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CHAPTER I

INTRODUCTION

1, General Introducto Remarks

Symmetries with their impelling manifestations have always
fascinated the enquiring mind. By their fery innate nature of
relating the structures existing in the universe they have been
invaluable in the formulation of natural laws and in their
generalizations. However, it is also obvious that nature prefers
beauty at the cost of perfect symmetry. The subtle way that
nature breaks the symmetries to generate perfect beauty is,
perhaps, also one of the hardest things to comprehend, and this
makes the formulation of natural laws more difficult and their
generalizations even harder.

The symmetries of the world, as realized by a high-energy
physicist, may be summed up in the following words of Sidney
Coleman(l),

"The symmetries of the world form a group of unitary trans=
formations that turn one particle states into one particle states,
transform many particle states as if they were tensor products,
and commute with the S-matrix, and further the connected part of the
group is locally isomorphic to the direct product of the connected
part of the Poincare group and the group of internal symmetries."
The seemingly exact and universal nature of Gell-Mann - Okubo mass
formulae snd the initial successes of non-relativistic U(6) sym=-

retry group naturally dawned as a cheerful prospect of realizing
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the internal and space-time symmetries in a unified and non=-
trivial way. However, it aooﬂ became clear that any symmetry
group that satisfied all the above criteria and contained within
it the internal symmetry gréup and the Poinecare group in a non-
trivial way was infested invariably with internal inconsistencies.
A way out of this impasse was suggested by Dashen and Gell=Mann
which, after repeated re-interpretations and refinements, has been
the most successful theory of the present day high energy physics.
In the next sections we shall briefly outline some of the develop-
ments of this theory and its ramifications going by the name of

current algebras.

2y CVC, PCAC and the Adler-Weisberger Sum Rule

Current algebras use extensively the results of the S-matrix

approach formulated in the Heisenberg picture of quantum field
theory. The current operators used are local operators with well-
defined matrix elements between physical states. Interactions
between particles are conveniently expressed as products of currents.
Thus, in the Fermi theory of nuclear B-decay, the interaction
Lagrangian is the product of the weak currents of the hadrons and
the leptons. In the more recent formulation of this theory
(universal V-A theory(2)), each of these currents is composed of
a vector and an axial-vector part. If we work to lowest order in
weak and electromagnetic interactions and to all orders in strong
interactions, the leptonic weak current J%’s has a general re=-
presentation in terms of electron, muon and neutrino fields as

follows,
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but the hadronic weak current J“Jt' has a very complex structure
in terms of all the strongly interacting particles, such that its

matrix element has the form (in the case of N —»P+e + V)
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where q2 = (pi - pf)2 s and the form-factors take care of the

meson clouds of the nueleons. IT GLI-' GV’ G, are respectively
the weak coupling constants for u-decay and for the hadroniec

vector and axial-vector parts of nuclear p-decay, i.e.,
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then, experimentally,

G.“' zqv and la,| # IGal

The corrections due to electromagnetic interactions (e.g., radiative
corrections) inereased the discrepancy between G, and Gp but

only by a small amount. The near equality of GV and Gu (the

fact that Gv is indeed not exactly equal to Gh gave rise to the
Cabibbo version of universality(s) to be discussed later in this
section), in spite of the meson cloud of the nucleon, encouraged
Gershtein and Zeldoviteh(z) and Feynman and Gell-Mann(z) to sug-
gest the conserved vector current (CVC) hypothesis. According
to this hypothesis the hadronic weak vector current, its hermitian
conjugate ond the isovector part of the electromagnetic current
constitute an isotriplet of currents and the corresponding charges
defined by the space integrals of their time components are Jjust
the generators of the isospin group.

Symbolically, in an hermitian basis,

I e fa‘w"wm 43 y (1.5)
[Ta,1;] =iegy T ; (1.6)
[1e,70, 0] = ecyu 3, ) (2.7)

Whe!'B i’ J. k = 1’ 2’ 3.
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This hypothesis then implies that Gy = Gﬁ. The reason is that,
for strong interactions, isospin is a good quantum number, and
hence the currents are conserved. This would ;mply that Gv
should not be affected by the presence of meson clouds (it is un-
renormalized), and is, therefore, just equal to Gu « This is
analogous to the case of electric charge, the electron charge
being equal to the proton charge (up to a sign), which is due to
the conservation of the electromagnetic current, and, therefore,
due to gauge invariance of the theory. Thus 1soto§1c spin may be
visualized in two different ways: (i) As a conventional symmetry
group of transformations such that its generators obey the usual

Lie algebra commutation relations

[ L, B0 = Sege I ) (1.6)

and the strong interactions are invariant under these transformations.
Strong interactions are, therefore, characterised by a conserved
guantum number, the isotopic spin, which corresponds to an in-
variant of the group. (1i) Alternatively, we may identify the
space integrals of the time-components of the hadronic weak
currents and the isovector part of the electromagnetic current
with the generators of the isospin group so that these charges
satisfy the usual commutation relations of SU(2) algebra and the
currents transform as an isovector under this algebra as implied
in egs. (1.5), (1.6) and (1.7) given above. This identification
is possible whether isospin is a good quantum number or not. The
fact that isospin is a good quantum number, strong interactions

being invariant under isospin transformations, implies that the
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charges are time independent and the hadronic currents are con-
gserved. In general, however, we may always postulate commutation
relations at equal times between time dependent charge operators
constructed out of nonconserved currents. If an algebra is closed
in this wa& it will not correspond to a symmetry of the strong
interactions unless further dynamical assumptions are made. In
this way a host of algebraic relations between physical currents
and charges may be obtained, and the symmetry (or partial symmetry)
aspects of these relations are to be inserted as further dynamical
assumptions (such as the saturation hypothesis used in Chapter II).
This is essentially the principle involved in the theory of current
algebras.

An important consequence of CVC theory iz that it relates the
electromagnetic and the weak form-=factors of the hadronic vector
current. The matrix element of the electromagnetic current between

#*
nucleon states is given by,

_o(pF i), " : b : ) x
<n(pH)| }Pd“"(*){n(»i» g AT “acrf)ﬂrpﬁ““c@‘)ﬂ%(P"-P*)”Fz‘e’" (4‘)}“0"),

(1.8)

where ¢ = (p* - p")%, ana P ™ ana F,°'™ are Dirac-Pauli

elm.(5) is the total charge

of the nuecleon (we have set e = 1) and F231m'(0) is the anomalous

form=-factors normalized such that F1

magnetic moment uA of the nueleon (in units of - )« CVC theory

implies that Fl, gN(o) =1, F2’ gN(o) = u% | - u% and

® total electromagnetic current (isoscalar + isovector).



-7—

F3 ﬁN(qz) = 0 (the last one being true also by G-parity in-
’
variance).
The axial-vector current is not conserved, and therefore GA

is different from Gﬂ » The corresponding charges defined by,

% 17 % 3
I ) = [50,,® 4z (1.9)
are not constants of motion, but are time-dependent. However,

we may write equal-time commutation relations for them, e.g.,

[I; &), L] =icijele® (1.10)

[ -I-;,Uf) s IJ' ] 3 teg‘g 'fn (+) ) (1.11)

These equations may be written from analogy with leptonic currents
and they also follow from a quark model, We may consider them to
be postulates of current algebra (the second of these equations,
e.gs ©q. (1.11) is, of course, always true, the axial-vector
charges being isovectors) to be verified later by experiment. The
first equation (eq. (1.10)), being nonlinear in Ti, is useful
for determining the axial-vector renormalization constant, it fixes
along with egs. (1.5), (1.6) and (1.7) the scale of the weak current.
We shall presently see how eq. (1.10) leads to the Adler~Weisberger
relation for the axial-vector renormalization constant ('G&/Gv)'

As stated before, these commutation relations do not give any new

information regarding the symmetry of the strong interactions apart
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from the one already contained in SU(2) invariance due to con-
servation of isotopie spin. Instead of considering the vector

and axial-vector charges separately we may construct the operators

T SR (1.12)

% t ‘ o
(2,7 X " J T YEgik S (1.13)
and commutes with the other,
[ RE ] -t (1.14)

Therefore, X," and X,” generate the chiral algebra sU(2)®sU(2)
whose representations may be labelled by [O, %] ’ [%, %J ete.
However these representations are not invariant under parity trans-
formations, since

(it pt = g ®F (1.15)

L
Only the representations of the algebra 8SU(2) ) sU(2) ® P, e.g.
E’Jé. %, [0, lé] and [, 0] ,ete. are parity invariant. One may
postulate invariance of strong interactions under such chiral
transformations. Such a symmetry group and its various generaliza-

tions have been discussed in the literature (h'). As in any other sym=-

metry scheme the hadrons are assigned to definite irreducible
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representations of the group in question. However, such classifica-
tion schemes have not been very successful because of rather large
symmetry breakings involved, We shall not pursue this point any
further. A somewhat related approach is to make certain saturation
assumptions and obtain information from matrix elements of the
commutators. This technique is the subject of the discussion
given in Chapter II, and is the way in which dynamical assumptions
are imposed upon current algebra to obtain certain symmetry results.
At the present state of our knowledge of strong and weak inter-
actions, eq. (1.10) cannot by itself give us an expression for
- GA/GV that ean be checked experimentally. To do so we need the
assumption of PCAC, which we shall discuss next. Since the diver-
gence of the axial-vector current has the same quantum numbers as
the pion, it is physically meaningful to use it as an interpolating
field for the pion, i.e.,

ol stz §:(x) DY(n) lxi(n*)) = Comst 6':36‘3 (-k") : (1.16)

where fkl(x) is a wave-packet with momentum centred around k

and which satisfies

2 »
[ m% ~0e]fgx) =0 : (1.17)

The constant in eq. (1.16) is related to the pion decay constant,

fx’ defined by

. . C n LR
ColAy (=) [z ) =4f Blipy e ; (1.18)
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g0 that

OIS @I @)> =5 my 8% . (1.19)

The decay constant, f_, 1s found to be ~ 94 Mev from the =x,,
decays. The matrix elements of D between single-particle states
are analytic functions of the momentum transfer squared variable,
ty except for a pole at the pion mass and cuts starting at dif=-
ferent branch points on the real axis of t corresponding to
physical thresholds for many particle channels (e.g., 3 pions,
5 pions, etc.). The assumption of PCAC (or PDDAC) is that for t
in the meighbourhood of the pion pole the matrix elements of D
are dominated by the pion pole, all other contributions from
higher singularities being negligible? In the derivation of the
Adler-Weisberger sum rule, it is assumed that the pion pole dominance
assumption is valid down to t = 0, and both the pions in the (aN)
scattering cross-sections that are relevant there are considered in
the 1limit of vanishing four-momentum (the soft pion limit). Apparent—
ly such an assumption is reasonable in view of the fact that the
next important singularity of D after the pion pole starts at
t = gmi (the threshold for the 3zx-cut contribution) whiech is rela-
tively far from the origin, and, therefore, may have a negligibly
small effect there. This seems to be borne out by experiments.
However, recent investigations by Brown and WEBt(B) seems Lo suggest
that one might require subtraction constants besides the pion pole
in the matrix elements of D for t ggmi . This point will be dis-
cussed further in Section 5 of this chapter.

We now illustrate Fubini's covariant method of doing current

4
® Actually, the_PCAC assumgtion requires that, in the limit m_ - O,
not only {0 |D/x) >0 but also D itself tends to zero (Fef. L6).
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algebra calculations by outlining the derivation of Adler-
Weisberger sum rule for the axial=vector renormalization constant

g,( = = 6,/6;). Consider the integrals

Tow = fate 0% (aloe) [ 470, 55@T18> L (1.20a)
Uy = 4 fate e tRa% Lol o) [ Bé, i IRy (1.200)
U, = & fdte e Ra% (rlo@n [ 77 00, 3¢ @TIEY.  (3,00e)

V= ¢ [d4x o ¥y <p| o@e) [39m),5¢0] 10> | (1.204)
t yp = —'2- Jd‘"wc. e bty <%{[é:,j(t); 01;‘. (o)} e> (1.20e)
Up = & Jatz % o[ 520, Fiw]IE> (1.20r)
u, = 4 fd'fz g- Lo <nl ['5',,5 (2), 13".{‘9)_-“»",’>Jr (1.20g)
v o= Lfdte B0t Kl [ Biw, Bw]in> (1.20n)

where 7T's are axial-vector currents, and D's their divergences



<p2| and [p1> are spin averaged nucleon states with momenta
P> and Py respectively. We use the commutation relations for

the currents,

[ ?o&(x) 3 }:(o)] = wed“® ,}: (o) 63(.35} (1.21)

*x°=0

[}aé (”):54(")] " g§ L s‘“(a; 53 (=) (1.22)
=0 o

where we have ignored gradient terms. The gradient terms in egs.
(1.21) and (1.22) and the covariance difficulties of eqgs. (1.20a)

to (1.204) can be taken into aceount correctly(e), and the follow=-
ing results are free from ambiguities arising from them. Partial
integrations of egs. (1.20a) to (1.20h) give ¥

VR Top ~ = B KB TRFGL NS 200, (1.230)
SRR T ST (1.23b)

' /
u’.“'r + U, =

D Tep Uy = € RIS 20, (1.23¢)

P RP UL+ VY o+ KBl sHe> o (1.234)

w

% We define kl=pz+k2-p1 .



iR typ - Up =0 J (1.23¢)
P Pl RS =0 } (1.23¢F)
éz,“{,,r, + U =0 , (1.23g)
ikFu, 4 =0 | : (1.23n)

We next expand T  ete. in terms of invariant "amplitudes",

M
T owd BR s 8RR BN w8k, w8V p
v T Y R > vV Ik v Tap o 2y
cPr p cl®p b e e e g v e®
* v » 2v Tap ® v 2p L gyp 4
(1.24a)
tv}; - ﬂ..Pv P,V- . (1.2’-‘-‘3)
; 1
US = L'P, +M ky + N’ Ry (1.2Lc)
)
U = LaP oo (1.2’-‘6-)



w, = 4P, +- (1.24e)

Uy = EPH_-i--" ' (1.24f)

The amplitudes A, B(l), ssss are functions of the invariants

v, ty k%, k,% defined as follows
e | o
= ‘i'(P,+Ez)P., y Kp = £ (R+ Ra), Ay = (%‘H)f&-‘-(’es'”z)%(,
£z -4, yoPk=z PR+ L(EmEim))

PRyt L (m?-m?) - (1.25)

2

il

Using the expansions given by egs. (1.24a) to (1.24f) in egs.
(1.23a) to (1.23h) and comparing coefficients, we obtain,

Coefficient of PLL:

; (3 2 ,(4)
« (RyPA + RyR B +k, B )-1_.-263.(."e Ff!(éJ =0 (1.26a)
Coefficient of klp.'
LR P By ke k2 @) M- €rFR)=0 | (1.26D)

Coefficlent of Pv:

{ (RophA + 2281 Lk .k, 87) FWe2esg BR (1) =0 (1.26¢)



Coefficient of k2u o

bR P B, 2 Rek ) =N 4 o€ ER(e) +ic?) oo (1.264)

MR 2

Coefficignt of klv .

; 3) 0 ) : 1.26e
‘L(RI'P B( +IQI2 CIt +R‘.E2C(3 ) + M7 ééékf-;k(f) +4cl®) :-_o’( )

Coefficient of k2v b4

i(k.p 8, ko, ¢ r 2™ ) + €a«:anR&)+N’= 0o (1.26£)

Also,
VL Ry P+ M Ry R+ CNTRSE -V - L 5B > = 0 (1.26g)
P LoRP M R® +CNBR, +V +<rISH B> =0 . (1.26n)

We have used above the form=factors defined by

RlgLe P> = (B tR) W FR(E) 4 (R-k) e () (1.27)

.‘U

Actually, if the external states are spin averaged nucleon states
of equal momenta and if jﬁ is a vector current as in the Adler-

Weisberger case, we have

<P!3-’}L3(0)1P> = ZPP" . (1.28)

Equations similar to (1l.26a) etec. without the form-factor terms
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are obtained for a, b(l), ete. Assuming unsubtracted dispersion
relations for A, B(l), ssse at fixed space=like t, klz, k22,

we obtain,

- -] I ; . e
élf aﬁ&(v,f,xf,kf) dv’ = 24 €50 F (F) ) (1.29a)
-]

gor e i (1.29b)

S

o«
J AP0 e k) = b€y, FROW®

- 00

m L
(2-)3"" / 2 2 d /__ ] R
it- Jw fL (V ;tJ R’) J kg ) ¥ =at J‘GR Fz. (-t) ) (1.290)
/ (a}a 2 i €. ER
28 (vt, kD &1 )dv = 4 €iir o ’ (1.294)

co -
@) g4 .
%foo L 5 ())j't J "efzJ kzzj dl}f:" ¢ 63}-&.'2 gk(t) y

(1.29¢)

and also,
L [g] G4ty kA k2 ) 4y’ = i <gisfein> (1.29f)
s Jﬂig(%t: k2 k1) dvi = i gglsterig> (1.29g)

It is not clear whether the assumption of unsubtracted dispersion
relations is Justified. We assume that this is the case. Not all
the above sum rules are on the same footing, some of the integrals

being more convergent than the others. The first of these sum rules
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is the most reliable and yields the Adler-Weisberger relation

2 ™ (v50,0,0)dv’ _
%A X -Lj - «,;r:.” - =1, (1.30)

where the first term comes from the nucleon contribution with g,

defined by

<pl3r@[n> = ﬁ(PJ[é%AG<@=)rvr5 +Ry¥s BlgM ]uln)  (1.31)

[G(o) =1, k=p-n = q] . The integral represents the rest of

the contribution coming from the continuum where

HlEmnal e o f;m’w;[m,q,;370Jj/p>d4x , (1.32)

(R—>0)
In order to express eq. (1.29a) in terms of divergences as in (1.30)
it is necessary to go to the limit t =0, k4> =0, ky°= O as
will be seen from egs. (1.23e), (1.23h) and (1.24Db).

We now use PCAC assumption in the form

L I DHIPD = o2 Fr 3’&';; Gnn (9%) Ey 3,5_ U ) (1.33)
4%z (P“p)* 50 My P
where f 2 mmm b - (1.34)

31m K e l0)
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The final form of the sum rule is

[ _ 4M W dw -
b o mogel & J W AW [ot(w) -0, (W) ] - (1.35)
M

Here,
gy axial vector renormalization constant in nuclear p-decay;
My + nucleon mass;
g, + renormalized (aN) coupling constant;

Kix + pionic form-factor of the nucleon-normalized such that

Ko (-m2) = 1. In the spirit of PCAC we take
2 :
KN,:(O):‘:. 1!
W o C.M.S. energy of the (xN) system;

% : (w): total cross-sections for the scattering of zero mass

%
pions (x ) off the proton.

Since experimental cross-sections referring to physical pions are
not involved in eq. (1.35) Adler used a model to estimate the un-
physical cross-sections from the physical ones. He found that in
his model the difference between the physical and unphysical cross-
sections is small. Welsberger, on the other hand, ignored this

correction. Their results compared well with experiment.

AdlerI

l g, 1.24 £ 0.03 A (1.36)

IR

1,15 ’ (1.37)

m

Weisberger
| 2 l

| g TW0Ce l = 1.18 % .02 , (1.38)
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It is to be noted that inclusion of N and N *  does not give a
good saturation of the sum rule (lg,| = 5/3). However, inclusion
of all the known higher resonances does give a reasonable saturation
of this sum rule, This would mean in symmetry language that there is
a mixing between the various representations of 8SU(6).

In order to estimate the contributions of higher resonances,

we shall use the formulae:

o' = 4% g N

q,
g E o AR 3«'&‘7’.’/2 2 4 (20
39 4 L b (1.39)
d’ﬂ'.‘._f’t— o _8_7{ '3/2- ’/2-
e 39 {am’c _M; }
We parametrize the phase-shifts as follows
E+% wow,
ni S R
ws = (=) — (1.40)

where 5z is the phase-shift for the {=-th partial wave, s 1is the
square of the c.m. energy, (s = wz), Wy (= MR) is the mass of the

resonance, Vv 1is the square of the c.m. momentum and ¥y 1is related

to the width. Then we have

$. I ¥ (v 28+1 :
T %—,,E Le?_U%) S ML (SR)M:
(Wo=W)% +y2 (22t 2 SN ¢ W1 B

where m, = ret/rtot. is the elasticity of the resonance, J 1is
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the spin and I 1is the isospin of the resonance, [ is the width
of the resonance, For ( » 1 this formula has the right threshold
behaviour. For ¢ = 0O the phase-shift goes to zero at threshold and
the cross-section goes to a constant which is found to be small com=
pared tc its value at the resonance position. In the narrow width

approximation these formulae take the form

- Ax? L+
R .5;": r 7 T+ %) (-0 th s(w-wp) (1.42)

The results are given in Table IA. We give both finite width
and narrow width results. They are seen to be in reasonable agree—
ment with each other. The sum rule 1s reasonably convergent and
the higher resonances are found to contribute by only a few percent
to the sum rule. We have included the (aN) resonances up to 2.2 GeV
as given in ref. (7). The saturation of the sum rule is good; it
yields a value of jgil = 1,30 to be compared with the calculated
values of Adler and Weisberger and also the experimental value as given
in eqgs. (1.36), (1.37) and (1.38). The inclusion of the higher
resonances as given in ref. (45) alters g, by less than 5%/0.

Besides the isovector axial and vector currents of hadrons
which conserve strangeness, the hadronic weak current should also

contain a part which changes strangeness. Therefore, we may write

S ) ) 1.

w o= JW o IW ] (1.43)
where

THO as =0 ATy 2wt a1t

¥ (1.144)

Tﬁktﬂ poas=1, alz =+t AT = Y.
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Now, if SU(3) were an exact symmetry, there would exist an octet
of currents ji (i =1,00005 8) which are conccrved and whose time
components when integrated over all space give the generators of

the group

I;laj‘(ac) 3z = F (1.45)

obeying the commutation relations
[Fé.ed] = (59" pk . (1.146)

The veetor part of J% is built from this octet of eurrents, as

follows,

p Lo p i K2 - ;R4 . i HUS
T = s (3’ + 14 ) + sm b} +4.3“ )
WV (1.47)
We mey likewise postulate an octet of axial=vector currents g&,
whose space integrated time components satisfy similar commutation
relations at eﬁual times. These currents are not conserved, The
axial-vector part of J% is built from these currents, in an

analogous way,

J:,}A = st (gH' e igh?) 1 e (gH4+4gH%) . (1.48)

Thus 6 appears as a new universal constant (Cabibbo's angle),
which governs the sharing of the weak interactions between
strangeness conserving and strangeness violating processes,

Experimentally 6 -~ 12° and in this new form of universality of

-~/

G“ o8 8., The vector and the axial-

vector charges togcther generate a chiral SU(3) &)SU(3) algebra.

weak interactions Gv

If we consider all the components of the currents and integrate
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them over all space, we obtain a chiral U(6) ® U(6) algebra.

A further extension of this algebra to U(1l2) may be obtained by
including also the integrals of scalar, pseudoscalar and tensor
components. In order to get dynamical information from this

U(12) algebra Dashen and Gell-Mann make the assumption that its
positive parity subgroup isomorphic to U(6) @ U(6) and generated
by all the charge operators whose Dirac matrices commute with 8,

transforms one-particle states at rest into one-particle states

at rest. We shall, however, not pursue this point further.

In the previous section we saw how to arrive at sum rules

of the type

% 5@(\*} U,y 2 ) dy = F(t) (1.49)
where, u, = -qlz, u, = -q22 and t =~ (g - q2)2, and where
ds 9 and qQ - g, are kept fixed at some space~like values,
As usual F(t) 1is some current form-factor and a is defined
through the expansion of the tensor

xp

fa = Lt W * I[N @ 8@y, (150)

1
2
in terms of invariant amplitudes
Ly
v =aBP, +6, Pig + ... . (1.51)

Here the isospin indices have been suppressed and we have defined
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P=%(p +0,)y t==(py~ pl)a. V = PeQy = DP.Qye For sim-
plicity we have chosen the currents to be isovector vector
currents and the states to be pions. Diagrammatically (Fig. IA)
tuv is the absorptive part of the amplitude describing the pro-
cess involving two pions and two currents.

Fig, T.A. Fig. I.B.

We assume that eq. (1.49) can be continued analytically into a
region where uy and u, are tine=-like. We note that

a(v, Uys Uy t) is a function of the external masses uy and Uy
associated with the currents. In particular, it has poles at

uy = m2 and at u, = n2 . But the right hand side of eq. (1.49)

P P
is a function of t only. Thus the effect of integrating over v

should be such that the dependence on uy and uy compensate

each other. Multiplying eq. (1.49) through by (ul - m;)(u2 - m;)
eand going to the limit Uy —> mﬁ, u, ——pmﬁ » We get

'&M'L f i 2 i Z —

) 0 (v, Uy, t) (Up=5 ) (U, M) dv = 0

Uy ms

But, Lo 2a(v, Uqy Upy t)(uy - m:g)(u2 - m;} is Just the residue of
'&‘-,mp P the

uz_; M?c
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. e
poles in a at Uy =mg, Uy = mP

P
tive part of the invariant amplitude A in the physieal .P“

A

and is, therefore, the absorp-

scattering process (Fig. I.B),

T=AE,PE P+ B(ELPE Q+ELQE}P)+CESQEQ+DEE(Le52)

where, Q s'%(ql + q,). Hence, eq. (1.49) becomes

[$mA 6y av =0 , at fimea t . (1.53)

An important distinction between eq. (1.49) and eq. (1.53) is that
whereas the former contains information about the weak and the
electromagnetic structure of the pion, the latter deals with the
strong interaction between P and =x. Thus, in going fronm eq.
(1.49) to eq. (1.53) we have lost the current algebra characteristic
scaling of the form-factor F(t). The derivation of eq. (1.53),
therefore, should not depend upon the actual nature of the current
algebra used. Indeed, all we need is that the commutator of two
currents contains 5(; - ¥) or its derivatives, which follows

from the loecality of the currents, anyway. Hence, eq. (1.53) has
nothing to do with current algebra. In fact, it may be derived
directly from the requirement of analyticity, unitarity and
appropriate high energy bounds for the scattering amplitudes. For
example, an anslytic funetion f(v) satisfies a dispersion relation

FO) = L[ SmFO0
7T vy

l$v)] ~ V’s

2
: § for v — o
B <o J



and it satisfles a superconvergence relation

[am s dv' =0
[§)] ~ vP
if for v—o00 "
B & -1

Sum rules that follow from eq. (1.53) involve only parameters
like strong coupling constants and masses and are, therefore,
referred to as strong interaction sum rules. When all the par-
ticles involved in a scattering process have no spin there is
Just one amplitude, and it behaves asymptotically as v“(t)
(apart from a factor of some power of fn v) with 1)>a(0)> 0.
It cannot, therefore, satisfy a superconvergence relation. If,
however, one or more of these particles have spin, there is, in
general, more than one amplitude, and these amplitudes may have
different asymptotic behaviour, such as of the form va(t)-n
where n varies, in general, from one amplitude to the other and
depends upon the number of units of helicity flip in the t-channel
that is associated with the amplitude in question. In some cases
(@ = n) may become less than =1, and the corresponding amplitude
will then satisfy a superconvergence relation. A simple example
would be to consider .PW scattering as discussed by de Alfaro,
Fubini, Furlan and Rossetti(a). We shall instead consider a
slightly more complicated case of P+ x — K™+ X .

We first find the asymptotic behaviour of the various
invariant amplitudes, A, B, B'y Cand D that appear in the

expansion,
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T=AgPe.P+ B (EPEQ 1 €08 P) _,__?_f (e,P€,Q — €,QE:P)

+ CE,:QE,: + DELE
Esa gl (1.54)

by using the heuristic method of the above-mentioned authors.

In order to 4o so it is convenient to introduce another set of

amplitudes such that the invariants are orthogonal to each other,

T = KI“-f-ﬁIﬁ +a’I,+515 +€ I, % (1.55)
where |
I, = EyPE P \
I, = PLE. Mp m*
p= Rl B, z + &% E P/ -5_-5 )

- / M /

>

H
oq
i

&% &%,

!
1 = F’;'N EI-N’

with
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a =_2(=5+m+P)k™ 4 (=St +P+k)(t-P-K*)

+ a’qr' + -&12

(t-p-k* ). apc*

4

4 = (-5=t +P+Kk) +a (t-P-k*)
)
e *
g s 2 _
and MP ) e mk = K, el
It is easy to see that
P'9 =0 P w0 PLN. O
2, - |Ig Igl- =0 5 and so on.
Pot.
tdarre
Also
2 [L,‘I2 ~ ST as s8—.00 and for fixed
Pat.-
';—:E ’Ip’ ~ 54 as s—oo0 and for fixed
2% (Igfz as 5% as s-—o00 and for fixed
Pob -
S lIﬁm;:I as 8.— 00 and for fixed
P °
2 ]I€I2 wr & 4 as s _, and for fixed

(1.57)

(1.58a)

(1.58b)

(1.58¢)

(1.584)

(1.58e)



The orthogonal set of amplitudes a, B, ¥, O, € are related to the

perturbative set A, B, B', C, D as follows,

~

Az wipe [(49)7% 4242 ]

B = 2 {KUB-*'"'J +-2{-9 (mp'me*J "f"%_: (MP-MK*)

2 2
+E(P9 4% -Pg 4.9 L9 Pg -Pg @-7,2)}J

(1.59)

Co
~
Il

2 full-a) s Lim,.m y), L (Mormyx)

+ E(P9, 9" -P.9 9.9, - 9> P9 4 P @_‘i/,-‘l,)}

2

C = daba +2plamprbmn) 427 (amy bm ) 4 45

s B (P Yy - PRy Pty )

D = £ i Pzixz?zz - Pz f‘?;'?'z)z- (Rﬂjzfzzﬂ"zﬁfﬂqu ‘Z.'"?‘z _?;2[/:??2}2} 2
-
Using the optical theorem and assuming that the total cross-—
section is larger than the cross—-section due to each of the

amplitudes a, Bysseey We get for large s

e (1.60)

J J

2 2
[lesol 1107 4t Cems 520
tol

since Ia’ IB' ess 3 are orthogonsl to each other. Making the
constant shape assumption that a(s, t) = £(t) a(s, 0), ete.,

we obtain



| @ | ~ const., s as 8 — ® ,
| B | ~ const. as & — O ,
| ¥ | ~ const. as 8 — 00 ,
(1.61)
| @ | ~ const. s as 8 — 00 ,
l -] .
€ | ~ const. s as 8 — 0
and, hence, for the original amplitudes,
|& | ~ const. g™ a8 8 — 00
| B | ~ const. as 8 — ©
| B*| ~ const. a8 B8 _, @ (1.62)
|c | ~ const. s as 85 — ©
|D | ~ const. s a8 8 —3 00

If we apply the above analysis to the case of spinless particles,
we would obtain for the corresponding amplitude a behaviour

const. s, asymptotically. Regge-pole theory would give instead
a behaviour sZ. (The additional factors of Ins can be obtained
by relaxing the constant shape assumption.) Therefore, we obtain

the following asymptotic behaviour for the amplitudes

|A |~Ea,-2 '
| B |""’5a-1 5

it (1.63)
|B'|~s »

Ic} p|~s® :
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The value of a will depend upon the leading trajectory exchanged
in the t-channel that will dominate the process under consideration.
It would appear that the use of the amplitudes a, Bysssey
will have the advantage of having two amplitudes which could go
as s“"z. However, these amplitudes contain kinematic singularities
in the variable .B as eq. (1.59), relating the two sets of ampli=-
tudes, shows. Hence one cannot write superconvergence relations
for these amplitudes., The amplitudes A, B, ..., are free fronm
such kinematic singularities and zeroes. A method of constructe
ing such amplitudes free from kinematic singularities and useful
for the discussion of superconvergence relations has been given
by de Alfare, Fubini, Furlan and Rossetti{?), However, a
generalization of their method to processes involving higher spin
particles does not seem to be straightforward. For example, if
one considers the amplitude with two wvector currents and two
nucleons there are 32 independent perturbative invariants. (At
first sight it appears as if there are 34 of them, but as
Gerstein(lo) has shown there are two constraint equations and only
32 of them are independent. He also gives a set such that the
corresponding amplitudes are free from kinematic singularities in
the variable s). If we follow the method of de Alfaro et al.,
there are only three vectors on the current side (two momenta
associated with the currents and a derivative with respect to one
of these momenta). From these we may construct ten tensors. On
the nuecleon side there are four vectors (y matrix, two momenta and
a derivative), but only two nontrivial invariants, e.g. 1 and
Yi'aéiz can be constructed (p2 is the momentum of one of the

nucleons and TKT is defined in the above reference) after using
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the equation of motion for the nucleons. Altogether, therefore,
one can construet only twenty invariants. S5ince we need more we

should introduce the symbol . However then one can con-

€ pvap
struct 38 tensors and it is not obvious as to which of the six

have to be discarded such that the amplitudes have no kinematic
singularities and zeroes in the variable s . If Kk,, kl' are
the momenta associated with the currents, in the notation of the

above reference, the 38 tensors are

d.r a4, (f-r-nrﬁ;) ; E’.‘«WM' ¥ £ ﬂe{; (1+ J’Ta;A) .
i K, (m;a;) : Eupr % ka = (1+ a*;ac;) 3
@, "'m(“"r;%l) ; Epvor U5 Rp 4, ({”ATEE/’:A) y
d R (1+ ?’A"%)J : Eurpor ¥ R 'Q"Pd e [M‘:‘%};
A, k/, “”"TJE;J ,’ Epurnpe ¥ R, R, d_d (M:};)
R R, T1e a*fﬁz_;) 3 Evnpr Ts R k) "‘a-k:p(’”';)'
R, nw [f+a’/\7';%;) ; ampd o R R’P dg”':y(“’r m);
R’ z# (f+zr7'a;; : wpr B5 R R, (1447 P“)J
&y Ry (HJ’TJE;) : Enpe Ts Ry RO dRL (14 AL
Suy (17 zc\ ) /
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Furthermore, it is not clear whether the method would work when
there are mass—less particles involved, especially when there are
odd numbers of them, for then the problem would be very tricky(ll).
However, in simpler cases like p=x scattering or =N scattering,
the method is seen to work well. |

Another method of constructing kinematic singularity free
amplitudes is to use helicity amplitudes(la). Trueman(ls) has
given a method of determining the superconvergent helicity ampli-
tudes. As the method is well-explained in the 1iterature(1h) we
shall not pursue this question further.

The asymptotic behaviour of the amplitudes are seen to depend
upon the value of a(t) corresponding to the dominant trajectory
exchanged in the t channel and hence upon their isospin. Experi-
mentally,

U%(t)<1 3
and if we further make the reasonable assumption

0'3/2 (t) < 0

for t X 0 and also over a small range of positive values of ¢t

then we may write, for t fixed in this region y



#00
[ dm a2 i) v’ 2o

Lo dm a%2 (1) av’

]
o
-

(=]
Lo @ma®oit)dv’ = 0 (1.65)

oo

f_m I B Y2 (v,t) dv’=0

f_: YV S A2 (v, ) dv’ = 0 ) /
where the superscript refers to the isospin of the dominant Regge-
pole exchanged in the t-channel.
Since these sum rules are true for arbitrary + we may in
fact propose further sum rules by considering higher order terms
in t. The reason is that if an amplitude has the behaviour

Ea.(t)-n a8 8 — 00 for fixed ¢t

then,
-g% o~ lns.au'(t) “Na'(t) e 8 —>® for fixed t

and, in general

-?-% ~ (Ins.a'(t))? su'(t) "% ag s —» 00 for fixed t and
t

any P»

so that, if f(s,t) 1is superconvergent over a range of values
of t, s0 are its derivatives of any order with respect to t
over the same range. Hence we may write (specialising to the

forward direction),



= 0 / etc.’

and sO oOn.

The practical applications of these sum rules to find physical
information about strong coupling constants and mass relations are
rather difficult. There have been various attempts to obtain such
information from these sum rules by putting in a few resonances
in the intermediate states. Even though these attempts have been
partially successful in obtaining consistency among these sum rules
and predicting reasonable experimental results, there does not
seem to be any real Jjustification for this truncation procedure.
Phenomenologically, we see that it is reasonable to assume that
the low mass and spin states will dominate the process under con-
sideration and furthermore the sum rules obtained by taking higher
derivatives with respect to t are expected to be less reliable
than those for the amplitude itself because of additional powers
of (¢ns) contained in their asymptotic bounds. There is no simple
group theoretical meaning to such a procedure, however. Since
there are in faect an infinite number of sum rules that one can
write down once the superconvergence criterion is satisfied, it
appears that a consistent solution would not be possible by Just
putting in a few intermediate states. However, it should be noted
that the t~dependence of the sum rule comes from the polarization

sum for the intermediate states inserted. For example, a spin zero
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intermediate state gives no t dependent term, with spin one
intermediate states terms linear in t are obtained, and so on.
Hence, by restricting to particles of spin up to J, say, we
shall be retaining all powers of t up to tJ + If the ampli-
tude is superconvergent, so are its derivatives with respect to t
and, therefore, there will be J+1 superconvergence sum rules for
a given amplitude at t = 0. (We have assumed that the amplitude
has not got even faster convergence, that is we have assumed

-2 {a(t)¢ =1 , but the generalization to the case a(t)-n < =2
is straightforward. We have further restricted to a particular
isospin exchange. Also we consider, for simplicity, only those
cases when the external particles have integral spin.) Each sum
rule will be a linear equation in variables coming from direct
terms and from crossed terms. Some of these may vanish since they
may not be allowed by conservation of quantum numbers. Xach variable
will be a produect of two coupling constants, one for each vertex
joining the intermediate particle with external lines (which are
assumed to be all different). It is not obvious whether one can
get a consistent solution for any J and even if we have such a
solution it may not correspond to physics. Sinee the coupling con-
stants appear only as products, we shall not be able to find the
value of each coupling constant separately. If, however, the
external particles are identical we shall be able to find the
magnitude of the coupling constants but their sign will remain
undetermined. We do not attempt to consider such a consistent
saturation of all the sum rules for the process Pt — x*+ K,

as the unsymmetriecal nature of the problem makes it even more
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difficult. In Chapter III a simple case of scattering of vector
and pseudoscalar mesons to zeroth order terms in t and ineluding
up to particles of spin two in the intermediate state, is con=-

gsidered in the SU(3) symmetric limit.

L. Pion Scatte s

A specific process that has been under extensive investigation
using current algebra and the PCAC hypothesis is that of low=-energy
(x-x) scattering. The interest in this application wamk was started
by Adler(ls) when he found that a sum rule of the Adler-Weisberger
type, relating the axial-vector renormalization constant for
nuclear f~decay to the integral over the difference of total
cross-sections for (xT x~) and (x* x*) scattering could not bve
saturated by Jjust including the contributions of P and T
resonances, but required a rather large contribution from some
other partial-wave which when assumed to be pure s-wave with iso-
spin zero, yielded a rather large scattering length (ag >1l.3 or

{ = .85). Under the assumption that the commutator of the axial
vector and the axial divergence corresponding to double charge
exchange vanishes (i.e. [T*} B*) = 0) PFurlan and Rosetti(16)
derived another sum rule for (x-x) scattering. Inserting P 5
and a conjJectured o they were able to get a saturation of both
of these sum rules for o=-parameters (mass ~ U400 Mev and width

A~ 100 Mev) in close agreement with those given by Brown and
Singer(17). However more recent experimental and phenomenological

(18) seem to disagree with these values. Our calculation,

developments
presented in Chapter IV, is an attempt to generalize their calculation

in a more realistic way, taking into account the structure of the
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resonances involved. Since the derivation of the Adler-Weisberger
sum rule(lg) outlined in Section 2 of this chapter may easily be
generalized to the case of (=x-x) scattering, we shall not consider
this sum rule further., Another result of current algebra used in
Chapter IV is Weinberg's result for 2ag - 5&2

o
(x=-n) secattering lengths(2°) (where the superseript refers to the

for the s=wave

isospin channel evolved). We outline below Weinberg's original
derivation of tlie secattering lengths.
We start off with the L.S.Z. reduction formula for the

s-matrix for (z-x) scattering,

Y. : A v i
s(p y¥h ; ppz,up!J T §¥; B f j44x[ ""4"; a4 %, atax 1 €+P4x4-;ng+;5x,+aﬁ,x:
(m1)4 Fgt

(g 0, JUme0,) -0, om0, ) D8 () D7 (%) D%0ta) 000 1>

4
= IOUB LT (b i) Grst(d +p-p - ) 4 ity ik
49 * $ 52 (ni) 5 '

<T{DPx4) D¥(23) D ) D% ()} > dtsydtnydtsy

(1.66)

where we have used D'(x) = O”A;(x), the divergence of the axial
vector current as an interpolating field for the pion, and Fe is
the pion decay constant defined by

<o A;cxuz’“m» = jettx Ry Fn 8% (1.67)

We define the T=matrix by
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J‘B’J/&N

SULHh; B oh) = 17502 SQmTEH 1h-p )T 0 s ), (1.68)

3

s0 that

T(J’#’Xé) ﬂfsz,“f’) =% 7% _.L "‘mz J f'ﬁ414-—&é-¥3 +£}212
121 Wlx F:r

x <ol T(D0(x,) D¥ (23) DA (x;) D¥()) fopdb, d¥z, it

(1.69)

In the 1limit when pia —_ - mxg this is an exact identity. For
p,% different from - m %, this defines the off-shell T-matrix,
with all the four pions off the mass-shell. We interpret the PCAC
hypothesis to imply that the off-shell amplitude so defined has a

smooth extrapolation from physical values of py (1,04, pi2 = - mxz)

to Py — 0.

In the spirit of PCAC we assume that we can expand the T=
matrix in terms of the momenta and approximate it by retaining only
up to quadratic terms in them. For the purpose of calculating the
scattering lengths this expansion has to be valid at least in the
region =~ 1nx2 £ p12 € 0 and 0 £ s,t,u < lunxa, where we have
defined s = = (p1+p2)2. u = - (pl-pu)z. t = - (p1~1:3)2.' The
requirement of Bose statistics, crossing symmetry, isospin invariance
and four-momentum conservation (s + t + u = -"‘i pia) restricts the

expansion to the following form,

T(d‘,{; Jx,g B, ap) = (A+8(s+t) +cu) é;sa- dys + (A +B(s+uw) wt)a“ﬁ; Ty

+ (A+Blu+t)+C3) gré‘é‘a;g"' higher order terms
in momentum, which we neglect. (1.70)
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(Actually, this expansion cannot be valid at and above threshold
(s = hmxz, t =u=0) sinece it does not have the right cut
structure and, therefore, violates unitarity. Our assumption that
it can be used at the physical threshold and even slightly beyond
it corresponds to assuming that the threshold singularity is weak
and the violation of unitarity is negligibly small., This in-
directly requires that the scattering lengths should be small,)
Eq. (1.70) allows us to write the scattering lengths in terms of

the constants A, B, C,

a2 = __d 2 2
i g 1FA ANy T (1.71)
327m,,

The next step is to exploit the current algebra commutators
to evaluate A, B, C. We shall need the following commutation

relations

(A (0), AP (g,0)] =4 €™ V.Y (3,8) 93(2-7)

~4d™ 3,53 (%-%) | (1.73)

where d*P is a c-number, and

[Q; (£) , p* (?!,;tﬂ = Ac* (nt) . (1.71)

Since the ec-number Schwinger terms do not contribute to the

connected part of the S-matrix, on integrating eq. (1.69) and
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letting Py p3 - 0, we obtain

T(#J’"’Jﬁf’,w):—é pp id‘“feJ‘”—J‘“‘?a“"ﬂ j i }.‘-::i (b ()] o ¥ o) [A(R)D

+0 [,‘,z)/ﬁrz ' (1.75)

where we have defined Pp =P, =Py Py = p3 —>» 0 so that

and u — mi + 2p1.p . Comparing eqgs.
(1.70) and (1.75), we get

B-c = - ul
2
2
and, therefore,
2o =xat = 3 ~ 069m”] (1.76)
" 47 may FF A

Using the Adler consistency condition,

g a s N B Y (1.77)
ﬁ4-’ 0
and the assumption

1l
@]

(which follows from the quark model and is also used in the
c'-mode],], it is easy to obtain another condition

2a5 + 740 = o0 (1.78)

This ylelds the result a5 = 0.2111,;1 and aﬁ - -0.0émx"l.
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These values are small compared with those obtained from the

(21). Since eq, (1.70), upon

analysis of (=x=N) scattering data
which this result is based, is rather dubious, Khuri(aa) made the
calculation including fourth order terms in momenta. He found
that, under certain reasonable assumptions, Weinberg's values for
the scattering lengths remain unchanged. If, however, one imposes
tlie unitarity condition at the threshold, in addition to obtaining
Weinberg's solution, other solutions with larger scattering lengths
are also obtained(23). More recently there has been much work in
this direction(au), but there does not seem to be one opinion as

to what should be the correct values of the scattering lengths.

Even though most people agree that a° should be positive and ag

(+]
negative, certain calculations using dispersion relations seem to
indicate that both of them are positiva(25). On the other hand,
it would be nice to have both of them negative as this would pro-
vide a natural solution of ghost problems in S-matrix theory(zs).

A recent hard pion calculation due to Arnowitt, Friedman,
Nath and Suitor(27) has shown that Weinberg's result is consistent
with the experimental results for (#-x) scattering due to Walker
et 81.(28) ang also with the snalysis of (mV —®aN) data by
Malamud and Schlein(ag). It may therefore appear that Weinberg's
results are after all reasonable and any discrepancy in our

results of Chapter IV may be due to some other source,
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5. Ambiguities in Current Algebra Calculations and their Resolutions

Having outlined some of the successful applications of current
algebras and PCAC let us now discuss certain paradoxical results of
standard current algebra calculations and their resolutions through
recent techniques and prescriptions. We do not intend to go into
formal difficulties that arise in trying to set up a rigorous mathe-
matical basis for current algebras, using axiomatic field theory(3o).
Such problems have been carefully tackled in the 1iterature(31).

Nor do we intend to consider the more familiar difficulties(sz) of
gradient terms and of non-covariance aspects of retarded commutators
of currents. Instead we shall consider certain technical 4iffi-
culties that are present in the usual methods of doing current
algebra calculations.

The first ambiguity that we want to mention arises in calcula-~
tions in which more than one pion is extrapolated off its mass-
shell, It was discussed first in connection with non~leptonic (2x)=-
decay modes of Khmesons(33). If one does the extrapolation of the
two pions to zero mass sequentially, i.e., first takes one pion off
its mass=-shell, goes to the limit of zero four-momentum of the pion
and uses PCAC smoothness assumption and then repeats the whole pro-
cedure for the other pion, then one¢ obtains the result that
K-> 2x decay obeys & I =1 rule(s‘u‘). Thus it was believed that
current algebras and PCAC implied the 4 I =% rule, However, if
one extrapolates both the pions simultaneously, i.e., takes both
the pions off their mass-shell and considers the limit when both
the pion four-momenta vanish and assumes PCAC then one obtains
additional, so called, o terms arising from the commutator of the

axial charge and the axial divergence at equal-times. Since the
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o-operator may have I = 2 as well as I = O components, (the
former allowing 4 I = 3/2 transitions) the 4 I = % prule is no
longer a natural consequence of Current algebra and PCAC. In fact,
it is possible to explain the experimentally observed departures
from 4 I =% prule by allowing a reasonable admixture of the I = 2
and I =0 6= components(ss). Even though there does not seem to
exist any argument, which in prineiple would favour one extrapola-
tion procedure against another, the general consensus is that the
second procedure is the correct one and the o=terms (which are
physically meaningful) should be present. It is this method which
leads to Weinberg's scattering lengths for pions, the first method
allowing no such solution. Other processes where this method has
been successful in re-estimating current algebra predictions are
n-decay(35), intermediate vector boson maes(36), ete.

The next ambiguity that we want to consider is the derivation

of the sum rule

=258 Y Imd 2 o (2.79)

due to Kawarabayashi and Suzuk1(37) using current algebra, PCAC
and lpmdominance assumptions. Here

<°M:: 17{3&) = 1}5‘?‘ F;r %y (1.80)

2
1.81
r)’-»-;r-;r = L (_b‘)zﬂ.) P.i- ' ( )
(Y4 m/l

This sum rule is in good agreement with experiment. There have

been many other derivations of this sum rule which, however,



-ly5-

pequive sdditionsl ssumptions'3), gerren{®®) nas argued. that the
original derivation of Kawarabayashl and Suzuki is ambiguous, and
there does not seem to exist any derivation based on Current algebra
and pole-dominance assumptions only. His argument is as follows.
The (P-e 2x) decaylfmpiitude may be extrapolated to zero
four-momenta of all the three particles in three different ways:
(i) Extrapolate two pions as usual to zero four-momentum so that
.P muet also have zero four-momentum (by momentum conservation);
this ig\the method used by Kawarabayashi and Suzuki. (ii) Extra-
polate one of the pions and the P using for the latter the
interpolating field V"/f_  where £, is defined by,

P i
olW Pk by =844 6, - (1.82)

(iii) Extrapolate all Phé three particles explicitly off their
mass=-shell., Only the last procedure is unambiguous as it shows
how the extrapoclation to zero four-momentum is done for all the
three particées. However this method does not yield the Kawara-

bayashi=-Suzuki sum rule, but instead,

Your (0,0,0) = (Frl)fe. ) m3 /g, (1.83)

This is consistent with PCAC and the 'P_dominance assumption for
the electromagnetic form-factor of the pion. The second extra-

polation pfocedure again yields the result (1.83). The first gives

fo’?l'?'t' (R% 4% p%) — Jr'f (Pz)/F;rz , R4 =>0, (1.84)



6

2 2
where f_(p is the extrapolation of £, & £ .(-m7), It is
p (#7) " p = Tpl-mp)

argued in ref. (39) that the estimation of £_(0) from -

P

dominance assumption is ambiguous because of the non-covariance
of the vector current propagator that appears in fp(p2).

Another ambiguity we discuss is the calculation of Aq=width
due to Renner(uo) and Geffen(ho) based on current algebra and
meson pole dominance assumptions. The standard current algebra
technique gave a width of the Ay meson that was too large ( ~ 650
Mev) to be acceptable (the present experimental estimate is about
30 ~ 130 Mev). The original explanation given was that A, was
not a pure resonance and was a kinematiec effect (Deck effect) and
the actual 1% resonance was, as yet, unseen. Since then, however,
several authors have produced more sensible values for the Al-width
(30 ~ 200 Mev). Such calculations are usually done by considering
both (A;— px) and (P - =xx) decay modes simultaneously. The
first successful attempt was due to Schwinger(ul) in his phenomeno=-

logical Lagrangian theory (chiral dynamies) which gave

(s ien = 78 Mev

(1.85)

~
rA.—)PK = 185 Mev ,

with all the particles on their mass-shells. This method has been
discussed in greater detail by Wess and Zumino(ua) who have obtained
additional possible solutions., Another calculation based on
generalized Ward identitlies derived from current commutation rela-
tions and on meson dominance assumptions at finite non-zero energies
has been done by Schnitzer and Weinberg(h5). They obtain a one=-

parameter dependent set of solutions for l}_’ xx ond I by — px
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which embody Schwinger's result and have a typical solution con=-
sistent with the presently accepted experimental widths

;_., Tx = 128 i 20 Mev
(1.86)
fa»prx — 30 ~ 130 Mev .

A caleulation more in keeping with the original derivations(ho) has
been given by Brown and weﬂt(hh)_ They point out that in the
original derivation of the Al-width unsubtracted dispersion
relations for matrix elementis of the retarded commutators (rather,
their Fourier transforms) were assumed in one of the two independent
variables, while the other was kept fixed (preferably at zero). As
a result, certain important pole contributions were missed out. In
the derivation of the A,~width as given in ref. (40), the m~pole
in the variable that was kept fixed (= O0) was lost. Brown and
West attribute the discrepancy between experiment and theory to
this unsatisfactory way of doing the calculation. By assuming an
unsubtracted dispersion relation in one of the variables with a
suitably defined variable (e.g., a linear combination of the two
original variables with a free parameter) fixed such that no pole
contributions are lost, they are able to obtain a consistent set of
solutions for the (%Px) system which are in agreement with the
results of Schnitzer and Weinberg. They also show that the assump=
tion of unsubtracted dispersion relations for all the current form-
factors can lead to inconsistencies and some of these form-factors
may, therefore, need subtractions. The assumptlion of meson-pole-
dominance would accordingly need constant terms in addition to the

pole terms. This is equally true of the matrix elements of the
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divergence of the axial vector current. Therefore PCAC in its
conventional form of pion-pole-dominance may need some modifica=-
tion in certain cases by requiring additional constant terms
besides the pion poles.

We conclude this section by presenting a calculation for the
scalar vertex {(x || *) based on the technique of Brown and West,
mentioned above, and illustrate how the standard techniques used
in current algebra calculations may be obtained as limiting cases
of this method when one or the other variable is fixed. We find
that as long as mg, > mi we get identieal results (which may not
be a general feature, but a peculiarity of our simplec case)
immaterial of whether we fix one variable or the other, or any
linear combination of them, and this result is found to be the
same as that obtained by combining egs. (5.11) and (5.12) derived
in Chapter V by a more general method.

We start with the equal-=time commutator

CIAY (%) a2 o] =-43KAL (o) (1.87)

and consider its matrix element between a pion and vacuum

ol [ IAd (%) 3% @] 13 (p) = = i <ol 34f (0) 1781

s i1 (1.88)
= - My r—‘ﬂga J

(F, ~ 94 Mev),

Define



Wirg) = [atz B(x0) &% oI[ D'tx) (o) ] | 200>

(1.89)
@9z A [atx e * @l e@]Ixim> . (1,90
<
Then, we may write eq. (1.88) as
L W (p = - 1F 2 ply
q-oa (J?) v T m% 6‘ (1.91)

Inserting intermediate states in eq. (1.90), we get

w(ke) -1 jac"'z geéfﬁ’n-?)-x ol Do) [z ¥(ka)D K ¥(b,) o (0) |74 (p)> o
2 (am)3 24 &

e CCE b b)) o) o (8> <o (Ba)I Do) z:’rJ'(»»ia"’n,(?

3 o
(27)% 24
(1.92)
= in 8P m?) Fxmh 4o Grrp 8%
M2+ 4%
_tx 8(a%4 Mof) Fn'm;f' 3o qa,’m_aq
mg + ¢
(1,93)

where A4 =7p - q.
We now keep p = ag® + (1-a) 42 fixed and write an UDR (unsub-

tracted dispersion relation) for W,



W= ljwte*%u)deﬂ ( - 4 (w(a”? u)dar? ) (1.94)
T quZ_ sz i e ;r 4!{2 _42 d
4
= ¢6 F' m G 1 1 {
b ""’T{ MI4qE M2 pud -4 mxw'}( o

where

Bo= —oem? 4 (1-a) ar? (1.96)

= a2 _ (1-%) np y
so that

2
A% Ut oy
/=

(1.97)

1

Ay Mt (1-5) mE
o

The equality within the parentheses in
a 4"2( 4112_ 42)-1

)
|

a is a free parameter,

eq. (1.94) follows since dq"z(qn2 -q )"'

Therefore,

L. WV = 65£}F

g=>0 T

2 o-1
mﬂ' go' Gcrmr{ 2

m2 [(1-e)m2 + <m +p] (1.98)

x
+
(m2 —mx)(1m2 +p+ (1= x}m’} f
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Case (1) a =0 (fixed A? UDR):

2 2 3 A
L™ (ma,- M b 90, Gwm- (1.99)
2

Case (11) a =1 (fixed q“ UDR):

2 2 2 %
-m_ (mil-m2) =

T (1.100)

?a' qa"-z T

Even though these two cases cannot be correct simultaneously,

the result

b Gonn 22 mg (mE-mi)? ) (3.202)

is consistent with both of them. Eq. (1.101) is also obtained by
combining egs. (5.11) and (5.12) derived in Chapter V. According
to Brown and West none of the above two cases are reasonable. We,
therefore, allow a to be a free parameter.

Since

Rl agt i i-w) (9%

we get

Liwn " ¥ 1.102
2 - (1 «)m; ; ( )

720

Therefore, combining egs. (1.91), (1.98) and (1.102), we get
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& L 2 o e G
Bethmy #ivtlinl = Sellonr 3 puoint.md )+ LN

mz (mz-m3)

(1.103)

Since this equation is true for all values of a (except perhaps

at a =0 and at a = %} comparing the coefficients of various

powers of o on both sides of the equation we obtain

P YT S Y (1.104)
@ TR e 2 2 a3

2 2 9. G
m - M - o Yrnm
= - o’ (1.105)
T

These solutions consistently imply (if mg.. >>mi)

or

~ 2 2 2
ga' Go‘yrf,-r = Mg ( My =My ) s
2 2 ~ 4 2 z2 yé "
%’%ﬁﬂ = My (Mr’”%)

As shown in Chapter V this relation is not unreasonable.
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CHAPTER II

MESON COUPLINGS AND MAGNETIC MOMENTS
FROM LEE-DASHEN-GELL-MANN METHOD

1, It was shewn by Lee'l) and, independently, by Dashen and
Gell—Manntz) that many useful results of SU(6) aymmetry(3) (eeges
the axial=-vector renormalization constant in nuclear ﬁ-decay(u),
the ratio of proton and neutron total magnetiec moments(5), ete.)
could be obtained without réquiring such a symmetry if the U(6)
algebra generated by the hadronic vector charges and spatial com=
ponents of axial 'charges' was used along with SU(3) invariance
and a saturation hypothesis. Their method was to take the matrix
elements of the commutators between states of zero spatial momentum
(e.g., one nucleon states at rest) and to insert a complete set of
intermediate states between the two operators of the commutators.
Even though conservation laws restricted the number of allowed
states considerably, some kind of approximation was unavoidable

in order that experimentally verifiable results could be arrived
at. Hence they retained only certain single partiele intermediate
states (bound states or resonancea), namely the octet of baryons and
the decuplet of baryon-meson resonances at rest. In this way they
obtained the SU(6) results for the axial-veetor renormalization
constant and the magnetic moment ratio for the nueleons. The
assumption that the oectet of baryons and the decuplet of baryon-
meson resonances saturated.the sum rule was equivalent to assuming
that these states formed a basis of an irreducible representation

of the U(6) algebra generated by the veetor and appropriate axial-
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veetor charges. This algebra, however, was not assumed to corres-
pond to any symmetry group. In particular, the Hamiltonian of the
strong interaetions under consideration was not assumed to commute
with these charges (at least, not with all of them). Hence the
Hamiltonian was not assumed to be invariant under the transforma-
tions of the group locally isomorphic to the algebra generated by
these charges. The same technique was later applied to the case
of mesons by Fayyazuddin, Riazuddin and Razmi(s), and, independently,
by Schnitzer(7), again obtaining the SU(6) predicted valuea(a)’(g)
for the meson couplings and magnetic moments (and also mean square
radii). The case of nucleons was carefully examined by Ryan(lo) in
the context of SU(L4) algebra assuming only isospin invariance and
keeping only a few intermediate states. Among many interesting
results he reproduced the results of Lee and of Dashen and Gell-
Mann except for an ambiguity in sign of the axial-vector renormali-
zation constant which he attributed to the equivalence between two
conjugate representations (which transform into each other under
G-conjugation) at the SU(2) level in contrast to their difference
at the SU(3) level. His analysis (restricted to nonstrange particles
only) was mueh simpler as no complicated Clebsch-Gordan Coefficients
were needed. He also demonstrated how the values of the axial-
vector renormalization constant and the magnetic moment ratio
depended upon the saturation assumption, and how important it was
to take matrix elements between states at rest rather than between
states of finite momentum.

In the following a similar calculation in the context of SU(4)

algebra is presented for the case of nonstrange mesons. If there
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were a SU(4) symmetry (a higher symmetry, and not just an internal
symmetry) the vector mesons (P, w) and the pseudo-scalar mesons
(x, n) would together belong to a sixzteen (1@ 15) dimensional
representation of SU(4). In the following analysis only these
particles are involved (in particular, @ and m' are ignored

as they do not appear in the representation of SU(4) to which

Ps % w and belong) However, no SU(L4) symmetry is assumed.

Only isospin invariance is required to be valid. Matrix elements
of the various commutators are taken between all possible pairs of
these mesons at rest and the intermediate sum over states approxi-
mated by these very mesons. The calculations and results are given
in the following sections. In section 2 commutation relations bef
tween the various charge operators closing an SU(4) algebra are
written down. They are shown to follow from a free quark model.
Commutation relations inveolving magnetic dipole moment operators
are then derived in the same model, first assuming that these
moment operators have only L =1 terms and next including an
additional L = O term. (Here L refers to the orbital excitations
of the quarks; in the free quark model that we consider there are
no other basic particles execept the quarks and L 1is Just the
orbital angular momentum of the quarka(ll)). In analogy with the
su(3) situation(la’ 13) an algorithm of C-parity conservation is
developed and used for writing the matrix elements of the various
operators of interest to us. This automatiecally ensures conser-
vation of G-parity and isospin. 1In section 3 the calculations are
deseribed and the results given. These are then discussed in
section 4, PCAC constraints in the form of generalized Goldberger-

Treiman relations are then applied to convert these results into
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relations between strong meson couplings. Finally the implications
of our results for magnetic moments and radiative transitions of

the mesons are discussed, Table IIA summarizes the results of the

caleulation.

2. In a model based on a fundamental isotopic doublet field

a(x, t), the vector and axial-vector currents are given by

U =-Latm v o g 4 00 ) (2.1a)
a‘;#(z) = -.é 1*(%) rSyt 7 ) j (2.1p)
6 (x) = ~LqTe vt g ) . (2.1c)
a-oHC") =-L 4T(x) 7% y5vH g () ) (2.14)

where the Lorentz index u = 0, 1, 2, 3 and the isospin index
i=1, 2, 3. The corresponding charges are obtained by integrating

them over all space. Thus,

W = '%fq+(x)z;g(x) a3z | (2.22)
i 8

A=t AT Tt e g G
o

R R -
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where a = 1,2,3 are space indices and ¢® = \'5707&. For our
notations and metric see Appendix (I). The fifteen operators

satisfy the following commutation relations (this follows if we
use anti-commutation relations for the quark fields), and thus

elose an SU(4) algebra,

[AfaA;‘bJ = (€4 6%C V° 4 4?6”"6‘,;&' Af ] (2.3a)

L&S . Ao"] = e S _ ,  (2.3b)

[AS, V%] = d€ijn AC ;o (2:30)

Lag, V'] =0 . (2.30)

[v.* V?ol = (‘qu V]: " (2.3¢)

[ ARah® ] =k e ®450,5 (2.3f)
In our notation [?.', ZJJ = Zicijkzk. {6a, dh} - 2P,

As the axial currents are not conserved, the corresponding charges
are time dependent and the corresponding Fgs. (2.3) hold at equal
times. No Schwinger terms are involved as we are dealing with
integrated quantities.

We next write down the isovector and isoscalar dipole moment



—58_

operators in the free quark model, under the assumption that they

are pure L = 1 operators,

ml = L [a €™t xF T (x) 5 8% g (%) (2.42)
2
a
mz‘ = —'5 stx € F2 ot qT(x) 8509 «%‘H%J (2.40)
We shall further need to define the following moment operators
Q:& 5 Jd'.Bx (axﬂ- 2.&- 80.5 12) ;t‘t‘(x) Z__z_k gl(z) 5 (2.53)
@H e fdjz xz ?-’-(7‘) E‘f @(XJ 3 (2.5b)
2
B = [alz 2°2tqT)c% 1 g (n) . (2.5¢)
2
Qﬁb is the quadrupole moment operator and Rk corresponds to the

mean square radius. The commutation relations between the magnetic

moment operators are found to be,

a & . alb R al - abe 4
m. , m =¢€.. 7R Q 5. °©
f < F ] %f s - _S.J + e 1?}6 2 (2,6a)

I albc ¢
[moa) man ""jf_' € % 2 (2.6b)

; 4 4 3 N L a
[mit, 40] == 4 Jorm 6%0mm o [r0i 200
. .6e)

- [a3x €2f xf €50 Qg
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It is to be noted that the magnetie moment operators do not close
any finite dimensional algebra, higher and higher moments being
generated on repeated commutation.

As pointed out by Ryan(lo) (see also ref. (11)) the magnetic

moment operators given by (2.ha) may be written in the form

a
Mg ey ¢ ¥4 [adx xF v (=) (2.7)
where v? are isovector current space components defined in (2.1a)
whose 1 = 3 component is Just the isovector part of the electro-
magnetic current of the fundamental doublet (quark) field. If this

current does not contain any derivative term then mi

is'a pure

L = 1 operator, where I 1is the orbital angular momentum of the
quarks. However, if the fundamental field has a Pauli moment
coupling to the electromagnetic field, then m; should be modified
such that the magnetic moment operator contains an L = 0 part in
it. We shall denote such modified operators by M? and they will

have tho form

M = Jija3ze“f*zqucz> ¥50% Zi g (%) + %F‘Zfﬂa’f {7(=) P’0? T q(x)
(2.82a).

My = L Jadx bt gty Splq(x) + Sa[ddx 4T2) %0 4 4 (2) S (2.8p)
2

L
2

where “q is the guark magnetic moment. They satisfy the following

commutation relations,
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[M°, M/ ] = Usvewsx J (2.92)
[_'M: p M:’] = U+P+W+ x J (2.9b)
.[Mf‘,A;-‘*] = b+q+rr o+t , (2.9¢)
U =gy, [55‘5 - Cf}&] " °8°}€aacf )
R LS LT LS J
W = % P-” 4335 € 2t 1f ‘iff")jg,;j 5%3,5,0_ ‘:Lgfqég%j a’“df"’?ff@)
X = -Ef_ £, jav’f €491 29t (x) {85.1;83“’“151"-63{.&6?“&353%’1 z‘Rfifx))
g 24 gt pe
7 G s
v - _4'.4_#; e™cal
W = [a?% AR IR R A NI

8
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}a:-;;’./abed' 50? x ¥ 4
R 3 6 5%
9 = EIF‘:‘,“%}Z 15;, 5
a'ﬂ"'x.f 2°

In order to write down the matrix elements of these operators,
we now develop the concept of C-parity conservation.in the case of
SU(2) symmetry. As in the case of SU(3) symmetry (12, 13) each
of the isospin multiplets P, = will be assigned a definite C-
parity, and the C-ﬁarity of the second component will carry an
additional minus sign. If C 1is the charge conjugation operator,

under C the mesons transform as follows,

C ¢+ ¥V, —»=-€ VvV, (no summation) ,
c = F, — +€_ P (no summation) ,



where a = 1, 2, 3 are the isospin indices. 81 = €3 = +

€r = = The vector and axial-vector currents transform as
follows

c = 3t e vt (no summation)

. ol — = - S - ’

u A ( tion)

a,“ il .,.sqa,x no summation).

For isoscalar mesons C-parity and G-parity are identical. Thus

Q
<
i
<

Also,
(a2
g 3 15‘5-—,-2%

H p
6?.0 — -I-avo

Using the charge conjugation properties of the Dirae bilinears,
we find,

k. 4 mt— -, m; R R
moa' i WL: )
Q:'&_.__, _ EQ;& }
e —> - €K, )
P —_ - P J
9, —p - % )
Yo —» &g x& j
b ——3 -3 )

te — €t
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Let us consider the matrix elements <?&'] vao IVQ, <VT'I ajol L

and <§6'| aj°l‘m%> to illustrate how C-parity conservation imposes

restrictions on matrix elements. Since VT" vjo, V& have C-

parity - GT' - cj, - €,

order that this remains positive only odd number of indices can

th roduct beco - € . In
ep c comes cY j €,

take on the value 2. This implies after requiring isospin con-

servation that the matrix element must be of the form « The

€
Jay
second matrix element would vanish since it has an additional factor

of minus sign and, therefore, type of coupling (which alone

€Jay
conserves isospin) is not allowed by C-parity conservation. The

third matrix element should be of the form Sa for only then will

J
both C-parity and isospin be conserved.
The various nonvanishing matrix elements of interest to us are

given below,

V| ag ) = ”w‘dw gl %, ) (2.10a)
v | ag | Vi) = 40y € ™ £4 , (2.10b)
<v;| 1’5‘-’[\/,,) = 4 €y Q*- € 2 Bo " (2.10e)
Wy | By | Vo> = 4 99 % ¢ 8 1 o (e
vy | 0-3'6[ RO = 4 t-:a.n, € = 44 ) (2.10e)
Bl Ie>z v Car 2my (2.10¢)
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Ve Mgl > =k i€ e e i 2% (x)  (2.209)
<Pn| M:' Vo> = /"'1[,0} B Se (27)° 87 (k) ) (2.10n)
<EAMv> = ket s, n 83 () . (2.101)
<V¢l M?l Pé> = P'Tcs 60’* 81}} (27)° 63 (k) : (2.103)
My = Ry € (2 8%k , (2.10k)

<VR' ﬁetl V3> - 4’6"’3)@ E*' E <TP2>(27I)383(5J ) (2.1011)

<PIRPD> = -Méék 2> (27)% 83 (k) , (2.10m)
’ al
Cvel Qv =§-‘% ieie [28%0 ¢ ¢ -3 (627l + e %) aysif2.100)

y : #*
AL SR UGN C L O SR RTS

O 051V S = 4 e B5€ 9% _F 45 )3
Jd eIV, >= ie et e F7en) 638) ,  (2.10p)

- 3.t
¢ <Pﬁ{Jd§@ (%) Te¥°9(x) |R)> = 8% pr(zﬂ)3 §3k) | (2.10q)



~65=

i%( Ja3x 4T ) 7 v09(x) [ Vo) =gt H, m® 62Ck) , (2.107)
vyl [#22 970 1% 9 [R D = a/'a«ec G, (477 8%08) | 13.10m)

i{p,| [aP2 9T ¥0eC 40 |vy = €68 (2m 6% ) | (2.100)

Gyl Jddz 2#0g |A) = icrupe? " Kyp (2nf83(8) , (2:100)

<vﬁl .Id's?& ¥ a‘.ig IVE> = Sﬁkéeﬁefgg*éekw (an)* §(2) >(2.10v)

oyl 7%y = ce*tet¥ecs, am @’ £20e) ,  (2.20m)

. *
T8y S £ede T R e an)® am, F3(8) (2.10x)

The seale of these matrix elements is fixed by Eaq. (2.10c). Eas.
(2.10fr), (2.10w), (2.10x) have been chosen to be consistent with
Eq. (2.10¢). The various constants appearing in these equations
such as gpseeeey M oy soeo <J‘P2> ceey Q@ ete. are weak coupling
constants, magnetic moments, mean-square radii, quadrupole moment
ete. and they are defined by the corresponding equations. k is
the momentum transferred between incoming and outgoing states and
tends to zero. Covariant normalization (p'| p) =

(21\:)3 2p° 53(3' - p) has been used, as always. e and ¢ are
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polarization vectors of outgoing and incoming vector mesons. We
shall consider the magnetic moments to be defined as above, whether

the states involved have L = O or 1.

3. The caleulation is done as described below. In order to
investigate the consistency of the solution obtained every possible
case has to be examined. We, therefore, group the single particle
states into fifteen subsets, four consisting of only one type of
partiele each (P,, Vg, L V@), six with two types of particles

a
of particles each, and one with all the four types of particles in

each (POP s PoVos PVos V.P» V.V, PG‘VO), four with three types

it. We then consider the matrix elements of all the commutators
(Egs. (2.3), (2.6), (2.9)) between every possible pair of states
formed out of the states belonging to each subset and saturate them
by inserting as intermediate states every type of particle that
belongs to the subset. In the following this is illustrated by
considering the case when all four types of particles are involved.

The results of all the calculations are summarized in Table IIA.

(1) Matrix elements between(VQJ and 'v§;2

As outlined above, we take the matrix elements of all the
commutators and insert in each case in the intermediate state
Pb, PT’ ¥? Vb. Except in the following cases, we get the trivially
consistent solution.: L.H.S. = R.H.S.

Eg. ‘2.}&!

The only nonvanishing contributions come from PT and Vb »

and we get
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_ 3
[<w1a&1p, ©> ;fo(z,r)a <Py, *‘Ma > + Z f(x;s (A ;vo ; >w( )3<o’,:e)A 1V

.{(vﬁ >2R"(nl3 < /A /V“ f(‘/ AJ VJ >2E'{MJ3<V" ‘: v°¢>

5“(’ abg é‘&. _

g Vel [Vl [ Ve > + L€

where 2. implies sum over spin states of Vo Using eq. (2.10),
r
we obtain,

2

A4 a* _¢ at &

-i-’-?’-:- € € (J,ga.,‘ d:x/g "fm J,&)‘f‘ (6* g 2 Ea) 7% éﬁ
?l'

2
A e (& & a‘ cs“ 94° * st _ ek L) 5.
a5 ER'ZE g® ( i wp B zmw(s E‘S\ E ) ba‘f‘;ﬂ

ab _ * a¥* o & a b
=-2m, 8T e’ ¢ (é‘m&”_ é‘“é‘i.“)_ 5@"’}«“ 57 pt gt )

Comparing the L.H.S. and R.H.S. of this equation, we get,

2 2
2my nm,
2 2
ha + 2947 - 6 My 4
4y
e = = 3 )

4% _ {2:11)
4““50“% 5 4 = 4“#”% .



rg. (2.3f):
Eg. (2.6a):
Meking use of eqgs. (2.10), we get the following set of results,
/(0) 2 2 2
K i A - <%*> |
2741,? ™p 2
/() 2 1
PO L B J

T
[ R RE S
2my 4o 4

2
(o)
_‘3#’1' .f.#z.;-_a.:.-fl/‘:.o
4.

2 X2 ;
o B gy B v
Mp 3 6 Vio

These equations are consistent with each other and imply uniquely

P z
= 3¢ ap L
e B, o S Y o B B

Q=0 5 L o=dda-in = AL gy

7

Eg, (2.6b)
2

F, = - 27 (2.14)




Eq. !2.2&!:
4% a.,z. o & a*catb ¥
.-’fojz * .b. 5' ) &*6“}
2
2
o ab Y »* K a% L cagl¥*
_.._4;35 (Gon Ogq - 5;ﬂ%“)§.5_z}%qag(5 £“-€7€ )ﬁ
Comparing the L.H.S. and the R.H.S., we get
2 /(0)2
H d SO A
+ = =M 3
Vz
2
TM-— * F P-@ = @
f
Therefore, using f, = - 2ﬁ° (2s obtained above),
2 .. 2 1(0)2 2
Rramig by LT E M, T (2.15)
Eg., (2.9b):
2
” 2 .
Ro, & m, M B (2.16)

Whenever we use equs. (2.6a), (2.6b) and (2.6¢) we always assume

that the states have L = 1, so that the matrix elements of m," and



=70=

Hia are the same. Also, while using equs. (2.9a), (2.9b) and
(2.9¢c) we always assume that the states have I = O and the
matrix elements of any L = 1 operator between these states are

dropped without any comment.

(11) Matrix elements between (P, | and | P, >

Only the trivial result L.H.S. s R.H.S. 1is obtained.

(iii) Matrix elements between.<}b | and lPél?

Again L.H.S. s R.H.S. except with the following commutators.

Eq. (2.3a).
Only V? has a nonvanishing contribution, and we get
b 2
il
A 18, 8 wiDe & = 2m. (. b 88, s
Tamp B4 5&« s 5&/3) g, 7 (s ja = S5 b3s) T
with the result
2 L ]
Ay = 4Me My (2,17)
Eg, 2.6a).
Only Vb contributes, and we get
(0)2
T al _ ] ‘ . X ) 2
2m, J (J?ﬁ@ 53’“'- 8315 Sia) = '_z'é' $x ) (55(3 ‘S\}ﬂ_';ziqc%'ﬁ) P
with the result,
{0)1 m
}J-_r = W Ly2> (2.18)



Eq. (2.92):
As in the previous case, we get
2
(0)
!“'T a.& 5 : '6-
B & il ol Y a P SRy B B
meé’ Cbﬁsﬂ JMJMJ_?%J (J&ﬂd}x ?ﬂa"&“))
so that
(0)2 g
= m_ m :
#T x "w Fy (2.19)

(iv) Matrix elements between <N6{ and lVé;Z

The following are the nontrivial cases:

Eg, (2.3a):
gZ 15 2
G - ‘
o, A (2.20)
Eq. (2.3£)¢
45
Fe Eegm. b (2.21)
£g. (2.6a):
2 .
RO o Ty p¥ (2.22)
Eq. (2.6b):
s 2 m ()
- _ 14 )
b, &= % & (2.23)
E 2.9a).
fLsz N 2
- S My My /uq ' (2.24)
w: / 2 2

Fros = Ty T B (2.25)



TR

(v) Matrix elements between <VB | and lPa> .

The nontrivial cases are

g, (2.3a):
fa = —2mp . (2.26)
Eg. (2.6¢):
1Ay dba 4% ;. _é & &-‘“(0) dba d*
7@9 (%5 “u™ pacpd * S b, €T €4,
o h et e e Kp
ex
so that
(0)
Ke' = = Kyp =0 . (2.27)
Eg. (2.9¢).
lo)
AL (5. & . B e et L VT A dba ,d*
vl et 2, s © €
= <& € G My g, e
,8“ vp 4 ZIJ- J
#f.& ~ GVP lug 3 (2.28)
‘)ﬂj:; 2
Kr 4 Gyvp Mg

(2.29)
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(vi) Matrix elements between <P | ana |p >
B [°]

The nontrivial cases are

Eg. (2.6¢):
(0)°
Kt Aa =0 ' (2.30)
EQ. 52.20}:
: at g 0% n &ﬂg, A
i ej/sa' % iv Py = e J €ijr Fop A““ )
@’
Aa Kt __ Pk (2.31)
me, T

(vii) Matrix elements between <P@f and ]Vo>

All commutators give the trivial result L.H.S. & R.H.S.

(viii) Matrix elements between <VB} and [P°>

As above LoHoS. = RoHoSo

(ix) Matrix elements between <VB[ and ]Vo>

The only nontrivial cases are

Eg. (2.3b):
15
£ = I by % (2.32)
QM‘P 2My
Eq, (2.6c):
M dea d* 5, éfe&éf - t = A {A (¢) ﬂ.a-‘
“gw Cups & Yy 7 A o
afl



Therefore,

(0) ¥ k)
wi ﬂ_r :{’A _kV =0 . (2.33)

=LL gy, (etE it ogt ety L Wl €5 €47€%

2mp 48 2.
- Mg PYA *
so that, ?’ 1433 d vy £ 8 )

)
b %4 L Mgy (2.34)
Moy 2 g

kg (2.35)
R S iy Nl :

™p 2"y Vyv

(x) Matrix elements between <P° ] and |V°>

The only nontrivial cases are.

Eg.(2.6¢c):

., (0)7 2.36
#T ?A =0 ( )
Eq. (2.9¢):
dab o AR -
-‘5‘&6 o] Ed' i - _b_ﬂ_?G.‘ffS 5 6-0.4‘.'1-C€C
/4 A zm.P p vp ZJ >
/(0 s (2.37)
AT f"z GVE



We note that the solutions for coupling constant as given
by eqs. (2.11), (2.12), (2.17), (2.20), (2.21), (2.26) and (2.32)
are all consistent with each other and imply uniquely the following

result
- _{4 - - id:s o ﬁj = gAz — 1 '
2 2 = 2.38
mp my, amm Ay (2.38)

With pure L = 1 magnetic moment operators, we obtain for the
magnetic moments the results contained in the egs. (2.13), (2.1h4),
(2.18), (2.22), (2.23), (2.27), (2.30), (2.33) and (2.36). Using
the solutions obtained above for the coupling constant, we find
that the only consistent result is that all the magnetic moments
vanish. This trivial solution is not physically acceptable, and
is the direct consequence of having used a pure L =1 form

(eq. (2.7)) for the magnetic dipole moment operator. We note

that our method of saturating the commutators with P_ , v ’

o o]

VY and PT automatically requires these states to belong to

a (1 ® 15, 1) dimensional representation of SU; ¢ (4) ®R3(L1) .
?

.80 that these states have L = O. To see this, we consider the

matrix elements of the orbital angular momentum operator between

these states.
Vg IL%1Y, > = Ky [ T2 e > = vl A" [ w2

= ée“‘%“*e‘dﬂ n, (2m)353(k) - L Sa €L ¥ € Bfy R (7P S
=4
Our solution f, = - 2m_, then implies that
| . F

<vﬁ| La /’Va> = 0 »
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Therefore, the states |va) have L = 0., Similar arguments show,
after using our solutions, egs. (2.38), that |Vy)>, [P >, ]P°>
all have L = 0. This explains why all the magnetic moments
vanished. In order that we may obtain non-vanishing solutions

for the magnetic moments we modify the corresponding operators

by sllowing additional L = O terms as in eq. (2.8). On repeating
this calculation with these operators, we obtain the results given
by the egs. (2.15), (2.16), (2.19), (2.24), (2.25), (2.28), (2.29),
(2.31), (2.34), (2.35) and (2.37). These equations are found to
be consistent with each other and uniquely imply the following

solution,
L9 m o u?_ om2 u? R sy g2
et g, gl = Mgt s les BT Tl
2 2 /2 2 2 »
Pm =M m #‘Z ; Fw . ol 3 G, =tm m . (2.39)
Hoy = 16 m_m, H? = tem Gs% = 16m
PP 7 » 5 vy = a.Jmf J W, . w " J
and further
G = 2444 __ 2_#;12& |
da Mf}iq’ my,Hhey

pr = - ZﬁA '“-r'

ﬂq M.F g (20398-)
(0)
H = 2KT ’ﬁ.g o 2)A 44 ;
vy e oy
15 /(0)
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In arriving at egs. (2.39) we have used eqs. (2.38).

As outlined earlier, the whole calculation is repeated with
different sets of particles. The results are summarized in
Table (IIA). We note that consistent solutions are obtained only
when all the four types of particles Pb' Vb, Pa’ Vﬁ are con-
sidered, and in this case they constitute a (16, 1) dimensional

reducible representation of SU(L) ®R3(I'1)'

L. In order to compare our results with SU(6) predieted
values, we make use of generalized Goldberger Treiman relations
for the weak couplings. We shall also use our results on mag-
netic moments to obtain information on radiative deecays of mesons.
But before we go on to consider these matters, a few remarks on
our results are in order. One noticeable feature is that we do
not find any ambiguity in the sign of the coupling constants in
addition to the ones already existing in the SU(6) ealculations
of refs. (6) and (7). This is in contrast to the case of baryons
where the SU(6) ealculation predicts unambiguously the correct
sign of the axial-vector renormalization constant, while the sign
is left undetermined in the corresponding SU(4) calculation(lo).
The reason is, whereas for baryons the particles and antiparticles
belong to two conjugate representations which are distinet at the
level of SU(3) but equivalent at that of SU(2), in the case of
mesons both particles and antiparticles belong to one and the
same representation both at SU(3) and at sU(2) levels. Another
interesting feature is that our results on magnetic moments

obtained from eqs. (2.9) and egs. (2.6) give the same relation



/ ¢o) (0) 2
RN il . O R .
i S ~ - : )

except for the faet that this is trivially true in the latter case,
since all the magnetic moments vanish there. This is analogous to

(10) observation that the magnetic moment ratio of neutron

Ryan's
and proton obtained after taking account of the orbital angular
momentum of the states is the same (apart from a sign ambiguity
which arises for some other reason) as given by Lee,in spite of

the fact that Lee dld not take acecount of this, and, in fact,

should have obtained vanishing magnetic moments. This encourages

us to believe in the correctness of our relation between the

various magnetic moments. A final remark we want to make is that

we have not investigated the effect of inecluding scalar, axial and
tensor mesons and also various mixed states(lh). Nor could we find
any information on the mean-square-radii and quadrupole moménta of
the mesons. They would, of course, vanish if our definitions

e@s. (2.5) are correct. Presumably, however, these equations

should be modified by adding suitable L = O terms in them. We

do not investigate these generalizations. Our intention is only

to see whether the good results of SU(6) symmetry for the nonstrange
vector and pseudoscalar mesons can be obtained by using only SU(L)
algebra and to illustrate the simplieity of the calculation as
compared to the ecorresponding calculation using SU(6) algebra

as given in refs. (6) and (7). We have seen that this is indeed

the case, and we obtain a unique and consistent set of solutions.
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We now apply the PCAC assumption (which would imply
Goldberger~Treiman relations, referred to above) to obtain
relations between the phenomenological strong coupling constants
of mesons. For states of arbitrary momentum (suppressing iso-
spin indices) the matrix elements of the axial currents are
defined as follows,

HVPa

Kv'lab@ vy = ce #V’a"'ey*

» ’ 3
9 € A F;“‘) e € £ '?m; (2.41a)

(vote €223 = 4§ 1)

v | 2”@ (P> = e ¥t W) + e* b P'P H, () + €% P}"HS (£, (2.41b)

where ¢t =-(p'-p)2, in obvious notations. In the limit
By 2' — O, we obtain

' d % ;
<V’}a-a'/V> = myf X i F.:('t) % mvtedu ki F;H:)J (2.422)

Va* Py =€™% H @ 4 (2.42p)

where t = + (mv, - mv)z. Comparing this, with our definitions
(2.10), we get

Ja=m F9P@) + mF, ¥ @) t = (mg-mp)* (2.438)

&3 J

JLA = Mo F Pf('t‘) + ™ szf (+) ot =o0 (2.43p)



,tjs_- m f/“"“’(f) + M, ,rz"’“’(t) , t=o0 (2.43¢)
fa = 77w , = (mp-m )t (2.43)
From eq. (2.&1&):
<velopallvy = e*““/"ffp}; e/ €pp (RO +HE®) - (2.u4)
We define
olop ™ P> = {P mPZ Lrembn] (2.45)
then

2
mnz___t_ (2.1

We do not know how to ecalculate (w' IJ’:‘ Jo> for arbitrary t .

< 2
But for t = m.
- UWVPS fv 1
(it T [ PY =€ {L €, eﬁﬁo, }wm 5 (2.47)
where g " is the physical coupling constant at ()o - w - %) vertex.

In the spirit of pion-pole-dominance (PCAC) we assume that this is
true also for t —=0 (and also in the neighbourhood of t = mi).
Then for t—»0 (i.e. m ~ n-zp), we get from (2.43a), (2.44),
(2.45), (2.46) and (2.47) the result,

fe Fopm = o +2 , (mp ¥ my) (2.k8a)

"p
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Similarly,
9 < - 3 (2.48b)
7 Py My
Also
Jc d = ‘;A“ S (2.48¢c)
1y = e
where g and g are defined as in eq. (2.47). Egs. (2.48b)
PPN -
and (2.48¢) are true without requiring ?P = m,, and furthermore
they imply
gPP“ S B (2.492)

The sign is also determined in this case. From eq. (2.43d), we get

as t — 0 (i.e., @assuming m_ = m which is far from true)

g %

R4
T Irgn = o= om ) (2.484)
' '
where gpxx is defined by {P—a*ﬂ = ng“ ic.(p+p').
Hence
2 2
; = m
(_gﬂﬂ) = —:‘-.f* ’ (2.49p)
Fwpn
in the approximation, = B, - ﬁo . This is also obtained if
one assumes SU(6) symmetry(s) and agrees with the results of the
(15)

Gell=-Mann, Sharp, Wagner model.
We now consider the implications of our relation between the

various magnetic moments (eq. (2.40)). The equality



(0) 2

M Mo e g

implies

F(ﬂ)o—-} WOX) " Ma My
[ (P> ¥) &

(2.50)

i

i.e., the rates of radiative transitions w — x°Y and Jpo__a ny
will be equal if ?p = my, and m, = mﬂ' This is Just one of
the many results of SU(3) symmetry applied to weak and electro-

magnetie transitions, under the assumption that the symmetry

breaking interaction is negligible(ls). Next we show that the
equality
0 2
.. .. F
mom, ny

implies that the rate for the radiative transition w— x°Y = l.2 MeV,
in agreement with experiment. This follows if we assume that the
magnetic moment of ,P+ and P are the same (up to a constant deter-—
mined by our definition of these magnetic moments). 'Fbr pp defined
in the standard way and for p defined by our eq. (2.10) we should
have

2m, k = WY J (#P = 28&_ ), (2.51)

P 2Mp
This assumption is equivalent to assuming that all the charge form
factors are dominated by the p meson. (This eq. (2.51) is also

true in a nonrelativistic quark model(17), so that our Hq is Just

2up). Defining the coupling constant g(wx) covariantly as follows,
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{ﬁ = glwx) *P% al-tm"aP AK (2.52)

we get in the rest frame of w

< (2.53)

o J

wry = ?_“’ Hur) W B A

where & 1is the magnetic field of the photon. This expression is

Just the transition moment which we have defined by

4L ;a.“’) w. H

4 “F ~ 2
(] AL- (2-5!*)
po o =m, 3(mr)
Using eq. (2.52), the width of ®° corresponding to the radiative
decéy 0" - xo‘r is given by the expression
2
Plw®— gog) = 907 (mj, -m§)3 _ (2.55)
127 2Mmuw
Comparing eqs. (2.51) and (2.54), we get
(o)
Jlwr ) = _t"__?"_ = 2) /g
My P My
If we assume me ~ My then

This is then substituted in eq. (2.55).
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TABLE IIA

All the results are shown only in those cases where consistent
solutions are obtained. Whenever there is an inconeisteney only a

few examples are cited and the rest ignored.

88T 1 2 P

No nontrivial result. <P° ILa| Po> = 0, therefore Po by it-
self belongs to (1, 1) representation of SU(L) ®R3(Li)’ in our

approximation.

SET 2 ¢

Eq. (2.3a): fAj‘s =0, Fq. (2.39): fAls = - 2n,. Inconsistent.

vy | 12| V,,) undetermined. sU(4) @ Rs(L;) representation to
which Vo by itself alone would belong does not exist.

SET g @

(2.3a): m = 0. Impossible. P_ by itself does not belong to

a su(k) ® Rj(Li) representation.,

SET -

Eq. (2.3a): £, =0, nj" = 0. Impossible. V_ Dby itself does not
belong to a sU(4) (%) RB(I'i) representation.

SET 5 : P , V

<V sea l > Eq. (203&): fAiB =0 ; ‘F:q' (2.3f): fAis = =- 2Tﬁu-

Inconsistent. L.value of the states not determined. Hence Po’ Vo

together by themselves (without other states) do not belong to any

su(l) @ RB(LI) representation.
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TABLE IIA (Contd.)

SET 6 ¢ P:, v
<VE' see [Vu'> : Eq. (2.3&) H fA = 0’ mf = 0. Impossible.
Po and V“ together by themselves cannot form any representation of

su(k) RB(I‘i) as there is no consistent solution.

ET s P P

<PB{ ves IPa> : Eqg. (2.32) ¢! m_= 0. Impossible. Same remark

as above.

SET 8 ¢ Voa ¥

<vﬂl... lv,>: Bq. (2.32) ¢ £, =0, m, = 0. Impossible., Same

remark as above.

SET 9 : P,V
<Vs| - ,Va:>: ‘q. (2.32) ¢ £, = 0, %P = 0. Impossible. Same

remarks as above.

SET 10 ¢ P , V:

<PB| e lPa>’: EQ. (2.32) : m = 0. Impossible. Same remarks

as above.
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TABLE ITIA [Continued!

SET 11 : P Vo P _
<Pl3' e IPQ> ¢ Eqg. (2.32) ¢ m_= 0. Impossible. Same remarks as

in the previous case.

SET 12 ¢ P , V , V

<VB‘ P~ JVU‘>2 Eq. (2.3a): £, =0, g, =0, m = 0. Impossible.

Same remarks as above.

ANl P Ba V.

A

remark as above.

voe |V W)+ Pa. (2.32) ¢ £, =0, N, - 0. Impossible. Same

SET 1 ¢ V. , V , P

(Bl oev IR D1 Eaw (230) ¢ AF = 4m_ m,
E 2.6a) . ©F _ L 2
. (2.6a) ¢ p. = Lm,<rEy
Fq. (2.9a) : O 2 m_m, W
o (R - . s Py 3
. s . 9
(vB oo [V D1 EBq. (2.38) & }A z-2m, g; = 4mym, ‘%A = 4mgm

Eq. (2.3F) 3 § ==2mp
J

EQqe (2.6a) = Q =0 ;,Lz =d%2> =F, =0

Eq. (2.6b) Fv = - 2u2 /m
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TABLE IIA ‘ Continued 2

Eq. (2.9a) ¢ pl= m; Hze ) Mg My p.,: .;oJ.(Impossible!)

e 2 2
Eq. (2.9b) = P"'cs: My My

)

v ' e v : E . 2.3a : 2 T ‘bs
Yo | | 7 a. ( ) QA 2m i3
ts
Eq. (2.3f) ¢ ;‘A = -2m,
. (0) 2 m is
Eq_n (2-6&) N P‘T - - __Zﬂ F; g

%P

A . (0)2

: . 2
Eq. (2.9b) m?mwpq, -0 ; (Impossible!)
<VB‘ oo [P, >0 Eq. (2.3b) ¢ § = . 2m

e (2199 1 Gupty = 3 hafmp =2k

(PBI ees |V )¢ Trivial result L.H.S. R.H.S.

<VBl . lVo>: Eq. (2.3b) }A ==-2m, J‘SALS T—

w o
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TABLE IIA §Cont1nued1

<vBI... lv°>: Eq. (2.6e) @ K94, = Hf)ﬁ =K, =0 ;

(o)
Kr k4 o Kby Kooy
m;t 2 mJa

Eq. (2- 90)

Since mn, m.» ?P
is not acceptable. Thus, with our definitions of the moment

do not vanish, we get uq = 0, This result

operators (egs. (2.4) and (2.8)) we can not get acceptable solutions
with nonvanishing magnetic moments by Just considering Vb, Vﬁ and
Pa' It is to be noted that, if we confine ourselves only to the
vector and axial charges we get & unique and consistent solution for
the weak couplings, and this solution remains unchanged whether Po
is ineluded or not. The reason is that the relevant charge operators
have no nonvanishing matrix elements when one of the states involved
is P, (ef. egs. (2.10)). Furthermore, considering the matrix
elements of 1% = J% - Ag between these states we find that they
have L = 0. Our expectation that with pure L = 1 moment operators
(egqs. (2.4)) we ought to get zero magnetic moments is vindicated
by requiring consistency between solutions obtained for egs. (2.6)
listed above. However, we do not get sensible results with the
moment operators defined in eqgs. (2.8) even though they possess an
additional L = 0 term. We interpret this rather paradoxiecal
result as follows.=-

We maintain that egs. (2.8) have the correct form. Our method
of saturating the sum rules has forced Pa’ V& and Vb states to

form a (15, 1) dimensional irreducible representation of
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TABLE IIA (Continuedz

su(l) @ R3(Li). In order to get a consistent result for the
magnetic moments we should use a reducible representation

e~
(16 = 1 ®15, 1) of sU(4) ® Ry fromed by Py, Vi, Py V.
We do find a consistency when all these particles are considered,

as discussed in section 3, the results of which are again

sumnarized below.

C LI N S T

The following are the consistent solutions obtained for the

various weak coupling and magnetic moment form-factors.

2
fa == 2m g & z
A a5y fa = am AA “am,om_ ?A = 4m m
PT"”Z_ m m 2 2 %2 ‘(o) 2 2 2
= s By R M R m? mf KEs R, =M
My Sty Wik 5 G E H: =16
s 7 Mw Fq LR g = ISPy
£ is
Hyy = tem, "o ve = Tem m
Also
G, = 2ha 2477 44 y, = - 2Babs”
Mok mMwhe Pgmp 7
(0)
Hyy = U Ay = 1p 8, is _ 23, #_;,;/
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c E I
S LS PSEUDOSC D VECTOR MESONS SCATTERING
1. Sum rules for (P-x) scattering involving only strong

interaction parameters like masses of mesons and their couplings
with each other were first derived by de Alfaro, Fubini, Furlan and
Roaetti(l) without using current algebras. They followed a dis-
persion theoretic approach. In order to write down unsubtracted
diéperaion relations one makes assumptions concerming the high
energy bounds of the scattering amplitudes. The convergence
properties of the relevant dispersion integrals are assumed to be
given by a Regge-pole model. In this model, the high energy
behaviour of each amplitude is determined by the leading Regge tra=-
Jectory, which is allowed to be exchanged in the crossed channel

of the process under consideration. The trajectory is characterized
by its intercept a(t = 0) corresponding to t = 0 (and also by its
slope). Whereas the amplitude for scattering of scalar particles
has the Froisaart(a)- Gribov(s) high energy bound, for particles
with spin certain amplitudes corresponding to strong helicity=-flip
in the t-channel are found to have a more convergent (supercon-
vergent) asymptotic bound. This has been shown explicitly by
Trueman(u). The convergence of the dispersion intepral, therefore,
depends on a(0) corresponding to the leading trajectory exchanged.
Assuming o i%2 (0) (corresponding to I = 2 exchange trajectory) to
be negative, de Alfaro et al. obtained two nontrivial supercon=-
convergence relations. Certain other superconvergence relations
were found to be trivially satisfied by crossing. Estimating the

dispersion integrals with just 0~ and 1~ meson single particle
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intermediate states they deduced two reasonable sum rules. Low(5)
pointed out that, under the assumptions of ref. (1), many more
superconvergence relations could be written down even to first
order in t; the number increases as we go to higher orders in t.
Saturation with O and 1  mesons only led to a trivial solution,
in which all the coupling constants vanished. Inserting, in addition,
l+ and ot meson states, a reasonable consistency was found by
Frampton and Taylor(G). In this chapter we present a generalization
of the above problem to the case of SU(3) symmetriec vector
meson (V)-pseudoscalar meson (P) scattering. In this case we get
more superconvergence relations. The most convergent of these sum
rules has already been considered by Matauda(7). We examine all
the sum rules at t = 0. We find that our results are in agree-
ment with ref. (6) and ref. (7), and by retaining only up to first
order terms in t no new results are obtained. Higher order terms

in t may give new information, but our saturation with particles

up to spin two will be less satisfactory.

2 The SU(3) symmetric (V-P) scattering matrix is de-
composed into the following kinematic form:

T 2 2A B PEP 4 ;2. (E,PE Q@+ EyQEP) +C E2QEQ +C,EE

where the amplitudes A, B, C; and C, are functions of the

invariants v and t, defined below:



P = Y(p; +01,) 8 = = (py+ qp)°

s v = = P.Q
Q = %(qy + ) t == (py = py)°

2 5.8 2

Fig. IIIA

) and e, are polarization vectors of the vector mesons as shown.

The various amplitudes behave asymptotically as follows(l):

Alv, t) ~ yo(t)=2 88 V — 00
B(v, t) ~ o yo(t)-l 88 V — 00
Cl(\'.t) nd va.('b) a8 v ,
02("’:1“) ~ \fa'(t) 88 V5,00

where a(t) refers to the dominant Regge trajectory in the crossed,
P+P — v+ 7V s t=channel. ZIxperimental results suggest that the
Pomeranchuk trajectory and the trajectories assocliated with the nonet
of vector mesons, all have intercepts such that 1 > a(0) > 0. Hence
A(v,t) is always superconvergent. If we further assume a(27)(0)

to be negative we can write superconvergence relations for 3(27)(v,t)
and vA(27)(v,t) also. The superscript 27 implies that it is the
part of the amplitude corresponding to an exchange of a 27-plot in
the t-channel., The assumption that a(lo)(o) is negative as made

in ref. (7) yields no new relation, but it improves the convergence

of the dispersion integrals and makes the saturation with single
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particle states up to spin two more Jjustifiable, especially for

*
the most convergent case of Ac'o) and A(lo ). Crossing symmetry
makes many of the superconvergence relations trivial, and the on:ly

nontrivial ones are:

I R R ; (3.1a)
Lw"g""'“ Ding) v =0 ) (3.1b)
I:J'“AM("J"J a3 0 : (3.1c)

[ems® P dv = o (3.1a)

A sintlar velation 2or 429" 45 equivalent to that for A'20)
because of charge conjugation invariance. Egs. (3.1) are valid
for fixed t £ 0, and also over a small range of t > O ; we
restrict ourselves only to the t = O case.

These relations are well represented if we consider the

following specific processes;

L]
Pt — PT .7~ as a representative of Jo B P vay =0 y

©
s jo VJmA“'”w} dv = o >

@ (10
Ptk — k*0 4t @S 8 representative of Jo Sm A (v)dy =0 ;

and P74+ nt — p- 4t 86 2 representative of i:o §m A HFJU)d)’ =0 ?
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where the particle symbols specify the corresponding SU(3) states.

3. In order to evaluate the single particle contributions to
the dispersion integrals, we consider the following form for the
absorptive part of the T-matrix,

agré : . i
a (B) &y (%) t‘uvﬁr = €38, j(&“/[éf{x)) ;y’(a)]/;?5> PRt R PO

Inserting single particle meson states up to spin two into this
equation, we get

Eau (%) €, (8) ¢30"°

ey entn) W thetl cpm 8 108y CorIRI I8 1P €
n

+ U0 thig=Pae) ¢px(p)| g2 | vIWIYC VY] 4 | P€ (RD)
2En

+ 5(4’23 “Z_on'f’na) (P (P}/ $u | VORI DVO(Pa)] Gﬁ, [PEe)>
n

. (92;+é° L <PUB 47 A D<A )] 8 [P0
n

4 5”20’;?0'?&& <P°‘(PJIWJTM>><TM;, PENTTIAN
n

- [,5(—-“‘5, kv, Pn“"f,: ]5(P7:0+7’zo'/30) (3.2)



where summation over all possible polarization states of the
intermediate state is understood. The polarization sum for the

vector as well as the axial vector mesons is given by

3

) (r) * ¥ p
Z1 LT DR T
i

and, for the spin two mesons it is given by

5
(&p) () * {

The conserved currents ﬂﬁ are sources of the phenomenolkgical
fields for the vector mesons and the values of their form-factors,
when the momentum transfer is equal to the square of the mass of
the vector meson, are just the corresponding phenomenological

coupling constants. The various matrix elements of interest are:
: . VPR g
BB HOIBEm> = w7V (B9) G,
; YR
“p e (o), iy

<Pn{a>!gf;{o;|vé(m> = dije [iVpy ((B)?) Eppare boEX b ]

“x § {,thjk{n“) Eppar P N B
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(R 8@y (h)> = doir [1Vpye ((5-4)2) EP‘PAd’;;PE/\V&dJ

El

defe.  iok
= 4 Vo0 (K?) Eupre hp Ex bre

) ¢t (1) = YR [iymy A ; |/ (2)
el B @140 = i 9% [0y () ht) riv® ohop, p ]

def. ¢ . %)
= 4 VPAJ - (k%) &,* (1) #iVp T (k2 ek by
SAAVENCIRATID I ‘&fb‘?k[f/ ((b£)* & 3 ]
/"ﬁ/w’ :_,0 Av 2v
def

ST NN

where i, J, k =1, 2, eesp, 8 are 8SU(3) indices, and

Ly v=0, 1, 2, 3 are Lorentz indices. Only C=conserving coup=-
lings have been retained. The V's are the form-factors and €y

is the polarization tensor describing the spin states of the

tensor mesons, T. The A's refer to the axial-vector mesons. The
coefficients of the various invariants ‘Q’P el.P, ¢2.P, el.Q ete.
appearing in eq. (32) give Im A, Im B ete., the imaginary parts of
the amplitudes, They are substituted in the appropriate supercon-

vergence relations egs. (3.1) and, after carrying out the integrations,
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we arrive at the corresponding sum rules. The various terms in

eq. (3.2) are found to be:
ontribution of t e +ve 1 he tators

Y&E
P

oAy 2
Z;.S(V-!-VP) VPP ( o VP

2
(m ) 4(c,PeP+6,PEQtE,QEPr )

+ (MPF-mE)EyQ E,°P 4+

Contribution of V to the ~ve part of the commutator:

A S5(v-v ) VYV m2 )y ¥BEms)imy €,P &P - (mpim}) £,PE R
7 4 PV Ve iR v

2

+ (m) - m2) E;QE P4 - }

Contribution of v°_to the +ve part of the commutator:

o€
Vo

X80 , =0 2, gy 8 Lk e e
- E ey, VLrems I el Y md e v e (MOim i) £ P B8

plmdomp ) 6 Q8 P

Contribution of VO to the -ve part of the commutator:

Zs(v-v,) !/0‘50(-»1:) V

08¢ Wi 2 ' e 2 " |
! Ypyo rEemi) i m) ey Pe P (mp- mp) 67 6Q

[ ]

2
~(miemb) £ Qe Pe ]
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Contribution of A +to the +ve part of the commutator:

3y 5
_27! g (Y+v,) VM (-m_ )V

2
-m°) x
PA ¢ 4

-t a v 2 2 2 e
{52‘?5’.}3 [ ','L"{z -+ & m;-;my + Ma ) + Cz ! (_ ;+(_mP+my_mA) ) J
A m, M m 2
A "ty v 4 m

: (-mpzmﬁ-mi)’) ]

2 2 2
P [ C(=mp +M), -M c
* SZ E,Ql --—: + ¢ 2 4 A) -+ i 2(— 'WIP 2

2 2 2 2 2 2 242
-m - -M -
A ng EIP[# 4 C( P3+ mV mAJ + Cz - (_m;+ ( P'f'mzy mA)) }
é mg Wy nhy oy 4M,

+.”.;

Here, and in the following we have defined

G e el - AR v

u
<

Contribution of A to the ~ve part of the commutator:

x4y’ YA
2 € [y 2 5 i ; i .
s EEv-0d W S omd iV, (Mm?){€LPEP - ELPE Q- ELQE Pr f

2 2 2 1,2
e cCmi+mipt™y) |, _c? (-m? 4 e + My -my) )]
"4 mp3m, m, my £ 4”":
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Contribution of T to +ve part of the commutators

T XBY 2 ¥de 2
-z 6 (v+vy) Vpr tmy) Vo, Gm™y)

2

mv
Aaad

m
41’

{ E,P SI'P[ (‘m!z’ "'m:" _m:..)z_ 4m";’m$

2

-

ook
+ Ez‘PE’,-Q[(-mpz-f- umT)+(% - %)(-m
41‘711,
2
+ Ez'QE'J'Pf("m.i *umT) + (..”EP. &

e ut }
Contribution of T to -ve part of the commutator:

7 (¥, 2 Y'8¢€ 2
Zo(v-v) Yo emd) 1T emt) s

2
{ eapecp [-amiml slmfem} o)t ] 2
4mz
2
- &P g Q [ (-m?+mpmy) T ;;-){-mpzmv’- mz)t ]
4

In all of these equations Ve = (mp*+m}- "5 )/, where
B = P,V,v°,A,T as the case may be. Substituting in eq. (1), we
obtain the following sum rules. (In the following equation, unless
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when explicitly stated otherwise, #° belongs to the singlet
representation of SU(3) and «°® belongs to the octet.)

Faxt ot T (2 )ay = 0

4V

V
TTP = 7® 7MO—mp*tn~

2 2
me- m
- P V) V’”P'—,w" Vw"-—:ﬁ+7f'

2 2
me - m v
- ( D VC') "'f- 3 VO + =

2 2 2 [-m;§+m3’”’3)2)5
) +-—C-——i (- + 4

1 e 2 2
+ —_— (—m + Mm-S -m m _x:
(g vagm, Embmiong) ogiiy (mp e SRR
Vio 4
4 m4+m2m2+(E%L L) w3 ”*’?z*ml)}
. | {-— p A 4m2 = (" P-r 4 T 7(*,}’:9.4; A= Ptr-
T
= Qs
i W - fv Im a(27) (v)dv = 0
v T
P 7tp~— 7° A% pTr~
- AR v
v ¥V TtTP = w? wl—aptg-
L INE v _.
Vo ove "wtpT o ¢y prr
R P 2 (Mg + m2-m2) 2
+ V 5_1_ *C( P*'”VT’"A).*.% (-mg 4 ——2 T ¥4 )}V.,...o
Al my’m, i 4my 1
*K\’—'f*z-
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Vi § . R 8 ol
- - —r - - m - m - 4 M m V y

: {4m§ Lales e » 1) f AP A9 4P pra-
= 0

" - (8x)
g ., et . j_I,mA P (v)av = 0

4V
Ttp~— o 7O p~ gt

R
V 7P w® wlospTxt

™y V%*P'—e @° V¢°-’f‘7r*

2 2 2
¢ 4 LCl=mgem, +m?) g m 2, CPEsmy-mi) Wl
mA?- mye m, mimi > P 4 m,2 T PIAL AP
f m,* 2 2 R TS
o 2 -m? B M ..
2 i4m7% ((-mgemf-m3 )= gmy m )| V’C*J"—’Af VA:—-»,P’:'L'*
-y
A % s J1aa(29) ()4 o 0
4V
2
-y KOpt s k*t VK*’f-a, g gt
2 i 2\2
+{ L. C(‘mpz-f-”‘?yz*' ma ) o+ c? (—m2+("mP+mv-mA) )}x
= 3 2 P 2
x V
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2
1 P 2,2 a2 2 _ 42 \2
2 {4,.“:%_( 4 mp m-,- ( mp "'mv m-,- ) )}VK°F+_, Kt"' th+_,k*o:,r+

— O,
The varlous special meson couplings encoutered above are related

to SU(3) symmetric couplings as follows:- (Here, as above, g° is
sU(3) singlet and ®° is the isoscalar member of the octet).

Kcﬁ*__’,(-f- VK+-’}K*O7r+

kept —p k¥t k¥t et = E D ;
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KgT —p K*Gn'*

i K°pT — K, th* — k¥Ogt

TrP™ > 90 @l p gt ®
v“*f_-" go " 9°— ptr- =
v?l""ﬁ".., 0 V-;ro__.' Pt~ =

i

re=» PR

1|

w‘—pﬁ-n +

win

W™



— :_-_._{. F" B
KOK*0 — A° VA;°->P";1'+ = -1 F2
2 2 VTP J
v =
KO K*0 5 ch"-—)P"yr"' = _ 4 p = .
3 vvp ¥
v V 2
o » - 2
KOR¥® 5 g0 ¢°—> P T 5 Pover

Hence our sum rules take the following forms:

Jm 37 (yyav = o2

2 2 2
SIS - 2 .m? 2 2_m?
*Fpp = 3+ (Mp=-M2)D,, - 2 (Ma-m;) D,
N A c(=-mp* + M2 my?) ¢? (m? (.mﬁwm&-m,ﬁ)z))
VPA mz + 3 'f"“"'"—z'-"i P+ 2
N m ™m meé wm 4m
A v v A A
2 4 2 .2 2 2 212 mp-m?2
— m m?2 m -m mt_m?) P T )
_+-{-va7( p Mg Mo BT - M, o
T

(3.3)
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Jv Im A(27) (v)av = 0:

Z 2 2
Y F i _f_ mz v D Ay | 2
BV VEP 3 Y v vvp 3 my Vyo 'Dyyo,o
= ¥ g ( 1 +Cf'mpz+mv2+m,q‘°') 2 (_mg_ (-mpz-rmyz_mj)z)
A VAP M‘Az mAsmV ”1 z P 4mAz
2 2 2 212 7,2
-mg m B I,
+ 35 YT L,J‘,.,.( + (Mg + M m=) _;;7%
= 0 (3.4)
(85)
[ima ¥ (93 » 08
2 2 5.
4 F - L m? - 2 ;2
VPP 3 ", 'DVVP 3 % pyyop
+ 2 ?f S ree (-mp% +my? + my*) N (_mpz+ (-mpz-f-m,,z-mj)z)}
ek m;} m2, m? .mz)?- mzmz}
T2t TP f Am2 @' pt v T TP Ty
T
(3.5)
= 0

(3.6)
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Sum rule (3.6) is essentially Matsuda's reault(17). It is
consistent with Okubo's anaatz(s). Okubo postulated that instead
of considering the vector octet and the vector singlet separately
all the nine vector mesons should be considered together. The
nonet was represented by a non-traceless tensor Gﬁ which was
constructed out of the traceless tensor Fﬁ representing the

octet and a singlet g such that

Gi 3 Fﬁ} *éiy@
V3
The ansatz is that # should never ocecur by itself but should
always be accompanied by I-":. This means that G;t (= /38)
should not appear in any mathematical expression used to describe
the mesons. The immediate consequences are in good agreement with
2 2 2 -

experiment. It implies (i) mg =m_ qﬁ =Wy = My - o,

P
(i1) gﬁﬁ"t’ = 03 (iii) tean @ =E; Bineaﬁ; cos Q::E
where € 1s the mixing angle (this specific value of © 1is called

the ideal mixing angle) and relates the physical states ® and g
with the 8U(3) octet member ®° and the singlet g° as follows

W = sin € w° + o8 e,d°
g = cos 6 w° - sin 9'£° .

It has other implications as well, which are, however, not relevant
to us here. 1In quark model such an ideal mixing would mean that
is made out of nonstrange quarks and £ is made of the strange
quark. Our sum rule (3.6) with the assumption of ideal mixing

reads as follows
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2 2 2 1-9
g - RE = = g - = =2 ™
mf+ﬁ ﬁf"’: m'P+'E ! ﬁ +

which i1s identiecally true since 56y+17 = 0 .

The other sum rules are the SU(3) symmetric limits of the
Frampton Taylor sum rules(s) for the case t = 0. Perhaps one
remark that is worth making is that whereas the neglect of
pseudoscalar mass may be justifiable in ref. (6) because of the
relatively low mass of =%, this is no longer true in the SU(3)-

symmetric case. Furthermore the w®

contribution to sum rule
(3.4) is rather sensitive to the pseudoscalar mass and so the
approximation of neglecting pseudoscalar mass would lead to un-
reliable results,

Our calculation therefore did not yield anything fundamentally
different from the calculations given in ref. (6) and (7). The
investigation of nonforward sum rules may turn out more informative,
but the whole procedure of saturating by putting in a few low=lying

states does not seem to be very useful except in a few cases where

the integrals converge rapidly.
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CHAPTER IV
PI — PI SUM RULES AND THEIR SATURATION

1. A forward unsubtracted dispersion relation is written
down for the component of (x-x) scattering amplitude dominated
by the exchange in the t-channel of an I = 2 bDoson trajectory
under the assumption that the corresponding intercept, a(Igz)

(t = 0) is negative. 1Its consistency with Weinberg's low-energy
parameters for (m-x) scattering and Adler's (x-x) sum rule is
examined, putting in all known resonances, and, using the most
recent available data. The s-wave is parameterized in a resonant
form. A reasonable saturation of Adler sum rule can be obtained
for suitable s-wave parameters. However the unsubtracted disper-
slon relation cannot be saturated for realistic values of these

parameters. Some remarks concerning the finite width formulae for

s-, p-, and d-partial wave cross-sections are made.

2. Recently Gatto(l.) obtained a reasonable estimate of a
universal D/F - ratio for meson-baryon couplings from two assump-
tions.

(1) The Regge trajectory for the exchange of a 27- plet of SU(3)

in the t-=channel has a negative intercept at t = 0, i.e.

wgz (t = 0) { 0. Consequently one can write an unsubtracted
dispersion relation for the forward seattering amplitude A(gz't)(s)
corresponding to 27-exchange in the t-channel.

(2) At the scattering threshold, there is no appreciable contri-
bution from 27-exchange in the t-channel. This result is deduced

from recent calculations of meson-baryon scattering lengths using
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2), which are equivalent to deseribing low energy

current algebras(
meson-baryon seattering by the exchange of a vector meson nonet(3).
With these assumptions, Gatto expresses A(gz’t) (s = (mB + mM)z) =0
in terms of an unsubtracted dispersion integral and saturates it
with low-lying meson-baryon resonances, using an ideal value of
3/2 for the D/F - ratio. A fair saturation of the sum rule weas
obtained.

Here we want to apply Gatto's ideas to (x-x) scattering(h),
with some modifications.
(1) Only su(2) invariance is assumed and SU(3) symmetry is not
needed.
(2) A negative intercept is assumed for all kinds of isospin two
exchange, irrespective of its nature (cut(5) or trajectory). The
corresponding amplitude A(z’t)(s) then satisfies an unsubtracted
dispersion relation.
(Bj The value of the amplitude A(2’t)(a) at the threshold is
estimated using Weinberg's results for low-energy (x-x) scattering(a).
We do not, however, confine ourselves to his solution for the
seattering lengths (e.g. a =.om "t 8, == .06m;1) but allow

(<] ">
84 and a8, to vary over a reasonable range such that 2&0 - 5a2
= .7m;1 » Wwhich 1s one of his results (obtained prior to the
assumption that o9 is pure isoscalar). We use Weinberg's
results because of lack of better results.
(4) sinee it turns out that the sum rule so obtained is less
convergent than Adler's sum rute(9) for (xx) seattering, a simul-
taneous saturation of both of these sum rules is considered. The
contributions of the resonances p, f and 3(6) are estimated

both in narrow width and finite width approximations. Since the
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finite width expressions for the partial wave cross-sections as
given by Balaza(7) overestimate these contributions (owing to
the presence of undesirable bumps at high energies), they are
slightly modified such that the phase~-shifts go asymptotically
always to =x .

(5) The remaining contribution is assumed to be due to the
possible existence of an I = 0, s-wave (%x-x) resonance,
parametrized as in ref. (10). For the parameters fitted to

(10) a reasonable saturation of Adler's (x-x) sum

Keh decay
rule is obtained. However, the other sum rule does not seem
to be saturated for any reasonable values of these parameters.
Our analysis is similar in spirit to that of various
authors(g), in partiecular, Furlan and Rossettli who have tried
to extract information on the s-wave (x-x) resonance in the

isospin zero channel, but differs in detail from them,

3. The amplitude A(z’t)(a) is related to the various

isospin amplitudes in the s-channel as follows
a8)(e) o Fal0s)e) - Fallesle) o 32 al28), (1)
With the assumption

S8 Gag) ¢ B,

we may write an unsubtracted dispersion relation in the forward

divection for the amplitude A(2st)
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(2,4) %
A7) = -’-J dm AP () s
T Lo S/~ S-4€
=, ]
o asdna®er il L 1 ()
x 4m: SZs J’+5—¢m}t 3

where the second equality follows from crossing.
Using the optical theorem and by Bose statisties, and

putting m, = l, we have
A(th)c ) co |
) = 4 j dst 4 A4 4 b o
g 4 5 Sts * S/%45-4 5’(5{'4) »
ewren odd even
i UL 1 (4,8) o, (st
x§3_ Eo % (s') - _z-ﬂzﬂc:}3 (s’ +-é-%=og (s)}

Keeping only s-, p~, 4~ and f-wave terms, and neglecting I = 2

terms, we get,

2,t)
A ( (s) =

oo
J as: 5=2) [s/sta) )

4 (545)(S/+ S-4)

Aln

{ (0,) ., / (0,8),_, (h8),. {1,:)}(}4.3)
X f-_;-"'a (s)+-3-a;_ (s)-.é.o: {s)'?z{'a N

At the physical threshold (suppressing isospin labels),

(2,t) © .,
A (.5.."'..4-J U=t .-.O) = ;i"-£ _ds_b"_-ZJ_ {Jg%(st)_* _3{_0'2(53)__id'[“:)_Jz.d;Cp)*,..})

[s'(s-4)
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i.e.y
] 2 o (s
327 (4ad + tadd) = 2 J ds'(s=2)
% 4 /) s/(s’-4)

x{§%30+§§@0~§q50_%%39+~} (L.l)

In the same notation as above, Adler sum-rule may be written as

2 o0 ra Z
4MN as’ { R, 7, (s') + _L( (f = 1) )3/20, (s7)
g2 21, sty L3 (5%1) 3\ s/s<4) 2

(se1)? Ve (sL)2\52 2
v '2£ (sf(sf-’aj ) o;(s’) +T’£'(5”s’-¢)) 0-3(5)4’”.} = -%;2 )(,4- 5)

where gy (= 1.18) is the axial vector renormalization constant,
g2/(4x) ( = 14.6) is the rationalized renormalized (=N) coupling

constant, MN is the nucleon mass in units of m.

L. We now want to estimate the contribution of p-, d-,
and f-waves., For ‘his we need explicit fbrms(7) for 61(1'5),
Gé(o’s) and 03(1’5). We parametrize the phase shifts by

y \E+1 _ V-V
(—V_-j-?) wa@ = "—EE_' (k.6)
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24+ ;
Vv Ve -V
RO ETONE ST - 7 .6
V v+ . L0} % e

The latter leads to Balaz's formulae for cross-sections. These

rather than by

formulae have undesirable high energy behaviour and as a conse-
quence the contributions of the resonances are overestimated.

The reason is that the phase-shifts do not go to =x as energy
tends to infinity but go to some constant whieh is different from
%/2 in the case of p-wave and is equal to =®/2 for all higher

waves, No such difficulty arises if we use eq. (4.6). Corres-

ponding to eq. (L4.6) the (=-th partial-wave cross-section will be

given by
: 2
o(s) = _B8x (2t+1) vzfxg [(ve1)2E+1 = R (V1) 20+2
R
(4.7)

where ¢, [;, vp are the spin, width and position of the
resonance. In the above formulae v 1is the square of the c.m.
momentum of the pion (g = 4(v+l)). The narrow width form for

ed. (4.7) becomes

o 2 2 -
a;(S) = 327 (2€R+1)i;mad(s-sR) (m2-4) (4.8)

where my is the mass of the resonance. We find that the con-
tributions of the resonances to the sum rules calculated using the
finite width and the narrow width formulae are reasonably close

to each other.
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For the I = 0, s-wave we use the parameterization given by

Berendé, Donnachie and Oades(s)

54 opg0  _ (5-4+Z)(5-3) (4.9)
o 4 J
4 ¥ (4-52)
where a is the scattering length, ¥ 1is related to the width,

o
5: is the I = 0, s-wave phase-shift and €p is the square of
the resonance mass. The phase-shift goes to =x as energy becomes
very large. As the resonance is rather lopsided the relation
between ¥ and the width is found by computing the derivative

of ag at the position of the resonance,

O e = RS / - 2(S%-4+%,) . rR = #(MR’- 4) ¥

_Me = ds 6:=‘7i£ T (Sp-4)%2 : 2M (M2-4+%,)  (4.10)
5 The results are given in Table IVA. There we use the
parameters MR = 700 MeV, ﬁ4R = 300 MeV and a, = 0.6 m;l.

The left hand side of eq. (4.4) is ealculated using

(2a°r- 5a2) = 0.7 m;1 . In Table IVB we give the cecontribution
of I = 0, s=-wave resonance to the sum rules for a range of values
for the s-wave parsmeters. It is seen from Table IVA that the
contributions of P, £ and g together are insufficient to
saturate the sum rules. A substantial contribution must come
either from the high energy region or from some s-wave resonance

(or large phase shift), or from a combination of both. In view of
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insufficient experimental results at very high energies and the
necessity of some reasonably strong s-wave I = 0 (=x-x) inter-
action as implied by other calculations(g), we are tempted, as

a first approximation, to forget about the high-energy region
altogether. This ﬁakea our neglect of I = 2 contributions

more reasonable since no I = 2 resonance has been observed. It

is seen from Table IVA that the s-wave parameters fitted to Koy
decay(e) give a reasonable saturation of Adler sum rule, but for
the same parameters the other sum rule is not saturated. The
discrepancy between the left and right hand sides of this sum

rule is too large to be accounted for by varying the s-wave
parameters. This is seen on inspecting Table IVB. None of

the values of the parameters given there can saturate this sum

rule. On the other hand thé Adler sum rule can be saturated for
various sets of parametefs. In particular a fairly small value

of ao(na.35m;1) can make the saturation possible provided M,

is reasonably small ( ~ 400 MeV) and rh is reasonsbly large

( ~100 MeV). The reason that the sum rule (4.4) remains unsaturated,
even after including Oy Po f and g, 1lies in its poor convergence.
It is seen that the g-contribution is larger than the f-contribution.
Consequently this sum rule depends as much on high-energy contri-
butions as on low-energy ones. In this case, therefore, the neglect
of high energy contributions is not Justified. For example, a spin
four resonance of isospin zero will contribute appreciably to the
sum rule if it has a reasonable mass and width. Also the contri-

bution of I = 2 resonances may not be negligible.
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CHAPTER V&

A MODEL FOR PI-PI S~WAVE PHASE SHIFTS FROM CUR T ALGEBRA
AND PCAC

In this chapter a set of sum rules for the (x=-x) s=wave
interaction in the isospin=zero channel is derived from the algebra
of axial-vector charges and divergences, and using extensively the
principle of pion-pole dominance, On approximating these sum rules
by the o-meson, treated as a gingle-particle state, a relation be-
tween its mass and width is obtained. The numerical results are
fairly reasonable in view of the drastic assumptions involved. In
the approximation of elastic unitarity the sum rules take the form
of an integral equation for the vertex function {x |6 =x>. This
equation implies that the (x-x) s-wave phase shift 5° in the
isospin-zero channel gatisfies the inequality 0 ¢ 50 < ®x, quite
generally. The approximate integral equation cannot be solved
exactly, thus reflecting the drawback of our earlier PCAC assumption.
On introducing an effective cut-off function as a correction factor,
solutions are obtained. They glve a scattering length slightly
larger than Weinberg's result and a phase shift that has a broad
" maximum around 700 Mev., the height of the phase-shift being

sensitive to the cut-off parameter.

1. Current algebra has been used mainly in deriving sum rules
and low-energy theorems based on the soft-pion technique(l). In these
applications current algebra makes definite predietions on off-mass-
shell amplitudes (or vertex functions) in the limit of vanishing

four-momentum for one or more of the pions involved in the process

% This chapter is based on work done in collaboration with
- Drs. A. Pagnamenta and B. Renner.
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under consideration. Only after making PCAC smoothness assumption
can one obtain information about on-mass-shell quantities. This
extrapolation from off- to on-mass-shell is rather vague and not
without ambiguitiea(g). Recently there have been various attempts
to do current algebra calculations without using the soft-pion
technique. In particular, Schnitzer and Weinberg(z) have developed
a method which does not invoke the soft-pion limit. In this method
eufrent algebras are used to derive generalized Ward identities for
proper vertices. These are then supplemented by crossing relations
to determine the form of the proper vertices which, in the spirit
of pole dominance, are assumed to be smooth functions of momenta.
There does not, however, seem to exist an obvious generalization of
this method to scalar vertices. Moreover one does not know the pre-
cise nature of the difficulties one would encounter when large extra-
polations are involved. To clarify these problems we present a model
for the (x-x) s-wave phase shifts in the isospin-gzero channel based on
the algebra of axial-vector charges and divergences, and on an exten-
sive use of pion-pole-dominance, Unlike earlier authors(3) we try to
assume as little as possible beforehand about the strength and energy
dependence of the (x-x) s-wave interactions, such as whether the
(unknown) unitarity cut allows certain extrapolations from gzero-energy
to threshold or not, or whether there is a &-resonance or not. To
offset this lack of information we need to use the principle of pion-
pole-dominance very extensively, far more than can be Justified on the
basis of the relative distances of singularities. We maintain that even
this extreme use of pion-pole-dominance deserves exploration since the
linits of its applicability ave hardly knewn at peesent(®),

In section 3 we derive a set of sum rules involving the off-mass-

shell vertex (= | 6 |x>. As a preliminary test, we consider these
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sum rules in a model of single-particle dominance and obtain results
acceptable for the conjectured o;meson(5). In seection 3 we abandon
the single-particle model and, in the approximation of elastic uni-
tarity for (x-x) scattering, we convert the sum rule into an integral
equation for the vertex (= |0/ x> . This equation implies that the
(x-x) s-wave phase shift 5; in the isospin-zero channel satisfies the
inequality 0 < 5; < = ,quite generally. Exact solutions of the
approximate integral equation, hawe#er, cannot be construected. In
section 4 we apply the N/D formalism and find that our PCAC approxi-
mate analysis of the vertex would lead to an N-function in the (x-x)
s-wave scattering amplitude without a left hand cut. To correct for
this, we introduce, as a first step, an effective interaction pole
which at the same time will serve as a cut-off function in the
integral equation. The solutions for 5; give a scattering length

1 vossanl,

and a broad maximum around 700 MeV. Its height is sensitive to the

somewhat larger than Weinberg's result(s): 0.23 m;

cut-off parameter. With our phase shifts we can saturate the
Adler-Weisberger relation for (x-x) scattering with a reasonable
cut-off value. We have not ruled out, however, the possibility of
more complicated corrections. Some such investigations (section 5),
however, seem to imply that the qualitative features of the above

results are left unaltered.

2. In this section we derive the sum rules and consider
their single-particle saturation.
We begin with some comments on the equal-time commutator for the

axial-vector charges and the axial-vector divergences

[jA;(i) adx | JﬁA#}(oJJ = ict (0) (5.1)
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where 1,J = 1,2,3 are isospin indices, and p = 0,1,2,3 are Lorentz
indices. This commutator is encountered in deriving low-energy
theorems whenever the emission or absorption of two or more pions is
involved. We further assume Gell-Mann's commutator for the axial-
vector charges,

[Jad)adn  [atep a®y] <4 %% [y,Ry)a%y (5.2)
202 ‘?0 - *

Since the vector current is conserved, we have

[ Jofas o0 a®x, Ja bt aty ]

e i ¥° ) [IBFA f(:r.j Az, jAo‘; ('}')ﬂ':z?] o .0

X--.? .

so that 639 is symmetric in its isospin labels, i.e.

c i/ (6) = ¢ ;o(ﬁ)
Following the suggestions of the quark model and of the 6-model,
it was conjectured(s) that 613 is purely isoscalar, i.e.,

o ) = 6% (o) (5.3)

Though eq. (5.3) has not been confirmed directly, its validity is
assumed in the successful applications of egs. (5.1) and (5.2) to
low-energy (x-=x) scattering(6’7), pion electromagnetic mass dif-
ference(a) and to nonleptoniec K-meson decays(g).! Using eqgs. (5.1)
and (5.2) in the Jacobi identity satisfied by the operators

fAi(x) d?;, JAg(y) d?x and O”Auk(z) at equal times, we obtain

[ Jadt)ads o] =10k gl (5.4)

Consider now, the off-shell=-vertex <;3(q2) ]c{o) |x1(q1)> =

%- In ref. (9) G”fis allowed to have both I =0 and I =2
components.
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5‘3')5—(_%2’-%2,_!:) - (m,%"f'?qzi(m:rz t92%) /je‘}‘i‘,’x e-i%*;’l o4 tx dtyx
Bl Mt
(T{OKAY () 3"A2 (4) a0} 3 (5.5)

where t = - (4, - a;)%, and F, is defined by
i : ar y »
AL @ [xdn> = 4F 4"#55’ ; Fp %90 Mev

Pion-pole dominance for the integrand in eq. (5.5) asserts that

2 not too far away from mi, the variation of fo

2

for q12 and a4

with q12 and q,~ may be neglected(7),

2 2
Fo(my mi t) % £ (-%,-9 ,¢)

2 2
3 $I)q’2 2-—)‘?’1;

We write the off-mass-shell vertex fa(-qlz, -q22 ; t) as a product
- 2 2
of the on-mass-shell vertex Fg(t) = fg(mx » m,° 3 t) and a
correction factor,
Fo (92 =42 8 ) = F@) R-9%-8%54) (5.6)

By definition, we have X(mi, mi s t) = 1, and we know that
X(-qlz, -q22; t) ~ 1 for qlz ~ - mi and q22 ~ - mi . However
we do not know the extent of the region in which X may be approxi-
mated by unity. Conventional PCAC asserts that X ~ 1 1s reasonable
for g2 , 0, 9,°— 0 at t = O(m2). We shall try to keep
X~n1 in as large a domain as is possible and is needed. This
assumption defines the model. Eq. (5.6), supplemented by the
assumption that X 1is a slowly varying function of its arguments,

is related in spirit to the technique of Schnitzer and WEinberg(2)
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in which the off-mass-=shell vertex functions are factored into
propagators and proper vertices, the latter being assumed to be

slowly varying functions of momenta.
In eq. (5.5), we make the usual partial integration with respect

to y, use eqs. (5.1) and (5.2) and let Aoy tend to zero,

Wi z . > . .
613@(-%0515) Sty — b je"‘h 3 {(o;-r(af‘,q: (x) 9¥A2 @ ) 0>

- 5i'é | T lo(x)a(e)) [0) } d%

o5 el :
5% £ ) X(8,0;¢) = SCPTOR A

(5.7)

We introduce intermediate states into the propagators and in the
spirit of pion-pole-dominance, we keep only the one-pion state in the

pseudoscalar propagator and a yet unspecified continuum in the scalar

propagator?

Fp(t) x(-i) =-m,[ + (m7 -+) f (5) (5.8)
ml F-Z

4m%

where

Po(s) = 3 83(p,-9,)8(mh-s) [<olo|n>[?
n

A consistent treatment of the pseudoscalar and scalar propagators
would demand the inclusion of continuum contributions in the

pseudo-scalar propagator as well (such as the three-pion-cut, ete.) )
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however, the success of pion-pole-dominance in most cases
considered so far makes their neglect reasonable.

Let us examine eq. (5.8) in more detail. The factor x(t)
on its left-hand-side takes account of the difference between

2 these two

Lo (ty O} t) and ;c_(mxz, mxz; t)s Near t = m
form-factors are spproximately equal to each other (pion-pole-dominance)
and x(t) ~ 1, but for general values of t, there is no way of
finding x(t) and its t-dependent structure is unknown to us. One

might assume certain "smooth" forms for x(t) in analogy with the

work of Schnitzer and Weinberg(a), but there does not seem to be

an obvious way of determining x(t). Crossing symmetry might be

of some help here®. In view of this lack of information on x(t),

we set as a first (admittedly erude) approximation x(t) = 1,

i.e., the pion-pole-dominarce assumption is true for any value of

t so that f£4(t,03 t) 3 fg(m %, m % t). This is a drestic
assumption and will need correcting as we shall see in due course.
Likewise the integral term on the right-hand-side of eq. (5.8)
represents the next important contribution to the off-mass-shell

vertex after the pion-pole term., Therefore, in order to treat the
corrections to pion-pole-dominance consistently one might suggest

that if we are to set x(t) = 1, we should as well drop the

integral term. However we shall not do so. The reason is that,

unlike x(t), we know the precise nature of the correction term on

the right-hand-side. This integral introduces the elastic unitarity

cut for (x-x) scattering starting correctly at the threshold hmi,

% This point needs further investigation.
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which presumably represents the next important singularity of the
off-mass-shell vertex after the pion polesi. We do not want to
relinquish this physically meaningful information. We emphasize
that we have set x(t) = 1 simply due to our ignorance about x(t)
and only as a first approximation to a more realistic situation.
Diagrammatically our model of setting x(t) = 1 for any t may
be represented as in Fig. VA,

X
'
|
1
i

v
\
|
|

T
oA 4

Fig. VA

In Fig. VA the pion-poles in 0A correspond to our assumption that
the pseudoscalar propagator is dominated by pion-poles and does not
involve more complicated singularities like the three pion cut, etc.
The assumption x(t) = 1 for any t implies that the t-dependent
structure of the off-mass-shell vertex function is entirely due to
the o-channel. In eq. (5.8) this implies that only the second term
on its right-hand-side determines the t-dependence of the vertex and
not the pion-pole terms. This would mean that the pions cannot
interact before they meet as shown in Fig. VA. The presence of any

initial state interaction for the pions would invariably imply that

% This is the reason why we preferred the off-mass-shell extrapolation
defined by eq. (5.5) to a successive reduction of two pions; the
latter fa%lg to produce the scalar propagator. For further details
see ref. (9).
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the t-dependent structure of the off-mass-shell vertex arises not
only due to the integral term on the right-hand-side of eq. (5.8)
but also due to the pion-pole~terms. This is the case only if
x(t) £ 1 and depends upon t . Such diagrams are illustrated in
Fig. VB.

x X £
0 : |
|
:g ! g :r
\ 1 |
= =
b
oA oA T/ NI A
4 A
M oA
x X
j |
|
|
ta
I
o +
n T
oA oA

FIG. VB

In Fig. VB we have assumed that the only important singularities in

the off-mass-ghell vertex are the single pion-poles of OA and the
two-pion contribution to o . This is presumably a reasonable

assumption as the respective three pion and four pion cut contributions are
expected to be quite small. These diagrams correspond to x(t) £ 1,

in general. A particularly interesting case is that when

2
x(t) = E%rﬁtﬁg » 80 as to restore the conventional requirement
m~ +m
‘ ®
that x(t) v1 for t o mi . Such a t-dependent form of x(t)

would imply that the t-dependent structure is not only due to the

o -term but also due to the initial state interaction of the pion-
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poles of the vertex. lore precisely it corresponds to an exchange
of some particle between the two pione in the initial state which
would generate a crossed pole in the t-channel. By setting x(t)
to this form we are allowing for all such exchanges responsible
for the left-hand cut in (x-x) scattering by an effective pole in
the t-channel. This form of =x(t) will be used in Seetion 4
where we attempt to modify our assumptions on x(t). For the
rest of this section, however, we shall tacitly assume that
x(t) =1 for any t thereby retaining contributions to the off-
shell vertex from diagrams of the type illustrated in Fig. VA only.
To see whether such an approximation is at all reasonable, we
test eq. (5.8) in a single particle model, by introducing the con-
Jectured o-meson as a pole in Er(t)! and as the dominant single

partiecle state in J:_ (),

J(s) = 8(s-mP2) | <olote)oD | (5.9)
= 8(s-m?) g.:

2

We introduce egs. (5.9) and (5.10) into eq. (5.8) with =x(t) = 1,
compare coefficients in t and obtain

2 -
& N oMme £ > (5.11)
E;' Gu‘xﬂ = (mU%" ”’L;E ) (5.12)

% This is analogous to the pole dominance assumption used in
connection with vector currents
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Eqe. (5.11) is equivalent to interpreting-%ﬂﬁoi(x) dé;, ﬁi{?)}

= éiéd(y)/(miFﬂ) as the interpolating G‘-field( 10). EqQ. (5.12)

can also be derived in the G;model(ll) in lowest order perturba=-
tion theory., The width of the G-meson as predicted by eq. (5.12),

as a function of its mass, is found to be

2
Rt L) 1 (5.13)

where p_ is the momentum of each pion in the rest frame of the &

The numerical results are given in Table VA,

Table VA
m (Mev) 350 40O 450 500 550
s (Mev) 70 130 220 330 470
Contribution to
Adler sum rule 1,71 1.54 1.39 1.34 1.5

The O=parameters so obtained are not inconsistent with the

(5),

results of Brown and Singer recently supported by current

algebra sum rulea( 12), but considerably higher masses with broader
widthe are aiso allowed., In the narrow width approximation Adler's
(x=r) scattering sum rule gets the following contributions from the
various (n=x) resonances: O%=contribution + p-contribution (=0.51)

+ f-contribution (~0,11) + g=-contribution (:0,08) ~1.43 (5.14)

so that the o=contribution ~0.73, i.e., it contributes about 50%,
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9he last row in Table VA shows that the o-contributes by ~ 100%,
the contribution decreasing slowly for hi.gher masses, 1In view of

our crude approximations the disagreement is not appreeciable,

S Since the single-particle model of Section 2 ignores
unitarity corrections we cannot consider it to be an accurate
sclution of eq., (5.8). Its only purpose was to demonstrate that
the approach is not misleading., Now we abandon the single-

- particle model and introduce a continuum of intermediate states

into po( 8)e The two pion contribution is given by
(2n)
» 2 5.15)
oo A Sl singd] g6 :

For a)(hmx)z there are also inelastic contributions; we account

for these by introducing a factor R(s)

£ = Re) PO s (5.16)
with R(s) = 1 for s((hmx)z, and R(s) > 1 for s)(lutn,c)2

EQe. (5.8) then becomes

<]

F;_(t) x(t) = -m% + (7 %) —J—J ds S8 S'w lpm]’(’j +17)

2 32x2 i
my fuid (s-t)

In order that the integral on the right of eq. (5.17) may converge,
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we require that 1lim FU(B) = 0%

S—-00
can be obtained from the linearized unitarity relations for vertex

. Further information on FG( t)

functions, which allow us to represent F (t) as an Omnes function

e (t24€) 2om? wp | t-mz f"" ds Se ) |
% T e (s-t zi€) (s-m2)

(5.18)

= = [F(e)] et V% ()

For t <(zun,c)2 the phase 0 (t) 1s equal to the (x =) s-wave
scattering phase ¢ d( t) in the isospin-zero channel, and this
relation remains approximately true as long as inelasticity can
be neglected, Comparing the discontinuities of Fﬁ( t) according
to egs. (5.17) and (5.18) (assuming that &ax(t) may be neglected),

we get

; mi -z) t-am* R 2 0 5.19
2x¢ _3 (Mx 1/ S /F;.(t)/ z =21 smd (t) E,-(*)'( )

3272 m3 Fd
This implies that as long as x(t) > O
S & (1) X Sen S (%) >0 . 0,0 <~ (5.20)

We emphasize that this result requires only local validity of our
assumptions; in particular the actual form of x(t) does not matter

* If we a ssume that lim x(s) FOKB) = 0 then eq., (5.,17) reduces to
8 00
a sum rule which was -aerived by ’F!oo( 15) assuming asymptotic chiral
invariance, His failure to Saturate this sum rule may be related to
our difficulties in solving eg. (5.17).
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so long as x(t) ) 0. Hence it will not be impaired by the diffi-
culties and ambiguities that arise in trying to solve eq. (5.17) by

assuming some simple forms for x(t).
To solve eq. (5.17) we define a new function DG( t) by

2
Folt) = - x
D (¢)

4 (5.21)

The discontinuity of Dd( t) aecross the cut t)> hmi is given by
disc, Da(t) = 2i Im Dd(t)

2xg 8 (myf -¢) t-am:  RE) (5.22)
=i

3272 T z(t)

for t >1|.t11;?c .

We next show that if x(t) = 1, then Fd( t) has no zeroes,

From eq. (5.17), we deduce

2 3 N = 2
Fr(®) =0 = =M, +3— T as /5_'5‘135_ RS [EG)*(5,23)

2
4mﬂ

Subtracting eq. (5.23) from eq. (5.17), we get

F () =—3 Jm as [Shrs R(s) [Eeo)*( 2x)
g 32712 m2 Fn? 5 7 s-t

2
m
# n

For real t { hmi, Fd( t) 4is always negative since the integral is

negative definite, For complex ¢t



ds -t

o FL1) = J fm S am oy (M=) Ry ()2 Smt
S .- Rct)2+(.9mt)"

since Im t # 0, Im Fd( t) cannot vanish,

Therefore, Fd( t) #0 for x(t) = 1., This means that there
ghould not be any CDD pole in Dd( t). Using its discontinuity as
found in eq. (5.22), we can represent Dd( t) as a dispersion
integral subtracted at t = m. with D (m®) =1, The addition
of arbitrary subtraction polynomials is limited, because they

would reguire superconvergence of Fd( t)

1im wﬁ(t) s 9 3
1'--500

this is not compatible with a negative definite Im Fo( t) (unless

x(t) changes sign),
Neglecting inelasticity and PCAC corrections (i.e. putting
R(t) = x(t) = 1) and integrating Dd( t), we get

oo
D) = 1+a(mi-t) 4 (mi-t)? 3 xe [s-4mz __ds
(=2 3112 ;:‘2 s (m:-S)(S-t)

2

4Mg
i 2 _ R ,
= 1+ (ms f){ $ =5 o [ t- 4’":r Zay \/::a: : 5__ ) )

for £t <0

)
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1+(m;4){d*/4m§¢ 3
t 16 71'2' F-yr 4”11 "'.t

for 0<t<hmi

= 14 (m2t) o’ p 3 t-mx( Jt - [t-4mz) )
+ Bt/ { 5 327?f2 t g( Jt -4m% ) } ’
for t =t < te, ty > 4”"3{ (5.24)

The unknown subtraction constant a' has been redefined from a

in the course of the calculation. Since DJ(t) has no CDD poles
the solution (5,24) is unique., It is easy to see that none of these
solutions is acceptable, At t = m:': we have Dd(m:';) =1, Dbut at
t - =00, the last term dominates and we obtain Do’( t) — =00,
This means Dd( t) passes through zero at some value of t , But a
gero in Dd( t) corresponds to a pole in Fd(t), which is not cone
tained in eq. (5.17). By keeping R(8) > 1, the negative term is
only enhanced. So we conclude that eq. (5.,17) has no solutions with

x(t) =1,

L, Being forced to introduce corrections to pion=-pole

dominance, it will be our aim to keep the model simple and to avoid
having too many undetermined and unmotivated parmnetei's. Comparing
eq. (5.22) with the usual (N/D) equations of (%-x) s-wave scattering

we have

Toao, 120(8) = 02m [ 2 e %% gy = NE® e
t-4m? ‘ - o)
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and

dise. D(t) = 2¢ (_ 31” ) t;4m‘ N

(5.25)

with D(t) given by Ddlt), we would have a linear N-function

(m% -¢) R
t o T (+)
N & () 3 sz ( % (4} )

y (5.26)

up to inelastiecity and corrections to PCAC, This may well be a good
approximation for t in the neighbourhood of mi, but it fails at
negative t, where N(t) should have its left-hand cut. A linear
rise of N(t) at large t appears also unlikely. On these grounds
it seems reasonable to correct N(t) by introducing a factor
R(t)/x(t) = (m? + ml,i)/(m2 + t) (compare the explanation given for
Fig. VB in Section 2) to simulate some effects of the omitted left-
hand cut for large t in the integration region ¢ )»hm:. Not to
distort the current algebra predictions for amall ¢, we should

2 >>mi « As to the size of m2, we have taken different

choose m
values in the p-exchange region and dbove.(m = 600, 760, 1000, 1500,
2000 Mev)., We do not want to commit ourselves to a final statement
on this point and, for the moment, prefer to regard m? as gome cut-
off parameter, The precise nature of the required PCAC correction
needs further investigation,

The modified D=function can be integrated, and we get



co b
- / 2 2 ,.m
Da (t)= 1+ (m;-t)_._s._z_ "Li] S=-4Mgz mo+ Me as
327 k , S mi+s  s-t
4”’!7!

2 i .
g .Z(m2+:1l)gmn t) i fama e ( [4m2 +m* +m)
27 me+t M ?
Bt (m*+ ) o \/4?’13;1-:11’ -m

_ t-4m§ m +\/‘T- 0
- ﬁo}( \/M? -/:‘Z‘. )} f""f<.!

= 1+

3(m?+ mz)(mk-t) { [ang s> z,,?( Jama et + m )
3an? g2 (m3 t) ma Fiwi 2 o2
47hx +net - m

[ 4m3-t / g
- ___?;:__ amc'ﬁ'm( 4;}4 )} f‘,racf<4mm
n

327%F2 (m?+t)

3(m? e mit ) (M5 -t
= 1+ (e wrvity) (g ) { /4m::;m‘ &?( [4mE +m* +m)
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For ¢ <lsm§ ’ Ddsm)(t) is seen to be real and has no zeroes
(in the range of m considered). For t > h.mis neglecting
inelasticity, its phase isc the negative of the s-wave (7%=n)
phase shift 50 in the isospin zero channel,

(m)
B (¢) =-oax .Do_,(m) (t) for t > '-I-mi (5.28)

(]

In Figure VC we have plotted Eo(m)(t) for different values

of m, The resulting scattering lengths are given by

(m)
%o (m) - &ﬂn (-2) g"""-‘%- (¢) ~ ;r'/mz
t—am2 [ 4 &Df’*‘Jm 2rirt m )
% s o T &?(T’x

2
gm2

goe () DY 1 (5.29)

For a wide range of values of the cute—off parameter m, the scatter-
ing length varies only by a small amount: 0,23 m;l ~ 0.33 m;l ’
which is slightly larger than Weinberg's result( 6?. They are given
in Table VB, The phase shift exhibits a broad maximum at about
700 Mev falling off very slowly at larger energies, This shape
resembles qualitatively the results of Lovelace, Heinz and Donnachie( 13),
but we prefer to reserve our opinion at present, because the height
of the maximum is sensitive to the cut—=off parameter m, and there
is every reason to regard the tail at ¢ z,ma as cut-off dependent
(see Fig. VC).

Using the calculated values of Egm)(t) as a function of m

we examine the saturation of the Adler-iieisberger relation for (x=x)

(14)

scattering with the resonances p and -f ( contributing about
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44%) end the isospin-zero s-wave continuum, Ve require, therefore

%0
056 H;lz [ 32 _ as o Sind ;a('m) (s) .
gm? 3 (s-mi) S-4mk

x (5.30)

(we have negiected the soft-pion correction as given by Adler,)
We find approximate saturation for m -y 1200 Mev, Inclusion of
the g-resonance would lower the s-wave contribution to sbout 51%
which would correspondto a cut-off value of about m 7 1100 Mev,
The right-hand-side of eq. (5.30), plotted as a function of the

cut=off parameter m, is given in Fig. VD.

Table VB
m (Mev) ao(m;l)
600 0.231
760 0.252
1000 0.276
1500 0.307
2000 04330

The s-wave scattering length a, as a function of the cut-off

mass m .,
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5. Finally to test the dependence of our result on the shape
of the cut=off function we have repeated our calculation with a few
different cut-off functions (R(t)/x(t)) :

2

2M m
a. two poles ¢ - . 2 2
. ( M2t mi 4+t ) O S
2 4
De a pole and a dipole 3 1 ( M o A M ) 5 0B ¢
1-p M2+t (M24¢%)?

where we have imposed certain conditions on the parameters such
that Dg?)(t) does not acquire a zero for t ( hmi. The explicit

solutions for Dg?)(t) in the two cases are listed below:

a8, two poles:

(m)

D, “(¥)

= 14 86Ul {7 &"(ﬂ?f’) /-h( 2 +f)}__4c(f—#){ﬁ&1(£ﬂ

t (atd) Ja -1 t(at+t) JT -1
o [ /o4 +1 t<o
Vb (L)} g t<o
= 5 5’(‘.(.’ t) :Z . 4¢(J—t) Vi
. t(are) {J— &’L(\/_ ) i o (J— } i(ufa)w_ (Jz-f

2 & m‘f(é_) for  0<< 4

(/-t) 7 =) 7
LT b () Rl




<— (A3W) SP

(-X-1-)|
00%I oo+t

370d\@ + 37104

@\

ol
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b. a pole and a dipoles

D(-m: [, _dcl1-¥) i[‘fz‘bﬂ(ﬁﬂ) \/‘_;m(,/—-u)]

% £ (a+4)(1-B) Gl -1
? J-a
Rl e e e B (e Ll

glm-i‘(o v

o g e fied) Bt e ! L
5 t (a+4)(i-p) i[‘/z &m( JZ:-r) i5 JE-']

wpLie DX PR g (Bt )y 2 (L)t (4

2V% (a+s) Ve +1 o+t va
fr 04t < 4,
s 4c(i-t) o Ll ) [o (122 (tn( 1202 )2 in]
i t (a+d)( 1-R) {[‘/Z (ﬁ-t) “ lav ( j2yee }

1_,.,- f_-_-‘tgtii y ‘tg>4‘ '
(5432)

In the above solutions we have set n, - 1l and have defined

2 2
A = ﬂ l A = G M 4 = 4tM A - 3 :
In Fig, VE and Fig. V' we have plotted the phase shifts for a few

values of the parameters and for the two separate cases as indicated,
Qualitatively the shapes of the phase shifts are the same as before,
Again we find a maximum near 700 Mev, the height being dependent on

the parameters,
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APPFNDIX I

NOTATIONS

l. Natural Units.

We set ¢ =4 =1, then every dimensional quantity will be
expressed in units of some powers of mass, e.g., length will be

expressed as inverse mass.

2. Relativistic Notations

Our metric is such that

K X g KPSH == k%°x° 4 KX == wt + k.2 (AI.1)
k# 2 (0, k) = (ke k!, &2, k) ; (A1.2)
7&“- - (] 1 2 3

=(*a’_§):(7¢;1¢,7¢)2¢) : (*"’11-3)

The scalar product as defined in eq. (AI.l) corresponds to the

metric tensor,
— Ju'v = -1
?,uv B = { it S Ly } ' (AI.L4)

Covariant and Contravariant tensors are defined by
1

Contravariant vector: X-'u_=_ (%OJ x, x? x3) =

Covariant vector : xP‘ = (%,, Xy, Ay, %3) = (-t 2) . (AI.6)

Einstein summation convention is used. (Latin indices 1,Jj,... run

over 1,2,3, and Greek indices p,v,... over 0,1,2,3.) Further
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Py - (A1.7)
Inpd ™ = 8% =& = f 'y } !
1
dF 3 2F gt = IF (A1.8)
B?C-H’ ax# I~ J
F i L Y ( T ) (Covariant
Sk - w = 3 ° % 5 differentiation) (AI.9)
(Contravariant
f;: = BPL = (—- ;{ ) a%) y ~ differentiation) (AI.10)
" %

Sometimes -2 1is denoted by ¥ or @ and oud* by O .

Be Relativistic field equations

a ee scalar field mass m $
(m%-0) #(x) =o (Klein~Gordon equation), (AI.1l)
(b) Free Dirac field ¥(x) of mass m and spin halfs
géth) + %V Y(2)+ WPW(") =0 (Dirac equation), (AI.12)

g and B are traceless, hermitian, 4 x 4 matrices which satisfy

the anticommutation relations,

{oti',oté} :zai'j ,

. 1,J = 192!3
ot 8 } =0 (A1.13)
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We choose the following representation for the matrices

0 ok {0
«"= (o"‘ o) / /g=(o -1) ) keiig VR

where
) 1
1 0 )
v 0 (A1.15)
1 0 A °
2 -
7% = ( o = ) ) I = (o f )
We _define
: o -‘bc‘a;
'fb - —?;ﬁ“'b = ( . )
ot 0 h
Vs vB = - 1}(1 S )
o - 4 (A1.16)
¥YS = 4ylviy3y0 _ (0_1 ;)
Then
y_o‘l' = ¥ a"’z - 1
> - R i J
yr T = yo ' i oy
) R 5
’ ) (A1.17)
frl, vv} =2k (W ,v=0,1,-3
4f HVAf )
0123
& - &3 = *1
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Covariant form for Dirac equation

(F+m) V(=) = (1Paf"+ m)y(x) =0 (AI.18)

71“ = (70 ) Y’J 3’2; 3’3)

Define

Y
a'!u. 5 511:- [XF.J Vy] : (AI.19)

O"i'é S | v ' Ly Y R 0
— O Y Vé] -~ - yyty?d _.(d -

it 41, J, k are eyeclic, i.e.

g% = R ok (AI.21)
The adjoint spinor
Y = b w'f'(x) 7° (AI.22)

satisfies the adjoint equation

a}‘ V@) H ~om Y (%) =0 . (A1.23)
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Bilinear covariants (all hermitian):

sealar - 207 z
vector : vy by :
tensor : Vaoh vy ;

pseudovector : 4y y¥ ¥HY,
pseudoscalar ¢ 4 yS Y
General free particle solutiom:

v = wv(e) elT*e”

where

and where

(E=zp°)

(A1.24)

¥ ey (AI1.25)

(positive energy solutions),

(negative energy solutions),

+m
wHp) =- B | - E2
Erm | )
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ol?) (p) satisfy

(#"-— eVim) () =0
B@@)(#-2%m) =0

w™T (p) wT(P)

i

26474

| S

5O (2) w2() = 2m8Me

o -

4
5ot o *0)
ey wo( (E) wﬁ (-PJ = 2m J“rg ;

Projection operator for positive energy solutions,

Ay () = (m-if)= 3 w®)a%0) = Awl?

! 2m

Projection operator for negative energy solutions,

. 4 _ A0 ]F
) = (maip) =3 0 () 370 =|:2—m.
T=3
kgual=time commutator for Dirac fields,
WV ‘ - 1 y? 23 -
[Yolx), Bpe) ], =007 8%0-%) £,

[, vFx)] | 53 (x.x')5 |
ﬁ t =t/ o otﬁ

(A1.27)

(A1.28)

(AI.29)

(AI.30)

(AI.31)
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(e) ©Pree massive vector field.

Field equation:

(m*-0) ¢"x) = o,

i (h =0,
a,.;.gb ‘C?f-) = 10 )
Plane wave solution,
v R
o ) = @ * ef (k)
kp EF (€) = 0
-+ 3 ¢
> ¥ (k,a) g,k = g“, 3 iy
N , m?
Qccasionally, this is loosely written as
- () (r) Rp Kk
v g yl
21 Eu (e €,V () = g+ =

T

..3) ‘

gl (k,N) Ep (R,7) =8)p « (A, 7 = 1,2,3)

(d) Field equation for freec massive spin two particles.

Equation of motion:

(AI.32)

(AI.33)

(AT3Y)

(A1.35)

(A1.36)

(A1.37)



(m3-0 ) g" (=)

1
o

at 4, (x) =0 ,
‘ﬂw 2]} o= ¢>v‘u(x) .
fur 3 ma
Plane wave solution
) = e 0e) &
£, €M7 () = g , (A139)
EN &) = € (r)
e 9uy = 0.
sy B=1ye.005 5 are states of polarization (AT1.40)

Wy il
£ (k,x) 5}.4? (R,8) = cs;(P i
and
z‘a‘ Ky Ky
E Ej 5 1 -
1 (R,x) AP (R,x) 8 5 3

where

Ky - 1 gk K Y
o LA b T 50 A6
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wa? satisfies the usual properties of projection operators,

gy B - G - (AI.42)
)\.f Tx Tx

L. Normalization convention.

The states are normalized covariantly,

CKIE> = 2)° (am)® 53 (21h) - (AL.43)
Further,
A -y [Paw] (AL.Lk)
7
so that ,
e-—LP.cL Alz) e PPa - Alx+a)

(AI.45)
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APPENDIX II

Notation for SU‘2! Clebsch-Gordan Coefficients:

We use the Condon-Shortley phase convention.

Application to isotopic spin : Simple examples

[Ia,I}] = €54 [, v,4, %

I [(1L,Iz) = J(I-F-rz)(l'i: I,t1)

Lrb | TE|xk> = iglik

> 2 - L ! it

12y 3

1., Tgedy

(ATI.1)

(AI1.2)

(AII.3)

(AII.N)

(AII.5)

(A11.6)

(AI1.7)
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(%= : +/—§- [Tl imy (AII.8)
[AE Ao laed > (AII.9)
12,2 = |[»*> |nt> =)
xH I3 nv> = ;
12,1> = ?Li $IRSS[x+> + [x+D lm)}
<xe | 13 (x0) = ;
2y = L {1nd1nt> 4200 59> 4 1y 1n5 ]
&=l 13 x=D=-1 :
1y = & § Iy xep + [n8) 157>
<1+l I+I&O> = fi)
12,2 = [x> x> , >(,a.11.1o)

el Ttl=-2 =17
LD = & x| a) = [z x+
<n°jI'lJt+>=\/T). {_{ }

| ¥

|x+7 | 7= = |2 lvt+>}
Al T Ia = T ;

/
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% ® Yo
Gt 13|ty =+t \
(11D = ek
< | 2 ko) = - 1 ¥
1o ) = jﬂ |[K*D 1K +]KkOIK*> §;
<K+' o lk°> =
|10y Jic®D [k

CRlIT [k*x= 1 g

\ (AIT.11)

1,0y = [F {Ikeolksy=Iklkry §
g
I ® Y2
|32,30) = 174> [k*> w
|32, 12 ) = E |7eD [K*> + \/-3—— FASIISH I

|3/z,"/2>=\Fa‘- Iw->1k+>+f-§? [ToDIkoD> |
|32, =32 = |n-D |ke>

|, > == [5 12 (k> + 2 [ze> ko>

|-y = B x> lked =\ I [kt )

(AI1.12)
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3. Isospin erossing matrices:

AR —> KX
(0) ' : (0)
Mt 1/3 1 5/3 Mg
Mt (2) B < Yo Msw
Mt(o), Mt(l), Mt(2) are t=channel isospin amplitudes, and MB(O),

MB(I), Ms(z) are s-channel amplitudes.

_<N — xN
M f/ 3 = 43 M)
— M (3/2) ) (AII- lh')
S

and

gl s 263 msU4)
B - ) . (AII.15)
M, Yy -2 MSE/zJ



-l

S5~

L. P, C. T transformation properties of Dirac bilinears:
IABLE AIIA
P c T
¥ () P¥(-%, 1) RNy y3y! (% -1)
1 i &
v vTEz,1)A v r? Vy'ly3
'\T& () “\‘U&(-;c) ﬁ(’*ft) w&("f?&,‘b) -\?.&(_*J Yo () '\7:‘ (§J_tJ1ﬁ(£J_t)
-&,ﬁt-a,t)zi%(-ﬁ,ﬂ =4 {y; 9}_;&1"" Y (%-t)
W ()T Y0l -1 W (x) 7 ¥, ()
AVl 2A) Y Vol 4) L V(2 )Y O Y (2t 1)
ié-('ijt)ﬂ‘ b& Vol 51'&) = @,&.( E)-t)d' LJ ‘ﬂ(’-sft)
T () 1Y Yy ()] -V 6 VY (%)
R O W (2.) Yyl 1) & BV, (2,)
|
Tz ) r Ty Wil t) V%)YV (3, 4)

U y3 g P Ya (%)

1V (®)YS W ()

¥ Q,,(" 2,t)y3y° V%t

-V VoY S vyl

V) ¥ Sy Y ()

v '\T’a(“—)b’ g Y, (%)

A Va(%,7t) ¥3 ¢ 0 Y[ 1)

V(xS (2,4)
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APPENDIX III

1. Reduection Formulae.
(x-;! scatteg;ggg

Fig, AIII

Pys Pys P3y P 8re four-moments. a, B, Y, & = 1, 2, 3 are
charge indices.

5= (heb)® 2 < ()
b e we(B-B)" = & (BB

(AIII.1)
U= =- (PT-P4)2= - (]?z—-}’a)z ;

2
S+t+U = —(P11+P22+ P3='+P4") = 4My
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S-matrix:
i (AIII.Z)
Gl LR I TR DR Sl O

our

e fdu aty € W B g (ntay) IEE) (a1IL3)
(4°%(%) ¢ 803)) [2*(£)D,

- IJXJ/S“ & fd475 d4,} d4z d_41} e.vﬁ‘}z—bé?}’-bé?*bﬁfz (AIII-'—F)

(m2 D) (m>8y) (m% 09 )im% 8z) <o 7(¢ Iw) ° 00 ¢413) $%(z) 10D
where .

T (¢%s) #26¢) $8(3) p%(2))

@) g0 (x)pA(3) $%(2) , 4 B° >R P rz’, (AIII.5)

po(x) @Y (v) pB(3) §%(2) , § R° D B> Hop 20, (AIII.6)

and so on,

R (8% () ¢P1p)) = -i8 (x23°) [ ¢7(x),6%4) ] - (AIII.7)



~157=-

2. Lehmann spectral ;egresentation for two point functions.

For scalar interpolating fields, the twe point funetion

4 (x) = T {p() g f 10> (AIII.8)

satisfies the spectral representation

[=~]
‘(%) = 2 L 5(MEm?) +(M2)§ 4 [n|m?
s fp 4 3 Gk } F( e F (AII1.9)

where 4. is the free-field propagator and &(¥°) > o.

In momentum space,

c'(M2)dME (AIII.10)
2
)bz.;-M - LE

AL (D) = +J

Pl_i_mz
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