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ABSTRACT 

The expansion of trinucleotide repeat tracts is the cause of nearly twenty 

genetic disorders. Almost all these diseases are characterised by anticipation, which 

means an earlier age of onset and an increased severity of the symptoms from one 

generation to the next. The mechanisms of trinucleotide repeat expansion are not 

understood. 

In the course of this project, I have investigated the instability of a 

trinucleotide repeat array of 43 copies integrated at the attB site of chromOsomes of 

various Escherichia coli mutants. The trinucleotide repeat tract (CTG) 43  was 

integrated into the E. coli chromosome in both possible orientations using an 

intermediate vector and exploiting site-specific recombination between the attB site 

of the chromosome and the attP site of the vector. Using this method I have 

constructed 60 mutant strains of E. coli which contain the trinucleotide repeat tract 

and are deficient in genes involved in replication, recombination, secondary structure 

repair or mismatch repair. 

Techniques for the analysis of the instability of the trinucleotide repeat 

arrays were developed and used to quantify repeat instability. These included: 

digestion of chromosomal DNA with a rare-cutting restriction endonuclease and 

PAGE of the labelled fragments; PCR of the trinucleotide repeat tract, followed by 

restriction enzyme digestion and PAGE; fluorescent PCR and f-TRAMP (fluorescent 

trinucleotide amplification which uses just one primer in repeated cycles of linear 
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primer extension): products were separated by capillary electrophoresis and analysed 

using Gene Scan software. 

Intensive analyses of different E. coli mutants showed that the trinucleotide 

repeat arrays integrated into the chromosome are stable. Except in one case, no 

instability was observed in any mutant deficient in replication, recombination, 

mismatch repair or secondary structure repair. The only strain, which showed 

instability, was a mutD mutant (impaired in the proof-reading activity of DNA 

Polymerase III). Possible explanations for this observation are discussed. 
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Chapter 1 

Introduction 

1.1 Repeated DNA 

The DNA sequences in the human cell nucleus which can be transcribed and 

translated account for 5% of the total. A small fraction represents regulatory 

elements required to control gene expression, but the great bulk serves no recognised 

function. Much of it is in the form of fairly short nucleotide sequences repeated over 

and over again, perhaps thousands of times. These tandem arrays seem to have arisen 

in the course of evolution by processes such as unequal crossing-over between 

chromosomes at meiosis and also slippage, generating not only multiple copies of the 

repeat units, but also considerable diversity within the species in size and 

chromosomal dispersion of the individual blocks of repetitive DNA. 

Some of the repeated elements are highly characteristic of particular species 

so that, for example, DNA of mouse or human origin can be identified by looking for 

the individual "trade marks". In some species, the very highly repetitive component 

forms a separate peak when total DNA is run out on a density gradient. This has 

given rise to the name "satellite" DNA and, by analogy, less abundant repetitive 

elements are termed "minisatellites". 

The diversity in size and number of individual blocks of repetitive DNA 

makes them useful for distinguishing one member of the species from another in the 



technique known as "DNA fingerprinting". Each of us has a unique set of these 

blocks, half having been inherited from each parent, and we pass on a random 

mixture, totalling half our own set, to each of our children. Thus, by comparing the 

extent of similarity between the minisatellite block patterns of two individuals we 

can assess the closeness of the family relationship between them. Conversely, if we 

have a source of DNA from an assailant, large numbers of suspects can be screened 

with the secure knowledge that only the perpetrator of the crime will have a 

minisatellite block pattern corresponding exactly to that of the initial sample. 

Microsatellites or simple sequence repeats (SSRs) are tandemly repeated 

tracts of DNA composed of 1-6 base pair (bp) long units. They are ubiquitous in 

prokaryotes and eukaryotes, both in protein-coding and non-coding regions (Toth et 

al., 2000). Because of their high mutability, microsatellites are thought to play a 

significant role in genome evolution by creating and maintaining genetic variation. 

A subset of SSRs, namely trinucleotide repeats (TR), are of great interest 

because of the role they play in many human neurodegenerative disorders (fragile-X 

syndrome, Huntington disease, myotonic dystrophy, Kennedy disease, spinal-bulbar 

muscular atrophy, spinocerebellar ataxia). The alteration responsible for these 

genetic diseases is the expansion of triplet repeats, where the rate of mutation 

depends on the number of tandem units within the repeat. 

These sequences can either be perfect repeats, that is, with no variation in 

the base composition of the repeat motif, or imperfect repeats, where there are some 

copies that vary from the canonical repeat motif. Many repeats are composites of 

perfect and imperfect units. 
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Though there are 64 different codons, there are only 10 different types of 

trinucleotide repeat. From the 64 trinucleotides, one can subtract the four that contain 

only one type of base and the other 60 have to be divided by two because there is 

another trinucleotide on the complementary strand, and further divided by three 

because the frame of translation is not important as regards to the DNA sequence. 

The ten possible trinucleotide repeats are: 

AAC.GYf = ACA.TGT = CAA.TFG 

AAG.CTF = AGA.TCT = GAA.11TC 

AAT.ATF = ATA.TAT = TAA.TFA 

ACC.GGT = CCA.TGG = CAC.GTG 

ACG.CGT = CGA.TCG = GAC.GTC 

ACT.AGT = CTA.TAG = TAC.GTA 

AGC.GCT = GCA.TGC = CAG.CTG 

AGG.CCT = GGA.TCC = GAG.CTC 

ATC.GAT = TCA•TGA = CAT.ATG 

CCG.CGG = CGC.GCG = GCC.GGC 

Of the 18 trinucleotide repeat disease loci that had been identified so far, all 

contained only three of these repeat sequences: CAG.CTG; CCG.CGG and 

GAA.TI'C. 
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1.2 Dynamic Mutation 

The rate of mutation in the human genome varies widely. Unique gene 

sequences, even of nonessential function, appear to change very slowly. Such 

mutations are static, in that the mutant has the same rate of mutation as its 

predecessor. Microsatellites have a unique form of mutation: variation in copy 

number. The rate of the mutation is related to the copy number, and therefore, the 

mutability of the product of a change in copy number is different from that of its 

predecessor. For this reason, Richards and Sutherland (Richards & Sutherland, 1992) 

have termed this mechanism dynamic mutation. 

Dynamic mutation is a process of multiple steps rather than a single event. 

The first step in the process involves rare, small changes in repeat copy number and/ 

or composition, such that a relatively unstable number of perfect repeats is achieved. 

This repeat allele then becomes increasingly unstable with further increases in copy 

number. The general properties of dynamic mutations are: 

mutation rate is related to perfect-repeat copy number; 

rare initial events lead to alleles with an increase in the number of 

perfect repeats. These repeats have copy numbers near the top of the normal range 

and are a pool of unstable alleles with increased risk of expansion to disease-causing 

alleles. 

there is a relationship between repeat copy number and age-at-onset and 

severity of disease symptoms. Together, these properties account for the increasing 

severity of the disease in successive generations within a family - a phenomenon 

referred to as anticipation. 
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The normal (or wild type) alleles at loci that undergo dynamic mutation 

show polymorphism (variation in the number of repeat copies from chromosome to 

chromosome). As the total number of repeats in an allele increases, the instability 

increases into the premutation, or carrier, range until the expansion manifests as a 

chromosomal fragile site or phenotypic effect. Premutation, or carrier, alleles show 

instability upon transmission, but are of insufficient copy number to cause disease or 

fragile sites. 

Dynamic mutation is not restricted to trinucleotides: massive expansion of a 

33-bp AT-rich minisatellite repeat is the molecular basis of the fragile site FRA16B. 

The expansion of a 12-bp GC-rich repeat is the most common mutation at the EPM1 

epilepsy locus (Lafreniere et al., 1997). 

Estimation studies of mutation rates at microsatellite loci showed the 

dinucleotide repeat loci appear to evolve at a rate 1.5-2 times greater than the 

tetranucleotide loci. The non-disease-related trinucleotide loci have mutation rates 

intermediate between the di- and tetranucleotides. In contrast, the disease-related 

trinucleotides have a mutation rate higher than the dinucleotides, even within the 

normal allele size range (Chakraborty et al., 1997). These conclusions disagree with 

those of Weber and Wong (Weber & Wong, 1993) who found that the average 

mutation rate for tetranucleotides is nearly four times higher than that for 

dinucleotides. 
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1.3 Fragile Sites 

Fragile sites on chromosomes are loci that show an increased frequency of 

gaps and breaks when the cells are exposed to specific conditions of tissue culture or 

chemical agents. They are divided into rare and common ones. All common fragile 

sites are present in all individuals, most likely as part of their normal chromosome 

structure. The rare ones range in frequency from 1 in 40 chromosomes for FRA16B 

and 1 in 80 chromosomes for FRA lOB to just one single report for FRA1M at 

lp2l .3. 

Most fragile sites are not expressed spontaneously, but require induction by 

manipulation of tissue culture conditions. Fragile sites are also divided according to 

the conditions of tissue culture required to induce their cytogenetic expression. The 

common fragile sites are divided into: 

- aphidicolin inducible (FRA313, FRA16D, FRAXD), 

- 5-azacytidine inducible (FRA1J, FRA19A) and 

- bromodeoxyuridine inducible (FRA6D, FRA1OC). 

The rare fragile sites are classified into: 

- folate sensitive (FRA1 1B, FRA16A, FRAXA, FRAXE, FRAXF), 

- distamycin A inducible (FRA1613, FRA17A, FRA8E) and 

- bromodeoxyuridine requiring (FRA1OB, FRA12C) (Sutherland & 

Richards, 1995). 

The rare folate-sensitive fragile sites have all been shown to be dynamic 

mutations of naturally occurring CCG trinucleotide repeat sequences. 
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Fragile sites are discontinuities of chromatin in metaphase chromosomes. 

The chromosome can break at a fragile site, giving rise to a variety of unusual 

chromosomal configurations. Culturing somatic cells containing human 

chromosomes with fragile sites under conditions, which induce their cytogenetic 

expression, gives rise to rearrangements with breakpoints at the fragile sites. Whether 

such rearrangements occur in vivo has been the subject of controversy until it was 

shown that breakage near the rare fragile site at 1 1q23.3 (FRA1 1B) in humans gives 

rise to a chromosomal deletion (1 1q) resulting in Jacobsen syndrome (Jones et al., 

1994). FRAXA and FRAXE are two other fragile sites with clinical significance. 

FRAXA and FRAXE are the cytogenetic manifestations in fragile X syndrome and 

in mild mental retardation, respectively. 

1.4 Trinucleotide Repeat Expansion Diseases 

For some repeats, large (expanded) alleles above a certain threshold were 

shown to be pathogenic. There are nearly 20 known triplet repeat expansion diseases 

that are divided into three classes. 

- 	A first class is characterised by large CAG expansions that code for a 

polyglutamine stretch. The polyglutamine disease class comprises Huntington 

disease (HD), five spinocerebellar ataxias (SCA1, 2, 3/ Machado-Joseph disease = 

MJD, SCA7 and SCA17), dentatorubral-pallidoluysian atrophy (DRPLA) and spinal 
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and bulbar muscular atrophy (SBMA) or Kennedy's disease. The pathogenic 

threshold (35-39 repeats) is similar in this class of neurodegenerative diseases and 

the clinical phenotypes include abnormal voluntary and involuntary movements, 

frequently accompanied by neurophsychiairic features. Pathologically, the 

neurodegeneration is probably due to a toxic gain of function of the large 

polyglutamine stretches. It is most likely that there is a selective neuronal 

vulnerability since the genes are ubiquitously expressed and only certain regions of 

the brain are damaged. 

- 	Diseases that are caused by a short expansion of a translated triplet 

repeat are grouped into a second class. Spinocerebellar ataxia 6 (SCA6) is caused by 

an increase of a CAG repeat above 19 units in a neuronal P-type calcium channel 

(CACNAJA). Small increases in the length of the repeat might alter the channel 

function, thereby changing calcium fluxes resulting in damage to the cell. As the 

channel is greatly enriched in cerebellar Purkinje cells, this mechanism may hamper 

cerebellar function. Three diseases are caused by small increases in a triplet repeat 

that is translated as a stretch of alanine residues. Two are caused by short expansions 

of a GCN repeat, (cleidocranial dysplasia and synpolydactyly), and one by a short 

expansion in a GCG repeat, (oculopharyngeal muscular dystrophy). A last disease, 

multiple epiphyseal dysplasia, occurs when a (CAG) 5  contracts to four units or 

expands to six or seven units (Goodman et al., 1997). 

- 	The third class contains diseases caused by vast expansions in 

untranslated triplet repeats. Friedreich ataxia (PA) is caused by an expansion in an 

intronic GAA repeat. Two subtypes of Fragile X syndrome (FRAXA and FRAXE) 

are caused by enormous expansions at a CGG and a GCC repeat respectively, both 



located in the 5' - untranslated region (UTR). These expansions result in 

hypermethylation on CpG islands in an adjacent promoter with consequent loss of 

gene transcription. Expansion of another 5'-UTR CGG repeat can result in the 

deletion of the distal portion of chromosome 1 lq leading to Jacobsen syndrome. Two 

spinocerebellar ataxias are associated with an expansion of untranslated triplet 

repeats, SCA12 with a 5'-UTR CAG repeat and SCA8 with a 3'-UTR CTG repeat. 

Also myotonic dystrophy (DM) is caused by expansion of a CTG repeat in a 3'UTR. 

Anticipation 

Ten of all these triplet repeat expansion disorders (TREDs) (the 7 large 

polyglutamine expansions, FRAXA, MD and FA) were reported to show 

anticipation. Anticipation is defined as a decrease in age at onset (AAO) and/or an 

increase severity in successive generations. The anticipation observed in the triplet 

repeat expansion disease has a biological explanation by the combination of two 

factors. The first factor is that, in contrast to repeats of normal length, the large, 

pathogenic repeats are unstably transmitted and have the tendency to expand even 

further when passed on to the next generation. The second factor is an inverse 

correlation between pathogenic repeat length and AAO. Neither factor is present in 

100% of the cases: pathogenic repeats are occasionally observed to contract and the 

repeat length does not explain all the variance in AAO. Still, the sum of both trends 

results in the observed anticipation (Goossens et al., 2001). 



1.4.1 Huntington Disease (HD) 

Huntington disease was first described by George Huntington in 1872. It is 

caused by the expansion of a CAG repeat sequence in the first exon of the huntingtin 

gene on chromosome 4pl6.3. The mutant allele is dominant and causes severe 

neurodegenerative disease, which usually sets in in middle age and leads first to 

uncontrolled movements, then to mood disturbances, depression and death. 

Huntington disease is one of eight currently known neurodegenerative 

diseases in which an unstable expansion of a CAG repeat within the coding region of 

the responsible gene is translated into a polyglutamine (polyQ) domain within the 

disease protein. The HD gene contains in excess of 36 CAG repeats in exon 1 

resulting in an expanded polyQ tract near the N-terminus of the 350-KDa 

cytoplasmic huntingtin protein. Large CAG repeats are associated with an earlier age 

of onset and also with accelerated clinical progression. 

The most crucial factor that is required for the engagement and maintenance 

of a progressive HD phenotype is the continued expression of mutant Huntingtin 

(On & Zoghbi, 2000). The most compelling evidence for this comes from a 

conditional transgenic mouse model expressing exon 1 of the human HD gene (with 

94Q residues) under the control of a tetracyclin-dependent promoter which allows 

programmable "switching off' of the transgene expression. Switching off the 

transgene at a stage when mice are already symptomatic leads to an arrest of 

pathological changes, clearance of Htt aggregates from cerebral neurones and, most 

importantly, stabilization and even improvement of the established motor 

abnormalities (Yamamoto et al., 2000). 

10 



Several lines of evidence from cell culture, transgenic animal models, and 

also the brains of HD patients, incriminate N-terminal products of the proteolytic 

cleavage of mutant Htt, and suggest the toxic effects are exerted predominantly in the 

nucleus. This basic mechanism seems to be shared by other polyQ disorders. Htt is a 

cytoplasmic protein and its cleavage probably occurs mostly in the cytoplasm before 

the translocation of cleaved product to the nucleus. The nuclear accumulation of 

cleaved mutant Htt seems to occur by passive diffusion rather than active transport 

(Hackam et al., 1999) and increases the susceptibility of cultured cells to apoptotic 

death. In keeping with this, cell death in vitro can be exaggerated or prevented by 

manipulations that alter the nuclear accumulation of mutant Htt, such as attaching a 

nuclear localization signal or a nuclear export sequence to the construct used in cell 

transfection (Saudou et al., 1998). 

However, there is also evidence that toxic effects of N-terminally truncated 

mutant Htt are mediated within the cytoplasm; it is likely that both nuclear and 

cytoplasmic toxicity occurs in vivo. Currently, it is unclear how these basic 

processes, experimentally modelled in neuronal and non-neuronal cell lines, are 

"translated" into the selective neurodegeneration characteristic of HD. Candidate 

mechanisms could include the level of mutant Htt expression, the distribution of 

insoluble aggregates of mutant Htt, protein-protein interactions with specific 

intracellular proteins either in the cytoplasm or nucleus, or a cell type-specific 

activation of proapoptotic mechanisms involving cysteine kinases. 
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1.4.2 Spinocerebellar Ataxias (SCAs) 

The spinocerebellar ataxias (SCAs) are a group of autosomal dominant 

progressive disorders that have overlapping and variable phenotypes. They cannot be 

distinguished based on clinical features alone, but 16 distinct SCAs (1-8 and 10-17) 

have been identified. Cerebellar dysfunction is a hallmark of all the SCAs, but many 

also include abnormalities in other regions in the central and/or peripheral nervous 

system. At the genetic level, most of the SCAs are caused by translation of an 

expanded CAG repeat into an abnormally long polyglutamine tract within the 

corresponding protein. 

The mutations for SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12 and 

SCA17 are identified and found to be caused by an expansion of a CAG or a CTG 

repeat sequence of these genes. Six additional loci for SCA4, SCA5, SCAb, 

SCA1 1, SCA13 and SCA14 are mapped. SCA4, mapped on chromosome 16, is 

characterised by a late-onset spinocerebellar ataxia with sensory axonal neuropathy. 

SCA5, mapped on chromosome 11, is a slowly progressive late-onset cerebellar 

syndrome. Linkage of cerebellar disease phenotypes in families to loci on 

chromosome 22 for SCA1O (Zu et al., 1999), chromosome 15 for SCA11 (Worth et 

at., 1999) and chromosome 19 for SCA13 and SCA14 (Herman-Bert et at., 

2000),(Yamashita et al., 2000) were reported. SCA1O is the first SCA shown to be 

caused by expansion of a non-triplet repeat (the pentamer ATTCT). 
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1.4.2.1 SCA1 

SCA1 is a relatively rare autosomal dominant neurodegenerative disease 

typically with mid-life onset characterised by motor symptoms in the absence of 

cognitive deficits. Death usually occurs between 10 and 15 years after the onset of 

symptoms. The clinical features of SCA1 vary depending on the stage of the disease, 

but typically in addition to ataxia, include dysarthria, swallowing and breathing 

problems. At the pathological level, the most frequent and severe alterations seen in 

SCA1 patients are the loss of Purkinje cells in the cerebellar cortex and degeneration 

of neurons in the inferior olivary nuclei, the cerebellar dentate nuclei and the red 

nuclei. 

Characterisation of SCA1 revealed that it encoded a novel protein of about 

800 amino acids; the absolute length depends on the number of CAG and CAT 

triplets. Wild-type alleles show between 6 and 44 CAG copies, while mutant alleles 

have 40-82 repeats. The SCA1 gene spans 450 kb and consists of nine exons. The 

SCA1 transcript was unique in that the 5'- untranslated region (5'-UTR) was encoded 

by exons 1-7 and a portion of exon 8. In addition, the 3'-UTR encoded by the last 

exon extended for 7277 bases. Expression analysis revealed that mRNA was 

expressed equally from both the wild-type and mutant alleles (On & Zoghbi, 2001). 

SCA1 protein ataxin-1 is a nuclear protein and is likely to be cleaved in the 

nucleus (On & Zoghbi, 2000). The realisation that mutant ataxin- 1 causes disease 

upon entering the nucleus has prompted efforts to understand the regulation of its 

nuclear localization and its function in the nucleus. Secondly, understanding that 
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expansion of the polyglutamine tract alters the folding of ataxin- 1 highlighted the 

importance of protein folding and clearance in pathogenesis. 

1.4.2.2 SCA2 

Spinocerebellar ataxia type 2 is an autosomal dominantly inherited disorder 

that affects the cerebellum and inferior olivary nuclei. The disease is characterised by 

appendicular and gait ataxia, dementia, optic atrophy and slow saccadic eye 

movements. First symptoms usually appear between the age of 2 to 65 years, but in 

40% of SCA2 cases onset occurs before the age of 25 (Imbert et al., 1996). Linkage 

analysis assigned SCA2 to chromosome 12q23-q24 (Gispert et al., 1993). Normal 

alleles have 14-32 CAG copies with one to three CAA interruptions. SCA2 patients 

have 33-77 CAG copies without interruptions. The SCA2 gene consists of 25 exons 

spanning 130 kb and codes for ataxin-2, a cytoplamatic protein. 

1.4.2.3 SCA3 IMachado-Joseph Disease (MJD) 

Machado-Joseph disease is a neurodegenerative disorder that shows 

autosomal dominant inheritance and is characterised by neuronal loss and gliosis in 

the substantia nigra and nuclei of vestibular and cranial nerves. Symptoms start 

around the age of 40 and include ataxia, dystonia, muscle atrophy, bulgy eyes, loss of 

leg reflexes, cerebellar tremors and Parkinsonian features. The causative mutation for 
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SCA3 has been identified as an unstable expansion of CAG trinucleotide repeats in 

the MJD1 gene at the 14q32.1 locus (Kawaguchi et al., 1994). Wild type alleles of 

the ataxin-3 gene have 12-40 CAG copies; mutant ones show 55-86 CAG copies. 

1.4.2.4 SCA6 

Neuronal loss in SCA6 consists of the prominent loss of Purkinje cells from 

the cerebellar cortex, like in SCA1 and SCA2 (Gomez et al., 1997). The protein 

affected by the polyglutamine expansion in SCA6 is the alA voltage-dependent 

calcium channel (Zhuchenko et al., 1997). Normal allies exhibit 4-18 CAG copies. 

The size range of the polyglutamine tract on mutant SCA6 alleles of 2 1-30 repeats is 

much shorter than those found for the other polyglutamine diseases. While 

aggregates of the alA-subunit have been detected in brains of SCA6 patients 

(Ishikawa et al., 1999), the polyglutamine expansion also alters the kinetic properties 

of the channel (Restituito et al., 2000). 

1.4.2.5 SCA7 

SCA7 is a clinically and genetically distinct entity, in which progressive 

loss of photoreceptors and bipolar cells results in progressive macular dystrophy, 

decreased visual acuity and ultimately in blindness. The gene for SCA7 has been 

mapped to chromosome 3. SCA7 is caused by the expansion of a trinucleotide CAG 
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repeat in the coding region of Ataxin-7. Wild type alleles of the ataxin-7 gene have 

7-17 trinucleotides. Mutant alleles have 38-200 CAG copies (David et al., 1998). 

1.4.2.6SCA 8 

SCA 8 is a progressive ataxia with cerebellar atrophy, decreased vibration 

sense and brisk reflexes, caused by an expanded CTG repeat in its 3'-terminal exon 

(Koob et al., 1999a). Interestingly, SCA8 may have a CTG repeat range that is 

pathogenic (-110-250 repeats) with shorter and larger repeats not resulting in disease 

(Koob et al., 1999b). Also uniquely amongst triplet repeat disorders, the SCA8 

transcript does not code for a protein and may be an endogenous antisense RNA that 

regulates the expression of another gene. 

1.4.2.7SCA 12 

SCA12 is a rare autosomal dominant cerebellar ataxia caused by a non-

coding CAG trinucleotide repeat expansion in the 5'-UTR of the PPP2R2B gene 

(Holmes et al., 1999). Patients present with action tremor of the upper extremities 

and progress to develop a wide range of signs and symptoms, including mild 

cerebellar dysfunction, hyperreflexia, subtle parkinsonian features and dementia. Age 

of onset ranges from 8 to 55, with most individuals presenting in the fourth decade. 
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Magnetic resonance images of affected individuals revealed generalised atrophy of 

the central nervous system dominantly affecting the cerebral cortex and cerebellum. 

PPP2R2B encodes a brain-specific regulatory subunit of protein 

phosphatase 2A (PP2A). Although the CAG repeat is located near conserved 

promoter elements and transcriptional start sites, repeat-mediated transcriptional 

interference of PPP2R2B has not yet been shown. 

1.4.2.8 SCA17 

SCA17 is caused by an abnormal CAG expansion in the TATA-binding 

protein (TBP) gene, a general transcription initiation factor. This abnormal expansion 

of glutamine tracts in TBP bears 47-55 repeats, whereas the normal repeat number 

ranges from 29 to 42. Age at onset ranges from 19 to 49 years. Most individuals 

present in the third decade with gait ataxia and dementia (Nakamura et al., 2001). 

1.4.3 Dentatorubral-pallidoluysian Atrophy (DRPLA) Maw-

River Syndrome 

Dentatorubral-pallidoluysian atrophy is a rare neurodegenerative disorder 

that shows autosomal dominant inheritance and is clinically characterised by ataxia. 

The causative mutation for DRPLA has been identified as an unstable expansion of 
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CAG trinucleotide repeats at l2pter-p12 (Koide et al., 1994),(Nagafuchi et al., 

1994). 

The normal DRPLA gene encodes the Antrophin protein of about 1184 

amino acid residues, with a CAG array of 3-36 copies in normal individuals and 

expansion from 49 to 88 in affected patients. The repeat begins at residue 484, 

preceded by five histidines, plus serine repeats and segments rich in serines and 

prolines. 

1.4.4 Spinobulbar Muscular Atrophy (SBMA) /Kennedy 

disease 

SBMA, described for the first time in 1968 by William Kennedy, is a rare 

X-linked, adult-onset, motor neurone disorder resulting in spinal and bulbar muscular 

atrophy. It was the first disease found to be caused by a CAG repeat expansion 

situated in the first exon of the androgen receptor gene (AR) at the Xq13-21 locus. 

Normal copy number is 9-36, while affected individuals have 38- 62 copies. 

Kennedy's disease is a progressive neuromuscular disease that is characterised by 

proximal muscle weakness, atrophy and fasciculations. 

Males who have point mutations in the androgen receptor gene exhibit 

feminisation, but they do not get motor neurone disease. This is convincing proof 

that Kennedy disease is due to gain rather than loss of function. 

18 



1.4.5 Cleidocranial Dysplasia 

Cleidocranial dysplasia is caused by a polyalanine expansion in the gene 

encoding the a! core-binding factor (Mundlos et al., 1997). 

1.4.6 Synpolydactyly (SPD) 

Synpolydactyly is a rare dominantly inherited congenital limb 

malformation. Typical cases have 3/4 finger and 4/5 toe syndactyly, with a 

duplicated digit in the syndactylous web, but incomplete penetrance and variable 

expressivity are common. The condition has been thought to be caused by 

expansions of an imperfect trinucleotide repeat sequence encoding a 15-residue 

polyalanine tract in HOXD13 (Goodman et al., 1997). 

The mutations in these two rare diseases (cleidocranial dysplasia and 

synpolydactyly) are not triplet repeats, but duplications of "cryptic GCN repeats" 

composed of mixed synonymous codons (Warren, 1997). 

1.4.7 Oculopharyngeal Muscular Dystrophy (OPMD) 

OPMD is an autosomal dominant adult-onset disease. It usually presents in 

the sixth decade with progressive swallowing difficulties (dysphagia), eyelid 
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drooping (ptosis) and proximal limb weakness. Its pathological hallmark are the 

unique nuclear filament inclusions in scheletal muscle fibres. The normal (GCG)6 

repeat encoding a polyalanine tract located at the N terminus of the protein, expands 

to (GCG) 813  in affected individuals. The homozygosity for the (GCG) 7  allele leads to 

autosomal recessive OPMD. More severe phenotypes were described in compound 

heterozygotes for the (GCG)9 mutation and a (GCG)7 allele. Thus the (GCG)7 allele 

is an example of polymorphism which can act either as a modifier of a dominant 

phenotype or as a recessive mutation (Brais et al., 1998). 

OPMD was the first description of short trinucleotide repeat expansion 

causing a human disease. The addition of only two GCG repeats is sufficient to cause 

dominant OPMD. Furthemore, there is a clear cut-off between the normal and 

abnormal alleles, with a single GCG expansion being a recessive mutation. 

1.4.8 Multiple Epiphyseal Dysplasia 

The human gene for cartilage oligomeric matrix protein contains five 

tandem repeats of the GAC trinucleotide. Its expansion by one repeat causes multiple 

epiphyseal dysplasia, while expansion by two repeats or, remarkably, deletion of one 

repeat causes pseudoachondroplasia (Vorlickova et al., 2001). 
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1.4.9 Friedreich's Ataxia 

Friedrejch's ataxia (FA or FRDA) is an autosomal recessive disorder 

characterised by ataxia, dysarthria, diminished reflexes, cardiomyopathy and 

diabetes. FRDA is caused by a large intronic GAA repeat expansion in the X25 gene 

(or frata.xin) which leads to reduced X25 expression. The expanded AT-rich 

sequence most probably causes transcriptional interference via a self-association of 

the GAAITFC tract, which stabilizes the DNA in a triplex structure. Reduced X25 

mRNA decreases frataxin levels, suggesting that FRDA results from a partial loss of 

frataxin function. Disruption of the yeast X25 homolog (YFH1) causes abnormal 

accumulation of mitochondrial iron, loss of mtDNA, respiratory dysfunction, 

multiple iron-sulfur-dependent enzyme deficiencies and increased sensitivity to 

oxidative stress (Wilson & Roof, 1997). These findings, together with highly 

conserved mitochondrial targeting signal sequences and mitochondrial membrane 

localization in yeast and human, suggest that frataxin is involved in iron homeostasis 

and respiratory function (Koutnikova et al., 1997). In FRDA samples, studies have 

shown increased iron content, deficient activities of proteins involved in iron-sulfur 

homeostasis and hypersensitivity to iron and H 202 (Wong et al., 1999). Therefore, 

frataxin insufficiency may result in abnormal iron-sulfur homeostasis and, in turn, 

mitochondrial dysfunction, free radical production, oxidative stress and cellular 

degeneration. 
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1.4.10 Fragile-X Syndrome (FRAXA) 

Fragile-X is an inherited, X-linked dominant retardation disorder with 

minor dysmorphic features, affecting about 1 male in 1500 and 1 female in 2500, 

which makes it one of the most common human genetic disease. It is so called 

because most affected individuals exhibit, cytogenetically, a folate-sensitive fragile 

site at the 5'-untranslated region (UTR) of the first exon of the fragile-X mental 

retardation gene on the X chromosome (Xq27.3) (Verkerk et al., 1991). Fragile sites 

are identified as non-staining gaps on chromosomes that are inducible by certain 

conditions of tissue culture. 

The instability is due to variation in copy number of a tnnucleotide repeat 

(CGG). The FMR1 (fragile X mental retardation-i gene) polymorphic CGG repeat 

located in the 5' UTR of the gene can be categorised in four forms based on the size 

of the repeat: common (6-40 repeats), intermediate (4 1-60 repeats), premutation (61-

200 repeats) and full mutation (>200-230 repeats). Among the general population, 

the common repeats are usually transmitted from parent to offspring in a stable 

manner. Intermediate alleles are larger repeats that may or may not be transmitted 

stably from parent to offspring. Thus, these alleles overlap the boundary between 

common and premutation alleles (Noun et al., 1996). While intermediate alleles may 

be unstable, very few expand to the disorder-causing mutation in the next generation 

(Crawford et al., 2001). 

Expansion of the CGG repeat beyond 230 tnnucleotides results in its 

hypermethylation together with a CpG island within the FMR1 promoter region 

(Eichler et al., 1994). This hypermethylation recruits transcriptional silencing 
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machinery to the FMR1 gene, followed by reduced FMR1 transcription and loss of 

gene product (FMRP) (Coffee et al., 1999). The mutation in fragile X syndrome is 

therefore a loss of the normal function of FMRP. 

1.4.11 Fragile XE MR (FRAXE) 

FR AXE patients have mild mental retardation and variable behaviour 

abnormalities. FRAXE is caused by an expansion of a polymorphic (GCC)n  repeat in 

the promoter region of the FMR2 gene (Knight et at., 1993). The expanded repeats 

are hypermethylated, leading to transcriptional silencing of FMR2 and subsequent 

loss of gene product (FMR2). Two other proteins, AF4 and LAF-4, share motifs with 

FMR2, and all three proteins exhibit nuclear localisation, DNA-binding capacity and 

transcription transactivation potential (Miller et at., 2000). The putative role of 

FMR2 as a transcriptional activator together with its high expression levels in the 

hippocampus and the amygdala suggest that the cognitive and behavioural deficits in 

FRAXE are due to alterations in neuronal gene regulation (Chakrabarti et at., 1998). 

1.4.12 Jacobsen Syndrome 

Jones (Jones et at., 1994) mapped FRA1 lB (1 1q23.3) to the human cellular 

homologue of the murine oncogene v-cbt and murine cellular proto-oncogene Cbt-2 
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and presented evidence for a possible association of FRA1 lB with the loss of part of 

the long arm of chromosome 11 which is characteristic of Jacobsen syndrome. This 

was the first time that a fragile site had been linked to chromosome breakage in vivo. 

A year later, the same laboratory mapped FRA1 lB to the CGG repeat within the Cbl-

2 gene and showed that the CGG repeat was expanded in some Jacobsen syndrome 

patients (Jones et al., 1995). 

1.4.13 Myotonic Dystrophy (Dystrophia Myotonica) 

Myotonic Dystrophy (DM) is an autosomal, dominant, multisystemic 

disease with a variety of clinical features including myotonia, muscular dystrophy, 

cardiac conduction defects, posterior iridescent cataracts and endocrine disorders. 

With an incidence of 1 in 8,000 it is the most ëommon form of muscular dystrophy in 

adults and can be caused by a mutation on either chromosome 19q13 (DM1) or 3q21 

(DM2). DM1 is caused by a CTG expansion in the 3' untranslated region of the 

dystrophia myotonica-protein kinase gene (DMPK) on chromosome 19. The repeat, 

transcribed as CUG, is normally present in 5-27 copies, while carriers have >50 

copies. There is an association between copy numbers and phenotype, and the copy 

number increases with subsequent generations through affected pedigrees, again 

accounting for the phenomenon of anticipation. It remains unclear how the CTG 

expansion in a non-coding region of a gene causes the complex DM phenotype. 

Suggested mechanisms include: 
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haploinsufficiency of the dystrophia myotonica-protein kinase (DMPK) 

protein; 

altered expression of the neighbouring genes, including SIX5; 

pathogenic effects of the CUG expansion in RNA which accumulates as 

nuclear foci and disrupts cellular function. 

Several mouse models have developed different aspects of DM1: a model 

expressing mRNA with CUG repeats manifests myotonia and the myopathic features 

of DM1; a DMPK knockout has cardiac abnormalities; and SIX5 knockouts have 

cataracts. Taken together, these data have been interpreted to suggest that each gene 

may contribute to DM1 pathogenesis. 

DM2 or PROMM (proximal myotonic myopathy) is caused by a CCTG 

expansion (mean 5,000 repeats) located in intron 1 of the zinc finger protein 9 

(ZNF9) gene. Although DM1 and DM2 phenotypes are strikingly similar, they are 

not identical. DM2 does not show a congenital form or the severe central nervous 

system involvement seen in DM1. Parallels between these mutations indicate that 

microsatellite expansions in RNA can be pathogenic and cause multisystemic 

features of DM1 and DM2 (Ranum & Day, 2002). 

The discovery of each new triplet repeat disorder brings tremendous clinical 

benefits, offering better classification of the diseases and facilitating early diagnosis 

and genetic counselling. 
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1.5 Trinucleotide Repeat Arrays and Cancer 

Since the initial description in 1993 of microsatellite instability (MIN) in a 

class of familial colon carcinomas, hereditary nonpolyposis colorectal carcinoma 

(HNPCC) (Peltomaki et al., 1993), MIN has been identified in a wide variety of 

human cancers, both familial and sporadic. However, it is not clear that the 

conclusions drawn for different series are directly comparable, making it difficult to 

derive a consensus concerning the role of MIN in human carcinogenesis. 

MIN is reflected in alterations in the patterns of polymorphic, short, tandem 

repeat segments (microsatellites) dispersed throughout the human genome. In the 

original descriptions of HNPCC, it was reported that MIN was associated with 

mutations in certain DNA repair genes (Fishel et al., 1993). 

Therefore the assumption is that MIN reflects an underlying genomic 

instability, resulting from inactivation of both alleles at a DNA repair gene locus 

(Parsons et al., 1993). In familial cases, a single mutation in a DNA mismatch repair 

gene was inherited (Liu et al., 1994a); MIN followed the loss of activity of the 

second allele at the same locus. In the non-familial colorectal carcinoma cases 

demonstrating MIN, inactivation of both alleles at a single DNA mismatch repair 

locus is presumed to occur as a somatic event in a target colon epithelial cell (Liu et 

al., 1995b). Kunkel and colleagues (Koi et al., 1994) showed that the introduction of 

a wild-type copy of a mismatch DNA repair gene can restore genomic stability of 

microsatellites. This finding clearly indicates that mutations in mismatch DNA repair 

genes constitute the underlying molecular defect responsible for MIN. Wooster 
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(Wooster et al., 1994) found that 8% of the analysed samples had an allele of a 

different size in the tumour which was not present in the normal DNA. 

It is known that androgens play a role in prostate cancer growth because 

dogs and males castrated before puberty do not get prostate cancer (Wilding, 1992). 

The main functions of the androgen receptor are the transcriptional regulation of 

target genes (Stanford et al., 1997) and the transport of the androgen hormone (Ross 

et al., 1998). This function is coded for by exon 1 which also contains the CAG 

repeat. A smaller CAG repeat size associated with increased activation of 

transcription might lead to an increased risk of prostate cancer. Schoenberg 

(Schoenberg et al., 1994) reported the case of a prostate cancer patient who had a 

(CAG)24  repeat in non-cancerous tissue and an additional contracted (CAG) 1 8 in the 

cancerous tissue. Irvine (Irvine et al., 1995) identified the highest frequency of short 

CAG repeats in African-Americans who had the highest risk of prostate cancer in the 

analysed population, whereas short CAG repeats were less frequently found in 

Asians who also had the lowest cancer risk. Among the white population they 

observed that cancer patients had a higher frequency of short CAG repeats than 

unaffected individuals. They also detected a possible link between increased length 

of a nearby CGG repeat and an increased risk of prostate cancer. Often individuals 

with a short CAG repeat were found to have a long COG repeat, whereas individuals 

with a long CAG repeat had a short CGG repeat. 

Two studies (Correa-Cerro et al., 1999; Edwards et al., 1999) so far have 

not detected a statistically significant association between shorter CAG length and 

the occurrence of prostate cancer. Most studies reported to date suggest a positive 

association between shorter CAG repeat lengths and prostate cancer. It has been 
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observed that shorter androgen receptor (AR) CAG repeats impose a higher 

transactivation activity on the receptor and have an increased binding affinity for 

androgens (Feldman, 1997). This may make the prostate more vulnerable to chronic 

androgen overstimulation and increased proliferative activity, which in turn, could 

increase the risk of somatic mutations among tumor-suppresor genes (Nelson & 

Witte, 2002). In contrast, the expansion of the CAG repeat above 40 copies leads to a 

below normal AR level, reflected in lower frequency of prostate cancer. 

1.6 Trinucleotide Repeat Tracts and Bipolar Disorders (BP) 

Affective disorders are a group of psychiatric disorders characterised by 

disturbances in mood, ranging from mania to depression. Because triplet repeat 

expansions were shown to be correlated with genetic anticipation, it was 

hypothesised that the reported anticipation in BP disorders could also be caused by a 

triplet repeat expansion. Investigating this hypothesis with the repeat expansion 

detection (RED) method, Lindblad (Lindblad et at., 1995) reported the first evidence 

for an association of large CAG/CTG repeats with BP disorder in Swedish and 

Belgian patients. Many studies using the RED method in a case-control set-up 

followed this publication. 

The initial findings were confirmed by some of the published studies. 

O'Donovan (ODonovan et al., 1995), (ODonovan et al., 1996) showed for the first 
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time in a major psychiatric disorder a length of CAG repeats significantly higher in 

BP compared to normal controls. The same studies failed to show any correlation 

between maximum product size of CAG/CTG repeats and age at onset in BP 

disorders. It was only later that Mendlewicz (Mendlewicz et al., 1997) showed for 

the first time a relation between trinucleotide expansions and phenotype severity in 

families with BP. A significant increase of CAG repeat length between generations 

Gi and G2 was observed when the phenotype increased in severity between 

generations to a more severe form of affective illness. On the other hand, studies that 

did not find association of large RED products with BP disorder were also reported 

(Craddock et al., 1997). 

The RED method (Schalling et al., 1993) is a method to detect triplet repeat 

expansions in the genomic DNA of an individual, without prior knowledge of its 

chromosomal location. In the RED reaction, a thermostable ligase connects triplet 

repeat oligonucleotides that are adjacently annealed on single stranded template 

DNA. The reaction mixture containing genomic DNA, oligonucleotides and ligase 

undergoes 200-500 cycles of ligation (70-80°C) and denaturation (94°C). Then the 

products are separated on a denaturing polyacrilamide gel, transferred to a nylon 

membrane and hybridised with a radiolabelled probe complementary to the 

oligonucleotide in the RED reaction. Autoradiography results in a ladder of ligation 

products, the largest of which represents the size of the largest trinucleotide repeat 

present in the studied genome. Typical triplet repeat oligonucleotides used in the 

RED method are (CTG) 17  and (CTG) 1 0. 
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1.7 Mechanisms of Trinucleotide Repeat Instability 

Polymorphic microsatellites have been identified in most organisms. They 

vary in copy number within and between species and are used in genotyping, 

prenatal diagnostics, forensic science and population studies. The previous section 

(1.4 Trinucleotide Repeat Expansion Diseases) has shown that premutated and 

expanded trinucleotide repeats in TREDs can undergo large-scale copy number 

changes upon a single parent-child transmission. The expansion mechanisms are not 

limited only to trinucleotide repeats. A 24-bp repeat in the cuding region of the gene 

for prion protein (PRNP) has been associated with Creutzfeldt-Jackob disease (CJD). 

The fragile site FRA16B is an expanded 33-bp AT-rich minisatellite repeat. 

It is agreed that small changes of one or two repeat units in either direction 

occur by strand-slippage, which means successive melting and reannealing of the 

newly synthesised strand in replication (Figure 1.1). 

_C2 

Figure 1.1. Slipped strand mispairing during DNA replication. The daughter 

strand dissociates from the template strand and reanneals at a distant position. 

Looped-out bases in the daughter strand lead to expansion, while looped-out bases in 

the template strand lead to deletions. 

30 



The unanswered question is what causes large changes to occur in a single 

generation. Most proposed mechanisms involve strand-slippage or recombination or 

a combination of the two. It might be that the trinucleotide repeat sequences 

associated with TREDs (CAG, CGG and GAA) possess intrinsic properties that 

promote instability. Yu (Yu et at., 1995b) noticed that single strands of GC-rich 

palindromic sequences (CNG repeats) form hairpin structures in vitro. Hairpins 

formed by single strands of CAG and CGG repeats contain mismatched base pairs in 

addition to Watson-Crick base pairs and therefore they are less stable than hairpins 

formed by perfectly base-paired palindromic sequences. CAG homoduplexes 

disappear with increased length of the CAG repeat. Mariappan (Mariappan et al., 

1998) showed that (CAG) 5  exists both as hairpins and homoduplexes, while (CAG) 1 0 

exists exclusively as hairpins. The pattern obtained from cleavage structures formed 

from single-stranded (CAG) 15  and (GAC) 15  repeats with single-strand specific P1 

nuclease suggested to Yu (Yu et al., 1995a) the formation of singly looped hairpins. 

P1 digestion of hairpins formed by single stranded (CAG) 1 0 and (CAG) 11  repeats 

favoured doubly looped hairpin structures with a single hydrogen bond in the A-A 

mispair. Petruska (Petruska et al., 1996) showed that single strands consisting of ten 

CTG trinucleotides form slightly more stable hairpins than the complementary CAG 

single strand. This was attributed to the bulkier adenines in CAG repeats which may 

not fit into the helix as well as the smaller thymidines fit into the CTG hairpin stem. 

Moreover, T-T mispairs contain two hydrogen bonds and are more stable than A-A 

mispairs, which have only one hydrogen bond. 

The discovery that all trinucleotide repeat sequences involved in TREDs can 

form partially Watson-Crick paired secondary structures with mispairs that contain 
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hydrogen bonds, together with the observation that complex secondary structures 

adopted by palindromic sequences promote specific replication-based deletion 

mutations (Trinh & Sinden, 1993), leads to the hypothesis that trinucleotide repeats 

may form relatively stable slipped structures during replication leading to large-scale 

repeat expansion (Darlow & Leach, 1998). 

Repetitive sequences can slip and mispair when they are replicated. It was 

found that slippage of the two strands relative to each other occurred during in vitro 

DNA replication of short synthetic DNA fragments containing di-, tn- and 

tetranucleotide repeats (Wells et al., 1965), (Wells et al., 1967). The error rate of the 

amplification increased with increased length of the repeating unit. Looped-out bases 

in the daughter strand lead to expansion, while looped-out bases in the template 

strand lead to deletions. 

Short hairpins reanneal to their complementary sequence at a rate that is 

indistinguishable from random DNA, while hairpins formed from longer repeats 

reduplex slowly. As a result, long repeats may exist long enough in a non-duplexed 

state in vivo to cause replication or repair errors. Gacy (Gacy & McMurray, 1998) 

proposed that hairpin formation is required but not sufficient for expansion. 

Strand (Strand et al., 1993) showed that (GT) tracts in centromere-

containing plasmids in yeast with mutations in three mismatch repair genes (pmsl, 

rn/hi, msh2) caused 100-700 fold increase in instability. When poly(GT) repeats 

were inserted into a chromosome, the mutation rate was only 77-fold elevated. They 

suggested that dramatic elevation of tract instability in repair-defective mutants 

reflects the failure to remove the mismatched bases present after a DNA polymerase 

slippage event. In wild-type cells, these mismatches would usually be corrected by 
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local excision of bases from the newly synthesised strand, followed by repair 

synthesis using the old strand as a template. 

Petruska (Petruska et al., 1998) proposed a model for slippage-mediated 

trinucleotide expansion (Figure 1.2). They proposed that during separation of the 

complementary strands prior to replication or transcription, a cruciform structure is 

formed by the trinucleotide repeat sequence. Then the hairpins move away from each 

other and a single strand nick is introduced opposite one of the loops. The hairpin 

can stretch and the gap is filled in, leading to expansion. 

Strand separation 

I I 	I 	I 	I I 	cruciform formation 

Hairpin migration 

nicking 

4, 	 stretch 

______ ___ 	 IIIIlWIHlIIIl 

Gap filling and ligation 

11111 

Figure 1.2. Model for in vivo trinucleotide repeat expansion by strand 

slippage. 
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The high flexibility of the CNG sequences suggested that it might cause a 

higher concentration of supercoiling within the CNG repeat sequence compared with 

the random DNA flanking the repeats. As a result, the high degree of supercoiling 

could overwhelm topoisomerase and slow down the DNA polymerase complex 

(Bacolla et al., 1997). Kang (Kang et al., 1995) found several pause sites in both 

strands of a (CTG) 1 30 repeat sequence, using two different DNA polymerases. The 

authors suggested that the daughter strand dissociates from its template, folds into a 

hairpin and reanneals to the template at a wrong position as a result of a replication 

block (Figure 1.3). 

ON 

Figure 1.3. Model for trinucleotide repeat expansion. A replication block 

causes the DNA polymerase to pause. 
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Resnick (Gordenin et al., 1997) suggested that a hairpin structure at the 5' 

end of the Okazaki fragment has a role in inhibiting FEN1 (Figure 1.4). This enzyme 

functions as an endonuclease metabolising the "flapped" end of the Okazaki 

fragment to allow ligation to the next fragment. Hairpin structures have the potential 

to interfere with this process. FEN1 is the human Rad27p homologue. Expanded 

CAG in yeast strains mutant for RAD27 supports a role for the Okazaki fragment in 

the repeat-expansion mechanism (Freudenreich et al., 1998). 
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Figure 1.4. Models for Okazaki fragment-mediated increases in repeat copy 

numbers. A) For copy numbers less than about 80 only one gap is likely to occur 

within the repeat at any one time during replication. Slippage of the elongated strand 

during polymerisation can result in the addition of a few copies (y) of the repeat. B) 

For copy numbers greater than 80 , it is possible that two gaps are permitted within 
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the repeat during the replication. The strand between these two gaps is not anchored 

at either end by unique sequences and is therefore free to slide during polymerisation 

enabling the addition of more copies (z). The ability of the repeat sequences to form 

secondary structures might facilitate the formation of a FEN1 resistant hairpin at the 

5' end of the Okazaki fragment. 

Previous work on the instability of trinucleotide repeats in simple organisms 

suggested that it arises by replication slippage on either leading or lagging strand 

(Kang et al., 1995), (Miret et at., 1998), homologous recombination (Cemal et al., 

1999),(Jakupciak & Wells, 2000), gene conversion (Freudenreich et at., 1998) and 

base excision repair (Lyons-Darden & Topal, 1999). These will be discussed in more 

detail in Chapter 6. It is not clear which of these mechanisms is used in mammalian 

cells in vivo. Leeflang (Leeflang et al., 1999) suggested that expansion may occur by 

replication slippage during germ-cell proliferation or meiotic recombination. 

McMurray (Kovtun & McMurray, 2001) proposed a model of gap repair.of strand 

breaks. 

Repeated sequences tend to get deleted in prokaryotes, whereas in 

multicellular eukaryotes there is clearly a bias towards expansion (Levinson & 

Gutman, 1987). Bacteria might have evolved a bias towards deletions in order to 

minimise genome size because of selective pressure for rapid replication. Genome 

size might be less important in multicellular eukaryotes whose genetic apparatus 

might tend to favour insertions over deletions. 
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1.8 DNA Replication in E. coli 

DNA replication is an essential event in the life of a cell. The replication 

process consists of three stages: 

initiation, which ensures the separation of the two DNA strands 

of the template in the origin of replication region and the 

synthesis of the first primer; 

elongation, which corresponds to the synthesis of the new DNA 

strands with the help of the replisome, a multiprotein complex; 

termination, which occurs when the replisome meets the 5'-

phosphate end of a DNA molecule or a specific termination 

complex. 

The process of replication is precisely controlled, especially at the initiation 

step. At the end of replication, each of the two daughter cells will have an exact copy 

of the genetic material of the parent cell. 

Replication is not a continuous process. It can be delayed or stopped by a 

variety of factors which prevent the replisome from advancing. Replication blocks 

can be caused by strand breaks, DNA binding proteins, RNA-DNA heteroduplexes 

or interactions between the replication and transcription machineries. It can lead to 

adaptative responses consisting of homologous recombination or rearrangements by 

illegitimate recombination. 

The E. coli chromosome is a negatively supercoiled, circular, double-

stranded DNA molecule of 4.6 Mbp. Its replication is bidirectional from an unique 

starting point named oriC situated at 84.3 min on the genetic map. For replication to 
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start, the DNA helix is required to open, so that the proteins responsible for strand 

synthesis can attach. 

The origin of replication region has several binding sites for DnaA, an 

essential replication protein. Ten to twenty DnaA monomers bind to the oriC region 

forming a multiprotein complex named the initiation complex. The DNA is modified 

allowing separation of the two DNA strands at the AT-rich region, leading to the 

open complex. DnaB, an important helicase in E. coli replication, binds to the oriC 

region, forming the pre-initiation complex (Fang et al., 1999). 

DnaB is a hexamer which is loaded on the DNA by six molecules of DnaC, 

each of them being bound to an ATP molecule. The complex (DnaB- DnaC- ATP) 6  

permits a direct physical interaction between DnaB and DnaA and as a result of this 

interaction, DnaB binds to DNA. The release of the DnaC associated with ATP 

hydrolysis, activates the helicase. Two DnaB helicases (one on each strand) separate 

the two DNA strands in a bidirectional manner. The binding of SSB (single-strand 

DNA binding protein) stabilizes the denatured regions of DNA. 

The primase DnaG joins the DnaB-DNA complex and forms the complex of 

initiation (Figure 1.5). A primase is a polymerase which synthesizes DNA or RNA in 

the 5'->3' direction and is responsible for the synthesis of replication primers. These 

primers are small RNA molecules of 8-12 nucleotides complementary to the template 

strands which has a 3'-OH end recognized and elongated by DNA Pol 111 in the 

opposite sense to DnaB progression. 
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Figure 1.5. The initiation complex following the action of DnaA and DnaC 

which has led to the loading of DnaB. 

For replication to be initiated, the DNA molecule is required to have 

negative supercoiling. The level of DNA supercoiling is controlled by 

topoisomerases which cut the DNA and ligate one strand (topoisomerases type I) or 

two DNA strands (type 11 or gyrase). Four topoisomerases have been identified in E. 

coli so far: topoisomerases 1 and lii (type I); gyrase and topoisomerase IV (type 11). 

Topoisomerase I, a monomeric protein, is encoded by topA and controls the general 

ffIID 
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level of supercoiling. Topoisomerase ill, encoded by topB, contributes to the 

resolution of the replicated chromosomes before segregation and cellular division. 

Gyrase has an opposite effect to topoisomerase I by introducing negative supercoils 

in relaxed DNA in vitro (Gellert et al., 1976). Gyrase is ATP-dependent and is 

encoded by genes gyrA and gyrl3. Topoisomerase 1V, encoded by parC and parE, is 

involved in the partition of the chromosomes after replication. 

The synthesis of new DNA requires the coordinated actions of 25-30 

proteins which form the replisome. The two DNA strands are synthesized in a 

different manner because of the antiparallel orientation of the two DNA template 

strands and also because of the fact that DNA Pol Ill elongates DNA only in the 5'-

>3' direction (Figure 1.6). Polymensation is continuous for the leading strand and 

discontinuous for the lagging strand by formation of Okazaki fragments of 1-2kb in 

length. 

Figure 1.6 Bidirectional replication of the E. coli chromosome 
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c (proofreading), and 0 (unknown function, probably stimulates the proofreading 

activity of the c) subunits. 2) a dimer of the r subunit, which serves to bridge two 

core complexes; 3) a processivity clamp, which consists of a homodimer of the 3 

subunit that tethers the core complex to the DNA; and 4) the five-subunit (y, 6, 6', i, 

and x) clamp loading complex termed the y complex. The y complex serves triple 

duty; in addition to actively recycling 13 clamps during replication of the lagging 

strand by loading a clamp at the start of each Okazaki fragment, it also interacts with 

SSB protein (Glover & McHenry, 1998). This interaction serves a critical role in 

displacing primase bound to the nascent RNA that serves as primer for each Okazaki 

fragment, thereby allowing the binding of Pol 111 for subsequent elongation 

(Yuzhakov et al., 1999). 

Table 2. DNA Polymerase lii holoenzyme subunits 

Subunit Encoding 

gene 

Function 

a dnaE 5'->3' DNA Polymerase 

c dnaQ 

(mutD) 

3'->5' exonuclease activity; proofreading 

0 holE Stimulates c 

Ir dnaX Dimerises the acO complexes; stimulates DnaB helicase 

dnaX y, 6 and 6' subunits form a complex which loads the 13 ring in 

an ATP-dependent manner 
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6 holA 

6' hoiB 

x hoiC Accessory protein which attaches to SSB 

holD Bridge between subunits y and 

13 dnaN Ensures the high processivity of the polymerase 

Priming of the lagging strand in E. coli is performed by DnaG primase. This 

enzyme is targeted to the replication fork by a direct interaction with the moving 

replicative helicase, DnaB. It then synthesizes a short primer, to which it remains 

bound. The interaction between primase and the nascent primer is stabilized by its 

association with SSB. Interaction of the y complex of Pol 111 with SSB serves to 

displace primase from the primer-template junction, thereby permitting y complex to 

load a 13 clamp. Subsequent translocation of the Pol 111 assembly to the newly primed 

Okazaki fragment leads to elongation. When Pol ill reaches the previously 

synthesized Okazaki fragment, the process is repeated. Pol 1 with its associated 5'-

>3' activity, acts together with DNA ligase to carry out the task of Okazaki fragment 

maturation (Lee & Kornberg, 1992). 

The termination step of replication involves a large number of events that 

result in the separation and segregation of the two chromosomes. Replication finishes 

when the two replication forks, which started at oriC and travelled along the 

chromosome in opposite directions, meet in the terminus region. When the 

replication forks reach the terminus region, they are stopped by Ter sites. Ten 
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different Ter sites (named TerA to Ten) have been identified in vivo. They are 

divided into two groups: 

sites which stop the fork advancing anti-clockwise: Ter A, D, E, I, H; 

sites which stop the fork advancing clockwise: Ter B, C, G, F, J. 

As mentioned earlier, the replication fork is blocked or stalled when it meets 

a DNA lesion which could have been caused by a variety of factors. If the lesion is 

situated on the template for the lagging strand, DnaG can start the synthesis of an 

Okazaki fragment and then the DNA Pol 111 will stop at the lesion point, leaving 

behind a DNA region that was not replicated. Considering that the synthesis of the 

lagging strand is discontinuous, (meaning that it restarts for each new Okazaki 

fragment), the replication fork can advance, in spite of the existence of a shorter 

Okazaki fragment. If the lesion is situated on the template for the leading strand, 

DNA Pol 111 stops at the lesion site. DnaB separates itself from the polymerase to 

continue the denaturation of the two strands. In conclusion, a lesion occurring on the 

template for the leading strand has more serious effects than when it occurs on the 

template for the lagging strand (Figure 1.7). 
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Figure 1.7. A) The DNA lesion occurs on the lagging strand template: the 

synthesis of the Okazaki fragment is stopped. This results in a discontinuity since a 

big DNA fragment will not be synthesized until the restart of a new Okazaki 

fragment. B) The DNA lesion is situated on the template for the leading strand. The 

replication is stopped; DNA Polymerase ill (elipse) falls off; DnaB (hexamer) 

continues to denature the DNA double helix. DNA lesions occurring on the leading 

strand template have more dramatic consequences compared to the ones occurring on 

the template for the lagging strand during replication. 
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The rate of spontaneous substitution mutations is around 10 10  per replicated 

base. This high fidelity of bacterial DNA replication is the result of a multistage 

mechanism of error prevention (Loeb & Kunkel, 1982): 

discrimination by the DNA polymerase against insertion of incorect 

nucleotides; 

exonucleolytic removal of incorected inserted nucleotides by the 3'->5' 

exonuclease associated with the DNA polymerase (editing or 

proofreading); 

DNA mismatch repair, which recognises and corrects mismatches 

shortly after replication. 

Replicative DNA polymerases are extremely precise enzymes and can 

duplicate the sequence of the E. coli genome within approximately 45 min with an 

error rate of iO per base (Kunkel, 1992). The high precision with which 

complementary nucleotides are added to the end of the primer strand is guaranteed 

by the formation of Watson-Crick base pairs in the active site of the enzyme. When a 

non-complementary nucleotide is incorporated at the end of the primer, extension 

from such a primer is highly inefficient (Benkovic & Cameron, 1995). The inability 

of DNA polymerases to go forward in such situations leads to a translocation of the 

mispaired primer terminus into the active site of the proofreading 3' ->5 

exonuclease activity that is associated with all replicative polymerases and that adds 

a further two orders of magnitude to the fidelity of the replication process. The gene 

whose product is essential for proofreading is mutD (dnaQ), which is located at 

about 5 min on the genetic map. dnaQ is the genetic locus for the E subunit of the 
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DNA Polymerase 111 holoenzyme which carries the 3'->5' proofreading exonuclease 

of this enzyme (Echols et al., 1983). 

Occasionally, a mispair manages to elude the proofreading process. This 

happens mostly with the G/T wobble pair, which is stabilised by two hydrogen bonds 

and brings about only a slight distortion of the double helix (Hunter et al., 1987). As 

it is the one mispair from which most polymerases are able to extend with the least 

difficulty, it also happens to escape the translocation into the proofreading site and 

exits the polymerase complex. A similar situation can arise when the primer and 

template strands slip with respect to one another (Kunkel, 1990). Such events occur 

relatively frequently in runs of repeated mono- or dinucleotides, where they give rise 

to loops containing extrahelical nucleotides, termed insertion/ deletion loops (DL). 

When an IDL is formed by transient dissociation and reassociation of the primer and 

the template, or by simple slippage, the end of the primer strand will anneal with the 

template to produce a hydrogen-bonded terminus from which the polymerase can 

extend (Kunkel, 1993). Replication-associated transactions such as mispairs and 

IDLs that have escaped the proofreading exonuclease become substrates for 

mismatch repair (see section 1.9), whose task is to restore the information contained 

in the template strand. 

In addition to their defect in proofreading, mutD strains are defective in 

mismatch repair. However, MutD is not thought to play a direct role in mismatch 

repair because transformation of mutD strains with multicopy plasmids expressing 

the mutH or mutL gene restores mismatch repair (Schaaper & Radman, 1989). These 

observations suggest that the mismatch repair deficiency of mutD strains results from 

a saturation of the MutHLS-mismatch repair system by an excess of primary DNA 
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replication errors due to the proofreading defect. The number of MutHLS complexes 

per cell is low (Lu et al., 1984) and a 100-fold or more enhancement of DNA 

replication errors may overwhelm the system's capacity. 

1.9 DNA Mismatch Repair in E. coli 

Methyl-directed mismatch repair in E. coli improves the fidelity of DNA 

replication by a factor of 102  to 103  (Glickman & Radman, 1980). The removal and 

repair of replication errors, both mispaired and unpaired bases, results from excision 

of the newly synthesised strand including the misincorporated residue, followed by 

resynthesis, copying the parental strand. Full methylation of GATC sequences 

prevents mismatch repair. Transient undermethylation of GATC sequences makes 

the newly synthesised strands susceptible to MMR enzymes. The undermethylated 

GATC sequences are subsequently methylated by the dam-methylase at the N6 

position of the adenine residue (Lyons & Schendel, 1984). 

The proteins participating in MMR can be divided into two categories: those 

that are dedicated exclusively to mismatch correction (MutSLH polypeptides) and 

those that participate in other DNA metabolic pathways as well (helicase, 

exonuclease, polymerase, ligase). 

The initial step of the correction cascade is mismatch recognition fulfilled 

by the homodimeric MutS protein (Su & Modrich, 1986a). MutS binds with high 

affinity to substrates containing base-base mispairs and IDLs up to four extrahelical 

nucleotides (Parker & Marinus, 1992). Malkov (Malkov et al., 1997) demonstrated 
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that the MutS interaction with DNA is mediated via Phe39, which is situated within a 

short, but highly conserved motif in the N-terminal domain of the protein. 

Substitution of this residue for Ala decreased the affinity of the mutant protein for 

DNA by three orders of magnitude, but the mutation did not affect the ability of the 

protein to dimerize, nor did it alter its ATPase activity. This suggests that MutS and 

its homologues interact with DNA via their N-termini, while the C-terminal domains 

house the dimerization and ATP-binding domains. 

Following mismatch recognition, the mismatch-bound MutS homodimer 

undergoes an ATP-driven translocation along the DNA (Allen et al., 1997), such that 

a looped structure is formed, with the proteins sitting at its base (Figure 1). This 

structure is sometimes referred to as the a-loop or 2-loop according to some authors 

(Jiricny, 1998). This process is accelerated by the addition of the MutL homodimer, 

which co-localizes with MutS. 

Electron microscopic data (Allen et al., 1997) imply that the MutS 

homodimer sitting at the base of the loop interacts with two double helices, i.e. that 

each subunit binds to the same homoduplex molecule. Gel-shift experiments 

(Drotschmann et al., 1998) showed that the presence of MutL in the MutS binding 

assay increased the efficiency of MutS binding. MutL protein assists the loading of 

MutS onto the mismatched substrate, without being itself a part of the complex. 

MutL has the role of "molecular matchmaker" since it mediates the interaction 

between MutS and MutH (Modrich, 1991). 
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Figure 1.8. Mechanism for mismatch correction in E. coli. i) The G/T 

mispair that arose, as an error of DNA polymerisation is present in a DNA 

heteroduplex, which is transiently unmethylated at a GATC sequence in the newly 

replicated strand. The template GATC site is methylated. ii) Binding of the mismatch 

by the homodimeric MutS protein initiates a cascade of events that starts with an 

ATP-dependent conformational change of MutS, followed by a movement of the 

bound protein away from the mispair. iii) ATP hydrolysis drives bi-directional 

movement of the DNA through the bound MutS in the direction of the arrows, as 

well as the assembly of a multiprotein complex containing the MutS and MutL 
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homodimers and probably also two molecules of the strand discrimination factor 

MutH, all bound at the base of a looped structure. The assembly of the complex 

activates the endonucleolytic activity of MutH, which cleaves the newly synthesised 

DNA 5' from the unmethylated GATC sequence. iv) The cleaved strand is then 

degraded from the nick up to and slightly past the mismatch site by ExoVil, RecJ or 

ExoI. The single-stranded region thus generated is protected by SSB. v) Polymerase 

111 holoenzyme fills the gap and DNA ligase repairs the nick. vi ) The process is 

completed by methylation of the GATC site by Dam methylase, at which point the 

substrate becomes refractory to further action by the MMR system (Jiricny, 1998). 

Measurement of the loop size and of the mispair-to-terminus distances 

suggested that translocation results in a release of the mispair by the protein, such 

that it is now at the apex of the ioop, as shown in Fig. 1.8. Binding experiments have 

demonstrated that the affinity of MutS for a homoduplex is several fold lower than 

for a mismatch-containing heteroduplex (Su & Modrich, 1986b). 

MutS together with MutL, and in the presence of ATP, activate a third 

MMR protein, MutH endonuclease, that cleaves the transiently unmethylated 

daughter strand at hemimethylated GATC sequences. MutH confers strand 

specificity on MMR since the newly replicating strand containing the error is 

targeted for repair. The crystal structure of MutH reveals that it functions as a 

monomer and is evolutionarily related to type-IT restriction endonucleases (Ban & 

Yang, 1998). 
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MutL also plays a role in loading the UvrD (MutU) helicase at the site of the 

nick (Dao & Modrich, 1998; Yamaguchi et al., 1998). This is one of the key steps of 

the repair process, since it helps the helicase initiate the unwinding process. 

MMR in E. coli targets seven of eight possible base-base mismatches, CC 

mismatches being refractory to this system. MMR targets loops of 1-3 bp in length. 

In addition to mismatch recognition, MutS proteins possess an intrinsic ATPase 

activity and are members of the ABC (ATP binding cassette) transporter superfamily 

of AlPases (Gorbalenya & Koonin, 1990). 

A hallmark of MMR is the bidirectionality of repair. In E. coli, the 

hemimethylated GATC site can reside on either side of the mismatch at distances up 

to 1kb (Modrich & Lahue, 1996). Because of this feature, single-stranded 

exonucleases with 5'-> 3' and 3'-> 5' polarities should be required. In vitro studies 

demonstrated that MMR requires Exol (3'-> 5'), ExoVIl (3'-> 5'), RecJ (5'-> 3') or 

ExoVil (5'->3') depending on the orientation of the nick relative to the mismatch. 

However, exonuclease-deficient strains show only modest mutator phenotypes 

(Viswanathan & Lovett, 1998). 

The MutSLH proteins are involved not only in postreplicative MMR, but 

also in at least two other contexts. MMR of heteroduplex DNA occurs during 

homologous recombination between similar but not identical sequences leading to 

mismatch correction or abortion of the recombination process (Evans & Alani, 

2000). MMR also occurs in the context of damaged or altered bases arising from 

modification by a variety of genotoxic agents including alkylating agents or bulky 

adducts (Harfe & Jinks-Robertson, 2000). 
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1.10 Recombination in E. coli 

The boundaries that once separated the fields of DNA replication, 

recombination, and repair have become increasingly blurred in the last few years. 

Recent advances in each of these three fields have not only illuminated the molecular 

mechanisms of the individual processes, but have also provided significant insights 

into their interrelatedness and codependence. For example, recent studies indicate 

that the Escherichia coli RecA protein is not only required for homologous 

recombination, but is also required for efficient chromosomal DNA replication even 

under normal growth conditions, as well as for the regulation of cellular responses to 

DNA damage and the replication of damaged DNA (Sutton & Walker, 2001). 

The genome of an organism can be modified by point mutations, such as 

base replacements or frameshifts, or by large DNA rearrangements, such as 

deletions, insertions, translocations or duplications. Genome rearrangements are 

important in evolution, medicine and biotechnology. Duplications provide 

supplementary copies of genes, which can accumulate mutations and thus evolve. 

Translocations and deletions alter the environment of a gene and can thus contribute 

to its integration within novel control circuits. Insertions of foreign material into a 

genome facilitate horizontal gene transfer and thereby bypass the need for similar 

functions to evolve repeatedly in different organisms. 

Homologous recombination represents the exchange of homologous DNA 

sequences between two molecules or between two regions of the same molecule. 

Homologous recombination is one of the main pathways of repairing DNA breaks. It 

is also involved in the restart of blocked replication forks. The process of 

homologous recombination involves three stages: presynapsis, synapsis and 
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postsynapsis. The most important step in homologous recombination is the formation 

of a heteroduplex DNA region where exchange between two homologous sequences 

has taken place (Kowalczykowski, 2000). SSB protein binds to the single-stranded 

DNA region formed as a result of the action of helicases (RecQ, UvrD or helicase 

IV) or of the exonuclease/helicase complex RecBCD or of nucleases (RecJ, RecE), 

which facilitate the opening of the double helix. The presynaptic proteins RecBCD 

and RecFOR then facilitate the loading of RecA monomers on the single-stranded 

DNA, by facilitating the displacement of SSB (Kantake et al., 2002). 

The RecA nucleo-protein filament thus formed allows the association of two 

DNA molecules during synapsis at homologous regions, to form a Holliday junction. 

The postsynaptic steps of homologous recombination consist in the 

separation and repair of the DNA strands. The Holliday junction formed at a region 

of exchange of genetic material, can be moved by branch-migration along the DNA 

molecule. This migration is catalysed rapidly by RuvAB or RecG proteins (McGlynn 

& Lloyd, 2001). RecA also can catalyse branch-migration, but not as efficiently as 

RuvAB or RecG (Mahdi et al., 1996). RuvC resolves Holliday junctions by cleaving 

two of the four strands. RuvC is an endonuclease, which recognises Holliday 

junctions and the RuvAB complex (Muller & West, 1994). The breaks are repaired 

by DNA ligase and two heteroduplex DNA molecules are generated after the genetic 

exchange. The main genes involved in homologous recombination are listed in Table 

3. 
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Table 3. The main genes involved in homologous recombination in E. coli 

Gene Biochemical activities Functions 

recA Binds to ssDNA, 	forms Matches 	and 	exchanges 

RecA 	filaments 	(RecA- homologous strands 

ssDNA), ATPase 

recB RecBCD 	complex: Generates 	a 	3'-OH 

recC exonuclease 	(exonuclease extremity of the ssDNA; 

recD V), endonuclease, helicase, Assists loading of RecA on 

ATPase, 	recognises 	the ssDNA coated with SSB 

Chi sequence 

recF Binding to ssDNA, binding Assists 	the 	loading 	of 

recO ATP RecA on ssDNA coated 

recR with SSB 

ruvA Binding 	to 	Holliday Recognises and assists the 

ruvB junctions, 5'->3' helicase, migration of the Holliday 

ruvC endonuclease junction 	DNA 	strands, 

resolves Holliday junctions 

recG Binds 	to 	DNA, 	3'->5' Recognises 	Holliday 

helicase junctions, 	insures 	the 

migration of DNA strands 

in Holliday junctions 
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Clark (Clark, 1973) proposed the concept of recombinational pathways, 

analogous to pathways of small molecule metabolism, such as those of amino acid 

biosynthesis. The RecBCD pathway is predominant in wild-type cells; the RecE 

pathway in recBC sbcA cells; the RecF pathway, in recBC sbcD cells. These 

pathways are not entirely independent, but they overlap, since all three require the 

recA protein (Smith, 1988). The RecBCD pathway is responsible for homologous 

recombination accompanying conjugation and transduction, and for repair of double-

strand breaks through recombination between the damaged DNA and an intact 

homologous chromosome (Kogoma, 1996). These potentially fatal breaks can arise 

during DNA replication or as a direct result of high energy irradiation (Friedberg, 

1995). 

Genetic recombination is regulated by special sites. Recombination sites 

influence the frequency with which exchange occurs. Recombination-promoting 

proteins recognise these sites and act preferentially at or near them. Chi sites (cross-

over hotspot instigator) and the recombination enzymes associated with their action 

provide an example of this type of regulation. 

Chi sites stimulate the RecBC pathway, but have no detectable effect on the 

other recombination pathways tested (Smith, 1983). Chi sites occur in the E. coli 

chromosome at an average density of 1 per 5kb (about 1,000 sites per chromosome). 

Chi stimulates exchange maximally near itself and with decreasing frequency more 

than 10kb from itself. Stimulation is greater to one side of Chi (to the left on the 

conventional X map) than to the other side (Stahl et al., 1980). Chi is specified by the 

nucleotide sequence 5'-GCTGGTGG-3' or its complement or the duplex (Smith, 

1981). 
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RecBCD enzyme, or exonuclease V, has multiple enzymatic activities. It 

has several activities in vitro: 

helicase; 

ATP-dependent endonuclease and exonuclease on double stranded 

DNA; 

Endonuclease on single-stranded DNA; 

DNA-dependent ATPase. 

The RecBCD complex has three subunits: RecB, RecC and RecD 

(Kowalczykowski et al., 1994) encoded by the genes recB, recC and recD. The 

RecBCD complex binds a double strand DNA end and forms an initiation complex 

(Anderson & Kowalczykowski, 1997) (Figure 1.9). This step is ATP-independent. 

Then RecBCD travels along the DNA by denaturing it thanks to its ATP-dependent 

helicase activity. RecBCD degrades DNA with a 3'->5' exonuclease polarity (Dixon 

& Kowalczykowski, 1993) until it reaches a Chi site. Upon meeting a Chi site, 

RecBCD changes its direction and degrades DNA with a 5'->3' polarity. This 

produces a single-stranded DNA region with a 3'-OH end. The ssDNA region is the 

substrate for loading the RecA protein followed by the formation of the RecA 

filament. Chi-activated RecBCD complex coordinates and facilitates the loading of 

the RecA protein on the ssDNA (Arnold & Kowalczykowski, 2000). This step is 

essential for RecBCD-mediated homologous recombination in vivo. It was shown 

that the mutant RecB 2109CD enzyme is unable to coordinate the loading of RecA 

protein onto the ssDNA generated. This inability is the cause of the recombination-

defective phenotype of the RecB 2109  allele. 
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Figure 1.9. Model for the RecBCD-Chi recombination. RecBCD complex 

(red, yellow and blue subunits) binds to a dsDNA end; then travels through DNA 

digesting it with a 3'->5' polarity. When it reaches Chi the polarity is reversed to 5'-

>3' orientation. RecA protein (white circle) binds to the 3' single-stranded overhand 

coordinated by RecBCD. This results in the formation of a presynaptic filament 

which initiates strand invasion into a homologous duplex DNA molecule. 
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RecA can bind to ssDNA resulting in a filament, which represents the active 

RecA conformation. RecA can induce the renaturation of two single-stranded 

complementary DNA strands. RecA also catalyses the matching of homologous 

sequences and the exchange of complementary strands (Clark, 1991). SSB protein 

stimulates RecA presynaptic and postsynaptic activities by binding to single-stranded 

DNA and avoiding the formation of secondary structures (hairpins). 

The higher residual levels of recombination following conjugation in recBC 

null mutants than in recA mutants suggested that E. coli has at least one other low-

level pathway of recombination dependent upon RecA protein, but independent of 

RecBCD complex. Suppressor mutations designated sbc (for suppressor of recBC) 

were isolated. They increase the activity of the alternative pathways and thereby 

restore recombination proficiency to recBC mutants. It was found that in a recBCD 

strain, homologous recombination can be mediated by the RecF, RecO and RecR 

proteins via the RécF pathway (Ivancic-Bace et al., 2003). RecO, RecR and probably 

ReeF proteins are part of the RMP class (RecombinationlReplication Mediator 

Proteins) (Beernink & Morrical, 1999). 

Holliday junctions created by RecA are efficiently resolved by the RuvABC 

complex and the RecG protein. Bacterial strains deficient in ruvA, ruvB or ruvC are 

UV-sensitive and partially deficient in homologous recombination (Sharples et al., 

1990). RuvA and RuvB ensure. the branch-migration of Holliday junctions. RuvC 

resolvase cleaves Holliday junctions. RuvA, B and C are interdependent: RuvC 

cannot resolve the recombination intermediates in the absence of RuvAB. RuvAB 

and RecG act together in the postsynaptic stage of homologous recombination 

(Kuzminov, 1996). ruvAB recG double mutants are much more sensitive to UV 

59 



radiation compared to single mutants ruvAB or recG. RecG is a DNA-dependent 

ATPase and helicase which binds to Holliday junctions and contributes to their 

resolution, perhaps by branch-migration to nicks in the DNA. 

1.11 Processing of DNA Secondary Structures in E. coli 

SbcC mutants were initially isolated as cosuppressors of recombination 

deficiency in recBC strains of E. co/i (Lloyd & Buckman, 1985). SbcC (C suppressor 

of recBC) is co-transcribed with SbcD (D suppressor of recBC). They constitute the 

primary control for the replication of long palindromes in E. co/i. SbcC and SbcD 

polypeptides have an ATP-dependent double-strand exonuclease activity and an 

ATP-independent DNA single-stranded endonuclease activity. SbcCD also acts as a 

hairpin endonuclease, cleaving hairpin ioops near the 5' junction with the duplex 

stem of the secondary structure (Connelly et al., 1998). Although both SbcC and 

SbcD polypeptides are required for the ATP-dependent double-strand exonuclease 

activity of SbcCD, only the SbcD polypeptide is required for the ATP-independent 

single-stranded endonuclease activity of SbcCD (Connelly & Leach, 1996). 

The SbcC polypeptide belongs to the family of chromosome condensation 

and segregation proteins which includes SMC1 and SMC2 of Saccharomyces 

cerevisiae (Gasser, 1995), MukB protein of E. co/i and RAD50 (recombination and 

repairprotein of yeast). These polypeptides form a head-rod-tail structure with two 

globular domains linked to each other by a long filamentous coiled-coil region. 

Secondary structures formed during DNA replication are cleaved by the 

SbcCD enzyme, resulting in a broken chromosome. The chromosome is then 
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repaired by homologous recombination. This was demonstrated by the requirement 

for the genes recA, recB and recC for the viability of an sbcCD cell containing a 

246 bp palindrome (Leach et al., 1997) in experiments where sbcCD strains were 

lysogenised with a palindrome-containing X phage. The observation that mutations 

inactivating either RecA or RecBCD proteins have similar effects argues strongly 

that it is homologous recombination per se that is required for cell viability. 

G. Cromie (Cromie et al., 2000) showed that the genes of the RecF pathway 

(recF, recO, recR, rect, recQ, recN) are also essential for viability in the 

presence of a chromosomal palindrome and sbcCD, but the gene priA was not. The 

requirement for genes in both the RecBCD and the RecF pathways of recombination 

and the lack of requirement for PnA (needed for the loading of DnaB to form normal 

replication forks) have led to the model in Figure 1.10. 
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Figure 1.10. Recombinational repair of SbcCD-induced double-strand 

breaks. 
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1.12 Investigation of trinucleotide repeat instability in the E. coli 

chromosome 

Trinucleotide repeat expansions are the cause for almost twenty neurodegenerative 

diseases but the mechanisms underlying the DNA instability are not known. The aim of my 

project was to study the behaviour of (CAG) 43  and (CTG)43  in the Escherichia coil 

chromosome. The expectation was that this investigation would provide clues regarding the 

fundamental mechanisms that lead to expansion of trinucleotide repeat arrays. E. co/i was 

considered a good organism in which to study the nature of the instability mechanisms 

because the pathways of recombination, replication and mismatch repair and the proteins 

involved in these pathways are well defined and characterized (Chapter 1.8-1.11). 

The work in this thesis investigates trinucleotide repeat instability in bacterial strains 

deficient in genes with known roles in recombination, repair or replication. The expectation 

was that this system could distinguish between mechanisms based on DNA synthesis as 

opposed to mechanisms based on homologous recombination. Similarly, this system could 

distinguish between other mechanisms that have been proposed to play a part in TREDs, such 

as flap processing, mismatch repair and proofreading. 

Investigating trinucleotide repeat instability in the E. coil chromosome avoids the 

difficulties associated with its study in plasmids, where selection for shorter repeat lengths 

complicates the analysis of repeat array length changes. 
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Chapter 2 

Materials and Methods 

2.1 Materials 

2.1.1 Microbiological Strains, Media and Solutions 

2.1.1.1 Strains of Bacteria 

Table 2-1. Strains of E. coli used in this work 

Designation Genetic Background Notes Reference! Source 

N2677 (DL513) As AB1157, but pro f  1 (Lloyd et al., 1987) 

N2679 (DL515) As N2677, but sbcC201 1 (Naom et at., 1989) 

DL902 mutS::TnlO 2 D. Leach 

DL936 mutL::TnlO 2 D. Leach 

DL1179 mutH471::Tn5 2 (Schmidt 	et 	at., 

2000) 

DL1116 As N2677, but recG263::Kan 1 D.Leach 

BW1161 (DL1126) As N2677, but nfil::Cm 1 (Cunningham 	et 

al., 1986) 

DB1318 (DL654) recDl014, recA::Cm (Wertman 	et 	at., 

1986) 

N2101 (DL974) As N2677, but recB268::TnlO 1 (Lloyd et al., 1987) 

RH6972 (DL962) mutD::miniTnlO Genevieve 

Maenhaar-Michel 
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Notes: 

These strains -are derivatives of AB1 157 (Howards-Flanders and Theriot, 1966), 

V hisG4 argE3 Lt(gpt- proA)62 thr-1 thi-1 leuB6 kdgKSl rJbDl mg1-51 ara-14 

lacYl galK2 xyl-5 md-i tsx-33 supE44 rpsL31 (Str'). 

These strains are derivatives of JM83 (Yanisch-Perron et al. 1985), V ara A(lac-

proAB) rpsL [Odlac L%(lacZ)M15] (Strr) 

2.1.1.2 Media 

BBL Agar 

lOg Trypticase (Baltimore Biological Laboratories), 5g NaCl, lOg Bacto-agar 

(Difco) per litre, adjusted to pH 7.2 with NaOH. 

BBL Top Agar 

Same as BBL agar, but made with 6.5g Bact-agar (Difco) per litre. 

LB Agar 

lOg Bacto-tryptone (Difco), 5g yeast extract (Difco), lOg NaCl, 15g Bacto-agar 

(Difco) per litre, adjusted to pH 7.2 with NaOH. 

Lc Agar 

lOg Tryptone, 5g yeast extract, 5g NaCl and lOg Difco-agar per litre. The pH was 

adjusted to 7.2 using NaOH. 

Lc Top Agar 

As Lc agar, but containing 7g Difco-agar. 

L Broth 

lOg Bacto-tryptone (Difco), 5g yeast extract (Difco), lOg NaCl per litre, adjusted to 

pH 7.2 with NaOH. 



Phage Buffer 

3g KH2PO4  ,7g HPO4  , 5g NaCl, 1mM MgSO4, 1mM CaC12  , 1 % (w/v) gelatine. 

2.1.1.3 Media Additives 

500mM CaC12 stock 

Made up in sterile, distilled water, autoclaved. 

JM MgSO 4  

Made up in sterile, distilled water, autoclaved. 

20% (w/v) Glucose Stock 	- 

Made up in distilled water, filter sterilised. 

Ampicillin (stock concentration 100mg mY 1 ) 

Ampicillin (Beecham Pharmaceuticals) was used at 50tg mY' and stored at -20°  C. 

Chloramphenicol (stock concentration 50mg mY') 

Chloramphenicol (Sigma Chemical Company) was made up in 100% ethanol and 

used at 25 tg mY'. It was stored at -20°C. 

Kanamycin (stock concentration 50mg y) 

Kanamycin (Sigma Chemical Company) was made up in distilled sterile water and 

used at 50.tg mY'. It was stored at -20°C. 

Tetracycline (stock concentration 15mg thY') 

Tetracycline (Calbiochem) was made up in 50% ethanol and used at 13 tg ml'. It 

was stored at -20°C. 
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2.1.1.4 Solutions for Microbiological Methods 

Solutions for Transformation of E. coli 

CaC12  (100mM) 

Made up in distilled water, autoclaved. 

MOPS-Glycerol 

100mM MOPS [3-(4-morpholinyl) 1-propanesulfonic acid]- NaOH (Sigma Chemical 

Company, pH 6.5), 50mM CaC12, 20% (v/v) glycerol. 

2.1.2 Materials for DNA Purification and Manipulation 

2.1.2.1 General Solutions 

500mM EDTA Stock 

500mM EDTA (Sigma Chemical Company), adjusted to pH 8 using glacial acetic 

acid, autoclaved. 

1M Tris-HC1 Stock 

1M Tris base, adjusted to pH 7.5 using concentrated HC1, autoclaved. 

10mM Tris-HC1 

10mM Tris base, adjusted to pH 8 using concentrated HC1, autoclaved. 

10 x TBE (Tris-Borate-ED TA-Buffer) pH 8 

54g Ti-is-base, 27.5 Boric acid (Fisher Scientific), 20 ml of 500mM EDTA per litre. 

10 x Tris-EDTA buffer 

100mM Tris-base (Sigma Chemical Company), 10mM EDTA, adjusted to pH 7.5 

with concentrated NaOH, autoclaved. 
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3M Sodium Acetate (pH 5.3) 

0.19 volumes of sterile 3M acetic acid were added to 0.81 volumes of sterile 3M 

sodium acetate, autoclaved. 

BSA (Bovine Serum Albumin) 

BSA (New England Biolabs) was supplied at a concentration of 20mg mY' and 

stored at -20°C. 

2.1.2.2 Solutions for DNA Preparation 

2.1.2.2.1 Solutions for Preparation of Plasmid DNA from E. coli 

The following solutions supplied in the QIAGEN Plasmid Maxi and QIAGEN 

Plasmid Mini Spin Kit were used for the preparation of plasmid DNA from 100-mi 

and 5-mi overnight cultures of E. coli. 

Resuspension Buffer P1 

50mM Tris-HC1 (pH 8.0), 10mM EDTA, 100tg mF' RnaseA, stored at 4°C. 

Lysis Buffer P2 

200mM NaOH, 1% (w/v) SDS (sodium dodecyl sulphate), stored at room 

temperature. 

Neutralisation Buffer N3 

3M potassium acetate, pH 5.5 

Equilibration Buffer QBT 

750 mM NaCl, 50mM MOPS (pH 7.0), 15% (v/v) ethanol. 
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Elution Buffer QF 

1.25 M NaCl, 50mM Tris-HC1 (pH 8.5), 15% (v/v) ethanol. 

2.1.2.2.2 Solutions for the Preparation of Genomic DNA from E. coli 

The Bacterial Genomic DNA Purification Kit (EdgeBio Systems) was used to extract 

high molecular weight chromosomal DNA from 5-mi overnight cultures of E. co/i. 

AdvamaxTM beads (1.5% (w/v) latex) and the solutions listed below were supplied by 

the manufacturer. Information of the composition of solutions was limited. 

Spheroplast Buffer 

Contains lysozyme, RNAse, Sucrose, Tris and EDTA (pH 8) 

Lysis Buffer 1 

Contains SDS 

Lysis Buffer 2 

Contains NaCl 

Extraction Buffer 

Contains MgC12  

2.1.2.3 Solutions for Gel Electrophoresis 

2.1.2.3.1 Agarose Gel Electrophoresis 

TBE Gel Electrophoresis Buffer (10 X) 

0.9M Tris-borate, 20mM EDTA (pH 8.0) 
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Agarose Gel Loading Buffer (SX) 

20% (v/v) sterile glycerol, 0.05% (wlv) bromophenol blue 

Ethidium-Bromide Solution (50X) 

1% (w/v) ethidium bromide in sterile, distilled water 

2.1.2.3.2 Polyacrylamide Gel Electrophoresis 

5% Long Ranger Tm Gel Solution for Native Gels (1.2x TBE) 

8.4m1 of lOx TBE buffer, 7m1 of 50% Long RangerTM gel solution (Flowgen), 54ml 

of distilled water. 

5%Long RangerTm 	Solution for Sequencing Gels (1.2x TBE) 

8.4ml of lOx TBE buffer, 7m1 of 50% Long Ranger TM  Gel Solution (Flowgen), 30g 

urea, volume adjusted to 70m1 with distilled water. 

0.6xTBE Gel Running Buffer 

60m] oflOx TBE buffer stock solution, 940m1 of distilled water 

10% (w/v) AMPS 

10% (wlv) AMPS (ammonium persulphate; Sigma Chemical Company) was freshly 

prepared in distilled water. 

TEMED 

TEMED (N-N-N'-N'-tetra-methyl- 1 ,2-diamino-ethane) (Sigma Chemical Company) 

was stored at 4°C. 

Polyacrylamide Gel Loading Buffer (lOx) 

95% Formamide, 20mM EDTA, 0.05% (w/v) bromophenol blue. 
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Dextran blue loading buffer 

This loading buffer was used for f-TRAMP and was supplied with the internal lane 

size standard GENESCAN-500TM ROX or TAMRA (Applied Biosystems). 

imi contains: 50mg of Ficoll 400-DL, 1.7mg dextran sulphate, 8.3mg blue dextran, 

buffered with 2 x TBE. 

2.1.2.4 Enzymes and Buffers 

2.1.2.4.1 Restriction Endonucleases and Incubation Buffers 

All restriction endonucleases, listed in Table 2-2, were incubated with the buffers 

provided by the suppliers at the temperatures recommended in the manufacturers' 

instructions. 

Table 2-2. Restriction endonucleases used in this work 

Enzyme Cleavage site (5'->3') Supplier 

EcoRl GIAATTC New England Biolabs 

C TI1TAA/G 

Sau3A /GATC Roche 

CTAG/ 

XmaI CICCGG 0 Promega 

0 GGCCIC 

Nod GC/GGCC GC Promega 

CG CCGGICG 

XhoI C/TCGA G Roche 

G AGCT/C 

AvrII C/CTAG G New England Biolabs 

G GATC/C 
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2.1.2.4.2 Thermophilic and Other DNA Polymerases 

Taq DNA Polymerase (5U ut') 

Taq DNA Polymerase (Roche) was used with 1 x PCR reaction buffer as supplied by 

the manufacturer. Enzyme and buffer were stored at -20°C. 

DNA Polymerase I Large (Kienow) Fragment 

In this work, Klenow enzyme [supplied concentration: 2U jii' (Roche)] was used 

after incubation of plasmid DNA with EcoRI restriction endonuclease (20U tl') or 

after incubation of chromosomal DNA with AvrII restriction enzyme. Klenow 

enzyme was added to unpurified reaction mixtures containing EcoRl and 1 x EcoRl 

restriction endonuclease buffer or AvrII and 1 x AvrII buffer. 

2.1.2.4.3 Other enzymes 

T4 DNA Ligase 

14 DNA Ligase (Roche) was incubated in the 1 x ligase buffer [30mMTris-HC1 pH 

7.8, 10mM M902,  10mM DY!' and 1mM ATP] supplied by the manufacturer. The 

buffer was stored in small aliquots at -20°C to minimize degradation of the ATP and 

DY!' because the performance of this buffer depends on the integrity of the ATP 

Shrimp Alkaline Phosphatase 

Shrimp Alkaline Phosphatase [4U ti'(United States Biochemical)] was used with 

EcoRl restriction endonuclease buffer (50mM NaCl, 100mM Tris-HC1, 10mM 

M902, 0.025% (v/v) Triton X-100, pH 7.5). 
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2.1.2.5 Plasmids and Synthetic Oligonucleotides 

Table 2-3. Plasmids used in this work 

Plasmid Description Notes Reference/ Source 

pDL915 pUC18, but Marker:Amp D. Leach 

(CTG)43  in EcoRl Orientation A: CTG 

site repeat on the leading 

strand during 

replication 

WM2269 On pSC101, X intl, Marker:Kan W. Messer 

pLDR8 rep Ts, c1857 Temperature (Diederich 	et al., 

sensitive (Kans  at 1992) 

42°C; Kanr  at 30°C) 

WM2153 OriColEl rop Marker:Amp, Kan W. Messer 

pLDR9 AattP (Diederich et al., 

1992) 

WM2155 OriColEl rop Marker:Amp, Kan W. Messer 

pLDR1 1 AattP (Diederich 	et al., 

1992) 

Table 2-4. Synthetic oligonucleotides for PCR and primer extension reactions. All 

oligonucleotides designed in the course of this work were synthesised by OSWEL 

DNA Service (University of Southampton, UK) and MWG. 

ID Sequence (5'-> 3') Modification Reference! Source 

FAM-T2049 GCATCTTGGGAGCATCTflG 5'-fam dye I(Schmidt thesis 

HEX-T2049 GCATCrFGGGAGCATCTVFG 5'-HEX dye K.Schmidt thesis 

M6833 CCCC1TFCTAGCCTTCTFCA none Abbott 	and 

Chambers (1994) 

M6834 TFTGGTCCAAACGGGATGCT none Abbott 	and 
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Chambers (1994) 

AVRLEFT CCGGAATFCCGCCTAGGTCCT 

CCCC1TFCTAGCCTFC 

None This work 

AVRRIGHT CCGGAATFCATCCTAGGCAGT 

GAGCCTGCTGCTGAT 

None This work 

BAMECO GATCAGGTACCCCTAGGGAAT 

TCCCTAGGT 

None This work 

ECOBAM AATFACCTAGGGAATICCCTA 

GGGGTACCT 

None This work 

PRIMER D GATAAGCTTGGGCTGCAGGT 'None This work 

GENOM1 ATCAGAAGGACG11GATCGG None This work 

GENOM2 GCAATGCCATCTGGTATCACT None This work 

GENOM3 GAGTATFCAACACCGGTG None This work 

METAPH- 

LEFT 

CAAGCATCTTGGGAGCATCT None This work 

METAPH- 

LEFT-FAM 

CAAGCATCTFGGGAGCATCT 5'- FAM This work 

METAPH- 

RIGHT 

CAGTGAGCCTGCTGCTGAT 	'none This work 

2.1.2.6 Radionucleotides 

[a-35s] dATP 

[a-35S] dATP was supplied by the manufacturer at a concentration of > 1000Ci 

mmoF' in 5 mM Tris-HC1 (pH 7.4-7.5). 
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2.1.2.7 Ma!erüils and Solutions for DNA Amplification 

dNTP-4 Stock Solution (lOx) 

dNTP-.4 Stock Solution was a mixture of dATP, dTTP, dGTP and dCTP (Roche), 

each at a concentration of 2 mM, prepared with sterile distilled water and stored at - 

20°C. 

dNTP-3 Stock Solution (lOx) 

dNTP-3 Stock Solution was a mixture of dTFP, dGTP and dCTP (Roche), each at a 

concentration of 2mM, prepared with sterile distilled water and stored at -20°C. 

d4ATP Stock Solution (lOx) 

ddATP was supplied by Roche at a concentration of 100mM. The lOx ddATP stock 

solutioncontaining 1mM ddATP was prepared with sterile distilled water and stored 

at -20°C. 

Mineral Oil 

Sterile mineral oil (Sigma Chemical Company) was stored protected from light at 

room temperature. 

BiolOptimiser rm  Kit for the Rapidcycler 

Reaction buffers in this optimisation kit (Bio/Gene Ltd) vary in the concentration of 

Mg2  (1-5mM). Some buffers contain Ficoll and dye to accommodate direct loading 

of the reaction mix onto an agarose gel for analysis. 

lOx BSA 

BSA at a concentration of 5mg mY' is provided in the Bio/Optimiser kit (Bio/Gene 

Ltd) and is used at a final concentration of 500 .ig m1 1 
. 
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2.1.2.8 Materials and Solutions for DNA Sequencing 

2.1.2.8.1 Manual DNA Sequehcing 

Manual DNA Sequencing was carried out using the Sequenase® v2.0 Sequencing kit 

(United States Biochemicals). Primer sequences are shown in Table2-4. 

Sequenase Buffer (5x) 

200mM Tris-HC1 (pH 7.5), 100mM MgC12, 250mM NaCl 

DTT 

0.1 M D1'T (1,4 dithio-threitol) prepared in distilled water. 

Labelling mix (5x) 

7.5 .tM dGTP, 7.5 pM dCTP, 7.5 .tM dTTP 

ddG Termination Mix 

80 j.tM dGTP, 80 j.tM dATP, 80 iM dCTP, 80 tM dTTP, 8 iM ddGTP, 50 mM 

NaCl 

ddA Termination Mix 

80 p.M dGTP, 80 p.M dATP, 80 p.M dCTP, 80 p.M dTTP, 8 p.M ddATP, 50 mM 

NaCl 

ddT Termination Mix 

80 p.M dGTP, 80 p.M dATP, 80 p.M dCTP, 80 p.M dITP, 8 p.M ddTT'P, 50 mM 

NaCl 

ddC Termination Mix 

80 p.M dGTP, 80 p.M dATP, 80 p.M dCTP, 80 p.M dTTP, 8 p.M ddCTP, 50 mM 

NaCl 
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Enzyme Dilution Buffer 

10mM Tris-HC1 (pH 7.5), 5 mM DTF, 0.5 mg mY' BSA 

Stop Solution 

95% formamide, 20mM EDTA, 0.05 % (wlv) bromophenol blue, 0.05 % (wlv) 

xylene cyanol. 

2.1.2.8.2 Automated DNA Sequencing 

Automated DNA Sequencing was carried out using the ABI PRISM Dye Terminator 

Cycle Sequencing Ready Reaction Kit (Applied Biosystems). Sequencing reactions 

were analysed on a ABI PRISM 377 DNA Sequencer (Applied Biosystems). 

2.1.2.9 Materials and Solutions for Colony Hybridisation 

The DIG DNA Labelling and Detection Kit (Roche) was used in a non-radioactive 

protocol to screen bacterial colonies for the presence of CTG/CAG trinucleotide 

repeat arrays. 

Hexanucleotide Mix (lOx) 

62.5 A260 m1' in reaction buffer. 

dNTP Labelling Mixture (lOx) 

1mM dATP, dCTP, dGTP (each), 0.65 mM dTTP, 0.35 mM DIG-II-dUTP-

alkalilabile. 

0.5 NNaOH 

Made up by diluting 25 ml of iON NaOH in 500 ml distilled water. 
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Neutralisation buffer 1 

0.1 M NaOH, 1.5 M NaCl 

Neutralisation buffer 2 

0.5 M Tris-HC1, 1.5 M NaC1 (pH 7.5) 

Solution 3 

1 x SSC (sodium saline citrate), prepared by 10-fold diluting 20 x SSC. 

20 x SSC: 175.3 g of NaCl and 88.2 g of sodium citrate are dissolved in 800 ml of 

sterile distilled water and adjust pH to 7.0 with iON NaOH and adjust the volume to 

11 with sterile distilled water. 

Easy-Hyb-Hybridisation Buffer 

Easy-Hyb (Roche) is a "Ready-to-use" hybridisation solution stored at room 

temperature. 

Wash Buffer 1 

2 x SSC (see solution 3), 0.1 % (w/v) SDS (AMRESCO, Ohio) 

Wash Buffer 2 

1 x SSC, 0.1 % (wlv) SDS 

Detection Solution 1 (10 x) 

0.1 M maleic acid, 0.15 M NaCl, 0.3 % (v/v) Tween 20. 

10 % (w/v) Blocking Reagent 

Block solution was made up by mixing 10 g of blocking reagent (Roche) with 100 ml 

of detection bufferl and then warming it up to 50-70°C to dissolve. The solution was 

autoclaved and stored at 4°C. 

Detection Solution 2 

0.1 M Maleic acid, 0.15 M NaCl, 1 % (w/v) block solution. 
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Detection Solution 3 

lj.tl of Anti-DIG-AP-Conjugate was added to 30 nil of detection buffer 2. This 

solution was always made freshly. 

Detection Solution 4 

0.1 M Tris-base, 0.1 M NaCl, 0.05 M M902,  adjusted to pH 9.5 before use. 

CDP-S1ar(25mM, JOOx) 	- 

CDP-Star [Disodium-4-chloro-3-(methoxyspiro { 1,2- dioxetane- 3,2'-(5'- chioro) 

tricyclo 1.1.3,7 .] decan } -4-yl) phenyl phosphate] was supplied with the DIG-DNA 

labelling kit (Roche). 

Detection Solution 4+ CDP-StarTm  

Per filter, 0.6 p.1 of CDT-StarTm were mixed with 265 j.il of detection buffer 3. 

2.2 Methods 

2.2.1 Bacterial Methods 

2.2.1.1 Storage of Bacteria 

Glycerol stocks E. coli strains were prepared in 1 .5-nil Eppendorf tubes by adding 

0.5 ml of sterile 100 % glycerol to 1 ml of a stationary phase bacterial culture. The 

tube was sealed with paraflim, labelled and stored at - 70°C. 
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Stabs of E. coli strains serve as a back-up to the glycerol stocks. They were made 

from a purified colony that was picked with a sterile toothpick from a freshly 

streaked LB agar plate. The colony was transferred to a small 2-mi plastic tube filled 

with LB agar, sealed with paraflim and incubated overnight at 37°C. This tube was 

then stored at room temperature. 

2.2.1.2 Growth of Overnight Cultures 

To make overnight cultures of E. coli, the desired strain was streaked out on LB agar 

plates from a frozen glycerol stock to obtain single colonies. A bacterial culture was 

grown overnight by inoculating 5 ml of L Broth with a single colony from the LB 

agar plate and shaking at 37°C. 

2.2.1.3 Preparation and Storage of CaCl2-Competent E. coli cells 

Competent cells were made by diluting an overnight culture of the appropriate E. coli 

strain 10-fold in 20-mi of L broth. The culture was grown shaking at 37°C until 

0D650=0.4 to 0.5 was reached. The cell culture was incubated on ice for 20 minutes 

and then centrifuged at 5 krpm for 5 minutes at 4°C (Centra-3, International 

Equipment Company, UK). The supernatant was discarded and the cell pellet was 

resuspended in 5 ml of ice-cold 100mM CaC1 2. This step was followed by 

centrifugation at 5 krpm for 5 minutes at 4°C and the supernatant was removed. The 

cell pellet was again resuspended in 5 ml of ice-cold 100mM CaCl2 and incubated on 

ice for 20 minutes. After centrifugation at 5 krpm for 5 minutes at 4°C the 

supernatant was discarded and the cell pellet resuspended in 400 111 of MOPS-

glycerol solution. Aliquots of 200 .tl were dispensed into pre-cooled 1.5-mi 

Eppendorf tubes. Tubes were immediatelly transferred to -70°C. 
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2.2.1.4 Transformation of CaCl-Competent E. coil Cells 

CaC12-competent cells of the appropriate E. coli strain were thawed on ice. bOng (1 

jtl) of plasmid DNA were added to 100 pA of CaC1 2-competent cells and the mixture 

was vortexed (Whirli mixer, Fisons Scientific Apparatus Ltd.) for 1 second. After 20 

minutes of incubation on ice the DNA/cell mixture was heat-shocked at 42°C for 90 

seconds. It was then put on ice for no more than 2 minutes. The transformation 

mixture was plated on LB agar plates supplemented with the appropriate antibiotics 

to select for transformants. The plates were incubated at 37°C overnight. 

2.2.1.5 Transfer of mutations between E. coil strains by P1 transduction 

Upon infection of E. coli cells phage P1 packages random fragments of the bacterial 

chromosome (up to 2 minutes) into phage particles which can be injected into the 

recipient E. coli strain (for review see Margolin, 1987). Hence, the transfer of a 

mutation of interest from one E. coli strain to another can be achieved by P1 

transduction. For that purpose, a P1 lysate was made on a E. coli strain that carries 

the mutation of interest and a cotransducible selective marker, such as a TnlO or Tn5 

insertion. The recipient E. coli strain is then transduced with the P1 lysate. 

Transductants are identified by selection for the cotransduced marker. The presence 

of the mutation of interest is then confirmed by testing for the mutant phenotype. 

2.2.1.5.1 Preparation of P1 Plate Lysate 

A fresh overnight culture of the appropriate E. coli strain was diluted 10-fold in fresh 

L broth supplemented with 2.5 mM CaC12. This culture was grown for 2 hours at 

37°C with shaking. Of this culture 200 pA were added to 100 pA of P1 lysate (107  pfu 

mY 1 ). After incubation at 37°C for 30 minutes 2.5 ml of LB top agar containing 5 
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mM CaC12 were added to the phage/ bacteria mixture and poured onto a fresh LB 

agar plate, also supplemented with 5 mM CaC12. After incubation at 37°C for 6 to 8 

hours, 5 ml of phage buffer were applied onto the plate, the top agar was scraped off 

and filled into a 30-mi glass bottle containing 100 p1 of chloroform. The mixture was 

vortexed and then incubated at room temperature for 30 minutes. After centrifugation 

at 5 krpm for 10 minutes the clear supernatant was transferred to a sterile 5-mi 

McCautney bottle containing 200 p.1 of chloroform. The P1 lysate was stored at 4°C. 

2.2.1.5.2 P1 Transduction 

An overnight culture of the recipient E. coli strain was grown in 5 ml of L broth 

supplemented with 2.5 mM CaC12 . 1-mi aliquots of this culture were transferred to 

1.5-mi Eppendorf tubes and cell pellets were obtained by centrifugation at 9 krpm for 

5 minutes. The supernatant was removed from each tube and each cell pellet was 

resuspended in 100 p.1 of L broth containing 2.5 mM CaC12. To the first tube 100 p.1 

of undiluted P1 lysate were added while 100 p.1 of a 10-fold dilution of the P1 lysate 

were added to the second tube. 100 p.1 of phage buffer were added to the third tube, 

which served as a negative control. A fourth tube contained 100 p.1 of undiluted P1 

lysate, but no recipient. All four tubes were incubated at 37°C for 20 minutes. Then 

800 p.1 of L broth supplemented with 2 mM sodium citrate (to stop P1 infection) 

were added to each tube and incubation was continued at 37°C for 60 minutes. Of all 

four transduction mixtures, 100 p.1 of a 102  dilution and 100 p.1 of the undiluted 

transduction mixture were plated on LB agar plates containing the appropriate 

antibiotic drug for selection of transductants. 

Plating of recipient cells (tube 3) and of P1 lysate (tube 4) alone should not yield any 

colonies that are resistant to the appropriate antibiotic drug. Only if this was the case, 

single antibiotic-resistant colonies that had been obtained by plating transduction 

mixtures from tubes 1 and 2 were purified and tested for the mutant phenotype. 

Glycerol stocks of purifies transductants were stored at -70°C. 
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2.2.2 Non-Radioactive In Situ Plaque Hybridisation 

In the course of this work a DNA sequence including a trinucleotide repeat array was 

cloned into three different vect6rs in two possible orientations for each vector. The 

DNA fragment whose cloning had been attempted was non-radioactively labelled 

and used as a probe in a screen for recombinant plasmids. DNA fragments were 

labelled using the DIG-DNA Labelling Kit (Roche) by following the manufacturer's 

instructions. The procedure relies on the detection of hybridised DNA probes, which 

have been labelled by incorporation of DIG-li -dUTP using a random priming 

method and Kienow enzyme. 

2.2.2.1 Preparation of a DIG-Labelled Hybridisation Probe 

15 p.1 to 30 p.1 of gel-extracted DNA were transferred onto a 0.5-mi Eppendorf tube, 

boiled for 10 minutes in a water-bath and then immediately placed on ice for 3 

minutes. 3.3 p.1 of 10 x Hexanucleotide mixture, 3.7 p.1 of 10 x dNTP labelling mix 

and 2U Kienow enzyme (all Roche) were added to the denatured DNA fragment, 

mixed thoroughly and incubated at 37C overnight. This labelling reaction was 

inactivated by adding 1.5 p.1 of 0.5 M EDTA. The DNA probe was ethanol-

precipitated. The pellet was dissolved in 50 p.! of 1 x TE complemented with 1 p.1 of 

5% (w/v) SDS, vortexed, centrifuged and stored at -20°C. DIG-labelled DNA 

fragments were used as hybridisation probes for up to 6 months. 

2.2.2.2 Colony Transfer onto Nylon Membranes 

Round Hybond-N Nylon membranes (Amersham Life Science) were labelled so 

that later the exact position of a membrane on the corresponding agar plate could be 
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identified. The labelled membrane was carefully placed on a BBL agar plate. After 2 

minutes the membrane was transferred onto two layers of blotting paper [Fords Gold 

Medal Blotting, 140g (m 2 '] which had been moistened with some 0.5 N NaOH and 

were lying on a piece of Saranwrap (The Dow Chemical Company). To ensure 

complete denaturation it had to be made sure that there were no air bubbles or 

creases in the blotting paper and the paper was reasonably wet. After 5 minutes on 

the denaturation paper the membranes were washed in neutralisation buffers 1 and 2 

for 20 and 40 seconds, respectively. Membranes were than washed in 2 x SSC for 

another 20 seconds. The membranes were dried briefly between two pieces of 

blotting paper soaked with 2 x SSC. The D?'A was cross-linked by exposing the 

membranes to 3 x 120 mJ using a UV-Stratalinker (Stratagene). 

2.2.2.3 DNA Hybridisation 

The membranes were moistened with some sterile distilled water and transferred to a 

plastic bag. 24 ml of Easy-Hyb ®  buffer were added to the bag and the bag was 

sealed. The membranes were pre-hybridised at 37°C for 1 hour. In the meantime, a 

mixture of 4 .tl of DIG-labelled probe and 100 tl of Easy-Hyb ®  buffer was boiled 

for 10 minutes, and then placed on ice/water. After the 1 hour incubation period was 

complete, the 24 ml of Easy-Hyb ®  buffer were removed from the plastic bag. The 

entire volume of boiled probe was added to 5.5 ml of fresh Easy-Hyb ®  buffer and 

added to membranes in the plastic bag. The membranes were incubated with the 

probe at 37°C overnight. 
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2.2.2.4 Washing the Membranes 

After overnight incubation the membranes were removed from the plastic bag and 

placed in a small plastic tray. The membranes were washed in 100 ml of wash buffer 

1 at room temperature for 5 minutes with shaking. This first wash step was repeated 

using a further 100 ml of wash buffer 1. Then the membranes were washed twice for 

15 minutes in wash buffer 2 with continuing agitation. 

2.2.2.5 Signal Detection Using CDP-Star 

The membranes were washed for 2 minutes in detection buffer 1 before they were 

incubated with 100 ml of detection buffer 1 containing 1 % (w/v) blocking reagent. 

After. shaking for 30 minutes, all liquid was removed from the tray and 30 ml of 

detection solution 3 containing the Anti-DIG-AP-Conjugate were added to the 

membranes and incubated for a further 30 minutes. Then the membranes were 

washed twice for 15 minutes in detection solution 1 followed by a single wash in 

detection solution 4 for 5 minutes. CDP-Stafm was used as a substrate for Alkaline 

Phosphatase linked to the DIG-antibody. CDP-StarTm was diluted in detection 

solution 4 to a final concentration of 100 p.m of which 250 p.1 were distributed over 

each membrane. The membranes were incubated with this substrate solution for 5 

minutes at room temperature. After the membranes have been dried briefly between 

two sheets of blotting paper, they were covered with Saranwrap and exposed to an X-

ray film (DuPont). The first film was developed after an exposure time of 20 minutes 

so that a second film could be put down for the appropriate length of time necessary 

to obtain readable signals. 

The signals on the films were aligned with the colonies in the corresponding agar 

plate and positive colonies were marked. Several colonies that gave positive 
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hybridisation signals were picked. They were screened for the insert by PCR and by 

incubation with appropriate restriction endonucleases. 

2.2.3 Methods of DNA Purification and Manipulation 

2.2.3.1 DNA Precipitation 

Unless otherwise stated, DNA was precipitated in 2 vo1uiis of a mixture of 96% 

ethanol and sodium acetate (20:1). For instance, 50 .tl of a DNA solution were added 

to a mixture of 100 tl of 96 % ethanol and 4 tl of 3 M sodium acetate. The mixture 

was briefly vortexed. After overnight incubation at -20°C, the DNA was pelleted by 

centrifugation at 15 krpm at 4°C for 30 minutes. The precipitate was washed twice 

with 70 % (v/v) ethanol, air-dried, resuspended in the appropriate volume (20-50 .t1) 

of 10 mM Tris-HC1 buffer and stored at -20°C. 

2.2.3.2 Measurement of the Concentration of DNA 

The calculation of the amount of DNA in a solution is based on the maximal UV-

light absorption of DNA at a wavelength of 260nm. An absorption value of 1 

measured at this wavelength equals 50 .tg of double-stranded DNA per ml (Maniatis 

et al.1989). The absorption spectrum between 200nm and 300nm was recorded as an 

indication of the purity of the DNA preparation. The quotient of the absorption 

values measured at 280nm and 260nm should be greater than 1.5 in a pure DNA 

solution. 
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2.2.3.3 DNA Restriction Digests 

Unless stated otherwise DNA digestion was carried out in volumes of 20 .t1 using 2 

U of restriction endonuclease per .tg plasmid DNA with the incubation buffer 

provided by the manufacturer. The reaction mixture was incubated for 2 hours at the 

temperature recommended by the manufacturer. If the DNA had to be modified 

subsequently (e.g. end-labelling, ligation, sequencing) the restriction endonuclease 

was heat inactivated at 65°C for 20 minutes. If heat inactivation was not applicable 

the reaction was stopped using the QlAquick Nucleotide Removal kit (QIAGEN) 

which removes enzymes and buffers, but retains DNA fragments -2! 17bp (80-95 % of 

fragments consisting of lOObp- 10kb). 

2.2.3.4 DNA Dephosphorylation 

Plasmid DNA was dephosphorylated after digestion with EcoRl restriction 

endonuclease. 1 x Shrimp Alkaline Phosphatase buffer and 1 U of Shrimp Alkaline 

Phosphatase were added to the reaction mixture which contained 2 to 3 pg of DNA. 

The mixture was incubated at 37°C for 1 hour. The reaction was stopped by heating 

to 65°C for 10 minutes. 

2.2.3.5 DNA Ligation 

DNA ligation was carried out in 25 to 50 p.1 of T4 DNA ligase buffer. 

Dephosphorylated vector DNA was ligated to EcoRI fragments in a molar ratio of 

vector to insert of approximately 1:1 to 2:1. 

The ligation reaction was incubated in a 16°C waterbath. To inactivate DNA ligase 

the reaction mixture was transferred to a dry heating block that had been preheated to 
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70°C. After 15 minutes the heating block was switched off and allowed to cool down 

to 30°C. The mobile metal insert was then removed from the heating block and put 

on ice for 2 hours. The DNA was ethanol precipitated following standard procedure. 

The air-dried DNA pellet was resuspended in 5 p.1 of 1 x TE buffer. Resuspension of 

the DNA pellet was completed by incubation at room temperature for 1 hour. This 

was followed by incubation on ice for 2 hours. DNA was stored at - 20°C. 

2.2.3.6 Extraction of Plasmid DNA from E. coli 

Principle of the Procedure 

All plasmid DNA was prepared using the solutions provided by the range of 

QlAprep Kits (Qiagen Inc.) and by following the manufacturer's instructions. The 

protocol is an application of a modified alkaline lysis method by Birnboim & Doly 

(1979) followed by binding of the DNA to a silica-gel membrane in the presence of 

high salt which allows its purification from RNA, cellular, proteins and metabolites 

(Vogelstein and Gillespie, 1979). 

2.2.3.6.1 Small Scale Preparation of Plasmid DNA 

Small amounts of plasmid DNA (10-15 p.g) were prepared from 5-mi overnight 

cultures using the QlAprep Spin Miniprep Kit (Qiagen). For this purpose, cells from 

4.5 ml (3 x 1.5 ml) of a fresh overnight culture were pelleted in a single 1.5 ml 

Eppendorf tube by centrifugation at 15 krpm for 1 minute in a bench top centrifuge 

(Sorvall Microspin 24). This and all subsequent steps were carried out at room 

temperature. The cell pellet was resuspended in 250 p.1 of buffer P1 using a vortex. 

Bacteria were lysed by adding 250 p.1 of buffer P2. The tube was inverted gently to 

achieve sufficient mixing of the solutions without shearing the bacterial 

chromosomal DNA. Addition of 350 p.1 of buffer P3 neutralises and adjusts to high- 
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salt binding conditions in one step. The solution was centrifuged for 10 minutes at 15 

krpm and the clear supernatant was loaded onto a QlAprep spin column. After 

another round of centrifugation (1 minute, 15 krpm) the flow-through was discarded 

and 500 .tl of wash buffer PB were added to the column to remove trace nuclease 

activity and carbohydrate. The column was washed by adding 750 jjJ of buffer PE 

and centrifuging for 1 minute at 15 krpm. This centrifugation step was repeated after 

the flow-through had been discarded from the collection tube. The column was 

placed in a sterile 1.5-mi Eppendorf tube and the DNA was eluted from the 

membrane by adding 55 p.1 of 10 mM Tris-buffer and centrifuging at 15 krpm for 1 

minute. The DNA was stored at -20°C. 

2.2.3.6.2 Large Scale Preparation of Plasmid DNA 

A single colony picked from a freshly streaked LB agar plate (supplemented with the 

appropriate antibiotic drug) was inoculated into 100 ml L broth containing the 

antibiotic drug as before. The culture was grown with vigorous shaking overnight at 

37°C. The cells were collected by centrifugation at 12 krpm for 6 minutes at 4°C 

(Sorvall centrifuge, GSA or SS34 rotor). All subsequent centrifugations were carried 

out at 16 krpm and 4°C (Sorvall centrifuge, GSA or SS34 rotor). 

The cell pellet was resuspended in 4 ml of buffer P1. The cells were lysed in the 

presence of RNase (provided in buffer P1) by adding 4 ml of buffer P2. The viscous 

solution was mixed gently by inverting the tube a few times. Bacterial lysis was 

allowed at room temperature for 5 minutes. The solution was neutralised and lysis 

stopped with 4 ml of chilled buffer P3. The samples were mixed and incubated on ice 

for 15 minutes. The mixture was centrifuged for 30 minutes to separate cell debris 

and chromosomal DNA from the clear solution containing the plasmid DNA. The 

supernatant was carefully decanted and applied to a QIAGEN-tip 500, which had 

been equilibrated with 4 ml of QBT buffer. The column was allowed to empty by 

gravity flow. Then the column was washed twice by permitting 2 x 10 ml of buffer 

QC to passthrough the column by gravity flow. The DNA was eluted from the 

column with 5 ml of buffer QF. The DNA was precipitated with 0.7 volumes of 
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isopropanol and centrifugation for 30 minutes. Since DNA pellets resulting from an 

isopropanol precipitation are transparent, the outside of the glass tube was marked at 

the position where a precipitation would be expected. The supernatant was removed 

and 2 ml of ice-cold 70 % (v/v) ethanol were added to wash the DNA pellet. A final 

centrifugation was carried out for 10 minutes, all liquid was removed from the tube 

and the pellet was air-dried. DNA was resuspended in 500 p.1 of 10 mM Tris-HC1 

buffer and stored at -20°C. 

2.2.3.7 Extraction of Genomic DNA from E. coli 

Genomic DNA was extracted from E. coli overnight cultures using the AGTC® 

Bacterial Genomic DNA Purification Kit (Advanced Genetic Technologies Corp.) 

which contains all necessary buffers and ADVAMAXTm beads for DNA binding. 

DNA was prepared following the protocol provided by the manufacturer. 

Bacteria were collected from a 5-mi overnight culture by centrifugation at 15 krpm 

for 1 minute. The supernatant was discarded and the cell pellet was resuspended in 

400 pA of Spheroblast buffer. After incubation at 37°C for 10 minutes 100 p.1 lysis 

buffer 1 and 100 p.1 of lysis buffer 2 were added. The suspension was mixed gently 

and incubated at 65°C for 5 minutes after which 100 p.1 of ADVAMAXTm beads and 

100 p.1 of extraction buffer were added. The mixture was vortexed for 10 seconds and 

centrifuged at 15 krpm for 3 minutes. The supernatant was transferred to a sterile 

1.5-mi Eppendorf tube and an equal volume of isopropanol was added. The 

suspension was inverted several times until the white DNA precipitate became 

clearly visible. Using a blue (1 ml) pipette tip the DNA was transferred to a sterile 

1.5-mi Eppendorf tube which contained 500 p.1 of 70 % (v/v) ethanol. To wash the 

DNA the tube was inverted 5-10 times. The precipitate was pelleted by 

centrifugation at 15 krpm for 5 minutes. The ethanol was removed and the DNA 

pellet was air-dried. The DNA was dissolved in 50 p.1 of 1 x TE buffer and stored at - 

20°C. 
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2.2.3.8 DNA Sequencing 

2.2.3.8.1 Manual Radioactive Sequencing 

Sequencing of double stranded template DNA carrying direct repeats was carried out 

using the Sequenase®  v2.0 Sequencing Kit (United States Biochemical) which uses a 

genetic variant of T7 DNA Polymerase to incorporate a 355-dATP into the newly 

synthesised DNA strand during primer extension in vitro. All reaction components 

mentioned below except template DNA and [a 35S}-dATP were provided in the 

Sequenase ® v2.0 Sequencing Kit. 

Double stranded plasmid DNA was purified using the QlAquick Nucleotide 

Removal Kit (QIAGEN). In a 0.5-mi Eppendorf tube, 3 p.g to 5 j.tg (9 p.1) of purified 

plasmid DNA were mixed with 11 pmole (1 p.!) of sequencing primer D. This 

mixture was boiled for 4 minutes and immediately put on dry ice to keep the DNA 

single stranded. A sequencing mix was prepared by mixing 4 p.1 of 100 mM DY!' 

solution and 4 p.1 of 10 x Reaction buffer with 1.4 p.1 of 5 x Labelling mix. 

Sequenase®  DNA Polymerase (13 U p.F 1 ) was diluted 1:5 in Sequenase ®  dilution 

buffer to yield a final volume of 5 p.1. Just prior to starting the sequencing reaction 

the sequencing-mix was completed by adding 5 p.1 of the Sequenase ®  DNA 

Polymerase dilution and 1 p.! (10 p.Ci) of [a- 35S] dATP. 

Four Eppendorf tubes were labelled G, A, T, C and 2 p.1 of the appropriate 

Termination-Mix were added to each of them. One DNA/primer mix was taken off 

the ice, defrosted and centrifuged briefly before 7.7 p.1 of sequencing mix were added 

to the tube. The reaction components were mixed well and the tube was incubated at 

20°C for 5 minutes. The four tubes containing the termination mixtures were 

transferred to a 40°C-waterbath approximately 1 minute before they had to be used. 

Then 4 p.1 of the sequencing mixture were added to each of the tubes with the 

termination mixtures. The sequencing reactions were terminated after incubation for 

3 minutes at 40°C by adding 4 p.1 of stop solution to each tube. 

Prior to loading, samples were boiled for 3 minutes and immediately put on ice to 

denature the extension products. 5 p.1 of each sample were loaded on a preheated 
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(55°C) denaturing 5 % Long Ranger gel (see below) in the order G, A, T, C. If the 

sequencing products were not analysed immediately they were stored at -20°C for up 

to one week. 

2.2.3.8.2 Non-Radioactive Automated Cycle Sequencing 

As an alternative, recombinant DNA was sequenced using a non-radioactive cycle-

sequencing using the ABI PRISMTm Dye Terminator Cycle Sequencing Ready 

Reaction Kit (Applied Biosystems). This method is based on the incorporation of 

fluorescent-dye labelled chain terminators by the heat-stable AmpliTaq ®  DNA 

Polymerase (FS) in a cycling single-tube reaction. 

The detection and analysis of the sequencing products was carried out on a ABI 

PRISM 377 DNA Sequencer (Applied Biosystems). For one sample, the following 

reagents were mixed in a 0.5-mi Eppendorf tube: 

8 tl Terminator Ready Reaction Mix 

1 pA DNA (- 500 ng of ds plasmid DNA, - 200 ng of ds PCR product) 

1 pA primer (3.2 pmole) 

10 tl sterile distilled water 

20 p1 final reaction volume 

Cycle sequencing was performed in a PCR Express Hybaid Thermal Cycler, 

preheated to 94°C: 

Denaturation Primer annealing Elongation 

94°C - 30 seconds 50°C - 15 seconds 60°C - 4 minutes 

30 cycles 

Prior to the sample analysis on the ABI PRISMTm 377 DNA Sequencer the 

sequencing products were ethanol-precipitated in order to remove unincorporated 

dye-labelled terminators and to concentrate the labelled extension products. The air- 
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dried DNA pellet was handed over to the ABI PRISM 377 DNA Sequencing facility 

at the Institute of €ell and Molecular Biology (University of Edinburgh). Collected 

data were analysed using the GeneJockeyTm Sequence Processor (Biosoft, 

Cambridge). 

2.2.3.9 The Polymerase Chain Reaction (PCR) 

Usually, PCR was carried out using purified plasmid DNA or bacterial genomic 

DNA. PCR was carried out in a volume of 25 p.! using 0.2-nil PCR tubes in a PCR 

Express Hybaid Thermal Cycler. The reaction mixture consisted of: 

2.5 p.110 x Taq-Polymerase buffer (including 25 mM MgCl2) 

2.5 p.! 2 mM dNTP-4 mix 

5 p.! DNA (plasmid DNA: 10-100 ng; genomic DNA: 200-400 ng) 

0.5 p.! Taq-Polymerase (2.5 Units) 

1 p.! primer 1 (20 pmole) 

1 p.1 primer 2 (20 pmole) 

13 p.1 sterile, distilled water 

A master-mix containing all reaction components except template DNA was 

prepared on ice with Taq-DNA Polymerase being added last. Aliquots of 20 p.1 were 

dispensed into 0.2-mi PCR tubes, which already contained 5 p.1 of DNA solution. In 

a control reaction the DNA solution was replaced by 5 p.1 of sterile distilled water. 

The solution was mixed well and centrifuged briefly at 9 krpm. The PCR block was 

pre-heated to 94°C before the samples were inserted. PCR programmes that were 

developed in the course of this project are described at appropriate places in Chapter 

5. The PCR programme for the amplification of CTG repeats using primers M6833 

and M6834 was designed by Abbott and Chambers (1994). This is shown in Table 2-

5. 
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Table 2-5. PCR programme used on the Hybaid.PCR Express Thermal Cycler for the 

amplification of trinucleotide repeats in pDL915 and pDL915R, using primers 

M6833 and M6834 (Abbott and Chambers, 1994). Time is shown in minutes. 

Initial Denat. Denaturation Annealing Elongation Final Elong. 

Time/ Temp 

3 	/ 94 1/94 1/55 1/72 5/72 

1 cycle 30 cycles 1 cycle 

2.2.3.10 Purification of PCR Products 

DNA fragments ranging from 100 bp to 10 kb were purified from primers, dNTPs, 

salts and enzymes using the QlAquick PCR Purification Kit (Qiagen). This method 

of purification was used to ensure optimal conditions during an enzymatic reaction 

when, for example, incubation with a restriction endonuclease followed PCR. Like 

the Gel Extraction Kit the PCR Purification Kit uses silica-gel membranes. DNA 

binds to silica at pH !~ 7.5 in the presence of a high concentration of chaotropic salts 

while other components of the PCR reaction mixture are found in the flow-through. 

The purification was carried out using the solutions provided by the QlAquick kit 

according to the protocol supplied by the manufacturer. 5 volumes of buffer PB were 

added to 1 volume of PCR reaction. After mixing thoroughly the solution was 

applied to a QlAquick column which was standing in a 2-mi collection tube. The 

column was centrifuged at 15 krpm foc 1 minute at room temperature. The flow-

through containing salts, dNTPs, primers and enzymes was discarded. The column 

was washed with 750 .tl of buffer PE to remove residual salts and other PCR reaction 

components. Flow-through was discarded and the centrifugation step was repeated to 

remove all of buffer PE. The DNA was eluted from the column with 30 pA to 50 p.1 of 

10 mM Tris-HC1 and stored at -20°C. 
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2.2.3.1 1 Radioactive Labelling of Double-Stranded DNA Fragments 

DNA fragments were labelled after incubation of plasmid DNA (e.g. pDL915, 

pDL1400, 1401, etc) with restriction endonucleases (e.g. EcoRl, AvrIT), that produce 

3'- recessed ends which can be filled-in by Kienow enzyme. Because of the sequence 

of the overhang produced by EcoRl and AvrII, [a-35S] dATP was used in the 

labelling reaction. During this project, radioactive end-labelling was used to 

determine the number of CTG trinucleotides in attP-derived plasmids which carry 

CTG repeat arrays of varying length and also the number of CTG trinucleotides 

integrated at the attB site in chromosomes (Chapter 5). For this purpose, 17 p1 of 

plasmid DNA prepared by the small scale method were mixed with 2 p1 of 10 x 

EcoRI restriction buffer (New England Biolabs) and 1 p1 of EcoRl (20 U pr'). After 

2 hours of incubation at 37°C EcoRl was heat-inactivated at 65°C for 20 minutes. 

The samples were spun in a bench-top centrifuge at 9 krpm fpr 30 seconds. Without 

any further modification the samples were used in the following radioactive end-

labelling reaction. Per sample, 1 p1(10 pCi) of [a- 35S] dATP and 0.5 p1 (2 U pF') 

Klenow enzyme were combined in an Eppendorf tube. Of this labelling mix 1.5 p1 

were added to 20 p1 of EcoRI-digested plasmid DNA. After incubation at room 

temperature for 5 minutes 2 j.il of the 2 mM dNTP-4 mix were added to the labelling 

reaction and incubation was continued for 10 minutes at room temperature. 3 p1 of 

polyacrylamide gel loading buffer were added to the reaction. Immediately, 20 to 25 

p.1 of this reaction mixture were loaded onto a native 5 % Long Ranger gel to 

separate the labelled DNA fragments. 

2.2.3.12  Non-Radioactive Linear Amplification of CTG Repeats 

For the rapid analysis of the length of triplet repeats on the E. coli chromosome as 

well as in plasmids, a non-radioactive method was improved as an alternative to 

error-prone PCR that is frequently used to measure triplet repeat length. The original 
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idea proposed by Yamamoto et al. (1992) was modified by K. Schmidt to include 

fluorescent dye labelled primers and to eliminate error prone PCR from the process. 

The method's principle, optimisation and application to plasmid and genomic DNA 

of E. co/i are described in Chapter 5. 

2.2.3.13 Gel Electrophoresis 

2.2.3.13.1 Agarose Gel Electrophoresis 

The length of double-stranded DNA fragments was analysed by electrophoretic 

migration in horizontal agarose gels in 1 x TBE-buffer at approximately 5-8 V cm. 

Depending on the size of the DNA fragments, the concentration of routine 

electrophoresis grade agarose (Flowgen) was 1 % to 2 % (w/v) while higher 

percentage gels (3 % to 4 %) were made from Methaphor agarose (Flowgen). To 

pour an agarose gel, the appropriate amount of agarose was added to 1 x TBE-buffer 

and mixed in a conical flask. A magnetic stirrer bar was placed into the flask and the 

agarose was melted in a microwave oven at setting "High" for 1 - 3 minutes 

(depending on the gel volume). When all agarose particles were melted, the flask was 

placed on a magnetic stirrer and left there to cool down. Just before the gel was 

poured, 1 x ethidium bromide stock solution was mixed into the agarose solution (2 

p.1 of 50 x ethidium bromide stock solution for a 100-mi gel or 6 p.l for a 300-mi gel). 

The gel was allowed to set for 1 hour at room temperature. (Et Br migrated towards 

the anode in an electrical field). Prior to loading, 1 x agarose gel loading buffer was 

added to each sample and mixed well. DNA was visualised using a C-62 BlackRay 

transilluminator (Ultraviolet Products Incorporated). Pictures of gels were taken 

using GRAB-ITrm software (Ultraviolet Products Incorporated). Metaphor agarose 

gel electrophoreses are described in Chapter 5. 
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2.2.3.13.2 Native Polyacrylamide Gel Electrophoresis 

Native polyacrylamide gels were used to analyse length changes in the highly 

unstable CTG trinucleotide repeats. The gels were run in the SequiGen®  Nucleic 

Acid Sequencing Cell (Biorad) according to the manufacturer's instructions. The gel 

was prepared aproximately 3 hours before it was needed. For a gel measuring 40 cm 

x 21 cm x 0.4 nm-i, 70 ml of gel solution were required (20 ml to seal the bottom of 

the glass plate sandwich and 50 ml to pour the gel). In order to make a 5 % native gel 

containing 1.2 x TBE, 7 ml of 50 % Long RangerTm stock solution (Flowgen), 8.4 ml 

of 10 x TBE and 54 ml of sterile distilled water were mixed thoroughly but carefully 

in a glass beaker by slowly pipetting up and down. To seal the bottom of the glass 

plate sandwich 70 l of TEMED and 170 jtl of freshly prepared 10 % (w/v) AMPS 

were added to 20 ml of the gel solution. When the gel had set, 50 pA of TEMED and 

150 J.Ll of freshly prepared 10 % (w/v) AMPS were added to the remaining 50 ml of 

gel solution. This gel mixture was immediately poured between the two glass plates 

with the help of a 50-mi plastic syringe. A square-toothed comb was introduced at 

the top of the gel. The gel remained at room temperature for at least 3 hours to set. 

After 3 hours the gel was removed from the casting tray and placed into the 

sequencing apparatus (Biorad). Upper and lower buffer tanks were filled with 700 ml 

and 300 ml of 0.6 x TBE buffer, respectively. Just before the samples were loaded 

the comb was removed and the slots were thoroughly washed with 0.6 x TBE using a 

syringe with a needle. Into each slot 20 pA to 25 jtl of sample containing 

polyacrylamide gel loading buffer was loaded. The gel was run at a constant power 

of 35W at a temperature between 45-50°C until the bromophenol blue band of the 

loading buffer had reached the bottom of the gel. After the electrophoresis was 

completed, the gel was removed from the glass plate sandwich, transferred onto wet 

blotting paper (Ford Goidmedal), covered with Saranwrap and dried in a Biorad Gel 

Dryer (Model 583) at 80°C for 45 minutes. 
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2.2.3.13.3 Denaturing Polyacrylamide Gel Electrophoresis 

Denaturing polyacrylamide gels were used to separate products of manual 

sequencing reactions (see 2.2.4.3.1 Manual Radioactive Sequencing). In addition to 

the ingredients mentioned above, the gel solution contained 7 M urea. To make a 5 % 

denaturing Long RangerTm gel, the following components were mixed: 7 ml of 50 % 

Long RangerTm stock solution, 8.4 ml of 10 x TBE, 50 ml of sterile, distilled water 

and 24 g urea (Sigma Chemical Company). This mixture was warmed in a 50°C 

waterbath to help disolve the urea. Sterile, distilled water was added to reach a final 

volume of 70 ml. This gel solution was used to pour the gel as it was described 

above. A sharktooth comb was inserted at the top of the gel with the flat side facing 

the gel. The gel was allowed to set for at least 2 hours at room temperature and was 

then inserted into the sequencing cell (Biorad). The upper and lower buffer tanks 

were filled with 0.6 x TBE before the comb was removed. The gel surface was 

flushed with 0.6 x TBE using a syringe with a needle to remove urea and 

unpolymerised polyacrylamide. The gel was pre-run at 46W until the gel had reached 

a temperature of 55°C (approximately 1 hour). Before loading, the samples were 

boiled for 3 minutes and put on ice immediately. The sharktooth comb was so re-

inserted that the teeth formed wells in which the samples could be loaded. The slots 

were rinsed again and 5 pA of sample were loaded. The gel was run at constant power 

of 40 W for 1-2 hours. After completion of electrophoresis the gel was removed from 

the glass plate sandwich, transferred onto wet blotting paper (Ford Goldmedal), 

covered with Saranwrap and dried in a Biorad Gel Dryer (Model 583) at 80°C for 45 

minutes. 

2.2.3.13.4 Metaphor Agarose Gel Electrophoresis 

The MetaPhor agarose gels were prepared according to the manufacturer's 

instructions. Precautions were taken when dissolving agarose against scalding 

solutions. 
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75 ml of chilled 1 X TBE buffer were poured into a 500-ml beaker. 

The agarose powder was slowly sprinkled while the solution was rapidly stirred 

with a Teflon®  coated stir bar. 

The agarose was soaked in the buffer for 15 minutes before heating. This reduced 

the tendency of the agarose solution to foam during heating. 

The beaker and solution were weighted before heating. 

The beaker was covered with plastic wrap, with a small hole pierced for 

ventilation. 

The beaker was heated in the microwave oven on medium power for 2 minutes. 

The beaker was removed from the microwave oven, gently swirling it to 

resüspend any settled powder and gel pieces. 

The beaker was reheated on high power until the solution boiled for 1 minute or 

until all the particles were dissolved. 

The beaker was removed from the microwave oven, gently swirling it to 

thoroughly mix the agarose solution. 

Sufficient hot distilled water was added and mixed thoroughly to obtain the 

initial weight. 

The solution was cooled to 50 - 60°C prior to casting. 

Once the gel was cast, the molten agarose was cooled at room temperature. The 

gel was then placed at 4°C for 20 minutes to obtain optimal resolution and gel 

handling characteristics. 
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2.2 .3.14 Extraction of DNA Fragments from Agarose Gels 

PCR products and DNA restriction fragments were extracted from agarose gels when 

it was necessary to select particular restriction fragments or PCR products for 

labelling of DNA probes, for ligation or DNA sequencing. DNA fragments were 

separated on horizontal agarose gels made from a Genetic Technology Grade (GTG) 

agarose (SeaKem Incorporated) which is special agarose for preparative 

electrophoresis of DNA. After gel electrophoresis was completed, the gel was placed 

on an UV transilluminator and the selected DNA band was excised from the agarose 

gel using a sterile scalpel. The gel slice was put into a sterile I .5-mi Eppendorf tube 

and was weighted. The QiAquick Gel Extraction kit (Qiagen) was used to extract the 

DNA from the agarose slice. First, 3 gel-volumes (wlv) of buffer QG were added to 

the gel slice and the gelJ buffer mix was incubated at 50°C until the gel had 

completely dissolved (approximately 5 minutes). The colour of buffer QG, which is 

yellow indicating a pH :!~ 7.5, should not change during this procedure. If it changed 

to orange or violet the pH was too high and had to be re-adjusted to pH 7.5 to ensure 

optimal binding of the DNA to the silica-gel membrane. If small DNA fragments (< 

500 bp) were extracted 1 gel-volume isopropanol was added to the solution to 

increase DNA recovery. Solutions containing longer DNA fragments were loaded 

onto the column without any modification. The columns were spun at 15 krpm for 1 

minute. The flow-through was discarded and 500 p1 of buffer QG were added to the 

column to remove traces of agarose. The columns were centrifuged at 15 krpm for 1 

minute. The flow-through was again discarded and 750 p1 of ethanol-containing 

buffer PE were added to eliminate salts. The colunm was spun twice at 15 krpm for 1 

minute and the collection tube was emptied between centrifugations to ensure 

complete removal of buffer PE from the column. The column was placed in a sterile 

1.5-mi Eppendorf tube and 30 p.! of 10 mM Tris-HC1 buffer were added to the centre 

of the membrane to elute the DNA. After 1 minute the column was centrifuged for 1 

minute at 15 krpm. Since the lid had to be cut off the tube for centrifugation, the 

eluate was transferred to a new, sterile Eppendorf tube. The sample was stored at - 

20°C. 
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2.2.3.15 Autoradiography 

Dried Long RangerTm gels were exposed to Cronex 4 X-ray films (DuPont). 

Exposure was carried out in Cronex cassettes (DuPont), at room temperature and 

overnight. Depending on the strength of the signal a second film was put down for a 

more suitable length of time. Films were developed in a X-OGRAPH Compact X2 

automatic film processor. 
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Chapter 3 

Strategies for Constructing New Plasmids Containing the 

CAG/CTG Repeat Tract 

3.1 Introduction 

More than a dozen TREDs are known to be caused by expanded CAG/CTG 

repeats, including Huntington disease, spinocerebellar ataxia types 1, 2, 3, 6, 7, 8, 12 

and 17, myotonic dystrophy, DRPLA and SBMA (Chapter 1). Trinucleotide repeat 

expansion is a well established, but poorly understood mutational mechanism of 

human genetic disease. It is known that the CTG repeats are located in transcribed 

and, with the exception of myotonic dystrophy, SCA8 and 12, translated regions of 

genes. It had been shown that mutated chromosomes in carriers and affected 

individuals with Huntington Disease generally harboured more than 39 CTG 

trinucleotides while the length of these CTG repeats in unaffected individuals ranged 

from 5 to 39 trinucleotides. 

Previous studies of long lengths of trinucleotide repeat tracts (CTG 130180) 

(Kang et al., 1995) showed both expansion and contraction depend on the 

orientation of the (CTG) repeat with respect to the unidirectional replication origin 

of pUC-based plasmids (ColE 1) as well as on the copy number of plasmids, the host 
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genotype, the number of cell generations, the length of the repeat and its location in 

the plasmid. 

To gain insight into the mutational mechanisms by which shorter 

trinucleotide repeats integrated in plasmids, are destabilised, a CTG repeat consisting 

of just 43 trinucleotides integrated in pUC18 was studied in the Leach laboratory in 

wild-type E. coli and in mutator mutants of E. coli that are deficient in post-

replicative mismatch-repair (K. Schmidt's PhD thesis, University of Edinburgh). 

CTG repeat instability was studied using two pUC-derived plasmids, 

pDL915 and pDL915R. They carry a (CTG) 43 trinucleotide repeat in opposite 

orientations as insertions in the single EcoRl site of pUC18. Plasmid pDL915 was 

constructed in the laboratory of Dr. C. Abbott (Western General, Edinburgh) using 

the following procedure. A DNA fragment containing a (CTG)25 repeat and 88 bp of 

flanking sequence was amplified by .  PCR from the mouse metallothionein-Ill (Mt-

III) gene which maps on chromosome 8 and contains a highly polymorphic CTG 

repeat in its 5' untranslated region (see Appendix 1). The MT-Ill gene codes for 

Metallothionein-Ill, a small, central nervous system-specific metal-binding protein 

(Blaauwgeers et al., 1996). The primer pair M31M4 (Table 2.4) was designed to 

amplify the (CTG)25 repeat and 88 bp of flanking sequence from the inbred strain of 

laboratory mouse AKRJJ. This PCR product was ligated to EcoRl linkers (5' 

GAATTCCT 3') and inserted into the ing1e EcoRl site of the high copy number 

plasmid pUC18. This plasmid was labelled pDL913. After passage of pDL913 

through a mutS-deficient strain, an expanded plasmid was isolated and labelled 

pDL915. Sequencing revealed that this plasmid contained an EcoRl fragment with an 

expanded repeat array containing approximately 41 CTG trinucleotides. Plasmids 
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with the EcoRl fragments in the opposite orientations, labelled pDL913R and 

pDL915R, were constructed in the course of an earlier project in this laboratory by 

cleaving both plasmids with EcoRl and religating the fragments. Figure 3.1 explains 

how the presence of the single asymmetric Sau3A site in the EcoRl fragment 

permitted the identification of the orientation of the EcoRl fragments with respect to 

the unidirectional origin of replication in pUC18 (Co1E1). 

S S 	___S 
F71 	1100 	P 

	
i H 	H 	i 	 H 

—205 4_966—P
S  S S  

CTG repeat on leading strand: orientation A (pDL91 5) 

CTG repeat on lagging strand: orientation B (pDL915R) 

Figure 3.1 Partial Sau3A restriction map of pDL915 (upper line) and 

pDL915R (down). The single Sau3A site in the PCR fragment amplified from the 

mouse MT-Ill gene and the two flanking Sau3A sites in pUC18 could be used to 

determine the orientation of the EcoRl fragments in pDL915 and pDL915R with 

respect to the origin of replication. The remaining 13 Sau3A restriction sites in 

pUC18 yield 14 Sau3A restriction fragments whose length is independent of the 

orientation of the EcoRl fragment. 

For example, if the (CTG)43  repeat array is oriented so that the CTG 

sequence is on the template for the leading strand during replication, a Sau3A 

restriction digest would produce 198-bp and 966-bp fragments in addition to the 14 

Sau3A restriction fragments whose length is not affected by the presence of the 

EcoRl fragment. If the EcoRI fragment was in the opposite orientation, the same 

digest would produce 70-bp and 1094-hp fragments. Henceforth the orientation in 

a 
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which the EcoRI fragment is inserted so that CTG is the template for the leading 

strand during replication will be referred to as orientation A. If the EcoRl fragment is 

found to be the other way around, i.e. if CTG is on the template for the lagging 

strand during replication, then this will be referred to as orientation B. 

In the beginning of my project, the trinucleotide repeat tract (CTG.CAG) 43  

flanked by two EcoRl sites from the plasmid described above, was available in the 

Leach lab to be mobilised into the Escherichia coli chromosome. This procedure was 

attempted by employing the help of two helper vectors, kindly provided by Prof. W. 

Messer (Berlin, Germany) : pLDR9 and pLDR1 1, in the presence of the mt Protein 

Expression vector, pLDR8 (Diederich et al., 1992). 

3.2 Inserting the Trinucleotide Repeat Tract CTG/CAG into 

Vectors pLDR9 and pLDR1 1 

Prof. Messer's team developed an improved plasmid vector-based system 

for integration of DNA fragments into the A attachment site attB. The method is 

applicable to any DNA fragment and any strain as long as the IHF protein is 

produced by the cells. Furthermore, the method allows the direct integration of the 

DNA fragment under consideration into the strain of choice, without the need of 

subsequent transduction. 
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The system consists of two parts: a helper plasmid that provides the mt 

protein from phage X, which is necessary for integration into the attB site of the 

chromosome (Weisberg et al., 1983) and another cloning vector, containing the attP 

site and an easily removable origin cassette (Figure 3.2). 

Noti 

oIEI origin 

Figure 3.2 Schematic representation of the plasmid vectors pLDR9 and 

pLRD11. 

The existence of various markers (resistance to antibiotics) within this 

cassette makes selection for it possible. The method proceeds as follows: first the 

DNA fragment in question is cloned in one of the attP vectors (Figures 3.3 and 3.4). 

Second, the origin cassette is cut out of the plasmid obtained and the fragment is 

ligated, leading to a closed circular DNA molecule lacking a replication origin. 

Third, the E. coli strain of choice carrying the mt protein producing helper plasmid 

pLDR8 (Chapter 4) is transformed with the ligation products. 
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Figure 3.3: Schematic representation of the vector pLDR9 and the new 

constructed plasmids, with the trinucleotide repeats [(CTG) 43 or (CAG)43 on 

the leading strand] integrated in the EcoRl site (pDL1 182 and pDL1 183). 
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Figure 3.4: Schematic representation of the vector pLDR1 1 and the 

construction of the new plasmids with the tnnucleotide repeat tract [(CTG)39 or 

(CAG)39 on the leading strand] integrated into the EcoRl site (pDL1 180 and 

pDL1 181). 
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The first step of this project consisted in integrating the trinucleotide repeats 

in the vectors pLDR9 and pLDR1 1 which allow the integration of any DNA 

fragment into the bacteriophage A attachment site attB of the Escherichia coli 

chromosome. The repeat tract (CAG) 43 and 88 bp flanking sequence of the murine 

metallothineine III gene (Mt3) was separated from pDL915 by digestion with EcoRl 

and ligated to the EcoRl sites of the vectors pLDR9 and pLDR1 1. A nonradioactive 

in situ hybridization (the DIG-system hybridisation) was used to screen for correctly 

constructed colonies, that had the trinucleotide repeat tract integrated into the EcoRl 

site of the vectors pLDR9 and pLDR1 1. 

The vectors pLDR9 and pLDR1 1 have important features, making them 

very useful for integrating DNA fragments into the chromosome of Escherichia coli: 

they contain the A attachment site attP; 

o they have double resistance to antibiotics (pLDR9: A mpR,  KmR; pLDR1 1:. 

AmpR ,  TcR) ;  

they have an origin cassette easily removable, by digestion with Noti; 

the screening for the correctly constructed colonies is easy, since the gene 

coding the resistance to the second antibiotic (Kan, Tc) is removed at the same time 

as the origin cassette. 

The newly constructed plasmids were checked by digestion with Nod or 

EcoRl (Figure 3.5) and by PCR to determine the orientation of the repeats (Figure 

3.7). Three primers were designed to perform the polymerase chain reactions: primer 

D with the property to anneal to the vector in the neighbouring region to the EcoRl 

site; primers M3 and M4 which anneal to the ends of the trinucleotide repeat tract 

(Figure 3.6). 
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Figure 3.5: 1% agarose gel loaded with the products of the digestion of the 

vectors and the new constructed plasmids with Noti or EcoRl. Lane 1, marker III; 2, 

vector pLDR9: 3, vector pLDR11; 4, vector pLDR9 cut with NotI; 5, vector pLDR11 

cut with NotI; 6-9, new constructed plasmids cut with Not!: 6, DL1 180; 7, DL1 181; 

8, DL 1182; 9, DL1 183; 10-13, new constructed plasmids cut with EcoR!: 10, 

DL118O; 11,DL1181; 12,DL1182; 13,DL1183; 14,vectorpDLR9cutwithEcoRl. 
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Figure 3.6: Schematic representation of the experiment establishing the 

orientation of the repeat tract (black area represents the trinucleotide repeat tract). 

Primer D was designed to anneal outside the trinucleotide repeat tract; primers M3 

and M4 anneal to the Mt-Ill flanking sequence. PCR using primers D and M3 or D 

and M4 was performed in order to establish the orientation of the repeats in the new 

plasmid. 

PCR was performed to find both orientations of the triplet repeat tract in the 

vectors (figure 3.7), according to the following protocol: 94°C for 2 mm, 25 cycles x 

(94°C for 40 sec, 62°C for 40 sec, 72°C for 40sec), 72°C for 10 mm. 

This first objective of the project was successful; four new plasmids were 

produced: 

pDL 1180 (pLDR1 1 + (CTG) 39 on the leading strand), Tc', AmpR 

pDL 1181 (pLDR1 1 + (CAG) 39 on the leading strand), I cR ,  AmpR 

pDL 1182 (pLDR9 + (CTG) 43 on the leading strand), Km', AmpR 

pDL1 183 (pLDR9+(CAG)43 on the leading strand), KmR,  Amp'. 
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3.3 Modifying the restriction sites of the attP site 

containing vector pLDR9 

A novel strategy was attempted in the course of my project. It was based on 

the advantage offered by the AvrII restriction endonuclease to cleave the Escherichia 

coli chromosomal DNA at a low frequency..The average fragment size resulting by 

such a digestion is 150kb, with the largest fragment observed being of 1Mb (New 

England Biolabs catalogue). The recognition site for the AvrII enzyme is: 

5 ...... C/CTAGG.....3' 

3 ...... GGATC/C.....5' 

The strategy behind this new experiment was to engineer two flanking AvrII 

sites on both sides of the trinucleotide repeat tract. Following integration into the 

chromosome of this new fragment, and restriction with AvrII, the CAG/CTG array of 

220bp could easily be separated on a polyacrylamide gel from the rest of the 

fragments of 150kb. 

The vector pLDR9 was chosen to have the restriction sites modified because 

it was known that it had only one site for the BamHI enzyme (Figure 3.8). The 

modification consisted in inactivating the existing sites for EcoRI and BamHI, by 

performing a double-digest with both enzymes and then, ligating a new fragment, 

called "the AvrII fragment", to the open vector. 
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Figure 3.8 Vector pLDR9 was chosen to be modified because it has only 

one restriction site for the enzyme BamHI. It is resistant to Km (neo). 

The AvrII fragment was constructed by the annealing of two asymmetric 

oligonucleotides, BAMECO and ECOBAM. The two oligonucleotides were boiled 

together in equimolar amounts in TE buffer, 100mM NaCl and dH 20 and left to 

anneal overnight by cooling down at room temperature. The sequence of the two 

oligonucleotides was: 

BAMECO 

5' . . . .GATCAGGTACCCCTAGGGAATFCCCTAGGT.....3' 

ECOBAM 

5'.....AATFACCTAGGGAA11TCCCTAGGGGTACCT.....3' 
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The trinucleotide repeat tracts CAG/CTG were introduced into the newly 

modified vector, pLDR9M, as it was described in subchapter 3.1 for the initial 

unmodified vectors pLDR9 and pLDR1 1. The two new plasmids pDL1400 and 1401, 

derived from pLDR9M, have the CAG repeats on the template for the lagging and 

the template for the leading strand, respectively (Figure 3.10). 

AvrII 

LAX) 

AvrH". 	 CAG/CTG attP 

BamHI* 

NotI 

pDL1400/1401 
4.40Kb 	 I 

bla - 	
J CoIEI 

origin 

Neo 
NotI 

Figure 3.10 Schematic representation of the new plasmids containing a 

trinucleotide repeat array flanked by EcoRl and AvrII sites. 
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The new plasmids pDL1400 and pDL1401 were checked as described in 

subchapter 3.1, and also by cleavage with EcoRl and AvrII, followed by Klenow 

enzyme filling-in with radioactive nucleotides and separation by 6% PAGE (Fig 

3.11). The difference in size between EcoRl digestion products and AvrII is of 12 bp, 

according to the DNA sequence of the BAMECO and ECOBAM oligonucleotides. 

Later in my project, a trinucleotide repeat array of 84 copies became 

available from pUC18, thanks to G. Cromie. I attempted to transfer the 

(CAG/CTG)84 from pUC18 into pDL1400/1401. This repeat tract proved to be 

highly unstable in the vectors pDL1400/1401. In spite of intensive efforts to integrate 

this repetitive fragment into the attB vectors, it turned out to be fruitless. The longest 

sequence, which was successfully introduced, was of 56 copies (Figure 3.12). 

- 

6w
'-...-F 

I
low  tow 

'. .6 

Figure 3.11. Checking colonies pDL1400 and pDL14O1 for the number of 

trinucleotide repeat copies integrated into pLDR9M. EcoRl and AvrII restriction 

products were radioactively labelled with cx-35S dATP and separated by 6%PAGE. 
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There are two putative reasons for the failure to construct new plasmids 

with (CTG)84 integrated into pLDR9M: 1) longer repeat tracts form more stable 

hairpins compared to shorter ones, so the efficiency of (CTG) 84  ligating to the vector 

is smaller in competition with shorter arrays present in the reaction (as it can be 

noticed in Figure 3.12, apart from the main population of (CTG) 84, all other smaller 

lengths are also present); 2) the process of transformation into competent cells might 

have a mutagenic effect for certain DNA sequences. This observation is in agreement 

with Hashem's paper (Hashem et al., 2002) which showed that instabilities of 

(CAG)(CTG)7619 are dramatically elevated upon transformation. The authors found 

that the mutation frequency for deletion of the CAG tract upon transformation was 

75 to 145-fold higher than the mutation frequency for the same plasmids maintained 

in cells. Several aspects of the transformation process are to be taken into 

consideration to explain the highly mutagenic effect for the repeated sequences: 1) 

the process of making the cells competent may alter their natural metabolic state and 

the rate of spontaneous mutation such that the results do not reflect those occurring 

in a normal cellular environment; 2) the process of transport past the bacterial 

membrane may also introduce damage to the DNA; 3) the plasmid DNA presented to 

cells lacks its normal complement of DNA binding and packaging proteins and the 

initial interactions with the replication and transcription machinery may be abnormal. 

The successfully constructed plasmids as described in this chapter were later 

used for integrating the trinucleotide repeat tract into the E. coli chromosome 

(Chapter 4). 
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Chapter 4 

Construction of New Bacterial Strains with Trinucleotide 

Repeat Tracts Integrated into the E. coli chromosome 

4.1 Site-Specific Recombination Occurring at the attB Site of the 

E. coli Chromosome 

Following the successful construction of new plasmids with (CAG) 43 and 

(CTG)43 integrated into pLDR9M and pLDR1 1 vectors (Chapter 3), the next step of 

this project was to integrate the trinucleotide repeat tracts into the X attachment site 

attB of the Escherichia coli chromosome. This step was based on the same principle 

as the integration of the A phage into the specific attachment site attB on the E. coli 

chromosome (Figure 4.1). 

The plasmids pDL1180, 1181, 1182, 1183, 1400 and 1401, described in 

Chapter 3, contain the A attP site on a fragment which can be separated from the one 

containing the origin of replication by digestion with the restriction enzyme Not!. 

Furthermore, detection of both fragments is possible due to different resistance 

markers located on the fragments. Accordingly, to carry out the integration process, 

separation of the two fragments is not necessary. 
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lambda phage 

48.00 Kb 

j 	N 
attP 

P 0 P' 

gal 	B 0 B' bio 
Mr- 

ori C 	 attB 

attL 	 attR 
gal 	 bio 

oriC 	BOP' 	N 	J 	POB' 

Figure 4.1: Integration of lambda phage into the attB site on the E. coli 

chromosome. The attachment site in the bacterial chromosome contains a core 

sequence, 0, flanked by sequences B and B'. The core sequence is identical to the 

core sequence on the lambda phage, which is flanked by sequences P and P'. Phage 

encoded integrase together with integration host factor (IHF) catalyses the site-

specific recombination event. 
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The origin cassette was cut out with Noti from the newly constructed 

plasmids (Chapter 3). The fragment containing the triplet repeats, the attP site and 

the gene coding the resistance for ampicillin was ligated, leading to a closed circular 

DNA molecule lacking a replication origin (Figure 4.2). 

Avrl 

vrll 
CAG/CTG 

circular attP fragment 

2.00 Kb 	POP 

bla 

Noti 

Figure 4.2. Schematic representation of the circular DNA fragment 

containing the trinucleotide repeat tract, the attP site and the gene coding resistance 

to Ampicillin. 

Escherichia coli DL513 (wild-type) and DL515 (sbcC) carrying the mt 

protein producing helper plasmid pDLR8 were transformed with the ligation product. 

pDLR8 (Krn') is a helper plasmid, bearing the ) mt gene under the control of the 

temperature-sensitive repressor CI857 (Figure 4.3). 
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Figure 4.3: The helper plasmid pLDR8 contains the mt gene, 

encoding Integrase under the control of a temperature-sensitive replicon and carries a 

Km resistance gene. 

The Escherichia coli strains N2677 (wild-type) and N2679 (sbcC201) 

carrying the helper plasmid pLDR8, were grown at 30°C overnight in LB 

supplemented with Km. These cultures were diluted 1:20 and grown for 90 minutes 

at 37°C. At this stage, the cells were made competent and transformed with the 

ligation mixture. The ligation mixture had previously been digested with XhoI 

restriction enzyme in order to make sure that the only circular fragments present in 

the mixture are the ones containing the triplet repeats, the attP site and the gene 

encoding the resistance to ampicillin. The cells were plated on LB agar supplemented 

with Amp and incubated at 42°C overnight. 
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Plasmid pLDR8 carries a temperature-sensitive replicon and a Km-

resistance gene. Moreover, the plasmid contains the mt gene encoding the integrase 

transcribed from the X PR promoter under the control of the A CI 857  repressor. 

When cells containing the helper plasmid pLDR8 are grown at 30°C, the 

replication of the plasmid is normal and the expression of the mt gene is repressed. 

When the temperature is increased to 42°C, the c1857  repressor is inactivated and 

transcription from the A PR promoter leads to expression of the mt gene. 

Simultaneously, the replication of pLDR8 is blocked due to inactivation of the Rep 

protein, resulting in the loss of the plasmid after a few cell generations. Therefore, 

the mt gene product is only temporarily present in the cell. 

Four new bacterial strains were initially constructed: 

DL 1184 (DL5 13 AmpR  with (CAG) 39 ) 

DL 1185 (DL5 13 Amp' with (CAG)43) 

DL 1186 (131,515 Amp' with (CTG) 39  ) 

DL 1187 (DL515 Amp' with (CTG)43 ). 

PCR was performed to check the number of repeat tracts in the 

chromosomes of the newly constructed bacterial strains, using primers Genomi and 

Genom2, designed to anneal outside the attB site (Figure 4.4). The PCR protocol was 

performed according to the one in Table 4.1. The PCR products electrophoresed on 

1% agarose gel proved that only one copy of the repeat tracts was integrated into 

each of the newly constructed strains chromosomes, since all the PCR products have 

the expected size of 2.2kb (Figure 4.5). 
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Figure 4.4: Schematic representation of the PCR product amplified by 

primers Genomi and Genom2. 

Table 4.1. Genoml+Genom2 PCR programme 

Denaturation Annealing Elongation Cycles 

Time Temp Time Temp Time Temp 

3 min 94°C 1 

45 sec 94°C 45 sec 68°C 2min 30 sec 72°C 30 
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4.2 Constructing Various E. coli Mutant Strains with the 

Trinucleotide Repeat Tract Integrated at the attB Site 

Following the successful construction of the initial strains containing the 

trinucleotide repeat tract (CTG) 43  or (CAG)43 at the attB site, 60 new strains (Table 

4.2) were constructed and checked for the existence of the newly introduced 

mutations. Several mutated genes, coding for proteins thought to be involved in 

trinucleotide instability, were introduced into the chromosomes of the previously 

constructed strains (DL1184- DL1187) (Chapter 4.1) by P1 transduction, as 

described in Chapter 2 (Materials and Methods). All newly constructed strains from 

Table 4.1 were checked for the correct propagation of the trinucleotide repeat tract 

by PCR followed by 1% agarose gel electrophoresis as described previously in 

Chapter 4.1 (Figure 4.4). 

Table 4.2. Newly constructed bacterial strains with TR and the original E. 

coli strains they were derived from. 

E.coli strain of origin CAG = leading strand template CTG 	= 	leading 	strand 

template 

N2677/ DL513(wt) DL1442 / 1302/1354 DL1404 / 1184 / 1185 

N2679/ DL515 (sbcC) DL1413 / 1186 / 1187 DL1406 / 1355 

513, recQ::km DL1453 DL1454 

513, recQ::k,n,sbcC DL1455 DL1456 

126 



DL1347 (polApoiB) DL1443 DL1428 

DL1347 (polA poiB) 

recQ: :km 

DL1457 DL1458 

DL1348 (polA) DL1444 DL1430 

DL1348 

(polA) recQ. .km 

DL1459 DL1460 

DL1349(wt) DL1445 DL1432 

DL1349 recQ..km DL1461 DL1462 

DL 1350 (poiB) DL 1446 DL1434 

DL1350 

(poiB) recQ: .km 

DL1463 DL1464 

DL1487 (DL513, 

recA::cm) 

DL1488 DL1489 / 1272 / 1273 

DL1490 (DL515, 

recA::cm) 

DL1491 / 1264/1274 DL1492 

DL1493(DL513, 

recB.: Tc) 

DL1494 DL1495 

DL962(mutD:.TnlO) DL1568 DL1567 

DL1496(DL515, 

recB: : Tc) 

DL1497 DL1498 

DL1477(DL513, 

mutS..Tc) 

DL1478 DL1479 / 1420 / 1294 / 

1295 

DL1480 (DL515, 

mutS: : Tc) 

DL1481 / 1422 / 1296 / 1297 DL1482 
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DL1471 (DL513, 

nfi. .cm) 

DL1472 DL1473 

DL1474(DL515, 

nfi:.cm) 

DL1475/1243 DL1476 

DL1499/1270 

(DL513, recG..km) 

DL1500 DL1501 / 1416 I 1236 / 

1237 

DL1502/1271 

(DL5 15, recG:.km) 

DL1503 / 1238 / 1239 DL1504 

DL513, recF:.cm DL1516 DL1517 

DL1507(DL515, 

recF::cm) 

DL1508 DL1509 

DL1226 (radC) DL1249 / 1251 DL1252 /1256 

DL1224(radA) DL1250 DL1254 

DL1225 (wt) DL1255 

A large number of control strains were constructed by the integration at the 

attB site of the circular DNA fragment originating from the vectors pLDR9, pLDR1 1 

or pLDR9M which did not have the trinucleotide array. 

All newly constructed strains of E. co/i containing the trinucleotide repeat 

array were checked for the double resistance to antibiotics: Ampicillin (linked to the 

CAGICTG tract) and also for the second antibiotic introduced by P1 transduction, 

together with the new mutation. The successful introduction of the new mutation was 

also checked by PCR, as exemplified in Figure 4.6 for the recG mutation. The 
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primers used for this step were "E. coli ORFmerTM  PCR Primer Pairs" provided by 

Genosys Biotechnologies Limited. The E. coli ORFmer PCR primer pairs have been 

designed to amplify all putative open reading frames (ORFs) in Escherichia coli K-

12. Each ORFmer PCR primer pair consists of an "A-primer" (amino-terminal 

primer) directed at the start codon and a "C-primer" (carboxyl-terminal primer) 

directed at the stop codon of a specific ORF. The ORF-specific sequences of the 

primers have an average Tm of 66.7°C (±4.7°C). 

Several colonies of the newly constructed strain were picked and analysed 

for the successful transduction of the required mutation. PCR was performed using 

the primer pair of the respective gene and also a control pair for an additional gene, 

which was not modified. 
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Figure 4.6. 1% agarose gel: lane 1) Marker 3; lane 14) Marker 6; even lanes: 

PCR products resulted from the amplification with the recG primer pair; odd lanes: 

PCR products from the amplification using the recR primer pair. 

All newly constructed strains with a trinucleotide repeat array integrated at 

the attB site of the E. coli chromosome, were recorded in the Leach laboratory strain 

collection and stored as described in Chapter 2.2 (Methods). These strains constitute 

the material of analysis for investigating trinucleotide repeat instability (Chapter 6). 
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Chapter 5 

Methods Employed in the Analysis of Trinucleotide Repeats 

Integrated into the E. coli Chromosome 

5.1 Introduction 

The aim of my project was to study the instability of trinucleotide repeat 

arrays in the E. coli strains, which I constructed (as described in Chapter 4). New 

methods had to be developed, investigated and improved in the course of my project 

in order to test the subtle changes of triplet arrays of only one, two or three 

trinucleotides, as it will be shown in detail in this chapter. 

The trinucleotide repeat expansion is the cause of a large number of human 

diseases (Chapter 1). A trinucleotide repeat array of 43 GAC/CTG integrated into the 

pUC18 vector was previously studied in the Leach laboratory (K. Schmidt's PhD 

thesis, University of Edinburgh). Studying the unstable tririucleotide repeats in 

plasmids has some disadvantages: the maintenance of the unstable insert is difficult 

(Shimizu et al., 1996), since they are deleted readily to sequences of heterogeneous 

lengths. The number of plasmids is likely to differ between strains, indirectly 

influencing plasmid stability within the population. The characterisation of the triplet 
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repeats integrated in plasmids is influenced by the copy number of the plasmid and is 

also orientation-dependent on the origin of replication of the plasmid, which is 

unidirectional. Kang (Kang et al., 1996) reported that the region distal from the 

unidirectional replication origin expands much more than the proximal region. CTG 

repeats greater than 80 copies in plasmids seem more susceptible to deletions than 

expansions in E. coli, whereas they expand and remain long in human diseases. The 

reason for this apparent difference could be due to the size of the plasmids and to the 

mechanisms of replication. These disadvantages are overcome by studying the 

behaviour of trinucleotide repeats integrated in the chromosome of E. coli, which has 

a bi-directional replication origin, is 1,000 times larger than an average plasmid and 

may be a better mimic of the events occurring during replication in human 

chromosomes. 

The next step, when my project started, was to assess the instability of these 

sequences in the E. coli chromosomes. Following the successful construction of new 

bacterial strains with the trinucleotide repeat arrays integrated at the attB site (as 

described in Chapters 3 and 4), my objective was to find an appropriate method to 

observe and analyse the subtle changes in the repeat lengths. 

The analysis of trinucleotide repeat length is facilitated when high copy-

number plasmids, such as pUC-derived vectors, pLDR9 and pLDR1 1, are used for 

the propagation of trinucleotide repeats. In this case, amplification of the DNA 

fragment of interest prior to analysis is dispensable as sufficient amounts of plasmid 

can be extracted from hosts. The fragments containing trinucleotide repeats are 

excised from plasmid DNA by cleavage with a restriction endonuclease that cleaves 

in the immediate flanking sequence of the repeat and the exact number of 
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trinucleotides is determined by separation of these restriction fragments in 

polyacrylamide gels. Since there is no in vitro amplification involved in this method, 

results reflect the in vivo situation. The disadvantage is that the method is no longer 

available once the CTG repeats had been inserted into the chromosome of E. coli 

(Chapter 4). 

The existent methods used for the diagnostic of the trinucleotide repeat 

diseases are: 1) PCR using flanking primers to the TR array, not reliable above 100 

trinucleotides; 2) Southern blot probing with a locus specific fragment flanking or 

containing the repeats; 3) fluorescent TP-PCR (Triplet Primed-PCR) (Warner et al., 

1996) that can identify, but not size the largest alleles. 

Five new methods of trinucleotide repeat detection were investigated during 

this project in order to find the best one which fulfilled the requirement of 

distinguishing between trinucleotide repeat tracts of only 3 bp apart: short PCR 

followed by the separation of the products on MetaPhor agarose, long PCR products 

digested with EcoRl or AvrII and separated by 6% PAGE, AvrII digestion of 

chromosomal DNA, short fluorescent PCR products analysed by Gene Scan and f-

TRAMP. 
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5.2 MetaPhor®  Agarose Analysis of Short PCR Products Containing 

Trinucleotide Repeat Tracts 

The first method investigated was the separation of short PCR products 

containing the trinucleotide repeat arrays on 3% MetaPhor agarose gels. Metaphor 

agarose comes highly recommended by its manufacturer (FMC®),  as "the high 

resolution agarose that challenges polyacrylamide". It has an intermediate melting 

temperature (75°C) and it has twice the resolution capabilities of the finest-sieving 

agarose products. 

A primer pair (primers Metaphor-Left and Metaphor-Right, Table 2.4) was 

designed to amplify the shortest possible fragment containing the trinucleotide repeat 

array (Figure 5.1). The PCR programme was successfully improved for picking 

colonies with toothpicks by using the gradient setting for the annealing temperature. 

Table 5.1 shows the final version of the Metaphor PCR programmes. 

Table 5.1. MetaPhor PCR programme 

Denaturation Annealing Elongation Cycles 

Time Temp Time Temp Time Temp 

3 min 94°C 1 

30 sec 94°C 30 sec 65°C 30 sec 72°C 25 
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The expected size for a PCR product containing 43 trinucleotide repeats was 

of 176 bp. Differences of 3 or 4 bp between the products were supposed to be clearly 

seen on the MetaPhor agarose gels since it can resolve small DNA fragments that 

differ in size by 2%. 

The MetaPhor agarose gels were prepared according to the manufacturer's 

instructions. Precautions were taken when dissolving agarose against scalding 

solutions. 

75 ml of chilled 1 X TBE buffer were poured into a 500-mi beaker. 

The agarose powder was slowly sprinlded while the solution was rapidly stined 

with a Teflon® coated stir bar. 

The agarose was soaked in the buffer for 15 minutes before heating. This reduced 

the tendency of the agarose solution to foam during heating. 

The beaker and solution were weighted before heating. 

The beaker was covered with plastic wrap, with a small hole pierced for 

ventilation. 

The beaker was heated in the microwave oven on medium power for 2 minutes. 

The beaker was removed from the microwave oven, gently swirling it to 

resuspend any settled powder and gel pieces. 

The beaker was reheated on high power until the solution boiled for 1 minute or 

until all the particles were dissolved. 

The beaker was removed from the microwave oven, gently swirling it to 

thoroughly mix the agarose solution. 

Sufficient hot distilled water was added and mixed thoroughly to obtain the 

initial weight. 

135 



The solution was cooled to 50 - 60°C prior to casting. 

Once the gel was cast, the molten agarose was cooled at room temperature. The 

gel was then placed at 4°C for 20 minutes to obtain optimal resolution and gel 

handling characteristics. 

EcoRI 	 EcoRl 

Metaph-Left 	TR 

Metaph-Right 

4 

PCR product = 176 bp 

Figure 5.1. Schematic representation of the DNA fragment amplified by 

primers Metaph-Left and Metaph-Right. 

Trinucleotide repeat arrays of different lengths (CAG 39  and CTG43  from 

plasmids pDL1 181 and pDL 1183) were amplified as controls. Their electrophoresis 

did not show a conclusive difference of 12 bp as expected (Figure 5.2). PCR 

products obtained from chromosomal amplification with primers Metaph-Left and 

Metaph-Right showed only one DNA product (Figure 5.2). 

136 



Figure 5.2. 3% MetaPhor agarose gel. Lanes 1 and 10: (CAG)39; lanes 2 and 

11: (CAG)4 3; lanes 3, 4, 5, 6, 8, 9, 12, 13: PCR products from chromosomal 

amplification of DL 1294 (mutS); lane 7: marker V. 

The conclusion of the MetaPhor analyses was that differences of only one 

trinucleotide could not be easily noticed. This method did not show the expected 

efficiency, so other new methods had to be investigated, as described in the next sub-

chapters. 
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5.3 Analysis of the Trinucleotide Repeat Tracts by 6% PAGE of EcoRI 

Digested Long PCR Products 

A new strategy was employed in order to analyse subtle changes in 

trinucleotide repeat lengths, following the poor efficiency of the MetaPhor agarose 

method. The new strategy was based on the existing method for analysing TR in 

plasmids (Chapter 2.2.3. Radioactive labelling of double-stranded DNA fragments), 

but modified for TR in chromosomes, which meant the introduction of an additional 

PCR step. The primers for this method were already available, primers Genomi and 

Genom2, as described in Chapter 4 (Figure 4.3). They amplify 2.2 kb of the 

chromosomal region containing the trinucleotide repeat tract integrated at the attB 

site. 

Cells were cultured on LB agar in the presence of the appropriate 

antibiotics. Single colonies were transferred into 30 .tl sterile water and heated to 

99°C for 5 min to lyse the cells. Lysates were spun at high speed in a 

microcentrifuge for 2 min to pellet cell debris. The supernatant was used as template 

DNA for PCR reactions using primers Genomi and Genom2. Table 5.2 shows the 

Genom(1+2) PCR programme. Products were checked by agarose gel electrophoresis 

(Figure 5.3). The PCR products were purified from excess deoxynucleoside 

triphosphate (dNTP) by ethanol precipitation: 45 tl PCR product were added to 180 

p1 cold ethanol and incubated at -70°C for 30 mm. Samples were spun at high speed 

in a microcentrifuge for 15 min and the ethanol removed by blotting. Another 180 p1 
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cold ethanol were added and then centrifuged for 5 min and the ethanol removed. 

The DNA was left to dry completely prior to addition of 40 pi deionised water. 

Table 5.2. Genom(1+2) PCR programme 

Denaturation Annealing Elongation Cycles 

Time Temp Time Temp Time Temp 

4 min 94°C 1 

45 sec 94°C 45 sec 68°C 2min 30sec 72°C 30 

10 min 72°C 1 

Ii 	I 

- a 

Figure 5.3. Agarose gel electrophoresis of PCR products. Main products 

have 2.2 kb. Lanes 1-6)wild-type strains; lane 7) Marker III; lanes 9-13) mutS strains. 

The 2.2 kb fragment was digested with EcoR! to give three fragments, one 

of them of 220 bp containing the trinucleotide repeat tract (Figure 5.4). 
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Figure 5.4. 1% agarose gel electrophoresis of EcoRl digestion of PCR 

products from Figure 5.3. 

The 3' recessed ends generated by EcoRI restriction were labelled with a-

35 S dATP using the Kienow fragment of DNA Polymerase I. 15 .tl of each digested 

sample were incubated with 0.5 .tl (1U) Kienow enzyme and 0.5 tl (5 .tCi) a- 35 S 

dATP at room temperature for 20 mm. dNTP-4 mix solution was then added and 

incubated at room temperature for a further 10 mm. 3.5 tl of loading buffer were 

added and the samples loaded on a 6% non-denaturing polyacrylamide gel (Sequi-

Gen®  apparatus from BioRad). Electrophoresis was carried out at 40W until the dye 

front reached the bottom of the gel (approx. 1.5 hours). The separated DNA 

fragments were visualised by autoradiography (Chapter 2.2.3). 

Figure 5.5 shows DNA from strains DL1184(wt) and DL1294(rnutS). 

Trinucleotide repeat instability can be observed in both strains in the form of ladders 

of bands differing in size by multiples of three bp. 
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Figure 5.5. Non-denaturing polyacrylamide gel electrophoresis of Klenow-

labelled DNA fragments. Lanes 1-4) DL1 184 (wt), lanes 5-12) DL1294 (mutS). The 

lack of difference between the wild-type strains (DL 1184) and mutS deficient strains 

(DL 1294) may have a technical explanation. 

The single trinucleotide expansions and deletions seen in Figure 5.5 may be 

due to slippage during the extension phase of the PCR. This highlights a potential 

problem with this method of analysis as it means that one caimot be certain whether 

differences in apparent stability are real or PCR artefacts. 

It was found that successful Kienow labeling of the EcoRI-digested PCR 

product was dependent on the careful execution of the ethanol precipitation step. 

This was probably due to the presence of dNTP molecules from the PCR reaction in 
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non-purified samples. These molecules could potentially interfere with the labeling 

reaction in two ways. Firstly, it is thought that the Klenow enzyme must first use its 

3' - 5' exonuclease activity to further degrade the 3' recesses of the DNA fragments 

before filling them in. It is possible that the presence of excess dNTP molecules at 

this stage could shift the equilibrium of the enzyme towards filling in, rather than 

degrading the ends of the DNA fragments. Secondly, an excessively high 

concentration of non-labeled dATP in the reaction mixture could lead to a lower 

frequency of incorporation of 35S-dATP. 

It can be seen, therefore, that this method of trinucleotide repeat stability 

analysis is not without its problems. These problems were not observed in 

experiments where the trinucleotide repeats were integrated in plasmids as there is no 

PCR step in such protocols. This was the underlying idea of the next investigated 

strategy, described in sub-chapter 5.4. 

5.4 AvrII digestion of Chromosomal DNA 

The consecrated methods for studying the changes in TR tracts in plasmids 

were not applicable to the TRs integrated in chromosomes. For example, digestion of 

the entire E. coli chromosome with EcoRl (method previously developed in the 

Leach laboratory for plasmids described in Chapter 2.2.3.11 Radioactive labelling of 

double-stranded DNA fragments) would generate a large number of fragments. The 
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separation of the EcoRl fragment containing the TR would be almost impossible 

among such a large number of fragments with identical sticky ends and various 

lengths. My novel approach was to find an alternative restriction endonuclease, 

which would cleave the DNA sequence of the E. coli chromosome in a limited 

number of fragments of large size. Three restriction endonucleases: Not!, AvrII and 

Sf! fit this description, according to the New England Biolabs catalogue. Not! would 

be the best choice since the fragments generated by digesting the E. coli chromosome 

have an average size of 200,000 bp. Unfortunately, using the Noff enzyme was not 

possible at this stage of the project, taking into consideration that NotI sites were 

present in plasmids pLDR9 and pLDR1 1 (Figure 3.2). This meant that there was a 

Not! site in the close proximity of the TR fragment, as shown in Figure 4.3. Another 

technical difficulty was created by the Not! recognition sequence itself 

(GC/GGCCGC), which would not allow Klenow-fihling in with [a- 35S] dATP 

(cheaper and easily available) at a later stage. This disadvantage was overcome by 

using the Avr!I enzyme, which generates average products of 150,000 bp and has the 

recognition sequence CICTAGG. Radioactive a- 35S dCTP was used in the labelling 

reaction since the first nucleotide to be added in order to fill in the sticky Avr!! ends 

was dCTP. Two main reasons led to discontinue the use of ct- 35S-dCTP: high cost 

and poor labelling efficiency. The old protocol developed in the Leach laboratory for 

Kienow-filling in of sticky ends was designed for EcoR! ends (Chapter 2.2.3 

Radioactive labelling of double-stranded DNA fragments). It had to be modified 

because the Avr!! sticky ends require both dCTP and dITP in order to be 

radioactively labelled with ct-35S-dATP. The new adapted protocol used in the course 

of this project is described below: 
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Chromosomal DNA was incubated with restriction endonuclease AvrIl at 

37°C for 2h. AvrII produces 3'-recessed ends which can be filled-in by Kienow 

enzyme. There was not any inactivation step since AvrII enzyme can not be heat-

inactivated. The samples were spun in a bench-top centrifuge at 9 krpm for 30 

seconds. Because of the sequence of the overhang produced by Avr/J, non-

radioactive dCTP and dTTP were used together with [c- 35 S] dATP in the end-

labelling reaction. After incubation at room temperature for 10 minutes, 2 .tl of the 2 

mM dNTP-4 mix were added to the labelling reaction and incubation continued for 

10 minutes at room temperature. Immediately, 20 to 25 tl of this reaction mixture 

were loaded onto a 6% polyacrylamide gel to separate the labelled DNA fragments. 

The AvrIJ protocol produced faint gel images, which showed only one 

fragment of DNA containing the trinucleotide repeat tract (Figure 5.6). This result is 

backed up by other methods (fluorescent PCR and f-TRAMP) described in sub-

chapters 5.4 and 5.5. 

1 	2 	3 	4 

Loo  Wt/ 

Figure 5.6. PAGE of DNA fragments containing chromosome-borne (CTG) 43  does 

not show obvious deletions or expansions. Lanes: 1, 2, 4) chromosomal DNA 

containing (CTG) 43 ; lane 3) control: chromosomal DNA without (CTG) 43 . 
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5.5 Fluorescent PCR 

Currently used methods for the measurement of the length of trinucleotide 

repeats that are not on high-copy number plasmids often require amplification of the 

trinucleotide repeat array by PCR prior to sizing by electrophoresis. 

During the course of my project, a 310 Genetic Analyser (a very modern 

apparatus) became available for the study of the trinucleotide repeat instability. 

Fluorescently labelled DNA fragments are introduced into a polymer-filled capillary 

for electrophoresis and then separated according to their size. The fragments travel 

through capillary into the read window, where laser excites fluorescent labels. 

Fluorescent emissions are collected and analysed with a software programme, 

GeneScan. The 310 capillary electrophoresis takes place in a very narrow capillary 

(50 tm) which is filled with a separation medium (Performance Optimiser Polymer - 

POP4). Sample loading into the capillary is by electrokinetic injection (capillary is 

dipped into the sample and voltage is applied for a specified time). GeneScan 

software allows the use of up to three experimental colours in association with a size 

standard. It collects the fluorescent emissions of the dyes through one of four filter 

sets. Filter set D was set-up for all the runs on the 310 Genetic Analyser. It allows the 

use of FAM and HEX labels, together with a ROX labelled size standard and it is the 

best filter since the wavelengths of the fluorescent dyes are well separated apart. For 

most of the experiments, FAM-labelled PCR products were run together with the 

corresponding HEX-labelled f-TRAMP products (Figure 5.9). The 310 Gentic 

Analyser has a high output (47 samples/day) and it allows accurate separation of 

DNA fragments, which are only 1 base pair different in size. 
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The same two primers mentioned in Chapter 5.1 were used, the only 

difference this time being the FAM dye attached to the Mataph-Left primer (Figure 

5.7). As a result of successfully improving the Metaphor PCR protocol for single 

colonies, the PCR products were fluorescently labelled, which made possible their 

detection and analysis on the 310 Genetic Analyser using the GeneScan®  software. 

EcoRI 	 EcoRI 

etaph-Left-FAM M 	 TR 

Metaph-Right 

PCR product = 176 bp 

Figure 5.7. Schematic representation of the Fluorescent Metaphor PCR. 

Due to the repetitive nature of the template, such PCR-based methods can be 

plagued with in vitro artefacts, mostly due to slipped strand mispairing, that are 

exponentially amplified during the PCR reaction leading to stutter bands, and thus to 

uncertainty as to the exact number of repeat units (Figure 5.8). In addition, the 

requirement for a matching primer pair leaves usually little choice of PCR product 

length and primer sequence. The smaller peaks from Figure 5.8 represent inherent 

artefacts of trinucleotide repeat amplification. They are caused by the limited 

processivity of Taq DNA polymerase enzymes (approxymately 60 nucleotides). The 

polymerase dissociation allows template strands to breathe apart, which leads to 
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slipped strand mispairing. At the same time, the stutter products represent a good 

diagnostic for identifying the genuine PCR products, as opposed to other artefact 

PCR products (e.g. :primer-dimer). 
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Figure 5.8. Gene Scan analysis of fluorescently labelled PCR products 

containing the trinucleotide repeat array. The four pannels show four different single 

colonies of DL 1404 (wild-type with CTG on the template for the leading strand). 

Such PCR artefacts hamper analysis when the trinucleotide repeat is 

unstable in vivo [e.g. (CTG)M] because the expected variation in repeat array length 

due to in vivo instability is indistinguishable from additional repeat length variation 
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that may have been generated in vitro. This uncertainty always exists with PCR 

unless it is carried out on a single cell that carries a single copy of the repeat (small-

pool PCR). Taking into consideration these disadvantages created by the PCR, the 

fifth method was investigated, as detailed in the next section. 

5.6 f-TRAMP: fluorescent Trinucleotide Amplification of DNA 

Fragments 

In order to avoid the disadvantages of PCR-based methods, I employed an 

assay already existent in the Leach laboratory: f-TRAMP (K. Schmidt's PhD thesis, 

University of Edinburgh).f-TRAIvIP allows amplification and length measurement of 

trinucleotide repeats, and any other DNA sequence that has at least one nucleotide 

missing, in plasmids and in the chromosome of E. coli without the need for 

restriction sites, radioactive labels and amplification by PCR. This assay is based on 

an idea of Yamamoto and co-workers (Yamamoto et al., 1992) who used only three 

of the four dNTPs in a single round of primer extension to radioactively label CAG 

repeats which had been amplified by PCR from the human androgen receptor gene. 

The advantage of the f-TRAIvIP over PCR is that it produces only one peak for a 

trinucleotide repeat tract, unlike PCR, which gives additional stutter bands (Figure 

5.8). 
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The Principle of f-TRAMP: a thermostable DNA polymerase is used to 

extend a single fluorescently labelled oligonucleotide in repeated cycles of DNA 

melting, primer annealing and primer extension. Primer extension in each cycle is 

automatically terminated by the absence of the nucleotide, which is not present in the 

amplified sequence. Copying of the CAG repeat requires only dCTP, dGTP and 

dTFP so that primer extension is terminated at the first dTl'P when dATP is required 

but not present in the reaction mixture. Optionally, ddATP can be added to the 

reaction mixture as a fourth nucleotide in order to guarantee chain termination. 

Because of the single primer in the reaction mixture, products of one cycle 

are not used as templates in the next round of amplification. Hence, every cycle of 

amplification demands the original template and errors introduced into the sequence 

by polymerase slippage during in vitro amplification do not give rise to artificial 

repeat populations that are commonly reported after amplification of trinucleotide 

repeats by PCR (Rubinsztein et al., 1996) and are also clearly visible in Figure 5.8. 

In contrast to the method used by Yamamoto, error-prone PCR has been 

eliminated from the process thereby increasing the confidence in the sizing of 

trinucleotide repeats in the population. In addition, the utilisation of fluorescent dye 

labels allows the rapid analysis on an automated DNA sequencer and subsequent 

automated quantification and sizing of amplified products using GeneScanTm analysis 

software. 

f-TRAMP was applied to measure CTG repeats both in plasmids and in the E. 

coli chromosome (Figure 5.9). Single colonies of the E. coli strains of interest were 

used to inoculate 5 ml of L broth. After overnight incubation at 37 °C and under 

vigorous shaking, genomic DNA was prepared using the Genomic DNA Kit from 
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AGTG®.  DNA was precipitated at room temperature with isopropanol, washed twice 

with 70 % ethanol, air-dried and dissolved in 50 pJ to 100 j.ti of sterile 10 mM Tris-

buffer. A Rapidcycler (Idaho Technology) was available for carrying out the primer 

extension reactions. This cycler uses micro-capillary tubes as reaction containers and 

high velocity air as a heating and cooling medium. Some changes in the composition 

of the reaction mixture and the amplification programme were required. 

In general all PCR-buffers used with the Rapidcycler are free of potassium 

ions and PCR reactions contain 500 p.g mF' crystalline BSA to prevent denaturation 

of the polymerase on the surface of the glass capillary. The Bio/OptimizerTm Kit for 

Rapidcycler provides appropriate buffers with Mg 2  concentrations varying between 

1 - 5 mM. For amplification from genomic DNA approximately 100 ng to 200 ng of 

DNA were used in 10-tl reactions. Typical cycling conditions are listed in Table 5-3. 

Table 5-3. Cycling conditions for the amplification of (CTG) 43  repeats using the 

Rapidcycler. Times are shown in seconds and temperatures are in degrees Celsius (* 

an initial denaturation step of 1 minute at 94 °C and a final elongation step of 1 

minute at 72 °C were added to the programme). 

Type of template Denaturation Annealing Elongation 

Time Temp Time Temp Time Temp 

Plasmid DNA 0 94 0 55 15-20 72 

Genomic E. coli* 2 94 0 55 20 72 

f-TRAMP was carried out in lO-pi reaction volumes of the following 

composition: 3 tl of genomic DNA (500 ng to 1 p.g), 1 x Buffer 1769 (Bio/Gene 
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Ltd.), 200 pM of each dNTP except dATP, 20 pmole primer T2049 (HEX or FAM 

labelled) and 2.5 U Taq-Polymerase (Boehringer Mannheim). The cycling conditions 

for primer extension were: 

1 cycle of 	denaturation at 94 °C for 2 minutes 

50 cycles of denaturation at 94 °C for 5 seconds 

primer annealing at 50 °C for 0 seconds 

primer extension at 72 °C for 20 seconds 

In order to preserve all potential primer extension products, samples were 

not purified after the programme had been completed. Instead, 2 t1 were taken 

directly from each sample and mixed with 0.5 tl (4 nM) of internal lane standard 

(GeneScan-500 ROX I Applied Biosystems) and 1 tl of Hi-di formamide which 

was supplied with the internal lane standard. Samples were boiled for 2 minutes and 

analysed on an ABI 310 Genetic Analyser. 

f-TRAIvIP gives clear reproducible results for chromosomal DNA when the 

template was previously digested with a rare-cutting restriction endonuclease (AvrII) 

(Figure 5.9). This suggests that the fragment containing the trinucleotide repeat array 

is much more easily accessible to the single primer when the chromosomal DNA is 

fragmented. Further improvement is required for the f-TRAMP method in order to 

produce clear results without the additional step of restriction digestion of the 

chromosomal template. 
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f-TRAMP and f-PCR are valuable methods which give clear answers 

concerning the trinucleotide repeat tracts lengths, especially when used together. The 

disadvantage of "stutter" bands of the f-PCR is overcome by f-TRAMP, which gives 

only one signal peak for one length of the trinucleotide repeat tract. The potential 

problem for the f-TRAMP method would be that products could be shorter than the 

real length because of interruptions in the trinucleotide repeat array which include 

the fourth nucleotide. Performing f-PCR on the same template DNA could rapidly 

signal such interruptions. The size difference between f-PCR and f-TRAMP products 

from the same template should be of 27 bp, since the expected PCR product with 43 

copies of repeats has 176 bp and the f-TRAMP product only 149 bp. The difference 

of approximatively 27 bp is consistent in all four pannels in Figure 5.9, indicating 

that no interruptions occurred in the trinucleotide repeat tract. It is acceptable for the 

difference not to be exactly 27 bp since different fluorescent dyes affect the mobility 

of the DNA fragments in different amounts. The different repeat array sizes in the 

four pannels in Figure 5.9 are attributed to the fact that different lengths were 

integrated into the chromosome in the process described in Chapter 4.2 

(Constructing various E. coil mutant strains with the trinucleotide repeat tract 

integrated at the attB site). 

These two methods proved to be the most powerful ones in investigating 

trinucleotide repeat instability and they were the preferred methods used for the 

analysis described in Chapter 6. 
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Figure 5.9. GeneScan analysis of f-TRAMP products (green) and f-PCR 

(blue). Four pannels with four different strains with CTG on the template for the 

leading strand: 1)DL1432 (wt); 2)DL1428 (polA poiB); 3) DL1430 (polA); 4) 

plasmid pUC18 with (CTG) 41 . 
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Chapter 6 

Analysis of the (CAG)(CTG) 3 Repeat Instability in 

Replication, Recombination, Post-Replicative Mismatch 

Repair Deficient and Wild-Type Escherichia coli 

6.1, Introduction 

The expansion of triplet repeat sequences is the causative mutation in a 

large number of human hereditary neurodegenerative diseases (Chapter 1). The 

mechanisms by which trinucleotide arrays expand are not well understood. The aim 

of my project was to investigate the instability of a trinucleotide repeat array at the 

attB site of the E. co/i chromosome in various genetic backgrounds. 

Unstable transmission can occur either as a large increase (class I) 

(generally > 10 repeats) in which the rate of expansion far exceeds the rate of 

contraction, or as smaller changes (class II) (generally <4 repeats) that are associated 

with a relatively equal rate of insertion and deletion mutation (McMurray, 1995). 

Class I changes are associated with HD, Fragile X, SBMA, DM, SCA1, DRPLA, 

MJD (see Chapter 1). Class II instability are linked to hereditary colon cancer. 

The discovery that mutant DNA mismatch repair genes are a cause of 

instability in hereditary forms of colon cancer suggested that mistakes made during 

replication are at the source of the expansion mechanism. 
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Trinucleotide repeat instability was intensively studied in plasmids in 

different E. coli strains. Jaworski (Jaworski et at., 1995) reported that the long triplet 

repeat (CAG) 175(CTG)175 had a reduced frequency of large deletions in mutH, mutL 

or mutS backgrounds when the CTG tract comprised the leading template strand. 

Little effect of methyl-directed mismatch-repair was observed when the CTG tract 

was the lagging template strand. In an apparently contradictory report, Schumacher 

(Schumacher et al., 1998) reported that mutations in methyl directed mismatch repair 

did lead to instability of (CTG)M in both orientations in E. coli. K. Schmidt (Schmidt 

et at., 2000) reconciled these findings, demonstrating that both conclusions are valid 

and that the apparent inconsistencies result from differences in experimental systems, 

including the homogeneity and length of the repeat, plasmid and bacterial strain. 

Schmidt examined changes in the distribution of mutant lengths from a starting tract 

of (CAG)43 (CTG)43 at intervals up to about 140 generations. Over time the 

proportion of plasmids with the starting length diminishes and the proportions with 

other lengths increase. In wild-type cells a range of 5 - 69 repeats was reached, but 

the rate of dispersion from the original length was greater when the lagging strand 

template carried CTG than when it carried CAG. In mismatch-repair deficient cells, 

the repeat tract was more unstable and this was independent of orientation. The 

increase in instability was mainly due to changes of +1 and —1 repeat from 43 which 

were barely seen in wild type as they are most efficiently detected and corrected by 

the repair system. Large changes in either direction were attained by gradual 

accumulation of small changes. These results therefore indicate that large deletions 

are orientation- and mismatch-repair-dependent and are eliminated by mismatch 

repair deficiency. 
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The general conclusion is that expansions have an increased frequency 

when the CTG sequence comprises the template for the leading strand, while 

deletions are more prominent when the CTGs are on the template for the lagging 

strand (Kang et al., 1996). This can be explained by a DNA slippage model and also 

taking into consideration the findings that CTG hairpins are more stable than CAG 

hairpins. During replication, directly repeated sequences can provide multiple sites 

for pairing of a complimentary strand (Figure 6.1). 

OU 

/ 

Figure 6.1. DNA slippage during replication when CTG repeats are on the 

template for the lagging strand. 

Another model for instability (McMurray, 1995) suggests that DNA 

replication is first blocked by a hairpin that formed on the lagging strand and then 

wrongly re-initiated at the single-stranded hairpin-loop. During replication, the 

leading strand is copied continuously and has a very short lifetime as a single strand. 
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In contrast, lagging strand exists as a single strand for a significantly longer period, 

until the replication fork moves ahead (Nossal, 1992). Since the DNA is repetitive, 

hairpin formation may occur immediately following the generation of the single 

strand on the lagging strand. This may initially block polymerase at the fork from 

replicating DNA at the base of the hairpin. SSB binds to the single stranded loop of a 

stable hairpin where lagging strand replication may be re-initiated. While copying 

along one arm of the hairpin, hydrogen bonds are undone, the hairpin is destabilised 

and the initial replication block is resolved and normal DNA replication is resumed. 

Assuming that the entire trinucleotide repeat forms one large hairpin, McMunay 

suggests that an extra half-copy of the repeat is subsequently ligated to the preceding 

Okazaki fragment. It is not clear from this model why the entire repeat should fold 

into a hairpin, considering that theinstability of the repeats does not always show an 

increase of an extra half-copy of the parental repeat length. 

The expansion of triplet repeats represents a novel type of mutagenic event 

that has not been identified to occur spontaneously, like it happens in humans, in 

genetically tractable organisms such as bacteriophage, E. coli, yeast or Drosophila 

(Sinden, 1999). In order to shed some light on the mechanisms causing human 

diseases, the DNA mechanisms of instability are investigated in this Chapter in the 

model organism E coli. 
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6.2 CTG Repeat Instability in E. coli Strains Deficient in 

Proofreading and Post-Replicative Mismatch Repair 

Radiation and other mutagens from the environment constantly threaten the 

integrity of the genome. Mistakes in the DNA replication can alter the integrity of the 

genome. The fidelity of DNA replication in E. coli is approximately of 10 10  errors/ 

replicated base (Drake, 1991). This high fidelity of base incorporation is achieved in 

three steps: base selection by the DNA polymerase, the 3' to 5' exonucleolytic 

proofreading of the inserted bases and postreplicative MMR. Ten factors are known 

to be involved in MMR of E. coli: MutS (mismatch binding protein), MutL, MutH (a 

latent methylation-directed and sequence-specific endonuclease), UvrD (DNA 

helicase II), SSB (single-strand binding protein), Exol (3' to 5' exonuclease), RecJ, 

ExoVil (5' to 3' exonucleases), DNA polymerase III and ligase. 

MutS, encoded for by the mutS gene, is the mispair recognition protein of E. 

coli. MutS recruits MutL and MutH to the mismatched site initiating repair. Then 

MutS undergoes an ATP-dependent conformational change and loses affinity for the 

mispair. MutS translocates the DNA through itself and an a-loop forms containing 

the mismatch (Allen et al., 1997). Then MutH is activated upon encounter with the 

MutS-MutL complex. DNA helicase II separates the strands so that the error-

containing strand is available for exonucleolytic degradation (Friedberg, 1995). The 

error-containing strand is degraded by the exonucleolytic activity of ExoVil or RecJ 

or Exol. Most likely, Polymerase III holoenzyme fills-in the gap and ligase repairs 

the nick. 
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In the course of my project I investigated the instability of the trinucleotide 

repeat arrays in mutS, mutL and mutH backgrounds. 47 single colonies from each 

background were initially analysed. Following the finding that in these mutant strains 

both orientations of trinucleotide repeats were completely stable, I suspected that 

instability occurs with a much lower frequency, so a much larger number of colonies 

should be investigated. In order to investigate a larger number of colonies, a different 

strategy was employed. Ten distinct single colonies were pooled together and 

analysed. This allowed 470 colonies to be screened at once. The clear result of these 

analyses was that there are no changes in the repeat tract length in strains deficient in 

mutS, mutH or mutL. 

Strains deficient in MutS activity were analysed in a separate experiment 

after they Were cultivated at higher and lower temperatures than normal (42°C and 

30°C) since previous work showed that the formation of hairpin and triplexes is 

temperature-dependent (Lyons-Darden & Topal, 1999). They were also analysed 

after they were kept in stationary phase for a long time (2 weeks), using as control 

cells which were cycled in and out of the stationary phase for the same period of 

time. Bowater (Bowater et al., 1996) observed that frequencies of deletions were 

dramatically increased if the cells passed through stationary phase before 

subculturing. Typical Gene Scan traces of mutS strains with CAG or CTG are shown 

in Figure 6.2. First panel represents mutS grown at 30°C; second panel, at 42°C; third 

panel, the strain kept in stationary phase; fourth panel, the cells subcultured after they 

reached stationary phase. All 200 colonies analysed showed the same length of the 

trinucleotide repeat array. 
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Figure 6.2. No changes were noticed in the length of the trinucleotide 

repeats for cells grown at 30°C, 42°C, kept in stationary phase or subcultured after 

reaching stationary phase. 

The proofreading function in E. coli is performed by the 3' to 5' 

exonucleolytic E-subunit of DNA polymerase III, which is encoded by the dnaQ 

gene. On average 1 in 10 5  replicated bases is misincorporated by DNA polymerase at 

the 3'-end of the daughter strand (Schaaper & Radman, 1989) and the proofreading 
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activity of the DNA polymerase holoenzyme corrects these mistakes decreasing the 

error-rate to iO. The contribution of proofreading to the overall fidelity is 102. 

mutD is the most potent known mutator in E. coli (Schaaper & Radman, 

1989). The high mutagenic capacity of the mutD deficient strains led my project into 

investigating the instability of trinucleotide repeat tracts in a mutD background. 

Some colonies of mutD with CAG repeats on the template for the leading strand 

showed deletions (Figure 6.3). 
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Figure 6.3 A deletion of (CTG)6 was noticed in a mutD mutant. 
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In an endeavour to establish the frequency of deletions in the mutD mutant, 

ten colonies were pooled together. A total number of 470 colonies were analysed. 

The electrophoregrams (Figure 6.4) did not show any instability, in spite of the 

expected result. 
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Figure 6.4. Ten colonies of mutD with CAG on the template for the leading 

strand pooled together do not show instability. 
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I suspected it might be some problem with the detection method since single 

colonies show deletions, but ten colonies pooled together do not. It might be that if 

only one colony in ten has a deletion, then in the process of amplification, that repeat 

length loses out, in competition with 9 times more template for a different length. 

In order to determine the accuracy of the results generated by pooling ten 

colonies together, I investigated which would be the ideal number of colonies to be 

pooled together. The DNA from a colony which was already known to have a 

significant deletion in the trinucleotide repeat tract was mixed with the DNA from a 

colony known to have the full length, without deletion, in order to mimic the pooling 

of two colonies together. Similarly, the deleted DNA was mixed with the DNA from 

two colonies with full lengths, pooling three colonies. And so on, up to mixing the 

colony with shorter repeat tract with nine full-length colonies, pooling ten colonies in 

total. The results of this experiment for pooling one to five colonies are reproduced 

in Figure 6.5, while pooling six to ten colonies are shown in Figure 6.6. The 

conclusion was to pool six colonies together since there is not any risk of missing 

noticing any existent changes. 
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Figure 6.5. Gene Scan analysis of pooling different number of colonies 

together. First panel) one colony with a deletion in the repeat tract; 2) 2 colonies 

pooled; 3) 3 colonies; 4) 4 colonies; 5) 5 colonies. 
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Figure 6.6. Gene Scan analysis of pooling together six to ten colonies. The 

electrophoregrams show that the shorter length losses out in the competition with 

nine times more template of a different length. 
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The overall frequency of deletions occurring in mutD CAG on the template 

for the leading strand, after pooling six colonies together was found to be one in 

twelve colonies. Examples of different lengths of deletions are presented in Figure 

6.7. 
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Figure 6.7 Different deletion lengths in mutD CAG template for the leading 

strand. 
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It is puzzling that deletions in mutD strains are detected only when CTG 

repeats are the template for the lagging strand and not also in the opposite 

orientation. It might be that instability when CTG comprises the lagging strand 

occurs also in the wild-type background, but with a very low frequency, which I 

could not detect. This instability would be a consequence of the activity of an intact 

mismatch repair system, in agreement with the previous observations from the Leach 

laboratory (K. Schmidt). In the absence of the proofreading activity of the MutD 

protein, 102103  more errors are generathd (Schaaper & Radman, 1989). The 

mismatch repair proteins have much more errors to correct (around 102  103  fold). It 

is likely that the system does not cope well with such a large amount of work and as 

a result, more deletions are generated. This brings the instability frequency to a 

detectable level (1 in 12 colonies). 

6.3 CTG Repeat Instability in E. coli wild-type and recombination 

deficient strains 

Several studies showed that (CAG/CTG) repeats behave like palindromes 

forming hairpins in vitro (Connelly et al., 1999). It was also shown that SbcCD 

cleaves pseudo-hairpins (Leach et al., 1997). It was expected that recA or recB 

mutants not to replicate successfully the trinucleotide repeat tract integrated into the 

chromosome. This deficiency was expected to be overcome in sbcC mutants. The 
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analysis of trinucleotide repeat tracts in the chromosomes of recA, recB and other 

mutants with altered proteins involved in replication showed the same pattern of 

stability like the wild-type (Figure 6.8). 
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Figure 6.8. Analysis of the trinucleotide repeat tracts in wild-type cells. 

It might be that the repeat tract forms secondary structures cleaved by SbcC 

in the chromosomes at a low frequency, which could not be detected. The evidence 

so far showed that SbcC cleaves hairpins in vitro, but we do not know for sure if it 

also cleaves hairpins in vivo. Another scenario would be that the hairpin formed by 
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the trinucleotide repeat tract is protected from SbcC cleavage in vivo by something 

else, maybe MutS. 

All mutant strains with trinucleotide repeat tracts constructed (Chapter 4) 

were analysed. It is clear that each strain could integrate a different length of the 

repeat tract. It is intriguing that the polA mutant integrated a larger array than all the 

other mutant strains (Figure 6.9). 
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Figure 6.9. Different mutant strains integrated different lengths of the repeat 

array. 
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It is interesting to notice that the strains with CAG on the template for the 

leading strand integrated 40 copies for polA poiB, 43 copies for polA and 50 copies 

for the poiB mutant. The mutant strains with CTG on the template for the leading 

strand integrated different lengths of the repeat array: 39 copies for polA poiB, 52 

copies for polA and 41 copies for poiB mutant. It is puzzling if these differences took 

place at the moment of the integration of the repeat array into the chromosome or 

soon after, but before the moment of the first analyses. In spite of the differences 

observed between different mutants, further instability was no longer detected, or in 

other words: each strain showed in all analysed colonies the same constant length. 

Sinden (Hashem et al., 2002) showed that instability of the repeat arrays in plasmids 

occurs upon transformation. In order to construct different mutant strains with a 

repeat tract integrated into the chromosome, I did not transform the competent cells 

with plasmids containing the repeats, but circular DNA fragments which did not have 

the capacity to replicate. It is unlikely that the changes in repeat length occurred 

during the transformation, as shown by Sinden (Hashem et al., 2002). It sounds more 

plausible that the different lengths noticed in the polA, poiB mutants occurred at the 

moment of integration into the chromosome or in the very first rounds of replication. 

This is an interesting issue, which needs to be followed in future experiments. 

Other single mutant strains (sbcC; recF; recG; nfl]; recQ) and double 

mutants (polA recQ; poiB recQ; polA poiB recQ; recQ sbcC; recA sbcC; recB sbcC; 

mutS sbcC; nfl] sbcC; recG sbcC; recF sbcC) did not show any instability in the 

analysed colonies (Figure 6.10). 
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Figure 6.10. Different colonies of recG with CAG repeats as template for 

the leading strand show the same trinucleotide array length. 
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6.4 Concluding Remarks 

The stability of the trinucleotide repeat tract is most likely influenced by the 

genetic environment. It is difficult to know whether the lower rate of tract instability 

for the chromosomal insertions relative to the plasmid ones represents a 

chromosome-plasmid difference or an effect of the flanking DNA sequences. 

Instability of the trinucleotide repeats might be a function of the position 

where they are integrated, since it has already been shown that identical DNA 

palindromes are deleted at very different frequencies from different positions in 

plasmids (Leach, 1996). Two identical palindromes located only one base pair apart 

are deleted at frequencies that differ by a factor of more than 103.  Compiling these 

observations with the finding that (CTG) n  behaves like a palindrome in vitro 

(Connelly et al., 1999), one can hypothesise that the particular position where the 

trinucleotide repeats are integrated into the chromosome could be the cause for 

reduced instability. It would be interesting to follow this hypothesis by analysing the 

repeat instability integrated at different locations in the chromosomes of E. coli. 

Instability of the TR tracts is probably greater at some chromosomal locations and 

lower at others. The differences in instability between repeat arrays integrated in 

plasmids and the ones in chromosomes might involve precise effects of long range 

flanking DNA sequences or it could be a result of the different numbers of rounds of 

replication between plasmids and chromosome. The fact that the plasmids undergo 

more cycles of replication than the chromosomes might result in a higher frequency 

of replication errors and a higher instability in plasmids. It has already been 

mentioned that the repeat instability in plasmids is strongly influenced by the process 

of transformation into competent cells: Trinucleotide repeats probably have a lower 
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instability in chromosomes compared to the ones in plasmids, since there is not any 

transformation step for the trinucleotide arrays already integrated into the 

chromosome. 

The probability of expansion occurs only when there is a critical repeat 

length, at the upper range of the normal length. Expansion observed in all genetic 

diseases requires the presence of an allele with a threshold copy number. The 

significance of the length dependence is that little to no change in copy number 

occurs below the critical length. It might be that 43 copies integrated at the attB site 

in E. coli are under the critical size required for expansion. The dependence of 

expansion on the repeat length is most likely correlated with the genetic environment 

(organism, chromosomal location, flanking regions). In Fragile X, expansion is 

improbable near 50 copies, but almost certain at 80. For the attB site in E. coli, a 

length of 43 CAG or CTG seems not to be enough to undergo expansion. 

Further experiments should focus on the mutD strain and trying to 

understand the mechanism of these deletions. New double mutant strains for mutD 

and other genes involved in replication, mismatch repair or recombination should be 

constructed and analysed to produce a clearer picture of the trinucleotide repeat 

instability in the E. coli chromosomes. Understanding factors that promote deletion 

may be important in developing therapeutic strategies to prevent expansion or 

mediate a reduction in repeat tract length. 

For a number of reasons including the fact that long repeated sequences tend 

to be reduced in length rapidly when cloned in prokaryotes, work with E. coli cannot 

be expected to provide all the answers to the repeat expansion disorder puzzle, but 

the organism is easy to use and can still tell us a lot. 
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