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CHAPTER I

INTRODUCTION

1. General Introductory Remarks

Symmetries with, their impelling manifestations have always

fascinated the enquiring mind. By their very innate nature of

relating the structures existing in the universe they have been

invaluable in the formulation of natural laws and in their

generalizations. However, it is also obvious that nature prefers

beauty at the cost of perfect symmetry. The subtle way that

nature breaks the symmetries to generate perfect beauty is,

perhaps, also one of the hardest things to comprehend, and this

makes the formulation of natural laws more difficult and their

generalizations even harder.

The symmetries of the world, as realized by a high-energy

physicist, may be summed up in the following words of Sidney

Coleman^ \
"The symmetries of the world form a group of unitary trans¬

formations that turn one particle states into one particle statest

transform many particle states as if they were tensor products,

and commute with the S-matrix, and further the connected part of the

group is locally isomorphic to the direct product of the connected

part of the Poincare group and the group of internal symmetries."

The seemingly exact and universal nature of Gell-Mann - Okubo mass

formulae and the initial successes of non-relativistic U(6) sym¬

metry group naturally dawned as a cheerful prospect of realizing
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the internal and space-time symmetries in a unified and non-

trivial way. However, it soon "became clear that any symmetry

group that satisfied all the above criteria and contained within
•0 ' ' * > ' '

it the internal symmetry group and the Poincare group in a non-

trivial way was infested invariably with internal inconsistencies.

A way out of this impasse was suggested by Dashen and Gell-Mann

which, after repeated re-interpretations and refinements, has been

the most successful theory of the present day high energy physics;

In the next sections we shall briefly outline some of the develop¬

ments of this theory and its ramifications going by the name of

current algebras.

2. CVC. PCAC and the Adler-Weisberger Sum Rule

Current algebras use extensively the results of the S-matrix

approach formulated in the Heisenberg picture of quantum field

theory. The current operators used are local operators with well-

defined matrix elements between physical states. Interactions

between particles are conveniently expressed as products of currents.

Thus, in the Fermi theory of nuclear @-decay, the interaction

Lagrangian is the product of the weak currents of the hadrons and

the leptons. In the more recent formulation of this theory

(universal V-A theory^2^), each of these currents is composed of

a vector and an axial-vector part. If we work to lowest order in

weak and electromagnetic interactions and to all orders in strong

interactions, the leptonic weak current ^ has a general re¬
presentation in terms of electron, rauon and neutrino fields as

follows,
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Twj ^ = [\c*)]fr°rl*(UY5)% (*) + r*°* y (1#1)6

but the hadronic weak current has a very complex structure

in terms of all the strongly interacting particles, such that its

matrix element has the form (in the case of N -* P+e~" + v )

r*(o)|n («> =uf(ps)jr^ W) / + rJN It')
+ Fw

3j PN

+\wpmm *s<>"(W>v
(1.2)

y "j T* y

where q a (p - p ) , and the form-factors take care of the

meson clouds of the nucleons. If G^, G^., G^ are respectively
the weak coupling constants for (j.-decay and for the hadronic

vector and axial-vector parts of nuclear 3-decay, i.e.,

£ (p.--* e- + y ) = in T1* ?f
^ W, I W,l}*

(1.3)

and

^(N-^P+e-+ve) a 4 ^ ^u/ i/u * :J' -^ M V A WjAfiJ , (l.U)



-k-

then, experimentally,

£ ^ Q IdJ * I GAlp v

The corrections due to electromagnetic interactions (e.g., radiative

corrections) increased the discrepancy "between Gv and G "butV (J,

only "by a small amount. The near equality of Gv and G (theV |-l

fact that Gv is indeed not exactly equal to G gave rise to the
(i)

Cabibho version of universalityw' to "be discussed later in this

section), in spite of the meson cloud of the nucleon, encouraged
(o\ (o\

Gershtein and Zeldovitchx ' and Peynman and Gell-Mannv ' to sug¬

gest the conserved vector current (CVC) hypothesis. According

to this hypothesis the hadronic weak vector current, its hermitian

conjugate and the isovector part of the electromagnetic current

constitute an isotriplet of currents and the corresponding charges

defined "by the space integrals of their time components are just

the generators of the isospin group.

Symbolically, in an hermitian basis,

I; = jV (*) (1.5)* J WfV4> ~

**
) (1.6)

, (1-7)
where i, j, k a 1, 2, 3«



This hypothesis then implies that G~ s G • The reason is that,
V

for strong interactions, isospin is a good quantum number, and

hence the currents are conserved. This would imply that Gy
should not be affected by the presence of meson clouds (it is un-

renormalized), and is, therefore, just equal to G . This is
r

analogous to the case of electric charge, the electron charge

being equal to the proton charge (up to a sign), which is due to

the conservation of the electromagnetic current, and, therefore,

due to gauge invariance of the theory. Thus isotopic spin may be

visualized in two different ways: (i) As a conventional symmetry

group of transformations such that its generators obey the usual

Lie algebra commutation relations

[ I;,, I, J = I. , (1-6)
and the strong interactions are invariant under these transformations.

Strong interactions are, therefore, characterised by a conserved

quantum number, the isotopic spin, which corresponds to an in¬

variant of the group. (ii) Alternatively, we may identify the

space integrals of the time-components of the hadronic weak

currents and the isovector part of the electromagnetic current

with the generators of the isospin group so that these charges

satisfy the usual commutation relations of SU(2) algebra and the

currents transform as an isovector under this algebra as implied

in eqs. (1.5), (1-6) and (1.7) given above. This identification

is possible whether isospin is a good quantum number or not. The

fact that isospin is a good quantum number, strong interactions

being invariant under isospin transformations, implies that the



charges are time independent and the hadronic currents are con¬

served. In general, however, we may always postulate commutation

relations at equal times "between time dependent charge operators

constructed out of nonconserved currents. If an algebra is closed

in this way it will not correspond to a symmetry of the strong

interactions unless further dynamical assumptions are made. In

this way a host of algebraic relations between physical currents

and charges may be obtained, and the symmetry (or partial symmetry)

aspects of these relations are to be inserted as further dynamical

assumptions (such as the saturation hypothesis used in Chapter II).
This is essentially the principle involved in the theory of current

algebras.

An important consequence of CVC theory is that it relates the

electromagnetic and the weak form-factors of the hadronic vector

current. The matrix element of the electromagnetic current between
x

nucleon states is given by,

(1.8)

where q2 * (pf - p3")2, and and P2elm# are Dirac-Pauli
<2*1 TO

form-factors normalized such that *(o) is the total charge

of the nucleon (we have set e « 1) and P2e^m*(0) is the anomalous
magnetic moment (jA of the nucleon (in units of *??|~)* CVC theory
implies that Plf ",(<)) . 1, P2> ^(0) = and

x total electromagnetic current (isoecalar + isovector)
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pjjw ) x 0 ("k*1® last one "being true also by G-parity in-
variance).

The axial-vector current is not conserved, and therefore G^
is different from G . The corresponding charges defined by,

M*

, , c«) d3 * (1.9)

are not constants of motion, but are time-dependent. However,

we may write equal-time commutation relations for them, e.g.,

These equations may be written from analogy with leptonic currents

and they also follow from a quark model. We may consider them to

be postulates of current algebra (the second of these equations,

e.g. eq. (l.ll) is, of course, always true, the axial-vector

charges being isovectors) to be verified later by experiment. The

first equation (eq. (1.10)), being nonlinear in 7j_, is useful
for determining the axial-vector renorraalization constant J it fixes

along with eqs. (1.5)» (1*6) and (1.7) the scale of the weak current.

We shall presently see how eq. (1.10) leads to the Adler-Weisberger

relation for the axial-vector renormalization constant (-G^/Gy).
As stated before, these commutation relations do not give any new

information regarding the symmetry of the strong interactions apart

[ (t) , Ij (t) J - I*(0 (1.10)

c ^^& i« (*) (i.ii)



from the one already contained in SU(2) invariance due to con¬

servation of isotopic spin. Instead of considering the vector

and axial-vector charges separately we may construct the operators

*■ 1 r I. ± I. (1.12)
1/ V '

each of which generates an SU(2) algebra,

[*;* < *> * J = V , (1.13)

and commutes with the other,

= 0 (1.14)

Therefore, and generate the chiral algebra SU(2)@SU(2)
whose representations may be labelled by [o, , [}kt Vz] etc.
However these representations are not invariant under parity trans¬

formations, since

? X ± R-1 = xj . (1.15)1 *

Only the representations of the algebra SU(2) @ SU(2) © P, e.g.

1% Vz] 9 [0, 1k\ and [%, 0] j etc. are parity invariant. One may

postulate invariance of strong interactions under such chiral

transformations. Such a symmetry group and its various generaliza¬

tions have been discussed in the literatureAs in any other sym¬

metry scheme the hadrons are assigned to definite irreducible
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representations of the group in question. However, such classifica¬

tion schemes have not been very successful because of rather large

symmetry breakings involved. We shall not pursue this point any

further. A somewhat related approach is to make certain saturation

assumptions and obtain information from matrix elements of the

commutators. This technique is the subject of the discussion

given in Chapter II, and is the way in which dynamical assumptions

are imposed upon current algebra to obtain certain symmetry results.

At the present state of our knowledge of strong and weak inter¬

actions, eq. (1.10) cannot by itself give us an expression for

- G^/Gy that can be checked experimentally. To do so we need the
assumption of PCAC, which we shall discuss next. Since the diver¬

gence of the axial-vector current has the same quantum numbers as

the pion, it is physically meaningful to use it as an interpolating

field for the pion, i.e.,

<olj*3*. f/w D*(«; / JC*(KO> = Cerr^t' 6 L*-*') ( (1.16)

where ffc (x) is a wave-packet with momentum centred around k
and which satisfies

-fl»J i«<*> = 0 (1.17)

The constant in eq. (1.16) is related to the pion decay constant,

f , defined by
A

<o| Ay1 (.*) I x* (*)> , (1.18)



10-

so that

<0| Bi C*)l *){*)>= ^ ■ (1.19)

The decay constant, f , is found to "be ~ 94 Mev from the xJO% Id

decays. The matrix elements of D "between single-particle states

are analytic functions of the momentum transfer squared variable,

t, except for a pole at the pion mass and cuts starting at dif¬

ferent branch points on the real axis of t corresponding to

physical thresholds for many particle channels (e.g., 3 pions,

5 pions, etc.). The assumption of PCAC (or PDDAC) is that for t

in the neighbourhood of the pion pole the matrix elements of D

are dominated by the pion pole, all other contributions from

higher singularities being negligible. In the derivation of the

Adler-Weisberger sum rule, it is assumed that the pion pole dominance

assumption is valid down to t = 0, and both the pions in the (xN)

scattering cross-sections that are relevant there are considered in

the limit of vanishing four-momentum (the soft pion limit). Apparent¬

ly such an assumption is reasonable in view of the fact that the

next important singularity of D after the pion pole starts at
p

t » 9m (the threshold for the 3x-cut contribution) which is rela-
A

tively far from the origin, and, therefore, may have a negligibly

small effect there. This seems to be borne out by experiments.
(6 1

However, recent investigations by Brown and Westwy seems to suggest

that one might require subtraction constants besides the pion pole
MM 2

in the matrix elements of D for t m . This point will be dis-
A

cussed further in Section 5 of this chapter.

We now illustrate Pubini's covariant method of doing current
' » 2

» Actually, the PCAC assumption requires that, in the limit m^-* 0,
not only <0 ID !*>-»§ but also D itself tends to zero (ref. 46).
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algebra calculations by outlining the derivation of Adler-

Weisherger sum rule for the axial-vector renormalization constant

gA( = - G^/Gy). Consider the integrals

Tv/a = i fd4x * <I»|0(*0) [ fj(*) i T/W J j (1.20a)

r * jd4x «-<■*** <J°2I 0(*«) [ 5*(*) j $/(«)] 1, (1.20b)

/ = e'1*2'* [ ~Sj i*>j .5* CoJIOj (i.20c)

V - c \d4-*. e ~ 1 *z * <P2\ &(x°) [$*(*), 5 c«»] I If > j (1.20d)

t y^ = { jd4* e~ <pa/f 1/(0)] lt> j (1.20e)

Uh = 1 Jrf+at <£l [$*(»), j/(o)]lt> , (l. 20f)

U'y r j J d4x e- ^5'X <PZI [J/ tx), V\o)]lP/^ (1.20g)

T> r e"Cfea-'X <pJ L 3* U); 5* id] It > , (1.20h)

where 7*s are axial-vector currents, and l^s their divergences



<jp2 j and |Pi)> are spin averaged nucleon states with momenta
p9 and respectively. We use the commutation relations for
the currents,

UW>)] . = "C***(1.21)r x = o r

[ }/ C*) J =* * 5^(o) $3 (96) (1.22)
X = 0 ~

where we have ignored gradient terms. The gradient terms in eqs.

(1.21) and (1.22) and the covariance difficulties of eqs. (1.20a)
to (1.20d) can he taken into account correctlyand the follow¬

ing results are free from ambiguities arising from them. Partial

integrations of eqs. (1.20a) to (1.20h) give

1 *» TV^ " ~ V* f,> = 0 ; (1.23a)

(*1^-1/- OJ|)»> = o , (1.23b)

^ + °V - Si* ^ ' (1,230)

i C v +<ii)s^t. )ip,y-0 , (1.23a)

* We define k^ = Pg + kg - •



-CKzvtVp. - My. r o ^ (l,23e)

i «2V av' - v- - o (i.23f)

-o t (1.23g)

^lei^u^+Tsu -o (1.23h)

We next expand T etc. in terms of invariant "amplitudes",
Vjx

T r A P^P + 8 L0 K *• + 5 (2) P H + 3 (3) * ^ p + B(4) M P
V/A " Viu.^w V ip V /V [A 3.V p.

+ CC1) * & + CCZ) K K + C(3) k * + CC4)ZivK,h +
IV I[A ZV 2LA IV 2/A r °Vh

(1.224a)

"t = a. Pv P + .., (1.2ltf))
/ 2

^ = L'/\, + M' kly + /\/'*2„ (1.22+c)

U - IP (1.22+d)V - L > + " ' j
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U;=^PV+- (l.24e)

V - e p^ + '" (1.24f)

The amplitudes A, B^1^, .... are functions of the invariants
2 2

v, t, k^ , kg defined as follows

?\L - + ~ Z (*I+ J Ap = = C*|-Ka)

4 = - a2 j v = p. K = ?■ *1 + ^ (-^2 + m.\ )

- P (wf -m* ) ■ (1.25)
Using the expansions given by eqs. (1.24a) to (1.24f) in eqs.

(1.23a) to (1.23h) and comparing coefficients, we obtain,

Coefficient of P 2
r"

i (*i-PA + «2 *, &[3) + BC4) ) - L'lC.^F* Li) = o J (1.26a)

Coefficient of

8'%2^(c|,) t«22 c(A))-LA-w, (1.26b)

Y- >

Coefficient of Py!

t («,-P 4 + +%r*x 3(1>) +L'-2£^k F;* (t) =o ,

(1.26c)
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Coefficient of kg^ I

^(«i-P6w+i«11cu)+*2.Rlc'JI) - N + F/dt) + ic<5) =0j (1.26a)

Coefficient of kly I

i(*,.p 6(J) + K,2 c "> + *,.*2c(J') +«'- + (i-26**)
Coefficient of kgv I

v(K,'P 6|4)+ «r»,cu,+ «,1cw ) + Cjt-K ?/(+>«'= 0 , (1.26f)

Also,

i L'ftrP + tM/Kj + ^'^-1/. ^:,5^|P,> = 0 , (1.26g)

t L £rP + CM e,z + CN er*2 + 1/ + <g 15 ^ |p(> - 0 ■ (1.26h)

We have used above the form-factors defined by

<p*I tjfi*) I P/> = + ^ ^ Fj * (*) -h rs*(t) . (l«27)

Actually, if the external states are spin averaged nucleon states

of equal momenta and if J is a vector current as in the Adler-
M"

Weisberger case, we have
I

= 2^ • (1.28)

Equations similar to (1.26a) etc. without the form-factor terms



are obtained for a, b^^, etc. Assuming unsubtracted dispersion
(1^ 2 2

relations for A, Bv ', .... at fixed space-like t, k-^ , kg ,

we obtain,

00

I
K 0. ) dv' = 2<> (i)

"~eo
(1.29a)

V^V.t
. 03

Je2) dv' - t € (t)
(1.29b)

, 00

1
7T

- 00
(1.29c)

oo

-09

(3)J< kl) A* '- }<-*- i
F*U)

(1.29d)

Tf/^ L (»'>* d)> =- 6 €/<:* v (1.29e)

and also,

-L |V (V;t fc* * = i <PZIS*\') lk> (l.29f)
7Z J d )

i \i .tM, */■) = -*• <P2IS**(C) lf,> • (1.29g)

It is not clear whether the assumption of unsubtracted dispersion

relations is justified. We assume that this is the case. Not all

the above sum rules are on the same footing, some of the integrals

being more convergent than the others. The first of these sum rules
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is the most reliable and yields the Adler-Weisberger relation

e1 + JL
A 2iC

(»', 0,0,0) <Lv'
V / 2.

S 1 J (1.30)
Cerrvt ■

where the first term comes from the nucleon contribution with

defined by

<H Jvf(°)ln> = yvy5 fitox)] U(D (1.31)

as 1, k » p - n =: q] . The integral represents the rest of
the contribution coming from the continuum where

iMv,o,e,<0 = J. Jf**'*- <1*1 [5+C*) , 3'Co)]/f> , (1«32)
(k-+O)

In order to express eq. (1.29a) in terms of divergences as in (1.30)
2 2

it is necessary to go to the limit t s o, k^ =0, k2 = 0 as
will be seen from eqs. (1.23e), (1.23h) and (1.24b).

We now use PCAC assumption in the form

U, v „ ; (1.33)

where 5 j3jyj_njA (1.34)
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The final form of the stun rule is

tfKNn(o)2 *
W dW

Wx- Mx fo+lwJ-CM] (1-35)

Here,

Si

M.
H

gr

axial vector renormalization constant in nuclear 0-decay;

nucleon mass J

renormalized (xN) coupling constant;

pionic form-factor of the nucleon-normalized such that

(—m^) = 1. in the spirit of PCA.C we take
i ;

w C.M.S. energy of the (xN) system;

<5" i (W): total cross-sections for the scattering of zero mass
+

pions (x~) off the proton.

Since experimental cross-sections referring to physical pions are

not involved in eq. (1.35) Adler used a model to estimate the un-

physical cross-sections from the physical ones. He found that in

his model the difference between the physical and unphysical cross-

sections is small. Weisberger, on the other hand, ignored this

correction. Their results compared well with experiment.

«A
Adler

8,
Weisberger

£ 1.2k ± 0.03

= 1.15

(1.36)

(1.37)

8
Expt. 1.18 - .02 (1.38)
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•sfr.
It is to be noted that inclusion of N and N does not give a

good saturation of the sum rule ('g^l « "V3)« However, inclusion
of all the known higher resonances does give a reasonable saturation

of this sum rule. This would mean in symmetry language that there is

a mixing between the various representations of SU(6).

In order to estimate the contributions of higher resonances,

we shall use the formulaeI

U L3/2
<V J

C - 4* 5 <u f Vl . n , 3/a} ^ -f1 + 2 W 4 /a ]■
n 1 f ' / (1.39)

***- - ii | _ WjVi |

We parametrize the phase-shifts as follows

^ (1.U0)
where is the phase-shift for the £-th partial wave, s is the

square of the c.ra. energy, (s * V/2), WR (= MR) is the mass of the
resonance, v is the square of the c.m. momentum and y is related

to the width. Then we have

3V (1VR-Wrj2.

where rj ^ = e^^tot is tlie elast^ci'ty of tlie resonance, J is
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the spin and I is the isospin of the resonancej F is the width

of the resonance. For I > 1 this formula has the right threshold

"behaviour. For I = 0 the phase-shift goes to zero at threshold and

the cross-section goes to a constant which is found to he small com¬

pared to its value at the resonance position. In the narrow width

approximation these formulae take the form

= r \ 1 + 1/2 S (W~W« ) ■ (1.42)
R*

The results are given in Table IA. We give both finite width

and narrow width results. They are seen to be in reasonable agree¬

ment with each other. The sum rule is reasonably convergent and

the higher resonances are found to contribute by only a few percent

to the sum rule. We have included the (kN) resonances up to 2.2 Q-eV

as given in ref. (7). The saturation of the sum rule is goodj it

yields a value of |g | = 1.30 to be compared with the calculated
values of Adler and Weisberger and also the experimental value as given

in eqs. (1.36), (1.37) and (1,38). The inclusion of the higher

resonances as given in ref. (45) alters by less than 5°/o.
Besides the isovector axial and vector currents of hadrons

which conserve strangeness, the hadronic weak current should also

contain a part which changes strangeness. Therefore, we may write

3-£- = , (1-43)
IV

where

T^[0) ; AS =o AI, - +1 Al - 1
W V' {l.Uk)

TwK1) : A& = 1; AI3 - +Vz ; M = i/a-



TABLEIA

X

ResonanceSaturationofAdler-WeisbergerSumRule
Resonance P33 P11 d13 sll S31 D15 P15 P33 D33 P11 P13 P35 P31 P37 °35 P17 D13 °17

Mass (Mev)

Total Width (Mev)

Elasticity nmr^/rtoU
Contributionto r.h.s.ofeq. (1.35) narrowwidth

Contributionto r.h.s.ofeq. (1.35) finitewidth

1235.8

125.1

1

+0.7289

+O.669

11+66

211

O.658

-0.071+7

-0.067

151+1

11+9

0.509

-0.0570

-0.058

1591

268

O.696

-0.0567

-0.058

1635

177

0.281+

+0.0129

+0.013

1678

173

0.391

-0.01+1+1+

-0.01+5

1687

177

0.560

-0.0630

-0.063

1688

281

0.098

+0.0116

+0.010

1691

269

0.137

+0.0151+

+0.013

1751

327

0.320

-0.0179

-0.016

1863

296

0.207

-0.0151

-0.011+

1913

350

0.163

+0.0181+

+0.016

193U

339

0.299

+0.0103

+0.009

191+6

221

0.386

+0.0338

+0.032

1951+

311

0.151+

+0.0139

+0.013

1983

225

0.128

-0.0101+

-0.016

2057

293

0.260

-0.0116

-0.010

2265

298

0.31+9

-0.0206

-0.018

Sk=1.30

*IamindebtedtoR.Kirsoppforadiscussiononthe(xN)resonances.
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Now, if SU(3) were an exact symmetry, there would exist an octet

of currents (i = 1,...., 8) which are conserved and whose time
IA ♦

components when integrated over all space give the generators of

the group

J iV) d,3* = F i (1.U5)

obeying the commutation relations

[ F\ ft] = if** F* (1.U6)

The vector part of is built from this octet of currents, as

follows,

^ = CcsQ + i jr*2) + (1 h.7)
W,V ■. J

We may likewise postulate an octet of axial-vector currents g*,
whose space integrated time components satisfy similar commutation

relations at equal times. These currents are not conserved. The

axial-vector part of is built from these currents, in an

analogous way,

= cm 9 Cf^ + • (i.U8)

Thus 0 appears as a new universal constant (Cabibbo's angle),
which governs the sharing of the weak interactions between

strangeness conserving and strangeness violating processes.

Sxperimentally 0 ~ 12° and in this new form of universality of

weak interactions G = G, cos 0. The vector and the axial-
V V>

vector charges together generate a chiral SU(3)©SU(3) algebra.
If we consider all the components of the currents and integrate
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them over all space, we obtain a chiral U(6)©U(6) algebra.
A further extension of this algebra to U(12) may be obtained by

including also the integrals of scalar, pseudoscalar and tensor

components. In order to get dynamical information from this

U(12) algebra Dashen and Gell-Marm make the assumption that its

positive parity subgroup isomorphic to U(6)@U(6) and generated
by all the charge operators whose Dirac matrices commute with (3,

transforms one-particle states at rest into one-particle states

at rest, y/e shall, however, not pursue this point further.

3. Sunerconvergence and Strong Interaction Sum Rules

In the previous section we saw how to arrive at sum rules

of the type

£ ,t ) dv 3. Rt) , (1.U9)
2 2 2

where, u^ * -q^ , ug = -q2 and t as - (q^ - q2) , and where
q^, q2 and q^ - q2 are kept fixed at some space-like values.
As usual P(t) is some current form-factor and a is defined

through the expansion of the tensor

6*1[»•*(*)jfwifry , d-50)

in terms of invariant amplitudes

V = «■ PfPy ft-, Fft V + • • • ' (1'51)
Here the isospin indices have been suppressed and we have defined
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O

p = %(px + p2)» t a - (p2 - P;L) , V = p.qx = p.q2. For sim¬
plicity we have chosen the currents to "be isovector vector

currents and the states to "be pions. Diagrammatically (Fig. IA)
t is the absorptive part of the amplitude describing the pro-

(IV

cess involving two pions and two currents.

We assume that eq. (1.1+9) can be continued analytically into a

region where u^ and ug are time-like. We note that
a(v, u^, Ug, t) is a function of the external masses u-^ and Ug
associated with the currents. In particular, it has poles at

u-^ ss m^ and at u2 » m^ , But the right hand side of eq. (1.1+9)
is a function of t only. Thus the effect of integrating over v

should be such that the dependence on u^ and Ug compensate
2 2 \

each other. Multiplying eq. (1.1+9) through by (u, - m )(u„ - m )
P y

2 2
and going to the limit u., —> m , u„ —*m , we getx P * r

J yy^i-y

uz-> w*
But, a(v, u^, Ug, t)(u^ - ~ mo' is Just residue of

J the

^2
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* t

2 2
poles in a at ^ s u2 = m^, and is, therefore, the absorp¬
tive part of the invariant amplitude A in the physical jox
scattering process (Fig. I.ft),

T- A 6,-P + &Uz-p £ i ■- c? +- ea- Q 6,-P) 4 c 63^6^+^(1-52)

where, Q » %(q^ + q2)» Hence, eq. (1.49) becomes

invA (v,t) dv = 0 ; at fixed t . (1.53)

An important distinction between eq. (1.49) and eq. (1.53) is that

whereas the former contains information about the weak and the

electromagnetic structure of the pion, the latter deals with the

strong interaction between p and %, Thus, in going from eq.
(1.49) "to eq. (1.53) we have lost the current algebra characteristic

scaling of the form-factor F(t). The derivation of eq. (1.53)»

therefore, should not depend upon the actual nature of the current

algebra used. Indeed, all we need is that the commutator of two

currents contains - %) or its derivatives, which follows
from the locality of the currents, anyway. Hence, eq. (1.53) has

nothing to do with current algebra. In fact, it may be derived

directly from the requirement of analyticity, unitarity and

appropriate high energy bounds for the scattering amplitudes. For

example, an analytic function f(v) satisfies a dispersion relation

.p (y) _ 1 I~

* v'-y

Ij-(v) I V ^
if f for v —* 00

0 < 0 J
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and it satisfies a superconvergence relation

J f 6") ' - o

|^(y)| i\i y P 7
if r for v —* oo •

fi < -1 J

Sum rules that follow from eq. (1.53) involve only parameters

like strong coupling constants and masses and are, therefore,

referred to as strong interaction sum rules. When all the par¬

ticles involved in a scattering process have no spin there is

just one amplitude, and it "behaves asymptotically as

(apart from a factor of some power of In v) with l>a(0) > 0 .

It cannot, therefore, satisfy a superconvergence relation. If,

however, one or more of these particles have spin, there is, in

general, more than one amplitude, and these amplitudes may have

different asymptotic "behaviour, such as of the form v0"^*"11
where n varies, in general, from one amplitude to the other and

depends upon the number of units of helicity flip in the t-channel

that is associated with the amplitude in question. In some cases

(a - n) may become less than -1, and the corresponding amplitude

will then satisfy a superconvergence relation. A simple example

would be to consider px scattering as discussed "by de Alfaro,
/ Q \

Fuhini, Furlan and Rossettiv '. We shall instead consider a

slightly more complicated case of p + x —»K*+K.
We first find the asymptotic "behaviour of the various

invariant amplitudes, A, B, B*, C and D that appear in the

expansion,
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T = A £a P er P + 8 (ea P 6(. Q + fca.Q 6,.p ) + A' - £^6,'P)

-f- cgl.Q£j, q + j> e^.e, i (1.5*0

"by using the heuristic method of the above-mentioned authors.

In order to do so it is convenient to introduce another set of

amplitudes such that the invariants are orthogonal to each other,

where

T* = *IK+fl Ifl ■+ XI y t S 1 £ + €. 1£ (1.55)

with

1„ = Zx'?' E,'p/OL — *■ I J
A

< 2.

r, - *Lt . e4.^ g|.p' ^

*5 = V%

1 = £,■*' S.ai' .
£ ** I

(1.56)
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P' = ^ ^

M - £ p' q a
K >*** r* ^ T^y ,

a - _ .2 (-s+x+p )k* + C-s-t + P + k) it - P-K *)
(t- p-K* )2- 4PK*

JL = (-s-t +/°+k) + a. Lt-P-K* )
IK*

and m z = f> } m2 = K , tic-f - J ; ">

It is easy to see that

P'fy =0 , p'-+xa 0 , ?'■ N = 0

Z I lot I/SI =z o . and so on,
(?<*■
AU#f.

Also

(1.57)

2
2 /IJ --v 5^ as s—kOO and for fixed t » (1.58a)
Prf.

2
2. |Ia I ^ 52 as s —»oo and for fixed t ' (1.58b)
Pot ■ '

Z I Is//2 5Z as 8 —$ oo and for fixed t , (1.58c)
?&■

Z. Ill2 Cerrd. as s—*00 and for fixed t , (1.58d)

2 jl |2 ^ 5 ^ as s a> and for fixed t , (1.58e)
?&•
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The orthogonal set of amplitudes a, |3, y» e are related to the

perturbative set A, B, B1, C, D as follows,

A = * + e [ttrfS- ]

6

8'

+ e (f.?2 /=. t, *,.*a - ?•/ + r

C- - 4 clLOC + 2fl ( u M. p + L. * ) ■+2X [a.ito.p- + 4-S

+ 4C LPZ Irlz - f- *i )

J) r z,{?ziZelz - Pz +zrilrUtrli'l*(.'''i2)2} ■
J

Using the optical theorem and assuming that the total cross-

section is larger than the cross-section due to each of the

amplitudes a, ^,...., we get for large s

\oc (Sjt)l I la I hi < cmat' s>2 <f .l. (1.60)
ist • -» J

since Ia, 1^, ... , are orthogonal to each other. Making the
constant shape assumption that a(s, t) « f(t) a(s, 0), etc.,

we obtain

= 2 | tcd + .j + i + mK*) + £

+ £ ( r\ - P-tf + P P- *■ - P\ ) /
J

(1.59)
- 2 i**-1-*1+£(%-•***) * | (y^K*)
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a

3

I*

I*

and, hence, for the original amplitudes,

B

B'

D

rv const, s

r* const.

const.

rv const, s

-1

const, s
—1

as b

as s

as s

as s

as s

const, s

const.

const.

const, s

const, s

-1

00

00

oo

OO

00 ,

as s oo

as s —» oo

as s

as s

as

oo

00

00

(1.61)

(1.62)

If we apply the above analysis to the case of spinless particles,

we would obtain for the corresponding amplitude a behaviour

const, s, asymptotically. Regge-pole theory would give instead

a behaviour sa. (The additional factors of £ns can be obtained

by relaxing the constant shape assumption.) Therefore, we obtain

the following asymptotic behaviour for the amplitudes

A | ~ Sa"2
| B | ~sa_1

a-1
sB11

C i |D | ~ Sa

(1.63)
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The value of a will depend upon the leading trajectory exchanged

in the t-channel that will dominate the process under consideration.

It would appear that the use of the amplitudes a, 3,....,

will have the advantage of having two amplitudes which could go

a,—2
as s , However, these amplitudes contain kinematic singularities

in the variable s as eq. (1.59)» relating the two sets of ampli¬

tudes, shows. Hence one cannot write superconvergence relations

for these amplitudes. The amplitudes A, B, ..., are free from

such kinematic singularities and zeroes. A method of construct¬

ing such amplitudes free from kinematic singularities and useful

for the discussion of superconvergence relations has been given

by de Alfaro, Fubini, Furlan and Rossetti^^. However, a

generalization of their method to processes involving higher spin

particles does not seem to be straightforward. For example, if

one considers the amplitude with two vector currents and two

nucleons there are 32 independent perturbative invariants. (At

first sight it appears as if there are 3k of them, but as

Gerstein^0^ has shown there are two constraint equations and only

32 of them are independent. He also gives a set such that the

corresponding amplitudes are free from kinematic singularities in

the variable s). If we follow the method of de Alfaro et al.,

there are only three vectors on the current side (two momenta

associated with the currents and a derivative with respect to one

of these momenta). From these we may construct ten tensors. On

the nucleon side there are four vectors (y matrix, two momenta and

a derivative), but only two nontrivial invariants, e.g. 1 and
T d

Y^ "■ can be constructed (p2 is the momentum of one of the
nucleons and y. r is defined in the above reference) after using
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the equation of motion for the nucleons. Altogether, therefore,

one can construct only twenty invariants. Jince we need more we

should introduce the symbol e,,,... . However then one can con-f+VAP

struct 38 tensors and it is not obvious as to which of the six

have to be discarded such that the amplitudes have no kinematic

singularities and zeroes in the variable s . If k^, k^* are
the momenta associated with the currents, in the notation of the

above reference, the 38 tensors are

d. ^ (i+s/JL)
r v V Z,, K * (*+ V-L-)S IP trf A aA /

2A
Y V? <r 5* //» /<r A g'b '/ J

19.

a k U + x 7J_
f* ,v KlTJ t r * a ti+ x7JL)5- ,/> V ;

t x di [i-h yj 9 )>v/xr 5 P ? L * Jfj J

d /e Li+ T 7 — )
2>

*s

d k/ li+rj * |' ** A €'
*' *' (I+xt±_S

tp1 A jh )■ ' £va,«r rs *,>

K « [ t+rT d )
IVlp A — ' ■vx a ^ ^ ft' (\+xr3 )•vA/><r 5 t>~ \p a ifA'T ot ^ J j

* ' £ (i+yTd) £vx ^ *-,v dL ti+ifTb ) .VA/>cf 5 /A //) o- ^ I'T> J/a a

* ht)ir r A , *>X,r >5 K,x
(3-*

Vv
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Furthermore, it is not clear whether the method would work when

there are mass-less particles involved, especially when there are

odd numbers of them, for then the problem would be very tricky

However, in simpler cases like px scattering or xN scattering,
the method is seen to work well.

Another method of constructing kinematic singularity free
(12^ (13)

amplitudes is to use helicity amplitudesv Truemanv has

given a method of determining the superconvergent helicity ampli¬

tudes, As the method is well-explained in the literature we

shall not pursue this question further.

The asymptotic behaviour of the amplitudes are seen to depend

upon the value of a(t) corresponding to the dominant trajectory

exchanged in the t channel and hence upon their isospin. Experi¬

mentally,

ay2 (t) < 1 ,

and if we further make the reasonable assumption

"3/2 (t) < 0

for t 0 and also over a small range of positive values of t

then we may write, for t fixed in this region ;
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L S*». A^Z (v'j*) dv - o

/.op Sm, A^2 (f'jt) civ' - o

loo 4™ & 3/2 (*'**) - 0
^ I (1.65)

00

/-CO S™, 3//>2 (/;i) d/: 0 J

/_co V'/ A^ Lv'jt) e<v/= 0 ) 7
where the superscript refers to the isospin of the dominant Regge-

pole exchanged in the t-channel.

Since these sum rules are true for arbitrary t we may in

fact propose further sum rules by considering higher order terms

in t. The reason is that if an amplitude has the behaviour

f -v n as s 00 for fixed t
*

then,

^ lns.sa^^ "" n.a*(t) as s —5 a> for fixed t

and, in general

cw (lns.a^t))5 sa(^ n as s —* 00 for fixed t and

any p,

so that, if f(s,t) is superconvergent over a range of values

of t, so are its derivatives of any order with respect to t

over the same range. Hence we may write (specialising to the

forward direction),
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J inv A (v> j o) <?ty/ =
- oo etc.,

and

/ __

etc. ,

and so on.

The practical applications of these sum rules to find physical

information about strong coupling constants and mass relations are

rather difficult. There have "been various attempts to obtain such

information from these sum rules by putting in a few resonances

in the intermediate states. Even though these attempts have been

partially successful in obtaining consistency among these sum rules

and predicting reasonable experimental results, there does not

seem to be any real justification for this truncation procedure.

Phenomenologically, we see that it is reasonable to assume that

the low mass and spin states will dominate the process under con¬

sideration and furthermore the sum rules obtained by taking higher

derivatives with respect to t are expected to be less reliable

than those for the amplitude itself because of additional powers

of {Ins) contained in their asymptotic bounds. There is no simple

group theoretical meaning to such a procedure, however. Since

there are in fact an infinite number of sum rules that one can

write down once the superconvergence criterion is satisfied, it

appears that a consistent solution would not be possible by just

putting in a few intermediate states. However, it should be noted

that the t-dependence of the sum rule comes from the polarization

sum for the intermediate states inserted. For example, a spin zero
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intermediate state gives no t dependent term, with spin one

intermediate states terms linear in t are obtained, and so on.

Hence, by restricting to particles of spin up to J, say, we
T

shall be retaining all powers of t up to t . If the ampli¬

tude is superconvergent, so are its derivatives with respect to t

and, therefore, there will be J+l superconvergence sum rules for

a given amplitude at t » 0. (We have assumed that the amplitude

has not got even faster convergence, that is we have assumed

-2 <.a(t)<; - 1 , but the generalization to the case a(t)-n < -2

is straightforward. We have further restricted to a particular

isospin exchange. Also we consider, for simplicity, only those

cases when the external particles have integral spin.) Each sum

rule will be a linear equation in variables coming from direct

terms and from crossed terms. Some of these may vanish since they

may not be allowed by conservation of quantum numbers. Each variable

will be a product of two coupling constants, one for each vertex

joining the intermediate particle with external lines (which are

assumed to be all different). It is not obvious whether one can

get a consistent solution for any J and even if we have such a

solution it may not correspond to physics. Since the coupling con¬

stants appear only as products, we shall not be able to find the

value of each coupling constant separately. If, however, the

external particles are identical we shall be able to find the

magnitude of the coupling constants but their sign will remain

undetermined. We do not attempt to consider such a consistent

saturation of all the sum rules for the process jo+x —» K*+ K,
as the unsymmetrical nature of the problem makes it even more
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difficult. In Chapter III a simple case of scattering of vector

and pseudoscalar mesons to zeroth order terms in t and including

up to particles of spin two in the intermediate state, is con¬

sidered in the SU(3) symmetric limit.

h. Pion Scattering Lengths

A specific process that has "been under extensive investigation

using current algebra and the PCAC hypothesis is that of low-energy

(x-x) scattering. The interest in this application wmeJc was started
(15 }

hy Adlerx ' when he found that a sum rule of the Adler-Weisberger

type, relating the axial-vector renormalization constant for

nuclear p-decay to the integral over the difference of total

cross-sections for (x+ x~) and (x+ x+) scattering could not be

saturated by just including the contributions of p and f
resonances, but required a rather large contribution from some

other partial-wave which when assumed to be pure s-wave with iso-

spin zero, yielded a rather large scattering length (a° > 1.3 or

< - .85). Under the assumption that the commutator of the axial

vector and the axial divergence corresponding to double charge

exchange vanishes (i.e. [T\ D+] = 0) Furlan and Rosetti^1^
derived another sum rule for (x-x) scattering. Inserting jo, f
and a conjectured or they were able to get a saturation of both

of these sum rules for C-parameters (mass ~ I4.OO Mev and width

100 Mev) in close agreement with those given by Brown and
(17}

Singerv '. However more recent experimental and phenomenological

developmentsseem to disagree with these values. Our Oalculation,

presented in Chapter IV, is an attempt to generalize their calculation

in a more realistic way, taking into account the structure of the
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resonances involved. Since the derivation of the Adler-Weisberger
(19}

sum rujev ' outlined in Section 2 of this chapter may easily "be

generalized to the case of (%-x) scattering, we shall not consider

this sum rule further. Another result of current algebra used in

Chapter IV is Weinberg*s result for 2a° - 5a2 for the s-wave

(x-x) scattering lengths^20^ (where the superscript refers to the

isospin channel evolved). We outline below Weinberg's original

derivation of the scattering lengths.

We start off with the L.S.Z. reduction formula for the

s-matrix for (x-x) scattering,

S^4 ^ i ^ + J'*4*
t^7i)

X 3) J>fiCXi)D*C*)}]>

4
= I + T (h V w*; Un)^s»4(P, +/>-j> -p) ±'

WD*ft J

<r{DS(*4)j)Y(X3)J) P(*i) oi43C4d%txx >

(1.66)

where we have used DY(x) = d^A^(x), the divergence of the axial(X

vector current as an interpolating field for the pion, and F is
A

the pion decay constant defined by

<'IA^Ix,i7C/>(m»= it'*'* ^ Fn S'f. (1<67)

We define the T-matrix by
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j (1-68)

so that

T(Sf4>r(\} Ah ,«!>,) - <> 7T~ +^2*z
1:1 J *

x <PlT(t>f(»t) P'(ij) D*(i))/0)iii^d1zJ d>xz ■

(1.69)

2 2
In the limit when pi - m^ this is an exact identity. For
Pi2 different from - m^2, this defines the off-shell T-matrix,
with all the four pions off the mass-shell. We interpret the PCA.C

hypothesis to imply that the off-shell amplitude so defined has a

2 2
smooth extrapolation from physical values of pi (i.e., pi = - )
to pi —» 0,

In the spirit of PGkC we assume that we can expand the T-

matrix in terms of the momenta and approximate it "by retaining only

up to quadratic terms in them. For the purpose of calculating the

scattering lengths this expansion has to "be valid at least in the
2 2 2

region - m^ ^ pi ^ 0 and 0 ^ s,t,u ^ 1+m^ , where we have
defined s « - (p^Pg)2, us- (p.j-p^)2, t « - (pj-p^)2. The
requirement of Bose statistics, crossing symmetry, isospin invariance

^ P
and four-momentum conservation (s + t + u = -'2 p. ) restricts the

i 1
expansion to the following form,

/t>3 - (A + Sts+tj +c*)^ Svs + (A + B>Cs+u) ■+ Ct )

+ (Af&[u.+t)+ct)ZrsS^+ MSher order terms
in momentum, which we neglect. (1.70)
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(Actually, this expansion cannot he valid at and above threshold
o

(s = l|jn , t = u ss o) since it does not have the right cut
A

structure and, therefore, violates unitarity. Our assumption that

it can be used at the physical threshold and even slightly beyond

it corresponds to assuming that the threshold singularity is weak

and the violation of unitarity is negligibly small. This in¬

directly requires that the scattering lengths should be small.)

Eq. (1.70) allows us to write the scattering lengths in terms of

the constants A, B, C.

a° " 3&zrn , (1.71)

- —i— llA + Sbmi) ■ (1.72)
327tm^

The next step is to exploit the current algebra commutators

to evaluate A, B, C. We shall need the following commutation

relations

[k<■&,*> .A/n.t)] =it'*rv.*(xsj

id'A 3; Jj cz-t) (1.73)

where da^ is a c-number, and

[q * it), (i^jj = ■ (1.74)

Since the c-number Schwinger terms do not contribute to the

connected part of the S-matrix, on integrating eq. (I.69) and
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letting Pj,, p^ —* 0, we obtain

Tty.yOjfr^o) ^ £yS-S"SSW j + JL <yc'(p)ltr"*(0)l7[*(t>) >

+ 0 C^'J /r2 , d-75)"7T

where we have defined p2 » a p, p^_ « p^ —*■ 0 so that
2 2

s —>m^ - 2p^.p t —> 0 and u —* m^ + 2p^.p , Comparing eqs.
(1.70) and (1.75)» we get

fl-c -- £
and, therefore,

2a -5a n —i. ~ O-tfrn' (1*76)
4txrnj.Fi *

Using the Adler consistency condition,

^ TlsK,'*t3Jh>*h') ~° (1.77)
f>4~* 0

and the assumption

*- 01 $ / > _ , ,& Io) - S <T (o)

(which follows from the quark model and is also used in the

cr-model), it is easy to obtain another condition

2a; + s (1-78)

This yields the result a° * 0.2m "*1 and a^ * -O.OSm^""1.
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These values are small compared with those obtained from the

analysis of (x-N) scattering data^21^. Since eq, (1.70), upon
( 22 )

which this result is based, is rather dubious, Khuriv ' made the

calculation including fourth order terms in momenta. He found

that, under certain reasonable assumptions, Weinberg*s values for

the scattering lengths remain unchanged. If, however, one imposes

the unitarity condition at the threshold, in addition to obtaining

Weinberg*s solution, other solutions with larger scattering lengths

are also obtained^ 2-*\ More recently there has been much work in

this direction^but there does not seem to be one opinion as

to what should be the correct values of the scattering lengths.

Even though most people agree that a° should be positive and a2
negative, certain calculations using dispersion relations seem to

( 2*5 }
indicate that both of them are positivev . On the other hand,

it would be nice to have both of them negative as this would pro¬

vide a natural solution of ghost problems in S-matrix theory^2^.
A recent hard pion calculation due to Arnowitt, Friedman,

Nath and Suitor^2"^ has shown that Weinberg*s result is consistent

with the experimental results for (x-x) scattering due to Walker

et al.^2^ and also with the analysis of (xN —»xxN) data by

Malamud and Schlein^2^. It may therefore appear that Weinberg's

results are after all reasonable and any discrepancy in our

results of Chapter IV may be due to some other source,
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5» Ambiguities in Current Algebra Calculations and their Resolutions

Having outlined some of the successful applications of current

algebras and PCAC let us now discuss certain paradoxical results of

standard current algebra calculations and their resolutions through

recent techniques and prescriptions. We do not intend to go into

formal difficulties that arise in trying to set up a rigorous mathe¬

matical basis for current algebras, using axiomatic field theory^0^.
Such problems have been carefully tackled in the literature

(32}
Nor do we intend to consider the more familiar difficultiesw ' of

gradient terms and of non-covariance aspects of retarded commutators

of currents. Instead we shall consider certain technical diffi¬

culties that are present in the usual methods of doing current

algebra calculations.

The first ambiguity that we want to mention arises in calcula¬

tions in which more than one pion is extrapolated off its mass-

shell. It was discussed first in connection with non-leptonic (2x)-

decay modes of K-mesons^^. If one does the extrapolation of the

two pions to zero mass sequentially, i.e., first takes one pion off

its mass-shell, goes to the limit of zero four-momentum of the pion

and uses PCAC smoothness assumption and then repeats the whole pro¬

cedure for the other pion, then on& obtains the result that

K -*■ 2x decay obeys A I = % rule^^. Thus it was believed that

current algebras and PCAC implied the A I = % rule. However, if

one extrapolates both the pions simultaneously, i.e., takes both

the pions off their mass-shell and considers the limit when both

the pion four-momenta vanish and assumes PCAC then one obtains

additional, so called, a terms arising from the commutator of the

axial charge and the axial divergence at equal-times. Since the
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C-operator may have I s 2 as well as I « 0 components, (the
former allowing 4 1s: ^/2 transitions) the U s | rule is no

longer a natural consequence of Current algebra and PCAC. In fact,

it is possible to explain the experimentally observed departures

from 4 I ss % rule by allowing a reasonable admixture of the I s 2
(11)

and I =s 0 0" — components'. Even though there does not seem to

exist any argument, which in principle would favour one extrapola¬

tion procedure against another, the general consensus is that the

second procedure is the correct one and the c*-terms (which are

physically meaningful) should be present* It is this method which

leads to Weinberg's scattering lengths for pions, the first method

allowing no such solution. Other processes where this method has

been successful in re-estimating current algebra predictions are

T)-decay^-^, intermediate vector boson mass^^, etc.

The next ambiguity that we want to consider is the derivation

of the sum rule

= 0 {1'79)
(17)

due to Kawarabayashi and Suzuhi' using current algebra, PCAC

and p-dominance assumptions. Here

<oM* lxM> (1.80)

and
= -L (***) (1-81)fc7r

This sum rule is in good agreement with experiment. There have

been many other derivations of this sum rule which, however,
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require additional ssumptions^® \ Geffen^^ has argued that the

original derivation of Kawarahayashl and Suzuki is ambiguous, and

there does not seem to exist any derivation based on Current algebra

and pole-dominance assumptions only. His argument is as follows.

The (p -> 2x) decay amplitude may be extrapolated to zero
four-momenta of all the three particles in three different ways:

(i) Extrapolate two pions as usual to zero four-momentum so that

jo must also have zero four-momentum (by momentum conservation);
this is^ the method used by Kawarabayashi and Suzuki, (ii) Extra¬

polate one of the pions and the p using for the latter the
interpolating field V^/f^ where f is defined by,

' (1.82)

(iii) Extrapolate all the three particles explicitly off their
\

mass-shell. Only the last procedure is unambiguous as it shows

how the extrapolation to zero four-momentum is done for all the

three particles. However this method does not yield the Kawara-

bayashi-Suzuki sum rule, but instead,

'p,,'*1= (rx(0>/r„) (1.83)

This is consistent with PCA.C and the jo-dominance assumption for
the electromagnetic form-factor of the pion. The second extra¬

polation procedure again yields the result (1.83). The first gives

2 Ik \ l,>) _ (rt/F a _ (!•«»)
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2 ?
where (p ) is the extrapolation of f^ s ^(""^p)* It is
argued in ref. (39) that the estimation of fo(0) from p-

r J
dominance assumption is ambiguous because of the non-covariance

2
of the vector current propagator that appears in fp(p ).

Another ambiguity we discuss is the calculation of A^-width
due to Renner^0^ and Geffen^0^ based on current algebra and

meson pole dominance assumptions. The standard current algebra

technique gave a width of the A.^ meson that was too large ( -v 650
Mev) to be acceptable (the present experimental estimate is about

30 "v 130 Mev). The original explanation given was that A^ was
not a pure resonance and was a kinematic effect (Deck effect) and

the actual 1+ resonance was, as yet, unseen. Since then, however,

several authors have produced more sensible values for the A^-width
(30 ^ 200 Mev). Such calculations are usually done by considering

both (A^—> jox) and (p -> %%) decay modes simultaneously. The
first successful attempt was due to Schwinger^'1'^ in his phenomei

logical Lagrangian theory (chiral dynamics) which gave

rp ^ - 78 Mev

r\ ^ 185 Mev ,A ,-*/>*

(1.85)

with all the particles on their mass-shells. This method has been

discussed in greater detail by Wess and Zumino^2^ who have obtained

additional possible solutions. Another calculation based on

generalized Ward identities derived from current commutation rela¬

tions and on meson dominance assumptions at finite non-zero energies

has been done by Schnitzer and WeinbergThey obtain a one-

parameter dependent set of solutions for ^ and
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which embody Schwingerfs result and have a typical solution con¬

sistent with the presently accepted experimental widths

r +
k71 128 - 20 Mev

(1.86)

r — 30 ^ 130 Mev .

A- calculation more in keeping with the original derivations has

been given by Brown and West^^^. They point out that in the

original derivation of the A^-width unsubtracted dispersion
relations for matrix elements of the retarded commutators (rather,

their Fourier transforms) were assumed in one of the two independent

variables, while the other was kept fixed (preferably at zero). As

a result, certain important pole contributions were missed out. In

the derivation of the A^-width as given in ref. (40), the x-pole
in the variable that was kept fixed (» o) was lost. Brown and

West attribute the discrepancy between experiment and theory to

this unsatisfactory way of doing the calculation. By assuming an

unsubtracted dispersion relation in one of the variables with a

suitably defined variable (e.g., a linear combination of the two

original variables with a free parameter) fixed such that no pole

contributions are lost, they are able to obtain a consistent set of

solutions for the (Ajdx) system which are in agreement with the
results of Schnitzer and Weinberg. They also show that the assump¬

tion of unsubtracted dispersion relations for all the current form-

factors can lead to inconsistencies and some of these form-factors

may, therefore, need subtractions. The assumption of meson-pole-

dominance would accordingly need constant terms in addition to the

pole terms. This is equally true of the matrix elements of the



-US-

divergence of the axial vector current. Therefore PCA.C in its

conventional form of pion-pole-dominance may need some modifica¬

tion in certain cases "by requiring additional constant terms

"besides the pion poles.

We conclude this section "by presenting a calculation for the

scalar vertex <(x I <r/ x> "based on the technique of Brown and West,

mentioned above, and illustrate how the standard techniques used

in current algebra calculations may be obtained as limiting cases

of this method when one or the other variable is fixed. We find
P P

that as long as m^. » m^ we get identical results (which may not
be a general feature, but a peculiarity of our simple case)
immaterial of whether we fix one variable or the other, or any

linear combination of them, and this result is found to be the

same as that obtained by combining eqs. (5.11) and (5.12) derived

in Chapter V by a more general method.

We start with the equal-time commutator

f J/C C*) *3* , crw ] =-*3 Co) (1.87)

and consider its matrix element between a pion and vacuum

<°l I /Ao* (*) d3* > <rl0jJ |F 3 (W> =r - 0 <°l 3^Aju to) \

— - i-ml F $ ^ (1.88)
A 7t j

( p ~ 9U Mev).
%

Define
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W(P^) = Jd+x 0(x°) e~^ * ^ICD'W ^(o)] lxj(P)> ^ 89_

wfct)r 1 U+* ft'**'* <*/ [DUx)j(f(o)] Ijcs(»> . (lt90)

Then, we may write eq. (1.88) as

^ W (p*) = - ■cfl mj $Lt -
H-+0 X)V' X * (1.91)

Inserting intermediate states in eq. (1.90), we get

r 1 /*+* <0/ pHo!**{?„)> <**(!>»)I*M lnHf>) > ^>iJ 1 Uk)32^

_ +/>)•* <oi<r(.o) l<r(pnj> <*(!>*) I p'(o) lxJ(P)>
(2X)J 2j>n

(1.92)

n t 7t S(i^+ WlJ ) EK Wx fg- Q<fifx £ ^
2 2

t X* 8 ( d1 + M 2 J Erf lYlrf Ga-rtrf 8 ^
*X + ?2

(1.93)

where A s p - q.

We now keep [i m aq2 + (1-a) 42 fixed and write an UDR (unsuh-
tracted dispersion relation) for W,
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W - 1 f coti"* M) / _ jf_ f 00(A"2, pi) cLk"1 ) (1«9U)
^ J <£//2_ <^2 ' \ ~ 7T I AjU ~ a2 J '

= «<5*>F m* 4 £ i - J 1 1 ! 1(1.95)7T ft <r cr^tTt i mj+qz m 1+a'2w-f+f2 J >"i2+p rni+A'1 Mf+r

where

u = _ <* ^i2 ^ //2 ■) (I.96)1 n. \

oc V2 - (1-«) >vj
so that

2
A'1 - /* + *

/- « (1.97)

<2*'2 - Z2 +(l-*)Mf
o(.

a is a free parameter. The equality within the parentheses in

eq. (1.9U) follows since dq"2(q"2 - q2)"1 = d a"2( <1 "2- a2)"1
Therefore,

^ iv - t(5 W r ml $ $ I «'17T 7C 9,r VXX I1->o m* + 4+W (1.98)

+ •

(m*-w%)[<x-iV2+y+ (/-«)/n*)
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Case (i) a » 0 (fixed A2 UDR):

} (1.99)

Case (ii) a » 1 (fixed q2 UDR):

- m1^ ^^ (i.ioo)

Even though these two cases cannot "be correct simultaneously,

the result

£ W — Cn£-m%.)z } (l.ioi)

is consistent with "both of them. Eq. (1.101) is also obtained "by

combining eqs. (5.11) and (5.12) derived in Chapter V. According

to Brown and West none of the above two cases are reasonable. We,

therefore, allow a to be a free parameter.

Since

/X s + [1-X) (f3'i)Z

we get

jj. — — (1.102)
? -*o

Therefore, combining eqs. (1.91), (1.98) and (1.102), we get
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~

m 2 t ^"-0 2 &r Gcrnn
n cp

(m£-m2n) I (*-i)(m£-m£) + J .

(1.103)

Since this equation is true for all values of a (except perhaps

at a = 0 and at a = lj, comparing the coefficients of various
powers of a on "both sides of the equation we obtain

- 2 ml + m1 - ^o- ^<r
mzn im£- m%)

(1.104)

and

m2 _ mZ - _ $<r
* «" (1.105)

it

2 2 \
These solutions consistently imply (if m »m )O A

t <v„ = t <v2 - <)

or

V2c s < t^-Oz
As shown in Chapter V this relation is not unreasonable.
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CHAPTER II

MESON COUPLINGS AND MAGNETIC MOMENTS

FROM LEE-DASHEN-GKLL-MANN METHOD

1. It was shown "by Lee^1^ and, independently, by Dashen and

Gell-Mann^") that many useful results of SU(6) symmetry^) (e.g.,
the axial-vector renormalization constant in nuclear (3-decay^),

( 5 ) \
the ratio of proton and neutron total magnetic momentsw', etc.)

could be obtained without requiring such a symmetry if the U(6)

algebra generated by the hadronic vector charges and spatial com¬

ponents of axial 'charges* was used along with SU(3) invariance

and a saturation hypothesis. Their method was to take the matrix

elements of the commutators between states of zero spatial momentum

(e.g., one nucleon states at rest) and to insert a complete set of

intermediate states between the two operators of the commutators.

Even though conservation laws restricted the number of allowed

states considerably, some kind of approximation was unavoidable

in order that experimentally verifiable results could be arrived

at. Hence they retained only certain single particle intermediate

states (bound states or resonances), namely the octet of baryons and

the decuplet of baryon-meson resonances at rest. In this way they

obtained the SU(6) results for the axial-vector renormalization

constant and the magnetic moment ratio for the nucleons. The

assumption that the octet of baryons and the decuplet of baryon-

meson resonances saturated the sum rule was equivalent to assuming

that these states formed a basis of an irreducible representation

of the U(6) algebra generated by the vector and appropriate axial-



5b-

vector charges. This algebra, however, was not assumed to corres¬

pond to any symmetry group. In particular, the Hamiltonian of the

strong interactions under consideration was not assumed to commute

with these charges (at least, not with all of them). Hence the

Hamiltonian was not assumed to "be invariant under the transforma¬

tions of the group locally isomorphic to the algebra generated by

these charges. The same technique was later applied to the case

of mesons by Fayyazuddin, Riazuddin and Razmi^^, and, independently,

by Sehnitzer^^, again obtaining the SU(6) predicted values^^^
for the meson couplings and magnetic moments (and also mean square

radii). The case of nucleons was carefully examined by Ryan^10^ in

the context of SU(I|.) algebra assuming only isospin invariance and

keeping only a few intermediate states. Among many interesting

results he reproduced the results of Lee and of Dashen and Gell-

Mann except for an ambiguity in sign of the axial-vector renormali-

zation constant which he attributed to the equivalence between two

conjugate representations (which transform into each other under

G-con^jugation) at the SU(2) level in contrast to their difference

at the SU(3) level. His analysis (restricted to nonstrange particles

only) was much simpler as no complicated Clebsch-Gordan Coefficients

were needed. He also demonstrated how the values of the axial-

vector renormalization constant and the magnetic moment ratio

depended upon the saturation assumption, and how important it was

to take matrix elements between states at rest rather than between

states of finite momentum.

In the following a similar calculation in the context of SU(I(.)

algebra is presented for the case of nonstrange mesons. If there
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were a SU(i|.) symmetry (a higher symmetry, and not Just an internal

(x, T]) would together "belong to a sixteen (1015) dimensional

representation of SU(lj.). In the following analysis only these

particles are involved (in particular, fi and *n* are ignored

as they do not appear in the representation of SU(ij.) to which

p, x, to and "n belong^ However, no SU(lj.) symmetry is assumed.
Only isospin invariance is required to "be valid. Matrix elements

of the various commutators are taken "between all possible pairs of

these mesons at rest and the intermediate sum over states approxi¬

mated by these very mesons. The calculations and results are given

in the following sections. In section 2 commutation relations be¬

tween the various charge operators closing an SU(U) algebra are

written down. They are shown to follow from a free quark model.

Commutation relations involving magnetic dipole moment operators

are then derived in the same model, first assuming that these

moment operators have only L = 1 terms and next including an

additional L = 0 term. (Here L refers to the orbital excitations

of the quarks; in the free quark model that we consider there are

no other basic particles except the quarks and L is Just the

orbital angular momentum of the quarks^11^). In analogy with the

SU(3) situation^12' ^ an algorithm of C-parity conservation is

developed and used for writing the matrix elements of the various

operators of interest to us. This automatically ensures conser¬

vation of G-parity and isospin. In section 3 the calculations are

described and the results given. These are then discussed in

section i+. PCAC constraints in the form of generalized Goldberger-

Treiman relations are then applied to convert these results into

symmetry) the vector mesons and the pseudo-scalar mesons
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relations between strong meson couplings. Finally the implications

of our results for magnetic moments and radiative transitions of

the mesons are discussed. Table IIA summarizes the results of the

calculation.

2. In a model based on a fundamental isotopic doublet field

t), the vector and axial-vector currents are given by

y^ z- cj, CX) J (2.1a)

&/(*) = - I Ifr) , (2.1b)

^ L*) --ift*) y° yM f (x) , (2.ic)

aft*) yOyfyrqc*) , (2.id)

where the Lorentz index |i s 0, 1, 2, 3 and the isospin index

i = 1, 2, 3. The corresponding charges are obtained by integrating

them over all space. Thus,

-

2 J Zii (*) <*3 2 j (2.2a)

Ai - i J cif (x) d3X
j (2.2b)

A = i
o 2 if(*) *<?(*) d3* > (2.2c)
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where a = 1,2,3 are space indices and da = Y"V°Ya* Por our

notations and metric see Appendix (i). The fifteen operators

satisfy the following commutation relations (this follows if we

use anti-commutation relations for the quark fields), and thus

close an SU(iO algebra,

[a*,A/] = Ace ; (a-3«)

[A* , A04] = Atc j (2.3D)

> (2'3c)

[AAVj'J =. , (2.3d)

[V-°' V}°] = V« > <2-3e>

[ K, A.4] = *( CL^A,'- <2-3f>

In our notation 2"^J = 2iei;Jk^k' = 2dab,
As the axial currents are not conserved, the corresponding charges

are time dependent and the corresponding Eqs. (2.3) hold at equal

times. No Schwinger terms are involved as we are dealing with

integrated quantities.

We next write down the isovector and isoscalar dipole moment
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operators in the free quark model, under the assumption that they

are pure L = 1 operators,

•m* = L fgL*x €*** x* q,t*) J (2.Ua)t 2 J 2

mf=jj ** tfW jU*) ■ (z.w,)

We shall further need to define the following moment operators

; J*3*(J (2.5a)

= /rf3* *Z f rf*J £* £ (*) (2.5b)

CP*1 - Jc*3* X* jr(x) <r * ± f (*) (2.5c)

is the quadrupole moment operator and Rk corresponds to the
mean square radius. The commutation relations between the magnetic

moment operators are found to be,

[mS, _ QjtL 1 +i8^£°-Lc ^_C ^ (2.6a)

[<,< J ; (2.6b)

VJ ^
- 1 ■ (2'6o)
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It is to be noted that the magnetic moment operators do not close

any finite dimensional algebra, higher and higher moments being

generated on repeated commutation.

As pointed out by Ryan^^ (see also ref. (11)) the magnetic

moment operators given by (2.ha) may be written in the form

Tfl - 1 (2.7)t 2 *

■j.
where v^ are isovector current space components defined in (2.1a)
whose i » 3 component is Just the isovector part of the electro¬

magnetic current of the fundamental doublet (quark) field. If this
o

current does not contain any derivative term then m~ is a pure

L = 1 operator, where L is the orbital angular momentum of the

quarks. However, if the fundamental field has a Pauli moment
Q. "

coupling to the electromagnetic field, then m^ should be modified
such that the magnetic moment operator contains an L = 0 part in

it. We shall denote such modified operators by and they will

have th form

M* r 1 t5**' ft*) + \<*3* fW *0(fa -L ft*) jA 2 J ^
(2.8a)

{ Jd3* ftz) ^ (2.8b)

where n is the quark magnetic moment. They satisfy the following

commutation relations,
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where

[ M a M* ] -U+V+W+X (2.9a)1 ' } j

[M" , Mi ]= « * , (a.9b)

= ^ + <j +rf6 + t (2.9c)
;

u = iC.. r*a< «* a;*i ♦ «e
'>• l" T " IT J V T ;

v r i u1 5 5. e^i* + V° I
f rU 'I Ao fcj* ^ {

-- i nj «t3* e*" V£^ "fVc-H/IV
2

X n-iu (^* x.**?(*■) \ s.. 8^1**°-£.. c*a'fllsi0<rfl z I,
B Tl ) ~ L li t*X K J L

Hz* f<xfj-c pc
4 0 '

* = j ,

w = i a f^x clt^xifM^rif(*) ,
8 %> J ~
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* = i u fat3* x*(x)
8 1 % J "

jo Z - ± U3x 8^8 *■*
2 J " ^ 0

% = i foe3* 8, ■ ^
z J ■" V 0

r =• - i f d3 x £ °"^ * ^ 6 . . ^ °
2 J ~ V* *

-6 - -& 8.. £*tc ^Y°crccfr(x)

t = - ii5 J^3* £Lj*S^ tt(*} *°Z£ t[x)

In order to write down the matrix elements of these operators,

we now develop the concept of C-parity conservation in the case of

SU(2) symmetry. As in the case of SU(3) symmetry each

of the isospin multiplets f, x will "be assigned a definite C-

parity, and the C-parity of the second component will carry an

additional minus sign. If C is the charge conjugation operator,

under C the mesons transform as follows,

C I V —* - £ V (no summation) ,vA ww CL

C I F —» + r P_ (no summation) ,CA OU (A
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where a = 1, 2, 3 are the isospin indices, = + ,

&2 - - • The vector and axial-vector currents transform as
follows

(no summation),

Gl£ —> -j- tx d£ (no summation).

For isoscalar mesons C-parity and G-parity are identical. Thus

vrt > - V ,o o

prt —> +o o

Also,

o : ^

af —♦ ♦ a*0 7 T (3

Using the charge conjugation properties of the Dirac bilinears,

we find,

0 •

—> _ £■ m* 3 Pc . <?c(j \> 4J > o ~ ^ 0

7YLa . _ tri*
0 ► 0 j

Q ,, - £* a ^/e >



Let us consider the matrix elements 1 v^° |v^, ' | a^° / Va^>
and <V0« | a..0 | to illustrate how C-parity conservation imposes
restrictions on matrix elements. Since Vy1* vj°> Va ■iiave c~"
parity - e„„, - e., - e , the product "becomes - e e. e . InY 3 ot Y 3 &

order that this remains positive only odd number of indices can

take on the value 2. This implies after requiring isospin con¬

servation that the matrix element must "be of the form e. . The
jo-Y

second matrix element would vanish since it has an additional factor

of minus sign and, therefore, e^ay type of coupling (which alone
conserves isospin) is not allowed "by C-parity conservation. The

third matrix element should be of the form 5^ for only then will
both C-parity and isospin be conserved.

The various nonvanishing matrix elements of interest to us are

given below,

<vj =

<v: I 4 I W> =

<v;l =

I 4 I vt> =

<'/r I a/ I O-

<P* I I P«> =

i c
dea d* £

£ £ fA -* (2.10a)

■ * (2.10b)

/ c. £ 2W„ (2.10c)

£f* f (2.lOd)

i € . £ 4 ^ (2.10e)

(2.lOf)
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<p«

<1

<Vi

<vj

<K

M^|V.> = /* £<,jk £***£* £e Cm)3 83 L*)

m:I v.> = n? <*■ i»3 «3w

M;|Vj> = Ff c's^ (2*)3530e)

(2.10g)

M P:> = H £a 5.. (ztf)3 53(k)* ' ToS ^

Mol v0> = £a (2*)3 S3(*)

^ (2.lOh)

j (2.101)

(2.103)

(2.10k)

*il Vj) = iei)K £*■£ 0/>(«*)V(*) ; (2.10J)

E>K> = <^> f"»S *3(5> (2.1Qm)

<Tk-> =_* Uutbs^c'-i -jU'V + ^VB&M2-!0*)
ijio * ~ ~

<Vi| V|V^= W 83 (*)£>« j (2.10O)

<Vo| d>°| V0<> = ie^C €$ £* fJ5 C2*f 63(&) J (2.10p)

i (Ppl jd3X yf(*)Zz*0<P(x) IP0> = Hppt27()3 S3(S) ; (2. lOq)
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J^3* = , (2.10r)

<■ <^| J<i3; ^f(*) !fVc f(t) jp„) = ^ £c <*„ t2*)3 f3(t> j (2.iob)

iOJ J*35 »fW ifV{ *f*J/v0> = ees„»? <.i*)3e3(g) , (2.lot)

<vp| JV* *#ax" /p«> = (27T (2-lou)

<v„| j*3* *fa° Jv(> = spitie1"fe»*el Kyy (**>'t3d) j(2.iov)

V I 7 "'I V« y = *€ °"C& £6*"« C S/tx2mJ> ^")S S3 C*) , (2.10m)

<vo|'"a|v0> - cc:"4 €4*£C (i*)3 2^ tf3(S) ■ (2.10*)

The scale of these matrix elements is fixed by Eq. (2.10c). Eqs.

(2.lOf), (2.10w), (2.10x) have been chosen to be consistent with

Eq. (2.10c). The various constants appearing in these equations

such as gA,...., p. , .... ^ijo2 )> ,.., Q etc. are weak coupling
constants, magnetic moments, mean-square radii, quadrupole moment

etc. and they are defined by the corresponding equations. k is

the momentum transferred between incoming and outgoing states and

tends to zero. Covariant normalization <£' I £> =

(2x)3 2p° ^(gi - g) has been used, as always. e"* and e are
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polarization vectors of outgoing and incoming vector mesons. We

shall consider the magnetic moments to "be defined as above, whether

the states involved have L = 0 or 1.

3. The calculation is done as described below. In order to

investigate the consistency of the solution obtained every possible

case has to be examined. We, therefore, group the single particle

states into fifteen subsets, four consisting of only one type of

particle each (PQ, VQ, P^, V^), six with two types of particles
each (P P , P V , PV , VP , V V. P V ), four with three types* o a o a o o* a a a o* a o *

of particles each, and one with all the four types of particles in

it. We then consider the matrix elements of all the commutators

(Eqs. (2.3)» (2.6), (2.9)) between every possible pair of states

formed out of the states belonging to each subset and saturate them

by inserting as intermediate states every type of particle that

belongs to the subset. In the following this is illustrated by

considering the case when all four types of particles are involved.

The results of all the calculations are summarized in Table IIA.

(i) Matrix elements between^Vgj and )Va<)>

As outlined above, we take the matrix elements of all the

commutators and insert in each case in the intermediate state

P0» Py» VQ. Except in the following cases, we get the trivially
consistent solution! L.H.S. = R.H.S.

Eq,» (2-2a)
The only nonvanishing contributions come from P^ and VQ ,

and we get
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JOSlAi IPr-,x> <P*,,«IA] ,':/*> + K I!'/ , «>^3 <>*,' *M/l "5

/<*' W^ ">A <r,.*lAtlK>-/<V/V"i'*>3$&<**!*? Iy»Y:1

= * e«*sal <V Iv«/K«> + icafrc sa >

where Z implies sum over spin states of V . Using eq. (2.10),
r

we obtain,

ii c#V ) * i£- (£'■ 5 f**- e*V; ^ si— «■ r " ' v«
7T

^ zL* Z,0- ■. 6 -S. 1±. (e* z su t**zL) S>
2m* v *4 <?« ^ a«; C ~ ' - i* Ufi

-- 2m su€*-e (s< <r. - <?■ <T' J- (g** g g* g**)_ - Z <71C fc 5 1 w ^ ofi 1« ' oi SXf Z ~ Woi j0 ' 0/3 J<X 0$ fix

Comparing the L.H.S. and R.H.S. of this equation, we get,

-2*<* + _Al - - 3 /
2m„ 2#i,

-ilA— + i^A.2" - £ m.
2 2% ^

I2
— •£
2 m 7r = A

which gives uniquely

$=-»> , */-- 4n^maJ j (2,11)
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Bq. (2.5f):

f' . - 2m . (2.12)A f
Eg, (2.6a)*

Making use of eqs. (2.10), we get the following set of results,

/'t1'1 2
+ _tl . <_»Pi>

2r>iy yvip 2 J

+ ll = - 3r,
2m.^ 4 ;

2.
r t + u_ y - o

4i/5O 4

2

3/*r + iii ^ a. _ fV- o
2.My Mp ^{io 4

pi2
^ _

3 ~ (,\TJo ~
These equations are consistent with each other and imply uniquely

2 Z
no)

<? = 0 . R - <y» > -. ir = , (213)W, f - 1 Vmt2-«>

Eq. (2.6h)

Fu = - . (2.1U)
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E"- (2-9aK

I (*„■ V<«*««* '*£*• S > - £V'>« ' V«V>(£V^'V

tT?- J

s . 2a£» f *4 it* th - ^ S}x )C$.tij »"*« 4" e*e4*^ ■

Comparing the L.H.S. and the R.H.S., we get

//2 LL'Lo)2 , 2ji- 4 T - jL -m li
M-f 2^1^ 2- $ 1

1L + 1 f J - 0
^ ^

Therefore, using f^ = - 2mrt (as obtained above),r

= J »"t"! = m,"p ^ (2-15)

q. (2.9b):

= m w u2 (2.16)
t5 7T f y

Whenever we use equs. (2.6a), (2.6b) and (2.6c) we always assume
9.

that the states have L = 1, so that the matrix elements of m^ and
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M^a are the same. Also, while using equs. (2.9a), (2.9b) and
(2.9c) we always assume that the states have L = 0 and the

matrix elements of any L = 1 operator "between these states are

dropped without any comment.

(ii) Matrix elements "between <(PQ | and \ PQ

Only the trivial result L.H.S. = R.H.S. is obtained.

(iii) Matrix elements "between <^P^ | and | Pa />

Again L.H.S. s R.H.S. except with the following commutators

0- (2-3a):

Only V"Y has a nonvanishing contribution, and we get

with the result

2 (2.17)
IA =4 "V

Only V contributes, and we get

7 S($■* 8- - S- $. ) - /Y* \ /r, r\ . r
*

with the result,

J
(2.18)
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Sq. (2.9a):

As in the previous case, we get

Co) 2

'GO

so that

$ ^ (<?■ S- - & ■ 5. ) = H sat (&■ s. - s.
2 yy^ d ** <}ft t/** 2 ^

^(0)1 - mm. u]~ . v
T -7C CO '1 (2.19)

(iv) Matrix elements "between <Cvq | and |VQ^>
The following are the nontrivial cases I

**• (2.5a):

§A - ■ is
2mf

= -#. (2.20)

i'-q- (2-3f):

4" - - 2ma (2.21)

Eq. (2.6a K

Eg, (2.6h)t

Eg. (2.9a):

u(fl . _ "1 % r« . (2.22)T 2 V

/2
_ r w^ — fy ■ (2-23)

■ (2.210

Eg . f 2 . Q"b ^ - 2 2
iu- ~ m m u.

Tis 7 10 ' ? (2.25)
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(y) Matrix elements "between | and | .

The nontrivial cases are

Eg. (2.3aK

iA = -2mj3 . (2.26)

Eg, (2.6c)I

ILk (SA<- S- - i. S..\ * l. s.
2M.j, 1 l*J I* fix ij J tx h

r . i <LafL€f* e.. i e kvp ,
i ty# leap J

so that

fir' = fi= *vf = 0 (2.27)

Eg. (2.9c):

^ - V *t,)c
- if zc* G H i.. ,

/*« VP ~J >

££4 -
, (2.28)

mp 2

^ --- V <«•»>
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(vi) Matrix elements between /P I and )p S
B o

The nontrivial cases are

Eg, (2.6c):

Ht = 0 (2.30)

Eg. (2.9c):

. -i C. 8at I*(0)/ - ^ £ , H 8iv A r - — PP 18* J

A* tr Hpp (2.31)
2^ ~ ^

(vii) Matrix elements between <(p^ 1 and I VQ^
All commutators give the trivial result L.H.S. s R.H.S.

(viii) Matrix elements between <^Vg | and /Pp/*

As above L.H.S. = R.H.S.

(ix) Matrix elements between | and |Vp^

The only nontrivial cases are

sq- (2>3b):

— = ^ - - 1 (2.32)
2mj? " 2mw

Eg- (2.6c):

H cu*. t* _ie. £*>* Ia u(t) 6 V
Tm? ** A Tmx 7 *

- - Y 6 fc V t Kvv ■
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Therefore,

- "r>£*-V =° ■ <2"^

Eg. (2.9c):

- ±L u[0) e..a
2Mj> * 7^. 7"

- hJh € .. £ *•*> H £*■€
so that, <j. -ojA W ~ ' ~ ->

<A
= ,^_jV (2.3U)

*1* ~ 2 J

v
(x) Matrix elements "between Oo I ana <vo /

-
_ 1 u

m0 2 r<y vv

The only nontrivial cases are!

(2.35)

Eg.(2.6c):

h™' tA =0 <2"*>
Eg- (2.9c):

(0) y
- c ^ £ 41- - it* $ f S-- £a^c£ca /4 2 M.p 4 Vj> iJ. J

SiJtf = _ ^. (2-37>
7H-p 2
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note that the solutions for coupling constant as given

(2.11), (2.12), (2.17), (2.20), (2.21), (2.26) and (2.32)
consistent with each other and imply uniquely the following

- I* r - ^ r - ) •

2mu 4wm 4m (2.38)

With pure L = 1 magnetic moment operators, we obtain for the

magnetic moments the results contained in the eqs. (2.13), (2.1U),

(2.18), (2.22), (2.23), (2.27), (2.30), (2.33) and (2.36). Using

the solutions obtained above for the coupling constant, we find

that the only consistent result is that all the magnetic moments

vanish. This trivial solution is not physically acceptable, and

is the direct consequence of having used a pure L = 1 form

(eq. (2.7)) for the magnetic dipole moment operator. We note

that our method of saturating the commutators with PQ , VQ ,

and P automatically requires these states to belong to

a (1 © 15, 1) dimensional representation of SUj g (U) @R^(L^) ,
so that these states have L = 0. To see this, we consider the

matrix elements of the orbital angular momentum operator between

these states!

< vji I L* I V > = < V I T *7 V* > ~ < Vp I I V* >
r i^€^€cS 2m

7* f p

Our solution f^ = - 2m , then implies that

<V La'va> = o .

We

by eqs.

are all

result
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Therefore, the states |Va^ have L = 0. Similar arguments show,
after using our solutions, eqs. (2.38), that ' ^o^
all have L = 0. This explains why all the magnetic moments

vanished. In order that we may obtain non-vanishing solutions

for the magnetic moments we modify the corresponding operators

"by allowing additional L = 0 terms as in eq. (2.8). On repeating

this calculation with these operators, we obtain the results given

by the eqs. (2.15), (2.16), (2.19), (2.2k), (2.25), (2.28), (2.29),

(2.31), (2.34), (2.35) and (2.37). These equations are found to

be consistent with each other and uniquely imply the following

solution,

and further

VP
2k .

k
J5 *

Hpp
(2.39a)

H 2k $A

V/

/
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In arriving at eqs. (2.39) we have used eqs. (2.38).
A.s outlined earlier, the whole calculation is repeated with

different sets of particles. The results are summarized in

Table (IIA). We note that consistent solutions are obtained only

when all the four types of particles PQ, VQ, Pa, Va are con¬
sidered, and in this case they constitute a (16, 1) dimensional

reducible representation of SU(l4-) (x)R^(Li).

I+. In order to compare our results with SU(6) predicted

values, we make use of generalized Goldberger Treiman relations

for the weak couplings. We shall also use our results on mag¬

netic moments to obtain information on radiative decays of mesons.

But before we go on to consider these matters, a few remarks on

our results are in order. One noticeable feature is that we do

not find any ambiguity in the sign of the coupling constants in

addition to the ones already existing in the SU(6) calculations

of refs. (6) and (7). This is in contrast to the case of baryons

where the SU(6) calculation predicts unambiguously the correct

sign of the axial-vector renormalization constant, while the sign

is left undetermined in the corresponding SU(i+) calculation^0^.
The reason is, whereas for baryons the particles and antiparticles

belong to two conjugate representations which are distinct at the

level of SU(3) but equivalent at that of SU(2), in the case of

mesons both particles and antiparticles belong to one and the

same representation both at SU(3) and at SU(2) levels. Another

interesting feature is that our results on magnetic moments

obtained from eqs. (2.9) and eqs. (2.6) give the same relation
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v
^T

/ Co)

-mpyiy7
A1 a>;

rnn
fir*

W/,w
7 (2.1*0)

except for the fact that this is trivially true in the latter case,

since all the magnetic moments vanish there. This is analogous to

Ryan's^^ observation that the magnetic moment ratio of neutron

and proton obtained after taking account of the orbital angular

momentum of the states is the same (apart from a sign ambiguity

which arises for some other reason) as given by Lee,in spite of

the fact that Lee did not take account of this, and, in fact,

should have obtained vanishing magnetic moments. This encourages

us to believe in the correctness of our relation between the

various magnetic moments. A final remark we want to make is that

we have not investigated the effect of including scalar, axial and

tensor mesons and also various mixed states^1^. Nor could we find

any information on the mean-square-radii and quadrupole moments of

the mesons. They would, of course, vanish if our definitions

eqs. (2.5) are correct. Presumably, however, these equations

should be modified by adding suitable L = 0 terms in them. We

do not investigate these generalizations. Our intention is only

to see whether the good results of SU(6) symmetry for the nonstrange

vector and pseudoscalar mesons can be obtained by using only SU(Ij.)

algebra and to illustrate the simplicity of the calculation as

compared to the corresponding calculation using SU(6) algebra

as given in refs. (6) and (7)» We have seen that this is indeed

the case, and we obtain a unique and consistent set of solutions.
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We now apply the PCAC assumption (which would imply

Goldberger-Treiman relations, referred to above) to obtain

relations between the phenomenological strong coupling constants

of mesons. For states of arbitrary momentum (suppressing iso-

spin indices) the matrix elements of the axial currents are

defined as follows,

<v>l<S<«lv> = *e ^ ret) ^ ret) j (2 Wa)

(Note e0123 = 41)

<1"/ ofw /P> = €** H,(t)+ €*■!> tr HtH) l*>, (2>la,5)
2

where t =-(?*-?) , in obvious notations. In the limit

E» E* —» 0, we obtain

<v'\cfj1/> = m i€ *** f d) + m tedeAed*£Q Fza) j (2.i*2a)

<V'| a* |p> = H, Li) j (2.U2b)
A

where t = + (m^., - n^) . Comparing this, with our definitions
(2.10), we get

fA=rn FMfCi) Fwf(t) 4 s (^-Mp)Z (2.10a)
co 1 f 2 J

- M. i5/ (i) ■+• 4 r 0
(2. l+3b)
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aoit, rsult) ,-t.o . (2.MO)

lA = H/* M , ^=C^"V2' <2*Wd>

Prom eq. (2.1+la)I

<vis^^lv> = // g/ /■ [f,M + r2it)) . (2.1*)y

We define

<0l9u^/p> =/ ^2Z [r^TC^v] (2.1+5)' P P C ;

then

<Vo I /Vy> = Sj_ 6, <Va/l^/V> ■ (2#U6)
V-* <*

We do not know how to calculate <^(o' / J J jO/» for arbitrary t .

But for t ss mjl%

<«I7JP> ' (2.U7)

where g^^ is the physical coupling constant at (jo - w - x) vertex.
In the spirit of pion-pole-dominance (PC/vO) we assume that this is

p
true also for t -* 0 (and also in the neighbourhood of t = m ).

/V

Then for t —» 0 (i.e. mw ~ m^), we get from (2.1+3a), (2.1+2+)»
(2.1+5)» (2.1+6) and (2.1+7) the result,

' —
- ±2 , (™J> * >0-DA ^

(2.1+8a)
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Similarly,

f $■ - h . (2.1^>)
? ^ ? "" " "

Also

K »aa, = ^ = - 2 (2-Wo)
where Spp^ and 6^^ are defined as in eq. (2.1+7). Eqs. (2.1+8b)
and (2.1+8c) are true without requiring m = m , and furthermore

?
they imply

g ~ g • (2.1+98.)
jDjOT] ^COCOTJ V '

The sign is also determined in this case. IProm eq. (2.1+3d), we get

as t —* 0 (i.e., assuming m = mx, which is far from true)

4 = X - ^ > (2. i+8d)

where g^ is defined hy ^%x ■ g^xx ie. (p+p*).
Hence

(hm)1 z , (2.U9i)
\ %u>p7l /

in the approximation, m^ = m^ = m. This is also obtained if
(8)

one assumes SU(6) symmetry^ ' and agrees with the results of the
(1*5 }

Gell-Mann, Sharp, Wagnerv ' model.

We now consider the implications of our relation "between the

various magnetic moments (eq. (2.1+0)). The equality
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,, (o) 2 . . . i
^
t

_ K(0)

implies

;

r (ti°-> 7T°yJ
_ ^

r (?•-* >?*) '
i.e., the rates of radiative transitions w—* x°y and jd°—* r]Y
will "be equal if in = m.. and m = m . This is just one of

jO 0) % T}
the many results of SU(3) symmetry applied to weak and electro¬

magnetic transitions, under the assumption that the symmetry

breaking

equality

breaking interaction is negligible . Next we show that the

fr)2
^

n u) j>

implies that the rate for the radiative transition to—* x°Y = 1.2 MeV,

in agreement with experiment. This follows if we assume that the

magnetic moment of jo+ and P are the same (up to a constant deter¬
mined by our definition of these magnetic moments). For defined

in the standard way and for n defined by our eq. (2.10) we should

have

i * f* = f , (fp= 2Ji. ) . (2.51)r t p 2mp '

This assumption is equivalent to assuming that all the charge form

factors are dominated by the meson. (This eq. (2.51) is also

true in a nonrelativistic quark model^1^, so that our is just

2jip). Defining the coupling constant g(tox) covariantly as follows,
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"Ccr = e{mx) elXU'pCr Vvdj> V ' (2-52)
we get in the rest frame of co

^ «■* x (2,53)
<1

where is the magnetic field of the photon. This expression is

just the transition moment which we have defined "by

i. ll ^ co . & 7r
- ' ' T ^

?t = <2'5l+)
Using eq. (2.52), the width of to° corresponding to the radiative

decay co° —* x°y is given "by the expression

VL*°-*nU)^ ^lta7(> -M* )3 (2-55)
127V 2/noo

Comparing eqs. (2.51) and (2.5U)» we get

(o)

$Luk) - =; 2\K
™i0 P '

If we assume m ~ m,., then
% rv (0*

g(onc) = 2M-P (2.56)

This is then substituted in eq. (2.55).
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TABLE IIA

All the results are shown only in those cases where consistent

solutions are obtained. Whenever there is an inconcistency only a

few examples are cited and the rest ignored.

SET 1 : P.
1 11 1 1 1 o

No nontrivial result. <PQ | La | PQ > = 0, therefore PQ "by it¬
self belongs to (1, 1) representation of SU(2+) @1*2(1^), in our
approximation.

SET 2 : v_
1 ■ o

Eq. (2.3a): = 0 » E<1* (2.3f)» Inconsistent.

<Vo | La ) VQ> undetermined. SU(2+) 0 R^CL^) representation to
which VQ by itself alone would belong does not exist.

SET 3 : P
* a

Eq. (2.3a)I m = 0. Impossible. P by itself does not belong to
A GL

a SU(2+) 0 R^Cl^) representation.

SET 2+ : V
' a

Eq. (2.3a)t f. =0, m= 0. Impossible. V by itself does notAO GL

belong to a SU(2+) (x) R^CL^) representation.

SET 5 : PQt VQ

<vol ••• lvo>! Eq- <2-3a): fAls = 0 ; (2.3f): fA18 = - 2%-
Inconsistent. L-value of the states not determined. Hence PQ> VD
together by themselves (without other states) do not belong to any

SU(U) (x) R^L^) representation.
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TABLE IIA (Contd.)

SET 6 : P_. V
■ 1 1 * 1 1 O * CL

<[Vp| ... IVa) : Eq. (2.3a) I f*A = 0, = 0. Impossible.
PQ and Va together "by themselves cannot form any representation of
SU(U) @ R3(Li) as there is no consistent solution.

SET 7 : PQ, Pa

<Pj ... I P„> : Eq. (2.3a) : m = 0. Impossible. Same remarkp a

as above.

?ET 8 : V0, Va

<^VpJ... Eq. (2.3a) I = 0, m = 0. Impossible. Same
remark as above.

SET 9 : P^.

<vp I ... |va> : Eq. (2.3a) : f^ = 0, m^ ss 0. Impossible. Same
remarks as above.

SET 10 : P^. VQ

<^Pp | ... |Pa^> I Eq. (2.3a) I m^ = 0. Impossible. Same remarks
as above.
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TABLE IIA (Continued)

SET 11 : Pot vot Pa^
<'PQ | ... |P \ I Eq. (2.3a) '• m = 0. Impossible. Same remarks as> P Cw' A,

in the previous case.

SET 12 : P. . V_. V
Oj- •■ ■Ol i a_

(Vpl ... |va> : Eq. (2.3a): fA = 0, gA = 0, m^ = 0. Impossible.
Same remarks as above.

SET 1? : P., P jV

<(Vp j ... * Eq. (2.3a) I fA = 0, m = 0. Impossible. Same
remarks as above.

SET 1If :

<P3I ... |Pa>: Sq. (2.3a) : £/ =

Eq. (2.6a) : |^0) = 1 m&} <y^> ,

Eq. (2.9a) I p.® = ^ J

I ... |v > : Eq. (2.3a) I j = - 2 W , f s 4mc W,. ■A2 = 4P a 'A s h f ' A K

Eq. (2.3f) : / --2m ,

A / J

Eq. (2.6a) : Q -o , u2Q =0 j h = <^2> sFKSe;
2

Eq. (2.6b) I F" = - 2Kl Jtov 'is J
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TABLE IIA (Continued)

<VPI •

Eq.

Eq.

<V0I-- Jvo>: ®»-

Eq.

Eq.

Eq,

Eq.

Eq.

pa>: Sq<

Eq.

2.9a) I ^ - 0 ^Impossible! )

2.91=) : M i

2.3a) : =

A f A

2.31) :

2.6b) t

2.9a) I

2.6a) : _ C' j2 V J

rfi F^s-c
1 v

(0)
^ T = ™TT "*eO ;

2.9b) ! :o . (Impossible!)

2 • 3t>) « ^ ~ - 2 tvip

2.6c) ! j2 - XVp =1 o

Eq. (2.9c) : <;vpH^= ty-kA/mfa-l w

<Pp| ... |VQ> : Trivial result L.H.S. = R.H.S. J

<Vpl ... |Vn> : Eq. (2.31=) : lA=-2«p . Sa'! 2 *n
O) J
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TABLE HA (Continued)

<vg I ••• lvo>: Kl>- (2.6c) : = *W = 0 J

~ ~

7 w '

Since in ,
TJ

This result

is not acceptable. Thus, with our definitions of the moment

operators (eqs. (2.4) and (2.8)) we can not get acceptable solutions

with nonvanishing magnetic moments by just considering VQ, and
P . It is to be noted that, if we confine ourselves only to the

vector and axial charges we get a unique and consistent solution for

the weak couplings, and this solution remains unchanged whether PQ
is included or not. The reason is that the relevant charge operators

have no nonvanishing matrix elements when one of the states involved

is PQ (cf. eqs. (2.10)). Furthermore, considering the matrix
o 9. 9.

elements of L = J - Aq between these states we find that they
have L = 0. Our expectation that with pure L = 1 moment operators

(eqs. (2.4)) we ought to get zero magnetic moments is vindicated

by requiring consistency between solutions obtained for eqs. (2.6)

listed above. However, we do not get sensible results with the

moment operators defined in eqs. (2.8) even though they possess an

additional L = 0 term. We interpret this rather paradoxical

result as follows I-

We maintain that eqs. (2.8) have the correct form. Our method

of saturating the sum rules has forced P , V and states toa a o

form a (15» 1) dimensional irreducible representation of



-89^

TABLE IIA (Continued)

SU(U) (© R^(L^). In order to get a consistent result for the
magnetic moments we should use a reducible representation

(16 = 1 ©15, 1) of SU(U) 0 R3 fromed hy PQ, Va, Pa> VQ.
We do find a consistency when all these particles are considered,

as discussed in section 3, the results of which are again

summarized below.

SET 15 : P_. V_. P , V
■M| 1 ■ 1 Olg" " O* ' Q, &—"*

•V

The following are the consistent solutions obtained for the

various weak coupling and magnetic moment form-factors I

*C«S 2
jA = - 2 m ; = - 2m. = 4ik„ >n • f2 - 4>n -m.r > n a) /7Tj A P oo

KtU = M 2 • u2 . fJ-/(it oo ^ J r 1 i T
= "I ^ • Mr.7 / ' 1 J rAi n s"'

2

IP r"1 J

/ 2 2
^Tcs - ^ j G vp = 1!o m m

J3 n ->
H s /fe m nt ,

pp 7t 7 ,

2

W V/
~

H m. m _

CO f

• cs
I VP ffc m W2

£0 yj

Also

(J - H - _ 2tiAt*T>/
vp - ■* ■ - — " pp - ■ ■ '' J r/" nimf

r _ ^tJ/
^ W7T /\»v
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CHAPTER III

SUM RULES FOR PSEUDOSCALAR AJTD VECTOR MESONS SCATTERING

1. Sum rules for (js-ft) scattering involving only strong
interaction parameters like masses of mesons and their couplings

with each other were first derived "by de Alfaro, Fubini, Furlan and

Rosetti^1^ without using current algebras. They followed a dis¬

persion theoretic approach. In order to write down unsubtracted

dispersion relations one makes assumptions concerning the high

energy "bounds of the scattering amplitudes. The convergence

properties of the relevant dispersion integrals are assumed to "be

given "by a Regge-pole model. In this model, the high energy

"behaviour of each amplitude is determined by the leading Regge tra¬

jectory, which is allowed to be exchanged in the crossed channel

of the process under consideration. The trajectory is characterized

by its intercept a(t « 0) corresponding to t « 0 (and also by its

slope). Whereas the amplitude for scattering of scalar particles

has the Froissart^2^- Gribov^^ high energy bound, for particles

with spin certain amplitudes corresponding to strong helicity-flip

in the t-channel are found to have a more convergent (supercon-

vergent) asymptotic bound. This has been shown explicitly by

Trueman^\ The convergence of the dispersion integral, therefore,

depends on a(0) corresponding to the leading trajectory exchanged.

Assuming aI=2 (o) (corresponding to I « 2 exchange trajectory) to

be negative, de Alfaro et al. obtained two nontrivial supercon-

convergence relations. Certain other superconvergence relations

were found to be trivially satisfied by crossing. Estimating the

dispersion integrals with Just CT and 1"* meson single particle
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intermediate states they deduced two reasonable sum rules. Lowwy

pointed out that, under the assumptions of ref. (l), many more

superconvergence relations could be written down even to first

order in tj the number increases as we go to higher orders in t.

Saturation with 0~ and 1~ mesons only led to a trivial solution,

in which all the coupling constants vanished. Inserting, in addition,
4, 4

1 and 2 meson states, a reasonable consistency was found by

Prampton and Taylor^ \ In this chapter we present a generalization

of the above problem to the case of SU(3) symmetric vector

meson (V)-pseudoscalar meson (P) scattering. In this case we get

more superconvergence relations. The most convergent of these sum

(7)
rules has already been considered by Matsudav . We examine all

the sum i*ules at t = 0. We find that our results are in agree¬

ment with ref. (6) and ref. (7)# and by retaining only up to first

order terms in t no new results are obtained. Higher order terms

in t may give new information, but our saturation with particles

up to spin two will be less satisfactory.

2. The SU(3) symmetric (V-P) scattering matrix is de¬

composed into the following kinematic form!

T = AEj-Pe, ? + | (£t.Pg,-9+ EyCe.P) ft, £,•(?£,■<? +C2£1-£, ,

where the amplitudes A, B, and Cg are functions of the
invariants v and t, defined below!
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P * %(Pi + P2) S « - (p^ qx)2
V

S * V as — P.Q
^ I ' \
V* f Q " + ^ t ■ - (PX - P2)2
'

A X
'» t N

Pig. IIIA

2 2 2 2
metric S P * - Pn + J> = -m ,

®2 and are polarization vectors of the vector mesons as shown.
(1}.

The various amplitudes "behave asymptotically as followsv '!

A(v, t) va('t)~2 as v —y oo f

B(v, t) va("0~*l as v y QO f

C-j^Vjt) ^ va<*> as v—>oo ,

C2(v,t) ^ va^> as v >oo ,

where a(t) refers to the dominant Regge trajectory in the crossed,

P + P » V + V , t-channel. Experimental results suggest that the

Pomeranchuk trajectory and the trajectories associated with the nonet

of vector mesons, all have intercepts such that 1 >/ a(0) >/ 0. Hence
C 27 )A(v,t) is always superconvergent. If we further assume av (0)

to "be negative we can write superconvergence relations for B^2^(v,t)
and vA^2^(v,t) also. The superscript 27 implies that it is the

part of the amplitude corresponding to an exchange of a 27-plot in

the t-channel. The assumption that a^°^(0) is negative as made

in ref. (7) yields no new relation, but it improves the convergence

of the dispersion integrals and makes the saturation with single
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particle states up to spin two more justifiable, especially for

the most convergent case of and A^10 \ Crossing symmetry

makes many of the superconvergence relations trivial, and the only

nontrivial ones are;

Jo°° U A^f) (v,i) dv = o ; (3,la)

(00 (27)
| Vim A (V,t) c(V = 0 , (3.1h)

J (v,i) dv = c j (3.1c)0

av = 0 (3-14)
0

A similar relation for A^0*^ is equivalent to that for A^0^
"because of charge conjugation invariance. Eqs. (3.1) are valid

for fixed t 0, and also over a small range of t )> 0 J we

restrict ourselves only to the t = 0 case.

These relations are well represented if we consider the

following specific processes;

J-®o ^ B (v) dv = 0 )

and f °° V A dv = 0
J

f++<c0 + 7Tf as a representative of A ^(y) dv rO
j

and ^-^+as a representative of j0°° 3mA =0 »



sk~

where the particle symbols specify the corresponding SU(3) states.

3. In order to evaluate the single particle contributions to

the dispersion integrals, we consider the following form for the

absorptive part of the T-matrix,

VV t**" r e*>
Inserting single particle meson states up to spin two into this

equation, we get

B*«k>

x £,av { il*" iptfofyir'tvlt-f lPetv>

+ 6 (ho +Zu±n1 I vyfa)>< vHr>n)l tfl v£wy
2U ^

+
. thrlrn)(f'lyli'jv'MXvHMI tf Ipt(v>

2 En

2 Lyi r

+ 5 (ho th°zk°)lT*lf„)y(T Ir'fop
2En A

- [0<r+s, />hv; 1 (3-2)
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•

where summation over all possible polarization states of the

intermediate state is understood. The polarization sum for the

vector as well as the axial vector mesons is given by

I elT,(» tir)*w =6 + hth - By- v hv + —r - >»
Ysf

and, for the spin two mesons it is given by

/y\ ^
Cl>) (I3) = - J Qp, v -t + JY:( i"

The conserved currents ^ are sources of the phenomenolgical

fields for the vector mesons and the values of their form-factors,

when the momentum transfer is equal to the square of the mass of

the vector meson, are just the corresponding phenomenological

coupling constants. The various matrix elements of interest are:

<Wl tfvl ?3W> - vpp (oi-t'1) (1*1;),,

ypf(*>) (Wh , LK-Ml

(**) £f hf
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(/>,))> - doiK [iVpi/o ((/>-?! )2) t ap^tft3 5V f> 1rf If A 'z<f J

oiqj.
= ^ V-pyo (K2) ZfLfXc hf &A hia>

- ifij* [iVflllrtPletlk) tt,V<2) t,A, U 1?A f J>/\ '2. 'z^J J

-f iv£ ***(.*>) ^ ■

<WltjmlTjW> . if* [viwf e p t p t ]r ?T r/Afrif Avr2yr2cfJ

(Kl) t b s \> t>PT pfA<r >ip Av '2.v '2<r

where i, 3, k = 1, 2, ..., 8 are SU(3) indices, and

ja, v = 0, 1, 2, 3 are Lorentz indices. Only C-conserving coup¬

lings have "been retained. The V's are the form-factors and e^v
is the polarization tensor describing the spin states of the

tensor mesons, T. The A*s refer to the axial-vector mesons. The

coefficients of the various invariants e2»P e2*p» ei*Q e"tc*
appearing in eq. (32) give Im A, Im B etc., the imaginary parts of

the amplitudes. They are substituted in the appropriate super con¬

vergence relations eqs. (3.1) and, after carrying out the integrations,
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we arrive at the corresponding sum rules. The various terms in

eq. (3.2) are found to be:

Contribution of P to the +ve -part of the commutator:

f VT I'
Oont.rlbut.ion of P to the -ve part of the commutator;

-i S(v-Vp)Vrf*£C-m\) 2.pe,? zrp.-)
Contribution of V to the +ve part of the commutator:

-7L s(v+vv) &,-q

+ (mp2- m} ) 5Z Q £, -P + ..■ j
Contribution of V to the -ve part of the commutator:

71 siv-v) v *s*'(~ m2) v y//3£ (-M2) {ml lrv £,-p - {mP2-yn$) s2 ■?£,•$
Y v pv 1/ ?t/ /

+ (m* - m2 ) z2- 4 erP+ j
Contribution of V° to the +ve -part of the commutator:

• n^V)

+ (™p2- »i2. J ^ « £,• ''■■■ }
Contribution of V° to the -ve -part of the commutator:

f 5(v- v' Vvv°<rmv>vp°v'ic'mv^ lmp-
-K- ■? + ■■■■ J
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Contrihution of A. to the +ve part of the commutator:

JL 6 (v + ) Vjd€ L-w2) *~2 A P* " PA V

{ ti-r £,■)> L ^ + -V-, (- ml + ) ]mA yn\ mv V m* v P 4 M2

£,.P£,.ar-L. „ cc-"t? W-™a; _gL_f_ 1
A mA3 mv ^mA

+ g2 S s, pT-Lj - "if-mi) + _cf ]
mA m3mv e

+■■■■!
Here, and in the following we have defined

^2 _ c V1 and V ' = /

Contribution of A to the -ve -part of the commutator:

otSV
_ 7L8(v-v) V i-m*) V'Jf6 ('W2){ezP8rP - erPzrq - e.z-q &r ? + •■■} >2^ '* ' <n ^ I /i '

, rj_ clr"ir+"A+i<) c2 / m2 + a-- m\)1 \ i
t"? yyi^yn,, >n „2 1 ? 4m* ' JA ™A3ynv n V "lA
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Contrlbution of T to +ve part of the commutator:

- f f(v+vr) V*pgT* -m))
2.

{ £Z P £,-p[ i-YYip + )2 - 4Wip J ^v_v
4rn'

2

+ Ez-PS,-<aC ("mP2 + rYipYnT ) -4 ( !l£_ - 1)(- -m* + m J * )aJ

+ 6a. pe.rP[(-m2p+m(>mT) + (2l .

Contribution of T to -ve -part of the commutator:

$S(v-vt) ^PjSt/<rmv) Vp**' i-rf)
x{ ez-P£,-P [-4m} +l-mp2+m} -™t)z J

4^r

- 5,'P & Q [ + yyi p yyi r) +( !!2L - i J f-wp2 + »iv2- ™r)2 J2 1 p 4>yi- T

- e2-a &, p[ (->V + "vv) + - *•) (-V+
Arr\^ 4

In all of these equations Vg — (mp~+ m2- ^)/i where
B * P,V,V°,A,T as the case may be. Substituting in eq. (1), we

obtain the following sum rules. (In the following equation, unless
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when explicitly stated otherwise, "belongs to the singlet

representation of SU(3) and w° "belongs to the octet.)

— + 0+ — .f + % -» / + % : Im B^27^(v)dv « 0

4 ^
+ 1/ „

_ (m - m2 ) V + . V
v v -*u)° \jo^p+tf-

_ im2 - m 2 ) 1/ _ 1/
p \/o Tt+f _> ^0 f + K-

5 J_ + £ r m2 ; m z m2" ) t c* - /- m 2 + Ii!?[ii^L^2d2a)/ K
W4 P V ^ Wly W2/\ ^ P 4-Wj- ' X+pz+A]

X

|C

A A lV v A ** l/\
X V o

A,-> j=V

i I _ ml, + rh 2 rn1 ■+ ( mP _lV_m2+W2-'W2')ll/ I7"1 p p T V7ZT 4 /1 P V T I S **r-+AimT

- 0

—> fiT : /y Im A^27^ (v)dv 8 0

4 v 1/ V
p 7r V"-> 7T° TT0-*

_ -m2 v 1/ ^ ^
/ V f CO0 u)°—)f+7T-

rn1 V 1/
^ V° 7T+f~-*> cp° q>°~^ P + 7V'

+ V j _L + C I-I*p + <n} fmj I _cl /. + m'- V-1 * )] |,A >MAlt ' «»j} 'IW-A'
' ^WV
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- It \ _221L ft- w o + w - m* j1 - 4 M ) L y v2 'K U P V tJ P 7 ' ?x*t'-AiVA;-> S + n

- O

n~ + . U_ ,^8P^■P % —> ,P y I Jim A (v)dv = 0

4 V V
7T+P"—» 7C° 7C° —> Z5 -7t +

- ™l V ^^ 7C f>~—$ u)° 01°-* p~%

_ V V
V %+?'-> <p° <p°+

j j__ + ct-mf+m * + ynA2)w

_ f ; "V

(■% +
2 (-wPa + ml-vnp)x )h

4m•

-mA3 yyiv ^ p * mA

((-»£+< -rn'Tjl-4 ">1)1 VKt,-_ At VAt_Jtf.xt

K+?'-

— 0

/k° —» K*°7C**" : JImA.^10^ (y)dv « 0

4 v v
K 0 f —> K _» /c*° 7T*

~ VK°? + ->,<*+■ VK* + -+ k*° 7T +

5 < C(- »?/ + W2 + Jflj ) C2 f ^i2 | +V)1V "+ ^ + ^ll P 4wa2W/ %

X VK°t+-,K+ K +
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_ 41/ -T K° K
1/

7t<
-

IT +fTT

m' 1/ _

k°k*°-
V

or or /"7T +

•m
K°k* -

V
<p° <P°-+ f>~ 7V

-

■*- +

_ 1 J_ , ! (-m/W-TO^)') J y y1 w/ wA3w„ "tfwjr F 4to/ 'J

+. x 5 - 4 m I to J + (-to? + ™ j2- toM1 I wf 1/ i/2 ' p T P V T 1 4mL

— o

The various special meson couplings encoutered ahove are related

to SU(3) symmetric couplings as follows!- (Here, as above, jrf° is

SU(3) singlet and w° is the isoscalar member of the octet).

V
K°J>+.

V
k *0 ^

ir
2 VPP

k°f + >-¥r t k * + „*0 7t 2 ^//P
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V |
+ K + ^oK+ - - 2 Avp

z

|( t -* K*°nr

v 1/ 2 p2
x+p--*4>° (p°—► p~ 7t 3 wop

+ 00 ^0°—> / + 7T" ~~ 3 ^w°p

V V * = - f z
7Tt<p'-» 7U° 7T0—^ p tz ^pp

- Z
v V - ^ i,«»

71 +,f" -i 7C ® 7T0-» ,P"7t+ "pP

V ^ 0 — J- ^m/n
7c+if""--»w0 v-tp-nt 3 wp

V A,0 ^A(°-»f"7r+ = ^l/AP

V z
7t+/>- —» A a. A/-* j»"7C+ = ^ vt?

Vfe°K*°__> tt" ^+ =» - i F^p
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V _ V — ^ 1 r- 2
<° k*° —» A,0 A,°-+P~n+ 2 AvP

V
k° K*° A° VAf->fx + - - 1 F1

2. 1 VTP

t

k° aT*°_* co0 Kw 0-+P-1C+ — - i. i)
i" w

^ —2■ D 2
k°K*0-+4>° f-> ;v+ - 5 K1/°P

Hence our sum rules take the follov/ing forms?

Jim B^27) (v)dv » o:

- 1 / (m2 - yyi2) D2 n - 2 (m2 - tv 1 ) D2vpp T p v vyp 3 p y° w°P

F2 (i c(-"?»a-fny3-"^2; , c2 ( ^ a , {-rnf + m?-
VPA %2 m 3 rri W P 4w2*

4 1/ 1/4 4

r 0 •

(3.3)
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Jv Im A^27^ (y)dv * o:

» 4v F X _ i v 2)2
P ^PP 3 ^ ^ f/p

i. yv? 2 v1 J> „ „

3 ^ yo M°P

v F2 / 1 c(-V + w^tw/j C2 , _2
A VAP \ y^z yvi^lyy\v ^ 4w„2

+ i yT Cr F V * (- V + V - ^;

= 0

J (8p)
Im A * (v)dv s OJ

(3.U)

4 F
kPP

_L m"*" D 2 — — ^2-^i//)a
3 K 3 P KM/0

MP >V "V1
L_ + c »>Al) ^ _cl_ ^ Wfl2 + (-V +

4w/

L F 2 \ /_ W 2 4- »7 1 - * )2 - W_2 W 2 J
2 p ^ Arrtj V Y T P V '

(3.5)
■= o

Jim A^10' (v)dv = o:

d 2„ = P L <3-6>i/i/p i//op
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Sum rule (3*6) is essentially Matsuda*s result It is
/ Q \

consistent with Okubo's ansatzv Okubo postulated that instead

of considering the vector octet and the vector singlet separately

all the nine vector mesons should "be considered together. The

nonet was represented "by a non-traceless tensor G^ which was
constructed out of the traceless tensor F^ representing the
octet and a singlet /6 such that

cP a. ,G* - F -ho v F
V V <r

€

The ansatz is that fS should never occur by itself "but should

always "be accompanied "by F^. This means that G% ( * V3 6 )V K

should not appear in any mathematical expression used to describe

the mesons. The immediate consequences are in good agreement with

experiment. It implies (i) m2 * m2 ; ny - mj| * m2 - m2 J
(ii) gj + _ = 0; (iii) tan© *[& $ sin © m ff ; cos © = -1-s/6f~ ' Uii; tan © =J^ ; sin © »j j ; cos © » j^
where © is the mixing angle (this specific value of © is called

the ideal mixing angle) and relates the physical states w and /S

with the SU(3) octet member w° and the singlet j6° as follows

w s sin © &>° + cos © /6°

6 ss cos © to° - sin © j6° •

It has other implications as well, which are, however, not relevant

to us here. In quark model such an ideal mixing would mean that co

is made out of nonstrange quarks and / is made of the strange

quark. Our sum rule (3-6) with the assumption of ideal mixing

reads as follows
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which is identically true since g^ « 0 .

The other sum rules are the SU(3) symmetric limits of the

Frampton Taylor stun rules for the case t « 0. Perhaps one

remark that is worth making is that whereas the neglect of

pseudoscalar mass may he justifiable in ref. (6) because of the

relatively low mass of x, this is no longer true in the SU(3)-

(3.I4.) is rather sensitive to the pseudoscalar mass and so the

approximation of neglecting pseudoscalar mass would lead to tin-

reliable results.

Our calculation therefore did not yield anything fundamentally

different from the calculations given in ref. (6) and (7). The

investigation of nonforward sum rules may turn out more informative,

but the whole procedure of saturating by putting in a few low-lying

states does not seem to be very useful except in a few cases where

the integrals converge rapidly.

symmetric case. Furthermore the w° contribution to sum rule
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CHAPTER IV

PI - PI SUM RULES AND THEIR SATURATION

1. A forward unsubtracted dispersion relation is written

down for the component of (x-x) scattering amplitude dominated

by the exchange in the t-channel of an 1=2 boson trajectory
(1-2 }

under the assumption that the corresponding intercept, a* '

(t = 0) is negative. Its consistency with Weinberg's low-energy

parameters for (x-x) scattering and Adler's (x-x) sum rule is

examined, putting in all known resonances, and, using the most

recent available data. The s-wave is parameterized in a resonant

form. A reasonable saturation of Adler sum rule can be obtained

for suitable s-wave parameters. However the unsubtracted disper¬

sion relation cannot be saturated for realistic values of these

parameters. Some remarks concerning the finite width formulae for

s-, p-, and d-partial wave cross-sections are made.

2. Recently Gatto^ ^ obtained a reasonable estimate of a

universal D/F - ratio for meson-baryon couplings from two assump¬

tions.

(1) The Regge trajectory for the exchange of a 27- let of SU(3)

in the t-channel has a negative intercept at t = 0, i.e.

a(t = 0) <( 0. Consequently one can write an unsubtracted

dispersion relation for the forward scattering amplitude A^^'^^s)
corresponding to 27-exchange in the t-channel.

(2) At the scattering threshold, there is no appreciable contri¬

bution from 27-exchange in the t-channel. This result is deduced

from recent calculations of meson-baryon scattering lengths using
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(2)
current algebrasx ', which are equivalent to describing low energy

(x)
meson-baryon scattering by the exchange of a vector meson nonet

With these assumptions, Gatto expresses (s » (mg + m^)^) s 0
in terms of an unsubtracted dispersion integral and saturates it

with low-lying meson-baryon resonances, using an ideal value of

3/2 for the D/F - ratio. A fair saturation of the sum rule was

obtained.

Here we want to apply Gatto's ideas to (x-x) scattering^\
with some modifications.

(1) Only SU(2) invariance is assumed and SU(3) symmetry is not

needed.

(2) A negative intercept is assumed for all kinds of isospin two

exchange, irrespective of its nature (cut^^ or trajectory). The
( 2 t ^

corresponding amplitude Av ' (s) then satisfies an unsubtracted

dispersion relation.

(3) The value of the amplitude A^2,t^(s) at the threshold is
(2}

estimated using Weinberg's results for low-energy (x-x) scatteringv '.

We do not, however, confine ourselves to his solution for the

scattering lengths (e.g. aQ =.2m~^, a2 = - .06m"1) but allow
aQ and a2 to vary over a reasonable range such that 2aQ - 5a2
= 'Tm"1 , which is one of his results (obtained prior to theA

assumption that is pure isoscalar). We use Weinberg's

results because of lack of better results.

(4) Since it turns out that the sum rule so obtained is less

convergent than Adler's sum rule^^ for (xx) scattering, a simul¬

taneous saturation of both of these sum rules is considered. The

contributions of the resonances jo, f and g^^ are estimated
both in narrow width and finite width approximations. Since the
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finite width expressions for the partial wave cross-sections as

given by Balazs^^ overestimate these contributions (owing to

the presence of undesirable bumps at high energies), they are

slightly modified such that the phase-shifts go asymptotically

always to x .

(5) The remaining contribution is assumed to be due to the

possible existence of an I = 0, s-wave (x-x) resonance,

parametrized as in ref. (10). For the parameters fitted to

decay^10^ a reasonable saturation of Adler's (x-x) sum

rule is obtained. However, the other sum rule does not seem

to be saturated for any reasonable values of these parameters.

Our analysis is similar in spirit to that of various
(9)

authorsw/, in particular, Furlan and Rossetti who have tried

to extract information on the s-wave (x-x) resonance in the

isospin zero channel, but differs in detail from them.

3. The amplitude A^2,t^(s) is related to the various

isospin amplitudes in the s-channel as follows

A(2»t)(s) = ^A(0»s)(s) - |a^»s)(s) + |a(2's). (U.l)
With the assumption

a(2,t) (t _ 0) < 0 ,

we may write an unsubtracted dispersion relation in the forward

direction for the amplitude A^2'^,
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, {z>i}A (s)
r

oo

. 00

&u <4 (s")
5'- S- *€

+ -+ } (U.2)S'+S-^W)^ J )

where the second equality follows from crossing.

Using the optical theorem and hy Bose statistics, and

putting m ss 1, we have
A

(2,t) , 00
A (5) = £ I us' 7^7 *

.{* rv« m- +±fV'v>j3 iso 2 4 = 1 i 6

Keeping only s-, p-, d- and f-wave terms, and neglecting 1=2

terms, we get,

(M) r°° / / \ /—

A a) = 1 us'(s Sj^>
* 4 (s'-s)CS'+S-t)

, j-j-
At the physical threshold (suppressing isospin labels),

o6s' &n, /) Cs') ^_L_' c'* W s"5

(2 t) f
A (s = 4; u =t =o) = 1 f . ci?(&'-2) l±<ri&')4±ff(s').±4M-i<ri$t)

% JVisLi) L 3 32 * ' 2 j
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f

32 71 ($0-1 + ±°~o2) — i.
* J

oo
ds/(S'-2)

x

4 J S'Cs'-*)

* I j^Cs'^ -i*sdO*-j (4.4)

In the same notation as above, /idler sum-rule may he written as

00

frl 27t L *'-1
J_ ( dLsi \ ± sji'd'-K) (S,) I f (S'-1) ) 3/2 ,rcr l 7 (s<-0 0 J I s'(s'-u) / ;

i y / (S-1) )'/2^/a , I / (s'-o2\*/s ^ ,.A ) __ ±
2 \ S'Ls'-k) J 2\S'(S'-W' 3^ ' / " }

"A (U.5)

where (= 1.18) is the axial vector renormalization constant,

g^/(Ux) ( = ll|..6) is the rationalized renormalized (xN) coupling
constant, M,T is the nucleon mass in units of in .N x

U. We now want to estimate the contribution of p-, d-,

and f-waves. For this we need explicit formsfor
(C S) (1 sv)

and 0"^ * We parametrize the phase shifts by

& )!*6 "<< - v , ».«>
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rather than by

/ 7™2^H
— <**1 - -y— (lt.6a)v V -M *e

The latter leads to Balaz's formulae for cross-sections. These

formulae have undesirable high energy behaviour and as a conse¬

quence the contributions of the resonances are overestimated.

The reason is that the phase-shifts do not go to tc as energy

tends to infinity but go to some constant which is different from

%/2 in the case of p-wave and is equal to %/2 for all higher

waves. No such difficulty arises if we use eq. (U.6). Corres¬

ponding to eq. (U.6) the £-th partial-wave cross-section will be

given by

<ru) = 8* (2i+i) h/(v+P2e+i _ rR2 (^+1)2U2
6 (v -v )2 + v + 1 Vpl/(v+l)2U1 J l~ AyM +1 J

R
(k.7)

where I, Q, vR are the spin, width and position of the
resonance. In the above formulae v is the square of the c.m.

momentum of the pion (s = U'(v+1)). The narrow width form for

eq- (U.7) becomes

<T(s) r 327T2 (2£R+ 1) f 6(s-sr) )~' (U.8)
where m^ is the mass of the resonance. We find that the con¬
tributions of the resonances to the sum rules calculated using the

finite width and the narrow width formulae are reasonably close

to each other.
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For the 1 = 0, s-wave we use the parameterization given "by

BerendS, Donnachie and Oades^^

f~J~± o,ti° - (s-4+£j(5-sz> (U.9)^ 4' »(♦-*>
where aQ is the scattering length, y is related to the width,
<§o is the 1=0, s-wave phase-shift and sR is the square of
the resonance mass. The phase-shift goes to a: as energy becomes

very large. As the resonance is rather lopsided the relation

between y and the width is found by computing the derivative

of at the position of the resonance,

_l - + . r - w*-*)*
reMn ' ^ 6°0- | T (SR-h)zk > R 2Mg(M*rin%)' (U.10)

5. The results are given in Table IVA. There we use the

parameters M„ = 700 MeV, M_. = 300 MeV and a_ = 0.6 m""1.K K , OA

The left hand side of eq. (U.U) is calculated using

(2a i - 5a0) = 0.7 nr1 . In Table IVB we give the contributionO c. A

of I = 0, s-wave resonance to the sum rules for a range of values

for the s-wave parameters. It is seen from Table IVA that the

contributions of J3, f and g together are insufficient to

saturate the sum rules. A substantial contribution must come

either from the high energy region or from some s-wave resonance

(or large phase shift), or from a combination of both. In view of
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insufficient experimental results at very high energies and the

necessity of some reasonably strong s-wave 1=0 (x-x) inter¬
na}

action as implied by other calculationsw', we are tempted, as

a first approximation, to forget about the high-energy region

altogether. This makes our neglect of 1=2 contributions

more reasonable since no 1=2 resonance has been observed. It

is seen from Table IVA that the s-wave parameters fitted to

decay^^ give a reasonable saturation of Adler sum rule, but for

he same parameters the other sum rule is not saturated. The

discrepancy between the left and right hand sides of this sum

rule is too large to be accounted for by varying the s-wave

parameters. This is seen on inspecting Table IYB. None of

the values of the parameters given there can saturate this sum

rule. On the other hand the Adler sum rule can be saturated for

various sets of parameters. In particular a fairly small value

of a0(~.35ni^1) can make the saturation possible provided Mr
is reasonably small ( ^ Zj.00 MeV) and is reasonably large

( * 100 MeV). The reason that the sum rule (l+.U) remains unsaturated,

even after including cr, jo, f and g, lies in its poor convergence.
It is seen that the g-contribution is larger than the f-contribution.

Consequently this sum rule depends as much on high-energy contri¬

butions as on low-energy ones. In this case, therefore, the neglect

of high energy contributions is not justified. For example, a spin

four resonance of isospin zero will contribute appreciably to the

sum rule if it has a reasonable mass and width. Also the contri¬

bution of 1=2 resonances may not be negligible.



TABLEIVAIContributionofresonancestosumrules(a® =,6m-1)
Nox

Sumrule(k.k)Adlersumrule(U.5)
ResonanceMassWidthNarrowFiniteLHSNarrowFiniteRHS(MeV)(MeV)WidthRHSWidthRHSWidthLHSWidthLHS

<r(o+,o+)

700

300

37.5k

.566

PdM+)

71k

128

-57

-53

.51

.560

f(2+,0+)
125k

117

33

32

.109

.125

g(3",1+)
1630

100

-kk

-k3

.085

.096

Total

-26

22

1.3U7



TABLEIVBIContributionofI=0s-wave(x~k)resonancetosumrules(4.4) Mass=1+20MeV

WidthContributionstoEq.(4.4)ContributiontoEq.(4.5)(MeV)

"oil •2V

.4

.6

.8

1

.2

.4

.6

.8

1

50

11+.21+

16.01+

18.62

21.32

24.12

.338

CM

CO

•

.426

.462

.496

100

27.21+

29.30

32.96

36.94

.624

.680

.744

.804

150

39.30

1+1.20

45.26

.866

.922

.992

200

50.62

52.30

1.076

1.128

250

61.34

1.258

Mass=
560MeV

100

15.28

18.1+1+

21.82

25.30

28.86

.252

.324

.388

.446

.496

200

29.06

33.50

38.38

43.40

.502

.606

.704

.792

300

41.58

1+6.58

52.08

.734

.848

.954

1+00

53.14

58.40

.828

.942

1.056

500

60.12

63.94

1.018

1.133

600

69.86

1.19

700

78.98

1.252



TABLEIVB(Continued)

Mass=700MeV

ContributiontoEq.(1+.1+)ContributiontoEq.(1+.5)
Width' (MeV)

a°:i .2mx
%

.1+

.6

.8

1

.2

.1+

.6

.8

1

100

12.21+

15.26

18.32

21.50

21+.78

.152

.212

.266

.311+

.360

200

20.62

25.08

29.90

3U.76

39.86

.21+6

.352

.1+52

.51+2

.621+

300

31.92

37.51+

1+3-31+

1+9.11+

.1+1+0

.566

.682

.788

i+oo

37.71+

1+3.20

1+9-38

55.61+

.502

.61+2

.771+

.891+

500

1+1+.56

1+7.9U

5U.08

60.52

.552

.698

.838

.968

600

52.50

58.10

61+.50

.71+0

.886

1.022

700

57.6i+

61.82

67.96

.778

.921+

1.061+

Mass=81+0MeV

100

10.1+2

13.20

16.06

19.01+

22.16

.101+

.158

.206

.250

.291+

200

18.00

22.76

27.1+6

32.16

36.90

.176

•

N5

.361+

.1+48

.528

300

23.88

29.52

35.1+2

1+1.21+

1+7.02

.221+

.350

.1+70

.582

.686

Uoo

30.21+

3U.66

1+1.22

U7.76

5U.18

.262

.1+06

.51+1+

.671+

.791+

500

38.98

1+5.71+

52.66

59.50

.1+1+1+

.598

.71+0

.872

600

1+2.98

1+9.50

56.60

63.61+

.1+76

.638

.790

.928

700

1+7.22

52.82

59.88

67.01+

.502

.670

.826

•972

800

52.92

55.90

62.78

69.91+

.526

.696

.856

1.006
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CHAPTER V*

A MODEL FOR PI-PI S-WAV5 PHASE SHIFTS FROM CURRENT ALGEBRA

AND PCAC

In this chapter a set of sum rules for the (x-x) s-wave

interaction in the isospin-zero channel is derived from the algebra

of axial-vector charges and divergences, and using extensively the

principle of pion-pole dominance. On approximating these sum rules

"by the <y-meson, treated as a single-particle state, a relation "be¬

tween its mass and width is obtained. The numerical results are

fairly reasonable in view of the drastic assumptions involved. In

the approximation of elastic unitarity the sum rules take the form

of an integral equation for the vertex function <x 1 6 I x> . This

equation implies that the (x-x) s-wave phase shift in the

isospin-zero channel satisfies the inequality 0 < c>0 < x, quite
generally. The approximate integral equation cannot be solved

exactly, thus reflecting the drawback of our earlier PCAC assumption.

On introducing an effective cut-off function as a correction factor,

solutions are obtained. They give a scattering length slightly

larger than Weinberg's result and a phase shift that has a broad

maximum around 700 Mev., the height of the phase-shift being

sensitive to the cut-off parameter.

1. Current algebra has been used mainly in deriving sum rules

and low-energy theorems based on the soft-pion techniqueIn these

applications current algebra makes definite predictions on off-mass-

shell amplitudes (or vertex functions) in the limit of vanishing

four-momentum for one or more of the pions involved in the process

r This chapter is based on work done in collaboration with
Drs. A. Pagnamenta and B. Renner.
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under consideration. Only after making PCAC smoothness assumption

can one obtain information about on-mass-shell quantities. This

extrapolation from off- to on-mass-shell is rather vague and not
(q)

without ambiguitiesvJ '. Recently there have been various attempts

to do current algebra calculations without using the soft-pion

technique. In particular, Schnitzer and Y/einbergv ' have developed

a method which does not invoke the soft-pion limit. In this method

current algebras are used to derive generalized Ward identities for

proper vertices. These are then supplemented by crossing relations

to determine the form of the proper vertices which, in the spirit

of pole dominance, are assumed to be smooth functions of momenta.

There does not, however, seem to exist an obvious generalization of

this method to scalar vertices. Moreover one does not know the pre¬

cise nature of the difficulties one would encounter when large extra¬

polations are involved. To clarify these problems we present a model

for the (x-x) s-wave phase shifts in the isospin-zero channel based on

the algebra of axial-vector charges and divergences, and on an exten-

sive use of pion-pole-dominance. Unlike earlier authorsw/ we try to

assume as little as possible beforehand about the strength and energy

dependence of the (x-x) s-wave interactions, such as whether the

(unknown) unitarity cut allows certain extrapolations from zero-energy

to threshold or not, or whether there is a tf-resonance or not. To

offset this lack of information we need to use the principle of pion-

pole-dominance very extensively, far more than can be justified on the

basis of the relative distances of singularities. We maintain that even

this extreme use of pion-pole-dominance deserves exploration since the

limits of its applicability are hardly known at present

In section 3 we derive a set of sum rules involving the off-mass-

shell vertex ^x | d }x"> . As a preliminary test, we consider these
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sum miles in a model of single-particle dominance and obtain results

acceptable for the conjectured a"-mesonwy. In section 3 we abandon

the single-particle model and, in the approximation of elastic uni-

tarity for (x-x) scattering, we convert the sum rule into an integral

equation for the vertex <x |<r/ . This equation implies that the

(x-x) s-wave phase shift in the isospin-zero channel satisfies the

inequality 0 <. < x ; quite generally. Exact solutions of the
approximate integral equation, however, cannot be constructed. In

section U we apply the N/D formalism and find that our PC&C approxi¬

mate analysis of the vertex would lead to an N-function in the (x-x)
s-wave scattering amplitude without a left hand cut. To correct for

this, we introduce, as a first step, an effective interaction pole

which at the same time will serve as a cut-off function in the

integral equation. The solutions for give a scattering length

somewhat larger than Weinberg's result0.23 ^ 0.33 nC"*" >
A /C

and a broad maximum around 700 MeV. Its height is sensitive to the

cut-off parameter. With our phase shifts we can saturate the

A.dler-Weisberger relation for (x-x) scattering with a reasonable

cut-off value. We have not ruled out, however, the possibility of

more complicated corrections. Some such investigations (section 5)»

however, seem to imply that the qualitative features of the above

results are left unaltered.

2. In this section we derive the sum rules and consider

their single-particle saturation.

We begin with some comments on the equal-time commutator for the

axial-vector charges and the axial-vector divergences

f1Ao d3xZ )
£ A^(o)] - i ^ (0)

(5.1)
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where i,j = 1,2,3 are isospln indices, and |j, = 0,1,2,3 are Lorentz

indices. This commutator is encountered in deriving low-energy
theorems whenever the emission or absorption of two or more pions is

involved. We further assume Gell-Mann's commutator for the axial-

vector charges,

[ J Ao (*) d* *
} J A* Cy) ] o = tev* !v0*Ly)d*i (5.2)

Since the vector current is conserved, we have

[ j (*) c63* , Ja0*(V) d2 I ] 0: [f^Au'c*) t'tjjAjClld'l* -r

so that 6 0 is symmetric in its isospin labels, i.e.

o Co) •= <r ^(c)

Following the suggestions of the quark model and of the d-model,
it was conjectured^^ that <5*^ is purely isoscalar, i.e.,

<rV(») -S^a-Co) (5.3)

Though eq. (5*3) has not been confirmed directly, its validity is

assumed in the successful applications of eqs. (5.1) and (5.2) to

low-energy (k-a) scattering^'^ , pion electromagnetic mass dif-

ference^^ and to nonleptonic K-meson decays^\ Using eqs. (5*1)
and (5.2) in the Jacobi identity satisfied by the operators

/Aq(x) d^x, J^(y) d^r and ^(z) at equal times, we obtain

[ J AjCx) Ct3x tcr(o)] AubCo) (5.U)

Consider now, the off-shell-vertex <(x^(q2) J <*"(0) | xi(q-j_)^ -
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r - /[A* e'^51 *** *V
F 2 -m * ''

7T 7T

(*) dvAjly) <f(o)j >o (5.5)
p

where t = - (q2 - q^ , and is defined by

<o I A* C<>) IxHi>)> = <jF f> 5Lj F ~ qo Mey
r 7C fJ- J 7f

Pion-pole dominance for the integrand in eq. (5.5) asserts that
2 2 2for q^ and q2 not too far away from m^, the variation of f

2 2 (7 ^
with q^ and q2 may be neglectedv'',

jO s£j
We write the off-mass-shell vertex fa(-<li2» -q22 » as a Prodtlct
of the on-mass-shell vertex F^t) = f^(m 2 . m 2 : t) and aov ' oy x ' x ' '

correction factor,

ia- C-%\ -V ; * ) = />(*) (5.6)

p p
By definition, we have X(m , m J t) = 1, and we know that

A A

X(-q12, -q22' ^ ~ 1 for Q^2 ~ - m,2 and qg2 ~ - m2 . However
we do not know the extent of the region in which X may be approxi¬

mated by unity. Conventional PGAC asserts that X 1 is reasonable

for q-^ 2 _ 0, q22-* 0 at t = 0(m2). We shall try to keep
X » 1 in as large a domain as is possible and is needed. This

assumption defines the model. Eq. (5.6), supplemented by the

assumption that X is a slowly varying function of its arguments,
(2)

is related in spirit to the technique of Schnitzer and Weinberg^
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in which the off-mass-shell vertex functions are factored into

propagators and proper vertices, the latter "being assumed to he

slowly varying functions of momenta.

In eq. (5«5)» we make the usual partial integration with respect

to y, use eqs. (5*1) and (5*2) and let qg tend to zero,

Ffito-t)z.i zlL*.-*Uolrt^A* «))!<>>J<r ■> j r-2 2 J i N ' ' r vF m
n 7t

_ 5^ <o/ T (ff(x)f (*)) toy J

= 5^ ret) Xtt.o-t) F ct) xCt) SLJ-
f f

(5.7)

We introduce intermediate states into the propagators and in the

spirit of pion-pole-dominance, we keep only the one-pion state in the

pseudoscalar propagator and a yet unspecified continuum in the scalar

propagator!

Fff(t) zd) = -m* +

where

£ (s) r Z \) Km* i»>l2 .
71

A consistent treatment of the pseudoscalar and scalar propagators

would demand the inclusion of continuum contributions in the

pseudo-scalar propagator as well (such as the three-pion-cut, etc.)

oo

Ami

ds (s)
5-t

(5.8)
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however, the success of pion-pole-dominance in most cases

considered so far makes their neglect reasonable.

Let us examine eq. (5*8) in more detail. The factor x(t)
on its left-hand-side takes account of the difference between

P P P
(t» o; t) and (m„ , m„ ; t). Near t « ni these twoJ^xx'x x

form-factors are approximately equal to each other (pion-pole-dominance)
and x(t) ~ 1, but for general values of t, there is no way of

finding x(t) and its t-dependent structure is unknown to us. One

might assume certain "smooth" forms for x(t) in analogy with the
(2)

work of Schnitzer and Weinbergv ', but there does not seem to be

an obvious way of determining x(t). Crossing symmetry might be

of some help here*. In view of this lack of information on x(t),
we set as a first (admittedly crude) approximation x(t) = 1,

i.e., the pion-pole-dominance assumption is true for any value of
P P

t so that fG(t,o; t) ~ icr(m<x > Tllis is a drastic
assumption and will need correcting as we shall see in due course.

Likewise the integral term on the right-hand-side of eq. (5.8)

represents the next important contribution to the off-mass-shell

vertex after the pion-pole term. Therefore, in order to treat the

corrections to pion-pole-dominance consistently one might suggest

that if we are to set x(t) = 1, we should as well drop the

integral term. However we shall not do so. The reason is that,

unlike x(t), we know the precise nature of the correction term on

the right-hand-side. This integral introduces the elastic unitarity

cut for (x-x) scattering starting correctly at the threshold 2j.ni ,
/v

* This point needs further investigation.
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which presumably represents the next important singularity of the

off-mass-shell vertex after the pion poles*. We do not want to

relinquish this physically meaningful information. We emphasize

that we have set x(t) = 1 simply due to our ignorance about x(t)
and only as a first approximation to a more realistic situation.

Diagrammatically our model of setting x(t) as 1 for any t may

be represented as in Pig. VA.

Pig. VA

In Pig. VA the pion-poles in dA correspond to our assumption that

the pseudoscalar propagator is dominated by pion-poles and does not

involve more complicated singularities like the three pion cut, etc.

The assumption x(t) = 1 for any t implies that the t-dependent

structure of the off-mass-shell vertex function is entirely due to

the tf-chaimel. In eq. (5-S) this implies that only the second term

on its right-hand-side determines the t-dependence of the vertex and

not the pion-pole terms. This would mean that the pions cannot

interact before they meet as shown in Pig. VA. The presence of any

initial state interaction for the pions would invariably imply that

x This is the reason why we preferred the off-mass-shell extrapolation
defined by eq. (5.5) to a successive reduction of two pions; the
latter fails to produce the scalar propagator. For further details
see ref. (9).
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the t-dependent structure of the off-mass-shell vertex arises not

only due to the integral term on the right-hand-side of eq. (5.8)

but also due to the pion-pole-terms. This is the case only if

x(t) £ 1 and depends upon t

Pig. VB.

Such diagrams are illustrated in

*

A #
r\

PIG. VB

In Pig. VB we have assumed that the only important singularities in

the off-mass-shell vertex are the single pion-poles of dk and the

two-pion contribution to C . This is presumably a reasonable

assumption as the respective three pion and four pion cut contributions are

expected to be quite small. These diagrams correspond to x(t) £ 1,

in general. A particularly interesting case is that when
2

in "I"x(t) as ' "a- 1 ■ "a , so as to restore the conventional requirement
m +m.

2
that x(t) ~ 1 for t ;v m . Such a t-dependent form of x(t)

would imply that the t-dependent structure is not only due to the

<r-term but also due to the initial state interaction of the pion-
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poles of the vertex. More precisely it corresponds to an exchange

of some particle "between the two pions in the initial state which

would generate a crossed pole in the t-channel. By setting x(t)
to this form we are allowing for all such exchanges responsible

for the left-hand cut in (x-x) scattering by an effective pole in

the t-channel. This form of x(t) will be used in Section 4

where we attempt to modify our assumptions on x(t). For the

rest of this section, however, we shall tacitly assume that

x(t) as 1 for any t thereby retaining contributions to the off-

shell vertex from diagrams of the type illustrated in Fig. VA only.

To see whether such an approximation is at all reasonable, we

test eq. (5*8) in a single particle model, by introducing the con-
x

jectured o^meson as a pole in F (t) and as the dominant single
o"

particle state in / (s),

Pr(s) ~ SCs-mJ) I <°l?(o)lcr> I1 (5.9)

= S(s-mJ-)* V )

F CO 2 he. (5.10)

We introduce eqs. (5*9) and (5.10) into eq. (5.8) with x(t) as lf

compare coefficients in t and obtain

Z 4 2.
x ynx rx , (5.11)

^ Qrrnr. ~ "i*)- (5.12)

x This is analogous to the pole dominance assumption used in
connection with vector currents
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Eq. (5.11) is equivalent to interpreting-ip\Qi( x) dJx, /6^(y)]
s^<S(y)/(m2F ) as the interpolating <y-field^. Eq. (5.12)

x x

can also "be derived in the d"-model in lowest order perturba¬

tion theory. The width of the ff-meson as predicted by eq. (5.12),

as a function of its mass, is found to be

r- = I k ( It <5-13>

where p Is the momentum of each pion in the rest frame of the <r.
X

The numerical results are given in Table VA.

Table VA

m^ (Mev) 350 1400 14-50 500 550

(Mev) 70 130 220 330 1+70

Contribution to
Adler sum rule 1.71 1.5k 1.39 1.3U 1.31

The ^parameters so obtained are not inconsistent with the

( 5)
results of Brown and Singer* , recently supported by current

(12)
algebra sum rules* but considerably higher masses with broader

widths are also allowed. In the narrow width approximation Adler's

(x-x) scattering sum rule gets the following contributions from the

various (x-x) resonances: (^-contribution + p-contribution (^0.51)
+ f-contrlbution (^0.11) + g-contribution (--0.08) (5.H+)

so that the (^-contribution —0.73, i.e., it contributes about 50%.
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0 tie last row in Table VA shows that the cf-contributes by <v»100%,

the contribution decreasing slowly for higher masses. In view of

our crude approximations the disagreement is not appreciable.

unitarity corrections we cannot consider it to be an accurate

solution of eq. (5.8). Its only purpose was to demonstrate that

the approach is not misleading. Now we abandon the single-

particle model and introduce a continuum of intermediate states

into p^s). The two pion contribution is given by

3. Since the single-particle model of Section 2 ignores

(5.15)

For there are also inelastic contributions; we account

for these by introducing a factor R( s)

? (s) - R(s) p (2X) (s)
v cr

(5.16)

with R(s) = 1 for s <(i4m^)2, and R( s) > 1 for S>(^)2.
Eq. (5.8) then becomes

153 IF 5.17)
/c.t) J C 1

In order that the integral on the right of eq. (5.17) may converge,
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we require that lim Prt(s) = 0*. Further information on F^( t)
s-»oo 0

can be obtained from the linearized unitarity relations for vertex

functions, which allow us to represent as an Omnes function

Fg- ± i> c) — _ jyi" j t - th x ( Sf Cs) 1

(5.18)

= - iFfCt)!

p
For t < (Ura^.) the phase ^ t) is equal to the {% %) s-wave
scattering phase 5Ji t) in the isospin-zero channel, and this
relation remains approximately true as long as inelasticity can

be neglected. Comparing the discontinuities of F^t) according
to eqs. (5.17) and (5.18) (assuming that <t;*x( t) may be neglected),
we get

2X1 3 ini ~x\ h'fk /'v(i)/2 Z-2.1 FAi)' (5-19^327T2. m* Fz V t stct) I '/ ^ **

This implies that as long as x(t) )> 0

Swt *(i) ~ >0 . 0<Sott)<X (5.20)

We emphasize that this result requires only local validity of our

assumptions; in particular the actual form of x( t) does not matter

*
If we a ssume that lim x(s) pJ8) = 0 then eq. (5.17) reduces to

s->00 (15)
a sum rule which was derived by Woo assuming asymptotic chiral
invariance. His failure to 5a.tura.te. this sura rule may be related to
our difficulties in solving eq. (5.17).
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so long as l(l) ) 0* Hence it will not be impaired "by the diffi¬
culties and ambiguities that arise in trying to solve eq. (5.17) by

assuming some simple forms for x(t).

To solve eq. (5.17) we define a new function D^( t) "by

Ffit) = -
^(i) (5.21)

2
The discontinuity of t) across the cut t % is given "by

disc. Djt) = 2i ImDit)<5 o

- zxi 3 ("V2 -t) K(t) ( }
3**2 /T1 *»> (5,'

for t > km2 •

We next show that if x(t) = 1, then F^( t) has no zeroes.
From eq. (5.17)> we deduce

2 3
FrC°0) =0 = -•»!„ + W1 Fz J ** 5.23)

> OO

Subtracting eq. (5.23) from eq. (5.17)» we get

Vi] =, 1 3I—r— r '« Kli> Itol'flLi) ■* 32712 -m2 Fnz J . v 5 I * I I )
4tvt

71

2
For real t < Ptf(t) is always negative since the integral is
negative definite. For complex t
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o

32 K 2 mi F-* /
00

cLs
S-- 4 m!

4"i,

(m^-5) //yfrj/2 Arwt
(5 - R« t) 2 + (&n.t)1

since Ira t / 0, Im F^( t) cannot vanish.
Therefore, F.(t) 0 for x( t) = 1. This means that there

o

should not be any ODD pole in D^(t). Using its discontinuity as
found in eg.. (5.22), we can represent D^( t) as a dispersion

p O
integral subtracted at t = m with D Im ) = 1. The addition

% o %

of arbitrary subtraction polynomials is limited, because they

would require superconvergence of F^(t) i

lira tFK( t) a 0 |
t-,00 °

this is not compatible with a negative definite Im P^( ti) (unless
x( t) changes sign).

Neglecting inelasticity and PCAC corrections (i.e. putting

R( t) = x( t) = 1) and integrating t), we get

OO I

D (t) - 1 + a.( m\-t) + ("1%-t)1 J f_ { s-ml* 32*2 J J * (m;-s)(s.t)
n *

-1 * L"l*> {*' + - ,

for t < 0
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= 1 + (rW^-Q t _ I
<- J t 1(>7Czrx2 \J J

2
for 0 < t < Ura,r

= 1+ j a'+ -J— | ji y t v 1 yr ' y J

for t = tR t ie, tR > 4w* (5.21+)

The unknown subtraction constant a1 has been redefined from a

in the course of the calculation. Since D^(t) has no ODD poles
the solution (5.2U) is unique. It is easy to see that none of these

2 2
solutions is acceptable. At t = in we have D (m ) = 1, but at*K 0 ft

t -» -oo , the last term dominates and we obtain D^( t) —> -oo.
This means D^Ct) passes through zero at some value of t . But a

O

zero in D^t) corresponds to a pole in P^C t), which is not con¬
tained in eq. (5.17). By keeping R(s) ^ 1, the negative term is

only enhanced. So we conclude that eq. (5.17) has no solutions with

x( t) = 1.

k. Being forced to introduce corrections to pion-pole

dominance, it will be our aim to keep the model simple and to avoid

having too many undetermined and unmotivated parameters. Comparing

eq. (5.22) with the usual (N/D) equations of (z-rc) s-wave scattering

we have

T*.o,r=oW ^U)s^Sw = M (5*2lt)V t - 4>VIZ 6 Dtt)
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and

<toe. x>w = 2t (-.x—) y t-4NW (5>25)

With D( t) given "by D^t), we would have a linear N-function

*

up to inelasticity and corrections to PCAC. This may well be a good
2

approximation for t in the neighbourhood of bl.» but it fails at

negative t, where N(t) should have its left-hand cut. A linear

rise of N(t) at large t appears also unlikely. On these grounds

it seems reasonable to correct N( t) by introducing a factor
2 2 2

R(t)/x(t) = (m + m7C)/(m + t) (compare the explanation given for
Pig. VB in Section 2) to simulate some effects of the omitted left-

2
hand cut for large t in the integration region t >

distort the current algebra predictions for small t, we should
2 2 2

choose rn • As 8^-ze of m , we have taken different

values in the p-exchange region and above (m = 600, 7&), 1000, 1500,

2000 Mev). We do not want to commit ourselves to a final statement
2

on this point and, for the moment, prefer to regard m as some cut¬

off parameter. The precise nature of the required PCAC correction

needs further investigation.

The modified D-function can be integrated, and we get
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oo , x

*»(*)• L(ni-t)-L-h ^TL JLcr 32 7T2 P* ) / 5 7na + s 5_t
7i

, + + ^ y f "I
32*>F„*(^tt) w ^l/prp.*' 7C

A™*-* "Pt~ Jl frtai* I Pm - /T

3(>n;-^ mx)jrn%--t) j UmStm* ^ ( J4mn2+/Kl + w1 + 3ztt2 (w2 +t) rni ^ /4m2, +m* - wi

-V^l£ cwc -icwi ^ J t ^ J J 0<t< 4«2;

|+ j(m J J /mix+rt j I J4mfc-+m1 + m
32 X2F2 C M +i ) v m2 «l y—; a* ^m2/m ~ m

frr t s t ±0C ^ t g > . (5.27)
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2 (xn\
For t <C Um , D_2" (t) is seen to be real and has no zeroes

% ' U

2
(in the range of m considered). For t )> Ura^.* neglecting
inelasticity, its phase is the negative of the s-wave (x-x)

phase shift $ in the isospin zero channel,
o

~ (™J , 4 _ (m) ... 2 . _.

o ' (^) = - a/tf Dg* for t > Ura^ (5.28)

In Figure VC we have plotted for different values

of m. The resulting scattering lengths are given by

a (■yn)
CLo(^) = ^w j, */m,

t ->4ml /t-4»l -2 W|.)V X <r ^2 >V

(%J >> '• <5.29)
For a wide range of values of the cut-off parameter ra, the scatter-

-1 -1
ing length varies only by a small amount: 0.23 0.33 ,

which is slightly larger than Weinberg's result^^. They are given

in Table VB. The phase shift exhibits a broad maximum at about

700 Mev falling off very slowly at larger energies. This shape

resembles qualitatively the results of Lovelace, Heinz and Donnachie^
but we prefer to reserve our opinion at present, because the height

of the maximum is sensitive to the cut-off parameter ra, and there
2

is every reason to regard the tail at t m as cut-off dependent

(see Fig. VC).

Using the calculated values of 5^m^(t) as a function of m
we examine the saturation of the Adler-Weisberger relation for (k-k)

scattering with the resonances p and f (contributing about



FiG.YP

mfMsVJ
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Uh%) and the isospin-zero s-wave continuum. We require, therefore

(We have neglected the soft-pion correction as given "by Adler.)

We find approximate saturation for m 3 1200 Mev. Inclusion of

the g-resonance would lower the s-wave contribution to about 51%

which would correspondto a cut-off value of about m ~ 1100 Mev.

The right-hanci-side of eq. (5.30), plotted as a function of the

cut-off parameter ra, is given in Pig. VD.

(5.30)

Table VB

m (Mev)

600

760
1000

1500

2000

0.231

0.252

0.276
0.307
0.330

The s-wave scattering length aQ as a function of the cut-off
mass m .
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5. Finally to test the dependence of our result on the shape

of the cut-off function we have repeated our calculation with a few

different cut-off functions (R(t)/x(t)) :

2 2
a. two poles : ( _JJ^1 _ \ 2M2 } -m,2V M1 +1 > 2 ' ' m

. _ ,, , \ / M1 /3M* \b. a pole ana a dipole i —:— - J ■ to/a/*
1- p [ M^t (.M2 +1)2 J

where we have imposed certain conditions on the parameters such

that does not acquire a zero for t / Urn2. The explicit
0-

solutions for D^m^(t) in the two cases are listed below:
<r

a. two poles:

— j + 8c[1-t) j/y u[Kil).f0Lu[ELil.)}- +<M.\jiinULLi)
t (atl!) ^ ^ \J& \ fl r I 1

_ b ^ £±_+l ) J jrr t<0J-a - 1 '

t + Mhll
^

t(atU) 1 v [JZ ■> iU+L)

_ 2 v^T ^ J-j ipy 0 < A

(tU I f" * = <*-'<
I' {-I ^



\U0 \0t

15
lii

A

00

GO 20

2oo

FI<5•VF
PoLfc■*•DlPoLk

looollfOOIfcoo sjs"(mev)—>

ao~"3e>;P="7 <5-0-'i6!j$-5 a6='24-;£=•!



h. a pole and a dipole:

J [vz u (-u(£L*l) ]

+ lsf|+ tt^ /yrw ) + v^f ?^ 2s/Z (a + l) J \ 0.+LJ
i < o ;

_ i 4 UvZ ^ (j£+i ) - 2 A w' t4= ]
t (CL+*.)tl-p) ' ^ vC-f ' \FZ

^[l+ MW ut*z±) + *fi[hSL)K'(jii)]}2JZ (Ate.) \ + 1/ 1 a+i'; J

<£*r 0<-fc < 4 ;

jcr -b =tR tie. j -bR >4 •
(5.32)

In the above solutions we have set m =1 and have defined
*

a _ ±z* t, - 4 + w2 4' - ±t*2 C z _J
^ Mt1 M2, 32X2 F *

In Pig. VE and Pig. VP we have plotted the phase shifts for a few

values of the parameters and for the two separate cases as indicated.

Qualitatively the shapes of the phase shifts are the same as before.

Again we find a maximum near 700 Mev, the height being dependent on

the parameters.
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APP'NDIX I

NOTATIONS

1. Natural Units.

We set c * -ft « 1, then every dimensional quantity will "be

expressed in units of some powers of mass, e.g., length will he

expressed as inverse mass.

2. Relativistic Notations

Our metric is such that

K • x = x^ = - k° x.0 + k x - ~ cot -t M - x } (AI.l)

5 K £)= ( K\; (A1.2)

*^5 ('. 5) 5 (*", *(A1.3)

The scalar product as defined in eq. (AI.l) corresponds to the

metric tensor,

r fhV = !"'<-< +| ( . (AI.il.)
Covariant and Contravariant tensors are defined by

Contravariant vector^ V- = {j**0, X2j X.3 ) - it j % ) (AI.5)

Covariant vector I X^ == [x0 ) X1} X2j x3) — . (AI.6)
Einstein summation convention is used. (Latin indices i,3,... run

over 1,2,3, and Greek indices j+,v,... over 0,1,2,3.) Further
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= v-V - ''t 1 (AI"7)
«iF ■: if d9C (AI.8)

3 _ ^ / J_ _£ \ (Covariant
r w* ; ax / ; differentiation) (AI.9)

^ u / ^ -) \ (Contravariant
—-

= ^ = (- j J 3 differentiation) (AI.10)
Li.
r

Sometimes ~ is denoted by V or and djad11 by D .

dx

3. Relativistic field equations

(a) Free scalar field 4(x) of mass m ;

[m^-Q ) </>(*) rr 0 (Klein-Gordon equation), (AI.ll)

(b) Free Dirac field '-j/(x) of mass m and s-pin halft

^ ■+ f Y ^(*) + "f1 (*) = 0 (Dirac equation), (AI.12)
a and 3 are traceless, hermitian, 1+ x 4 matrices which satisfy

the anticommutation relations,

=ii'i
,

i»3 ® 1,2,3

=°
, / (AI.13)

,2 I2 , 2. 2 a

aJUc
j oC = oC soi3 ; ^ s 1 '
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We choose the following representation for the matrices

oC =

0 <3"

0 P --
i 0

a -1 J k = 1,2,3
(AI.UO

where

We define

<r =

0 1

1 0
cr2 J° -1

o (AI.15)

* = -tySoc* =

r° -- _ *J3 = - t

-to'

t/cr4' o

1 o

o -# (AI.16)

Then

'5" _ iy,v2yiy° -

o -1

-1 o

rot -- r«

y i t _ y i

y* + = y5"

{v'V'j =2^y
r* -

y° - _ 1
j ~ j

= 1

(h j y= M," 3;

1
41 K

_ 0 12 3& r- £.0/23 = + 1

(AI.17)
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Covariant form for Dirac equation

(0f + m) V(x) = (* 9^ + ™)y(x) = o (ai.18)
H" J

V1* = (*° , *2)
Define

^ (AI.19)
•2 L

Then

*ii = &iy>j=-i^ = ('; ).-«rt,(«.«»)
if i, 3, k are cyclic, i»e. }

(AI.21)

The adjoint spinor

VC*) = t ^L*) 1° (AI.22)
;

satisfies the adjoint equation

daVC*) - m. V (X) =0 ■ (AI.23)
r
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Bilinear covariants (all hermitian):

scalar

vector

tensor

pseudovector

Y Y

x> y Y^ Y

f

i» Y Y* Y^Y,

(AI.2U)

pseudoscalar I ^ y Y * ~Y ■

General free particle solution:

where

yr(*> = uy(_f)tT r. 4, (Ai.25)

r
£r+1 r = 1j2 (positive energy solutions),

£r --1 ^ - 3,4 (negative energy solutions),

and where

- yifM
/' i

0

Ji
Etw.

e+w-

60 = Te+m
i

£ + m

-ii
E+m

Ut3)U) = /E+w
£ +tu

M2-
gtw*-

/
(Esrj

to+U)=-^
£fm

Etm,

(AI.26)
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satisfy

(ft - &Yi<m J ) - 0

WCyJ^) (/-£Y^>n/) = 0

«oW+(JO ^r(J?) c 2EJ™

5W U>) w'Cft) - 2>n8™

I e(,)^({) «*W(W
r=| '

r2m<J
<X|5

(AI.27)

Projection operator for positive energy solutions,

A+M = (m-i-f) =i io(rt(i)uw(i) =
r" Zrn.

(AI.28)

Projection operator for negative energy solutions,

L (» = {m+if) = -Z uW(i) «l%) =
T:3

[A-IH]1
2 m.

(AI.29)

Equal-time commutator for Dirac fields,

IW. - i <53 ( * - *',) <f— /V -V (AI.30)

[ - S3 ) j-
p t si' ~ ~

(AI.31)
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(c) Free massive vector field.

Field equation!

(ml-D) o ,

^ ix) c 0

Plane wave solution,

(fX = 0,-3 ) ■ (AI.32)

j U i ft It U , \

<f (*) = «e e CO ;

2 ey(*,xJ = »KV + • <"-35)>nz

(AI.33)

V <*> = 0 (H»)

As 1

Occasionally, this is loosely written as

I tie) 6/r) tie) = % -t £Lly . ' (AI.36)

(it,A) <£^ (ie,rj =<5V ' - U,3). (AI.37)

(d) Field equation for free massive spin two particles.

Equation of motion:
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(w2- 0 ) <f> C*) = o

^ <p lx) s orM y

^ (*) - £ (*)Hv vy.

P^ f MV __= (3 •

(AI.38)

Plane wave solution

= eMyO) €

£mv^J = o

ifc-*
-\

(AI39)

6^ (*) - £V^C«J

6MV

a, p a 1,...., 5 are states of polarization

£MV (K,oc) Spy (Kj£) -8^
and

-

where

I efiv 6*,«; £\p (*,*) = e
1 V y

(AI.l+O)

0t% '--h^Kr i'"^T /(ai-W)

8f" = (fv- 3iiy j j e\ =
HA 1

b _aHav
y
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satisfies the usual properties of projection operators,

q*P = Qpy , (AI#U2)
A/5 <rx

U. Normalization convention.

The states are normalized covariantly,

= 2/»° ^iTT)3 (AI.43)

Further,

-14- = - i A(*)] , (Al.lA)

so that

«tfia Al*)e'LPa- r A<* + ^ (AI.45)
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AFPENDIX II

1. Notation for SU(2) Clehsch-Gordan Coefficients;

We use the Condon-Shortley phase convention.

2. Application to isotonic spin : Simple examples

[ I i j I j ] = ^ ^ I £ V J ^ 2, 3 (AII.l)

I, ±v I4 (All.2)

r i3, i ± j = ± i± (All.3)

[ l\ I + ]
J

(AII.U)

1 ® ]

(All.6)

ln+ ~ - -L j-K1
s[T ' ;

(All.7)
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17C-> = + ~ /x-i 7T2> ; (All.8)
/2

/7T°> Z In3 > • (All.9)

|n+> ^
<7z+II*ln+> = J .

|2,l> = ± {/**>/*+> + /K+>|*>>} .

<X° I I3/^°>=i •

12/o} r |/n~> U+> tZ M°>/A6> ^/7t+>j .
<*-/ X3 /*">--/ .

I2r') = j=- j /*■*>)*£ + U6}U->] .
<*+/ I+/A*> = 7z ;

/2,-l> = /*-> )*-> . V(AII.IO)

If, |> = ~ 1 |*+>l*o>- /*«>l*+>j
Ilj0> r J. J |*+-> I 7l-> - |ti-> Itc •

<n-| Iix»> = ; ^ 1 ' '
| |7I0/IT:-> - U->/7io> j

)o,o> - __Lj /**>!*-> - /xo>/A«> + /*->/7C*>^.
y
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3* Isospln erossinr; matrices:

■KK -» "KX

Mt««
/

f% 1 / M,<« ^
Mt£0 - l % 'A -54 , MS(,J (All.13)

Mt <J)/ \ Vi j*/ V

Mt(2) are t-channel isospin amplitudes, and M^0^,
M (1) (2)

s
are s-channel amplitudes,

flN —* XN

/
yi^m J

and

M fv] J?k)
(All.15)
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P. C. T transformation -properties of Dirac Lilinears:

TABLE AHA.

p c T

ir (*)
\

^r2 (*) ^3 yl

Y+(<) V K2 -y tf12r3

Y&O) ^(xj

.

.

{"iYcf"&i)liVl(-*)'t) | -i%*) **%.(*)
ivj&fWXterV J

X.C*%i*)
fo'ZjifcVViC'Sjd

[.at-* >ty01
-%.(.*■)S^Htx)

(-WtefV'Vtfa-i)

LWtiZ; *)<?$%(&-*) J
iyo&Z,t)YSVv%[-Zjt)l

l-iX,L-l>t)tSx0 \L-*\
i-%x)^ ^\t*)

(-ivelz-t) y**lXUj4p

(*) v5 V"^(.*.)y5 ^lx)
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APPSNDIX III

1. Reduction Formulae,

(n-n) scattering:

X fi
i,'

+

/

\

v*
✓ 1

>x*
)11X\

Fig. A.II1

P2» Pj* Pjj, are four-momenta. a, r» §
charge indices.

» 1, 2, 3 are

s = - IVJ1 = -

t = - (e,->3> = - iVV1 J

11 = - tVh1* = - (P2'^)2 J

s +t + u = - (.I9,1 •+ Aa+ A1 + A1) = 4' J

(AIII.l)
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5-matrix:

(AIII.2)
S*M« = {xl(V,X*(VW&),X'WyiNj

out

- jd**d,4yi*b*'*^i*(m*'a*)(mi-nf)<xr(ii)lifl (AIII.3)
(4 if*)*} *(*))/*«(!)>;

= 1^/3% (AIII.U)

CiYL3L-Q*)Cnl-ay)C>ni-a-pJ[M2-az)<<>l ri<p *l*) ^W )</>*(*))Io? •
where j

T <PS(*-)4>$(?) <P*t*))

z <P*I*) 4>"(z) ; f > x° y ~#° 7 z° J (AIII.5)

= $* (*) 4>$(v) 4" Cz) J f X-0 7 *°>Z° 7 Z.° J (AIII.6)

and so onJ

R (4s t*.) <t>*l*)) = (x-%0) [ <t>*(*)j<t>fyv)] ■ (AIII.7)
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2. Lehmann spectral re-presentation for two point functions.

Eor scalar interpolating fields, the tw» point function

Ap (*) = <olT {#(*) } I*> ^ (AIII.8)

satisfies the spectral representation

A ' (x) r [ <LM2 \S(M2-ynx) a (x/yi*]
F J0 * j FK J J (AIII.9)

/ 2
where 4 is the free-field propagator and d(M ) ^ 0.

In momentum space,

A ' (l>) = L_ + f cLM2- , (AIII.10)
4^ r
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