

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429736396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approximating Neural Machine Translation for

Efficiency

Alham Fikri Aji
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2020

Abstract

Neural machine translation (NMT) has been shown to outperform statistical machine

translation. However, NMT models typically require a large number of parameters

and are expensive to train and deploy. Moreover, its large model size makes parallel

training inefficient due to costly network communication. Likewise, distributing and

locally running the model for a client-based NMT model such as a web browser or

mobile device remains challenging. This thesis investigates ways to approximately

train an NMT system by compressing either the gradients or the parameters for faster

communication or reduced memory consumption. We propose a gradient compression

technique that exchanges only the top 1% of the most significant gradient values while

delaying the rest to be considered for the next iteration. This method reduces the

network communication cost by 50-fold but causes noisy gradient updates. We also

find that Transformer–the current state-of-the-art NMT architecture–is highly sensitive

to noisy gradients. Therefore, we extend the compression technique by restoring the

compressed gradient with locally-computed gradients. We obtained a linear scale-up

in parallel training without sacrificing model performance. We also explore transfer

learning as a better method of initialising the training. With transfer learning, the model

converges faster and can be trained with more aggressive hyperparameters. Lastly, we

propose a log-based quantisation method to compress the model size. Models are

quantised to 4-bit precision with no noticeable quality degradation after re-training

combined with reserving the quantisation errors as feedback.

iii

Lay Summary

Machine translation is an automatic process of translating a text from one language

to another (i.e., English to German). Over the years, more advanced models have

been developed, which improve quality but also more resource-intensive. Training

a machine translation model with multiple computers is inefficient since each com-

puter must communicate hundreds of megabytes across the network for each training

step. Notably, a machine translation model can take more than 100,000 steps to train.

Likewise, using the system for offline use (such as for web-based or mobile devices) is

impractical since users must download the model, which can be hundreds of megabytes

in size. This thesis focuses on exploring methods of efficiently training and deploying

machine translation through approximation. We can significantly cut network com-

munication costs in parallel training by only exchanging 1% of the most significant

information, making the communication 50x more efficient. Instead of training the

model from scratch, we also explore transfer learning, in which an already trained

model can be used and adjusted with the new language pairs to hasten the training

process. Lastly, we also explore methods to train a model with lower mathematical

precision so it can be stored and distributed with reduced memory size.

iv

Acknowledgements

This thesis is funded by the Indonesia Endowment Fund for Education scholarship

scheme.

The work in Chapter 3, 5, 6 and 7 were performed using resources provided by

the Cambridge Service for Data Driven Discovery (CSD3) operated by the University

of Cambridge Research Computing Service (http://www.csd3.cam.ac.uk/), provided

by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sci-

ences Research Council (capital grant EP/P020259/1), and DiRAC funding from the

Science and Technology Facilities Council (www.dirac.ac.uk). Computing for work

in Chapter 4 was funded by the Amazon Academic Research Awards program and by

Microsoft’s donation of Azure time to the Alan Turing Institute.

The research in Chapter 6 is based upon work supported by the Office of the Direc-

tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activ-

ity (IARPA), via contract # FA8650-17-C-9117. The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily represent-

ing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S.

Government. The U.S. Government is authorised to reproduce and distribute reprints

for governmental purposes notwithstanding any copyright annotation therein.

The work in Chapter 7 was conducted within the scope of the Horizon 2020 Re-

search and Innovation Action Bergamot, which has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation programme under grant agreement

No 825303. Additional support was provided by Intel Corporation.

Lastly, I would like to thank my principal supervisor (Kenneth Heafield), my sec-

ond supervisor (Rico Sennrich), my examiners (Barry Haddow and Graham Neubig),

my thesis reviewers (Nikolay Bogoychev, Clara Vania, Kemal Maulana Kurniawan,

Radityo Eko Prajoso), and my ILCC colleagues. I would also like to thank my family

and my friends for their support.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Alham Fikri Aji)

26 June 2020

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Structure . 3

1.3 Contributions . 5

2 Background 7

2.1 Neural Machine Translation . 7

2.1.1 Training Objective . 8

2.1.2 Sequence Representation . 8

2.1.3 Model Architectures . 9

2.1.4 Training Practices . 14

2.2 Distributed Training . 17

2.2.1 Model vs Data Parallelism 17

2.2.2 Synchronous vs. Asynchronous Training 18

2.2.3 Parameter Sharding . 18

2.2.4 Scaling the Number of Workers 20

3 Asynchronous Transformer Training 23

3.1 Introduction . 23

3.2 Exploring Asynchronous SGD . 24

3.2.1 Baseline: The Problem . 24

3.2.2 Batch Size . 24

3.2.3 Gradient Staleness . 25

3.3 Incremental Updates in Adam . 26

3.4 Ablation Study . 29

3.4.1 Experiment Setup . 29

3.4.2 Batch Size . 29

vii

3.4.3 Gradient Staleness . 30

3.5 Asynchronous Transformer Training 32

3.5.1 Accumulated Asynchronous SGD 32

3.5.2 Generalisation Across Learning Rates 34

3.5.3 Generalisation Across Languages 35

3.6 Related Work . 35

3.6.1 Gradient Summing . 35

3.6.2 Training with Noisy Gradients 36

3.7 Conclusion . 36

4 Sparse Gradient Communication 39
4.1 Introduction . 39

4.2 Related Work . 40

4.3 Sparse Gradient Exchange . 41

4.4 Experiment . 42

4.4.1 Drop Ratio . 42

4.4.2 Local vs Global Threshold 44

4.4.3 Speed Benchmark . 45

4.4.4 One-bit Quantisation . 48

4.5 Conclusion . 49

5 Sparse Gradient with Local Context 51
5.1 Introduction . 51

5.2 Related Work . 52

5.2.1 Sparse Gradient Compression 52

5.2.2 Federated Averaging . 53

5.3 Combining With Local Gradients . 53

5.3.1 Incorporating Local Gradients 54

5.3.2 Periodic Synchronisation . 55

5.4 Experimental Setup . 55

5.4.1 Model and Dataset . 55

5.4.2 Scaling Hyperparameters . 56

5.5 Results and Analysis . 57

5.5.1 Restoring Quality . 57

5.5.2 Removing Error Feedback Mechanism 60

5.5.3 Improving Training Speed 60

viii

5.5.4 Large-scale Experiment . 62

5.6 Conclusion . 64

6 Transfer Learning as a Better Initialization 65

6.1 Introduction . 65

6.2 Related Work . 66

6.3 Baseline Transfer Learning . 68

6.3.1 High-resource Datasets . 68

6.3.2 Low-resource Datasets . 68

6.3.3 Training Setup . 69

6.3.4 Results . 69

6.4 Transferring Embedding Information 70

6.4.1 Are the Embeddings Transferable? 70

6.4.2 How to Transfer the Embeddings 71

6.5 Transferring Structural Information 74

6.6 Transfer Learning for High-Resource Languages 76

6.7 Conclusion . 77

7 4-bit Transformer Model 79

7.1 Introduction . 79

7.2 Related Work . 80

7.3 Low-precision Neural Machine Translation 81

7.3.1 Log-based Compression . 81

7.3.2 Selecting the Scaling Factor 83

7.3.3 Re-training . 84

7.3.4 Handling Biases . 84

7.3.5 Low-precision Dot Products 85

7.4 Experiments . 86

7.4.1 Experiment Setup . 86

7.4.2 4-bit Transformer Model . 87

7.4.3 Quantised Dot-Product . 89

7.4.4 Beyond 4-bit precision . 91

7.5 Conclusion . 92

8 Conclusion and Future Work 93

8.1 Conclusion . 93

ix

8.2 Future Work . 95

Bibliography 97

x

Chapter 1

Introduction

1.1 Motivation

Machine translation is the automatic process of translating texts from a source language

(e.g., English) to another target language (e.g., German). Over the years, neural ma-

chine translation (NMT) (Ñeco and Forcada, 1996; Bahdanau et al., 2014) has become

the state-of-the-art approach for machine translation and has been shown to outperform

the older statistical machine translation approach (Sennrich et al., 2016a).

NMT models are typically resource-demanding, consisting of tens to hundreds of

millions of parameters (Britz et al., 2017; Huang et al., 2019). Furthermore, train-

ing the model can take days to even weeks. For example, the winning system at the

Workshop of Machine Translation (WMT) 2016 shared task for news translation was

trained for 3 weeks on a single GPU (Sennrich et al., 2016a).1 Similarly, Microsoft’s

English-to-German translation system at the WMT 2019 was trained for 4 days over

8 GPUs (Junczys-Dowmunt, 2019). Additionally, researchers and practitioners must

often run multiple experiments, thus scaling the actual time and financial costs of pro-

ducing an NMT model even more. Apart from the training phase, the deployment of

the NMT model is also challenging. In an offline-based translation system, models

must be distributed over the network to the client, which can be costly for large NMT

models. For example, the size of the standard Transformer (Vaswani et al., 2017)

model (a state-of-the-art NMT architecture) is approximately 300MB, depending on

the vocabulary. Additionally, the model must be stored locally, with download and

storage sizes increasing with the number of models required.

Notably, distributed training can improve training speed (Raina et al., 2009; Dean

1For an English-to-Czech model. The training times for other models were not reported

1

2 Chapter 1. Introduction

et al., 2012). One paradigm in distributed training is data parallelism, wherein the

model is copied across workers and each worker trains based on different subsets of the

training data. This training mechanism requires workers to exchange gradients, which

is expensive since the gradient is as large as the model. Distributed NMT training

involves a considerable amount of time being spent on communicating the gradients. In

a four-node parallel training,≈33% of the time is spent on communication. Ultimately,

we only observe an ≈2.4x raw speed increase in this four-node parallel training over

a single node. Therefore, the current distributed training is inefficient since the speed

improvement is not linear with the cost (i.e., GPU hours). Our number is based on

a 40-gigabit ethernet connection, while the improvement will be lower with slower

consumer-grade hardware.

Prior work optimised parallel training by compressing the network traffic via prun-

ing (Zhang et al., 2016; Lin et al., 2018), quantisation (Seide et al., 2014) or simply

reducing gradient exchange frequency (Konečnỳ et al., 2016; Bogoychev et al., 2018).

However, these lossy gradient compressions introduce noise and might be harmful to

the model’s quality. This issue is more problematic since the current NMT state-of-

the-art architecture, Transformer (Vaswani et al., 2017) is highly sensitive to training

conditions. Transformer has been reported to break when trained under noisy environ-

ments such as stale gradient updates (Chen et al., 2018; Ott et al., 2018) or incorrect

learning-rate scheduling (Popel and Bojar, 2018; Nguyen and Salazar, 2019). There-

fore, to make effective distributed training in Transformer, we must first understand

what breaks Transformer and then design a low-communication cost distributed train-

ing that does not sacrifice translation quality.

After being trained, NMT models are deployed for use. In the case of a client-

based translation service2, models must be deployed locally. This case is useful in

situations where data confidentiality is required, such as in government, corporate, or

private document in general. Likewise, an offline translator will help users with limited

internet access. Building an offline translation system means that the models must be

distributed over the network and locally stored by the client. Therefore, the large NMT

model introduces a challenge since it is costly to distribute and store. Moreover, the

model must be locally loaded and executed for the translation; thus, it must fit a wide

range of client computing resources (i.e., RAM).

Generally, model performance increases with the number of parameters (Huang

et al., 2019). They show that model performance (measured in BLEU) with 4x more

2https://browser.mt/

https://browser.mt/

1.2. Thesis Structure 3

parameters increases by more than two points. Therefore, naively reducing the num-

ber of parameters (i.e., with fewer layers or unit size) may reduce quality. Model

compression techniques such as quantisation can be applied as an alternative. Hubara

et al. (2016); Quinn and Ballesteros (2018); Jacob et al. (2018) have shown that neu-

ral network models can be represented with lower bit precision, thus requiring less

storage space without sacrificing quality. However, it has been demonstrated that

compressing NMT models tends to be more challenging when compared to convolu-

tional neural network (CNN)-based models, which are often used in computer vision.

Hubara et al. (2016) can quantise CNN models to 1-bit precision (32x smaller in size),

whereas Quinn and Ballesteros (2018); Jacob et al. (2018) can only quantise Trans-

former up to 8-bit precision (4x smaller in size) before exhibiting quality degradation.

This thesis focuses on methods aimed at optimising the training and deployment of

NMT models. We hypothesise that we can improve NMT training efficiency by intro-

ducing some approximations. We explore methods of gradient and model compression

for cheaper network communication cost and reduced memory consumption. This the-

sis also explores methods of training the model under such compression. We also argue

that different NMT architectures have different sensitivities towards noisy training;

therefore, we will contrast both recurrent neural network (RNN)- and Transformer-

based models in most of our experiments.

1.2 Thesis Structure

This thesis demonstrates that we can train NMT models under different approximations

to improve efficiency. We approximate gradients by setting small values to zero to

reduce network traffic. Similarly, we approximate the model with quantisation, thus

reducing the download size. Since these approximations introduce noise, we minimise

it by using approximation errors as feedback through the utilisation of local gradients

and model pre-training. The remainder of this thesis will be structured as follows.

• Chapter 2 provides a brief theoretical background. We first discuss the archi-

tectures of neural machine translation used in this thesis as well as some of the

distributed training paradigms.

• Chapter 3 explores asynchronous Transformer training. We determine that the

Transformer model cannot be trained asynchronously. We then blur the lines

4 Chapter 1. Introduction

between asynchronous and synchronous training and demonstrate that stale gra-

dients are the main cause of the sub-par performance of asynchronous Trans-

formers. Effective batch sizes in asynchronous training are also smaller, which

negatively affects the performance, but not as much. We also show that the

RNN-based model is more robust against such noise. Furthermore, we explore a

solution involving mimicking the behaviour of synchronous training while main-

taining the asynchronous speed by accumulating the gradients server-side to re-

duce the average staleness while increasing the effective batch size.

• Chapter 4 describes and explores a method of reducing the communication cost

in distributed training by only exchanging the most significant gradients (in ab-

solute value). This sparsification approach is designed based on our finding that

gradient distribution is skewed (most of them are near zero). The compression

errors from pruning small gradients add up; therefore, we must store the errors

instead of discarding them, then add them to the next update step (dubbed as

an error feedback mechanism). We demonstrate that we can ignore 99% of the

gradients without significantly affecting the quality. With a simple value-index

encoding, we reduce the network cost by a factor of 50.

• Chapter 5 addresses the issue of the gradient sparsification technique discussed

in Chapter 4. Since the gradients are compressed, the updates become noisy.

Furthermore, the error feedback mechanism introduces stale gradients. These

problems result in slower convergence; as such, the model requires more data to

reach the same quality and can even break the Transformer model completely.

This chapter discusses the idea of reconstructing compressed gradients by utilis-

ing local gradients. We demonstrate that adding local gradients can improve the

convergence without sacrificing the reduced communication costs of sparse gra-

dient updates. We also explore distributed training under a multi-node scenario

wherein communication cost is more expensive.

• Chapter 6 discusses cross-lingual transfer learning as a method of pre-training

an NMT model. We measure the translation quality impact to gain a black box

understanding of the transferred information. We determined that transfer learn-

ing improves the performance of low-resource NMT regardless of the language

or the embedding configurations. We also found that models trained from a

pre-trained high-resource model converge faster than the one trained from the

beginning, despite not showing final quality improvement. Furthermore, we also

1.3. Contributions 5

observe that transfer learning can eliminate the warm-up phase in Transformer

training, which can further hasten the convergence in high-resource NMT.

• Chapter 7 explores reducing the memory size of NMT models by quantising the

parameters. We determined that the parameter distribution in the NMT model

is not uniform, with most of them are close to zero. Therefore, the uniformly

distributed fixed-point quantisation commonly used in model compression is not

suitable. This chapter explores logarithmic-based quantisation to enable more

quantisation centres to represent smaller values. We find that the model must be

trained in full 32-bit precision first before switching to a lower bit. Similar to

gradient sparsification in Chapters 3 and 4, the quantisation error is kept as an

error feedback since the model converged poorly otherwise. We can compress

the model up to 4-bit precision with insignificant quality damage.

• Chapter 8 summarises and concludes the thesis. We also discuss ideas for pos-

sible future work.

1.3 Contributions

We make the following contributions:

• Experiments demonstrating that noisy gradient updates–mainly from staleness–

can result in Transformer models being unable to be trained asynchronously.

This work is based on Aji and Heafield (2019a).

• A method to reduce the communication cost in data parallelism training by only

exchanging large gradients. We further improve this method by incorporating

local gradients to restore the quality of compressed gradients. This work is based

on Aji and Heafield (2017) and Aji et al. (2019).

• Black box experiments on transfer learning in an attempt to understand what

makes transfer learning work, as well as its application as a model initialisation

for faster and more stable training. This work is based on Aji et al. (2020).

• A method to compress and re-train the model under a log-based quantisation.

This work is based on Aji and Heafield (2019b).

Chapter 2

Background

This chapter briefly explains the concept of neural machine translation and methods

to train neural machine translation. It also discusses best practices and challenges in

training neural machine translation, especially in parallel settings.

2.1 Neural Machine Translation

Encoder Decoder

They eat

Mereka makan

Figure 2.1: NMT with an encoder-decoder architecture. The input is first encoded in the

encoder layer(s). The output is then generated by the decoder layer(s).

Machine translation is an automatic process of translating a text from a source

language to another target language (e.g., English to German). Current NMT systems

are often based on encoder-decoder architecture (Sutskever et al., 2014; Cho et al.,

2014). From a high-level perspective, the architecture works as follows. First, the

encoder processes a given source sequence. Then, the encoder passes the processed

information to the decoder, which generates a corresponding target sequence. This

flow is illustrated in Figure 2.1. In this section, we describe how to represent the

source and target sequences. We also discuss the two common architectures for the

7

8 Chapter 2. Background

encoder and decoder layer: RNN (Cho et al., 2014) and Transformer (Vaswani et al.,

2017).

2.1.1 Training Objective

Given a source sequence s, an NMT model with parameters θ produces a target t with

a certain probability of P(t|s,θ). NMT training attempts to maximise this probability,

given the training data as pairs of source and target sequences S and T . Alternatively,

NMT minimises loss, which is often computed as a negative log-likelihood, as follows:

L(S,T,θ) =− 1
N

N

∑ log(P(ti|si,θ)) (2.1)

The parameters are often randomly initialised. We train the model by updating the

parameters with the derivative of loss with respect to each parameter weight.

θ = θ−α
dL(S,T,θ)

dθ
(2.2)

Where α is a learning rate, a multiplier is used to scale the movement. Since the

training size is often quite large, the loss is approximated from a subset of the training

examples (mini-batches). A more detailed discussion on learning rate and mini-batches

is presented in Subsection 2.1.4.

Previous work has attempted to initialise the parameters with weights trained on

a similar task with the aim of transferring some knowledge (Zoph et al., 2016). We

explore more about this model transfer as a method to achieve improved initialisation

in Chapter 6.

2.1.2 Sequence Representation

Typically, both source and target sentences are in the form of plain text or a string.

Tokenisation is used to split such strings into a sequence of representative tokens, such

as into words or characters. These sequences of tokens are then represented as vectors,

which will be passed to the encoder or decoder so that they can be represented numer-

ically. One naive way to represent the word is through a one-hot vector. The values in

this vector are all 0, except one, which corresponds to the token’s ID (set to 1). The

one-hot vector is inefficient since its size scales with the vocabulary size. Hence, a

more efficient word embedding vector is used. In this case, each word is represented

2.1. Neural Machine Translation 9

by a smaller trainable vector. Moreover, embedding vector enables the model to train

a more meaningful representation for each token.

Each token in the data vocabulary is represented as an embedding vector. As a re-

sult, the embedding matrices (a collection of embedding vectors) are the largest train-

able parameter. For example, assuming we have 50,000 unique tokens in the training

set and given a common embedding vector size of 512 each, we would require 25M

parameters (100MB) for the embedding alone. The parameter size can be reduced

with tied embedding (Junczys-Dowmunt et al., 2018), which involves sharing the em-

bedding vector between the encoder and decoder. Throughout this thesis, we adopt

tied embedding unless stated otherwise.

With word-level tokenisation, the vocabulary is limited to the training set. There-

fore, an NMT model trained under such a setting cannot represent a new word unseen

in the training set. Tokenising the input into character level solves the vocabulary issue

(assuming under the same character set) but makes the input sequence extremely long.

One solution is to tokenise the sentences into the sub-word level with byte pair encod-

ing (BPE) (Sennrich et al., 2016c; Gage, 1994), which is utilised in every experiment

within this thesis. Under BPE, texts are tokenised into common sub-words by applying

the following procedures:

1. We start by tokenising the sentences into characters.

2. Find the most frequent adjacent pair of tokens in the data and merge them into a

new token. This process is called a merging operation.

3. Repeat step 2 for several iterations.

BPE breaks down rare words into subwords (in the worst case, to character level);

therefore, the model is robust towards unseen words. Likewise, BPE represents fre-

quent subwords in a single token, thereby keeping the sequence length reasonably

short, compared to a character-based tokens.

2.1.3 Model Architectures

RNN-based Encoder and Decoder

The input sequence length in machine translation (and natural language processing

tasks in general) is often dynamic. A recurrent neural network (RNN) is designed to

process such a sequence with arbitrary length by having a loop mechanism that allows

10 Chapter 2. Background

x2

h1
h0

RNN Encoder #2 RNN Decoder #2

Softmax

s0
s1

Encoder #1 Decoder #1

Embedding

Input Mereka makan <SOS> They

They eat

s2h2

x1 x2x1

RNN RNN RNN RNN

Figure 2.2: An Illustration of an RNN-based encoder and decoder architecture.

information to be processed step by step while maintaining a self-internal state. At

time-step t, the RNN cell takes the t−th input xt and its previous step internal state

(also known as hidden state) ht−1 to update its hidden state to ht . Figure 2.2 illustrates

the unrolled RNN-based encoder and decoder. An RNN updates the state, as follows:

ht = f (Whht−1 +Wxxt +b) (2.3)

Function f is a non-linear activation function, such as tanh. Wh is a trainable

weight matrix. Usually, we can also add a trainable bias b. The produced hidden state

is also be used as the cell’s output, which can be passed on as the next layer’s input.

The RNN decoder takes the encoder’s final hidden state as its initial hidden state.

The decoder then passes the hidden state to a softmax layer for prediction. The pre-

dicted output is then used as the input for the next time step.

RNNs suffer from vanishing gradients, which is especially common when the RNN

is given a longer sentence as input. To mitigate this problem, LSTM Hochreiter and

Schmidhuber (1997) is proposed as an alternative cell architecture. In LSTM, we

introduce additional information known as the cell state. Similarly, at time step t,

an LSTM cell takes the t−th input xt and its previous internal states: hidden state ht−1

and cell state ct−1. LSTM utilises input gate it , forget gate ft , and output gate ot , which

are computed with an identical function under different trainable weights, as follows:

2.1. Neural Machine Translation 11

it = σ(Wiht−1 +Uixt +bi) (2.4)

ft = σ(W f ht−1 +U f xt +b f) (2.5)

ot = σ(Woht−1 +Uoxt +bo) (2.6)

The LSTM employs a sigmoid function on these gates, forcing the value range to

[0,1]. Therefore, we can multiply them element-wise to gate the information flow.

A candidate state is computed as follows:

c̄t = tanh(Wcht−1 +Ucxt +bc) (2.7)

The cell state ct is updated as the sum of the candidate state weighted by the forget

gate and the previous cell state weighted by the input gate, as follows (� denotes

element-wise multiplication):

ct = c̄t� it + ct−1� ft (2.8)

Lastly, we compute the output hidden state based on the cell state weighted by the

output gate:

ht = tanh(ct)�ot (2.9)

LSTM only considers the information from the previous steps. A bidirectional

LSTM is designed to overcome this limitation by having two layers of LSTMs–one

with a reversed direction on top of another one. The output hidden states from both

directional LSTMs are concatenated, before passing it to the next layer.

Attention Mechanism

A basic RNN-based NMT model initialises the decoder’s initial hidden and cell state

from the encoder’s last state. This is the only way to transfer the information from the

encoder to the decoder, which might not be sufficient to represent the entire sequence.

Thus, NMT performance often degrades as the sequence length increases (Bahdanau

et al., 2014). The attention mechanism is designed to facilitate more information flow

to the decoder by allowing the decoder to gather the encoder’s hidden states at different

time steps (Bahdanau et al., 2014).

12 Chapter 2. Background

The attention function takes the current-step decoder hidden state st as a query and

the encoder hidden states across each time step h1, ...,hN as the keys. The attention

computes the context vector ct as the weighted sum of the keys, where the weight

assigned is scored from the query to the corresponding key, as follows:

ct = ∑
i

So f tmax(S(st ,hi))hi (2.10)

A softmax function is used to normalise the query-key score function S into a prob-

ability distribution:

So f tmax(S(st ,hi)) =
exp(S(st ,hi))

∑ j exp(S(st ,h j))
(2.11)

Bahdanau et al. (2014) proposed the additive scoring function as follows:

S(st ,hi) = vT tanh(WQst +WKhi) (2.12)

where vT , WQ and WK are all trainable parameters.

Transformer-based Encoder and Decoder

The Transformer architecture completely discards recurrent connections and focuses

on more parallelisable attention mechanisms (Vaswani et al., 2017). In Transformer,

the encoder layer consists of self-attention. This self-attention attends each token from

a sequence to each token from the same sequence. The decoder works similarly, with

an extra attention mechanism on top of the self-attention mechanism. This attention

attends to the encoder, similar to the attention in RNN. The attention is followed by a

feed-forward network. Each sub-layer (attention and feed-forward) is followed by an

addition from a residual connection and a layer normalisation step. Since the Trans-

former has no recurrency, pre-determined positional encoding vectors are added to the

embedding to inject sequence order information. An illustration of the Transformer

architecture is shown in Figure 2.3. Vaswani et al. (2017) used a scaled dot product to

compute the attention score, as follows:

S(qt ,ki) =
WQqt •WKki√

dk
(2.13)

A score of the query vector qt and a key ki is obtained by applying dot products

after multiplying them with trainable matrices WQ and Wk. For the self-attention in

encoders, both the query vector qt and the keys ki are obtained from the output of the

2.1. Neural Machine Translation 13

x2

Embedding

Input Mereka makan

x1

Self Attention

Add & Norm

Feed Forward

+ +

Feed Forward

Add & Norm

Encoder #1

Encoder #2

Positional
Encoding

x2

<SOS> They

x1

Self Attention

Add & Norm

Feed Forward

+ +

Feed Forward

Add & Norm

Decoder #1

Positional
Encoding

Encoder-Decoder Attention

Add & Norm

Linear + Softmax

Decoder #2

They eat

Add & Norm

Add & Norm Add & Norm

Add & Norm

Add & Norm

Figure 2.3: An Illustration of a Transformer-based encoder and decoder architecture.

previous encoder layer. Regarding the encoder-decoder attention in the decoder, the

query originates from the previous decoder layer, while the keys originate from the

output of the final encoder layer. We scale down the score based on the dimension of

the key dk.

The attention output ct computes a weighted sum of value vectors, which can be

obtained by multiplying the keys with a trainable parameter WV , as follows:

ct = ∑
i

So f tmax(S(qt ,ki))WV ki (2.14)

Transformer also employs a multi-head attention mechanism. Therefore, Trans-

former has N (usually 8) independent attentions under separate attention weights out-

putting different weighted sum. The output from each head is then concatenated.

14 Chapter 2. Background

The attention mechanism in the encoder only requires information from the pre-

vious layer. Thus, a Transformer-based encoder is more parallelisable compared to

the sequential RNN architecture. Therefore, the Transformer can process mini-batches

faster than the RNN, which we empirically report in our experiments involving both

architectures (Chapter 3 and Chapter 5).

2.1.4 Training Practices

Parameters in the NMT model are optimised with stochastic gradient descent. Training

is done in mini-batches, which represent a small subset of the training data. We run

a forward pass through the model to obtain the prediction and error, and then run

the back-propagation to compute the gradient. Then, we update the parameters by

subtracting them with the combined gradients from each sentence.

This forward and backward pass, followed by the parameter update is repeated

multiple times (i.e., multiple mini-batches or steps) until some arbitrary stopping con-

dition is achieved. A common stopping condition involves training the model for a

pre-determined amount of steps or epochs (multiple passes of the entire training set).

Additionally, early stopping criterion can be added. For example, they can be added to

stop training if the model does not improve after several evaluations of the validation

set.

When comparing the training speed, simply measuring the time required to finish

the training may not be sufficient since training duration might not capture the conver-

gence speed. For example, we can set a model to train for ten epochs, while the model

only requires two epochs to reach its best performance in practice. The early stopping

criterion is somewhat useful to avoid wasting computational resources, as in that case.

However, it is also unstable since the early stopping criterion is often reset by negli-

gible improvement (e.g., assuming we stop the training after five validations with no

improvement). If we gain a negligible and potentially noisy improvement in training

loss after the fourth validation, we must restart the counting back to 0. Similarly, mea-

suring the time required to reach the best validation score is very unstable. Therefore,

in all of our experiments involving measuring the training speed, we measure the time

required to reach a certain near-convergence quality threshold.

2.1. Neural Machine Translation 15

θ (Parameter)

Lo
ss

(a) With a low learning rate,

more updates are required

to reach the local minima.

θ (Parameter)

Lo
ss

(b) With the optimal learning

rate, parameter reaches the

local minima with less up-

dates.

θ (Parameter)

Lo
ss

(c) Parameter ”jumps”

around the search space if

the learning rate is too high.

Figure 2.4: Illustrations of parameter movements across different learning rates.

Learning Rate

The gradient is multiplied by a learning rate to adjust the movement of the parameter.

A higher learning rate means that the parameters move further for each update. When

the learning rate is low, the parameter moves slowly. Therefore, the training is more

stable but may take more time to complete. In contrast, the parameter moves faster

with a higher learning rate. However, if the learning rate is too high, the parameter

moves too far and might cause the model to overshoot. The training can even diverge

if the learning is extremely high. Illustrations of these cases are shown in Figure 2.4.

Since this thesis focuses on efficient training, choosing the right learning rate is

important. We optimise the learning rate by performing a grid search. Then, we choose

the highest learning rate that retains the final quality while also reaching such quality

the fastest.

Training might be unstable at the early stage of the training. We can employ a learn-

ing rate warm-up by using a lower learning rate at the beginning of the training and

periodically increasing it throughout the training. Learning rate warm-up has shown to

be important for training Transformers (Popel and Bojar, 2018). In Chapter 6, we also

explore training Transformers without warm-up by employing a pre-trained model.

Learning rate warm-up makes the training more stable by scaling down the learning

rate, thereby essentially slowing down the convergence. Hence, where learning rate

warm-up is applied, we search the minimum warm-up period that does not degrade the

model’s quality and convergence.

16 Chapter 2. Background

Adaptive Learning Rate

Kingma and Ba (2014) proposed the Adam optimiser, which independently adjusts

individual learning rates for different parameters. The Adam optimiser has shown to

improve training speed and performance (Kingma and Ba, 2014), and is commonly

used in neural machine translation experiments (Sennrich et al., 2016a; Bojar et al.,

2017, 2018).

Adam estimates the full gradient with an exponentially decaying average mt of

gradients gt :

mt ← β1mt−1 +(1−β1)gt (2.15)

where β1 is a decay hyperparameter. It also computes a decaying average vt of

second moments:

vt ← β2vt−1 +(1−β2)g2
t (2.16)

where β2 is a separate decay hyperparameter. The squaring g2
t is taken element-

wise. These estimates are biased because the decaying averages were initialised to

zero. Adam corrects for the bias to obtain unbiased estimates m̂t and v̂t :

m̂t ← mt/(1−β
t
1)

v̂t ← vt/(1−β
t
2)

(2.17)

These estimates are used to update parameters θ, as follows:

θt ← θt−1−α
m̂t√
v̂t + ε

(2.18)

where α is the learning rate hyperparameter and ε prevents element-wise division by

zero.

We use the Adam optimiser in all of our NMT experiments throughout this thesis.

In Chapter 3, we investigate the behaviour of the Adam optimiser under noisy and stale

gradients found in asynchronous training.

Batch Size

The gradients of a single mini-batch are the combination (usually by averaging or sum-

ming) of the individual gradient of each training example. According to Smith and Le

2.2. Distributed Training 17

(2017), gradient noise scales down as the batch size increases since we are averag-

ing more samples. Popel and Bojar (2018); Ott et al. (2018) empirically show that

NMT models converge better with larger batch size. We also explore this behaviour

while comparing synchronous and asynchronous training since the former has a larger

effective batch size. We discuss this more in Chapter 3. As a rule of thumb, we al-

ways maximise the batch size (with regards to the GPU limitation) in our experiments

throughout this thesis.

2.2 Distributed Training

The NMT model can be trained in parallel by distributing the training across workers

(i.e., GPUs or CPUs). In this section, we discuss different paradigms and methods

regarding distributed training.

2.2.1 Model vs Data Parallelism

In model parallelism, the model is divided and distributed across workers. Each worker

is responsible for performing forward and backward passes on its own subset model

and then passing the output to the next worker. The main objective of this parallelism

is to reduce the memory consumption required to store the model and to enable the

training of larger models (Huang et al., 2019). However, model parallelism does not

necessarily improve the training speed, as the computation is performed sequentially

layer-by-layer, similar to non-parallel training. Additionally, model parallelism also

requires sending some information across workers, which costs additional time.

In data parallelism, the model is copied and distributed across workers. The train-

ing data is split across workers, where each worker trains independently based on its

data subset. For each batch, each worker informs the computed gradients to the param-

eter server: a node that stores the parameter. The parameter server then processes the

gradients and performs the parameter updates. Then, each worker calibrates its local

model with the newest one from the parameter server.

Assuming synchronous training, the gradients are combined in the parameter server;

thus, data parallelism behaves as if we increased the effective batch size. Notably, in-

creasing the batch size is always typically preferred over using the data parallelism—if

possible. For example, it is inefficient to train with two workers with a 16-batch size

each if a single worker with a 32-batch size is possible. While both cases have an ef-

18 Chapter 2. Background

fective batch size of 32, the former uses double the GPU cost of the latter. Moreover,

a GPU benefits from parallel computation; thus, processing a batch of size 32 is not

usually twice as costly as processing a batch of size 16. The communication overhead

also contributes to inefficiency. We can also observe increasing batch size per GPU as

a method of reducing the communication frequency, thereby increasing training effi-

ciency. Empirically, with a typical Transformer setting, 2x16 GPUs process batches

10% slower than a 1x32 GPU.

With data parallelism, we can process more sentences in single mini-batch to im-

prove the training speed. However, in practice, each worker must communicate the

gradients to and from the server per batch, which is as large as the model and signif-

icantly reduces the efficiency of this method. We address this issue in Chapter 4 and

Chapter 5.

2.2.2 Synchronous vs. Asynchronous Training

Parallel training can be either synchronous or asynchronous. In synchronous training

(usually the default data parallelism behaviour), the parameter server waits for each

of the workers to send the gradients. The server then combines the gradients and

applies the parameter update. Then, the server broadcasts the newly updated model1.

One problem with synchronous training is that each worker must wait for the slowest

worker, thus leaving some of the faster workers to idle.

In contrast, asynchronous training updates the parameter directly after obtaining

the gradients. Likewise, the model also fetches the recent parameter in arbitrary time–

usually after sending the gradients; therefore, workers do not idle. However, this be-

haviour introduces a stale update (i.e., a gradient update computed from an outdated

parameter version). Moreover, the mini-batch size is smaller than the synchronous

counterpart since no gradient summing is involved. We explore the difference between

synchronous and asynchronous training in more detail and discuss the issue of stale

gradients in Chapter 3.

2.2.3 Parameter Sharding

Let D be the number of parameters and N be the number of nodes. Intuitively, each

worker needs to send D values (local gradient) to the server and receive D values (up-

1On a technical level, we can also broadcast the summed gradients alone and let the workers update
their model locally

2.2. Distributed Training 19

Parameter

w1

w2

w3

w4

Time

(a) Workers are idle in synchronous training as they wait for other workers to finish before up-

dating the parameter (vertical line).

Parameter

Time

w1

w2

w3

w4

(b) Parameter updates are immediate in asynchronous training; therefore, no idle workers but

may cause stale updates.

Figure 2.5: Synchronous vs asynchronous training.

dated parameter or combined gradient) from the server. Naively, we can assign a node

to be the server where each worker communicates to the server. Thus, the server re-

ceives (N−1)∗D values, assuming we assign one of the workers to be the server. This

approach is expensive since communication bandwidth per device is limited, which

can cause a single bottleneck.

To avoid this issue, Dean et al. (2012) proposed a distributed stochastic gradient

descent (SGD) with parameter sharding. Dean et al. (2012) divide the data into N

equal-sized shards and distribute them to N different servers for the communication

load to be balanced. These servers are also jointly located with the workers. Hence,

each worker becomes both a client and a server and is responsible for different 1/N-th

of the parameters.

Clients have a copy of all parameters, which they use to compute gradients. These

gradients are split into N pieces and pushed to the appropriate servers. Similarly, each

20 Chapter 2. Background

Figure 2.6: Data-parallelism architecture with parameter sharding.

client pulls parameters or summed gradients from all servers.

Using this communication mechanism, each worker will communicate D/N of pa-

rameters to N different server shards, thus resulting in a constant D bandwidth cost.

Parameter pulling follows the same communication, so the total memory sent by a

worker is 2D. This bandwidth cost is constant regardless of the number of workers.

2.2.4 Scaling the Number of Workers

Using more workers (GPUs or nodes) does not necessarily imply faster training. As-

suming synchronous training, more workers equals a larger batch size. If we assume

instantaneous communication, each mini-batch requires the same processing time.

Therefore, scaling the workers by N means that we potentially process the data N

times faster. Ideally, we would like the model to achieve the same quality after seeing

the same amount of data when increasing the batch size to achieve linear improvements

in training time. With this assumption, if we can process the data N times faster, we

should also reach the same model quality N times faster.

If the gradient is not scaled (e.g., from a scale-invariant optimiser such as the Adam

optimiser (Kingma and Ba, 2014)), the update magnitude will be the same and the

parameter will move at the same rate regardless of the batch size. This behaviour makes

training with a larger batch size less data-efficient since we consume more training

examples per batch. Therefore, without additional tuning, we cannot achieve the same

quality measurement with the same amount of data since we have fewer updates.

2.2. Distributed Training 21

Recent studies (Goyal et al., 2017; Popel and Bojar, 2018; Ott et al., 2018) suggest

scaling the learning rate linearly with the batch size to increase the training efficiency

in larger batch sizes. This heuristic makes sense since, given the same amount of data,

we only perform updates N times less often if we have an N times larger batch size.

Assuming the same movement magnitude, we would like to move N times further per

update to catch up with the lower batch size setting. Smith and Le (2017) mentioned

that gradient noise is proportional to the learning rate divided by the batch size. There-

fore, increasing batch size is a form of reducing gradient noise and can mitigate the

noise introduced from a higher learning rate.

Similarly, the learning rate warm-up must be adjusted correspondingly. If the

warm-up period is defined by the number of steps, it must be scaled down propor-

tionally since we aim to achieve the same scaled learning rate given the same epochs.

In practice, achieving linear speed increase with more workers (thus larger batch

size) is challenging since we would have to accomplish the same convergence with sig-

nificantly fewer updates; therefore, we scale the learning rate and learning rate warm-

up. However, Goyal et al. (2017) reported that the learning rate could not be scaled

indefinitely since the model will be untrainable when the learning rate is too high.

Similarly, lowering the warm-up too much will result in the learning rate increment

being too steep, especially when the maximum learning rate is very high. Therefore,

both the learning rate and the warm-up must be adjusted sub-linearly, resulting to a

sub-linear speed increase. To better illustrate this point, assuming a typical setting

with around 100000 updates of training. If we scale the number of workers with a very

large N = 1000, it is doubtful that the model will only need to make 10 updates with a

massive learning rate to converge. We explore the scaling of workers up to 48 GPUs

in Chapter 5.

Chapter 3

Asynchronous Transformer Training

This chapter explores training Transformer models in asynchronous stochastic gradi-

ent descent. We first investigate why asynchronous Transformers under-perform, and

then apply a solution by mimicking synchronous training behaviour while maintaining

asynchronous speed. This chapter is based on Aji and Heafield (2019a).

3.1 Introduction

Models based on Transformers (Vaswani et al., 2017) achieve state-of-the-art results in

various machine translation tasks (Bojar et al., 2018). Distributed training is crucial to

training these models in a reasonable amount of time, with the dominant paradigms be-

ing asynchronous or synchronous SGD. Prior work (Chen et al., 2016, 2018; Ott et al.,

2018) has noted that asynchronous SGD yields low-quality models without elaborat-

ing further; we confirm this experimentally in Section 3.2.1. Rather than abandoning

asynchronous SGD, we aim to repair its convergence.

To understand why asynchronous SGD under-performs, we first blur the lines be-

tween asynchronous and synchronous methods. Asynchronous and synchronous SGD

have two key differences: batch size and staleness. Synchronous SGD increases the

batch size in proportion to the number of processors because gradients are summed

before applying an update. Asynchronous SGD updates with each gradient as it arises,

resulting in the batch size being the same as on a single processor. Asynchronous SGD

also has stale gradients because parameters may update several times while a gradient

is being computed.

To separate the impact of batch size and stale gradients, we perform a series of

experiments on both RNNs and Transformers by manipulating the batch size and in-

23

24 Chapter 3. Asynchronous Transformer Training

jecting staleness. Our experiments indicate that small batch sizes only slightly degrade

quality, while stale gradients substantially degrade quality.

To restore convergence, we propose a hybrid method that computes gradients asyn-

chronously, sums gradients as they arise and updates less often. Gradient summing has

been applied to increase batch size or reduce communication (Dean et al., 2012; Lian

et al., 2015; Ott et al., 2018; Bogoychev et al., 2018); moreover, we observe that it also

reduces harmful staleness. In a sense, updating less often increases staleness because

gradients are computed with respect to parameters that could have been updated. How-

ever, if staleness is measured by the number of intervening updates to the model, then

staleness is reduced because updates occur less frequently. Empirically, this hybrid

method converges comparably to synchronous SGD, preserves the final model quality

and runs faster because processors are not idle.

3.2 Exploring Asynchronous SGD

3.2.1 Baseline: The Problem

To motivate this chapter and set baselines, we first measure how poorly Transformers

perform when trained with baseline asynchronous SGD (Chen et al., 2016, 2018; Ott

et al., 2018). We train a Transformer model under both synchronous and asynchronous

SGD, contrasting the results with an RNN model. Moreover, we sweep learning rates

to verify that this effect is not an artefact of choosing hyperparameters that favour one

scenario. Further details on the experimental setup appear in Section 3.4.1.

The results presented in Table 3.1 confirm that asynchronous SGD generally yields

lower-quality systems than synchronous SGD. For Transformers, the asynchronous

results are catastrophic, often yielding 0 BLEU. We can also see that Transformers

and asynchronous SGD are more sensitive to learning rates compared to RNNs and

synchronous SGD.

To understand why asynchronous SGD under-performs, we run a series of ablation

experiments based on the differences between synchronous and asynchronous SGD.

We focus on two main aspects: batch size and stale gradient updates.

3.2.2 Batch Size

As previously discussed in Chapter 2, parallel synchronous training is essentially train-

ing with larger batch size since synchronous SGD sums gradients from all processors.

3.2. Exploring Asynchronous SGD 25

Trans. BLEU RNN BLEU

Learn Rate Sync. Async. Sync. Async.

0.0002 35.08 13.27 34.11 33.77

0.0003 35.66 30.72 33.79 33.95

0.00045 35.59 5.21 33.68 33.68

0.0006 35.42 0.00 34.30 33.76

0.0009 34.79 0.00 34.28 33.47

0.0012 33.96 0.00 34.37 33.23

0.0024 29.35 0.00 33.98 32.83

0.00375 25.25 0.00 33.80 31.89

Table 3.1: Performance of the Transformer and RNN model trained synchronously and

asynchronously, across different learning rates.

In asynchronous SGD, each update uses a gradient from one processor.

Using a larger batch size reduces noise in estimating the overall gradient (Wang

et al., 2013; Smith and Le, 2017) and has been shown to slightly improve perfor-

mance (Smith et al., 2017; Popel and Bojar, 2018). To investigate whether small batch

sizes are the main issue with asynchronous Transformer training, we sweep batch sizes

and compare the performance with synchronous training.

3.2.3 Gradient Staleness

We have introduced the gradient staleness issue in Chapter 2 and will discuss it in

greater detail within this section. In asynchronous training, a computed gradient up-

date is applied immediately to the model, without having to wait for other processors

to finish. This approach may cause a stale gradient, where parameters have updated

while a processor was computing its gradient. Staleness can be defined as the num-

ber of updates that occurred between the processor pulling parameters and pushing

its gradient. In an ideal case where every processor spends equal time to process a

batch, asynchronous SGD with N processors produces gradients with staleness N−1.

That is, between the parameter pull and gradient push processes of a worker, the other

N−1 are expected to send their gradients. Empirically, we can also expect an average

staleness of N−1 with a normally distributed computation time (Zhang et al., 2016).

An alternative way to interpret staleness is the distance between the parameters

with which the gradient was computed and the parameters were updated by the gradi-

26 Chapter 3. Asynchronous Transformer Training

ent. Therefore, a higher learning rate contributes to staleness as the parameters move

faster.

Prior work has shown that neural models can still be trained on stale gradients,

albeit with potentially slower convergence or lower quality. Furthermore, Zhang et al.

(2016); Srinivasan et al. (2018) report that model performance degrades in proportion

to the gradient staleness. We introduce artificial staleness to confirm the significance

of gradient staleness towards Transformer performance.

3.3 Incremental Updates in Adam

Investigating the effect of batch size and staleness further, we analyse why it makes

a difference whether gradients computed from the same parameters are applied one

at a time (incurring staleness) instead of being summed then applied once (as in syn-

chronous SGD). In standard stochastic gradient descent, there is no difference: gra-

dients are multiplied by the learning rate and then subtracted from the parameters in

either case. In practice, gradients reported by different processors are usually not the

same: they are noisy estimates of the true gradient. Therefore, the Adam optimiser

handles incremental updates and sums differently.

Notably, the Adam optimiser is scale-invariant. For example, suppose that two

processors generate gradients 0.5 and 0.5 with respect to the same parameter in the

first iteration. Incrementally updating with 0.5 and 0.5 is the same as updating with 1

and 1 due to scale invariance; thus, updating with the summed gradient, 1, will only

move parameters half as far. This is the theory underlying the rule of thumb, which

states that the learning rate should scale with batch size (Ott et al., 2018).

The Adam optimiser update parameters θ based on the estimations of first (mt) and

second moments (vt) of gradients are as follows:

θt ← θt−1−α
m̂t√
v̂t + ε

(3.1)

where α is the learning rate hyperparameter and ε prevents element-wise division by

zero.

Replacing estimators in the update rule with statistics they estimate and ignoring

the usually-minor ε, we have:

m̂t√
v̂t + ε

≈ Egt√
E(g2

t)
(3.2)

3.3. Incremental Updates in Adam 27

Time (t) 0 1 2 3 4 5 6

Constant gt 1 1 1 1 1 1

mt 0 0.1 0.19 0.271 0.344 0.41 0.469

vt 0 0.02 0.04 0.059 0.078 0.096 0.114

m̂t 0 1 1 1 1 1 1

v̂t 0 1 1 1 1 1 1

θ 0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.006

Scaled gt 0.5 1.5 0.5 1.5 0.5 1.5

mt 0 0.05 0.195 0.226 0.353 0.368 0.481

vt 0 0.005 0.05 0.054 0.098 0.101 0.144

m̂t 0 0.5 1.026 0.832 1.026 0.898 1.026

v̂t 0 0.25 1.26 0.917 1.26 1.05 1.26

θ 0 −0.001 −0.002 −0.003 −0.004 −0.005 −0.005

Different gt −1 2 −1 2 −1 2

sign mt 0 −0.1 0.11 −0.001 0.199 0.079 0.271

vt 0 0.02 0.1 0.118 0.195 0.211 0.287

m̂t 0 −1 0.579 −0.004 0.579 0.193 0.579

v̂t 0 1 2.515 2 2.515 2.2 2.515

θ 0 0.001 0.001 0.001 0.000 0.000 −0.000

Table 3.2: The Adam optimiser slows down when gradients have larger variance, even

if they have the same average, in case 1. When alternating between −1 and 2, the

Adam optimiser takes six steps before the parameter has the correct sign. Updates can

even slow down if gradients point in the same direction but have different scales. The

learning rate is α = 0.001.

28 Chapter 3. Asynchronous Transformer Training

which expands following the variance identity

Egt√
E(g2

t)
=

Egt√
Var(gt)+(Egt)2

(3.3)

Upon dividing both the numerator and denominator by |Egt |, we obtain:

=
sign(Egt)√

Var(gt)/(Egt)2 +1
(3.4)

The term Var(gt)/(Egt)
2 is statistical efficiency, the square of the coefficient of

variation. In other words, the Adam optimiser gives higher weight to gradients if

historical samples have a lower coefficient of variation. The coefficient of variation

of a sum of N independent1 samples decrease as 1/
√

N. Hence, sums (despite having

less frequent updates) may cause the Adam optimiser to move faster since they have a

smaller coefficient of variation. An example of this is presented in Table 3.2: updating

with 1 moves faster than individually applying -1 and 2.

In Table 3.2, we present examples of noise causing the Adam optimiser to slow

down. However, summing gradients smooths out some of the noise. Next, we examine

the formal basis for this effect.

0 20 40 60 80 100
num updates x1000

0

5

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

Trans + sync 40GB
Trans + s nc 10GB
Trans + sync 40GB
Trans + s nc 10GB

(a) Convergence in the Transformer model

0 5 10 15 20 25 30
num updates x1000

0

5

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

RNN + sync 40 GB
RNN + s nc 10 GB
RNN + sync 40 GB
RNN + s nc 10 GB

(b) Convergence in the RNN Model

Figure 3.1: The effect of batch sizes on convergence over updates of Transformer and

RNN models.

1Batch selection considers computing time, so noise is technically not independent.

3.4. Ablation Study 29

3.4 Ablation Study

We conduct ablation experiments to investigate the poor performance in asynchronous

Transformer training for the neural machine translation task.

3.4.1 Experiment Setup

Our experiments use systems for the WMT 2017 English-to-German news translation

task. Transformer comes standard with six encoders and six decoder layers Vaswani

et al. (2017). The RNN model (Miceli-Barone et al., 2017) is based on the winning

WMT17 submission (Sennrich et al., 2017) with eight layers. Both models use back-

translated monolingual corpora (Sennrich et al., 2016b) and byte pair encoding (Sen-

nrich et al., 2016c) with 36000 merging operations.

We follow the remaining hyperparameter settings on both Transformer and RNN

models, as suggested in previous work (Vaswani et al., 2017; Sennrich et al., 2017).

Both models were trained on four GPUs with a dynamic batch size of 10 GB per GPU

using the Marian toolkit (Junczys-Dowmunt et al., 2018). Both models are trained for

eight epochs or until reaching five continuous validations without loss improvement.

Quality is measured on newstest2016 using sacreBLEU (Post, 2018), while preserving

newstest2017 as a test for later experiments. Transformer’s learning rate is linearly

warmed up for 16k updates. We then apply an inverse square root learning rate decay

following Vaswani et al. (2017) for both models. All of these experiments use the

Adam optimiser, which has been shown to perform well on a variety of tasks (Kingma

and Ba, 2014) and was used in the original Transformer publication (Vaswani et al.,

2017).

For subsequent experiments, we will use a learning rate of 0.0003 for Transformers

and 0.0006 for RNNs. These were near the top in both asynchronous and synchronous

settings (Table 3.1).

3.4.2 Batch Size

We first explore the effect of batch size on the model’s quality. We use dynamic batch-

ing, in which the toolkit fits as many sentences as it can into a fixed amount of memory

(for example, more sentences will be in a batch if all of them are short). Hence, batch

sizes are denominated in memory sizes. Our GPUs each have 10 GB available for

batches which correspond to an average of 250 sentences.

30 Chapter 3. Asynchronous Transformer Training

0 20 40 60 80 100
num updates x1000

0

5

10

15

20

25

30

35
Va

lid
ati

on
 B

LE
U

Convergence per-update

Trans + sync
Trans + sync + 2 stale
Trans + sync + 3 stale
Trans + sync

(a) Transformer model with lr = 0.0003

0 5 10 15 20 25 30
num updates x1000

0

5

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

RNN + sync
RNN + sync + 2 stale
RNN + sync + 3 stale
RNN + sync

(b) RNN model with lr = 0.0006

Figure 3.2: Artificial staleness in synchronous SGD compared to synchronous and

asynchronous baselines, all with our usual learning rate for each model.

With four GPUs, baseline synchronous SGD has an effective batch size of 40 GB,

compared to 10 GB in asynchronous. We fill in the two missing scenarios using syn-

chronous SGD with a total effective batch size of 10 GB and asynchronous SGD with

a batch size of 40 GB. Since GPU memory is limited, we simulate a larger batch size in

asynchronous SGD by locally accumulating gradients in each processor four times be-

fore sending the summed gradient to the parameter server (Ott et al., 2018; Bogoychev

et al., 2018).

Models with a batch size of 40GB achieve better BLEU per update when compared

to its 10GB variant, as shown in Figure 3.1. However, synchronous SGD training still

outperforms asynchronous SGD training—even with smaller batch size. Based on this

experiment, we conclude that batch size is not the primary driver of the poor perfor-

mance of asynchronously trained Transformers; however, it does have some lingering

impact on final model quality. For RNNs, batch size and the distributed training algo-

rithm had little impact beyond the early stages of training, continuing the theme that

Transformers are more sensitive to noisy gradients.

3.4.3 Gradient Staleness

To study the impact of gradient staleness, we introduce staleness into synchronous

SGD. Workers only pull the latest parameter once every U updates, yielding an average

3.4. Ablation Study 31

0 20 40 60 80 100
num updates x1000

0

5

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

Trans + sync
Trans + sync + avg. staleness 2

(a) Transformer model with lr = 0.0006

0 5 10 15 20 25 30
num updates x1000

0

5

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

RNN + sync
RNN + sync + avg. staleness 2
RNN + sync + avg. staleness 3
RNN + sync

(b) RNN model with lr = 0.0012

Figure 3.3: Artificial staleness in synchronous SGD with doubled learning rates. Trans-

formers with a learning rate of 0.0006 and a staleness of 3 (synchronous and asyn-

chronous) did not exceed 0.

staleness of (U−1)
2 . Since asynchronous SGD has an average staleness of 3 with N = 4

GPUs, we set U = 7 to achieve the same average staleness of 3. Additionally, we

attempted a lower average staleness of 2 by setting U = 5. We also observe the effect of

doubling the learning rate so that the parameter moves twice as far, thereby introducing

staleness in terms of model distance.

To focus on the impact of the staleness, we set the batch size to 40 GB total RAM

consumption, be they 4 GPUs with 10 GB each in synchronous SGD or emulated 40

GB batches on each GPU in asynchronous SGD.

The results are presented in Figure 3.2. Staleness 3 substantially degrades Trans-

former convergence and final quality (Figure 3.2a). However, the impact of staleness

2 is relatively minor. We also continue to observe that Transformers are more sensitive

than RNNs to training conditions.

The Transformer results worsen when we double the learning rate (Figure 3.3).

With staleness 3, the model remained at 0 BLEU for both synchronous and asyn-

chronous SGD, which is consistent with our earlier result (Table 3.1).

We conclude that staleness is primarily—but not wholly—responsible for the poor

performance of asynchronous SGD in training Transformers. However, asynchronous

SGD still under-performs in comparison to synchronous SGD with an artificial stale-

32 Chapter 3. Asynchronous Transformer Training

ness of 3 and the same batch size (40 GB). Our synchronous SGD training has consis-

tent parameters across processors, whereas processors might have different parameters

in asynchronous training. The staleness distribution might also play a role since stal-

eness in asynchronous SGD follows a normal distribution (Zhang et al., 2016) while

our synthetic staleness in synchronous SGD follows a uniform distribution.

3.5 Asynchronous Transformer Training

3.5.1 Accumulated Asynchronous SGD

Previous experiments have demonstrated that increasing the batch size and reducing

staleness improves the final quality of asynchronous training. Increasing the batch

size can be achieved by accumulating gradients before updating. We experiment with

variations in three ways of accumulating gradients:

Local Accumulation: Gradients can be accumulated locally in each processor be-

fore sending it to the parameter server (Ott et al., 2018; Bogoychev et al., 2018). This

approach scales the effective batch size and reduces communication costs since the

workers communicate less often. However, this approach does not reduce staleness

because the parameter server updates immediately after receiving a gradient. There-

fore, this approach can be considered a vanilla asynchronous SGD with a larger batch

size. We experiment with accumulating four gradients locally, resulting in a 40 GB

effective batch size.

Global Accumulation: Each processor sends the computed gradient to the param-

eter server normally. However, the parameter server holds the gradient and only up-

dates the model after it receives multiple gradients (Dean et al., 2012; Lian et al., 2015).

This approach scales the effective batch size by N, assuming that we accumulate N gra-

dients. This behaviour is similar to synchronous SGD where the update is scaled with

more workers. Moreover, it has less staleness compared to vanilla asynchronous SGD

since the parameter server updates less often. More precisely, the parameter server

only updates once every N gradient pushes. Therefore, staleness is scaled down by a

factor of N. However, it does not reduce communication costs since each processor

communicates with the server as often as vanilla asynchronous SGD. We experiment

with accumulating four gradients globally, resulting in a 40 GB effective batch size

and 0.75 average staleness.

Combined Accumulation: Local and global accumulation can be combined to

3.5. Asynchronous Transformer Training 33

Transformer

Comm. accumulation batch avg. speed best hours to X BLEU

local global size staleness (wps) BLEU 33 34 35

synchronous 1 4 40 GB 0 36029 35.66 5.3 7.6 15.6

asynchronous 1 1 10 GB 3 39883 30.72 - - -

asynchronous 4 1 40 GB 3 45177 30.98 - - -

asynchronous 2 2 40 GB 1.5 43115 35.68 4.9 6.8 15.4

asynchronous 1 4 40 GB 0.75 39514 35.84 4.6 6.7 11.4

RNN

Comm. accumulation batch avg. speed best hours to X BLEU

local global size staleness (wps) BLEU 32 33 34

synchronous 1 4 40 GB 0 23054 34.30 3.6 6.2 18.8

asynchronous 1 1 10 GB 3 24683 33.76 2.7 5.1 -

asynchronous 4 1 40 GB 3 27090 33.83 4.1 6.1 -

asynchronous 2 2 40 GB 1.5 25578 34.20 3.2 5.9 13.7

asynchronous 1 4 40 GB 0.75 24312 34.48 3.1 5.4 14.5

Table 3.3: Quality and convergence of asynchronous SGD with accumulated gradients

on an English-to-German dataset. Dashes indicate that the model never reached the

target BLEU.

gain the benefits of both reduced communication cost and reduced average staleness.

In this approach, gradients are accumulated locally in each processor before being

sent. The parameter server also waits and accumulates gradients before running an

optimiser. We accumulate two gradients both locally and globally to yield a 40 GB

effective batch size and 1.5 average staleness.

We tested the three gradient accumulation flavours on the English-to-German task

with both Transformer and RNN models. Synchronous SGD also appears as a baseline.

To compare results, we report the best BLEU, raw training speed and time required to

reach several BLEU checkpoints. The results are presented in Table 3.3.

Asynchronous SGD with global accumulation improves the final quality of the

model over synchronous SGD, albeit not meaningfully. This one change, accumulating

every four gradients (the number of GPUs), restores quality in asynchronous methods.

It also achieves the fastest time to reach near-convergence BLEU in both Transformer

34 Chapter 3. Asynchronous Transformer Training

Model EN→ DE EN→ FI EN→ RU

newstest 2016 2017 2017 2018 2015 2018

Trans. + synchronous 35.66 28.81 18.47 14.03 29.31 25.49

Trans. + asynchronous 30.72 24.68 11.63 8.73 21.12 17.78

Trans. + asynchronous + 4x GA 35.84 28.66 18.47 13.78 29.12 25.25

RNN + synchronous 34.30 27.43 16.94 12.75 26.96 23.11

RNN + asynchronous 33.76 26.84 14.94 10.96 26.39 22.48

RNN + asynchronous + 4x GA 34.48 27.56 17.05 12.76 27.15 23.41

Table 3.4: The effect of global accumulation (GA) on translation quality for different

language pairs in the development and test set, as measured using BLEU scores.

and RNN.

Although using local accumulation provides even faster raw speed, the model pro-

duces the worst quality among the other accumulation techniques. Asynchronous SGD

with 4x local accumulation is essentially ordinary asynchronous SGD with a 4x larger

batch size and a 4x lower update frequency. In particular, gradient staleness remains

the same and does not improve the convergence per update. The performance of com-

bined accumulation somewhat in the middle since it does not converge as rapidly as

asynchronous SGD with full global accumulation, but not as poorly as asynchronous

SGD with full local accumulation. Its speed is also in between, reflecting the commu-

nication costs. On the other hand, the RNN model is less sensitive to stale gradients.

Hence, we can accumulate some of the gradients locally for improved speed without

sacrificing quality.

3.5.2 Generalisation Across Learning Rates

Earlier in Table 3.1, we presented that asynchronous Transformer learning is very sen-

sitive towards the learning rate. In this experiment, we use an asynchronous SGD

with global gradient accumulation to train English-to-German translation at different

learning rates. We then compare our result with vanilla synchronous and vanilla asyn-

chronous SGD.

Our finding empirically demonstrates that asynchronous Transformer training while

globally accumulating gradients is significantly more robust. As shown in Table 3.5,

the model is now capable of learning at a higher learning rate while yielding compara-

ble results to its synchronous variant.

3.6. Related Work 35

Communication

Sync. Async. Async

Learning Rate + 4x GA

0.0003 35.66 30.72 35.84

0.0006 35.42 0.00 35.81

0.0012 33.96 0.00 33.62

0.0024 29.35 0.00 1.20

Table 3.5: The performance of the asynchronous Transformer on English-to-German

translation with 4x Global accumulations (GA) across different learning rates on the

development set, as measured using BLEU scores.

3.5.3 Generalisation Across Languages

To test whether our findings on English-to-German can be generalised, we train two

more translation systems using globally accumulated gradients. Specifically, we train

English-to-Finnish (EN → FI) and English-to-Russian (EN → RU) models for the

WMT 2018 task (Bojar et al., 2018). We validate our model on newstest2015 for EN

→ FI and newstest2017 for EN→ RU. Then, we test our model on newstest2017 for

EN → DE and newstest2018 for both EN → FI and EN → RU. The same network

structures and hyperparameters are used as before.

The results presented in Table 3.4 empirically confirm that accumulating the gra-

dient to obtain a larger batch size and a lower staleness in Transformer massively im-

proves the result when compared to basic asynchronous SGD (+6 BLEU on average).

The improvement is smaller in RNN experiment, but still substantial (+1 BLEU on

average). We also have further confirmation that training a Transformer model with

normal asynchronous SGD is impractical.

3.6 Related Work

3.6.1 Gradient Summing

Several papers wait and sum P gradients from different workers as a method of reduc-

ing staleness. In Chen et al. (2016), gradients are accumulated from different proces-

sors, and other processors cancel their process and restart from the beginning whenever

the P gradients have been pushed. This is relatively wasteful since some computation

36 Chapter 3. Asynchronous Transformer Training

is thrown out and P−1 processors remain idle for synchronisation. Gupta et al. (2016)

suggest that while restarting is not necessary, processors continue to idle while waiting

for P to finish. Our proposed method follows Lian et al. (2015), in which an update

occurs every time P gradients have arrived, while processors continually generate gra-

dients without synchronisation.

Aside from gradient summing, an alternative direction to overcome a stale gradient

is to reduce its effect on the model update. McMahan and Streeter (2014) dynamically

adjusted the learning rate depending on the staleness. Moreover, Dutta et al. (2018)

suggests completely ignoring stale gradient pushes.

3.6.2 Training with Noisy Gradients

In the opposite direction, some work has intentionally added noise to gradients or in-

creased staleness, typically to cut computational costs. Dean et al. (2012) mention

that communication overload can be reduced by reducing gradient pushes and param-

eter synchronisation frequency. In McMahan et al. (2017), each processor indepen-

dently updates its local model and periodically synchronises the parameter by aver-

aging across other processors. Furthermore, Ott et al. (2018) accumulates gradients

locally before sending it to the parameter server. Bogoychev et al. (2018) also locally

accumulates the gradient, but updates local parameters in between.

Lossy gradient compression via bit quantisation (Seide et al., 2014; Alistarh et al.,

2017) or threshold-based sparsification are discussed in Chapter 4, which also intro-

duces noisy gradient updates. Furthermore, these techniques store unsent gradients to

be added into the next gradient, thus becoming stale. We later determine that, consis-

tent with the results presented in this chapter, RNN is more robust towards compressed

gradients, while Transformer-based models break completely. We reduce the compres-

sion noise to resolve this issue in Chapter 5.

3.7 Conclusion

We evaluated the behaviour of Transformer and RNN models under asynchronous

training and divide our analysis based on two main different aspects of asynchronous

training: batch size and stale gradient. Our experimental results indicate that:

• In general, asynchronous training damages the final BLEU of the NMT model.

However, we found that the damage to Transformer is significantly more severe.

3.7. Conclusion 37

Also, asynchronous training requires a smaller learning rate to perform well.

• With the same number of processors, asynchronous SGD has a smaller effective

batch size. We empirically show that training under a larger batch size setting

can slightly improve the training convergence. However, the improvement is

very minimal. The result from the asynchronous Transformer model is sub-par,

even with larger batch size.

• Stale gradients serve a larger role in the training performance of an asynchronous

Transformer. We have demonstrated that the Transformer models performed

poorly by adding a synthetic stale gradient.

Based on the findings of our study, we suggest applying a modification in asyn-

chronous training by accumulating a few gradients (e.g. the number of processors) in

the server before applying an update. This approach increases the batch size while

reducing the average staleness. We empirically show that this approach combines the

high-quality training of synchronous SGD and high training speed of asynchronous

SGD.

Chapter 4

Sparse Gradient Communication

This chapter addresses gradient compression to reduce communication cost between

workers in parallel training. This chapter is based on Aji and Heafield (2017).

4.1 Introduction

Distributed training is essential for large neural networks on large data sets (Raina

et al., 2009). We focus on data parallelism, in which nodes jointly optimise the same

model on different parts of the training data. The main performance issue in data

parallelism is the cost of communicating gradients and model updates between nodes.

This is problematic because gradients have the same size as the model.

We find that gradient updates have a positive skewness coefficient(Zwillinger and

Kokoska, 1999), with most being close to zero. Strom (2015) proposed a method to

compress the communication by dropping gradients that are below a constant thresh-

old. Dryden et al. (2016) improved this by using a ratio instead of a constant threshold.

However, Dryden et al. (2016) tested the method on a toy MNIST task. This chapter

re-investigate this approach on the actual NMT problem.

We focus on scaling NMT (Ñeco and Forcada, 1996; Bahdanau et al., 2014) and

compare our findings with prior work on MNIST. NMT parameters are dominated

by three large embedding matrices: source language input, target language input and

target language output. While these matrices deal with vocabulary words, any mini-

batch will only see a small fraction of the vocabulary, which makes the gradient updates

more skewed compared to MNIST. Additionally, the NMT system consists of multiple

parameters with different scales and sizes compared to MNIST’s shallow three-layer

network with uniform size.

39

40 Chapter 4. Sparse Gradient Communication

Our idea is inspired by the skew of the gradients towards zero. The gradient for

unseen words is zero in the input matrices and small in the output matrix due to nor-

malising to form a probability distribution. Empirically, we find that even internal

non-vocabulary matrices have skewed gradients, as shown in Figure 4.1. More for-

mally, the gradients have a positive skewness coefficient (Zwillinger and Kokoska,

1999). The output embedding matrix is very skewed (65.2 skewness coefficient). All

other internal matrices are positively skewed with an average skewness coefficient of

3.1.

0
5000

10000
15000
20000
25000
30000
35000

0 0.002 0.004 0.006 0.008 0.01

Fr
eq

ue
nc

y

|Gradient|

Figure 4.1: Histogram of gradient absolute values from an internal matrix, namely W0

of the target-side RNN, taken from the system described in Section 4.4.

Given the near-sparsity of gradients, we map the smallest values to zero and send

the largest values as a sparse matrix. Small values are accumulated locally so that they

can accrue into larger changes.

4.2 Related Work

An orthogonal line of work optimises the SGD algorithm and communication pattern.

Zinkevich et al. (2010) proposed an asynchronous architecture where each node can

push and pull the model independently to avoid waiting for the slower node. Moreover,

Chilimbi et al. (2014) and Recht et al. (2011) suggest updating the model without

a lock to allow race conditions. Additionally, Dean et al. (2012) ran multiple mini-

batches before exchanging updates to reduce the communication cost. Our work is a

more continuous version in which the most important updates are sent between mini-

batches.

The idea of compressing the gradient update is not new. Notably, 1-bit SGD (Seide

et al., 2014) and Quantisation SGD (Alistarh et al., 2016) function by converting the

4.3. Sparse Gradient Exchange 41

gradient update into a 1-bit matrix, thereby significantly reducing data communication.

Strom (2015) proposed a threshold quantisation that only sends gradient updates that

are larger than a pre-defined constant threshold. However, we must know the gradi-

ent scale before we can define a sensible threshold. Furthermore, since the gradient

scale might change throughout the training, Dryden et al. (2016) proposed a method to

recompute the threshold based on a given proportion.

4.3 Sparse Gradient Exchange

We sparsify gradient updates by choosing a threshold, and only sending gradients with

an absulute value larger than the threshold, dubbing this Gradient Dropping. This

approach is slightly different from Dryden et al. (2016) as we used a single threshold

based on absolute value, instead of dropping per-individual row as well as sparsify the

positive and negative gradients separately. We found out that our approach worked

well and simpler to implement.

Small gradients can accumulate over time and we find that zeroing them dam-

ages convergence. Following Seide et al. (2014), we remember residuals (in our case

dropped values) locally and add them to the next gradient.

Algorithm 1 Gradient dropping algorithm given gradient ∇ and dropping rate R.
function GRADDROP(∇, R)

∇+= residuals

Select threshold: R% of |∇| is smaller

dropped← 0

dropped[i]← ∇[i]∀i : |∇[i]|> threshold

residuals← ∇−dropped

return sparse(dropped)

end function

Gradient dropping is shown in Algorithm 1. This function is applied to all data

transmissions, including parameter pulls encoded as deltas from the last version pulled

by the client. To compute these deltas, we store the last pulled copy server-side. While

we also store the last pulled copy per client, the server is responsible for 1/Nth of the

parameters for N clients; therefore, memory is constant.

The selection to obtain the threshold is expensive (Alabi et al., 2012). However,

this can be approximated. We sample 0.1% of the gradient and obtain the threshold by

42 Chapter 4. Sparse Gradient Communication

running selection on the samples.

We can select a threshold locally to each matrix of parameters or globally for all

parameters. In the experiments, we find that layer normalisation (Lei Ba et al., 2016)

makes a global threshold work. Therefore, we use layer normalisation with one global

threshold by default. Prior work does not address this possible issue.

4.4 Experiment

We experiment with an image classification task based on an MNIST dataset (LeCun

et al., 1998) and Romanian→English neural machine translation system.

For our image classification experiment, we build a fully connected neural network

with three 4069-neuron hidden layers. We use AdaGrad with an initial learning rate of

0.005 and a mini-batch size of 40. This setup is identical to the experiment by Dryden

et al. (2016).

Our NMT experiment is based on the Marian implementation of Sennrich et al.

(2016a), which won first place in the 2016 Workshop on Machine Translation 1. It

is based on an attentional encoder-decoder GRU with 119M parameters and a default

batch size of 80. We save and validate every 10000 steps and select four saved mod-

els with the highest validation BLEU, and then average them into the final model.

AmuNMT (Junczys-Dowmunt et al., 2016) is used for decoding with a beam size of

12. Our test system has PCI Express 3.0 x16 for each of 4 NVIDIA Pascal Titan Xs.

The following experiments use asynchronous SGD, although our method also applies

to synchronous SGD.

4.4.1 Drop Ratio

Dryden et al. (2016) sparsify the gradient to 1/32 of its original size. However, based

on our findings on the gradient skewness, we suggest that this ratio can be increased

for further compression. To find an appropriate dropping ratio R%, we attempted 90%,

99%, and 99.9%, then measured performance in terms of loss and classification accu-

racy or translation quality approximated by BLEU (Papineni et al., 2002b) for image

classification and NMT tasks, respectively. We used a global threshold.

Figure 4.2 shows that the model still learns after dropping 99.9% of the gradients,

although it becomes very unstable. It also damages the BLEU score by 1.5 points over

1https://github.com/marian-nmt/marian-examples/tree/master/training-basics

4.4. Experiment 43

the baseline. The model converged slightly slower by dropping 99% of the gradients,

though it can catch up to a comparable BLEU score afterwards, despite exchanging

50x less data with offset-value encoding.

A similar pattern can be observed in the MNIST experiment. However, MNIST is

easier to train since the models reached high accuracy in the early stage of training.

A 99.9% drop rate is shown to be more stable in MNIST and can reach to respectable

accuracy (only losing 0.002% accuracy compared to the baseline), though it requires

more updates to reach this point. We suggest that gradient can be dropped more ag-

gressively on simpler tasks.

0 50 100 150 200
num updates x1000

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

0% Drop Rate (Baseline)
90% Drop Rate
99% Drop Rate
99.9% Drop Rate

0 50 100 150 200
Epoch

30

40

50

60

70

80

90

100

110

120

Tr
ain

in
g

Lo
ss

Training loss per-update

0% Drop Rate (Baseline)
90% Drop Rate
99% Drop Rate
99.9% Drop Rate

Figure 4.2: NMT: Training loss and validation BLEU for different dropping ratios.

0.0 2.5 5.0 7.5 10.0 12.5
num updates x1000

0.96

0.97

0.98

0.99

Va
lid

ati
on

 ac
cu

ra
cy

Convergence per-update

0% Drop Rate (Baseline)
90% Drop Rate
99% Drop Rate
99.9% Drop Rate

0.0 2.5 5.0 7.5 10.0 12.5
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ain

in
g

Lo
ss

Training loss per-update

0% Drop Rate (Baseline)
90% Drop Rate
99% Drop Rate
99.9% Drop Rate

Figure 4.3: MNIST: Training loss and validation BLEU for different dropping ratios.

44 Chapter 4. Sparse Gradient Communication

4.4.2 Local vs Global Threshold

Since parameters may not be on a comparable scale, we experiment with local thresh-

olds for each matrix or a global threshold for all gradients so, as discussed in Sec-

tion 4.3. We also investigate the effect of layer normalisation. We use a drop ratio of

99%, as previously suggested.

0 50 100 150 200
num updates x1000

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

Layer Norm. + Baseline
Layer Norm. + Global Drop
Layer Norm. + Local Drop
Baseline
Global Drop
Local Drop

0 50 100 150 200
Epoch

30

40

50

60

70

80

90

100

110

120

Tr
ain

in
g

Lo
ss

Training loss per-update

Layer Norm. + Baseline
Layer Norm. + Global Drop
Layer Norm. + Local Drop
Baseline
Global Drop
Local Drop

Figure 4.4: NMT: Comparison of local and global thresholds with and without layer

normalization.

0.0 2.5 5.0 7.5 10.0 12.5
num updates x1000

0.96

0.97

0.98

0.99

Va
lid

ati
on

 ac
cu

ra
cy

Convergence per-update

Layer Norm. + Baseline
Layer Norm. + Global Drop
Layer Norm. + Local Drop
Baseline
Global Drop
Local Drop

0.0 2.5 5.0 7.5 10.0 12.5
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ain

in
g

Lo
ss

Training loss per-update

Layer Norm. + Baseline
Layer Norm. + Global Drop
Layer Norm. + Local Drop
Baseline
Global Drop
Local Drop

Figure 4.5: MNIST: Comparison of local and global thresholds with and without layer

normalization.

The results show that layer normalisation has no visible impact on the MNIST

experiment. Similarly, there is no significant difference between dropping the gradient

4.4. Experiment 45

Drop words/sec image/sec
Ratio (NMT) (MNIST)

0% 13100 2489

90% 14443 3174

99% 14740 3726

99.9% 14786 3921

Table 4.1: Training speed with various drop ratios.

locally or globally. On the other side, our baseline NMT system converged poorly

without layer normalisation. Without layer normalisation, parameters are on various

scales and global thresholding performed the worst. With layer normalisation, both

global and local thresholding performed similarly.

4.4.3 Speed Benchmark

Raw Speed Measurement

Gradient dropping cuts communication cost significantly, thus improving raw speed

in terms of words/image processed per second, as shown in Table 4.1. The speed

improvement of dropping 99.9% of gradients is negligible compared to 99%. Based

on the trade-off between a minimal speed gain with a significant quality reduction as

shown in Section 4.4.1, we suggest that communicating only 1% of the gradient is

efficient enough. We further demonstrate this by measuring the time spent on inter-

GPU communication in Figure 4.6. Since batch size determines the ratio between

communication and computation, we test a range of batch sizes.

Figure 4.6 divides the total time into three categories. Communication time is the

time to transfer data between nodes, including wait time due to synchronisation. Com-

putation time is the time to complete the forward and backward pass and apply updates

with the optimiser. Lastly, “dropping” indicates compression overhead, including find-

ing thresholds and sparse encoding.

As shown in Figure 4.6, gradient dropping substantially reduces communication

cost. Reducing communication indirectly reduces the computation cost since there is

less overlap between communication and computation. Additionally, communication

cost is constant across different batch sizes, resulting in the speed ratio being higher

with lower batch sizes (Table 4.2). Unfortunately, the communication cost in this ex-

46 Chapter 4. Sparse Gradient Communication

0

50

100

150

200

baseline

dropped

baseline

dropped

baseline

dropped

baseline

dropped

se
co

nd
s

to
co

m
pl

et
e

10
00

ba
tc

he
s

Computation
Communication

Dropping

806448
batch-size:

32

Figure 4.6: Breakdown of training time for various batch sizes.

periment is less than 20% of the total time spent. Therefore, the relative improvement

is small.

Batch Size Base (w/s) Drop (w/s) Improvement

32 6989 8553 1.22x

48 9442 11205 1.19x

64 11613 13304 1.15x

80 13317 14740 1.11x

Table 4.2: Speed, in words per second, for various batch sizes.

Convergence Rate

Ultimately, training speed indicates how fast the model can converge. We measure this

by the time required to reach a certain quality threshold. In the MNIST experiment,

we train the model for 20 epochs, as per (Dryden et al., 2016). In an NMT experiment,

we tested this with batch sizes of 80 and 32 and trained for 13.5 hours.

While gradient dropping improves the raw speed, it also slightly damages the con-

vergence per update. While we process each batch faster with gradient dropping, the

model requires more batches to reach the same quality. These cancel each other out,

ultimately yielding no improvement in terms of accuracy or BLEU score over time, as

4.4. Experiment 47

0.00 0.02 0.04 0.06 0.08 0.10
Time (hours)

0.96

0.97

0.98

0.99

Va
lid

ati
on

 B
LE

U

Convergence over time

99% Drop
Baseline

Figure 4.7: MNIST classification accuracy over time.

0 2 4 6 8 10
Time (hours)

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence over time

Baseline (batch-size 80)
Drop 99% (batch-size 80)
Baseline (batch-size 32)
Drop 99% (batch-size 32)

Figure 4.8: NMT validation BLEU and loss over time.

Method Test Time to reach
BLEU 33 Dev. BLEU

batch-size 80

+ baseline 34.51 2.6 hours

+ 99% grad-drop 34.40 2.7 hours

batch-size 32

+ baseline 34.16 4.2 hours

+ 99% grad-drop 34.08 3.2 hours

Table 4.3: Summary of BLEU score obtained.

shown in Figure 4.7 and Figure 4.8.

To better investigate the convergence, we capture the time required for the model

to reach a near-convergence level of 33 BLEU, as shown in Table 4.3. Notably, final

48 Chapter 4. Sparse Gradient Communication

BLEU scores are essentially unchanged. Our algorithm converges 23% faster than the

baseline when using the sub-optimal batch size of 32. However, the model trained

under this batch size under-performs. Unfortunately, we do not observe any gain with

a batch size of 80, which is a setting with rapid communication (15.75 GB/s theoretical

over PCI express 3.0 x16). This leads us to hypothesise that gradient dropping will be

useful in multi-node scenarios, where communication is far more expensive.

4.4.4 One-bit Quantisation

We compare our results with the 1-bit quantisation technique Seide et al. (2014). This

quantisation is column-wise, where each gradient is replaced by their positive or neg-

ative column mean. We can also obtain further compression by stacking 1-bit quanti-

sation after dropping the gradient. We apply the quantisation after gradient dropping

with a 99% drop rate, layer normalisation and a global threshold.

0 25 50 75 100 125 150 175 200
num updates x1000

10

15

20

25

30

35

Va
lid

ati
on

 B
LE

U

Convergence per-update

Baseline
1-Bit Quantization
Drop 99%
Drop 99% + 1-Bit Quantization

Figure 4.9: BLEU score over time using 1-bit Quantisation method.

The result in Figure 4.9 shows that 1-bit quantisation slows down the convergence

more than gradient dropping. Furthermore, the training is unstable and converged to

a lower quality. However, the model managed to converge better if we stack both to-

gether. Since most of the gradients are near zero, their mean value would be small;

therefore, 1-bit quantisation might generate more quantisation error. Since we only

send large gradients with gradient dropping, it results in a larger mean for the quanti-

sation.

The 1-bit quantisation resulted in a 32x smaller communication cost. Stacking it

with our gradient dropping using a 99% drop rate provides 100x reduced communica-

tion cost since only 1 bit must be sent for the sign and 31 bits for the index. However,

4.5. Conclusion 49

since communication cost is already negligible after dropping 99% of the gradients,

further stacking it with 1-bit quantisation does not improve the raw speed. With more

damage to the convergence, we suggest that 1-bit quantisation may not be compatible

with every scenario.

4.5 Conclusion

Gradient updates are positively skewed, with most being close to zero. This can be ex-

ploited by delaying 99% of gradient updates locally, thereby reducing communication

size by 50x with coordinate-value encoding. The dropping threshold can be computed

globally or locally for each layer. However, our NMT system consists of many pa-

rameters with different scales; therefore, layer normalisation is necessary for global

thresholding. On the other hand, MNIST seems to work with any configurations we

tried.

Prior work suggested that 1-bit quantisation can be applied to compress communi-

cation. However, we empirically determined that this is not true for NMT, which we

attribute to skew in the gradients. However, stacking with sparsification is likely to be

sufficient since it separates large movers from small changes.

While the model trained with sparse gradients achieves comparable quality, the

speed improvement is insignificant. Our experiment with 4 Titan Xs shows that, on

average, only 17% of the time is spent communicating (with a batch size of 32) and we

achieve a 22% raw speed increase. Additionally, a compressed gradient is reduces the

convergence per update, thus yielding no speed increase in terms of the time required

to reach a certain BLEU score. Our next experiment involves testing this approach

on systems with expensive communication costs (e.g., multi-node environments). We

also experiment with restoring the sparse gradient quality to improve the convergence

per update.

Chapter 5

Sparse Gradient with Local Context

In this chapter, we incorporate local gradients to restore the sparse gradient quality in

gradient compression that was discussed in Chapter 4. This chapter is based on Aji

et al. (2019).

5.1 Introduction

In recent years, neural network models have grown dramatically in terms of the number

of parameters (Wen et al., 2017; Huang et al., 2019); therefore, exchanging gradients

during data-parallel training is costly in terms of both bandwidth and time—especially

in a distributed setting.

In Chapter 4, we discuss a solution to reduce communication cost by sending only

the top 1% of the largest gradients in terms of absolute values. Related communication

compression methods include synchronising less often (Konečnỳ et al., 2016; Ott et al.,

2018; Bogoychev et al., 2018) and quantisation (Seide et al., 2014; Alistarh et al.,

2016).

Since these compression methods are lossy, each node’s locally-computed gradi-

ent is not immediately reflected in the global gradient. Our experiments in Chapter 4

showed that gradient compression damages the model’s convergence. In this chapter,

we show that sparse gradient breaks the Transformer model (Vaswani et al., 2017),

which is known to be sensitive to noisy gradients (Chen et al., 2018; Ott et al., 2018).

We aim to repair the compressed gradient by combining it with local gradients to im-

prove the trade-off between convergence and compression rates.

In this chapter, we apply the gradient dropping method explored in Chapter 4 to re-

duce the inter-node communication during distributed neural network training, which

51

52 Chapter 5. Sparse Gradient with Local Context

leads to faster training speed but reduced model convergence rate. We find that com-

bining the sparse global gradient with the dense local gradient improves convergence.

However, adding local information implies that node parameters will diverge over time.

We address this by periodically averaging the model inspired by Konečnỳ et al. (2016)

to achieve faster end-to-end training time.

5.2 Related Work

5.2.1 Sparse Gradient Compression

In Chapter 4, we proposed a gradient compression technique exploiting its skewness

property by sending only a sparse matrix of large gradients. Unsent gradients are added

to the next gradient before compression (Seide et al., 2014).

Algorithm 2 Sparse SGD on node n at timestep t
1: procedure SPARSESGD(Ln

t) . Ln
t is local gradient of node n at step t.

2: Sn
t ← GradDrop(Ln

t , threshold)

3: Gt ← AllReduce(Sn
t)

4: ApplyOptimizer(Gt)

5: end procedure

An outline of the sparse gradient update is presented in Algorithm 2. We first com-

press the local gradient Ln
t with gradient dropping (the GradDrop function is defined

in Algorithm 1 from the previous chapter) and return the sparsified gradient Sn
t , which

will be used for the parameter update. Different from the previous work in Chapter 4,

we use synchronous training. With synchronous training, parameter updates run re-

dundantly in all nodes so that only gradients are sent over the network. Alternatively,

aggregating the gradients with a sharded parameter server architecture similar to asyn-

chronous training is an option. However, this method requires us to re-compress the

pulled parameter’s difference, which we consider slow as we have to run the com-

pression twice. This approach is also potentially more harmful since we have more

compression and stalled updating.

Notably, the sum of sparse gradients is less sparse. We can send the summed

gradient as it is (Lin et al., 2018) or again take the top 1% of summed gradients. Similar

to the issue in the parameter server, we found that re-compressing the gradient is slower

than sending less sparse gradients. In a case where we need more compression, we

5.3. Combining With Local Gradients 53

suggest tuning the initial compression rate instead.

5.2.2 Federated Averaging

Another way to reduce the bandwidth cost in multi-node training is by reducing the

communication frequency (Konečnỳ et al., 2016). In federated averaging, workers do

not exchange gradients. Instead, each worker uses its local gradient to update its local

parameters. Each worker updates their local parameters by averaging across other

nodes once every few steps.

θ
n
t = θ

n
t −Ln

t

θ
n
t =

∑
N
i=1 θi

t

N
if t mod P is 0

(5.1)

Formally, let θit be the i-th node’s parameter at the time step t. The parameter is

updated with the local gradient Ln
t . Once per-P steps, however, the parameter is then

averaged across other workers.

In contrast to gradient dropping, federated averaging primarily uses the workers’

local gradients for parameter updates. Gradients from other workers are not directly

communicated.

5.3 Combining With Local Gradients

Recent work suggests that the Transformer is sensitive to noisy gradients, thus result-

ing in substantially worse models (Chen et al., 2018; Ott et al., 2018). We also confirm

the Transformer’s sensitivity in Chapter 3. Consistent with these findings, both gra-

dient sparsification and federated averaging yield abysmally low-quality Transformer

models in our experiments. In gradient sparsification, noise comes from both thresh-

olding and the error feedback mechanism, resulting in stale gradients. Federated aver-

aging also introduces stale updates since this approach delays model synchronisation.

Previous work has shown that both noisy and stale gradients damage the model’s qual-

ity (McMahan and Streeter, 2014; Ott et al., 2018; Dutta et al., 2018).

To address noisy updates in gradient sparsification, we combine the compressed

global gradient and the uncompressed locally-computed gradient to better approxi-

mate the true global gradient. Formally, let Gt be the compressed global gradient at

time t and Ln
t be the gradient computed locally on node n. These will be combined

54 Chapter 5. Sparse Gradient with Local Context

Algorithm 3 Sparse SGD with local gradient incorporation on node n at timestep t
1: procedure SPARSESGD(Ln

t) . Ln
t is local gradient of node n at step t.

2: Sn
t ← GradDrop(Ln

t , threshold)

3: Gt ← AllReduce(Sn
t)

4: Cn
t ← Gt−Sn

t +Ln
t . Incorporate local context

5: ApplyOptimizer(Cn
t)

6: if t % sync period = 0 then
7: SynchronizeParams() . Synchronise parameters across nodes

8: end if
9: end procedure

into Cn
t , which will be used to update the parameters. Since the local gradients are

different between nodes, the parameters will diverge. Therefore, we also consider re-

synchronising the parameters every so often. The sparse gradient updates with local

gradient incorporation and periodic parameter synchronisation are outlined in Algo-

rithm 3.

5.3.1 Incorporating Local Gradients

An arguably naı̈ve method sums the two gradients. With the scale-invariant Adam

optimiser, summing is equivalent to averaging.

Cn
t = Gt +Ln

t

However, some of the locally-computed gradients were sent out and became part

of the global gradient, so they will be double-counted by the sum. To compensate, we

can subtract the gradients Sn
t sent by node n.

Cn
t = Gt−Sn

t +Ln
t

The term Gt − Sn
t equals to the sum of all sparse gradients from other nodes (or

approximates it when the all-reduce function compresses the result). The local gradient

Ln
t is used for updating and does not include the error feedback term En

t to prevent

applying gradients multiple times while they are pending in error feedback.

5.4. Experimental Setup 55

5.3.2 Periodic Synchronisation

Nodes will diverge because local gradients differ. Therefore, models are averaged peri-

odically. We average parameters (Konečnỳ et al., 2016) every 500 steps with a minimal

impact on speed. The sparse gradient updates with local gradient incorporation and pe-

riodic parameter synchronisation are outlined in Algorithm 3.

In the limit, a gradient is applied twice. First, directly from a local update eventu-

ally reaches the other nodes via periodic averaging. Second, it accumulates with other

gradients as compressed gradient and applied as part of a global update.

5.4 Experimental Setup

We use Marian (Junczys-Dowmunt et al., 2018) to train on nodes with 4xP100s. Multi-

node experiments use four of these nodes, each connected with 40Gb Mellanox Infini-

band. These scenarios will be abbreviated as 1x4 (one node with four GPUs) and 4x4

(four nodes with four GPUs each).

5.4.1 Model and Dataset

We perform our neural machine translation experiments on the following architectures.

Transformer: We train a Transformer model with six encoder and six decoder

layers with tied embeddings. The model has 62M parameters. We train the model on

the WMT 2017 English-to-German dataset with back-translated monolingual corpora

(Sennrich et al., 2016b) and byte-pair encoding (Sennrich et al., 2016c) consisting of

19.1M sentence pairs. Model performance is validated on newstest2016 and tested on

newstest2017.

Deep RNN: We also train a deep RNN model (Sennrich et al., 2017) with eight

layers of bidirectional LSTM consisting of 225M parameters. We train the model with

the same English-to-German dataset from the Transformer experiment.

Shallow RNN: Our shallow RNN model is based on the system by Sennrich et al.

(2016a) and is a single layer bidirectional encoder-decoder LSTM with attention con-

sisting of 119M parameters. We train this model on the WMT 2016 Romanian-to-

English dataset consisting of 2.5M sentence pairs. We also apply byte-pair encoding

to this dataset. Model performance is validated on newsdev2016 and tested on new-

stest2016.

56 Chapter 5. Sparse Gradient with Local Context

We apply layer normalisation (Lei Ba et al., 2016) and exponential smoothing to

train the model for eight epochs of training.

5.4.2 Scaling Hyperparameters

When scaling the workers by a factor of N, we expect to see:

• N times larger batch size, therefore;

• N times fewer updates given the same amount of data.

• Assuming the communication cost between nodes are free, we expect the same

number of update per given time.

If we scale the number of workers without adjusting the hyperparameters, we

should expect mostly the same convergence curve per update as the baseline, with

slight improvement. Practically, the convergence is slightly better with more workers

due to more stable gradients, as reported in Chapter 3. Assuming an equal number of

updates per time, we will not see any significant speed increase. In practice, consider-

ing the communication cost, multi-node training has fewer updates per time and thus

converges slower.

We apply several adjustments to the hyperparameters to accommodate the larger

effective batch size of multi-node synchronous SGD.

Learning rate: using the scale-invariant Adam optimiser, parameters move at the

same magnitude regardless of the gradient size. This is inefficient since there are fewer

updates within the same amount of data with a larger batch size; thus, the model moves

N times less far. Therefore, we linearly scale the learning rate in all multi-node exper-

iments, as suggested by Goyal et al. (2017). On one node, we use a learning rate of

0.0003 for Transformer and deep RNN models, and 0.001 for the shallow RNN model.

These values are multiplied by 4 for the 4-node setting. The single-node learning rates

were optimised such that further increasing them damages performance.

Warm-up: If we leave the warm-up rate unscaled, the model will reach the maxi-

mum learning rate slower. For example, single-node training reached 16k steps within

a single epoch, while reaching four epochs (half-way through training) in multi-node

training. To obtain the same learning rate given the same amount of data, we linearly

scale down the learning rate warm-up period. We use the warm-up step of 16k and 4k

for the Transformer and RNN experiments, respectively. These values are divided by

5.5. Results and Analysis 57

Transformer Deep RNN Shallow RNN

Model dev test dev test dev test

Multi-node (4x4) 35.39 28.78 34.45 27.81 35.45 34.45

4x4 + gradient dropping 0.00 0.00 34.38 27.50 35.20 33.89

4x4 + federated averaging 0.00 0.00 34.33 27.42 35.25 33.93

4x4 + grad. dropping + local update 35.07 28.50 34.52 27.68 35.35 34.45

Table 5.1: Training quality of multi-node training with gradient compression techniques,

as measured by BLEU scores.

4 for the 4-node setting. Similarly, these values were optimised since lowering them

damages quality.

In all of our experiments, we use a memory budget of 10GB per GPU to dynam-

ically fit as many sentences as possible, corresponding to an average of 450 and 250

sentences per batch per GPU for Ro-En and En-De, respectively. We follow the re-

maining hyperparameter settings, as suggested in the papers (Vaswani et al., 2017;

Sennrich et al., 2017, 2016a).

The raw words/second speed increase is only up to 2.7x faster from the expected

4x, signifying a communication bottleneck. With correct scaling, the model is also

expected to reach a near-convergence level 2.7x faster.

5.5 Results and Analysis

5.5.1 Restoring Quality

We approximate an impact on quality by measuring the BLEU score (Papineni et al.,

2002b) obtained per update by experimenting with both RNN and Transformer sys-

tems. The baselines are vanilla synchronous SGD, gradient dropping (Chapter 4) and

federated averaging (Konečnỳ et al., 2016). For gradient dropping, we perform a drop

ratio warm-up, gradually increasing it to 99% after 1000 steps. We average the model

every 20 steps in a federated averaging experiment and every 500 steps in our proposed

method.

Figure 5.1 shows the BLEU score per update. Gradient dropping and federated

averaging reduce gradient quality, resulting in the improvement per update becoming

slower. In the Transformer case, the model is entirely incapable of training. Local gra-

58 Chapter 5. Sparse Gradient with Local Context

0 2 4 6 8 10
num updates x1000

0

10

20

30
Va

lid
ati

on
 B

LE
U

Convergence per-update

(a) Transformer En-De

0 2 4 6 8 10
num updates x1000

0

10

20

30

Va
lid

ati
on

 B
LE

U

Convergence per-update (Deep RNN)

(b) Deep RNN En-De

0.0 0.5 1.0 1.5 2.0 2.5 3.0
num updates x1000

0

10

20

30

Va
lid

ati
on

 B
LE

U

Convergence per-update (Shallow RNN)

1x4
4x4

4x4 + FedAvg
4x4 + grad. dropping

4x4 + grad. dropping + local upd.

(c) Shallow RNN Ro-En

Figure 5.1: Model convergence per update on gradient dropping with local gradient

update. We focus on the early stage of the training before the BLEU scores converged.

Training Transformer with gradient dropping or federated averaging yielded 0 BLEU.

5.5. Results and Analysis 59

Model Words/ Raw speed-up Time to conv. speed-up

Transformer (En-De) second (1x4 / 4x4) conv. (1x4 / 4x4)

Single-node (1x4) 36029 - 7.61h -

Multi-node (4x4) 95691 2.7x / - 3.52h 2.1x / -

Multi-node (12x4) 252709 7.5x / 2.8x 1.84h 4.1x / 1.9x

4x4 + grad. dropping + local 127516 3.7x / 1.4x 2.75h 2.7x / 1.3x

12x4 + grad. dropping + local 370673 10.2x / 3.8x 1.44h 5.2x / 2.4x

Deep RNN (En-De)

Single-node (1x4) 18205 - 23.68h -

Multi-node (4x4) 42930 2.4x / - 10.59h 2.2x / -

4x4 + grad. dropping 60090 3.3x / 1.4x 8.94h 2.6x / 1.2x

4x4 + federated averaging 66149 3.6x / 1.5x 9.50h 2.5x / 1.1x

4x4 + grad. dropping + local 59747 3.3x / 1.4x 6.80h 3.5x / 1.5x

Shallow RNN (Ro-En)

Single-node (1x4) 36466 - 2.37h -

Multi-node (4x4) 75641 2.1x / - 1.05h 2.3x / -

4x4 + grad. dropping 118189 3.2x / 1.6x 0.94h 2.5x / 1.1x

4x4 + federated averaging 124273 3.4x / 1.6x 1.06h 2.2x / 1.0x

4x4 + grad. dropping + local 117756 3.2x / 1.6x 0.85h 2.8x / 1.2x

Table 5.2: Speed performance of gradient dropping with local gradient update com-

pared to several baselines. Time to convergence is the time required to reach 34.5

BLEU (Transformer & Shallow RNN) or 33.5 BLEU (Deep RNN).

dient incorporation improves the sparse gradient quality and improves convergence per

epoch over gradient dropping. In all architectures, the model achieved a comparable

training curve compared to the uncompressed multi-node training.

Table 5.1 summarises model performance in terms of BLEU. With local gradient

incorporation, the models obtained a better final quality, performing closer to uncom-

pressed multi-node training. Local gradient incorporation enables Transformer to train

with a sparse gradient, albeit with slight quality degradation (0.28–0.32%). This result

confirms Transformer’s sensitivity to noisy updates and the ability of local gradients to

mostly repair them.

60 Chapter 5. Sparse Gradient with Local Context

0 2 4 6 8 10
num updates x1000

0

10

20

30
Va

lid
ati

on
 B

LE
U

Convergence per-update

Baseline
Baseline + grad. dropping
Baseline + grad. dropping + No error-feedback

Figure 5.2: Convergence of Transformer model trained with sparse gradient without the

error-feedback mechanism.

5.5.2 Removing Error Feedback Mechanism

The error feedback mechanism was designed so that no gradients are removed, as we

simply delay them. However, with local context incorporation, the gradient will be

passed to the parameters, either as a local update or exchanged in a sparse gradient.

Therefore, we explore whether removing the error feedback mechanism affects training

performance.

Our experimental results on Transformer architecture indicate that the model is

now capable of training without the error feedback mechanism if the local gradient is

incorporated (Figure 5.2). Without the local context, the model diverged and reached

0 BLEU. However, it is evident that the training is rather slow and the final quality is

damaged (-2 BLEU from the baseline). Therefore, error feedback remains necessary

to maintain translation quality.

5.5.3 Improving Training Speed

We measure the speed improvement of our proposed method by capturing the raw

processing speed and time to reach a certain BLEU. We compare it to both gradient

dropping and federated averaging. We also measure the training efficiency by com-

paring the results with a single-node system. For the Transformer, we exclude vanilla

gradient dropping and federated averaging as the models fail to train.

Table 5.2 summarises our experiments. Gradient dropping reduces network traf-

fic and significantly improves raw training speed in the multi-node setting by up to

3.7x over the single-node setting, and up to 1.6x faster raw speed over the uncom-

5.5. Results and Analysis 61

0 2 4 6 8 10
Time (hours)

30

32

34

36

Va
lid

ati
on

 B
LE

U

Convergence over time

(a) Transformer En-De

0 5 10 15 20 25 30 35
Time (hours)

30

31

32

33

34

35

Va
lid

ati
on

 B
LE

U

Convergence over time

(b) Deep RNN En-De

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

30

31

32

33

34

35

36

Va
lid

ati
on

 B
LE

U

Convergence over time

1x4
4x4

4x4 + FedAvg
4x4 + grad. dropping

4x4 + grad. dropping + local upd.

(c) Shallow RNN Ro-En

Figure 5.3: Convergence over time of gradient dropping with local gradient update.

pressed multi-node setting. Federated averaging is faster since there is no additional

communication overhead for each step and no extra computational cost for sparse gra-

dient compression. Finally, our method incurs the combined cost of gradient dropping,

62 Chapter 5. Sparse Gradient with Local Context

occasional federated averaging and local updates; therefore, it is slower than gradi-

ent dropping at raw speed but still substantially faster than uncompressed multi-node

training.

While vanilla gradient dropping and federated averaging have better raw speed,

there is no clear improvement in convergence speed as noisy gradients damage the

convergence. Local gradient updates restore the gradient and improve the convergence

speed. In our RNN experiments, the convergence speed increase is closer to the raw

speed increase (up to 3.5x single-node performance).

Notably, the Transformer convergence rate increases more slowly than raw batch

processing speed. While the rule of thumb is to scale learning rate linearly with batch

size (Goyal et al., 2017), we showed in Chapter 3 that the Transformer model is also

sensitive to high learning rates. We obtained a 2.1x convergence speed increase from

the 2.7x raw speed increase. In contrast, raw and convergence speed increases in RNN

models are comparable.

Compression results are dependent on the ratio between computation and network

bandwidth in a system, as well as model size. Since the method reduces network load,

we would expect to see even larger speed improvement with commodity hardware

instead of the 40Gb Infiniband network used in our experiments.

5.5.4 Large-scale Experiment

The approach of linearly scaling up the learning rate and scale down the warm-up pe-

riod cannot be applied indefinitely. If the learning rate is too big, the model starts to

overshoot and fails to converge. Similarly, if the warm-up period is too short, the model

will be unstable as the learning rate increment is too steep. Prior work stated that find-

ing the upper limit of the learning rate is not simple, and might be task/dataset/model

dependent.

Orthogonally, our gradient dropping cannot be scaled indefinitely since summing

more sparse gradients across nodes results in a less sparse global gradient, thus reduc-

ing the compression ratio. To retain a high compression ratio, we can re-sparsify the

gradient back or simply increase the initial compression ratio. Both options compress

more gradient, therefore potentially damaging the quality.

We scale the 4x4 multi-node experiment to 48 GPUs distributed across 12 nodes

(12x4). Shard communication allows us to scale the node without increasing the com-

munication cost; hence, 12x4 achieved a linear raw speed increase from 4x4 baseline,

5.5. Results and Analysis 63

0 2 4 6 8 10
num updates x1000

0

10

20

30

Va
lid

ati
on

 B
LE

U

Convergence per-update

4x4
12x4
12x4 + grad. dropping (0.995) + local upd.
12x4 + grad. dropping + local upd.

(a) Convergence per-update

0 1 2 3 4 5
Time (hours)

30

32

34

36

Va
lid

ati
on

 B
LE

U

Convergence over time

4x4
12x4
12x4 + grad. dropping + local upd.

(b) Convergence over time

Figure 5.4: Convergence of Transformer model trained with 48 GPUs. Training is paral-

lelized across 12 nodes, with 4 GPUs each.

as shown in Table 5.2.

However, even without additional tuning, the model trained with (12x4 nodes) has

better convergence per update (Figure 5.4a), which we attribute to the larger batch

size. Unfortunately, increasing the learning rate reduces the quality by -0.7 BLEU

after multiplying the learning rate by 2 or more with a larger multiplier. However,

increasing the warm-up period mitigates the quality damage—though the model con-

verged slower. Therefore, we had to continue with the same learning rate as the 4x4

multi-node. Since we achieve a (nearly) linear raw speed increase, 12x4 reaches near-

convergence BLEU 1.9x faster than the 4x4, as shown in Figure 5.4b and Table 5.2.

While the improvement is certainly useful, it is not efficient since we spend 3x more

computational power to gain less than 2x the benefit.

This experiment concludes that scaling the hyperparameters for multi-node training

is challenging. Without scaling the hyperparameters (the learning rate in this case)

64 Chapter 5. Sparse Gradient with Local Context

properly, the training speed improvement is sub-optimal. However, there is a limit

to how high the learning rate can be set. This finding is congruent with Goyal et al.

(2017).

We then apply a gradient dropping with local context to the 12x4 multi-node set-

ting. Similarly, we drop 99% of gradients. With 12 nodes, the summed sparse gra-

dient is less sparse. We empirically find that the average sparsity is reduced to 96%.

Nonetheless, we still substantially improve the raw speed by 10.2x over the single-node

and by 1.36x over the uncompressed 12x4 multi-node setting. There is no significant

convergence degradation per update, as shown in Figure 5.4a.

In our experiment, the sparse gradient update is still usable in the 48 GPUs set-

ting. Theoretically, with even more nodes, the summed sparse gradients will be dense

enough, thus negating the speed increase. However, we argue that under larger-scale

experiments scaling the hyperparameters properly should be prioritised above the sparse

gradient updates, which should be considered for future studies. We see this as inter-

esting future work.

5.6 Conclusion

We improve model convergence when training with sparse gradients by utilising an ad-

ditional locally-computed gradient while also negating quality loss (in terms of BLEU)

caused by gradient dropping. With gradient dropping and local gradient incorporation,

we improve the raw training speed in terms of words/second by up to 3.7x (from the

ideal case of 4x speed-up) over the single-node system, and by up to 1.4x over the

uncompressed multi-node system. We also evaluate the training speed based on the

time required to reach a near-convergence BLEU score. In this case, we improve the

training speed by up to 3.5x (from the ideal case of 4x speed-up) over the single-node

system and by up to 1.5x over the uncompressed multi-node system.

Chapter 6

Transfer Learning as a Better

Initialization

In this chapter, we perform several black box ablation studies that limit information

transfer and then measure the quality impact to gain an understanding of transfer

learning. We observe how transfer learning acts to eliminate the warm-up phase in

a transformer architecture. This chapter is based on Aji et al. (2020).

6.1 Introduction

Transfer learning, where a high-resource NMT model is transferred to initiate a low-

resource model, is a common method for improving the low-resource NMT perfor-

mance (Zoph et al., 2016; Dabre et al., 2017; Qi et al., 2018; Nguyen and Chiang,

2017; Gu et al., 2018b). However, it is unclear what settings make transfer learning

successful and what knowledge is being transferred.

Understanding why transfer learning is successful can improve best practices while

also opening the door to investigating ways to gain similar benefits without requiring

parent models. In this paper, we perform several ablation studies on transfer learning

in order to understand what information is being transferred.

We apply a black box methodology by measuring the quality of end-to-end transla-

tion systems. Typically, our experiments have a baseline that was trained from scratch,

an off-the-shelf transfer learning baseline and simplified versions of the transfer learn-

ing scheme. If a simplified version recovers some of the quality gains of full transfer

learning, it suggests that the simplified version has captured some of the information

being transferred. Since information may be transferred redundantly, our claims are

65

66 Chapter 6. Transfer Learning as a Better Initialization

limited to sufficiency rather than exclusivity.

Transferring word embeddings is not straightforward since languages have differ-

ent vocabularies. Zoph et al. (2016) claimed that vocabulary alignment is not neces-

sary, while Nguyen and Chiang (2017) and Kocmi and Bojar (2018) suggest a joint vo-

cabulary. We find that the vocabulary has to be aligned before transferring the embed-

ding to achieve a substantial improvement. Transfer learning without the embedding

or with vocabulary mismatches is still possible, but with lower quality. Conversely,

transferring only the word embeddings can be worse than transferring nothing at all.

A rudimentary model of machine translation consists of alignment and token map-

ping. We hypothesize that these capabilities are transferred across languages. To test

this, we experiment with transferring from auto-encoders that learn purely diagonal

alignment and possibly language modelling. To remove the effect of language mod-

elling, we train auto-encoders on random strings sampled uniformly. However, all of

these scenarios still have simple copying behaviour, especially with tied embeddings.

Therefore, we also attempt a bijective vocabulary mapping from source to target, forc-

ing the model to learn the mapping as well. Curiously, parents trained with bijectively-

mapped vocabularies transfer slightly better to children.

We then investigate transfer learning for high-resource children, where the goal is

reduced training time since they mainly attain the same quality. Transfer learning pri-

marily replaces the warm-up period, though only real language parents yielded faster

training.

6.2 Related Work

Transfer learning has been successfully used in low-resource scenarios for NMT. Zoph

et al. (2016) gain 5 BLEU points in Uzbek–English by transferring from French–

English. Their style of transfer learning copies the entire model, including word em-

beddings, ignoring the vocabulary mismatch between parent and child. They used

separate embeddings for source and target language words, whereas tied embeddings

(Junczys-Dowmunt et al., 2018) have since become the de-facto standard in low-

resource NMT. Tied embeddings provide us with the opportunity to revisit some of

their findings. In Section 6.5, we find an English–English copy model does work as

a parent with tied embeddings, whereas Zoph et al. (2016) reported no gains from a

copy model with untied embeddings.

Methods to cope with vocabulary mismatch have improved since Zoph et al. (2016).

6.2. Related Work 67

Kocmi and Bojar (2018) suggest that a shared vocabulary between the parent language

and the child is beneficial, though this requires knowledge of the child languages when

the parent is trained. Addressing this issue, Gheini and May (2019) proposed a uni-

versal vocabulary for transfer learning. Their universal vocabulary was obtained by

jointly training the sub-word tokens across multiple languages at once, applying Ro-

manisation to languages in non-Latin scripts. However, unseen languages may only be

representable in this universal vocabulary with a very aggressive and potentially sub-

optimal subword segmentation. Orthogonally, Kim et al. (2018); Lample et al. (2018);

Artetxe et al. (2018); Kim et al. (2019b) use bilingual word embedding alignment to

initialise the embedding layer to tackle low resource language pairs. In Section 6.4.2,

we compare a variety of vocabulary transfer methods.

Prior work (Dabre et al., 2017; Nguyen and Chiang, 2017) stated that a related

language is the best parent for transfer learning. Lin et al. (2019) explore options to

choose the best parent and conclude that the best parent language might not neces-

sarily be related but is instead based on external factors such as the corpus size. In

Section 6.3, we try two parent models in both directions to set baselines for the rest of

the paper; an exhaustive search is not our main purpose.

Another approach to low-resource (or even zero-shot) NMT is through multilingual

models (Johnson et al., 2016), which is similar to training the parent and child simul-

taneously. A related idea creates meta-models with vocabulary residing in a shared

semantic space (Gu et al., 2018a,b).

If there is more parallel data with a third language, often English, then pivot-

ing through a third language can outperform direct translation (Cheng et al., 2016).

This approach requires enough source–pivot and target–pivot parallel data, which is

arguably hard in many low resource scenarios, such as Burmese, Indonesian, and Turk-

ish.

Orthogonal to transfer learning, Lample et al. (2018) and Artetxe et al. (2018) have

proposed a fully zero-shot approach for low resource languages that relies on aligning

separately-trained word embeddings to induce an initial bilingual dictionary. The dic-

tionary is then used as the basis for a translation model. However, these methods do

not generalise to arbitrary language pairs (Søgaard et al., 2018). Moreover, our setting

presumes a small amount of parallel data in the low-resource pair.

68 Chapter 6. Transfer Learning as a Better Initialization

6.3 Baseline Transfer Learning

We start with arguably the simplest form of transfer learning: train a parent model then

switch to training with the child’s dataset following Zoph et al. (2016). We attempt to

match and initialise the embedding vectors of the same tokens from the parent to the

child. We later investigate different approaches to transferring the embeddings. As

transfer learning requires a parent model, we start by sweeping different high-resource

languages for the parent model to set a baseline.

Choosing a parent language pair is one of the first issues to solve when performing

a transfer-learning experiment. However, this is not a simple task. Prior work (Dabre

et al., 2017; Nguyen and Chiang, 2017) suggest that a related language is the best

option, albeit related is not necessarily well defined. Recently, Lin et al. (2019) per-

formed a grid-search across various parent languages to determine the best criteria for

selecting the optimal parent when performing transfer learning. Their work showed

that the best language parents might also be determined by external factors such as the

corpus size, on top of the language relatedness.

We first explore four potential parents: German and Russian from/to English.

From each of them, we transfer the parameters to our low-resource language pair of

{Burmese, Indonesian, Turkish} to English. Before presenting the results, we lay out

the experimental setup used for the rest of the paper.

6.3.1 High-resource Datasets

We use German-English and Russian-English datasets for our parent models. Our

German-English dataset is taken from the WMT17 news translation task (Bojar et al.,

2017). Our Russian-English is taken from the WMT18 task (Bojar et al., 2018). For

both pairs, we preprocess the input with byte-pair encoding (Sennrich et al., 2016c).

6.3.2 Low-resource Datasets

We use the following datasets:

Burmese–English: For our My→En parallel data, we used 18k parallel sentences

from the Asian Language Treebank (ALT) Project (Ding et al., 2018, 2019) collected

from news articles.

Indonesian–English: Id→En parallel data consists of 22k news-related sentences,

6.3. Baseline Transfer Learning 69

which are taken from the PAN Localization BPPT corpus.1 This dataset does not

have a test/validation split. Hence we randomly sample 2000 sentences to use as test

and validation sets. We augment our data by backtranslating (Sennrich et al., 2016b)

News Crawl from 2015. Our total training set (including the back-translated sentences)

consists of 88k pairs of sentences.

Turkish–English: Tr→En data comes from the WMT17 news translation task

(Bojar et al., 2017). This data consists of 207k pairs of sentences. Similar to Id→En,

we add a back-translation corpus from News Crawl 2015. Our total training data con-

sists of 415k sentence pairs.

For all language pairs, we use byte-pair encoding (Sennrich et al., 2016c) to to-

kenise words into subword units.

6.3.3 Training Setup

We use a standard transformer-base architecture with six encoder and six decoder lay-

ers for all experiments with the default hyper-parameters (Vaswani et al., 2017). Train-

ing and decoding use Marian (Junczys-Dowmunt et al., 2018), while evaluation uses

SacreBLEU (Post, 2018).

6.3.4 Results

BLEU

Parent My→En Id→En Tr→En

- 4.0 20.6 19.0

En→De 17.5 27.5 20.2

En→Ru 17.8 27.4 20.3

De→En 17.3 26.3 20.1

Ru→En 17.1 26.8 20.6

Table 6.1: Transfer learning performance across different language parents.

Our results on Table 6.1 show that there is no clear evidence that one parent is

better than another. Whether the non-English languages share a script or English is on

the same side does not have a consistent impact. The main goal of this section was to

1http://www.panl10n.net/english/OutputsIndonesia2.htm

http://www.panl10n.net/english/OutputsIndonesia2.htm

70 Chapter 6. Transfer Learning as a Better Initialization

set appropriate baselines; we primarily use English→German and German→English

as the parents.

6.4 Transferring Embedding Information

Parent and child languages have a different vocabulary, so embeddings are not inher-

ently transferable. We investigate what is transferred in the embeddings and evaluate

several vocabulary combination methods.

6.4.1 Are the Embeddings Transferable?

We first explore whether the embedding matrix contains any transferable information.

We divide the model into embedding parameters and everything else: inner layers.

Table 6.2 shows what happens when these parts are or are not transferred.

BLEU

Transferring De→En parent En→De parent

Emb. Inner My→En Id→En Tr→En My→En Id→En Tr→En avg.

Y Y 17.8 27.4 20.3 17.5 27.5 20.2 21.7

N Y 13.6 25.3 19.4 10.8 24.9 19.3 18.3

Y N 3.0 18.2 19.1 3.4 18.8 18.9 13.7

N N 4.0 20.6 19.0 4.0 20.6 19.0 14.5

Table 6.2: Transfer learning performance by only transferring parts of the network. Inner

layers are the non-embedding layers. N = not-transferred. Y = transferred.

Our low-resource languages achieve better BLEU even if we only transfer the inner

layers. In contrast, only transferring the embeddings is not beneficial, and sometimes

it is even harmful to the performance. Finally, transferring all layers yields the best

performance.

To further investigate which part of the network is more crucial to transfer, we

took the best-performing child then reset either the embeddings or inner layers and

restarted training. We explore whether the model is capable of recovering the same

or comparable quality by retraining. We can look at this experiment as ‘self’ transfer

learning. Results are shown in Table 6.3. When the inner layers are reset, self-transfer

performs poorly (close to the quality without transfer learning at all), even though the

6.4. Transferring Embedding Information 71

BLEU

Transfer My→En Id→En Tr→En

baseline (no transfer) 4.0 20.6 19.0

transfer, train 17.8 27.4 20.3

transfer, train, reset emb, train 13.3 25.0 20.0

transfer, train, reset inner, train 3.6 18.0 19.1

Table 6.3: Investigating the model’s capability to restore its quality if we reset the pa-

rameters. We use En→De as the parent.

embeddings are properly transferred. Conversely, the models can somewhat restore

their quality even if we reset the embedding layer. This result further verifies that

transferring the inner layers is the most critical aspect of transfer learning.

We conclude that transferring the inner layers is critical to performance, with far

more impact than transferring the embeddings. However, the embedding matrix has

transferable information, as long as the inner layers are included.

6.4.2 How to Transfer the Embeddings

Mixed recommendations exist on how to transfer embeddings between languages with

different vocabularies. We compare methods from previous work, namely random

assignment (Zoph et al., 2016) and joint vocabularies (Nguyen and Chiang, 2017)

with two additional embedding assignment strategies based on the frequency and token

matching as a comparison. In detail, we explore:

• Exclude Embedding: We do not transfer the embeddings at all. As such, we

show that transfer learning works without transferring the embedding layer. In

the present experiment, this method acts as one of the baselines.

• Frequency Assignment: We can transfer the embedding information regard-

less of the vocabulary mismatch. However, the toolkit sorts the words based

on their frequency; therefore, embeddings are also transferred in that particu-

lar order. Regardless, we can determine whether word frequency information is

transferred.

• Random Assignment: Zoph et al. (2016) suggest that randomly assigning a

parent word embedding to each child word is sufficient, relying on the model to

72 Chapter 6. Transfer Learning as a Better Initialization

a

b

c

d

x

y

a

b

(a) Exclude embedding

a

b

c

d

x

y

a

b

(b) Freq. assignment

a

b

c

d

x

y

a

b

(c) Random assignment

a

b

c

d

x

y

a

b

(d) Token Match

a

b

c

d

a

b

c

d

x

y

x

y

(e) Joint vocab

Figure 6.1: Illustration of various strategies on how to transfer the embedding vector.

untangle the permutation. This approach is simple and language-agnostic, thus

universally applicable. We shuffle the vocabulary to achieve a random assign-

ment.

• Joint Vocabulary: Nguyen and Chiang (2017) suggest that it is better to use a

shared vocabulary between the parent and child language. This can be obtained

by training a joint BPE token. To achieve this, we transfer the word embedding

information of the common tokens. Since tied embeddings are used, we share the

same vocabulary between the target and source of both the parent and the child

language. One drawback of this technique is that we must prepare the vocabulary

in advance. Therefore, switching the parent or the child might require us to re-

train the model.

• Token Matching: We assign the embeddings with the same token first and ran-

domise the rest. This approach is designed to allow some word embeddings to

be transferred correctly without the need to re-train the parent with every exper-

iment, as in the case of joint vocabulary.

The different strategies are illustrated in Figure 6.1.

6.4. Transferring Embedding Information 73

BLEU

De→En parent En→De parent

Embedding My→En Id→En Tr→En My→En Id→En Tr→En avg.

- 4.0 20.6 19 4.0 20.6 19 14.5

Exclude embedding 13.6 25.3 19.4 10.8 24.9 19.3 18.3

Frequency assign 14.2 24.4 19.4 13.9 24.3 19.4 19.2

Random assign 13.9 24.6 19.2 13.8 23.9 19.3 19.0

Token matching 17.8 27.4 20.3 17.5 27.5 20.2 21.7

Joint vocabulary 18.5 27.5 20.9 18.5 28.0 19.6 22.0

Table 6.4: Transfer learning performance with different ways to transfer the embedding.

Prior experiments in Section 6.4.1 demonstrate that we can apply transfer learning

even if we only transfer the inner layers. Curiously, random assignment and frequency

assignment are not better than excluding the embeddings, except for Burmese to En-

glish transferred from English to German. Therefore, the information in the embedding

is lost when transferred to the incorrect token. From these results, we conclude that the

model is incapable of untangling the embedding permutation as stated by Zoph et al.

(2016).

Transfer learning yields better results when we attempt to transfer the embeddings

to the correct tokens. In the joint vocabulary setting, not every token is observed in the

parent language dataset; therefore, only a section of the embedding layer is correctly

trained. However, we still observe a significant improvement over the random and

frequency-based assignment.

We can also transfer the embedding vectors by matching and assigning the word

embedding with the same tokens. Vocab matching achieves comparable results to joint

vocabulary, except for the lowest-resource language, Burmese. Therefore, this sim-

ple matching can be used as a cheaper alternative over a joint vocabulary. On top of

that, this approach is more efficient as we do not transfer and wastefully reserve extra

memory for tokens that will not be seen in the child language.

These results suggest that word information stored in the embedding layer is trans-

ferable, as long as the vectors are assigned correctly. Therefore, better ways of han-

dling the embedding layer transfer are joint BPE and token matching, as they further

improve the performance of the child language pair.

74 Chapter 6. Transfer Learning as a Better Initialization

6.5 Transferring Structural Information

Parent Shared Example

En→De Id→En src: Bank Mandiri bisa masuk dari mikro hingga korporasi .

out: Bank Mandiri bisa memperingatkan dari cen@@ hingga korporasi .

alignment: 0-0 1-1 3-3 5-5 6-6 7-7 9-2 9-4 9-8 9-9

De→En Id→En src: Bank Mandiri bisa masuk dari mikro hingga korporasi .

out: seperti Mandiri bisa masuk a mikro hingga korporasi .

alignment: 2-2 3-0 3-1 3-3 3-9 5-5 6-6 7-7 7-8 9-4

Table 6.5: Output example of transferred model without fine tuning. The model performs

monotonic alignment.

To understand what information is being transferred with transfer learning, we test

the parent model’s performance on the child language without any additional training.

When a pre-trained model is transferred to another language pair, the model has

not yet seen the child language vocabulary. When presented with an input in a new

language, the model is unable to translate correctly. However, as we can see in Ta-

ble 6.5, the model manages to perform diagonal alignment properly, albeit it is mostly

copying the input (on average of 75% of the time).

Based on this observation, we see that fallback copying behaviour, including mono-

tonic alignment, is transferred. This can be useful for named entity translation (Currey

et al., 2017). To test our claim, we prepare parents that implicitly learn to copy or

transform input tokens diagonally.

We can create a copy sequence model (or auto-encoder) model by giving the model

the same sentences for both source and target. We pick an English monolingual dataset.

We also use a Chinese monolingual corpus to explore whether the chosen monolingual

language matters. Besides, we can artificially create a random sequence for the train-

ing set. The random sequence is useful to determine whether any language-specific

information is being transferred, as such information is absent in a random sequence.

To simulate the translation behaviour better, we also prepare a substitution parallel

corpus. We transform every token into another based on a predetermined 1:1 mapping.

We create a substitution corpus for both the English and the synthetic corpus. With

tied embeddings, the substitution corpus should help the model translate one token

into another, instead of just copying. Table 6.6 illustrates the 6 monolingual/synthetic

parents that we use for this experiment.

6.5. Transferring Structural Information 75

Parent Type

Mono copy sequence src: Madam President , on a point of order .

(En→En) tgt: Madam President , on a point of order .

Mono sub sequence src: Click write , ideologies rotate sful ECHO recommended struggle

(EnS→En) tgt: Madam President , on a point of order .

Mono copy sequence src: 保持点神秘感。

(Zh→Zh) tgt: 保持点神秘感。

Mono sub sequence src:比赛漂亮家宝1503知识产权

(ZhS→Zh) tgt: 保持点神秘感。

Random copy sequence src: 1 3 2 1 1

(Rand→Rand) tgt: 1 3 2 1 1

Random sub sequence src: 2 4 3 2 2

(RandS→Rand) tgt: 1 3 2 1 1

Table 6.6: Monolingual and random parents with their sentence example.

We perform transfer learning experiments from every monolingual and synthetic

parent to all three child languages, as summarised in Table 6.7. For comparison, we

also provide the result of transfer learning with an actual translation model as a parent.

We notice that there is no improvement in transfer learning for the Turkish model in

terms of the final BLEU. However, upon further investigation, transfer learning has

an impact on the convergence speed, thus signalling information being transferred.

To measure this, we capture the validation BLEU score for Tr→En after 10k training

steps.

In general, transferring from any monolingual or synthetic parent yields better

BLEU (or faster convergence for Turkish) compared to training from scratch. Al-

though, the improvement is sub-optimal when compared with transfer learning from a

proper parent. However, we can use these gains to measure the information transferred

in transfer learning.

In general using monolingual English is better than using monolingual Chinese. In

monolingual English, we can transfer the embedding information correctly with token

matching. Therefore, consistent with our previous experiment, embedding information

is transferred.

Using a Chinese parent is better than using random sequences. Our random se-

quence is uniformly sampled independently for each token. Therefore, unlike a real

monolingual corpus, learning language modelling from this random sequence is im-

76 Chapter 6. Transfer Learning as a Better Initialization

BLEU

Parent My→En Id→En Tr→En Tr(10k)

- 4.0 20.6 19.0 14.3

De→En 17.8 27.4 20.3 20.2

En→En 10.4 23.3 18.5 16.0

EnS→En 12.3 23.8 19.0 16.5

Zh→Zh 8.3 22.5 18.8 16.3

ZhS→Zh 11.2 23.5 19.0 16.3

Rnd→Rnd 6.2 21.9 19.0 15.2

RndS→Rnd 7.9 22.0 19.3 15.1

Table 6.7: Transfer learning performance on monolingual and synthetic parents. We

also measure the validation BLEU of Tr→En after 10k updates.

possible. Thus, we conclude that the model transfers some statistical properties of

natural languages.

Transferring from a random sequence copy model yields better result compared to

training the model from scratch. While the improvement is minimal, we can see that a

naı̈ve model that performs copying is better as a model initialisation. Substitution se-

quence parent models perform better than their copying counterparts only on Burmese.

We conclude that alignment is transferred.

Transfer learning with an actual NMT system as a parent still outperforms the

monolingual and synthetic parents, albeit they are initially a copy model. We argue

that the monolingual parents perform nearly perfectly at the copying task, and have

perfect diagonal alignment, and therefore overfit to this artificial setting when used as

a parent.

6.6 Transfer Learning for High-Resource Languages

Transfer learning can be used to initialise a model even if final quality does not change.

Compared to random initialisation, we argue that a pre-trained model functions as

better initialisation. Therefore, since we initialise the model better, it should converge

faster. This behaviour was already presented in Table 6.7, where the transferred model

converges more rapidly. However, we should explore this behaviour in a setting where

faster training matters more: when training high-resource language pairs.

6.7. Conclusion 77

For this experiment, we take an English-to-Russian model as a parent for an English-

to-German model. We align the embedding with the same BPE tokens instead of using

a joint vocabulary since this would require re-training the parent. We also attempt to

exclude the embedding completely. These choices are practical in a real-world sce-

nario, especially when we measure for efficiency.

Parent BLEU Num. Steps to 34 BLEU

Baseline 35.6 48k

+ no warm-up 0.0 -

En→EnS 35.4 60k (0.8x faster)

En→Ru 35.7 40k (1.2x faster)

+ token matching 35.7 34k (1.4x faster)

+ no warm-up 35.6 22k (2.1x faster)

Table 6.8: Transfer learning effect to the model’s quality of high-resource language. We

also measure the time to reach a near-convergence level of 34 BLEU.

In Table 6.8, we show that transfer learning does not improve the model’s final

quality. However, we can see both from the Table, and visually in Figure 6.2, that

transfer learning speeds up the convergence by up to 1.4x, assuming the parent model

has been prepared before.

In the early stage of training, the gradients produced are quite noisy, which is par-

ticularly harmful to the transformer model (Popel and Bojar, 2018). Therefore, training

transformer models usually require a precise warm-up setup. However, transfer learn-

ing can be used as a better initialisation, thus skipping the noisy early training. To

further confirm this, we remove the learning rate warm-up to observe the impact of a

pre-trained model.

As shown in Figure 6.2, the pre-trained model remains capable of learning under

more aggressive hyperparameters. On the other hand, the model without pre-training

fails to learn. This result is congruent with the findings of Platanios et al. (2019), who

found that warm-up in the Transformer can be removed with curriculum learning.

6.7 Conclusion

We demonstrate that the internal layers of the network are the most crucial for cross-

lingual transfer learning. The embeddings contain transferable information, as long as

78 Chapter 6. Transfer Learning as a Better Initialization

0 5 10 15 20 25 30
num updates x1000

0

10

20

30
va

lid
ati

on
 B

LE
U

Convergence per-update

Baseline
Baseline + No warm-up
En-En Substitiution
En-Ru
En-Ru + Token matching
En-Ru + Token matching + No warm-up

Figure 6.2: Transfer learning effect on the convergence of a high-resource system.

Transfer learning removes the need for warm-up.

the vectors are mapped correctly and the inner layers are also transferred. While not as

optimal, we can still perform transfer learning by excluding the embedding. In transfer

learning, we can also transfer the alignment. Transferred parents without fine-tuning

will align the input diagonally and copy most of the tokens. We further demonstrate

that transfer learning still functions with a simple copy model, even with an artificial

dataset—albeit with a reduced quality.

From a theoretical perspective, our results indicate that while transfer learning is

effective in our scenario, it performed less “transfer” than previously thought. There-

fore, a promising research direction to investigate would involve the development and

assessment of improved initialisation methods that would more efficiently yield the

benefits of the model transfer.

From a practical perspective, our results indicate that we can initialise models with

a pre-trained model regardless of the parent language or vocabulary handling. With

this perspective in mind, we can use transfer learning as a better initialisation, result-

ing in the child model having more stable gradients from the onset of training. There-

fore, models can train and converge faster, which is useful in high-resource settings.

With transfer learning, the model can be trained with more aggressive hyperparam-

eters—such as removing the learning rate warm-up entirely—to further improve the

convergence speed. This result further highlights the use of transfer learning as a bet-

ter model initialisation.

Chapter 7

4-bit Transformer Model

Previous chapters have focused on more efficient training of NMT via reducing com-

munication and better model initialisation. In this chapter, we will focus on the more

efficient deployment of NMT models via model compression. We design a quanti-

sation procedure to compress NMT models better for devices with limited hardware

capability. Since most neural network parameters are near zero, we employ logarith-

mic quantisation instead of fixed-point quantisation. This chapter is based on Aji and

Heafield (2019b).

7.1 Introduction

Neural Machine Translation (NMT) is resource-demanding. Current state-of-the-art

architectures, such as the Transformer (Vaswani et al., 2017) or deep RNN (Miceli-

Barone et al., 2017) are typically hundreds of megabytes in size. In a client-based

translation system, these large models must be deployed locally, thus consuming net-

work bandwidth for distributing the model, and disk space for storing the model.

Model quantisation has been widely studied as a way to compress model size and

increase the inference speed. However, most of this work has focused on convolution

neural networks for computer vision tasks (Miyashita et al., 2016; Lin et al., 2016;

Hubara et al., 2016, 2017; Jacob et al., 2018). As such, research on model quantisation

for NMT tasks remains limited.

We find that the model can be compressed at up to 4-bit precision without sacrific-

ing quality. We first explore the use of logarithmic-based quantisation over fixed-point

quantisation (Miyashita et al., 2016) based on the empirical findings that parameter

distribution is not uniform, but instead concentrated near zero (Lin et al., 2016; See

79

80 Chapter 7. 4-bit Transformer Model

et al., 2016). The magnitude of a parameter also varies across layers; therefore, we

propose an improved method of scaling the quantization centres. We also notice that

biases do not quantise very well. However, since biases do not consume a noticeable

amount of memory, they can be left unquantised. Lastly, we explore the significance

of re-training in the model compression scenario. We adopt an error feedback mecha-

nism (Seide et al., 2014) to preserve the quantisation error rather than discarding it at

every update during re-training.

7.2 Related Work

A considerable amount of research on model quantisation has been performed in the

area of computer vision with convolutional neural networks; however, research on

model quantisation in the field of neural machine translation is far more limited. There-

fore, we will also refer to work on neural models for image processing in this section,

where appropriate.

Hubara et al. (2016) quantised the model and activation to binary on a CNN net-

work for various image classification tasks. The binary network achieved near state-

of-the-art quality on several easier tasks such as MNIST and CIFAR-10 but achieved

sub-par performance on the more challenging ImageNet dataset (losing over 20% ac-

curacy with quantised GoogleNet). Hubara et al. (2017) later reported that with 6-bit

fixed-point quantisation, GoogleNet “only” lost 5% of accuracy. Lin et al. (2016) used

different bit precisions on various CNN layers, achieving over 20% compression on

the CIFAR-10 task.

Since the model’s parameters are highly concentrated near zero, Miyashita et al.

(2016) opted for logarithmic quantisation. They report an improvement in preserving

model accuracy over linear quantisation while achieving the same model compression

rate. They also reported negligible accuracy degradation when compressing VGG16

with 3-bit logarithmic quantisation, whereas 3-bit fixed-point quantisation suffered a

6% accuracy drop.

Hubara et al. (2017) compress an LSTM-based architecture for language modelling

to 4-bits without any quality degradation but had to scale the hidden layer size by 3.

See et al. (2016) pruned an NMT model by removing any weight values lower than a

certain threshold. They achieve 80% model sparsity without any quality degradation.

A relevant work with respect to our purposes is the submission of Junczys-Dowmunt

et al. (2018) to the Shared Task on Efficient Neural Machine Translation in 2018. This

7.3. Low-precision Neural Machine Translation 81

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Figure 7.1: Histogram of the first encoder’s feed-forward network weight. Parameters

follow a normal distribution. Vertical lines illustrate the log-based quantisation centres.

submission applied an 8-bit linear quantisation for NMT models without any notice-

able deterioration in translation quality. Similarly, Quinn and Ballesteros (2018) pro-

posed the use of 8-bit matrix multiplication to increase the CPU inference speed of an

NMT system.

7.3 Low-precision Neural Machine Translation

7.3.1 Log-based Compression

Parameters in deep learning models are normally distributed Lin et al. (2016); See

et al. (2016). Therefore, a uniformly distributed fixed-point quantisation may not fit the

parameter distribution. To improve resolution for small values, we adopt logarithmic

quantisation following Miyashita et al. (2016) where parameter density is the highest.

Figure 7.1 illustrates the weight distribution and our log-based quantisation.

We use the same quantisation centres for positive and negative values. When com-

pressing to B bits, a single bit represents the sign while the remaining B− 1 bits rep-

resent the log magnitude. The centres are tuned based on the absolute value of the

data.

For efficient implementation and because the impact on quality was minimal after

re-training, we use log base 2. Log base 2 means that exponentiation amounts to a bit-

shift while taking a rounded log (which will be used to quantise a value) is equivalent

to finding the leftmost 1 in binary.

We find that tensors might not have the same parameter magnitude. Therefore we

also scale the quantisation centres to approximate each tensor better. This approach is

82 Chapter 7. 4-bit Transformer Model

different from that of Miyashita et al. (2016), where quantisation centres are not scaled,

thus letting every tensor to have the same set of centres. Formally, each quantisation

centre takes the form ±S2q where S is a scaling factor, and q is an integer in the range

(−2B−1,0]. The scaling factor S is selected separately for each tensor in the model.

To minimise the mean squared encoding error, values should be quantised to the

nearest centre. Miyashita et al. (2016) find the nearest centre in logarithmic space by

taking the log and then rounding to the nearest integer, which is not the same as finding

the nearest centre in normal space. For example, their approach will quantise 5.8 to 23

instead of 22 because log2(5.8) ≈ 2.536, which rounds to 3. In normal space, 5.8 is

closer to 22 instead of 23.

We can implement rounding to the nearest centre in normal space efficiently by

multiplying by 2
3 , taking the log and rounding up to the next integer. Let x ∈ [2q,2q+1].

Thus:

x rounds up to 2q+1 ⇐⇒ x >
2q +2q+1

2

⇐⇒ x >
2q(1+2)

2

⇐⇒ 2
3

x > 2q

⇐⇒ log2
2
3

x > q

(7.1)

Therefore, given a positive x, we can find the quantised magnitude of q with respect

to rounding scheme in normal space by:

q = dlog2(
2
3

t)e (7.2)

Ultimately, given a value v that will be quantised a B-bit logarithmic quantisation.

We encode v as (sign,q), where sign represents the sign (1-bit), and q represents the

magnitude (B−1 bits). Our quantisation functions as follows:

sign = sign(v)

t = clip(|v|/S, [1,21−2B−1
])

q = dlog2(
2
3

t)e

(7.3)

where t is a temporary variable. We first scale the value to the desired range based

on scaling factor S. We will discuss more on computing S later. Then, we clip the value

7.3. Low-precision Neural Machine Translation 83

into the given range since we have limited quantisation centres. This then decodes to

v′ ≈ v as v′ = signS2q. In practice, the sign is stored with q.

7.3.2 Selecting the Scaling Factor

There are a few heuristics to choose a scaling factor of S. Junczys-Dowmunt et al.

(2018) and Jacob et al. (2018) scale the model based on its maximum value, which

can be very unstable–especially during re-training. Alternatively, Lin et al. (2016)

and Hubara et al. (2016) use a pre-defined step size for fixed-point quantization. Our

objective is to select a scaling factor S such that the quantised parameters are as close

to the original as possible. Therefore, we optimise S such that it minimises the squared

error between the original and the compressed parameters.

We start with an initial scale S based on the parameters’ maximum value. For a

given S, we apply our quantisation routine described in Equation 7.3 to a tensor v,

resulting in an approximation of v′. For a given assignment v′, we fit a new scale S

such that:

S = argmin
S

∑
i
(v′i− vi)

2 (7.4)

Substituting v′i within Eq. 7.4, we have:

S = argmin
S

∑
i
(sign(vi)S2qi− vi)

2 (7.5)

To simplify the equation, let a temporary variable ai to substitute sign(vi)2qi . Hence

we have:

S = argmin
S

∑
i
(aiS− vi)

2 (7.6)

To optimise the given objective, we take the first derivative of Equation 7.6 such

that:

84 Chapter 7. 4-bit Transformer Model

d
dS ∑

i
(aiS− vi)

2 = 0

2∑
i
(ai(aiS− vi)) = 0

∑
i
(a2

i S)−∑
i
(aivi) = 0

S∑
i

a2
i = ∑

i
(aivi)

S =
∑i(aivi)

∑i ai2

S =
∑i(sign(vi)2qivi)

∑i(sign(vi)2qi)2

S =
∑i(2qi|vi|)

∑i 4qi

(7.7)

We optimise S for each tensor independently.

7.3.3 Re-training

We observe later in Section 7.4.2 that quantisation damages the model. Therefore, we

re-train the model after initial quantisation to allow it to recover some of the quality

loss. In the re-training phase, we compute the gradients normally with full precision.

We then re-quantise the model after every update to the parameters, including fitting

scaling factors.

Re-quantising the model after every update introduces quantisation errors. The

re-quantisation error is preserved in a residual variable and added to the next step’s

parameter (Seide et al., 2014) before quantisation. Essentially, this is the same error

feedback mechanism that we introduced in Chapter 4 to reduce the impact of com-

pression errors by preserving compression errors as stale gradient updates for the next

batch. We find that re-training fails to work without this mechanism (Section 7.4.2).

7.3.4 Handling Biases

We do not quantise bias values in the model. We find that biases are not as highly con-

centrated near zero when compared to other parameters. Empirically, in our pre-trained

Transformer architecture, bias has a higher standard deviation of 0.17 (compared to

7.3. Low-precision Neural Machine Translation 85

Figure 7.2: Log-quantization step function.

0.07 for other parameters). Attempting to log-quantise them used only a fraction of the

available quantisation points. In any case, bias values do not consume a lot of memory

relative to other parameters. In our Transformer architecture, they account for only

∼0.2% of the parameter values.

7.3.5 Low-precision Dot Products

Matrix multiplication operation is expensive. To improve the CPU inference speed,

we explore training and computing dot products inside matrix multiplications in low

precision. Activations coming into a matrix multiplication are quantised on the fly,

while intermediate activations (such as tanh) are not quantised.

We use the same log-based quantisation procedure described in Section 7.3.1 when

training the model. However, we only attempt a fixed pre-determined scale. Running

the slower EM approach to optimise the scale before every dot product would not be

fast enough for inference applications.

Training with Quantised Dot Products

Our log-quantised activation is a step function, as illustrated in in Figure 7.2. There-

fore, the derivative of this function is 0 almost everywhere, or undefined in the quan-

tization centres. Thus, we cannot back-propagate through this function normally. In-

spired by Hubara et al. (2017), we utilise a straight-through estimator (Bengio et al.,

2013) to set the derivative of the the function to 1, thus enabling training.

86 Chapter 7. 4-bit Transformer Model

Computing Dot Products in Log-space

A dot product operation consists of two sub-operations: element-wise multiplication

and sum. In our case, we now have two vectors a and b, both in the form of:

a = Sa ∗ [(sign j1 ∗ 2 j1), . . . ,(sign jn ∗ 2 jn)]

b = Sb ∗ [(signk1 ∗ 2k1), . . . ,(signkn ∗ 2kn)]

Multiplication is performed by adding the powers. We then add the resulting mul-

tiplications together normally, as follows:

a ·b = Sa ∗Sb ∑
i
(sign ji ∗ signki ∗2 ji+ki) (7.8)

Computing power is obtained by using a bit-shift, while computing sign ji ∗ signki

can be performed using bitwise xor, therefore avoiding expensive multiplication in-

structions (Miyashita et al., 2016).

7.4 Experiments

7.4.1 Experiment Setup

We use systems for the WMT 2017 English-to-German news translation task for our

experiment, which differs from the WNGT shared task setting previously reported.

We use back-translated monolingual corpora (Sennrich et al., 2016b) and byte pair

encoding (Sennrich et al., 2016c) to pre-process the corpus. Quality is measured based

on BLEU (Papineni et al., 2002a) score using sacreBLEU script (Post, 2018).

We first pre-train baseline models with both Transformer and RNN architectures.

Our Transformer model consists of six encoder and six decoder layers with tied em-

bedding. Our deep RNN model consists of eight layers of bidirectional LSTM. Models

were trained synchronously with a dynamic batch size of 40 GB per batch using the

Marian toolkit (Junczys-Dowmunt et al., 2018). The models are trained until we ob-

serve no improvement in 10 consecutive validations. Models are optimised with the

Adam optimiser (Kingma and Ba, 2014). The rest of the hyperparameter settings on

both models follow the suggested configurations (Vaswani et al., 2017; Sennrich et al.,

2017). We use wmt2016 as the test set.

7.4. Experiments 87

7.4.2 4-bit Transformer Model

In this experiment subsection, we explore different ways to scale the quantisation cen-

tres, the significance of quantising biases and the significance of re-training. We use

a pre-trained Transformer model as our baseline and apply our quantisation algorithm

on top of that. This experiment focuses solely on the compression ratio. Therefore,

models are decompressed back into a 32-bit floating-point value for inference.

Method Scaling
Unscaled Max Optimized

32-bit model (Baseline) 35.66 - -

Without retraining
4-bit model 25.20 28.08 33.33

4-bit model + 32-bit bias 34.16 34.29 34.31

With retraining
4-bit model 34.92 34.81 35.26

4-bit model + 32-bit bias 35.09 35.25 35.47

Table 7.1: 4-bit Transformer quantisation performance for English-to-German transla-

tion, measured in BLEU score. We explore different methods of determining the scaling

factor as well as skipping bias quantisation and re-training.

Table 7.1 summarises the results. Using a simple (albeit unstable) max-based scal-

ing has shown to perform better than not using the scale factor. However, fitting the

scaling factor to minimise the quantisation squared error produces the best quality.

The BLEU score differences between methods of choosing the scaling factor are di-

minished after re-training.

We can also see improvements by not quantising biases, especially without re-

training. Without any re-training involved, we reached the highest BLEU score of

35.47 by using an optimised scale in addition to uncompressed biases. Without bias

quantisation, we obtained a ∼7.9x compression ratio (instead of 8x) with a 4-bit quan-

tisation. Based on this trade-off, we argue that it is more beneficial to keep the biases

in full precision.

Re-training has shown to generally improve quality. After re-training, the quality

differences between various scaling and biases quantisation configurations are mini-

mal. These results suggest that re-training helps the model to fine-tune under a new

quantised parameter space.

88 Chapter 7. 4-bit Transformer Model

Training Routine

We prepare our 4-bit quantisation model by re-training from a full precision model.

We also store the quantisation errors to be considered for the next update. In this sub-

section, we answer the question of whether it is necessary to perform these steps. We

explore the preparation of the 4-bit model if trained from scratch. Similarly, we explore

4-bit model preparation without an error feedback mechanism. For this experiment, we

use optimised scaling and 32-bit bias when applying 4-bit log quantisation.

Method Fine-tune? Error-feedback Transformer RNN

Baseline - - 35.66 34.28

4-bit log 3 3 35.47 (-0.19) 34.22 (-0.06)

4-bit log 3 7 34.45 (-1.21) 33.32 (-0.96)

4-bit log 7 3 28.54 (-7.12) 28.45 (-5.83)

4-bit log 7 7 0.05(-35.61) 0.00(-34.48)

Table 7.2: The model performance (based on BLEU score) of various training scenarios

using both Transformer and RNN architectures

The results in Table 7.2 indicate that fine-tuning from a pre-trained model and error

feedback are necessary to produce a high-quality 4-bit model. Removing either of them

degrades the quality. BLEU score is dramatically reduced if we train the model from

scratch. Likewise, the quantised model is practically unable to learn without the error

feedback mechanism. As shown in Table 7.1, the quantised model achieved a 34.31

BLEU score without re-training. Re-training said model barely improves the BLEU to

34.45 without the error feedback mechanism.

Size Comparison

To demonstrate the improvement of our method, we compare several compression ap-

proaches to our 4-bit logarithmic quantisation method with re-training and without bias

quantisation. One of the arguably naive methods used to reduce model size is the use

of smaller unit size. For Transformer, we set the feed-forward dimension to 512 (from

2048) and the embedding size to 128 (from 512). For RNN, we set the dimension

to 320 (from 1024) and the embedding size to 160 (from 512). Using this method,

the model size is ∼8x smaller and similar to 4-bit quantisation in terms of the model

compression rate.

7.4. Experiments 89

Method Transformer RNN

Baseline 35.66 34.28

Reduced Dimension 29.03 (-6.63) 30.88 (-3.40)

4-bit fixed point 34.61 (-1.05) 34.05 (-0.23)

4-bit log (Ours) 35.47 (-0.19) 34.22 (-0.06)

Table 7.3: The model performance (based on BLEU score) of various quantisation

approaches using both Transformer and RNN architecture.

We also introduce the 4-bit fixed-point quantisation approach as a comparison,

which is based on Junczys-Dowmunt et al. (2018). However, we made a few modifi-

cations to the original approach. Firstly, we apply re-training, which is absent in their

implementation. Moreover, we skip bias quantisation. Finally, we optimise the scaling

factor instead of the suggested max-based scale.

Table 7.3 summarises the results, which indicate that reducing the model size by

simply reducing the dimension resulted in the worst performance. Our result is in

line with (Huang et al., 2019), who show that reducing the model size by using fewer

layers degrades quality. Logarithmic-based quantisation has been shown to perform

better when compared to fixed-point quantisation using both architectures.

The RNN model seems to be more robust towards the compression. RNN models

exhibit reduced quality degradation in all compression scenarios. We hypothesise that

the gradients computed with a highly compressed model are very noisy, thus result-

ing in noisy parameter updates. Our finding is in line with prior research, as well as

in previous chapters that state Transformer is more sensitive towards noisy training

conditions (Chen et al., 2018).

7.4.3 Quantised Dot-Product

Quality Benchmark

We now apply logarithmic quantisation for all matrix multiplication inputs. We use

the same quantisation procedure as the parameter. However, we do not fit the scaling

factor since it is very inefficient. Hence, we do not scale the quantization centres

for the activation. For the parameter quantisation, we use an optimised scale with

uncompressed biases based on the previous experiment. Table 7.4 presents the quality

results of the experiment. Generally, we observe quality degradation compared to a

90 Chapter 7. 4-bit Transformer Model

full-precision dot product.

Method Transformer RNN

Baseline 35.66 34.28

+ Model Quantisation 35.47 (-0.19) 34.22 (-0.06)

+ Dot Product Quantisation 35.05 (-0.61) 33.12 (-1.16)

Table 7.4: Model performance (in BLEU) of model quantisation with dot product quanti-

sation using both Transformer and RNN architecture.

Speed Benchmark

Dot-Product Method time (ns)

32-bit float 8.45699

8-bit integer 2.08390

4-bit log quantisation (16-bit Shift) 3.89595

4-bit log quantisation (8-bit Lookup table) 2.51924

Table 7.5: Time measurement of dot products of 128 elements with different value

representations. We use a Cascade Lake processor.

Unfortunately, current hardware does not support a 4-bit instruction, thus our dot-

product must be emulated using instructions with wider bit widths.1

Since there is no 4-bit or 8-bit shift instruction, we emulate 2q in 16-bit instead.

Alternatively, we can choose a lower base, for example 256
1
14 instead of 2 so that the

resulting power fits in 8-bit precision. In this case, we can use the 8-bit lookup table

instruction vpshufb instead.

We benchmark our result with an 8-bit integer dot product based on the vpdpbusds

instruction (which was introduced in the Cascade Lake to optimise 8-bit matrix multi-

plication) and a basic 32-bit float dot product using fused multiplication and addition.

Table 7.5 reports the time required to perform a dot product under different quan-

tisation schemes. 8-bit lookup table is faster than 16-bit. Unfortunately, our 4-bit dot

product is inefficient, resulting in it being much slower than an 8-bit dot product. With

current hardware, the main advantage over 8-bit quantization is smaller model size,

which is of interest for local deployment on mobile devices. Should future hardware
1https://github.com/kpu/intgemm/blob/log4-unstable/log4/log4.h

7.4. Experiments 91

also support 4-bit instructions natively, 4-bit models could also improve decoding effi-

ciency.

7.4.4 Beyond 4-bit precision

With 4-bit quantisation and uncompressed biases, we obtain a 7.9x compression rate.

Bit width can be set below 4 bit to achieve an even better compression rate, albeit

introducing more compression error. To explore this, we sweep several bit widths.

Moreover, we skip bias quantisation and optimise the scaling factor.

Bit Transformer RNN
Size (rate) BLEU(∆) Size (rate) BLEU(∆)

32 251 MB 35.66 361 MB 34.28

4 32 MB (7.88x) 35.47 (-0.19) 46 MB (7.90x) 34.22 (-0.06)

3 24 MB (10.45x) 34.95 (-0.71) 34 MB (10.49x) 34.11 (-0.17)

2 16 MB (15.50x) 33.40 (-2.26) 23 MB (15.59x) 32.78 (-1.50)

1 8 MB (30.00x) 29.43 (-6.23) 12 MB (30.35x) 31.71 (-2.51)

Table 7.6: Compression rate and performance of both Transformer and RNN with vari-

ous bit widths. The compression rate between Transformer and RNN is not equal since

they have different biases to parameter size ratio.

Training an NMT system below 4-bit precision remains a challenge. As shown

in Table 7.6, model performance degrades with fewer bits being used. While this

result might be acceptable, we argue that the result can be improved. One worthwhile

idea would be to increase the unit size in an extremely low-precision setting. We

have shown that 4-bit precision performs better compared to the full-precision model

with (near) 8x compression rate. Moreover, Han et al. (2015) demonstrated that 2-

bit precision image classification can be achieved by scaling the parameter size. An

alternative approach is to have different bit widths for each layer (Hwang and Sung,

2014; Anwar et al., 2015).

We also observe the robustness of RNN over Transformer in this experiment since

RNN models degrade less compared to the Transformer counterpart. The RNN model

outperforms Transformer when compressing at binary precision.

92 Chapter 7. 4-bit Transformer Model

7.5 Conclusion

We compress the model size in neural machine translation to approximately 7.9x

smaller than 32-bit floats by using a 4-bit logarithmic quantisation. Bias terms can

be left uncompressed without significantly affecting the compression rate. We also

find that re-training after quantisation is necessary to restore the model’s performance.

Matrix multiplication can further be quantised, although quality is sacrificed. Un-

fortunately, 4-bit dot products found in matrix multiplication are slow because current

hardware does not natively support the necessary 4-bit instructions.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis has focused on efficiency for NMT training and deployment, using a range

of techniques such as asynchronous training, transfer-learning, or gradient and model

compressions. NMT models are resource-intensive both when training and deploy-

ing. We have examined methods of introducing approximations into NMT training to

achieve improved linear scale-up between the computational resource (i.e., GPU) and

the training speed, thereby reducing the training cost. We also have explored a method

of approximating the NMT model to reduce its size.

Chapter 3 investigated the poor performance of the current state-of-the-art NMT

architecture, the Transformer (Vaswani et al., 2017), when trained asynchronously.

This chapter showed that stale updates and small mini-batch size damage the training

convergence, especially of the former. We also found that RNN models were generally

more stable toward such noise. We suggested accumulating the gradient updates sent

by asynchronous workers in the server before applying parameter updates to mimic

the behaviour of synchronous training while retaining asynchronous speed. Using this

approach, we fixed the quality degradation in asynchronous Transformer training.

Chapter 4 and Chapter 5 addressed reducing the inter-worker network communi-

cation cost for parallel training. Each worker in parallel training communicates gradi-

ents to each other. In Chapter 4, we introduced a gradient compression algorithm by

only exchanging the top 1% of the largest gradients (in absolute value), thereby sig-

nificantly reducing the network communication cost. We followed an error feedback

mechanism (Seide et al., 2014) where we store unsent gradients to be considered for

the next iteration. We managed to train an RNN-based model using this approach with-

93

94 Chapter 8. Conclusion and Future Work

out sacrificing quality. Unfortunately, this approach introduced a noisy update. Thus,

the model converged slower (reached the same quality measurement with more step-

s/training data). Moreover, we were unable to train a Transformer-based model under

this gradient compression scheme since the error feedback mechanism introduced stale

updates, which were shown to be harmful to the Transformer in Chapter 3.

Chapter 5 refined the gradient compression algorithm from Chapter 4 by incorpo-

rating local gradients. We added the locally-computed uncompressed gradient to the

sparse gradient before updating. Then, we restored the gradient quality, which exhib-

ited a better convergence rate compared to the vanilla gradient compression. Moreover,

we managed to train a Transformer-based model using this approach. We further found

that scaling the number of workers is challenging. First, we could not scale the learning

rate and warm-up linear to the number of workers without sacrificing quality. Second,

with more workers, the summed sparse gradients will become denser, thus reducing

the compression efficiency. We found that the former issue was more prominent since

we could not properly scale the baseline, which resulted in sub-linear speed improve-

ment. However, we still gained a significant speed increase by introducing the gradient

compression over that baseline.

We shifted our focus in Chapter 6 to investigate the use of cross-lingual trans-

fer learning as a better model initialisation. We found that low-resource languages

performed better even by transferring from unrelated language pairs, including a ran-

domly generated language. However, the latter did not improve the quality as much.

Transfer learning can be applied to a high-resource language as a better initialisation.

We managed to train the model faster, though without any quality improvement.

In Chapter 7, we compressed the model with a 4-bit logarithmic quantisation to

reduce the model size with an insignificant sacrifice in performance. The quantised

model must be fine-tuned from a full precision model. Models trained in 4-bit preci-

sion de novo or those only quantising with a full-precision model performed poorly.

We further explored 4-bit matrix multiplications for faster CPU inference. Quantis-

ing matrix multiplication operations slightly damaged the quality. Unfortunately, 4-bit

log-based matrix multiplication is only as fast as 8-bit integer matrix multiplication

since the current hardware did not support native 4-bit operations.

Throughout this thesis, we empirically showed that Transformer models are sus-

ceptible to noisy training conditions. In Chapter 3, we showed that a Transformer

model could not be trained with an asynchronous SGD. However, reducing stale up-

dates and increasing the batch size solved this issue. Chapter 5 also demonstrated

8.2. Future Work 95

that a Transformer model could not be trained with sparse gradient updates. We then

incorporated local gradients to re-construct dense gradients to resolve this issue. In

Chapter 5 and 6, we showed that a Transformer model cannot be trained with aggres-

sive learning rate or warm-up, which can be mitigated if the Transformer model is

fine-tuned with transfer learning. Lastly, Chapter 7 showed that noise in the form of

quantisation error degrades Transformer-based models more.

The error feedback mechanism (Seide et al., 2014), where we store quantisation

error and re-add it back for the next iteration, was essential for all of our noisy training

experiments. Without the error feedback mechanism, the model trained with sparse

gradients (Chapter 3) diverged. However, the model could be trained without the er-

ror feedback if we incorporate local gradients from Chapter 5, though it yielded lower

translation quality. Similarly, in Chapter 7, we showed that the error feedback mech-

anism must be applied when re-training the model under 4-bit precision to minimise

quality degradation.

8.2 Future Work

Several ideas for future work related to this thesis include:

• Exploring compression on different models and training configurations

We found that RNNs are more robust than Transformers to noisy gradients in

multi-node training and quantization. An interesting future direction could be

to widen this to more models, and analyse why some models are more robust

to noise. Future studies could also experiment with different model sizes, such

as larger Transformers (Huang et al., 2019), which have been shown to per-

form better while being more resource-demanding. In contrast, we can also

explore stacking our compression techniques to smaller models or other com-

pression technique (for example parameter sharing (Kim et al., 2019a), head

prunning (Voita et al., 2019)) to achieve even better efficiency. This could lead to

the development of models that are especially robust yet efficient, which would

facilitate multi-device training and deployment on mobile devices.

Future works could also extend these experiments to different hyperparameter

configurations. While we used the Adam optimiser in all of our experiments,

it might be interesting to investigate the interaction of different optimisers. An-

other hyperparameter that we are interested in exploring is the drop-out ratio.

96 Chapter 8. Conclusion and Future Work

Drop-out sets random activations to zero as noise to avoid overfitting. However,

our compression techniques already introduce noise; therefore, this would be

worth investigating.

• Exploring Transfer Learning

In Chapter 6, we explored transfer learning as a better initialisation. Future

work could generalise this approach by investigating improved Transformer ini-

tialisation without the need for training a parent model (e.g., with a different

randomisation function). We also demonstrated that better initialisation enabled

the Transformer to be trained with a more aggressive learning-rate warm-up. In

contrast, in Chapter 5, we experienced difficulty in scaling up the learning rate

and its warm-up in highly parallel training. With improved initialisation, it may

be possible to better scale the hyperparameters to achieve faster training speed.

• Layer-aware compression

Recent works have shown that each part of the parameter in a trained neural net-

work is not equally important. For example, Voita et al. (2019) showed that

some of the attention heads in Transformer can be pruned without affecting

performance. Similarly, Kim et al. (2019a) mentioned that encoder layers are

more sensitive to pruning compared to decoder layers. We can potentially con-

nect this with our transfer learning results to determine whether the embedding

layer can be ignored in transfer learning. We can apply these findings to our

work to achieve improved gradient or model compression (Chapter 4 and 5) by

compressing the least important layers more aggressively while preserving more

important ones. We would also like to determine whether we can apply differ-

ent compression rates for individual layers or components instead of only the

global threshold. On a similar note, we quantised the model into 4-bit precision

in Chapter 7, though less precision degraded the quality. However, it might be

possible to use different precisions on different layers or components. While

this idea has been partially explored since we did not quantise the biases at all,

further exploration of this point could yield better model compression.

Bibliography

Alham Fikri Aji, Nikolay Bogoychev, Kenneth Heafield, and Rico Sennrich. 2020. In

neural machine translation, what does transfer learning transfer? ACL.

Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for distributed

gradient descent. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 440–445.

Alham Fikri Aji and Kenneth Heafield. 2019a. Making asynchronous stochastic gra-

dient descent work for transformers. EMNLP-IJCNLP 2019, page 80.

Alham Fikri Aji and Kenneth Heafield. 2019b. Neural machine translation with 4-bit

precision and beyond. arXiv preprint arXiv:1909.06091.

Alham Fikri Aji, Kenneth Heafield, and Nikolay Bogoychev. 2019. Combining global

sparse gradients with local gradients in distributed neural network training. In Pro-

ceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-

cessing and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 3617–3622.

Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. 2012. Fast

k-selection algorithms for graphics processing units. Journal of Experimental Algo-

rithmics (JEA), 17:4–2.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.

Qsgd: Communication-efficient sgd via gradient quantization and encoding. In Ad-

vances in Neural Information Processing Systems, pages 1709–1720.

Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016. Qsgd: Randomized

quantization for communication-optimal stochastic gradient descent. arXiv preprint

arXiv:1610.02132.

97

98 Bibliography

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. 2015. Fixed point optimization

of deep convolutional neural networks for object recognition. In 2015 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

1131–1135. IEEE.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. Unsupervised statistical ma-

chine translation. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, Brussels, Belgium. Association for Computational

Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine trans-

lation by jointly learning to align and translate. In ICLR 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or prop-

agating gradients through stochastic neurons for conditional computation. arXiv

preprint arXiv:1308.3432.

Nikolay Bogoychev, Kenneth Heafield, Alham Fikri Aji, and Marcin Junczys-

Dowmunt. 2018. Accelerating asynchronous stochastic gradient descent for neural

machine translation. In Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing, pages 2991–2996.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Had-

dow, Shujian Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva,

Christof Monz, Matteo Negri, Matt Post, Raphael Rubino, Lucia Specia, and Marco

Turchi. 2017. Findings of the 2017 conference on machine translation (WMT17).

In Proceedings of the Second Conference on Machine Translation, pages 169–214,

Copenhagen, Denmark. Association for Computational Linguistics.

Ondřej Bojar, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,

Matthias Huck, Philipp Koehn, and Christof Monz. 2018. Findings of the 2018 con-

ference on machine translation (wmt18). In Proceedings of the Third Conference

on Machine Translation (WMT), Volume 2: Shared Task Papers, pages 272–307.

Association for Computational Linguistics.

Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. 2017. Massive ex-

ploration of neural machine translation architectures. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pages 1442–

1451.

Bibliography 99

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016.

Revisiting distributed synchronous sgd. arXiv preprint arXiv:1604.00981.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,

George Foster, Llion Jones, Mike Schuster, Noam Shazeer, Niki Parmar, et al. 2018.

The best of both worlds: Combining recent advances in neural machine translation.

In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 76–86.

Yong Cheng, Yang Liu, Qian Yang, Maosong Sun, and Wei Xu. 2016. Neural machine

translation with pivot languages. arXiv preprint arXiv:1611.04928.

Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

2014. Project adam: Building an efficient and scalable deep learning training sys-

tem. In OSDI, volume 14, pages 571–582.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase represen-

tations using RNN encoder-decoder for statistical machine translation. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special

Interest Group of the ACL, pages 1724–1734. ACL.

Anna Currey, Antonio Valerio Miceli Barone, and Kenneth Heafield. 2017. Copied

monolingual data improves low-resource neural machine translation. In Proceedings

of the Second Conference on Machine Translation, pages 148–156.

Raj Dabre, Tetsuji Nakagawa, and Hideto Kazawa. 2017. An empirical study of lan-

guage relatedness for transfer learning in neural machine translation. on Language,

Information and Computation, page 282.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, An-

drew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale distributed

deep networks. In Advances in neural information processing systems, pages 1223–

1231.

Chenchen Ding, Hnin Thu Zar Aye, Win Pa Pa, Khin Thandar Nwet, Khin Mar Soe,

Masao Utiyama, and Eiichiro Sumita. 2019. Towards Burmese (Myanmar) mor-

phological analysis: Syllable-based tokenization and part-of-speech tagging. ACM

100 Bibliography

Transactions on Asian and Low-Resource Language Information Processing (TAL-

LIP), 19(1):5.

Chenchen Ding, Masao Utiyama, and Eiichiro Sumita. 2018. NOVA: A feasible and

flexible annotation system for joint tokenization and part-of-speech tagging. ACM

Transactions on Asian and Low-Resource Language Information Processing (TAL-

LIP), 18(2):17.

Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian Van Essen. 2016. Communica-

tion quantization for data-parallel training of deep neural networks. In Proceedings

of the Workshop on Machine Learning in High Performance Computing Environ-

ments, pages 1–8. IEEE Press.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nag-

purkar. 2018. Slow and stale gradients can win the race: Error-runtime trade-offs in

distributed sgd. arXiv preprint arXiv:1803.01113.

Philip Gage. 1994. A new algorithm for data compression. The C Users Journal,

12(2):23–38.

Mozhdeh Gheini and Jonathan May. 2019. A universal parent model for low-resource

neural machine translation transfer. arXiv preprint arXiv:1909.06516.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo

Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate, large

minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O.K. Li. 2018a. Universal neural

machine translation for extremely low resource languages. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages

344–354, New Orleans, Louisiana. Association for Computational Linguistics.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li, and Kyunghyun Cho. 2018b. Meta-

learning for low-resource neural machine translation. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 3622–

3631, Brussels, Belgium. Association for Computational Linguistics.

Bibliography 101

Suyog Gupta, Wei Zhang, and Fei Wang. 2016. Model accuracy and runtime tradeoff

in distributed deep learning: A systematic study. In 2016 IEEE 16th International

Conference on Data Mining (ICDM), pages 171–180. IEEE.

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural

computation, 9(8):1735–1780.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,

HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019. Gpipe:

Efficient training of giant neural networks using pipeline parallelism. In Advances

in Neural Information Processing Systems, pages 103–112.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

2016. Binarized neural networks. In Advances in neural information processing

systems, pages 4107–4115.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.

2017. Quantized neural networks: Training neural networks with low precision

weights and activations. The Journal of Machine Learning Research, 18(1):6869–

6898.

Kyuyeon Hwang and Wonyong Sung. 2014. Fixed-point feedforward deep neural net-

work design using weights+ 1, 0, and- 1. In 2014 IEEE Workshop on Signal Pro-

cessing Systems (SiPS), pages 1–6. IEEE.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and training

of neural networks for efficient integer-arithmetic-only inference. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 2704–

2713.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng

Chen, Nikhil Thorat, Fernanda B. Viégas, Martin Wattenberg, Greg Corrado, Mac-

duff Hughes, and Jeffrey Dean. 2016. Google’s multilingual neural machine trans-

lation system: Enabling zero-shot translation. CoRR.

102 Bibliography

Marcin Junczys-Dowmunt. 2019. Microsoft translator at wmt 2019: Towards large-

scale document-level neural machine translation. In Proceedings of the Fourth Con-

ference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages

225–233.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu Hoang. 2016. Is neural machine

translation ready for deployment? A case study on 30 translation directions. In Pro-

gram of the 13th International Workshop on Spoken Language Translation (IWSLT

2016).

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu Hoang, Roman Grundkiewicz, and

Anthony Aue. 2018. Marian: Cost-effective high-quality neural machine translation

in c++. In Proceedings of the 2nd Workshop on Neural Machine Translation and

Generation, pages 129–135.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth

Heafield, Roman Grundkiewicz, and Nikolay Bogoychev. 2019a. From research to

production and back: Ludicrously fast neural machine translation. In Proceedings

of the 3rd Workshop on Neural Generation and Translation, pages 280–288.

Yunsu Kim, Yingbo Gao, and Hermann Ney. 2019b. Effective cross-lingual transfer

of neural machine translation models without shared vocabularies. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics, pages

1246–1257, Florence, Italy. Association for Computational Linguistics.

Yunsu Kim, Jiahui Geng, and Hermann Ney. 2018. Improving unsupervised word-by-

word translation with language model and denoising autoencoder. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing, pages

862–868, Brussels, Belgium. Association for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

Tom Kocmi and Ondřej Bojar. 2018. Trivial transfer learning for low-resource neural

machine translation. In Proceedings of the Third Conference on Machine Transla-

tion: Research Papers, pages 244–252, Belgium, Brussels. Association for Compu-

tational Linguistics.

Bibliography 103

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha

Suresh, and Dave Bacon. 2016. Federated learning: Strategies for improving com-

munication efficiency. arXiv preprint arXiv:1610.05492.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio

Ranzato. 2018. Phrase-based & neural unsupervised machine translation. In Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 5039–5049, Brussels, Belgium. Association for Computational Lin-

guistics.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normalization.

arXiv preprint arXiv:1607.06450.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. 2015. Asynchronous parallel

stochastic gradient for nonconvex optimization. In Advances in Neural Information

Processing Systems, pages 2737–2745.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. 2016. Fixed point quanti-

zation of deep convolutional networks. In International Conference on Machine

Learning, pages 2849–2858.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li, Yuyan Zhang, Mengzhou Xia,

Shruti Rijhwani, Junxian He, Zhisong Zhang, Xuezhe Ma, Antonios Anastasopou-

los, Patrick Littell, and Graham Neubig. 2019. Choosing transfer languages for

cross-lingual learning. In Proceedings of the 57th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 3125–3135, Florence, Italy. Association

for Computational Linguistics.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. 2018. Deep gradient

compression: Reducing the communication bandwidth for distributed training. In

6th International Conference on Learning Representations, ICLR 2018, Vancouver,

BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera

y Arcas. 2017. Communication-efficient learning of deep networks from decentral-

ized data. In Artificial Intelligence and Statistics, pages 1273–1282.

104 Bibliography

Brendan McMahan and Matthew Streeter. 2014. Delay-tolerant algorithms for asyn-

chronous distributed online learning. In Advances in Neural Information Processing

Systems, pages 2915–2923.

Antonio Valerio Miceli-Barone, Jindřich Helcl, Rico Sennrich, Barry Haddow, and

Alexandra Birch. 2017. Deep architectures for neural machine translation. In Pro-

ceedings of the Second Conference on Machine Translation, pages 99–107.

Daisuke Miyashita, Edward H Lee, and Boris Murmann. 2016. Convolutional neural

networks using logarithmic data representation. arXiv preprint arXiv:1603.01025.

Ramón P Ñeco and Mikel L Forcada. 1996. Beyond mealy machines: Learning trans-

lators with recurrent neural networks. In Proceedings of the 1996 International

Neural Network Society Annual Meeting, San Diego, California, USA.

Toan Q Nguyen and David Chiang. 2017. Transfer learning across low-resource, re-

lated languages for neural machine translation. In Proceedings of the Eighth Interna-

tional Joint Conference on Natural Language Processing (Volume 2: Short Papers),

pages 296–301.

Toan Q Nguyen and Julian Salazar. 2019. Transformers without tears: Improving the

normalization of self-attention. arXiv preprint arXiv:1910.05895.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. 2018. Scaling neural ma-

chine translation. In Proceedings of the Third Conference on Machine Translation:

Research Papers, pages 1–9.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002a. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of the 40th

annual meeting on association for computational linguistics, pages 311–318. Asso-

ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002b. BLEU: A

method for automatic evalution of machine translation. In Proceedings 40th Annual

Meeting of the Association for Computational Linguistics, pages 311–318, Philadel-

phia, PA.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and

Tom Mitchell. 2019. Competence-based curriculum learning for neural machine

Bibliography 105

translation. In Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pages 1162–1172.

Martin Popel and Ondřej Bojar. 2018. Training tips for the transformer model. The

Prague Bulletin of Mathematical Linguistics, 110(1):43–70.

Matt Post. 2018. A call for clarity in reporting bleu scores. In Proceedings of the Third

Conference on Machine Translation: Research Papers, pages 186–191.

Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sarguna Janani Padmanabhan, and

Graham Neubig. 2018. When and why are pre-trained word embeddings useful for

neural machine translation? arXiv preprint arXiv:1804.06323.

Jerry Quinn and Miguel Ballesteros. 2018. Pieces of eight: 8-bit neural machine trans-

lation. In Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume

3 (Industry Papers), pages 114–120.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. 2009. Large-scale deep unsu-

pervised learning using graphics processors. In Proceedings of the 26th annual

international conference on machine learning, pages 873–880. ACM.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:

A lock-free approach to parallelizing stochastic gradient descent. In Advances in

neural information processing systems, pages 693–701.

Abigail See, Minh-Thang Luong, and Christopher D Manning. 2016. Compression of

neural machine translation models via pruning. arXiv preprint arXiv:1606.09274.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic gra-

dient descent and application to data-parallel distributed training of speech DNNs.

In Interspeech.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich Germann, Barry Haddow, Ken-

neth Heafield, Antonio Valerio Miceli Barone, and Philip Williams. 2017. The Uni-

versity of Edinburgh’s neural mt systems for WMT17. In Proceedings of the Second

Conference on Machine Translation, pages 389–399.

106 Bibliography

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Edinburgh neural machine

translation systems for WMT 16. In Proceedings of the ACL 2016 First Conference

on Machine Translation (WMT16).

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Improving neural ma-

chine translation models with monolingual data. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 86–96, Berlin, Germany. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016c. Neural machine transla-

tion of rare words with subword units. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics, pages 1715–1725.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t

decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.

Samuel L Smith and Quoc V Le. 2017. A bayesian perspective on generalization and

stochastic gradient descent. arXiv preprint arXiv:1710.06451.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsu-

pervised bilingual dictionary induction. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

778–788, Melbourne, Australia. Association for Computational Linguistics.

Anand Srinivasan, Ajay Jain, and Parnian Barekatain. 2018. An analysis of the delayed

gradients problem in asynchronous SGD.

Nikko Strom. 2015. Scalable distributed dnn training using commodity gpu cloud

computing. In INTERSPEECH, volume 7, page 10.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems, pages

3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In

Advances in Neural Information Processing Systems, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Ana-

lyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can

be pruned. arXiv preprint arXiv:1905.09418.

Bibliography 107

Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. 2013. Variance reduction

for stochastic gradient optimization. In Advances in Neural Information Processing

Systems, pages 181–189.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai

Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed deep

learning. In Advances in neural information processing systems, pages 1509–1519.

Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-aware async-sgd

for distributed deep learning. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, pages 2350–2356. AAAI Press.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. 2010. Parallelized

stochastic gradient descent. In Advances in neural information processing systems,

pages 2595–2603.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. 2016. Transfer learning

for low-resource neural machine translation. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, pages 1568–1575, Austin,

Texas. Association for Computational Linguistics.

Daniel Zwillinger and Stephen Kokoska. 1999. CRC standard probability and statistics

tables and formulae. CRC Press.

	Introduction
	Motivation
	Thesis Structure
	Contributions

	Background
	Neural Machine Translation
	Training Objective
	Sequence Representation
	Model Architectures
	Training Practices

	Distributed Training
	Model vs Data Parallelism
	Synchronous vs. Asynchronous Training
	Parameter Sharding
	Scaling the Number of Workers

	Asynchronous Transformer Training
	Introduction
	Exploring Asynchronous SGD
	Baseline: The Problem
	Batch Size
	Gradient Staleness

	Incremental Updates in Adam
	Ablation Study
	Experiment Setup
	Batch Size
	Gradient Staleness

	Asynchronous Transformer Training
	Accumulated Asynchronous SGD
	Generalisation Across Learning Rates
	Generalisation Across Languages

	Related Work
	Gradient Summing
	Training with Noisy Gradients

	Conclusion

	Sparse Gradient Communication
	Introduction
	Related Work
	Sparse Gradient Exchange
	Experiment
	Drop Ratio
	Local vs Global Threshold
	Speed Benchmark
	One-bit Quantisation

	Conclusion

	Sparse Gradient with Local Context
	Introduction
	Related Work
	Sparse Gradient Compression
	Federated Averaging

	Combining With Local Gradients
	Incorporating Local Gradients
	Periodic Synchronisation

	Experimental Setup
	Model and Dataset
	Scaling Hyperparameters

	Results and Analysis
	Restoring Quality
	Removing Error Feedback Mechanism
	Improving Training Speed
	Large-scale Experiment

	Conclusion

	Transfer Learning as a Better Initialization
	Introduction
	Related Work
	Baseline Transfer Learning
	High-resource Datasets
	Low-resource Datasets
	Training Setup
	Results

	Transferring Embedding Information
	Are the Embeddings Transferable?
	How to Transfer the Embeddings

	Transferring Structural Information
	Transfer Learning for High-Resource Languages
	Conclusion

	4-bit Transformer Model
	Introduction
	Related Work
	Low-precision Neural Machine Translation
	Log-based Compression
	Selecting the Scaling Factor
	Re-training
	Handling Biases
	Low-precision Dot Products

	Experiments
	Experiment Setup
	4-bit Transformer Model
	Quantised Dot-Product
	Beyond 4-bit precision

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

