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Abstract 

We investigate whether the 7r-calculus is able to serve as a good foundation for the 
design and implementation of a strongly-typed concurrent programming language. 
The first half of the dissertation examines whether the 7r-calculus supports a simple 

type system which is flexible enough to provide a suitable foundation for the type 
system of a concurrent programming language. The second half of the dissertation 
considers how to implement the ir-calculus efficiently, starting with an abstract 
machine for ir-calculus and finally presenting a compilation of 7r-calculus to C. 

We start the dissertation by presenting a simple, structural type system for 
7r-calculus, and then, after proving the soundness of our type system, show how 
to infer principal types for r-terms. This simple type system can be extended 
to include useful type-theoretic constructions such as recursive types and higher-

order polymorphism. Higher-order polymorphism is important, since it gives 

us the ability to implement abstract datatypes in a type-safe manner, thereby 
providing a greater degree of modularity for 7r-calculus programs. 

The functional computational paradigm plays an important part in many pro-
gramming languages. It is well-known that the ir-calculus can encode functional 

computation. We go further and show that the type structure of )-terms is pre-

served by such encodings, in the sense that we can relate the type of a )-term to 
the type of its encoding in the 7r-calculus. This means that a ir-calculus program-

ming language can genuinely support typed functional programming as a special 
case. 

An efficient implementation of 7r-calculus is necessary if we wish to consider r-

calculus as an operational foundation for concurrent programming. We first give 
a simple abstract machine for ir-calculus and prove it correct. We then show how 

this abstract machine inspires a simple, but efficient, compilation of 7r-calculus to 

C (which now forms the basis of the Pict programming language implementation). 
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Chapter 1 

Introduction 

The 7r-calculus [MPW89a, MPW89b, MPW921 is a process calculus which is able 

to describe dynamically changing networks of concurrent processes. An example 

of such a process network is shown below. The network models a mobile telephone 

and two ground stations. To describe how the telephone can switch from using 

one ground station to another, we need to be able to change the communication 

topology of the network (unlinking the telephone from the first station and linking 

it to the second). The telephone must be able to accept messages (along its 

existing links) which tell it how to access other ground stations. Thus, as the 

car travels from region to region, details of other, closer, ground stations may be 

transmitted to the phone, enabling it to reroute its communications through the 

closest station. 

-E 

Control Centre 	 Control Ontre 

The active agents of the ir-calculus are processes, which exchange information 

over channels. A process of the form c!v.P outputs the value v along the channel 

c and then continues as P. This communication is synchronous: P is preven-

ted from executing until the communication on c has completed. Similarly, the 
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process c?x.Q waits to receive a value along c, continuing as Q with the value 

received substituted for the formal parameter x. (The it-calculus literature has 

many variations on the syntax used for input and output - we use a syntax which 

is most similar to that used in the Pict programming language [PT95b].) 

Two processes may be run in parallel using the parallel composition operator I, 
thus enabling interactions between them. In the following example, since both 

processes wish to communicate on the channel c, an interaction is possible: 

c!v.P I 	c?x.Q 
- 	P I  {v/x}Q 

(We use the symbol -+ to denote process reduction, and {v/x}Q to denote the 

substitution of v for x in Q). 
This style of synchronous rendezvous is used in many process calculi, includ-

ing CCS [Mil80, Mi189] and value-passing CCS [Mil80, Mi189]. However, unlike 

its predecessors, the it-calculus' channels not only provide the means of commu-

nication, but are also the values exchanged during communication. 

This dissertation investigates whether the it-calculus is able to serve as a good 

foundation for the design and implementation of a strongly-typed concurrent pro-

gramming language. The first half of the dissertation examines whether the it-

calculus supports a simple type system which is flexible enough to provide a 

suitable foundation for the type system of a concurrent programming language. 

The second half of the dissertation considers how to implement the it-calculus 

efficiently, starting with an abstract machine for it-calculus and finally presenting 

a compilation of it-calculus to C. 

The following sections summarise the contents of this dissertation. 

1.1 The polyadic ir-calculus 

The input and output primitives of the it-calculus are monadic: exactly one chan-

nel is exchanged during each communication. The polyadic it-calculus [Mil9laJ 

is a useful extension of the it-calculus which allows the atomic communication 

of tuples of channels. The additional structure introduced by polyadic commu- 

nication is important, since it raises the possibility of runtime failure (the tuple 
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sent along a channel may not have the same length as the tuple expected by the 

receiver). The monadic ir-calculus has no corresponding operational notion of 

runtime failure, even though it can encode polyadic communication. 

In Chapter 2 we give the syntax and semantics of the polyadic 7r-calculus, and 

then show why encoding the polyadic ir-calculus in the monadic ir-calculus des-

troys our operational notion of runtime failure. We also present some convenient 

derived forms and examples (which shall appear again in later chapters). 

1.2 Process typing 

The formal simplicity of the A-calculus makes it an ideal foundation for the con-

struction of type systems for sequential programming languages. We believe that 

the 7r-calculus can play a similar role in the construction of type systems for 

concurrent programming languages. In Chapter 3, we show that the polyadic 

7r-calculus admits a simple typing discipline, which can easily be extended to in-

clude useful type-theoretic constructions such as recursive types and polymorph-

ism. We show how our typing rules behave on the examples and derived forms 

of Chapter 2, and prove (by means of a subject-reduction theorem) that our type 

system guarantees freedom from runtime errors. 

The simplicity of our ir-calculus type system allows us to infer types automat-

ically. The benefits of automatic type inference have been clearly demonstrated 

in languages such as Standard ML [MTH90] and Haskell [HJW92], where the 

programmer has to write only a minimum of explicit type information. We use 

similar, unification based, techniques to infer types for ir-terms. 

1.3 Recursive types 

There are many useful programs which cannot be assigned a type in the simply-

typed A-calculus. Similarly, there are many useful ir-calculus programs which 

cannot be assigned a type in our simple type system. An important deficiency is 

that we cannot support programming with recursive datatypes (for example, lists 

or trees). In Chapter 4, we present a simple solution to this problem: recursive 

types. In fact, as in the A-calculus, recursive types make the typed ir-calculus 



CHAPTER 1. INTRODUCTION 	 11 

as expressive as the untyped monadic ir-calculus, since we can assign a type to 

every monadic ir-term. 

1.4 Polymorphism 

A common disadvantage of simple type systems is that, although they prevent 

common programming errors, they also disallow many useful and intuitively cor-

rect programs. Polymorphic type systems overcome much of this problem by 

allowing generic operations, that is, operations which can be safely applied to 

many different types of argument. List operations such as reversing and concat-

enation are good examples of generic operations, since they act completely inde-

pendently of the types of the elements in the lists. The extra flexibility offered by 

a polymorphic type system seems to be enough to allow a more natural style of 

programming, where the type system is not perceived as 'getting in the way'. 

In Chapter 5 we define an explicitly-typed polymorphic type system for r-

calculus which arises as a natural extension of the simple type system we presen-

ted in Chapter 3. We illustrate the utility of polymorphic types in ir-calculus 

programming using a number of examples, and then show how polymorphic chan-

nels can be used to model abstract datatypes in a type-safe manner. We prove 

our type system sound using techniques similar to those we used to prove the 

soundness of our monomorphic type system. 

1.5 Relating typed )-terms to typed 7r-terms 

Our type system is constructed using type-theoretic techniques borrowed from 

the )t-calculus, so it is natural to ask if there is a precise relationship between 

well-typed )-terms and well-typed ir-terms. Milner [Mi190] has already shown 

that we can encode various )-calculus reduction strategies in the ir-calculus. In 

Chapter 6, we show that the type structure of a )-term is often preserved by these 

encodings. In fact, in some cases, we can even prove that the principal type of a 

)-term is directly related to its encoding's principal type in the ir-calculus. 

Perhaps the most interesting feature of these encodings is that (in the presence 

of polymorphism) they don't always work! For example, we find that the Damas- 
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Milner type system [DM82] does not always agree with our it-calculus type system 

as to which types a A-term may inhabit. This might not be surprising to those 

familiar with ML, since it is well-known that Damas-Milner polymorphism is 

unsafe in the presence of side-effects [Tof88]. The it-calculus is, by its very nature, 

a calculus containing side-effects, so it had better not allow the same kind of 

polymorphism as the Damas-Milner type system. 

In fact, we find that the soundness of the Damas-Milner type system is closely 

connected to the precise evaluation order used (a result which was recently dis-

covered by Leroy [Ler93], though not using encodings into the it-calculus). We 

find that the call-by-value encoding of A-calculus does not preserve its Damas-

Milner type structure, but the call-by-name encoding does. 

1.6 An abstract machine for ir-calculus 

If the it-calculus could be implemented efficiently, it would clearly serve as a 

flexible intermediate language for compilers of concurrent languages (in view of 

the diverse high-level constructs which have been shown to be encodable in the 

it-calculus). For example, the it-calculus can encode higher-order communication 

(the communication of processes along channels) [San93a, San93b], structured 

datatypes [Mil9la], mutable data, concurrent objects [Wal9l], and even the A-

calculus [Mi190]. In Chapter 7, we describe an abstract machine for the it-calculus 

which is simple and yet realistic. In fact, in Chapters 8 and 9 we present a 

compilation of it-calculus to C which is directly based on the abstract machine 

presented in Chapter 7. 

Our first abstract machine for the it-calculus introduces the basic mechanisms 

for process creation, channel creation and communication. We prove that the 

reductions of our abstract machine correspond to valid it-calculus reductions. We 

then make a number of refinements to both our abstract machine and our source 

language. In particular, we record variable bindings explicitly in environments, 

rather than using a substitution operation, so that the basic operations of our 

abstract machine are simple and efficient enough to be implemented directly. 
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1.7 Compiling Pict to C 

The primary motivation of the Pict [PT95b] project was to design and implement 

a high-level concurrent language purely in terms of ir-calculus primitives. There 

have been many proposals for concurrent languages [Car86, Ho183, Rep92, Mat9l, 

GMP89, etc.] which include communication primitives which are very similar to 

those of the ir-calculus. However, to our knowledge, none have proposed using 

ir-calculus primitives as the sole mechanism of computation. 

The Pict language consists of two layers: a very simple core calculus (which is 

just ir-calculus extended with built-in structured data), and a high-level language 

which is defined via translation into the core calculus. In Chapters 8 and 9, we 

describe an efficient compilation of core Pict to C. The compilation has been im-

plemented and now forms part of the Pict programming language implementation. 

The compilation is (perhaps surprisingly) quite simple, and is designed so that it 

can exploit information provided by a number of program analyses. 

Our compilation can be thought of as a more refined description of the abstract 

machine which we present in Section 7.11, where we are explicit about the exact 

representation of all runtime data and the implementation of operations such as 

environment lookup. 

1.8 Useful information 

Labelled items (such as definitions, lemmas or theorems) are labelled c.n, where 

c is the chapter in which the item occurs, and n indicates that the item is the n'th 

labelled item in that chapter. 

Some familiarity with CCS and the ir-calculus would be helpful for readers of 

this dissertation. Useful background reading can be found in [Mil89, MPW89a, 

MPW89b, MPW92, Mil90, Mil9la]. 

The implementation of the Pict programming language (referred to previously) is 

available electronically. The distribution includes a manual and tutorial, as well as 

a number of examples of X-Windows programs written in Pict. This dissertation 

is also available online. 



Chapter 2 

The polyadic 7r-calculus 

The input and output primitives of the 7r-calculus are monadic: exactly one chan-

nel is exchanged during each communication. The polyadic ir-calculus [Mil9la] 

is a useful extension of the 7r-calculus which allows the atomic communication 

of tuples of channels. The additional structure introduced by polyadic commu-

nication is important, since it raises the possibility of runtime failure (the tuple 

sent along a channel may not have the same length as the tuple expected by the 

receiver). The monadic 7r-calculus has no corresponding operational notion of 

runtime failure, even though it can encode polyadic communication. 

We first give the syntax and semantics of the polyadic 7r-calculus, and then 

show why encoding the polyadic ir-calculus in the monadic ir-calculus destroys 

our operational notion of runtime failure. 

2.1 Syntax 

The syntax of the polyadic ir-calculus is given in Definition 2.1. We require that 

all arguments to the summation operator are either input prefixes, output prefixes, 

or the nil process. This is commonly known as guarded summation, since every 

non-trivial term in a summation is guarded by an input or output prefix. We 

could allow full summation, but it adds very little useful power in exchange for 

the complexity it introduces in the formal semantics of our calculus. 

The restriction operator (vx)P binds the variable x in the process P. The 

input operator x?[x 1 ,. . . , x].P binds the variables x 1 ,. . . , x in P. We disallow 

14 
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duplicate bound variables in input prefixes. When the length of a sequence is 

clear from the context, or is unimportant, we let denote x1,.. . , x,,. We do not 

distinguish terms which are or-convertible. 

Definition 2.1 (Process syntax) 

P,Q,R,S ::= PIP 
(ux)P 

P+P 
x?[x1,.. 
x![x 1 ,.. . , x 0J.P 

0 

Parallel composition 
Restriction 
Summation 
Input 
Output 
Replication 

Nil 

It is very common for the continuation of an output to be the nil process, so 

we allow x![x 1 ,.. . , x,] as an abbreviation for x![x 1 ,.. . , 

The precedences of the operators are described below. For example, the term 

(vx)x![a,b].P+Q denotes ((vx)x![a, b].P)+Q and *P I Q denotes (*P) I Q. Note 

the precedence of the (meta-syntactic) substitution operator which, for example, 

implies that {y/x}P I Q denotes ({y/x}P) I Q. 

J Input, Output, Restriction, 
Parallel Composition < Summation 	

1. Replication, Substitution. 

Tuples have no interesting evaluation behaviour. We cannot, for example, 

embed communications inside tuples. Thus, all computation in the polyadic ir-

calculus is still based on processes communicating over channels, just as in the 

monadic ir-calculus. 

2.2 Semantics 

We present the semantics of the polyadic ir-calculus using a reduction relation 

(see [Mil9la] for more details). This style of semantics involves defining two rela-

tions on processes: a reduction relation, which formalises the actual communica-

tion behaviour of processes, and a structural congruence relation. The structural 

congruence relation allows us to rewrite a process so that any two active input or 
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output prefixes can be syntactically juxtaposed. This simplifies the presentation 

of the reduction relation by reducing the number of cases we have to consider. 

Definition 2.2 describes the reduction of ir-terms. The first two rules state 

that we can reduce under both parallel composition and restriction. (The sym-

metric rule for parallel composition is redundant, because of the use of structural 

congruence.) 

Definition 2.2 (Process reduction) 

Q 
	

P—Q 

PIQ — PIR 
	

(vx)P -+ (vx)Q 

(P+c?[x1,...,x].Q) I (c![yi,...,y].R+S)—+{y i ,...,y/x 1 ,...,x}Q I  

PEEP' 	P,  Q, 	Q'Q 
P  

The communication rule takes two processes which are willing to communicate 

on the channel c, and simultaneously substitutes the free names yl,.... y, for 

the bound variables x 1 ,. . . , x. (The simultaneous substitution of ! ,i,• . . , y,-, for 

Xn is well-defined, since we disallow duplicate bound variables in input 

prefixes.) The remaining components of the summations (P and S) are discarded, 

since at most one component of a summation is allowed to execute. Note that the 

communication rule is the only rule which directly reduces air-term. 

The communication rule assumes that processes are in a particular format 

(for example, the inputting process must be on the left, and must be contained 

in a summation). The structural congruence rule allows us to rewrite processes 

so that they have the correct format for the communication rule. (Some rewriting 

may also be necessary before using the parallel composition rule, since it assumes 

that the next reduction will always occur in its right sub-component.) 

The rule for communication is sufficient, since we are only considering guarded 

summation. If we allowed full summation, then we would not be able to assume 

that both participants in a communication are immediate sub-components of sum- 

mations. 
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Definition 2.3 (Structural congruence) Let structural congruence, , be 
the smallest congruence relation which satisfies the axioms below. 

PI*P 

PPIo PP+o 
PIQ Q I P P+Q = Q+P 

(PIQ)IR P(QR) (P+Q)+R = P+(Q+R) 

(vx)P I Q 	(vx)(P I Q) 	x fv(Q) 

Definition 2.3 presents the structural congruence relation. Most of the rules 

simply assert the associativity and commutativity of the parallel composition and 

summation operators. 

We now show some example reductions which illustrate simple uses of struc-

tural congruence. To infer that the following process can do a communication on 

C, we need to use the associativity and commutativity of parallel composition to 

bring the input and output prefixes together: 

c?[x,y].P I (R  I c![a,b].Q) 
R I (c?[x,y].P d[a,b].Q) 

The communication rule also expects both the input and output prefixes to be 

contained in summations, so we must use the identity and commutativity rules 

for summation: 

RI (O-i-&[x,y].P I c![a,b].Q+O) 

We can now use the parallel composition and communication rules to infer the 

communication on C: 

- RI ({a,b/x,y}P I Q) 

The structural congruence rules also allow us to generate as many copies of 

a replicated process as we require. This allows us to ignore replication in the 

reduction rules. For example, we can use structural congruence to make a single 

copy of the replicated process *c? [x, y]. P, which can then start communicating in 

the usual way. 
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*c?[x,y].P I (R  I c![a,b].Q) 
(*c?[x,y].P J c?[x,y}.P)  I (R  I c![a,b].Q) 
(*c?[x, y].P I R) 1(0 + c?[x, y].P I c![a, b].Q + 0) 

- (*c?[x,y].P I R) ({a,b/x,y}P J Q) 

The benefits of a reduction-style semantics are most obvious when we con-

sider the restriction operator: the reduction rules contain no mention of restric-

tion, except for the rule which allows us to reduce underneath restriction. We 

have managed to separate the rules implementing communication from the rules 

which change the scope of restriction: in a labelled-transition semantics, the two 

operations are usually combined, resulting in more complicated rules. 

In the case where a channel c is shared between two communicating processes, 

the reduction rule for restriction can be used directly: 

(zi'c)(c?[x,y].P I c![a,b].Q) 

(zic)(0+c?[x,y].PI c![a,b].Q+0) 
-+ (vc)({a,b/x,y}P I Q) 

In the case where a private channel is being communicated to another process, 

we must first expand the scope of the private channel to encompass the recipient 

(using structural congruence), and then reduce the process: 

c?[x,y].P I (v a) (c! [a, b]. Q) 
(va)(c?[x,y].P I c![a,b].Q) 
(zi a)(0 + c?[x, y].P I c![a, b].Q + 0) 

- (z.'a)({a,b/x,y}P I Q) 

Expanding the scope of a in the above example is only valid if a does not 

already occur in the process c?[x, y].Q. This condition is checked in the side-

condition on the rule (vx)P I Q (vx)(P I Q). 
Suppose x E fv(Q) and we wish to apply the (ux)P I Q 	(vx)(P I Q) 

rule. We achieve this by first a-converting the term (ii x)P, renaming x so that 

it no longer occurs free in Q. Then we can apply the structural congruence rule. 

(We do not mention such a-conversions explicitly, since we do not distinguish 

a-convertible processes.) 
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2.3 Runtime failure 

The additional structure introduced by the polyadic communication primitives 

is important, since it raises the possibility of runtime failure. For example, the 

process 

c![vi,v2,v3J.P I c?[x i ,x2 ].Q 

is ill-formed, since it attempts to input a pair on c, when c is in fact being used 

to carry a triple. 

Definition 2.4 (Runtime failure) 

P fails 
	

P fails 
	

P_=Q 	Qfails 
P I Qfails 	(ii x)1-'fails 

	
P fails 

m 7 n 

(P+C?[Xi,...,Xm].Q) I (c![yi ,...,y] .R+S) fails 

Definition 2.4 formalises what we mean by runtime failure in the polyadic ir-

calculus (the rules mimic the reduction rules exactly, except for the communication 

rule, which actually detects the runtime failure). 

2.4 Encoding polyadic communication 

The ability to create private channels and communicate them to other processes 

allows us to encode polyadic communication in the monadic ir-calculus [Mil9la]. 

We can encode polyadic output as below (we use the symbol = to denote defini-

tional equality): 

c![v i ,. . . , v,4.P 	(vw)(c!w.w!v i . . . . w!v,.P) 	w 	fv(P, v 1 ,. . . , v,j 

The encoding first creates a new channel w and sends it along c. It then 

transmits V1, . , v, sequentially along w and continues as P. The condition 

W MP, v 1 ,. . . , v) ensures that the auxiliary variable w is not a free variable of 

either P or v 1 ,. . 

We can encode polyadic input using a similar composite communication; the 

components of the received tuple are bound to x 1 ,. . . , 
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c?w.w?x 1 ... . w?x,.Q 	w $ fv(Q, x 1 , . . . , x,) 

As the following example demonstrates, the communication of [vi , v 2] along c 

results, after a number of reduction steps, in the substitution of v 1  for x 1  and v 2  

for x 2 . 

C! 1V1,  v 21.P 
= (vw)(c!w.w!v 1 .w!v 2 .P) 
-+ (uw)(w!v i .w!v 2 .P 

(ziw)(w!v 2 .P 
- 	 (iiw)(P 

c?[x1 , x 21.Q 
c?w.w?x 1  .w?x 2 .Q 

w?x 1  .w?x 2 .Q) 
w?x 2 .{v i /x i }Q) 

{v2/x2}{vl/xl}Q) 

After the exchange of w along c, w becomes a private channel shared between 

the inputting and outputting processes. The final result of the composite commu-

nication still mentions the private channel w, but this extra channel is harmless, 

since w is not mentioned in the scope of (v w) (the side-conditions in the encoding 

ensure that w fv(P,Q,v i ,v 2 ,x i ,x 2 )). 

2.5 Runtime failure in the monadic ir-calculus 

We now show why encoding the polyadic 7r-calculus in the monadic ir-calculus 

destroys our operational notion of runtime failure. Consider the following process 

(which fails in the polyadic ir-calculus): 

c![vi,v2,v3J.P I 

If we examine the encodings of c![v i , v 2 , v31.P and c?[x i , x 21.Q into the monadic 

7r-calculus, we find that the following reduction sequence is possible (we assume 

that w fv(P,Q,v i ,v2 ,v3 ,x i ,x 2 )): 

c! [v i , v 2 , v31.P 
= (vw)(c!w.w!v i .w!v 2 .w!v 3 .P) 
-+ (uw)(w!v i .w!v 2 .w!v 3 .P 

(ii w)(w!v 2 .w!v 3 .P 
(vw)(w!v 3.P 

c?[xi , x 21.Q 
c?w.w?x i .w?x 2 .Q 

w?x 1  . w?x2 . Q) 
w?x2.{vi/xi }Q) 

{v2/x2}{vl/xl}Q) 
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It is now much harder to detect that our example has failed, since it can 

actually perform a number of reduction steps. Only after the communication of 

v 1  and v 2  along w do we encounter a problem: the process w!v 3.P cannot proceed, 

since there are no processes which can cooperate with the output on w. 

Thus, we find that a failure due to an ill-formed communication manifests itself 

as a deadlocked sub-process. It is not the case that the whole process deadlocks 

(the process {v21x2}{v11x1}Q  is free to proceed), so a precise definition of this 

failure in terms of deadlock is difficult. (Another reason why deadlock is not 

a suitable notion of failure is that there are many useful it-calculus programs 

which expect certain processes to become deadlocked. Often, it is assumed that 

deadlocked processes will be garbage collected so that, for example, a server which 

has no clients will be garbage collected without any need for explicit termination.) 

These difficulties suggest that the monadic ir-calculus does not have enough 

syntactic structure to support a simple type system: there is not enough informa-

tion present in a it-term to guess whether the programmer expected it to deadlock 

or not. The polyadic it-calculus can be thought of as a minimal extension of the 

it-calculus which allows us to detect runtime failure purely syntactically. 

2.6 Recursive process definitions 

Most recent presentations of the it-calculus use a replication operator to enable 

processes to have infinite behaviour. The replication operator neatly replaces 

the much more complicated mechanism of recursively-defined processes used in 

earlier presentations of the it-calculus. However, it is still helpful to have high-

level syntax for recursively-defined processes when writing it-calculus examples. 

We therefore provide a derived form for such definitions: 

Definition 2.5 (Process definitions) 

def X1 [ 1 ] = P1  and ... and X , [i,,] = P, in Q 
(vXi)... (vX)(*X1?[11.P1  J ... J *X?[].P  I Q) 

For each process definition Xj 1 ] = P2  we create a new channel X, and a rep-

licated process *X 1 ?[ 2 ].P. The process X?[}.P1  waits for a tuple of arguments 



CHAPTER 2. THE POLYADIC 7r-CALCULUS 	 22 

to be sent on the channel Xi  and then runs P with the arguments substituted 

for the formal parameters i i . The replication operator enables X i  to be called 

arbitrarily often by providing an arbitrary number of copies of X?[].P1 . 

We can invoke the process definition X 1  by simply sending the desired ar-

guments along the channel X2 . For example, the following process repeatedly 

outputs b along y: 

def X[x, a] = x![a].X![x, a] in X! [y, b] 

We can illustrate the behaviour of X by expanding the derived form: 

def X[x, a] = x![a].X![x, a] in X! [y, b] 

	

(vX)( *X?[x, a].x![a].X![x, a] I 	 X! [y, b]) 
(z.'X)( *X?[x, a].x![a].X![x, a] I X?[x, a].x![a].X![x, a] I X![y, b]) 

	

-+ (ii X)( *X?[x, a].x![a].X![x, a] I 	y![b].X![y, b] 	) 
def X[x, a] = x![a].X![x, a] in y![b].X![y, b] 

A simple example of a mutually-recursive process definition is given below 

(the example repeatedly waits for a value on p and then retransmits it on q). We 

expand the derived form to illustrate how the scoping of the Get and Put channels 

allows mutually-recursive calls (both channels are in scope in the bodies of Get 

and Put, and in the process Get! [p, q]). 

def Get[i, o] = i?{x].Put! [i,o, x] 
and Put [i,o,x] = o![x]. Get! [i,o] 
in Get! [p,q] 

2.7 Returning results 

(v Get) (vPut)( 
*Get?[i, o] .i?[x].Put![i, o, x] 
*Put?[i, o, x].o![x]. Get![i, o] 
Get! [p, q] 

) 

It is very common for a process to behave in a 'functional' manner: accepting 

a number of arguments, doing some computation and then returning a result. 

In the ir-calculus, it is necessary to return such results by means of an explicit 

communication, since processes do not have implicit results. 

By convention, we write such 'functional' processes in the following form, using 

the last parameter as a result channel. 

f?[,r]. . . . r![results] 
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Such processes are frequently replicated, to enable multiple calls to be executed, 

in which case we can write them as a process definition: 

def f[, r] = ... r![results] 

This style of programming is very reminiscent of continuation-passing style, since 

r can be though of as the current continuation into which f inserts its result. 

Although we don't need any special syntax to help define processes which 

return results, it is, however, convenient to have a derived form for getting results 

back from process definitions such as f: 

Definition 2.6 (Getting results from processes) 

let x1,... ,x,-, = f(ai,.. . , am) in P 

= (vr)(f![ai, ... ,am,r]jr?[xi,...,xn].P) 	rfv(P,f,ai, ... ) a n ) 

The above definition calls f by creating a new channel r (a new channel is 

necessary to avoid interference), and sending it to f along with the arguments ii. 

It then waits for the results to be sent back along r, continuing as F, with the 

results substituted for the bound variables i. (The fact that all communication 

is polyadic means that we can conveniently support calls which not only require 

multiple arguments, but which return multiple results.) 

We omit the in and let keywords in nested let expressions, so that we need 

only write 

instead of 

let i = f( ... ) in let P = g( ... ) in P 

Consider the process definition g below, whose last action is to get some result 

from f, and return it along r. 

defg[,r] = let = f() in r! [] 

We often simplify processes such as g by making a tail-call to f: 

defg[,r] = f![,r] 
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Now f returns its result along r directly, rather than returning it indirectly via 

g. We use tail-calls here to simplify our examples, but they do have a useful 

effect in practice, since they both save creating an extra result channel and avoid 

a communication in g. 

2.8 Booleans 

In [Mil9la] Milner demonstrated how data structures could be encoded in the 

ir-calculus. For example, we can define the booleans True and False as below: 

def True[r] =(vb)(r![b] 
def False[r] = (ub)( r![b] J *b?[t, f].f![]) 

True and False do not take any parameters, other than a result channel r. They 

both create a new channel b, which serves as the location of the boolean value 

and return b along the result channel r. That is not all, however, since True and 

False both start a replicated process, whose purpose is to answer queries about 

the boolean b. The process must be replicated if we want to query a boolean more 

than once (omitting the replication would yield a linear boolean). 

We can implement conditionals as below. Suppose that b is the location of a 

boolean value. If we send a pair of private channels [t, f] along b, the boolean will 

reply using t, if it is true, or f, if it is false. Thus, P proceeds if b is true and Q 
proceeds if b is false. 

Definition 2.7 (Conditionals) 

if b then P else Q = (v t)(v f)(b![t, f].(t?[].P + f?[].Q)) 	t, f fv(P,  Q) 

It is now easy to implement the conjunction, disjunction and negation opera-

tions on booleans. Consider, for example, the behaviour of And, the conjunction 

operation. If b1  is true it simply returns b2  along the result channel r, otherwise 

it instructs False to create a boolean and return it along r. 

def And[b i , b2 , r] = if bi  then r![b2 J else False! [r] 
def Or[bi , b2 , r] = if b1  then True![r] else r![b2 ] 

def Not [b, r] = if b then False! [r] else True! [r] 
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2.9 Lists 

Lists have two constructors: Nil and Cons. Nil doesn't take any parameters, apart 

from a result channel. Cons takes the head and tail of the list as parameters, plus 

a result channel. 

def Nil[r] = (ii l)( r![l] I *l?[n, c].n![] ) 
def Cons[hd, tl, r] = (z..' l)( r! [11 1 *1? [n, c].c![hd, ti]) 

The behaviour of Nil is similar to that of True. It creates a new channel 1, 
the location of the list, and returns it along r. It then creates a replicated process 

which responds to requests on I by signalling on n, the first component of the 

request. 

The behaviour of Cons is slightly more complicated, since it does not signal 

on c using the trivial value, but sends a pair [hd, tl]. This enables a process inter-

rogating the cons cell to further interrogate the head and tail of the list (assuming, 

of course, that hd is the location of some data structure and Il is the location of 

another list). 

We define a list pattern-matching derived form below. It operates similarly to 

the derived form for conditionals, except that it binds the variables hd and tl to 

the head and tail of 1 (if I is a cons cell). 

Definition 2.8 (List pattern-matching) 

match I with Nil => P and Cons[hd, 11] => Q 
= (vn)(vc)(l![n,c].(n?[].P + c?[hd, tl].Q)) 	n,c fv(P, Q) 

We can now use list pattern-matching to write the list concatenation procedure. 

The Concat procedure take two lists, 11 and 12, as arguments, plus a result channel 

r. It responds by sending the concatenation of 1 1  and 12 along r. 

def Concat[11 ,12 ,r] = 
match 1 1  with Nil => 

r! [121 
and Cons[hd, tl] => 
let rest = Concat(tl, 12) in Cons![hd, rest, r] 
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If 1 1  is nil then Concat immediately sends 12  along r. Otherwise, we recursively 

calculate the concatenation of U and 12, naming the result rest. We then cons hd 

onto rest, instructing Cons to return the resulting list along r. 

2.10 Process-based reference cells 

We can easily encode updatable data structures using processes. For example, the 

process Cell![x, read, update] represents a reference cell whose current contents is 

x (the read and update channels can be used to read or modify the contents of the 

reference cell). 

def Cell [x, read, update] = 
read! [x]. Cell! [x, read, update] + update? [n]. Cell! [n, read, update] 

The summation operator ensures that read and update requests cannot be executed 

concurrently. We can therefore guarantee that once an update request has been 

accepted, all subsequent read requests will be answered with the updated contents 

of the cell. 

The process definition Ref, given an initial value x and a result channel r, 

creates a new reference cell (by creating two new read and write channels, and 

starting a Cell process). 

def Ref [x, r] = (ii read) (v update) (r! [read, update] I Cell! [x, read, update]) 

2.11 Channel-based reference cells 

An alternative style of reference cell, which doesn't use the summation operator, is 

shown below. Each reference cell is represented using a single channel, rather than 

a process. Given an initial value x and a result channel r, the ChanRef process 

builds a new reference cell by creating a new channel ref and (asynchronously) 

writing x on it. 

def ChanRef[x,r] = (v ref)(r! [ref] I ref! [x]) 

The Read process, given a reference cell ref and a result channel r, reads a 

value x from ref (the current contents of the reference cell) then immediately puts 

it back, sending x back to the client using r. 
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defRead[ref,r] = ref?[x].(ref![x] J r![xJ) 

Similarly, given a reference cell ref, a new value v and a result channel r, 

the Update process reads the current contents of the reference cell from ref and 

replaces it with v, signalling completion on r by sending the empty tuple. 

def Update [ref ,v,r] = ref ?[x]. (ref ![v] I 

The ChanRef,  , Read and Update operations all preserve the invariant that there 

is at most one active writer on the ref channel. The first action of both the Read 

and Update processes is to read a value from the channel ref. Successfully reading 

a value from ref therefore has the effect of temporarily blocking all other Read and 

Update operations (since there is at most one active writer on the channel ref). 

Thus, we avoid any interference between concurrent Read and Update operations. 



Chapter 3 

Process typing 

The most useful type systems for programming languages are those which can 

be typechecked automatically (usually during compilation). The ML type sys-

tem [Mi177, DM82] is a particularly good example of such a type system, since 

the programmer does not even have to write any type information - it is all 

inferred automatically by the type checker. 

If we wish type checking, or type inference, to be performed during compil-

ation, rather than during evaluation, then we cannot hope to calculate the exact 

behaviour of a program, since this will in general depend on the input data, which 

is not available at compilation time. We must therefore make a conservative ap-

proximation of the behaviour of a program, assuming, for example, that both 

the then and else clauses of a conditional expression are executed, rather than 

attempting to calculate exactly which clauses are executed. 

There are also good pragmatic reasons to avoid complicated calculations in a 

programming language's type system, since programmers need to understand any 

type errors reported by the type system. 

Computation in the 7r-calculus is based on communication over channels. We 

simplify our type system by making two important decisions: 

The type of a channel remains constant throughout its lifetime. 

We do not specify temporal properties of channels. 

These decisions avoid the need to consider causal relationships between com-

munications, and significantly simplify our type system. 
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This chapter presents our monomorphic ir-calculus type system. We first 

define the syntax of types and typing contexts, and then present the typing rules 

for processes, showing how the typing rules behave on the examples and derived 

forms of Chapter 2. We then prove (by means of a subject-reduction theorem) 

that our type system guarantees freedom from runtime errors. 

3.1 Types and type contexts 

Definition 3.1 gives the syntax of types. We have just one type constructor (the 

channel type constructor) since channels are the only data that we have in the 

polyadic 7r-calculus. We also allow type variables (which will enable us to do type 

inference later). 

Definition 3.1 (Types) 

Channel type 
a 	 Type variable 

We record the types of free variables in a type context. Type contexts are 

(possibly empty) sequences of bindings of the form x : Si,. ,x,., : O,, where 

x1,. , x, must be distinct variables. We sometimes let i : denote the context 

Si: 8k,.. . ,x: O. 

Definition 3.2 (Type contexts) 	A ::= x, : Si,.. . , x : 

We leave the 'distinct variable' condition implicit in our typing rules. For example, 

if we mention L, s : S in a rule, we are implicitly assuming that x is not already 

mentioned in L. The expression L(x) denotes the type associated with x in L, 

and is defined as below: 

Definition 3.3 (Context lookup) 

(L,x:O)(x) = 0 
(z, y: S) x) = i(x) 	if x 	y 

Q(x) = undefined 
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3.2 Typechecking processes 

In the it-calculus, processes have no explicit results. We can only interact with a 

process by communicating with it. Therefore, our typing judgements for processes 

take the form L [- P, where A is a typing context which gives the types of the 

free variables of P. We can read A F P as asserting that P uses its free variables 

consistently with the types given in L. 

The simplest it-calculus process is the nil process, 0. It cannot communicate 

at all and hence is consistent with any context: 

LF0 Nil 

The output operator c![x i ,.. . , x,,].P sends the tuple [x i ,. . . , x,] along the 

channel e. P is the process which continues after the communication has com-

pleted. The Output typing rule 

L(c) = t[z(x1),... L(x)} 	A F ° 	
Output 

states that if, in a context A, c is a channel carrying a tuple of length n, whose 

components match the types of the values x 1 ,. . . , x, we are sending, and P is a 

well-formed process in the same context L, then c![x i ,. . . , x,].P is a well-formed 

process. Note that the output operator is not a name-binding operator, so P 
is expected to be well-formed in the same context A. A simple example of a 

well-typed output is given below (A and B are arbitrary types). 

a: A 7  b: B,c : t[A,B] F c![a,b].0 

The input operator c?[xi , . . . , x].P receives a tuple of length n along the 

channel c, binding the components of the received tuple to x 1 ,. . . , x in P. The 

Input typing rule 

L(e)=t[8i,...,&J 	L,x 1 :61 ,...,x:cFP 
LF c?[xi ,...,x].P 

Input 

checks that c is a channel carrying a tuple of length n, and that P is well-formed in 

the context A extended with the types of the bound variables. Note that the bound 
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variables x 1 ,. . . , x must be distinct from the variables already bound in Z (it is 

always possible to satisfy this condition by a-converting the bound variables). 

A simple instance of the Input typing rule is given below (where A = a : A, b: 

B, c : t[A, B]). Note that P is typechecked in the context L, x: A, y: B, since x 

and y are bound to the first and second components of the tuple sent along c. 

[A, B] 	L,x:A,y:BFP 

F c?[x,y].P 
Input 

The typing rule for P I Q must ensure that P and Q use their free variables 

in a consistent manner. We therefore require that P and Q are well-typed in the 

same context. This ensures that any channels which are used in both P and Q 

must have the same type. 

A 	z1F-Q 
Pr1 

/FPIQ  

We can now check that our previous two examples can be run in parallel: 

Output 
F c![a,b].O 	 /. F c?[x,y].P 

A F c![a,b].O I c?[x,y].P 

Input 

Prl 

The Pri rule clearly disallows ill-formed examples such as c! [a, b].P I c?[x].Q, 

since the left-hand process requires that c has type t[A,  B] while the right-hand 

process requires c to have type t[X],  for some X. 

The restriction operator (ii x)P introduces a new channel x in the scope of 

P. The typing rule for restriction therefore extends the context L by adding a 

type binding for x. This rule is particularly simple because there is only one type 

constructor: the channel type. If we also had some basic types, such as integers, 

we would need an extra restriction on the Res rule, to ensure that x is given a 

channel type. 

F P 

A F (ux)P 
Res 

We can now use restriction to localise the channels a, b and c in our previous 

example: 
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H (va)(vb)(uc)(c![a,b].O ( c?[x,y].P) 

Note that the above process is consistent with the empty context. In fact, 

we can show that it is consistent with any context. This makes sense because a 

closed process cannot communicate with the outside world, and therefore, if it is 

internally consistent, is able to execute safely in any context. 

The summation operator ensures that only one of its operands will ever execute, 

but we cannot (in general) statically determine which one it will be. Therefore, 

we require that both P and Q are consistent with the same context. This ensures 

that any possible execution of P + Q will behave correctly: 

zHP 	zHQ 
LXHP+Q 

Smt 

Our types do not attempt to describe how often a channel is used. Thus, since 

the replication operator, *P, only serves to make an arbitrary number of copies 

of P available, the consistency of *P only depends on the consistency of P: 

A  
Repi 

The typing rules for processes are summarised in Definition 3.4. 
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Definition 3.4 (Process typing rules) 

zI- P 	LI- Q 
LF- PIQ 

(S I- P 
I- (vx)P 

AF-P 	AF-Q 

AFP+Q 

L(c) = t[5i,. . .,(SnI 	A, X, : 8k,. . .,xn  : (Sn I P 	
Input 

	

= t[z(xi),... , z(x,)J 	A F- P 	
Output 

A  
Repi 

Nil 

3.3 Derived rules for process definitions 

Our process typing rules give rise to the following admissible rule for process 

definitions: 

Definition 3.5 (Typing of process definitions) 

A7 X1  t[iI,. ..,X, : t[nI F-  Q 
tknJ,i : Si 	F- P1 	1 < i < n 

Def 
A F- def Xi [x i ] = P1  and ... and Xn [xn] = Pn in  

If we expand out the derived form (see Definition 2.5 on page 21) for any 

process definition, we find that we can construct a complete proof of its well-

typedness using only the premises of the above rule. Suppose the premises of the 

above rule are true. For each definition X 1  we have, using the Input rule and the 

second assumption, that 

Pri 

Res 

Smt 
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,X, : t[] F X 1 ?[ñJ.P1  

Therefore, using the Repi rule, we have 

F- *X 1 ?[].P 

Using the Pri rule and the first assumption we then find that 

,X, : t[&] F *X 1 ?[ 1 }.P1  I ... I *X?[].P,  IQ 

Finally, we can use the Res rule to prove that 

L1 F (vX i ). .. (uX)(*X1?[1].P1 I •.. I *X?[n].P  I Q) 

as required. 

3.4 Processes which return results 

The process typing rules also give rise to the following admissible rule for let. 

(We introduce the type abbreviation , since it clarifies which types are the 

arguments, and which are the results.) 

Definition 3.6 (Typing let) 

= [z(a1 ),. ..,(am )] = [S 1 ,...,5] 	L,x1 : S1 ,...,x : 	I-P 
Let L.F let x i ,...,xn =f(ai ,...,am )inP 

It is easy to check that the above rule is admissible by expanding out the de-

rived form for let (Definition 2.6 on page 23). Suppose the premises of the above 

rule are true. If L' = L, r : t[1,.. . , S,] then we can use the weakening lemma 

(Lemma 3.8, which we prove later) to prove that Li', x1  : öi,. . . , x, : F P, since 

the side-condition in our derived form ensures that r V fv(P). We annotate the 

bound variables in the expansion of let x 1 ,.. . )Xn = Pal .... ,am ) in P, to show 

that the conclusion of the above rule is valid: 

i.F(zir:t[5i ,...,6n])(f![ai ,...,am ,r] lr?[x i  :Si,...,x:S].P) 
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3.5 Booleans 

We can now typecheck our boolean examples. Let Bool be the type t[t[]t[]]. We 

reproduce the definitions of True and False below, indicating how they are typed 

by annotating bound variables with types. 

def True[r : t[Bool]] 	(ub: Bool)(r![b] I *b?[t : 	: t[]1.t!{]) 
def False[r : t[Bool]} = (vb: Bool)(r![b] I *b?[t : 	: 

True and False both have the type t[t[Bool]], which can also be written as 

[] = [Bool], making it clear that True and False both take no arguments and 

return a boolean. 

Definition 3.7 (Typing of conditionals) 

t(b)=Bool 	LFP 	zFQ 
if 

A F if b then P else Q 

It is easy to check that above rule is admissible by expanding out the derived 

form for if (Definition 2.7 on page 24). Suppose the premises of the above rule are 

true. If z' = A , i : t[] f:  t[] then we can use the weakening lemma (Lemma 3.8, 

which we prove later) to prove that L' F- P and L' F Q, since the side-condition 

in our derived form ensures that t, f fv(P,  Q). We annotate the bound variables 

in the expansion of if b then P else Q, to show that the conclusion of the above 

rule is valid: 

F (vt : t[])(zif : t[])(b![t,f].(t?[].P + f?[].Q)) 

It is now easy to verify the types of the conjunction, disjunction and negation 

operations on booleans. 

def And[b i  : Bool, b2  : Bool, r : t[Bool]] = if b1  then r![b2 ] else False![r] 
def Or[bi  : Bool,b2  : Bool,r: t[Bool]] = if b1  then True! [r] else r! [b2 ] 

def Not[b: Bool, r : t[Bool]J = if b then False! [r] else True![r] 
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3.6 Process-based reference cells 

A process-based reference cell can be represented as a pair of channels: the first 

channel can be used to read the contents of the cell, and the second can be used 

to update the contents of the cell. 

The type of Cell is t[X,t[X],t[X]],  for arbitrary but fixed X. Both the read 

and update channels have type t[X]. 

def Cell [x : X, read : T[X], update: fiX]] = 
read! [x]. Cell! [x, read, update] + update? [n: X]. Cell! [n, read, update] 

The process definition Ref takes an initial value x and creates a new reference 

cell. It has type [X] = [t[X],t[X}]. 

def Ref [x : X,r : t[t[X],t[X]]] = 
(ii read : t[X])(v update : t[X])(r![read, update]  I C ell! [x, read, update]) 

This example highlights two weaknesses in our simple 7r-calculus type system. 

Firstly, we are forced to choose a single type X in the definitions of Cell and Ref, 

even though they clearly operate uniformly over all types X. We will address this 

problem in Chapter 5. Secondly, the user of a reference cell should never write 

on the read channel, and never read from the write channel, but this restriction 

cannot be enforced by our type system. Fortunately, Pierce and Sangiorgi [PS93] 

have shown that it is possible to refine the channel type constructor j' so that input 

and output capabilities can be manipulated separately. The Pict programming 

language [PT95b] adopts Pierce and Sangiorgi's refinement, enabling it to give 

Ref the type [X] = [?X, !X] (the type ?X allows only read access, while the type 

!X allows only write access). 

3.7 Channel-based reference cells 

Let ChanRef X be the type fiX], the type of a reference cell represented as a 

channel. The ChanRef process has type [X] 	[ChanRefX]. 

def ChanRef[x : X,r : t[CharzRefX]] = (ii ref: t[X])(r![ref] I ref ![x}) 

The Read process has type [ChanRefX] = [X]. 
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def Read[ref : ChanRefX,r : t[X]] = ref?[x}.(ref![x] I r![x]) 

The Update process has type [ChanRefX, X] = []. 

def Update[ref : CharzRefX,v : X,r : t[]] = ref?[x : X}.(ref![v] 

This example again highlights two weaknesses in our simple it-calculus type 

system. Firstly, just as with process-based reference cells, we are forced to choose 

a single type X in the definitions of ChariRef, Read and Update, even though 

they clearly operate uniformly over all types X. We will address this problem in 

Chapter 5. Secondly, the ChanRef, Read and Update operations all preserve the 

invariant that there is at most one active writer on the ref channel, but we have 

no way of ensuring that ChanRef, Read and Update are the only processes which 

manipulate the ref channel. This is precisely what abstract datatypes are useful 

for, and in Chapter 5 we show that the polymorphic extension of our it-calculus 

type system is able to provide just such a mechanism. 

3.8 Properties of well-typed ir-terms 

If x fv(P) then we can add a new type binding for x without invalidating the 

typing of P: 

Lemma 3.8 (Weakening) 

If LX HP and x fv(P) then /.,x : 6 I- P. 

Proof A simple induction on the structure of P. 

Similarly, if x fv(P) then we can remove x's type binding without invalidating 

the typing of P: 

Lemma 3.9 (Strengthening) 

If,x : 6F- P and x fv(P) then HP. 

Proof A simple induction on the structure of P. 	 IN 

If each x i  and y2  have the same type in the context Li then we can simultan-

eously substitute Yl). .. , Yn for x 1 ,.. . , Xn while preserving the type of P: 

Lemma 3.10 (Substitution) 

IfLH P and z(x) = L(y1 ) for 1 < Z'< n then A H 

Proof A simple induction on the structure of P. 	 11 
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3.9 Properties of structural congruence 

In Definition 2.3 (on page 17), the structural congruence relation is defined as the 

least congruence relation which satisfies a given set of axioms. In fact, we can be 

more explicit and say that is defined as the least relation satisfying the axioms 

given in Definition 2.3, plus the four rules below (defining in this way allows 

us to use induction on the depth of the derivation of P Q in proofs). 

Refi 
PEP 

PEQ QER 

P  

Q 	
Sym 

P=Q 
Trans 	

C[P] C[Q] 
Cong 

C denotes a process context (a process containing a 'hole'): 

C ::= [](ux)CI(CIP) I (PJC)  I (C+P)  I (P+C)I 
c?[xi ,. . . ,x,].0 I c![x i ,.. . ,x,].0 I 

The structural congruence relation captures most of the runtime behaviour 

of the restriction operator. An important lemma, therefore, is that types are 

preserved under structural congruence. (Only part 1 of the lemma is actually 

necessary for our type soundness result, but part 2 is essential if we wish to use 

induction to prove that the Sym rule preserves the type of a process). 

Lemma 3.11 (Types are preserved under structural congruence) 

IfF P and FE Q then A I- Q. 

If A I- Q and P EQ then A I- P. 

Proof We prove both parts simultaneously, using induction on the depth of the 

inference of P Q. We omit the cases involving the summation operator, 

since they are similar to the parallel composition cases. 

case P E P 10 

Part 1. We have, by assumption, that L F P. Therefore, using the Nil and 

Pri rules, we have A F P 10 as required. Part 2 is easy. 

case PIQEQIP 

Part 1. Clearly, if A F P I Q then L F P and L F Q and the result follows 

using the Prl rule. Part 2 is similar. 
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case (PIQ) I R_ =P I (Q I R) 

Part 1. Clearly, if F- (P1 Q) I Rthen /2 HP, A F- Q and A HR. The result 
follows after two applications of the Pri rule. Part 2 is similar. 

case *P P 

Part 1. If A F- *P then it must be that Li H P. Therefore, using the Prl rule, 
we have Li H P I *P as required. Part 2 is easy. 

case (vx)P I Q (vx)(P  I Q) where x fv(Q) 

Part 1. If Li F- (vx)P I Q then it must be that Li F- Q and Li,x : SF- Pfor some 
S. We can therefore use weakening (Lemma 3.8) to prove that Li, x : S H Q, 
since x fv(Q). The result follows using the Prl and Res rules. 

Part 2. If Li F- (vx)(P IQ) then it must be that Li,x:8 F- Q and Li,x :5 F-P 
for some 5. We can therefore use strengthening (Lemma 3.9) to prove that 
Li F- Q, since x fv(Q). The result follows using the Prl and Res rules. 

case P P 

Immediate. 

case P Q where  Q P 

Part 1. We have by induction (Part 2) that Li F- Q as required. Part 2 is 
similar. 

case PR where PQ and QR 

Part 1. We have, by induction that Li F- Q so, using induction again, we have 
that Li F- R as required. Part 2 is similar. 

case C[P] C[Q] where P Q 

A simple sub-induction on the structure of C proves the result. 	 D 

Note that it is very important that none of the structural congruence rules 

delete or create any sub-terms. If we allowed such rules, types would not be 

preserved under structural congruence. For example, when read from left to 

right, the 'garbage collection' rule (vx)(x![à].P) 0 makes perfect sense (since 

the output x![ã].P can never succeed). However, when read from right to left, 

this rule allows us to 'magically' create an arbitrary term P which, in particular, 

may not be well-typed. 
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3.10 Type soundness 

We are now able to prove one of our main soundness theorems: well-typed pro-

cesses can never fail. 

Theorem 3.12 (Well-typed processes never fail) 

If A F- P then not (P fails). 

Proof Suppose A F- P and P fails. We use induction on the depth of the 
inference of P fails to show a contradiction for all possible types of failure P 
can encounter: 

case P J Q fails since P fails 

We have, by assumption, that A H P, so we can use induction to prove that 
not (P fails) and we have a contradiction, as required. 

case (1-.' x)P fails since P fails 

We have, by assumption, that A F- P, so we can use induction to prove that 
not (P fails) and we have a contradiction, as required. 

case P fails since P Q and  Q fails 

We have, by assumption, that L F-  P, so we can use Lemma 3.11 to prove 
that A F- Q. We can therefore use induction to prove that not (Q fails) and 
we have a contradiction, as required. 

case (P + c?[xi ,. .. , xm].Q) I (c![yi , .. . , y,].R + 5) fails since in 0 n 

We have, by assumption, that A H c?[xi,. . ., X m ].Q and /.i F- c![yi ,. . . 
The type of c is clearly the same in both the inputting and outputting processes, 
so m = n and we have a contradiction, as required. 	 0 

Since the definition of process failure only detects the immediate failure of a 

process, a subject-reduction theorem is required to prove that well-typed processes 

remains well-typed after a successful reduction step. A corollary of Theorems 3.12 

and 3.13 is that a well-typed process cannot fail after any number of reduction 

steps. 

Theorem 3.13 (Subject reduction) 

IfzF- PandP -+QthenLF- Q. 

Proof We prove the result by induction on the depth of the inference of P -+ Q. 
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casePIQ — PIRwhereQ —*R 

It must be the case that L F P and L F Q. We can therefore use induction 
to prove that A F R. The result follows using the Prl rule. 

case (vx)P -+ (vx)Q where P -+ Q 

It must be the case that L, x : S F P. We can therefore use induction to prove 
that L, x: S F Q. The result follows using the Res rule. 

case (P+c?[xi ,...,x].Q) I (c![y 1 ,. ..,y].R-}-S) - {yi,.. .,yn /Xi,.. .,x}Q I R 

We have, by assumption, that A F c?[xi ,.. . , x,].Q and Li F c![y i ,. . . , y,].R. 
Therefore, it must be the case that Li, x 1  : S,. . . , x,-, : 8, F Q and Li  (c) = 

&]. However, we also have that Li(c) = t[Li(yi),. . . , Li(y,)]. We 
can therefore use our substitution lemma (Lemma 3.10) to prove that Li, x 1  

S, F {yi,. . . , y/x i , . . . , x,}Q. We have, using our strengthening 
lemma (Lemma 3.9), that Li F {yi,. . . , Yn/X1,. . . , x,}Q (since x 1 ,. . . , Xn are 
not free in the substituted process). We already have, by assumption, that 
Li F R, so the result follows using the Prl rule. 

case P -+ Q where P P', P'-+ Q' and  Q' Q 

We have, by assumption, that Li F P. Therefore, using Lemma 3.11, we have 
that Li F P'. Using induction we have that Li F Q' and the result follows by 
using Lemma 3.11 again. 0 

3.11 Type inference 

The benefits of automatic type inference have been clearly demonstrated in lan-

guages such as Standard ML [MTH90] and Haskell [HJW92], where the pro-

grammer has to write only a minimum of explicit type information. Using sim-

ilar, unification based, techniques we now show that it is possible to automatically 

infer types for 7r-terms. 

3.11.1 Substitutions 

A substitution is a finite map from type variables to types. We let dom o denote 

the domain of o. A substitution naturally extends to an operation on both types 

and contexts, defined as below. 
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Definition 3.14 (Substitutions) 

• . ,S] 	= 

cia = 

t[ciS',.. .,cT5] 

f cia aEdomci 
a otherwise 

X1 : 041, . . . , x, : USn 

During type inference, it is necessary to compose substitutions. The compos-

ition of p and ci, written pa, is defined below: 

Definition 3.15 (Composition of substitutions) 

pa = {a i-+ p(cra) I a E (dom p U dom ci)} 

Lemma 3.16 (Simple properties of substitutions) 

(1) {}ci = all = or 	(2) p(ciit) = (pa)it 
(3) p(ciS) = (pa)6 	(4) p(ciL) = (pci)A 

Proof Straightforward from the definitions of substitution and composition. 0 

An important fact we prove about substitution is that typing judgements are 

closed under substitution. This fact is crucial for type inference, since our al-

gorithm must be able to apply substitutions to the typing context without inval-

idating the types of 7r-terms it has already checked. 

Lemma 3.17 (Preservation of process types under substitution) 

If A F- P then ciLF- P. 
Proof A simple induction on the structure of P. 	 0 

3.11.2 Unification 

Since 7r-calculus types are simple trees, we know from Robinson's work [Rob65] 

that there is a sound and complete unification algorithm for ir-calculus types, 

which we refer to as Unify. Propositions 3.18 and 3.19 state the appropriate 

soundness and completeness properties of the algorithm. 
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Proposition 3.18 (Soundness of unification algorithm [Rob65]) 

If Unify(8,'y) = o then u6 = or-1. 

Proposition 3.19 (Completeness of unification algorithm [Rob65]) 

If o8 = oy then Unify(6, -y) succeeds, returning p, and there exists a M such that 

o = pp. Otherwise, Unify fails. 

3.11.3 Inference algorithm 

In Definition 3.20 we give an algorithm, X, which takes a type context A and a 

process P as arguments, and either fails (if no valid typing exists), or returns the 

minimal substitution p such that pA F- P. 

Definition 3.20 (Inference algorithm) 

case X(L;PI Q) 

If X(L; P) = p and X(pL; Q) = p' then return PIP  else fail. 

case X(i;P+Q) 

If X(L; P) = p and X(pz; Q) = p' then return p'p else fail. 

case X(z.;(vx)P) 

If a is a fresh type variable and X(, x a; P) = p then return p else fail. 

case X(L; &[x 1 ,... , x,].P) 

If c,. . . ,a, are fresh type variables, A(c) = 8, Unify(8,t{a i ,.. . ,a,]) = p 
and X(p(i, x i  a1 ,.. . , x,, : as ); P) = p' then return pp else fail. 

case X(z;c![x 1 ,. . 

If L(c) = 8, A(xi) = Si for 1 < i < n, Unify(8,t[81 ,. . .,&]) = p and 

X(pz; P) = p' then return PIP  else fail. 

case X(; *P) 

If X(L; P) = p then return p else fail. 

case X(L;0) 

Return f  (the empty substitution). 

We do not formalise how the algorithm picks 'fresh' type variables. In the 

following proofs we will assume that whenever a type variable is declared to be 
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'fresh' it is distinct from any type variables mentioned either in the current context 

or in types which have already been computed. In practice this condition can 

easily be satisfied by using a global counter to number new type variables. 

The soundness of our inference algorithm is demonstrated by the following 

theorem: 

Theorem 3.21 (Soundness of inference algorithm) 

IfX(;P)=p then piF-P. 

Proof We proceed by induction on the structure of P. 

case X(Lt;PJQ)=p'p 

We have X(L; P) = p and so by induction pA F- P. We also have that 
X(pL; Q) = p' and so by induction p'pL F- Q. Now, by Lemma 3.17 we have 
that p'pL F- P and so using the Pri rule we have p'pL F- P I Q as required. 

case X(L;P+Q)=PIP 

As above. 

case X(L; (ii  x)P) = p 

We have X(z, x : a; P) = p where a is fresh. Hence, by induction, p,  x 
pa F- P and we can conclude, using the Res rule that pLI F- (ii x)P as required. 

case X(i; c?[xi ,. . . , x,j.P) = PIP 

We have that L(c) = S and Urzify(8, t[ai,. . . , a,}) = p where a 1 ,.. . , a,, 
are fresh. We also have that X(p(z, x 1  : a1 , . . . , x,, : a,,); P) = p'. By 
induction, we have that p'pL, x 1  : p' Pal  ,. . . , x,-, : p'per,, I- P. Using Pro-
position 3.18 we find that pS = p[ai ,.. . , a,,] which clearly implies that 

p'pS = t[p'pa i ,. . . ,p'pa,,]. We can therefore apply the Input rule to prove 
that p'p  F- c?[xi ,.. . , x,,}.P as required. 

case X(L; d[x i ,. . . , x,,].P) = p'p 

We have that L(c) = S, z(x) = 6, for 1 < i < n and Unify(, t[8i,. . . , ]) = 
p. We also have that X(pi; P) = p'. By induction we have that p'pL F- P. 
Using Proposition 3.18 we find that p6 = pt[61,.. . , 6,,] which clearly implies 
that (p'pL)(c) = p'p6 = p'pt[6', . .. , 8,,] = t{(p'pL)(xi),. . . , (p"pL)(x,,)] and 
the result follows using the Output rule. 

case X(z; *P) = p 

We have X(A)(P) = p and so by induction pzi F- P. Using the Repl rule 
pA F- *P as required. 
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case X(L;O)={} 

Immediate, since {}L = L and A I- 0 using the Nil rule. 	 U 

In the following proof, we sometimes need to take the union of two substitu-

tions. But p U u is only well-defined when the domains of p and o are disjoint, so 

we introduce an overwrite operation p ED o which combines arbitrary p and o (the 

behaviour of u takes precedence over the behaviour of p for any a which is in the 

domain of both p and o): 

Definition 3.22 (Union of substitutions) 

P 
ED 0,-  { a i-+ p(a) a E dom p, a dom. o} U 

- {a -+ (a) a E dom oJ 

The following theorem demonstrates that our inference algorithm returns a 

principal substitution (if one exists). 

Theorem 3.23 (Completeness of inference algorithm) 

If oL F- P then X(L; P) succeeds, returning p, and there exists a p such that 
UA= 

Proof We proceed by induction on the structure of P. 

case oA I- PIQ where oA I-P and aA F- Q 

Using induction, we find that X(; P) succeeds, returning p, and there exists 
a a such that aA = 1upL. Hence, by induction, X(pL; Q) succeeds, returning 
p' and there exists a ji '  such that ypA = ilp'pL. Therefore X(; P I Q) 
succeeds, returning p'p, where oA = 4u'(p'p)/. as required. 

caseoL\F- P+QwhereA F- PanduLI- Q 

As above. 

case oA I-  (v x)P where az, x: J I- P 

Let a be a fresh type variable and cr' = a ® {a i- 5}. Since a is fresh we 
have that a L and o'L = a. Therefore, u'(, x : a) = oA , x :J so, 
by induction, X(z, x : a; P) succeeds, returning p, and there exists a such 
that o'(L,x : a) = p(z,x : a). This implies that o,A = pp. Therefore, 
X(L; (i x)P) succeeds, returning p and aA = o,'A = ypA as required. 
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case CA F c?[x i ,.. . , x,,].P where (aA)(c)  
and CA, x i :51 ,...,x,,:5,,FP 

Let a 1 ,...,an   be fresh type variables and o-' = a ED {a i  i-p 8,.. . , an  
Since a 1 ,. . . , an  are fresh we have that a 1 ,. . . , an 	/. and o•'i = CA. We 
also have that L(c) = 6, for some 6, where again a 1 ,. . . , an  S. Thus, cr'8 = 
aS = t[8i,. .. , 8,,] = a't[ai,.. . ,an]. We can use Proposition 3.19 to show 
that Unify(8, t[a1,.. . , a,,]) succeeds, returning p, and there exists a p such 
that a' = pp. Using induction, we have that X(p(, x 1  : a 1 , . . . , x,, : a,,); P) 
succeeds, returning p', and there exists a p'  such that pp(z,x 1  a1 ,... ,x 
n : a,,) = p'p'p(z,x1  : a 1 ,...,x : n : a,,). Therefore, X(L;c?[x i ,. .. ,x,,].P) 
succeeds, returning p'p where CA = a'A = p'(p'p)A as required. 

case CA  F c![x i ,. . . , x,,].P where (az)(c) = t[(o)(ai),... , (oL)(a,,)} 
and CA F P 

It must be the case that L(c) = 8 and z(x) = Ji for 1 < i < n for some 
8 and 81,. . . , 8,, such that a(L(c)) = a(t[6i, . . . , 8,,]). We can therefore use 
Proposition 3.19 to show that Unify(6, t[ 81,. . . , 6,,]) succeeds, returning p, and 
there exists a p such that a = pp. Using induction, we have that X(pL; P) 
succeeds, returning p' and there exists a p' such that ppA = p'p'pz. There-
fore, X(z; c![x i ,. . . , x,,].P) succeeds, returning p'p where CA = p'(pp) A as 
required. 

case CA F *P where CA F P 

We have, by induction, that X(L; P) succeeds, returning p and there exists 
a p such that CA = ppL. The result is immediate since X(L; *P) succeeds, 
returning p. 

case CA F 0 

We have that X(; 0) succeeds, returning {} and the result follows by taking 
p=or. 	 fl 



Chapter 4 

Recursive types 

There are many useful programs which cannot be assigned a type in the simply-

typed )t-calculus. Similarly, there are many useful ir-calculus programs which 

cannot be assigned a type in our simple type system. An important deficiency is 

that we cannot support programming with recursive datatypes (for example, lists 

or trees). We now present a simple solution to this problem: recursive types. In 

fact, as in the )-calculus, recursive types make the typed 7r-calculus as expressive 

as the untyped monadic ir-calculus, since we can assign a type to every monadic 

7r-term. 

4.1 Type syntax 

We extend our syntax of types with recursive types of the form M a.J (which bind 

the type variable a with scope 8). 

Definition 4.1 (Recursive types) 

S ::= a 	 Type variable 
TV,,— . , 8I 	Channel type 

a.S 	Recursive type 

There are now at least two possible ways to proceed: allow implicit folding 

and unfolding of recursive types (cf. Cardone and Coppo [CC91] or Amadio and 

Cardelli [AC91J, for example), or require explicit annotations from the program-

mer (cf. MacQueen, Plotkin and Sethi [MPS86], for example). We choose the 

47 
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former, since it requires the minimum of changes to our typing rules and opera-

tional semantics. 

The simplest way to allow implicit folding and unfolding of recursive types is 

to modify the definition of type equality so that it is insensitive to such operations. 

This is commonly achieved by considering the type p a.S as a finite specification 

of an infinite tree (obtained by repeatedly applying the rule pa.S = {,ua.6/a}6). 

With such an interpretation, we say that 5 = -y whenever S and -y  denote the same 

infinite tree. We take a more direct approach here, defining equality by means of 

a bisimulation relation on types. 

Our treatment of recursive types was inspired by Pierce and Sangiorgi's form-

alisation of subtyping for recursive types [PS93]. We refine their work by elim-

inating all uses of infinite trees: Pierce and Sangiorgi use a bisimulation relation 

defined over infinite trees, while we use a bisimulation relation defined directly 

over the syntax of types. We believe that by eliminating all uses of infinite trees 

from our presentation, we get a simpler treatment of recursive types, and a more 

direct proof of correctness for our type equality algorithm. 

We now define what it means for two types to be bisimilar. Intuitively, two 

types are bisimilar if we cannot distinguish their type structure. The relation 

8 Jj. 'y  formalises the observations we can make of a type 5: 

Definition 4.2 (Observation) 

aJJ.a 
{ta.5/o}5 JJ. 

pa.8y 

We allow type variables and channel types to be observed directly. In order to 

make bisimulation insensitive to the folding and unfolding of recursive types, we 

prevent any direct observation of recursive types. Instead, we unfold the recursion 

and observe the structure of the unfolded type. This means, for example, that 

the type pa.S and its unfolding {pa.51a}5 have exactly the same observable type 

structure, and will not be distinguished by our bisimulation relation. 

We require that all recursive types ya.S be contractive in a: all occurrences of 

a must be inside at least one channel type constructor. This disallows types such 

as ta.a and 	which have no observable type structure, and guarantees 

that for every type S there exists a (unique) 7 such that S 4 'y. 
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Definition 4.3 (Bisimulation) 

Let R range over relations between types. The relation R is a bisimulation if 
R ç  F(R) where F is the following function on relations: (6, y) E F(R) if either 

84aandya. 

yJt['yi ...... y]  and (S, y) e Rfor 1 < i < n. 

The function F in Definition 4.3 is monotone, so we have by Tarski's fixpoint 

theorem [Tar55] that the greatest fixpoint of F exists and is equal to U{R I R ç 
F(R)}. Let be the greatest fixpoint of F. It follows from the definition of that 

if (8, -y) E R for some bisimulation R then 8 y. For example, if X = iia.t[a, a] 
then the relation 

{(X, t[X,  X]), MX, X], fiX, X]), (X, X)} 

is a bisimulation, and is sufficient to prove that X 	[X, X]. 

4.2 Typing rules 

We can now reinterpret our process typing rules (Definition 3.4 on page 33), 
replacing syntactic type equality with in both the Input and Output rules (the 

other typing rules remain unchanged): 

Definition 4.4 (Typing rules using ) 

/.(c) 	 L,x1 : 	: S I- P 	
Input 

L(c) 	t{L(xi),... , (x)] 	A I- P 	
Output 

For example, we can now give a type to the process x![x, x].O, which sends the 

pair [x, xl along the channel x. If X = pa.t[a, a] and A = x : X then we can use 

the Output typing rule to show that L I- x! [x, x].O (we proved that X t[X,  X] 

in Section 4.1): 
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L(x) = X fiX, X] = t[(x), L(x)] 	A I- 0 
I- x![x,x].O 

More importantly, we can now typecheck our list processing examples from 

Section 2.9. Let List be the recursive type jiL.t[t[],fia, L]]. It is easy to check 
that 

{(List, t[t[], t[a, List]]), (t[a,  List],  t[a,  List]),  (t[], t[]) (List, List), (a, cx)} 

is a bisimulation, which implies that List 	t[t[] t[a, List]]. We reproduce the 
definitions of Nil and Cons below, indicating how they are typed by annotating 

bound variables with types. 

def Nil[r: t[List]] = 
(vi: List)( r![i] J *l?[n : t[], c : t[a, List]].n![] ) 

def Cons[hd : a, ti : List, r: t[List]] = 
(vi: List)( r![i] I *l?[n : t[] c : t[a, List]].c! [hd, ti] ) 

The above annotations imply that Nil has type [] = [List] and Cons has type 
[a, List] =t'. [List]. 

Definition 4.5 (Typing of list pattern-matching) 

Al)=List 	LFP 	Lt,hd:a,tl: List FQ 
Match 

A I-  match I with Nil => P and Cons[hd, tl] => Q 

It is easy to check, by expanding out the derived form for match (Definition 2.8 

on page 25), that the above rule is admissible. (We can use the same proof 

technique as we used in Section 3.5.) 

We can now verify that Concat has type [List, List] = [List]: 

def Concat[li  : List, 12 : List, r : t[List]] = 
match 11 with Nil => 

r![12] 
and Cons[hd : a, tl : List] => 

let rest : List = Concat(tl, 12) in Cons! [hd , rest, r] 
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4.3 Encoding the monadic it-calculus 

The monadic 7r-calculus is clearly is special case of the polyadic it-calculus (where 

all tuples have arity one). Without the help of recursive types, there are many 

monadic 7r-terms which cannot be given a type in our simple type system (for 

example, the term x![x].0). However, the following rules are admissible when we 

have recursive types: 

Definition 4.6 (Typing monadic it-terms) 

(x) = po.t[a] 	A, y : iio.t[c] I- P 

A H x?[y].P 

L(x) = a.t[a] 	L(y) = 1Lc.t[c1 	A I- P 

A I- x![y].P 

Monadic Input 

Monadic Output 

If every variable in L has type ita.t[],  then L H P for every monadic it-

term P whose free variables are a subset of those bound in A, since the Monadic 

Input rule preserves the invariant that every variable has type iu.t[a].  We there-

fore regain the full power of the monadic it-calculus if we allow recursive types 

(though we do pay a price for that flexibility, since the type pa.t[a]  is rather 

uninformative). 

4.4 Properties of rll 

We now prove that is a reasonable equality relation: it is a equivalence relation, 

it is preserved by substitution, and it is preserved by all type constructors. 

Proposition 4.7 ( is an equivalence relation) 

8. 

If 	y then 'y. 

If S 5' and 8' 5" then S 

Proof Part 1 follows from the-fact that the identity relation is a bisimulation. 

Part 2 follows from the fact that {('y,  5)  I (5, 'y) E R} is a bisimulation if R is a 

bisimulation. Part 3 follows from the fact that 

{(S, 8") I (8, 8') e R and (5', 8") E R'} 
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is a bisimulation if 1? and R' are bisimulations. 	 Ui 

Before we can prove that is preserved under substitution, we need to show 

how substitution affects the observations we can make of a type. 

Lemma 4.8 (Observation and substitution) 

If S 4 a and 'y 	' then {-y/a}S .JL '. 

If S 4 t[81,. . . , ] then 17/a}8 .tJ. t[{7/a}Si,. . . , {-y/a}S]. 

Proof Both results can be proved by induction on the depth of the inference of 
the observation of S. 	 0 

The following lemma proves that the observations we can make from the type 

{-y/a}S arise either from the original type 8, or from the substituted type y. No 

essentially new observations arise when we substitute y for a in S. 

Lemma 4.9 (Substitution and observation) 

If {7/a}8 4 'y' then either 

a fv(8) and 5.1,1.7, or 

SJJ.a and 7.J,1.-y',or 

6  fiSi, . . . , S,] and ' = t[{y/a}Si,. . . ,  

Proof The result can be proved using induction on the depth of the inference of 
{7/a}S.I,1.'y'. 	 El 

Our equality relation forces the free type variables of equal types to be the 

same: 

Lemma 4.10 (Free type variables and ) 

If O'y then a Efv( 8) if a Efv( -y). 

Proof It is easy to see that if a E fv(S) then we can eventually observe the type 
variable a. Now, since we can observe a, it must also be the case that we can 
observe an a in , since S and are bisimilar, so a E fv(7) as required. We can 
use identical reasoning to prove that if a E fv(7) then a e fv(8). 0 

We can now prove that is preserved under substitution. 



CHAPTER 4. RECURSIVE TYPES 	 53 

Proposition 4.11 ( is preserved under substitution) 

If 5 5' and 	'y' then {-y/a}S  

Proof The result follows if we can prove that 

{({'y/a}S, {'y'/a}5') I (5, 5') E R} U R U R' 

is a bisimulation if R and R' are bisimulations containing the pairs (5,5') and 
(-y, -y') respectively. Suppose that {7/a}5 4 fi. We know from Lemma 4.9 that 
either 

a 	fv(5) and 5 4 /, in which case we have that 8' JL. 8, since R is a 
bisimulation. Now, we know from Lemma 4.10 that a fv(5') and the 
result follows, since {-y'/a}S' = S. 

5 4 a and 'y  .JL ,8, in which case we know that 5' J). a (since R is a bisimu-
lation), and y'  4 @ (since R' is a bisimulation). Using Lemma 4.8, we have 
that {'y'/a}S' Ij. / as required. 

Alternatively, if {/a}5 JJ- 	. ., 8,], we know from Lemma 4.9 that either 

a fv(5) and S 4 t[51,. . . , S,.], in which case we have, since R is a bisim-
ulation, that 5' JJ. t[S,. . . , 5] where (Si, 5) E R. Now, we know from 
Lemma 4.10 that a fv(5') and the result follows, since {7'/a}S' = 5'. 

5 4 a and 'y 4  t[5 ,. . . , Sn], in which case we know that 5' J a (since R 
is a bisimulation), and 'y'  4  t[S.... .. S] where (Si , 5) E R' (since R' is a 
bisimulation). Using Lemma 4.8, we have that {'y'/a}S' 	. . , S,,' ] as 
required. 

J  t[ri,. ..,r] and t[S1,. ..,&] = t[{7/a}ri,.. .,{7/a}r], in which case 
we know that 8' 4 t[r..... r] and (Ti, Ti') E R (since R is a bisimulation). 
Using Lemma 4.8, we have that {'y'/a}S' JJ. t[{ -y'/a}r,.. . , {y'/a}7,] and 
the result follows, since for each 1 < i < ri, the pair ({'y/a}ij, {-y'/a}r') is 
in our bisimulation relation. 

We therefore have that {y/a}S {'y'/a}S', as required. 	 0 

Before we prove that is a congruence relation, we must prove the following 

lemmas about observation and recursive types. 
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Lemma 4.12 (Observation and recursive types) 

Ifc.5Jj.,8 then a 54,8 and S j3. 

If ita.5 4 t[7i,...,7J then there exist 	...,-y such that 5 J). 
and {pa.51a}'y = 7i  for 1 < i < n. 

If S 4 'y then ta.5 J {iia.S/a} -y 

Proof All three results can be proved using induction on the depth of the inference 
of the initial observation. All rely on the fact that occurrences of the recursively- 
bound variable a must be contractive. 	 D 

Proposition 4.13 ( is an congruence relation) 

If 	for 1 < i < n then t[8i,... , 	t[-yi,... , 

If S 	then jta.S pa.-y. 

Proof Part 1 follows from the fact that 

{(t[Si,...,SJ,t[7i ...... y])}uRiu  ... uR,. 

is a bisimulation if each relation R2  is a bisimulation containing the pair ( 52, 71). 
Part 2 follows from the fact that the following relation is a bisimulation if R is a 
bisimulation containing the pair (5, ). 

{(pa.S, a.7)} U {({a.8/a}T, {/la.71a}r') I (r, T ') E R} U R 

Suppose that {ia.S/a}r JJ. P. We know from Lemma 4.9 that either 

a 	fv(r) and r J 0, in which case we have that r' 4 0, since R is a 
bisimulation. Now, we know from Lemma 4.10 that a V fv(T ') and the 
result follows, since {,ua.S/a}r' = r'. 

'r JI. a and ya.5 4 8, in which case we know that r' 4 a, since R is a 
bisimulation. Now, using Lemma 4.12, we have that S .JJ. /9. Therefore, since 
R' is a bisimulation, we have that y 4 3. Using Lemma 4.12, we have that 

{pa.y/a}0 = 0 as required. 

Alternatively, if {a.5/a}7- 4 t{81,.. . 	we know from Lemma 4.9 that either 

1. a fv(r) and r JJ. t[Si,.. . , 5,,], in which case we have, since R is a bisim-
ulation, that r' t[S,.. . , S} where (Si , 5) e R. Now, we know from 
Lemma 4.10 that a fv(T ') and the result follows, since {iia. -y/a}r' = r'. 
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r 4 a and ta.6 	t[61,. . . ,6,], in which case we know that r'  .JJ. a, since 
1-? is a bisimulation. Now, using Lemma 4.12, we have that there exist 
Tj 	 • , r, such that 6 4fin, . .. , r] and {ua.S/a}T1 = 6, for 1 < i < n. 
Now, since R is a bisimulation, we have that there exist ri,.. . , r, such that 

t[r,... , r] and (Ti , r') E R for 1 < i < n. Using Lemma 4.12, we have 
that JJ. fi{7/a}n,. . . , {'y/a}rJ. The result follows, since for each 
1 < i < n the pair ({ta.6/a}r1, {pa.-y/a}r) is in our bisimulation relation. 

r 4t[ni,...,r}  and t[S1,...  '6,,]  =t[{iia.6/a}ni,...,{pa.6/a}r,,], so we 
know that r' 4 t[r,. . . , T] and (ri, ri') e R (since R is a bisimulation). 
Lemma 4.8 proves that {ma-7/al-r' 4 t[{a.y/a}r,.. . , {pa.'y/a}r] and 
the result follows, since each pair ({.ta.6/a}r1, {j.ta.7/a}T') is in our bisim-
ullation relation. 

The observations of ya.J and Ma.7 are identical to those of {ia.6/a}6 and 
{f2a.'y/a}7, and we have already checked that such pairs are bisimilar. We there-
fore have that jta.6 pa.-y, as required. D 

4.5 Checking type equality 

We now present an algorithm which, given a relation R and two types 6 and -y, 
builds a bisimulation containing the pair (S, 7). The algorithm fails if R, 6 and 'y 

do not match one of the cases below. The first clause takes precedence over the 

other clauses in the case where more than once clause matches R, 6 and . 

Definition 4.14 (Checking type equality) 

case Eq(R, 6, ) where (6,7) E R 

Return R. 

case Eq(R, 6,7) where 6 4 a and -y .JL a 

Return RU{(6,'y)}. 

case Eq(R, 6,7) where S JJ. t[1,... , 6,,] and -y 4 t['ri,. . . , 

If Ro = RU{(6,'y)} and Ri  = Eq(Rj_1 , Si , -11 ) for 1 < i < n then return R,,. 

The relation R contains pairs of types which have already been checked by the 

algorithm. We therefore simply return R if we encounter a pair we have already 
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checked. Note that the fact that all recursive types are contractive guarantees 

that for every S we can always effectively compute the (unique) type y such that 

Spy. 

The soundness of Eq depends crucially on the relation R which it is passed 

as an argument. For example, if R = {(t[] t[a])} then Eq(R, t[J t[a]) succeeds, 

returning R, even though the types tEl and t[a] are clearly not bisimilar. We must 

therefore prove that the result of Eq is sound assuming R is sound. The following 

definition formalises when a relation is a bisimulation relative to a second relation 

(which can be thought of as containing pairs of types which have already been 

checked for equality). 

Definition 4.15 (Relative bisimulation) The relation R is a bisimulation 
relative to R' if R D R' and R C F(R) U R' where F is the function on relations 
given in Definition 4.3. 

Suppose we wish to check that R is a bisimulation relative to R'. For each 

pair (6, -y) e R we need to check that either (6, 'y) e R' (which we can interpret 

as meaning that S and y  have been checked elsewhere), or (5, 'y) E F(R) (which 

means we have to check the observable type structure of S and 'y  in the normal 

way). 

We can now state and prove the soundness of Eq. Note that in top-level calls 

the relation R passed as an argument to Eq will be {}, the empty relation. Thus, 

at the top-level we have that the result of Eq is a bisimulation relative to {}, which 

implies that R is a bisimulation. 

Lemma 4.16 (Soundness of Eq) 

If Eq(R, 5, y) = R' then if is a bisimulation relative to R and (5, -y) E R'. 

Proof We prove the result using induction on the depth on the inference of 
Eq(R,S,-y) = R. 

case Eq(R,5,'y) = R where (J, -y) E R 

Immediate from the definition of relative bisimulation. 

case Eq(R,S,-y) = RU{(5,y)} where S  a and 'y  JJ. a 

Immediate, since S and y have identical observable type structure. 
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case Eq(R, 6, y) = R where 8 4 t[8i,.. . , 8}, JJ t[-r',. . . , 
R0  = Ru{(8,7)} and J1 	Eq(Rj.. i , Si , 71 ) for 1 < i < n 

We have, using induction, that R is a bisimulation relative to R,_ 1  for 1 <i < 
n. Thus, we have that R i  Q R 2 _ 1  and Ri g F(R1 ) U 	This clearly implies 
that R., 	R, since Ro  = RU {(ö,'y)}.  Now, since R C F(R) U R,_ 1  and 

C F(R_ 1 ) U R,_ 2  we have that & C F(R) U F(R,_ 1 ) U 	But 
F(R_ 1 ) c F(R,) since R_ 1  C R and F is monotone, so we therefore have 
that R C F(R) U R_ 2  i.e. R is bisimilar relative to R_ 2 . Iterating this 
argument proves that R is bisimilar relative to Ro  i.e. R c F(R) U Ro . Now, 
since R0  = RU {(6,'y)}, if we can prove that (8,g) e F(R) we can conclude 
that R F(R) U R as required. But it is easy to see that (8,g) E 
since 6 .1L t[6,. . . , 8,,], 	t[-y', . . . , ,,] and (8j, -y) E R i  C R,,. Thus, R,, is a 
bisimulation relative to R, as required. 	 0 

The following lemma proves the completeness of Eq: if 8 and -y  are bisimilar 

then Eq will succeed, returning a bisimulation containing (6, 'y). 

Lemma 4.17 (Completeness of Eq) 

If (S,7) E R' for some bisimulation R' and R C R' then Eq(R, 8, -y) succeeds, 
returning R" where (8,7) E R" and R" ç R'. 

Proof We prove the result using induction on the number of pairs still to be 
checked by Eq (i.e. the size of the set 11' - R). In the base case R = R' and we 
therefore have that (8,7) E R and Eq(R, 6,7) succeeds, returning R as required. 
Otherwise, if the size of R' - R is non-zero, we have two cases to consider: if 
(8,7) E R then Eq(R, 8,7) = R and the result follows. Otherwise, if (8,7) R 
then it must be the case that either 

6 4 a and y  4 a, in which case Eq(R, 8,7) succeeds, returning R U {(8, 'y)}, 
and the result follows. 

6JJ.t[81 ,...,6,,] and '7J!.t['7i,...,7,,]  where  (81,'7I)ER'forl<i<n. Now, 
if R o  = RU {(8,'y)} we clearly have that R o  c R', so we can use induction 
to prove that Eq(R1_ i , Si , 'y)  succeeds, returning R1  where ( Si, '71) E R1 and 
Ri ç  R', for 1 < i < n. Thus, we have that Eq(R, 8,7) succeeds, returning 
11,,, where (8,7) E R,, and R,, C R', as required. 

Thus, in all cases Eq(8,y) succeeds, as required. 

The following two propositions are simple corollaries of Lemmas 4.16 and 4.17, 

and give simplified statements of soundness and completeness. 
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Proposition 4.18 (Soundness of Eq) 

If Eq({}, 5, y) succeeds then S -y. 

Proof If Eq({}, 5, -y) = R then from Lemma 4.16 we have that R is a bisimulation 
containing the pair (5, y). It follows from the definition of that S -y. 	0 

Proposition 4.19 (Completeness of Eq) 

If S -y  then Eq({}, 5,7) succeeds. 

Proof If S 	y then there must exist a bisimulation R containing the pair (5,-)'). 
Now, since {}C R, we can use Lemma 4.17 to prove that Eq({}, 5,7) succeeds, 
as required. 	 0 

4.6 Type soundness 

It is easy to check that the weakening, strengthening and substitution lemmas from 

Section 3.8 still hold in the presence of recursive types (the proofs are identical to 

those in Section 3.8). We can then prove that types are preserved under structural 

congruence, using the same techniques as in Section 3.9. 

We are now able to prove that our type system remains sound when it is exten-

ded with recursive types. The proofs are almost identical to those in Section 3.10. 

Theorem 4.20 (Well-typed processes never fail) 

If A I- P then not (P fails). 

Theorem 4.21 (Subject reduction) 

If LI I- Pand P —)Q then LIE- Q. 

It is interesting to note that the proof of Theorem 4.20 relies on the fact that 

if t[51,- . . , Sm] t[y',.. . , y,] then m = n and S yi  for 1 < i < n. This 

fact seems obvious, and indeed it follows immediately from the definition of , 

but it marks the dividing line between an 'acceptable' equality relation for types 

and an 'unacceptable' one. The proofs of weakening, strengthening, substitution, 

preservation of types under structural congruence and subject reduction remain 

valid for arbitrary congruence relations (for example, the universal relation). 



Chapter 5 

Polymorphism 

A common disadvantage of simple type systems is that, although they prevent 

common programming errors, they also disallow many useful and intuitively cor-

rect programs. Polymorphic type systems overcome much of this problem by 

allowing generic operations, that is, operations which can be safely applied to 

many different types of argument. List operations such as reversing and concat-

enation are good examples of generic operations, since they act completely inde-

pendently of the types of the elements in the lists. The extra flexibility offered by 

a polymorphic type system seems to be enough to allow a more natural style of 

programming, where the type system is not perceived as 'getting in the way'. 

In this chapter we define an explicitly-typed polymorphic type system for it-

calculus which arises as a natural extension of the simple type system presented 

earlier. We illustrate the utility of polymorphic types in it-calculus programming 

using a number of examples, and then show how polymorphic channels can be used 

to model abstract datatypes in a type-safe manner. We then prove (by means of a 

subject-reduction theorem) that our polymorphic type system guarantees freedom 

from runtime errors. 

5.1 Typing rules 

A simple example of a channel which can be used polymorphically is the channel 

f in the (explicitly-typed) process below: 

f : 	F *f?[x: a,r : t[a}].r![x] 

59 



CHAPTER 5. POLYMORPHISM 	 60 

Intuitively, we should be able to send any pair of channels along f whose types 

are instances of a and t[a]  respectively. In fact, we can think of f as having an 

additional type argument a, as shown below: 

f: t[a; a,t[a]] I- *f?[a; x : a,r : t[a]].r![x] 

The type of f is similarly extended to indicate that f requires an explicit type 

argument to be sent along with the pair of channels. For example, the following 

process can send the channels a and b along f, since the types of a and b match the 

types required by f (when we instantiate the type parameter a with the explicit 

type argument 8). 

f:t[a;a,t[a]J,a:6,b:t[6]F- f![6 ;a,b] 

Thus, from the server's pointer of view (i.e. the point of view of any process 

reading messages from f), the type t[a; a, t[a]]  can be interpreted as a require-

ment that the server must behave correctly given any type a and a pair of channels 

of type a and t[a] respectively. 

From the client's pointer of view (i.e. the point of view of any process writing 

messages on f), the type t[a;  a,  t[a]]  can be interpreted as a guarantee that any 

process listening on f will behave correctly as long as the client supplies a type 8 

and two channels whose types match the types a and t[a]  (after substituting the 

argument type 8 for the type parameter a). 

We now formally define our explicitly-typed polymorphic ir-calculus. First, we 

give the syntax of explicitly-typed terms. We require an explicit type annotation 

on every bound variable, explicit type parameters in input expressions, and ex-

plicit type arguments in output expressions. The syntax for parallel composition, 

summation, replication and the nil process is unchanged. 

Definition 5.1 (Explicitly-typed 7r-calculus) 

P, Q, R, S ::= P I P 	 Parallel composition 
(zix : 8)P 	 Restriction 
P + P. 	 Summation 

,am ; Yi Si,:.. .,y : 61.P 	Input 
x![Si ,...,Sm ; yi ,..., y ].P 	 Output 

Replication 
0 	 Nil 
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Note that we allow polyadic type arguments as well as polyadic channel argu-

ments. In the case where m = 0, we write just x?[y1 : c,. . . ,y, : ].P instead 

of x?[ ; y : Si,.. . , y : 8].P, and x![yi , . . . , y,].P instead of x![ ; yi,•. . , y].P. 

The expression x?[a 1 ,. 	
0 m ; Yi : Si,. . . , y, : 6}.P binds the type variables 

a17 . . . , a (which are in scope in both 8k,. . . , 	and P). The type parameters 

a1,. . . , am  must always be pairwise-distinct. 

We generalise our syntax for simple channel types so that channels may now 

contain type parameters. The types a 1 , . . . , a, are bound by the channel type 

constructor and have scope 5k,.. . , 8. The type parameters al ,. .., am  must 

always be pairwise-distinct. In the case where in = 0, we write just t[8,. . . , 
instead of t[; Si,  ...,&]. 

Definition 5.2 (Polymorphic types) 

t[ai,.. . , am ;  81,. . . , 6] 	Polymorphic channel type 
a 	 Type variable 

The syntax of type contexts is just the same it was in our monomorphic type 

system (modulo the change in the syntax of types). The variables x 1 ,. . . , x, must 

be pairwise-distinct. The expression ftv(L) denotes the free type variables of L 

and is defined to be the union of all the free type variables of those types contained 

in A. 

Definition 5.3 (Type contexts) 	/. ::=  

The typechecking rules for the nil process, parallel composition, summation 

and replication are the same as the typing rules we gave for our monomorphic 

type system: 

LHP 	A F -Q 

zFP+Q 

zF- P 	tFQ 
Nil 	 Pri 

LF- PIQ 

M- P 
Smt 	 Repl 
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The typechecking rule for an explicitly-typed restriction is similar to our ori-

ginal rule for restriction, except that we now force the type assigned to x to be a 

channel type. This restriction on the type of x is not necessary to preserve the 

soundness of our type system, but simplifies reasoning about abstract datatypes 

encoded in the polymorphic u-calculus (see Section 5.7 for details). 

A ) 	t[&; 8] FP 
Res 

L F (ux : t[; ])P 

In the case of a polymorphic input we check that the body of the input requires 

no more type structure of x 1 ,... , x,, than is specified in the type of c. The 

condition a1,.. . ,a ftv(L) ensures that we do not capture any type variables 

which occur free in the context. This rule generalises the rule for input we gave 

in our monomorphic u-calculus type system of Chapter 3 (just set m = 0). 

	

a1,...,am 	ftv() 

	

L(c) = t[ai,...,am ; 8k,. . .,ö,] 	,x 1  : 5k,.. .,x : cS,, I- P 
Input 

A F c?[ai,. . . ,a ; x1 	x,, : 

A simple instance of the Input typing rule is given below (we let L be the 

context f : t[a; a,t[a]]). 

= t[a; a,  1[a]] 	a ftv(z) 	A ,x : a, r t{a} I- P 
A F f?[a; x: a,r : t[a]].P 

Input 

In the case of an output along a polymorphic channel c, we check that the 

channel values we are sending along c are substitution instances of the types 

specified in the type of c (the type arguments S i ,. . . , 8m  make it explicit how we 

instantiate each abstracted variable ar,. . . ,am ). Again, this generalises the rule 

for output we gave in our monomorphic ur-calculus type system of Chapter 3 (just 

set in = 0). 

= t[ai,. . . ,a,,; 'y',. . 
L(a) = {Si, ...,8m/ai,. . . 	 1 < i < n 	A [-P 

Output 
a1 ,...,a].P 

Using the Output rule, it is easy to check that A, x a, r : t[a] F r![x] (the 

type of r contains no type arguments, so the Output rule is just the same as our 
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monomorphic Output rule in this case). Thus, we can use the Input and Repi 

rules to conclude that our original example of a replicated process reading from 

f is well-typed: 

a,r: f[a] F r![x] 
Output 

F f?[a; x: a,r : t[a]].r![x} 	
Input 

F*f?[a; x:a,r:t[a]].r![x] 	
Repl 

Furthermore, one can use the Output rule to check that the following output 

expression is well-typed, since the types of a and b are substitution instances of 

those specified in the type of f (we let LV denote the context z, a : 8, b: t[8]). The 

type 6 in the output expression indicates that we instantiate the type argument a 

with the actual type J. 

L'(f) = tEa; a,t[a]] 
LV(a) = 8 = {8/a}a 	L'(b) = t[6] = {8/a}t[a] 	LV F 0 

L'F.f![8; a, b] 
Output 

It is easy to check that our replicated input example is well-typed in the 

context Li'. Thus, since both our input and output examples agree on the type 

of f, we can run them in parallel: 

z\!Ff![8; a, b] 
Output 	

' F *f?[a; x : a, r : t[a]].r![xJ 

L' F f![6 ;  a, b] I *f?[a; x : a, r : t[a]].r![x] 

It is worth noting that in general there may be any number of processes reading 

from the channel f. For example, there is no reason why we shouldn't have two 

copies of our replicated process serving requests along f: 

f : t[a; a,  t[aJ]  F (*f?[a; x : a, r : t[a]J.r![x]) I (*f?[a; x : a, r : t[a]].r![x]) 

Our type system ensures that each process which inputs values from the chan-

nel f provides the same standard of service (i.e. makes the same requirements of 

its arguments). For example, we would certainly not expect the following process 

to be well-typed in the context f : t[a; a, t[a]],  since the rightmost process makes 

more demands of its first argument x that is allowed by the type of f (it sends 

the empty tuple along x): 

Repl 

Prl 



CHAPTER 5. POLYMORPHISM 	 64 

f : t[a; a,t[a]] 1/ (*f?[a ;  x: a,r : t[a]].r![x]) J f?[a; x : a,r : t[a]].x![] 

It is important to generalise types at input prefixes rather than at some later 

stage in the typing derivation, since otherwise we cannot guarantee that every 

process which uses a polymorphic channel will be sufficiently polymorphic. Sup-

pose that we had the following typing rule, which allows one to generalise the type 

of x at any point in the type inference (as long the type variables & do not appear 

in the typing context): 

t[] F P 

A,x:t[&; ]FP 

If we had such a rule we could give a polymorphic type to the channel f in 

the following example: 

f?[x, r].(r![x] I *f?[y, r].r![x]) 

The process reading on f behaves like an identity function the first time it is 

called, since it returns x along the result channel r. However, all subsequent calls 

also return x, the argument given to the first call of f. The principal type for the 

above example (in our monomorphic type system) gives f type t[a, t[a]]. So, at 

the top-level, it seems clear that f is polymorphic in the type a (and we could 

apply the above typing rule to generalise the type of f). 
However, it would be unsound to let f be polymorphic. Suppose that we send 

f a pair of an integer x rand a result channel r of type t[Int].  We will receive 

x back from f along r, as expected. But what if we now send f a boolean b 

and a result channel .s of type t[Bool] (we will certainly be able to do this if f is 

polymorphic). Now, instead of receiving b back along s, we receive x, a value of 

type Int, which is incompatible with the value of type Bool that we expected to 

receive. 

Our polymorphic typing rules deal with above example correctly, since we 

check that each separate input prefix is sufficiently polymorphic. If we tried to 

give f the type t[a;  a,  t[a}J  then we would find that the second (replicated) input 

on f is ill-formed (since the type a occurs free in the type of x). 

For ease of reference, we summarise the typing rules for explicitly-typed poly-

morphic 7r-terms in Definition 5.4. 
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Definition 5.4 (Polymorphic typing rules) 

	

HO 	 Nil 

tF-P 	LF-Q 
Pri 

HPIQ 

LJ-P 	LHQ 
Smt 

LH P+Q 

A  

	

zH*P 	
Repi 

A ) 	t[&; 8]HP 
Res 

A H (ux : t[&; ])P 

oi,...,c m ftv(z) 
L(c) = t[ai,. . . , am ; Si,. . , S,] 	L, 	x1 : 81,. . . , X,,: Jn  F- P 

Input 
A I- c?[ai,.. . ,a; x1 h,.. . , x, : 

L(c)=t[ai,...,am; 11,...,7m] 

P 
Output 

LHc![Si ,...,Sm ; ai ,...,aJ.P 

One might be tempted to add a type restriction operator to the polymorphic 

it-calculus, to match the it-calculus's channel restriction operator. Intuitively, a 

type restriction operator should create a new type which is distinct from all other 

types, just as the channel restriction operator creates a new channel which is 

distinct from all other channels. However, such an operator is essentially useless, 

since there is no way to create values which inhabit the new type. What we 

really need is the ability to create a new type and some values of that type. This 

sounds rather like an abstract datatype, but we show in Section 5.7 that abstract 

datatypes can be encoded using just polymorphic channel types, so there seems 

to be no obvious use for a type restriction operator in the it-calculus. 
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5.2 Recursive process definitions 

Our derived form for process definitions (Definition 2.5) used channels to model 

each recursively-defined process. We can therefore easily generalise our derived 

form to allow recursively-defined polymorphic process definitions. We allow expli-

cit type parameters & j  in each definition and require explicit types for the channel 

parameters ii, to match the type information required in our polymorphic input 

expressions. 

For each process definition Xi  we create a new channel X1 and a replicated 

process which does a polymorphic input on X1. Note that we infer the appropriate 

explicit type for each channel Xi  from the explicit types given in the process 

definition for X1. 

Definition 5.5 (Process definitions) 

defXi[ài; ii : 81 ] = P1  and ... and X[ä; 	: 8,] = P, in Q 

(vXi  : T[&,; si]) ...  ('/X. : tV'; n])( 

I •.. ( *X?[&; in: 8].P I Q 

) 

We provide the following high-level typing rule for process definitions, which 

can be proved admissible using the same techniques as we used in Section 3.3. 

Definition 5.6 (Typing of polymorphic process definitions) 

Q 

t[&,; S t ],.. .,X,,. : T[&. ; 	: Si H Pi 	1 < j < fl 

A F- defX,[& i ; ] =P1  and... and X[&; ] =Fn in  
Def 

We can invoke the process definition X 2  by simply sending the desired type 

and value arguments along the channel X. For example, the following process 

can repeatedly output b along y and c along z, even if b and c have different types: 

defX[a; x :t[a],a:aJ  =x![a].X![o; x, a] 

in X![8; y, b] lX![1; z, c] 



CHAPTER 5. POLYMORPHISM 	 # 	 67 

5.3 Processes which return results 

It is possible to generalise our syntax for getting results from processes (Defini-

tion 2.6) so that we can get results from polymorphic processes: 

Definition 5.7 (Getting results from polymorphic processes) 

let i:=f(5; ä)inP 
= (vr:t[])(f![8 ; ã,r] Ir?[:].P) 	rfv(P,f,ã) 

Our polymorphic typing rules also give rise to the following admissible rule 

for let. (We introduce the type abbreviation =, since it clarifies which types are 

the arguments, and which are the results.) 

Definition 5.8 (Typing let) 

VE.[S] = [5 	t[; J, t[]] 

L(f) = V&.[''] = ['1 
i.(a) = {/&}' 	= {/à}" 	: 5' I- P 

Let 
A  letx :y=f(5; a)inP 

We can check that the above rule is admissible by expanding out the derived 

form for let (just as we did in Section 3.4). 

5.4 Process-based reference cells 

We can now give better types to our process-based reference cells (we gave mono-

morphic types for these examples in Section 3.6). 

A process-based reference cell can be represented as a pair of channels: the 

first channel can be used to read the contents of the cell, and the second can be 

used to update the contents of the cell. The process definition Cell describes the 

behaviour of a reference cell whose current contents is x and which can be accessed 

via the channels read and write. Now that we have polymorphic channels, we can 

make Cell polymorphic in a, the type of x: 
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def Cell [a ; x : a, read : t[a], update : t[a]] = 
read! [x]. Cell! [a; x, read, update] + update? [n : a]. Cell! [a; ri, read, update] 

The process definition Ref takes an initial value x of type a, for any a, and 

creates a new reference cell. Note that Ref creates a new instance of the Cell 

process, instantiated at the type a. 

def Ref [a; x:a,r:t[t[a],t[a]]}= 
(v read: t[cr])(v  update : t[a])(r![read, update]  I Cell![a; x, read, update]) 

5.5 Channel-based reference cells 

The types of our channel-based references (from Section 3.7) can similarly be 

generalised. Let ChanRef a be the type t[a],  the type of a reference cell repres-

ented as a channel. Given a value x of type a, ChanRef returns a value of type 

ChanRef a. 

def ChanRef[a; x: a,r : t[ChanRef a]] = (v ref : t[a])(r![ref] I ref![x]) 

The Read process is now parametric in the type a. It takes a reference cell and 

returns the current contents of that reference cell. 

def Read[a; ref: ChanRef a, r : t[a]] = ref?[x : a].(ref![x] I r![x]) 

Similarly, the Update process now works correctly given any reference cell ref of 

type ChanRef a and value v of type a. 

def Update[a; ref : ChanRef a,v : a,r : t[]] = ref?[x : a].(ref![v] 

5.6 Lists 

We could now give polymorphic types for our list examples from Section 4.2, but 

that would require us to add recursive types to our polymorphic type system. 

Thus, instead of further complicating our type system, we present an encoding 

of lists and polymorphic list operations which can be typechecked using only 

polymorphic types (our encoding is closely related to the Church-encoding of 

lists in polymorphic A-calculus). In practice, it is probably better to add recursive 
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types, instead of relying solely on polymorphic types, since some operations are 

more naturally described using the encoding of lists presented in Section 4.2 (in 

particular, finding the tail of a list is not a constant-time operation in our Church-

encoded lists, while it is in the previous encoding). 

We first recall the Church-encoding of lists in the polymorphic )t-calculus. The 

expression List a denotes the type V/3.(/3 -+ (a - 3 -+ 3) -+ 3). 

Nil = Aa.A/3..A(n : 0).A(c: a -+,3 -+ 
Cons 	Aa..A(hd:a).\(tl: List a). 

A13.A(n: 0)..A(c: a -4 ,3 -+ ,3).c hd (tI [/3] n c) 

The type of Nil is Va. List a, and the type of Cons is Va.(a -+ List  -+ List a). 

Each encoded list allows us to iterate a function over the elements of that list, 

accumulating a result of type 8. Thus, for instance, the expression 

I [Int] 0 (A(e : a).A(x : Int).x + 1) 

computes the size of the list 1, since 1 applies the function )(e : a).)t(x : Int).x + 1 

to each of its elements, using the value 0 as the initial value. 

Another example of a function which uses this encoding of lists is the Concat 
function, shown below. Concat has the effect of concatenating the lists 1 1  and 12, 

and has type Va.(List a -* List a - List a): 

Concat 	Aa.)(l 1  : List a).)t(1 2  : List a).li  [List a] 12 (Cons [a]) 

We now give the 7r-calculus version of the above list encoding, where the 

expression List a now denotes the type t[/; /3, [a,,3] = [/3], [,8J]. The process 

definition Nil accepts a type a and a result channel r as arguments, and returns 

the location of a process definition implementing the empty list. 

def Nil[a; r : t[List a]] = 
def nil [,3 n : /3,c: [a,/3} = [/3],r : t[/3]] = r! [n] 
in r![nil] 

The process definition Cons accepts a type a, the head of the list hd, the tail 

of the list ti and a result channel r as arguments, and returns the location of a 

process definition implementing a cons cell. 
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def Cons [a; hd : a, ti : List a, r : t[List a]] = 
def cons[3; n : /9,c: [a,,8] =' [/3],r : t[i]] = 

let x: = tl(/3; n,c) in c![hd,x,r] 
in r![cons] 

In the definition of cons, we use our derived syntax for let to get the result 

of accumulating c over the tail of the list. This yields a result x of type / which 

we then pass on to c along with the head list element hd. 

The 7r-calculus version of the concatenate function is shown below. It is a little 

more verbose than the )-calculus version, since we have to explicitly construct 

the partial application of Cons to a (using the local process definition cons). 

def Concat[a; 11 : List a, 12 : List a, r : t[List a]] = 
def cons[hd :a, ti : List a, r : t[List a]] = Cons! [a; hd, ti, r] 
in 1 1 ! [List a; 12, cons, r] 

5.7 Abstract datatypes 

Abstract datatypes are a well-known and important program structuring tech-

nique. In [MP88], Mitchell and Plotkin showed that the typing behaviour of an 

abstract datatype is correctly modeled by an existential type. In fact, it also 

turns out that it is possible to encode existential types in the polymorphic A-

calculus [Rey83]. A similar technique is applicable in the polymorphic 7r-calculus, 

enabling us to provide support for programming with abstract datatypes in the 

7r-calculus. 

The following example illustrates how we can package up our booleans and 

boolean operations (from Section 2.8) in an abstract datatype. We have already 

show in Section 3.5 that True, False, And, Or and Not have simple, monomorphic, 

types. We have annotated the bound variables of each process definition to indic-

ate these types (where Rep denotes t[fl], t[ J], the representation type of booleans). 
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(ii boot: BoolPackage)( 
def True[r: t[Rep]] = (vb)(r![b] I *b?[t,f].t![]) 
def False[r : t[Rep]] = (vb)(r![b] 
def And[b i  : Rep, b2  : Rep, r : t[Rep]} = if b1  then r! [b2] else False![r] 
def Or[bi  : Rep, b2  : Rep, r : t[Rep]] = if b1  then True![r] else r![b2 ] 

def Not [b Rep, r : t[Rep]] = if b then False! [r] else True! [r] 
in bool![Rep; True, False, And, Or, Not] 

bool?[ 
Boot; 
True : [] 	[Bool], 
False : [] =' [Boo!], 
And : [Boot, Boo!] = [Boot], 
Or: [Bool, Bool] = [Boo!], 
Not : [Boot] = [Boo!] 

1.P 

The channel boot is polymorphic: it expects to be sent some representation 

type Boot, and a collection of operations on the type Boot. The type of the channel 

boot is given below: 

BoolPackage 
Boot; 

[] 	[Boot], 

[1 = [ Boot], 
[Boot, Boot] 	[Boo!], 
[Boot, Boo!] = [Boo!], 
[Boot] =t' [Bool] 

The representation of booleans 

Implementation of True 
Implementation of False 
Implementation of And 
Implementation of Or 
Implementation of Not 

Our aim is to hide the representation type Rep inside an abstract datatype, 

thereby ensuring that all uses of boolean values outside the abstract datatype are 

independent of the actual representation of booleans. Thus, instead of using our 

boolean process definitions directly, we define them outside the scope of F, and 

send them to P all together along the channel boot (we assume that boot is a fresh 

channel, not used in P). Operationally, the above process is equivalent to the 

process 
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def True[r : t[Rep]] = (vb)(r![b] J 
def False[r : t[Rep]] = (vb)(r![b] I 
def And[b i  : Rep, b2  : Rep, r t[Rep]] = if b1  then r![b2 ] else False![r] 
def Or[bi  : Rep, b 2  : Rep, r : t[Rep}] = if b1  then True![r] else r![b2 } 

def Not[b: Rep,r : t[Rep]] = if b then False![r] else True! [r] 
in {Rep/Bool}P 

However, the typing behaviour of the two processes is very different. In the 

latter process, the boolean representation Rep is visible in the process P. In the 

former, the fact that the channel boot is polymorphic in the type Bool forces P to 

behave independently of the actual representation of booleans. 

When we first presented the encoding of booleans in 7r-calculus, we said that 

booleans are represented using channels which, when sent a pair of channels [t, f], 
will always respond on exactly one of t and f. Until now, nothing in our type 

system enforced such a constraint on values of type Bool, since Bool was simply 

an abbreviation for the type t[t[]t[}] which makes no constraints on what a 

process reading from such a channel does with the values it receives. 

However, now that we have packaged up all our boolean operations in an ab-

stract datatype, we can be sure that all occurrences of values of type Bool in P 

must have been constructed via some number of applications of True, False, And, 

Or and Not. It is easy to see that True and False produce processes which satify-

ing our protocol for booleans. Similarly, assuming that their boolean arguments 

satisfy our protocol, And, Or and Not all produce well-behaved booleans. Thus, 

we have proved that all values of type Bool in P satisfy our protocol for booleans. 

The above reasoning is quite informal, but even so we believe that it is still very 

useful in practice. We leave the issue of how to formalise the above reasoning as 

an interesting open problem. 

Note that the above reasoning relies crucially on the fact that the only way of 

constructing values of type Bool is to use the operations provided by the abstract 

datatype. We now see why we changed our typing rule for restriction to force 

the type given to a restricted name to be a channel type. If we had not made 

this restriction, we could easily write expressions such as (v x : Bool)P, thereby 

breaking our invariant that every value of type Bool is created by an operation 

within the abstract datatype implementation. 
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Like our encoding of booleans, our channel-based reference cells from Sec-

tion 5.5 use channels in a very controlled manner (the Read and Update opera-

tions preserve the invariant that at most one value is ever stored in the channel 

implementing the ref cell, see Section 2.11 for details). Thus, our channel-based 

reference cells provide another good example where representation hiding would 

be useful. It is certainly possible to hide the representation of ChanRef 6, for 

any given 6, using the same technique as we used for booleans. However, a much 

better solution would be to make the type constructor ChanRef abstract, and 

then provide polymorphic operations which work for any reference cells of type 

CharzRef a. 

In order to make ChanRef abstract, we need to be able to send it along a 

channel (just as we sent Rep along the channel boot). Unfortunately, the type 

system presented does not allow the communication of type constructors along 

channels (since we do not implement high-order polymorphism). But there is no 

reason why we cannot add such a feature. In the Pict language [PT95b] the author, 

in collaboration with Benjamin Pierce, has developed a higher-order polymorphic 

7r-calculus calculus, which enables one to communicate type constructors along 

channels, and thereby implement abstract datatypes for type constructors such as 

ChanRef and List. 

5.8 Type soundness 

We need to modify the ir-calculus reduction semantics we gave in Section 2.2 

to take account of the fact that we now communicate both type and channel 

arguments along channels. We need only modify the communication rule, as 

shown below. The rest of the reduction rules remain unchanged (the behaviour 

of structural congruence is also unchanged, modulo the fact that the restriction 

operator now contains an explicit type annotation). 

Definition 5.9 (Polymorphic communication) 

(P+c?[cri ,...,am 
 ; 

x 1  : 	 : 

I 	 ym 

+ {yi, 	,Yn/Xi,...,Xn}{l'i,.. .,7m /ai,. . .,am }Q I R 
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An alternative way of specifying the behaviour of polymorphic 71-terms would 

be to say that a polymorphic 71-term P has exactly the same behaviour as its type 

erasure, erase(P), defined as below. 

Definition 5.10 (Type erasure) 

erase(P I Q) = erase(P) I erase(Q) 
eras e((iíx : 6)P) = (vx)erase(P) 

erase(P + Q) = erase(P) + erase(Q) 
erase(x?[ai ,.. . ,c 	; Yi : S,.. .,y,-, £].P) = x?[y 1 ,. . ., y].erase(P) 

erase (x![S i ,...,Sm ; y i ,..., y].P) 	x![y i ,...,y].erase(P) 
erase(*P) = *erase(P) 

erase(0) = 0 

In fact, it is easy to check that the two definitions are equivalent (for well-typed 

terms): 

Proposition 5.11 (Type erasure) 

If P -+ Q then erase(P) -+ erasc(Q). 

If A I- P and erase(P) -+ R then there exists a Q such that P -+ Q and 

erase(Q) = R. 

Proof A simple induction on the structure of P. 	 0 

The above property is useful from the point of view of implementation, since it 

means that we need not maintain explicit type information at runtime. It is worth 

noting that the corresponding property is not always true of functional languages 

(we will have more to say about this in Chapter 6). 

We also modify our definition of runtime failure, to take account of possible 

type argument mismatches: 

Definition 5.12 (Polymorphic runtime failure) 

m in' or non' 

(P + c?[ai ,.. . am 	: 8k,. . . , x,-, : SJ.Q) 
fails 

(c! 	; 
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The properties we can prove about well-typed polymorphic ir-terms are es-

sentially the same as those we proved in Section 3.8 for our monomorphic type 

system. For example, if x fv(P) then we can add a new type binding for x 

without invalidating the typing of P: 

Lemma 5.13 (Weakening) 

If A I- P and x fv(P) then &x: S I- P. 

Proof A simple induction on the structure of P. 	 0 

Similarly, if x fv(P) then we can remove s's type binding without invalid-

ating the typing of F: 

Lemma 5.14 (Strengthening) 

If L, x: S I- P and x fv(P) then L F- P. 

Proof A simple induction on the structure of P. 	 EM 

If each xi and y, have the same type in the context A then we can simultan-

eously substitute yi, . . . , yn for x 1 ,. .. , x while preserving the type of F: 

Lemma 5.15 (Substitution) 

If 	and (x) = A(y) for 1<i<n then A F {y,.. . , n /X1,... , x,}P. 

Proof A simple induction on the structure of P. 	 U 

If P is well-typed in the context L\, then whenever we simultaneously substitute 

S for a in A and P we get a well-typed term. 

Lemma 5.16 (Type substitution) 

If 	F-P then {5,. . .,S/a 1 ,. .. ,a}L H {S,.. 

Proof A simple induction on the structure of P. 	 U 

It is now easy to prove, using the above lemmas, that types are preserved 

under structural congruence. 

Lemma 5.17 (Types are preserved under structural congruence) 

IfLH P and P Q then A F- Q. 

IfzF- Q and P Q then L F- P. 
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Proof Similar to the proof of Lemma 3.11 
	

1! 

We prove type soundness in exactly the same way as we proved type soundness 

for our monomorphic type system. Since only a few rules have been changed, the 

proofs of these theorems are very similar to those for our monomorphic type 

system. 

Theorem 5.18 (Well-typed processes never fail) 

If A I- P then not (P fails). 

Proof Similar to the proof of Theorem 3.12 

Theorem 5.19 (Subject reduction) 

IfiH PandP —*Q then zI- Q. 

Proof Similar to the proof of Theorem 3.13 	 El 



Chapter 6 

Relating typed )-terms to typed 

71-terms 

Our type system is constructed using type-theoretic techniques borrowed from the 

A-calculus, so it is natural to ask if there is a precise relationship between well-

typed A-terms and well-typed 7r-terms. Milner [Mi190] has already shown that 

we can encode various A-calculus reduction strategies in the it-calculus. We now 

show that the type structure of a A-term is often preserved by these encodings. 

In fact, in some cases, we can even prove that the principal type of a A-term is 

directly related to its encoding's principal type in the ir-calculus. 

Perhaps the most interesting feature of these encodings is that (in the presence 

of polymorphism) they don't always work! For example, we find that the Damas-

Mimer type system [DM82] does not always agree with our it-calculus type system 

as to which types a A-term may inhabit. This might not be surprising to those 

familiar with ML, since it is well-known that Damas-Milner polymorphism is 

unsafe in the presence of side-effects [T488]. The it-calculus is, by its very nature, 

a calculus containing side-effects, so it had better not allow the same kind of 

polymorphism as the Damas-Milner type system. 

In fact, we find that the soundness of the Damas-Milner type system is closely 

connected to the precise evaluation order used (a result which was recently dis-

covered by Leroy [Ler93], though he did not use encodings into the it-calculus). 

We find that the call-by-value encoding of A-calculus does not preserve its Damas-

Mimer type structure, but the call-by-name encoding does. 

77 
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6.1 Encoding A-terms 

The syntax for A-terms is given below. We let the expression fv(e) denote the 

free variables of e (it is defined in the usual way). 

Definition 6.1 (A-calculus syntax) 

e ::= x 	Variable 
Ax.e 	Abstraction 
e e 	Application 

6.1.1 Call-by-value reduction 

Definition 6.2 presents Miler's encoding of the call-by-value A-calculus reduction 

strategy in the polyadic 7r-calculus. We assume that the set of A-calculus variables 

is a subset of the set of 7r-calculus variables (this avoids having to rename A-

calculus variables when translating A-terms). 

Definition 6.2 (Call-by-value A-calculus encoding) 

	

ExIa 	a![x] 

	

Ax.ea 	(vf)(a![f] I *f?[x,b].fte]Ib) 
ee'a = (vb)(vc)(ftebIb?[f].(I[e1JcIc?[x].f![x,a])) 

The translation of A-terms is parameterised on an auxiliary channel a. This 

channel is the location where the encoded A-term returns its result. The encod-

ing introduces auxiliary variables (ranged over by a, b .... ) which we assume are 

always distinct from A-calculus variables. The encoding has the property that 

fv(e]ja) = fv(e) U {a} for all e. 

If e is just a variable, then we just return that variable along a immediately. 

If e is a A-abstraction, we first create a new channel f, which we can think of 

as the location of the closure Ax.e. We immediately send f along a and start 

the replicated process *f?[x, b].fteb. This process acts as a compute server: if 

we send along f a pair of an argument x and a result channel b, the server will 

respond by computing the value of e and returning it on b. 

We evaluate an application node e e' left-to-right: we start e running, wait for 

the result, f, to be sent along b, then start e' running and wait for the result, x, 
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to be sent along c. We now have two values: a function f and the its argument x. 

We apply f to x by sending the pair [x, a] to f. The function f will send its result 

along a once it is finished (recall that the result of the whole term is supposed to 

be sent along a). 

In the following example, the function )x.x is already a value, so it imme-

diately sends the channel f along b (as well as creating the replicated process 

*f?[x, b].frlb,  which implements the function Ax.x): 

I[(Ax.x)y]Ia 
(ub)(uc)(I[)x.x]bJ b?[f].(j[y]cI c?[x].f![x,a])) 

= (vb)(uc)((vf)(b![f] I *f?[x,b].  Ex]  b) I b?[f].(yc  I c?[x].f![x,a])) 
-+ (vb)(vc)(zif)(*f?[x,b]4xbl [y]cI c?[x].f![x,a]) 

The process implementing the application node, now that it has received the 

function f along b, evaluates the function argument y. Again, y is already a value 

and therefore signals on its result channel c immediately: 

= (vb)(zic)(vf)(*f?[x,b].ftxb I d[y]  I c?[x].f![x,a]) 

-~ (vb)(vc)(zif)(*f?[x,b].fr}Ib I f![y,a]) 

The application node now has two values: f, a channel representing the function 

)tx.x, and y, the function argument. It therefore sends the pair [y, a] along f, 
causing the replicated process on f to compute the value of )x.x applied to y. 

-+ (vb)(uc)(vf)(*f?[x,b].ftx]Ib ya) 

The final result is structurally congruent to the following process 

yJJa I (ub)(vc)(vf)(*f?[x,b]4xJIb) 

and it therefore becomes clear that the replicated input on f can execute no further 

communications (since no other process has access to the channel f). Thus, the 

final result of executing I[Xx.x)ya is equivalent to [ya, as expected. 
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6.1.2 Encoding let-expressions 

The Damas-Milner typing rules [DM82] rely on explicit 'let' expressions to in-

dicate where type generalisation is allowable. The expression 'let x = e 1  in e2'  is 
intended to have the same behaviour as (Ax-e2) ci, but this indirect interpretation 

of 'let' unfortunately yields a rather complex encoding of 'let' in the ir-calculus. 

We therefore use a direct encoding (which corresponds to the optimisation of 'let' 

that is usually made in compilers for functional languages): 

Definition 6.3 (Call-by-value let-expressions) 

[let x = e in e'a 	(ib)([e]Jb I b?[x].I[e'lJa) 

We now hint how to prove that the direct encoding of 'let' is equivalent to the 

indirect one. We let and denote the strong and weak congruence respectively 

(see [San93c] for definitions of and ). 

First, we expand out the definition of I[(Ax.e')e]I: 

fI( Ax. c') e]J 
(vb)(vc)(E[Ax.e']Ib I b?[f].([cc  I c?[x].f![x,a])) 
(vb)(vc)((vf)(b![f] I *f?[x,b]4clJb)  I b?[f].([e]c  I c?[x].f![x,a])) 

We can then execute the communication on the local channel b, yielding the fol-
lowing process: 

(z.'b)(vc)(vf)(*f?[x,b]. [el bI jej cI c?[x].f![x,a]) 

which can be rewritten, using structural congruence and the fact that (ii b)P P 
if b fv(P), as follows: 

(zic)(e]JcI (vf)(*f?[x,b].I[cb Ic?[x].f![x,a])) 

The channel f and the replicated input on f can be moved inside the input prefix 

c?[x].f![x, a], since they cannot interact with anything until the input on c has 

completed. 

(vc)(ecI c?[x].(vf)(*f?[x,b].e']IbI f![x,a])) 

We can then execute the communication on f: 
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(vc)([ec c?[x].(I[e']Ja I (vf)(*f?[x,b}.e'JJb)) 

yielding a process which is equivalent to I[let  x = e in e']la, since the channel f 
cannot appear in Eela. 

(i'c)(I[e]lcI c?[x].I[e'a) 

= E[letx=eine'a 

6.1.3 Call-by-name reduction 

Definition 6.4 presents Ostheimer and Davie's [0D93] encoding of the call-by-

name A-calculus. We use Ostheimer and Davie's encoding, rather than Milner's, 

since it shares much of the structure of the call-by-value encoding we have already 

presented and can easily be modified to implement call-by-need evaluation (where 

the evaluation of function arguments is shared). 

We use the notation ((e))a to denote the call-by-name encoding of e. Just as 

in the call-by-value encoding, the auxiliary channel a is used to communicate the 

result of evaluating e. The encoding of Ax.e is therefore just as before: we create 

a new channel f to represent the function Ax.e and immediately send f along the 

result channel a. 

Definition 6.4 (Call-by-name A-calculus encoding) 

	

((x))a 	x![a] 
((Ax.e))a = (iif)(a![f] I *f?[x,b].((e))b) 

	

((c ë))a 	(i b)(vx)(((e))b I b?[f].(f![x, a] f *x?[cJ.((e'))c)) 

The behaviour of an encoded application ((e e')) is as follows: We start ((c))b 

executing and then wait for it to return a function f along b. Now, instead of 

forcing the evaluation of the argument ë, as in the call-by-value encoding, we 

start a new replicated process on the channel x and apply f to the argument x 

and result channel a. If f wishes to get the value associated with its argument 

x it must communicate with the replicated process on x. Whenever we send 

some result channel c along x, the replicated process *x?[c].((e'))c will respond by 

starting a new copy of ((e'))c running (which will return its result along c). 

The following example illustrates how the encoding of (Ax.y)e is able to reduce 

to y without evaluating e: The function Ax.y is already a value, so it immediately 
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sends the channel f along b (as well as creating the replicated process *f?[x, b].LJyb, 

which implements the function Ax.y): 

(((Ax .y) e)) a 
= (vb)(ux)(((Ax.y))b I b?[f].(f![x,a]  I 

(ub)(vx)((vf)(b![f] I *f?[x,b].((y))b) I b?[f].(f![x,a}  I 
-+ (vb)(vx)(vf)(*f?[x,b}.((y))b I f![x,a] I 

The process implementing the application node, now that it has received the 

function f along b, starts a replicated process on the channel x and sends the pair 

IX, a] to f: 

- (z.'b)(vx)(vf)(*f?[x,b].((y))b I ((y))a  I 

This has the effect of starting the process ((y))a executing, as required. Note that 

c and f cannot be equal to y or a (since we assume that all auxiliary variables 

are distinct), so the previous process is structurally congruent to 

((y))a I (ib)(ux)(vf)(*f?[x,b].[y]b I *x?[c].((e))c) 

and it therefore becomes clear that neither the replicated input on f nor the 

replicated input on x can participate in further reductions (since no other process 

has access to the channels f and x). The above process is therefore equivalent to 

the term ((y))a, as required. 

We provide an optimised encoding of let-expressions for the call-by-name en-

coding, just as we did for the call-by-value encoding: 

Definition 6.5 (Call-by-name let-expressions) 

((let x = e in e')) 	(vx)(((e'))a I 

6.1.4 Call-by-need reduction 

It is easy to refine the previous call-by-name encoding so that it shares the evalu-

ation of function arguments, and therefore implements call-by-need reduction (the 

correctness of this encoding is proved by Brock and Ostheimer [13095]). We just 

replace the encoding of application in Definition 6.4 with the one below: 
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Definition 6.6 (Call-by-need application) 

((ee'))a 	(vb)(vx)(((e))b I b? [f]. (f ! [x, a] I ((x := 
((x := e)) = x?[c].(vd)(((e))d I d?[r].(c![r] I 

The above encoding differs in that, rather than starting the replicated process 

on the channel x, we start a single input on the channel x. Thus, the 

first time we receive a signal on x (i.e. the first time the value of e' is demanded) 

we go ahead and evaluate e'. Once we have received r, the result of evaluating 

we return r along c. However, we also start the replicated process *x?[c}.d[r] 

so that any subsequent requests for the value of e' will be answered directly (by. 

returning the value r, rather than re-evaluating e'). 

Since the encoding of application has changed, the intended semantics of 'let' 

has also changed. It is easy to modify the previous call-by-name encoding of 'let' 

so that it implements call-by-need reduction (the definition of ((x := e)) remains 

the same as in Definition 6.6): 

Definition 6.7 (Call-by-need let-expressions) 

	

((let x = e in c')) 	(ii x)(((e'))a f ((x := e))) 

6.2 Encoding A-calculus types 

We use the usual notation for A-calculus types. We assume that the set of A-

calculus type variables coincides with the set of ir-calculus type variables (this 

avoids renaming A-calculus type variables when translating A-calculus types). 

Definition 6.8 (A-calculus types) 

	

r ::= a 	Type variable 
r -+ r 	Function type 

A A-calculus typing context is a (possibly empty) sequence of bindings of the 

form x 1  : r1 ,. . . , x : r, where x 1 ,. . . , x, must be distinct variables. 
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Definition 6.9(A-calculus type contexts) 	F ::= X1 : 'r1,... Xn : Tn 

For reference, Definition 6.10 gives the usual typing rules for the simply-typed 

A-calculus. At this stage is matters little whether we use a Church-style or a 

Curry-style presentation of the simply-typed A-calculus. However, we will soon 

see that there is a significant difference when we come to consider polymorphic 

type systems. 

Definition 6.10 (A-calculus typing rules) 

F(x)=r 	F,x:r'[-e:r 

FI- x:r 	1' F Ax.e : r' -+ r 

F F e: T 1  -+ r 	F F e': 
F F e e' 

6.2.1 Call-by-value encoding 

In the following definition we give an encoding of A-calculus types as 7r-calculus 

types, written The encoding of function types matches our representation of 

call-by-value functions in the ir-calculus: a function is represented as a channel 

along which we send a pair of a value of the argument type T and a channel 

capable of carrying a result of type r'. 

Definition 6.11 (Type encoding) 

IIT -+ T'] 	t[fr1Itfr'JJ] 

(Our encoding introduces a lot of unary channel types, so we allow types of the 

form t[] to be written as t8.) We extend our encoding to contexts, applying our 

encoding of types in a point-wise fashion. 

Definition 6.12 (Context encoding) 

• , x : Tn ]J - = X1 : frill,. . . , x,-, 	I[Tn]j 
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The following proposition proves that the type structure of the A-calculus is 

preserved by the call-by-value encoding into the ir-calculus. Note that the type 

of the auxiliary channel a is tfr since a is used to return the result of e, which 

we know has type T. 

Proposition 6.13 (Preservation of A-calculus type structure) 

If F I- e : r then 	a: tI[7-]1 F- leia. 

Proof We use induction on the structure of e. 

case F I- x: r where F(x) = r 

We have that jrj (x) = Jr] and therefore fF]J, a: tIJr]J  I- a! [x] as required. 

case F I- Ax.e : r' —* r where F,x :r'F- e: r 

We have, using induction, that jr, x : r', b : tfr F-  I[eb. Therefore, using 
weakening (Lemma 3.8) we have that I[F]J,f : t[fr']J,tfr]I],x : fr'Jl,b: fl[TJJ I-
f[e]jb. Now, using the Input and Repl rules we have that 	f: t[fr']J, flT}J] F- 

*f?[x, b].l[elb. Using the Output rule we have that EEl],  a : tI.[r' —+ rJJ, f 
t[E[r']I,tfr]] F- a![f], since r' —+ r = t[frt[-r}. Thus, using weakening 
and the Prl and Res rules we have that E[F,a : tEET' —p r F- (vf)(a![f] 
*f?[x,b] lei  b)  as required. 

case F F-  ce': T where F F-  c: r' —* rand FF- e": 

We have, using induction, that EEl] b:  tfr' —+ r]J F- EEcb  and  EEFII, d: f fr' F-

EEe'JId. Clearly, the inputs on b and d will give f type fr' —3 r} 	t[EI'r']I, tH] 
and x type fr'. Thus, the output f! [x, a] is well-formed if a has type tfr' 
as required. 	 o 

The obvious question we can now ask is whether our ir-calculus typing dis-

cipline admits any types for EEe]I, other than those allowed by the A-calculus type 

discipline. The following result proves that, although the translation of a A-term 

EEea may be assigned a type which does not correspond to a valid typing of e, any 

type assigned to EEea  contains at least as much structure as some valid A-calculus 

typing for e. 

- 

- 

To see why not all typings for encoded A-terms are the image of some valid 

A-calculus typing consider the A-term Ax.x. There is no type r such that EErIE = 

t[t[]t(t[I)] but it is easy to check that a: t(t[t[]t(t[])]) F-  EEAx.x]ja.  Thus, there 

are certainly 7r-calculus types for EEAx.xJJa  which do not correspond to the encoding 
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of a A-calculus type for Ax.x. However, it is the case that the aforementioned ir- 

calculus type for I[Ax.xa  is a substitution instance of the encoding of a —+ a, 

which certainly is a type for Ax.x. 

Thus, rather than trying to prove that every ir-calculus typing for e]ja is the 

image of some valid A-calculus typing for e, we prove that every ir-calculus typing 

for I[e]a  is a substitution instance of a valid A-calculus typing for e: 

Proposition 6.14 (7r-calculus typings reflect A-calculus type structure) 

If z, a : S F- ftea then there exist 1', r and o such that F I- e : r, oftF]J = A and 

crlir]l = J. 

Proof We use induction on the structure of e. 

case A , a: S I- fr]a a! [x] 

It must be the case that L = yi :S,...,x : 	: 5, and S = 	The 
context F = Yi : a1 ,. . . , x : as,. . . , y : a, type 'r = a and substitution 
or = {a1 	5k,... , a '—+ &,. .. , an  '—+ S} give the required result, since 
F F- x : a, iF = A and otFJa2,]j = 	= S as required. 

case A , a : S F- I[Ax.e]Ja = (ii f)(a![f] I *f?[x,  b].I[elb) 
It must be the case that S = t(t[, Sb]) where L, a 5, f : t[S, öb], x : S, b: 
Sb F- [c]b.  However, using strengthening (Lemma 3.9), we have that L, x 
S, b: Sb  F- I[e]Jb  and we can use induction to show that there exist F, T, T and 
o- such that F, x : T F- e: r, air, x: rj = A, x : S and O flJT u = 8b. Therefore, 
using the rule for abstraction we have that F [- Ax.e: T —+ r where aI[F]1 = 
and ,flr —+ Tu = at(t[fr]J, tfr]J]) = t(t[S, Sb]) = S as required. 

case A,a :8 F- Eel e2ua 	(z.'b)(vc)(ei]Jb I b?[f1.(c21c  I c?[x].f![x,a])) 

Using strengthening (Lemma 3.9) to eliminate any unnecessary auxiliary vari-
ables, we have that A , b : 5b F- I[ci]lb  and A , c : 5 F- Je21C  for some 5b  and 
S. Therefore, using induction, we have that there exist F 1 , r1  and or, such 
that F 1  F- e 1  : r1 , oiFi]1 = L and cTitfri]J = 5b, and there exist 172, r2  and 
02 such that F2  F- e2  : r2 , 021721 = L and 02tfr2u = S. However, it must 
also be the case that Sb = t(t[02fr21, 5]) = toifriu, because of the communic-
ations along the auxiliary channels b, c and f. It is easy to check that, since 

t[0'2 ET-21,  51 = oifri] and ail[Fi]J = A = 02F21, there exist p and o such that 
p(r2  —4 a) = p7711 oljpriu = oifriJI, 01p(r2 —+ a)] = t[62fr21,6], pF1  = p172 and 
01pF1 = A = op'F2 ]J. Thus, since typings are preserved under substitution 
in the A-calculus, we have that pF 1  F- e 1  : pTi and pF2  F- e2  : pr2 , where 
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p7-1  = p7-2  -+ r for some r. We therefore have that PF i  F- e 1  e2  : r, cTI[pFl]J = 
and °tM = 5 as required. 	 0 

The previous two propositions are enough to prove that the principal type of 

e in the simply-typed A-calculus coincides with the principal type of I{e]j  in the 

simply-typed 7r-calculus: 

Theorem 6.15 (Relating principal types) 

If F F- e : r is a principal typing for e, then iri, a: fl[r F- l[e]la is a principal 
typing for 

If A, a : S F- Eela is a principal typing for jej then there exists a principal 
typing F F- e : r for e such thatJr] = A and tJJrJI = S. 

Proof Part 1. Suppose that F F- e : r is a principal typing for e. We have, 
using Proposition 6.13, that jr], a : tT [- jej a. This typing must be principal 
for i[e]a, since Proposition 6.14 tells us that every ir-calculus typing for i{ea is a 
substitution instance of some A-calculus typing for e (and we know any A-calculus 
typing for e must be a substitution instance of F F- e : r). 

Part 2. Suppose that A, a: S F- e]Ja is a principal typing for e]a. We have, 
using Proposition 6.14, that there exist F, r and o such that F F- e : r, OErl = 
and af jrj = J. This typing must beprincipal for e, since Proposition 6.13 tells 

us that every A-calculus typing correspond directly to a ir-calculus typing for Jc]Ia 
(and we know that any ir-calculus typing for I[e]la must be a substitution instance 
ofL,a:8F-E[e]Ia). 

6.2.2 Call-by-name encoding 

We now prove that Ostheimer and Davie's encoding of the call-by-name A-calculus 

preserves the type structure of A-terms. The encoding of types is given in Defini-

tion 6.16. The encoding of function types reflects the fact that function arguments 

are not values, but are channels which we can use to trigger the evaluation of the 

given argument. 

Definition 6.16 (Type encoding) 

	

((a)) 	a 

	

((r -+ r')) 	t[tt((r)), t((r'))J 
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As before, we extend our encoding to contexts. However, unlike the call-by-

value encoding of contexts, we do not apply our encoding of types in a point-

wise fashion, since each free variable x 1  in an encoded term no longer ranges 

over values, but over channels which we can use to trigger the evaluation of the 

expression bound to x. 

Definition 6.17 (Context encoding) 

((x 1  : 7'1 	x : rn )) 	X 1 : tt((ri)),. . . , x,. : tt((r)) 

The following proposition proves that the type structure of the A-calculus 

is preserved by the call-by-name encoding into the ir-calculus. (The same pro-

position holds if we replace the call-by-name encoding of application with the 

call-by-need encoding.) 

Proposition 6.18 (Preservation of A-calculus type structure) 

If I' I- e : r then ((F)), a : t((r)) F ((e))a. 

Proof Similar to proof of Proposition 6.13. 	 0 

As before, it is not the case that every 7r-calculus typing of ((e))a is equal to 

the encoding of some A-calculus typing for c. In Proposition 6.14 we got around 

this problem by proving that every ir-calculus typing is a substitution instance of 

some encoded A-calculus typing. Unfortunately, this trick does not work for the 

call-by-name encoding. For example, since the variable x is not a free variable of 

the expression Ay.y, it may be assigned any type by our T-calculus type system: 

5, a : t((/3 -+ 3)) I- ((Ay.y))a 

In the above example, the type S is unconstrained, but our encoding of contexts 

requires that every variable bound in the context has a type of the form ff ((r)). In 
fact, the type S may be more general that ff((r)), and we have a counter-example 

to the call-by-name equivalent of Theorem 6.15. 

The above problem with unused variables may in turn cause A-abstractions 

to have types which are too general. In the following example, the type 5, which 

corresponds to the type of the bound variable y, is unconstrained by our ir-calculus 

type system (and may therefore cause the type of a to fail to be an instance of a 

A-calculus type): 
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x: tta,a : t(t[ö,tal) I- ((Ay.x))a 

We therefore prove a slightly weaker result about it-calculus typings of call-

by-name encoded terms. We prove that if all encoded A-calculus variables are 

constrained to have a type which is the encoding of some A-calculus type then 

the it-calculus typing for ((e))a is equal to some A-calculus typing for e. Note that 

the previous condition on variables is a global one, it is not sufficient to constrain 

just the top-level free variables of an encoded term. 

Proposition 6.19 (it-calculus typings reflect A-calculus type structure) 

If all A-calculus variables in ((e))a are assigned a type of the form ff((r)), for 
some it, then ((F)), a : S I- ((e))a implies there exists a it such that F F- e : it and 
t((r)) = S. 

Proof A simple induction on the structure of e. 	 0 

Note that Propositions 6.18 and 6.19 remain true if we replace the call-by-

name encoding of application with the call-by-need encoding. Thus, in the case 

of simply-typed A-calculus, there is no distinguishable difference between the it-

calculus typing of the call-by-name and call-by-need encodings. 

6.3 Encoding recursive types 

We can extend both our call-by-value and call-by-name encodings of A-calculus 

types to encompass recursive types. We conjecture that results similar to those 

in the previous section can be proved when we have recursive types in both the 

A-calculus and the it-calculus. 

Definition 6.20 (Encoding recursive types) 

l[,ia.r] 	pa.fr 	((,aa.r)) 	ua.((r)) 

It is well-known that every A-term inhabits the type ta.(a -* a), but it is in-

teresting to note that a_ (a -+ a) = ,ia.t[a, ta], since in [Mil9la] Milner shows 

that every call-by-value A-term inhabits the type ia.t[a, ta] (we have rewritten 
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Miler's type in our notation). In fact, pa. (a -+ &) is the least informative recurs-

ive type we can give to a A-term: the previous propositions prove that the type 

structure of an encoded A-term in fact contains a much more accurate reflection 

of its original A-calculus type structure. 

6.4 Encoding polymorphic A-terms 

We first consider how to encode the explicitly-typed polymorphic A-calculus of 

Girard and Reynolds [Gir72, Rey74], since having explicit term syntax for type 

abstraction and type application clarifies some of the semantic issues we encounter 

when encoding polymorphic A-terms in the ir-calculus. The syntax for terms is 

as follows: 

Definition 6.21 (Polymorphic A-terms) 

e ::= x 
Ax :r. e 
ee 
Aa.e 
e [r] 

Variable 
Abstraction 
Application 

Type abstraction 
Type application 

The syntax for polymorphic types is given below. Unlike the Damas-Milner 

type system, there are no restrictions on the positions where a polymorphic type 

may occur. 

Definition 6.22 (Polymorphic types) 

T ::= 
	

Type variable 
T -+ 1 
	

Function type 
Va.r 
	

Polymorphic type 

The polymorphic typing rules for variables and application are just the same 

as in the simply-typed A-calculus. The typing rule for A-abstraction is slightly 

different, since we now how an explicit type annotation on the bound variable x. 

We also have additional rules for type abstraction and type application: 
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Definition 6.23 (Polymorphic typing rules) 

F(x) = 	F,x:rI-e:r' 	FFe:r' 	FFe':r' 
FFx:r 
	

F F Ax:r.e : r -+ r' 
	

I' Fe : ,r 

FFe:r 	 F F e : Va.r' 
F F Aa.e : Va.T 	- 	 F F e [T]: {7 - /a}7-' 

The call-by-value and call-by-name encodings of variables, A-abstraction and 

application remain as before, except that we now translate the explicit type an-

notations on A-bound variables to explicit ir-calculus type annotations (the call-

by-need encoding can be similarly modified): 

Definition 6.24 (Encoding explicitly-typed A-terms) 

	

xa 	a![x] 
I[Ax:T.e]Ja = (vf)(a![f] J 	: fr]I,b]4e]Ib) 

	

IJee']a 	(vb)(zic)(ebI b?[f].(I[e'JJc I c?[x].f![x,a])) 

((x))a = x![a] 

	

((Ax:T.e))a 	(vf)(a![f] I 	: ff((T)),b].((c))b) 

	

((c e)a 	(i b)(vx)(((e))b J b?[f].(f![x, a] J 

The reduction behaviour of type applications is the same for call-by-value, 

call-by-name and call-by-need evaluation (since the type argument in a type ap-

plication never needs to be evaluated). The following encodings of type abstrac-

tion and type application ensure that (Aa.e) [T] reduces to {T/o}e, as required. 

Note that the call-by-value and call-by-name encodings only differ in the way they 

encode the explicit type argument r (the call-by-need encoding is identical to the 

call-by-name encoding). 

Definition 6.25 (Encoding type abstraction and application) 

Aa.ca = (vf)(a![f] I *f?[a;b].fte]b) 
((Aa.e))a = (vf)(a![f] I 

e [T]]Ja = (v b)([ejJb I b?[f].f![fjT]J; a]) 
((e [7-1))a = (xi b)(((e))b I b?[f].f![((T)); a]) 
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The encoding of type abstraction is similar to the encoding of A-abstraction, 

except that the abstracted variable is now a type variable. Thus, when we send 

a pair of a type r and a result channel b to f, the encoding returns along b the 

value of e, instantiated at the type r. The encoding of type application is similar 

to the encoding of application in that we evaluate the expression e, wait for it to 

return some type function f, and then apply f to the type argument r. There is 

no need to evaluate the type argument T itself. For example, 

I[(Aa.e) [n il 
= (vb)(Aa.eilbJb?[f].f![fril;a]) 

(v b)((v f)(b![f] I *f'i[a;c].I[e]Jc) I 
- 	 (v b)(vf)(*f?[a; c].Ijeilc I f![fril ;  a]) 
-~ (vb)(vf)(*f?[a;cJ.I[e]lc I { T]/a} eil a ) 

The above process is equivalent to {I[r]j/a}I[ela, since the channels f and b are 

unused in {fril  /al  Eel a. It is then easy to check that { Er] /al  Eel a = 

as required. 

Now that we have seen the encodings of type abstraction and type application, 

we can see how we should encode the type Va.r in the ir-calculus, since in all 

encodings a value of type Va.n is represented as a channel along which we can 

send a pair of a type and a result channel (the polymorphic term will then respond 

by returning an appropriately instantiated value along the result channel). (The 

encodings of function types and type variables are unchanged, but we reproduce 

them here for ease of reference.) 

Definition 6.26 (Encoding polymorphic types) 

IT -4 r'E 	t[[r]J, tfr'il] 	((r -+ r'))  
Va.rI = t[a; tIJn]J] 	((Va.r)) 	t[a; t((r))] 

Strictly speaking, the above encoding translates an explicitly-typed A-term 

into a partially-typed ir-term (since, for example, we do not give explicit types 

for f and b in the encoding of A-abstraction). However, it turns out that all the 

missing type information is uniquely determined by the explicit type information 

already present in the encoded term. This is not surprising, since the missing 
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ir-calculus type information is completely determined by the result type of the 

A-term, and it is well-known that the A-terms we are encoding have unique result 

types (if they are typable). 

We write P Q whenever the type erasures of P and Q are equal and P 
contains more explicit type information than Q. The following proposition proves 

that if e is typable then there exists a fully-typed version of jeja which is typable 

in the ir-calculus: 

Proposition 6.27 (Preservation of A-calculus type structure) 

If r I- e : r then there exists a P such that I[F]I, a:  t[r]l F P and P :i 

Proof We use induction on the structure of e. Most cases are similar to those 
in the proof of Proposition 6.13, so we only show the new cases. 

case F F Aa.e : 'c/a.r where F F e : r and a F 
We have, by induction, that there exists a P D jelb such that IIFJI, b: flT}J F P. 
Thus, using the Input rule Irl,f : t[a;ffr]1] F f?[a;b : tfr]].P since a 
fv(FJJ). It is now easy to prove that FIF, a:  tIIVa.TI F (uf : JVa.rI)(a![f] I 
*f?[a; b: ffr]].P) as required. 

case F F e [r] : {r/cr}r' where F F e : Va.r' 

We have, by induction, that there exists a P Q I[e]Jbsuch that F, b: flVa.r'jI I-
P. Now it is easy to see that I[17]1,b : t(t[a;tfr'lJ]),a : t({L[r]I/a}frlJ) F 
b?[f: I[Va.r'j1].f![Ir; a] and the result follows since I[Va.r'jJ = t[a; tI[rTjI] and 
{7- /a}r']1 = {fr]1/a}fr']I. El 

The next proposition proves that if any fully-typed version of ea is typable 

in the ir-calculus then e is typable in the A-calculus. Note that, unlike Proposi-

tion 6.19, we need not make a global restriction on the types assigned to A-calculus 

variables, since the explicit type annotations present in an encoded term already 

make the same restriction. 

Proposition 6.28 (7r-calculus typings reflect A-calculus type structure) 

If there exists a P such that P 	ea and jr], a : J F P then there exists a r 
such that J = T 17-1 and F F e : r. 

Proof We use induction on the structure of e. We omit the cases for variables 
and application they are straightforward. 
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case jr], a: 8 [- E[Ax:r.e]Ja = (ii f)(a![f] I 	: fr]1; b].I[e]lb) 
It must be the case that [F]I, x : l[T]I, b: 8' F P for some P 	I[eb and 6' (we 
can ignore the bindings for a and f since they do not occur in eb). Hence, 
using induction, we have that F, x : 7-  F e: r' for some T such that 6' = tT 'i 
We therefore have that the type of f is [r -+ T '  and the result follows, since 
8 =tfr — r'JJ. 

case I[F]1,a:  S  F I[Aa.ea 	(iif)(a![f] I *f?[a;b].IJeJJb) 

It must be the case that jr], b : 8' F P for some P : I[eJJb and 6' (we can 
ignore the bindings for a and f since they do not occur in e]Jb). Hence, 
using induction, we have that F F e : r' for some r' such that 6' = fl[r'JI. It 
must be the case that a fv(1]) and hence also a fv(F). Thus, we have 
F F Aa.e : Va.T' and 6 = tt[a;tfr'U = ffva.r'JI as required. 

case I[F],a:  6F [e[r]]jaz (vb)(I[e]Jb[b?[f].f![fr]1;a]) 
It must be the case I[F],  b : 6' F P for some P 	I[e]Jb  so, using induction, 
there exists a r' such that F F e : r' and 6' = t[r']. Now, it must be the 
case that 6' = ff[a; 6"] for some 6" such that {7-I/a}6" = S. Hence it must 
be the case that r' = Va.r". Thus, we have that F F e [r] : {r/a}r" and 
6 = {fr/a}tfr"J1 = ff{r/a}T"]J as required. 0 

Similar results hold for the call-by-name and call-by-need encodings of poly-

morphic A-terms since the encoding of type abstraction and application is essen-

tially the same as above: 

Proposition 6.29 (Preservation of A-calculus type structure) 

If F F e : r then there exists a P such that ((F)), a : t((T)) F P and P ((e))a. 

Proof Similar to the proof of Proposition 6.27. 	 0 

Proposition 6.30 (7r-calculus typings reflect A-calculus type structure) 

If there exists a P such that P D ((e))a and ((F)), a : 6 F P then there exists a T 

such that 8= t((T)) and r  e: r. 
Proof Similar to the proof of Proposition 6.28. 	 0 

Note that the interpretation of A-terms given here depends crucially on the 

fact that type abstraction and type application have real computational content. 

Each instance of a polymorphic value Aa.e is completely separate from all other 

instances (since each time we instantiate a with some type T our encoding recom-
putes the value of e). We will see in the next section that whenever our encoding 

fails to have this property we run into trouble encoding polymorphic types. 
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6.5 Damas-Milner polymorphism 

The Damas-Milner type system [DM82] relies on let-expressions to indicate where 

type generalisation is allowable, rather than using explicit type abstraction and 

type application constructs. 

The types used in the Damas-Milner type system have the same syntax as 

those used in simply-typed A-calculus, but typing contexts are generalised so 

that variables may be bound to type schemes of the form V&.-r. (We write x : T 

whenever the variable x is bound to a type scheme which has no type quantifiers.) 

Definition 6.31 (Damas-Milner type contexts) 

I' ::= 	: Và1.r1 ,. . . , x : 	 Type context 

The following typing rules implement the Damas-Milner type system (the rules 

for abstraction and application are the sameas for the simply-typed A-calculus). 

Definition 6.32 (Damas-Milner typing rules) 

F,x:r'F-e:r 	I'j-e:r'--+T 
	

1' F- e': 
FFAx.e:r"-+r 	 FI- ee':T 

['(x)=Và.T 	rI -e:r 
	

F, x : V&T I—  e': 
FFx:{/&}T 	 FF let x=eine':T' 

6.5.1 Call-by-name evaluation 

The call-by-name encoding of let-expressions recomputes e every time the value 

of x is requested (the process expression *x?[b].((e))b responds to each request for 

the value of x by starting a new copy of eb running, which will eventually send 

its result along b): 

((let x = e in e')) 	(vx)(((c'))a I 
In the polymorphic ir-calculus we can extend this interaction so that, instead 

of just waiting for a result channel b to be sent along x, we wait for a tuple of 

type arguments & to be sent along x We can then respond by recomputing the 

value of e, instantiated at the given types: 
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((let x = e in e')) = (vx)(((e'))a J *x?[&; b].((e))b) 

This means that each use of x (i.e. each occurrence of the variable x in the 

expression e') can now specify that x should be instantiated with some given 

types (this neatly matches the Damas-Milner typing rule for variables). Thus, 

just as in the previous section, we find that type instantiation is closely coupled 

to recomputation, since each time we instantiate x we start a new copy of e 
executing. 

We now show formally how one can encode the Damas-Milner type system in 

the polymorphic It-calculus (assuming a call-by-name reduction strategy). The 

encoding of types remains as before (cf. Definition 6.16), but we generalise our 

encoding of contexts to take account of the fact that variables may now be bound 

to type schemes: 

Definition 6.33 (Context encoding) 

((x 1  : Và 1 .r1 ,... , x : V&.r)) X1 : t[ài; t((Ti))],. . . , x : t[&,; t((7_))] 

The encoding of Và.'r2  as flàt;  t((r))] captures the fact that we access each 

variable x 1  by sending a tuple of types and a result channel along x. The process 

implementing x2  responds by instantiating the expression bound to x 2  with the 

given types, evaluating the expression, and returning the final result along the 

given result channel. Note that in the case where xi is monomorphic (i.e. &, 
is the empty sequence) we get exactly the same encoding as we had before (cf. 

Definition 6.17). 

The following proposition proves that A-terms which are typable in the Damas-

Mimer type system can be encoded as well-typed polymorphic It-terms. 

Proposition 6.34 (Preservation of A-calculus type structure) 

If 1' F-  e : 'i-  then there exists a P such that ((F)), a : t((r)) F P and P D ((e))a. 

Proof We use induction on the structure of e. We omit the cases for abstraction 
and application, since they are similar to those in the proof of Proposition 6.13. 

case F F x: {/&} where F(x) = V&r 

We have that ((F))(x) = t[;t((r))]. Thus, since {(())/&}((r)) = 
we have that ((F)), a : t(({F/&}r)) F x![(()); a] as required. 
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case F I- let x = e in e': 7` where FH c: r, F,x :V&.r F- e': r' and & F 

Using induction twice we have that there exist P and Q such that ((F)), b 
t((r)) I- P, P D ((e)) b, ((F, x : V&.T)), a: t((r')) I- Q and  Q 9 ((e'))a. It is then 
easy to see that the input x?[&; b : t((T))].P is well-formed, and the result 
follows. 0 

Leroy [Ler93] has already shown that by taking a call-by-name semantics, 

the Damas-Milner type system can be proved sound for a language containing 

imperative features such as reference cells or exceptions (it is well known that 

the Damas-Milner type system is unsound if such a language has a call-by-value 

reduction semantics [Tof88]). (Harper and Lillibridge [HL92] consider similar 

issues in their study of the typing properties of CPS conversion for an extension 

of F with control operators.) The 7r-calculus can encode stateful computation, so 

the fact that call-by-name terms are well-typed in the 7r-calculus confirms Leroy's 

observation. Note that since only let-bound expressions may be polymorphic, the 

above proposition remains true even if we evaluate function arguments strictly. 

Much as before, we can prove that if all A-calculus variables in ((e))a are 

assigned a type of the form t[&; j((r))], for some & and r, then every 7r-calculus 

typing of ((e))a is equal to the encoding of some Damas-Milner typing for e. 

Proposition 6.35 (7r-calculus typings reflect A-calculus type structure) 

If P 	((e))a and all A-calculus variables in P are assigned a type of the form 

T[&; t((r))], for some & and r, then ((F)), a 6 F P implies there exists a r such 
that FI-e:r and t((r))=ö. 

Proof A simple induction on the structure of e. 	 0 

6.5.2 Call-by-value evaluation 

If we choose to evaluate let-expressions using a call-by-value semantics, we run 

into trouble encoding some terms which are typable in the Damas-Milner type 

system. The problem stems from the fact that the encoding of the expression 

c in the call-by-value encoding of 'let' (reproduced below) is evaluated exactly 

once, rather than every time the value x is used, as is the case in the call-by-name 

encoding. 

E[let x = c in e'a 	(zib)(E[eb I b?[x].l[e'JIa) 
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The Damas-Milner typing rule for 'let' allows the type of x to be generalised 

(assuming that the types we are generalising do not occur free in the type envir-

onment). However, our ir-calculus typing rules do not allow the type of x (in the 

encoded let-expression) to be generalised (for reasons we explained in Chapter 5). 

The Damas-Milner type system is sound for a call-by-value A-calculus, so 

why don't our polymorphic ir-calculus typing rules allow x to be polymorphic? 

The problem stems from the fact that ir-calculus processes may interact with 

each other in more ways that pure functions may interact with each other in the 

call-by-value )-calculus. The typing rules for 7r-calculus must therefore be more 

conservative about where types may be generalised. There is nothing in our type 

system which identifies 'better behaved' processes (such as encoded A-terms), so 

there is no easy way to allow the type of x to be generalised. 



Chapter 7 

An abstract machine for TI-calculus 

If the ir-calculus could be implemented efficiently, it would clearly serve as a 

flexible intermediate language for compilers of concurrent languages (in view of 

the diverse high-level constructs which have been shown to be encodable in the 

ir-calculus). For example, the ir-calculus can encode higher-order communication 

(the communication of processes along channels) [San93a, San93b], structured 

datatypes [Mil9la], mutable data, concurrent objects [Wa191], and even the A-

calculus [Mi190]. We now describe an abstract machine for the ir-calculus which 

is simple and yet realistic. In fact, in Chapters 8 and 9 we present a compilation 

of ir-calculus to C which is directly based on the abstract machine presented here. 

We are primarily interested in an abstract machine which is suitable for im-

plementation on a uniprocessor, where concurrent execution is simulated by in-

terleaving the execution of processes. Distributed implementation poses further 

challenges, such as distributed garbage collection, which are outside the scope of 

this dissertation. 

The reduction rules for our abstract machine are deterministic. At first sight 

this may seem surprising, since the ir-calculus is a non-deterministic language. 

However, if we intend to use the ir-calculus as a programming language, there is 

no need to simulate non-determinism, since such behaviour will naturally arise 

because of time-dependent interactions between the abstract machine and the op-

erating system (for example, during input/output or interrupt handling). It is 

much more important for a 7r-calculus abstract machine to provide fair execution, 

guaranteeing that runnable processes will eventually be executed, and that pro- 
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cesses waiting to communicate on a channel will eventually succeed (if sufficient 

communication partners become available). 

Our first abstract machine for the 7r-calculus introduces the basic mechanisms 

for process creation, channel creation and communication. We prove that the 

reductions of our abstract machine correspond to valid 7r-calculus reductions (we 

would not expect the converse property to hold, since our abstract machine is 

deterministic, while 7r-calculus reduction is non-deterministic). We then make a 

number of refinements to both our abstract machine and our source language. 

In particular, we record variable bindings explicitly in environments, rather than 

using a substitution operation, so that the basic operations of our abstract machine 

are simple and efficient enough to be implemented directly. 

7.1 Source language 

We make two simplifications to the polyadic ir-calculus before attempting to for-

mulate an abstract machine for it. First, we restrict the replication operator *P 
so that P can only be an input process. This restriction makes it significantly 

simpler to implement replication, since it becomes easy to detect when we need 

to create a new copy of the-replicated process. We can easily illustrate the effect 

of this simplification on the ir-calculus semantics from Section 2.2: we remove 

the structural congruence rule *P P I *P and add the following new reduction 

rule (which uses a neater syntax for replicated input, replacing *(c?[].P) with 

c?* [] . F). 

c?*[].P I c![}.Q -+ c?*[].P J 	J Q 

It is now clear that we only need to create a new copy of P at the instant at 

which the replicated input communicates with some other process on c. Compare 

this with the structural congruence rule *P P I *P, which gives us no hint as 

to when we should create new copies of P. 

It is worth noting that by removing the replication rule from the structural 

congruence relation we significantly simplify the meta-theoretic properties of our 

ir-calculus semantics: it is easy to prove that the structural congruence relation 

is decidable since, for any process P, there are finitely many processes which 
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are structurally congruent to P. It takes considerably more effort to prove that 

structural congruence is decidable if we retain the replication rule [EG95]. 

In practice, essentially all occurrences of replication appear in recursive pro-

cess definitions (cf. Section 2.6) and encodings of data structures (cf. Sections 2.8 

and 2.9). In both cases, the replicated input operator is all that is required. In 

theory, we can even encode full replication in terms of just replicated input: 

(zíc)(c?*[].(P I c![})  I c![]) 	c 	fv(P) 

though this encoding would not work well in a real implementation, since it would 

quickly fill up the heap (and run queue) with copies of P. 

The second simplification we make is more surprising: we disallow the summa-

tion operator! By disallowing summation, we significantly simplify the implement-

ation of communication. In fact, the mere presence of summation in our calculus 

can double the amount of storage required for a channel (see the next section for 

details). Experience with the Pict programming language [PT95a] suggests that 

essential uses of the summation operator are infrequent. Moreover, it is actually 

possible to implement (some versions of) the summation operator as a library 

module [PT95a]. By taking such an approach, we only pay the cost of summation 

when we use the summation library, rather than during every communication. In 

languages such as CML [Rep92] and Facile [GMP89] which mix functional and 

concurrent computation, communications are sufficiently infrequent that the addi-

tional cost of implementing summation may not be significant. In Pict, however, 

all computation is achieved via communication over channels, so the additional 

costs imposed by summation are unacceptable. 

An additional advantage of implementing summation as a library module is 

that it encourages the programmer to use more specialised library modules in 

those contexts which do not require the full generality of the summation oper-

ator. For example, the following Ref process uses summation to choose between 

accepting messages on the read and update channels, but builds essentially the 

same summation at each iteration (modulo changes in the argument to Ref, which 

represents the current state). 

def Ref [x] = read? [r]. (r! [x] I Ref ![x]) + update? [n,r].(r![] I Ref ![rt]) 
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We can therefore use an operator called the replicated choice operator [PT95a] 

to implement Ref. The replicated choice operator exploits the fact that Ref re-

peatedly waits for input on either read or update, and therefore manages to im-

plement Ref using a small amount of work to set up the communications at each 

iteration. In addition, the replicated choice operator guarantees that concurrent 

read and update requests will be interleaved fairly (read and update requests are 

stored in a FIFO queue, which guarantees that all requests will be processed 

according to their order of arrival). It is very difficult, if not impossible, to imple-

ment a general summation operator which guarantees the same behaviour, since it 

cannot detect that the summation created during each iteration of the Ref process 

has anything to do with the summation created during the previous iteration. The 

easiest thing that it can do is to vary the order in which it checks for commu-

nications inside a summation, but this behaviour is insufficient to guarantee fair 

processing of requests if requests are being generated at different rates along the 

read and update channels. 

7.2 Machine states 

Channel queues form the key component of our abstract machine state. The 

elements suspended in a channel queue may be either readers, writers or replicated 

readers. We let rs range over queues of readers (including replicated readers), and 

ws range over queues of writers. We let e denote the empty queue, to clarify those 

positions where a queue is empty. 

Definition 7.1 (Channel queues) 

S1  :: ... :: S, 	Channel queue 

S ::= ?[].P 	Reader 
![].P 	Writer 
?*[].P 	Replicated reader 

It is never the case that a channel needs to contain both blocked readers and 

writers (since reader/writer pairs never delay communicating). Note that this 

is not the case in a calculus which allows mixed inputs and outputs inside the 
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summation operator: in the expression c! [ã].P+c? [].Q, the process c![ã].P is not 

allowed to communicate with c?[].Q and we therefore have to allow both c![à].P 

and c?[].Q to block on the channel c. 

A machine state is a pair of a heap and a run queue. The heap stores those 

channels which have been created so far, and any processes which are waiting to 

communicate on those channels. The run queue stores those processes which are 

currently runnable. 

Definition 7.2 (Machine state components) 

H : : = x 1  i-* C1, . . . , x, i-+ C 	Heap 
R ::= Pi  :: ...:: P 	 Run queue 

The order in which bindings appear in the heap is irrelevant but the order in 

which processes appear in the run queue is important, since our abstract machine 

always executes the process at the head of the run queue. We therefore place 

newly created processes on the end of the run queue, to ensure that all runnable 

processes will eventually be executed. Similarly, the ordering of items in a channel 

queue is important, since we always wake up the process at the head of a channel 

queue whenever a communication becomes possible. 

The expression HI  '-+ C} denotes the heap H, where the entry for x is 

updated to be C (if x does not already have an entry in H then H{x i-+ C} 

denotes the heap H extended with the binding x i -+ C): 

Definition 7.3 (Heap update) 

•{x i-* Cl 
(H, x i-p C'){x -+ C} 
(H, x' F- C'){x -+ C} 

= 
H,x'-+C 

= H{x'-+C},x''--+C' 	xx' 

7.3 Reduction rules 

Our abstract machine is formulated as a set of reduction rules of the form H, R -+ 

H', R'. Each rule takes the process at the head of the run queue R and executes 

one reduction step in that process. If the run-queue R is empty, then H, R 74 and 

execution has finished. 
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The nil process has no behaviour, so we simply remove it from the run queue, 

enabling the next process in the run queue to start executing. 

H, 0:: R -* H, R Nil 

We interpret the parallel composition P I Q in an asymmetric manner, placing 

Q at the end of the run queue (to be executed later) and continuing with the 

execution of P. 

H, (P I Q):: R -+ H, P:: R:: Q Pr! 

The restriction operator (u x)P allocates a new channel c in the heap, substi-

tutes c for the bound variable x, and continues executing P. The new channel is 

initially empty. 

c fresh 

H, (vx)P :: R -+ H{c .}, {c/x}P :: R 
Res 

If the channel c already has some blocked writers in its queue when we ex-

ecute the input c? [] . F, we remove the first writer from the queue, substitute the 

supplied values a for the bound variables i, place the unblocked process Q on the 

end of the run queue, and continue executing P. 

H(c) = ![a].Q:: ws 

H, c?[].P:: R -+ H{c i-  ws}, {a/}P:: R:: Q 
Inp-W 

If the channel c already has some blocked readers in its queue when we execute 

the input c?[].P (rs ranges of queues of readers), we suspend the current process 

and put it at the end of the channel queue. Note that this rule also covers the 

case where the queue associated with c is empty. 

H(c).= rs 

H, c?[i].P:: R -+ H{e '-4 rs :: ?[].P}, R 
Inp-R 

If the channel c already has some blocked readers in its queue when we execute 

the output c![à].P, we unblock the first reader in the queue, substituting a for 

in the unblocked process. We place the unblocked process at the end of the run 

queue and continue executing P. 
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H(c) = 	:: rs 	
t-R 

H, c![à].P:: R -+ H{c i-+ rs}, F:: R:: {ã/}Q 

If the channel c already has some blocked writers in its queue when we execute 

the output c![à].P (ws ranges over queues of writers), we suspend the current 

process and put it at the end of the channel queue. Note that this rule also covers 

the case where the queue associated with c is empty. 

H(c) = ws 
H, c![à].P :: R - H{c i-+ ws :: ![ä].P}, R 

Out-W 

If the channel c contains only readers when we execute the replicated input 

c?*[].P, we place the replicated input at the end of the channel queue. 

11(c) = rs 
Repl-R 

H, c?*[].P:: R -+ H{c i-+ rs :: ?*[].P}, R 

If the channel c already has some blocked writers in its queue when we execute 

the replicated input c?*[].P, we fork a new copy of P (substituting the output 

values a for the bound variables fl and unblock the writer, placing it at the end of 

the run queue. We do not remove the replicated input from the run queue, so that 

this rule has the effect of removing all writers from c, after which the previous 

rule will apply and the replicated input will be removed from the run queue. 

H(c) = ![ä].Q :: ws 

H, c?*[].P:: R -+ H{c i-+ ws}, c?*[].P:: R:: {ä/}P:: Q 
Repl-W 

If the channel c contains a replicated input when we execute the output d[ä].P, 

we place a new copy of the replicated process at the end of the run queue, and 

substitute a for i in the new process. We do not consume the replicated input, 

but we do put it back on the end of the channel queue, so that any other readers 

on c are able to proceed. 

H(c) = ?*[].Q :: rs 	
Out_R* 

H, c![à].P:: R -+ H{c i-+ rs :: ?*[].Q}, P :: R:: {a/}Q 

Note that in the case where c contains a single replicated input, the O utR* 

rule has no effect on c's channel queue, since ?*[].Q :: rs = rs :: ?*[].Q when rs 

is the empty queue. 
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7.4 Example reductions 

The following example illustrates how the process (vx)(x![].P I x?[].Q) performs 

an interaction along the channel x. We first create a fresh channel c, and substitute 

it for the bound variable x (we assume, for simplicity, that x fv(P, Q)): 

H, (vx)(x![].P I x?[].Q) 

-~ H{c i-+ .}, c![].P  I 

Then we fork the process c?[].Q, leaving c![].P at the head of the run queue: 

-+ H{c i-+  .}, c![].P :: c?[].Q 

We can then execute the output c! P, which has the effect of suspending c! [].P 

on cis queue: 

- H{c i-p ![].P}, c?[].Q 

The next process on the run queue is c?[].Q, which unblocks the process P and 

continues executing Q: 

-4 H{c H e}, Q :: P 

Now both P and Q can proceed, since they are both on the run queue. Note that 

the channel c has reverted back to its empty. state. 

The following two examples illustrate the behaviour of our replication rules. 

The first example shows the reduction of the process (vx)(x![].P I x?*[].Q), where 

we again assume that x fv(P, Q) for simplicity. The process c![].P executes 

before the process c?*[].Q and therefore blocks on the channel c until c?*[].Q is 

executed (we then use the Repl-W rule to remove the blocked writer and the 

Repl-R rule to install the replicated input in the channel c). 

H, (zix)(x![].P I 
-* 	H{c i-+  .}, c![].P  J c?*[].Q Res 
-+ 	H{c i-+ .}, c![].P :: c?*[].Q Prl 
-+ 	H{c i-* ![].P}, c?*[ ].Q Out-W 
-4 	H{c i- 	*I, c?*[].Q :: P :: Q Repl-W 
-4 	H{ci--?*[J.Q},P::Q Repl-R 
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In the following example, the process c?*[].Q installs itself in the channel c 

before c![].P gets executed. Thus, when we execute c![].P we can use the Out_R* 

rule to fork a copy of Q immediately. There is no need to suspend the process 

P as in the previous example. Note that the status of c does not change after 

executing the output d[].P since there are no other readers blocked on c. 

H, (vx)(x?*[].Q I X!11-P) 
-~ H{ci-+.},c![].PIc?*[].Q 	Res 
-4 H{ci-+.},c?*[].Q::c![].P 	Prl 
—~ H{ci-+?*[].Q},c![].P 	Repl-R 
-+ H{c i-4 ?*[].Q}, P :: Q 	OutR* 

7.5 Correctness of the abstract machine 

We now prove that our abstract machine produces valid ir-calculus reductions. 

First, we need to relate channel queues to ordinary 7r-terms. The expression j Cj c 

denotes then-calculus equivalent of the channel queue C located at C: 

Definition 7.4 (Encoding channel queues as ir-terms) 

E{.Ilc = 0 
J![à].P:: C]lc 	d[à].P I JCc 

II?[].P:: C]lc 	c?[].P I I[Cc 
?*[3].P:: C]lc = c?*[].P I  ECIC 

The run queue P1  :: ... :: P, is equivalent to the parallel process P1 I ... I 
so we can now easily relate abstract machine states to 7r-calculus processes: 

Definition 7.5 (Encoding machine states as ir-terms) 

Ci ,.. . , c, '-+ C,,, P1  :: . .. :: P,j 
(vci) .

. . (vc,, )(I[Ci]ci I... I C,,]Jc,,  I1 I ... I P,,) 

The order of bindings in the heap, or processes in the run queue, is irrelevant 

when we consider their encodings as 7r-terms, since the encoding of any permuta- 

tion of P1  :: ... :: P,, is structurally congruent to the encoding of P1  :: ... :: P,, 

(we need only use the associativity and commutativity and parallel composition). 
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It is now easy to prove that our abstract machine produces valid ir-calculus 

reductions. In fact, a single reduction in our abstract machine may correspond 

to either zero or one reductions in the ir-calculus. For example, the Pri reduction 

rule, which executes a parallel process P I Q by placing Q at the end of the run 

queue (leaving P at the head of the run queue), yields a new machine state which 

is structurally congruent to the original machine state. This is not surprising 

since the ir-calculus reduction rules do not maintain a separate run queue, and 

therefore need no reduction steps to move a process onto the run queue. Similarly, 

the Res rule has no direct equivalent in the ir-calculus reduction rules: it in fact 

corresponds to a combination of a-conversion and scope extrusion (one of the more 

tricky features of the ir-calculus reduction rules). It is perhaps worth mentioning 

that a-conversion has real computation meaning in the ir-calculus reduction rules, 

since it allows creation of fresh channels. This is quite unlike the )t-calculus, where 

a-conversion can be completely avoided during execution (of a closed program). 

Theorem 7.6 (The abstract machine produces a valid execution) 

If H, R -+ H', R' then EH, R -+ 	H', R'. 

Proof We proceed by case analysis on the abstract machine rules. We have 
omitted most of the output and replication cases, since they are similar to the 
input cases: 

case Nil: H, 0:: R -* H, R 

It is easy to see that H, 0 :: RJJ 	I[H, R], since 0 1 P P. 

case Pri: H, (PIQ):: R -+H, P::R::Q 

Here, H, (P J Q) :: Rh 	H, P :: R :: QI1 using the associativity and 
commutativity of parallel composition. 

case Res: H, (vx)P:: R -+ H{c i-+ .}, {c/x}P :: R where c is fresh 

We can prove that JH, (v x)P :: Rh 	H, (v c){c/x}P :: Rh using a-conversion 
(there will be no name clash problems since c is fresh). Now, using scope 
extrusion and the fact that I.hc 0 we have that JH, (v c){c/x}P :: Rh 
H{c i-f  •}, {c/x}P :: Rh as required. 

case Inp-W: H, c?[].P:: R -+ H{c i-+ ws}, {à/}P :: R:: Q where 
H(c) = ![ä].Q:: ws 
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In this case we have that I[H(c)]lc  c![à].Q  I I[ws]lc. We can therefore use the 
reduction rule for communication to prove that c![à].Q I c?[].P -+ Q I {à/}P 
and the result follows. 

case Inp-R: H, c?[].P:: R -+ H{c -+ rs:: ?[].P}, R where H(c) = rs 

Here, RH, c?[].P :: 	H{c i-+ rs :: ?[].P}, R since frs :: ?[i].Pc 

E[rs]Ic I c?[].P. 

case OutR*:  H, c![à].P :: R -+ H{c i-+ rs:: ?*[].Q}, P:: R:: {ä/}Q where 
H(c) = ?*[].Q:: rs 

In this case we have that I[H(c)c 	c?*[].Q j frs]c. We can therefore use 
the reduction rule for replicated input (cf. Section 7.1) to prove that c?*[].Q 
c![à].P -+ c?*[].Q I P I {à/}Q and the result follows. 	 0 

Note that the converse of the above result is not true, nor would be expect it 

to be, since 7r-calculus reduction is non-deterministic and our abstract machine is 

deterministic. 

However, we can prove that if our abstract machine deadlocks then there are 
no possible ir-calculus reductions from that machine state. Strictly speaking, we 
can only prove such a result if we make some restrictions on machine states. 

For example, our abstract machine will deadlock on the following machine state 
because the arity of the input expression &[y, z].Q is incorrect 

{c i-+ ![x].P},c?[y,z] .Q :: c?[w].R 

but the 7r-calculus reduction rules can ignore the erroneous term c?[y, z].Q and 
infer the following reduction: 

{c i-+ ![x].P}, c? [y, z].Q:: c?[w].R 
= (vc)(c![x].P c?[y,z].Q I c?[w].R) 
-~ (vc)(P I c?[y,z].Q  I {x/w}R) 

A slightly different problem occurs if channel queues are allowed to contain 
mixtures of readers and writers. For example, our abstract machine deadlocks on 
the following machine state 

{c i-+ ![x].P :: ?[y].Q},. 

but the 7r-calculus reduction rules can reduce the input and output expressions 
contained in c's channel queue: 
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I[{c '-+ ![x].P:: ?[y].Q}, 011 
(vc)(c![x].P I c?[y].Q) 

-+ (vc)(P I {x/y}Q) 

We say that a machine state H, R is well-formed if I- IIH,  RI and no channel 

queue in H contains a mixture of input and output terms. The fact that JH, R]J 
is well-typed guarantees that IJH, RJJ is free from runtime errors (and also ensures 

that H, R is a closed expression). It is easy to check that, starting from an 

initial configuration {}, F, our abstract machine rules preserve the invariant that 

no channel queue in contains a mixture of input and output terms. 

Theorem 7.7 (Deadlocks) 

If H, R is well-formed and H, R 74 then JH, RJ 74. 

Proof If we inspect the reduction rules for our abstract machine, we find that 
every well-formed machine state H, R is reducible if R is non-empty. In the case 
where R is empty it must be the case that fH, RJJ 74 since our invariant on 
channel queues ensures that there are no input and output terms active on the 
same channel. 0 

An important result we might hope to prove about our abstract machine is 

that it implements a fair reduction strategy. We do not attempt to prove such 

as result here, however, since the formal definition of fairness for ir-calculus is a 

topic of current research [Pie95]. However, we do conjecture that our abstract 

machine guarantees what Pierce calls process fairness: any individual process 

that is infinitely often able to communicate (i.e., some communication partner is 

simultaneously available infinitely often) must eventually do so. The fact that we 

use FIFO queues for both channel queues and the run queue ensures that if a 

process is blocked on a channel queue then it will eventually become unblocked 

(assuming sufficient communication partners become available). 

7.6 Simplifying replicated input 

It is useful to make a further restriction on ir-terms which guarantees that a 

channel never contains a mixture of ordinary and replicated inputs, and that a 

replicated input never encounters waiting writers when it executes. For example, 
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if replicated inputs only appear in contexts of the following form (where Q never 

uses c1 ,. . . , c,1  for input and c i , . . . , c,1  are distinct variables) 

(uci)... (vc)(ci?*[x i].Pi  I •.. I c?*[x].P  I Q) 

then we can guarantee that whenever a replicated input c?*[].P is executed, the 

channel c will always be empty. We therefore no longer need the Repl-W rule 

(which dealt with the case where c already contained some writers) and need not 

check the status of c before executing a replicated input in the Repl rule: 

H, c?*[].P :: R -+ H{c i-f ?*[J.P}, R 
	Repl 

Our restriction on replication also guarantees that there will never be any other 

readers on a channel containing a replicated reader. Thus, whenever we output a 

value on such a channel there is no need to change the state of c, as can be seen 

in the new OutR*  rule: 

H(c) = ?*[].Q 

H, c![à].P:: R -* H, P :: R :: {à/}Q 
OutR* 

The above restriction on replication is not problematic in practice, since most 

uses of replication (for example, in recursively-defined processes) have exactly 

this format. In fact, we can translate any replicated input into an equivalent 

replicated input of the above form: 

= (vd)(d?*[].c?[}.(P I d![])  I d![]) 

In the Pict implementation, we enforce this restriction on replicated input 

using a combination of syntactic restrictions and special typing rules (Pict im-

plements the I/O channel types proposed by Pierce and Sangiorgi [PS93], and 

can therefore easily check that a channel is never used for input in a particular 

context). 

In fact, we can even do a better job of compiling outputs on the channels 

c1 , . . . , c in processes of the form 

(ye' )... (uc,)(c1?*[x1].F1 I ... I c?*[x].P  I Q) 

since we know that once Q starts executing, we must have already executed all 

the replicated inputs on the channels c1 ,. . . , c. Thus, whenever we execute an 
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output on the channel Cj we need not test the status of Cj (since we know that Cj 

must contain a single replicated input, and that outputs on Cj do not change its 

status). Of course, if we use Cj in a higher-order manner (by sending Cj along a 

channel to some other process), then the process which receives Cj will still have 

to test the status of Cj, as before. 

The above refinements to replicated input and outputs along channels contain-

ing replicated inputs are necessary to get reasonable performance from functions 

which are encoded as processes. In a (strict) functional language we do not need 

to test the status of a function before calling it. In the ir-calculus, we represent 

functions as processes which communicate on some distinguished channel. For 

example, the identity function might be represented as the following process (r 

is the channel along which id returns its result, and the process P represents the 

rest of the program) 

(uid)(id?*[x,r].r![x] I P) 

It would be very disappointing if every use of id in P (i.e. every output on the 

channel id) required us to test the status of id. Fortunately, the above process fits 

our criteria for optimising the OutR*  rule, since id is statically known to contain 

only a replicated input when the process P starts executing. 

In fact, now that we have disallowed mixtures of inputs and replicated inputs 

on a channel, we can test the status of a channel more efficiently. A channel can 

now be in just one of four states: empty, containing blocked writers, containing 

blocked readers, or containing a single replicated reader. We can represent this 

information using a single status value which is stored in the channel. With this 

representation we can test a channel's status using a single multi-way conditional 

expression. If we allowed mixtures of readers and replicated readers in a channel 

queue, then we would need two conditional expressions to implement an output: 

one to test whether the channel contained any readers, and in the case where 

there is a reader in the channel, a second test to determine whether the reader is 

replicated or not. 
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7.7 Asynchronous communication 

In the Pict programming language [PT95b], the implementation of communication 

is further simplified by the use of asynchronous communication. The asynchron-

ous ir-calculus is a simple sub-calculus of the 7r-calculus where we restrict the 

continuation P in every output process c![à].P to be 0. In fact, asynchronous 

outputs are so common that we have already introduced some derived syntax for 

them, writing c![à] instead of c![&].0. 

It is well known that synchronous communication can be simulated using 

explicit acknowledgments in an asynchronous calculus. For example, we can 

simulate the following synchronous communication 

c![à].P I c?[].Q - P I {ä/}Q 

using the asynchronous communication sequence below: 

(zik)(c![à,k] I k?[}.P I.c?[,k].(k![] I Q)) 
-~ (vk)(k?[].P I k![]  I {a/}Q) 
-+ (vk)(P I {/.}Q) 

The local channel Ic serves as an acknowledgment channel: Q signals on k when 

it has received the data, allowing P to continue. 

Of course, the above encoding of synchronous communication in terms of asyn-

chronous communication is much less efficient than implementing synchronous 

communication directly, but experience with Pict suggests that synchronous com-

munication is in fact very rare. This is largely due to the fact that functions 

are encoded as processes (using essentially the same result-passing convention 

as we introduced in Section 2.7). This means there are many processes of the 

form f?*[, r]. .. . r![results] which accept some arguments i and a result chan-

nel r, compute something, and return some results along r. The communication 

which returns the results along r is asynchronous. Moreover, the standard calling 

convention for such processes also uses asynchronous communication, as can be 

seen in our derived form for getting results (also from Section 2.7): 

let xi,...,x = f(ai, ...  ,am)  in  
(iir)(f![ai ,.. .,am ,r] I r?[x1 ...,x].P) 	r 	fv(P,f, al, ... ,am) 
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There is no point in using a synchronous output to communicate with f, since we 

are not interested in detecting when the f starts executing, but when it finishes 

(and returns its results on r). 

We now show how we can simplify our abstract machine if we only have to 

implement asynchronous communication. Firstly, the syntax of channel queues 

can be simplified, since we no longer need to put suspended output processes on 

a channel queue (we also retain the simplifications to replicated input proposed 

in Section 7.6). This is a useful simplification, since it is much cheaper to store 

a tuple of values in a channel queue, rather than store both a tuple of values 

and a suspended process. We will have more to say about the cost of suspending 

processes in Section 7.9. 

Definition 7.8 (Asynchronous channel queues) 

C ::= ?[ 1].P1  :: ... :: ?[].P 	Queue of readers 
![] :: ... :: ![] 	Queue of writers 
?*[].P 	 Replicated reader 

We can now simplify our communication rules to take account of the fact that 

all communication is asynchronous. In the case where we read a value from a 

channel which already contains a blocked writer, we need only extract the written 

values from the channel. There is no longer any need to put any writer processes 

back on the run queue: 

A 
 c?[].P:: R -+ H{c -+ ws}, {à/}P :: R 	

np -W 

The reduction rules for asynchronous output expressions can also be sim-

plified, since there is no other work to do once we have executed our output 

expression: 

H(e)=?[].P::rs 	
AOut R 

H, d{ä] :: R -+ H{c 	rs}, R :: {ä/}P  

H(c) = ws 
AOut-W 

H, c![ä]:: R 	H{c 	ws :: ![a]}, R  

H(c) = ?*[].P 	
AOutR* 

H, c![à] :: R -+ H, R:: {à/z}P 

H(c) = ![n] :: ws 
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In this way, we avoid placing many redundant processes on the run queue 

during asynchronous communications. Consider, for example, the reduction of 

the asynchronous process c![] I c?[].P using our new reduction rules (where we 

assume that the channel c has already been created, and H(c) =.) 

H,c![] I c?[].P 
-+ H,c![]::c?[].P 	Pri 
-+ H{c '-+ ![]},c?[].P 	AOut-W 
-+ H{c e-+ .}, P 	AInp-W 

It is wasteful to use a synchronous reduction strategy to evaluate the above 

process, since we must store the nil process in c's channel queue, and then unblock 

the same nil process after interacting on c (both operations are a waste of time 

and space, since the nil process has no behaviour): 

H,c![].O J 
-p H,c![].O::c?[].P 	Pri 
- 	H{c-+ ![].O},c?[].P 	Out-W 
-+ H{ci-..},P::O 	Inp-W 

Note that the initial expressions in both examples are identical, since c! [] is 
just a shorthand for c![].O. 

7.8 Creating fewer processes 

One of the key problems we encounter when executing ir-calculus programs is that 

processes are very short-lived. Consider, for example, the process (u r)(f![a, r] 
r?[].P), which creates a result channel r, sends the arguments a and the result 
channel r to f, and waits for a reply on r. Our abstract machine executes the 

expressions f![a, r] and r?[].P as separate processes. This is rather wasteful, 

since both expressions do relatively little work. It would be much better if we 

could execute both f![a, r] and r?[].P within the same thread of control (i.e. 

without having to place either process on the run queue). 

We therefore modify our abstract machine so that it is able to execute a num-

ber of actions within the same thread of control. The relation H, P, R 4 H', R' 

formalises how we execute a process within a single thread of control. It takes a 
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heap H, a process P and a run queue R and executes a number of operations in 

P. This yields an updated heap H' and run queue R'. The process P will either 

execute completely, or become blocked on some channel queue in the heap, so we 

never need to return a process as the result of evaluating P. 

The relation H, R -+ H', R' now formalises just our process scheduling policy 

(it picks the first process out of the run queue and executes it): 

H,P,R 4 H, R' 
Sched 

HI P:: R—* H',R' 

The following reduction rules now do all the work of implementing communic-

ation. As we will see in Section 7.9, there are significant advantages to executing 

as many operations as possible within a single thread of control, since, in practice, 

suspending a process means preserving the current process context in the heap, 

and executing a new process requires us to load a new process context back out 

of the heap. 

The reduction rule for restriction is very similar to the reduction rule we 

gave previously. We simply allocate a fresh channel c and continue executing the 

process P: 

c fresh 	H{c i-  .}, {c/x}P, R 4 H', R' 
Res 

H, (vx)P, RH', R' 

However, our rule for parallel composition is significantly different to what 

we have seen before. Instead of putting Q on the end of the run queue (to be 

executed later), we evaluate both P and Q within the same thread of control: 

H, P, R 4 H', R' 	H', Q, R' J H", R" 
H, P IQ R1H", R" 
	Prl 

The evaluation rule for the nil process returns the heap and run queue un-

changed: 

H, 0, R4 H, R Nil 

Executing a replicated input expression is an atomic operation, since we are 

guaranteed to find the channel c empty: 
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H, c?*[].P, R # H{c -* ?*[].P}, R 
Repi 

If we execute an input on a channel which already contains a writer, then we 

continue executing P within the current thread of control: 

H(c) = ![a] :: ws 	H{c -+ ws}, {à/}P, R 4 H', R' 
H, c?[].P, R 4 H', R' 

AInp-W 

If we execute an output on a channel which does not contain any readers, we 

store the output values in the channel's queue: 

H(c) = ws 
H, c![ä], R J H{c i-+ ws :: ![a]}, R 

AOut-W 

All infinite behaviour in ir-terms arises as a result of interactions between 

processes and replicated input expressions. The following rule, which implements 

such interactions, places the process {ñ/}P on the end of the run queue, and 

therefore ensures that any evaluation H, P, R 4 H', R is always finite. 

H(c) = ?*[].P 
AOutR* 

H, c![ä}, RH, R::{ä/}P 

For reasons which will become clear in a moment, in the AOut-R rule we do 

not execute the unblocked process P within the same thread of control as the 

current process, even though we could do so without breaking the property that 

every evaluation H, P, R 4 H', R' is always finite: 

H(c) = ?[].P :: vs 
H, d[ã], R 4 H{c -+ rs}, R:: {à/}P 

AOut-R 

With the above set of rules, the maximum amount of work required to execute 

a process P can always be determined from the structure of P. If we replaced 

the AOut-R rule with the following rule, which executes the unblocked process P 

within the same thread of control, this would no longer be the case (since we do 

not know, in general, how big the unblocked process P will be). 

H(c) = ?[].P:: vs 	H{c '-+ vs}, {ä/}P, R 4 H', R' 
H, c![a], R 4 H', R' 

It is important to know that a single thread will not execute for too long, since 

there may be other processes waiting to execute on the run queue. In the case of 

a user interface, for example, it may be important for those waiting processes to 

execute soon, so that they can provide quick responses to user input. 
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7.9 Machines states with environments 

It is unrealistic to use a substitution operation to record variable binding inform-

ation, so we now present a refinement of our previous abstract machine which 

uses explicit environments to record the bindings of variables to channels. This 

avoids any use of substitution and means that process terms are never modified 

during execution. Moreover, by using explicit environments, it becomes clearer 

where some of the real costs are in executing ir-calculus programs. 

An environment E is simply a finite mapping from variables to channels. The 

expression E{x i-+ c} denotes the finite map E extended with the mapping x '-+ c 
(we assume that x is always distinct from any other variables bound in E). The 

expression E(x) denotes the channel associated with x in E and is undefined if x 

in not bound in E. We often write E(ñ) as an abbreviation for E(a i ),. . . , E(a,). 

Definition 7.9 (Environments) 

E ::= 

We need to store a process' environment whenever we suspend a process on 

a channel. We therefore modify the elements of a channel queue to store this 

information (we retain all the proposed simplifications to our abstract machine 

proposed in previous sections). Note in particular that we do not need to use any 

process environments to implement a queue of writers. This would not be the 

case if we allowed synchronous output. 

Definition 7.10 (Channel queues) 

C ::= (E1 , ?[ 1].P1 ) :: ... :: ( En , ?[ ].P) 	Queue of readers 
![} :: ... 	![] 	 Queue of writers 
(E, ?*[].P) 	 Replicated reader 

As before, a machine state is a pair of a heap and a run queue (which are 

defined as below). The run queue now also stores an environment for each process 

which is currently runnable. 



CHAPTER 7. AN ABSTRACT MACHINE FOR ir-CALCULUS 	119 

Definition 7.11 (Machine state components) 

H : : = x 1  i-p C1 ,. . . , x '-3 (] 	Heap 
R : : = (E1 , P1 ) :: ... :: (En , P) 	Run queue 

7.10 Reduction rules with environments 

Our process scheduling rule now removes both the first process P and its envir-

onment E from the run queue and executes P: 

H,E,P,R 4 H',R' 
H,(E,P) ::R-+H',R' 

Sched 

The reduction rule for the nil process returns the heap and run queue un-

changed: 

H, E,O,R-+H, R 
Nil 

The rule for parallel composition executes both P and Q in the same envir-

onment E: 

H,E,P,RH',R' 	H',E,Q,R'H",R" 
H, E, P  I  Q, RH", R" 

	 Pri 

The restriction operator (i x)P allocates a new channel in the heap and con-

tinues executing P, recording the binding of x to c in the environment E. 

cfresh 	H{ci-+.}, E{xi-+c}, F, RH', R' 
H, E, (vx)P, RH', R' 

	 Res 

If there already is a writer available when we execute the input x?[].P, we 

extract the stored data, record it in the environment E and continue executing P. 

E(x) = c 	H(c) =![a] :: ws 
H{c-+ws}, E{-+à}, F, RH', R' 

H, x?[].P, RJVL.H', R' 
AInp-W 

If there are no writers available when we execute the input x?[].P then we 

must store the current process and its environment in the channel's queue. 



CHAPTER 7. AN ABSTRACT MACHINE FOR 7r-CALCULUS 
	

120 

E(x) = c 	H(c) = rs 
H, E, x?[].P, R 4 H{c i-+ rs:: (E, ?[}.P)}, R 

Inp-R 

If the channel c already has some blocked readers in its queue when we execute 

the output x![a], we unblock the first reader in the queue and record the bindings 

E(ã) in the environment of the unblocked process. 

E(x). = c 	H(c) = (F, ?[].P) :: rs 
AOut-R 

H, E, x![ä], R 4 H{c i-* rs}, R:: (F{ i-+ E(ii)j, P) 

If the channel c already has some blocked writers in its queue when we execute 

the output x![a], we store the output values E(ã) in the channel queue. 

E(x) = c 	H(c) = ws 
H, E, x! [ii], R 4 H{c '-+ ws :: ![E(ä)]}, R 

AOut-W 

Our restrictions on replicated input guarantee that whenever x?*[].P is ex-

ecuted, the channel c will always be empty. We therefore need only suspend 

x?*[].P and place it in the channel c. 

H, E, x?*[].P, R 4 H{E(x) 	(E, ?*[].P)}, R 
Repi 

If the channel associated with x contains a replicated input when we execute 

the output x! [a], we place a new copy of the replicated process at the end of the run 

queue, recording the bindings E(ä) in the environment of the new process. 

H(E(x)) = (F,?*[].Q) 

H, E, x! [ii], R 4 H, R:: (F{ '-+ E(à)}, Q) 
AOutR* 

7.11 Using environments more efficiently 

In the 7r-calculus, processes are created very frequently, and tend run for a very 

short amount of time before become blocked (or terminating). This stands in sharp 

contrast with concurrent languages such as CML [Rep92] or Facile [GMP89], 

where each process may do a significant amount of (sequential) work before ter-

minating, or communicating on a channel. It is therefore important to allow 

processes to be added and removed from the run queue without allocating any 

permanent storage in the heap. Similarly, since processes are very short-lived, 
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it makes sense to try and store environment bindings in some kind of temporary 

area, rather than allocating environment entries in the heap. Fortunately, as we 

will see in Chapter 8, once we have a mechanism in place for storing run queue 

entries in a temporary area, it is possible to use the same mechanism to store 

many of the environment bindings that are generated during execution. 

Whenever the evaluation rules from the previous section place a process on the 

run queue, they always need to store a number of argument bindings at the same 

time. For example, the AOut-R rule needs to store the bindings for 9 somewhere 

(until the process P is able to consume them): 

E(x) = c 	H(c) = (F, ?[9].P) :: rs 
H, E, x! [ii], R 4 H{c s-+ rs}, R:: (F{9 i-p E(ii)j, F) 

AOut-R 

Fortunately, since we need only store the bindings for 9 in memory until P 

starts executing, we can store them in the run queue itself (rather than adding 

them to the environment F, as in the rule above). 

We therefore add a new component to the elements of our run queue: a local 

environment L. Local environments have exactly the same abstract description 

as the environments E introduced in the previous section, but we expect them to 

be implemented differently. A local environment L is intended to be a very short-

lived entity and cannot be shared amongst more than one process (otherwise it 

would be difficult to avoid allocating it in the heap). In fact, in Chapter 8 we will 

see that the environments L 1 ,. . . , L can actually be stored within the run queue 

(which itself lives in a special temporary storage area). A global environment E 

may potentially be very long-lived, and is allocated in the heap. Many processes 

may share the same global environment E. 

Definition 7.12 (Run queue) 

R ::= (E1 , L 1 , P1 ) :: . . . :: (En , L, P) 

The efficient implementation of run queues mentioned earlier relies on the fact 

that we allocate and deallocate storage in the run queue in a very regular manner: 

we add new processes at the tail of the run queue and remove processes from 

the head of the run queue, but we never attempt to insert or remove a process 
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from the middle of the run-queue, for instance. Moreover, there is only one run 

queue. Storage allocated for channel queues, on the other hand, has a much less 

well-defined lifetime: when a process blocks on a channel we generally have no 

idea when that process will be unblocked. Thus, whenever a process becomes 

blocked on a channel, we must build a new environment in the heap. We ensure 

that the environment we build is minimal (i.e. contains only those bindings which 

might actually be used when the process is unblocked) so that in the case where 

a process remains blocked on a channel queue for a significant amount of time we 

do not retain pointers to values which could actually be garbage collected. 

Definition 7.13 presents the reduction rules for our final abstract machine. 

This abstract machine is the one upon which our compilation of ir-calculus to C 

is based. Most of the reduction rules are similar to rules we have already seen, 

so we just explain a few of the more important features. 

For those environment entries which are created within the same thread of 

control it is often possible to avoid storing such entries in memory at all. In the 

compilation of ir-calculus to C, presented in Chapters 8 and 9, we use C's built-in 

variable-binding mechanism to store variable bindings which are created within 

the same thread of control. We therefore need not do any explicit allocation for 

such bindings, and it is reasonable to expect an optimising C compiler to store 

most of them in registers. To capture the fact that we can implement environment 

entries within the same thread of control differently from those stored in the run 

queue or heap, we add a new local environment L to our evaluation relation. 

Evaluations now take the form H, E, L, F, R # H', R', where E contains those 

variable bindings which are stored in the heap and L contains those bindings 

created during the current thread of execution. 

The binding for a variable x may now be stored in either the global environ-

ment E or the local environment L. The expression (E U L)(x) = L(x) if x is 

bound in L and (E U L)(x) = E(x) otherwise. Note that it is always possible to 

statically determine whether a variable is bound locally or not, so the expression 

(E U L)(x) does not require any runtime tests. 
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Definition 7.13 (Reduction rules using local environments) 
LI L7' I D I? II LI' P' 

	

,LJ,AJ,1, 1 1A,I( 	

Sched 
H,(E,L,P)::R-4H,R  

	

H, E, L )  0 7  RH, R 	
Nil 

H, E, L, P, RH', R' 	H', E, L, Q, R'JJ. H", R" 	
Pr1 

H, E, L, (P I Q) R .iL H", R"  

c fresh 	H{c '-+ e}, E, L{x i-+ c}, P .IJ. H', R' 
H, E, L, (vx)P, RH', R' 	

Res 

(Eu L)(x) = c 	H(c) = ![a] 
H{ci-ws}, E, L{-*à}, P, RH', R' 

Inp-W 
H, (E,L,x?[].P) :: R 4 H', R' 

(Eu L)(x) = c 	H(c) = i's 	F = (Eu L)Lfv(P) 
Inp-R 

H, E, L, x?[].P, R 4 H{c '-+ i's:: (F, ?[].P)}, R 

(Eu L)(x) = c 	H(c) = (F,?[].P) :: rs 	(Eu L)(ä) = b 
AOut.-R 

H, E, L, x! [a], R # H{c i-+ rs}, R:: (F, { P 
'- }, P) 

(EuL)(x)= c 	H(c)= ws 	(EuL)(a)=b 
AOut-W 

H, E, L, x![a], E, R 4 H{c '-+ ws :: ![b]}, R 

(E u L)(x) = 
Repi 

H, E, L, x?*[].P, RI). H{c -* ((EuL)[fv(P),?*[].P)}, R 

(E u L)(x) = c 	H(c) = (F, ?*[].P) 	(E u L)(ã) = 
AOutR* 

H, E, L, x! [ii], R-H, R::(F;{-+b},P) 

The Res rule now stores the new binding x i-p c in the local environment of 

the current thread. Note that the evaluation rule for parallel composition does 

not require any storage allocation, since both P and Q are executed within the 

current thread of control (and we therefore need not preserve any environment 

entries in the heap). 
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Since in the Inp-R and Repi rules we need to suspend the current process 

and store it and its environment entries on a channel queue, we build a new, 

minimal, environment (Eu L)Lfv(P)  in the heap (the expression [fv(P) restricts 

the domain of E U L to the set of free variables of P). 

The AOut-R and AOutR*  rules now store the argument bindings 	b 

in the run queue itself, ready to be consumed by P once it starts executing. 

This does not require any permanent storage to be allocated in the heap, which 

is particularly important in the case of the AOutR*  rule, since all infinite or 

recursive behaviour arises as a result of the AOut_R*  rule. 

9 



Chapter 8 

Compiling Pict to C: Design 

The primary motivation of the Pict [PT95b] project was to design and implement 

a high-level concurrent language purely in terms of ir-calculus primitives. There 

have been many proposals for concurrent languages [Car86, Ho183, Rep92, Mat9l, 

GMP89, etc.] which include communication primitives which are very similar to 

those of the ir-calculus. However, to our knowledge, none have proposed using 

ir-calculus primitives as the sole mechanism of computation. 

The Pict language consists of two layers: a very simple core calculus (which is 

just asynchronous ir-calculus extended with built-in structured data), and a high-

level language which is defined via translation into the core calculus. This yields 

a very compact formal definition (the core language type system can be presented 

in four pages, the operational semantics in one page, the derived forms in three 

pages and the derived typing rules in two pages). Moreover, this means that Pict 

programs can be compiled in the same way as they are formally specified (first 

translate the high-level Pict program into the core calculus, and then compile the 

core calculus). 

The efficiency of Pict therefore relies exclusively on the efficient compilation 

of channel-based communication. Compiling such a language poses a number of 

challenges to the implementor: 

Process creation: Very large numbers of processes are created during execution 

(processes are created at least as frequently as functions are called in a functional 

language), so process creation must be very fast, and must consume very little 

memory. 

125 
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Process scheduling: Whenever a process becomes blocked, it is necessary to 

preserve the current state of the process, and then remove it from the run-queue. 

Since Pict processes tend to run for a very short period of time before blocking, 

it is important to ensure that such context switches can be executed very quickly. 

Moreover, since there will be many blocked processes in the system, some of which 

may remain blocked for a long time, we must ensure that a blocked process is 

represented efficiently in memory. 

Channel-based communication: The protocol required to implement channel-

based communication is rather expensive, both in terms of code size and execution 

time. These costs arise because every channel may be in one of three possible 

states: empty, containing blocked readers, or containing blocked writers. The 

code for each input or output operation in a process must be able to deal with all 

of these possible channel states. Fortunately, the status of a channel is, in many 

cases, known at compile-time, enabling us to specialise the code for communication 

and sometimes even avoiding testing the status of a channel at all. 

Channel representation: A channel may, in general, contain an arbitrary num-

ber of blocked readers or writers. However, it turns out that a large percentage of 

channels only ever contain at most one reader or writer. In fact, if the compiler 

has access to linear type information [KPT96], we can even guarantee that cer-

tain channels will contain at most one reader or writer. We therefore optimise our 

channel representation for this case (enabling a more compact channel represent-

ation and a faster implementation of communication). We pay a small additional 

cost in space and time in the case where a channel must hold more than one reader 

or writer. 

We now describe our compilation of core Pict into C. We compile to C, instead 

of native code, since it allows us to generate efficient code without sacrificing 

portability (though we do incur slightly increased compilation times and some 

loss of efficiency). An additional benefit of 0  this approach is that we can easily 

allow C code to be embedded inside Pict programs, enabling one to make use of 

the extensive operating system and library functions already available in C. For 

example, the author, in collaboration with Benjamin Pierce, has used this feature 

to develop an X-windows interface which can be controlled by Pict processes. 
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This chapter describes the Pict core language and the decisions we made when 

choosing representations for Pict data. (We don't describe some of Pict's built-in 

datatypes, such as records and tuples, since their implementation is standard.) 

Chapter 9 describes the actual compilation of Pict to C. 

8.1 Source language 

In Chapter 7 we described and motivated a number of simplifications to the r-

calculus (such as omitting summation, using asynchronous communication and 

disallowing the general replication operator) which significantly simplify its im-

plementation. Pict's core language incorporates those same simplifications, but 

also makes two extensions to the source language proposed in Chapter 7. 

Firstly, we include integers, booleans and conditional expressions as primitives, 

since it is not feasible to use encodings to implement such important datatypes. 

Moreover, by compiling integer and boolean operations into the corresponding 

operations provided by C, we give the C compiler a reasonable chance of optim-

ising them, and avoid having to reimplement all the 'standard' optimisations of 

arithmetic and boolean operations in our Pict compiler. 

Secondly, we allow C code to be embedded in ir-terms. This allows easy access 

to the operations and libraries available in C. In fact, in the Pict programming 

language this feature is available to the programmer (not just the compiler writer). 

We let a range over atomic values: variables, integers and booleans. Atomic 

values are a generalisation of channel values (which are the only kind of atomic 

value we have in the pure polyadic ir-calculus). 

Definition 8.1 (Atomic values) 

a ::= x 	 Variable 
0,1,2,... 	Integer constant 
true, false 	Boolean constant 

The syntax for processes is given below. Note that we may now send arbitrary 

atoms along channels, rather than just channel names. (There is no need for the 

subject of a communication to be an arbitrary atom, since integer and boolean 

values may not be used for communication.) 
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Definition 8.2 (Process syntax) 

P ::= x![a i ,. 
x?[y1 ,. . . , y,].P 

.,y,].P 
(vx)P 

PIP 
0 

if a then P else P 
let x = "C code" in 0  

Asynchronous output 
Input 

Replicated input 

Channel creation 
Parallel composition 

Null process 
Conditional 
Inlined C code 

The null process, 0, is actually definable in the above calculus (using the 

deadlocked process (zix)x![], for example), but we retain it here, since 0 can be 

implemented much more efficiently than (v x)x![}. 

We make the same restrictions on where replicated input can occur as we did 

in Chapter 7, Section 7.6: replicated inputs may only appear in contexts of the 

following form (where Q never uses c1,.
.. 

, c, for input and c 1 , . .. , c,, are distinct 

variables) 

(uci ) ... (vc)(c 1 ?*[xi].P1  I ... I c,?*[x,].P,.  J Q) 

Arbitrary C expressions may be included inside 7r-terms using the expression 

form 'let x = " C code" in F. The inlined C code is treated as a string by the Pict 

compiler, but is allowed to refer to any Pict variable which is in scope. For ex-

ample, if y and z are integer variables then the expression 'let x = "y + z" in F' 

has the effect of binding x to the value computed by the C expression y + z. 

8.2 Variable binding 

One of the benefits of compiling to a (reasonably) high-level language such as C 

is that we can reuse its built-in variable-binding constructs. With such a com-

pilation, a Pict variable is most simply represented by a C variable of the same 

name. In this way we avoid having to consider many of the low-level details about 

implementing variable-binding efficiently (such as register allocation). 

The problem, of course, is that C has a very restricted notion of variable 

binding (since it has no higher-order functions). For example, whenever we wish 
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to suspend a Pict process and store it on a channel queue, we must capture the 

current variable bindings and store them in the channel, along with the code for 

that process. C has no built-in mechanism for implementing this operation, so at 

such points in the computation we must explicitly preserve the current variable-

bindings in a closure. 

Fortunately, this does not mean we are back in the situation where we have 

to implement variable-bindings without any help from the C compiler since, in 

practice, many variables are consumed before we ever need to create a closure. 

The C compiler is free to implement such variable bindings as it chooses (for 

example, in registers). 

8.3 Data representations 

All runtime data is accessed via a single machine word. We use the least-

significant bit of each word as a tag (to inform the garbage collector whether 

that word is a pointer into the heap or not). 

Definition 8.3 (Runtime data) 

Tagged value 	 Data 
(Non-pointer) 	I 	 I 0 

Tag bits 

Tagged value —H__Descriptor address 
(Pointer) 	

I 
Descriptor -_ 	Size 

Tagged value 

Tagged value 

w7 
Tagged value 

Heap-allocated value 
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The above picture describes the general format of our runtime data. A zero tag 

bit indicates that a value is not a pointer into the heap. A tag bit of one signifies 

that a value is a pointer to a heap-allocated object. Subtracting one from such 

a value yields the address of a descriptor in the heap, which gives further details 

about the type of the object. 

The three least-significant bits of a descriptor indicate what type of value is 

present. The remaining bits give the size of the object (in words, including the 

descriptor word). All heap-allocated objects must be an integral number of words 

long. The following definition presents all the possible descriptor tag values as C 

macro definitions, since it is convenient to refer to the tags by name in the C code 

which follows. 

Definition 8.4 (Tag values) 

#define Empty 	0 

#define OneReader 	1 
#define OneWriter 	2 

#define ManyReaders 3 

#define ManyWriters 4 

#define Replicated 5 

#define Tuple 6 

Empty channel 
Channel with one reader 
Channel with one writer 

Channel with many readers 
Channel with many writers 

Channel with replicated reader 
Tuple of values 

The tag values 0 to 5 all indicate both that the object following the descriptor 

is a channel and the status of the channel (it would be wasteful to have a separate 

channel status word, in addition to the heap descriptor). 

Tuples are used to store many different kinds of high-level data, such as 

closures and FIFO queues. The garbage collector does not need to distinguish 

between such kinds of high-level data, and therefore considers everything as a 

simple tuple of tagged values. 

Our garbage collector ignores pointers which point to addresses outside the 

heap. This means that we can store pointers to C data structures inside Pict 

data structures (a necessary feature if we wish to allow the easy transfer of data 

between Pict programs and C code). We also allow Pict pointers to be stored 

in C data structures (i.e. outside the Pict heap), but we do not describe that 

mechanism here. 
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8.3.1 Integers and booleans 

Since we use the least-significant bit of every data value as a tag bit (to tell the 

garbage collector whether that value is a pointer or not), we must represent the 

Pict integer i using the C integer 2 * 

Definition 8.5 (Integer representation) 

Integer  I 	i 	101 

C's built-in boolean operators interpret any non-zero integer as 'true' and 

zero as 'false'. However, it is easier to implement conjunction, disjunction and 

negation if we represent 'true' using the integer 1, and 'false' using the integer 0. 

C's built-in comparison operators return values of this form anyway, so we do not 

incur any additional cost when implementing Pict comparison operators in terms 

of C comparison operators. 

Definition 8.6 (Boolean representation) 

true 	
1

0 

	

false 1 0 	101 

The above representation for 'true' clashes with our tagging scheme for Pict 

data, but does not cause the garbage collector any problems, since the garbage 

collector ignores pointers which point to addresses outside the heap (and the 

address 0 will certainly be outside the heap). 

8.3.2 Closures 

Processes are represented by heap-allocated closures. A closure stores a code 

pointer (the address of a C function) and all the free variables of the process: 

Definition 8.7 (Closures) 

1101 Code pointer I  Value 1 	F 	Value n 



CHAPTER 8. COMPILING PICT TO C: DESIGN 	 132 

The garbage collector treats each closure just like any other tuple of tagged 

values (it always ignores pointers which point to addresses outside the heap, so 

it never gets confused by the presence of a code pointer in a tuple). The function 

address stored in a closure will always point to a function of the form described 

in Section 9.2. 

8.3.3 Channels 

It turns out, in practice, that the majority of input operations find that the chan-

nel queue is empty, and the majority of output operations find that the channel 

queue contains exactly one reader (or a replicated reader). This is largely due 

to the fact that we encode functions as processes. For example, if we examine 

how the encoding of function application (reproduced below) behaves under our 

compilation, we find that the input on r always finds the channel queue for r 

empty (since r is a fresh channel). 

let xi, . . . , x, = f(a i ,.. . , am ) in P 

(vr)(f![ai, ... ,am,r] I r?[x1 , .. .. x].P) 	r 	fv(P,f,a i ,...,am ) 

Moreover, when f does eventually return its result along r, it will find exactly one 

reader already in the channel queue (the process r?[xi ,... , x].P). Furthermore, 

it is usually the case that the function f is represented using a replicated input on 

f, so the output f![ai , . . . , am
] 

will usually find that f contains a single replicated 

process. 

We therefore optimise our channel representation for the case where a channel 

contains at most one (possible replicated) reader. In the case where we need to 

store more than one reader, or more than one written value, we must allocate 

extra storage during communication. 

The representation of channels used here is based on experience the author 

has gained from implementing the Pict compiler, and tries to do a good job 

for the most common types of channel usage in Pict programs. However, it 

would be much better to leave the decision about channel representation until 

compilation time: if we had a program analysis which could tell us about the 

(approximate) usage of each channel we could choose the representation of each 
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channel according to its expected usage. We will have more to say about such 

analyses in Section 9.18. 

A channel's descriptor indicates both the size of the channel (two words) and 

the current channel status. The subsequent word contains a tagged data value. 

We only use the three least-significant bits of each channel descriptor, since the 

garbage collector knows that all channels are two words long. 

Definition 8.8 (Simple channel values) 

Empty 	 1 0 1 0 1 01 	1 
OneReader 	I 	1010111 	Closure 

OneWriter 	I 	1011101 	Tagged value 	I 
Replicated 	1 	1110111 	Closure 

If a channel's status is Empty then the content of its value field is irrelevant 

(the garbage collector never examines the value field in this case). If a channel's 

status is either OneReader or OneWriter then its value field contains a pointer to 

the closure for the reader, or the written value respectively. A channel containing 

a replicated reader has the same format as a channel containing an ordinary reader 

(though it will be treated very differently during communication, of course). Since 

we only have one word available to store any written data, we must allocate a 

separate piece of storage in the heap for the written data if the arity of a channel 

is greater than one. 

If we need to store more than one blocked reader or writer, then we must 

allocate a separate queue structure in the heap. For instance, if a channel's status 

is ManyReaders then its value field points to a FIFO queue which is used to store 

blocked readers, as shown below. (The representation of a channel whose status 

is ManyWriters is just like that shown below, except that we store values in the 

queue, rather than closures.) 
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Definition 8.9 (Complex channel values) 

Channel 	 FIFO Queue 

Closure 1 	 Closure n 

Channels use FIFO queues to ensure fairness. FIFO queues are implemented 

by keeping pointers to both the start and end of the queue. This enables fast 

insertion at the end of the queue (when we get a new reader or writer), and fast 

removal from the front of the queue (when we unblock a waiting process). 

8.3.4 Run queue 

Since we add and remove processes from the run queue very frequently, it is 

important to implement the run queue in such a way that run queue entries do 

not consume permanent storage. We therefore allocate run queue entries at the 

opposite end of the heap from where we allocate ordinary storage: 

Definition 8.10 (Heap storage) 

Heap 
Allocated storage 	Free space 	Run 	

Heap 
queue 	 limit start 	 - 	 I  

Free 	 Queue 	Queue 
pointer 	 end 	 start 

As we add entries to the end of the run queue, it grows towards the middle 

of the heap. Similarly, as we allocate memory in the ordinary part of the heap, 

the free pointer moves towards the centre of the heap. This memory model has 

the benefit that we need only perform a single test to determine whether we need 



A11ntM tnr 	 Free space 	Run queue Heap 
sta 

Heap 
it 

Unused space 
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to do a garbage collection (we just test whether the difference between the end of 

the run queue and the free pointer is sufficiently large for the allocation we wish 

to do). 

But what about when we remove entries from the start of the run queue? We 

end up with a gap at the end of the heap. Fortunately, this gap can easily be 

reused: whenever we need to do a garbage collection we first check if there is 

enough space in the gap between the start of the run queue and the end of the 

heap. If there is, we just shift the run queue back up to the end of the heap 

instead of doing a real garbage collection. Now, it turns out that the run queue 

is usually very short (containing only one or two processes), so copying the run 

queue back to the end of the heap is significantly cheaper than doing a garbage 

collection. 

Before compaction 

After compaction 

Heap 	 Heap 
start 	Allocated storage 	 Free space 	Run queue 	

limit 

The data contained within the run queue has a very simple format: 

Definition 8.11 (Run queue) 

Value n 	
--•-- 	

Value 1 	Closure 

I 
EndQ 	 StartQ 

Each closure is followed by some number of values (which correspond to the 

arguments given to that process). For instance, if we output two values v 1  and v2 



CHAPTER 8. COMPILING PICT TO C: DESIGN 	 136 

along some channel which already contains a reader (represented by the closure 

c), then we add the closure c, followed by the values v 1  and v 2 , to the end of the 

run queue. This avoids having to allocate any permanent storage for v 1  and v 2  

(note that it is not always possible to execute the unblocked process immediately, 

so we will in general need to store v 1  and v2  somewhere until the unblocked process 

can consume them). 



Chapter 9 

Compiling Pict to C: 

Implementation 

We present our compilation of Pict to C in three parts: The expression I[a] denotes 

the C expression which implements the Pict atom a, the expression EP] denotes 

the C statement sequence which implements the process P, and the expression 

I[?[].P]1 denotes the C statement sequence which builds a closure for the process 

abstraction ?[].P. 

9.1 Basic definitions 

The following macro definitions are used throughout the C code which follows: 

Definition 9.1 (Basic macro definitions) 

#define OFFSET(x , i) 
#define STATUS(x) 
#define VAL(x) 
#define TUPLE(x) 
#define TAG(x) 

((Val *)(x-1))[j] 
OFFSET(x , 0) 
OFFSET(x, 1) 
(Tuple+ (x<<3)) 

((Val) (x)+1) 

The OFFSET macro takes as arguments a tagged word x and an integer i and 

extracts the i'th word of the heap object pointed to by x (note that since x is 

tagged we must subtract 1 from x to get address of the start of the object in the 

137 
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heap). We assume that the type identifier Val is already defined to be the type 

of integers of the same size as a machine word. 

The STATUS macro extracts the first word pointed to by x (which always 

contains a descriptor). The VAL macro extracts the second word pointed to by x 

which, in the case where x is a channel, contains the value stored in the channel. 

The TUPLE macro constructs a valid descriptor for a tuple of size x. The TAG 

macro takes a pointer value and tags it (so that it can be stored in the heap). 

All processes refer to a small number of global variables which hold pointers 

to the start and end of the run queue and the next free allocation space in the 

heap: 

Definition 9.2 (Global variables) 

Va]. *EndQ; 	Pointer to the end of the run queue 
Val *StartQ; 	Pointer to the start of the run queue 
Va]. *Free; 	Pointer to the next free space in the heap 

9.2 Encoding processes 

As mentioned in Chapter 8, processes are represented using heap-allocated clos-

ures. Each closure contains the address of a C function of the form described in 

the following definition. 

The function f represents the process abstraction ?[yi,.. . , Y].P whose free 

variables are x 1 ,. ..,x, (note that = fv(P) - {yi,...,ym}). We 

declare local variables in f for both the free variables x 1 ,. . . , x and the abstracted 

variables Yi,. . 

The first thing f does is to check that there is enough free space in the heap. 

We allocate ordinary storage at the end of the allocation region (pointed to by 

Free), and allocate run queue entries the opposite end of the heap (pointed to by 

EndQ). Thus, if Free + heap(P) > EndQ then there is not enough space in the 

heap to allocate heap(P) words and we call the garbage collector. 
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Definition 9.3 (Process template) 

void f (void) { 
Val closure,y1,.. .,Ym,X1,. 

if (Free + heap(P) > EndQ) Gc(heap(P)); 
1* Get closure pointer *1 
closure = StartQ[O]; 
1* Get arguments *1 
Yi = StartQ[-1]; 

Ym = StartQ[—m]; 
StartQ - m+1; 
/* Bind free variables */ 

= OFFSET(closure,2); 

Xn = OFFSET(closure,n+2); 
1* Execute process *1 

'In 
} 

The expression heap(P) denotes the total number of words we wish to allocate 

in both the ordinary storage area and the run queue. We pass heap(P) as an 

argument to the garbage collector, which guarantees that if it returns control 

there will be at least heap(P) words free in the heap (we can always determine 

the maximum amount of storage required by a process, see Definition 9.29 in 

Section 9.17 for details). 

We load the variable closure with the first value in the run queue (which is 

always a pointer to a closure for the current process). After that, we initialise 

the argument variables Yi,... , Yin  loading their values from the run queue. The 

free variables x 1 ,.. . , x are then loaded with the values stored in closure. (In 

the case where P has no free variables, we can can omit the code which loads 

closure, since it is never used in the body of f.) We assume that the free 

variables x 1 ,. . . , x, are given in some canonical order, so that we know where 

they are stored in the closure. 

The expression EPI denotes the C code which implements the process P (the 

actual translation of processes into C is described later). The code implementing 
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P can now refer to the variables x 1 ,. . . , x and yi, . . . ,y,in the same way as we 

would in a normal C program. This also means that the C compiler is free to 

optimise the storage for both sets of variables in the same way as it would for any 

other C program. 

93 The scheduler 

Now that we have described the representations of the run queue and the processes 

that inhabit it, we can explain how we execute processes. The following top-level 

C function is responsible for initializing the heap space and run queue, placing the 

initial process on the run queue, and executing it (and any other processes which 

are subsequently placed on the run queue). Once there are no more processes to 

run, the top-level program returns, and the whole program finishes. (This code 

implements the behaviour described in the Sched rule of Section 7.11.) 

Definition 9.4 (Main program and scheduler loop) 

void main (mt argc, char **argv) 

/* Initialise heap and run queue *1 
Free = ...; StartQ = ...; EndQ = ...; 
1* Put initial process on run queue */ 
*StartQ-- = initialProcess; 
1* Scheduler loop *1 
while (StartQ != EndQ) { 

((void(*)(void))(OFFSET(*StartQ,1)))Q; 

} 

} 

Recall that StartQ and EndQ are pointers to the start and end of the run queue 

respectively. The expression *StartQ therefore denotes the first value in the run 

queue, which must be a pointer to a closure. The expression OFFSET(*Startq, 1) 

extracts the first data value in the closure, which is always a pointer to a C 

function of the form described in the previous section. We therefore cast the type 

of OFFSET(*StartQ, 1) to void(*) (void) (the type of pointers to functions which 

take no arguments and return no result), enabling us to apply the resulting value 
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to the empty argument list 0. This has the effect of running the first process on 

the run queue. When that process terminates, it returns control to the scheduler 

loop, which checks if there are any more processes in the run queue, repeating the 

above procedure if the run queue is non-empty. 

The above scheduler is so simple that there is no reason why it should really be 

a separate function: each process, once it has finished executing its own code could 

just call the next process in the run queue itself. However, such a compilation 

scheme runs into a well-known problem with compiling to C (see [Jon92], for 

example): Suppose that the processes P1 , P2 ,... are on the run queue. We start 

P1  running by calling the function representing P1 . Once it has finished doing its 

own work, P1  calls the function representing F2 , and so on. This behaviour will 

eventually cause C's stack to overflow, since we only return from the functions 

representing P1 , P2 ,... when there are no processes left to execute (i.e. when the 

whole Pict program has finished executing). 

Of course, a clever C compiler might notice that in each function P the call 

to P+1 is the last action of P, and therefore remove the stack frame for P before 

calling P+1. Unfortunately, we are not aware of any C compiler which does this 

optimisation. Instead, the Pict compiler makes a virtue out of necessity and uses 

the scheduler to do various useful checks (for example, checking if there have been 

any interrupts or if any input/output data is available). 

9.4 Atoms 

The compilation of integer and boolean atoms into C expressions is straightfor-

ward (given the representations of integers and booleans from Section 8.3.1). The 

compilation of Pict variables is trivial, since we maintain the convention that 

every Pict variable is represented by a C variable of the same name: 

Definition 9.5 (Compiling atoms) 

Ex 	x 	 [true] = 1 
Eil 	2 * i 	ftfalse]1 = 0 
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9.5 Process abstractions 

Processes are represented using heap-allocated closures, where each closure con-

tains the address of a C function whose general format is described in Section 9.2. 

The expression [?[yi ,... ,y,,,].Pl yields a C statement which builds a closure for 

the process abstraction ?[yi,. . , y].P (allocating the closure at the next free 

space in the heap). 

Definition 9.6 (Process abstractions) 	. . , y].P = 

Free [01 = TUPLE(n+2); 
Free[1] = (Val)&f; 

Free[2] = 

Free[n+1] = 
Free += n+2; 

We first write an appropriate descriptor word (which says that this object is a 

tuple of size n + 2). Then we write the address of the function f (which contains 

the code implementing ?[yi, . . . , y].P) and the values x 1 ,. . . , x, into the closure. 

Finally, we increment Free by n + 2 words (the size of the closure we have just 

created). 

We assume that the variables x 1 , .. . , x are given in some canonical order (so 

that when we come to implement the code for ?[yi, . . . , Y].P we know which part 

of the closure each free variable is stored in). We assume that the name of the 

function f is fresh (and that the function f has itself already been defined, using 

the template given in Section 9.2 and the encoding of processes which follows). 

9.6 The null process 

The null process has no behaviour and is implemented as the empty instruction 

sequence. This has the effect of returning control to the scheduler if there is no 

other work to be done in the current process. (This code implements the behaviour 

described in the Nil rule of Section 711.) 
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Definition 9.7 (The null process) JO 	/* Nothing */ 

97 Channel creation 

To create a new channel, we assign the current value of the free space pointer 

to the local variable x (after tagging it, to indicate that x it is a pointer into 

the heap). We then set the first word of x (the descriptor word) to Empty and 

increment the free pointer by the size of the channel (two words). We need not 

initialise the value field of the channel, since the garbage collector knows that if 

a channel's status is Empty, it should not scan the value field. The process P is 

compiled in the scope of the local variable x. (This code implements the behaviour 

described in the Res rule of Section 7.11.) 

Definition 9.8 (Channel creation) 	(vx)P = 

{ 

Val x = TAG(Free); 
Free[O] = Empty; 
Free += 2; 

:1. 

9.8 Conditional expressions 

The boolean values 'true' and 'false' are represented by the integers 1 and 0 

respectively. This representation is consistent with that used by C's conditional 

statement, so we can just interpret Pict conditionals using C conditionals. 

Definition 9.9 (Conditionals) Eif a then P else Q]J = 

if (a) { JPJ } else { 	} 
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9.9 Parallel composition 

The compilation of parallel composition is short and sweet: we compile parallel 

composition using C's sequential composition operator! The 7r-calculus is a con-

current, non-deterministic, language, but C is both sequential and deterministic, 

so it should not be surprising if we find that the compilation to C has the effect 

of sequentialising the execution of rterms. (This code implements the behaviour 

described in the Pri rule of Section 7.11.) 

Definition 9.10 (Parallel composition) EP I Q 	P; 

The above compilation of P I Q clearly determines that P will always execute 

before Q. Such deterministic behaviour is, not surprisingly, actually very helpful 

when tracking down programming errors. However, it is possible to simulate some 

form of non-determinism, if required: for instance, we could compile P I Q so that 

we test a random number at runtime and then decide which process to execute 

on the basis of that test. 

It is worth noting that the author has never felt the need to actually do this 

in the Pict compiler since, for non-trivial programs, plenty of non-deterministic 

behaviour arises due to time-dependent interactions between Pict code and the 

operating system (for example, during input/output or interrupt handling). 

9.10 Inline C code 

Since all Pict variables are represented using C variables, it is easy to insert 

user-defined C code into the code produced by our compiler: 

Definition 9.11 (Interfacing with C) ilet x = "C code" in P11 = 
{ 

Val x = C code; 

lIP]' 
} 
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The value resulting from the C expression containing in the string "C code is 

bound to the variable x. For example, the usual integer operations can be defined 

using inline C code as follows: 

Definition 9.12 (Integer operations) 

Addition 	: let x = "x + y" in P 
Subtraction 	: let x = "x - y "  in P 

Multiplication 	: let x = "x * (y >> 1)" in P 
Division 	: let x = " x / (y >> 1)" in P 

Comparison : 	let x = "x == y" in P 

Recall that a Pict integer i is represented using the C integer 2 * i. Thus, to 

implement i + j it is sufficient to just add the C representations of i and j, since 

(2*i)+(2*j) = 2*(7*+j). Subtraction can be implemented in the same way, since 

(2 * i) - (2 * j) = 2 * (i - j). Comparison operations are also unaffected by our 

representation of integers since, for example, 2 * i = 2 * j if i = j. We therefore 

pay no additional cost for doing simple arithmetic and comparison operations on 

tagged integers. 

However, our representation of integers does cause some extra work when 

we multiply integers, since (2 * i) * (2 * j) 2 * (i * j): we must divide one of 

the C operands by two before multiplying the C representations of i and j (it is 

necessary to divide by two before multiplying the integers, otherwise we would 

lose precision). In fact, we use a right-shift operation to divide j by two, since 

that is usually faster than doing a real division). Note that, in practice, it is 

often the case that one of the operands in a multiplication is a constant, in which 

case we can compute the right-shift operation at compile-time and we avoid any 

additional cost for multiplying tagged integers. The implementation of division 

behaves similarly. 

Boolean conjunction, disjunction and negation can be implemented using C's 

bitwise operators (there is no need to use C's more general logical operators, which 

are designed to allow any non-zero integer to be interpreted as 'true'). 
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Definition 9.13 (Boolean operations) 

Conjunction : let a = Ub & c" in  

Disjunction : let a = "b I c in P 
Negation : let a = 	1" in P 

Our style of code generation gives the C optimiser the chance to place inter-

mediate values in registers. For example, the Pict code 

let x = 	- z "  in 
let b = 	== 0" in 

if b then P else Q 

is translated into the following C code, which we would expect any reasonable 

optimising C compiler to implement using registers to hold the values of x and b: 

{ 

Val x = y - 
{ 

Val b = x == 0; 
if (b) { JPJ } else { Q]j } 

} 

} 
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9.11 FIFO queue creation 

The following function allocates a new FIFO queue containing the two queue 

elements first and last. 

Definition 9.14 (FIFO queue creation) 

Val CreateQueue (Val first, Val last) { 

Val fifo = TAG(Free); 

/* Allocate FIFO */ 

Free[O] = TUPLE(3); 
Free[1] = TAG(Free+3); 

Free[2] = TAG(Free+6); 
1* Allocate first queue element */ 
Free[3] = TUPLE(3); 

Free[4] = first; 
Freet51 = TAG(Free+6); 
1* Allocate second queue element *1 
Free[6] = TUPLE(3); 

Free[7] = last; 

Free[8] = 0; 
Free += 9; 
return fifo; 

} 

The resulting data structure has the following structure. The FIFO contains 

two pointers (to the first and last queue elements). The first queue element 

contains first, and is linked to the last queue element, which contains last. 

X 	 FIFO Queue 
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9.12 FIFO queue insertion 

The following function inserts the value val at the end of fifo. The local variable 

last is a pointer to the last element in the queue, so we make the second field of 

last point to TAG (Free), the location of the new queue element, and then update 

fifo so that it also points to the new element. We then build the new queue 

element and increment Free by the number of words we have allocated. 

Definition 9.15 (FIFO queue insertion) 

void InsertLast (Val fifo, Val val) { 

Val last = OFFSET(fifo,2); 

OFFSET(la.st,2) = TAG(Free); 

OFFSET(fifo,2) = TAG(Free); 

Free[O] = TUPLE(3); 
Free[l] = val; 

Free[2] = 0; 
Free += 3; 

} 

9.13 FIFO queue removal 

The function RemoveFirst returns the first element in the channel x's queue (x 

must always contain a fifo queue). If, after removing the first element, we find 

that the queue has length one, we remove the whole queue structure from x and 

change x's status to status. 
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Definition 9.16 (FIFO queue removal) 

void RemoveFirst (Val x, mt status) { 

Val fifo = VAL(x); 
Val first = OFFSET(fifo,1); 
Val next = OFFSET(first,2); 

if (next == OFFSET(fifo,2)) { 

STATUS(ch) = status; 
VAL(ch) = OFFSET(next,1); 

} else { 

OFFSET(fifo,1) = next; 

} 

return OFFSET(first,1); 
ii 

The value first is a pointer to the first element in fifo. The value next is 

a pointer to the next element in the queue. Thus, if next == OFFSET (fifo,2) 

then next is the last element in the queue, and we reset x's status and put the 

contents of next in x's value field. 

9.14 Output expressions 

The behaviour of an asynchronous output expression is dependent on the status 

of the channel we are outputting on. We therefore use a switch statement to 

select the appropriate thing to do when outputting on a channel. The following 

code presents just the outer structure of the, switch statement, since we present 

the actual code for each case separately. 

Definition 9.17 (Output) 	ftx![a i ,. . . ,a]]J = 

switch (STATUS(x)) { 

} 

If x already contains one reader, then we reset the status of x to Empty and 

place the closure for the reader (which is stored in the value field of x) on the run 
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queue. We then place the translations of the output atoms a 1 ,. . . , a, after the 

closure on the run queue, ready to be consumed by the reader when the scheduler 

restarts it. (This code implements the behaviour described in the AOut-R rule of 

Section 7.11, but is specialised for the case where there is only one reader.) 

Definition 9.18 (Output: OneReader) 

case OneReader: 

STATUS(x) = Empty; 
EndQ[O] = VAL(x); 

EndQ [-1] = 

EndQ [-n] = I[anII; 
EndQ -= n+1; 
break; 

If x contains a replicated reader, we do exactly the same thing, except that we 

do not reset the status of x to Empty (since communicating with a replicated reader• 

does not consume that reader). It is worth noting that in both the OneReader 

and the Replicated cases we need not allocate any permanent storage (storage 

allocated in the run queue can be reclaimed without doing a garbage collection, 

as explained in Section 8.3.4). (This code implements the behaviour described in 

the AOut_R*  rule of Section 7.11.) 

Definition 9.19 (Output: Replicated) 

case Replicated: 

EndQ[O] = VAL(x); 

EndQ[- 1] = 

EndQ E-n] = 
EndQ -= n+l; 

break; 

If the status of x is Empty, we set the status of x to OneWriter, allocate a 

tuple to store the output atoms a 1 ,. . . , a, and place a (tagged) pointer to that 

tuple in the value field of x. If ii = 1 we need not allocate a tuple at all, since we 
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already have enough space to store the output atom in the value field. Similarly, 

if n = 0, we need not allocate a tuple, we need only write a dummy value (say 

zero) in the value field of x (it is necessary to write something in the value field of 

X, since the garbage collector will scan the value field of any non-empty channel, 

though we could get around this problem by having a special descriptor tag for 

this case, just as we have a special case already for empty channels). (This code 

implements the behaviour described in the AOut-W rule of Section 7.11, but is 

specialised for the case where the channel is empty.) 

Definition 9.20 (Output: Empty) 

case Empty: 

STATUS(x) = OneWriter; 
VAL(x) = TAG(Free); 

Free[O] = TUPLE(n+1); 

Free [1] = 

Free [n] = 
Free += n + 1; 
break; 

If x already contains one writer, then we must allocate a FIFO data structure 

of the form described in Section 8.3.3. We change the status of x to ManyWriters, 

allocate a FIFO data structure containing two queue elements (one for the value 

which was already stored in x, and the other for the tuple of values a 1 ,. . . , an). 
We arrange the queue so that the value which was already stored in x is placed 

first in the queue. (This code implements the behaviour described in the AOut-W 

rule of Section 7.11, but is specialised for the case where there is just one writer.) 
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Definition 9.21 (Output: OneWriter) 

case OneWriter: 

{ 

tuple = TAG(Free); 

Free [01 = TUPLE(n+1); 
Free[1] = jai; 

Free [n] = 

Free += n+1; 
VAL(x) = CreateQueue(VAL(x) ,tuple); 

} 

break; 

If there are already many writers in x, the situation is slightly simpler, since 

the FIFO data structure has already been allocated, and we need only allocate 

an extra queue element (and a tuple for a 1 ,. . . , a,). We insert the new queue 

element, which is at address Free, at the end of the FIFO. (This code implements 

the behaviour described in the AOut-W rule of Section 7.11, but is specialised for 

the case where the channel contains more than one writer.) 

Definition 9.22 (Output: ManyWriters) 

case ManyWriters: 

{ 

Val tuple = TAG(Free); 

Free[O] = TUPLE(n+1); 
Free Ell = 

Free En] = 

Free += n+1; 

InsertLast(VAL(x) ,tuple); 

} 

break; 

In the case where x holds many readers we must implement the inverse of the 

previous operation and remove the first reader from the FIFO queue of readers. 



CHAPTER 9. COMPILING PICT TO C: IMPLEMENTATION 	153 

If, after removing one reader from the FIFO queue, there is only one reader left, 

the RemoveFirst function sets the status of x back to OneReader. (This code 

implements the behaviour described in the AOut-R rule of Section 7.11, but is 

specialised for the case where there is more than one reader.) 

Definition 9.23 (Output: ManyReaders) 

case ManyReaders: 

EndQ[O] = RemoveFirst(x,OneReader); 
EndQ[-1] = 

EndQ [-n] = 
EndQ -= n + 1; 
break; 

Clearly, the code for implementing an output expression is very large in com-

parison to the constructs we have presented earlier! What is more, output ex-

pressions are a fundamental part of the computation mechanism used by Pict, 

and are therefore very common in programs. If we actually tried to compile every 

asynchronous output as indicated above, we would generate huge amounts of C 

code for anything other than toy programs. 

We could trade off code size against execution time by miming the code for 

the commonly executed cases and putting all the other cases in a library function 

(in the hope that the library function will be called relative infrequently). In 

Section 9.18 we describe a more flexible technique for optimising communication 

based on finding approximations of a channel's status at compile time. 

9.15 Replicated input expressions 

Because of the restrictions we made on the occurrences of replicated input (see 

Section 7.6 for details), we can be sure that the status of x is always Empty when 

we execute the expression x?*[y1,.. . , y,].P. We therefore set the status of x to 

Replicated and place a (tagged) pointer to the closure for x?*[y1 ,. . . , y,].P in 

the value field of x (recall that the expression ?[y i ,. . . , y].P]J returns a sequence 
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of C statements which builds a closure for the given process abstraction at the 

next free space in the heap). (This code implements the behaviour described in 

the Repl rule of Section 7.11.) 

Definition 9.24 (Replicated input) 	x?*[y1 ,. . . , y,].P] = 

{ 

STATUS(s) = Replicated; 
VAL(x) = TAG(Free); 
?[yi,... 

} 

9.16 Input expressions 

The behaviour of input expressions is in most cases similar to that of output 

expressions. The main difference is that before we check the status of x, we 

allocate a closure for the process abstraction ?[y,.... , y,].P at the next free space 

in the heap (the local variable closure is bound to the tagged address of this 

closure). In the case where there already is an output value in the channel, this is 

rather wasteful, since we build a closure for ?[yi,.. . , y].P and then immediately 

put it on the run queue, when we could have just executed P directly. Fortunately, 

this case is sufficiently rare that we can make do with this simpler, more uniform, 

treatment of input. 

Definition 9.25 (Input) 	fr?[yj , . . . 	 = 

{ 

Val closure = TAG(Free); 

switch (STATUS(x)) { 

} 

Is the case where there is one writer in the channel, we put our closure on 

the run queue, followed by the elements of the stored tuple of values. (This code 
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implements the behaviour described in the Inp-W rule of Section 7.11, but is 

specialised for the case where the channel contains just one writer.) 

Definition 9.26 (Input: OneWriter) 

case OneWriter: 

{ 

Val tuple = VAL(x) 

STATUS(x) = Empty; 

EndQ[O] = closure; 
EndQE-13 = OFFSET(tuple,1); 

EndQ[-nJ = OFFSET(tuple,n); 

EndQ -= n+1; 
} 

break; 

It is rather a shame that we have to copy the individual values onto the run 

queue instead of just copying a pointer to the tuple. However, if we wish to avoid 

this cost we need multiple entry points to each process abstraction, since in the 

case where a closure is put on the run queue by an output operation, it will find 

its arguments on the run queue, while in the case where a closure is put on the 

run queue by an input operation it will find its arguments in a tuple. 

In the case where the channel is empty, we store our closure in the channel 

and set the channel's status to OneReader. (This code implements the behaviour 

described in the Inp-R rule of Section 7.11, but is specialised for the case where 

the channel is empty.) 

Definition 9.27 (Input: Empty) 

case Empty: 

STATUS(x) = OneReader; 
VAL(x) = closure; 
break; 

The remaining cases use the FIFO queue manipulation functions in a similar 

way to those used in the compilation of output expressions. (This code implements 
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the behaviour described in the Inp-R and Inp-W rules of Section 7.11, but is 

specialised for the case where the channel contains just one reader, more than one 

reader, or more than one writer.) 

Definition 9.28 (Input: OneReader,ManyReaders ,ManyWrit ers) 

case OneReader: 

STATUS(x) = ManyReaders; 

VAL(x) = CreateQueue(VAL(x) ,closure); 
break; 

case ManyReaders: 

InsertLa.st(VAL(x) ,closure); 
break; 

case ManyWriters: 

{ 

Val tuple = RemoveFirst(x,OneWriter); 
EndQ[O] = closure; 

EndQ[- 1] = OFFSET(tuple,1); 

EndQ[-n] = OFFSET(tuple,n); 
EndQ -= n+1; 

ii 
Ii 

9.17 Heap usage 

Now that we have seen all of the compilation of processes, it is easy to determ-

ine the maximum number of words that a process may need to allocate. This 

information is used in the process template given in Definition 9.3, since the first 

action of every process is to check whether there is enough free space for all of 

the allocation it might do. 
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Definition 9.29 (Heap usage) 

	

heap(0) 	0 

	

heap((vx)P) 	2+heap(P) 
heap(P I Q) = heap(P) + heap(Q) 

heap(if b then P else Q) = max(heap(P), heap(Q)) 
heap(let x = "C code" in P) = heap("C code") + heap(P) 

hcap(x![ai ,..., a]) = 10+n 

	

heap (x?*[yi ,.. . ,y,].P) 	closureSize(?[yi ,.. . , y,].P) 
heap (x?[yi ,...,y].P) = 9+closureSize(?[yi,...,yn].P) 

The expression heap("C code") denotes the number of words allocated by the 

inline C code (in Pict, this number is provided explicitly by the programmer). 

We calculate the number of words required to hold the closure for the process 

abstraction ?[yi,. .. , y].P by calculating the size of the set of free variables of 

?[yi ,. . . , y.]. P, and adding two (one word for the descriptor and one word for the 

code pointer). 

Definition 9.30 (Closure size) 

closureSize(?[y i , . . . , y,].P) = Ifv(P) - {y',. . . y} + 2 

9.18 Optimising communication 

The code required to implement input and output expressions is very large (con-

sidering the fact that they are the fundamental operations of Pict, and are therefore 

pervasive throughout Pict programs). Fortunately, there is plenty of scope for op-

timisation: any program analysis which is able to determine the state of a channel 

at compile time (or at least, a set of possible states) is potentially very useful. 

For example, if the channel x is known to contain a replicated process (a very 

common situation, since functions are implemented as replicated processes), then 

we can avoid testing the status of x and execute the appropriate code directly: 
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Definition 9.31 (Optimised output) 	x![ai ,. . . ,a,]]J = 

EndQ[O] = VAL(x); 
EndQ[-1] = I[ai]1; 

Endq [-n] = 
EndQ -= n+1; 

Specialising the code for input and output expressions has two benefits: the 

code becomes small enough that we can inline it, and we avoid testing the status 

of x. The Pict compiler uses a local program analysis (i.e. an analysis which does 

not attempt to track higher-order uses of channels) to determine when channels 

are guaranteed to contain replicated readers and when channels are guaranteed 

to be empty (two of the most common cases). 

A number of other researchers have proposed more sophisticated analyses 

which produce similar information (usually about the maximum size of a channel 

queue) [KNY95, NN94]. The author, in collaboration with Kobayashi and Pierce, 

has recently developed a linear type system for Pict which can determine when a 

channel is used by exactly one reader/writer pair [KPT96]. If x is has a linear type 

then the code presented in Definition 9.32 is sufficient to implement an output on 

(the case for linear input expressions is similar). 

The linear type system ensures that if x has linear type then it is used by 

exactly one reader/writer pair. Thus, since the expression above is using x's 

write capability, the rest of the program must only have the capability to do a 

single read from x. This means that x can either be empty (because the rest of 

the program has not yet used its read capability), or x can contain a single reader 

(if the rest of the program has already done a read on x). 
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Definition 9.32 (Linear output) 	ftx![ai,. . . , a]]J 

if (STATUS(x) == Empty) { 
STATUS(x) = OneWriter; 
VAL(x) = TAG(Free); 
Free[OJ = TUPLE(n); 
Free [1] = 

Free [n] = 
Free += n + 1; 

} else { 
EndQ [0] = VAL(ch); 
EndQ[- 1] = 

EndQ [-n] = 
EndQ -= n+1; 

Note that in the case where x already contains a reader we do not need to 

reset the status of x to Empty, since the linea4y of x ensures that no other 

processes will use it in the future (both the input and output capabilities have 

been consumed). 

9.19 Performance 

The purpose of this chapter was to investigate whether the it-calculus can be 

implemented efficiently enough for it to be considered as a reasonable operational 

foundation for concurrent programming. To get a rough idea of the performance of 

the code generated by our Pict compiler we wrote three solutions to the "nqueens" 

problem. We first wrote an ML program to solve the problem, and then translated 

that into Pict (using Pict's high-level derived forms for functions). The table below 

indicates that the Pict version of the program is approximately five times slower 

than that produced by the New Jersey ML compiler (version 0.93). Considering 

the simplicity of our compilation (Pict's code generator is implemented using just 

900 lines of ML), the performance of Pict was quite a surprise! 
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Time Code size 
New Jersey ML 2.3s 3801(b 
Pict 12s 25Kb 
CML 46s 545Kb 

To get an idea how fast our implementation of communication is, we converted 

our ML program into a CML [Rep92] program (CML is a concurrent extension of 

ML which implements channel-based communication on top of New Jersey ML). 

We converted all functions so that, instead of returning their results directly, 

they returned their results along an explicit result channel (this matches the way 

we return results from functions encoded in Pict). We did not use channels 

to implement the functions themselves, since CML has no built-in support for 

replicated inputs. As can be seen above, CML ran our example almost four times 

slower than Pict. 

The reader should not attach too much importance to the exact figure quoted 

here, since there are a number of differences which are difficult to quantify (such 

as differences in garbage collection strategy). However, it is reassuring to find 

that the performance of Pict code, which uses just channel-based communication, 

is in the same ball-park as that of functional code. It is especially worth bearing 

in mind that Pict loses some performance just because we compile to C rather 

than to native code. Tarditi, Acharya and Lee [TAL90] found that compiling to C 

rather than to native code costs almost a factor of two for New Jersey ML code. If 

we are paying a similar price by compiling Pict to C, we might reasonably expect 

a native code generator to improve the performance of Pict to within a factor of 

two or three from New Jersey ML. 

Our Pict compiler produces much smaller programs than the New Jersey com-

piler. This is not because we are compiling 7r-calculus, but because Pict has a tiny 

runtime system (just 800 lines of C). Much of the code which would normally live 

in the runtime system appears as inline C code in Pict programs. This gives our 

Pict compiler the ability to discard any C code which is unused in the program 

being compiled, and helps contribute to the very small code size of Pict programs. 



Chapter 10 

Related work 

In this chapter we review related work on type systems and implementation tech-

niques for concurrent calculi. We have already shown in Chapter 6 that there is 

a very strong relation between 7r-calculus types and .\-calculus types, so we will 

not discuss )-calculus type systems here. 

10.1 Type systems 

We first compare our type system with Miler's original sort system [Mil91a, 

Mil9lb] for the polyadic ir-calculus (which inspired our ir-calculus type system). 

Miler's sort system partitions the channels in a ir-term using subject sorts. Each 

subject sort X is associated with an object sort [X1 ,. .. ,X] (this association 

is written as X i-+ [X 1 ,. . . , X]). An object sort describes how members of a 

particular subject sort may be used for communication. For example, in the 

following process we say x has sort X and y has sort Y. Channels of sort X carry 

pairs of channels of sort Y, and channels of sort Y carry the empty tuple. 

x:X-+[Y,Y] 	y:Yi-+[] 	x![y,y].y![] 

The above example is well-sorted, since x is only ever used to communicate 

the pair [y, y], which has the expected sort [Y, Y]. Similarly, y is only ever used 

to communicate the empty tuple. 

The sort Y is equivalent to the type t[] in our type system, and the sort X is 

equivalent to the type t{t[]' tEl]. Our typing for the previous example is: 

161 
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t[] I- x![y,y].y!j 

Milner also allows recursive sorts. For example, the sort of integer lists might 

be List, where 

List i- [Nil, Cons] Nil i-+ [] Cons '-* [Int, List] 

Compare this with the corresponding recursive type in our type system: 

itList.t[t[], t[Int,  List]] 

We conjecture that the well-typed it-terms of our type system coincide with 

Miler's well-sorted it-terms. Note, however, that Milner's sorts allow us to par-

tition channels more carefully than we can with our types. For example, the sorts 

P and V below are not considered to be equivalent. 

Pi— [] 	Vi— [] 

This matching of sorts 'by name' rather than 'by structure' is quite attract-

ive. Suppose p and v have different intended uses and we wish to avoid p being 

accidentally used in place of v (as might well be the case if p and v are part 

of a semaphore). If we set p : P and v : V then Miler's sorting system will 

detect any confusion of p and v, but note that this technique is only useful in an 

explicitly-typed calculus. 

As previously mentioned, our type system evolved from work on Milner's sort 

system. We decided to use more traditional type-theoretic techniques for three 

reasons: 

Milner's sort system is very simple, but all sort information is global. For 

example, a closed it-term does not have a trivial type - all the sort informa-

tion required inside the it-term is visible at the top-level. This seems rather 

unsatisfactory, and also causes a number of technical problems in proving 

subject-reduction. 

Although it is possible to formulate polymorphic sorts, they are much more 

complicated than polymorphic types in our system. 
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3. Once one has a sufficiently powerful polymorphic type system, it is pos-

sible to distinguish values of isomorphic type using the abstract datatype 

encodings presented in Section 5.7. 

Vasconcelos and Honda [VH93] have independently proposed a monomorphic 

type system for the polyadic 7r-calculus which is very similar to ours (except that 

they treat recursive types in a more traditional way, interpreting recursive types 

as regular trees). They prove that their type system is sound and has the principal 

type property using essentially identical techniques to those proposed here. 

Pierce and Sangiorgi [PS93] have developed a ir-calculus type system which 

uses the idea of I/O tags to capture additional information about how a channel is 

used, controlling whether a channel may be written to, read from, or both. Their 

type system can be thought of as a refinement of the type system presented here 

(though it was developed independently). We give the essence of the idea below, 

using our own notation. We introduce two new channel types: ?5 and !8, the 

types of input-only and output-only channels respectively. Clearly, an ordinary 

channel of type TS, which allows either input or output, can be used in place of 

an input-only or an output-only channel. In terms of the subtyping relation we 

have: 

t5<!5 

As is usual in subtyping systems, we introduce a rule of subsumption for 

values: 

LHv  
LHv:S 

We then refine the typechecking rules for the input and output operators so 

that they use the new channel types: 

AFc:!8 	L-v:5 	LFP 

I- c!v.P 

LJ- c:?5 	}-p:8;L' 	L,L'HP 
I- c?p.P 
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Clearly, we can derive our original rules for input and output from the above 

rules since, if Li F c : tS, we can use subsumption to show that either L I- c : !6 

or A F- C: ?8 as required. 

Suppose, for the purposes of explanation, we introduce record patterns and 

values, with the following typing rules: 

LFv:6 

	

A F II I  = 	= v} : {i : 	: 

	

Fp 1 :61 ;L 1 	... 

	

F 111 = Pi, . , 	= p,} :{li : 81, . . . , l,, : 8,}; z 1 , . . . , 

We also allow subtyping on records in the usual way. Pierce and Sangiorgi 

also give subtyping rules for each new channel types. 

	

SI <yj 	... 	On :5 7n 

6<6' 	5'<S 
?6<Th' 	!8<!5' 

	
Ts < to' 

The subtyping rule for input-only channels says that we can forget information 

about the value we receive from input-only channels. For example, we can forget 

the field age: mt in the record being sent along c below: 

t,n: String F  

C: ?f name : String, age: Intl F c?{ name = n}.P 

The subtyping rule for output-only channels is the dual of the above, since it 

says that we can send extra information along output-only channels. For example, 

we can send a record with an extra field male = true along c below: 

C: !{name: String, age : Intl F P 

C: !{name: String, age: Intl F c!{ name = Dave, age = 25, male = true}.P 

The rule for ordinary channel types states that they are invariant in the subtyp-

ing relation: subtyping is only safe on input-only or output-only channels. Sup-

pose we allow covariant subtyping on input/output channels (a similar example 

can be constructed if allow contravariant subtyping). We can now typecheck the 
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following example by using the subsumption and (incorrect) channel subtyping 

rule to promote the type of c to be t{name : String}. Clearly, this example can 

cause a runtime error, since it has sent a record along c which is lacking the age 

field. 

S < 5' 

tS < tS' 

C: t{narne: String, age : Int} I- P 

C: t{ name : String, age: Intl F- c!{ name = Dave}.P 

The Pict type system [PT95b] uses Pierce and Sangiorgi's channel subtyping, 

as well as subtyping for record values and patterns. 

10.2 Type inference 

Vasconcelos and Honda [VH93] have independently developed a type inference 

algorithm very similar to the one presented here. Their algorithm, takes only 

a process P as argument, and constructs the principal context in which P is 

well-formed. We can easily derive a similar algorithm from our type inference 

algorithm X: 

Definition 10.1 (New type inference algorithm) 

If A = x, : a1 ,... , x, : a and X(t)(P) = or where x 1 ,. . . , x, are the free 

variables of P and a1 ,.. . , c are distinct type variables then return 

We conjecture that the above algorithm is equivalent to that proposed by 

Vasconcelos and Honda (modulo the fact that we do not do type inference for 

recursive types). Note that in the case of a closed ir-term P our algorithms 

already coincide, since Vasconcelos and Honda's algorithm returns a trivial type 

for P. 

Gay [Gay93] has developed an algorithm which infers principle sorts for ir-

terms in Miler's sort system. The algorithm is based on a unification algorithm 

for sorts. For example, we can unify the sorts A and D below 
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Ai—[B,C] 	B[A] 
D[E,F] 	Ei—[D] 	Fi—[] 

yielding a substitution which identifies A and D, B and E and C and F. Sort 

unification is similar to unification for regular trees [Cou83] (the algorithm used 

by Vasconcelos and Honda in their type inference algorithm). 

The use of subject sorts is partièularly convenient when unifying recursive 

sorts. Many unification algorithms for recursive trees use tags to record nodes 

which have already been visited, thereby ensuring that the unification algorithm 

always terminates. This is unnecessary in sort unification, since each node (object 

sort) is already labelled with a subject sort. We need only keep a record of which 

subject sorts have already been visited. 

10.3 Polymorphic types 

Vasconcelos [Vas94] has independently proposed a polymorphic type system for 

ir-calculus which is a special case of the polymorphic type system presented here. 

It relies on explicit let-expressions to indicate where type generalisation may occur 

(just like the Damas-Milner type system does). The form of let-expression used 

in Vasconcelos' type system is essentially the same as our derived form for process 

definitions: 

def X1 
 [] 

= P1  and ... and X,, [:i,,] = P, in Q 

His type system allows the process definitions Xj ,. . . , X to be given given 

polymorphic types, while forcing ordinary channels to be used monomorphically. 

In Section 5.2 we showed how our typing rules for polymorphic channels give 

rise to a derived typing rule for polymorphic process definitions. We conjec-

ture, therefore, that Vasconcelos' polymorphic calculus is a strict sub-calculus of 

our polymorphic ir-calculus. Note, however, that one benefit of restricting type 

generalisation to process definitions is that type inference becomes much simpler 

(in fact, just like the Damas-Milner type system, Vasconcelos' type system has 

principal types which can be computed automatically). 

Languages such as PFL [Hol83], Poly/ML [Mat9l], CML [Rep92] and Fa-

cile [GMP89] which are concurrent extensions of Standard ML [MTH90] all al-

low a limited form of channel polymorphism, since they retain Standard ML's 
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polymorphic type system. It is well-known that the Damas-Milner type sys-

tem is unsound in the presence of side-effecting computation, so some care has 

to be taken with the typing of any channel creation operator. For example, 

in CML [Rep92] the channel function creates new channels, and has the type 

unit -> _a channel. The weakly polymorphic type _a in the type of channel 

is necessary to avoid giving types to unsound programs such as the one below: 

let 
val ch = channel() 

in 

send(ch,33) ... (if accept(ch) then x else y) 

end 

The expression channel() has type _a channel. The fact that _a is a 

weak type variable means that it is unsafe to generalise that type. If we allowed 

the type of ch to be polymorphic in _a then we could instantiate the type of 

ch to be mt channel in the expression send (ch,33), and bool channel in the 

expression if accept (ch) then x else y. This is clearly unsound since one 

process is sending an integer along ch while the other is expecting a boolean. 

A side-effect of the above treatment of channel creation is that channels do 

not have the same status as functions and other datatypes when it comes to 

polymorphic typing. For instance, the following server function is supposed to 

wait for a pair (x, y) to he sent along id 'and then reply by sending x along 

r. As explained in Chapter 5, there is no reason why the channel id cannot 

be polymorphic (the server example is essentially a transliteration of the first 

example in Chapter 5). Unfortunately, the type of id can never be polymorphic, 

because the type of channel is weakly polymorphic. 

val id = channel() 

fun server() = let 
val (x,r) = receive(ch) 

in 
send(r,x); server() 

end 

Thomsen [Tho93] illustrates how one can improve upon the behaviour of poly-

morphic channels using an effect system (in the context of the Facile language). 
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However, even though his type system is quite complicated he is still not able to 

allow the type of id be polymorphic. 

10.4 Implementation 

There have been a number of proposals for abstract machines for concurrent 

calculi [Ama94, Car85, GMP89, etc.]. At a high-level, our implementation of 

communication is almost identical to that described by Cardelli [Car85]. However, 

our abstract machine is unique in that it implements nothing but communicating 

processes. For example, the abstract machines proposed by both Amadio [Ama94 

and Giacalone et. al. [GMP89] use a separate SECD machine to implement each 

process (since the execution of a Facile processes may involve both )-calculus 

reduction and communication). 

In practice, the fact that we rely on communication as our sole computational 

mechanism means that we have to take more care when representing channels and 

processes. For instance, we are unaware of any implementation of channel-based 

communication which implements a replicated input construct (most concurrent 

languages rely on the functional part of the language to express infinite behaviour, 

or prove built-in recursive process definitions) 

We are not aware of any compiler which implements a language whose sole 

computational mechanism is channel-based communication. However, the com-

pilation of 7r-calculus to C presented in this dissertation is quite closely related to 

the SML to C compiler described in [TAL90]. The stackless representation used 

here for rr-calculus processes is very reminiscent of the continuation-passing style 

of code generation used in the New Jersey ML compiler [AM87] (upon which the 

SML to C compiler is built). 



Chapter 11 

Conclusions and further work 

Throughout this dissertation we have looked at the u--calculus from the perspect-

ive of concurrent programming. We have shown that the ur-calculus admits a 

simple type system which can be extended to include many of the more advanced 

type-theoretic features familiar from the )t-calculus. In fact, in the Pict program-

ming language [PT95b] the author, in collaboration with Benjamin Pierce, has 

developed a higher-order polymorphic ur-calculus, which also includes subtyping, 

higher-order subtyping and extensible records. Experience to date suggests that 

refinements one can make to )-calculus type systems are also applicable to the 

typed ir-calculus. 

The fact that communication protocols can be enforced using abstract data-

types (see Section 5.7 for details) gives us real reason to believe that our type 

system will be able to catch a significant number of the most common errors in 

ur-calculus programs. For this reason, we have avoided complicating our channels 

types with complex protocol-like information (which often make type checking 

and type inference much more difficult). In Pict, the abstract datatypes provided 

by our polymorphic type system are used extensively throughout most library 

code [PT95c], as well as being used to ensure that the internal representations of 

built-in datatypes such as integers and booleans can only be manipulated using 

the functions supplied by the compiler. 

Of course, that it not to say that there are no useful refinements one can 

make to channel types. The Pict type system includes one very useful refinement, 

proposed by Pierce and Sangiorgi [PS93], which distinguishes input and output 
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capabilities on channels (see Chapter 10 for details). The linear type system 

developed by the author, in collaboration with Kobayashi and Pierce [KPT96], 

presents another useful refinement to channel types. However, both of these refine-

ments add only a modest amount of information to channel types, and therefore 

retain simple type inference and type checking algorithms. 

The problem of how to do type inference for the polymorphic 7r-calculus is 

an interesting problem where further work is required. The expressiveness of 

our polymorphic type system makes it very unlikely that type inference will be 

decidable in general. The Pict compiler currently gets around this problem by 

using a partial type inference algorithm. This allows most, but not all, explicit 

type information to be omitted. Experience with Pict suggests that a partial type 

inference algorithm is quite usable in practice, since one often writes explicit type 

information in programs anyway (as a simple form of program documentation). 

However, if any sort of type inference is to appear in the formal definition of Pict, 

a more abstract description of partial type inference is required. 

The compilation of ir-calculus to C presented in this dissertation now forms 

the basis of the Pict language implementation. The compilation implemented 

in the Pict compiler really does match what we have presented here (modulo a 

few simple refinements which avoid incrementing the free space pointer too often, 

and which cache the values of global variables as local variables to enable the C 

compiler to do a better job of optimising Pict programs). It is nice to find that the 

ir-calculus has such a simple and concise compilation which, despite its simplicity, 

is able to provide reasonable performance. Having an efficient implementation of 

ir-calculus makes it possible to do rcal programming in Pict. The largest Pict 

programs developed so far (which comprise approximately four thousand lines of 

Pict code) implement a graphical user interface toolkit, the performance of which 

is perfectly acceptable, though some form of incremental garbage collection would 

be helpful. 

Our compilation of 7r-calculus to C is designed so that it can easily exploit 

information about a channel's status at compilation time. An interesting area for 

further work is the development of appropriate program analyses for 7r-calculus. 

The linear type system proposed by Kobayashi, Pierce and the author [KPT96] is 

one example of such an analysis, but there are many further potential refinements. 
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The examples presented in Chapter 2 hint at a problem one encounters when 

programming in the it-calculus: the it-calculus is quite a low-level language (its 

most irritating feature is the need to always deal with result channels explicitly). 

We solved this problem here by defining a number of derived forms. The Pict 

language takes a similar approach: it starts with a core language (which is just 

asynchronous it-calculus extended with built-in structured data), and then defines 

a high-level language via a series of derived forms. This style of formal language 

definition is very concise (the type system can be presented in four pages, the 

operational semantics in one page, the derived forms in three pages and the derived 

typing rules in two pages). It is not necessary to extend the Pict type system 

when we add new derived forms, since we can simply derive high-level typing 

rules from our basic it-calculus typing rules (as we did in Sections 3.3 and 3.4, for 

example). This has the additional benefit that the soundness of the high-level Pict 

type system depends only on the soundness of Pict's core language type system. 

In conclusion, we believe that the it-calculus type system presented here en-

ables one to use the it-calculus as a simple type-theoretic foundation for concurrent 

programming. Moreover, our compilation of it-calculus to C is efficient enough to 

allow one also to use the it-calculus as a basis for compiling high-level concurrent 

programming languages. 
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