjk +ΨJ2
Sbk,Sco

+ φcop +ΨJ3
Scp,Sdq

+ φdqr +ΨJ4
Sdr ,Sah

+ φahi +ΨJ1
Sai,Sbj

= Cζ,

where Cζ is an integer decision variable and Ψi
Saj ,Sbk

is a decision variable named intranode offset
which represents the time between consecutive centers of reds for signals Saj and Sbk that meet
at junction i, i.e, it is a link time between arteries a and b.

In order to generalize the previous expression to any cycle, we define the following sets:

26

Figure 2.8: Clockwise loop with 4 junctions.

• AF
ζ (AB

ζ): Set of all segments of forward (backward) arteries with edges (i, j) in the
clockwise direction of cycle ζ,

• Jζ : All sets of the form (b, j, i, c, k) in ζ, where i is the junction between arteries b and c
in the signals Sbj and Sck,

Then, the network loop constraint (cycle constraint) is:

∑

(i,j):a∈AF
ζ

φaij −
∑

(i,j):a∈AB
ζ

φaij +
∑

(b,j,i,c,k)∈Jζ

Ψi
Sbj ,Sck

= Cζ .

The number of cycle constraints in the model will depend on how many edges and nodes
the network has. Unfortunately, this number can be very high, which makes the problem very
difficult to solve. The following result helps us to alleviate this problem: It is well known that
the set of all cycles ζ on any single graph can be spanned by a basis Bζ with cardinality m−n+1,
wherem represents the number of edges and n the number of nodes on the underlying undirected
graph related to the directed graph that represents the original network. See Liebchen and Rizzi
(2007) for full details. So, a cycle basis must be found before writing down the model.

2.3.4 Computing Intranode Offset

In general, a grid graph Gk×k needs (k − 1)2 network loop constraints and therefore several
intranodes must be computed for each of these equations. The values of intranode offsets
Ψi

Saj,Sbk
’s depend on red times positions of signals Saj and Sbk on a main and cross street,

respectively. For instance, if left turns are not permitted, then the red and green times for main
and cross street will have the same length and in this case the intranode offset is clearly 0.5
periods. Since the MAXBAND model must decide among four different left turn patterns on
each junction i, the computation of each intranode should take into account all the possible
values of binary variables involved in that choice. The next result provides a simple expression
to compute intranode offsets which does not require of extra variables beyond those used in
model LM 2.3.1.

Theorem 2. Consider the patterns of left turn phases shown in Figure 2.6. Let ψpmpc
mc be the

value of Ψi
Smj ,Sck

when arteries m and c meet at junction i for signals Smj and Sck with left
turn phases patterns pm and pc respectively. Then, for all possible values of pm and pc, we have
that:

Ψi
Smj ,Sck

=
1

2
−

1

2

[
(2δck − 1)ℓck − (2δmj − 1)ℓmj

]
.

27

Proof. Let us consider Figure 2.9.

Figure 2.9: A junction i of arteries main (m) and cross (c).

Figure 2.10 shows the different forms that ψpmpc
mc may have for all possible permutations of

left turn phases in Figure 2.6. The cross street phase takes place during the red time Rm in the
main street and vice versa.

Figure 2.10: Geometry for ψpmpc
mc .

All values of ψpmpc
mc are summarized in Table 2.2. We take into account only the outbound

directions phases because we are using only the φ’s in equation (2.10) of the MAXBAND model.
Also, in Table 2.2 it can be seen that:

ψ1,1
mc = ψ1,4

mc = ψ4,1
mc = ψ4,4

mc =
1− ℓck + ℓmj

2
, ψ2,1

mc = ψ2,4
mc = ψ3,1

mc = ψ3,4
mc =

1− ℓck − ℓmj

2
,

ψ1,2
mc = ψ1,3

mc = ψ4,2
mc = ψ4,3

mc =
1 + ℓck + ℓmj

2
, and ψ2,2

mc = ψ2,3
mc = ψ3,2

mc = ψ3,3
mc =

1 + ℓck − ℓmj

2
.

In Table 2.3 all different values of the binary variables δ’s and δ’s are shown for each left turn
phase that the model uses to compute the ∆’s with equation (2.17). The ψpmpc

mc ’s are arranged
in four groups determined just for the values of δ’s on the signals Smj and Sck.

28

Table 2.2: Expressions for ψpmpc
mc ’s.

Cross Street

Patterns 1 2 3 4

M
a
in

S
tr
ee
t

1
1− ℓck + ℓmj

2

1 + ℓck + ℓmj

2

1 + ℓck + ℓmj

2

1− ℓck + ℓmj

2

2
1− ℓck − ℓmj

2

1 + ℓck − ℓmj

2

1 + ℓck − ℓmj

2

1− ℓck − ℓmj

2

3
1− ℓck − ℓmj

2

1 + ℓck − ℓmj

2

1 + ℓck − ℓmj

2

1− ℓck − ℓmj

2

4
1− ℓck + ℓmj

2

1 + ℓck + ℓmj

2

1 + ℓck + ℓmj

2

1− ℓck + ℓmj

2

Table 2.3: Four different groups of ψpmpc
mc ’s on junction i.

Patterns

pm pc δmj δmj δck δck ψ
pmpc
mc

4 4 1 1 1 1 ψ
4,4
mc

4 1 1 1 0 1 ψ
4,1
mc

1 4 0 1 1 1 ψ
1,4
mc

1 1 0 1 0 1 ψ
1,1
mc

3 4 0 0 1 1 ψ
3,4
mc

2 1 1 0 0 1 ψ
2,1
mc

3 1 0 0 0 1 ψ
3,1
mc

2 4 1 0 1 1 ψ
2,4
mc

1 2 0 1 1 0 ψ
1,2
mc

4 2 1 1 1 0 ψ
4,2
mc

4 3 1 1 0 0 ψ
4,3
mc

1 3 0 1 0 0 ψ
1,3
mc

2 2 1 0 1 0 ψ
2,2
mc

2 3 1 0 0 0 ψ
2,3
mc

3 2 0 0 1 0 ψ
3,2
mc

3 3 0 0 0 0 ψ
3,3
mc

It is now easy to verify that a single expression to compute any Ψi
Smj ,Sck

is given by:

Ψi
Smj ,Sck

=
1

2
−

1

2

[
(2δck − 1)ℓck − (2δmj − 1)ℓmj

]
. (2.18)

A similar result that considers pedestrian crossing times can be found in Chaudhary (1987).
However it must be noted the result that is shown here was developed independently.

2.4 Bounds for Integer Variables

Little (1966) provides bounds for the integer variables in the arterial loop constraints when left
turns phases are not included. In this section we extend those bounds for the integer variables

29

in the network loop constraints.
It is clear from Figure 2.4 that 0 ≤ wai ≤ 1− rai and that 0 ≤ wai ≤ 1 − rai for any signal

i on artery a. By using constraints (2.2), (2.6) and (2.7) we have that
daij

fa
ijT2

≤ taij ≤
daij

eaijT1
and

that
daij

f
a
ijT2

≤ t
a
ij ≤

daij
eaijT1

. Furthermore, equation (2.17) gives ∆ai = δaiℓai −
ℓai
2 − δaiℓai +

ℓai
2 .

Therefore, we have that −(ℓai2 + ℓai
2) ≤ ∆ai ≤ (ℓai2 + ℓai

2), as δ’s take values in {0, 1}.
If we now use these bounds in constraints (2.5), then we have the following limits for m’s in

terms of the MAXBAND model’s parameters, ma
ij ≤ ma

ij ≤ ma
ij, where:

ma
ij =

⌊

2−
1

2
(rai + rai)−

1

2
(raj + raj) +

1

2
(ℓai + ℓai) +

1

2
(ℓaj + ℓaj)

−(τaj + τai) +
daij
eaijT1

+
daij
eaijT1

⌋, (2.19)

ma
ij =

⌈

−2 +
1

2
(rai + rai) +

1

2
(raj + raj)−

1

2
(ℓai + ℓai)−

1

2
(ℓaj + ℓaj)

−(τaj + τai) +
daij
faijT2

+
daij

f
a
ijT2

⌉

.

(2.20)

Therefore, following the notation in LM 2.3.1, i.e., ma
i,i+1 = ma

i , we have the following
bounds:

ma
i ≤ ma

i ≤ ma
i , ∀a ∈ A, ∀i = 1, . . . , na − 1. (2.21)

Furthermore, let a ∈ AF
ζ be, as in previous sections, an artery with signals Sai, where

i ∈ Iaζ = { 1aζ , . . . , n
a
ζ } and increasing in the outbound direction. The time between the first

signal and the last one in the artery segment is:

ta1a
ζ
,na

ζ
=
∑

i∈Iaζ \{n
a
ζ }

tai −
∑

i∈Iaζ \{ 1
a
ζ }

τai. (2.22)

Therefore, ta1aζ ,n
a
ζ
≤ ta1aζ ,n

a
ζ
≤ ta1a

ζ
,na

ζ
, where:

ta1a
ζ
,na

ζ
=
∑

i∈Iaζ \{n
a
ζ }

dai
eai T1

−
∑

i∈Iaζ \{ 1
a
ζ }

τai, (2.23)

ta1a
ζ
,na

ζ
=
∑

i∈Iaζ \{n
a
ζ }

dai
fai T2

−
∑

i∈Iaζ \{ 1
a
ζ }

τai. (2.24)

By using the same facts mentioned above and since φaij +
1
2raj +waj + τaj =

1
2rai +wai + taij,

we obtain that φaia
ζ
,na

ζ
≤ φaia

ζ
,na

ζ
≤ φaia

ζ
,na

ζ
, with:

φaia
ζ
,na

ζ
= −

1

2
(ra,1aζ + ra,na

ζ
) + ta1a

ζ
,na

ζ
+ 1, (2.25)

φaia
ζ
,na

ζ
=

1

2
(ra,1aζ + ra,na

ζ
) + ta1a

ζ
,na

ζ
− 1. (2.26)

According to equation (2.18), we also have that Ψi
Sbj ,Sck

≤ Ψi
Sbj ,Sck

≤ Ψi
Sbj ,Sck

:

30

Ψi
Sbj ,Sck

=
1

2
(1 + ℓck + ℓbj), (2.27)

Ψi
Sbj ,Sck

=
1

2
(1− ℓck − ℓbj). (2.28)

Finally, bounds for Cζ in the set of constrains (2.10) are:

Cζ =







∑

a∈AF
ζ

φaia
ζ
,na

ζ
−
∑

a∈AB
ζ

φaia
ζ
,na

ζ
+
∑

(b,j,i,c,j)∈Jζ

Ψi
Sbj ,Sck





 , (2.29)

Cζ =








∑

a∈AF
ζ

φaia
ζ
,na

ζ
−
∑

a∈AB
ζ

φaia
ζ
,na

ζ
+
∑

(b,j,i,c,j)∈Jζ

Ψi
Sbj ,Sck








. (2.30)

The next set of constraints can be added to the linear model:

Cζ ≤ Cζ ≤ Cζ , ∀ζ ∈ Bζ . (2.31)

All these limits will be used for our computational experiments in the next section, in order
to reduce the space of search of values of the integer variables.

2.5 The First Systematic Algorithm for the Arterial Case

In this section we review a classic study on bandwidth maximization on an arterial road proposed
by Morgan and Little (1964) in 1964. They present a geometric and intuitive method to solve
this case, very well supported by a sequence of theoretical results. Although there have been
geometric methods developed earlier, this work was the first to provide a systematic algorithm
that could be implemented computationally.

Most of the proofs have been omitted but we have kept those that we consider important
for the understanding of the complete procedure.

2.5.1 The Theory

The method presented in Morgan and Little (1964) solves the next two problems:

• Problem 1. Given an arbitrary number of signals along a street, a common signal period,
the green and red times for each signal, and specified vehicle speeds in each direction
between adjacent signals, synchronize the signals to produce bandwidths that are equal in
each direction and as large as possible.

• Problem 2. Resynchronize to favour one direction with a larger bandwidth, if feasible,
and give the other direction the largest bandwidth possible.

It is assumed that the signals have a common period T , i.e., if ri and gi are the red time and
the green time of signal i, respectively, then ri+gi = rj+gj for all signals i and j. Furthermore,
it is considered ∆i = wi = 0. Therefore, and unlike Figure 2.4, the red and green times overlap
each other in each signal for both directions, as we can see in Figure 2.11. In order to ease the
notation we have omitted the name of the artery a in each of the definitions.

Additionally, let:

31

• θij: Time from the center of a red time of Si to the next center of red of Sj . It is called
relative phase or offset. By convention 0 ≤ θij < 1, in periods.

• xi: Position of Si on the street, in distance units.

• vk(vk): Outbound (inbound) speed between signal Sk and Sk+1. It is considered fixed and
known for all k ∈ { 1, . . . , n− 1 }, in distance per time.

Furthermore, Morgan and Little (1964) defined tij as the travel time from Si to Sj in the
inbound direction and in this case the values de tij can take a negative sign. If j = i + 1, tij

must be computed as: ti,i+1 =
xi+1 − xi
viT

and ti,i+1 =
xi − xi+1

viT
.

Figure 2.11: Distance-Time diagram.

Definition 3 (Synchronization, Morgan and Little (1964)). It is a set { θij | j = 1, . . . , n } for
i ∈ { 1, . . . , n }.

As mentioned before, the method is based on a consistent sequence of theorems.

Definition 4 (Critical Signal, Morgan and Little (1964)). A signal Si is said to be a critical
signal if one side of Si’s red touches the green band in one direction and the other side touches
the green band in the other direction.

Lemma 1 (Morgan and Little (1964)). If a synchronization maximizes b + b subject to b > 0
and b > 0, then:

1. There exists at least one critical signal.

2. The red time of any critical signal will touch the front edge of one green band and the rear
edge of the other.

3. All critical signals can be divided into two groups:

• Group 1: consists of signals whose reds touch the front of outbound and the rear of
inbound (see Figure 2.12), and

32

• Group 2: of signals whose reds touch the front of inbound and the rear of outbound
(see Figure 2.13).

(a) (b)

Figure 2.12: Geometry for two signals in the group 1.

(a) (b)

Figure 2.13: Geometry for two signals in different groups.

From Figure 2.12 we can note that
1

2
ri+tij =

1

2
rj+θij+(int) and

1

2
ri−tij =

1

2
rj−θij+(int),

where int = integer and represents an integer that is added to keep θ within the range [0, 1).
Note that depending on the speed, int will increase as much as periods have passed. Now, if we
add both expressions, it gives:

θij =
1

2
(tij + tij) +

1

2
(int) (2.32)

If we consider a scheme with two signals in group 2 we obtain the same equation.
Suppose that 0 ≤ θij < 1. Then a more explicit expression can be obtained by using the

function mantissa (man): man(#) = #− floor(#), where # ∈ R.
Then, from Equation (2.32):

Definition 5 (Half-Integer Synchronization, Morgan and Little (1964)). A Phasing or Half-
Integer Synchronization is

θij = man

[
1

2
(tij + tij) + δij

]

(2.33)

33

where δij ∈ {0, 12}.

With the above arguments we have proved the next lemma:

Lemma 2 (Morgan and Little (1964)). Under the conditions of Lemma 1, each group of signals
has half-integer synchronization.

Theorem 3 (Morgan and Little (1964)). There is a half-integer synchronization that gives max-
imal equal bandwidths.

The theorem implies that if the maximal equal bandwidths are greater than zero, max(b+b)
s.t. b, b > 0 equals max(b+ b) s.t. b = b. The scheme of the proof in Morgan and Little (1964)
is basically a geometric construction of the half-integer synchronization and easy to follow.
The proof also establishes that there is a half-integer synchronization between two signals from
different groups. From Figure 2.13 we have that 1

2ri + b + tij +
1
2rj = θij + (int) and that

1
2ri + b− tij +

1
2rj = −θij + (int), their difference yields b− b+ tij + tij = 2θij + (int) and since

it is possible to obtain b = b then θij = 1
2 (tij + tij) +

1
2(int). Furthermore, if in the difference

we replace θij =
1
2(tij + tij) +

1
2(int), then it will give b = b. Therefore:

Theorem 4 (Morgan and Little (1964)). Under any half-integer synchronization, b = b.

2.5.2 The Algorithm

Due to Theorems 3 and 4 just a few cases need to be considered in order to develop an algorithm
to solve Problems 1 and 2. By Theorem 3 it is enough to examine Half-Integer Synchronizations
and by Theorem 4 it suffices to focus only on the outbound direction.

Consider uij just as in Figure 2.14:

Figure 2.14: Geometry for SEB Procedure.

Theorem 5 (Morgan and Little (1964)). The maximal equal bandwidth is max{0, B}, where

B = maximinjmaxδ∈{0,1/2}{uij(δ) − rj}.

Let i = c be a maximizing i and δc1, . . . , δcn be the corresponding maximizing δ’s. Then, a
synchronization for maximal equal bandwidths is θc1, . . . , θcn obtained by substituting the δcj into
θij = man

[
1
2(tij + tij) + δij

]

34

Proof. Referring to Figure 2.14, we have uij = man[θij +
rj
2 − ri

2 − tij], but in order to make
uij = 1 when this expression is zero, it can be written uij = 1 −man[−θij −

rj
2 + ri

2 + tij] and
substituting θ from the equation 2.33, we have,

uij(δij) = 1−man

[
1

2
(ri − rj) +

1

2
(tij − tij)− δij

]

. (2.34)

Due to δij ∈ {0, 12} and Figure 2.14, the best value for δij can be reached by

maxδ∈{0,1/2} [uij(δ)− rj] .

Let

• bi : Greatest outbound bandwidth under half-integer synchronization if Si’s red touches
the front of the outbound band.

• B : The value of one of the maximal equal bandwidths.

Then, bi = minjmaxδ∈{0,1/2} [uij(δ) − rj] because the trajectories should not cross the red
lines. Therefore the best i is such that

B = maximinjmaxδ∈{0,1/2}{uij(δ)− rj}

If the best i is c, and δc1, . . . , δcn are the maximizing δ’s, then the synchronization will be
reached by substituting δcj ’s in the Equation (2.33) to obtain the set {θc1, . . . , θcn}

The theorem above is the base for the SEB Procedure (Synchronization for Maximal Equal
Bandwidths) and it is summarized in Figure 2.15.

Clearly a platoon (group of cars) needs some time to cross a traffic light, and the length
of the platoon (measured in seconds) could be different in both directions. The authors end
their analysis with this fact being considered. The crossing time of the platoon affects the
synchronization, so the first step is to evaluate how far a red line must be moved in order to
avoid the cars stopping on the corners. It is clear that there is a limit to that movement.

Theorem 6 (The Shifting Procedure, Morgan and Little (1964)). Let g be the smallest green
time. The outbound bandwidth b can be assigned any value in max{0, B} ≤ b ≤ g by making a
phase shift

αj = max{ucj − 1 + b−B, 0}.

Then b = max{2B − b, 0} and b is as large as possible for a given b.
Alternatively, the inbound bandwidth b, can be assigned any value in max{0, B} ≤ b ≤ g, by

making a phase shift

αj = max{b+ rj − ucj, 0}.

Then b = max{2B − b, 0} and b is as large as possible for a given b.

Proof. Let us define:

• θc1, . . . , θcn : The maximal equal bandwidth reached with the SEB Procedure with Sc the
critical signal whose red touches the front of the outbound green band (see Figure 2.16).
The corresponding uc1, . . . , ucn and B are supposed to be known too.

35

Begin

Input:

T

Si, . . . , Sn

ri, . . . , rn

xi, . . . , xn

vi, . . . , vn−1

vi, . . . , vn−1

Calculate y1, . . . , yn from:

y1 = 0,

yi = yi−1 −
1

2
(ri − ri−1) +

xi − xi−1

2T

[

1

vi−1

+
1

vi−1

]

Calculate z1, . . . , zn from:

z1 = 0,

zi = zi−1 +
xi − xi−1

2T

[

1

vi−1

−
1

vi−1

]

Calculate:

B = maximinjmax
δ∈{0, 1

2
} {uij(δ)− rj}

where uij(δ) = 1−man(yj − yi − δ),

in the process, save δ in the form δij = δi1, . . . , δin, ∀i ∈ { 1, . . . , n }

Identify:

the maximizing i in order to set c = i and δc1, . . . , δcn

The synchronization is θc1, . . . , θcn from:

θcj = man(zj − zc + δcj)

b = b = max{0, B}

End

Figure 2.15: SEB Procedure.

• αj : A phase shift for Sj, in periods.

• θ′cj = man[θcj − αj] : Adjusted phase for Sj, in periods.

• g = mini{1− ri} : Smallest green time, in periods.

According to Figure 2.16a, suppose we want to move Sc to the left because we want to increase
outbound bandwidth from B to b. b will decrease as much as b is increased. Furthermore, due
the signals limit the movement, the shift can be up to g. Thus, max{0, B} ≤ b ≤ g and
b = max{2B − b, 0}. A similar argument applies to increase b, then max{0, B} ≤ b ≤ g and
b = max{2B − b, 0}, see Figure 2.16b.

36

(a)

(b)

Figure 2.16: Geometry for SHIFT Procedure.

If we place on the right-hand side of the Sj red time in Figure 2.16a, it can be seen that the
shift for Sj is to left by αj = {(b−B)− (1− ucj)} = max{ucj − 1 + b−B, 0}. Also, it is true,
from Figure 2.16b, that the distance from the front of the inbound green band to the next Sj
red on the left is the same than the distance from the rear of the outbound green band to the
next Sj red on the right. This is due to Theorem 4 in order to keep the constant b + b. From
Figure 2.16b, it can be seen that to increase b is necessary shift Sj by αj = max{b+ rj −ucj, 0}.

The theorem produces the following SUB Procedure (Synchronization for Maximal Unequal
Bandwidths). Let P (P) be the platoon length in the outbound (inbound) direction (periods). If
P = P , then the synchronization given by SEB Procedure is accepted. Otherwise, if P+P ≤ 2B
then it is possible to do a shift in order for both platoons to pass through the street without
stopping and the bandwidth is changed proportionally to the platoon length if possible, i.e., if

P > P , then b = min

{
2BP

P + P
, g

}

and b = [2B − b, 0]. On the other hand, if P + P > 2B,

the larger platoon is accommodated if possible, the remainder is given to the smaller, of course
if there is any remainder, i.e., if P > P , then b = min{P, g} and b = max{2B − b, 0}. We
have to consider that if P ≥ 2B then b will be zero and b will be g, i.e., due to the lack of
time to accommodate the platoon in that direction only the outbound traffic will flow. Similar
arguments apply if P > P . The SUB Procedure is summarized in Figure 2.17.

37

Begin

Input:

P and P

Run procedure SEB

Calculate:

g = min{1− ri}

P 6= P

P > PP < 2B

P + P ≤ 2B

b = min

{

g,
2BP

P + P

}

Calculate: α1, . . . , αn from:

αj = max{ucj − 1 + b−B, 0}

b = max{2B − b, 0}

P < 2B

P + P ≤ 2B

b = min

{

g,
2BP

P + P

}

Calculate: α1, . . . , αn from:

αj = max{b+ rj − ucj , 0}

b = max{2B − b, 0}

b = min{P, g} b = min{P , g}

b = g b = g

Calculate the adjusted synchronization θ′c1, . . . , θ
′
cn from:

θ
′
cj = man(θcj − αj)

End

yes

yes

yes

yes

no

yes

yes

no no

no no

no

Figure 2.17: SUB Procedure, Synchronization for Maximal Unequal Bandwidths.

38

2.5.3 Examples

Due to its simple programming language and its wide graphic capacity, MATLAB has been
used to code the SEB and SUB procedures and the instance shown in Morgan and Little (1964)
(synchronization of the signals on a stretch of Euclid Avenue in Cleveland under off-rush hour
conditions) has been a base to produce three different examples. In those cases, and following
the original example, the distances are given in feet and velocities in feet/second.

Table 2.4: Input data for Euclid Avenue instance with P = P .

Signal 1 2 3 4 5 6 7 8 9 10

Distance 0 550 1250 2350 3050 3850 4500 4900 5600 6050
Red time 0.47 0.40 0.40 0.47 0.48 0.42 0.40 0.40 0.40 0.42
OutB velocity 50 50 50 50 50 50 50 50 50 -
InB velocity 50 50 50 50 50 50 50 50 50 -

Figure 2.18: Space-time diagram for for Euclid Avenue instance with P = P .

Table 2.5: Output for Euclid Avenue instance with P = P .

Signal 1 2 3 4 5 6 7 8 9 10

θ 0.50 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.50 0.50

OutB bandwidth length 0.23
InB bandwidth length 0.23

39

Table 2.6: Input data for Euclid Avenue instance with P 6= P .

Signal 1 2 3 4 5 6 7 8 9 10

Distance 0 550 1250 2350 3050 3850 4500 4900 5600 6050
Red time 0.47 0.4 0.4 0.47 0.48 0.42 0.4 0.4 0.4 0.42
OutB velocity 50 50 50 50 50 50 50 50 50 -
InB velocity 50 50 50 50 50 50 50 50 50 -

OutB platton length 0.30
InB platton length 0.10

Figure 2.19: Space-time diagram for Euclid Avenue instance with P 6= P .

Table 2.7: Output for Euclid Avenue instance with P 6= P .

Signal 1 2 3 4 5 6 7 8 9 10

θ′ 0.50 0.88 0.00 0.40 0.50 0.89 0.00 0.00 0.44 0.50
α 0.00 0.12 0.00 0.10 0.00 0.11 0.00 0.00 0.06 0.00

OutB bandwidth length 0.35
InB bandwidth length 0.12

40

Table 2.8: Input data for Euclid Avenue instance with P 6= P and different velocities.

Signal 1 2 3 4 5 6 7 8 9 10

Distance 0 550 1250 2350 3050 3850 4500 4900 5600 6050
Red time 0.47 0.40 0.40 0.47 0.48 0.42 0.40 0.40 0.40 0.42
OutB velocity 50 20 50 50 100 50 10 50 30 -
InB velocity 50 20 5 50 28 50 120 50 20 -

OutB platton length 0.30
InB platton length 0.10

Figure 2.20: Space-time diagram for Euclid Avenue instance with P 6= P and different velocities.

Table 2.9: Output for Euclid Avenue instance with P 6= P and different velocities.

Signal 1 2 3 4 5 6 7 8 9 10

θ′ 0.88 0.00 0.50 0.93 0.98 0.29 0.32 0.10 0.01 0.54
α 0.12 0.00 0.00 0.05 0.00 0.03 0.00 0.00 0.00 0.00

OutB bandwidth length 0.36
InB bandwidth length 0.12

41

2.5.4 Conclusions

The presented procedures solve efficiently a particular case of the problem of synchronization of
traffic lights, the arterial case with common period. It is clear that the same problem can be
solved via linear programming by modifying the MAXBAND formulation. However, in addition
to its historical importance, the study of this algorithm has led us to a better understanding of
the MAXBAND geometry. Afer the presented method was proposed some linear formulations
were proposed by Little (1966), but, as the author pointed out, the computational limitations
were an issue in the mid-sixties. The extension to the case over a complete network that includes
loops was logical.

2.6 AnMILP-Based Heuristic with Tabu Search for MAXBAND

In this section we propose a metaheuristic algorithm to solve the MAXBAND model with three
variants. Then, we perform computational experiments and show the results.

On a network, the MAXBAND model requires a large number of initial data as well as
several variables defined on each segment of an artery, signals and cycles in the cycle basis.
Even though the instances presented in Table 2.10 may seem not very large, the formulation has
many equalities which contain integer and binary variables. This makes the problem difficult to
solve.

Table 2.10: Sizes of some MAXBAND problems.

Grid Graph Gr×c

3x3 5x5 6x6 7x7 8x8 9x9 10x10 15x15 20x20

Equalities 16 56 85 120 161 208 261 616 1121

m’s 12 40 60 84 112 144 180 420 760

C’s 4 16 25 36 49 64 81 196 361

δ’s 36 100 144 196 256 324 400 900 1600

Integer variables 52 156 229 316 417 532 661 1516 2721

As will be seen later, a commercial MILP solver is not able to find the optimum for instances
greater than 6× 6 grid graph within a reasonable time (less than 3 hours). Therefore the use of
heuristic methods is a logical alternative to the problem we are studying.

One of the methods of solution for timing traffic lights is that used by TRANSYT, a com-
mercial software that bases its solution on hill-climbing, evolutionary algorithm methods and
simulation for modelling the behaviour and interactions of traffic flow. In Ratrout and Reza
(2014) and Lu et al. (2014) TRANSYT was compared with other similar software and showed
to be more efficient than its competitors in terms of performance index (for example, number of
vehicle stops) and determination of the common period length (red plus green light) for each sig-
nal on the network. In fact, some authors compare the results of their proposed approaches with
those obtained using TRANSYT, see Wünsch (2008) as an example. Regrettably, TRANSYT
methodology has not been developed to be adapted to a problem of bandwidth maximization
and therefore it is not an option to solve the MAXBAND model. This approach optimizes,
instead of the bandwidth, a very complete objective function that involves delay, stops, fuel
consumption, etc. thus most of the MAXBAND constraints are explicitly defined in it.

A heuristic alternative for MAXBAND was proposed by Gartner and Stamatiadis (2002).
Their approach exploits the intrinsic geometry on the network. One iteration of this method
consists of two general stages. The first one solves a subproblem from the original one with

42

standard MILP techniques. The subproblem is a tree which is chosen because it contains no
cycles. Moreover, this tree is not selected randomly as it considers either the streets with higher
volume of traffic flow or some other measure of interest. This is why this tree is called priority
arterial subnetwork. After solving this reduced problem, the integer variables are fixed to the
values obtained and used in a second stage to solve the whole problem. The procedure can be
repeated if further improvements are required. If the original problem has a large size (dense
when using all MAXBAND constraints), then the priority tree is difficult to solve, even though
no integer cycle variables are used, the remaining variables could still be many. In fact, in
Gartner and Stamatiadis (2002) only two real but small cases were solved, the largest one is an
incomplete 4× 4 grid graph.

The method we propose is an adaptation of heuristic methods applicable for MAXBAND to
try to solve larger instances.

The use of simulation helps the construction of multiple independent instances of a problem
to obtain multiple initial feasible solutions, as required in evolutionary algorithms and how it is
used in TRANSYT. Instead, the procedure we propose is based on a single feasible solution, as
do heuristics such as Simulated Annealing (Kirkpatrick et al., 1983) and Tabu Search (Glover,
1986). We have decided to use a Tabu Search approach because its structure exploits intelligent
strategies based on learning procedures that allows a guided search towards the optimal solution.
Tabu Search uses a memory structure to generate new solutions from an initial one. These will
compete among each other in each iteration of the procedure. Due to memory structure, changes
applied in a solution to generate another one are considered in future iterations which, in favour
of the diversity of the solutions, we would not like to repeat often. This avoids frequently
repeating very complicated problems to be solved within the procedure. We use the variable
fixing ideas to obtain new solutions in a short time. The method also involves a local search
procedure to intensify the search of good solutions. It is done in three different ways that will
be mentioned later.

The MILP-Based Heuristic

As our algorithm is based on tabu search therefore it requires an initial solution whose neighbour-
hood needs to be explored. Despite many attempts to find a systematic procedure to generate
the initial solution, this was not possible (due to the high number of equalities involved). In-
stead, we take as starting solution the first feasible solution found by the optimization solver
(Xpress).

Next, we consider the set of the variables m’s (2rc−r−c), δ’s (4rc) and C’s (r(c−1)−c+1)
that must take integer values in the optimal solution. A number of rm, rd and rC variables
are chosen randomly from them respectively to be modified later with one of the following
procedures. The rest of these integer variables are fixed to the values that they have in the
initial solution.

• TSILP-LSF: The values of rm, rd and rC variables are fixed to values within the bounds
(2.21), { 0, 1 } and (2.31) respectively.

• TSILP-LSU: The rm, rd and rC variables with values given by a solution become variables
again (i.e., unfixed).

• TSILP-LSVNS: TSILP-LSF and TSILP-LSU are applied one after the other.

The current problem is then solved with Xpress to obtain a new feasible neighbour solution.
This is repeated in order to generate a set of solutions (candidate list) of size SizeList. The

43

list of candidates may contain many infeasible solutions when using TSILP-LSF. If we unfix
some variables, the number of infeasible solutions is reduced considerably. Indeed, we have
used TSILP-LSU to generate the candidate list. Additionally, in our experience, if a memory
structure is applied, procedures such as release (unfix) variables and solve the problem that
remains, give a diverse enough set of solutions. Thus, TSILP-LSU is applied on the selected
variables rm, rd and rC only if it is not forbidden by a tabu list. This list is an array that
contains tt values for each variable which represent the number of iterations that they can not
be modified. Then, this is sorted in decreasing order by the objective value (i.e., best first) and
the the first solution becomes current solution. It is saved and the tabu list is updated for each
integer variable. The last is done by decreasing tt values if they are different from zero and by
fixing them to a value maxtt otherwise. Subsequently a greedy local search is applied to the
current solution. This is simply an iterative application of TSILP-LSVNS (Algorithm 2.6.1),
TSILP-LSF (Algorithm 2.6.2) or TSILP-LSU (Algorithm 2.6.3). Finally this can be repeated
until a maximum number of iterations is met. See Algorithm 2.6.4.

VNS in TSILP-LSVNS stands for variable neighbourhood search, see Mladenović and Hansen
(1997). As can be seen later, the combination of fixing and unfixing random integer variables
performs better.

Algorithm 2.6.1 VNS Local Search Procedure (LSVNS).

Let:
S : A problem with best objective function value on a candidate list.

Step 1. Choose rm, rd and rC from m’s, δ’s and C’s on S.
Step 2. If tt = 0, fix their values with random numbers within their bounds.
Step 3. Solve the instance using an LP solver (Xpress) and set this solution as a current solution.
Step 4. Choose other integer variables rm, rd and rC from m’s, δ’s and C’s on the current solution.
Step 5. If tt = 0, these variables are unfixed.
Step 6. Solve the instance using branch and bound (Xpress).
Step 7. Update the current solution only if it is better than the previous one.
Step 8. Repeat the process until the maximum number of iterations is reached.

Algorithm 2.6.2 Fix local search procedure (LSF).

Let:
S : A problem with best objective function value on a candidate list.

Steps 1 . . . 3 and 7 . . . 8 are as in LSVNS.

Algorithm 2.6.3 Unfix local search procedure (LSU).

Let:
S : A problem with best objective function value on a candidate list.

Steps 4 . . . 6 and 7 . . . 8 are as in LSVNS.

44

Algorithm 2.6.4 Tabu Search for MAXBAND (TSILP-LS/F/U/VNS).

Let:
P : A complete MAXBAND problem on a grid graph.

Step 1. For all m, δ and C, tt = 0 in a tabu list.
Step 2. Find the first integer solution for P by Xpress and set it as current solution.
Step 3. Create a candidate list of size SizeList :

1. Choose randomly rm, rd and rC from m’s, δ’s and C’s in current solution.
2. If tt = 0, unfix these variables.
3. Solve the problem using branch and bound (Xpress).
4. Repeat SizeList times.

Step 4. Sort the candidate list in decreasing order of the objective function value.
Step 5. Apply procedure LSF, LSU or LSVNS with the best first in the candidate list as input.
Step 6. Set the current solution as the best solution in the candidate list.
Step 7. Update the tabu list for each m, δ and C on the current solution:

1. If current tt = 0 then tt = maxtt, else
2. tt = tt− 1.

Step 8. Repeat Steps 3− 7 until a maximum number of iterations is reached.

2.6.1 Computational Results

Because we did not have access to real case information we have generated some artificial data as
described below. The intervals of random values are based on the small example of five arteries
and seven signals provided by Little (1966) which was solved with branch and bound by hand.
All random data take the same values for outbound and inbound direction. It must be noted
that even small grid graphs are very dense.

Let U(a, b) be a continuous uniform distribution on interval (a, b),

• The lengths of the arcs of the grid follow a distribution U(140, 600) (meters).

• Red times r follow a distribution U(0.4, 0.6) (periods).

• Times to turn left ℓ follow a distribution U(0.25r, 0.38r) (seconds).

• Min/max common period Tmin/Tmax, follows a distribution U(40, 60)/U(90, 110) (sec-
onds).

• Limits of velocities lower/upper e/f follow a distribution U(12, 14)/U(15, 16) (meters/second).

• Limits on changes in reciprocal speed lower/upper 1/h/1/g = 0.012/−0.012 (meters/second)−1.

• All τai’s and τai’s were set to 0.

• All weights on the objective function were set to 1.

We used a PC Intel(R) Xeon(R) 3.40GHz 16.0 (RAM). Strictly fundamental cycle basis
(Kavitha et al., 2009; Liebchen and Rizzi, 2007) for each graph Gr×c were found with Mathe-
matica version 10.1. The algorithms were coded with Xpress Mosel version 3.4.2 and the solver
used was Xpress Optimizer version 24.01.04.

Table 2.11 shows the results for several small grid graph instances generated randomly con-
sidering all parameters and variables in model 2.3.1 including the bounds (2.21) and (2.31).

45

Table 2.11: Computational Results for TSILP procedure (small instances).

Exact Global Global/LS TSILP-LSF TSILP-LSU TSILP-LSVNS

size # OF* t iter sl tt iLS rm rd rC avg worst best avgt avg worst best avgt avg worst best avgt

3x3 1 3.22 0 10 5 3 5 2 2 2 2.73 2.71 2.91 6 3.01 3.01 3.02 7 3.00 2.83 3.02 9

10 5 3 10 2 2 2 2.72 2.71 2.81 8 3.01 3.01 3.02 10 3.02 3.01 3.02 15

30 10 3 10 4 4 4 2.71 2.71 2.76 33 3.02 3.02 3.02 45 3.02 3.02 3.02 59

50 10 3 20 4 4 4 2.71 2.71 2.71 73 3.02 3.02 3.02 123 3.02 3.02 3.02 174

2 3.80 0 10 5 3 5 2 2 2 2.61 1.24 3.76 5 3.48 1.38 3.80 6 3.79 3.67 3.80 8

10 5 3 10 2 2 2 3.24 1.24 3.77 10 3.78 3.72 3.80 9 3.80 3.76 3.80 13

30 10 3 10 4 4 4 3.69 3.69 3.69 31 3.69 3.69 3.69 39 3.69 3.69 3.69 52

50 10 3 20 4 4 4 3.69 3.69 3.69 72 3.69 3.69 3.69 102 3.69 3.69 3.69 145

5x5 3 4.77 7 10 5 3 5 2 2 2 3.57 2.63 4.16 11 4.05 3.43 4.31 14 4.11 3.73 4.29 17

10 5 3 10 2 2 2 3.86 3.29 4.06 14 4.08 3.52 4.30 17 4.17 3.83 4.35 19

30 10 3 10 4 4 4 4.16 4.01 4.41 55 4.31 4.18 4.73 96 4.36 4.18 4.73 117

50 10 3 20 4 4 4 4.14 3.94 4.18 145 4.33 3.95 4.71 257 4.42 4.23 4.72 332

4 5.20 6 10 5 3 5 2 2 2 3.88 3.75 3.98 7 4.09 3.84 4.43 11 4.24 3.98 4.49 11

10 5 3 10 2 2 2 3.91 3.74 4.11 14 4.25 3.78 4.77 22 4.21 4.11 4.26 29

30 10 3 10 4 4 4 4.47 3.97 4.61 58 4.77 4.66 4.86 84 4.74 4.46 4.86 120

50 10 3 20 4 4 4 4.45 3.97 4.61 145 4.78 4.66 4.86 260 4.83 4.77 4.86 326

6x6 5 5.18 116 10 5 3 5 2 2 2 3.11 2.01 3.52 15 3.51 3.28 3.94 17 3.54 3.18 3.97 20

10 5 3 10 2 2 2 3.12 2.49 3.48 21 3.49 3.07 3.79 33 3.48 3.07 3.86 39

30 10 3 10 4 4 4 3.58 3.38 3.73 85 4.07 3.57 4.24 128 4.16 3.91 4.24 152

50 10 3 20 4 4 4 3.73 3.49 4.18 190 4.23 3.93 4.46 345 4.31 4.12 4.46 420

6 4.74 1270 10 5 3 5 2 2 2 3.35 1.63 4.16 12 4.18 3.92 4.31 17 4.16 3.92 4.31 19

10 5 3 10 2 2 2 3.57 1.63 4.15 17 4.19 3.74 4.35 25 4.26 4.10 4.35 36

30 10 3 10 4 4 4 4.24 4.17 4.33 92 4.32 4.14 4.37 128 4.36 4.35 4.37 152

50 10 3 20 4 4 4 4.28 4.22 4.33 193 4.36 4.35 4.37 274 4.36 4.35 4.37 295

The meanings of the headers are as follows:

• size: size of the problem.

• #: instance number.

• Exact (Xpress branch-and-bound).

– OF*: optimal value of the objective function.

– t: running time (seconds).

• Global (stands for whole procedure).

46

– iter: number of tabu search iterations.

– sl: size list.

– tt: tenure time in the memory list (iterations).

• Global/LS (stands for whole and local search procedures).

– iLS: number of iterations of local search.

– rm, rd, rC: number of variables m’s, δ’s and C’s chosen for the candidate list and the
local search.

• TSILP-(LSF, LSU, LSVNS).

– avg, worst, best: Average, worst and best case objective function value.

– avgt: average time (seconds).

Each problem has been solved ten times with four different parameters settings. The same
number of integer variables rm, rd and rC were used in both of them to create a candidate list
and to run the local search procedure. The best objective function values obtained among the
different heuristic algorithms are underlined.

For each instances the optimal objective function could be obtained by Xpress in short time.
TSILP-LSU and TSILP-LSVNS could meet the optimal for problem #2 and both algorithms
performed almost the same in the most cases. See Figure 2.21 as an example, red dots represents
the mean OF values.

O
F

 v
a

lu
e

2.0

2.5

3.0

3.5

4.0

4.5

LSF LSU LSVNS

●

● ●

iter=30 sizelist=10 tt=5

iLS=20 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

● ●

iter=30 sizelist=10 tt=5

iLS=30 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●
●

iter=50 sizelist=10 tt=5

iLS=30 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●
●

iter=50 sizelist=20 tt=5

iLS=20 rm=10 rd=10 rC=10

Figure 2.21: Box-Plot of 10 runs for experiments TSILP-LS on G6×6 (instance 5).

For 5× 5, 6× 6 sizes problems the increase in the number of iterations, size list and selected
random variables produced better results. It is clear that as the problem size increases, the
heuristics times are more competitive.

Results for larger instances are shown in Table 2.12. Xpress was not able to find the optimal
solution for any of them within a time limit of 3 hours. For these instances it can be observed
that TSILP-LSVNS performs better. See Figures 2.22 and 2.23.

The running times include the time needed to find the first initial feasible solution using the
standard branch and bound algorithm in Xpress. For instance #13 this time was 9657 seconds,
but just 152 for instance #14. The remainder took less than 11 seconds.

In most of the cases the average solution of TSILP-LSVNS improved the average solutions
obtained with the first two methods. TSILP-LSF took less time, but almost never found the
best objective function value obtained by the other algorithms.

47

Table 2.12: Computational Results for TSILP procedure (large instances).

Global Global/LS TSILP-LSF TSILP-LSU TSILP-LSVNS

size # iter sl tt iLS rm rd rC avg worst best avgt avg worst best avgt avg worst best avgt

7x7 7 30 10 5 20 5 5 5 4.33 4.24 4.34 292 4.51 4.35 4.66 484 4.63 4.56 4.68 546

30 10 5 30 5 5 5 4.34 4.27 4.46 213 4.51 4.35 4.72 440 4.58 4.36 4.72 520

50 10 5 30 5 5 5 4.34 4.34 4.35 300 4.56 4.35 4.70 625 4.66 4.53 4.72 815

50 20 5 30 10 10 10 4.37 4.24 4.55 623 4.67 4.56 4.72 1469 4.70 4.66 4.72 1700

8 30 10 5 20 5 5 5 3.11 2.88 3.19 175 3.28 3.19 3.46 347 3.40 3.19 3.55 417

30 10 5 30 5 5 5 3.15 2.88 3.19 162 3.31 3.12 3.48 329 3.41 3.19 3.83 425

50 10 5 30 5 5 5 3.21 3.19 3.38 399 3.35 3.19 3.55 613 3.63 3.23 3.99 817

50 20 5 30 10 10 10 3.29 3.19 3.82 581 3.52 3.22 4.30 1113 3.81 3.36 4.39 1323

8x8 9 30 10 5 20 5 5 5 4.08 3.85 4.28 219 4.22 4.20 4.28 398 4.23 4.20 4.28 483

30 10 5 30 5 5 5 3.99 3.85 4.19 281 4.21 4.20 4.24 715 4.24 4.20 4.28 910

50 10 5 30 5 5 5 4.04 3.85 4.19 472 4.23 4.20 4.33 806 4.25 4.20 4.33 900

50 20 5 30 10 10 10 4.22 4.19 4.28 778 4.28 4.20 4.33 1710 4.30 4.24 4.33 1760

10 30 10 5 20 5 5 5 2.25 2.08 2.84 167 3.07 2.54 3.37 397 3.10 2.75 3.53 524

30 10 5 30 5 5 5 2.25 2.01 2.84 218 3.03 2.38 3.49 601 3.12 2.77 3.49 727

50 10 5 30 5 5 5 2.33 2.08 2.96 382 3.35 2.84 3.72 710 3.42 2.84 3.61 1186

50 20 5 30 10 10 10 3.01 2.68 3.22 567 3.54 3.27 3.92 1345 3.72 3.29 4.10 1688

9x9 11 30 10 5 20 5 5 5 3.33 3.00 3.70 282 4.15 3.61 4.35 524 4.15 3.61 4.31 620

30 10 5 30 5 5 5 3.40 3.00 4.02 324 4.04 3.61 4.31 620 4.20 3.61 4.49 755

50 10 5 30 5 5 5 3.43 3.00 3.65 522 4.25 3.61 4.88 893 4.93 4.75 5.01 928

50 20 5 30 10 10 10 4.14 3.79 4.42 479 4.36 4.26 4.49 1131 4.80 4.38 5.20 1206

12 30 10 5 20 5 5 5 4.17 4.07 4.31 270 4.31 4.24 4.71 541 4.36 4.24 4.71 646

30 10 5 30 5 5 5 4.18 4.07 4.31 316 4.25 4.22 4.31 699 4.28 4.24 4.42 848

50 10 5 30 5 5 5 4.18 4.07 4.42 539 4.26 4.24 4.31 901 4.39 4.24 4.74 1223

50 20 5 30 10 10 10 4.27 4.12 4.42 658 4.43 4.24 4.56 1324 4.45 4.31 4.61 1698

10x10 13 30 10 5 20 5 5 5 1.63 1.55 1.91 9937 1.85 1.76 1.91 10123 1.86 1.76 1.91 10259

30 10 5 30 5 5 5 1.75 1.55 1.91 10007 1.84 1.57 1.91 10278 1.89 1.72 1.91 10488

50 10 5 30 5 5 5 1.71 1.55 1.91 10218 1.86 1.66 1.91 10714 1.91 1.90 1.91 11058

50 20 5 30 10 10 10 1.89 1.72 1.91 10553 1.91 1.91 1.91 11341 1.94 1.73 2.01 11729

14 30 10 5 20 5 5 5 2.36 2.30 2.46 474 2.86 2.56 2.97 778 2.91 2.75 2.97 918

30 10 5 30 5 5 5 2.45 2.30 2.90 554 2.85 2.52 3.03 769 2.94 2.79 3.05 958

50 10 5 30 5 5 5 2.40 2.30 2.55 648 2.93 2.84 3.05 1407 2.95 2.79 3.05 2016

50 20 5 30 10 10 10 2.98 2.77 3.05 876 3.13 3.04 3.21 2082 3.20 3.05 3.24 3238

48

O
F

 v
a

lu
e

2.0

2.5

3.0

3.5

4.0

LSF LSU LSVNS

●

● ●

iter=30 sizelist=10 tt=5

iLS=20 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●
●

iter=30 sizelist=10 tt=5

iLS=30 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●
●

iter=50 sizelist=10 tt=5

iLS=30 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●

●

iter=50 sizelist=20 tt=5

iLS=20 rm=10 rd=10 rC=10

Figure 2.22: Box-Plot of 10 runs for experiments TSILP-LS on G8×8 (instance 10).

O
F

 v
a

lu
e

2.4

2.6

2.8

3.0

3.2

LSF LSU LSVNS

●

●

●

iter=30 sizelist=10 tt=5

iLS=20 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●

●

iter=30 sizelist=10 tt=5

iLS=30 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

● ●

iter=50 sizelist=10 tt=5

iLS=30 rm=5 rd=5 rC=5

LSF LSU LSVNS

●

●

●

iter=50 sizelist=20 tt=5

iLS=20 rm=10 rd=10 rC=10

Figure 2.23: Box-Plot of 10 runs for experiments TSILP-LS on G10×10 (instance 14).

Due to the vast amount of initial data, having the integer model ready to use before applying
any algorithm takes some time that was not considered in the running times, but for the largest
instances tested it averaged 20.73 seconds. This is time used by Xpress to generate the model
that will be solved.

The best results were found for the largest instances. In this case the three algorithms, even
in the worst cases, reached much better solution than Xpress. Table 2.13 shows the first integer
solution (f OF), the time to meet that solution (t fs) and the best integer solution after wait a
considerable time in relation to those reached in the experiments with the proposed algorithms,
3 hours of running time (t>3h), by Xpress.

Table 2.13: 10×10 instances vs Xpress.

Exact TSILP LSF TSILP LSU TSILP LSVNS

size # f OF t fs t>3h worst best worst best worst best

10x10 13 0.14 9657 1.55 1.55 1.91 1.57 1.91 1.72 2.01
14 0.54 152 2.19 2.30 3.05 2.52 3.21 2.75 3.24

49

2.6.2 Conclusions

We started with a complete review of MAXBAND. We generalized the integer variables bounds
given in Little (1966) to the network case. Cycle integer variables bounds are given as well.

We proposed a heuristic algorithm based on tabu search that takes advantage of the mixed
integer linear MAXBAND model to obtain feasible solutions. During the search for a solution,
we solve problems in a reduced feasible space, as the proposed algorithm begins with a feasible
solution and then we use the obtained integer values to be used in subsequent iterations. The
results were better when a serial application of LSF and LSU was done in a local search (VNS).
As seen in the experiments, the best results were obtained in the largest instances tested.

In practice, there are many other aspects that require further attention and that we did not
take into account in our experiments, such as prioritizing certain arteries with high traffic. This
would change the weights in the objective function.

50

Chapter 3

An MILP model for a Related

Problem to TLSP

In this section we introduce The Shortest Path Problem with Traffic Lights (SPPTL). This is
a related problem to the Traffic Light Synchronization Problem (TLSP) in the sense that the
offsets given by TLSP can be included as constraints on the nodes in a transport network, giving
in this way a more realistic problem that restricts the passage of vehicles through them. In this
chapter we give a mixed integer linear formulation for this case which takes a flow formulation
as a template and makes use of multiple periodic time windows to model the red and green
lights through time.

3.1 Introduction

The synchronization of traffic lights can be used as input information to solve other network
problems. The Shortest Path Problem (SPP) is one of them, as in this case it is possible to
consider movement restrictions due to traffic signals on nodes. If there is a traffic light on every
node in a network, they will restrict the movement of vehicles from one node to another in time
intervals. In the SPP we are interested in finding the shortest path between a source node and
the rest of the nodes, but if there are traffic light constraints on them, they should be in perfect
synchronization (as far as possible) to achieve this objective at minimum cost.

To deal with the case mentioned before, we introduce The Shortest Path Problem with
Traffic Lights (SPPTL) which is a generalization of the Shortest Path Problem (Dijkstra, 1959)
where additional constraints are added on junction streets on a transport network to model the
behaviour of traffic lights. Also, on each node there are different directions where a vehicle can
go after waiting for a green light.

Chen and Yang (2000) dealt with this subject by particularizing the more general Time-
Constrained Shortest Path Problem (TCSPP) which has been studied extensively in the form of
vehicle routing problems with time windows (VRPTW), see for instance (Balakrishnan (1993);
Russell (1995)). In TCSPP any node has time constraints and the problem is to see when the
nodes in the network can be visited with a minimum cost.

The Chen and Yang (2000) method to solve SPPTL the problem is basically a modified
Dijkstra’s algorithm. It is well known that Dijkstra’s algorithm finds a shortest path forest for a
simple source node using Fibonacci Heap in its implementation in O(m+n log n), where n is the
number of nodes andm is the number of arcs in a graph, as is pointed out in Fredman and Tarjan
(1987). Cheng and Yang found that the complexity of their algorithm for the SPPTL (also by
using Fibonacci Heap) is O(mn log r + rn3), where r is the number of different time windows

51

on a node which are necessary to model the periodicity of the red and green times, as will be
seen later.

The main aim of this chapter is to provide a network (connection-based) linear formulation
for SPPTL. As far as we know, there is no a linear model for the SPPTL in the literature. In the
next section we propose a novel MILP formulation which is based in the flow formulation of the
s− t shortest path problem on a directed graph. The notation that we follow is almost the same
as Chen and Yang (2000) and a case presented in that paper is reproduced with our model using
Xpress as an example. Additional examples have been omitted because the proposed model is
given only as a base of future studies (e.g., polyhedral structure), such as the case of the flow
model for the Shortest Path Problem, which does not compete with a good implementation of
the Dijkstra algorithm in large instances.

We start by defining the notation for SPPTL in Section 3.1.1 to then introduce an MILP
model in Section 3.2. We tested the model in Section 3.3 by running an example that helps to
understand the notation much better. In Section 3.4 we give final conclusions and remarks.

3.1.1 Notation for SPPTL

Let us consider a directed graph D(V,A) with V = { 1, 2, . . . , n } a set of vertices (nodes) and
A a set of arcs (i, j) where i and j are in V . On each arc (i, j) a function tij : A → R+ is
defined and denotes the travel time from node i to node j. There are synchronized traffic lights
constraints at each node i which can be seen as a periodic time windows sequence. Indeed, if
each time interval corresponding to a change of light at a traffic light on node i is denoted by k,
then the set Θi = { 1, 2, . . . , | Θi| } represents a sequence of indices of time windows of the form
τki = [aki , b

k
i], where a

k
i and bki are lower and upper bounds for the time window k at node i. In

addition, each time window τki has associated a set Nk
i with node-triplet elements of the form

〈h, i, g〉 that means that the kth time window at node i allows one to visit node g through node
h.

The problem is to find a shortest path between a source node s ∈ V and a sink node t ∈ V
that considers the synchronized traffic lights constraints at each node i ∈ V .

3.2 The Linear Model for SPPTL

The formulation should consider multiple time windows due to the sets Nk
i whose elements are

repeated as there are changes in the lights of traffic lights periodically. Nevertheless, as far as we
know, there are not many applications that consider periodicity in time windows, except those
that talk about vehicle routing, see Mesquita et al. (2013). We have taken the base of a typical
Shortest Path formulation with Time Windows, and we have extended it to use several of them.
See Linear Model 3.2.1.

• Sets:

V : Set of nodes of G

A : Set of arcs of G

Θi : Set of indices for time windows of node i

PREDk
i = {h | 〈h, i, g〉 ∈ Nk

i }

SUCCk
i = { g | 〈h, i, g〉 ∈ Nk

i }

52

LM 3.2.1 A Linear Program for SPPTL

Minimize T (t) (3.1)

subject to:

∑

g:(i,g)∈δ
+

i

xig −
∑

h:(i,h)∈δ
−

i

xhi =







1; i = s

0; i ∈ V \ { s, t }
−1; i = t,

∀i ∈ V, (3.2)

xij(Ti + tij − Tj) ≤ 0 ≡ Ti + tij − Tj ≤M(1− xij), ∀(i, j) ∈ A, (3.3)

a
k
i y

k
i ≤ Ti ≤ b

k
i +M(1− y

k
i), ∀i ∈ V, ∀k ∈ Θi, (3.4)

y
k
i −

∑

j∈PREDk
i

xji ≤ 0, ∀i ∈ V \ { s } , ∀k ∈ Θi, (3.5)

y
k
i −

∑

j∈SUCCk
i

xij ≤ 0, ∀i ∈ V \ { t } , ∀k ∈ Θi, (3.6)

xij −
∑

k∈Θj

y
k
j ≤ 0, ∀(i, j) ∈ A, (3.7)

xij ∈ { 0, 1 } , ∀(i, j) ∈ A, (3.8)

y
k
i ∈ { 0, 1 } , ∀i ∈ V, ∀k ∈ Θi, (3.9)

T (i) ∈ R+, ∀i ∈ V. (3.10)

• Parameters:

aki , b
k
i : Lower and upper bounds for the time window k at node i

tij : Time associated with arc (i, j)

• Variables:

xij =

{
1, if node j is visited after node i,
0, else

yki =

{
1, if the time window k ∈ Θi is selected at the node i,
0, else

T (i) : Departure time at node i

About the constraints:

• (3.2) : Flow conservation constraints.

• (3.3−3.4) : The typical sets of constraints to ensure departure time from node i plus travel
time to node j is not greater than departure time from node j. Also, if we are in node i
then the departure time from i must be inside its time window interval.

• (3.5 − 3.6) : Both inequalities can be written as the next single form:

53

2yki ≤
∑

h∈PREDk
i

xhi +
∑

g∈SUCCk
i

xig ;∀i ∈ V \ { s, t } , ∀k ∈ Θi

This means that if yki takes value 1 then must be chosen a predecessor and successor of i
from PREDk

i and SUCCk
i respectively.

• (3.7) : Ensure that if any xij = 1 then at least one time window k must be picked from
node j, i.e., one ykj must take the value 1.

• In the objective function 3.1 we are just minimizing the departure time at sink node t,
because this is the total time consumed by a vehicle passing through the network.

3.3 An Illustrative Example

Let D(V,A) be a directed graph (see Figure 3.1) with:

V = { s,A,B,C,D, t },
A = { (s,A), (s,B), (A,B), (A,C), (A,D), (B,C), (B,D), (C, t), (D,C), (D, t) }.

Figure 3.1: The directed graph D(V,A).

On each arc (i, j) of D, tij is the distance (in time units) to travel from i to j. Furthermore,
the possible movements to visit a node g through node a h being at node i (〈h, i, g〉) are given
by the sets:

N1
A = { 〈s,A,D〉 }, N2

A = { 〈s,A,B〉, 〈s,A,C〉 },

N1
B = { 〈s,B,C〉, 〈s,B,D〉 }, N2

B = { 〈A,B,C〉, 〈s,B,D〉 },

N1
C = { 〈A,C, t〉 }, N2

C = { 〈B,C, t〉, 〈D,C, t〉 }, N3
C = { 〈A,C, t〉 },

N1
D = { 〈A,D,C〉, 〈A,D, t〉 }, N2

D = { 〈B,D,C〉, 〈B,D, t〉 }, N3
D = { 〈A,D,C〉, 〈A,D, t〉 },

N4
D = { 〈B,D,C〉, 〈B,D, t〉 },

54

and their respective time windows are:

τ1A = [0, 5], τ2A = [5, 8],

τ1B = [2, 4], τ2B = [4, 8],

τ1C = [3, 5], τ2C = [5, 9], τ3C = [9, 11],

τ1D = [2, 4], τ2D = [4, 6], τ3D = [6, 8], τ4D = [8, 10].

Then we have ΘA = { 1, 2 }, ΘB = { 1, 2 }, ΘC = { 1, 2, 3 }, ΘD = { 1, 2, 3, 4 }.

As an example, if a vehicle arrives to node B from node A at time 7 then it can go only to
node C, as the corresponding node-triple for the time window τ2B = [4, 8] is 〈A,B,C〉.

The problem is finding a shortest path from s to t. Note that N1
C = N3

C , N
1
D = N3

D and
N2

D = N4
D. This is due to the periodicity of the time windows as a vehicle arrives and leaves a

node on the optimal path at some time; in this case the example starts from the time zero on s
and the time increase while passing through the graph. Then, for C and D we have decided to
repeat the node-triplets in order to allow the arrivals to go into a time window, as the time is
expected to be big if it is decided to cross them. Indeed, the time windows can be repeated as
much as we want to be included in the input data of the lineal model.

Figure 3.2: D(V,A) with the shortest path from s to t.

The solution by the Linear Model 3.2.1 is given in the Figure 3.2. On the nodes A and D
the triplet (a, b, c) represents:

(Departure time T (i),Waiting time on i,Time windows τki used).

The final path is Pd(s, t) is s → A → D → t, xsA = xAD = xDt = 1 and y1A = y3D = 1, the
remaining variables are zero.

Consider a modified version of the example previously shown:

• Just as before, let tij be the associate time on arc(i, j), set tDC = 1, tCt = 1 and tDt = 10.

• Change N3
D and N4

D by N3
D = { 〈A,D, t〉 } and N4

D = { 〈A,D,C〉, 〈A,D, t〉 } respectively.

55

The solution after run our model is:

Pd(s, t) = s → A→ D → C → t, xsA = xAD = xDC = xCt = 1 and y1A = y4D = y2C = 1, the
remaining variables are zero. Also, the triplets with the same meaning as before were A(4, 0, 1),
D(8, 3, 4) and C(9, 0, 2).

This example shows that even if a time window in one node allows to go to another one,
the model chooses to wait in favour of time minimization (tDt > tDC + tCt), as on node D the
vehicle had to wait for 3 units of time even though it could go directly to sink node t.

3.4 Conclusions, Remarks and Future Work

In this chapter we defined the SPPTL and proposed a novel MILP model based on the clas-
sical SPP formulation with periodic time windows. An instance presented in Chen and Yang
(2000) was solved. Unlike the modified Dijkstra’s algorithm proposed by Cheng and Yang, our
model does not give as a result a minimum cost arborescence, but a node-to-node path. The
arborescence can be obtained by using the linear model n− 2 times.

As mentioned in Section 3.1 the method proposed in Chen and Yang (2000) is a modified
Dijkstra’s algorithm. We would like to highlight that it suggests that other shortest path algo-
rithms can be modified in a similar way, such as Bellman-Ford or Floyd-Warshall. For example,
Bellman-Ford can be changed such that it takes into account the multiple time windows that
the problem requires with the same limitations (running time) and the same advantages (use of
negative arcs) that we can find in the version without traffic lights.

Finally, we would like to point out that a modelling alternative for SPPTL, which has not
been studied in this work, is to use a time-space network scheme. In this approach a time-space
plane is considered which unlike the connection-based approach, possible movements between
two nodes in SPPTL are modeled by directed arcs that are located through time to connect
intermediate nodes whenever the light of a traffic signal allows the movement. Models based
on this scheme have been successfully studied in scheduling problems, we refer the works of
Hane et al. (1995) and Kliewer et al. (2006) for fleet assignment and multi-depot bus scheduling
respectively. An application for vehicle routing problem with time windows can be found in
Mahmoudi and Zhou (2016). In the case of SPPTL, the representation of the behaviour of
traffic lights as periodic time windows suggests that this approach could be suitable to minimize
the number of restrictions or parameters that the proposed model contains, for example the Big-
M used in the constraints 3.3 and 3.4 could be discarded, since the time windows are implicitly
represented in the time-space plane. Our future work on this topic goes this way, we are looking
for the minimization of the proposed formulation by studying different ways of representing the
problem.

56

Part II

Simple Plant Location Problem with

Order

Chapter 4

A Lagrangean Relaxation Algorithm

for the Simple Plant Location

Problem with Order

The focus of this chapter is to develop a Lagrangean relaxation algorithm to solve the Simple
Plant Location Problem with Order (SPLPO). In particular, this chapter covers the theory about
Lagrangean and semi-Lagrangean relaxation and finds similarities in their use with the case
without order. As can be seen in the literature, these methods have been successful when have
been applied to Simple Plant Location Problem (SPLP), so we have exploited their properties to
be implemented to SPLPO. The results obtained by using subgradient and dual-ascent methods
to solve the dual programs for both relaxation are put together in one simple procedure that
additionally uses a heuristic procedure to find feasible solution as fast as possible. Results of
numerical experiments are carried out to show how good the procedure is.

4.1 Introduction

The Simple Plant Location Problem with Order (SPLPO) is a variant of the Simple Plant
Location Problem (SPLP), where the customers have preferences over the facilities which will
serve them. In particular, customers define their preferences by ranking each of the potential
facilities.

Let I = {1, . . . m} be a set of customers and J = {1, . . . n} a set of possible sites for opening
facilities. Unit costs cij ≥ 0 for supplying the demand of customer i from facility j and costs
fj ≥ 0 for opening a facility at j are also considered. It is said that k is i-worse than j if
customer i prefers facility j to k and it is written as k <i j. We define Wij = {k ∈ J | k <i j}
as the set of facilities k strictly i-worse than j, its complement as Wij and Wij ∪ {j} as W ′

ij.
Let xij be a decision variable that represents the fraction of the demand required by customer
i and supplied by facility j. Let yj be a binary variable such that yj = 1 if a facility is open at
location j and yj = 0 otherwise.

The SPLPO formulation (Cánovas et al., 2006) is as follows:

58

LM 4.1.1 Simple Plant Location Problem with Order

Min
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

fjyj,

subject to
∑

j∈J

xij = 1, ∀i ∈ I, (4.1)

xij ≤ yj, ∀i ∈ I,∀j ∈ J, (4.2)
∑

k∈Wij

xik ≥ yj, ∀i ∈ I, ∀j ∈ J, (4.3)

xij ≥ 0, ∀i ∈ I, ∀j ∈ J, (4.4)

yj ∈ {0, 1}, ∀j ∈ J. (4.5)

Equalities (4.1) ensure that every customer i will be supplied by exactly one facility j, they
are called assignment constraints. Constraints (4.2) ensure that if a customer i is supplied
by a facility j then j must be opened, they are usually called variable upper bounds (VUBs).
Inequalities (4.3) model the customers’ preference orderings and they were first presented in
Hanjoul and Peeters (1987).

Since no capacities are considered and the model minimizes the number of open facilities y’s,
the demand of a customer i can always be covered completely by one single facility. Therefore,
we can guarantee that there is an optimal solution where values variables xij are in {0, 1}.

There are in the literature many studies on how to solve the SPLP using different methods
and Lagrangean relaxation is one of the most successful. For example, in Cornuéjols et al.
(1977), the authors presented an application of Lagrangean relaxation to solve the SPLP in the
context of location of bank accounts. They also proposed a heuristic algorithm and studied the
Lagrangean dual to obtain lower and upper bounds. They also provided a bound for the relative
error of these methods. Beltrán et al. (2006) suggested, defined and applied the technique of
semi-Lagrangean relaxation to the p-median problem. Some years later the study was extended
to the SPLP, obtaining very good results. The method basically takes advantage of the linear
formulation of the problems. First, it splits equality constraints Ax = b into Ax ≤ b and Ax ≥ b,
and then relaxes the second one. The new model has the same objective value as the original
problem (it closes the duality gap), but with the cost of making the new problem more difficult
to solve. However, it has some properties that can be exploited. A summary of this method will
be reviewed later. Another reduced form of this method was proposed by Monabbati (2014),
which called it a surrogate semi-Lagrangean relaxation. A new algorithm for the dual problem
using Lagrangean heuristics for both the original and surrogated version of the semi-Lagrangean
relaxation can be found in Jörnsten (2016). Additional information about Lagrangean techniques
and heuristics applied to location problems can be found in Guignard and Opaswongkarn (1990)
and Wollenweber (2008) with works in the context of limited supply capacity of the facilities
and supply chain management respectively.

The SPLPO has been studied much less and the main results are on finding new valid
inequalities to strengthen the original formulation. Cánovas et al. (2006) provided a new family
of valid constraints which were used in combination with a preprocessing analysis. Another,
more general, family of valid inequalities can be found in Vasilyev et al. (2013) with a polyhedral
study. A branch and cut method was proposed by Vasilyev and Klimentova (2010).

59

Since these papers use exact methods that struggle to solve large instances, the aim of this
work is to develop a procedure that allows to solve the SPLPO efficiently in a heuristic way
by using Lagrangean and semi-Lagrangean relaxation techniques. We propose a variable fixing
heuristic that uses a Lagrangean relaxation output as the starting point of a semi-Lagrangean
relaxation to find good feasible solutions (often the optimal solution).

We start with Section 4.2.1 where we give a review of Lagrangean and semi-Lagrangean
relaxation. The SPLPO version of those models is shown in Section 4.3, 4.3.1, 4.4 and 4.4.1,
along with the methods that will be used later to solve their respective dual problems. The
complete procedure that we propose is presented in Section 4.5, where all the algorithms given
in previous sections will be gathered to build a heuristic procedure that uses just few parameters
to be set up. In Section 4.6 the whole method will be tested over a group of large instances.
Some conclusions are given in Section 4.7.

4.2 Preliminaries

In this section we review the main results of Lagrangean and semi-Lagrangean relaxation.

4.2.1 A Review of Lagrangean Relaxation

Let P be an original problem of the form:

minx{f(x) = cx | Ax ≤ b, Cx ≤ d, x ∈ X}

with:

• The set X could contain integrality constraints.

• The family of constraints Ax ≤ b will be assumed to be complicated. (i.e., the problem
(P) without them is easier to solve).

The family Ax ≤ b can be placed in the objective function with coefficients vector (La-
grangean multipliers) λ which work as penalties when they are violated.

Let v(p) be the optimal objective function value for a particular problem p.

Definition 6 (Lagrangean relaxation. Geoffrion (1974)). The Lagrangean relaxation problem
LR(λ) related to (P) with multipliers λ is:

LR(λ) = minx{f(x) + λ(Ax− b) | Cx ≤ d, x ∈ X,λ ≥ 0} (4.6)

Theorem 7 (Geoffrion (1974)). For all x ∈ X feasible for P and any λ ≥ 0, f(x)+λ(Ax−b) ≤
f(x) (lower bound). Therefore, v(LR(λ)) ≤ v(P).

Proof. Since that x ∈ X is feasible for P then Ax− b ≤ 0.

The best multiplier λ is the one that produces the best lower bound for P .

Definition 7 (Lagrangean dual problem LD).

LDλ = maxλ≥0minx{f(x) + λ(Ax− b) | Cx ≤ d, x ∈ X,λ ≥ 0} = maxλ≥0LR(λ)

Theorem 8 (Geoffrion (1974)). The objective function in LR(λ) is a piecewise linear concave
function of λ over its domain.

60

Proof. For convenience suppose that P is feasible and the set of feasible solutions of LR(λ) is
finite. In this case, since LR(λ) = −λb +minx{(c + λA)x | Cx ≤ d, x ∈ X,λ ≥ 0}, it can be
seen that LR(λ) is the minimum of a finite number of affine functions. Therefore, it is a concave
function of vector λ.

The most used methods to solve LDλ use the definition of subgradient due to piecewise
nature of the function in LR(λ).

Definition 8. Let f : Rn → R be a concave function. The vector s is a subgradient of f at
point x̃ if f(x)− f(x̃) ≤ (x− x̃)s, for all x ∈ Rn.

Theorem 9. Let x∗ be an optimal solution for LR(λ∗), then Ax∗ − b is a subgradient of LR(λ)
at point λ∗.

Proof.

v(LR(λ)) ≤ cx∗ + λ(Ax∗ − b)

= cx∗ + λ∗(Ax∗ − b) + (λ− λ∗)(Ax∗ − b)

= v(LR(λ∗)) + (λ− λ∗)(Ax∗ − b),

and it is true for any λ ≥ 0.

The next results are three important facts about Lagrangean relaxation. More details can
be found in Geoffrion (1974), also see Conforti et al. (2014), Fisher (2004) and Guignard (2003).

Theorem 10 (Geoffrion (1974)). If {x | Ax ≤ b, x ≥ 0, x ∈ conv {x | Cx ≤ d, x ∈ X}} is not
empty, then

LDλ = min {cx | Ax ≤ b, x ∈ conv {x | Cx ≤ d, x ∈ X}}

Proof. Let Fx ≤ g be such that {x | Fx ≤ g} = conv {x|Cx ≤ d, x ∈ X}. Then

LR(λ) = minx{cx+ λ(Ax− b)|Fx ≤ g, x ∈ X,λ ≥ 0}

= max {λb+ µg | µF ≥ −c− λA, λ ≥ 0, µ ≥ 0} (by duality)

Therefore, its associated Lagrangean dual problem is

LD′
λ = maxλLR(λ)

= max {λb+ µg | λA+ µF ≥ −c, λ ≥ 0, µ ≥ 0} ,

which is the dual of LDλ = min {cx | Ax ≤ b, Fx ≤ g} with the same optimal value because the
primal is feasible.

Corollary 1 (Geoffrion (1974)). Let LP (P) be the problem P without integrality constraints
(linear relaxation).

v(LP (P)) ≤ v(LDλ) ≤ v(P)

Corollary 2 (Geoffrion (1974)). v(LP (P)) = v(LDλ) whenever v(LP (LDλ)) = v(LDλ) (in-
tegrality property). For pure integer programming, this is true if the matrix of coefficients of
Cx ≤ d in LR(λ) is unimodular and d is an integral vector.

61

4.2.2 A Review of Semi-Lagrangean Relaxation

Consider the problem P ′:

minx{f(x) = cx | Ax = b, x ∈ X}

with:

• The set X contains integrality constraints.

• A, b and c are non-negative.

Definition 9 (Semi-Lagrangean relaxation. Beltrán et al. (2006)). The semi-lagrangean relax-
ation problem SLR(λ) related to P ′ with multipliers λ is:

SLR(λ) = minx{f(x) + λ(b−Ax) | Ax ≤ b, x ∈ X,λ ≥ 0} (4.7)

In (4.7), Ax ≥ b has been relaxed with a vector multiplier λ and Ax ≤ b has been kept as a
constraint after splitting Ax = b.

Definition 10 (Semi-Lagrangean dual problem SLDλ, Beltrán et al. (2006)).

SLDλ = maxλ≥0SLR(λ)

Theorem 11 (Beltrán et al. (2006)).

v(LP (P ′)) ≤ v(LDλ) ≤ v(SLDλ) ≤ v(P ′)

Proof. If for the same problem, the same equality constraint is relaxed and semi-relaxed, then
v(LR(λ)) ≤ v(SLR(λ)), because SLR(λ) is more constrained. The other relations are the same
as given in Corollary 1.

The theorem can be extended to the case of a problem where inequalities and equalities con-
straints are relaxed and semi-relaxed respectively, i.e. these relations are constraints dependant.

Theorem 12 (Beltrán et al. (2006)). v(P ′) = v(SLDλ)

Proof. Applying the Theorem (10) to problem P ′ yields:

SLDλ = minx {cx | Ax ≥ b, x ∈ conv {x | Ax ≤ b, x ∈ X}}

= minx {cx | Ax ≥ b,Ax ≤ b, x ∈ X} (by theorems (4.1 and 4.3) in Conforti et al. (2014))

= minx {cx | Ax = b, x ∈ X} .

Theorem 13 (Beltrán et al. (2006)). The objective function in SLR(λ) is concave, non-decreasing
on its domain and b−Ax is a subgradient at point λ.

Proof. The function is concave by Theorem 8. Let λ and λ′ be such that λ ≥ λ′ and let x∗λ and
x∗λ′ be two optimal solutions of SLR at λ and λ′ respectively. Then:

62

v(SLR(λ)) = cx∗λ + λ(b−Ax∗λ)

= cx∗λ + λ′(b−Ax∗λ) + (λ− λ′)(b−Ax∗λ) (since λ− λ′ ≥ 0 and Ax∗λ ≤ b must be held)

≥ cx∗λ + λ′(b−Ax∗λ)

≥ cx∗λ′ + λ′(b−Ax∗λ′) (since x∗λ′ minimizes cx+ λ′(b−Ax))

= v(SLR(λ′)),

This proves that the function in SLR(λ) is non-decreasing. This argument also proves the
last statement because it implies that v(SLR(λ′)) ≤ cx∗λ + λ′(b − Ax∗λ), then v(SLR(λ′)) −
v(SLR(λ)) ≤ cx∗λ + λ′(b − Ax∗λ) − v(SLR(λ)) and therefore v(SLR(λ′)) − v(SLR(λ)) ≤ (λ′ −
λ)(b−Ax∗λ).

Because SLR(λ) is concave and non-decreasing, then there is a set [λ∗,+∞) where with any
of its elements we met the same optimal solution of SLR(λ).

More details about semi-lagrangean relaxation can be seen in Beltrán et al. (2006, 2012).

4.3 A Lagrangean Relaxation for SPLPO

In this section we consider a Lagrangean Relaxation for the SPLPO. After trying different
combinations of constraints to relax, we decided to relax (4.1) and (4.3) since as it will be shown
later our first result shows that the proposed model is easy to solve. This will be particularly
useful for the method that we will use to solve the associated Lagrangean dual problem.

If we relax constraints (4.1) and (4.3), then they are moved to the objective function with
penalty coefficients (multipliers) when they are violated, thus obtaining the following Lagrangean
relaxation problem LR(µ, λ):

min
(x,y)

∑

i

∑

j

cijxij +
∑

j

fjyj +
∑

i

µi



1−
∑

j

xij



+
∑

i

∑

j

λij



yj −
∑

k∈Wij

xik





= min
(x,y)

∑

i

∑

j

(cij − µi)xij −
∑

i

∑

j

λij
∑

k∈Wij

xik +
∑

j

(

fj +
∑

i

λij

)

yj +
∑

i

µi

subject to: (4.2), (4.4) and (4.5).

The multiplier vectors µ and λ in LR(µ, λ) are unrestricted in sign and nonnegative, respectively.
Let F (P) be the set of feasible solutions of problem P . Then for all (x, y) ∈ F (SPLPO) the

objective function of LR(µ, λ) evaluated in (x, y) is always less than or equal to the objective
function of P evaluated in (x, y). Therefore v(LR(µ, λ)) ≤ v(SPLPO).

In order to obtain the best lower bound for SPLPO, we need to solve the following Lagrangean
dual problem:

LDµλ = max
µ∈R,λ≥0

LR(µ, λ).

63

Suppose that each customer i ranks the different potential facilities j with a number pij ∈
{1, . . . , n} with 1 and n the most and the least preferred, respectively. Since each multiplier λij
in a term of

∑

i

∑

j λij
∑

k∈Wij
xik in LR(µ, λ) will be multiplied by a sum of pij variables xik

with k ≥i j, then each xij will be multiplied by a sum of (n − pij + 1) values λik with k ≤i j.
Therefore:

∑

i

∑

j

λij
∑

k∈Wij

xik =
∑

i

∑

j

(
∑

k∈W ′
ij

|W ′
ij |=n−pij+1

λik

)

xij,

and LR(µ, λ) can be rewritten as:

LR(µ, λ) = min
(x,y)

∑

i

∑

j

(

cij − µi −
∑

k∈W ′
ij

λik

)

xij +
∑

j

(

fj +
∑

i

λij

)

yj +
∑

i

µi,

subject to: (4.2), (4.4) and (4.5).

As in Cornuéjols et al. (1977), this Lagrangean problem is easy to solve analytically for fixed
vectors µ and λ. If we define Λij as:

Λij =
∑

k∈W ′
ij

λik,

then we have the following result:

Theorem 14. An optimal solution for LR(µ, λ) can be obtained as follows:

yj =

{
1, if

∑

i min(0, cij − µi − Λij) + (fj +
∑

i λij) < 0,
0, otherwise.

and,

xij =

{
1, if yj = 1 and (cij − µi − Λij) < 0,
0, otherwise.

Proof. We have that:

LR(µ, λ) = min
(x,y)

∑

i

∑

j

(

cij − µi − Λij

)

xij +
∑

j

(

fj +
∑

i

λij

)

yj +
∑

i

µi,

= min
(x,y)

∑

j

[
∑

i

(

cij − µi − Λij

)

xij +

(

fj +
∑

i

λij

)

yj

]

+
∑

i

µi,

subject to: (4.2), (4.4) and (4.5).

As a consequence of constraints (4.2) and for fixed vectors µ and λ, the optimal values for
xij will be xij = 1 if yj = 1 and cij − µi − Λij < 0, otherwise xij = 0. Then, if we define
ρj(µ, λ) =

∑

imin(0, cij − µi − Λij) + (fj +
∑

i λij), then the optimal vector y can be obtained
by solving the following minimization problem:

64

min
∑

j

ρj(µ, λ)yj ,

subject to: yj ∈ {0, 1}.

The solution to this problem is straightforward.

An issue with this model is that LR(µ, λ) has the integrality property, that is, its optimal
value is equal to the standard linear relaxation LP (SPLPO). Furthermore, the values obtained
of the function LR(µ, λ) during the search of the solution for LDµλ are infeasible to the original
problem SPLPO. So, as an alternative, we propose to use the solution of this problem as a
starting point for another procedure that allows us to find feasible solutions to SPLPO.

4.3.1 Subgradient Method for the Lagrangean Dual LDµλ

The subgradient method was originally proposed by Held and Karp (1971) and validated by
Held et al. (1974). Given multipliers λ and µ, this method tries to optimize LD by taking steps
along a subgradient of LR(µ, λ). A sketch of the whole procedure is given in Algorithm 4.3.1.

Algorithm 4.3.1 Subgradient method (SG) for SPLPO.

Let LD = max(µ,λ)LR(µ, λ) with µ ∈ R and λ ≥ 0.

Step 1. (Initialization). Let LRAIM by a heuristic method. Set β = 2. Let k be an integer number. Let q be a
number in [0, 1]. Let [µ0, λ0] be a starting point.

Step 2. (Obtaining values x0
ij , ∀i, j and y0j ,∀j). Find LR

0
best = LR(µ0, λ0). Set iter = 0.

Step 3. (Finding a subgradient). Find a subgradient siter for LR(µiter, λiter).

Step 4. (Stop criterion). If siter = 0, STOP and [µiter, λiter] is optimal.
Otherwise, go to Step 5.

Step 5. (Step size). Let αiter = β
LRAIM−LR(µiter ,λiter)

‖siter‖2
2

.

If LR(µiter, λiter) does not improve for k consecutive iterations, set β = β ∗ q.

Step 6. (Updating multipliers) Set
[µiter+1, λiter+1] = [(µiter + αitersiterµ),max(0, λiter + αitersiterλ)].

Step 7. (Updating incumbent). Let
LRiter+1

best = max{LRiter
best, LR(µ

iter+1, λiter+1)}. Update iter = iter + 1.

Step 8. (Stop criterion). If iter =MAXiter, STOP. Otherwise go to Step 3.

There are other methods to solve the lagrangean dual (see Guignard (2003)). However,
all of them must be adapted to the characteristics of a specific problem to make them more
efficient. For example, in Erlenkotter (1978) is presented a dual-based procedure for the Simple
Plant Location Problem (without order) that takes advantage of its linear programming dual
formulation and with an ascent and adjustment procedure frequently produces optimal dual
solutions that often correspond to optimal primal solutions. It is probably that for the SPLPO
case this is not possible due to the inclusion of the customers’ preference ordering constraints.
As can be seen in Steps 2 and 5, at each iteration, we need to solve an instance of LR(µ, λ).
Each of them is easy to solve, as shown in Theorem 14, so we decided to take advantage of this

65

property and use the subgradient method. The computation of the vector of subgradients is also
easy:

s =







1−
∑

j∈J

xij ;∀i

yj −
∑

k∈Wij

xik;∀i, j






=

[
sµ
sλ

]

∈ Rm(n+1),

is a subgradient for LR(µ, λ). If this vector is 0, then the procedure ends.
In our computational experiments, that will be showed later, an upper bound for LRAIM

in Step 5 is found using a simple heuristic. See Algorithm 4.3.2. First, it opens a facility that
supplies all customers with the lowest operating cost and it is removed from the set J ′ = J .
Then, for each unopened one, each customer compares and chooses the most preferred facility
between it and its previously assigned supplier. The new cost is saved. The new open facility is
the one with the lowest operating cost. It is removed from J ′. This is repeated until J ′ = {}.

We also tried another heuristic. It is basically the same that for Hc with a different Step 4
which allows the algorithm to stop earlier. We name it Hs (see Algorithm 4.3.3) and its results
will be reported later.

Algorithm 4.3.2 Heuristic to find an upper bound for SPLPO (Hc).

Let G(I × J,E = {}) be a bipartite graph.

Step 1. Find j0 ∈ J such that
∑

i cij0 = min{
∑

i ci1, . . . ,
∑

i cin}.
Set J ′ = J \ {j0}, E = {(i, j0)} and TCprev =

∑

i cij0 .

Step 2. For all j ∈ J ′, do:
Set Ej = {}.

For all i ∈ I , do:
Find kpref such that pikpref

= min[{pij} ∪ {pik | (i, k) ∈ E}].
Set Ej = Ej ∪ {(i, kpref)}.
Compute TCj =

∑

(i,j)∈Ej
cij .

Step 3. Find j0 such that TCj0 = min{TCj | j = 1, . . . , n}. Set J ′ = J ′ \ {j0} and E = Ej0 .

Step 4. If J ′ = {}, STOP. Otherwise go to Step 2.

Algorithm 4.3.3 Hs.

Step 1..3. Same as Hc.

Step 4. If CTj0 ≥ CTprev then STOP. Otherwise, set CTprev = CTj0 and go to Step 2.

It is possible, due to an overestimation of LRAIM , that the function LR(µ, λ) does not
improve for many iterations. This can be overcome by setting the parameter β to a fixed value
(for example, 2) and reducing it slowly.

In Step 6, we need vector λ to be nonnegative, therefore in the nonnegative orthant, i.e.,
[λi]

+ = max{0, λi}, for all of its components. µ must remain unchanged as it is an unrestricted
vector.

Further details can be found in (Guignard, 2003; Conforti et al., 2014) and Poljak (1967) for
the step size in Step 5 in Algorithm 4.3.1.

66

4.4 A Semi-Lagrangean Relaxation for SPLPO

Now we use the technique of the Semi-Lagrangean relaxation, as this leads to close the duality
gap. The equality constraints (4.1) have been split into two inequalities

∑

j∈J xij ≤ 1 and
∑

j∈J xij ≥ 1 to obtain the following model:

SLR(γ) = min
(x,y)

∑

i

∑

j

cijxij +
∑

j

fjyj +
∑

i

γi



1−
∑

j

xij



 ,

= min
(x,y)

∑

i

∑

j

(cij − γi) xij +
∑

j

fjyj +
∑

i

γi,

= min
(x,y)

∑

j

(
∑

i

(cij − γi) xij + fjyj

)

+
∑

i

γi,

subject to: (4.2), (4.3), (4.4), (4.5), and
∑

j∈J xij ≤ 1. Every component of the multipliers vec-
tor γ is nonnegative.

As mentioned in Section 4.2.1, the objective function is concave and non-decreasing in its
domain. Therefore, its semi-Lagrangean dual problem:

SLDγ = max
γ≥0

SLR(γ),

can be solved using an ascent method. Also, as pointed out, there is a set Q = [γ∗,+∞) such
that, for any q ∈ Q the optimum of SLR(γ) is met.

For the SPLP (no preferences), Beltrán et al. (2012) proved that there is a closed interval
where the search of the multipliers could be done. Following the same idea, we provide the next
two results for the SPLPO:

Theorem 15. Let cpi = maxj{cij + fj} and let cp = (cp1, . . . , cpm) be the maximum of the
costs for each customer i associated to each facility j and the vector of these costs, respectively.
If γ ≥ cp, then γ ∈ Q.

Proof. As we know, the semi-Lagrangean relaxation closes the duality gap if for all i,
∑

j∈J xij =
1. Assume that SLR(γ) < ∞, otherwise the proposition is trivially true. By hypothesis,
cpi−γi ≤ 0 for all i ∈ I. If we choose j′ such that cpi = cij′+fj′, it turns out in (cij′−γi)+fj′ ≤ 0,
and this inequality is true for any j since j′ gives the maximum among all cij + fj. Therefore,
the event

∑

j∈J xij = 0 can not happen at an optimal solution, because it is always possible to
set xij = 1 and yj = 1 for all i and j meeting all the constraints.

Theorem 16 (Beltrán et al. (2012)). For each i ∈ I, let c1i ≤ . . . ≤ cni be the sorted costs cij .
If γ < c1 then γ /∈ Q.

Proof. By hypothesis c1i −γi > 0, then cji −γi > 0 for all j ∈ J . In that case, x∗ij = 0 for all j ∈ J
in any optimal solution x∗γ . Therefore,

∑

j∈J xij = 1 can not happen at an optimal solution and
γ /∈ Q.

The result of Theorem 15 is weaker than the obtained by Beltrán et al. (2012) for SPLP in
the following sense. They choose cpi equal to minj{cij+fj}, but with this, there is no guarantee
that the preference constraints hold. We can set x∗ij′ = 1 and yj′ = 1 for the particular j′ such
that minj{cij + fj} = cij′ + fj′ but not necessarily for all j, as in this way, are not available all

67

the possible combinations of x’s and y’s that consider all customers preferences. Therefore, we
are taking the risk of obtaining a non optimal solution.

The interval of search for γ components is then:

B = {γ | c1 < γ ≤ cp}. (4.8)

Using the sorted costs c1i ≤ . . . ≤ cni , each component γi of γ can be either in an interval

of the form Ij = (cji , c
j+1
i] where j ∈ {1, . . . ,m − 1} or out of it. For the first case, there are

infinite values of γi that can belong to a single interval (cji , c
j+1
i], but each of them has the same

effect on the optimal value of SLR(γ). This is because going from an interval Ij to the next
Ij+1 could imply a change in the choice of the arc (i, j) to the arc (i, j+1) in the bipartite graph
Gγ = (I × J,E = {(i, j) | xij = 1 in the solution of SLR(γ)}), which means a change in the
solution. Hence, we just need a single γi representative of the intervals. As γ goes to infinity
all combined costs (cij − γi) + fj become negative, and hence the semi-Lagrangean relaxation
problem can be as difficult to solve as the original SPLPO problem. Then, it is always convenient
to choose a γi ∈ Ii as smaller as possible, that is, at an epsilon ǫ distance from the lower bound
of an interval. Also, it is easy to check that cni is always less than cpi if fj ≥ 0. These ideas will
be applied in the ascent method used later.

4.4.1 Dual Ascent Method for the Semi-Lagrangean Dual SLDγ

In general, a dual ascent algorithm modifies a current value of multipliers in order to achieve a
steady increase in SLR(γ), see Bilde and Krarup (1977). In our case this is possible due to the
aforementioned properties. The method we used is explained under Algorithm 4.4.1.

Algorithm 4.4.1 Dual ascent method (DA) for SLDγ .

Let c1i ≤ . . . ≤ cni be the sorted costs cij and let γ0 be an initial vector γ.

Step 1. (Initialization). Set ǫ > 0, iter = 0. If k > n, cki = cpi.
For all i ∈ I do:
cpi = maxj{cij + fj},

If γ0
i < c1i , then γ

0
i = c1i + ǫ,

Else,
If γ0

i > cni , then γ
0
i = cni ,

Else,
find a ji such that γi belongs to (cjii , c

ji+1
i], and set γ0

i = c
ji
i + ǫ.

Step 2. (Obtaining values xiter
ij and yiterj). Solve SLR(γiter).

Step 3. (Finding a subgradient). Find a subgradient siter of SLR(γiter).

Step 4. (Stop criterion). If siter = 0, STOP and γiter is optimal. Otherwise, go to Step 5.

Step 5. (Updating multipliers) For each i such that siteri = 1, ji = ji + 1 and
γiter+1
i = min{cjii + ǫ, cpi}. Set iter = iter + 1. Go to step 2.

In Step 1, the algorithm gives an appropriate position of the terms of an initial multipliers
vector in the intervals Ij . In Step 2, the procedure needs to solve a sequence of problems
SLR(γ), but due to the preference constraints, they are not as easy to solve as in the Lagrangean
relaxation case LR(µ, λ) proposed before. However, it is possible to set some variables xij equal
to 0 in advance, in order to make it easier. Every xij must be 0 if cij − γi > 0.

A subgradient for SLR(γ) is computed in Step 3 as:

68

s =



1−
∑

j∈J

xij;∀i



 = [sγ] ∈ Rm,

where each component of s belongs to {0, 1} as the
∑

j∈J xij ≤ 1 must be satisfied.
In Step 4, a stop criterion is given. Finally, the multipliers are updated (increased) by

jumping from the current to the next Ij interval for each component i in γ.

4.5 Speeding Up the Search for the Optimal Solution

After a certain number of iterations of DA that has been fixed beforehand, we apply a variable
fixing heuristic VFH that takes, among all yj = 1, a percentage of them by sorting this set of yj’s
by a determined criterion. Then, it sets all the selected yj equal to 1. Finally the subproblem
is solved. The method is described under Algorithm 4.5.1.

Algorithm 4.5.1 Variable fixing heuristic (VFH) to speed up DA.

Let SLRγ be an instance of DA after k iterations.
Let Yγ be a set of yj ’s equal to 1 at instance SLRγ .

Step 1. Set ps ∈ [0, 1] ∈ R. Sort the elements of Yγ such that yj ≺ yk if
∑

i(cij + fj) <
∑

i(cik + fk).

Step 2. Choose the first ps× 100% smallest elements from the sorted Yγ to form the set Y subset
γ .

Step 3. Set, yj = 1 for all yj ∈ Y subset
γ .

Step 4. Solve the original SPLPO.

Step 1 shows the criterion that we used to sort variables yj. We also tried to sort it by
yj ≺ yk if

∑

i pij <
∑

i pik, where the p’s are the preferences. We obtained similar results, but
the option proposed in Algorithm 4.5.1 was slightly better.

Another important issue is the starting point for the DA. We have tried two different starting
γ vectors, γ = 0 and γ equal to µ, which is one of the multipliers that can be found using the
subgradient method SG for LDµλ after a certain number of iterations. This µ is the penalization
associated with the relaxed family of constraints (4.1). We obtained better results with the
second approach. Furthermore, each sub-problem LR(µ, λ) to be solved in the optimization of
LDµλ is easy, see Theorem 14. For SG we used µ0i = minj{cij + fj} for all i ∈ I and λij = 0 for
all i ∈ I and j ∈ J .

The whole accelerated dual ascent procedure is presented in Algorithm 4.5.2.

Algorithm 4.5.2 Accelerated dual ascent algorithm. (ADA).

Step 1. Set µ0
i = minj{cij + fj} for all i ∈ I and λij = 0 for all i ∈ and j ∈ J .

Step 2. Run SG(µ0, λ0) during sg iter iterations. Find the iteration best sg iter where is the best value of
LR(µ, λ). Set γ0 = µbest sg iter.

Step 3. During da iter iterations, run DA(γ0).

Step 4. During vfh iter run DA. Get Yγ and run VFH. Save the solution.

Step 5. Find the best solution in the history and get best values for xij and yj .

69

4.6 Computational Results

In this section we present the computational results obtained after having applied the algorithms
shown before. The experiments have been carried out on a PC with Intel® Xeon® 3.40 GHz
processor and 16 Gb of RAM under a Windows® 7 operative system. All the procedures and
algorithms have been written using the version 4.0.3 of the Mosel Xpress language and when a
MIP problem needed to be solved we used FICO Xpress® version 8.0.

The instances were, at first, taken from Cánovas et al. (2006), which are based on the
Beasley’s OR-Library (see Beasley, 1990). These are:

131, 132, 133, 134: m = 50 and n = 50,
a75 50, b75 50, c75 50: m = 75 and n = 50,
a100 75, b100 75, c100 75: m = 100 and n = 75.

Additional data sets were generated using the same algorithm proposed in Cánovas et al.
(2006):
a125 100, b125 100, c125 100: m = 125 and n = 100,
a150 100, b150 100, c150 100: m = 150 and n = 100.

The headers of the tables have the following meanings:

• Prob: Name of the problem.

• Opt: Optimal objective function value of the problem P.

• y j: Number of opened facilities.

• bestUB: Best upper bound.

• GAPo (%): bestUB-Opt (bestUB-Opt
Opt × 100%). The absolute and relative gap between the

optimal and the value of an algorithm.

• GAPLP:
LP(P)-SG
LP(P) × 100%. The relative gap between the linear relaxation and the lower

bound of the Lagrangian relaxation.

• LP(P): Linear relaxation value for problem P.

• SG: Best value using the subgradient method for LDµλ.

• iter (itbsol.): Number of iterations (iteration where best solution was found).

• t (Tt): CPU time in seconds (Total time).

• sol10%: First solution found that is within 10% or less of the optimal solution.

• UB (LB): Upper bound (Lower bound).

First, we show in Table 4.1 the results for Algorithms Hs and Hc. As can be seen, we obtain
better results with the second one. It finds the optimal solution for 6 of the first 16 problems
and in the rest of the instances it is not too far from the optimal with an average gap of 4.65%.
All runs performed took less than 1 second whereas Xpress needs between 3 and 12 to solve
these instances to optimality. The value obtained by Hc was used as an upper bound for the
SG method, Algorithm 4.3.1.

70

Table 4.1: Comparison between upper bounds heuristics Hs and Hc.

Hs Hc

Prob Opt y j bestUB GAPo GAPo% y j bestUB GAPo GAPo% y j

131 1 1001440 6 1001440 0 0.00% 6 1001440 0 0.00% 6

131 2 982517 9 1003100 20583 2.09% 5 982517 0 0.00% 9

131 3 1039853 10 1248143 208290 20.03% 1 1139012 99159 9.54% 9

131 4 1028447 9 1248143 219696 21.36% 1 1049791 21344 2.08% 7

132 1 1122750 8 1248143 125393 11.17% 1 1239961 117211 10.44% 7

132 2 1157722 9 1248143 90421 7.81% 1 1199057 41335 3.57% 9

132 3 1146301 6 1248143 101842 8.88% 1 1146301 0 0.00% 6

132 4 1036779 5 1248143 211364 20.39% 1 1036779 0 0.00% 5

133 1 1103272 7 1248143 144871 13.13% 1 1103272 0 0.00% 7

133 2 1035443 5 1248143 212700 20.54% 1 1100713 65270 6.30% 7

133 3 1171331 6 1248143 76812 6.56% 1 1208198 36867 3.15% 4

133 4 1083636 9 1248143 164507 15.18% 1 1090582 6946 0.64% 9

134 1 1179639 4 1248143 68504 5.81% 1 1179639 0 0.00% 4

134 2 1121633 7 1248143 126510 11.28% 1 1205809 84176 7.50% 5

134 3 1171409 6 1248143 76734 6.55% 1 1173693 2284 0.19% 7

134 4 1210465 3 1248143 37678 3.11% 1 1248143 37678 3.11% 1

a75 50 1 1661269 7 1787955 126686 7.63% 1 1787955 126686 7.63% 1

a75 50 2 1632907 6 1784848 151941 9.30% 2 1779576 146669 8.98% 4

a75 50 3 1632213 7 1738404 106191 6.51% 3 1738404 106191 6.51% 3

a75 50 4 1585028 5 1787955 202927 12.80% 1 1709978 124950 7.88% 5

b75 50 1 1252804 8 1374685 121881 9.73% 8 1343201 90397 7.22% 10

b75 50 2 1337446 9 1403629 66183 4.95% 5 1403629 66183 4.95% 5

b75 50 3 1249750 9 1368788 119038 9.52% 8 1368788 119038 9.52% 8

b75 50 4 1217508 9 1348203 130695 10.73% 10 1348203 130695 10.73% 10

c75 50 1 1310193 11 1390321 80128 6.12% 8 1375386 65193 4.98% 11

c75 50 2 1244255 10 1316595 72340 5.81% 11 1316595 72340 5.81% 11

c75 50 3 1201706 12 1386817 185111 15.40% 13 1386817 185111 15.40% 13

c75 50 4 1334782 11 1440836 106054 7.95% 5 1440836 106054 7.95% 5

a100 75 1 2286397 4 2476632 190235 8.32% 1 2459349 172952 7.56% 4

a100 75 2 2463187 3 2476632 13445 0.55% 1 2476632 13445 0.55% 1

a100 75 3 2415836 3 2476632 60796 2.52% 1 2467003 51167 2.12% 3

a100 75 4 2380150 4 2476632 96482 4.05% 1 2476632 96482 4.05% 1

b100 75 1 1950231 8 2061201 110970 5.69% 7 2061201 110970 5.69% 7

b100 75 2 2023097 8 2389395 366298 18.11% 1 2180286 157189 7.77% 8

b100 75 3 2062595 8 2133724 71129 3.45% 8 2133724 71129 3.45% 8

b100 75 4 1865323 9 1994265 128942 6.91% 7 1994265 128942 6.91% 7

c100 75 1 1843620 6 2107973 264353 14.34% 5 2090221 246601 13.38% 7

c100 75 2 1808867 11 2025331 216464 11.97% 9 2005071 196204 10.85% 13

c100 75 3 1820587 8 2019651 199064 10.93% 7 2019651 199064 10.93% 7

c100 75 4 1839007 9 2046525 207518 11.28% 8 2046525 207518 11.28% 8

Table 4.2 shows the performance of the subgradient method SG (Algorithm 4.3.1) over the
first 40 data sets. The algorithm was stopped when the parameter β was equal to 0 with a
starting value of 2, and it was decreasing linearly at a rate of 0.005 if a solution did not change
after 30 iterations. Due to the behaviour of the SG, we also show the results for the first solution
within a 10% from LP(P). This shows that SG method can be stopped earlier to obtain similar
objective function values, see Figure 4.1.

71

Table 4.2: Computational results of subgradient method.

Until β = 0 First solution < 10%

Prob LP(P) SG itbsol iter t GAPLP sol10% iter t GAPLP

131 1 925492 881876 1474 1500 19 4.71% 833518 613 8 9.90%

131 2 925195 872136 1450 1500 19 5.73% 833747 695 9 9.90%

131 3 955447 929854 1488 1500 20 2.68% 860178 636 8 10.00%

131 4 933025 903486 1462 1500 19 3.17% 841581 580 7 9.80%

132 1 1007417 981624 1500 1500 19 2.56% 907222 479 6 9.90%

132 2 990513 957530 1389 1425 18 3.33% 897874 445 6 9.40%

132 3 1009054 974902 1500 1500 19 3.38% 911244 658 8 9.70%

132 4 966305 910344 1388 1434 18 5.79% 869850 604 8 10.00%

133 1 998199 958109 1395 1498 19 4.02% 898706 593 8 10.00%

133 2 971719 947626 1443 1500 19 2.48% 882263 423 5 9.50%

133 3 1023593 982907 1473 1500 19 3.97% 927636 565 7 9.40%

133 4 1001253 948311 1489 1500 19 5.29% 902108 634 8 9.90%

134 1 1226933 1013753 1192 1226 16 2.21% 933610 375 5 9.90%

134 2 1041770 998540 1165 1239 16 4.15% 942697 530 7 9.50%

134 3 1023070 994435 1155 1286 16 2.80% 921339 415 5 9.90%

134 4 1050134 1003356 980 1026 13 4.45% 945217 439 6 10.00%

a75 50 1 1201542 1169011 732 850 17 2.71% 1096795 106 2 9.40%

a75 50 2 1188359 1158500 829 896 18 2.51% 1076464 107 2 9.40%

a75 50 3 1189183 1167203 936 999 20 1.85% 1073799 157 3 9.70%

a75 50 4 1200068 1175405 854 937 19 2.06% 1094899 106 2 8.80%

b75 50 1 900617 879687 1118 1182 24 2.32% 812083 334 7 9.80%

b75 50 2 922048 896384 1111 1211 25 2.78% 830962 381 8 9.90%

b75 50 3 897073 882132 1208 1271 25 1.67% 808366 326 7 9.90%

b75 50 4 885392 856157 784 925 19 3.30% 801482 281 6 9.50%

c75 50 1 892837 879074 845 876 18 1.54% 804437 304 6 9.90%

c75 50 2 882933 870772 1120 1175 23 1.38% 797745 317 6 9.60%

c75 50 3 859591 852325 1013 1050 22 0.85% 786773 347 7 8.50%

c75 50 4 928064 891598 924 1084 22 3.93% 837696 415 8 9.70%

a100 75 1 1800032 1725539 635 721 41 4.14% 1626622 99 6 9.60%

a100 75 2 1793377 1723484 679 728 42 3.90% 1618944 99 6 9.70%

a100 75 3 1788395 1724444 664 745 42 3.58% 1632328 103 6 8.70%

a100 75 4 1795298 1702235 482 678 38 5.18% 1620377 100 6 9.70%

b100 75 1 1330138 1289189 1010 1116 63 3.08% 1198182 187 11 9.90%

b100 75 2 1353824 1284338 652 691 39 5.13% 1225149 373 21 9.50%

b100 75 3 1351603 1306286 987 1044 59 3.35% 1217952 270 15 9.90%

b100 75 4 1332525 1258497 432 679 38 5.56% 1201093 157 6 9.90%

c100 75 1 1250876 1168284 510 710 40 6.60% 1127235 303 17 9.90%

c100 75 2 1239182 1154640 533 738 42 6.82% 1119427 424 24 9.70%

c100 75 3 1232462 1173522 670 804 46 4.78% 1115951 270 15 9.50%

c100 75 4 1243861 1194966 895 942 54 3.93% 1121515 356 20 9.80%

After the time reported, SG did not obtain the value LP (P) for any of the problems. How-
ever, as mentioned before, the SG will be useful to find initial multipliers for the dual ascent
procedure DA.

72

Figure 4.1: An example of SG after 1000 iterations.

Finally, in Table 4.3 we compare the results obtained by applying the ADA algorithm to
the four largest groups of instances with the optimal solution obtained by Xpress. The table
shows times and bounds reached by the subgradient method (SG) and by the dual ascent with
the variable fixing heuristic procedure (DA with VHF). The total time used by the complete
procedure is given in the column Tt and in imp t its improvement with respect to the time
needed by Xpress to meet the optimal. The difference between the best upper bound obtained
by ADA and the optimum is given as a percentage in GAPo.

The routine needs parameters sg iter, da iter and vfh iter, and different values were used
for the four groups of data sets tested. These were empirically set as:

a75 50, b75 50, c75 50: sg iter = 50, da iter = 3 and fhv iter = 2,

a100 75, b100 75, c100 75: sg iter = 100, da iter = 7 and fhv iter = 2,

a125 100, b125 100, c125 100: sg iter = 170, da iter = 10 and fhv iter = 2,

a150 100, b150 100, c150 100: sg iter = 170, da iter = 12 and fhv iter = 2,

and for all the instances ps = 0.25 (see Algorithm 4.5.1).

With the exception of the first group (m = 75, n = 50) and a few instances in the rest, the
times obtained by ADA when it meets the optimal solution are considerably lower than those
obtained by Xpress. It can be observed particularly in the last group, For example, the instance
c 150 100 2 had a reduction of 95% on the total time. ADA is always close to the optimal values,
in fact, the GAP average is only 0.43%.

73

Table 4.3: Computational results for ADA.

Xpress Hc SG DA with VFH ADA

Prob Optimal LP y j t bestUB y j t LB t bestUB LB y j t Tt imp t GAPo%

a75 50 1 1661269 1201542 7 16 1787955 1 0 832797 4 1662877 1290126 5 21 25 -51% 0.10%

a75 50 2 1632907 1188359 6 21 1779576 4 0 828462 4 1648421 1261845 6 28 31 -47% 0.95%

a75 50 3 1632213 1189183 7 18 1738404 3 0 783044 3 1632866 1286922 7 24 27 -51% 0.04%

a75 50 4 1585028 1200068 5 18 1709978 5 0 863178 3 1585028 1250104 5 28 31 -72% 0.00%

b75 50 1 1252804 900617 8 11 1343201 10 0 355739 2 1252804 951766 8 28 30 -165% 0.00%

b75 50 2 1337446 922048 9 20 1403629 5 0 376669 3 1337446 954023 9 35 38 -94% 0.00%

b75 50 3 1249750 897073 9 17 1368788 8 0 348636 3 1255947 975724 11 39 42 -141% 0.50%

b75 50 4 1217508 885392 9 12 1348203 10 0 414596 3 1222561 978717 10 35 38 -232% 0.42%

c75 50 1 1310193 892837 11 17 1375386 11 0 550106 4 1310193 972827 11 38 42 -151% 0.00%

c75 50 2 1244255 882933 10 11 1316595 11 0 533586 3 1244255 964720 10 36 39 -244% 0.00%

c75 50 3 1201706 859591 12 8 1386817 13 0 549787 4 1201706 934664 12 33 37 -341% 0.00%

c75 50 4 1334782 928064 11 21 1440836 5 0 581078 4 1356714 974828 12 41 45 -111% 1.64%

a100 75 1 2286397 1800032 4 61 2459349 4 1 1649771 16 2321812 1950826 4 74 91 -49% 1.55%

a100 75 2 2463187 1793377 3 131 2476632 4 1 1630225 16 2476632 1982594 3 106 122 7% 0.55%

a100 75 3 2415836 1788395 3 148 2467003 3 1 1634629 16 2415836 1970116 3 99 116 22% 0.00%

a100 75 4 2380150 1795298 4 124 2476632 3 1 1628551 17 2386981 1938879 4 99 116 7% 0.29%

b100 75 1 1950231 1330138 8 624 2061201 7 1 1092987 17 1984720 1511894 10 125 142 77% 1.77%

b100 75 2 2023097 1353824 8 727 2180286 8 1 1150334 18 2058495 1517533 11 143 161 78% 1.75%

b100 75 3 2062595 1351603 8 841 2133724 8 1 1165120 18 2062595 1536082 8 268 285 66% 0.00%

b100 75 4 1865323 1332525 9 546 1994265 7 1 1143446 15 1886598 1512185 7 141 155 72% 1.14%

c100 75 1 1843620 1250876 6 430 2090221 7 1 1077180 20 1843620 1456543 6 215 235 45% 0.00%

c100 75 2 1808867 1239182 11 396 2005071 13 1 1053868 19 1815373 1415172 9 171 190 52% 0.36%

c100 75 3 1820587 1232462 8 423 2019651 7 1 1054526 16 1820587 1405713 8 194 210 50% 0.00%

c100 75 4 1839007 1243861 9 583 2046525 8 1 1064170 21 1839007 1417402 9 227 248 57% 0.00%

a125 100 1 3041451 2392412 2 257 3070535 1 1 2235753 47 3070535 2539124 2 151 198 23% 0.96%

a125 100 2 3040248 2393448 2 302 3070535 1 1 2232859 48 3070535 2629291 2 201 249 18% 1.00%

a125 100 3 3055260 2362216 3 325 3070535 1 1 2227182 47 3070535 2593865 3 209 256 21% 0.50%

a125 100 4 3056428 2381167 2 334 3070535 1 1 2244017 54 3070535 2529404 2 208 262 22% 0.46%

b125 100 1 2640798 1794710 7 5297 2850664 5 1 1601985 58 2640798 2082726 7 989 1047 80% 0.00%

b125 100 2 2550592 1790869 7 2086 2808259 9 1 1600582 56 2568522 2046667 7 848 903 57% 0.70%

b125 100 3 2604906 1792133 4 4059 2782609 5 1 1607076 58 2604906 1977647 4 435 494 88% 0.00%

b125 100 4 2580595 1792581 7 2686 2778713 4 1 1587315 60 2637611 1975516 7 358 419 84% 2.21%

Continued on next page

74

Table 4.3: Computational results for ADA.

Xpress Hc SG DA with VFH ADA

Prob Optimal LP y j t bestUB y j t LB t bestUB LB y j t Tt imp t GAPo%

c125 100 1 2491714 1663455 10 7805 2669965 9 1 1491505 61 2491714 1953129 10 1685 1746 78% 0.00%

c125 100 2 2468480 1674102 9 6296 2674261 8 1 1487416 58 2518055 1957245 10 519 577 91% 2.01%

c125 100 3 2559381 1672005 8 11381 2685807 7 1 1496552 59 2559381 1957575 8 1177 1236 89% 0.00%

c125 100 4 2538550 1691148 8 6407 2683676 9 1 1503317 61 2561098 2016969 8 726 786 88% 0.89%

a150 100 1 3768087 2906284 1 371 3768087 1 2 2691219 57 3768087 3200250 3 338 395 -6% 0.00%

a150 100 2 3768087 2891681 1 457 3768087 1 1 2695660 56 3768087 3212545 2 329 384 16% 0.00%

a150 100 3 3741364 2882917 3 340 3768087 1 1 2691438 58 3741364 3185719 3 306 363 -7% 0.00%

a150 100 4 3768087 2911017 1 591 3768087 1 1 2697003 63 3768087 3241759 2 337 400 32% 0.00%

b150 100 1 3271859 2159537 4 15483 3487710 4 1 1916485 68 3271859 2651812 4 2357 2426 84% 0.00%

b150 100 2 3227987 2160753 5 9677 3457623 5 2 1935777 68 3227987 2546429 5 975 1043 89% 0.00%

b150 100 3 3150075 2148658 6 5986 3390435 8 1 1920876 69 3150075 2582861 6 1081 1150 81% 0.00%

b150 100 4 3342783 2190488 5 9596 3637438 8 1 1927555 69 3342783 2602414 5 2225 2294 76% 0.00%

c150 100 1 2979389 1988908 9 10008 3196861 5 1 1790894 71 2979389 2408302 9 1520 1591 84% 0.00%

c150 100 2 3109105 1985389 7 21734 3291990 6 2 1766696 72 3109105 2404613 7 949 1021 95% 0.00%

c150 100 3 2937767 1982388 8 10590 3079664 4 1 1770318 71 2954519 2379867 7 2369 2440 77% 0.57%

c150 100 4 3165327 1997014 10 65134 3189247 7 1 1775186 75 3176587 2424997 12 5842 5917 91% 0.36%

75

4.7 Conclusions

In this paper we have proposed a heuristic method to solve the SPLPO inspired by techniques
introduced in (Cornuéjols et al., 1977; Beltrán et al., 2012). The assignment and VUBs con-
straints in SPLPO were relaxed to formulate a Lagrangean problem. We solved its dual with a
subgradient method and used a vector of multipliers as a starting point of an ascent algorithm
for the dual of a semi-Lagrangean formulation. Nevertheless, a better starting point should be
the multipliers obtained by relaxing only the assignment constraints, the same family of con-
straints relaxed in our proposed SPLPO semi-Lagrangean problem. However, the sequence of
linear subproblems that need to be solved in the subgradient method are not as easy to solve as
those when our proposed relaxation is used. We used the variable fixing heuristic VFH because
MIP problems in ADA are becoming increasingly difficult as the number of iterations grows.
We have shown that the ADA algorithm works particularly well on large instances, but there
must be a future discussion about the parameters settings.

76

Chapter 5

The Stochastic Simple Plant

Location Problem with Partial Order

In this chapter we generalize the Simple Plant Location Problem with Order (SPLPO) by
defining partial order and providing a linear model that considers this case. The partial order is
a natural extension of SPLPO which takes into account the fact that some customers can have
preference only over a subset of facilities that will provide them a service.

We also study how the uncertainty can be included in the model when the preferences are
considered as random variables.

5.1 Introduction

Sometimes by taking certain problems to a realistic application it is possible to observe that
certain unknown events are unveiled in the course of time, and these in turn help to solve
others that depend on them. An example is the Simple Plant Location Problem (SPLP) whose
solution can be seen as a two-stage process that answers two questions: what facility to open?
and how will these facilities be distributed to meet customer demand?. The second question
will be answered after the facilities (uncertain at the beginning) are known. The values of
unknown variables in the problem will be unveil after an experiment, that considers a possible
future state, is performed. Therefore, it is necessary to define different forms of that state
(state of nature) that represent possibles scenarios in such a way that the effect of considering
uncertainty is minimized. The problem described above is called Two-stage Stochastic SPLP
problem (2S-SPLP).

The 2S-SPLP has been widely studied and the different methods of solution applied have
been very efficient. As it is pointed out in Birge and Louveaux (2014), it is important to consider
that “taking advantage of structure of the problem is especially beneficial in stochastic programs
and is the focus of much of the algorithmic work in this area”. “Structures” refers to any feature
in the mathematical formulation that can be used to build a solution procedure. One of the
most used method is called L-shaped, proposed by Laporte and Louveaux (1993). L-shaped is
a branch and cut algorithm that makes use of the L shape that has the matrix of coefficients
in the stochastic formulation of certain problems (SPLP is an example). This method also
uses subproblems obtained by Benders decomposition (Benders, 1962). For details of this and
other similar methods, see Kall and Mayer (2005) and Birge and Louveaux (2014). Although
in principle Lagrangean relaxation methods can be applied to two-stage stochastic problems,
as far as we know, these are not popular. However, a completed description of the different
possibilities of its application can be found in the references given above.

77

A multiple-stage stochastic version for SPLP can be developed, as presented in Wollenweber
(2008). In this paper the multiple stages (for the deterministic case of SPLP) are the consequence
of considering the end-of-life of vehicles that will distribute the products from the facilities to
the customers in the context of Supply Chain Management. However, this will not be considered
for the problem we are interested in, the natural stochastic extension for Simple Plant Location
Problem with Order (SPLPO). Therefore a two-state problem is more suitable in our case.
In order to make the problem more realistic, we also study the possibility that the order of
preference given by customers in SPLPO, which ranks the facilities that will serve them, is
partial, i.e., a client would like to be served by any facility in a subset of the complete facility
set. This is motivated by cases such as the following. In health services, service centres must be
located in strategic locations that meet the immediate needs of individuals. Let’s assume that
there is a doctor for each centre. In some cases, due to the quality of service, empathy, price or
distance, clients may prefer one doctor more than another. This defines a ranking (preference
ordering) which will not necessarily be given for all them, since a patient could never want to
be seen by a doctor in a particular health center.

In our proposed formulation for the two-stage stochastic version of SPLPO with partial order
(2S-SPLPPO), along with the facilities to be opened, the preferences (partial or complete) will
be considered as variables in the first stage.

Due to the promising results obtained in Chapter 4 by using Lagrangean and Semi-Lagrangean
procedures, we have chosen to use these methods to solve the 2S-SPLPPO. As it will be seen
later, the application of the ADA algorithm 4.5.2 to the 2S-SPLPPO to a group of problems
derived from those given in Section 4.6 produced considerably good results when compared with
the solutions given by a commercial optimization software (Xpress).

The rest of the chapter is as follows: In Section 5.2 we provide a basic background on
stochastic programs. In Section 5.3 The Simple Plant Location Problem with Partial Order is
defined and a formulation for this case is given in Section 5.4. Numerical experiments are carried
out in Section 5.5 to check the impact that different scenarios of order have on the proposed
model. Furthermore, we justify the use of ADA algorithm 4.5.2 to 2S-SPLPPO and apply it on
some large stochastic instances.

5.2 Preliminaries

Basic background of events, random variables and probability is reviewed in this section. We
also briefly look at two-stage stochastic programs.

5.2.1 Events, Random Variables and Probability

We consider an experiment as any process of observation or measurement (Freund et al., 2014),
i.e., it is a checking process. All the experiment outcomes (results of the experiment) can be
gathered in the set called sample space which is usually noted by Ω. The elements of Ω are
called either simply elements or sample points. Ω can be classified for their number of elements.
It can be finite, infinite countable (discrete) or not countable (continuous). In this thesis we are
interested only in the discrete case, so that is the theory that will be summarized in this section.

An event E of Ω is a collection of sample points, i.e., a subset of a sample space, and therefore
on them any set operations can be applied. Each event E is associated with a value P (E) of
a function P : Ω → R called probability, such that it holds the following postulates P (E) ≥ 0,
P (Ω) = 1 and P (E1 ∪ E2) = P (E1) + P (E2). With the postulates it is possible to prove some
probability rules such as P (∅) = 0, 0 ≤ P (E) ≤ 1 and P (E′) = 1− P (E).

78

A random variable ξ is a real valued function defined over the elements of a sample space
Ω, i.e., they are real numbers associated with the outcomes of an experiment. The value of
random variables can be associated with an event of cardinality greater than 1. For example: If a
balanced coin is tossed twice we have: Ω = {HH,HT, TH, TT } with probabilities for each event
of cardinality 1, P ({HH }) = 0.25, P ({HT }) = 0.25, P ({TH }) = 0.25 and P ({TT }) = 0.25.
We could be interested in ξ: the number of heads obtained after the experiment, then the variable
ξ can be defined as {HH } → ξ = 2, {HT } → ξ = 1, {TH } → ξ = 1 and {TT } → ξ = 0.
Therefore, ξ = 1 can be interpreted as the set that contains elements of Ω with only one H,
i.e., {HT, TH } → ξ = 1 and then it is clear that we can say that P (ξ = 1) = 0.5. Indeed, the
function P is defined also for random variables, just as the example.

For the discrete case the function F (ξi) = P (ξ ≤ ξi) =
∑

t≤ξi P (t), where ξ
i is a value of ξ,

is called distribution function or the cumulative distribution of ξ. Furthermore, the expectation
of a random variable ξ can be noted and computed as E[ξ] =

∑

i α
iP (ξi), where αi = P (ξ = ξi).

5.2.2 Two-Stage Stochastic Program

A stochastic linear program is a linear program where some of its data is uncertain and then
can be represented by random variables. If a problem has some decisions that have to be made
after the uncertainty is disclosed (realization) it is called recourse program (Birge and Louveaux,
2014). As seen, the values of the random variables are known after an experiment is performed,
therefore the decisions can be made in a first stage or in a second stage, before and after the
experiment respectively. Furthermore, each stage could contain a sequence of decision and these
can be made in different time periods. Then, a stochastic program is multi-stage if the decisions
depend on realizations that occur over time.

Let Ω = { {ω1 } , . . . , {ω|Ω| } } be a sample space. We can define a random variable ξ over
the events {ω } with values ξ(ω) and call any ξ(ω) as the scenario ω. In a stochastic program
the scenarios can be seen in some cases as states of the nature as all the uncertain information
could depend on them. We will suppose that it has a discrete probability distribution f(ξ) =
P (ξ = ξ(ω)) = αω.

The next program was originally proposed by Dantzig (1955) and Beale (1955):

LM 5.2.1 Two-Stage Stochastic Program with Fixed Recourse

Minimize cx+ Eξ[Min q(ω)y(ω)] (5.1)

subject to Ax = b, (5.2)

T (ω)x+Wy(ω) = h(ω), (5.3)

x ≥ 0, (5.4)

y ≥ 0. (5.5)

In LM 5.2.1 x and y(ω) are the first and second stage variables respectively. Therefore, x
can be considered as decisions that are made under uncertainty and y as corrective decisions
made when the uncertain is disclosed. c, b and A are vectors with appropriate dimensions. q(ω),
h(ω) and T (ω) are vectors whose values will be known after the realization of ω. T (ω) is usually
know as technology matrix and W as recourse matrix which is assumed to be fixed.

The following formulation is called the deterministic equivalent program of LM 5.2.1:

79

LM 5.2.2 Deterministic Equivalent Program

Minimize cx+ Q(x) (5.6)

subject to Ax = b, (5.7)

x ≥ 0, (5.8)

where Q(x) = Eξ[Q(x, ξ(ω))] and (5.9)

Q(x, ξ(ω)) = Miny {q(w)y |Wy = h(ω)− T (ω)x, y(ω) ≥ 0} . (5.10)

Q(x) in 5.9 is called recourse function and its value represents the average effect of making
the decision x under the scenarios ω. Q(x, ξ(ω)) in 5.10 is the second stage program. It shows
clearly that decisions y are made after making the decisions x.

5.3 Simple Plant Location Problem with Partial Order

The Simple Plant Location Problem with Partial Order (SPLPPO) differs from the Simple Plant
Location Problem with Order (SPLPO) in that the customers have preferences on a subset of
facilities instead of all them. The notation and the linear model for SPLPPO are similar to
those given for SPLPO, but some of them are repeated for clarity.

Let I = {1, . . . m} be a set of customers and J = {1, . . . n} a set of possible sites for opening
facilities. Let J i be a subset of J defined by each customer i. |J i| = ni and J i = J \ J i. Unit
costs cij ≥ 0 for supplying the demand of customer i from facility j and costs fj ≥ 0 for opening
a facility at j are also considered. It is said that k is i-worse than j if customer i prefers facility j
to k and it is written as k <i j. We defineWij = {k ∈ J | k <i j} as the set of facilities k strictly
i-worse than j, its complement as Wij and Wij ∪ {j} as W ′

ij. Let xij be a decision variable that
represents the fraction of the demand required by customer i and supplied by facility j. Since no
capacities are considered this demand will be always covered completely for one single facility,
therefore optimal values xij will be in the set {0, 1}. Let yj be a binary variable such that yj = 1
if a facility is open at j and yj = 0 otherwise.

Suppose that each customer i ranks its different preferred facilities j ∈ J i with a number
pij ∈ {1, . . . , ni}, where 1 and ni are the most and the least preferred, respectively. Furthermore,

for all j ∈ J i, pij = ni + 1. Under these conditions the linear program for SPLPPO is given by
LM 5.3.1. The inequalities (5.14) model the customers’ preference orderings.

Note that in the case that it is more favourable to open an installation that does not belong
to a particular subset J i, the customer i can be served by any other open facility, since ni+1 is
the worst rank given for any j. On the other hand, if each customer decides to be served by only
one of their preferred facilities, either of the following families of constraints have to be added:

∑

k∈Ji

xik ≥ yj, ∀i ∈ I, ∀j ∈ J i, (5.17)

80

LM 5.3.1 Simple Plant Location Problem with Partial Order

Minimize
∑

i∈I

∑

j∈J

cijxij +
∑

j∈J

fjyj (5.11)

subject to
∑

j∈J

xij = 1, ∀i ∈ I, (5.12)

xij ≤ yj, ∀i ∈ I,∀j ∈ J, (5.13)
∑

k∈Wij

xik ≥ yj, ∀i ∈ I,∀j ∈ J i, (5.14)

xij ≥ 0, ∀i ∈ I,∀j ∈ J, (5.15)

yj ∈ {0, 1}, ∀j ∈ J. (5.16)

or constraints (5.12) have to be replaced by:







∑

k∈Ji

xik = 1; if J i 6= ∅,

∑

k∈J

xik = 1; if J i = ∅.
(5.18)

5.4 A Stochastic Formulation for SPLPPO

Consider the experiment of asking all customers i to give a rank of its preferred facilities j
as mentioned before. We call each outcome of this experiment as the scenario ω and the set
of all of them as the sample space Ω. We define a random matrix variable ξ with values
ξ(ω) over the events {ω }’s in Ω. We suppose that it has a discrete probability distribution
f(ξ) = P (ξ = ξ(ω)) = αω.

Under the above considerations a two-stage stochastic program for SPLPPO can be:

LM 5.4.1 Stochastic Simple Plant Location Problem with Partial Order (2S-SPLPPO)

Minimize
∑

j∈J

fjyj +
∑

ω∈Ω

αω
∑

i∈I

∑

j∈J

cijx
ω
ij (5.19)

subject to
∑

j∈J

xωij = 1, ∀i ∈ I,∀ω ∈ Ω, (5.20)

xωij ≤ yj, ∀i ∈ I,∀j ∈ J,∀ω ∈ Ω, (5.21)
∑

k∈Wω
ij

xωik ≥ yj, ∀i ∈ I,∀j ∈ J i,∀ω ∈ Ω, (5.22)

xωij ≥ 0, ∀i ∈ I,∀j ∈ J,∀ω ∈ Ω, (5.23)

yj ∈ {0, 1}, ∀j ∈ J. (5.24)

81

We consider what facility to open as a first stage decision given by binary variables y’s and
the distribution given by x’s as a second stage one. Regarding the family of constraints (5.22),
each scenario ω is represented by a { 0, 1 }-matrix W (ω) (W (ω)) of dimension (mn×mn), where
each row ij has 1 for each element of W ω

ij (W ω
ij) and 0 for elements of its complement. See

Figure 5.1. Furthermore, Ω is a finite set but can have a very big cardinality. For instance if
we consider no partial preferences and since n < +∞, each row of W (ω) can be given in 2n

different ways, therefore there are (2n)mn = 2mn2
possible different matrices W (ω).

1







2







...

m







1
2
...
n
1
2
...
n

1
2
...
n





























1 0 · · · 1
0 1 · · · 0
...

...
. . .

...
1 1 · · · 1

0 1 · · · 0
0 0 · · · 1
...

...
. . .

...
1 1 · · · 1

. . .

1 0 · · · 1
1 1 · · · 0
...

...
. . .

...
1 0 · · · 1





























︸ ︷︷ ︸

W (ω)∈M(mn×mn)





























xω11
xω12
...
xω1n
xω21
xω22
...
xω2n
...

xωm1

xωm2
...

xωmn





























≥





























y1
y2
...
yn
y1
y2
...
yn
...

y1
y2
...
yn





























Figure 5.1: Example W (ω).

The stochastic program has no fixed resources since the coefficient matrix W (ω) given by
the sets W ω

ij with the second-stage variables xωij is random, i.e., it depends of ω.
The second-stage program is given by:

Q(y, ξ(ω)) = Minx







∑

i∈I

∑

j∈J

cijx
ω
ij | (5.20), (5.21), (5.22), (5.23)






,

and if Q(y) = Eξ[Q(y, ξ(ω))] we obtain the deterministic equivalent program:

Min







∑

j∈J

fjyj + Q(y) | (5.24)






,

where Eξ is the mathematical expectation on the random vector values ξ.

82

5.5 Computational Results for 2S-SPLPPO

We carried out experiments to determine how strong is the influence of uncertainty in 2S-
SPLPPO when the rank of preferences of each customer is modified in a given percentage from
its original values. We considered problems with m = 75 customers and n = 50 facilities with
complete preferences and two scenarios (ω1 and ω2) for each. Then, we compare the objective
function OFS and time tS when running a whole program with the results of running a problem
for every scenario and we check how different are the open facilities on each case.

If we supposed that the preferences of customers are known and repeated periodically, then
the average in the long run is given by (OFω1 + OFω2)/2 and the loss of benefit on OF due
the presence of uncertainty, i.e., the expected value of perfect information EVPI, is given by
the difference between OF of the two-stage stochastic program and this average with perfect
forecast:

EVPI = OFS −

(
OFω1 +OFω2

2

)

.
Similarly, the percentage of lost time over the total used time due to stochasticity, i.e.,

expected lost time of perfect information ELTPI. It can be computed by:

ELTPI =

(

tS −

(
tω1 + tω2

2

))/

tS

.
The headers of the tables have the following meanings:

• OF: Optimal objective function value.
• y: Number of opened facilities.
• t: CPU time in seconds.
• avg: Average.
• EVPI: Expected value of perfect information.
• ELTPI(%): Expected lost time of perfect information.
• y-dif: Manhattan distance between y1 and y2.

In Tables 5.1, 5.2, 5.3 and 5.4 the rank of preferences in ω2 were modified by replacing a
p% of the most preferred facilities for each customer i in ω1 with other facilities among the
remaining non-preferred ones.

Table 5.1: Computational results (10% of ω2 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω2 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω2 ω1-ω2

10w2a7550 1 1648853 7 67 1661269 7 16 1636437 7 24 1648853 0 70% 0 0 0

10w2a7550 2 1602647 4 48 1632213 7 18 1571827 4 23 1602020 627 57% 5 0 5

10w2b7550 1 1226979 8 48 1252804 8 11 1195753 9 16 1224279 2701 72% 0 1 1

10w2b7550 2 1263465 11 53 1249750 9 17 1197943 11 15 1223847 39619 69% 10 8 16

10w2c7550 1 1290291 14 46 1310193 11 17 1257497 14 19 1283845 6446 62% 9 2 11

10w2c7550 2 1248312 11 47 1201706 12 8 1175249 14 13 1188478 59835 77% 5 15 12

83

Table 5.2: Computational results (25% of ω2 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω2 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω2 ω1-ω2

25w2a7550 1 1670734 5 119 1661269 7 16 1614826 7 26 1638048 32687 82% 6 8 12

25w2a7550 2 1606360 4 67 1632213 7 18 1548535 8 18 1590374 15986 73% 9 10 5

25w2b7550 1 1256755 6 58 1252804 8 11 1164725 11 17 1208765 47991 76% 2 13 13

25w2b7550 2 1324578 7 153 1249750 9 17 1217989 12 18 1233870 90709 88% 10 13 13

25w2c7550 1 1364933 11 166 1310193 11 17 1226890 11 15 1268542 96392 90% 16 8 14

25w2c7550 2 1271029 15 84 1201706 12 8 1192867 15 16 1197287 73743 85% 7 10 13

Table 5.3: Computational results (50% of ω2 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω2 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω2 ω1-ω2

50w2a7550 1 1689428 4 113 1661269 7 16 1599711 6 23 1630490 58938 82% 7 4 9

50w2a7550 2 1637084 4 86 1632213 7 18 1570431 6 18 1601322 35762 79% 5 6 9

50w2b7550 1 1331207 7 165 1252804 8 11 1166528 10 14 1209666 121541 92% 9 9 12

50w2b7550 2 1307706 9 182 1249750 9 17 1131067 11 16 1190409 117298 91% 12 12 18

50w2c7550 1 1347482 7 145 1310193 11 17 1227289 11 15 1268741 78741 89% 14 10 16

50w2c7550 2 1287982 12 112 1201706 12 8 1118653 10 11 1160180 127803 92% 6 12 16

Table 5.4: Computational results (100% of ω2 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω2 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω2 ω1-ω2

100w2a7550 1 1787955 1 267 1661269 7 16 1632907 6 21 1647088 140867 93% 8 7 13

100w2a7550 2 1683058 4 194 1632213 7 18 1585028 5 18 1608621 74438 91% 5 5 8

100w2b7550 1 1451139 9 363 1252804 8 11 1337446 9 20 1295125 156014 96% 7 16 13

100w2b7550 2 1400184 8 271 1249750 9 17 1217508 9 12 1233629 166555 95% 13 9 14

100w2c7550 1 1360674 10 169 1310193 11 17 1244255 10 11 1277224 83450 92% 9 6 13

100w2c7550 2 1402514 11 196 1201706 12 8 1334782 11 21 1268244 134270 92% 7 10 13

As can be noticed, the value of EVPI seems to increase as the percentage of changed prefer-
ences increases. ELTPI is high in all cases, but a slight increase can be seen in the last tables.
The results suggest that there is no dependence between the percentage of changed preferred
facilities and the open facilities in the solutions on each scenario and the stochastic problem.
Additional examples can be seen in Appendix A.

84

Since the 2S-SPLPPO formulation (see LM 5.4.1) has the same characteristics of the SPLPO
with evident differences due to the presence of multiple scenarios, we suggest to use the ADA
algorithm proposed in Section 4 to solve it.

Indeed, by following the same steps given in Sections 4.3 and 4.4 we obtain a lagrangean and
semi-lagrangean relaxation version to SPLPPO:

A Lagrangean Relaxation for 2S-SPLPPO:

LR(µω, λω) = min
(xω ,y)

∑

j

[
∑

ω

∑

i

(

αωcij − µωi − Λω
ij

)

xωij +

(

fj +
∑

ω

∑

i

λωij

)

yj

]

+
∑

ω

∑

i

µωi ,

subject to: (5.21), (5.23) and (5.24).

where Λω
ij =

∑

k∈W
′ω
ij

|W
′ω
ij |=n−pωij+1

λωik.

A Semi-Lagrangean Relaxation for 2S-SPLPPO:

SLR(γω) = min
(xω ,y)

∑

j

(
∑

ω

∑

i

(αωcij − γωi)x
ω
ij + fjyj

)

+
∑

ω

∑

i

γωi ,

subject to: (5.21), (5.22), (5.23), (5.24), and
∑

j∈J x
ω
ij ≤ 1.

Moreover, it is not difficult to extend Theorems 14, 15 and 16 to the 2S-SPLPPO case.

In Table 5.5 we present the results after applying ADA to the same problems given in Tables
5.1, 5.2, 5.3 and 5.4. The parameters for these experiments are the same as those used for
instances (m = 75, n = 50): sg iter = 50, da iter = 3 and fhv iter = 2. Also, the header of
the tables remains the same:

• Prob: Name of the problem.
• Optimal: Optimal objective function value of the problem P.
• LP(P): Linear relaxation value for problem P.
• y j: Number of opened facilities.
• t (Tt): CPU time in seconds (Total time).
• bestUB: best upper bound.
• SG: Best value using the subgradient method for LDµλ.
• UB (LB): Upper bound (Lower bound).
• GAPo (%): bestUB-Opt (bestUB-Opt

Opt × 100%). The absolute and relative gap between the
optimal and the value of an algorithm.

The results show that ADA performs very well in all cases. Indeed, the optimum was founded
in most of them. It can be observed that when the percentage of changed preferences was 10%
(first six instances) ADA was not able to improve the Xpress times. However, in the remaining
cases the times were improved considerably with a couple of exceptions.

85

Table 5.5: ADA applied to 2S-SPLPPO with two scenarios. (m = 75, n = 50).

Xpress Hc SG DA with VFH ADA

Prob Optimal LP y j t bestUB y j t LB t bestUB LB y j t Tt imp t GAP

10w2a7550 1 1648853 1200745 7 67 1787955 1 0 840831 7 1698650 1279041 4 60 67 0% 3.02%

10w2a7550 2 1602647 1193378 4 48 1738071 3 0 763664 6 1602647 1286736 4 50 56 -17% 0.00%

10w2b7550 1 1226979 901051 8 48 1335244 10 0 334589 5 1226979 953159 8 57 62 -28% 0.00%

10w2b7550 2 1263465 906280 11 53 1299259 10 0 372981 7 1271641 970770 10 70 77 -46% 0.65%

10w2c7550 1 1290291 900033 14 46 1388280 9 0 591938 7 1290291 971785 14 62 69 -48% 0.00%

10w2c7550 2 1248312 876053 11 47 1365717 13 0 557308 6 1248312 936483 11 65 71 -51% 0.00%

25w2a7550 1 1670734 1199273 5 119 1761050 5 0 830624 6 1670734 1284052 5 53 59 50% 0.00%

25w2a7550 2 1606360 1195482 4 67 1730389 3 0 770870 7 1606360 1269850 4 53 60 11% 0.00%

25w2b7550 1 1256755 892106 6 58 1329801 11 0 360026 6 1259217 947822 8 61 67 -15% 0.20%

25w2b7550 2 1324578 907308 7 153 1348842 7 0 380921 6 1324578 988646 7 98 104 32% 0.00%

25w2c7550 1 1364933 907957 11 166 1413489 9 0 579362 8 1373542 978857 14 96 104 37% 0.63%

25w2c7550 2 1271029 873435 15 84 1291327 13 0 578313 7 1271029 958058 15 77 84 0% 0.00%

50w2a7550 1 1689428 1212042 4 113 1778238 6 0 804221 7 1689428 1302236 4 60 67 41% 0.00%

50w2a7550 2 1637084 1196440 4 86 1744372 5 0 760256 6 1637084 1273267 4 51 58 33% 0.00%

50w2b7550 1 1331207 900654 7 165 1388062 12 0 294443 7 1331207 1247451 7 381 388 -136% 0.00%

50w2b7550 2 1307706 896181 9 182 1364303 11 0 305591 7 1307706 990369 9 94 101 45% 0.00%

50w2c7550 1 1347482 911370 7 145 1446345 12 0 565472 6 1347482 976268 7 77 84 42% 0.00%

50w2c7550 2 1287982 878852 12 112 1439845 17 0 546735 7 1299952 952655 12 71 78 30% 0.93%

100w2a7550 1 1787955 1208842 1 267 1787955 1 0 824731 8 1787955 1293098 1 89 97 64% 0.00%

100w2a7550 2 1683058 1204739 4 194 1737924 5 0 827668 7 1720482 1268026 4 66 72 63% 2.22%

100w2b7550 1 1451139 935113 9 363 1496648 6 6 311032 6 1453678 989340 6 86 92 75% 0.17%

100w2b7550 2 1400184 916167 8 271 1449128 9 0 358259 7 1400205 1013362 10 106 113 58% 0.00%

100w2c7550 1 1360674 920342 10 169 1430298 9 0 562495 8 1360674 998681 10 106 114 32% 0.00%

100w2c7550 2 1402514 918696 11 196 1462990 16 0 570058 8 1404147 989592 11 102 110 44% 0.12%

86

Table 5.6: ADA applied to 2S-SPLPPO with two scenarios.

Xpress Hc SG DA with VFH ADA

Prob Optimal LP y j t bestUB y j t LB t bestUB LB y j t Tt imp t GAP

100w2a10075 1 2469439 1811464 2 561 2476632 1 1 1644492 31 2476632 1978083 3 265 296 47% 0.29%

100w2a10075 2 2458870 1805025 3 685 2476632 1 1 1627278 32 2458870 1971011 3 237 270 61% 0.00%

100w2b10075 1 2132719 1364985 5 17935 2270467 6 1 1112051 37 2132719 1558555 5 3531 3568 80% 0.00%

100w2b10075 2 2163818 1367450 7 27679 2218215 7 1 1160875 43 2163818 1564516 7 4380 4422 84% 0.00%

100w2c10075 1 1978807 1271848 7 14835 2072702 6 1 1052860 49 1988903 1496210 7 1027 1076 93% 0.51%

100w2c10075 2 1987757 1261290 6 11567 2118928 9 1 1066388 51 1987757 1452609 6 3152 3202 72% 0.00%

100w2a125100 1 3070535 2416518 1 918 3070535 1 2 2237118 93 3070535 2619571 1 573 666 27% 0.00%

100w2a125100 2 3070535 2388054 1 1088 3070535 1 1 2239726 106 3070535 2587669 1 702 808 26% 0.00%

100w2b125100 1 2800573 1815018 8 53666 2850413 5 2 1601481 118 2850413 2078979 7 20837 20955 61% 1.78%

100w2b125100 2 2820883 1820001 5 78669 3019740 4 1 1592305 143 2820883 2016632 5 8230 8373 89% 0.00%

100w2c125100 1 2702169 1698737 9 239967 2866218 10 2 1488148 157 2702169 1990068 9 23717 23874 90% 0.00%

100w2c125100 2 2716252 1705149 6 204007 2829945 5 1 1477796 168 2717597 2007831 7 27442 27610 86% 0.05%

100w2a150100 1 3768087 2924250 1 1735 3768087 1 1 2699949 109 3768087 3239975 1 905 1014 42% 0.00%

100w2a150100 2 3768087 2918397 1 1819 3768087 1 1 2702231 111 3768087 3251719 1 117 228 87% 0.00%

100w2b150100 1 3412417 2179897 6 169739 3637438 1 1 1923456 141 3412417 2599980 6 21111 21252 87% 0.00%

100w2b150100 2 3388309 2196284 3 69508 3637438 1 2 1924300 169 3388309 2679093 3 14792 14962 78% 0.00%

100w2c150100 1 3287595 2010587 5 502354 3413288 4 2 1768341 185 3413288 - - - - - 3.82%

100w2c150100 2 3229424 2012045 6 494721 3307459 5 3 1776475 132 3300341 2474515 7 119700 119832 76% 2.20%

100w2a150100 1 3768087 2924250 1 1735 3768087 1 1 2635877 94 3768087 3229888 1 1159 1253 28% 0.00%

100w2a150100 2 3768087 2918397 1 1819 3768087 1 1 2637900 109 3768087 3242679 1 1255 1364 25% 0.00%

100w2b150100 1 3412417 2179897 6 169739 3637438 1 2 1876775 147 3445585 2607746 4 21590 21738 87% 0.97%

100w2b150100 2 3388309 2196284 3 69508 3637438 4 4 1863975 155 3388309 2599780 3 8984 9139 87% 0.00%

100w2c150100 1 3287595 2010587 5 502354 3413288 4 2 1750243 179 3288348 2457997 6 78577 78756 84% 0.02%

100w2c150100 2 3229424 2012045 6 494721 3307459 5 3 1718731 185 3230261 2470331 7 144729 144729 71% 0.03%

87

We have applied ADA to bigger instances (m = 100, n = 75), (m = 125, n = 100) and
(m = 150, n = 100). For the first three groups, the parameters used were:

• Group 1 (m = 100,n = 75): sg iter = 100, da iter = 7 and fhv iter = 2

• Group 2 (m = 125,n = 100): sg iter = 170, da iter = 10 and fhv iter = 2

• Group 3 (m = 150,n = 100): sg iter = 170, da iter = 12 and fhv iter = 2

The result can be seen in Table 5.6. ADA met the optimal solution in most of the cases
in much less time, with the exception of 100w2c150100 1 where the time was bigger than this
obtained by Xpress. The last of the four groups corresponds to the same problems in Group 3
(m = 150, n = 100), but they were tested with a different parameter sg iter = 140. This can
be seen for all these six cases that ADA improves the running times and bounds.

5.6 Conclusions

We have defined a more general model for SPLPO where the order can be partial. Also, a
stochastic formulation is presented with the order being considered a random variable. Regarding
the solution of this model, we have found as the scenarios in the stochastic model differ with
each other, the solving time increases. Furthermore, it has been possible to determine that
the stochastic version 2S-SPLPPO shares the same properties as those proved for SPLPO, and
therefore the ADA algorithm 4.5.2 can be applied for this case. The computational results show
that ADA performs satisfactorily on large instances, both in the search of the optimum and in
the execution time. A parameter setting studies and experiments with more than two scenarios
must be carried out.

88

Chapter 6

Final Conclusions, Remarks and

Future Work

Two discrete optimization problems arising from real application have been studied in this thesis:
Traffic Light Synchronization (TLSP) and The Simple Plant Location with Order (SPLPO). We
have also studied other problems related to them to extend their applicability.

Even though the bandwidth maximization formulation for TLSP has been widely studied,
this is not the most used approach in real-world applications. Most of the commercial software
base their solution methods on formulations that minimize other measures of interest as the total
delay time of vehicles, with very good results. In spite of this, the interest in the bandwidth
approach has remained. Some recent publications generalize the MAXBAND model thus im-
proving previous results for the arterial case, but studies of their applications to large instances
in networks are not so popular. In Chapter 2 we address this case. The systematic classic algo-
rithm in Section 2.5 solves efficiently a particular case of bandwidth maximization problem, the
arterial case with common period. It is clear that it can be solved via linear programming by
removing network constraints in MAXBAND formulation. However, in addition to its historical
importance, the study of this algorithm has led us to a better understanding of the geometry
which is useful to build arterial and network constraints. On the other hand, in Section 2.6 we
delved into the whole MAXBAND model and extended the bounds for integer variables given by
the single arterial case to networks. We were able to produce a heuristic algorithm based on tabu
search that takes advantage of the mixed integer linear MAXBAND model to obtain feasible
solutions. We obtained good results in larger instances than those known in the literature.

A future work must consider other aspects that our algorithm does not take into account,
such as prioritizing arteries with a high vehicular flow. Additionally, finding an initial solution by
a heuristic method still remains pending. Waiting for a feasible solution from branch and bound
is, in some cases, very expensive in terms of running times. The traffic light synchronization is
a kind of problem where a single feasible solution could be enough to be accepted as a ”good”
solution, as the perfect synchronization could not be possible. Therefore, an initial systematic
algorithm can be in fact the procedure that we have been trying to find. However, our results
showed that when the branch and bound method is able to find the initial starting solution
quickly, its bandwidth can be overcome in a reasonable time. We thought that the results could
be also validated if performance indices are obtained on real-world data comparable to those
obtained by commercial software such as TRANSYT. Unfortunately, we could not access this
software or instances already tested on it. In addition, we mention that to our knowledge there
is no polyhedral study on the MAXBAND constraints. This is important since could shed light
on the development of possible exact methods of solution.

89

A related problem to TLSP was studied in Chapter 3, The Shortest Path Problem with
Traffic Light Constraints (SPPTL). We proposed a linear model which is a generalization of the
flow-based formulation for The Shortest Path Problem (SPP). The linear program models the
behaviour of traffic lights through time with periodic time windows. As far as we know, there
is not a previous linear model to this problem in literature.

Is this the best way to formulate the model? It is a question that remains to be solved. As
mentioned in Section 3.4, our future work aims to improve the proposed formulation by studying
different ways of representing the problem and one of them is by using a time-space network
scheme. Although this approach has been successfully applied to scheduling problems, some
vehicle routing applications can be found in the literature. In our opinion, this scheme adjusts
to the SPPTL problem since it requires the use of periodic time windows.

As was mentioned in previous chapters, there are very few studies available for The Simple
Plant Location Problem with Order (SPLPO). The main results available face the problem by
studying its linear model to add new valid constraints to tighten the formulation. This led to the
development of exact methods. However, the particular case without order, the Simple Plant
Location Problem (SPLP), has been studied much more. Particularly, in Chapter 4 we were
interested in the theoretical results of Lagrangean and semi-Lagrangean relaxation for this case.
We proved that those results can be extended to SPLPO. We proposed an algorithm (ADA)
that exploit these ideas and that performed very well on large instances, finding the optimal in
most cases tested.

Regarding this case, we want to point out that we still have the task of carrying out a
parameter calibration. In this work an empirical setting was made by repeated experiments. In
addition, we are interested in verifying if a similar approach can be applied to other location
problems, e.g., p-median problems with customer preferences. Problems of this type without
preferences have already been studied successfully using semi-Lagrangean relaxation.

In Chapter 5 we provided a more general formulation where the order can be partial (SPLPPO)
and then introduced a stochastic version (2S-SPLPPO). We were able to apply the same proce-
dure to 2S-SPLPPO. Again, the optimal was found in most of the instances tested.

The last results are promising, but we are aware that deeper studies on parameter settings
must be made, as well as an analysis of stopping criterion for Lagrangean and semi-Lagrangean
procedures. Our experiments confirmed that a large number of iterations in both procedures
lead to an increase in running times even worse than those obtained by Xpress. We are currently
working on evaluating our procedure using problems with a larger number of scenarios.

90

Bibliography

Balakrishnan, N. (1993). Simple heuristics for the vehicle routing problem with soft time win-
dows. Journal of Operational Research Society, 44:279–287.

Beale, E. (1955). On minimizing a convex function subject to linear inequalities. Journal of the
Royal Statistical Society, Series B, 17:173–184.

Beasley, E. (1990). OR-library: Distributing test problems by electronic mail. Journal of the
Operational Research Society, 41(11):1069–1072.

Beltrán, C., Tandoki, C., and Vial, J. (2006). Solving the p-median problem with a semi-
Lagrangian relaxation. Computational Optimization and Applications, 35:239–260.

Beltrán, C., Vial, J., and Alonso, A. (2012). Semi-Lagrangian relaxation applied to the unca-
pacited facility location problem. Computational Optimization and Applications, 51:387–
409.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4:238–252.

Bilde, O. and Krarup, J. (1977). Sharp lower bounds and efficient algorithms for the simple
plant location problem. Annals of Discrete Mathematics, 1:79–97.

Birge, J. and Louveaux, F. (2014). Introduction to stochastic programming. Series in Operations
Research and Finantial Engineering, Springer, 2nd edition.

Braun, R. and Weichenmeier, F. (2005). Automatic offline-optimization of coordinated traffic
signal control in urban networks using genetic algorithms. Proceedings of the 12th World
Congress on Intelligent Transport Systems.

Cánovas, L., Garćıa, S., Labbé, M., and Maŕın, A. (2006). A strengthened formulation for the
simple plant location problem with order. Operations Research Letters, 35:141–150.

Chaudhary, N. (1987). A mixed integer linear programming approach for obtaining and optimal
signal timing plan in general traffic networks. PhD thesis, Texas A&M University.

Chen, Y. and Yang, H. (2000). Shortest paths in traffic-light networks. Transportation Research
Part B, 34(4):241–253.

Cohen, S. (1983). Concurrent use of MAXBAND and TRANSYT signal timing programs for
arterial signal optimization. Transportation Research Record, 906:81–84.

Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer programming. Springer.

91

Cornuéjols, G., Fisher, M., and Nemhauser, G. (1977). Location of bank accounts to optimize
float: an analytic study of axact and approximated algorithms. Management Science,
23(8):789–810.

Dantzig, G. (1955). Linear programming under uncertainty. Management Science, 1:197–206.

Diestel, R. (2000). Graph theory. Graduate Texts in Mathematics, Springer, 3rd edition.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):269–271.

Erlenkotter, D. (1978). A dual-based procedure for uncapacitated facility location. Operations
Research, 26(6):992–1009.

Fisher, M. L. (2004). The Lagrangian relaxation method for solving integer programming prob-
lems algorithms. Management Science, 50(12):1861–1871.

Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM), 34(3):596–615.

Freund, J., Miller, I., and Miller, M. (2014). Mathematical Statistics with Applications. Pearson,
8th edition.

Gartner, N., Assmann, S., Lasaga, F., and Hou, D. (1991). A multi-band approach to arterial
traffic signal. Transportation Research, 25B(1):55–74.

Gartner, N., Little, D., and Gabbay, H. (1975). Optimization of traffic signal settings by mixed-
integer linear programming; part I: The network coordination problem; part II: The net-
work synchronization problem. Transportation Science, 9:321–363.

Gartner, N. and Stamatiadis, C. (2002). Arterial-based control of traffic flow in urban grid
networks. Mathematical and Computer Modelling, 35:657–671.

Geoffrion, A. (1974). Lagrangian relaxation for integer programming. Mathematical Program-
ming Study, 2:82–114.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research, 13:533–549.

Guignard, M. (2003). Lagrangean relaxation. A tutorial. TOP, 11(2):151–228.

Guignard, M. and Opaswongkarn, K. (1990). Lagrangean dual ascent algorithms for computing
bounds in capacitated plant location problems. European Journal of Operational Research,
46(1):73–83.

Hane, C. A., Barnhart, C., Johnson, E., Marsten, R., Nemhauser, G., and Sigismondi, G.
(1995). The fleet assignment problem: Solving a large-scale integer program. Mathematical
Programming, 70(1):211–232.

Hanjoul, P. and Peeters, D. (1987). A facility location problem with clients preference orderings.
Regional Science and Urban Economics, 17:451–473.

Held, M. and Karp, R. (1971). The traveling salesman problem and minimum spanning trees:
part II. Mathematical Programming, 1:6–25.

92

Held, M., Wolfe, P., and Crowder, H. (1974). Validation of subgradient optimization. Mathe-
matical Programming, 6:62–88.

Hotovy, R., Larson, D., and Scholze, S. (2015). Binary frames. Houston Journal of Mathematics,
41(3).

Improta, G. and Sforza, A. (1982). Optimal offsets for traffic signal systems in urban networks.
Transportation Research Part B: Methodological, 16(2):143–161.

Jörnsten, K. (2016). An improved Lagrangian relaxation and dual ascent approach to facility
location problems. Computational Management Science, 13:317–348.

Kall, P. and Mayer, J. (2005). Stochastic linear programming: Models, Theory, and Computation.
Springer’s international series.

Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., and Zweig, K.
(2009). Cycle bases in graphs: Characterization, algorithms, complexity and applications.
Computer Science, 3(4):199–243.

Kirkpatrick, L., Gelatt Jr., C., and Vecchi, M. (1983). Optimization by simulated annealing.
Procedia - Social and Behavioral Sciences, 220(4598):671–680.

Kliewer, N., Mellouli, T., and Suhl, L. (2006). A timespace network based exact optimiza-
tion model for multi-depot bus scheduling. European Journal of Operational Research,
175(3):1616–1627.

Köhler, E. and Strehler, M. (2015). Traffic signal optimization using cyclically expanded net-
works. Wiley Periodicals, Networks, 65:244–261.

Laporte, G. and Louveaux, F. (1993). The integer l-shaped method for stochastic integer pro-
grams with complete recourse. Operations Research Letters, 13:133–142.

Liebchen, C. and Rizzi, R. (2007). Classes of cycle bases. Discrete Applied Mathematics,
155(3):337–355.

Little, D. (1966). The synchronization of traffic signals by mixed-integer linear programming.
Operations Research, 14(4):568–594.

Little, D., Kelson, M., and Gartner, N. (1981). MAXBAND: A versatile program for setting
signal on arteries and triangular networks. Transportation Research Record, 795:40–46.

Lu, T., Sohr, A., and Bei, X. (2014). Comparison of the effectiveness of common cycle computing
models. Procedia - Social and Behavioral Sciences, 138:358–367.

MacLane, S. (1937). A combinatorial condition for planar graphs. Fundamental Mathematicae,
28:22–32.

Mahmoudi, M. and Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with
pickup and delivery services with time windows: A dynamic programming approach based
on statespacetime network representations. Transportation Research Part B: Methodologi-
cal, 89:19–42.

Mesquita, M., Murta, A., Paias, A., and Wise, L. (2013). TSP with multiple time-windows
and selective cities. Computational Logistics: 4th International Conference, ICCL 2013,
Copenhagen, Denmark, September 25-27, 2013. Proceedings, pages 158–172.

93

Mladenović, N. and Hansen, P. (1997). Variable neighbourhood search. Computers and Opera-
tions Research, 24:1097–1100.

Monabbati, E. (2014). An application of a Lagrangian-type relaxation for the uncapacitated
facility location problem. Japan Journal of Industrial and Applied Mathematics, 31:483–499.

Morgan, J. and Little, D. (1964). Synchronizing traffic signals for maximal bandwidth. Opera-
tions Research, 12(6):896–912.

Poljak, B. T. (1967). A general method for solving extremum problems. Soviet Mathematics
Doklady, 8:593–597.

Ratrout, N. and Reza, I. (2014). Comparison of optimal signal plans by synchro and transyt-7f
using paramics-a case study. Procedia Computer Science, 32:372–379.

Robertson, D. (1969). TRANSYT, a traffic network study tool. Technical Report. Crowthorne,
Berkshire.

Russell, R. (1995). Hybrid heuristics for the vehicle-routing problem with time windows. Trans-
portation Sciences, 29:156–166.

Schrijver, A. (1986). Theory of linear and integer programming. John Wiley & Sons, 1st edition.

Singh, L., Tripathi, S., and Arora, H. (2009). Time optimization for traffic signal control using
genetic algorithm. Expert Systems with Applications, 2(2).

Vasilyev, I. and Klimentova, X. (2010). The branch and cut method for the facility location
problem with client’s preferences. Journal of Applied and Industrial Mathematics, 4(3):441–
454.

Vasilyev, I. L., Klimentova, X., and Boccia, M. (2013). Polyhedral study of simple plant location
problem with order. Operations Research Letters, 41:153–158.

Wollenweber, J. (2008). A multi-stage facility location problem with staircase costs and splitting
of commodities: model, heuristic approach and application. OR Spectrum, 30(4):655–673.

Wünsch, G. (2008). Coordination of traffic signals in networks. PhD thesis, Technische Univer-
sität Berlin.

Xianyu, W., Peifeng, H., and Zhenzhou, Y. (2013). Link-based signalized arterial progression
optimization with practical travel speed. Journal of Applied Mathematics.

Xianyu, W., Zong, T., Peifeng, H., and Zhenzhou, Y. (2012). Bandwidth optimization of coordi-
nated arterials based on group partition method. Procedia - Social and Behavioral Sciences,
43:232–244.

Zhang, C., Xie, Y., Gartner, N., Stamatiadis, C., and Arsava, T. (2015). AM-BAND: An asym-
metrical multi-band model for arterial traffic signal coordination. Transportation Research
Part C: Emerging Technologies, 58:515–531.

94

Appendix A

Aditional Computational

Experiments for 2S-SPLPPO

In the next tables the rank of preferences in ω3 are a random permutation of the rank preference
in ω1. The conclusions remains similar to those in Section 5.5.

Table A.1: Computational results (10% of ω3 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω3 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω3 ω1-ω3

10w3a7550 1 1650081 5 72.587 1661269 7 16 1637285 5 20.92 1649277 804 74% 6 0 6

10w3a7550 2 1609486 4 55.848 1632213 7 18 1585505 4 14.43 1608859 627 71% 5 0 5

10w3b7550 1 1296049 8 63.82 1252804 8 11 1295936 7 19.859 1274370 21679 76% 4 9 7

10w3b7550 2 1257586 9 39.219 1249750 9 17 1265336 10 19.781 1257543 43 53% 0 3 3

10w3c7550 1 1353045 9 81.557 1310193 11 17 1332265 9 25.865 1321229 31816 74% 10 0 10

10w3c7550 2 1300803 11 50.186 1201706 12 8 1276016 12 15.709 1238861 61942 76% 15 5 10

Table A.2: Computational results (25% of ω3 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω3 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω3 ω1-ω3

25w3a7550 1 1694543 4 61 1661269 7 16 1673216 6 16 1667243 27301 73% 5 2 7

25w3a7550 2 1650736 4 70 1632213 7 18 1612348 4 17 1622281 28456 76% 11 0 11

25w3b7550 1 1312507 7 75 1252804 8 11 1324685 6 17 1288745 23763 81% 5 7 4

25w3b7550 2 1374306 4 90 1249750 9 17 1380846 5 22 1315298 59008 78% 11 3 14

25w3c7550 1 1461222 9 163 1310193 11 17 1478011 9 22 1394102 67120 88% 14 8 10

25w3c7550 2 1436945 11 168 1201706 12 8 1458695 9 28 1330201 106745 89% 7 12 11

95

Table A.3: Computational results (50% of ω3 of most preferred from ω1 has been changed).

Scenarios

Stochastic ω1 ω3 avg ELTPI y-dif

Problem OF y t OF y t OF y t OF EVPI % S-ω1 S-ω3 ω1-ω3

50w3a7550 1 1767341 3 74 1661269 7 16 1741438 3 15 1701354 65988 79% 6 2 8

50w3a7550 2 1682656 2 43 1632213 7 18 1700286 2 23 1666250 16407 53% 9 0 9

50w3b7550 1 1460933 7 178 1252804 8 11 1463203 8 18 1358004 102930 92% 3 9 10

50w3b7550 2 1455769 5 155 1249750 9 17 1497071 2 22 1373411 82359 87% 12 5 11

50w3c7550 1 1541597 6 206 1310193 11 17 1594566 5 25 1452380 89218 90% 13 1 14

50w3c7550 2 1510410 11 212 1201706 12 8 1533338 7 23 1367522 142888 92% 13 12 17

96

	cover sheet
	XAVIER_CABEZAS_PhD_Thesis_2018

