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PART 1

A MATHEMATICAL THEORY FOR

RACIAL INTERMIXTURE



INTRODUCTION

The application of mgthemstical methods of enelysis hase
yielded results of some interest and practical importance in the
field of populetion genetiece. Following the work of Fisher (1930),
Wright (1931) end Haldane (1924-32), meny research workers have,
with some success, tackled problems using mathematical models which

describe the beheviour of gene frequencies within populations.

The single problem of the effect of intermixture between
several populations on gene frequencies has not been investigsted
with due generality. This beceame apparent at the outset cof the
present research, following the discovery of the asymptotic regression
model which amnrgea'from the speciel case treated by Gleaes end Li
(1953). In the hope that other interesting regression models might
appear, a fuller and more general treetment of the problexz was

undertaken.



The results of this fuller investigetion are presented here
in Part I as & theory of intermixture and the interest in ssymptotic
regression models is satisfied by those types which arise; the basis
for these models is glven by the eppropriate esnelysis end the whole
of this theory is cleimed 28 a new contribution to the literature.

In 2ddition to the accepted techniques for esteblishing differential
and difference equetione, lesser known results like those of HSauvege
end Sylvester are employed &s tooles of enelyeis to provide new results.
Attendent problems of statisticel estimation concerned with the
application of these models in the presence of sample date are dealt
with as they arise, while a fuller account of asymptotic rsgression

is left 4o Part II



CHAPTER ONE

TWO POPULATIONS WITH DISCRETE GENERATIONS

In this chapter the first of several models with many common
genetic features is coneidered. It will be convenient to state here
the assumptions snd describe these features. Superimposed upon them
will be the fect that generations are discrete, or identically, that
migration tekes place only at the end of each generation and also that
the model for the present will describe intermixture between just two

populations.

The genetic considerations ettached to the model are that the
pepulations are panmictic, thet migreante are drawn et random from them
and that intermixture is the sole process for modifying the gene fre=-

guencies of the individuels in eech population.

By way of notation, let q7 be the allele frequency of a
single locus in population I et the end of the w generations end let
q}f represent the frequency at the corresponding locus in populetion

TI. Let w™(n) be the rate of gene flow into populatien II from



population I et the end of the n'" generation snd m™(w) be the rate
8t thet time of gene flow in the reverse direction. [Here the gene flow
rate is understood to be that proportion of the recipient's population
gones which is received by immigration; the proportion of the donating
population itself which emigretes is considered irrelevent for present
purposes. These gene flow retes will be called admixture rates in the

hope that confusion with other definitions may be avoided.

At the end of the firet generation admixture takes place snd
there will, in the gemetes of populstion I, be a component, mt(\) ,
deriving from population IT in which the allele fregqueney will be Qf ;
* the remeinder, | — w™) , of these gemetes derive from populetion I
end their gene frequencies will be unaltered. Mathematically, if
q,f and q: ere the initiel frequencies in populations I and II
respectively, the relations between these and the frequencies after one

generation are:

T

9, = wmT)qr & (1=-m")ql (1.1)

end by symmetry,

p oo

3, W) gy o+ (1= WD) gy (1.2)

The above argument may be applied equally effectively to

obtein the relations between the frequencies in the two populations



After the w™ generation,

v = G- ) ) 4,y * W () ﬂ‘f-. (1.3)
Gu = wED G t (= wTOD) e, (1.4)

providing two simultaneous recurrence relations. These may be readily

golved by forming the sum and difference of the equations. First
define
Zoo= v vl (1.5)
and Ay e BT = q,;r
(1.6)

Now by subtraction of (1.4) from (1.3),
B, - (= w™ () -mm(_“\)Am (1.7)

which is a single recurrence relatiocn, and this may be solved by

successive substitution downwards, leading to the result:
R, " = TU (= W) - w (k) ) A (1-8)

where T( 4is used to denote the product of the brecketed term for

k':ljl}--.) n,

In & similar manner, adding (1.3) and (1.4) gives egein a

single recurrence relation

T = 5 + (™) - aE(W)) A, (1.9)

- W =1



into which the solution for &, may be substituted. This gives:

% = 3, (W - W) T = ) - &) A, (1.10)

LaY

T = =
for over k=2 ... mer,

Succeesive addition enables & general eolution for 3 to be found

end this hes the form:
S, = T, o+ LT - wT®) TT( = mT()-mT@)A(1.11)

in which 2. denotes summetion over 2ll that follows for £ =12, ...,n
end TU now operstes to form the product of the bracket which follows

it for L = I)?.)...)(i-t),
Using (1.5) and (1.6) and defining
°© for k £n
Cl=w® k) -wT()  for K=wn

the genersl solution for (1.3) and 1.4) may be obtained from {1.8) and

(1.11). This result ie embodied in the following theorem.



THEOREM 1.1 The discrete model defined by the relations (1.3) end

(1.4) hes generel solution:

4 = £ (Z, + T (W) =) +F ) TT(1 - T -mTD) A, (1.12)
and
I = (. + S (-~ £ ITI (T nF ) A, (1013)

in which > implies summation over k=(,2,...,%n

end TU implies product teken over £=1,2,...,(k-0 .

THEOREM 1.2 For the special case in which the admixture rates ere

constant, i.e.

‘W\:(k) = MI’ v\r\.r({\c) = M'If (1.1#)
for all k= 4,2,...,n , then the general sclution teo

the model defined by (1.3) end (1.4) ie:

4 = £ (2, +(wF e nTa 1 E e nEnEY) A, [hTnT)) (1415)
together with,
g T = (5. + (W T 20T W E)) A [0 T))  (1.16)

Ll

Proof This follows from Theorem 1.1 and equetion (1.14).



THEOREM 1.3

(Glaes eand Li) For unidirectional gene flow in the
model defined above, where:

MICV\.) = A » & OUﬂ.mt ‘nd

W\IC\'\] = a '
(1.17)
the general solution to the equations (1.3) end 1.4) is
given by
e = as (1.39)
‘nd $E = q’::(l—m)“d‘ (l—(l-m)“) q’:: (1-19)

Proof This follows from Theorem l.2 and the relations

(1.17).
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CHAPTER TWO

TWO POPULATIONS WITH CONTINUOUS MIGRATION

The model of Chapter One is now changed only in one importent
respect. Instead of the assumption that migration tekes place at the
end of each generstion, or at discrete times, continuous migrstion
throughout emch generation is now considered. Over a large number of
generstions the difference in effect of the discrete and continucus
essumptions is small. The general model end enalysis which follows,
yields s8 & special case the solution for unidirectionel gene flow

given by Glass end Li (1953).

To define the new notation required for this continuous model,
let w7 ) and wT(E) be the retes of admixture, in the sense of the
last chapter, et time t ; more strictly w™(t) and w™(t) ere constant
over the small interval (:@ b+ §€) 80 that the amounte of migration
which take place over that interval are m (Vfcand wT()§t pespsectively.
The gene frequencies in the two populetions will be defined et time t

as T/:('k) and qyr(t) »



This model implies & peir of relations deseribing the fre-

quencies in terms of the admixture retes; these are:
4 e+ 80 = (1= mT(OEE) 47O + mTe) §€ q5(C) (2.1)

gl (E+86) = wmT(E) §k gTE) + ([ — mTE) k) o6 (2.2)
Again, defining Z () end A(Y) a8 in the previcus section ss the sum
end difference of q(¢) and q’r(r) , forming the difference of the

pair of relations gives:

A(e+8E) = (1 = S mT(O) - Se mT((O)) AW) (2.3)
or Ale+se) — AW = — (mTB) + mT)) AW st

Dividing by St and letting &t — o

M:éa = — (mT(® + wTE) AW (2.4)

which is a first order differential equetion in A(Y) with solution:

SIS (M) ¢ T ) ar
Al = A, € (2.5)

Adding equations (2.1) and (2.2) gives:
T(e+86) = Z(B) + 8t (mIE) — mTW)) A

substituting for A(b) , reerrenging end taking the limit es

— L5 T() + ))&

%&'-‘7 = (WHD —mTB) A, @ (2.6)

end this differentisl equstion in Z(t) has solution:

. 55 wTe') ¢ () dE
W = T+ 0 (WTE)-mTE))e " (2.7)
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defrned

where In- the ebove 2, end A, aere allin the previous section,
the sum and difference respectively of the initial frequencies, ive~

4hose at time t=o,

THEOREM 2.1 The continucus model defined by the relations (2.1) end
(2.2) hes the general solution:

EE T + T (le’
1,‘(.1:) = LUE +bg jf(mz(l:") ) R ou,-”t

LT+ wT)) oA
+ 6@ e

(2.8)

end E” ’
—§, (W) +m™( ) de
N ORI RN O T B 1) Pt

o S5 CTCE) + () A’
by ® ) (2.9)

Proof follows by addition end subtracticn of (2.5) and (2.7).

THEQREM 2.2 When one of the edmixture rates is zero end the other a

general function, the solutions are:

for W) = () wEQ) = o " (2.10)

58 = o (2.11)
— IS el e’

qlxct) - ';_. (Zo ¥ Au T ZAQ e ) (2. 12)

Proof follows by substitution of (2.10) into (2.8) end

(2.9).
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THEOREM 2.3 When the sdmixture rates are equel for,
wH ) = W) = wa () {3-15)

the solutions are:

ca S ey e

3 = £ (s, + 4a,e ) (2.14)

£ Sfm(e') d.::)

pi-

q @ = (2 =~ A0 (2.13)

Proof followe by substituting (2.13) into (2.8) end (2.9)

THROREM 2.4 Yhen the edmixture rates sre differant but scnstant
for wa B () = wmT
- {(2.16)

and wmE(E) = e

the solutions ere:

~Im 4w )E
T _ Ay (WT-mE) 2m"a e
2 (_L") = :l!.-(za + T enn T waT o wnT )(2.1?)
T -(mr-l-'MI)t
T wi A
g™&) = 1(z. + “ﬁ;‘f;r’ - et ) (2.18)

Proof follows by substitution of (2.16) inte (2.&) and (2.9).

———— s e



THEOREM 2.5

THEOREM 2.6

14

(Class and Li) For unidirectionel gene flow, where
one edmixture rete is constant end the other zero, i.e.
for wmTE) = m

e (2.19)

the solutions are:

35 ) e Yo (2.20)

=la = 97 - (gF-qF)™" (2.21)

Proof This follows by ueing (2.19) and Theorem 2.4.

For unidirectional hyperbelicelly incressing gene flow
the solutions, whers,

mT) = o (2.22)
mT ()

a—-FE

in which o end c ere sulteble constents, are given by:

[}

3 (© Qe (2.23)

()

QI 22

Proof follows by using (2.22) and Theorem 2.2.
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THEOREM 2.7 For equel hyperbolically incressing admixture rstes,

i.2. for

M:L(:.') = Mn(l'.‘) = a:-—_t (2-@)
the solution is:

e
—E)
q/r(.‘-') = 2 (Z, + Auk_&_ﬂr“ )

= (2.26)
9 (&) = y(=.- A, (L;—;Z-— (2.27)

Prcof follows by using (2.25) and Theorem 2.3.

THEOREM 2.8 For unidirectional parabolically increesing gene flow,
i.e. for
wWmT() = ab” &bt &+ c
where o, b and ¢ are constents, the solution is:
& = ¢S] (2.29)
—(§0k> + LbE" + ko)
q,ILL‘) = %I — 24, G x ¥ (2050)

Proof follows by ueing (2.28) snd Theorem 2.2
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THEOREM 2.9 For equal parebolically incressing admixture rates,

i.e. for,

W) = wTL) = ak +be+ © (2.31)
the soluticn is:

2 (a4 ibe k)

g5 = & (Z.+ A.e ) (2.32)

—2(5 ek’ + L bt e k) )

B = 5£( .- A.e (2.33)

Proof followe by ueing (2.31) eand Theorem 2.3.

It is clear from the above results, particularly where
constant admixture retes sre present, es in Theorems 2.4 end 2.5, that
the limits of frequencies me €->occ are the same as the corresponding

ones for the discrete model considered in Chapter One.
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OHAPTER THREE

MORE THAN TWO POPULATIONS WITH DISCRETE GENERATIONS AND CONSTANT

MIGRATIONs DETERMINATION OF GENE FREQUENCIES

Returning to the model with discrete generatione of Chapter
One, 1t is possible to extend the erguments of that section from two
populations to eny general number of populetions. Corresponding to
equations (1.3) and (1.4) for ®Wopopulations are the N equetions with

constant admixture rates,

Y = Wau Q- T M Qa0 + oLl My N )

0

L]

94N " Fin-d T Muabamd oo Wagn §onnnd) (3.1)
where the notetion has been generslised so that "y is the component
of admixture in population v deriving from populaticn j &t the end of
the n® generation for

e ® .2 ..

phig ey N and P 2,..., N

end 9., is the frequeney in population ¢ et the end of the n

generation.
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¥hen the condition thst,

™. = { - }: M.u' (5'2)
JE-

for all + ie added to the N equstions above, they completely describe
the model. 1In view of this it will be convenient to represent these
equatione in matrix form so that further reference to the medel may be

simplified. The equivelent matrix equation to the set (3.1) is:
qﬂ.\, = M G‘m-t (3'5)

where q_ is the vector of frequencies £ 9.3
ctn-i b h " ) { %cm—n }

end ™M i{s the matrix of admixture rates { w .-,}-,} .

For this model, in which the matrix M hss constent elements,
it is & streightforward metter to obtain en expression for q  in terms

of the vector of initiel frequencies, g.. From (3.3),

In= Moo = M(Mqua)=...= Mg, (5.4)
end this hes the same form ss (3.3). M™ 4s the matrix of
accumulated edmixture over n generations, heving en importsnt property.
It conteins as elements, the admixture rates which would need +to be
exercised over a single generation to achieve the change in the vector
of initisl frequencies equivalent to n generstions under the operetion

of the constent rates which are the elements of M .,
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3.1 Determinetion of future gene frequencies from exact data.

The reletion (3.4) may be used to obtein the vector from
known n, q, and M by repeated matrix multiplication n times. In
general, this is not the quickest or the most accurate method for
determining qw from the relation. Other properties possessed by
the matrix M are of use here. The rows ofi:;trix all sum to unity
so that at least one latent root is unity and the matrix elements are
all in the renge (0,1) so that the latent roote X (i=1,2,...,N)
ere such thet |A | < | with the lergest root unity. These
results were proved by Fréchet (1957-8, p.105) for stochestic metrices,
which have similar properties to M here; reference is made for this,

and for some of whet follows, to Bartlett (1956, pp.24-30).

In generel the A may be econsidered teo be distinct and it
will appear leter whet difficulties arise when this is not so. Under
thie single assumption of distinctness, there existe a speectral resol-

ution of M into N terms so thet:

M = Z )*L ML (505)
where the M are component matrices of the spectral set, with the

properties

z M‘ = I (506)
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where T is the unit matrix, and,

M: M = o Ce #4) (3.7)

= M, CL:J) (3.8)

It follows at once from these properties that
M™ . Z AT Mg (3.9)

For small N but lerge v it is in general more accurate
and convenient to evaluate the latent roots and the spectrel set of M,
rather then carry ocut a large number of multiplications of M. This
is particularly true for N =3 where the latent roote are directly
evailable, the largest being unity and the other two being the roots of

a quadratic equetion.

To determine the matrices of the spectral set, M, , it is
first necessary to find vectors s._end ,; sssocieted with each latent
root ), such that,

MS; = AL S: (5-10)

and £ ™ = ALk (3.11)

the spectral matrices are then:

M.

L%

Cued X/ (sibe) (3.12)

where a dash (’) denotes the transpose of a vector throughcut.
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To illustrate thie method of decomposition and its spplication
to the determination of future gene frequencies, consider the following

data from three Nilotic populations in southern Suden.

The matrix of admixture rates is:

o9850 00125 .0025
M = -0153 -9775 .0%7
0 .0098 .9902
in which the populations referred to in order are Nuer, Dinka and
Shilluk.
The latent roots of M are,
A= 1, f\:- 0.986937 and A, = 0.965765
and the spzctral matrices are:
+302 388 328 683 768 929
M, = .3502 %88 +328 683 768 929
502 388 528 683 768 929
ML = .162 am 0022 850 "11& 65&
-488 45 -.068 626 «¥57 571
M, = -.465 191 648 467 -.183 276
01% 557 --260 05? -075 500
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end uﬂing (50& and (3.5), h&&k"\-ﬁf wity dv° = (-57.15’0 ) )

'ﬂ"]@

‘Sou-]
4.7 T AIMiq, (3.13)
546 435 .033 165 -.004 600
= .546 435 ) + (0.986 937)" (\ 012 869 | + (0.965 763)"| .007 697
(3.14)

In this form i{ is a simple matter to determine q for any wn

and Teble 3.1 shows the results of seven evelustions.

TABLE 3.1
5 10 15 20 30 40 60
Huer 5736 5723 5709 5696 5672 5649 5610
Dinke <5650 5632 5616 5602 5578 .5559 5532

Shilluk 5076 +5104 «5129 5152 51835 .5228 5285

It ie clesr that the second and third terms of the expression
for q,, (3.14) will tend to zero es n— o . The first term then
represents the vector of esymptotic frequencies; the quality of these
frequenclies is to be expected end is & necessary result of some migretion
teking place between all three populetions. This property, that the
 first term expresses the esymptotic frequencies depends upon the
essumption that unity ie the only letent root of modulus one. By
Frachet's result all the remeining roots ere then in modulus less

then unity; hence their n th powers converge to zero. oy 1
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3,2 fetimation of future gene frequencies from sample date.

The determination of the last section takes no account of eny
stetistical properties which the known values may poesess; it provides
exact enswers to exact known frequencies and admixture rates. In
practice it is likely that both frequencies and restes are obtained as
estinmates from ;nmpling, since the entire populetion ie too large for

a complete census to be carried out.

However, the admixture restes can often be obtained to a much
greater degree of accuracy than the gene frequencies and for the moment
they are considered to be known exactly. Eech gene frequency is an
independent binomislly distributed estimste of & proportion obtained
from a sample. The samples used for this purpose are large end usually
contain several hundred individusls; +the binomisl distribution in these
circumstances, may be repleced by the normel distribution, to a good

approximation.

By analogy with the reletion (3.4) it is worthwhile to describe
the statistical model. This is done by letting 9o represent a vector
of rendom veriebles, each of which is distributed independently of any
other and whose expected values mey be exhibited in e vector called E(q,)
and whose variances are contained in the vector \/(q@). In view of
the presumed exactness of ™M , end therefore M", the expected value of

the vector q,, E(qw) 18 given by:

ECqn) = M™ E(3q.) (3.15)
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and in view of the known result for the varisnce of & sum of independ-

ently distributed rendom veriables (e.g. Feller Theorem 2 p.216),

Vi) =-m™vly,) (3.16)
where M 4s & matrix consisting of the squares of the elements of the

metrix M".

It is straightforwerd to teke the square roots of the elements
of V(q,) to obtein stenderd errors of the sstimates of E(q,) end,
using the aspproximate normelity of the distributions of the elements of

Qe » to form confidence limits for these estimates.

In the exemple considered earlier, the sdmixture retes were,
in fact, estimates by sempling end are not therefore exset. The fact
that esch rate is nesrly zero or unity makes the assumption of exact-
ness valid since the binomiasl sempling veriences, being proporticnal to
m(1—w) are all guite small. For the gene freguencies, all of
which ere in the renge 0.5 to 0.6, the ssmpling veriences ere much
higher and the statistical model considered sbove is appropriste, at

leest where epproximate varisnces for predictsd values are required.
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When it is not admissible to assume the exactness of ™M, the
anelyeis ic more complex. 1In order to investigate the sampling pro-
pertiee of estimates q  when the elements of M are statistically
distributed, the nature of the distribution of these elemenis is now

studied.

The usual method for estimeting the gene flow rates by
sawpling, requires an enumeration for e semple from each population
of those individuale who have teken part in each possible type of
intermixture to form the present pgeneration. From these enumerations
proportions of individusle are obtesined directly to represent the

corresponding rates of gene flow between the populations.

For two populations, under the assumption of a constant
independent probebility for each individuel to migrate, the distrib-
ution of each rate is binomiel, or for lerge samplee, approximately
normel. For meny populeations however, the distribution of each

rate is multinomial, or agein for large semples, normal.

Let M represent the matrix of observed retes obtained
from sampling so that if the expectetion of this matrix is written

¥  then

(3.17)
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where € represents the metrix of errors. From this,

L « (¥ ¥ &) (5.18)

or considering only products in the expansion of the right-hand side
with not more than one factor & , using an assumption of smellness of

the errors,

=i

v P (3.19)

o

M‘\

The difficulty of the second term requires that special forme
for the matrix V¥ be considered separately. In meny situetions, for
example, V is nearly scelar becsuse of the retention of most of the
gene pool within each population. When thie is so, VY commtes
approximately with eny other matrix and, therefore, with € 8o that

(3.19) becomes

Mn = (Why - i gw-l (3.20)

Alternetively, the matrix € may contain elements which are
of similar size and in this case write,

e = e W (3.21)
where & is a scalar representing the error in each gene flow rate, and
U is the metrix of unit elements. Yhen, in eddition, the matrix
of gene flow retes is symmetrical, indicating that the gene flow from

one population to enother equels thet in the reverse direction, further
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simplification of (3.19) is possible. This is due to the commutetivity

between sny symmetric M and L end es a result,
M = e o wig T (3.22)

An extension of this spproach now leads to a relexetion of
the condition cof similarity on the elements of € . Let Ew.:. eand
€.ox Dbe the minimum end meximum elements respectively of €. [Using
the fact that the elements of Y are non-negative, bounds for the
size of the second term in the expression for ™" in (3.19) follow

since

= gl Ure_ ua-rﬂ < W g u'uhq (,.25)

et
weé - (8 U = Pecaagl St

The application of these results for common special typee
of admixture matrix, is now possible in order to study the sampling
properties of the estimates of gene frequencies. First the ebove
results are summerized. Simple formes for the error in ™" seem to
be availeble
(1) when ™ is neer sceler, as direct errors, end
(11) when ™M 1is near symmetric, as error bounds; direct errors cen

be found for (ii) if the error metrix for M heas equel elements.

The estimation of gene frequencies after w generations from

given semple velues, at time zero, end from sample estimates of the
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gene flow rates, is achieved by using the relation,

I = Mg, (3.24)

If 7(-,‘, represents the vector of true frequencies after w
generations for s constent edmixture metrix ¥ of gene flow rates, and

)C, a8 vector of true initiesl frequencies, then write

o = BTK (3.25)
and suppose,
e(qun) = %.
E <-‘1re ) = )C.°
e (™M) = & (5.26)

with errors €., €, and € defined so thst,

(1,“ b )"u. * €.
1,. 7‘0 + En
M

(3.27)

u

=
+
m

From (3.24),

ga = (VU+e )T (¥ + &)
= W E Ve dTR) (1 e)
and ignoring terms containing more then one € term,

- U“ﬁo & :%": QJ‘P&U“-‘MI)%O & Vﬂeo
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When the errors e¢ end ¢, ere independent,

var (g.) = var{(®+)"L )} + var (¥"c) (3.28)
where the terms on the right represent the components of variance of

9w~ due to & and <. respectively.

Consider now the special types of admixture matrix mentioned

above. First suppose thet ¥ is secelar: from (3.20),

Gu U, + me WM X, + UTeg

or

i

‘lm. u” x’o = ns xw—n 4 U“ €a

(3.29)
where Y., is defined in en cbvious way e&s the expected vector of
frequencies after n -\ generations. From (3.29) the varience

of q. is the expectetion of ¢ or, using the independence of €

end €, , (3.28) becomes

vw(c‘,,‘) = var (e 7L.\-.) + Vo (Uwea)
or in suffix neotation,
Vo Cq!,,;_\) = ‘PL"_":_-: 7(':_| J vox (eij)
J=1 »

a
* ko Jz;‘:k )(-h-l,j xﬂ—l’k e (‘e':-j, eck)

+ 2 oW

iz E

var ( €,) (3.30)

in which the var(_l:—.;j) and cov (€, €cc) are the multinomial esampling
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variances end coveriances of the elements of ™M, the var (eq;) ere
(&)

the binomial variances of the elements of ¢, and { QJ;; } is the

matrix whose elements sre the squares of those of (Ol ; using

the independence of errors €, 8t different loci ; .

Equation (3.30) may be written more concisely for metrix

computation, by defining N matrices V. = { V:jk} such thet

Vi = cov ( €y, ©ue) (3.31)
The well known results for multinomial sempling veriences (see e.g.
Reo (p.35)) now allow the expression of the elemente of each V. in
terms of the admixture rates Wi briefly the relevant varisnces and

covariances are

Vo (-Mi-j

Cav (W‘c',- ,“".—.k) = WMy ™Mk / w,

) . my (L= my) / w (3.32)

where W, is the number of individuals in the sample from which the
admixture rates for the L™ populetion were obteined. V. may now be
written

Vi = ey () = ) /e

L3

(3.33)

where w _is the vector {Maj‘j s the L™ row of M, and  diag (m;)

is the metrix whoss diegonal elements are those of this vector.
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Prom (3.30)
4 '
VO-V"( CL“;) = W,- -x'“n—l v!'- Ydﬂ-—l * QE > v“*‘(eﬂj (3'54)
in which U s the L'~ row of the matrix LV ) .

For a near symmetric matrix M, possibly an upper bound to
var(q.) would be of greatest value end several bounds mey be obtained
readily. It is convenient to meke use of the fact that the multinomial
covariences which eppear in considering the varience of the product of
the metrix € with sny other matrix, make only a negative contribution
to this verience and in considering an upper bound they may be
disregarded. Using the relastion (3.23) the required bound cen at

once be obtained for

vw(c;“) £ vor (W™ e,) + vw(newu&f“-'x.o) (3.35)

end this reletion also presumes the non-negative property for the
elements of X, snd U which is always setisfied. The second term
on the right now appears as a vector of constant elements, each equal

to
be £ m ding COMRL) T var Cennd)
i w" ( y‘n—t ‘U..)‘- Vo (  EN

where w is the vector of unit elements and var(e ) is the largest

variance of en element in ™M; if w__ 1is the smallest semple size,
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s0 that

then vor (€..) may be repleced by (/4 w,_. ) because of the well
known result that the maltinomial veriste w hes maximum sampling

varience at w = L . The simple upper bound is then

S

Vo (_q,“;) < U.““ Vo (EQ) + m* (-}Cn_‘ \L)’-/‘-}-Ww__;‘ ("56)

-

The second term can be taken one stage further to give an
upper bound for all frequencies, since each element of )’—M is less
than one, the second term is less than (Am* JRT VI I As this
bound involves only wn , the number of generations for which frequencies
are being predicted, and w,._. the smallest sample size for a determined
admixture rate, one of these guantities can be found in terms of the
other. For practicel purposes, a frequency estimated by the method of
this chapter which hes a variesnce of 0.25 (the binomiel meaximum velue)

or more, will have no value so it seems reasonable to require

q VL'.- é 0025
Wi
or W . > q w-

which implies for all + that

N

An" (3.37)
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This simple condition requires that for a contribution of less than
0.25 from the errors in the sdmixture rates to the upper bound of the
variance of gq, ., the samples for the determination of these rates
should be st lesst nine times the squere of the number of generations,
e.g. to predict q_ from q_ would require sample sizes of at least

225 for the determination of the m.

.

i end to obtain % 10 would

require esemples sizes to be at least 900.

It should be stressed thet thie condition still does not
ensure reasonable estimetes q  because the first term on the right
of (3.36), the varisnce due to the error in the initial frequencies

U ast nagliydle
9. 3y A On the other hand, the condition (3.37) imposes an upper bound
which will be too high for many real situetions es the generality has
been carried too far: the bound provided by (3.36) is stricter and

would be worth the smell amount of computatien required.

in application of an upper bound of the type given above is
perhaps worth some discussion. When it ies required to test en
estimated frequency q . sgeinst some known constant c such e test
may be carried out by observing that the estimste is epproximately
normally distributed, being no more than & linear combination of
independent epproximetely normel observations. Common practice here
is to compare the ratio of the difference between the estimate end the

constant to the variance of the estimete with a standardised normal
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varieble w« (i.e. with mean zero and unit varisnce) by means of a table
of the normal distribution. Suppose that § is the difference between
the constant and the estimate which would be important for discrimine-
ation, and that w,_, is that value of w which is exceeded only with
probability «x. Then the requirement for the variance of the estimate

may be written as

vor (g uc) < 5/ wg (3.38)
end this can only be true for all cases if the upper bound of (3.36) is

also less then ¢/ uy . From above it follows that thie is so only if

L T (3.39)

for all i . For example, if =5, «= 0,05, S$=0.1, = > 1100

approximately.

Finally, for the epplication of any of the relations
congcerning the varience of q, given above, it will be necessary in
prectice to use observed values q_ instead of )., end M instead

Ofuo
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Exemple.
together with ssmple sizes of 200, 288 and 255 for the estimates in the

Ueing the metrix M and vector Yo given in the last section

rows of M and q,, veriances and bounde for future gene frequencies are

given in the table below.

TABLE 3.2
frequencies variancse veriance
generations due te due te bounds
" % w error in g arror in M
5 0.573 625 0.001 057 0.000 000 06 0.005
0.564 951 0.000 689 0.000 000 i1
0.507 653 0.000 892 0.000 000 13
10 0.572 267 0.000 928 0.000 000 22 0.021
0.56% 150 0.000 577 0.000 000 36
0.510 370 0.000 817 0.000 000 44
20 0.569 €39 0.000 743 0.000 000 69 0.083
0.560 162 0.000 447 0.000 001 07
0.515 186 0.000 701 0.000 001 27
30 0.567 172 0.000 623 0.000 001 25 0.186
0.557 815 0.000 386 0.000 001 81
0.519 299 0.000 615 0.000 €02 10
60 0.560 934 0.000 447 0.000 002 46 0.745
0.55% 233 0.000 341 0.000 003 15
0.528 494 0.000 464 0.000 003 45

The variance components are calculated from the twoe terms on

the right~hand side of equation (3.34) end the bounds for the second

term given in the end column, are obtsined from (3.35);

in this case
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the upper bounde are rather rough end other possible bounds derived
from simpler expressions are not tabulated here es they are even poorer
e8 to en indication of the likely veriances. Perhepe some comment is
necessary on the reduection of variance due to .;c: with wi: this is
due to the fact that smeller fractions of the initial frequencies are
taken for higher generetions. The increesing veriance due to M

expresses the incressing uncerteinty in values of q for larger = .
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2.3 Determinetion of pest freguencies from exact deta.

From the relation (3.4), by multiplying through by (M™)™,

the inverse of the sccumulasted admixture matrix,

Go ¥ LAY g (3.40)
and this reletion mey be used to determine pest frequencies from
present cnes. The method of section 3.1 still holds because in
general the latent rootes of M™ will be distinct end a resclution
will, therefore, be available. Of course, the latent roots are no

alttingih
longer confined to the range (0,1) sad unity is net necesserily onme
root; the only effect of these conditions in the last section, wes to

exhibit the asymptotic frequencies and these are not relevant here.

The fact thaet one of the latent roots is =med known to be
unity mekes it only a little mo::‘-ﬁﬁimu to find these rcots, but
there ere several iterstive methods (see e.g. Aitken (1937)) which
will usually prove edequate. The ergumenis and exemple of section
5«1 serve to show how the frequencies in the vector gq,  may be deter-

mined given the exact values of ™M and Qe

This methed is epplied feur times to the three Nilotie
populations to determine the frequencies 9. &t four loci from given

frequencies ¢, et the same loci, end from the matrix ™ of the last
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section, teking the number of generetions, w , as twenty; the resulte

ere ehown below in Table 3.3.

TABLE 3.3
%Yo vectors at loeci q,, vectors at loei
M S d B M 3 d B
HNuer 5803 .29550 .1766 .1324 S5750 2254 .1782 .1270
Dinka 5786 .1197 .1566 .1158 5670 1505 .1759 .1155

Shilluk 4900 .1501 .27C9 .0894 S047  LJIAT77 2523 L0941
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3.4 Determinetion of past frequencies from sample data.

The difficulties of estimating pest frequencies from sample
date are someswhat greater then those of the problem of prediction of
future frequencies from sample date which were discussed in section 3.2.
It is peceeible, however, to use some of the results obteined in that
secticn onece & relation is established between the errors in an cbserved
admixture matrix end in its inverse in the present context. This

relation is now derived.

Ls previously, let e represent the error matrix for en
observed admixture metrix ™M, whose expected value is given by ¥ .,
Let e, denote the error matrix for M~ computed from M by
invereion snd it follows thet V™ , the inverse of ¥V , is the

expected value of M™, These definitions imply,

™M = U + € (5.&1)
M = v+ e, (3.42)
and, MM = T (3.43)

Substitution in (3.43) end ignoring the product ee., , es

a smell quantity, gives:
VY™ ¢ Ve + eV = T

'
(o]

or, Ve, * eV

and, e & iz U-'e W (5'4")

-1
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Consider next the verience of Gos the frequency predicted
from & sample vector gq_ econtaining error e , and M, by the

reletion (3.40). Substitution from sbove lesds to:

qo = (Mg, = (¥ +e)(K o+ )
(O - ¥rlev )" (L. .+ &)
(g™ (Y - (¥ ) (X .+ <)

(o)™ (L-e)™L, + (U)"(L- )W e,

]

end, ignoring product terms with more than one of the factors € and

€. 2
S D RS b S (Tab - (3.45)
Following (3.28) write,
vor (46) = @ ver {W-L) + vee {(e)el)

(3.46)
in view of the independence between € and €, where (&’")W
containe the squares of the elements of Q:’ "')“ . It is now clear
thet the segond term on the right may be evaluated directly. The
firet term vor (9,]|€) conteins a factor ver{(p-e*)_.} which is
identical with the term  vee { @+€)"X.} discussed in section 3.2
when computetional formulse wers derived for speciel cases of +the
sdmixture matrix. These formulee mey be epplied ones more in order

to eveluate verisnces or limite for equetion (3.46).
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3D Admixture matrices with repested lstent roots.

In this section a2 more genersl case is considered; when
the admixture matrix need not heve distinct roots, it is not possible
to spectrally decompose the matrix in the manner described in section
3.1 in order to simplify the estimaticn of certain freguencies. This
is not to say that a decomposition does not exist, for it does, but
the method is rather less streightforward. ©Such special cases of the
admixture matrix asre sufficiently common in practice to require the
method to be given here. A simple example is thet with three popul=~
ations into one of which there is gene flow, but out of which there ie
nonej it will become clear thet this model uses an adumixture metriz
two of whose letent roote ere unity, and sc cennot be treated by the
method given. It will be dealt with later by application of the more

general method given belcw.

Define the matrix & (A) by the relation,
g(x) = AT = M (3.47)
vhere I is the unit matrix, so that the roots of the determinental

polynomiel equation are the latent roote of the matrix M:

|2 = o (3.48)
This equation is usually referred tec ss the cheracteristic equation.
The sdjoint of the matrizx &(A) will be required, snd this is defined

a8 A(N) which is the transpose of the metrix whose elements are the
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cofactors of the elements of &(N).

The generel case of repested latent roote is now considered.
Suppose that the first s out of the N roots are distinet end thai of
these the <% root A, appears r, %imes ( L = 1,2,....,5 )u It
follows that

S

; L o N (5'49)
For the cease in which each 5, is unity, the N roots will be distinet
with ne repetitions, and s=N 3 the general result given in the

following theorem will lead to the spoetral resolution of previous

sections as a special case.

THEOREM 3.1 (Confluent form of Sylvester's Theorem) Any polynomiel
function P(M) of the generel metrix M nay be expressed
as a sum of polynomisl terms in the distinct latent roots

of M as follows:

_ s i £" P(AYAN)
A e [ &.- TR iy 90)
where, ¥.\) = T (=2 ) ¢ ( )
J=\ 51
S >

Proof ie given by Freser, Duncan and Collar (1946 per.3.10)

or by Sylvester (1883)
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Any power of the general matrix M may be expressed as
a sua of polynomial terme in the distinet latent roots of
M 2

. = & A" ALR)] (3.52)
™M = Z [ L)Lr;—l ¥ (A) P

{
tag (-0

Proof follows from substitution of,

"

B ™ ol (3.53)

in the result of Theorem 3.1

Where the latent roots are distinct, the above theorems lead

to the general result which follows:

THEOREM 3.3

Any power of the general matrix M, which haes all
letent roots distinet, may be expressed as & sum of
matrices, each containing thet power of one distinet

root es a factor,

M = ow® NG
EE=;1 L }L.‘.(?‘-‘-)) (5'54)

roof follows directly from Theorem 5.2.

It is a straightforwerd metter to show that the result of this

lest theorem 3.3 corresponds with that given in the earlier sections 3.1

and 3.2.
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Exemple The gewneral resolution of Theorem 3.2 is now applied to
the common admixture metrix referred to earlier which has two latent
roots equal to unity, and results from migration out of two populetions
into & third population but no migration in the reverse direction, or

between the itwoe populations. Such 2 matrix may be denoted by,

| Q Q
M = o \ o (3.55)
e e M3

in whichk wm, end w_ ere the sdmixture rates out of populatione 1 end

2, inte populetion 3, end,

?‘5\3 = | - WA, — WAy (5.56)
Directly, it follows that,
A= Q o
d(r) = o A=t ° (3.57)
- w, -, 7\-‘”\3
and,
‘ é (,:\) \ = (_7\—1)(7\"1)(.?\—“43) = © (3-56)
so thet the latent roots are,
| \ and WA,

)

In mccordance with the notation deflined earlier, let,

Bl Ao, o wmd Ay = (5.59)
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g0 that s=2 , vy =2 and 1 =1

for this matrix

A(N)

A'(x) =

so that,

o,

and,

[A( A)].\m

3

o,

¥ (N)

¥ ()

L

clearly (3.49) holds eince N=3 ;

=D (a-m3) o o
(o} (=1 )(A -w3) Q
w, (a—t) way, (A -1) (?\-"'l)z
pX h -1 = W\s (s} o
o 2A-l—m, ©
m, A, 2(A=-1)
o, the nall matrix
o o o
(=] o o
m, (_MJ—!) o (wg-1) (ST
[ — Wy, o o
=y o
A, WA, o
(A-wm3)
(a=1)*

(5.60)

(3.61)

(3.62)

(5.63)

(5.64)

(3.65)

(5.66)
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Applying the result of Theorem 3.2,

wooe [a cam] L [Ram
Ax  we( e | (3.67)

A=y =g
= wA A + XA
Y. (A) Y. Q)

a=| A=\

4[_-?\_“45@_ +[_m]
{w.(A} w.(2) fomi

A=y 7

and, using results (%.60) to (3.66) the first end third terms vanish

80 thﬂt’
l o A o o o
+ 3
mn = o | o o o o
i kadha = o ~Mae . —Wia
(el 3% l--w\3 |-—Ms \=waq
(3.68)
end this may be written
= ™M, W ;\: M, (3.69)

to correspond with the notation of (3.9), end it is clear that
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since
4 I (3.70)
Miba, = Mg = B (5.71)
Moo= My (3.72)
o5 g e (3.75)

end verifying that the relations (3.6) %o (3.9) hold for this matrix,
thie will be of some importance to the discussion of other properties

of these resolutions of admixture metrices in the following section.
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CHAPTER FOUR

MORE THAN TWO POPULATIONS WITH DISCRETE GENERATIONS AND CONSTANT

MIGRATION: DETERMINATION OF ADMIXTURE RATES.

The natural consequence of the previocus chapter, which deeslt
with the estimation of gene freguenecies future or past, would seem to
be the consideration of the problem of determination of the admixture
rates from known frequencies et different points in time. Where
there are several such points in time, the problem can be trested as
esymptotic regreﬁlion in view of certain results of Chepters One and
Two; this problem is taken up egain in the next chepter. However, an
interesting problem is met with by ueing only two peints in time but
several loci at which frequencies ere known. A further problem which
occurs in dealing with a matrix of accumulated admixture over several
generations, is that of determining the amount of admixture per geners-

tion, sssuming constency of the intermixture.

In this section the determination of admixture retes from

given exact frequencies et two points in time is dealt with, leaving
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to the following sections other consideretions, e.g. many points in

time, stetistically distributed sample estimstes of gene freguencies.

It will be convenient to let the two points in time be zero,
after no generestions, and v , after n generations so thet % and
w mOY refer to vectors of frequencies, in an obviocus menner, st these
two pointe in time. If these frequencies are known at k loei, there
will be k vectors G end these may be represented by the k columms of
e newly defined matrix Q. ; eimilarly, the k vectors ¢, will be
the columns of a matrix Q, . In thie cese, where the intermixture is
in progress between N populetions, Q. end Q, will each have N
rows, and k ecolumns whilst M , the edmixture matrix will be square of

order N.

Referring to the previously established relestion (3.4) viz:

CL“_ M ct,, (hvl)
it is cleer that since this holde for every locus, the k similar

relations mey be expressed by the single matrix equation:

Q.I\ - M“Qq (4.2)
in which both Q. end Q, are known, and M" may be determined by

carrying out matrix multiplications so that,

MY = R,Q0(Qe@qs ) (8-3)
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where matrices mesnt to be trensposed ere primed. (Of course, it

would be possible to determine M™M" from the relation

M® = An@) (e @l )™ (4.4)
which is slso availeble in view of the exact kmowledge of Q, snd R. .
Where this exactness is not presest, it will be shown later that (4.3)
is & more suitable expression, end for this resson only it is preferred

at this stege. The results are identical.)

Heving obteined a simple estimete of ™" the problem of
determining from it a value for M , the sdmixture per generation, is
now considered. The matrix M" possesses several properties which
are of interest, and these are identicelly those of M considered in
section 3.1t the latent roots, X  will, in general, be distinct
but always such that |Af‘“$ . The distinctness of the latent

roots allows the spectral decomposition of M™, in the simple form

M™ = = A0 M (4.5)
but the uniquenese of this decomposition, together with the known form

for the n'" power of M in terms of its roots,

LA T kW (4.6)
showe thet R g T ndk M = m, (4.7)
or, A = wm (4.8)
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The matrix M may be determined from M" by applying
spectrel resolution to the latter matrix taking n'® roots of its

latent roots and using:

™M = Z A My (4.9)

since the spectral metrices M., are the same for M as for ™ .
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An example of the procedure described ebove is now given

Exeample
using the date of Table 3.2 as known exact values of Q. snd .,

where w=20, Ten decimal pleces were retained throughout the cel-

culetion but only four are shown for economy of space.

TABLE 4.1
M 8 d B
“ 5750 .2254 .1782 .1270 5805 .5786 .4900
M™ = ( 8670 .1505 .1759 .1155 2550 .1197 .1501
5047 L1477 .2523 L0941 1766 .1566 .2709
.1324  .1158 .08%4
=1
5803 .2559 .1766 .1324 5803 .5786 .4900
x| | -5786 .1197 .1566 .1158 2359 .1197 .1501
L4900  ,1501 .2709 .0894 JA766 1566 .2709
1324 L1158 0894
01'596 .ﬁ-02§ -5752 670% 46.90 -26I25
= a‘!.159 05870 -55&# 46-90 77080 -27.98
-5877 05601 .5‘!-62 -26.25 -27 098 60090
7651 .1810 .0538
" 1963 .6695 .13h1
0177 1461 .8363
. 5024 - 5 287 L] 5689 . hl% . 0589 - &7&
= (1.000) .502“ 05287 -5'689 + { 07727)( o1628 00229 "‘-1&7
05024 . 5287 . 5689 oo .4889 - c%% l5576
.2760 -|5a76 . 1095
-+ ( -496"’) "’04652 -&85 "'01855
.1866 -.2601 ,0735
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The 20th roots of the latent roots, i.e., w1

*J(0.7727) = .9869 end  /(0.4984) =~ .9658

are most cone

verilently obteined by using logerithms, so that the expression for ™M
iss

-502‘!" 05287 05689 J‘l% 10539 -«#785
M= (1.000) ( <3024 .3287 .3689 | + (9869)( .1638 0220 -.1857
3024  .3287 .3689 -.0686 .5576

+ (.9658) ( -.4652 6485 ~.1833
1866 -.2601 .0735

and, summing the expressions on the right-hand side,

.5850 0125 .0025
M = . 0158 . 9775 -008?
e +00%8 9902
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4.1 Linear programming approech.

In this section, the notation snd assumptions coineide with
those of the previous section except thet now Q, and Q, ere not known
exactly but ere reckoned to have been obteined from sampling; the

result is that the set of equations (4.2), viz:

Q, = M™ Q, (4.10)
are not satisfied exectly. The determination of the accumulated
edmixture metrix ™", must be euch that (4.10) is most closely satisfied
eccording to some criterion. IHoticing that the simultenecus relaticns
represented in (4.10) are, in fact, all linear relations, suggests that
the linear programming technique might be appropriate. This 1is
confirmed by the fact that the required matrix ™M" must contain positive
elements and further that the rows must sum to unity by the definition
of gene flow adeopted in Chapter One. These constreints are linear and,

therefore, of the type which are well cetered for by lineer programming.

Of possible criteris for escertaining the closeness of degree
to which the equations (4.10) aere satisfied, one that seems eppropriate
is the minimisation of the sum of absolute deviations between the left
and right-hend sides of the equatione. As this is & lineer criterion,
expressed in the manner to be described, it may form the basis of a

linear programming apprecech. The ressonsble neture of this criterion
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suggests that this method would provide en interesting solution, 1if
not the most satisfactory one. It will be necessery to discuss this

lest point further later es well ms to consider disadvantages of the

method.
Using suffix notation, the equation (4.10) is equivalent to:
N
g — (4‘11)
CL““} rz‘ﬂ Manir q,gu"}'-
for =02, ...,N end J = 42,.. .k end in which Yor; and

Ymis refer to exact values: let q,:rj_ and q’:; be defined as the
corresponding sampled velues. The substitution of the latter values

into the equation (4.11) will result in 2 deviation e, , so thet:

J.
* N *
CL \'\KJ: i 1"%: Mn.‘_p- %.r*' + eid'-
Of. " v (4!12)
e..- = G s E S
5 CL\'M.‘_ r% My ‘lv.,}

These deviations are not all positive and it is necessary to
define twe non-negative error variables which mey be used in combination

to represent a negative deviation. To do this, let:

Cy = W (E;} 59D (4.13)
- B e - e,



56

80 that these definitions imply that:

ST (4.14)
d €.
an ; > o
and furthsr that:
Kom — .. — . 4'
eb& elh& ea..‘.J, ( 15)

The sum of absolute deviations, 5:.@ , may now be expressed in terme of

the newly defined error verlables,

z (4.16)
Vg o= Eoge v Sy

¥With the aid of this quantity, the Linear Progremming problem is now
formulated teking each population i separately as sny row of M" may

be determined independently of any other.
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k
Problem To minimise = S‘é with respect to choice of non-
s i=t

negative m . subject to the conditicns:

-

i - Z. . L o= & ., €, .. = o
q" ‘v an- CL‘"} h'é- * J-I.J_
gt gt g (4.17)
&.
ea{}, > o
for o e Nk e By Kd together with the
additional conastreint:
N
z M"‘-&r - ‘ (4.18)

Te=

which is necessary for the conservetion of proportionate gene flow, or

equivalently for each row of M™ to suam to unity.

Solution (Description of Methed) The Stendard Simplex Computational
Procedure due to G.B. Dentzig (1949) mey be used., This methed begins
with a trial solution, teking the null point in the parameter space,

end minimises the criterion suam by moving in a step-by-step menner.
Each move is to an edjacent vertex of the Simplex polyhedron whose faces
are the hyperplenes defined by the equations in (4.17) end (4.18).

This iterstive process cesses when & move to an adjacent vertex cannot
reduce the criterion sum further. The solution values, being the
coordinates of the final vertex reached, satisfy N out of the (k+1)
equalities, thie vertex being the point of intersection of N feces of

the polyhedron.
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Exnmgle. Consider one evaluation of 2 row of M for which the

relations with frequencies substituted are:

329 = 026 m, + 581w, + €,
-739 = .685 my -+ 0710 W\.J_ + 0975 o + E‘.&
-h?? % 0#20 ", + .100 W, + -615 Liat! + e3
015# = 0389 wA, + .255 WA, + -0’8 Y, + G‘._
374 = 532 w4 B09 m,  + 801w, + s
(4.19)
with solutions after nine iteraticns,
Wy = 0,097 002
¥y T 0-510 506
and,
2 ‘e,‘,| = 0.#59 58“
G|3 x 0!1& 086 = 63
€ T 0001}5 4}8 = = (4021)
€ = 00227 861 & ~€ -

where the remeining error velues are zero. The first two equations
are setisfied exactly together with the conservation of preporticnete
gene flow. This caleuletion was cerried out using the library program

Simpfix for Ferranti Pegasus.

The generel method of formulating the linear programming
problem for thies ebsolute deviations criterion seeme tc be due to
Chernes, Cooper and Ferguson (1935), who firet used the device of =

difference between two non-negative variables. The method ie further
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discussed by ¥.D. Fisher (1961). H. Wagner, (1959, 1962), spplied the
technique in conventionesl regression situations, particularly to non-
iinear models where the knowledge of the functions involved is minimel,

using only assumptions of curveture.

én approach which eaters for non-linearity was devised by
Fourier (¢.1820), who suggested the use of "least lines" and he arrived

at en iterative procedure not unlike the Simplex Method described above.

The outeome of this epprcach is, however, limited by the lack
of standard errors which anre optimslly aveileble by the alternstive
least squaree method. Considerations of reliability or significance
of the estimates reached, sre frequently important and when this is so,
the linear programming technigue is weak. However, the illustration
above shows the flexibility of this technigue and how constrainte may
be conveniently included; this feature is not present, in the same
form at lesst, in the least sgueres method. The special use made of
this feature in the present context is, of course, the determination of
adumixture rates which sre necesserily non-negative and which sum teo unity.
Of these two requirements, es will be seen later, only the second may be

included in least squares theory.
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4.2 Weighted rogression: all varisbles subject to error.

Suppese that in the equation the gone frequencies which result

from sampling are substituted so thet the statistical model may be

written:

Q, + €, - M (Qq + e,) (4.22)
where €_ end €. are metrices whose elements contain the respective
errors in the frequencies in the matrices R, and Q_ . The values
of these frequencies, to be used in the estimetion of M", ere
determined by sampling so that the elements of €, and €, may be
considered to be independently and binomially dietributed with zero
expected values. However, the sampling variances of these errors ere
dependent upon the values of the frequencies themselves. Using the
usual formula for the estimate of the veriesnce of a binomially dis=-
tributed sample value, these errors may be determined explieitly. It
is sometimes e featurs of the type of deta used, that the gene frequencies
very little et & given locus between populstions; this implies that the
errors in the columns are uniform in megnitude. In view of differences
in the orders of magnitude of the frequencies, end therefore their errors,
between loci the sampled values at eny locus should be weighted. Doing

this, in the stendard manner, by dividing each value by the square root
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of its verisnce, ellows the model (4.22) to be written:

QL + ek = Mr(ad + ef) (4.23)
where the ssterisk refers to the standardisstion. The error terms
are now independent of their associated frequencies end the sbove model

may be re-arranged:

«

&S a MRl + (MreX - (4.24)
The usual Least Squares Method may now be epplied as the bracketed
error term is indepandeﬁt of the sampled fregquencies. In view of
the independence end stenderdisetion of the errors, they may be
assumed to have constant variances, and the bracketed error term may
now be represented by E. The elements of ™" are to be determined
by the standard method to minimise the estimatee of veriance of the

errors in E.

Computetionally, if W, is the diagonal metrixz of weighte

for the columns of Q. snd W,, that for Q. ,

i_f w = W'.. 3 W"
Q“W = Q.::
Q. W = Qs (4.25)

8o that, AW

%
£
£
+
m
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and the least squares solution for ™™ is given by:

M“

Qw (@.w) {(@ew)(@.w) ™
a.ww'a, { a.wwa) i}”

or writing Ww’= W' for the square of the diagonal matrix W ,

M = QAW al (a.w-al)™ (4.26)

Before proceeding te e discussion of the errors in the least
equares estimates, it ie reguired to extend the above methed to ensure
that they fulfil the biological condition which requires the conserve

etion of gene flow within the closed group of populations under study.



63

4.3 Use of Lagrenge multipliers to ensure conservaetion of gene flow.

If, 8s in the previous section, the sampled velues of the
gene frequencies are represented in the matrix equation and further that

they have been weighted as described:

>

ar.. = MRy + E (4.27)

The sumsof squeres to be minimised ier are thie digonal elonsnds of

L}

“ i o>y
(Q“ - M Q. )(Qn'—_ M* Qg ) ('!}028)

gc’
and the conservetion of gene flow requires thet,

R (4.29)
where w is the unit vector, so that the minimisetion is conditional

upon this equation.

The application of the Least Sguares Method to this situetion
requires the introduction of 2 vector of Legrenge Multipliers, XA which

ere to be estimated in eddition to M".

Vector differentiation, with respect toe A , of
&' « xniwawe oY
and equating the derivative to zero gives the vector equetion represented
above (4.29). Matrix differentiation of this expression provides the
matrix equations:

!
-~z (oF - mra¥)a® = na!' & ©



64

Absorbing the factor 1/2 into the multipliers, the simulteneous
equations which are sstisfied by the least squeres estimates of ™M™

(end X ) mey be summerised:

(&F — mra*)e* + au/ = ) (4.30)

FRe g e A - e @ (4.31)

where Qi 4s non-singuler, equation (4.30) may be multiplied

through by its inverse from the right,
eler’/(&al)™ - Mt £ M (@)= o (4.32)

and if this operatien is followed by 2 multiplication by w, sgein from

the right,

erer’ (el et )V u - Mru + Al )w = o

so that the substitution of M u from equation (4.31) eliminates ™M™
and providing the sealar w' (&*QJ')"w  is now non=-zere, the inverse

of this preoduct may be multiplied from the right, end re-srranging:

% = w - Q¥ QX(adaXyw (4.33)

w (Q* QX' ) w

the quantity eppearing in the denominator being scalar. This may now

be substituted into (4.32) to provide a direet computational formula
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for the estimate of ™M™,

MN = @F e (X)) + (w- aral'(@rar) "w) ' (QIR)™!  (4.34)
""'(Q:'Q:")"u

From the form of this expressicn it is cleer that if the preduct which
formes the first term has rows which sum to unity, the second term will
be zero. In this cese the estimate is that used with weighting esrlier
in section 4.2, Further, if there ere slight depertures from unity

in these row sums, the contribution of the second term to M"™ will be

emell.

In discussing the errcr in the estimete ™M™ it will be
prectically convenient to refer to the "simple estimate" as that given
by (4.34) ebove, for which the second term is negligible, =nd to the

"full estimate" when this is not the case.
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b4 Lrrors in the least asquares estimation of the gene flow rates.

vesher ditgoned elon-enkl ; J» ,
The[tmeee of the matrix EE , (ee’) , conteins the sume

of squares which were minimised in the setimation of Mm". Using the
Gauss-Markov Theorem it ies possible to produce a metrix, V, whose
elements ere the variances of the corresponding elements of M  This
vedb AT Al elonnbids
requirees the introduction of tl‘((a:' gy ) to represent the/ireee

of the inverse matrix in the outer brackets:

v = & ey d ey | Ck-ned) (4.35)

The divisor (k- N+1) reflects thet each of the N estimetes in
sny row of ™M™ wes based on k cbeerved sete of frequeneies and that

the minimisation process used wes subject to one extranecus condition.

The matrix V may be obteined directly from the detz by

substituting for EE’ in the sbove expression. From (4.28),

e’ = (&F- me ) (aX- MY (4.36)
but es a result of minimisation,
(e — MaX) QY + AW = o

so thet,
ee’ = (& - mra¥)e)- QX m)

(aX- M X)Q* + xum/
(4.37)
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Substitution of ™M™ from (4.34) end then of J'LEE’) into (4.35)
provides & computetionsl formule for V . For the "simple estimate"

of the previous seeticn, the sscond term of (4.37) is zereo.

The teehnigue of caleulstion is i{llustrated in the examples

vwhich eppesr in the followingz section.

hoh,1 Deduection of error in the estimeste of M,

The method described in section 4.5 may be applied directly
to obtain ™M from M" and it is now necessary to consider the possibility
of obtaining the error in the overall determinetioa of M. Suppose
thet this error is represented by the metrix &M snd (M+sM)"  mey
be expanded ms follows, ignoring matrix producte conteining more than

one SM fastor,

"=l
M+ = MTeMm) Mt

fr=a

(M + sm)”

=1

or SM (ny - M sm) M (4.%8)

r=o

where 5M™ 1s the error tn M™. In view of the lack of commta=
bility, in genersl, of the metrices ™M and §M , it is difficult to
sxtract en estimate of S™M from this expression. However, in the
very special and, it must be admitted, unlikely event of the matrices
M and SM being commutative, it is possible to solve the matrix

equation (4.38) for oM., In this case, by interchanging pairs of



68

matrices in the product,

M ™ = §0A :Z;; MV‘ MV\-I’-\
= M) M*
n(§M) M- (4.39)

however, if the Interchenging is carried out differently,

s = wM (sm) (4.40)
showing thet SM® and M are slesoc commutative. It is easy to show
thet the converse is not true: ecommutativity of &M and M implies

a similar property between &M and ™M™ not between &M and M,
From (4.39) or (4.40) it ie clear that:

sm= (am®)(MT) T = (M) (M)

or = (MY Em)
(4.51)

which provides s computetionel formula only under the essumption that
§M and ™M =are commutative. It is extremely difficult to provide
solutione for more general or more likely sssumptions then this. The
best thet would seem possible would be to find the estimate &M from
the known metrix M and &§M™ (whose elements are the square roocts
of those of V), to test the commutativity condition end to adopt or

discard the estimate 28 & result of this test.
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4.5 Maximum Likelihood Estimetion of admixture rates.

We essume thet each q . hes e known sampling veriance s and
being an estimate from a large semple, is independently normally dis-

tributed. The quantity

x = g, — Z ™3y (4.42)

1=

is, therefore, normally distributed for any constants w . If the
E(q‘;) for ©=1,2,¢0., N refer to the expected initial frequencies in
the N populations at a locus and E(4.) to the expected frequency at

that locus after w generations, the expected value of - is zero

beczuse of the equation

Eqm) = g g (4.43)
derived in the last chapter. The variance of x is given by,

bR

vour(x) = o - Twmrg (4.44)

e

and it is clesr that if 2 new variate, ' 18 defined as

3!

- s [ vawr (x)} (4.45)

x’ will be normelly distributed with meen zero end variance unity.

It is straightforward to write down the expression for the

likelihood of the observed frequencies in plagce of the expected values
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given sbove. This is, at the [~ locus:

{j - f“-/L
e 2o &
ar
o = Ly - Tmeqy) (4.46)
* &= e ’-("";\3 + z,..:“ %-‘J’f)

and over ell loci,

2
N re, - (q"\i" T, ‘l,:a:’l
- & = _|._ e 1(_5,“" + T om; %';J) (h.h?)

kJ;';r

The prineiple of Meximum Likelihood may now be espplied to
obtain ectimates of the velues w; from the freguencies observed at &
loci. YWe seek those velues of w, which maximise the logarithm of the
1ikelihood funetion, by meens of differentiation and equating
derivetives to zero in the usual menner. First the log likelihood,

L = econatant — by (‘Lni - Tm, %,)L

i :
X

Differsntiating pgives N equations for r-= “1),..,N like,

.a_l'_" = = Yoy C‘i’m = X ‘b, ; + = Mr‘rr. ('ij "'z""i.‘h‘]) -0
a’Mr "f + zmt %;u- (U + I.M‘ q& (4.48)

This set of equations may be expressed more coneisely if,

n
wW. \ L= 'j.- .1
/ ( U'\j + T owm q‘j )

and By W; Qe for all L’J'
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80 thet (4.48) is eguivalent to:
Z ‘b:: (ﬂy:l - Emtq‘:}) +* ZM..Q}: Wi(qv.::;- — 2T, c‘:; ) =o (4.49)

The second term in this equation mey, in common esses, be
very small. To soe this it is enough to realise that the magnitude
of the squered brecketed quantity in this term will be small for
reasonable dete, this being in fact, & squered devietion between the

sidee of equation (4.43).

Thie second term is clesrly o sum of none-negative quentities

>

end it is possible to derive limite for its value. Let o . and

-

o be the minimum end meximum veluee teken by the variances o

—a ’

then it is straightforward to show that:

R R )‘- (4.50)
#Jw 0}'% N+t

Applying these inequelities to the second term of equation (4.49) and

writing,
Y- e TS (4.51)

leads to the inequalities:

Wy Tos =6 € ZM..C;'.-TW"CQY:J-—-EM‘;%?)

% WA, e (L)"' (4.52)
N+ I

& sy

However, only in extreme conditions will thess wesk inequelities be of
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use in esteblishing the order of megnitude of the second term. The

best course in practice is to evaluate the term directly.

The estimstes of wa whieh satisfy the set of equationa (4.49)
mey be arrived st by & simple iterative method for reasonsble data.
This method is sufficiently powerful for the dete used in the examples
thet mw =m,=wm, =0 was 8 sufficiently good first spproximation te

lead to convergence in from three to five iterations.

The first etep is to eveluete weights, w;, using the first
approximate values of the admixture rates, w;. From theee the
moedified i'requencies q":_ end q:‘ (for all g, j ) mey be calculated

J

and the N linear equstions,

¥
= ct‘:; (q(nJ - ZM..Q.;) = O (4'55)
eolved directly by elimination, or matrix inversion, to errive st a
new set of values for the rates wm. These new values are used to
obtain new weights and the sbove ecycle of operations may be repeeted

until stebility is reasched in the successive sets of esdmixture rates.

Where the smallness of the second term is in guestion, the

velues,

= o = ¥ 1
GUoOm Emyagw 4= Tmgy)

may be evaluated st eech stage, end then instead of (4.53) the following
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equations mey be solved:

Z %l (K4 +8) - Emeg2y = o (4 .54)

Stendard errors for the weximum likelihcod estimstes lrrivoti
8t by using the negative inverse of the second derivatives 'L/ BMJL-
or in the cese when the values c; are small, directly from weighted
least esqguares theory. In the latter case, the estimetion corresponds
with weighted lemst sgueres and epproximete standerd errors mey be
obtained directly from the result of the Geuss-Markov Thecrem. The

square of the stenderd error will be given by the varience of an estimete,

var (w;) = -1/ (31"'/9“"?)
. a
gL 2 = For; — 2 % ey Gy (G = Tmegeryd
._‘ =  _ 2 s L [
3md_ (d:u' + T} gﬂ.) (‘Tnj + :M,-_ﬂ;cj D
a LN LTI o 3
+ 3 &‘. (q,n_: - z""‘\??;‘;) + 2 2 ™ q\"j (q.n‘l "ZM,-_?.;{)
o, b o o el )
(o + Tmig; ) (oG + Zmigy)
_ = ¥ N » »
= - T4y - 2T el gl ¢
2w § e *
+ 2% g e + 2 Twmp gy W E

(where €, = %\? "')—_'M:q,c? ) (4.55)
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Exsmple 1.
Nordestinos 1.
Qﬂ& ‘} al q’“— %03
635(900) o(238) «046(3000)
<049(900) Ae3(238) .101(3000)
.804( 280) 1(86) .510(618)
.179(900)  ©(238) -398(3000)

Using equation (4.53),

iteration

0 =0

2
+23%(2688) Numbers
116(288) in semples
.517(296) given in
257(268) breckets.

™, ML M3

0 0 0
0.302 751 0.050 878 0.473 775
0.303 648 0.061 276 0.47h 282
0.303 655 0.061 268 0.474 289
0.303 655 0.061 268 0.47h 289

Ueing equetion (4.54),

iteration

SN -0

decimal plece in the estimate of wi.

™, Wy Ny

0 0
0.302 751 0.059 878 0.473 7715
0.303% 648 0.061 276 0.474 283
0.303% 655 0.061 268 0.474 290
0.303 655 0.06)1 268 C.A4T4 290

The results ere identical ezcept for one digit in the esixth

This shows that the contribution

from the second term in equation (4.54) is small and hes a negligible

effect upon the estimation for the above date.

Apnroximate standerd
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errors are found, therefore, by using the weighted least squares
approsch, which requires the quentity = e’*: together with the elements

on the diegonal of the metrix {QX&*'}" . Theso latter elements

8.]‘0,
d,= 0,001 510 18, d,= ©0.001 252 82 aend d,= 0.004 883 99

and 'Ze:;= 0.322 981 01 =2s", the residual varisnce so thet the

stendaerd errors of the estimetes are:

d, s+

n
L+
o
<%
[

s.e.(m)

S.e._ (W\;)

i
e
r
(2]
¥
L}
o
o
£
rJ

se.(mz) = Adyst = SvB8E8 0 -0281
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Exemple 2.
Nordestinos 2.
Date
Qe Q en Yoz Y

.114(858) 0(1622) .066(3048) .08%( 288 )
.081({858) 0{1622) .068( 3048 ) .C43(288)
.046(900) 0(238) .017(582) .015{288)
0{ 1000) .201(36) o(1000) +038(68)

Using equation (4.53),

iteration

", Wi My
0 0 (4] L¢]
1 495 072 139 033 131 722
2 505 460 .189 035 .120 336
3 508 686 189 055 120 152
4 505 690 «189 055 .120 148
5 «505 690 .189 035 .120 148

Using equation (4.54),

iteration

"y, hiat Ao
0 0 0 0
1 495 072 «189 055 <131 722
2 505 499 «189 055 «120 322
3 505 695 180 055 .120 139
.} 505 699 <189 055 +120 135
S 505 699 . 189 055 .120 135

The resulits are identical to four decimal pleces, showing

the smallness of the contribution of the second term in equation (4.54).
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Aa in Example 1, the weighted least squares stendard errors are obtained.

S.e. (Mg) ='J- {

o .05k

w44
se.(m) = J { (S+17654398)

©- 0FF YT 44
s.e.(wy) = J [ (8+376-943-58)

C.ofr w1 499

(C.113 219 06)}
(0.017 252 91) }
(0.270 560 77) }

= 83165 0.0
= 235  oio3q¢
= BvhES3 oSy

Applying the modificetion using legrengien multipliers to ensure the

conservation of proportionate gene flow, the estimates and standard

errors for the sbove examples become:

Nordestino 1.

™, =
Ay
g

uon

Nordestino 2.

3
r
nonon

0.2967
0.0393
0.6641

0.3504
0.2380
0.4116

i+

W H

Celoy cC.0ish

OeBlB0 o0.0(yw2
*

2,02% !

B+3165— o-(o0

L ir3s 00341
~0+4893

O ST

0.3240
0.0834
0.5926

0.6141
0.1891
0.1969

The values in the right-hand column show for comperiscn, the

linear programming solutions using the method of section 4.1 epplied to

the sbove data but taking nc sccount of the sample sizes.
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CHAPTER FIVE

CONTINUOUS MIGRATION: EXTENSION OF THEORY TO ANY NUMBER OF

POPULATIONS .

By eimilar arguments to those employed in Chepter Two, the
continuous migretion model for N populations mey be represented
completely b'_q a set of differentisl equations together with a set of
initial conditions. To obtain the set of differential equations,
write by analogy with equations (2.1) and 2.2), for. PO
(5.1)

ci“(t—-t- s U= m,, (6) ) 4 + w, (k) SE 1,,_(‘7)

4o (e 486) = (Ma D SE) ¢ (0 + Uim wa (9 66) g0 () (5.2)

where the gene frequencies are es defined previously and w, (<) denotes
the component of admixture received by population I from population II
et time € (or more etrictly, w,, () §c ie received in the intervel

(_ l:-‘ a4 §) ).
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In order to generalise the theory presented in Chapter Two,
it will be necessary to abandon the sum Z end difference A
technique for setting up end solving the differentisl equatione; these
symbols do not resdily generalise for N >2 . 1Instead, each equation
is taken seperetely to give, by re-arranging, dividing by 6t and taking

the limit s &t o , the differential equations:

da ) = - M q, ) + WM, &g, (5.3)
L

28 - WAL, ) ‘1,,(6 - wy, (0) q(,,(—t') (504)
i

The set of initisl conditions may be stated es,

G (5.5)

4.(=)

n

C(‘/,_(@) Yo (5-6)

end equations (5.3) to (5.6) now completely deseribe the model.

Now the model may be generslised so that for ~ populations

the differentiel egquations are:

N
d"ﬂd‘&_.-( ':.)_ = 3;_: *\.:J-(E') CLJ'{@\ (5-7)
for <=t,a, )N and j=1%2..,N end whers,
N
Mgy B R & By (5.8)
B 2

with the initisl conditions,
q' i (S ¥ Ct/‘:" (5.9)

agein for c=4L2 . . N .
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Equivalently, the differential equetions may be represented

in matrix form as:
2q L6) - M(E) g (B
and the initiel conditions es:
1= = 4. (5.11)
The generasl solution to the equations (5.10) and only simple
functions are taken for the metrix elements of ™M(Y) in what follows.

A useful result exists in the form of Seuvage's Theorem for the casse in

which these functions are constants, end this case is now considered.
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S.1 Constent Migration: Derivetion of Solution.

¥here the admixture retes are constent with time,

differential equetion (5.10) simplifies to:

de

in whiech ™M is now a constant matrix. In order to obtein
solution in this case, a8 theorem is now given, and then the

of setiefying the initiel conditions (5.11) are considered.

the general

(5.12)
a general

difficulties

THEOREM 5.1 (Seauvage (1895)) If the matrix ™ heas letent roots X

for (=12 ..., N end characterietic matrix A then e
set of particuler solutions to (5.12) is given by:

9, = Ae (5.13)
where e = {e} = f{e™"] (5.14)

( Depndsor A G e dhunderndt wadewy G M whon Lattnd-rovis
st exhibibed T oo Adsaiad BN N MA = AN L)
Proof This is short and es reference to it is made later,

it is given below:

Let B be & squsre matrix of order N with columne repre-

sented by the vectors b _, and such that:

B = MA
or b fi M a . = }-Q-‘_

where a. is the (% golumn of A .

: = A
From: g, ® X

E;AE:A A|-E| :BQ'-‘—MAE,
& e
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The particulser solutions (5.13) are, however, only solutions
to the model under consideration if the initiel conditions (5.11) are
satisfied. The solutions a2e they stend imply thet:

4o = A (5.15)
because et time t-=o the vector e becomee the unit vector w. Thie
last relstion will not in general be true, and so the initial conditions
are not satisfied. [However, the problem may be solved by using a

stronger form of Seuvage's Theorem, This is now given.

THEOREM 5.2 The general solution to the model (5.12) together with

initial conditions (5.11) is given by:
Q = AKX e {5.16)

where K is a diaegonal matrix whose elements, k., are such

that:
q/o = Al w (5017)

Proof This follows the proof of Sauvage's Theorem, noting

thet A hae the property:
MA = AN

for /\ the diegonal matrix of latent roots, then:

MAK = AAK = AKA—

(eince disgonal matrices commute) and hence AK alsc has

this property; the result that (5.16) represents e
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perticuler solution follows.

To show thet (5.17) defines K so thet the
initial conditions will be fulfilled, it is enough to
realise thet Ku mey be replaced by a vector k of elements
k, , end providing that A is non-singular, k is uniquely
defined by:

k = A
e (5.18)

Example. The ebove result is now espplied to the two populetion model

discussed in Chapter Two. In that cese, see equetions (2.1) snd (2.2),

M - _ MI W\I
< wE S (5-19)

with latent roots:
(@) and —(.Mt't-MI)

and latent vectors, proportional to,

Ir
! and ™
and the cheracteristic metriz, C , say after omitting the factors of

proportionality for esse of calculation is,

R ey
) —mT (5.20)
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]
3
H
g =
;H
/’\
I
H
L= g
H
N~
/_\
<° <0
oﬁ’"
S~

and the solutions are then,

1 ME N m=$°+ quro o ( J( T B
q - U ea® ) e E o q,f—cpf e (5.22)

T =
i o T T —(M 4 e e
—;E$L1J2—$1 + -Q_thL:ihal e )
= Mran-' wal wa I

r
WELyE s gEY g R (B
3

T ™
LUV q'. 4= WA q"o
Mt + Mm ‘U'Iﬂvr e

which correspond exactly with the results given in Theorem 2.4.
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5.2 Conetent migretion: stetistical estimation.

In this section, the general problems of estimetion are out-
lined in determining the constant elements of M from sampled values

of the gene frequencies in N populetions at seversl points in time.
The machtvx M Gt pridomtThipley o, towrre, Aflertad propedaes frme M an carlier

Here the sclution of the last section will be written as: eheapiars .
c‘[, = Be + Cw (5.24)
ueing the fact thet the matrix ™ heas zero row totals, or:
M = o (5-5)

which implies thet zero is a latent root and hence thet w is a letent
vector; in (5.24) the vector e is now short of one element, ssy the
first e, and B is the cheracteristic matrix with one row, say the

first, missing. Any row of q may then be written:

N
q’_ = < + Z b‘ae.kjt (5-26)
o J=2

Example In the cese of two populations, this is equivalent to:

%‘ = G + b e

- (5.27)

- [« “+ b e

U - o=
end where the 4's obtained from sempling at exactly known times, €, ,
are called c(:, the stetisticeal model may be represented by:
E N~

T =3 + b, e + €, (5.28)
F e+ ™+ el
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Here €,6 and €, represent the errors in the quantities q: and q,f_
and assuming the common constent vaerience and independence of these
errors of one another end from cne time to esnother, the method of

least squeres may be epplied to minimise,

2(gq) -ec-b, ™) T(gF- - b= )" (5.29)
with respect to the parameters ¢, b,,b,, and A,. The resulting
normel equations are by no means trivial to sclve and they are given
here to illustrete the degree of their diffieulty. Suppose thet the

summation is over m points in time. The equations are:

2 me + b 2&2\1& & bh_Zea"" = Z(qﬂ*-#r‘»,:')

c ZG'_ Ak + b“_ s el?‘ab = < C’Pr Q“J-'

&g ek, e b Ze'F » = ?r: o

& z t‘e%LEJ— bu- Z E 43-?\1_& bm 2 t_ql?k;i‘." o z( qrr*%r)t_zla_t"
(5.30)

and some simplification mey be achieved by applying the trensformation

of peremeters,

The equations then become, teking one of the second and third
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equations together with,

2wne 02 b = E'-ha-b — = (1«!' + qu.*)
2eTe™F s b T e?™F - Z(qX + ¢ ™"
2c Tke™f + b et = = (q*+ 9 re™F

(5.31)
end these are recognisable as the same equations which result from the
application of the lesst squares method to the esymptotic regression

model,

3{* = o+ be ™ + e

(5.32)
for which methods ere coneidered and developed in the following

chepters: +to show this write:

*
3. + 9z = ¥
t = *
and e, + €, = €

with the parasmeters corresponding in view of 2c=a« end e =+,

By meking use of this correspondence to take advantage of the
methods developed for the common asymptotic regression model, it is
possible to arrive et separate estimates for b, and b,, by using

soparately the second end third equations of the set (5.30).
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Extending the ebove srgument to N populations, the statistical
model mey be represented by:

*

CL i Be. += Ay o [ =2 (5'55)

where € is now the vector of errors, < = {ec} , and, for the purposes

of estimating the paremeters A end < , the model may first be placed

by:
wWa¥* = wWBe + Nc + we
% (5.34)
which corresponds to the asymptotic model:
* - (8 + ZN b:r_"' + e
y :;-‘ i (5!55)

and this model is discussed in the following chapters. The separate
estimetes of the elements of the columns of ® may be made afterwards,
by using the results of the asymptotic regreesion substituted into the

appropriate least squares equations.

Before considering eseymptotic regression problems in detail,
a brief discussion of non-constant continuous migretions fellows, and

the degree of difficulty will be seen to be great in general.
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5.3 Non-constant migretion.

The general problem of verisble continucus migration is now
investigated by first sssuming that the edmixture retes are linear
funoctions of time. Only in speciel cases are results resdily obtain-
eble yet it is posseible with sufficient essumptions to consider
polynomial functicns. The results to be obteained ere not entirely
satisfectory, in that the admixture metrices to be considered are not
close to reality. Bearing this in mind, however, some effort is made

to point out a class of solveble problems in this erea.

When the edmixture matrix M(Y), conteins elements which are
linear functions of time, the matrix cen then be resolved into two

components, M, snd M, , each conteining constant elementes, such that,

M(f:) = M, + M (5'56)
where the time verieble, t , multiplies M, in a scalar menner.

Substituting this resolution of M(E) into equation (5.10) gives:

=~ (5.37)

and & simple pearticular solution of this differential eguation is given,

in special ecircumstances, by the result of the following theorem.
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THEOREM 5.3 When the metrices ™o and ™M, share a common
characteristic matrix, C , a particular selution to

equation (5.37) is given by:

g = Ca (5.38)
where e is the vector defined by:
r ?\L(.t“}

in which, (&) = A HEAET (5.40)

and{h,;} end {l ,}are constant vectors, containing the latent

roots of M, end M, respectively.

Proof Let /\, end A, be the diagonal metrices with vedws of
ditgonal elsuwasibs
treeee A, and X, respectively. Differentiating (5.38)

gives:

24 = elA+B.8) e (5.41)
ar

end it is required to show that,
cla,+a,89e = (Mot M) e (5.42)

The result follows by compering coefiicients of T on both
sides of this last equetion so that,
N = Mo c

\

md CA;_ = Mlc""
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The condition that M. and M, must share a common
characteristic metrix seems rather severe in practice. However,
there would seem to be no simpler conditicn for which the differential
equation has a particuler sclution. Perhaps the most likely metrices
which might occur ases heving & common chaerecterietic metrix, are those
which are merely scaler multiples of each other. The neceesary
condition for the latter, in resl terms, is that the rates of change
of the admixture rates are constent and proportional to the initial
admnixture rates. Given that this is remotely possible, it is e
trivial metter to establish & proper solution to the model so thet the
initiasl conditione are setiefied by the seme argumente of the previous

section.

Where the elements of M(E) sre not linear but polynomiel
funetione of time of degree r , the sbove spproech mey be extended so

thet:

M(E) = Mo + M E+ ... + M_E (5.43)

and the general result ie steted in the theorem which follows.
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When ™M(t) is a polynomial matrix function of time and
its component constent metrices M. for c¢-=0,1 ..,V
share e common characteristic metrix, C , the differential

equation:

e

=a

hee a particular solution given by:

¥ ¥ te
where e w { " »: (&) }
r 3
(4 = 1 a.. E
and PNAE ) ‘gl 5 3Y

where {AE;} is the matrix whose columns contein the

letent roots of M,, M, Seeeey, M.

Proof This follows the argument of the proef of

Theorem 5.3.

Although it 1s not & particulsrly useful observation in

prectice, it should be noted thet the conditions given in the Theorems

5.3 and 5.4 are both necessary end sufficient for the existence of a

particular solution of the form described.



PART 1II

ASYMPTOTIC REGRESSION METHODS
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INTRODUCTION

The estimation of admixture rates in continucus migration
models hes at its centre e general problem of asymptotic regression.
Methodology to ceter for asymptotic models in other fields has been
the subject of considerable discussion in the literature. From the
time of the earliest work of Gompertz (1825) and Mitscherlich (1909,
1630), who derived "lawas" or modele to describe humen mortality and
fertiliser response respectively, there has been a need to obtain
estimates of non-linear perameters from experimentel deta. The
chapters which follow set out to discues the more importent methods
of estimation for single non-lineer persmeter models and to extend
the most relisble genersl method to cater for many non-linear paremeter
models; the latter models relate to intermixture between several pop-

ulations.

In these chapters, the models to be discussed from the theory

of intermixture belong to the class of generalised aeymptotic regreseion
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in the classificetion of Turmer, Nonroce and lLucas (1961) end Turner
(1959). The present troetment sesks to be somewhat more detailed and
seerching then thst of these authors but their work offers a perepective

to the special regressions coneidered here.
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CHAPTER SIX

GENERAL METHODS FOR 4 SINGLE NON-LINEAR PARAMETER

First, a single non-linear persmeter relation is defined,
end then the classicel method is given, {called "classicel" in view
of the use it makes of the established Geuss-Seidel iterstive process:
the Wewton-faphson process used to obtein least sguares estimates of
non-linear peremeters, see Whittaker and Robinson (1944).). In this
section 14 will become elesr that this is not, in genersl, the best
method for the types of special model considered and the reassons for

this are given.

It will be convenient to let the equation:

1 & 8 5F rFe, = (6.1)
represent the known relationship between the expectation, n , of the
dependent variable, y , end the independent variable, x;reletions of
thie form will be called single non-linear parameter (SNLP). In eny
particular ease ‘f(f,x) will represent a known fuanction (but for

generelity it remeine unspecified in whet follows) and it is subject
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only to the condition that its second derivative with respect te p is
non-zero in order to avoid triviality. 1In the equation (6.1) «,5

and o are constants.

The estimetion of the constants in the equation using observed
pairs of values Cx,33 by the principle of least squares, ie not a
simple metter becucse of the implied non-linearity of £ and aleo as a
consequence, of the normal equations. The three normal equations,
with e known, however, reduce to two simultaneous linesr eguetions in
« and @ which allow ready solution; in view of this fact, it is
natural to hope to esteblish an iterative method based only on o , end
this has been successfully achieved by Stevens (1951) s described in
the section which follows., Ignoring this feature of the normal
equations, however, the classical epproach mey be adopted. Thie ie now

described.

6.1 The classicel iterative method.

Given approximate values «, , 3. and P, for the constants
in equation (6.1) a Teylor expension of the function
LB R T

leads to the relation, ignoring second order terms,

W

-— o - 3 = 2 - 2 é_
L O - PINIEIG LR A RN -

ele, al< :-2:‘
(6.2)

§ + Spflp, ) v pSp3e g,

il
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in which the new "constants" &« , §s , So may be estimated by least
squares in view of their linear occurrence in this relstion; from

them improved values,

o, = oKy + & o¢
@( = Fﬂ o ng
e = pet B

mey be obtained end the process can be repeated until the corrections
become small enough to be negligible. It is cleer that thesec values
cannot be expected to converge to zerc unless the second order terms
whish were ignored im forming relation (6.2) really are small; this
requires:

(-t )" = o (6.3)

Qe

g
o]

(p-pa)" 20 (6.4)
3(3"

(P-ps)™ 31
Bf»"

I
o
b
~
[
v
»

e
r
W
]

(6.5)

i - —-) 3» = .
(~ota)( f2-p3 5;:};3 - o (6.6)

(p-pICP—p) %{a = © (6.7)

(%= %g) ( o= f2) %3? = o© (6.8)

of which equations (6.3), (6.4), (6.6) and (6.8) ere clearly satisfied
for eny SNLP relation, the left-hend sides being zero in each case but

equations (6.5) end (€.7) remein to be satisfied. Of these equations
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the latter is dependent upon the smellness of 53 (ae well as of 80),

and it becomes clear thet if the spproximetion S is not good the

reletion (6.2) is not valid end it ie unreassonable to expect the con-

vergence referred to mbove. The presence of two conditions to be

satisfied for any SWLP relation will be seen to be unnecessary in the

following section,

THEOREM 6.1

The classical iterastive method applied to SNLP
relstions requires two eonditions concerning the first

approximations 3_ end p, te be satisfied.

Proof It is only necessary to consider whether it is

possible for the two equations (6.5) and (6.7) to become
one for certain special functions f(z x> ; this is true
for £(p,>) which satisfy the second order linear differ-

entisl equation:

(P-pPO 1 %%; = (-3 CP—pPD %, (6.9}

To obtain the general sclution te thie equation write:

(p-p) = =, z = %ﬁ (6.10)



Neole)

eo thet (6.9) is equivalent to:

u_m{a 381,-“_‘ = ( (3-—[39-) AT
or oz = f=fie, 24
Zz ﬂ .

80 that integrating gives:

log = = r-fe log w + coustant
3
or z = ew™

where c is en srbitrery constent end k = (B-E.)/p3

or sgain
- ’ _3_3c = CU..I‘
e
and integrating once more: i

£ ks -Eu- T &

where d is an erbitrery constant. BSubstituting back the

general solution of (6.9) is secen to be:

-Belp
= d(p-p) do
£ re * (6.11)

in which < end 4 ere erbitrery constents, with respect
to o, but et least one of which is 2 function of x in
order that  shall be e function of x. But this
function f is 1nadmiss&b1e a8 a special case of the
function in en SNLP relation beceuse it ie & function of
the epproximetions 3, and p. The reguired result
follows.
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6.2 Stevens' Method.

The fitting of the relationship (6.1) was considered by

Stevens (1051) for the speciel case in which,

Flp,e) = P
(P,x) e (6.12)

and he arrived at ean iterative procese dependent only upon a first
approximation e, to the constant o : he observed that a single
parameter iterative method could be applisd to any general functien
F(p,x) but he did not indicste the full generelity of this result and

his work is extended in Chepter Nine.

Te show how Stevens arrived at thie method, the cbservstion
made in the last section is now teken up egain. This is that two of
the three normel equations of least squsres are linear in two of the
constants, « end 3, and provide e pair of simultenocus linear
equatione 1f the third conastent p is lnown. GStevens reelised that
P need not be known but merely needed to be the subject of an
iterative process, the solution of the psir of equations at each stage

producing sutomatically estimates of the first two constants.

More formelly the esbove method is juetified by showing that
the dx and 2 mey be eliminmted from the three normel equations which

result from the application of the principle of least squares to the
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relation (6.2). The resuit of the eliminetion, aes Stevens showed,
is a set of three linear equations in <, » and 280 instead of in
d o S@ end So . Iterating in only one ccnestent, ~ , provides a
second order iterastive process with the seme pewer as the Newtone-
Raphson process for solving eguntions conteining functions of e single

verieble.

Stevens provided tables of the inverse metrix for solving
the three equaetions on the basis of equally spaced *-values
% = o)asz__.’(ﬂwﬂ) end for various first spproximstions to 1
the ranges of his tabuletion o6 n = 5(1)7 end .= 0.25(0.01)0.70,
though he euggests that these ranges might be extended to sdvantage.
Several authors have found it worthwhile to extend these tables at
Stevens' suggestion but cnly one of these has been published - that
carried out as pert of the present research. The full details of
the extension which covers the rengas = = 5(1)30, .~ = 0.10(.01)0.90,

published me Hiorns (1964) sre glven in Chapter Eight.
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6.5 Sehneider's Meithod.

Approsching the normel equations of least squasres for the

fitting of the relation:

BleY = M B pp® (6.13)
from the same point of view se Stevens (1951), Schnelder (1963) realised
that if the estimation of , c¢an be carried out seperately, the
determination of 2 end b » the least squeres estimates of x and & ,
is a trivial matter reguiring only the solution of a peir of simultanecus

linear equetions.

The least squares cstimetes 3-,‘3 end * are those values of

the estimates o, b and r which satisfy the equations:

wa + L™ = 5__} (6.14)

T + bze®™ = Tyr” (6.15)
25e =\ .

o Zxer T+ b Txer & Lyxr (6.16)

Between these equations, the eliminetion of o is straight-

forward, leeding to the pair of equations in b end v

b (Zr®™ - (Zr™y/n) = Tyr™ - TpZe/n (6.17)

b (Txer ™ = Ty T /m) = TywrTTL TyTer™/n (6.18)
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and the elimination of b between these two equations leaves e single

equation in v ; this is

I‘er LW r} T .‘(“__ -):v}_‘“_z—t _ 1':} tx‘_x—-/w
e — (Tr*Y/n Txr” L T T ="

(6.19)
meking use of the assumption that the dencminstors in this equation do
not vanish (this will only be so for speecial and triviel values of v

and x ). This single equation msy now be rewrltten:
(i-—_?"x - '2:}21-"‘./44.) Alr) — (fyxr“"— ‘Z:y Toar®*(w) B = o

where i
Alr) = Taar ' L T T

B(r) = T - 5r®) e
snd re-arranging,

-1

Ty { rA) 2B} - {(Tr*/wam « (= =) B}y = 0
or
FG) = Zyr TTCG0) ) - Hn) Iy =o (6.20)
in which,
alr) = —rAG) [/ B (6.21)
Hir) = —(Zr*(n) AWM [B() — Toer™ (6.22)

Sehneider (1963) solves the single ecustion (6.20) iteratively
end to fecilitete this in generel, he preovides tables of the functions

Glr) and HO) for n = 4(1)7 and v = 0.01{0.01)0.99 with the
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independent varisble o« taking the values x= 0,1,2,...(n-0.

In his paper, Schneider (1963) proposes the evalustion of the
function F(r) for three values of r end obtaine the minimum of this
function by pereabolic interpolstion. Here interpolation with F(v) is
gimpler then the interpelation possible with the sum of squares itself
proposed by Will (193%€); W%Will's suggestion requires the eveluation of
the sum of squeres for triel values of v ueing lineer regression on o
end b for esch. Yhere a computer is sveilsble, however, it is
prebably more setisfectory to solve eguations of this type by the

Newton-Raphson iterative procees.

Let v, be en spproximete solution to equstion {6.20) then,

F(n)

Y = -
¢ F(ra) (6.23)
where Fi(re) = dF(r) l
Ay =g

provides a gcorrection tc v, eo that,

v, = v, + or
ie & better epproximetion to a golution of the equaticn. This process
is repeated until succesaive values of r differ only by a negligible

amount.

It follows from the sbove derivetion thet the solution to
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equation (6.20) may be substituted into any pair of the equations
(6.14) =« (6.16) which mey then be solved to provide solutions 2 and

IS 3 the latter together with r ccmplete the set of lesst squeres

estimetes.
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6.4 Hartley - Geauss - Newton.

Hartley (1961) proposed a modificetion of the classical
spproach described in section 6.1. An epplication of this medification
to the relation (6.1) ie now given. The ezaence of the new method is
that the corrections §=, 53 and Se ars not added directly to the
current hest epproximete velues to provide improved solutions. Instead

the following velues are formed:

X, = o o + A S
6.24
ﬂ‘ = (Go * A Slﬁ ( )
I = I x: kg{o
where A ia chesen so that o « A ¢ 1 and for which,
Z(y- % - @ £Cp,x (6.25)

is a minimum.

The minimisetion to find A, if ecarried out enalytically,
leads to 2 d4ifficult algebraic equation in X and a more practical
mothod is given in the exemple in Hartley's paper. This alternative
consists of setting )\ = o, { and | and cerrying out a parebolic
interpolation using the three velues of the guentity (6.25) which

result from the substitution of A.

It is at once clear that thie method is at least as powerful

as the classical method for A =| =above provides the values of the
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latter. The relstively small amount of work involved in carrying out
this modification suggests that it is a worthwhile one in that it {is
likely to improve the speed of convergence. Hartley's method is of
the seme type as that proposed by Booth (1957) requiring only a little
extra computation st each iteration. COther general metheds for
function minimisation are proposed by Levenberg (1944) and, ueing
conjugete gradients Hestens end Stiefel (1952), Davidon (1959) Powell
(1962) end Fletcher end Powell (1963), end these prove powerful for
difficuit and pathological non-linear functions Lut reguire more
computetion then is usuelly necessary for the relations under present
discussion. Considerstion of the convergence properties is not made
here, howsver, but the more fundamental question of whether Hartley's

method is epplicebls ie taken up in the fellowing section.

An importent observetion not made by Hertley, is thet if this
modification were applied not to the cleesicel wethod but te the
Stevens' method, then the effect for SHLP reletions should prove more

effective.
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6.5 Discussion.

In order to meke some comparison between the methode described
in the esrlier sections, 4t will be essumed that the independent
variable, x, tskes " equally spaced values, scaled so that:

2 = © | i 8 R -)(ﬂ-"') (6.26)

Tfurthermore, the speeisl SNLP relation treated earlier is
reconsidered as it is en impertent precticel one and it does eansble

deteiled conclusions to be reached; +this relation was:

Ep) = = =+ fp” (6.27)

Conditions (6.3) = (6.8) were obimined in seetion 6.1 which
must hold for the spplicetion of the clessical method. Of these
conditions only twe remein for SHLP relations. These concern first
approximetions 3, and o to the estimates of . and P In terms of

estimates replece ;5 end o by b_and r, 80 that the conditions

become :
Gr-r b 2= (r*) = o
o (6.28)
and bob Y- " e "=
( - rg) o (b ) A -1 (6'8)

! ugseful and reesonsble messure of the size of these two
quantities would seem to be the megnitude of the perturbation which

they introduce into the normel equations if they are kept in the
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expansion (6.2). Initially, we consider their combined effect upon
the Tirst normal equetion. The perturbation introduced into this

equation is:

T = 4 () brGe) ™+ T8I rer X7

(6.50)
and for eay given positive value S, a condition ia now derived for

which,

(7l & ~rg, (6.31)

Two known series sume will be of use in establishing this

condition, These are:

gl s =7 = - e + A= g (6052)
° I=-v (- )
S oxlx-)y 7T = -nln-0 ‘r‘“li_ 2mr" (=" )
t—i (t-v)% e G~ r)'b (6’33}

Hore particulerly it is of some interest to consider the cane
whers © <r <! and the number of pointe v, ie large Then the following

results will be of use:

T xer™™! = Cimvry® (6.34)
Z x(e—\) A A é__'_r';: (6-55)

Fron (6.30),

Tc

C (s £6) + (BYSIF0)]



where,

’.Fi (v) 3 {-n(v\ﬂ)T‘“_"(I—Y')‘ - 2nr™ 0-r) + (""“)} /(l—\'*)a

end,
f.0) = {-w"'0U- + -+™Y /[ Q-r)* (6.36)
so thet (6.31) holde if,

1§l . | 6 £G + SBAEW| < § (6.37)

A weeker condition then (6.37) is given Ly the following set

of ineguelities:s

bl < & £ (6.38)
(fel A 8By o v B L Eulrd (6.39)
and 5 + & K §

i

For large samples from (6.54) end (6.35),

12 U U € I ¢ /514 12
* (l-v* G-r)2

= {4bC* + U= ) [/ (=r)>
For Stevens' Method the corresponding perturbetion is obteined from
this by putting &b=-0, and the comparison of these perturbaticns mey,
therefore, be made by using the ratio:

{b(er) + GBIE)-r) - b (1-y)
b (&) 2b &
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end it follows that Stevens' Method produces a lower absolute perturb-

ation if:
( + i%w(i—r) l > |
(6.40)
i.e. either if:
( + _ﬁ_(t-—-r—) >
2b&r
which implies §b 5
2b &5 (6.41)

(for growth curves and certain other gurves b < © so that this merely

requires Sb and S to be of opposite sign).

or if
et S &b Li=w) >

b 5
which implies

3b (=) > 2

i (6.42)
i-ec SL &...

il *

In general b ig larger in magnitude than T, and this is
usually true of the errore of approximetion Sb and 6. This fact
makes inequality (6.42) a possible condition in practice. Where the
second term in the modulus in (6.40) is emell (< 1), however, the
inequelity is as likely to hold ss net beceuse of the general uncert=-
einty of the signs of b and & . Further discussion of thie point
is difficult but it would seem that there ere more cases in practice
when the perturbation is smeller by Stovens' lethod Lhan otherwise. In
view of the difficulty met with hers, the ergument applled ebove is not

repeated for the remeining Wormel Pquations.
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CHAPTER SEVEN

SPECIAL METHODS.

7.1 Small sample teghniguss end grouping.

In practical uses made of the SNLP model (6.13), small
samples are often encountered and apperently four polnts commonly
deseribe ihe curve adequately. ‘Yhen this is the case, considersble
simplification of the computation required feolilows. Thie is
specielly true when the four peoints represent equally spaced valuss
of the independent varishle, Tor it is then possible to carry out
some slgebreic mnelysis preparatory te the computation. Se great
ie the simplification that there is some temptation to reduce quite
large setes of deta to smeller sets by grouping. The merits of
grouping exist entirely in the fact that it reduces Computationel
Labour: a convineing argument of Stevens (1951) shows that the loss

of information is large end that the estimates are of low efficiency.
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1.2 Gomea! Hethod.

In e paper following upon work with W.L., Stevens and
E. Melavolta, P. Comes (1949, 195%) makes use of the eliwmination of
the paresmeters x and 3 from the least squares equations for the SKLP
relation (6.13) to derive a polynomiel equation for an estimete
of the non-linear paremeter o. This polynomiel equetion takes the

forms

s 4. 7)) = o
At (7.1)

end the polynomial functions J.(r) are tabulated for w= 4 and 5
8o thet interpoiation for a root is possible. ‘The method is limited
by the larger number of tabulated polynomiels which would be needed
for larger values of n. Pathological examples givea by Gomes, which
show the advantage over Stevens' Method as originally presented with
limited tabuletion, wmay be discounted now that & wider use is wmade of
electronic computers and because of the extended range of tabulsiion

of Stevens' matrix.

There is eome affinity between Gomes' Method and that newly
proposed by Schneider, ae described in Chapter Six. The important
differonce, however, is the improved formulation of the polynomial
equstion (7.1) which ellowe & more sstisfactory solution without the

limitetion to cmell samples.
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7.3 Patterson's Method.

Patterson (1956) proposed a simple ratio estimator for the
non=linear parameter o in the relation (6.13). The simplicity of form
of this estimetor mekes it an attractive one in prectice but it would
be unreasonsble to expeot too much in the way of optimal properties.
Investigetions into simple ratioc estimeators ere numerous snd the
relevent worke ere White (1956) who independently obtained some of
Patterson's formilae, Petterson (1958, 1960), Finney (1958) end
Patterson end Lipton (1959); these suthors slsc discuss quedratic

retio estimators which are considered in the following section.

Suppose that an estimator r for p 18 required where r is
a ratio of two linear functions of the observed y -values. For equally
speced integer values of = let 2= @y leRs o woe a0 . Such a

ratio estimator may be written

o= t-o b: ¥ | (7.2)

and 2 simple condition for r to be & consistent estimator of p 1is

that

E{ 2‘3#’:3..3
€ { = 9. 4: } = P (7'})

By substituting for the Y rearranging end compering powers of p it
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quickly follows that (7.3) ies setisfied for all velues of =, 3 end o

only if
Z b = 5:51',: = o
#o = $“_l = o
nd JP.‘. = 9480 CC-—l‘:.J__.}n-q)

(7.4)

The freedom of choice for velues of coefficients in the
linear functions is still considerable and it would seem sensible to
seek to require the minimisestion of the variance of this sstimator.
However, elthough the result of this minimisetion produces the meximum
likelihcod estimeator, r ; as Fatterson proved, the resulting velues of
the coefficients ere themselves functions of and therefore not very
useful in practice. Instead, values of the coefficients are chosen
which give smell variance end consequent high efficiency over practical

renges of Q.

A& disturbing feature of the retio estimators is their
inherent bias. This wes investigated for four points by Finney (1958)
while Patterson (1958) gave expressions for the bias when using from
four to seven pointe. From the reletions given above it follows that

for four points the ratio estimator r mey be written

¥ o= P £ L2700y = Al (7.5)
Mz Tt CA-Dys - 2y,
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where A 18 & constant, snd from this Finney obtained the biae as

s (A=D" + 23 =x+D

EC‘M (Y‘) — r“;ﬁ"ﬂ—f”') (ae [a)" (7 -6)

where eagh ¥ is independent with varience "+ The numerator venishes
only for a pair of imaginary values of A and the bias would appear to
be very large for o near to zero or unity. Nevertheless the size of
the biae in lineer estimators may be better for larger n than in more
complicated quadratic estimators: +this point was adequately proved by
Patterson (1958) with reference to the Taylor estimetor to be described

in the next section.

In the present context it would seem resscnable to consider
the possibility of obteining retio estimators for the perameters in

many non-linear parameter (MVLP) models e.g.
€p - o« o+ AR (7.7)

The unnaﬁlsfaotory nature of some of the properties of the SNLP
estimators ae described above end in the next section, implies that for
more compliceted models the situation mey well be much worse. This is
indeed the case, but it is probably worthwhile to indicate, in passing,
the extent of the diffisulties invelved. To do thie, let p =2 in
the model (7.7) and define the linear ratio estimetor given by (7.2) ss

r, » the estimetor of p. For consistency of thie estimator, the
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simplest condition would seem to be of the form of (7.3) end upen

substitution this becomes

F(P)  _ ;
T I (7.8)
where F(BY = (SpNx+p T4 P,L * A Th, p:

and b and g represent the vectors of coefficlents { p:} and {q:7?
respectively. An inspection of the coefficients of the powers of A ,
end p, in the resrranged form of (7.8) is enough to show thet it is
not possible to obtein valuee for the coefficients which are independent
of x,3 ,p2 and A. This is a coneiderable obstacle in the sttempt
to find a general estimeator and it is apparent thet the difficulties
which arise in seeking reasonable efficiency or unbiessedness will be
grester then in the previcus eese. No doubt for known spproximate
values of the peremeters a satisfactory estimetor could be achieved
which would be local to these values, As this is not thought to be &
useful possibility in the present context, it is not explored further.
Instead, quadratic ratio estimators ere described bLriefly btefore
proceeding to deal with developments connected with Stevens' Method

which are believed to heve some practicel value.
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I:4 Internal regression and general quedratic ratio estimators.

Some account is now given of the use of "internal regression"
in estimeting non=-linear parsmeters. This method is based on the
linearity which may exist when the model is re-steated in terms of
differences of adjecent 4 -valuee observed at equelly spaced values
of ., Of couree, the error in the lineerised model is no longer
independent and this leads to bies end inefficiency in the estimates.
Twe of the methods which have been suggested of thie type ere now

described and reference will once more be made to the valuable study

by Finney (1958).

Hertley (1948) proposed the estimstion of the paremeters in
the SNLP eeymptotic regression model (6.13) by the "internsl regression"
of Y.. - Y. upon Youur %z The linearity is expressed
in e simplified form for eny equally spaced integer values for the x_,

by the reletion

e T - LTy (7.9)

where the n-values are used to represent the expectation of the
g-valuea. It is clear that on substitution of the y_-values, the
error in the stetistical model would not be independent, end proceeding
to obtein estimates of « and o by lineer regression introduces a

bles. This biss wee investigated by Finney (1958) who showed that for
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vw = 4, the bies in the estimete of o is given by

by 8t Rt £ B
e U-p) 2( 1+ P+p ) (?.10)

where ¢ is the varience of each cbserved y =value. The ebove is a
simpler form than Hartley's original proposal which required various
partial sums to be formed. liowever, both the above and the original
method are no more then ratio estimators with quadratic functions of
the Yy -values 28 numerstor end denominetor. TFor the original Hertley

method the biese, sgain for four observed values, is given by

s

b - 2(3 + 4p 200"+ 16 2°+Tp%)
oS (_‘r) = Pt S = %
RPU-P (1 +pPIC3 +4ep + 3p%) (7.11)

and this is only slightly less then the bias given by (7.10), as p

varies between O and 1, being equal to it for p =1.

£ computetionally simpler method of the same type is due to
Dr. £t. 0.8. Teylor end this appeered in the literature for the first
time in the paper of Finney (1958). The method consists of regressing

Y sen upon vy, end the relation
YLC,.. * “'C'-!_(a) + .pyL,_ (7012)

expresses the linearity which mekee it easy to obtein estimates of

some sort. Again these estimetes sre biassed and Finney proved in
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this case that, for n~n =4,

he ) = -— 0-1- e L‘.P x ‘px -1
ag (-(Q f‘tf’torfl) 1(' +f’+iﬂ"); (7 5)

which is much smeller then either of the ebove end is of opposite

sign.

In view of the fect that the "internsl regression" estimators
of p ere ell in the form of e ratioc of quadratic functions of the
y -velues, Finney attempted to find the generel quedratic estimator
with least varisnce. This he partly succeeded in doing by providing,
in the face of heavy anslysis, an estimetor which is fully efficlient
at the ends of the range of values of o end with as swell a varience
as possible in between. The "general" estiwetor deduced is now given,
for w=4, to indicete the complexity end difficulty of extending

this result.

T e Y The 3¥e Y~ Yoy - + Tysys—3 3ya+2uy, (7.14)
“heis - Cyaym s Yyt Ll - by 2y

By dirsct evaluation, Finney showed that this estimator had
slightly emaller varience over the range of wvalues of o but in
general recommended Patterson's linear estimetor in preference to sny

quedretic estimstor. In e similer mennsr, Patterson and Lipton (1959)
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investigated quadratic estimators, indicating that Hartley's method
maintained high efficiency and relatively low bias generally and would
be preferable to eny other quadratic ratio estimstor, except perhaps
in the special case of four point regression, when the Taylor estimator

has some merit, as described above.
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OHAPTER EIGHT

TABLES FOR THE APPLICATION OF STEVENS' METHOD

8.1 Intreduction.

In Chapter Six Otevens' Hethod was briefly considered;
here the practical aspects of the Method are discuseed end the com-
putational procedure cutlined in full. This section is intended to
serve as a guide to the extended Stevens' tables and to offer a
procedure which may be adopted in practice for many diverse applieations

of the lHethed.

is was stated earlier, the Method demls with sayaptotic

regression curves of the form:

e B o= %t e (8.1)
where it ie acsumed thet = is a fixed independent varieble taking the
value 0,1,2,....(N~! ) end thet e corresponding single velue of y is
aveileble for eech of the N values of x; &,3 end ° are constanis
to be determined in the couree of the fitiing. The Method remmins

useful for certain other curves and other restrictions upon the Xevalues;
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thece are discuesad in seetion 8.4.

By an ingenious simplificetion of the meximum likelihood
equaticna, W.L. Stevens (1951) showed that the estimation of the three
constants reduces merely to the iterative estimation of p, rou e
first epproximete v, with the x and 3 values being genersted suto-
matically by the process. In his peper Stevens provided tebles mainly
for the renges N = 5(1}7 end 1, = .25(.01).70; he suggested thet
hie teblee might profitebly be extended and the eim of the present

work ie to make sveileble such en extended set of tables.

The renges considered here should cover the veiues which are
most likely to occur in prectice; these are N = 5(1)30 and
Y, = .10(.01).%0. A dieeussion of how the tebles mey be used for

-]

values outside these ranges ia given in seetion 8.5.
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8.2 Description of the Method.

Forming the normal equatione of least squares, or equivalently
of maximum likelihood, and the informetion matrix I , defined by

R.A. Fisher (1956), leads to 2 modified information matrix T, such

that:
L o Yo
° b = | v
b &v Yo

where o end b eare the estimeted velues of the parameters « end 2
where Sr is e correction to an epproximation, v, , tor, the estimete
of p, and where Yo=Zy , Y, = Zyr’™ and Y, = Syxvr’"' these sums

being over = = 0,1,2,....{ N—1 ),

It cen be shown that I, is independent of « and b and it
is, in fact, L with the second row end column each divided by the

maximum likelihood estimete of b .

The iterative process is then defined by:

o Yo
b = Io Y,
bsr f ™
or
[ Fﬂﬂ FAS Fm Yo
b = Faz Fes Fesr Y,

b S Far  Fer  Fra Ya (8.2)
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or equivalently, without using matrices, by:

o = Fﬁ-ﬁ Yo + Fﬁd‘ Y{ + Fﬁ& R
b = Fag Yo + Fea Y, + Fen Ya
l)Sr‘ - Fﬁg Ya ¥ Fsg i o+ FR& Ya

(8.3)
where the F-velues are the elements of the matrix T_. These
velues are functions of r, only,since the elements of I, were

independent of o end b.

In prectice, &r is obtained by dividing the right-hand side

of the last equation by that of the preceding equation of (8.3).

This iterative process has several edventages as well as the
primary one that it deals in the estimation of the single parameter ,;
perhaps in order of importance these may be stated as:

(1) the process is a second order one since it is based on the
necond order derivative of the likelihood function occurring
in a Taylor expansion of the function,

(11) the estimetes are of meximum efficiency,

(i11) the estimates sre ssymptotically unbisssed, and

(iv) large semple stenderd errors ere eveilable for the estimates.

Of these (ii) and (iii) ere e direct consequence of the
estimates being those which satisfy the meximum likelihood equations.

This is, of course, only true under conditions where the residuals are
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independent end of equal weight. Consideration of (iv) may now be

extended by stating the formulee for the standerd errors of the

estimates:

S.e. (a.') = J (Fm s*)
se. (b) J (Foa )
s.e. (r) {J( Fre s*) /b

]

L}

(8.4)
where s” is the sum of squared deviations sbout the fitted curve

divided by ( N-3).
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8.3 Computational procedure.

It is first necessary to cbtain en approximate value v, ,
for the persmeter o. If no other knowledge upon the size of this
value is availeble, the following method may be used effectively

when the fit is expected to be at all a good one.

By sketching a curve by eye through the peints (x, y¥:)
choose a convenient numerical velue, ‘§,, s of x neer to the centre of
the renge of fitting. Equidistent from %_ teke two other values,
one neer each end of the range end let these be called €. -~k and
ﬁ, + b respectively. Reead off the values fL_l, L., end 1\1 from the
sketched curve as the values of Y which correspond to » = f,_&.) £

and € _+ . form the small difference table:

‘go == '£|- 1...
%o . 'Lo = W
S+ A g, W=

The approximetion required is then:

v, = Ny = M, *
N = y = (8.5)
or,
v, = antloy [ -é: { Loy (”{""L,) — Loy ("Lo—"'l.‘)}]

where the base of logerithms is arbitrary.
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Using this velue of v  or & value arrived at in some other

way, the iteration routine may now be entered. Before doing 80,

however, it ies uceful to compute Yo=Zy for once end all et the

beginning, es this quentity remeins unchenged throughout the

caleculation.

It is importent to fix st the outset the size of the

correction & to v, which will be considered negligible.

(1)

(2)

(3)

(4)

(5)

Compute Y, = Zyrf and Y, = 2311-:"' where the summations
ere over all velues of x, i.e. %= 0,1,2,¢..,(N—1 ).

Using the appropriate row of F -values from the tables for v,
and N calculate a, 4 and b& using the reletion (8.2) or
(8.3), and deduce the value of Sr.

If & is not negligible, replece v by ™ + 9% end go beck
to (1); 4if & is negligible the estimation is complete, the
current velues of a,b and v, being the final estimetes.
Using the fitted relationship, the expected y -values may be
obtained for x = 0,1,2,...,{ ¥—1 ) end the sums of deviations
and of squared deviations computed., Of these sums, the former
hes expected velue zero end the latter is divided by ( N — 3)
to give the estimeted error variance, 5.

Where appropriete, large semple stendard errors may be formed

using the relations (8.4).
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In unpublished notes, H. Linhart (1959) has suggested that the
determination of the final estimates may be checked by converging to the
final estimate r, from both sides. To do this, choose & starting
value v, on the other side of the final velue from that used above and
repeat the estimetion comparing both the final estimate r, and the sum

of squered deviatione with those obtained ebove.
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8.4 Use of the tables for other curves.

Alternetive models for which Stevens' Methed may be applicable
ere now listed:

~Yx
(1) - . E g (8.6)

the growth curve in physiology end biology, e.g. Harrison, Hiorns

and Weiner (1964), or the learning curve in psychology; this
Y

becomes identical to the present model if < is replaced by ,~ .

— A
(2) - INE I £ (- 107) (8.7)

the Mitecherlich's law, Mitscherlich (1909, 1930), describing

fertiliser response in sgriculture; here b S d= « .—al---(s and

lo’k—_- {o . An alternstive form of this law is:

A {1 == g
- S E: ! (8.8)
snd this becomes the present model if,
A= o -A(lo*‘""'):rg and ™% = p
(3) z = expl o + pp*) (8.9)

Gompertz law, is used for graduating life tables in actuariel

work end for predicting price changee in economics; this is

equivalent if z is replaced by exp(}‘}.

(4) z = t/(x + pp*) (8.10)
the logietic curve ocecurs in demography to describe population

growth e.g. Yule (1925); here write for equivalence, z =

[3
¥
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This 1list is not, of course, exhaustive but it indicates the
wide epplicability of Stevens' Method in meny fields. By way of
werning, it should be added that although a lew or function mey be
trensformable into the general model coneidered here, the method should
not be applied unless the x -veriable is independent or is relatively
free from error, whilst the y -variable contsins error and is dependent

upon x.

Exemple. Mice are weighted st weekly intervals between the ages 3
end 12 weeks. The following teble gives the means over several

litterst

age (wks.) 3 4 5 é 7 8 9 10 11 12
wt. (g.) 8.3 12.6 14.6 15.3 16.8 18.2 19.3 20.7 21.7 21.4

In the course of the fitting the weights will be represented

by the verieble y end the ages by (x+ 3) so that x= 0,1,2,....,9.

From & rough sketech of the curve, the mid-point of the range
of », x=4,5 is taken end two end values, 0.5 and 8.5; the

corresponding ¥ velues from this graph are given by the table:

£ u a
0.5 10.5
7.5
4.5 18

1
z .
8.5 21.3 g T ( : ) = 9
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To determine r to two decimal pleces, proceed with the following

echemes
Yo = Zy,, = 168-#

x % ) ¥ y.’ Y-y
0 1.0000 0000 (8] 8-5 8-9‘* "-6&-
1 .8100 0000 1.0000 0000 12.6 11.71 .89
2 6561 0000 1.6200 0000 14.6 13,06 64
5 .5514 4100 1.9685 0000 15.3% 15.80 -+50
4 4304 6721 2.1257 6400 16.8 17.29 -.40
6 «2824 2054 2.0920 7064 19.3 19.49 -.19
7 «2287 6792 1.9770 0678 20.7 20.29 A1
8 . 1853 0202 1.8301 4336 21.2 20.99 «25

Sum Check .01

Matrix from tables, v, = 0.81, N = 10,
4.80585 -3.95752 ~1.75021 168.4 23,7885
( -3.95752 3.87596 1.31778 67.120718 | = -14.8537

Using . &= Z}rfﬁ 67.120718, X a 2.3!.*#-\'"—"—?- 207 .041553

:r - Mw = 040’055“ ‘.- T=ﬁ+§r= 0-8155-
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The iteration is complete because $r < 0.005

FMSL'-‘- 1.6920 2! se__(a,) = 1.50 Q= 25.79 - 2 1-50
Fag s = 1.3646 -Lose (b)

1!17 .=-1‘h35 x 101?
FaeS"= 0.00110791 -.5.e()= 0.0333 r= 0.8133 + 0.0333

-
L\-

These stendard errors are asympteotic in the sense expleined in

section 8.2.
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8.5 Data for which the ranges of tabulation ere exceeded.

Large values of v .

When « 48 large, becoming nearly unity, there is a good

case for fitting the parabolea, as Stevens illustrated with an example.

If <t =1-c i® small sc thet <  is everywhere negligible
compared with ¢, , it is clear thet (8.1) cen be rewritten as:
€)= % + G- (8.11)
or expanding binomially, as
€ Ky-} = (X+p) — fTx + L (M:(x---)*t:'L (8.12)
from which the ssymptotic regression can be equated with the quadratic

regression

kS

€ = (e + fx + @ax (8.13)
and thies may be fitted by orthogonal polynomiale (e.g. Fisher and Yates,
p.30 (1957)). The assymptotic parameters correspond to the polyromial
parameters and are given in terme of them by

L = L= , ® =3 - (Bursa)” end 3 =~ (3,+8.)7 (8.14)
(ot Pa 20t 1t

Smell values of r.

With r* negligible, consideration of the inverse of the

modified information matrix, = ' , (defined in section &.2), leads
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to the epproximate relation:
| =1 -l-r

s Ay - ' - Nelmter  =(N-3DT+ 1
N -2~ Ly

(8.15)

=l-v  —(N-ITH  N—|-2p

whose elements can be used in place of the F -values, provided the

errors, <., are everywhere large compared with v,

Values of N outside the given range.

From (8.15), if T.' is replaced in en obvious notetion by

F. ‘then,
(N=—2-kr) F| = \ -1 -l & o o
-t “l=tr  2rgd + N = \ -r
L 3rel —t-2r o -r |
= _ R, + N R, » B8Y,
and (N=1 = ar) FS, = R, + (N+DR,
8o that by subtrsction,
(N=tl=—tr) FL — (N-2-t) B = R,
and hence the recurrence relationse:
B i
FN'+| = (N—l-— l-{-)") F-NT" +( t ) R-a._ (8.16)
— = Ly Nl —
r T
Fl = ( N-tL—uvr \ FT- ( | ) R, (8.17)
N —2- Ly N | — Ly

may be used to extend the range of tebulation for smell values of r ,

agein where Y is negligible by comparison with the error term, e:‘ g
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8.6 The checking of the tebuletion.

The tebles were computed in rows in the order in which they
eppear so that the usual viesuel gresdustion check by cclumns would feil
to detect eny "build-up" error. Thie check wss applied successfully

with respect to gross errors eand none of these were located.

A more saliefectory check was available due to a fortunate
property of the metrix inverses and this check is independent of the
method of calculation. To show this, a recurrence relation mey be

derived.

The modified informetion metrix I, can be shown to be,
(omitting the lower triangle elements of the symmetric metrices which
follow)

=1

N =r* = oxr™
I‘e = = .r.:""— zxrz.u—l

= u_:\.-.,_ll‘--?.

end this metrix will be called A indicating the summetions over

® = 0,1,2,000.,( N~1 )o Defining:

N=1
| " Nr
v pRY] an-1\
AN = 2 N r
bR -
Ny 2N

and if A:;.. is defined ss I, with summations over x= 0,1,2,...,N
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thent
r

For N> 2 the A metrices are non-singular sc thet multiplying frem
the left by (A:ﬂ)-‘ end from the right by (A‘L)ﬂ shows that:
r y=1 v =4 - -1 v N |
(A«r) = (A N-H) + (ANH) AN (AN)

or, (AR)" = (A%Q)" = (ALY Al (Ag)”

"
The metrix Ay is alweys singular since ite rows are
prodech rule for
proportional and it has, therefore, renk zero. By the theeoremon the
WMJ be detervrdaants F ~a Zrv Su~te Ela
:ank—ot—l—paaduct,zthe right-hend side product zstpix—eennebheve renk
rhovon s ocd—sf Al 0 zerv,
greater than zero snd is—ithus—singulas, It follows directly from this

thet the determinent of the left-hand side matrix is zero, i.e.

By - Al = e
which is the required check. By forming the differences of rows of
F =values which have the same vr-value but adjacent Nevalues, &
metrix is obtained whose determinent should be zero. Thie check was
epplied by the computer, indicating that nowhere was the value of this

determinent greater than 1o®

In addition, another valuable check was used, particulerly
during the development of the tebuletion progremme, end this was e

direct comparison with existing independent tabulations cver smaller
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ranges by ¥W.L. Stevens (1951) for N=5(1)7 and S. Lipton (private

communication) for N = 5(1)12.

Finally, the most positive check (but this was not applied
extenseively as it takes longer then other checks) is to use the
tables for fitting a set of pointe which lie exactly on the curve;
if the true value of v is used es starting value, the expected

correction Sr must be zero.
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CHAPTER NINE

EXTENSION OF STEVENS' METHOD.

Stevens showed thet the likelihood eguations allow the
elimination of all but the non-linear psremeter to provide en iterative
procedurs. He esuggested thet his methed, epplied to:

n-= E(g) = X+ /39" (9.1)
could be epplied to general models of the formi
w = x + pF(pe,=d (9.2)

where ¥(p,x) 1is any function.

Whereas this is true, the method extends much further. It
is not, of course, restricted to e single non-linear function containing
a parameter, and neither is it only valild for a single independent
variable x. The most genersl function for which Stevens' elimination
is possible, appears to be:

s
1 = o % f&l r”';fd‘,(fﬁi"'-)--)xq,) (9.3)

where i; are any functions of 3,1ndopandent variables %, ,....,Xq and

the parameter vectors Ci whose elements ere exclusive to the functicn
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fi « The procf which follows asssumes that each % hes one element
only n end the case where theses veetors ere of higher crders is e

streightforwerd extension.

Introduce f,=1 , always end define b - a so that:

+
W, o o CiLe Cits 5 ®uynens™) (9.4)
end, essuming normality for the independent errors in the y-values,
the usual meximum likelihood equations (MLE) with 3 replaced by b&- .

,od: replaced by r*. are (f>+|) equations for k = 0,1,2,... ]D:

and p equations for k = 1,2,... bt
b, ELEME w LTy % o
& ¢ e & * y‘.‘ar,‘,_ (9-6)

where {5_ represents the genersl function f} (rp; %, .+, %xq) ond the
suffix L is used to refer to repeated observed values of the variables.
For non~linear functions ‘f@ the above equetions are difficult to
solve and R.A. Fisher's general method, Fisher (1025, 1956), is relevant.
This involves the use of the information metrix, I , which is resdily
obtained by differentiating the left-hand sides of the egquetions above
with respect to each parameter in turn, end replacing each Y by its
expected value, v . The lstter is found by taking the mean of y over

all repeated sets of cbservations.
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In view of the structure of the likelihood equetions I , in

this cese, is 2 partitioned matrix given by:

T = A 8
( i & ) (9.7)

vwhere, A = {A.‘} } = s f:_-f;
B = { B.:Jj } i 'Dji ﬁcz. %
¢ = eyl - EHE

Here A and C sare squere matrices of orders (p+0 and b respectively,

B 4sa p x(p+) matrix and B  is the transpose of B.

R.A. Fisher (1925) proposed that if ¢ represents the vector
of peremeters which satisfy the likelihood equatione and v/ 1is en

approximation to v then:

w = r (v - V)
(9.8)

where w 1is the vector of residuesls upon substituting v’ into the MLE.
This result holds for v’ close to v beceuse of the smeliness of
squares of elements (v/=9) by Teylor's Theorem. Further, it is not
dependent in eny way upon the form of model which determines I .

Here the linear combination model form can be applied to sdvantege.

It will be convenient to define the vestor, $ by:

s = v - 9 (9.9)
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egc thet (9.8) can be written:
w = I$ (9.10)

Suppose thet T, 1s defined:

< (A; B") (9.11)
B* e

n"

where:
BY = Wey/y)) = =43
d, -
an ¢.® = {C:;/{’;b-} z E.:_fc%‘
T

with A as defined previously.

Now 4£ the vector of residusls w 1is defined ssi

i (wse>wan“'1w3}=)w&tj“*)WR-F)

in sn cbvious way, and:

Weo (qu) wBt,"')wa‘))w&t/bn)“")wll}’/l’g;)

Given a set of espproximete values, the smell corrections to

these values will be denoted bys

§

Cob, 66, ... 8by Sr ..., 60)

Let =
, $o (b, &b, ... 8b, 6r /b, .. 8%lbp)
g0 that from (9.10):

We o Io So
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or alternstively,
8 = IL'w

L] L]

end by substituting from (9.8) end (9.9):

So = Vo + I:Z
where p
/ s
Ve - (b"’b'r“:bb By )o)
and
z = CSu Tuf’ . . Fuf' To2E >, 2
= y-.’ 3') | 3*) B"?r.J- J ya"}:)
in which,
/! /
:F&- = J‘}("}Jx*)
end, ,
= |
ar}- ar‘: r=,}

for [ = 1,2,..., b+ The iterative process is now defined by:
gg - VQ - IO—I!
in which the right-hand side is a function only of the non-linesr
paremeters. lore concieely, ifa
£ = (b.)b,)_-_)b,,) b‘SrIJ,,,Jbb&})
then the iterstive process is:

t = I 2

(-]

The converged values of the estimates obteained by use of this

iterative process will satisfy the meximum likelihood equatiana.aué'ﬂh1



145

are saryuapivistelly vboied |
have the usual properties of full efficiency end ssymptetie—unbaised~

ness. Further, for estimetion from large semples, the estimates are
esymptotically normally distributed and stendard errors mey be attached
to them using the modified information metrix:

vowr ( JI-:’\_) = s* Fee

vor C¥) = s Fy /b, i=bi
where F,. 18 the (% diagonal element of T ' and s* is the estimate

of the vearience of the error in esch observed 'a-valus.

It ie now clear that in plece of v, in each funetion there
may be & vector of several non-linear parsmeters. The sbove iterative
method still applies provided that no non-linear parsmeter ceccurs in

more than one function.
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9.1 Confidence limits and regions for non-linear paremeters.

It is & feature of the classical iterative approach, or again
of Stevens' Method, that epproximate confidence intervals may be
obtained immediately from the information matrix used during the course
of the estimation. VWhether the approximetion is a useful one or not
depends entirely upon the degree of non-lineasrity in the MNLP reletion.
This point is discussed fully by Beele (1960) who derives e measure of
non-lineerity and cbtaine confidence regions for modele which become
almost linear under some transformetion. The computstionsl difficulties
encountered in obtaining these regions, leaves their general usefulness
open to some doubt, ﬁnrtioularly in view of the fact that the inter-
pretetion of & region is so difficult for three or more parameters;
more accepteble would be a simultenecus set of confidence intervals.
Stone (1960) shows some concern for the nesd for more confidence
intervels and he indicates thet sinultsnoous interveals are obtainable
from the usual epproximete confidence region. This approach ie now
considered for the esymptotic models under present diescussion and then
extended to obtein limite for new regions propoeed by Helperin (1963)

following Williems (1062).

A
From the last section, let © represent the vector of meximum

likelihood estimates of k parameters so that

A

5 . (b33} (9.12)
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A

where b and r are the similar vectors for the linear end non-linear
paremeters separately. If F, . (0 is the 100x <. value of
the probability function for the F-distributicn, and if, to correspond
with the previous notation, s* is the error varience estinate, T 1is

the information watrix, then

(6-8) T (8-8) € ks* F;‘.J“_k () (9.13)

represents the approximate confidence region within which the true value
of © falle with probability <« . This region represents the interior
of an ellipsoid and Stone (1050) proposes to use instead the circume

geribing polyhedron defined by the set of bounding hyperplanes

A
&¢- 0

& ST ks Fk‘h-k (x) diog (T7') }
and 4 may be introduced to represent the quantity whose squere root
is teken so that the simultenecus confidence lntervals sre given by the

vector eouation:

& - d < & < & + d

These intervals define a conservative confidence region, and
the probebllity that all of the Kk inequalities are satisfled is
at least o. The asymptotic normality of meximum likelihood estimates
allows en epplicetion of the more general theorem by Scheffé (1953)

on simulteneous confidence intervels {or a linsar combination of rendom
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variables. It is a streightforward matter to show that the Scheffeé

intervals for the above simplified case are those used by Stone.

In & recent paper, Williams (1962) epproaches the (SNLP)
reletion (6.1) as a specifie type of non-linear relstion in an ettempt
to cbtain an exact confidence interval for the non-linear parasmeter, p.
This he procesds to do by showing that Stevens' modified normal equations
for the model are & consequence of applying & Taylor expansion to it
using only o for this purpose end the consequent lineerity of the
regression. The reduction in size of the correction term in the
linear regression during the iterative process which follows, suggestis
thet this term could be tested for significence at any stage. When
this term fails to reach significance at e given probability level,
according to the appropriate sums of squares in en enelysis of veriance,
the corresponding confidence limit is presumed to have been passed. A
close study of the linear regression sums of squares with and without
the error term, ellows Williame to obtain in this way an exact interval

for {7

A broader approach is taken by Halperin (1965) who considers
the effect of regression on the given non-linear variables together with
8 set of generel varisbles: showing that the latter mey be replaced by
corrections to the non-linear parameters, e result previously given by

Hiorns (1962b). Thie euthor followe the work of Williams and proposee
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general confidence regions for MNLP relations. The results are given

below, in equation (9.17) and (9.18).

Let X be the matrix of observations conteining the p terms
in the P, non-linear parsmeters and D represent a metrix of p, , for
the moment, unspecified variables and each of these matrices is supposed
to have rows to correspend with the semple size but X hes p columne

and D has P, columns. Suppose that the model ie specified by

1 = E‘(}) = X (3
where 2, 1is the vector of p psremeters ocourring linearly in the

model and consider the supplemented regression

7w = (x,®2)pn (9.15)
where (3’ = (/3:., )

and 3, contains those p, parameters which ocour linearly with the
unspecified varieblee in D . Following the usuel regression theory,
the asymptoticelly unbisssed estizates of 4 and ﬁ’- are contained in

ﬁ where

™

I
N
U;X
X X
Ux_.
LV v/
\..//j_
P
°g X
~__-
Qe

(9.16)

Furthermore, the significance of the whole or part of the regression
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may be trested by the variance ratios:

meb-br  (A-pY XD (xDIE-p)

” _ = %
{>.+b,_)n-ta¢_p,_ po+ P V"?f‘ _ ﬁf(ij-}!(x);;)ﬂ (9 7)
R e (9.18)

bt e ¥y - AOGDY (DA

'hor. u = D(CI —_ X(th)-‘x,) (9'19)

end (9.18) may be used to define a confidence region for 3, in the
normal wey. Such a region may be disjoint or infinite but this

feature will be discussed lster.

The choice of the variablee in D is now clear, for ithe metrix
inverted in (9.16) can be mede to correspond with the modified
information matrix, I_, defined by the last section in equation (9.11)
ir

D = U a6 Ge0) [ar. 3 (9.20)

With this definition of D it follows that the paremetere in
., are the elemente et the lower end of the vector t of the last

section and ere defined by

R RS L 8p:) (9.21)

80 that the meximum likelihood estimmtes of these paremeters are zero.



For meny non-linear paremeters there is considerable difficulty
both in obtaining the confidence region from (9.18) end in interpreting
it. The calculation will be simplified if the sppropriate matrix
product cean be replaced by an alternative estimete of the varience in
the dependent variable and this can be quickly echieved if replications
of thie varieble are available. It remains then only to explore the
matrix function in the numerator of the right-hand side of (9.18) for
different trial values for the non-linear parsmeters. [For one such
parameter this was carried out by Williems (1962) in one example, but
in another he shows thet consideralble effort mey be needed to study

this metrix funetion even for & single parameter.

The interpretation of confidence regions can only be a
simpls matter when the boundaries of the regions are simply defined
and closed. This is the case for linear estimates when the boundary
is an ellipsoid with its centre at the maximum likelihoed poiat in
the parameter space, es indicated by Hotelling (1931). Of course,
the proposel by Stone, quoted above is besed on the sssumpticn that
the regions have ellipsoidal boundaries and & further essumption is
made thet these ellipsoids ere not rotated about the parsmeter axes.
The edditive effect of these two assumptions would prove drastic on
all but the most moderate of non-linear regressions. Taking the

assumptions separately, it is not difficult to find a set of
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conservative simultaneous intervals for a rotated ellipsoid. If (9.13)
repraesents the interior of an ellipsoid then the lengths of the semi-axes
are proportionsl to the square roots of the latent roots of I™'. The
hypersphere of redius proportional to the largest of these squere roots,
therefore, is a conservative region in that it encloses all points in the
parameter space which satisfy (9.13). 1In practice, the largest latent
root is easiest to obtain, as is well known, end therefore the eguation
of this hypersphere may be determined readily. Another attractive
feature 1§ that simultenecus intervals msy be obteined directly from the
intercepts of the paremeter axes with this hypersphere, teking no further
account of rotetion. Againet this, however, is the overlooking of
information contained about the variencees of all but one of the estimates.
The importance of this is greet only if heterogeneity of these variances
exists: it would seem reesonable to test for this in the usuzl way with
Bartlett's test and the only veriences available will be the ssymptotic

values obtained from I°'.

A more exact measure of the importance of choosing e
hypersphere mey be obteined as follows. The volume, Vg , of the

ellipsoidal region given by (9.13) is

kla. k
Vg = LS <
rck+ny [l (9.22)

where c* denotes the right-hand side of (9.13). (This result follows
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directly from an orthogonal trensformation of the positive definite
metrix T end a simple substitution, or equivalently by using the
result which ie scmelimes called Aitken's integral, (Turnbull and
Aitken (1932)), i.e.
_j'_: f_: e-—g 8'A® + it'e i L ol

putting t=0, =and the gama funetion results from the Dirichlet
integretion over the hypersphere or transformed esllipsoid. The proof
is given by Cremér {1946, pp 118-20) and elsewhere.)  From this the
volume of the hypersphere, Vs , with radius proportional to o, the
gquare root of the largest letent root of I ™', is readily deduced by
replecing T by the unit matrix divided scelarly by pxl A measure
describing how conservative the rsgion described by the hypersphere
would be, is then

§ = Vs - Ve " !oHJlII — | (9.23)

Ve

Here 100S$ %een be defined es the percentage ineresse in the probebility

« that the overall probability that the hypersphere rather then the

ellipsoid (9.13) containe the true point in the paremeter spsce, but

this will not be true for corresponding simultaneous intervels. In the
sbove, of course the fact that the inverse information matrix is
proportional to the ssymptotie covarience matrix f'or the paremetere meens

thet { is snalogous to @ measure of the proportional increase in the
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generalized standerd deviation, if the latter is defined to be the

squere root of the generslized verlance originaily derived by Wilkse

(1932). :nother anelogous quentity is the seatter coefficient as

given by Frisch (1929) which is the reeciprocal of one plus § given
above. In the extreme, when all parameter estimates have the same
asymptotic variance and zero covariances, this coefficient is unity

and § ies zero.

The correeponding volume of the hypercube, V. whose sides
are the hyperplancs representing the simmltensous confidence intervsls,
is now considered. Thie hypercube has edges of length 2pc, the

length of each intervel and its volume is, therefore,

Ve = (2ped" (9.24)
For k=1 , the hypercube degenerates to the line segment 0 = %pc
and the length of this single interval is the "volume’ of the hypercube;
in this case the volumes of the ellipscid and hypersphere given sbove
both correspond with this value, ee is expected from the coincidence of
the degenerate cases of theese regions. TFor higher values of k , the

volunes diverge s is shown in the table below. 1In the table

Y:I/JIII
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TABLE 0.1
No of paraueters
Region 1 2 3 4 k

2 3 [ § Kiry K

Ellipsoid, Ve 2¥c TY¥e L ye LYt wr'(';::)
L S 3 3 Lo q-e_vv kjy #cn
Hyperaphere, Vs rpe TTE e Empe L Te .3 (bf,,.)
Hypercube, Ve 2pc wp>e? 8 F’ e bt 26k
Retio Vs/ Ve I Pl ¥ p3Y lalA 1 PRIy
a akrg+)

Retie Vel Vs l “f T 6/ 3a2frc g

Some consideration is now due of non-ellipsoidal regions as
these are the kind most likely to be encountered when applying (9.18).
An approech is given which ceters for open snd closed reglons though in
the former cese the existence of points at infinity in the set of
allowed perameter values is essumed. Let ©; be the set of values of
the peremeter 4, . for which (9.18) is satisfied and call p,,; thet
member of the set which has largest megnitude end Arz; ‘thel member
with smallest magnitude so that

Paag = ’;:!” Cpaj) (9.25)

and Bazj = GF (pay)
If the set B, is empty for any set these two values ere teken as

plus and minus infinity reepectively. For all j, let A,s end Bax
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be the vectors of elementa deﬂned; then it follows that

ﬂa:l: < ﬂa. < {39..5 (9.26)

defines & set of simultaneous conservative confidence intervsls.

The expleoration of these intervels further is difficult and
pronises to be lengthy and even particular cases of the gensral WILP
models must extend beyond the scope of the preesent resezrch. However,
it ie possible to stete this problem more precisely for the MNLP modele

in which

£ = e
$ i (9.27)

It ie straightforward to show that, following (9.20) from the quadratic

form in the numerator of (9.18)

Wi, = X = W'Y VOrx)

(9.28)
where T is o diasgonal matrix with elements equal to the values of

in the sample, end g, is defined by

A, = ()™ u-'y,
8o that Alldudg, = yelwwluwy (9.29)
aid w & L= Xixx)'k")rx

In the sbove X ie a function of a current value of the vector Lo *
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For given sample values for x and vy, together with an estimate
s* » values of e, or equivalently devietions &p from o may be
found which satisfy (9.18) from (9.28) and (9.29) above.
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