
The Bayesian Backfitting Relevance Vector Machine

Aaron D’Souza adsouza@usc.edu

University of Southern California, Los Angeles, CA 90089, USA

Sethu Vijayakumar sethu.vijayakumar@ed.ac.uk

University of Edinburgh, Edinburgh EH9 3JZ, UK

Stefan Schaal sschaal@usc.edu

University of Southern California, Los Angeles, CA 90089, USA and ATR Computational Neuroscience Labora-
tory, Kyoto, Japan

Abstract

Traditional non-parametric statistical learn-
ing techniques are often computationally at-
tractive, but lack the same generalization and
model selection abilities as state-of-the-art
Bayesian algorithms which, however, are usu-
ally computationally prohibitive. This paper
makes several important contributions that
allow Bayesian learning to scale to more com-
plex, real-world learning scenarios. Firstly,
we show that backfitting — a traditional
non-parametric, yet highly efficient regres-
sion tool — can be derived in a novel for-
mulation within an expectation maximiza-
tion (EM) framework and thus can finally
be given a probabilistic interpretation. Sec-
ondly, we show that the general framework
of sparse Bayesian learning and in particu-
lar the relevance vector machine (RVM), can
be derived as a highly efficient algorithm us-
ing a Bayesian version of backfitting at its
core. As we demonstrate on several regres-
sion and classification benchmarks, Bayesian
backfitting offers a compelling alternative to
current regression methods, especially when
the size and dimensionality of the data chal-
lenge computational resources.

1. Introduction

Real-world data, for instance obtained from neuro-
science, chemometrics, data mining, or sensor-rich en-
vironments, is frequently extremely high-dimensional,

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

severely underconstrained (few data points), even in-
terspersed with large amounts of irrelevant and/or
redundant features. Combined with the inevitable
measurement noise, efficient learning from such data
still poses significant challenges to state-of-the-art su-
pervised learning algorithms, even in linear settings.
While traditional statistical techniques (e.g. partial
least squares (PLS) regression, backfitting) for super-
vised learning are often quite efficient and robust for
these problems, they lack a probabilistic interpreta-
tion and cannot easily provide measures like predic-
tive distributions or the evidence of data as needed
for model selection. On the other hand, while recent
algorithms in supervised learning compute such infor-
mation, they lack computational efficiency as, for in-
stance, in Gaussian process regression or support vec-
tor learning. The goal of this paper is to introduce a
new algorithm that exploits the best of both worlds
by developing a probabilistic formulation of a classical
non-parametric non-probabilistic regression algorithm.
As will be demonstrated, this algorithm can greatly
improve the computational efficiency of the modern
framework of sparse Bayesian learning, including fea-
ture detection and automatic relevance determination,
and allow this technique to be applied for very high di-
mensional problems.

1.1. Sparse Bayesian Learning: The Relevance
Vector Machine

The relevance vector machine was introduced by
Bishop and Tipping (2000) as an alternative to the
popular support vector regression (SVR) method. The
RVM operates in a framework similar to generalized
linear regression, but uses the following generative
model:

y(x; b) =
N∑

i=1

bik(x,xi) + ε (1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429736425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where k(x,xi) is a bivariate kernel function centered
on each of the N training data points xi, and b =[
b1 . . . bN

]T
is a vector of regression coefficients.

As in SVR, the goal of the RVM is to accurately pre-
dict the target function, while retaining as few basis
functions as possible in the linear combination. This
is achieved through the framework of sparse Bayesian
learning and the introduction of prior distributions
over the precisions αi of each element of b:

p(b,α) =

N∏

i=1

Normal
(
bi; 0, α−1

i

)
Gamma (αi; aα, bα)

(2)

b
1

b
2

p(
b1

,b
2)

Figure 1. Marginal prior over regression coefficients

This form of prior results in the marginal distribution
over b being a product of Student-t distributions as
shown (for a 2-dimensional b) in Fig. 1, and thus favors
sparse solutions that lie along the (hyper-)spines of the
distribution.

Approximate analytical solutions for the RVM can be
obtained by the Laplace method (Tipping, 2001) or
by using factorial variational approximations (Bishop
& Tipping, 2000). However, in both these methods
each update of the hyperparameters α requires the
re-estimation of the posterior distribution of b via an
O(N3) Cholesky decomposition. As the number of
data points increases, the RVM faces a similar explo-
sion of computational requirements as that observed
in Gaussian processes and support vector machines,
since each new data point adds an extra “dimension”
to the input vector. As will be shown in the next sec-
tion, there are several alternatives for performing this
regression step efficiently. In particular, our introduc-
tion of a probabilistic version of backfitting in this pa-
per will show that we can achieve orders of magnitude
improvement in the performance of the RVM, allowing
the backfitting-RVM to tackle significantly larger data
sets than previous methods.

1.2. High-Dimensional Regression

Algorithms for high-dimensional regression usually fall
into one of two categories:

1. Those that try to find a low-dimensional repre-

sentation of the data which captures the salient
information required to perform the regression.

2. Those that deal with the complete dimensionality,
but structure computations as efficiently as pos-
sible (such as performing successive inexpensive
univariate regressions).

In the former category, methods like Principal Com-
ponent Regression (PCR) and Factor Regression (FR)
can be used to find a low-dimensional representation
of the input data (Massey, 1965). Unfortunately, these
methods are purely variance based, and do not take the
output data into account when determining the rele-
vant input dimensions. Thus, directions in input space
which have large variance will be retained even if they
have no influence on the prediction at all (Schaal et al.,
1998). This drawback can be somewhat alleviated by
performing the dimensionality reduction on the joint
space of input and output data, and then conditioning
on the observed input. Joint-space principal compo-
nent regression (JPCR), and joint-space factor analy-
sis for regression (JFR) are two such methods (Schaal
et al., 1998), and more recently, the use of reproducing
kernel Hilbert spaces (Fukumizu et al., 2004). The di-
mensionality reduction nevertheless typically requires
expensive manipulation of covariance matrices of the
data — an operation typically cubic in the assumed
latent dimensionality.

Methods like partial least squares (PLS) (Wold, 1975)
and backfitting (Hastie & Tibshirani, 1990) fall into
the second category mentioned above (i.e. algorithms
that structure computation efficiently). While PLS
performs computationally inexpensive univariate re-
gressions, along projection directions chosen according
to correlation between input and output, backfitting
creates fake supervised targets for successive inexpen-
sive univariate regressions along each input dimension
(see Algorithm 1). This effectively decouples inference
in each individual dimension leading to a highly effi-
cient (albeit iterative) algorithm which can be shown
to be a generalized Gauss-Seidel procedure (Hastie &
Tibshirani, 1990).

Although computationally extremely efficient, backfit-
ting comes with a series of drawbacks, the most signif-
icant being that it has no probabilistic interpretation.
This makes it difficult to insert into the framework of
current research in Bayesian statistical learning which
emphasizes model selection, and the estimation of con-
fidence intervals. Another potential pitfall is that in
even the simplest case of linear regression, backfitting
provides no guarantees of convergence (Press et al.,
1992). In Sec. 2, we will show that a simple modifica-
tion to the standard graphical model for linear regres-

1: Init: X = [x1, . . . ,xN]T ,y =
[
y1, . . . , yN

]
, gm,i =

gm(xi; θm),gm = [gm,1, . . . , gm,N]T

2: repeat
3: for m = 1 to d do
4: rm ← y −∑k 6=m gk //fake target

5: θm ← arg minθm ‖gm − rm‖2
6: end for
7: until convergence of θm

Algorithm 1: The backfitting algorithm works with a
linear combination of basis functions gm(xi; θm) that
are iteratively updated to fit fake targets formed by
partial residuals.

sion allows us to derive a probabilistic version of back-
fitting which is guaranteed to converge by virtue of
the convergence properties of the EM algorithm. Sub-
sequently, this allows us to augment the model with
appropriate prior distributions to enable an automatic
determination of which input dimensions are relevant
to the regression. This in turn gives us the founda-
tion for our reformulation of sparse Bayesian learning
in Sec. 4.

2. Probabilistic Backfitting

By introducing the notion of fake supervised targets,
backfitting decouples the inference in each input di-
mension, creating an efficient regression algorithm.
This section shows that by treating these supervised
targets as hidden variables in an EM algorithm, we
can derive a probabilistic version of backfitting, which
provides the same computational advantages as tra-
ditional backfitting, but with the added bonus of a
probabilistic interpretation, and convergence proper-
ties that stem from its EM formulation.

Fig. 2(a) shows the graphical model for generalized
linear regression, according to the following equation:

y(x) =
d∑

m=1

bmfm(x;θm) + ε

i.e., multiple predictors fm(x;θm) (where 1 ≤ m ≤ d)
that are generated by an adjustable non-linear trans-
formation with parameters θm and are fed linearly
to an output y by an inner product with a regres-

sion vector b =
[
b1 b2 · · · bd

]T
plus additive

noise ε. It is easy to see that the optimal estimate
of the regression parameters (in the least-squares or
maximum-likelihood sense) is given by the Ordinary

Least Squares (OLS) solution bOLS =
(
FTF

)−1
FTy,

where F denotes a matrix whose rows contain the
fm(xi) of all the training data points {(xi, yi)}Ni=1.
With a growing number of fan-in variables in the
graphical model (or equivalently, an increasing in-

put dimensionality d), evaluation of the OLS solution
becomes increasingly computationally expensive (ap-
proximately O(d3)) and numerically brittle.

Consider the introduction of a random variable zim
which is analogous to the output of the gm func-
tion of Algorithm 1, where we define gm(x; θm) =
bmfm(x; θm). For the derivation of our algorithm, we
assume that zim is conditionally normally distributed,
zim|xi ∼ Normal (zim; gm(xi), ψzm). The introduction
of the zim variables modifies the graphical model to
that in Fig. 2(b), which we can formally describe for
every data point i as follows:

yi|zi ∼ Normal
(
yi; 1

T zi, ψy
)

zim|xi ∼ Normal (zim; bmfm(xi), ψzm)

where 1 = [1, 1, . . . , 1]T . It needs to be emphasized
that now, the regression coefficients bm are behind the
fan-in of the graphical model.

Given the data set D = {xi, yi}Ni=1, and the graphical
model of Fig. 2(b), we wish to estimate the parame-
ters bm and (possibly) optimize the individual func-
tions fm(x; θm) with respect to the parameters θm.
This is easily formulated as an EM algorithm, which
maximizes the incomplete log likelihood log p(y|X):

log p(y|X) = −N
2

logψy −
1

2

N∑

i=1

(
yi − bT f(xi)

)2

+ const (3)

by maximizing the expected complete log likelihood
〈log p(y,Z|X)〉, where:

log p(y,Z|X) = −N
2

logψy −
1

2ψy

N∑

i=1

(
yi − 1T zi

)2

−
d∑

m=1

[
N

2
logψzm+

1

2ψzm

N∑

i=1

(zim−bmfm(xi;θm))
2

]

+ const (4)

As this maximization is solely based on standard ma-
nipulations of normal distributions, we omit deriva-
tions and just summarize the EM update equations
for bm and the noise variances ψy and ψzm as follows:

M-Step :

bm =

PN
i=1 〈zim〉 fm(xi)PN
i=1 fm(xi)2

ψy =
1

N

NX

i=1

“
yi − 1T 〈zi〉

”2

+ 1TΣz1

ψzm =
1

N

NX

i=1

(〈zim〉 − bmfm(xi))
2 + σ2

zm

N
fd(xi)

f2(xi)

f1(xi)

byi

(a) Standard lin-
ear regression

N

zi2

zi1

zid

f1(xi)

f2(xi)

fd(xi)

b1

b2

bd

yi

(b) Probabilistic backfit-
ting

N

zi2

zi1

zid

f1(xi)

f2(xi)

fd(xi)

b1

b2

bd

α1

α2

αd

yi

(c) Backfitting with ARD

Figure 2. Graphical models for backfitting. Circular nodes represent random variables, with a double circle denoting
observed variables. Square nodes denote point estimated parameters.

E-Step :

1TΣz1 =

dX

m=1

ψzm

!"
1− 1

s

dX

m=1

ψzm

!#

σ2
zm = ψzm

„
1− 1

s
ψzm

«

〈zim〉 = bmfm(xi) +
1

s
ψzm

“
yi − bT f(xi)

”

where we define s = ψy +
∑d
m=1 ψzm, and Σz =

Cov(z|y,X). In addition, the parameters θm
of each function fm can be updated by setting∑N
i=1 (〈zim〉 − bmfm (xi; θm)) ∂fm(xi;θm)

∂θm
= 0 and solv-

ing for θm. As this step depends on the particular
choice of fm, e.g., splines, kernel smoothers, paramet-
ric models, etc., we will not pursue it any further in
this paper and just note that any statistical approxi-
mation mechanism could be used.

Two items in the above EM algorithm are of special
interest. First, all equations are algorithmically O(d)
where d is the number of predictor functions fm. Sec-
ond, if we substitute the expression for 〈zim〉 in the
maximization equation for bm we get the following up-
date equation:

b(n+1)
m = b(n)

m +
ψzm
s

PN
i=1

“
yi−

Pd
k=1 b

(n)
k fk(xi)

”
fm(xi)

PN
i=1 fm(xi)2

(5)

Thus each EM cycle updates the mth regression coeffi-
cient by an amount proportional to the correlation be-
tween the mth predictor and the residual error. Hence
the residual can be interpreted as forming a “fake tar-
get” for the mth branch of the fan-in, which is similar
to the way PLS regresses residual errors against indi-
vidual input projections — indeed, our algorithm can
also be interpreted as a probabilistic version of PLS.
As the next section shows, this enables us to place this
algorithm in the context of backfitting.

2.1. Interpreting the EM Solution as
Probabilistic Backfitting

In the context of understanding Eq. (5) as Probabilis-
tic Backfitting, we note that backfitting can be viewed
as a formal Gauss-Seidel algorithm; an equivalence
that becomes exact in the special case of linear mod-
els (Hastie & Tibshirani, 1990). For the linear system
FTFb = FTy, the Gauss-Seidel updates for the indi-
vidual bm are:

bm =

∑N
i=1

(
yi −

∑d
k 6=m bkfk(xi)

)
fm(xi)

∑N
i=1 fm(xi)2

(6)

A well-known extension to the Gauss-Seidel algorithm
called successive relaxation adds a fraction (1 − ω) of
bm to the update and giving us:

b(n+1)
m = (1− ω)b(n)

m

+ ω

∑N
i=1

(
yi −

∑d
k 6=m bkfk(xi)

)
fm(xi)

∑N
i=1 fm(xi)2

(7)

which has improved convergence rates for overrelax-
ation (1 < ω < 2), or improved stability for under-
relaxation (0 < ω < 1). For ω = 1, the standard
Gauss-Seidel/backfitting of Eq. (6) is recovered. Set-
ting ω = ωm = ψzm/s in Eq. (7), it can be shown that
(after some algebraic rearrangement,) we obtain ex-
actly our EM update in Eq. (5), i.e., we indeed derive
a probabilistic version of backfitting as an underrelax-
ation method.

Notably, the original backfitting procedure makes no
guarantees about convergence. However, it is easy to
show that due to the convergence properties of EM,
the probabilistic backfitting procedure is guaranteed
to converge to an OLS solution.

We note that in general, there exist other algorithms
that can iteratively arrive at a solution to a linear sys-

tem of equations such as the method of conjugate gra-
dients, which can also be related algorithmically to Ja-
cobi iterations and Gauss-Seidel relaxation methods.
Importantly, our formulation shows that the rich fam-
ily of methods that can be related to the backfitting
algorithm, and that until now did not have a proba-
bilistic derivation, can now be represented within the
probabilistic framework of an iterative EM algorithm.
This is an important stepping stone, since — as the
next section shows — these algorithms may now ben-
efit from the model regularizing features of Bayesian
inference.

3. Bayesian Backfitting

Modifying Fig. 2(b) slightly, we now place individual
precision variables αm over each of the regression pa-
rameters bm, resulting in Fig. 2(c). This model struc-
ture can be captured by the following set of prior dis-
tributions (c.f. Eq. (2)):

p(b|α) =

d∏

m=1

(αm
2π

)1/2

exp
{
−αm

2
b2m

}

p(α) =
d∏

m=1

baαα
Γ(aα)

α(aα−1)
m exp (−bααm)

(8)

Using a factorial variational approximation
(e.g. Ghahramani & Beal, 2000), we can derive
the modified update equations for the variables in
the model. Due to space constraints, we omit the
derivation, and only summarize the update equations
for the mean of b and α:

〈bm〉(n+1)
=

(∑N
i=1 fm(xi)

2

∑N
i=1 fm(xi)2 + ψzm 〈αm〉

)
〈bm〉(n)

+

ψzm
∑N
i=1

(
yi − 〈b〉(n)T

f(xi)

)
fm(xi)

s
(∑N

i=1 fm(xi)2 + ψzm 〈αm〉
) (9)

〈αm〉 =
2aα + 1

2bα + 〈b2m〉
(10)

Comparing Eqs. (9) and (5) we see that in the absence
of a correlation between the current input dimension
and the residual error, the first term of Eq. (9) causes
the current regression coefficient to decay. This results
in a regression solution which regularizes over the num-
ber of retained input dimensions in the final regression
vector, similar to Automatic Relevance Determination
(ARD) (Neal, 1994). As an aside, it is useful to note
that if we chose to put a single precision variable over
the entire regression vector b then our model reduces

to ridge regression, with the Bayesian model selection
process providing an automatic tuning of the ridge pa-
rameter.

3.1. Bayesian Backfitting Evaluation

Rather than immediately derive the backfitting RVM,
we will momentarily digress to underscore the efficacy
of Bayesian backfitting as a robust and efficient linear
regression procedure. We compare the use of PLS and
Bayesian backfitting as described in Sec. 3 to analyze
the following real-world data set collected from neuro-
science. Our choice of PLS for comparison was moti-
vated by the fact that this is a well-studied algorithm
that also has O(d) complexity, and is widely used on
data sets in chemometrics with similar properties. The
data set consists of simultaneous recordings (2400 data
points) of firing-rate coded activity in 71 motor corti-
cal neurons and the EMG of 11 muscles. The goal is
to determine which neurons are responsible for the ac-
tivity of each muscle. The relationship between neural
and muscle activity is assumed to be linear, such that
the basis functions in backfitting are simply a copy of
the respective input dimensions, i.e. fm(x) = xm.

A brute-force study (conducted by our research collab-
orators) painstakingly considered every possible com-
bination of neurons (up to groups of 20 for computa-
tional reasons, i.e. even this reduced analysis required
several weeks of computation on a 30-node cluster
computer), to determine the optimal neuron-muscle
correlation as measured on various validation sets.
This study provided us with a baseline neuron-muscle
correlation matrix that we hoped to duplicate with
PLS and Bayesian backfitting, although with much re-
duced computational effort.

Bayes. back. PLS baseline

neuron match 93.6% 18% —
nMSE 0.8446 1.77 0.84

Table 1. Results on the neuron-muscle data set

The results shown in Table 1 demonstrate two points:

• The relevant neurons found by Bayesian backfit-
ting contained over 93% of the neurons found by
the baseline study, while PLS fails to find com-
parable correlations. The neuron match in back-
fitting is easily inferred from the resulting magni-
tude of the precision parameters α, while for PLS,
the neuron match was inferred based on the sub-
space spanned by the projections that PLS em-
ployed.

• The regression accuracy of Bayesian backfitting
(as determined by 8-fold cross-validation), is com-

parable to that of the baseline study, while PLS’
failure to find the correct correlations causes it
to have significantly higher generalization errors.
The analysis for both backfitting and PLS was
carried out using the same validation sets as those
used for the baseline analysis.

The performance of Bayesian backfitting on this par-
ticularly difficult data set shows that it is a viable
alternative to traditional generalized linear regression
tools. Even with the additional Bayesian inference for
ARD, it maintains its algorithmic efficiency since no
matrix inversion is required.

As an aside it is useful to note that Bayesian back-
fitting and PLS required of the order of 8 hours of
computation on a standard PC1 (compared with sev-
eral weeks on a cluster for the brute-force study), and
evaluated the contributions of all 71 neurons.

4. Bayesian Backfitting RVM

Until now, we have chosen not to comment on the
nature of the basis functions fm(x) in our model. Let
us now switch to the RVM framework in which we
create N basis functions by centering a bivariate kernel
function k(x,x′) on each individual data point. This
implies:

fm(·) = k(·,xm)

for 1 ≤ m ≤ d and where we now have d = N . Notice
that this transformation makes our backfitting model
of Fig. 2(c) equivalent to the RVM model discussed in
Sec. 1.1, with the notable difference that backfitting al-
lows a significant advantage over the standard RVM in
computational complexity. Note however, that while
the computational complexity of a backfitting update
is linear in the dimensionality of the problem, it is also
linear in the number of data points i.e. O(Nd). When
cast into the RVM framework, setting d = N makes
this complexity O(N 2). In particular we would like to
stress the following:

• At each update of the αm hyperparameters, the
RVM requires an O(N3) Cholesky decomposition
to re-estimate the regression parameters, while
discarding the estimate at the previous iteration.
In the backfitting-RVM however, the existing esti-
mate of the regression parameters provides a good
starting estimate, allowing the update to complete
in just a handful of O(N 2) iterations (∼ 10 iter-
ations were sufficient in our simulations). The
saving in computation is especially evident when

1Pentium IV class machine, 1.7GHz

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 true
approximated
training
relevant

Figure 3. Fitting the sinc function using backfitting-RVM.

the number of data points (and hence the effective
dimensionality) is large, and in situations where
the hyperparameters require many updates before
convergence.

• In the initial computations within the graphical
model, it seems wasteful to spend large amounts
of computation on estimating parameters accu-
rately, when surrounding parameters (and hyper-
parameters) have not converged. One can struc-
ture the backfitting updates to work with partially
converged estimates, such that the brunt of com-
putation is only expended to accurately estimate
a variable when one is more confident about the
variables in its Markov blanket.

Fig. 3 shows backfitting-RVM used to fit a toy data
set generated using the 1-dimensional sinc function
sin(x)/x, using the Gaussian kernel:

k(xi, xj) = exp
{
−λ (xi − xj)2

}

for λ > 0. Even though backfitting-RVM is an order of
magnitude faster than the standard RVM, it suffers no
penalty in generalization error or its ability to sparsify
the set of basis functions. We note that Tipping (2001)
proposes an optimization of the distance metric λ that
is based on gradient ascent in the log likelihood. Such
a gradient can also be computed for backfitting as:

∂ 〈log p(y,Z|X)〉
∂λ

=
NX

j=1

bj
ψzj

NX

i=1

(〈zij〉 − bjkij) (xi − xj)2 kij

where we have abbreviated kij = k(xi, xj). Based
on our experience however, we would like to caution
against unconstrained maximization of the likelihood,
especially over distance metrics. Instead, we would
recommend the route taken in the Gaussian process
community, which is to treat these variables as hyper-
parameters, and place prior distributions over them.

Exact solutions being typically intractable, we can ei-
ther optimize them by using maximum a posteriori es-
timates (MacKay, 1999), or by Monte Carlo techniques
(Williams & Rasmussen, 1996).

We note that there are several “optimizations” that are
suggested in (Tipping, 2001; Tipping & Faul, 2003).
These include pruning the basis functions when their
precision variables dictate that they are unneeded, as
well as adopting a greedy (but potentially suboptimal)
strategy in which the algorithm starts with a single
basis function and adds candidates as necessary. We
would like to emphasize that our implementation of
the backfitting-RVM performs neither of these opti-
mizations, although it is trivial to introduce them into
our framework as well.

4.1. Backfitting-RVM Evaluation

To evaluate the generalization ability of backfitting-
RVM, we compared it to other state-of-the art regres-
sion tools on the popular benchmark Boston housing
and Abalone data sets2. For each data set, a randomly
selected 20% of the data set was used as test data and
the remainder for training.

RVM SVR GP LWPR bRVM

Sinc 0.0132 0.0178 0.0136 0.0124 0.0130
Boston 0.0882 0.1115 0.0806 0.0846 0.0837
Abalone 0.4591 0.4830 0.4440 0.4056 0.4473

Table 2. nMSE on benchmark data sets

Table 2 shows the normalized mean squared er-
rors on the test sets averaged over 100 experiments.
The algorithms compared were the standard rele-
vance vector machine (RVM), support vector regres-
sion (SVR)3, Gaussian process (GP) regression, locally
weighted projection regression (LWPR) (Vijayakumar
& Schaal, 2000), and our backfitting-RVM (bRVM).
Both backfitting-RVM and its standard counterpart
used Gaussian kernels with distance metrics optimized
by 5-fold cross-validation. The Gaussian process algo-
rithm used RBF covariance function with automatic
hyperparameter optimization. As Table 2 shows,
backfitting-RVM provides an extremely competitive
solution in terms of generalization ability when com-
pared to other popular regression methods.

RVM SVR bRVM

Sinc 6.7 45.2 4.8
Boston 39 142.8 57.4
Abalone 437 1320 368

Table 3. “Relevant” vectors retained

For the 3 methods (RVM, SVR, and bRVM) that fo-

2Both available from the UCI repository
3RVM and SVR results adapted from (Tipping, 2001)

cus on a “sparsification” of the set of basis functions,
we compared the average number of basis functions re-
tained on two data sets: the Boston housing, and sinc
data sets. To aid comparison, data for the sinc bench-
mark was generated using a method identical to that
specified in (Tipping, 2001). Table 3 shows the aver-
age number of vectors retained in the final solution on
these data sets.

RVM bRVM N d

Sinc 18.71s 6.24s 100 1
Boston 372s 155s 481 13
Abalone 2767s 428s 3341 10

Table 4. Relative computation time

The above experiments demonstrate that backfitting-
RVM is a competitive regression solution when com-
pared to other current state-of-the-art statistical meth-
ods, both in its generalization ability, and in its efficacy
as a sparse Bayesian learning algorithm. However, the
main advantage of backfitting-RVM is apparent only
when we examine its relative computation time. Ta-
ble 4 gives the average execution time (in seconds)
required by the RVM, and backfitting-RVM for con-
vergence of their regression parameter estimates (to
5 significant digits) on the sinc, Boston housing, and
Abalone data sets. The table also shows the number
of training data points, and their dimensionality. Note
that the number of O(N 2) updates to b per update cy-
cle of the hyperparameters is very small (∼ 10), since
the solution from the previous update cycle is a very
good starting point for the iterations of the next cy-
cle. The results demonstrate that the backfitting-RVM
can significantly gain from the iterative nature of the
Bayesian backfitting generalized linear regression pro-
cedure.

5. Discussion

Given the form y =
∑N
i=1 bik(·, xi) of the RVM solu-

tion, it is natural to make a connection to Gaussian
processes, which also express the solution as a linear
combination of basis functions centered at the train-
ing data points. Indeed, retaining only the relevant
vectors amounts to a sparsification of the Gaussian
process. Our algorithm is equivalent to pruning the
set of basis functions, as is also achieved using the
Nyström method (Williams & Seeger, 2001). Other
variants exist such as the growing/replacement solu-
tion of Csató and Opper (2001), which generalizes well
to online learning scenarios.

This paper makes two essential contributions. Firstly,
we have demonstrated that the class of traditionally
non-Bayesian, yet highly efficient iterative linear re-
gression methods like backfitting, can be derived from

the framework of the EM algorithm. We have derived
Bayesian backfitting, which retains linear complexity
in the dimensionality of the input data, even while
performing ARD-like model selection. On its own,
Bayesian backfitting provides a very general frame-
work for generalized linear regression, which is nu-
merically robust and is able to handle extremely high-
dimensional datasets. At the expense of being an iter-
ative algorithm, it is a viable drop-in replacement for
algorithms such as PLS, stepwise regression, singular
value decomposition regression, and others mentioned
in Sec. 1.2. While requiring the assumption of Gaus-
sian distributions at certain steps of the derivation of
Bayesian backfitting, our experience with its use on
data sets that violate these assumptions has shown no
significant degradation in performance or generaliza-
tion ability.

Secondly, we have shown that the framework of sparse
Bayesian learning can benefit immensely from a prob-
abilistic formulation of this iterative class of methods.
In particular, the popular relevance vector machine
can be derived from the framework of Bayesian back-
fitting. This backfitting-RVM has significant compu-
tational advantages over its conventional counterpart,
without sacrificing generalization and model regular-
ization ability. Although the examples presented here
focus on regression, it is easy to see that by using sim-
ilar variational extensions (Jaakkola & Jordan, 2000)
as those used in (Bishop & Tipping, 2000), the ap-
plicability of the backfitting-RVM can be extended to
classification tasks as well.

Acknowledgments

This research was supported in part by National Sci-
ence Foundation grants ECS-0325383, IIS-0312802,
IIS-0082995, ECS-0326095, ANI-0224419, a NASA
grant AC#98-516, an AFOSR grant on Intelligent
Control, the ERATO Kawato Dynamic Brain Project
funded by the Japanese Science and Technology
Agency, and the ATR Computational Neuroscience
Laboratories.

References

Bishop, C. M., & Tipping, M. E. (2000). Variational rel-
evance vector machine. Proceedings of the 16th Confer-
ence on Uncertainty in Artificial Intelligence (pp. 46–
53). Morgan Kaufmann Publishers.

Csató, L., & Opper, M. (2001). Sparse representation for
Gaussian process models. In (Leen et al., 2001), 444–
450.

Fukumizu, K., Bach, F. R., & Jordan, M. I. (2004). Di-
mensionality reduction for supervised learning using re-

producing kernel Hilbert spaces. Journal of Machine
Learning Research, 5, 73–99.

Ghahramani, Z., & Beal, M. J. (2000). Variational infer-
ence for Bayesian mixtures of factor analysers. Advances
in Neural Information Processing Systems 12 (pp. 509–
514). Cambridge, MA: MIT Press.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized ad-
ditive models. No. 43 in Monographs on Statistics and
Applied Probability. Chapman & Hall.

Jaakkola, T. S., & Jordan, M. I. (2000). Bayesian param-
eter estimation via variational methods. Statistics and
Computing, 10, 25–37.

Leen, T. K., Diettrich, T. G., & Tresp, V. (Eds.). (2001).
Advances in neural information processing systems 13,
vol. 13. Cambridge, MA: MIT Press.

MacKay, D. J. C. (1999). Comparison of approximate
methods for handling hyperparameters. Neural Com-
putation, 11, 1035–1068.

Massey, W. F. (1965). Principal component regression in
exploratory statistical research. Journal of the American
Statistical Association, 60, 234–246.

Neal, R. M. (1994). Bayesian learning for neural networks.
Doctoral dissertation, Dept. of Computer Science, Uni-
versity of Toronto.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flan-
nery, B. P. (1992). Numerical recipes in C: The art of
scientific computing. Cambridge University Press. 2 edi-
tion.

Schaal, S., Vijayakumar, S., & Atkeson, C. G. (1998). Lo-
cal dimensionality reduction. Advances in Neural In-
formation Processing Systems 10 (pp. 633–639). Cam-
bridge, MA: MIT Press.

Tipping, M. E. (2001). Sparse Bayesian learning and the
relevance vector machine. Journal of Machine Learning
Research, 1, 211–244.

Tipping, M. E., & Faul, A. C. (2003). Fast marginal likeli-
hood maximization for sparse Bayesian models. Proceed-
ings of the Ninth International Workshop on Artificial
Intelligence and Statistics.

Vijayakumar, S., & Schaal, S. (2000). An O(n) algorithm
for incremental real time learning in high dimensional
space. Proceedings of the Seventeenth International Con-
ference on Machine Learning (ICML2000) (pp. 1079–
1086). Stanford, CA.

Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian
processes for regression. Advances in Neural Information
Processing Systems 8 (pp. 514–520). Cambridge, MA:
MIT Press.

Williams, C. K. I., & Seeger, M. (2001). Using the Nyström
method to speed up kernel machines. In (Leen et al.,
2001), 682–688.

Wold, H. (1975). Soft modeling by latent variables: The
nonlinear iterative partial least squares approach. In
J. Gani (Ed.), Perspectives in probability and statistics,
papers in honour of M. S. Bartlett, 520–540. London:
Academic Press.

