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INTRODUCTION

The application of mathematical methods of analysis has

yielded results of some interest and practical importance in the

field of population genetics. Following the work of Fisher (1950)»

Wright (1951) Bhd Haldane 0924-52), many research workers have,

with some success, tackled problems using mathematical models which

describe the behaviour of gene frequencies within populations.

The single problem of the effect of intermixture between

several populations on gene frequencies has not been investigated

with due generality. This became apparent at the outset of the

present research, following the discovery of the asymptotic regression

model which emerges from the special case treated by Class and hi

(1955). In the hope that other interesting regression models might

appear, a fuller and more general treatment of ths problem was

undertaken.
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The results of this fuller investigation are presented here

in Part I as a theory of intermixture and the interest in asymptotic

regression models is satisfied by those types which arise; the basis

for these models is given by the appropriate analysis and the whole

of this theory is claimed as a new contribution to the literature.

In addition to the accepted techniques for establishing differential

and difference equations, lesser known results like those of Heuvage

and Sylvester ere employed as tools of analysis to provide new results.

Attendant problems of statistical estimation concerned with the

application of these models in the presence of sample data are dealt

with as they arise, while a fUiler account of asymptotic regression

is left to Part II
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CHAPTER ONE

TWO POPULATIONS WITH DISCRETE GENERATIONS

In this chapter the first of several models with many common

genetic features is considered. It will be convenient to state here

the assumptions end describe these features. Superimposed upon them

will be the fact that generations are discrete, or identically, that

migration takes place only at the end of each generation and also that

the model for the present will describe intermixture between just two

populations.

The genetic considerations attached to the model are that the

populations are panmictic, that migrants are drawn at random from them

and that intermixture is the sole process for modifying the gene fre¬

quencies of the individuals in each population.

By way of notation, let a* be the allele frequency of a

single locus in population I at the end of the w generations end let

represent the frequency at the corresponding locus in population

II. Let be the rate of gene flow into population II from
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population I at the end of the "v*" generation and be the rate

at that time of gene flow in the reverse direction. Here the gene flow

rate is understood to be that proportion of the recipient s population

gene8 which is received by immigration; the proportion of the donating

population itself which emigrates is considered irrelevant for present

purposes. These gene flow rates will be called admixture rates in the

hope that confusion with other definitions may be avoided.

At the end of the first generation admixture takes place and

there will, in the gametes of population I, be a component, w^i) ,

deriving from population II in whieh the allele frequenoy will be j

the remainder, I — , of these gametes derive from population I

and their gene frequencies will be unaltered. Mathematically, if
IC 3E

and <^0 are the initial frequencies in populations I and II
respectively, the relations between these and the frequencies after one

generation are:

<\]r = + Ci - ^0)) (1*1)

and by symmetry,

=. . a - ^ o-2)

The above argument may be applied equally effectively to

obtain the relations between the frequencies in the two populations
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After the generation,

C - G-^vO)^. (1#5)
+ (I XC^)^ (1.4)

providing two simultaneous recurrence relations. These may be readily

solved by forming the sum and difference of the equations. First

define

V, +- (15)

and

(1.6)

Now by subtraction of (1.4) from (1.5),

- vw*<yO> ) Aw-, (1*7)
which is a single recurrence relation, and this may be solved by

successive substitution downwards, leading to the results

— 7T (I — wvT(k") - ) A c (1.8)

where 7T is uBed to denote the product of the bracketed term for

fc - W.

In a similar manner, adding (1.3) and (1.4) gives again a

single recurrence relation

2^ = + (- vwr(v\) _ vv^CiO ) Avl_( (1*9)
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Into which the solution for A,^ may be substituted. This gives:

4-(vv^_^n))TT(l-^lc}-~^)A0 (1.10)
far T over k - iyrj . . , j -n-i .

Successive addition enables a general solution for to be found

end this has the form

= z. «- zc—*(£))TTO- ~r(*>-^)A0(I.11)

in which Z, denotes summetion over all that follows for £ =

and TT now operates to form the product of the bracket which follows

it for k = 0 .

Using (1.5) and (1.6) and defining

° for k ¥= n.

cf =

( ( -**vx0c)-vwIGd) f0P k = w

the general solution for (1.5) end 1.4) may be obtained from (1.8) and

(1.11). This reeult is embodied in the following theorem.
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THEOREM 1.1 The discrete model defined by the relations (l.j) and

(1.4) has general solution)

= i (s:o +• X(y^Cu) .*0c) -f )TT(| - ~?(U-„*(1))ao (1.12)
and

v = + z(^-ws(ic)-fm(i-^r«)-^))A0 (i«i»

in which S implies summation over k -k

and TT implies product taken over £=.,V,./fc-0 .

THEOREM 1.2 For the special case in which the admixture rates are

constant, i.e.

™xCk) = vw^Oc) = mr (1.14)

for all k = i)jl). .. }m, , then the general solution to

the model defined by (1«5) and (1.4) iss

■V*- i(z. ;c-~TjA./f.'".1)) (1*»)
together with,

= i (.2, "t- (**x- - v«x-iJ1 )n)A0/c^T+^X)) (1.16)

Proof This follows from Theorem 1.1 and equation (1.14).
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THEOREM 1.? (Olasa and Li) For unidirectional gene flow in the

model defined above, where:

wvz(v^ = wv , a eonetant and

W^^VX") ~ 0

(1.17)

the general aolutlon to the equations (l.J) and 1.4) ia

given by

MI tf - <vf('—y* ci-ci-^n £ (1.19)

Proof This follows from Theorem 1*2 and the relations

(1.17).
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CHAPTER TWO

WO POPULATIONS WITH CONTINUOUS MIGRATION

The model of Chapter One is now changed only in one important

respect. Instead of the assumption that migration takes place at the

end of each generation# or at discrete times# continuous migration

throughout each generation is now considered. Over a large number of

generations the difference in effect of the discrete and continuous

assumptions is small. The general model and analysis which follows,

yields as a special case the solution for unidirectional gene flow

given by Glass and Li (1955).

To define the new notation required for this continuous model,

let vv\ and be the rates of admixture, in the sense of the

lest ohapter# at time tr ; more strictly v^Fitr) and are constant

over the small interval ( fc-+ S-t) so that the amounts of migration

which take place over that interval are £Vand respectively.

The gene frequencies in the two populations will be defined at time t

as <^(jF) and .



11

This model implies a pair of relations describing the fre¬

quencies in terms of the admixture ratesj these are:

St) = Cl- -h vwHt) Sb c^Cl-) (2.1)

c^'C^'+dt) ■= wv^t) gfc t^Ct) 4- O — ^rCt) £fc) cj/R-tr) (2.2)
Again, defining ZCfc) end ACt) as in the previous section as the sum

and difference of and <^(jr) , forming the difference of the
pair of relations gives:

AO-t-St) = (i - wr(t) - ACt) (2.5)

or ACfc+St) — Act) = — (tv\TCt) -+- kvtirCfc-)) ACfc) St

Dividing by <Tt and letting <St o

ACfc) _
— (fw. xCfc) vw^Ct)) A Itr) (2»h)

dfc v '

which is a first order differential equation in ACfc) with solution:

_ JtC^r(fc') dJt
ACfc) - A. e (2.5)

Adding equations (2.1) and (2.2) gives:

Z ■+£<=") = ZlCt) 4- St (. vv\rCt) — tv\.xCh)) A (fc)

substituting for A(fc) s rearranging and taking the limit as

. — = (w^t) Hfc))Aoe (2.6)

and this differential equation in 2T(t) hag solution:

/1

wXCt') + ) dLt'
ZCt) = Zo + A.X (^CO-^t"))* oLfc" <2-7)
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-ibinre Jn the above Zc end An are as^in the previous section,

the sura and difference respectively of the Initial frequencies, We-r

those at time t - o ,

THEOREM 2.1 The continuous model defined by the relations (2.1) and

(2.2) has the general solution:
_ -J0 (wC^b') +-k./vT(fc'))cifc-

= tCZ„ +A0 Xo C^ZCt") -►wJL(jt"))e cUrV

— fa (kV^r(t ) ott'
A0 e )

(2.6)

Snd
_ +-wv3C(t'))<it

T>) = a-C^o +-A,, /0 (wAX(_t"))) e elfc"

~ A° e ) (2.9)

Proof follows by addition and subtraction of (2.5) and (2.7).

THEOREM 2.2 When one of the admixture rates is zero and the other a

general function, the solutions are:

for wvxCt) = ^ (2.10)
<^rCt) - o (2.11)

- X0 **.(>') dt'
^ (t) = i(l0^At-2Ate ) (2.12)

Proof follows by substitution of (2.10) into (2.6) and

(2.9).
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THEOREM 2*5 When the admixture rates are equal for,

WVXCfr) =" Wv

the solutions erei

- t (sr. 4- Ao (2.U)

■^O) - ill. - A..-ii*~t0<Ur') (J.15)

Proof follow* bjr substituting (2.13) Into (2.6) Bn^ (2.9)

TffiSORRM 2.4 hsn the admixture rates ere different but constant

X( _ ...X

(2.16)
for vv\ E(.«=) = m

and vw^C*--) " ^

the solutions are

„ x( i fA0 XnxKA e. v > .l<jr) = i(l0 +• )(2.17)

- t(s. *A-y-^f' - <*•«>K "*• +-vw"" /

Proof follows by substitution of (2.16) into (2.8) and (2.9).
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THEOREM 2.5 (Glass and Li) For unidirectional gene flow, where

one admixture rate is constant and the other aero, i.e.

for vv\r<jr) = w\

vK^Cfc) ■ 0 (2-W'
the solutions are:

^
(2.20)

(2.21)

Proof This follows by using (2.19) end Theorem 2.4.

THEOREM 2.6 For unidirectional hyperbolically increasing gene flow

the solutions^ where.*.
= o (2.22)

in which a, and c. are suitable constants, are given byj

fL*) = (2-2*)

Proof follows by using (2.22) and Theorem 2.2.
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THEOBEM 2.7 For equal hyperbolically increasing admixture rates,

i.e. for
w^Ct) ^ (2.25)

the solution iss

^O) - i(i. ^ t, ) <2-26>
. ics. - ) <2-2"

Proof follows by using (2.25) and Theorem 2.J.

THEOREM 2.S For unidireotional parabolioally increasing gene flow,

i.e. for

W^O") — o-t" +■ Mr + C

= o <2'26)

where a,, b and c. are constants, the solution 1st

^XC«r) = ^ (2.29)

= vr. <2-5°>

Proof follows by using (2.28) and Theorem 2.2
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THEOKEM 2.9 For equal parabolically increasing admixture rates,

i.e. for,

vwrc^ - wa^It) - <xkr +- i>(r + c. (2.J1)

the solution ia:

— 2- Li "J?* + cf)
q/Ct) = t (X0 + A0 «. ) (2.52)

-i(.i + ^ bt-i+ clr) N
uCt") = t(r0- ) (2.53)

Proof follows by using (2.51) and Theorem 2.5.

It ia clear from the above results, particularly where

constant admixture rates are present, as in Theorems 2.4 and 2.5, that

the limits of frequencies aB are the same as the corresponding

ones for the discrete model considered in Chapter One.
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CHAPTER THREE

MORE THAN TWO POPULATIONS WITH DISCRETE GENERATIONS AND CONSTANT

MIGRATION» DETERMINATION OF GEMS FREQUENCIES

Returning to the model with discrete generations of Chapter

One, it is possible to extend the arguments of that section from two

populations to any general number of populations. Corresponding to

equations (l.J) and (1.4) for tHopopulations are the N equations with

constant admixture rates,

ItM. ~ ^ VI. t"> + . . . -V ■***»«

<VK,'V = 't'tCrt-d *" 'Va-C'^-O + ^NN % NO-0 (5*1)

where the notation has been generalised so that ie the component

of admixture in population t deriving from population J. at the end of

the ^ generation for

C - »,z,. , n and I - I,x, . - . , N
and is the frequency in population i- et the end of the

generation.
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When the condition that,

w... s 1—51 »v\t- (5*2)

for all i is added to the N equations above, they completely describe

the model. In view of this it will be convenient to represent these

equations in matrix form so that further reference to the model may be

simplified. The equivalent matrix equation to the set (5*1) is:

<U = McU-« (5-5)

where is the vector of frequencies

t c^iCn.-0 5

and M is the matrix of admixture rates [w;; } .

For this model, in which the matrix tA has constant elements,

it is a straightforward matter to obtain an expression for in terms

of the vector of initial frequencies, <^0, From (5.3),

<Vw = M W« =• M(m= . . . = (5.4)
and this has the same form as (5»5). is the matrix of

accumulated admixture over n. generations, having an important property.

It contains as elements, the admixture rates which would need to be

exercised over a single generation to achieve the change in the vector

of initial frequencies equivalent to n- generations under the operation

of the constant rates which are the elements of M .
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5»1 Determination of future gene frequencies from exact data.

The relation (5*4) may be used to obtain the vector from

known n, <^0 and N\ by repeated matrix multiplication w- times. In

general, this is not the quickest or the most accurate method for

determining from the relation. Other properties possessed by
fche

the matrix M are of use here. The rows of^matrix all sum to unity

so that at least one latent root is unity and the matrix elements are

all in the range (0,1) so that the latent roots Xt (is I • t N)

are such that (X-.l € I with the largest root unity. These

results were proved by Frechet (1957-8, p.105) for stochastic matrices

which have similar properties to M here} reference is made for this

and for some of what follows, to Bartiett (19^6, pp.24-50).

In general the X; may be considered to be distinct and it

will appear later whet difficulties arise when this is not so. Under

this single assumption of distinctness, there exists a spectral resol¬

ution of M into N terms so thats

M = XX. (5.5)

where the Nij. are component matrices of the spectral set, with the

properties

X Mt X (5.6)
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where X is the unit matrix, and,

Mj = o Cc^j)

clsJ) (?<g)

It follows at once from these properties that

^i (5.9)

For small n/ but large w it is in general more accurate

and convenient to evaluate the latent roots and the spectral set of M,

rather than carry out a large number of multiplications of This

is particularly true for M = 3 where the latent roots are directly

available, the largest being, unity and the other two being the roots of

a quadratic equation.

To determine the matrices of the spectral set, , it is

first necessary to find vectors and fc~; associated with each latent

root X;, such that,

M S-L - X; (5.10)

and t/ tv\ ^ b/ (?.ll)

the spectral matrices are then:

M- =• C t:/ )/( < tc)

where a dash C ) denotes the transpose of a vector throughout.

(5-12)
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To illustrate this method of decomposition and its application

to the determination of future gene frequencies, consider the following

data from three Nilotic populations in southern Sudan.

The matrix of admixture rates ist

/ .9050 .0125 .0025
M = ( .0158 . 9775 .0087

\ 0 .0098 .9902

in which the populations referred to in order are Nuer, Dinka and

Shilluk.

The latent roots of K\ are,

A
( =■ 1, 0.986957 and = 0.965765

and the spectral matrices ares

.502 588 .528 685 .768 929
= ( .502 588 .528 685 -766 929

.502 588 .528 685 .768 929

f .419 578 .058 890 -.478 469
= ( .162 804 . 022 850 -.185 654

\-.488 945 -.068 626 .»57 571

/ .278 O55 -.587 572 .109 559
|V\3 = -.465 191 .648 467 -.185 276

\ .186 557 -.260 057 .075 500
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and using (5*4 and (3.5)# wvtu ^ = / -T-ffTo \ }

( '

(5.15)

/.546 455\ / .053 165 \ / -.004 600
- .546 435 ) + (0.986 957r .012 869 ) + (0.965 763)" *007 697
\ .546 435/ V -.058 648/ V .003 067

(5-14)

In this form It is a simple matter to determine ^for any w

and Table 3*1 shows the results of seven evaluations.

TABLE 3.1

5 10 15 20 50 40 60

Nuer .5736 .5725 .5709
Dinke .5650 .5632 .5616
Shilluk .5076 .5104 .5129

.5696 .5672 .5649 .5610

.5602 .5578 .5559 .5552

.5152 .5193 .5228 .5285

It is clear that the second and third terms of the expression

for <^,m.(5.14) will tend to zero as w-» <» . The first term then
represents the vector of asymptotic frequencies; the quality of these

frequencies is to be expected end is a necessary result of some migration

taking place between all three populations. This property, that the

first term expresses the asymptotic frequencies depends upon the

assumption that unity is the only latent root of modulus one. By

Prechat1a result all the remaining roots ere then in modulus less

than unity; hence their n th powers converge to zero. j
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3»2 Estimation of future gene frequencies from sample data.

The determination of the last section takes no account of any

statistical properties which the known values may possess} it provides

exact answers to exact known frequencies and admixture rates. In

practice it is likely that both frequencies and rates are obtained as

estimates from sampling, since the entire population ia too large for

a complete census to be carried out.

However, the admixture rates can often be obtained to a much

greater degree of accuracy than the gene frequencies and for the moment

they are considered to be known exactly. Each gene frequency is an

independent binomially distributed estimate of a proportion obtained

from a sample. The samples used for this purpose are large and usually

contain several hundred individuals; the binomial distribution in these

circumstances, may be replaced by the normal distribution, to a good

approximation.

By analogy with the relation (3*^) it i0 worthwhile to describe

the statistical model. This is done by letting <^o represent a vector
of random variables, each of which is distributed independently of any

other and whose expected values nay be exhibited in e vector called

and whose variances are contained in the vector V(<^,0). In view of

the presumed exactness of N\ , and therefore the expected value of

the vector is given bys

E(V) = FWo) (5*l5)
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and In view of the known result for the variance of a sum of independ¬

ently distributed random variables (e.g. Feller Theorem 2 p.216),

v(<u) = n-T' v(<jj <>■»«)
where is a natrix consisting of the squares of the elements of the

matrix

It is straightforward to take the square roots of the elements

of VC<\.K) to obtain standard errors of the estimates of EXfy*) and,

using the approximate normality of the distributions of the elements of

<^,0 , to form confidence limits for these estimates.

In the example considered earlier, the admixture rates were,

in fact, estimate® by sampling and are not therefore exact. The fact

that each rate is nearly zero or unity makes the assumption of exact¬

ness valid since the binomial sampling variances, being proportional to

vw(i-wO are all quite small. For the gene frequencies, all of

which ere in the range 0.5 to 0.6, the sampling variances are much

higher and the statistical model considered above is appropriate, at

least where approximate variances for predicted values are required.
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When it is not admissible to assume the exactness of f*\, the

analysis is more complex. In order to investigate the sampling pro¬

perties of estimates when the elements of hi are statistically

distributed, the nature of the distribution of these elements is now

studied.

The usual method for estimating the gene flow rates by

sampling, requires an enumeration for e sample from each population

of those individuals who have taken part in each possible type of

intermixture to form the present generation. From these enumerations
*

proportions of individuals are obtained directly to represent the

corresponding rates of gens flow between the populations.

For two populations, under the assumption of a constant

independent probability for each individual to migrate, the distrib¬

ution of each rate is binomial, or for large samples, approximately

normal. For many populations however, the distribution of each

rate is multinomial, or again for large samples, normal.

Let M represent the matrix of observed rates obtained

from sampling so that if the expectation of this matrix is written

y then

n\ M v 6
(5-17)
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where e represents the matrix of errors. Prom this,

= O + (5.18)

or considering only products in the expansion of the right-hand side

with not more than one factor e , using an assumption of smellness of

the errors,

n\a =. +• 2* e yn-r~'
r=, (5-19)

The difficulty of the second term requires that special forms

for the matrix W be considered separately. In many situations, for

example, W is nearly scalar because of the retention of most of the

gene pool within each population. When this is so, ^ commutes

approximately with any other matrix and, therefore, with £ so that

(3.19) becomes

MA = W" + -we U~~x (3.20)

Alternatively, the matrix £ may contain elements which are

of similar size and in this case write,

e = ta (5-21)
where & is a scalar representing the error In each gene flow rate, and

U. is the matrix of unit elements. When, in addition, the matrix

of gene flow rates is symmetrical, indicating that the gene flow from

one population to another equals that in the reverse direction, further



27

simplification of (j.19) is possible. This is due to the coiarautativity

between any symmetric IA and IX and as a result,

n\n = y +- w g. ll, (3.22)

An extension of this approach now leads to a relaxation of

the condition of similarity on the elements of . Let and

be the minimum and maximum elements respectively of & Using

the fact that the elements of W are non-negative, bounds for the

size of the second term in the expression for fA** in (3.19) follow

since

ULV" S I (5-25)

The application of these results for common special types

of admixture matrix, is now possible in order to study the sampling

properties of the estimates of gene frequencies. First the above

results are summarized. Simple forms for the error in seem to

be available

(1) when <a is near scalar, as direct errors, and

(ii) when fA is near symmetric, as error boundsj direct errors can

be found for (ii) if the error matrix for M has equal elements.

The estimation of gene frequencies after vv, generations from

given sample values, at time zero, and from sample estimates of the
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gene flow rates, is achieved by using the relation,

<(5*24)

If i-y^ represents the vector of true frequencies after w

generations for a constant admixture matrix V of gene flow rates, and

~ji0 a vector of true initial frequencies, then write

(5.25)

and suppose,

) « Av
s* <•*. ) = /-c
t-(M) = y (5.26)

with errors and £ defined so that.

^
+

fA = M + £

V

V (5.27)

Prom (J.24),

)* (->£„ <- £.)

• (<J~ Ure- V"-S'..)(Tt. ♦ 6.)IT =0 /

and ignoring terms containing more than one term,

= V"*. ♦( £,' 1". * V"'
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When the errors e end e„ ere Independent,

v<x«- ( = V9JT +• €.) + var (. (5.28)

where the terms on the right represent the components of variance of

due to and eQ respectively,

Consider now the special types of admixture matrix mentioned

above. First suppose that ^ is scalar: from (5.20),

<U = +

or
= y/', f ft£ y~r.-i * ^ £ =

(5.29)

where "JO*-, ie defined in an obvious way as the expected vector of

frequencies after n.-1 generations. From (5.29) the variance

of is the expectation of or, using the independence of e.

and g„ , (j.28) beoomes

W C ~ Vewr ( "• 6 X,.| ) +• v<x*~ C e O )

or in suffix notation,
N *■

vo-r C<^,;) = ^ ^ Cec./)
J - * > J J

^ CoV C £. * - c >. ^

+ S ^ Vojr ( e0.) (5.50)
4 = 1 J J

in which the var(e;j) and coV Ce<j ; a etc) are the multinomial sampling.
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variances end cov&riances of the elements of the vcwr(e0j) ere
(%v)

the binomial variances of the elements of <^o and y W Cj } is the
matrix whose elements are the squares of those of <y * , using

the independence of errors at different loci j .

Equation (5«3°) may be written more concisely for matrix

computation, by defining N matrices = { V-j^ ^ such that

V »< = C°V (5.51)

The well known results for multinomial sampling variances (see e.g.

Rao (p.55)) now allow the expression of the elements of each in

terms of the admixture rates J briefly the relevant variances and

covariances are

V«Mr = ™-tj- C I - (5>52)
Cov ( vw . vvi.. ) = — vvt. .. m -, / vv.V <y , _l<' v.j tk '

where is the number of individuals in the sample from which the

admixture rates for the I. population were obtained. V. may now be

written

V. = C C w 0 ) / ^;
(5.55)

where is the vector » the row of M, and (wv^)

is the matrix whose diagonal elements are those of this vector.



31

From (5.5O)

Vo^ ( "^w-, V£. )^-v + ^ Ve^C€o") (3*54)

in which ' is the row of the matrix {. .

For a near symmetric matrix >A , possibly an upper bound to

would be of greatest value and several bounds may be obtained

readily. It is convenient to make use of the fact that the multinomial

covariancea which appear in considering the variance of the product of

the matrix £ with any other matrix, make only a negative contribution

to this variance and in considering an upper bound they may be

disregarded. Using the relation (J.2J) the required bound can at

once be obtained for

UiJ"" y,0 ) (3.5)

and this relation also presumes the non-negative property for the

elements of and U which is always satisfied. The second term

on the right now appears as a vector of constant elements, each equal

to
ty { vv. cU<^ C X-Q ) 1 var Ce»~«v<)

or c -r^ e—*)

where uu is the vector of unit elements and vcxy C is the largest

variance of an element in M< if w . is the smallest sample size,
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so that

w ^ (. vvc")
c

then vo*-may be replaced by C'/^ w^^.) beoause of the well

known result that the multinomial variate vw. has maximum sampling

variance at vw = £ . The simple upper bound is then

v ty^r (■ * v®*" Ce.) +• vv.1" C%a_, «-") /4-(5*56)

The second term can be taken one stage further to give an

upper bound for all frequencies, since each element of is less

than one, the second term is less than (Iw1* / q- ) . As this

bound involves only n. , the number of generations for which frequencies

are being predicted, and W- the smallest sample size for a determined

admixture rate, one of these quantities can be found in terms of the

other. For practical purposes, a frequency estimated by the method of

this chapter which has a variance of 0.25 (the binomial maximum value)

or more, will have no value so it seems reasonable to require

q vv" < 0.25

q- ^

or v

which implies for all v that

w: * ^ (5.57)
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This simple condition requires that for a contribution of less than

0.25 from the errors in the admixture rates to the upper bound of the

variance of the samples for the determination of these rates

should be at least nine times the square of the number of generations,

e.g. to predict from <^,o would require sample sizes of at least
225 for the determination of the w.., , and to obtain a would

M * V io

require samples sizes to be at least 900.

It should be stressed that this condition still does not

ensure reasonable estimates because the first term on the right

of (5*5^), the variance due to the error in the initial frequencies

j k 0n the other hand, the condition (5«57) imposes an upper bound

which will be too high for many real situations as the generality has

been carried too fart the bound provided by ($.^6) is stricter and

would be worth the small amount of computation required.

An application of an upper bound of the type given above is

perhaps worth some discussion. When it is required to test an

estimated frequency <j,Kl against some known constant c such a test

may be carried out by observing that the estimate is approximately

normally distributed, being no more than a linear combination of

independent approximately normal observations. Common practice here

is to compare the ratio of the difference between the estimate and the

constant to the variance of the estimate with a etandardised normal
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variable u, (i.e. with mean zero and unit variance) by means of a table

of the normal distribution. Suppose that S is the difference between

the constant and the estimate which would be important for discrimin¬

ation, and that ia that value of -u, which is exceeded only with

probability . Then the requirement for the variance of the estimate

may be written as

va^-(c^. ) £ sl^ (5.58)
and this can only be true for all cases if the upper bound of (5*5^) Is

also less than <*"/ u* . From above it follows that this is so only if

YVi ^ 3 vv1- IXK / if* (5.59)

for all i « For example, if ?<- = 5, = 0.05, S = 0.1, Z 1100

approximately.

Finally, for the application of any of the relations

concerning the variance of given above, it will be necessary in

practice to use observed values cj,e instead of ~^~a and N\ instead
of W .
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ixaopl©. Uaing the matrix M and vector <^e given in the Inst section
together with sample sizes of 200, 288 and 255 for the estimates in the

roifs of M and a,ot variances and bounds for future gene frequencies are

given in the table below.

TABLE J.2

frequencies variance variance
generations

1w

due
error

to due to
error in M

bounds

5 0.575 625 0.001 057 0.000 000 06 0.005
0.564 951 0.000 689 0.000 000 11
0.507 653 0.000 892 0.000 000 15

10 0.572 267 0.000 928 0.000 000 22 0.021
0.563 150 0.000 577 0.000 000 56
0.510 570 0.000 817 0.000 000 44

20 0.569 659 0.000 743 0.000 000 69 0.085
0.560 162 0.000 447 0.000 001 07
0.515 186 0.000 701 0.000 001 27

50 0.567 172 0.000 623 0.000 001 25 0.186
0.557 815 0.000 386 0.000 001 81
0.519 299 0.000 615 0.000 002 10

60 0.560 934 0.000 447 0.000 002 46 0.745
0.553 255 0.000 341 0.000 005 15
0.528 494 0.000 464 0.000 003 45

The variance components are calculated from the two terms on

the right-hand aide of equation (5*54) and the bounds for the second

term given in the end column, are obtained from (5*55)l in this case
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the upper bounds are rather rough and other possible bounds derived

from simpler expressions are not tabulated here as they are even poorer

as to an Indication of the likely variances* Perhaps some comment is

necessary on the reduction of variance due to -Mr" with n j this is

due to the fact that smaller fractions of the initial frequencies are

taken for higher generations. The increasing variance due to M

expresses the increasing uncertainty in values of ^ for larger w .
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5.5 Determination of pest frequencies from exact data.

From the relation (5-4), by multiplying through by (lv\'v ,

the inverse of the accumulated admixture matrix,

= CMV (5.40)

and this relation may be used to determine past frequencies from

present ones. The method of section J.l still holds because in

general the latent roots of M"1 will be distinct end a resolution

will, therefore, be available. Of course, the latent roots are no

longer confined to the range (0,1) and unity is net* necessarily one

root} the only effect of these conditions in the last section, was to

exhibit the asymptotic frequencies and these are not relevant here.

The fact that one of the latent roots is net- known to be

unity makea it only a little more* difficult to find thee© roots $ but

there are several iterative methods (see e.g. Aitken (1957)) which

will usually prove adequate. The arguments and example of section

5.1 serve to show hov; the frequencies in the vector may be deter¬

mined given the exact values of M. and

This method is applied four times to the three Nilotic

populations to determine the frequencies <^0 at four loci from given

frequencies st the same loci, and from the matrix of the last



38

section, taking the number of generations, w , as twenty; the results

ere shown below in Table 5»3«

table 5.5

c^o vectors at loci cj^vectors at loci
msdb MSdB

Nuer

Dinks

Shilluk

.5805 .2559

.5786 .1197

.4900 .1501

.1766 .1524

.1566 .1158

.2709 .0894

.5750 .2254

.5670 .1505

.5047 .1477

.1782 .1270

.1759 .1155

.2525 .0941
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5»4 Determination of past frequencies from sample data

The difficulties of estimating pest frequencies from sample

data ere somewhat greater than those of the problem of prediction of

future frequencies from sample data which were discussed in section 3.2.

It is possible, however, to use some of the results obtained in that

section once a relation is established between the errors in an observed

admixture matrix and in its inverse in the present context. This

relation is now derived.

As previously, let & represent the error matrix for an

observed admixture matrix M, whose expected value is given by V .

Let e.x denote the error matrix for H"1 computed from H by

inversion and it follows that V"1 , the inverse of ^ , is the

expected value of H"' . These definitions imply,

K - «J + e (?.4l)

M" = VJ-* + e., (5.42)

and, hAM_> = r (3»43)

Substitution in (3»^3) and ignoring the product <=-£-, , as

a small quantity, givesj

fcJtJ-1 +- £._( +- £ y' = X

or. ^ e ( +- &

"">•
. -y-.y -<
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Consider next the variance of <^0, the frequency predicted
from a sample vector containing error e.^ t and M , by the

relation (J.40). Substitution from above leads to:

+■ e-O'C X-w *o
- (&>-'- M-'eyHr(^ + O
- c^-rcf- e)xy-rrc^+o

- Cfc--rcy-6)^. + O^TC^-eyxf-r ^

and, ignoring product terms with more than one of the factors €. and

& $W *

o~<r T6o + (5.45)

Following (5.28) write,

VCM^ (<^o) = C.^ 0 v<MT {(c^-e) + var- {C(U-'^
(5.46)

(*0
in view of the independence between £ and where (6^

contains the squares of the elements of (V . It is now clear

that the second term on the right may be evaluated directly. The

first term (<^8 |«) contains a factor v»r [C } which Is

identical with the term { (iy + €)*^.03 discussed in section $.2

when computational formulae were derived for speciel cases of the

admixture matrix. These formulae may be applied once more in order

to evaluate variances or limits for equation (5,46).

r
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5»5 Admixture matrices with repeated latent roota.

In this section a more general case is considered! when

the admixture matrix need not have distinct roots, it is not possible

to spectrally decompose the matrix In the Banner described in section

J.l in order to simplify the estimation of certain frequencies. This

is not to say that a decomposition does not exist, for it does, but

the method is rather less straightforward. Such special cases of the

admixture matrix are sufficiently common in practice to require the

method to be given here, A simple example is that with three popul¬

ations into one of which there is gene flow, but out of which there is

none5 it will become clear that this model uses an admixture matrix

two of whose latent roots are unity, and so cennot be treated by the

method given. It will be dealt with later by application of the more

general method given below.

Define the matrix 3>(?0 by the relation,

£(x) = XT - M (5.47)

where I is the unit matrix, so that the roots of the determinants!

polynomial equation are the latent roots of the matrix NA s

( 500| =, o
This equation is usually referred to as the characteristic equation.

The adjoint of the matrix will be required, and this ie defined

aa A Ca) which is the transpose of the matrix whose elements are the
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eofactors of the elements of <£ (X) .

The general case of repeated, latent, roots is now considered.

Suppose that the first s out of the M roots are distinct and that of

these the v1. root A; appears r times ( L = 1,2,.,,., s ), It

follows that

21 r. N (5-49)
a - <

For the case in which each r is unity, the M roots v/ill be distinct

with no repetitions, and s ■= N } the general result given in the

following theorem will lead to the spoetral resolution of previous

sections as a special case.

THEOREM 3.1 (Confluent form of Sylvester's Theorem) Any polynomial

function p(m) of the general matrix M may be expressed

as a sum of polynomial terras in the distinct latent roots

of M as follows*

PCN° " c—v;cx> J^(5>50)
S V

where, = TT — A. ")
(3.51)

j-*'"

Proof is given by Fraaer, Duncan and Collar (19^6 par.3•10)

or by Sylvester (I683)
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THEOREM J.2 Any power of the general matrix N\ may be expressed as

a sum of polynomial terms in the distinct latent roots of

M t

- i _i_ [*£1 ^AU) 1 (5.52)
u, Cr{-0! L aLXr'-1

M
H

Proof follows from substitution of,

P(X) = (5.55)

in the result of Theorem 5»1

Where the latent roots are distinct, the above theorems lead

to the general result which follows:

THEOREM J.J Any power of the general matrix M, which has all

latent roots distinct, may be expressed as a sum of

matrices, each containing that power of one distinct

root as a factor,

M- - S V (5.54)c=» Y-iOO

Proof follows directly from Theorem 5.2.

It is a straightforward matter to show that the result of this

last theorem 5»3 corresponds with that given in the earlier sections J.l

and 5.2.
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Example The general resolution of Theorem J.2 is now applied to

the common admixture matrix referred to earlier which has two latent

roots equal to unity, and results from migration out of two populations

into a third population but no migration in the reverse direction, or

between the two populations. Such a matrix may be denoted by,

M I o l ° (5.55)

in which m, and wvu ere the admixture rates out of populations 1 and

2, into populetion 5, end,

(5-56)
*^3 = I — vw, — 2_

Directly, it follows that,

X — i Q o

§>(*•) - I o *-i o | (5.57)
-wi, -*v

and,
= O-0U-0U-w%3) = O (5-58)

so that the latent roots are,

l I and ^3
) *

In accordance with the notation defined earlier, let,

= I
; and -S - » (5*59)
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bo that s ~ 2. $ rK « z Bind = t clearly (5*49) hoid» since n/= 3 j

for this matrix

A (A) = ( o O-0O-»v,> °

**,(>—O - 0 (A—o*

o

V\

O o o

o o o

,0*^-0 (^3 -0
a_

I — 1M.J O O

vw ( "^o. O

(5.60)

A'(A) = \ o i^-v-^3, o
vw, 2-Ca-O / (5.61)

bo that,

j~A CM] - o} the null matrix (5.62)L J*=i

(5-65)

= ( O i-«w3 o J (5.64)

and,
MM = ^ (5.65)

M*) - (a-'T (5.^5)
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Applying the result of Theorem 3.2,

NV _d_ A" AC7Q
d>. VcCM

*=t

A* A(M
Y-tCM

* = Wv,
(5.67)

•w-i
, .

n A A CM

Yt(M

An A* cm
^cCM

- M ACM

A*M

-1 A-l

A" ACM

VtCM
-J ,\=

and, using results (5»60) to (3.66) the first and third terms vanish

so that,

Mv

I o

o i

vw, -vv\,

^5» ~WA, t—ow,

and this may be written

v*i.

(5.68)

M, A, Ks (5.69)

to correspond with the notation of (5*9), and it is clear that
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since

= 1
(5-70)

rAjivVj. = = 0 (5*71)

^ = *' (5-72)

Ml - ^ <>•»>
and verifying that the relations (5*6) to (5.9) hold for this matrix,

this will be of some importance to the discussion of other properties

of these resolutions of admixture matrices in the following section.
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CHAPTER FOUR

MORE THAN TWO POPULATIONS WITH DISCRETE GENERATIONS AND CONSTANT

MIGRATIONs DETERMINATION OF ADMIXTURE RATES.

The natural consequence of the previous chapter, which dealt

with the estimation of gene frequencies future or past, would seem to

be the consideration of the problem of determination of the admixture

rates from known frequencies at different points in time. Where

there ere several such points in time, the problem can be treated as

asymptotic regression in view of certain results of Chapters One and

Two; this problem is taken up again in the next chapter. However, an

interesting problem is met with by using only two points in time but

several loci at which frequencies are known. A further problem which

occurs in dealing with a matrix of accumulated admixture over several

generations, is that of determining the amount of admixture per genera¬

tion, assuming constancy of the intermixture.

In this section the determination of admixture rates from

given exact frequencies at two points in time is dealt with, leaving
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to the following sections other considerations, e.g. many points in

time, statistically distributed sample estimates of gene frequencies.

It will be convenient to let the two points in time be zero,

after no ger.arstione, and u. , after tv generations so that and

msy refer to vectors of frequencies, in an obvious manner, at these

two points in time. If these frequencies are known at k loci, there

will be k vectors ^ end these may be represented by the k columns of
a newly defined matrix j similarly, the k vectors <^a will be
the columns of a matrix Q.0 . In this case, where the intermixture is

in progress between N populations, Q.^ and Q0 will each have N

rows, and k columns whilst M , the admixture matrix will be square of

order N .

Referring to the previously established relation (3*^)

V = ^ (4.1)

it is clear that since this holds for every locus, the k similar

relations may be expressed by the single matrix equation:

Q.k = M.~Q„ (4*2)
in which both Q.^ and Q0 are known, and may be determined by

carrying out matrix multiplications so that,

= <:5-v,Q0''CQoQO~,
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where matrices meant to be transposed are primed. (Of course, it

would be possible to determine M*1 from the relation

= guq^CQ.0Q.^r (4.4)

which is also available in view of the exact knowledge of and .

Where this exactness is not present, it will be shown later that (4.5)

is a more suitable expression, and for this reason only it is preferred

at this stage. The results are identical.)

Having obtained a simple estimate of the problem of

determining from it a value for n\ , the admixture per generation, is

now considered. The matrix M" possesses several properties which

are of interest, and these are identically those of M considered in

section J.l» the latent roots, will, in general, be distinct

but always such that | |< I . The distinctness of the latent

roots allows the spectral decomposition of Mw, in the simple form

= x >r <*r (4.5)

but the uniqueness of this decomposition, together with the known form

for the nf power of M in terms of its roots,

c (4.6)

<' - ^ (4.7)

(4.8)

show6 that Xp* = >7

or, =
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The matrix M may be determined from by applying

spectral resolution to the latter matrix taking wL<" roots of its

latent roots and using:

N\ = Z Mi. (4

since the spectral matrices M;,, are the same for ^ as for M .
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Example An example of the procedure described above la now given

using the date of Table 3*2 as known exact values of and ,

where 20» Ten decimal places were retained throughout the cal¬

culation but only four are shown for economy of apace.

TABLE 4.1

NT =

M 8 d B

f .5750 .2254 .1782 .1270
.5670 .1505 .1759 .1155
\ .5047 .1477 .2523 .0941

.5803 .2559 .1766 .1324 \

.5786 .1197 .1566 .1158
490C .1501 .2709 .0894 J

.5803 .5786 .4900

.2559 .1197 .1501

.1J66 .1566 .2709

.1324 .1158 .0894

.5803 .5786 .4900

.2559 .1197 .1501

.1766 .1566 .2709

.1324 .1158 .0894

.4396 .4023 .5752 \

.4159 .5870 .3564

.3677 .5601 .5462 J
67.05
-46.90
-26.25

-46.90
77.80
-27.98

-26.25
-27-98
60.90

= (1.000)

.7651 .1810 .0538

.1963 .6695 .1341

.0177 .1461 .8363

• 3024 .3287 .5689^
.3024 .3287 .3689 + (.7727)|
.5024 . 3287 . 3689J

.4196

.1626
-.4889

.0569 -.4785

.0229 -.1857
..0686 .5576.

.2780 -.3876 .1095
+ (.4984) ( -.4652 .6485 -.1833

.1866 -.2601 .0735
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The 20th roots of the latent roots, i.e., - •

0.7727) = -9869 and "7(0.4984) - .9658 are moat con¬

veniently obtained by using logarithms, so that the expression for M

isi

/ .5024 .5287 .3689 \ / .4196 .0589 -.4765
t*\= (1.000) ( .3024 . 3287 .3689 )+ (9869)1 .1628 .0229 -.1857

V *5024 .3287 .3689/ V-.4689 -.0686 .5576

/ .2780 -.3676 .1095 \
+ (.9658) ( -.4652 .6485 -.I833

V .1866 -.2601 .0735 y

and, summing the expressions on the right-hand side,

( .9850 .0125 .0025 \
N\ = ( .0138 .9775 .0087 )

\ 0 .0098 .9902 J
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4.1 Linear programming approach.

In thi3 section, the notation and assumptions coincide with

those of the previous section except that now and Q0 are not known

exactly but are reckoned to have been obtained from sampling; the

result is that the set of equations (4.2), viz:

Qe (4.10)

are not satisfied exactly. The determination of the accumulated

admixture matrix NA1^, must be such that (4.10) is most closely satisfied

according to some criterion. Noticing that the simultaneous relations

represented in (4.10) are, in fact, all linear relations, suggests that

the linear programming technique might be appropriate. This is

confirmed by the fact that the required matrix must contain positive

elements and further that the rows must sum to unity by the definition

of gene flow adopted in Chapter One. These constraints are linear and,

therefore, of the type which are well catered for by linear programming.

Of possible criteria for ascertaining the closeness of degree

to which the equations (4.10) ere satisfied, one that seeme appropriate

is the minimisation of the sum of absolute deviations between the left

and right-hand sides of the equations. As this is a linear criterion,

expressed in the manner to be described, it may form the basis of a

linear programming approach. The reasonable nature of this criterion
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suggests that this method would provide an interesting solution, if

not the most satisfactory one. It will be necessary to discuss this

lest point further later aa well as to consider disadvantages of the

method.

Using suffix notation, the equation (4.10) is equivalent toi

q - 5* (4.11)

for i. - i x iq and i = i.x k and in which a and
> ) ) • t I ) >o r~^

q „.. refer to exact values s let q, . and Ql*.. be defined as the

corresponding sampled vsluee. The substitution of the latter values

into the equation (4.11) will result in a deviation £;. , so that;

N
*-

^ori- + %
or,

^ „ (4.12)

These deviations are not all positive and it is necessary to

define two non-negative error variables which may be used in combination

to represent a negative deviation. To do this, lets

c
i Lr Vvv** C e.. o~)kL i '"J- ^ > (4.1J)

and ^ ~ r ^ n^zi; ~ — vwv^. o )
<r )
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so that these definitions imply that:

£ ^ o (4.14)
<T

and e.vi- > o
<r

and further that:

s - c-13)
The sum of absolute deviations, S- , may now be expressed in terms of

the newly defined error variables,

S - *.. ♦ e (4'l6)

With the aid of this quantity, the Linear Programming problem is now

formulated taking each population v. separately as any row of M" may

be determined independently of any other.
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k

Problem To minimise 2 S\, with respect to choice of non

negative subject to the conditions:

2. wx - Q — e.-- + ei-.
yor^ <^" q"

O

o
(4.17)

o

for and J_ = i^j. . , > k . together with the
additional conatraint:

(4.18)

which ia necessary for the conservation of proportionate gen© flow, or

equivalently for each row of to sum to unity.

Solution (Description of Method) The Standard Simplex Ooaiputational

Procedure due to G.8. Bantzig (1945) may be used. This method begins

with a trial solution, taking the null point in the parameter 3pace,

and minimises the criterion sum by moving in a step-by-atep manner.

Each move is to an adjacent vertex of the Simplex polyhedron whose faces

are the hyperplasias defined by the equations In (4.17) and (4.18).

This iterative process ceases when a move to an adjacent vertex cannot

reduce the criterion sum further. The solution values, being the

coordinates of the final vertex reached, satisfy N out of the (k+O

equalities, this vertex being the point of intersection of N fsceB of

the polyhedron.
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ExamgJLe. Consider one evaluation of a row of M for which the

relations with frequencies substituted are t

.529 = .026 vvi( .551 vw,. +

.789 = .685 + .710 + •975 -3 +

.477 = .420 wi, .100 wv -t- .615 <^3 +■ €3

.154 = .589 + .255 vw, + .058 + £H-

.574 = .552 .509 -t- .801 *v\s +•

(4.19)

with solutions after nine iterations,

»>*, _ 0.097 002
0.596 876
0.310 506

(4.20)

and,

2 l&il ^ 0.459 584
=

- ~ (4.21)
= -£s-

where the remaining error values are zero. The first two equations

are satisfied exactly together with the conservation of proportionate

gene flow. This calculation was carried out using the library program

Simpfix for Perranti Psgaaus.

= 0.166 086
= 0.045 458
= 0.227 861

The general method of formulating the linear programming

problem for this absolute deviations criterion seems to be due to

Charnee, Cooper and Ferguson (1955), who first used the device of a

difference between two non-negative variables. The method is further
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discussed by W.D. Fisher (1961). H. Wagner, (1959, 1962), applied the

technique in conventional regression situations, particularly to non¬

linear models where the knowledge of the functions involved is minimal,

using only assumptions of curvature.

An approach which caters for non-linearity was devised by

Fourier (c.1620), who suggested the use of "least lines" and he arrived

at an iterative procedure not unlike the Simplex Method described above.

The outcome of this approach is, however, limited by the lack

of standard errors which ore optimally available by the alternative

least squares method. Considerations of reliability or significance

of the estimates reached, sre frequently important and when this is so,

the linear programming technique is weak. However, the illustration

above shows the flexibility of this technique and how constraints may

be conveniently includedj this feature is not present, in the same

form at least, in the least squares method. The special use made of

this feature in the present context is, of course, the determination of

admixture rates which aire necessarily non-negative and which sum to unity.

Of these two requirements, as will be seen later, only the second may be

included in least squares theory.
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4.2 Weighted regreaalont all variables subject to error.

Suppose that in the equation the gene frequencies which result

fro® sampling are substituted so that the statistical model may be

writ,ten»

4- O (4.22)

where e„ end ew are matrices whose elements contain the respective

errors In the frequencies In the nstriccs and Q.^ . The values

of these frequencies, to be used in the estimation of K* , are

determined by sampling so that the elements of £0 and may be

considered to be independently and binoinially distributed with zero

expected values. However, the sampling variances of these errors are

dependent upon the values of the frequencies themselves. Using the

usual formula for the estimate of the variance of a binomially dis¬

tributed sample value, these errors may be determined explicitly. It

is sometimes a feature of the type of data used that the gene frequencies

very little at a given locus between populations; this implies that the

errors in the columns are uniform in magnitude. In view of differences

in the orders of magnitude of the frequencies, and therefore their errors,

between loci the sampled values at any locus should be weighted. Doing

this, in the standard manner, by dividing eaah value by the square root
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of its variance, allows the model (4.22) to be written!

(4.25)

where the asterisk referB to the standardisation. The error terms

are now independent of their associated frequencies and the above model

may be re-arrangeds

The usual Least Squares Method may now be applied as the bracketed

error term is independent of the sampled frequencies. In view of

the independence end standardisation of the errors, they may be

assumed to have constant variances, and the bracketed error term may

now be represented by E. The elements of are to be determined

by the standard method to minimise the estimates of variance of the

errors in E.

Computationally, if WK is the diagonal matrix cf weights

for the columns of and wa, that for Q.^ ,

Q* = q* + o ~ <* ) (4.24)

w

Q^W

0,oW (4.25)

so that, 4- E
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and the least squares solution for ^ Is given byi

= «Uw(q0w)' ( (cuwXQ^W)' | '
= ^WW'Q, I G>„ WW'Q.'

or writing ww'= W* for the squsre of the diagonal matrix W ,

W" Gil c Q-oW^oi )"' (4.26)

Before proceeding to a discussion of the errors in the least

squares estimates, it is required to extend the above method to ensure

that they fulfil the biological condition which requires the conserv¬

ation of gene flow within the closed grcup of populations under study*
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4.3 Uso of Lagrange multipliers to ensure conservation of gene flow.

If, as in the previous section, the sampled values of the

gene frequencies sre represented in the matrix equation and further that

they have been weighted as describedt

Q* - N\^Q* -t- ET (4.27)

The sums of squares to be minimised ie-r we ttjz.cLca^<ry~tJ. eAa^o^hs ej-

££' - (<** - wo.?)' (4.28)

and the conservation of gene flow .requires that,

u = u. (4.29)

where u, is the unit vector, so that the minisisetion is conditional

upon this equation.

The application of the Least Squares Method to this situation

requires the introduction of a vector of Lagrange Multipliers, X. which

are to be eatimated in addition to

Vector differentiation, with respect to X , of

Gs' - X ia-)'

and equating the derivative to zero gives the vector equation represented

above (4.29). Matrix differentiation of this expression provides the

matrix equation!

-2. ( Qj? - Q.*) Q *' - X \Lf - O
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Absorbing the factor Vg into the multipliers, the simultaneous

equations which are satisfied by the least squares estimates of *a"v

(and X ) may be summarised:

( QvT - fW*Q * ) Q *' 4- X-a' =■ O (4*50)

NT ^ - -w- = ° (4.J1)

where is non-singular, equation (4.JO) may be multiplied

through by its inverse from the right,

^ +- WC^Q^V = o (4.J2)

and if this operation is followed by a multiplication by u., again from

the right,

- M*vu + Xw' (<C Q.*' )"u. - o

so that the substitution of NTu. from equation (4.J1) eliminates M*1,

and providing the scalar u-' (Qo*" Q<?') ^ is now non-zero, the inverse

of this product may be multiplied from the right, and re-arranging!

x = ^ - CQr(s,*cf); (M?)

the quantity appearing in the denominator being scalar. This may now

be substituted into (4.52) to provide a direct computational formxila
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for the estimate of M"*,

- QJ-QS' (Q*QoT + (-a-- ft * <*»*' c&,* fiU*'')U.) tx! (a *o»*'' V'11 (4.54)
CQ* Q.*' )-' ^

From the form of this expression it is clear that if the product which

forms the first term has rows which sum to unity, the second term will

be zero. In this case the estimate is that used with weighting earlier

in section 4.2. Further, if there are slight departures from unity

in these row sums, the contribution of the second term to M* will be

small.

In discussing the error in the estimate M* it will be

practically convenient to refer to the "simple estimate" es thst given

by (4.?4) above, for which the second term is negligible, and to the

"full estimate" when tills is not the case.
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4.4 Errors in the least equareg estimation of the gene flow rates.

Vf-ttwr i

The/%iw»®e of the matrix Et' , o~(.£€') , contains the sums

of squares which were minimised in the estimation of . Using the

ususe-Markov Theorem It is possible to produce a matrix, V , whose

elements ere the variances of the corresponding elements of This

requires the introduction of Or ( (A*) to represent the/treee

of the inverse matrix in the outer brackets:

V = tlr (( ) J-C^7) ' / ( fc- ^ (4.55)

The divisor (k- Nf +■ 0 reflects thet each of the N estimates in

any row of iM* was based on k observed sets of frequencies and that

the minimisation process used wss subject to one extraneous condition.

The matrix V may be obteined directly from the data by

substituting for Ee' in the above expression. From (4.28),

EST' = M~QL*y (4.?6)

but as a result of minimisation,

(q^_ (A-Q„*)(**' f Xa' =0

30 that,

ere' = ( q * - q*W)

( O- q*)C£' + >u.' K"'
(4.37)



Substitution of M~ from (4.54) and then of J'C.ee') into (4.55)

provides a computational formula for V . i'or the "simple estimate"

of the previous section, the second term of (4.57) Is z®ro.

The technique of calculation is illustrated In the examplee

which appear in the following section.

4.4.i Deduction of orror in the estimate of N\ .

The method described in section 4.5 may be applied directly

to obtain M from Na~ and it la now necessary to consider the possibility

of obtaining the error in the overall determination of Suppose

that this error ia represented by the matrix <SM and may

be expanded ae follows, ignoring matrix products containing more than

one 5m factor,

(fv\ = w + 2D Mr( m)

or
= z (4.58)

r-©

where S^a is the error in K* . In view of the lack of eommuta-

bility, in general, of the matrices M and , it iB difficult to

extract an estimate of SM from this expression. However, in the

very special and, it must be admitted, unlikely event of the matrices

M and <$n\ being commutative, it is possible to solve the matrix

equation (4.58) for <$H. In this case, by interchanging pairs of
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matrices in the produot,

5tAM = S M"" (0\vv~r-v

*

(4.59)

however, if the interchanging is carried out differently,

= wN\n-' (4.40)

showing that S*\M and M are also commutative. It is easy to show

that the oonverae is not trues commutativity of SM0*0 and ^ implies

a similar property between 5^ and N^>N not between <SM and M ,

Prom (4.J9) or (4.40) it ie clear that:

SM = (

or = (M~')vx~t(
(4.41)

which provides a computelionsl formula only under the assumption that

SM. and hA rre commutative. It is extremely difficult to provide

solution? for more general or more likely assumptions than this. The

best that would eee?n possible would be to find the estimate S M from

the known matrix M and SM^"0 (whose elements are the square roots

of those of V), to teat the commutativity condition and to adopt or

discard the estimate as a result of this test.
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4.5 Maximum Likelihood Estimation of admixture rates.

We assume that each has a known sampling variance and

being an estimate from a large sample, is independently normally dis¬

tributed. The quantity

/V

~ ^ (4.42)

ia, therefore, normally distributed for any constant® w\L. If the

t(^.) for — 1,2, • •., ^ refer to the expected initial frequencies in
the N/ populations at a locus and to the expected frequency at

that locus after n. generations, the expected value of -><- is zero

because of the equation

e-C^ = ^ ^ (4.45)

derived in the last chapter. The variance of x is given by,

vo«r(x) = cr1" +- (4.44)

and it is clesr that if a new variate, x' ia defined as

*/ = W,/f v^Cxl] (4.45)

x/ will be normally distributed with mean zero and variance unity.

It is straightforward to write down the expression for the

likelihood of the observed frequencies in place of the expected values



70

given above. This is, at the locus:

- - 7>-
e = _L e.

Jirr

J_ - (<H - (4.46)e *-t<r\ +■ )

and over all loci,

rt -x C^i ~ x"^ W*"
e1" = « * = _L «- j +- x > (4.47)

The principle of Maximum Likelihood may now be applied to

obtain estimates of the values ***•;. from the frequencies observed at t-

loci. We seek those values of mt which maximise the logarithm of the

likelihood function, by means of differentiation and equating

derivatives to zero in the usual manner. First the log likelihood,

L = constant — 57' ( I/".' - ^ t yj)

Differentiating gives N equations for r= i like,

£!= = Z, Vi C~ ^ ^ > +- Z! ^ Q
+ ^ (4.48)

Thie set of equations may be expressed more concisely if,

- I / C C*". +■ 21 vn?" cr7)
"\i »n

V

W.
4

and e^* E Vj for all C j
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so that (4.48) ia equivalent to;

s V* Cvj - ) + s w"(_X»wc q,* )" = O (4»*9)

The second term in thia equation may, in common eases, be

very email. To see this it is enough to realise that the magnitude

of the squared bracketed quantity in this term will be small for

reasonable data, this being in fact, a squared deviation between the

sides of equation (4.4?)•

This second term is clearly a sum of non-negative quantities

and it is possible to derive limits for its value. Let end

„ be the minimum and maximum values taken by the variances <rl. ,•wxx "
J

then it is straightforward to show that;

^ <£.w/ ^ (JL V* (4.50)
4 t?v crv\ N +1 J

Applying these inequalities to the second term of equation (4.49) and

writing,

Vd - = eJ (4.51)

leads to the inequalities;

_L **v X e| Z, ~V^ C,;. -Xvwcq?)
* J

Wv«J)c

£ -«Ar f _nj__ \*" (4.52)
\ N+' )

However, only in extreme conditions will these weak inequalities be of
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use in establishing the order of magnitude of the second term. The

best course in practice is to evaluate the term directly.

The estimates of vw. which satisfy the set of equations (4.49)

may be arrived at by a simple iterative method for reasonable data.

This method is sufficiently powerful for the date used in the examples

that •**, =^ = w\? = o was a sufficiently good first approximation to

lead to convergence in from three to five iterations.

The first step is to evsluete weights, using the first

approximate values of the admixture rates, *w;. From these the

modified frequencies and (for ail j ) may be calculated

and the N linear equations,

* v'c-K - - ° <*•»>
solved directly by elimination, or matrix inversion, to arrive at a

new oat of values for the rates These new values are used to

obtain new weights and the above cycle of operations may be repeated

until stability is reached in the successive sets of admixture rates.

Where the timeliness of the seeond term is in question, the

values,

cj =

may be evaluated at each stage, end then instead of (4.5J) the following
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equations may be solved:

S v7 C C^ +■ <V> - x ) o
(4.54)

standard errore for the maximum likelihood estimates arrived

at by using the negative inverse of the second derivatives
X.

rv\ .

J

or in the case when the values c. are small, directly from weighted

least squares theory. In the latter case, the estimation corresponds

with weighted least squares and approximate standard errors may be

obtained directly from the result of the Gauss-Markov Theorem. The

square of the standard error will be given by the variance of an estimate,

vor ( w^.) _ , / ( 9-L. / 9^)

z: v7
C< + c<; + x^-rcr :p

+ 21 — vvv-'ctoi)^
C er^ )

"V Trj
( or" +-J " o-j ->

i- 2/ a-1" q * g*K «rJ T""j J

+ X "S vv\^ w^~ 6*

(where e* = ^ ^<t<* ) (4.55)
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Example 1.

Ncrdeatinos 1.

Data

.655(900)

.049(900)
,804( 280)
.179(900)

0(258)
.485(258)
1(86)
0(258)

.046(5000)

.101(5000)

.510(616)

.598(5000)

.255(266)

.136(288)

.517(296)

.257(268)

Numbers
in samples
given in
brackets.

Using equation (4.55)>

iteration

0
1
2

5
4

0

0.502 751
0.505 648
O.5O5 655
O.505 655

0.059 878
0.061 276
0.061 268
0.061 268

0.475 775
0.474 282
0.474 289
0.474 289

Ueing equation (4.54),

iteration ^

0
1.

2

5
4

0

0.502 751
0.505 648
0,505 655
O.5O5 655

0.059 878
0.061 276
0.061 268
0,061 268

0

0.475
0.474
0.474
0.474

775
285
290
290

The results ere identical except for one digit in the sixth

decimal place in the estimate of «3. This ahovfs that the contribution

from the second term In equation (4.54) is small and has a negligible

effect upon the estimation for the above data. Approximate standard
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errors are found, therefore, by using the weighted least squares

ftpproeoh, which requires the quantity Z e j together with the elements

on the diagonal of the matrix {Q.* sC'} ' . These latter elements

are,

d., = 0.001 510 18, <LX = 0.001 352 82 end cL3 =, 0.004 885 99

„ i.
and = O.522 981 01 «2s , the residual variance so that the

standard errors of the estimates ere:

s.-e.^vvO = — ©*©494 d'O

S'e. ^ = 0. Qf'l5€>

r.e.C»v>j) = rt/cijS1- = 0.0808 O'Oigl



Example 2.

Hordestinoa 2.

Data

.114(858) 0(1622)

.081(858) Of 1622}

.046(900) 0(256)
0(1000) .201(56)

1-03 fyw

.066(5048) .085(288)

.068(5048) .045(288)

.017(582) .019(288)
0(1000) .056(68)

Using equation (4.55)«

iteration
•*V

0 0 0 0
1 .495 072 .139 055 .151 722
2 .505 490 .189 055 .120 556
5 .505 686 .189 055 .120 152
4 .505 690 .189 055 .120 148
5 .505 690 .189 055 .120 148

Using aquation (4.54),

iteration

-*"V> ■*\3

0 0 0 0
1 .495 072 .169 055 .151 722
2 .505 499 .189 055 .120 522
5 .505 695 .189 055 .120 159
4 .505 699 .189 055 .120 155
5 .505 699 .189 055 .120 155

The results are identical to four decimal places, ehowing

the smallness of the contribution of the aeoond term in equation (4.54).
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As in Example X, the weighted least squares standard errors are obtained.

e . o*g +-\ \ <\ 4

u.U,)= J [ (0*176 945 96) (0.115 219 06) } = 00165 o.tooi
«• ofl-gr ^ti

J-e.C = J f (0.176 945 98) (0.017 252 91)] = 0.1255 o.e*)/
o. ©e-fr i a<?

*.?. (w3) {(0.176 9'15 98) (0.270 560 77)} « -0.4895 c-fiuf

Applying the modification using lagrangian multipliers to ensure the

conservation of proportionate gene flow, the estimates and standard

errors for the above examples become:

Mordoetino 1.

- 0.2967 ± SM3494 0.5240
= 0.0595 ± CW64§6 o.cryi 0.0854
= 0.6641 - 0^868 «,cni 0.5926

Norde8tino 2.

=

0.5504 ± 0.5165 otsei 0.6141
0.2580 ± 0.1555 oozi1 0.1891
0.4116 * 0.4895 «> ;*V7 0.1969

The values in the right-hand column show for comparison, the

linear programming solutions using the method of section 4.1 applied to

the above data but taking no account of the sample sizes.
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CHAPTER FIVE

CONTINUOUS MIGRATIONt EXTENSION OF THEORY TO ANY NUMBER OF

POPULATIONS.

By similar arguments to those employed in Chapter Two, the

continuous migration model for n1 populations may be represented

completely a set of differential equations together with a set of

initial conditions. To obtain the set of differential equations,

write by analogy with equations (2.1) and 2.2), for ,

<p,(fc-+SO - 0 - »»via.Cfc) St-) +- v*,J» St (5«1)
SkO^Qr) O- **>.,0) Sbr^c^Ltr) (5.2)

where the gene frequencies are as defined previously and denotes

the component of admixture received by population I from population II

at time t (or more strictly, •»*,,.O) St is received in the interval

( tr
) b-+8br) ).
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In order to generalise the theory presented in Chapter Two,

it will be necessary to abandon the sum Z and difference A.

technique for setting up and solving the differential equations; these

symbols do not readily generalise for N > 2. . Instead, each equation

is taken separately to give, by re-arranging, dividing by St and taking

the limit as o , the differential equations»

^iic) + v^,vCt) ^O") (5»5)
eUT

_ "VMi, lei <r) (5.4)
ctir

(5.5)

The set of initial conditions may be stated as,

<\ > ^ ~ ^lo

^vt<0 = <^0 (5>6)

and equations (5.5) to (5.6) now completely describe the model.

Now the model may be generalised so that for 'v populations

the differential equations ares

i^Ct) = Z. ^ .Crt q ^ (s#7)
«Ur J-. ■> f

for Csi,j.r, (y/ and and where,
b4

WV-. — — 2 VVv c
j~ ~ t

t

with the initial conditions,

j (5.8)

- V° (5-9)

again for M .
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Equiralently, the differential equation* may be represented

in matrix form ass

dT * (5.10)

and the initial conditions as:

=

V (5.11)

The general solution to the equations (5.10) and only simple

functions are taken for the matrix elements of in what follows.

A useful result exists in the form of Sewage's Theorem for the case in

which these functions are constants, and this case is now considered.
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5.1 Constant Migrationt Derivation of Solution.

Where the admixture rates are constant with time, the general

differential equation (5.10) simplifies tot

(5.12)

in which f*\ is now a constant matrix. In order to obtain a general

solution in this case, a theorem is now given, end then the difficulties

of satisfying the initial conditions (5.11) are considered.

THEOREM 5.1 (Sauvage (1895)) If the matrix has latent roots X;

for c - i) ... and characteristic matrix A then a

set of particular solutions to (5.12) is given bys

v = (5.15)
where e = {e.c]=[e-X"L} (5.14)

( j) f*vCTV-. A ,C, .. M L— 1 w '"H
»v-« PWO—W- ^ MA *■ R -A . P
Proof This i8 short and as reference to it is made later,

it is given belows

Let B be a square matrix of order N with columns repre¬

sented by the vectors bc , and such thsti

5 = MA

or k =

where «.• is the eolumn of A .

From, (^J) ■ B« -
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The particular solutions (5.1J) are, however, only solutions

to the model under consideration if the initial oonditions (5.11) are

satisfied. The solutions as they atand imply that:

— Am. (5.15)

because at time & the vector e becomes the unit vector u_, This

last relation will not in general be true, and so the initial conditions

are not satisfied. However, the problem may be solved by using a

stronger form of Sauvage'a Theorem, fhis is now given.

THEOREM 5.2 The general solution to the model (5.12) together with

initial conditions (5.11) is given by:

= AKe. (5.16)

where k is a diagonal matrix whose elements, lc„, are such

that:

(5.17)

Proof This follows the proof of Sauvage'a Theorem, noting

that A has the property:
MA = AA.

tor -A. the diagonal matrix of latent roots, then:

MAK - AA.K =r AKA.

(since diagonal matrices commute) and hence AK also has

this property; the result that (5.16) represents a
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particular solution follows.

To show that (5.17) defines k so that the

initial conditions will be fulfilled, it is enough to

realise that K-u may be replaced by a vector k of elements

kL , and providing that A is non-singular, U is uniquely

defined by:

Example. The above result is now applied to the two population model

discussed in Chapter Two. In that esse, see equations (2.1) and (2.2),

/ H IT
tV\ - ( — vv\ w\

_„x J (5.19)

with latent rootsj

O and - (-1 +• ^
and latent vectors, proportional to,

\ / 1
M and ~
t

i

and the characteristic mrtrix, C , say after omitting the factors of

proportionality for ease of calculation is,

C = f I \
\ 1 / (5.20)
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and
~(vw*+ v^r)

— w\

v -I

- V\A

I

TC

X
^ TLvn +• Y*\

r r
w» q ^ +■

-

it n:

(3.21)

and the solutions are then#

VW

\
<w

T 3T

%o %o '

r^c ±

-*■

wv* + wx*

\

r/ X -O-^W^fc
2 ^*Vo — %<> ' e.

which correspond exactly with the results given in Theorem 2.4.

(5.22)

(5.2J)
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5.2 Constant migrationi statistical estimation.

In this section, the general problems of estimation are out¬

lined in determining the constant elements of N\ from sampled values

of the gene frequencies in N populations at several points in time.
TUg, IV* c}—'tUa i<f^—■Covu'K, Jiniv» M -u.
Here the solution of the last section will be written ass

o - u. (5.24)- be, + o-u, '

using the fact that the matrix has zero row totals, or:

M u, = o (5.25)

which implies that zero is a latent root and hence that u, is a latent

vector} in (5.24) the vector e is now short of one element, say the

first e.°, and 6 is the characteristic matrix with one row, say the

first, missing. Any row of may then be writtens

q ~ c. + S b.. e. (5.26)
Jsa. J

Example In the case of two populations, this i8 equivalent to:

q - c + b e,^ (5.27)
c, +

and where the <j,'s obtained from sampling at exactly known times, tr. ,

are called , the statistical model may be represented by:

o ** _ , L ^j.tr
~ e e' (5.28)
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Here €( and ^ represent the errors in the quantities ^ and
and assuming the common constant variance and independence of these

errors of one another and from one time to another, the method of

least squares may be applied to minimise,

Z. C^,*- c- - K e-*** >*" + ^ (<£ - c.- «.**■*> (5.29)

with respect to the parameters c, blx, and Aj_. The resulting

normal equations are by no means trivial to solve and they ere given

her® to illustrate the degree of their difficulty. Suppose that the

summation is over n. points in time. The equations are;

+ +- b^Ze^' « +

b^ S
c- Ze>fc • •+ = £<j*e>,p
e. Zfe-«7k*-,r+. = 2T( <{,*■♦-

(5.50)

and some simplification may be achieved by applying the transformation

of parameters,

b - b ■+" ki_->"i-» a_i_

The equations then become, taking one of the second and third
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equations together with,

2^ +" b ^ e>b = iV+v)
ZcZeAit+
2clta"lt+ b Iten^ = 2. C%* + Ire*^

(5.51)

end these ere recognisable as the same equations which result fro® the

application of the least squares method to the asymptotic regression

model,

V* = a-"1" br* + e (5.52)

for which methods ere considered and developed in the following

chapters: to show this write:

\? + = V
t = "><-

and +■ ex. = €-

with the parameters corresponding in view of 2.0= «_ and e.*2- = -r .

By making use of this correspondence to take advantage of the

methods developed for the common asymptotic regression model, it is

possible to arrive at separate estimates for b(i_ and b13, by using

separately the second and third equations of the set (5.50).
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Extending the above argument to N/ populations, the statistical

model may be represented by:

% = Be +• Cu + € (5-55)

where €. is now the vector of errors, •£ = , and, for the purposes

of estimating the peremeters and ^ , the model may first be plsced

bys

u-V - + + (5.54)

which corresponds to the asymptotic model:

* 4* L *"
3 * a + £ ^ + " (5.55)

and this model is discussed in the following chapters. The separate

estimates of the elements of the columns of 6> may be made afterwards,

by using the results of the asymptotic regression substituted into the

appropriate least squares equations.

Before considering asymptotic regression problems in detail,

a brief discussion of non-constant continuous migrations follows, and

the degree of difficulty will be seen to be great in general.
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5.3 Non-constant migration.

The general problem of variable continuous migration is now

investigated by first assuming that the admixture rates are linear

functions of time. Only in special cases are results readily obtain¬

able yet it is possible with sufficient assumptions to consider

polynomial functions. The results to be obtained are not entirely

satisfactory, in that the admixture matrices to be considered ere not

close to reality. Bearing this in mind, however, some effort is made

to point out a class of solvable problems in this area.

When the admixture matrix contains elements which are

linear functions of time, the matrix can then be resolved into two

components, M. and , each containing constant elements, such that,

M(fc) » +- M.tr (5.36)

where the time variable, t , multiplies bA, in a scalar manner.

Substituting this resolution of MO) into equation (5.10) gives:

a CM° + (5.37)
dJc

and a simple particular solution of this differential equation is given,

in special circumstances, by the result of the following theorem.
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(5.56)

THEOREM 5.3 When the matrices ^0 and share a common

characteristic matrix, C , a particular solution to

equation (5.J7) Is given fcy»

% =

where e is the vector defined bys

r 1
e- - L e J (5.59)

in which, X;Cfc-) = Xvt +{xutr (5.40)

and { X, J end J} are constant vectors, containing the latent

roots of M0 and M, respectively.

Proof Let A, and be the diagonal matrices with ve.«*vrr

traeoo and respectively. Differentiating (5.J8)

give®1
= c (t\_,+^vx(r) e (5.41)

dJr

and it is required to show that,

+ m, t) e (5.42)

The result follows by comparing coefficients of "t on both

sides of this last equation so that,

CA, = MoC

and C A. ^ ^, C.
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The condition that *A0 and M, must share a common

characteristic matrix seems rather severe in practice. However,

there would seem to be no simpler condition for which the differential

equation has a particular solution. Perhaps the most likely matrices

which might occur aa having a common characteristic matrix, are those

which are merely scalar multiples of each other. The neoessary

condition for the letter, in real terms, is that the rates of change

of the admixture rates are constant and proportional to the initial

admixture rates. Given that this is remotely possible, it is e

trivial matter to establish a proper solution to the model so that the

initial conditions ere satisfied by the same arguments of the previous

section.

Where the elements of MCt) are not linear but polynomial

functions of time of degree r , the above approach may be extended so

that t

= (Mo + M, fcr + ... +• Mrtr (5.4J)

and the general result is stated in the theorem which follows.
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THEOREM 5*4 When tA(_fc3 is a polynomial matrix function of time and

ite component constant matrices Mc for C = ^

share a common characteristic matrix, C t the differential

equation:

haa a particular solution given by:

V = Ce-
where r ->

e = I e )

and XcCf3 = 5L -f fc-*
j •=! J J

where [X:- ] is th® matrix whose columns contain the

latent roots of M.# M, M,..

Proof This follows the argument of the proof of

Theorem 5.5•

Although it is not a particularly useful observation in

practice, it should be noted that the conditions given in the Theorems

5.5 and 5.4 are both necessary and sufficient for the existence of a

particular solution of the form described.
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PART II

ASXMPTOTIO REGRESSION METROES
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INTRODUCTION

The estimation of admixture rates in continuous migration

models has at its centre a general problem of asymptotic regression.

Methodology to cater for asymptotic models in other fields has been

the subject of considerable discussion in the literature. From the

time of the earliest work of Gomperts (1825) and Mltsoherlich (1909*

1950). who derived "laws" or models to describe human mortality and

fertiliser response respectively, there has been a need to obtain

estimates of non-linear parameters from experimental data. The

chapters which follow set out to discuss the more important methods

of estimation for single non-linear parameter models and to extend

the most reliable general method to cater for many non-linear parameter

models; the latter models relate to intermixture between several pop¬

ulations .

In these chapters, the models to be discussed from the theory

of intermixture belong to the class of generalised asymptotic regression
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in the classification of Turner, Monro* and Lucas (1961) and Turner

(1959)* The present treatment seeks to to souewhat uora detailed and

searching then that of these authors but their work offers a perspective

to the special regressions considered here.
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CHAPTER SIX

GENERAL METHODS FOR / SINGLE NON-LINEAR PARAMETER

First, a single non-linear parameter relation is defined,

and then the clasaical method is given, (called "classical" in view

of the use it makes of the established Gauss-Seidel iterative process!

the TJewton-Raphson process used to obtain least squares estimates of

non-linear parameters, see Whittaker and Robinson (1944).). In this

section it will become clear that this is not, in general, the beat

method for the types of special model considered and the reasons for

this are given.

It will be convenient to let the equation:

1 * * ; * (6.1)

represent the known relationship between the expectation, , of the

dependent variable, y , and the independent variable, jcj relations of

this form will be called single non-linear parameter (bWLP). In any

particular case ftp, >0 will represent a known function (but for

generality it remains unspecified in what follows) and it is subject
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only to the condition that its second derivative with respect to p is

non-zero in order to avoid triviality. In the equation (6.1) , ft

and p are constants.

The estimation of the constants in the equation using observed

pairs of values by the principle of least squares, is not a

simple matter beeutse of the implied non-linearity of and also as a

consequence, of the normal equations. The three normal equations,

with known, however, reduce to two simultaneous linear equations in

<*■ and p which allow ready solution} in view of this fact, it is
natural to hope to establish an iterative method based only on , and

this has been successfully achieved by Stevens (1951) as described in

the section which follows. Ignoring this feature of the normal

equations, however, the classical approach may be adopted. This is now

described.

6.1 The classical iterative method.

Given approximate values , (3a and pQ for the constants

in equation (6.1) a Taylor expansion of the function

\ = i

leads to the relation, ignoring second order terms,

eJcc.

= U -+ Sp,+■ )r=(0o (6'2)
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in which the new "constants" <$»<. , Sp , Sf> may be estimated by least

squares in view of their linear occurrence in this relation; from

them improved values,

0<l = ot 0 -f <5T oc

+ S/3

(°, /°o + V

may be obtained and the process can be repeated until the corrections

become small enough to be negligible. It is clear that these values

cannot be expected to converge to zero unless the second order terms

which were ignored in forming relation (6.2) really are small; this

requiresi

= O (6*5)
a0tv

C/3 - £X - o (6.4)

- C^-r^^=- ° (6.5)

(oc-oc0)C/3-/3„") — o (6.6)

f-f-1 ^ =. » (6.7)
C 1 ( p— ~ o (6*6)

of which equations (6.J), (6.4), (6.6) and (6.8) are clearly satisfied

for any SKLP relation, the left-hand sides being zero in each case but

equations (6.5) and (6.7) remain to be satisfied. Of these equations
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the latter is dependent upon the smallness of 8/3 (aa well as of s/o)#
and it becomes clear that if the approximation is not good the

relation (6.2) is not valid and it ie unreasonable to expect the con¬

vergence referred to above. The presence of two conditions to be

satisfied for any SNLP relation wili be seen to be unnecessary in the

following section .

THEOREM 6.1 The classical iterative method applied to 3NLP

relations requires two conditions concerning the first

approximations and to be satisfied.

Proof It is only necessary to consider whether it is

possible for the two equations (6.5) and (6.7) to become

one for certain special functions -fCf1 *-"> j this ia true

for fif) ■*) which satitfy the second order linear differ¬

ential equation:

(f-/V)*> (6.9)
To obtain the general solution to this equation writes

C/*-/0 = = IjL (6.10)
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bo that (6.9) i» equivalent to:

V? (I V=~ •= ( —fio ~) ■U-2-
d u-

or ^ —

^ /3 «-

30 that Integrating gives:

log ^ — Z3 log u_ ■+■ constant
a

or 21 = caK

where c. Is an arbitrary constant and k •= ((i - {&*) //z

or again,
if cak
du-

and integrating once more:
c k -1 ,

_r _ — vc +- d~
3~ ~ l<

where ci ie an arbitrary constant. Substituting back the

general solution of (6.9) is seen to bet

1 r ~ P"!P
f = c 4- ^

(6.11)

in which e/ end are arbitrary constants, with respeot

to t but at least one of which is s function of ^ in

order that f shall be a function of jc. But this

function / Is inadmissible as a special case of the

function in an SNLP relation because it ie a function of

the approximations /30 and a. The required result

follows.
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6.2 Stevens' Method.

The fitting of the relationship (6.1) wa3 considered by

Stevens (1951) for the special case in which,

tfO,*) = /°
K.

(6.12)

and he arrived at an iterative process dependent only upon a first

approximation pa to the constant p ; he observed that a single

parameter iterative method could be applied to any general function

■*-) but he did. not indicate the full generality of this result and

his work is extended in Chapter Wine.

To show "now Stevens arrived at this method, the observation

made in the last section is now taken up again. This is that two of

the three normal equations of least squares are linear in two of the

constants, <*: and p , and provide a pair of simultaneous linear

equations if the third constant p is known. Stevens realised that

fO need not be known but merely needed to be the subject of an

iterative process, the solution of the pair of equations at each stage

producing automatically estimates of the first two constants.

More formally the above method is justified by showing that

the cf* end may be eliminated from the three normal equations which

result from the application of the principle of least squares to the
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relation (6.2). The result of the elimination, as Stevens showed,

is a set of three linear equations in <*, p, and fbSp instead of in

Joe. , Sp and &/o , Iterating in only one constant, p , provides a

second order iterative process with the same power as the Mewton-

Raphson process for solving equations containing function® of a single

variable.

Stevens provided tables of the inverse matrix for solving

the three equations on the basis of equally spaced ^-values

x- <=>,',2.;— C<n.—1} end for various first approximations to ;

the ranges of his tabulation «e -n. - 5(1)7 end /°0 = 0.25(0.01)0.70,

though he suggests that these ranges might be extended to advantage.

Several authors have found it worthwhile to extend these tables at

Stevens' suggestion but only one of these has been published - that

carried out as part of the present research. The full details of

the extension which covers the ranges n- - 5(1)50, p - 0.10(.01)0.90,

published es Hiorns (1964) ere given in Chapter Eight.
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6.5 Schneider'a Method.

Approaching the normal equations of least squares for the

fitting of the relations

eCp = \ =■ ■< + fip*' (6.15)
from the same point of view as Stevens (1951), Schneider (196J) realised

that if the estimation of p can be carried out separately, the
A.

determination of o- and b , the leaet squares estimates of and fi> ,

is a trivial matter requirirxg only the solution of a pair of simultaneous

linear equations.

A ^ AThe least squares estimates a-, ° and ^ are those values of

the estimates cl , fc> and a which satisfy the equations:

vt<X- tHr-7C" - ST^. (6.14)

+ t z^ = (5>15)

t (6.16)

Between these equations, the elimination of a- is straight¬

forward, leading to the pair of equations in b and r~ t

t C*rA~- Crr-r/V) = (6.17)

b CZjcr^-' - £r'Z^x"7i) =• T^ZI~r~"Av (6.18)
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and the elimination of t between theBe two equations leaves a single

equation in r j this is

making use of the assumption that the denominators in this equation do

not vanish (this will only be so for special and trivial values of

and x.}. This single equation may now be rewrittent

ACO - Cr^jcr-^-' - Ty BCr-) =■ O

where
ACr) = 2Z *.r 2*~' _ r>cr-x- /w

BCr) = ^ - Crr^)1-/^

and re-arranging,

{ rACr~) - k B>br) } - {_ C X r"/K) AO) +- (X 8 (r-)} X^. = O

- (tr^V*-
xr x 1 * /vi

o

(6.19)

or

F(r) ZT-^r- C CO) + ?0 — H-CO X^ =• o (6.20)

in which

GCO -y- AO) / BCr-) (6.21)

KCr) = - (Z>'7vu) ACO /BCr) _ Z^cr"-' (6.22)

Schneider (1965) solves the single equation (6.20) iterativoly

end to facilitate thie in general, he provides tables of the functions

CCr) and HO) for = 4(1)7 and r =, 0.01(0.01)0.99 with the
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independent variable x. taking the values x= 0,1,2,..

In his paper, Schneider (196?) proposes the evaluation of the

function F CO for three values of r- and obtains the minimum of this

function by parabolic interpolation. Here interpolation with FCO is

simpler then the interpolation possible with the su® of squares itself

proposed by Will (19J6)j Will's suggestion requires the evaluation of

the sum of squares for trial values of r- using linear regression on a_

and b for each. '•'here a computer is evailsblc, however, it is

probably mora satisfactory to solve equations of this type by the

Newton-Haphson iterative process.

Let v0 be en approximate solution to equation (6.20) then,

£• FCV>
F'( r„ ) (6.2^)

where F'(n=) = f££2.l
ci-v- lr-

provides a correction tc ra so that,

-r = r-Q -v Sr

is p better approximation to a solution of the equation. This process

is repeated until successive values of r differ only by a negligible

amount.

It follows from the above derivation that the solution to
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equation (6.20) may be substituted into any pair of the equations

(6.14) - (6.16) which may then be solved to provide solutions ol and
A ^

L I the letter together with r eoniplete the set of least squares

estimates.
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6.4 Hartley - Gauss - Newton.

Hartley (1961) proposed a modification of the classical

approach described in section 6.1. An application of this modification

to the relation (6.1) is now given. The essence of the new method is

that the corrections S* , Sp and era not added directly to the

current best approximate values to provide improved solutions. Instead

the following values are formed;

oC( ■+- ~X. 8^

f3' = f3* + -A Sfi (6.24)

e- +• >-sc

where X is chosen so that ° x s i and for which,

Z C J - - f!,f( y"- (6.25)
is a minimum.

The minimisation to find X, if carried out analytically,

leads to a difficult algebraic aquation in X and a more practical

method is given in the example in Hartley's paper. This alternative

consists of setting X = o , £_ and I and carrying out a parabolic

interpolation using the three values of the quantity (6.25) which

result from the substitution of X.

It is at once clear that this method is at least as powerful

as the classical method for X =| above provides the values of the
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latter. The relatively small amount of work involved in carrying out

this modification suggests that it is a worthwhile one in that it ie

likely to improve the speed of convergence. Hartley's method is of

the seme type as that proposed by Booth (1957) requiring only a little

extra computation at each iteration. Other general methods for

function minimisation are proposed ly Levenberg (1944) and, using

conjugate gradients Restene end Stiefel (1952), Bavicion (1959) Powell

(1962) and Fletcher end Powell (1963), and these prove powerful for

difficult and pathological non-linear functions but require more

computation then is usually necessary for the relations unaer present

discussion. Consideration of the convergence properties ia not made

here, however, but the more fundamental question of whether Hartley's

method is applicable ie taken up in the following section.

An important observation not made by Hartley, is that if this

modification were applied not to the classical method but to the

Stevens' method, then the effect for Sifli.f relations should prove more

effective.
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6.5 Discussion.

In order to make some comparison between tho methods described

in the esrlier sections, it will be assumed that the independent

variable, tskee -vv equally spaced values, scaled so that;

(6.26)

Furthermore, the special SiiLP relation treated earlier is

reconsidered as it is an important practical one and it does enable

detailed conclusions to be reached; this relation was:

£Cy.) = oc-k- (2 p * (6.27)

Conditions (6.5) - (6.8) were obtained in section 6.1 which

must hold for the application of the classical method. Of these

conditions only two remain for SNLP relations. These concern first

approximations fi0 and f»o to the estimates of and 0. In terms of
estimates replace and by bQ and ro so that the conditions

become;

Cr-ror t |1 Cr*) - oar (6.28)

- «.»>

f. useful and reasonable measure of the size of these two

quantities would seem to be the magnitude of the perturbation which

they introduce into the normal equations if thej ere kept in the
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expansion (6.2). Initially, we consider their combined effect upon

the first normal equation. The perturbation introduced into this

equation ias

TT - i. "27 C Sr-y~ b k Oc —i) r-* * +- 27 C £b}C£r) 7c r * ^

and for any given positive value <? , a condition ia now derived for

which,

(tc\ < S" (6*51)

Two known series suais will be cf use in establishing this

oonditlon, These ares

v\-l

? j Jtr
_ vvr l-r- (6.52)

I - y (T - r~)

27 JcCx-t") r = - kCv\-<) y- _ 2-vvr- 1 — y- ~ /i .r? V,
(i-iO3- Q-o"1

More particularly it is of some interest to consider the car.?

where ° < r- < i and the number of points n. , ie large,Then the following

results will be of use:

777- <«•»•)
Z*fc-')r'" - (6.J5)

From (6.5O),

TT = C t ( Cr-^i +- C&XcMfjO j
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where,

= i { - **-(vv-0"r * G -v} — ^wr*"' Cl-T*) + 0-r"G| ^£|_y-)

and,

fwCr) = { -Kr*1"'Cf-O -+- / 0-r)*" (6.56)

so that (6.51) holds if,

| I I b (<5r) i", Cy) 4- S'fefj.Gr) | < <? (37)
A weaker condition than (6.57) ie given by the following set

of inequalitiesi

iMCSr}1" < 5", / (6.58)

(frl. I a| < ^ (6.59)
•nd 5" + ^ < <T

For large sa&pies from (6.54} end (6.55),

7T = — i>( Sir) j- C&b)(- Sr~)
1

O-O*- O-O3

= £ ibCfr-)1- 4- C5"i?) C <SV-^ C (— } / G—r-~)3
For Stevens' Method the corresponding perturbation is obtained from

this by putting £f> = o , and the comparison of these perturbations may,

therefore, be made by using the ratio»

LbCir)1' 4- C£tOCfir)C[-r} _ j + dfc (j-^)
i b C Sr)1 Xb Sr
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and it follows that Stevens1 Method produces a lower absolute perturb¬

ation if?

i + Oo I >
U b Sr

(6.40)

i.e. either ifi

I _!L~ c»-o > '
V- bSr

which imp lies Sb .v ° (6.41)

(for growth curves arid certain other curves b < o so that this merely

requires 5b and <£r to be of opposite sign),

or if,

which implies

Sb (<->-) > I
2-b Sr-

(I- r-) >2.
2-fc> Sr~

Si > Sr
(6.42)

<*4 «-r

In general b is larger in magnitude than r, and this is

usually true of the errors of approximation 5b and Sr . This fact

makes inequality (6.42) a possible condition in practice. Where the

second term in the modulus in (6.40) ie small (< O , however, the

inequality is as likely to hold as net because of the general uncert¬

ainty of the signs of Sb and Sr . Further discussion of this point

is difficult but it would seem that there are moro oases in practice

when the perturbation is smaller by Stevens' Method than otherwise. In

view of the difficulty met with here, the argument applied above Is not

repeated for the remaining Worms 1 Equations.
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CHAPTER SEVEN

SPECIAL METHODS♦

7.1 Small sample techniques and grouping.

In practical uses made of the SNLP model (6.13)» small

samples are often encountered and apparently four points commonly

describe the curve adequately. When this is the oase, considerable

simplification of the computation required follows. This is

specially true whan the four points represent equally spaced values

of the independent variable, for it is then possible to carry out

some algebraic analysis preparatory to the computation. So great

is the simplification that there is sorao temptation to reduce quite

large seta of data to smaller sets by grouping. The merits of

grouping exist entirely in the fact that it reduces Computational

Labours a convincing argument of Stevens (1951) shows that the loss

of information is large and that, the estimates are of low efficiency.
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7»2 Gomes' Method.

In a paper following upon work with W.L. Stevens and

E. Malavolta, P. Gomes (19^9, 195*) makes use of the elimination of

the parameters «- and ft, from the least squares equations for the SKLP

relation (6.13) to derive a polynomial equation for an estimate

of the non-linear parameter ft> . This polynomial equation takes the
formi

T, u. T. Or") =■ o*- ' (7-1)

and the polynomial functions J":0) are tabulated for n. = 4 and 5

ao that interpolation for a root is possible. The method is limited

by the larger number of tabulated polynomials which would be needed

for larger values of Pathological examples given by Gomes, which

show the advantage over Stevens' Method as originally presented with

limited tabulation, may be discounted now that a wider use is made of

electronic computers and because of the extended range of tabulation

of Stevens' matrix.

There is some affinity between Gomes' Method and that newly

proposed by Schneider, as described in Cnapter Six. The important

difference, however, is the improved formulation of the polynomial

equation (7«1) which allows a more satisfactory solution without the

limitation to smell samples.
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7«3 Patterson's Method.

Patterson (1956) proposed a simple ratio estimator for the

non-linear parameter in the relation (6.13). The simplicity of form

of this estimator makes it an attractive one in practice but it would

be unreasonable to expect too much in the way of optimal properties.

Investigations into simple ratio estimators are numerous and the

relevant works are White (1956) who independently obtained some of

Patterson's formulae, Patterson (1958, I960), Finney (1958) and

Patterson and Lipton (1959); these authors also discuss quadratic

ratio estimators which are considered in the following section.

Suppose that an estimator r for is required where r- ie

a ratio of two linear functions of the observed ^-values. For equally
spaced integer values of * let x = 0,1,2,On--0 . Such a

ratio estimator may be written

r = Bo (7-2)
v\ —\

t. —o

and a simple condition for r to be a consistent estimator of p is

that

g £ g K yt 3
^

e { s It*-* }

By substituting for the y, rearranging end comparing powers of /° it
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quickly follows that (7»5) is satisfied for all values of , (i and fO

only if

t>s - = °

K = Ir— = °

and j>. = <^c_,
(7*4)

The freedom of choice for values of coefficients in the

linear functions is still considerable and it would seem sensible to

seek to require the minimisation of the variance of this estimator.

However, although the result of thie minimisation produces the maximum

likelihood estimator, r- , aa Patterson proved, the resulting values of

the coefficients are themselves functions of and therefore not very

useful in practice. Instead, values of the coefficients are chosen

which give small variance and consequent high efficiency over practical

ranges of P •

A disturbing feature of the ratio estimators is their

inherent bias. This was investigated for four points by Finney (1958)

while Patterson (1958) gave expressions for the bias when using from

four to seven points. From the relations given above it follows that

for four points the ratio estimator r may be written
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where A is a constant, end from this Finney obtained the bias as

. / x X -t- lbu<^Cr) =

(ty-Q-fT) (7«o)
where each ^ is independent with variance The numerator vanishes
only for a pair of imaginary values of A and the bias would appear to

be very large for p near to zero or unity. Nevertheless the size of
the bias in linear estimators may be batter for larger n- than in more

complicated quadratic estimatorss this point was adequately proved by

Patterson (1958) with reference to the Taylor estimator to be described

in the next section.

In the present context it would seem reasonable to consider

the possibility of obtaining ratio estimators for the parameters in

many non-linear parameter (MNLP) models e.g.

j, ^

+ ft, <*i ^ (7-7)

The unsatisfactory nature of some of the properties of the SNIP

estimators ae described above and In the next section, implies that for

more complicated models the situation may well be much worse. This is

indeed the case, but it is probably worthwhile to indicate, in passing,

the extent of the difficulties involved. To do this, let f> =■ 2 in

tne model (7*7) ^nd define the linear ratio estimator given by (7*2) ss

r , the estimator of . For consistency of thia estimator, the
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simplest condition would seem to be of the form of (7*5) and upon

substitution this becomes

fO) r* (7.8)
Ftp

where F(>1 = + f3-, +■ fi

and and represent the vectors of coefficients { and

respectively. An inspection of the coefficients of the powers of /°, ,

and in the rearranged form of (7*8) is enough to show that it is

not possible to obtain values for the coefficients which are independent

of <*, (i , i°, and f\_. This is a considerable obstacle in the attempt

to find a general estimator and it is apparent that the difficulties

which arise in seeking reasonable efficiency or unbiassedneas will be

greater than in the previous case. No doubt for known approximate

values of the parameters a satisfactory estimator could be achieved

which would be local to these values, As this is not thought to be a

useful possibility in the present context, it is not explored further.

Instead, quadratic ratio estimators are described briefly before

proceeding to deal with developments connected with Stevens' Method

which are believed to have some practical value.



7*4 Internal regression and general quadratic ratio eatimatora.

Soma account 1b now given of the uee of "Internal regression8

In estimating non-linear parameters. This method is based on the

linearity which may exist when the model is re-stated in terms of

differences of adjacent ^.-values observed at equally spaced values

of *. , of course, the error in the linearised model is no longer

independent and this leade to bias and inefficiency in the estimates.

Two of the methods which have been suggested of this type are now-

described and reference will once more be made to the valuable study

by Finney (1958).

Hartley (1Q48) proposed the estimation cf the parameters in

the SNLP asymptotic regression model (6.1J) by the "internal regression"

of upon +- y , . The linearity is expressed
in a simplified form for any equally spaced integer values for the ,

by the relation

• xx (7.9)

where the ^-values are used to represent the expectation of the

^.-values. It is clear that on substitution of the ^.-values, the
error in the statistical model would not be independent, and proceeding

to obtain estimates of <*. and p by linear regression introduces a

bias. This bias was investigated by Finney (1958) who showed that for
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vl = 4, the bias in the estimate of p is given by

fcv** (jr) =—^ + ^
x(' + p ■*■ /O* (7.10)

where is the variance of each observed -value. The above ia a

simpler form than Hartley's original proposal which required various

partial sums to be formed. However, both the above and the original

method are no more then ratio estimators with quadratic functions of

the y.-values as numerator end denominator. For the original Hartley

method the bias, again for four observed values, is given by

tea.j O) = ^p +-2.Q p1- -b !(, f3 + lp^
f3 _/°) c' + c3 + ^(3 -1- 3jo*y~ (7*11)

and this i3 only slightly less than the bias given by (7«10), as p

varies between 0 and 1, being equal to it for /° -1.

A computationally simpler method of the same type i8 due to

Dr. Et. C.S. Taylor end this appeared in the literature for the first

time in the paper of Finney (1Q5€). The method consists of regressing

vc+, upon y.. and the relation

l„Vi - «- C<—/°i. (7.12)

expresses the linearity which makes it easy to obtain estimates of

some sort. Again these estimates are biassed and Finney proved in
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this case that, for vi - 4,

bc^C/» = £— x ' ± ± ^ (7.15)
pyG-/) +

which is much smaller than either of the above end is of opposite

sign.

In view of the fact that the "internal regression* estimators

of p are all in the form of a ratio of quadratic functions of the

y. -values, Finney attempted to find the general quadratic estimator
with least variance. This he partly succeeded in doing by providing,

in the face of heavy analysis, an estimator which is fully efficient

at the ends of the range of values of p and with as smell a variance

as possible In between. The "general" estimator deduced is now given,

for >t-= 4, to Indicate the complexity end difficulty of extending

this result.

n, =
-y* - 7yj^--y,y, -3^+2^, (7.14)
-y+yi - <- ^3-3. + xyZ-

By direct evaluation, Finney showed that this eatiiaator had

slightly smaller variance over the range of values of p but in

general recommended Patterson's linear estimator in preference to any

quadratic estimator. In a similar manner, Patterson and Lipton (1959)
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Investigated quadratic estimators, indicating that Hartley's method

maintained high efficiency and relatively low bias generally and would

be preferable to any other quadratis ratio estimator, except perhaps

in the special case of four point regression, when the Taylor estimator

has some merit, as described above.
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CHAPTER SIGHT

TABLES FOR THE APPLICATION 0» 3TE7ENS' METHOD

8«i Introduction.

In Chapter Six htovens' Method was briefly considered}

here the practical aspects of the Method are discussed and the com¬

putational procedure outlined in full. This section is intended to

serve as a guide to the extended Stevens' tables and to offer a

procedure which may be adopted in practice for many diverse applications

of the Method.

As was stated earlier, the Method deals with asymptotic

regression curvsc of the form!

i - £CP * * + /V* (8.1)

where it ie assumed that -x is a fixed independent variable taking the

value 0,1,2,..-.(N -i ) and that e corresponding single velue of y is
available for each of the Nf values of »; end f° are constants

to be determined in the course of the fitting. The Method remains

useful for certain other curves and other restrictions upon the x-valueaj
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these are discussed in section 8.4.

Py an ingenious simplification of the maximum likelihood

equations, W.L. Stevens (1951) showed that the estimation of the three

constants reduces merely to the iterative estiraation of yo , from a

first approximate ro with the « and ft values being generated auto¬

matically by the process. In his paper dtevena provided tables mainly

for th® range# N = 5(1)7 and ro = .25(.01).70j he su£,gested that

his tables might profitably be extended and the aim of the present

work is to make available such an extended set of tables.

The ranges considered hero should cover the values which are

moat likely to occur in practice; these are N = 5(1)J0 and

vo = .10(.01).90. A discussion of how the tables may be used for

values outside these ranges is given in section 8.5.
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8.2 Description of the Method.

Forming the normal equations of least squares, or equivalently

of maximum likelihood, and the information matrix I , defined by

8.A. Fisher (1956), leads to a modified information matrix such

that»

{ - \
b

\ j> sv J

where a* and b are the estimated values of the parameters <x. and

where Sr is a correction to an approximation, r0 , to r, the estimate

of p , and where X - , X = and \x- these sums

being over tc =• 0,1,2,....( n-i ).

It can be shown that I0 is independent of <k and b and it

is, in fact, X with the second row and column each divided by the

maximum likelihood estimate of i .

The iterative process is then defined by»

/ F*r \ / Y0 \
( F66 F6r I X I
\ FAR F&(4. FRR/7 \ Y,_/ (8.2)
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or equivalently, without using matrices, by:

I

l>Sr

'"A** Y© +■ fVrtj Y, +" F^^_Ya_

Y© +■ Fse Y, fbr-Y^

F>,k "*• fsr Yi + Yjl
(8.5)

where the F-values are the elements of the matrix These

values are functions of ro only,since the elements of ro were

independent of a. and i> .

In practice, Sr is obtained by dividing the right-hand side

of the last equation by that of the preceding equation of (8.5)•

This iterative process has several advantages as well as the

primary one that it deals in the estimation of the single parameter p ;

perhaps in order of importance these may be stated as:

(i) the process is a second order one since it is based on the

second order derivative of the likelihood function occurring

in a Taylor expansion of the function,

(ii) the estimates are of maximum efficiency,

(iii) the estimates are asymptotically unbiassed, and

(iv) large sample standard errors are available for the estimates.

Of these (ii) and (iii) are a direct consequence of the

estimates being those which satisfy the maximum likelihood equations.

Thl3 is, of course, only true under conditions where the residuals are
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independent end of equal weight. Consideration of (iv) may now be

extended by stating the formulae for the standard errors of the

estimates:

S.e, (a.") = J (F** S3")
•J.e. Ct>) ~ V (.Ffca. s1")
S.e.Cr) = s*0 1 / t

(8.

where s1" is the sum of squared deviations about the fitted curve

divided by ( M - 5).
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6.^ Computational procedure.

It is first necessary to obtain an approximate value r0 ,

for the parameter . If no other knowledge upon the size of this

value is available, the following method may be used effectively

when the fit is expected to be at all a good one.

By sketching a curve by eye through the points ^c.)
choose a convenient numerical value, "f0 , of x- near to the centre of

the range of fitting. Equidistent from take two other values,

one near each end of the range and let these be called t. end

\ respectively. Read off the values ^ # 1\o and ry from the
sketched curve as the values of y. which correspond to >c=
and ^ fona 8M®11 difference tablet

1. _

4 lo-n..,
1o f ^ 1, ^ ^

The approximation required is them

-^u

\o - n-t (8.5)

or,

vo = ~ [ Uj W.-lo) ~ ^ (no-n.-,)}
where the base of logarithms is arbitrary.
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Using this value of or a value arrived at in some other

way, the iteration routine may now be entered. Before doing so,

however, it is useful to compute X>= for once and all at the

beginning, as this quantity remains unchanged throughout the

calculation.

It is important to fix at the outset the size of the

correction Sv- to ro which will be considered negligible.

(1) Compute X = Zy** and Yv = ZyxrJ* ' where the summations
are over all values of i.e. *■ = 0,1,2,...,( H —« ).

(2) Using the appropriate row of F-values from the tables for v0

and nI calculate a,, 4> and bSr using the relation (8.2) or

(8.5), and deduce the value of Sr .

(5) If fr is not negligible, replace r; by and go back

to (1); if Sv- is negligible the estimation is complete, the

current values of a. t b and r~a being the final estimates.

(4) Using the fitted relationship, the expected y -values may be
obtained for x =. o,l,2,...,( n/-i ) and the sums of deviations

and of squared deviations computed. Of these sums, the former

has expected value zero and the latter is divided by ( 5)

to give the estimated error variance, 5*".

(5) Where appropriate, large sample standard errors may be formed

using the relations (8.4).
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In unpublished notes, H. Linhart (1959) has suggested that the

determination of the final estimates may be checked by converging to the

final estimate r0 from both sides. To do this, choose a starting

value r0 on the other side of the final value from that ueed above and

repeat the estimation comparing both the final estimate and the sum

of squared deviations with those obtained above.
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8.4 Uae of the tables for other curves.

Alternative models for which Stevens' Method may be applicable

are now listeds

_

(1) y = * * fi e- (8.6)

the growth curve in physiology and biology, e.g. Harrison, Hiorne

and Weiner (1964), or the learning curve in psychology! this
y

becomes identical to the present model if e is replaced by p .

(a) Jf- " + ' 10 ) (8.7)
the Mitscherlich's law, Mitscherlich (1909, 19J0), describing

fertiliser response in agriculture; here = =

A.
lo' s ^ . An alternative form of this law Isj

and

J- — c/ Ctc +" fcO T

^ = A f I - 10 J (6>8)

and this becomes the present model if,

A oc^ _A(lo~c<> ) = ^ and l°~c - (°

(5) 21 = C <* + fipx) (8.9)
Gompertz law, is used for graduating life tables in actuarial

work and for predicting price changes in economics; this is

equivalent if z is replaced by •

(4) z = ■ / (* + pp") (8,10)
the logistic curve occurs in demography to describe population

growth e.g. Yule (1925); here write for equivalence, z = — .

>
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This list is not, of course, exhaustive but it indicates the

wide applicability of Stevens' Method in many fielde. By way of

warning, it should be added that although a law or function may be

transformable into the general model considered here, the method should

not be applied unless the x -variable is independent or is relatively

free from error, whilst the ^ -variable contains error and is dependent

upon x-.

Example. Mice are weighted at weekly intervals between the ages 5

and 12 weeks. The following table gives the means over several

litters t

age (wks.) 5 4 5 6 7 8 9 10 11 12

wt. (g.) 8.J 12.6 14.6 15.5 16.8 18.2 19.5 20.7 21.7 21.4

In the course of the fitting the weights will be represented

by the variable ^ and ths ages by 5) 80 that x - 0,1,2,....,9*

From a rough sketch of the curve, the mid-point of the range

of x. , ao = 4.5 ie taken and two end values, 0.5 and 8.5; the

corresponding ^ values from this graph are given by the tablei
oc A

0.5 10.5
7.5

4.5 18 *
5-5 / 5.5 \ _ 0.81

6.5 21.5 r° ~ \ 7*5)
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To determine r to two decimal pieces, proceed with the following

scheme t

Y0 = = 168.4

X
X

n,
X.-I

*r0 2- *' £V
0 1.0000 0000 0 8.5 8.94 -.64
1 .8100 0000 1.0000 0000 12.6 11.71 .89
2 .6561 0000 1.6200 0000 14.6 15.96 .64
5 .5514 4100 1.9685 0000 15.5 15.80 -•50
4 .4504 6721 2.1257 6400 16.8 17.29 -.49

5 .5486 7844 2.1525 5605 18.2 18.50 -.50
6 .2824 2954 2.0920 7064 19.5 19.49 -.19
7 .2287 6792 1.9770 0678 20.7 20.29 .41
8 .1855 0202 1.8501 4556 21.2 20.95 .25
9 .1500 9464 1.6677 1818 21.4 21.48 -.08

Sum Oheck .01

i- 2.4645
S -

7

^ 0.55207

Matrix from tables, r. = 0.81, N = 10.

f 4.80585 -5.95752 -1.75021 \ / 166.4 \ ( 25.7885
I -5.95752 5.87596 1.51778 ) 67.120718 = ( -14.8557
\ -1.75021 1.51778 0.69450/ \ 297.041555/ v-0.049074

Using Y, = Xyrx= 67.120718, = 2^*^' = 297.041555

-0.049074

-14.8557
= 0.005504 r = v„ + Sr =- 0.8155.
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The iteration is complete because

F^ = 1.6920 s.e.(oL) - 1.50

Fe»s*- 1.5646 s.e.U) = I.17

FlkP.s1-= 0.00110791 *■*•<*") = 0.0555
l1-

These standard errors are asymptotic in the

section 8.2.

Sr < 0.005

a* = 25.79 i 1.50

U -14.85 i 1.17

r = 0.8155 i 0.0555

sense explained in
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8.5 Data for which the ranges of tabulation are exceeded.

Large values of r ,

When r ia large, becoming nearly unity, there is a good

case for fitting the parabola, ea Stevens illustrated with an example.

If x = i _ (O is small so that <c3 is everywhere negligible

compared with eL , it is clear that (8.1) can be rewritten asi

£ (j.) = * + p (,_0~ (8.11)
or expanding binomially, as

£ = C ) — ft t x- ■+• -j. Z3 (8.12)
from which the asymptotic regression can be equated with the quadratio

regression

£ C^O = (ia +- (ix * + (8.1J)
and this may be fitted by orthogonal polynomials (e.g. Fisher and Yates,

p.50 (1957)). The asymptotic parameters correspond to the polynomial

parameters and are given in terms of them by

!° s (*< ~ Z3*- } <* = _ {{iy+ftS and » - <^, (8.14)
Z3.* Z3- VC V*"

Small values of -r .

With r*" negligible, consideration of the inverse of the

modified information matrix, i~' , (defined in section 8.2), leads
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to the approximate relations

(i -i —i—v-I W-l-H-r -0>l-3V+(

-I -r _(N/_3")r+i <v-(-*-r J (8.15)

whose elements can be used in place of the F -values, provided the

errorB, , sre everywhere large compared with r*".

Values of N outside the given range.

From (8.15), if I0~' is replaced in an obvious notation by

Fj" then,

Crv -i-k-r) Fj =

+ N

- R+ N » say,

and {n~\~ Vr) F^, = R, + (kJ + i1)

so that by subtraction,

C* ' — VY-) F^( — C M -2_- /^O FNr = R-a.
and hence the recurrence relationss

F
Nfl (8.16)( "-i- ^ \ C + ( ! \ r,

\ N - [ - L*r- J \ M — i _ /

/ M— 1 —^ x ^ . I > (8-17)
Vtv-X-H-r- / \w-t —i*y-/

may be used to extend the range of tabulation for small values of r ,

again where is negligible by comparison with the error term, .
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8.6 The checking of the tabulation

The tables were computed in rows in the order in which they

appear so that the usual visual graduation check by columns would fail

to detect any Mbuild-upw error. This check was applied successfully

with respect to gross errors and none of these were located.

property of the matrix inverses and this check is independent of the

method of calculation. To show this, a recurrence relation may be

derived.

The modified information matrix X0 can be shown to be,

(omitting the lower triangle elements of the symmetric matrices which

follow)

A more satisfactory check was available due to a fortunate

X

X

T"

and if An+( is defined ss X0 with summations over x. c 0,l,2,...fN
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them
**

. r

A;., - An 4. A,

For N > 2 the A matrices are non-singular so that multiplying from

the left by (A^+(^ ' and from the right by CA^) ' shows thatj

(A*)". + (A:.,)"'A;ca;)-'

(A^r - (A-„„,r - (A-jHa; (a;)-

. *•
The matrix A^ is always singular since its rows are

fr-vtU^oi~ <r*Jue. /ctr
proportional and it has, therefore, rank zero. By the ^thoorom on the

deMvZa Z.-e*-o 4-kW-e. fcl~c_
rank of a product,^the right-hand 3ide product matrix onnnot have rank

—&{- A ^ -v> z.-erv .

greater than zero end, ie thus singular. It follows directly from this

that the determinant of the left-hand aide matrix ie zero, i.e.

I(<)"- CA~4l - -

which is the required check. By forming the differences of rows of

F -values which have the same r-value but adjacent NJ-values, a

matrix is obtained whose determinant should be zero. This cheok was

applied by the computer, indicating that nowhere was the value of this

determinant greater than ICf.

In addition, another valuable check was used, particularly

during the development of the tabulation programme, and this was a

direct comparison with existing independent tabulations over smaller
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ranges by W.L. Stevens (1951) for Nf = 5(1)7 and S. Lipton (private

communication) for M = 5(1)12.

Finally, the most positive check (but this was not applied

extensively as it takes longer than other cheeks) is to use the

tables for fitting a set of points which lie exactly on the ourvej

if the true value of r is used as starting value, the expected

correction Sr must be zero.
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CHAPTER NINE

EXTENSION OF STEVENS1 METHOD.

Stevens showed that the likelihood equations ellow the

elimination of all but the non-linear parameter to provide en iterative

procedure. He suggested that his method, applied to?

ry - (9.1)
could be applied to general models of the formt

= o< + /z £((9*2)
where is any function.

Whereas this is true, the method extends much further. It

is not, of course, restricted to a single non-linear function containing

a parameter, and neither is it only valid for a single independent

variable x.. The moat general function for which Stevens' elimination

is possible, appears to bes

£
n *■ + S( O; ; *0(9-5)

where f. ere any functions of a independent variables ..,>0 and
& *

the parameter vectors p. whose elements are exclusive to the function
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f. . ^he proof which follows assumes that each r% has one element

only n and the case where these vectors are of higher orders is a

straightforward extension.

Introduce = i , always and define t>o r «. so that:

*

n. = ? *v--jV> (9.4)
j-

and, assuming normality for the independent errors in the ^.-values,
the usual maximum likelihood equations (MLB) with fb. replaced by t> • ,I & &

p. replaced by r. are (f> ti) equations for k = 0,1,2,... f» t& t

= o (9.5)

and f> equations for k «■ 1,2,... ]> t

where -frepresents the general function (rj_ - *.,y ■ and the
suffix i is used to refer to repeated observed values of the variables.

For non-linear functions i- the above equations are difficult to

solve and R.A. Fisher's general method, Fisher (1925, 1956), is relevant.

This involves the use of the information matrix, I , which is readily

obtained by differentiating the left-hand sides of the equations above

with respect to each parameter in turn, and replacing each ^ by its
expeoted value, . The latter is found by taking the mean of^over
ell repeated sets of observations.
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In view of the structure of the likelihood equations I , in

this case, is a partitioned matrix given byi

X = / A B

V &' e.
(9-7)

where, a . {a,. } . xftf.

B " {»,} '

c - fcv} -

Here A and C are square matrices of orders and respectively

B is a (j * Cf> + 0 matrix and B' is the transpose of B,

R.A. Fisher (1925) proposed that if v represents the vector

of parameters which satisfy the likelihood equations and v' is an

approximation to 0 thent

w = X (v' - v)
(9.8)

where w is the vector of residuals upon substituting v' into the MLE.

This result holds for v' close to v because of the smallneas of

squares of elements Cv'— 0) by Taylor's Theorem. Further, it is not

dependent in any way upon the form of model which determines X .

Here the linear combination model form can be applied to advantage.

It will be convenient to define the vector, S byt

S - v' - 0 (9.9)
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80 that (9*8) can be writtens

w = r<S (9-10)

Suppose that X0 is definedt

a e>*

&*' c.*
(9.11)

where:
a" ' )! -

&

Md' c* " { c-i /M,! •

with A as defined previously.

Now 44P- the vector of residuals w la defined est

W = ( we„> W6.,-- ■,*»». )WM -JW^)
in en obvious way, and:

Wo = ( Weo^ ■>"*+/!>*)

Given a set of approximate values, the small corrections to

these values will bo denoted by»

S * (Sb.^ «bt^. . Sbj. ^Sr, y . . ) Sr^)
Let' - (5b, - 6rJi>y)...S^Ib^
so that from (9.10)t

W0 = 1 o So
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or alternatively,
5. = U' wO

and by substituting from (9.8) and (9>9):

= v0 + x Z

where

and

in which,

and.

dr. dr. I,-=»-/i *

for j. = 1,2,..., (3 . The iterative process is now defined byi

- v0 - X0-»

in which the right-hand side is a function only of the non-linear

parameters. Sore concisely, ifi

t = ( b.Sr,

then the iterative process isj

t = i;' ^

The converged values of the estimates obtained by use of this

iterative process will satisfy the maximum likelihood equations, ani 7<u-
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have the usual properties of full efficiency and ■asymptotic nnbaised-

riasa. Further, for estimation from large samples, the estimates are

asymptotically normally distributed and standard errors may be attached

to them using the modified information matrix:

V&v ( ) = s1" Fu
c = l>V>

Vojt C r.) =- / b: i= f> + L

where Fu ia the diagonal element of XJ1 and sx is the estimate

of the varience of the error in each observed ^ -value.

It is now clear that in place of r\ in each function there

may be © vector of several non-linear parameters. The above iterative

method still applies provided that no non-linear parameter occurs in

more than one function.
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9«1 Confidence limits end regions for non-linear parameters.

It Is & feature of the classical iterative approach, or again

of Stevens' Method, that approximate confidence intervals may be

obtained immediately from the information matrix used during the course

of the estimation. Whether the approximation is a useful one or not

depends entirely upon the degree of non-linearity in the MNLP relation.

This point is discussed fully by Besle (i960) who derives a measure of

non-linoarity and obtains confidence regions for models which become

almost linear under some transformation. The computational difficulties

encountered in obtaining these regions, leaves their general usefulness

open to some doubt, particularly in view of the fact that the inter¬

pretation of a region is so difficult for three or more parameters;

more acceptable would be a simultaneous set of confidence intervals.

Stone (i960) shows some concern for the need for more confidence

intervals and he indicates thet simultaneous intervals are obtainable

from the usual approximate confidence region. This approach is now

considered for the asymptotic models under present discussion and then

extended to obtain limits for new regions proposed by Halperin (196^)

following Williams (1962).

A

From the last section, let 6 represent the vector of maximum

likelihood estimates of k parameters so that

0 = C t r } (9.12)
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where t> and r are the similar vectors for the linear and non-linear

parameters separately. If OO is the 100<x "U value of

the probability function for the ^-distribution, and if, to correspond

with the previous notation, s* is the error variance estimate, X is

the information matrix, then

(e-- e )' r (e ~e) < kslFk^k («c) (9.1?)

represents the approximate confidence region within whioh the true value

of ©" fells with probability << * This region represents the interior

of en ellipsoid and Stone (ip6Q) proposes to uss instead the circum¬

scribing polyhedron defined by the set of bounding hyperplanes

& - & - ± J { k s* friC/ w_fc > ^'05 CX") }
and & may be introduced to represent the quantity whose square root

is taken so that the simultaneous confidence intervals ere given by the

vector equations

& - 0L £ & < & + cL

These intervals define a conservative confidence region, and

the probability that all of the \c inequalities are satisfied is

at least of. The asymptotic normality of maximum likelihood estimates

allows an application of the more general theorem by hekeffe (195^)

on simultaneous confidence intervals for a linear combination of random
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variables. It is a straightforward matter to show that the Scheffe

intervals for the above simplified case are thoBe used by Stone.

In a recent paper, Williams (1962) approaches the (SNLP)

relation (6.1) as a specific type of non-linear relation in an ettempt

to obtain an exact confidence interval for the non-linear parameter, /o.

This he proceeds to do by showing that Stevens' modified normal equations

for the model are a consequence of applying a Taylor expansion to it

using only p for this purpose end the consequent linearity of the

regression. The reduction in size of the correction terra in the

linear regression during the iterative process which follows, suggests

that this term could be tested for significance at any stage. When

this term fails to reach significance at a given probability level,

according to the appropriate sums of squares in an analysis of variance,

the corresponding confidence limit is presumed to have been passed. A

close study of the linear regression sums of squares with and without

the error terra, allows Williams to obtain in this way an exact interval

for fo .

A broader approach is taken by Halperin (1965) who considers

the effect of regression on the given non-linear variables together with

a set of general variables: showing that the latter may be replaced by

corrections to the non-linear parameters, a result previously given by

Riorna (1962b). This author follows the work of Williams and proposes
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general confidence regions for MKLP relations. The results are given

below, in equation (9*17) and (9«18)»

Let X be the matrix of observations containing the \> terms

in the j>, non-linear parameters and P represent a matrix of ^ , for

the moment, unspecified variables and each of these matrices is supposed

to have rows to correspond with the sample size but X has columns

and L> has f>2 columns. Suppose that the model is specified by

= £"(= X^i,

where is the vector of parameters occurring linearly in the

model and consider the supplemented regression

1 ^ X; T> ) fb (9.15)

where p' = Cfi> } )

and contains those ^ parameters which occur linearly with the
unspecified variables in I> . Following the usual regression theory,

the asymptotically unbiassed estimates of and & are contained in

(i where

^ =, / x'x X'p rV x'
b'x X)'P P' *

(9.16)

Furthermore, th9 significance of the whole or part of the regression
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may bo treated by the variance ratiost

"

)».-#>* y'y - ^'cx^'cx^v *9# 7'

Fh , , —K-K ^ a'u ^ (9.18)K, n-K'K ^ - /J'CXjDVCX^^

where u = b' C x - x< x'x)-«x'.) (9.19)

end (p.18) may be used to define a confidence region for fi^_ in the

normal way. Such a region may be disjoint or infinite but this

feature will ba discussed Ister.

The choice of the variables in P is now clear, for the matrix

inverted in (9*16) can be made to correspond with the modified

information matrix, x.D , defined by the last section in equation (9«11)

if

p = [ 9f. OO / *r. ] (9.20)

With this definition of P it follows that the parameters in

are the elements at the lower end of the vector t of the last

section and ere defined by

fa = £ faj} = £/*•£ 5r-'j (9.21)

so that the maximum likelihood estimates of these parameters are zero.
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For aany ncn-linear parameters there is considerable difficulty

both in obtaining the confidence region from (9*18) and in interpreting

it. The calculation will be simplified if the appropriate matrix

product can be replaced by an alternative estimate of the variance in

the dependent variable and this can be quickly achieved if replications

of this variable are available. It remains then only to explore the

matrix function in the numerator of the right-hand side of (9*18) for

different trial values for the non-linear parameters. tor one such

parameter this was carried out by Williams (1962) in one example, but

in another he shows that considerable effort may be needed to study

this matrix function even for a single parameter.

The Interpretation of confidence regions can only be a

simple matter when the boundaries of the regions are simply defined

and closed. This is the case for linear estimates when the boundary

is an ellipsoid with its centre at the maximum likelihood point in

the parameter space, es indicated by Hotelling (19J1). Of course,

the proposal by Stone, quoted above Is based on the assumption that

the regions have ellipsoidal boundaries and a further assumption is

made that these ellipeoida are not rotated about the parameter axes.

The additive effect of these two assumptions would prove drastic cn

all but the most, moderate of non-linear regressions. Taking the

assumptions separately, it is not difficult to find a set of
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conservative simultaneous intervals for a rotated ellipsoid. If (9»lj)

represents the interior of an ellipsoid then the lengths of the semi-axes

are proportional to the square roots of the latent roots of X"'. The

hypersphere of radius proportional to the largest of these square roots,

therefore, is s conservative region in that it encloses all points in the

parameter space which satisfy (Q.15). In practice, the largest latent

root is easiest to obtain, a3 is well known, and therefore the equation

of this hypersphere may be determined readily. Another attractive

feature iS that simultaneous intervals may be obtained directly from the

intercepts of the parameter axes with this hypersphere, talcing no further

account of rotation. Against this, however, is the overlooking of

information contained about the variances of all but one of the estimate*.

The importance of this is great only if heterogeneity of these variances

existsi it would seem reasonable to test for this in the usual way with

Bartlett's best and the only variances available will be the asymptotic

values obtained from X"1.

ft more exact measure of the importance of choosing s

hypersphere may be obtained as follows. The volume, , of the

ellipsoidal region given by (9*15) 1®

ve = —H £
r(* + i) /|r| (9.22)

where c1 denote* the right-hand side of (9.12)« (This result follow*
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directly from an orthogonal transformation of the positive definite

matrix r and a simple substitution, or equivalently by using the

result which ia sometimes called Aitken'e integral, (Turnbull and

Aitken (1952)), i.e.

„ a, ~i ©'AS + Gt-'0
J-oo ■ . ■ J_os e A^...

putting t» o , and the gaaraa function results from the Dirichlet

integration over the hyperspher© or transformed ellipsoid. fhe proof

is given by Cramer (1946, pp 118-20) and elsewhere.) From this the

volume of the hyperspbare, Vs , with radius proportional to p , the

square root of the largest latent root of I , is readily deduced by

replacing I by the unit matrix divided scelarly by p • A measure

describing how conservative the region described by the hypersphere

would be, is then

$ * ' Vg = /oK/|r| -i (9.2J)

Here 100 5 "k can be defined as the percentage increase in the probability

°c that the overall probability that the hypersphere rather than the

ellipsoid (9.15) contains the true point in the parameter space, but

this will not be true for corresponding simultaneous intervals. In the

above, of course the fact that the inverse information matrix is

proportional to the asymptotic covarianee matrix for the parameters means

that & Is analogous to a measure of the proportional increase in the
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generalized standard deviation, if the latter ia defined to be the

square root of the generalized variance originally derived by Wilks

(1952). -nother analogous quantity is the scatter coefficient as

given by Frisch (1929) which is the reciprocal of one plus S given

above. In the extreme, when all parameter estimates have the same

asymptotic variance and zero covariancee, this coefficient is unity

and £ is zero.

The corresponding volume of the hypercube, Vc whose sides

are the hyperplanee representing the simultaneous confidence intervals,

is now considered. This hypercube has edges of length 2pc» the

length of each interval and its volume ia, therefore,

Vc = (9.24)

For k = 1 , the hypercube degenerates to the line segment 0, = ± ec.

and the length of this single interval is the nvolumc;! of the hypercubej

in this case the volumes of the ellipsoid and hypersphere given above

both correspond with this value, as is expected from the coincidence of

the degenerate cases of these regions. For higher values of If , the

volumes diverge as is shown in the table below. In the table

r = I /J1 ri .
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TABLE 9.1

No of parameters

Region 1 2 5 b k

Ellipsoid, Ve xYc. TCTc.1" 3 TT >"c intc? TT^c*
r(s + o

Hypor3phere, Xfc. TCp^c* s
^ C^-eO

Hyperctibs, Vc Xp e. <S ^c.3 itfV* iVc"

Ratio 1 fVjf p3/* rkU

Ratio Vc/Vs 1 t/n L / rr
a" rci +

TT

Some consideration is novr due of noifc-ellipaoidal regions as

these are the kind most likely to be encountered when applying (9*18).

An approech is given which esters for open and closed regions though in

the former case the existence of points at infinity in the set of

allowed parameter values is assumed. Let B>j be the set of values of

the parameter pxj for which (9- IS) is satisfied and call (b iSj that
member of the sot which has largest magnitude and f2-^ that member
with smallest magnitude so that

(9.25)
(!%.*.j = C/Jvj)and

If the set bj is empty for any set these two values are taken as

plus imd minus infinity respectively. For all j $ let f3*!



I 56

be the vectors of elements defined} then it follows that

/**r < i (Z*-s (9*26)

defines a set of simultaneous conservative confidence Intervals.

The exploration of these intervals further is difficult and

promises to be lengthy and even particular cases of the general iMLP

models must extend beyond the ecope of the present research. However,

it is possible to state this problem more precisely for the liNLf models

in which

f = a .

J (9.27)

It is straightforward to show that, following (9-20) from the quadratic,

form in the numerator of (9.16)

ol'u. = x't^x - x't X Cx'x)"' Cx't x) ^

where T is a diagonal matrix with elements equal to the values of

in the sample, and ^ is defined by

(ij^ = ( u.'u.) u.' y

so that /sJCu'u) fix - a-Cu.'u~) 'tC y. (9*29)

Rn^ u. - ( I - Xdx'x) ' x' } rx

In the above x is a function of a current value of the vector /«0
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For given sample value® for k and y , together with an estimate

s4" * values of p , or equivalently daviaticns Sp from p may be
found which sstiafy (9.18) from (9*28) and (9.29) above.
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