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CHAPTER 1 INTRODUCTION 

1.1 Bearing Estimation using a Phased Array 

There are many applications for systems that can determine 

the direction from which a signal is being received, 

particularly in the fields of radio (1]-(7]  and sonar (1], 

(8], [9]. 	If the bearing is measured from different 

locations, the position of the transmitter can be 

estimated using triangulation. 

The task of finding the bearing, and possibly power, of a 

received signal is known as bearing estimation or 

direction finding. 	The simplest technique is to use a 

single highly directional sensor which is rotated 

mechanically to explore different bearings. 

However, an alternative approach, and the one of interest 

here, is to use an array of several sensors, which are 

often arranged in a straight line or around the 

circumference of a circle (10]. 	If the distances between 

the sensors are comparable with the wavelength of the 

signal being received, the bearing can be computed from 

the phase shifts between the signals from different 

sensors. 	The work reported in this thesis concerns the 



effects of errors in the sensor positions on this process. 

The basic principle of bearing estimation is illustrated 

in Figure 1.1, which shows an array of five sensors in a 

straight line with a spacing of half a wavelength between 

adjacent sensors. 	The array is receiving a single 

sinusoidal plane wave transmission with a bearing of 

approximately 13 degrees and the diagram shows the 

wavefronts (peaks) passing over the sensors. 

The wavefronts arrive at sensor 1 first then pass over 

each of the other sensors in turn and the output signals 

from the sensors are therefore time-delayed, or 

phase-shifted, versions of each other. 	Since the phase 

angle at the transmitter is unknown, the signal from 

sensor 1 is arbitrarily chosen to act as a reference and 

the phases at the other sensors are measured with respect 

to sensor 1 as illustrated. 

It should be clear that the phase shifts depend on the 

bearing of the signal. 	In particular, if the wavefronts 

were parallel with the line of the array, the sensor 

outputs would all be identical and there would be no phase 

differences. 

Inthe example illustrated, it would be straightforward to 

work backwards from the measured phase angles to the- 
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bearing of the signal using trigonometry. 	In practice, 

however, the following factors tend to complicate the 

situation. 

In view of the plane wave assumption, individual cycles of 

the waveform are indistinguishable and the observed phase 

angles are all folded into the range -n to TI radians. 

For example, 5n,2  would be measured as 172, any complete 

cycles of 217 radians being lost. 	It follows that the 

phase difference observed between a particular pair of 

sensors can often be explained by bearings other than the 

true one. 	Bearing estimation algorithms resolve these 

ambiguities by combining the information from all of the 

pairs of sensors in the array. 

Another problem is noise, which may be received with the 

signal or generated in the receivers themselves. 	Noise 

corrupts the measured phase angles, causing errors in the 

bearing estimation. 	It is common practice to record a 

large number of samples from each sensor then apply an 

averaging process in an attempt to reduce the effects of 

noise. 

Further complications arise when there is more than one 

signal present. 	In this case, the output from each 

sensor is a sum of sinusoids with different phase angles. 

Even in situations where only one signal is expected, the 
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desired signal may be accompanied by reflections from the 

atmosphere or the surrounding terrain, producing an effect 

known as multipath [Ill-(151. 	It is very difficult to 

separate the direct and reflected signals if there is a 

constant phase relationship between them and this is a 

severe practical problem in many applications. 

Bearing estimation is essentially a form of spectral 

analysis which operates in a spatial domain rather than 

the more common frequency domain (16). 	In time series 

analysis, the aim is to produce a spectrum of power 

against frequency. 	Similarly, bearing estimation 

algorithms generate a spectrum of power against bearing. 

Peaks in the spectrum are assumed to indicate signals 

which are being received, as illustrated in Figure 1.2. 

Most bearing estimation techniques are closely related to 

algorithms used for time series analysis, and methods such 

as the Fourier transform (171-(193,  autoregressive 

analysis [171-[20], the minimum energy method [17], [18] 

(21] , and eigenvector methods [11], [17] , [18], [22] , [23] 

have all been adapted for use in bearing estimation [16]. 
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1.2 Research Topics in Bearing Estimation 

In view of the close relationship between bearing 

estimation and time series analysis, it is not surprising 

that research topics in the two fields tend to be fairly 

similar. 	In both areas, there are a number of algorithms 

which perform the same task with different compromises 

between performance, computational cost, and robustness. 

Researchers have devoted themselves to understanding the 

basic properties of the algorithms, comparing the 

techniques with each other, and modifiying them so as to 

cope better with practical problems such as high noise 

levels. 

Some material has been published clarifying the link 

between bearing estimation and time series analysis and 

presenting a common methodology for the various techniques 

[16]. 	The algorithms most commonly discussed are 

conventional beamforming (12], (16], (24] - (27], minimum 

energy (sometimes referred to as maximum likelihood) [12], 

(16], (24] - [26], (28] - (34], autoregressive analysis 

(linear prediction) [121, [161, (24], [28] , (35] , [36] 

eigenvector methods (particularly MUSIC) [11], (161, [22] 

[25] - (27], (29], [37] - [43], and maximum entropy (16], 

(28)-(32] 
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One of the most important properties of a bearing 

estimation algorithm is its resolution, which is the 

ability of the technique to distinguish two signals with 

similar bearings and produce two distinct peaks in the 

bearing spectrum. 	A number of authors have compared the 

resolution properties of different techniques (12], 

(241-[271, (29],  (301,  (37],  [441. 	Some researchers have 

produced super-resolution algorithms which are claimed to 

have exceptionally good resolution properties [30], [37], 

[45] 

Some effort has been devoted to improving the performance 

of the algorithms at poor signal to noise ratios [45] - (48] 

and a great deal of research has been aimed at developing 

algorithms which cope with the highly correlated signals 

encountered when inultipath is present (11], [13-15], 

[49] - [59]. 	There has also been work on the synthesis of 

optimal array geometries (60]-[62]  and the development of 

bearing estimation algorithms with low computational 

requirements (63] - (65]. 	Some authors have described 

completely new algorithms, such as ESPRIT [66], [67]. 

One area which appears to have received little attention 

is the effect of errors in the positions of the sensors. 

Since the phase difference between two sensors is 

determined by both the bearing of the signal and positions 

of the sensors, errors in the positions cause errors in 



the phase measurement, which in turn lead to errors in the 

bearing spectrum. 

The study of sensor positioning errors was selected as the 

main area for the research described in this thesis and 

the precise aims of this work are discussed in the next 

section. 	While the thesis was being prepared, a number 

of references on the same topic as Chapter 4 were 

discovered (49], (68] - (81]. 	Indeed, the subject appears 

to be becoming quite popular as evidenced by the number of 

papers on array calibration algorithms presented at the 

International Conference on Acoustics, Speech, and Signal 

Processing in 1988 [49], [68] - [70]. 

1.3 Scope of Thesis 

The work presented in this thesis concerns the sensitivity 

of phased array bearing estimation systems to errors in 

the positions of the sensors. 	The research is 

specifically aimed at portable radio direction finding 

systems operating at narrow aperture in the HF frequency 

band (i.e. 3MHz to 30MHz). 	The main application for such 

systems is the interception of radio transmissions in a 

battlefield environment. 	It is assumed that the 

transmitters are within approximately 60 miles of the 
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direction finding array, meaning that propagation is 

entirely by ground wave [82], (83] and an azimuth-only 

system is sufficient. 

Within the HF band, frequencies of between 6MHz and 10MHz 

are particularly common, resulting in wavelengths of 

between 30 and 50 metres. 	At these frequencies, a 

direction finding array with a spacing of, say, half a 

wavelength between adjacent sensors is clearly too large 

for all of the sensors to be mounted on a common 

structure. 	The result is that the sensors must be 

positioned individually and small errors in the positions 

of the sensors are likely to occur. 

The research is divided into two main sections, the first 

of which aims to produce theoretical expressions relating 

factors such as the average error in an estimated bearing 

to the tolerance on the sensor positions and this is 

repeated for various bearing estimation algorithms. 	The 

second objective is to develop a calibration procedure to 

improve the performance of the algorithms when sensor 

positioning errors are present. 

The analysis of the effects of the errors is approached by 

considering the X and Y coordinates of the sensor 

positions to be normally-distributed random variables. 

The mean of each variable is the correct value of the 
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corresponding coordinate, while the (very small) variance 

expresses the magnitude of the errors likely to be 

produced when setting up the array. 

Having made this definition, all of the quantities which 

are influenced by the sensor positions become random 

variables with means and variances determined by the 

variance of the sensor positions. 	Thus the analysis 

proceeds by observing the way in which this variance 

propagates through the bearing estimation algorithms. 

The algebra required to do this is not straightforward and 

a number of approximations are required to make the 

problem manageable. 	However, computer simulations 

confirm the theoretical results over a range of variances. 

The second piece of work develops a calibration algorithm 

to compensate for sensor positioning errors. 	The 

algorithm detects and measures errors in the sensor 

positions by analyzing the sensor outputs while signals 

with known bearings are being received. 	Clearly, this 

limits the application of the method to situations where 

it is practical to provide such signals. 

The algorithm uses the idea of triangulation in a novel 

way. 	Rather than using two or more direction finding 

arrays to locate the position of a single transmitter, two 
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or more transmitters are used to estimate the positions of 

the sensors in a single direction finding array. 	Once 

the true sensor positions have been discovered in this 

way, they can be taken into account subsequently when 

performing bearing estimation on signals with unknown 

bearings. 

1.4 Layout of Thesis 

Chapter 2 presents a detailed mathematical description of 

a number of bearing estimation techniques, the aim being 

to establish the concepts and notation required for the 

original work described in the later chapters. 	The 

discussion concentrates on the MUSIC algorithm (22], 

although the conventional beamforming and minimum energy 

methods are also described. 	The three techniques are 

compared using computer simulations. 

The original research analyzing the effects of sensor 

positioning errors is described in Chapter 3. 	A 

statistical model is defined in which the errors are 

characterized by the variance of the sensor positions. 

Equations are derived relating high-level parameters of 

the bearing spectrum such as the means and variances of 

the peak height and peak position to the variance in the 



13 

error model. 	This is repeated for different bearing 

estimation techniques and the results are confirmed using 

computer simulations. 

Chapter 4 presents the original work on the array 

calibration algorithm. 	Using concepts from the MUSIC 

technique described in Chapter 2, a cost function is 

defined which expresses the error between the (unknown) 

true sensor positions and the ones assumed in the bearing 

estimation process. 	The calibration algorithm attempts 

to discover the true positions by iteratively updating a 

set of estimated positions in a way which minimizes the 

cost function. 	Computer simulations confirm the 

effectiveness of the approach. 

Chapter 5 presents conclusions on the material which has 

been covered. 	A number of suggestions for further 

research are included. 
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CHAPTER 2 BEARING ESTIMATION TECHNIQUES 

2.1 Introduction 

This chapter provides the background material for the 

original research presented in Chapters 3 and 4. The 

account is based on the definitive papers published by 

Johnson [16] and Schmidt [11], [22]. 

The chapter is broadly divided into three parts, the first 

of which develops a data model to describe the samples, or 

snapshots, obtained from an array of sensors. 	The 

discussion starts by introducing notation for the 

positions of the sensors, the bearings and frequencies of 

the signals being received, and the sampling rate and then 

an expression is derived for the outputs from the sensors 

as functions of time. 	This is expressed in matrix 

notation and a number of algebraic properties are 

highlighted. 

The second part of the chapter considers the problem of 

bearing estimation, which involves recovering the bearings 

of the signals from the sequence of samples implied by the 

data model. 	The covariance matrix of the sensor outputs 

is introduced and its algebraic properties are considered 
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in some detail. 	In particular, an analysis of the 

eigenvalues and eigenvectors of the covariance matrix 

leads to a discussion of signal and noise subspaces and a 

derivation of the MUSIC technique for bearing 

estimation. 	The conventional beamforming and minimum 

energy methods are also described. 

The third part of the chapter presents a number of bearing 

spectra produced by a computer simulation system, the aim 

being to introduce the simulation scenario used in 

Chapters 3 and 4. 	The results in this chapter merely 

confirm well-known basic properties of the MUSIC, 

conventional beamforming, and minimum energy methods. 

2.2 Sensor Positions 

In Figure 2.1, an array of N omni-directional sensors is 

receiving signals from different directions. 	The index n 

always lies in the range 1 to N and can thus be used to 

refer to any sensor in the array. 

The processing of the sensor outputs is assumed to be 

narrowband with a nominal operating frequenôy of Wc 

radians per second and the sensor positions are specified 

using a Cartesian coordinate scheme in which the units are 
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wavelengths at this frequency. 	The use of this 

convention rather than units of distance provides 

convenient normalization and accommodates the fact that 

the apparent array size depends on frequency. 

All of the sensors lie in the same horizontal plane and 

the position of sensor n within this plane is described by 

the vector tin,  which expresses the position relative to 

the origin. 	The origin is defined to be the position of 

sensor 1. 

= 9 
	

(2.1) 

The vector Un  actually describes the intended position of 

sensor n, which may be slightly different from its true 

position when the array is set up. 	Sensor positioning 

errors are the subject of the original research described 

in Chapters 3 and 4. 	This chapter, however, follows the 

normal convention of assuming that there are no sensor 

positioning errors present. 	Under this assumption, the 

true sensor positions are equal to the intended ones and 

are therefore known precisely. 
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2.3 Received Signals 

Returning to Figure 2.1, the array of N sensors is 

receiving a total of M signals. 	Since the array can 

resolve at most N - 1 signals (8],  it is assumed that the 

number of signals is less than the number of sensors. 

M < N 
	

(2.2) 

The signal index m lies in the range 1 to M. 	All of the 

received signals are plane waves (i.e. sinusoids) and It 

is assumed that the transmitters are sufficiently distant 

for the wavefronts to be considered straight and parallel 

over the area covered by the array. 	The bearing of 

signal m is therefore the same from each sensor and is 

denoted by em. 	The unit vector Zm  points towards the 

transmitter and the direction of propagation is therefore 

Although the data model involves the bearing em,  it does 

not include the distance from the array to the 

transmitter. 	Instead, the state of the transmitter is 

described by a phasor am(k),  which represents the signal 

that would be observed at the origin of the sensor 

coordinate system. 	k is the sample index, which ranges 

from 1 to K and am(k)  is defined as follows. 
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Wm 
am(k) = Amexp j(27T(k - 1)— + 	 (2.3) 

(4 

Am, Wm, and am  are the amplitude, frequency and phase 

angle of signal m, U5  is the sampling frequency, and j is 

the square root of -1. 	Since the system is narrowband, 

all of the signals should ideally have the same frequency 

'• 	However, sinusoids with identical frequencies would 

be mutually correlated since the same phase relationships 

would persist throughout the sampling period. 	In 

practice, received signals usually drift with respect to 

each other over a period of time and this phenomenon can 

be modelled by allowing each signal to have a slightly 

different frequency. 

W1 = "2 	 WMWc 
	 (2.4) 

The bearing estimation techniques described in this 

chapter assume that the signals are uncorrelated. 	Sets 

of two or more mutually correlated signals are encountered 

in practice when problems such as multipath are present 

and considerable research effort has been directed towards 

modifying the techniques so as to cope with this situation 

(11], (13)-(15], (50], (51]. 	The problem will not, 

however, be addressed here. 
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Since the sensor positions are specified in terms of the 

ideal operating frequency w c , the array size is distorted 

slightly for signals at other frequencies. 	It is 

assumed, however, that this effect is too small to be 

significant and that the apparent shifts in the sensor 

positions are much smaller than those caused by genuine 

sensor positioning errors. 

2.4 Signal Vectors 

So far, the discussion has shown that the signal observed 

at the origin due to transmitter m can be represented by 

the phasor am(k). 	Since the wavefronts generally arrive 

at a particular sensor some time before or after passing 

over the origin, the signals observed by the sensors are 

time-shifted versions of a(k). 	In view of the plane 

wave assumption, individual cycles of am(k)  cannot be 

distinguished and the time delays can therefore be 

expressed as phase shifts. 

In Figure 2.2, Cnm  is the distance from the origin to 

sensor n along the axis of propagation of signal m and it 

is this distance which determines the phase shift between 

the origin and the sensor. 	Stated mathematically, inm  is 

the length of the component of the sensor position u1. 
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along the bearing of the transmitter Zm  and can be 

calculated as the scalar product of the two vectors. 

Enm = nm 
	 (2.5) 

The phase shift from the origin to the position of sensor 

fl is 4nm  radians. 	Since the distance Enm  is measured in 

wavelengths, it can be converted to a phase angle by 

multiplying by 2ir. 

= 
	

(2.6) 

The phasor describing the signal observed bysensor n is 

denoted by snm(k)  and is equal to am(k)  with a phase shift 

Of tPnm applied. 	An expression for snm(k)  is found by 

modifying (2.3) to include the new phase term. 

Wm  
snm(c) = Amexpjj(2n(k - 1) 	+ 	+ 

 W s 	I I. 

Wm 
= exp(jq'nm)Amexp j(2ii(k - 1)— + 

= nmam(c) 	 (2.7) 

where 

qnm = exp(jnm} 	 (2.8) 
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The phasor q is a complex number with unit magnitude and 

an argument equal to 4nm• 	It should be noted that 

contains less information than '1'nm  since any complete 

cycles of 2rr radians in nm  are lost in the process of 

evaluating (2.8). 

Since sensor 1 is always positioned at the origin, the 

signal observed by this sensor is am(k)  without any phase 

shift and the following rules apply to sensor 1 for any 

signal in. 

1m = 0 	 (2.9) 

1m = 0 	 (2.10) 

1m = 1 	 (2.11) 

sim(k) = a(k) 	 (2.12) 

Equations (2.8), (2.11), and (2.12) can be expressed for 

all N sensors using the following matrix notation. 

s(k) = mam(c) 
	

(2.13) 

where 

= [a(k) S2m(k) 53m(k) 	sNm (k)]T  

(2.14) 

= 	q2jn q3m 	qNm 	 (2.15) 
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The column vector qm  is known as the signal vector for 

signal in and this vector completely characterizes the 

response of the array to a signal from the direction zin. 

If two different bearings produce identical signal vectors 

then transmissions from those directions cannot be 

distinguished. 	This is illustrated in Figure 2.3 using a 

linear array, which is a common configuration in which the 

sensors are placed in a straight line with equal spacing 

between adjacent sensors. 	An array of this type produces 

identical signal vectors for the bearings e m  and n - e. 

2.5 The Data Model 

The vector s(k)  only accounts for the contribution of 

transmission in to the data obtained from the array. 	Now, 

it is generally accepted that the principle of 

superposition applies to all common propagation media, 

such as those encountered in radio and sonar [11]. 	The 

sensor outputs are therefore obtained by summing s(k) 

over the M transmissions. 	A noise term is included to 

model receiver noise. 

s(k) = .s(k) + w(k) = mlmam 
	

+ w(k) 	

(2.16) 
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where 

s(k) = [s1(k) s2(k) ... 	sN(k)JT 	 (2.17) 

w(k) = [w1(k) w2(k) ... 	wN(k)JT 	 (2.18) 

The complex number sn(k)  is the kth  sample from sensor n 

and the column vector s(k) contains the set of samples 

obtained simultaneously from the N sensors. 	s(k) is 

commonly referred to as a snapshot. 

w(k) is a sample of a complex Gaussian noise process with 

a mean of zero and a variance of crw2 . 	The noise component 

from a particular sensor is uncorrelated with the noise 

from other sensors and the signals being received. 	The 

properties of the noise are considered later in more 

detail during the discussion on covariance matrices. 

Equation (2.16) can be expressed in matrix form as follows. 

s(k) = Ha(k) + w(k) 
	

(2.19) 

where 

=gi 	2 	..- 	MJ 
	

(2.20) 

a(k) = [a1(k) a2(k) 
	

aM(k)JT 
	

(2.21) 
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H is an N by M matrix which has the M signal vectors qm  as 

its columns and a(k) is a column vector containing the M 

phasors am(k)  which describe the signals observed at the 

origin. 	Equation (2.19) is the data model for the 

snapshots s(k) collected from the array. 

2.6 Properties of the Signal Vectors 

The signal vectors which form the columns of H span a 

subspace within CN,  which denotes the N-dimensional vector 

space containing all column vectors with N complex 

elements. 	Since H has M columns, the dimension of the 

subspace is at most M and is normally equal to M. 	The 

rank of H, denoted by r(H), is equal to the dimension of 

this subspace. 

r(H) 4 M 
	

(2.22) 

The rank is less than M if there is any linear dependence 

within the set of signal vectors. 	For example, a linear 

array produces identical signal vectors for the bearings 

8m and ii - em as noted earlier. 	If transmissions were 

present from both of these directions, they would 

contribute only one dimension to the subspace instead of 

two. 	In general, it is assumed that H is full rank and 
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the effect of lower ranks is discussed later where 

appropriate. 

2.7 Covariance Matrices 

The remainder of the chapter is devoted to a study of a 

number of techniques for performing bearing estimation. 

Given the snapshots s(k) and the sensor positions 	the 

aim of the process is to deduce the bearings of the 

signals being received. 	This may be viewed as an attempt 

to recover the coefficients of the underlying data 

model. 	In particular, if the matrix H is discovered then 

the signal vectors become available, which in turn imply 

the signal bearings. 

The first step in the analysis of the snapshots is to form 

the covariance matrix R, which is defined as follows. 

R. = E[s(k)SH(k)J 
	

(2.23) 

The operator E(] denotes the expected value and the 

superscript H  indicates the Hermitian transpose. 	In 

practice, it is impossible to obtain the expected value 

precisely and R must be approximated by averaging over a 

finite number of snapshots as follows. 
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s(k)sH(k) 

k=1  

(2.24) 

Recalling the definition of the snapshot s(k) given in 

(2.19), R must depend on H, a(k), and w(k) and the precise 

relationship can be discovered by substituting the (2.19) 

into (2.23). 	Since the signals and the noise are 

uncorrelated, cross terms involving a(k) and w(k) are 

assumed to vanish. 

R = E[(Ha(k) + w(k))(Ha(k) + w(k))HJ 

= E[Ha(k)aH(k)HH + w(k)wH(k)] 

= HEEa(k)aH(k)JHH + E[w(k)wH(k)J 	 (2.25) 

The two expected values in (2.25) are the covariance 

matrices of a(k) and w(k), which are denoted by Ra  and Rw  

respectively. 

= 	+ w 	 (2.26) 

where 

= E[a(k)a11 (k)J 	 (2.27) 

= E[w(k)wH(k)] 	 (2.28) 
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The matrices Ra  and Rw  are known as the signal covariance 

matrix and the noise covariance matrix respectively. 

The next three sections make a number of deductions about 

the matrices Rw  and Ra  and the product 	 These 

observations are then combined to obtain some important 

properties of the covariance matrix R. 

2.8 Properties of the Noise Covariance Matrix 

is the covariance matrix of the vector w(k) and, in 

common with all other covariance matrices, it is Hermitian 

(i.e. R = R) (84]. 	Each element (Rw )ij expresses the 

degree of correlation between the additive noise signals 

produced by sensors i and j. 	An element (w)nn  on the 

leading diagonal is equal to the power of the noise 

component from sensor n, which is crw2  for all of the 

sensors. 	Since the noise from different sensors is 

uncorrelated, the off-diagonal elements are all equal to 

zero and Rw  is therefore a scaled identity matrix. 

(2.29) 

Substituting (2.29) into (2.26) , the data model can be 

re-written as follows. 
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= 	+ 
	

(2.30) 

Since an identity matrix is full rank (85], the rank of Rw 

is guaranteed to be equal to N provided that there is 

noise present (i.e. aw2  > 0). 

r(R) = N 
	

(2.31) 

2.9 Properties of the Signal Covariance Matrix 

As noted earlier, Ra  is the covariance matrix of the 

vector a(k) which contains the M phasors am(k). 

Like Rw,  this matrix is Hermitian. 	The elements on the 

leading diagonal of Ra  are the powers of the N signals. 

Recalling the definition of am(k)  given in (2.3), the 

power of signal m is A. 

(Ra)mm  - - m (2.32) 

An off-diagonal element (a)ij  expresses the degree of 

correlation between signals i and j. 	If the N signals 

are uncorrelated, the off-diagonal elements are all equal 

to zero and the matrix is diagonal. 	Non-zero 

off-diagonal terms indicate that some correlation is 

present and if I(R a )jjl = AA (with i 0 j) then signals i 
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and j are completely correlated. 

This can only happen if there is fixed phase relationship 

throughout the sampling period, in which case the two 

signals must have identical frequencies (i.e. Wi = Wj). 

In this case, the constant phase difference is given by 

arg((R)jj) which is equal to oj - oj. 

The rank of R a  is equal to the number of independent 

signals, which is normally M. 	If there are any 

completely correlated pairs, the rank is reduced and the 

matrix is singular. 

r(Ra) < M 
	

(2.33) 

is assumed to be full rank unless otherwise stated. 

Completely correlated signals can be caused by multipath 

[11] - [15] as illustrated in Figure 2.4. 	The direct 

signal from the transmitter is accompanied by reflections 

from the ground or other objects. 	Refraction in the 

atmosphere can produce a similar effect. 

Multipath creates a situation in which there are two or 

more sets of wavefronts arriving at the sensor array from 

different directions. 	There are time delays between the 

signals due to the differing path lengths. 	If the 

distances change significantly during the sampling period, 
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Figure 2.4 Multipath 
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the signals drift with respect to each other and are 

perceived as separate transmissions. 	If, however, the 

path lengths remain constant, the signals arriving at the 

array. are completely correlated. 

2.10 Properties of the matrix product HR aHH 

From (2.25), HRaHH is the covariance matrix of the vector 

formed by the product Ha(k) and is therefore Hermitian. 

Using the rule that the rank of a product of matrices 

cannot exceed the rank of any factor [86],  the rank of 

must be limited by the rank of H or R a , whichever is 

lowest. 	From (2.22) and (2.33), both H and Ra  have a 

rank less than or equal to M and the same limit therefore 

applies to the rank of HRaHH. 

r(HRaHH) < M 
	

(2.34) 

The rank is normally equal to M unless the rank of H is 

reduced by array geometry anomalies or Ra  fails to be full 

rank due to correlated signals. 	Since 	is an N by N 

matrix and M < N, the matrix cannot be full rank and must 

therefore be singular. 	It follows that the determinant 

of 	is equal to zero. 
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IHRaHHI = 0 	 (2.35) 

The N eigenvalues of 	are denoted by ), ... dIN in 

ascending order. 	Since the matrix is Hermitian, all of 

the eigenvalues are greater than or equal to zero (85). 

Furthermore, there must be at least one eigenvalue equal 

to zero because the matrix is singular and it follows that 

is positive semi-definite. 	The number of 

eigenvalues greater than zero is equal to the rank of the 

matrix, M. 

= 	= ... = 	= 0 	 (2.36) 

0 < N-M+1 	'N-M+2 ( •.• 	) 	 (2.37) 

2.11 Properties of the Covariance Matrix 

Like 	and HRaHH, the covariance matrix R is 

Hermitian. 	An element Rnn  on the leading diagonal is 

equal to the power of the output from sensor n, this being 

the noise power plus the total power of all of the signals 

being received. 

An off-diagonal element Rij  is the cross-correlation 

between the outputs from sensors i and j. 	These terms 

contain the phase information that is used to deduce the 
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signal bearings. The phase angle arg(R) is equal to 

the phase shift between the two sensors, 	4.'j 	- i'j, summed 

over the M signals. 

Now, the rank of a sum of matrices cannot exceed the sum 

of the ranks of the original matrices [86]. 	From (2.26), 

R is the sum of 	and Rw,  whose ranks are r(HRaHH) 	4  M 

and r(R) = N according to (2.34) 	and 	(2.31). The lowest 

limit on the rank of R occurs when r(HR aHH) = 1, in which 

case r(R) 4 N + 1. 	Notice, however, that the maximum 

possible rank is N since R is an N by N matrix. 	Thus 	the 

presence of noise usually ensures that R. is full rank. 

r(R) = N 
	

(2.38) 

The rules governing the eigenvalues of 	derived in 

the last section can be used to achieve some insight into 

the eigenvalues of R. 	The first step is to rearrange 

(2.30) so that HRaHH is isolated. 

= R - 	 (2.39) 

From (2.35), the determinant of 	is equal to zero. 

Substituting (2.39) into (2.35), the determinant of the 

matrix formed by the expression R - oI must also be equal 

to zero. 
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- oI I = 0 
	

(2.40) 

Equation (2.40) defines the noise power aw2  to be one of 

the eigenvalues of R, these being ), ... ,X!. in ascending 

order. 	From (2.39), the eigenvalues of R differ from 

those of 	by a (22]. 

Ar = )'fl  - 	 (2.41) 

Since the eigenvalues of 	are all greater than or 

equal to zero, (2.41) implies that the eigenvalues of ft 

are all greater than or equal to c. 	Furthermore, (2.40) 

states that at least one of the eigenvalues of ft is 

actually equal to c. 	Combining these two observations, 

the smallest eigenvalue of ft must be equal to c3. 

A1 = aW2 	 (2.42) 

A set of rules for the eigenvalues of ft can be obtained by 

substituting (2.41) and (2.42) into (2.36) and (2.37) 

= A2= ... = N-M = cr 	 (2.43) 

< AN-M+1 4  AN...M+2 	 AN 	 (2.44) 

From (2.43), the multiplicity of the smallest eigenvalue 

is N - H and this provides a means of determining H from 

the covariance matrix R. 	When ft is computed by averaging 
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a finite number of snapshots using (2.24), the N - M 

smallest eigenvalues form a cluster as illustrated in 

Figure 2.5 rather than being precisely equal. 	The 

diagram shows the eigenvalues of a covariance matrix 

formed from 500 snapshots using the computer simulation 

system described later in this chapter. 

It is not always straightforward to determine the number 

of eigenvalues in the cluster, particularly at poor signal 

to noise ratios or when partially correlated signals are 

present. 	No reliable method is known at present although 

statistical tests are emerging (87] - [91]. 	The problem 

has a similar flavour to that of model order determination 

in autoregressive spectral analysis [17], [18], (20), 

[92] - (94] 

In view of the relationship between the rank of 	and 

the eigenvalues of R, the estimated value of M is, at 

best, equal to the rank of 
	

Any of the problems 

discussed earlier which reduce the rank of 	cause M 

to be underestimated accordingly. 	In the following 

discussion, it is assumed that M is estimated correctly. 
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2.12 Signal and Noise Subspaces 

The N eigenvectors of R are denoted by v1, ••• 'YN' where 

Vn is the eigenvector corresponding to the eigenvalue 

ri• 	By definition, the eigenvalues and eigenvectors are 

related as follows. 

Yn = 
	

(2.45) 

The eigenvectors can be related to the data model by 

substituting (2.30) into (2.45) 

(a 	+ oI)v =NnYn= 

a!'yn = 	'n - 	)yn 	 (2.46) 

From (2.43), ) - cr,3 is equal to zero for the first N - M 

eigenvalues since these eigenvalues are all equal to c. 

= 0, 	1 	fl 4 N - M 	 (2.47) 

Equation (2.47) states that the first N - M eigenvectors 

of R are orthogonal to the conjugates of the rows of 

Since 	is Hermitian, the conjugate of the 

nth row is equal to the nth column and it follows that the 

first N - M eigenvectors of R are also orthogonal to the 

columns of 
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Since the columns of 	are linear combinations of the 

columns of H, they must lie in the subspace spanned by the 

columns of H. 	Assuming that the two matrices have the 

same rank, the columns of 	must also span that 

subspace. 	Since the first N - M eigenvectors of R are 

orthogonal to the columns of HR HH,  they must be 

orthogonal to any vector in the subspace, including the 

columns of H. 

HHV  = 0, 	1 	n 	N - M 	 (2.48) 

As discussed earlier, bearing estimation is essentially an 

attempt to recover the signal vectors im  which form the 

columns of H. 	The significance of (2.48) is that it 

relates the eigenvectors of the covariance matrix obtained 

from the snapshots s(k) to the unknown signal vectors. 

Since the N eigenvectors of R are orthogonal to each 

other, they must span the whole of CN. 	Now, the 

discussion has shown that the signal vectors m  are 

orthogonal to the subspace spanned by the first N - M 

eigenvectors. 	The signal vectors must therefore lie in 

the M-dimensional subspace spanned by the remaining M 

eigenvectors vN.M+1, •• 'YN' which is referred to as the 

signal subspace. 	The orthogonal subspace spanned by the 

first N - M eigenvectors vi, ... ,VN....M is the noise 

subspace and has dimension N - M. 
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2.13 The MUSIC Algorithm 

Schmidt's MUSIC (Multiple Signal Classification) algorithm 

[111, (16], (22] is a bearing estimation technique which 

exploits the concept of signal and noise subspaces. 	The 

algorithm generates signal vectors for a range of bearings 

and tests each one to determine whether or not it lies in 

the signal subspace. 	If the signal vector for a 

particular bearing lies entirely in the signal subspace, 

it is assumed that a transmission is being received from 

that direction. 

The signal vector for bearing e is c(e), which is 

calculated in the same way as the unknown signal vectors 

in the data model, i.e. q(e) = m 	In Figure 2.6, p(e) 

and p(e)  are the projections of q(e) onto the signal and 

noise subspaces respectively. 	The axes have been omitted 

in order to simplify the diagram. 

If q(e) lies entirely in the signal subspace then the 

length (squared) of the projection onto the noise 

subspace, denoted by lIp(e)1I 2 , is equal to zero. 

Meanwhile, the length (squared) of the projection onto the 

signal subspace, denoted by 11p5(e)112,  reaches a maximum, 

being equal to II(e)II 2 . 	If e is swept over a range of 

directions, the bearings of the signals being received are 

marked by peaks in 11p5(e)112  and notches in Hw(e)I12. 
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Figure 2.6 Projections onto signal and noise subspaces 
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Consider the case where q(e) lies almost entirely in the 

signal subspace. 	If S is varied so that (e) moves even 

closer to the subspace, lIp(e)tI2  decreases more rapidly 

than 11p5(e)112  increases. 	This happens because IIp(e)I1 2  

is determined by the cosine of the angle between q(e) and 

the noise subspace whereas IIp(e)I12  depends on the sine. 

The gradient of the cosine function reaches its maximum in 

this area. 

It follows that the notches in IIp(e)tI2  are sharper than 

the peaks in Ip5(e)112,  making  IIp(e)II 2  preferable when 

forming a bearing spectrum. 	Thus a signal vector is 

actually tested by measuring its orthogonality to the 

noise subspace rather than the extent to which it lies in 

the signal subspace. 	Another reason for this choice is 

that the noise subspace generally has a higher dimension, 

provided that the number of signals being received is 

small compared with the number of sensors. 

The projection Pw()'  which is the component of q(e) in 

the noise subspace, is calculated as follows [85]. 

= yw(yywY ly Jg(5) 	 (2.49) 

where 

Yw = C v1  Y2 •• !N-M 3 	 (2.50) 
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Yw is an N by N - M matrix which has the N - M noise 

subspace eigenvectors as its columns. 	Since the 

eigenvectors are vectors of unit length which are all 

orthogonal to each other, the columns of V. form an 

orthonormal set. 

YYw = ( YYw ) 	= 
	

(2.51) 

The expression for the projection pw(e)  can be simplified 

by substituting (2.51) into (2.49) 

= YwY(e) 
	

(2.52) 

The length of the projection, IIp(e)II 2 , is the inner 

product of p(e)  and its Hermitian transpose. 

It(e)II 2  = p(e)p(e) 
	

(2.53) 

Substituting (2.52) into (2.53) and-simplifying the result 

using (2.51), the final expression for fIp(e)1I 2  is as 

follows. 

IIp(e)II 2  = H(6)yyHyyH(0) 

= H(e)ywy(e) 	 (2.54) 

As explained earlier, Ilp(e)II 2  reaches a minimum whenever 

e is equal to the bearing of one of the signals being 
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received. 	It is conventional, however, for the bearings 

of the signals to be indicated by peaks in the spectrum 

rather than notches and this is achieved by defining the 

MUSIC spectrum to be the reciprocal of Itp(e)II 2 . 

1 

Pmu(e) = H(e)yvH(e) 
	 (2.55) 

The bearing spectrum is generated by evaluating Pmu(e) 

over a range of closely spaced values of e. 	Pmu(e) is 

always real and is theoretically equal to infinity when e 

equals one of the signal bearings em. 

To summarize, the first step in the MUSIC algorithm is to 

gather the snapshots s(k) and form the covariance matrix 

R. 	The eigenvalues ) and eigenvectors v of R are 

calculated and the number of signals, M, is determined by 

inspecting the eigenvalues. 	The matrix Yw is then formed 

using the first N - M eigenvectors and the bearing 

spectrum is plotted by evaluating Pmu(e)  over a range of 

bearings. 	For each bearing, the signal vector (e) is 

calculated from the sensor positions an  and the angle e. 
Peaks in Pmu(e)  are assumed to indicate the bearings of 

the signals being received. 

The discussion has demonstrated the natural progression 

from the data model to the idea of signal and noise 
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subspaces and from there to MUSIC. 	The next two sections 

describe two other techniques for bearing estimation known 

as conventional beamforming and the minimum energy 

method. 	Both of these operate on the covariance matrix R 

although the processing--is somewhat different from that 

employed in MUSIC. 	Following this, the computer 

simulation system is introduced and bearing spectra for 

all three techniques are presented. 

2.14 Conventional Beamformin 

This section describes the conventional beamforming 

technique for bearing estimation [16],  which is 

essentially a spatial Fourier transform similar in form to 

the discrete Fourier transform used in time series 

analysis (17], (18]. 	The discrete Fourier transform of 

the output from sensor n is defined as follows. 

(w) = k=1 

sn(k)exP{_5217(k - i)- Ws  
 I (2.56) 

In the spatial Fourier transform, the sequence of samples 

,s(K) obtained from one sensor at different 

times is replaced by the set of samples s1(k), ... ,SN(k) 
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collected from the N sensors at the same time. 

The term 2ir(k - 1)w/w 5  in (2.56) is the phase angle of a 

sinusoid with frequency w observed at the time of the kth 

sample and can be regarded as a phase shift due to the 

time which has elapsed since the first sample was taken. 

In the spatial Fourier transform, the term is replaced by 

(e), which is the phase shift from the position of the 

reference sensor (sensor 1) to that of sensor n. 	This is 

defined in the same way as the phase shifts used in the 

data model, i.e. n(m) = nxn' 	Combining these 

observations, the definition of the spatial Fourier 

transform is as follows. 

S(e) 

=

sn(k)exp(jn(e)) 	 (2.57) 

Noting that q(e) = exp(-jq'(e)) where * denotes complex 

conjugation, (2.57) can be expressed in matrix form. 

S(e) = H(e)s(k) 	 (2.58) 

The conventional beaxnforming bearing spectrum is obtained 

by taking the expected value of IS(e)12. 
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Pbf(e) = ECIS(e)1 2 3 

= E[qH(e)s(k)sH(k)q(e)J 

= H (6)E[s(k)sH (k)3(e) 	 (2.59) 

Notice that (2.59) contains the expected value 

ECs(k)SH(k)J, which is the definition of the covariance 

matrix R given earlier in (2.23). 	This observation 

allows (2.59) to be re-written as follows. 

Pbf(e) = 
	

(2.60) 

The bearing spectrum is generated by evaluating Pbf(e) 

over a range of values of e. It can be shown that the 

resulting spectrum has units of power [16] and this is 

confirmed by the analysis presented in Chapter 3. 

Conventional beamforming is computationally less expensive 

than MUSIC since the eigenvalues and eigenvectors of the 

covariance matrix R do not have to be computed. 	This 

reduction in cost is, however, accompanied by a reduction 

in the quality of the bearing spectrum [16], [25] and the 

simulation results at the end of the chapter confirm the 

general superiority of the MUSIC technique. 
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2.15 The Minimum Energy Method 

Like the discrete Fourier transform, conventional 

beamforming produces spectra with large sidelobes [16], 

meaning that Pbf(e)  can be significantly influenced by 

signals with bearings other than e. 	The choice of (e) 

as the steering vector in (2.60) sets the gain in the 

direction e without making any attempt to suppress signals 

being received from other directions. 

This section describes the minimum energy method [16], 

which attempts to minimize the received power subject to 

the constraint that the gain in the direction e is equal 

to 1. 	The result is that the influence of signals from 

other directions is reduced and the quality of the bearing 

spectrum is improved. 	In the minimum energy method, (e) 

is replaced with a new steering vector b(e). 	By analogy 

with the expression for Pbf(e)  given in (2.60) , the 

received power is as follows. 

= 6H(e)R(e) 
	

(2.61) 

The vector b(e), which is chosen so as to minimize Pme(e), 

can be regarded as a summation of signal vectors for 

different bearings using complex weights. 	Recalling the 

definition of the spatial Fourier transform given in 

(2.58), the product 	(e),(e) expresses the magnitude and 



51 

phase of the component of 6(e) at the bearing e. 	If the 

weighting of this component is forced to be 1, the system 

must have unit gain in the direction e and the constraint 

is therefore expressed as follows. 

	

H(e)6(e) = 1 
	

(2.62) 

The minimization of Pxne(e)  subject to this constraint is 

performed using a Lagrange multiplier (16]. 	The aim is 

to minimize the following expression, which incorporates 

both the definition of Pme(e)  given in (2.61) and the 

constraint sepcified in (2.62) 

F = 6H(e)R6(e) + $(qH(B)b(e) - 1) 
	

(2.63) 

$ is the Lagrange multiplier. 	The value of 6(e) which 

minimizes F is found by differentiating F with respect to 

6(e) and setting the derivative to zero. 	Since the 

expression contains a reference to 6H(e),  the derivative 

of F with respect to the conjugate of b(e) must also be 

considered. 	The calculus can, however, be simplified by 

treating 6(e) and its conjugate P(e) as independent 

variables [16]. 	The differentiation of F with respect to 

6(e) splits naturally into the following two parts. 

a 	a 	 a 
F = 	(6H(e)R6(e)) + 	($((e)b(e) - 1)) 

ab(e) 	a6(e) 	- 	 ab(e) 	
- 	(2.64) 
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A similar expression is obtained for the derivative with 

respect to b*(e). 	The, first differentiation in the right 

hand side of (2.64) involves the quadratic form 

6H(e)R6(e), which can be expanded as follows. 

6H(e)R6(e) = 	 (2.65) 

i=1 j=1 

The next step is to find the partial derivatives of 

H(e)R(e) with respect to the elements £(e) and 6(e). 

According to the expansion given in (2.65), this involves 

differentiating 	(e) with respect to b(e) and vice 

versa. 	These derivatives are normally considered to be 

undefined, there being no analytic function which relates 

a complex number to its conjugate (95]. 

However, since 	(e) and 6(e) are being treated as 

independent variables, the derivative of one with respect 

to the other can be assumed to be zero. 	A complex 

gradient operator whose properties support this assumption 

has been reported in the adaptive array literature 

(95]. 	The partial derivatives of 6H(e)R(e) with 

respect to 6(e) and b(e) are therefore as follows. 

C3 	
N 

(H(e)R6(e)) = 	Rhflb(e) 	 (2.66) 
a6(e) 	

h=1 
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N a 
= 	Rflhbh(e) 	 (2.67) 

ab(e) 	 h=l 

Since R is Hermitian, Rnh = 	and it follows that the 

term Rflhbh(e)  on the right hand side of (2.67) is equal to 

(Rhflb(e)) * , which is the complex conjugate of the 

corresponding term in (2.66). 	The derivatives of 

£M(e)R6(e) with respect to 	(e) and £(e) are therefore 

complex conjugates and if one of them is set to zero then 

the other is guaranteed to be zero as well. 	It is thus 

sufficient to consider only the derivative with respect to 

n ( e). 

The derivative of bH(e)Rb(e) with respect to £(e) is a 

vector containing the derivatives with respect to the 

individual elements c(e). 	Noting that the summation in 

(2.66) selects the elements R.ln, R2n, 	, RNn,which 

form the nth column of R, the derivative with respect to 

S(e) can be expressed as follows in matrix form. 

a 
(H(e)R(e)) = (bH(e)R)T = RTb*(e) 	(2.68) 

6(e)  - - 

There is a popular misconception that the right hand side 

of (2.68) should be 2RTb*(e)  by analogy with the case 

where b(e) is real and R is symmetric [95]. 	Although the 
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derivation presented here is more correct, both versions 

produce the same final answer since the superfluous factor 

of two is accommodated when solving for A. [95] 

The differentiation of $(qH(e)b(e) - 1) in (2.64) is more 

straightforward and the derivative with respect to P(e) 

is zero since the expression contains £(e) but not 

6H(e) 	The derivative with respect to b(e) is as 

follows. 

a 
- 1)) = 13q *( e ) 	 (2.69) 

ab(e) 	- 	- 	 - 

The derivative of F with respect to b(e) is found by 

substituting (2.68) and (2.69) into (2.64) and the value 

of b(e) which minimizes F and Pme(e)  is sought by setting 

the derivative to zero. 

RT6*( e ) + $q*( e ) = 9 
	

(2.70) 

Since R is Hermitian, RT = p and (2.70) can be solved 

for b(e) by conjugating both sides, pre-multiplying by 

R, and rearranging. 

S(e) = -OR 1q(e) 	 (2.71) 
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The Lagrange multiplier 9 can now be found by substituting 

(2.71) into the constraint equation (2.62) and rearranging. 

1 

	

H(e)Rl(e) 
	 (2.72) 

The following expressions for b(e) and bH(e)  are obtained 

by substituting (2.72) into (2.71). 

R 1q(e) 
S(e) = 	- - 	 (2.73) 

6H(e) = 	- 	- 	 (2.74) 

The final step in the derivation is to substitute the 

expressions for (e) and 6H(e)  obtained from (2.73) and 

(2.74) into the definition of Pme(e)  given in (2.61). 

1 

Pme(e) = H(e)Rl(e) 
	 (2.75) 

The bearing spectrum is produced by evaluating Pme(e)  over 

	

a range of values of 8. 	Like conventional beaxnforrning, 

the minimum energy method generates a spectrum which has 

units of power [16) and this is confirmed by the 

theoretical expressions derived in Chapter 3. 
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Since the inverse of the covariance matrix R has to be 

computed, the minimum energy method is more 

computationally expensive than conventional beaniforming 

although it is not as expensive as MUSIC. 	Not 

surprisingly, the minimum energy method tends to perform 

better than conventional beamforming but not as well as 

MUSIC (16], [25]. 	The remainder of this chapter compares 

the three techniques using computer simulations. 

2.16 Computer Simulation of Bearing Estimation Techniques 

A suite of computer programs was developed to allow the 

bearing estimation techniques described in this chapter to 

be evaluated over a range of operating conditions and to 

provide a means of checking the original work presented in 

Chapters 3 and 4. 	This section provides a brief 

description of the simulation system and includes a number 

of bearing spectra generated using the conventional 

beamforming, minimum energy, and MUSIC techniques. 

Features of the system which are specific to the work 

described in Chapters 3 and 4 are discussed in those 

chapters at the appropriate points. 

The programs in the simulation suite may be broadly 

divided into those which model the sampling process and 
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those which apply the bearing estimation techniques. 	The 

simulation of the sampling process takes the sensor 

positions and signal parameters as its inputs and produces 

the covariance matrix R as its output. 

The X and Y coordinates of each sensor are specified in 

wavelengths and the array is always positioned so that the 

reference sensor (sensor 1) is at the origin. 	The sensor 

positions for linear and circular arrays are generated 

automatically from parameters such as the number of 

sensors in the array and the spacing between adjacent 

- sensors. 	Arbitrary array geometries may be defined by 

specifying the sensor positions manually. 

Each of the received signals is described by specifying 

the bearing 8m  in degrees, the power A
2  in decibels, the 

initial phase angle am  in degrees, and the relative 

frequency Wm/Wc. 	As noted earlier, the frequencies must 

all be slightly different in order to ensure that the 

signals drift with respect to each other. 	Finally, the 

noise power crw2  is specified in decibels. 

The covariance matrix R is calculated by applying the data 

model developed earlier in this chapter. 	The unit 

vectors Zm  are obtained directly from the bearings em. 

The signal vectors im  are then derived by combining the 

vectors Zm  with the sensor positions iirl  using (2.5) 
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(2.6), (2.8), and (2.15). 	The matrix H is formed by 

placing the signal vectors qm  side by side as specified in 

(2.20) 

The simulation system provides two different techniques 

for calculating the covariance matrix R, the first of 

which involves averaging over a finite number of 

snapshots. 	In this case, the samping rate w/w and the 

number of snapshots K must be specified. 	From (2.19), 

the kth  snapshot s(k) is given by s(k) = Ha(k) + w(k) 

where a(k) is calculated using (2.3) and (2.21) from the 

signal frequecies m'c'  the amplitudes Am,  the phase 

angles am , the sampling rate w5 /w, and the sample number 

k. 

The elements w(k) of the noise vector w(k) are created 

using the drand48 random number generator (96] which is 

supplied with the Unix operating system. This function 

produces random-numbers with a flat distribution. 	Now, 

Wn(k) is a complex number whose real and imaginary parts 

both have a normal distribution with a mean of zero and a 

variance of cr. 	It follows that the phase angle 

arg(w(k)) has a flat distribution over the range 0 to 2ir 

while the magnitude Iw(k)I has a Rayleigh distribution 

[97] 
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The procedure for producing w(k) using a random number 

generator with a flat distribution is therefore as 

follows. 	For each noise term w(k), the drand48 function 

is called twice and the resulting values are scaled so as 

to produce two real numbers pi and P2  such that 0 4 p, < 1 

and 0 4  P2 < 1. 	Thus 2ir1 has a flat distribution over 

the range 0 to 27T while I(-ln(1 - p2)) has a Rayleigh 

distribution [98]. 	The noise term w(k) is therefore 

given by wn(k) = (cos2ir1 + jsin2TTQ1)owJ(1n(1 - 

Once the sequence of snapshots s(k) has been obtained, the 

covariance matrix R is calculated by averaging the product 

s(k)sH(k) over the K snapshots using (2.24). 

The simulation system also provides an alternative 

technique for calculating the covariance matrix in which 

the expected value E[s(k)SH(k)J is obtained directly from 

the signal parameters and sensor positions. 	In practical 

terms, this corresponds to averaging over an infinite 

number of snapshots and thus provides a way of eliminating 

the errors caused by using a finite number. 

In this case, the covariance matrix is calculated using 

(2.30), which states that R = HR  aH + cTI. From (2.32), 

each element (a)mm  on the leading diagonal of R a  is set 

to the power A 2  of the corresponding signal. Normally, 

all of the signals have different frequencies and the 
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off-diagonal element (a)hi  are all set to zero. 	If, 

however, signals h and i are specified as having the same 

frequency then (a)hi  is set to AAexp(j(cq. - 

Bearing spectra are produced by evaluating the expressions 

for Pbf( 6 ), Pme(e), and  Pmu(6)  given in (2.60), (2.75), 

and (2.55) . 	All of the spectra in this thesis cover the 

full range of bearings from 0 to 360 degrees with a 

spacing of 0.5 degrees between adjacent points. 

The matrix inversion required by the minimum energy method 

is provided using a standard Gaussian elimination 

procedure (85] while the eigenvalue decomposition for 

MUSIC is performed by an LZ algorithm [99]. 	The MUSIC 

algorithm also requires an estimate of the number of 

signals being received and this is obtained by inspecting 

the eigenvalues as discussed earlier. 	The ratio 'n+i/n 

is calculated for each value of n in the range 1 to N - . 1 

and the value of n which maximises this ratio is assumed 

to be equal to N - M, thus allowing M to be determined. 

As noted earlier, however, the estimation of M from the 

eigenvalues is somewhat unreliable, even when more 

sophisticated tests are used. 	The simulation system 

therefore allows the user to override the estimated value 

by stating the number of signals explicitly. 	All of the 

MUSIC. spectra in this thesis were produced using this 



61 

facility, although the estimated value was actually 

correct in most cases. 

For the sake of consistency, all of the simulation results 

in this chapter and Chapters 3 and 4 are based on the same 

array of sensors. 	This array, which is shown in Figure 

2.7, consists of five sensors evenly spaced around the 

circumference of a circle of radius 0.5 wavelengths with a 

sixth sensor at the centre of the circle. 

Figures 2.8(a), 2.9(a), and 2.10(a) show bearing spectra 

generated using the conventional beamforxning, minimum 

energy, and MUSIC techniques when the array was receiving 

a signal with a bearing of 18 degrees. 	The power Af of 

the signal was 20dB, its phase angle al was zero degrees, 

and its relative frequency W1/Wc  was 1. 	The noise power 

was 0dB (giving a signal to noise ratio of 20dB) and 

the covariance matrix was formed using 500 snapshots 

obtained at a sampling rate ()s/Wc  of 3.4567 snapshots per 

cycle. 

The quantity plotted vertically in each spectrum is 

10log10P(e) where P(e) is Pbf(e), Pme(e) or  Pmu(e)  as 

appropriate. 	In the case of conventional beamforining and 

minimum energy, this results in a vertical axis which is 

calibrated in power in decibels. 	It should be clear from 

the discussion earlier that MUSIC does not produce a power 
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6 

Figure 2.7 Array for computer simulations 
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Figure 2.8 Conventional beaxnforining bearing spectra 
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(a) 1O].ogP(e) 

50 

30 

10 

-10 

---1 

M-1  

5t:Ii 	-90 	0 	90 	180 
Bearing (degrees) 

(b) 101ogP(e) 

30 

10 

-10 

-180 	-90 	0 	90 
	

Ace 
Bearing (degrees) 

Figure 2.10 MUSIC bearing spectra 
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spectrum, the peak height being theoretically equal to 

infinity. 	Thus the vertical axis of the MUSIC spectrum 

is merely Pmu(8) plotted on a logarithmic scale. Marple 

[17] provides a detailed discussion of the units produced 

by various spectral estimators. 

Figures 2.8(b), 2.9(b), and 2.10(b) show the bearing 

spectra obtained when a second signal with a bearing of 45 

degrees was introduced. 	The second signal had a power A 

of 20dB, a phase angle Oc2  of zero degrees, and a relative 

frequency w2/w  of 1.001. 
	The noise and sampling 

parameters were as before. 	Notice that the MUSIC 

spectrum is the only one which contains two distinct peaks 

corresponding to the signals being received. 	This 

confirms the superior resolution properties of the MUSIC 

technique compared with conventional bearnforming and 

minimum energy [16], (2.5]. 

As noted earlier, these results are not original and are 

included only to illustrate the output from the simulation 

system. 	The application of the software to original work 

is considered in Chapters 3 and 4. 
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2.17 Suinmar 

This chapter has described a number of 

performing bearing estimation using an 

The discussion started by developing a 

snapshots obtained from the array, the 

show how the bearings of the signals w 

data. 

techniques for 

array of sensors. 

model for the 

main aim being to 

re embedded in the 

The procedure for forming a covariance matrix from the 

snapshots was outlined and a number of properties of this 

matrix were derived, particular attention being given to 

its eigenvalues and eigenvectors. 	This led naturally to 

a discussion of signal and noise subspaces and a 

derivation of MUSIC, which is a bearing estimation 

algorithm based on subspace concepts. 

This was followed by a description of the conventional 

beamforming approach to bearing estimation, which is 

essentially a spatial Fourier transform. 	The method is 

generally inferior to MUSIC, although it has the advantage 

of being less computationally expensive. 

The minimum energy method was also described. 	This is a 

bearing estimation technique which attempts to improve the 

bearing spectrum by minimizing the received power subject 

to the constraint that the gain in the direction of 
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interest is unity. 	The result is that the influence of 

signals from other directions is reduced. The technique 

lies somewhere between conventional beamforming and MUSIC 

in both performance and computational cost. 

Finally, a number of bearing spectra produced by a 

computer simulation system were presented. These 

compared the three techniques and demonstrated the 

superior resolution properties of the MUSIC algorithm. 
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CHAPTER 3 THE EFFECTS OF SENSOR POSITIONING ERRORS 

3.1 Introduction 

Setting up a direction finding array involves attempting 

to place each sensor at its intended position. 	In 

practice, it is impossible to do this with total accuracy 

and there are always small errors between the intended 

sensor positions and the true ones. 

This chapter presents an original piece of research which 

investigates the effects of such errors on the bearing 

estimation process. 	This work is a natural extension to 

the background material presented in Chapter 2. 

The analysis is based on a statistical model of the sensor 

positioning errors. 	Imagine that an array of sensors is 

set up several times and that the errors in the X and Y 

coordinates of the sensors are measured on each 

occasion. 	It is assumed that the error in each 

coordinate would be found to have a normal distribution 

with a mean of zero. 	Furthermore, all of the errors 

would have the same variance, denoted by o. 	This 

variance expresses the accuracy to which the sensors can 

be positioned. 
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The errors are therefore random variables and a particular 

attempt at setting up the array is represented by a set of 

samples of these variables. 	Sensor positioning errors 

are essentially another noise source associated with each 

sensor although they are different from receiver noise in 

that they are sampled only when the array is set up 

instead of once every snapshot. 

Figure 3.1 shows two sets of sensor positions for a linear 

array. 	The intended sensor positions define the ideal 

shape of the array while the true sensor positions show 

the result of one particular attempt at setting the array 

up. 	The true positions incorporate the sensor 

positioning errors. 

Although the snapshots from the array depend on the true 

sensor positions, the bearing estimation algorithm used to 

analyze the snapshots is normally provided with signal 

vectors based on the intended positions. 	This presents 

no problems under the usual tacit assumption that the two 

sets of positions are identical. 	However, when the 

presence of sensor positioning errors is acknowledged, it 

becomes evident that the data model assumed by the bearing 

estimation algorithm does not match the one which 

generated the snapshots. 
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Figure 3.1 True and intended sensor positions 



This chapter shows that the bearing spectrums is adversely 

affected if there are inconsistencies between the true 

sensor positions and the ones used for bearing 

estimation. 	Sensor positioning errors cause errors in 

the bearings of the peaks in the spectrum and a reduction 

in peak height. 

The imaginary experiment introduced at the start of this 

section provides a good framework within which to describe 

the goals of the work presented in this chapter. 	In the 

experiment, an array of sensors is set up several times, 

producing a new set of true sensor positions on each 

occasion. 	For each set of true positions, a sequence of 

snapshots is obtained and a bearing spectrum is formed 

using using one of the bearing estimation techniques 

described in Chapter 2. 	The signal vectors c(e) required 

by the bearing estimation algorithm are derived from the 

intended sensor positions and are the same on each 

occasion. 	The resulting spectrum is examined and values 

are noted for certain parameters, such as the height of a 

peak or the error between the bearing of the peak and the 

true bearing of the corresponding signal. 

When several sets of true sensor positions have been 

processed in this way, a mean and variance can be 

calculated for each of the parameters and these means and 

variances can be viewed as functions of the variance of 
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the sensor positions, ci. 	For example, if the experiment 

was repeated with a larger value of o, there would 

generally be larger errors in the bearing spectrum. 	Thus 

the results are statistical in nature rather than being 

restricted to a particular realization of the sensor 

positioning errors. 

The layout of the chapter is as follows. 	The next 

section introduces the new notation required to describe 

sensor positioning errors. 	Following this, the relevant 

parameters of the bearing spectrum are identified. 

Finally, expressions are derived which relate the mean and 

variance of each parameter to a2  and the results are 

confirmed using computer simulations. 

3.2 Modelling of Sensor Positioning Errors 

The main purpose of this section is to establish a frame 

of reference within which sensor positioning errors can be 

described. 	It is important to realize that the degraded 

performance of a bearing estimation algorithm in the 

presence of such errors is caused not by the errors per se 

but by the mismatch created when the errors are not taken 

into account. 
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When performing bearing estimation, the fact that the 

intended sensor positions are the ideal values of the true 

ones is a philosophical point with no physical 

significance. 	From a practical standpoint, the intended 

positions are merely estimates of the true ones. 

Indeed, this concept is taken to its natural conclusion in 

Chapter 4 by the array calibration algorithm, which 

updates the estimated sensor positions iteratively in an 

attempt to make them converge to the true ones. 	The 

intended positions are the initial estimates. 	After 

calibration, the estimated positions are used in place of 

the intended ones when performing bearing estimation, thus 

removing (or reducing) the mismatch. 

The vector u introduced in Chapter 2 represents the 

intended position of sensor n. 	The error between the 

intended position and the true one is denoted by Aun,  as 

shown in Figure 3.2. 	The X and Y components of the N 

vectors Aun  are assumed to be independent random 

variables, each of which has a normal distribution with a 

mean of zero and a variance of o. 

Since the X and Y components of Au n  have identical normal 

distributions, errors in all directions are equally likely 

to occur. 	It also follows that the length JjAu n jj has a 

Rayleigh distribution (97]. 
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The true position of sensor n relative to the true 

position of the reference sensor (sensor 1) is denoted by 

the vector tin , which is defined as follows. 

= 	- 	n + Aul 	 (3.1) 

By setting n to 1 in (3.1), it is straightforward to show 

that uj, like u1, is always a null vector. 

= 	= 0 	 (3.2) 

This is important because the displacement of the 

reference sensor from the origin in Figure 3.2 implies a 

translation of the whole array. 	However, the phase 

information obtained from the array depends only on the 

relative positions of the sensors and a translation of the 

array is therefore not observable from the snapshots. 	It 

is assumed that the sensor positioning errors are small 

enough for the plane wave assumption to remain valid over 

the entire area covered by both the true and intended 

positions. 

Figure 3.3 shows an alternative view of the array in which 

the true and intended positions of the reference sensor 

are both at the origin. 	The absolute error in the true 

position of sensor 1 has been absorbed by the other 

sensors. 	In a sense, a2  has been set to zero for the 
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reference sensor and doubled for all of the others. 

The lengths of the components of iUn  and u along the axis 

of propagation of signal m are denoted by Ae nm  and Cnm  

respectively. 	They are --calculated in the same way as 

Eflfl = 	nm 	 (3.3) 

nm = 'nm 	 (3.4) 

Using the distributive property of the scalar product 

(100), the relationship between Cflm, Aenm, and inm  can be 

obtained from (3.1). 

Cnm = £nm - 	nm + AE1m 
	 (3.5) 

Setting n to 1 in (3.5) confirms that Elm,  like elm , is 

always zero. 

Elm = 61m = 0 
	

(3.6) 

Figure 3.4(a) shows Eflm, Cnxn, Anm, and Acl, with the true 

position of the reference sensor displaced from the origin 

as in Figure 3.2. 	Figure 3.4(b) is based on the 

alternative construction from Figure 3.3 in which the true 

and intended positions of sensor 1 are both shown at the 

origin. 	Notice that Enm, Enm, Acnm, and &cim  are the 

same in both cases although. the measurements are shown at 
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different positions along the axis of transmission. 

Since the components of &un  along the X and Y axes have 

the same distribution, the component along any axis must 

have that distribution as well. 	Thus Acnm,  the component 

of Aun  along the axis of transmission of signal m, has a 

normal distribution with a mean of zero and a variance of 

The probability that Acnm  is equal to a particular value, 

say p, is obtained from the probability density function 

g(p). 	Since Acnm  is normally distributed, g() is as 

follows (97] 

1 

	1-2a2 

P21
g(p) = 	exp— I, 	-< 	 ( 3.7) 

J 

3.3 Parameters of the Bearing Spectrum 

The last section showed that the errors Ac nm  in the 

distances inm  could be characterized statistically by the 

variance o. 	The next step is to consider the effects of 

these errors on the bearing spectrum itself. 
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This section introduces a small set of parameters which 

can be used to describe a bearing spectrum generated in 

the presence of sensor positioning errors. 	Later 

sections relate the mean and variance of each parameter to 

o. . 

The analysis is restricted to the case where only one 

signal (plus sensor noise) is being received. 	Under 

these conditions, all of the bearing estimation techniques 

introduced in Chapter 2 are asymptotically unbiased [12], 

[16], (24). 	This means that the bearing spectrum would 

have a peak at the correct bearing if the expected value 

of the covariance matrix was used and there were no sensor 

positioning errors. 

When there are errors in the sensor positions, the peak is 

generally at the wrong bearing and the overall shape of 

the spectrum is changed slightly. 	Figure 3.5 shows the 

parameters used to describe these effects. 	The angle Ael 

is the error in radians between the true bearing e1 of the 

signal and the bearing e1 + Ael of the peak in the 

spectrum. 	P(e1 + e1) is the height of the peak and 

P(e1) is the height of the spectrum at the true bearing of 

the signal. 

Later sections of this chapter derive theoretical 

expressions for the means and variances of Ael and P(e1) 
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as functions of cT. 	The results obtained for Ae1 apply 

to all of the bearing estimation techniques introduced in 

Chapter 2, while in the case of P(e1), different 

expressions are produced for-the- MUSIC, conventional 

beamforming, and minimum energy methods. 

Computer simulations confirm these results and also record 

the behaviour of the peak height P(e1 + e1), which is 

arguably of more interest than P(e1). 	Although no 

theoretical expressions are obtained for the peak height, 

it is evident from the simulation results that the 

expressions for P(e1) can be used to construct bounds for 

P(e1 + 

3.4 Computer Simulation 

The simulation system includes a program which models the 

process of setting up an array of sensors several times. 

The inputs to the program are the intended sensor 

positions u, the variance a 2 , and a number which 

specifies how many times the array is to be set up. 	The 

output from the program consists of several sets - of true 

sensor positions uI.. 
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The program simulates the act of setting up the array by 

creating the sensor positioning errors Au n  using the 

random number generator. 	Recall that the X and Y 

components of Aun  both have a normal distribution with a 

mean of zero and a variance of o. 	The program can 

therefore create the sensor positioning error Au n  by 

generating a random complex number using the procedure 

described in Chapter 2 then assigning the real and 

imaginary parts of the complex number to the X and Y 

components of 	The true sensor positions u are then 

produced by combining the intended positions n  with the 

errors Aun  using (3.1). 

For each set of true sensor positions tin , a covariance 

matrix R was formed by processing the sensor positions 

together with a set of signal parameters as described in 

Chapter 2. 	Each covariance matrix was then fed to the 

bearing estimation software and bearing spectra were 

produced using the conventional beamforming, minimum 

energy, and MUSIC techniques. 	However, the signal 

vectors q(e) which appear in the expressions for Pbf(e), 

Pme(6), and  Pmu(e)  were derived from the intended sensor 

positions rather than the true ones used in forming the 

covariance matrix. 	As a result, the bearing spectra 

showed the effects of the inconsistencies between the 

intended sensor positions and the true ones. 
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All of the simulation results in this chapter are based on 

the circular array introduced in Chapter 2. 	This array 

defines the intended sensor positions. 	As an example, 

Figure 3.6 shows the result of generating 5 sets of true 

sensor positions (and hence 5 bearing spectra) with a 2  set 

to 0.001. 	The bearing spectra were produced using 

MUSIC. 	In Figure 3.6(a) there is one signal present, 

while in Figure 3.6(b) the whole process has been repeated 

using two signals. 	The signal and sampling parameters 

were identical to those used in Chapter 2 and Figure 3.6 

may therefore be compared directly with Figure 2.10. 

To recap, the first signal had a bearing of 18 degrees and 

a relative frequency of 1.0 while the second signal had a 

bearing of 45 degrees and a relative frequency of 1.001. 

Both signals had a power of 20db and an initial phase 

angle of zero degrees. 	The noise power was 0dB and the 

covariance matrix was formed using 500 snapshots obtained 

at a sampling rate of 3.4567 samples per cycle. 

Comparing Figure 3.6 with Figure 2.10, it is evident that 

the sensor positioning errors caused variations in the 

bearings of the peaks in the spectra and a general 

reduction in peak height. 	In Figure 3.6(b), notice how 

the errors considerably reduced the ability of the MUSIC 

technique to resolve the two signals. 
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Although Figure 3.6 is useful as an illustration of the 

effects of sensor positioning errors, a sample of 5 true 

arrays is too small to allow reliable statistical results 

to be obtained. 	The main simulation results for this 

chapter are based on an experiment in which 1000 sets of 

true sensor positions were generated for each value of o. 

As noted earlier, the theoretical analysis is restricted 

to the case where only one signal is present. 	In the 

simulation, the bearing of this signal was 18 degrees, its 

power was 20dB, its relative frequency was 1.0, and its 

initial phase angle was zero degrees. 	The noise power 

was 0dB (resulting in a signal to noise ratio of 20dB). 

For each of the 1000 sets of true sensor positions, the 

expected value of the covariance matrix was obtained using 

the procedure described in Chapter 2. 	The theoretical 

work does not take account of the effects of averaging 

over a finite number of snapshots and the use of the 

expected value of the covariance matrix allowed such 

effects to be excluded from the simulation results as well. 

For each of the 1000 covariance matrices, bearing spectra 

were produced using the conventional beainforming, minimum 

energy, and MUSIC techniques. The spacing between 

adjacent points was 0.005 degrees. 	Rather than being 

plotted, however, these spectra were fed into a program 
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which gathers statistics on the parameters introduced in 

the last section. 

The program searches through each spectrum to find the 

peak then calculates the bearing error Ael, the peak 

height P(e1 + e1), and the height P(e1) of the spectrum 

at the true bearing of the signal. 	The program 

calculates the mean and variance of each of these 

parameters over the 1000 spectra. 

Since there were three bearing estimation techniques, 

three parameters for each technique, and a mean and 

variance for each parameter, the program produced a total 

of 18 results. 	The final step in the simulation was to 

plot these 18 results against the variance of the sensor 

positioning errors c. 	In the graphs shown later in the 

chapter, a2  runs from 0 to 0.001 in steps of 0.0001, 

producing 11 values in total. 	For each value of o, 1000 

sets of true sensor positions were produced and analyzed 

in the manner just described. 

A further program was used to plot the theoretical results 

over the same range of values of o. 	Each of the 18 

graphs consists of a continuous theoretical curve and the 

11 data points. 	These graphs are presented in later 

sections at the points where the corresponding theoretical 

results are derived. 
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3.5 A Geometric View of Béarinq Estimation 

The first step in understanding the behaviour of the 

bearing error Ael is to develop a geometric interpretation 

of the bearing estimation process. 	Although bearing 

estimation algorithms are normally expressed in terms of 

phasors and matrix algebra, a much simpler analysis 

involving only distances and angles can be used to 

anticipate the bearing of the peak in the spectrum. 	This 

simplified view makes it possible to relate the mean and 

variance of the bearing error Ael to the sensor 

positioning errors and hence to cT. 

In Figure 3.7, sensors h and i are receiving one signal 

with a bearing of e1 radians. 	The indices h and i both 

lie in the range 1 to N and h 0 i. 	The diagram shows the 

general case where neither of the two sensors is the 

reference sensor (sensor 1) although all of the 

relationships derived in the following discussion apply 

equally well to cases where one of the sensors is the 

reference sensor. 

The vector difference uh - uj expresses the displacement 

from the intended position of sensor i to that of sensor 

h. The length of the component of h - u1 along the axis 

of propagation is chl - 	as illustrated and this 

distance provides the link between the sensor positions 
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Figure 3.7 Distances for intended positions of 
sensors h and i 
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and the bearing of the signal. 

(h - 	•i = 	- i1 	 (3.8) 

However, the sampling process produces information about 

phase differences rather than direct measurements of 

distance. 	From Chapter 2, the phase shifts from the 

reference sensor to sensors h and i are 'Phi = 2nch1 and 

= 2ircj, which are represented by the phasors 

qhl = exp(j4'hl) and  qj1 = exp(j4'1). 	The phase 

difference between sensors h and i is therefore as follows. 

- i1 = 	- 
	 (3.9) 

The angle ''h1 - 4'u is represented by the phasor qhlq. 

qhl 	exp(jh1) 
= 	 = exp(j(q'hl - 'P1)) 	 (3.10) 

qj1 	exp(j4'1) 

Notice that information may be destroyed when converting 

from a phase difference to a phasor since any complete 

cycles of 211 radians are lost. 	If, for example, the 

angle 4'hl - 	was equal to 511/2, arg(1/c1) would be 

equal to 11/2. It follows that there may be several 

values of 'h1 - 
q'1 which could have produced a particular 

qhl/qij and this fact makes it impossible for a bearing 

estimation algorithm to recover the distance Ehl - Lii 



unambiguously. 	The following relationship exists between 

q/qj1 and  Ehl - i1• 

1 	f qh } 
h1 - i1 	arg 	+ L 	 (3.11) = 	- 

I qj1 

L is an unknown integer which accommodates the 

ambiguity. Since Ehl - €jis the length of the 

component of uh - ui in a particular direction, 	the 

distance khl - Ej11 cannot be greater than the separation 

between the two sensors. 

khl - j11 ( Huh - iIl 
	

(3.12) 

Given particular values of h1' i1' qhl, and  qj1,  it is 

possible to determine the feasible values of L by 

substituting (3.11) into (3.12) 

1 	qhl 
- arg 	+ L 1 4IJh - iII 	 (3.13) 
2TT 	qj1 

In particular, if the distance between the sensors is less 

than or equal to half a wavelength, L must be equal to 

zero and chi - i1 can be recovered unambiguously. 	Given 

chi - jj, the bearing of the signal can, in principle, be 

found by solving (3.8) for z1. 
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The equation can be solved using a graphical 

construction. 	Figure 3.8 identifies a set of 

right-angled triangles, all of which have the line joining 

sensors h and i as their hypotenuse. 	In other words, all 

of the triangles have one corner at the position of sensor 

h and another at the position of sensor i. 	Since the 

triangles are right-angled, the third corner must always 

lie on the circumference of a circle which has the line 

joining the two sensors as its diameter. 	There is an 

infinite number of such triangles. 

Now, chl - 	is the length of one of two orthogonal 

components of h - uj. 	There must exist a right-angled 

triangle which has the line joining the two sensors as its 

hypotenuse and the other two sides equal to the two 

orthogonal components. 	This triangle must be a member of 

the set of triangles which has just been discussed. 

The relevant triangle is found by drawing an arc of radius 

Ehl - 	j with its centre at the intended position of 

sensor i as illustrated in Figure 3.9. 	The point where 

the arc intersects the circle defines the third corner of 

the triangle. 

Consider the direction of the line joining sensor i to the 

third corner of the triangle. 	The length of the 

component of uh - 	in that direction is chl - Cj1 and 
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Figure 3.8 Set of right-angled triangles 
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this is a necessary condition for the line to point in the 

same direction as the unknown vector z1 which defines the 

bearing of the signal. 

Although it is a necessary condition, it is not ' - a 

sufficient one since the arc actually intersects the 

circle in two places as illustrated in Figure 3.10. 	The 

construction generates two right-angled triangles and 

there is no way of telling which one of them defines the 

bearing of the signal. 

To summarize, if sensors h and i are separated by half a 

wavelength or less, the phasor qhl/qil  reveals the 

distance Ehl - cj unambiguously. 	A circle which has the 

line joining sensors h and i as its diameter is plotted 

and an arc of radius Ehl - Cj1 is drawn with its centre at 

the intended position of sensor i. 	The points of 

intersection between the circle and the arc suggest two 

possible bearings for the signal being received and one of 

these bearings is correct, although there is no way of 

telling which one. 

When sensors h and i are more than half a wavelength 

apart, qhl/jil  suggests more than one possible length for 

the component of uh - j along the axis of propagation. 

These lengths are of the form Ehl - 	- L and only one 

of them has L equal to zero. 	Each possible length 
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Figure 3.10 Ambiguity in recovery of bearing 
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suggests two possible bearings. 	For example, in Figure 

3.11 there is an arc of radius Lhl - Lii and another of 

radius chl - Lii - 1. Since both of the arcs cut the 

circle in two places, there are four possible bearings, 

one of which is correct. 

Notice that Lj,  - L1 (and chl - cil  - L) may be 

negative. 	If this happens, the graphical constructions 

look the same but ii radians must be added to (or 

subtracted from) all of the bearings produced. 

So far, the discussion has shown that the information 

obtained from a single pair of sensors is not sufficient 

to identify the bearing of the signal unambiguously. 	The 

true bearing does not become apparent until the 

information from all of the sensor pairs in the array is 

combined. 	In an array of N sensors, there are a total of 

N(N - 1)/2 unique pairs of sensors. 

Each sensor pair contributes the true bearing plus one or 

more other possibilities. 	The key point is that the 

spurious bearings are generally different for each pair of 

sensors. 	When the information from all of the sensor 

pairs is combined, the correct bearing is reinforced while 

the spurious ones are not. 
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Figure 3.12 shows the bearings produced by the individual 

sensor pairs in the array used for the simulations. 

There is one signal present at a bearing of 18 degrees. 

Each row shows the bearings produced by one of the 15 

unique pairs of sensors within the array and there are 

either two or four possible bearings in each case. 

Notice how a solid column is produced at 18 degrees 

whereas no other bearing is reinforced in this way. 

3.6 The Mean of the Bearing Error 

-When sensor positioning errors are present, the process 

described in the last section can be repeated using the 

true sensor positions instead of the intended ones. 	uh, 

u, and chl - Lii are replaced with uh, Ui, and ehi - cil 

respectively. 	Recalling the definition of Enm  given in 

(3.5) , the difference ehi - E1 is as follows. 

Chl - ii = (h1 - 'h1 + 'ii) - (:i1 - 	+ e11) 

= 'hl - Eu - 	- e1) 
(3.14) 

Figure 3.13 summarizes the relationship between ehi - 

ZhI - cj, and the true and intended sensor positions. 

In reality, only the true sensor positions exist and the 
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sampling process therefore reveals Chi - Cil  instead of 

'hi - 

If the true sensor positions were known, the bearing of 

the signal could be sought using the method introduced in 

the last section. 	Figure 3.14 shows an arc with a radius 

Of £hl - 	- ('h1 - 'i1)' or  'hi - 'ii' with its 

centre at the true position of sensor i and a circle which 

has the line joining the true positions of the two sensors 

as its diameter. 	The point of intersection between the 

arc and the circle reveals the bearing of the signal as 

before. 

The diagram also shows the corresponding construction for 

the intended sensor positions, which is copied directly 

from Figure 3.9. 	Notice that both constructions reveal 

the true bearing of the signal correctly. 	They both 

produce spurious bearings as well, although these have 

been omitted in order to simplify the diagram. 

In practice, the sensor positioning errors are unknown and 

the true sensor positions are assumed to be identical to 

the intended ones. 	The result is that 'hi - Ejj is 

assumed to be the length of the component of 'h - 	in 

the direction of propagation although it is really the 

length of the component of uh - 



104 

0 intended sensor positions 

• true sensor positions 

Figure 3.14 Graphical construction to recover bearing from 
true positions of sensors h and i 



105 

Figure 3.15 shows how this misinterpretation of Ehl - 'ii 

leads to an error in the bearing of the signal. 	Having 

drawn the circle which passes through the intended sensor 

positions, an arc of radius Ehl - iij is required to 

identify the signal bearing correctly. 	However, an arc 

of radius 'hi - i1 - (AEhi - AEil) is used instead and 

this intersects the circle at the wrong point, causing an 

error in the bearing of the signal. 

The bearing error produced by sensors h and i is denoted 

by (Ael)hI. 	There are also errors in the spurious 

bearings produced by the sensor pair, although these do 

not generally have the same sign and magnitude as (Ael)hi. 

The sign of (Ael)hj  depends on the sign of AEhl - Acii, as 

shown in Figure 3.16. 	The true signal bearing and the 

positions of the sensors relative to each other determine 

whether the sign of (Ael)hi  is the same as or opposite to 

that of AEhl - Acj1, although it is always true that 

changing the sign of AEhl - 	i1 changes the sign of 

(Ael)hj. 	For the situation illustrated, the sign of 

(Ael)hi is opposite to that of Achl -  Acil- 

The exaggerated errors used in the diagram reveal that 

changing the sign of Ah1 - AEil changes the magnitude of 

(Ael)hi as well as its sign. 	Comparing Figures 3.16(a) 

and 3.16(b), the size of the bearing error (Ae1)h  is 
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slightly different even though the magnitude of the 

distance Achl - c1 is the same in both cases. 	This 

asymmetry is a natural consequence of the construction 

used to find (Ae1)h. 

Notice, however, that the difference between the two 

magnitudes of (e1)h±  is much smaller than the magnitudes 

themselves. 	For small sensor positioning errors, and 

hence small values of (e1)h,  the difference becomes 

insignificant and the relationship between &Chl - 	and 

(e1)hi is symmetric. 	Thus negating Achl - E1 negates 

(e1)hi without changing its magnitude. 

Since Achl and Acil both have a normal distribution with a 

mean of zero and a variance of o, it follows that the 

combined error &Chl - 	has a normal distribution with 

a mean of zero and a variance of 2o. 	Thus a particular 

value, say p, of Achl - Acil has the same probability of 

occurring as -p. 	Since the values of (ael)h 

corresponding to p and -p have opposite signs but the same 

magnitude, (e1)hi  must also have a mean of zero. 

E[(Ael)h] = 0 
	

(3.15) 

Due to the non-linear relationship between Achl 	±i and 

(e1)h±, the precise distribution of (AO1)hi  is unknown. 

In the next section, this relationship is explored in 
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detail and an approximation for the distribution is 

developed. 	However, the fact that the mean of. (e1)hj  is 

equal to zero is sufficient for the present discussion. 

Figure 3.17 shows the effect of small sensor positioning 

errors on the bearings produced by the individual sensor 

pairs in the array used for the simulations. 	There is 

one signal present at a bearing of 18 degrees as before 

and the variance of the sensor positions, c, is equal to 

0.001. 	Comparing this diagram with Figure 3.12, there is 

still a well-defined cluster of points in the region of 

the true bearing. 	There are, however, small errors in 

the bearings and each pair of sensors, h and i, produces a 

point at e1 + (e1)hi rather than e1. 

The next step is to relate this diagram to the bearing 

spectrum, which has a peak at e1 + Ael. 	Two assumptions 

are required in order to make the problem manageable. 

The first assumption is that the cluster over the true 

bearing in Figure 3.17 contains the same set of N(N - 1)/2 

points as the column in Figure 3.12, although the bearing 

of each point has changed slightly. 	In other words, no 

point which identifies the true bearing may have such a 

large bearing error that it is mistaken for a spurious 

point. 	Similarly, no spurious point may move so close to 

the true bearing that it is mistaken for a member of the 
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main cluster. 

The second, and most important, assumption is that the 

bearing of the peak in the spectrum is the average of the 

bearings indicated by the individual pairs of sensors. 

The error Ael in the bearing of the peak is therefore the 

average of the N(N - 1)/2 errors (1)hi  produced by the 

individual sensor pairs. 

2 	N-i 

(3.16) 
N(N - 1) h= 1 i=h+1 

From (3.15), the mean of - (Ael)hi is zero and it is 

straightforward to show that the mean of Ae1 is also zero. 

1 	2 	N-i 	N 

	

E[e1] = El 	 (Ae1)h ] 

L N(N - 1) h=1 

2 	N-i 

- N(N - 1) h=1 i=h+1 

	

S 
	

(3.17) 

In conclusion, bearing estimation algorithms remain 

unbiased in the presence of sensor positioning errors with 
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the assumed statistics. 	It must be stressed that the 

array would have to be set up several times to observe 

this effect. 	For any particular realization of the 

sensor positioning errors, there will generally be an 

error in the bearing of the peak. 

These deductions are confirmed by the results from the 

computer simulation experiment described earlier in the 

chapter. 	When the bearing error Ael was averaged over 

several sets of true sensor positions, the resulting 

estimate of E[e1J  was close to zero. 	As the number of 

true arrays was increased, the average of Ael moved even 

closer to zero, suggesting that the true value of E[e1] 

was indeed zero as predicted. 

Figure 3.18 shows the results obtained using 1000 sets of 

true sensor positions over a range of values of cT. 	As 

anticipated,. the results produced by the three bearing 

estimation techniques were identical. 

3.7 The Variance of the Bearing Error 

This section develops an expression for the variance of 

the bearing error Ael in terms of the variance of the 

sensor positions a2. 	The expression is found to depend 
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on the intended sensor positions un  and the bearing of the 

signal e1 as well as o. 

Although a geometric view of the relationship between the 

distance Achl - E1 and the angle (I&el)hi  was sufficient 

in the last section to discover that the mean of 

was zero, a mathematical expression for the relationship 

is required to allow the variance of (8i)hi  to be 

calculated. 

The first step is to derive a precise expression for 

(Ael)hi in terms of chl - i1' Achl - 	and the 

separation Huh - ujjI between the two sensors. 	This 

expression is found.to  be intractable due to the presence 

of non-linear functions of Achl - 	which is itself a 

random variable and the next step is therefore to find an 

approximation with a form which allows the analysis to 

proceed. 	The precise expression is used to check the 

approximation. 	Finally, the variance of Achl - 	is 

related to the variance of (e1)h,  and hence to that of 

e1. 

The precise expression for (e1)hi  is based on the 

construction shown in Figure 3.19, which is identical to 

the diagrams used in the last section except that some 

further angles and distances have been identified. 	In 

particular, the angle between the true bearing of the 
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signal and the line joining sensors h and i is denoted by 

(1)hi- 

In the illustration, Achl - Cj, is negative. 	As 

explained in the last section, the relationship between 

 Acil Achl- 	and (A81)hi  is assumed to be symmetric for 

small sensor positioning errors and it follows that cases 

where 	- AC-1 is positive are also accommodated. 	For 

the sensor positions and the signal bearing shown, the 

sign of (A81)hi  is opposite to that of Achl - 	 It 

is not, however, necessary to generalize this relationship 

since (Ael)hi  is squared when calculating the variance, 

thus losing the sign. 

The diagram shows two right-angled triangles, both of 

which have a hypotenuse of length Huh - ujil. 	The 

triangle which generates the true bearing has one side 

with a length of Ehl - 	and it follows from 

Pythagoras' theorem that the remaining side of this 

triangle has a length of J(lIuh1jft2 - (h1_i1) 2 ). 

Similarly, the lengths of the shorter sides of the other 

triangle are found to be Ch1Cj1 - (Eh1Ej1) and 

J0Ih_jI12 - 	 - 

Having obtained the lengths of the sides of the triangles, 

it is possible to write expressions for the sines and 

cosines of the angles (91)hi  and  (1)hi + (1)hi 
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- 	1(IICih - 	- (h1 - 
sinC(el)hIJ = 	 ( 3.18) 

II'h - 3i 11 

- 	Eh1Ej1 
cos[(e1)hjJ = 	 ( 3.19) 

IIh - 	iII 

Sjfl[(1)hj + (ael)h] 

2 	 / 	 - 
1/(IIUh - jH - (h1 - il - 'hl - ti1))) 

II1h - Ujil 
(3.20) 

c0S[(1)hj + (e1)h, = 
'hl - i1 - (AEh1 - 	i) 

huh - liii 
(3.21) 

The sine and cosine of (;1)h + (A81)hi can be related to 

the sines and cosines of (;1)h  and (A81)hi  using 

double-angle formulae. 

+ (Ael)hjJ = sinE(1)hi3cosE(e1)hj3 

+ cos[(1)h]sinC(e1)h3 	(3.22) 

cos[(el)hj + (e1)h3 = cos[(el)hJcos[(el)h] 

- sinE(1)hj3sinE(e1)hi3 	(3.23) 

Substitute (3.18), (3.19), (3.20), and (3.21) into (3.22) 

and (3.23). 
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- ±II2 - ('hi - jj. - ('hi - 

huh - 	ihI 

ihI 	- (i - 

huh - ihI 
cos[(ae1)hj] 

'hi - ii 
+ 	 sin[(Ael)h] 

	
(3.24) 

huh - U4 11 

'hi - E1 - ('hi - 'ii) 

huh 	1ihI 

'hi - i1 
= 	 cos[(e1)h] 

- ±II2 - (hi - 
sinE (e1 )hiJ 

huh - 1ihI 
(3.25) 

Now multiply (3.24) by Huh - iH('h1 - 'ii) and (3.25) by 

huh - 	ihl1(hhh - 	hh2 - ('hi - i1) 2 ). 

ai  (hi - i1)'(hIh - 	Ih2 - (h1 - ii - ('hi - 

= (hi - ii)'(I@h - 	hI2 - (h1 - i1)2)cosE(e1)hiJ 

+ (h1 - . i) 2sjn[(el)h . 3 	 (3.26) 



ILi 

(h1 - 	
- ejl))I(II1h - 	

- (hl - ii) 2 ) 

= 	- Eil)I(IIh - ilI 2  - 	 - €il) 2 )cosE(el)hi3 

- (IIih - 	 lI2 
- (h1 - cj1) 2 )s±n[(e1)h•J 	(3.27) 

Subtract (3.27) from (3.26), thus eliminating cos[(e1)h3. 

(h1 - 'i1)"(JIhiII 2 
 - (h1 - ii 

- ('h1 - 	 i1)) 2 ) 

- (h1 - il 
- 	

- Ei1))/(IIUhUiH2 
- (h1 - 

= Huh - j . JI 2 sjn[(el)h . 3 	 (3.28) 

Now rearrange (3.28) to find sin[(el)hJ. 

1 
sin[(e1)hi3 = 	 [(Ehl - i1)1(IIh_iII 2 

 ~ji  11 2 IIh - 

- (h1 - 	 - 
(Eh1 - 	 i1)) 2 } 

- (h1 - 
il 

- (h1 - ci1))1{Ith_02 

- (h1 - E1) 2 )] 	 (3.29) 
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For particular values of Ach, and Acil, sin[(el)hiJ can 

be calculated precisely using (3.29). 	Results of this 

type, however, are not sufficiently general in the context 

of the statistical analysis being attempted. 	Achl and 

Acil are random variables with a known distribution and it 

should, in principle, be possible to express the variance 

of sin[(e1)hj],  denoted by V[sin[(el)hiJJ, in terms of 

huh - 	EhI - 	i' and the variance 	of the sensor 

positions. 	Since (e1)hi  is a small angle, it is 

approximately equal to its own sine and the variance of 

the sine is a good approximation to the variance of the 

angle. 

(e1)h 	sinC(Ael)h] 	 (3.30) 

V[(Ae1)h3 = V[sin[(el)hJ] 	 (3.31) 

However, the form of the expression for sin[(Ae1)hjJ  given 

in (3.29) makes it difficult, if not impossible, to obtain 

V[sinE(e1)h]3. 	The problem is caused by the presence 

of a non-linear function of Achl - E1 (i.e. the square 

within the square root) , which distorts the distribution 

Of Achl - 6i.i creating a complicated relationship 

between the variance of"hl - i1 and that of the whole 

expression. 

Although the precise expression for (e1)h, or rather 

sin[(e1)hj], is intractable, it is possible to form an 
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approximation which leads to a much simpler expression. 

The precise expression in (3.29) is still useful, however, 

as it can be used to check the approximation numerically. 

Figure 3.20 highlights the shape formed by the two arcs 

and the two straight lines enclosing the angle (e1)h1. 

This shape is a segment of an annulus, although when the 

distance Ah1 - cji and the angle (ei)hj  are small, the 

shape closely resembles a rectangle. 	Figure 3.21(a) 

shows a construction in which tangents to the arcs have 

been used in place of the arcs themselves, resulting in a 

rectangle which has a tangent to the circle as its 

diagonal. 

An isosceles triangle is formed by drawing a radius of the 

circle which is perpendicular to the diagonal of the 

rectangle. 	By inspection, the angles at the corners of 

this triangle are (e1)h, (1)hi' and n - 2(°1)hj and it 

follows that the angles between the diagonal of the 

rectangle and its sides are (1)hi  and 11/2 - (1 ) hi 

The sides of the rectangle which lie along the axis of 

propagation of the signal are equal to -(ch1 - cii). in 

length. 	The length of the other two sides is initially 

unknown and is denoted by Thj. 	The diagram also 

introduces a new angle (Se1)h,  which is the estimate of 

(&Ol)hi produced. by the approximation. 
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radius'-- rectangle 
Sensor i 	

($e1)h / 
~hl - Ejl 

(1)hi 	 i 

(b) 

- 	 i1 )  

'hl - El 	
- (1)hi 

( 1)hi 

Figure 3.21 Graphical construction for 
approximate bearing error 
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Figure 3.21(b) shows the elements of the construction 

required to solve for (S81)hi- 	The first step is to find 

Thj by applying the sine rule in the small triangle. 

Notice that the sine of '2 - (;1)h is equal to the 

cosine of (e1)h. 

h1 - Ei1 - 	 Th i 

sin[(1)hjJ 
	

"% 	11 
 

Th i 

cos[(1)hjj 
(3.32) 

It is straightforward to obtain an expression for Thj by 

rearranging (3.32). 

(h1 - 
Thj 

sin[(e1 )hiJ 

- 	h1 - Acil 	
(3.33) 

tan[(e1 )hjJ 

An expression for tanC(l)hJ  can be obtained from Figure 

3.19. 

- ±II2 
- ( h1 - 

tan[(1)hJ = 	
Ehl 

- 
Cu 
	 (3.34) 
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Now substitute (3.34) into (3.33) 

(Ehl - 	i1)(h1 - iii) 

Thj = J(IIUh - 	 II2 
- ( hl - 
	 (3.35) 

Returning to Figure 3.21(b), an expression for 

tan[(Sei)h] can be obtained from the large triangle. 

Since (Se1)h  is a small angle, it is approximately equal 

to its own tangent. 

Th i 
(Se1)h 	tan[(Sel)h] = 	 (3.36) 

Ehi - Lii 

Substitute (3.35) into (3.36). 

h1 - 
= 	 (3.37) 

1(II'h - 	- (hl - E1) 2 ) 

Equation (3.37) is the approximation for (e1)h±. 	The 

main advantage of this expression over (3.29) is that it 

is linearly proportional to Achl - 

Figure 3.22 compares the precise expression with the 

approximation when Huh - 	= 1 and chi - 	= 0.5. 

The angles (81)hi  and  (e1)h±  are plotted as functions of 

	

Eh1 - "i1, which ranges from -0.5 to 0.5. 	The solid 

curve, which shows the true bearing error (Ae1)h,  was 
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1] 
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Iu] 

i )hi 
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Figure 3.22 Comparison of precise bearing error 

with approximation ($61)h 
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produced by finding sin[(Ael)h]  using (3.29) then taking 

the inverse sine. 	The dashed line shows the 

approximation (Se1)hj  produced using (3.37). 	The diagram 

confirms that (Sel)hi  is a good approximation to (e1)h 

when Achl - AEj1 is small. 

It is now possible to estimate the variance of (A81)hi- 

From (3.37), the variance of (e1)h  is as follows. 

h1 - 	ii 
V[(e1)hj3 = 
	

ii)2)] 1(IIh - 	- (h1 - 

V[eh1 - 
(3.38) 

huh - ihI2 - (h1 - i1) 2  

Since Achl and Acil both have a normal distribution with a 

variance of aP2 , the variance of Achl - E1 is 2cT. 

2a 	
(3.39) V[(e1)h] = huh 

- 
	112 - ( j hl - ii) 2  

e1 is calculated according to (3.16) except that (Ae1)h 

is replaced with (6e1)h±. 	The variance of &el is 

therefore as follows. 



128 

2 	N-i N 

v[e1J =  
[NN - 1) 	

(el)hi 
h=i 	 I i=h+i 

N-i N 

N 2 (N - 1)2 	
V[(Sel)hj] 	(3.40) 

h=i i=h+1 

The final expression for the variance of Ael  is obain 

by substituting (3.39) into (3.40) 

8o 	N-i N 

V[e1J= 
N2(N-1)2 L h=1 i=h+i huh - 0 2  - 	- E1) 2  

(3.41) 

- 	(3.41) shows that for small sensor positioning errors, the 

variance of the bearing error Ael is directly proportional 

to the variance ap of the sensor positions. 	The variance 

of Ael also depends on the number of sensors in the array, 

N. 	It is somewhat disappointing that (3.41) also makes 

reference to the array geometry (through uh  and  u)  and 

the true bearing of the signal (through Ehi  and c1). 

Figure 3.23 compares the simulation results with the curve 

predicted using (3.41) and there is evidently a close 

correspondence. 	As in the last section, the results 

produced by the three bearing estimation techniques are 

identical. 
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Figure 3.23 Results for variance of bearing error 
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3.8 A General Quadratic Form for the Spectrum Value at the 

True Bearing 

In Chapter 2, the following expressions were derived for 

the bearing spectra produced by the conventional 

beamforming, minimum energy, and MUSIC bearing estimation 

techniques. 

bf() = 

1 

Pme(e) = H(e)Rl(e) 

1 

Pmu(8) = H(5)yyH( 5 ) 

(3.42) 

(3.43) 

(3.44) 

The remaining sections of this chapter are devoted to an 

algebraic analysis of the behaviour of Pbf(8), Pme(e), and 

pmu() in the presence of sensor positioning errors. 

This leads to a set of theoretical expressions for the 

means and variances of Pbf( 81), pme(i) and Pmu(ei), 

which are the spectrum values obtained at the true bearing 

of the signal. 

In the case of MUSIC, it is helpful to express Pmu(e)  in a 

slightly different form. 	Recall from Chapter 2 that the 

denominator in (3.44) is equal to lip(e)I12,  which is the 
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length (squared) of the component of q(e) in the noise 

subspace. 	The component of (e) in the signal subspace 

is denoted by p 5 (e) and, by Pythagoras' theorem, the sum 

Of 11p(e)11 2  and 11p(e)I1 2  must be equal to II(e)1I 2 . 	Since 

the N elements of q(e) all have unit magnitude, II(e)I1 2  

must be equal to N and the denominator in (3.44) can 

therefore be expressed as follows. 

H(e)yyH(e) = tI(e)II 2  

= II(e)II2 - 11p5(e)112 

= N - II5(e)II2 

= N - H(e)y 5y(e) 	 (3.45) 

Ys is a matrix which has the M signal subspace 

eigenvectors as its columns. 

Setting e equal to e1 in the expressions for the bearing 

spectra given in (3.42) , (3.43), and (3.45), 	(e) becomes 

equal to the signal vector q1 corresponding to the true 

bearing of the signal. 	The expressions used to 

investigate the performance of the three techniques at the 

bearing e1 are as follows. 

Pbf(81) = 	 ( 3.46) 

P(e1) = I-11 	 (3.47) 
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P-1 (el) = N - 	YsYi 
	 (3.48) 

Notice that (3.47) and (3.48) describe the reciprocals of 

Pme(ei) and  Pmu(ei),  denoted by P(e1) and Pj(e1). 	.The 

main reason for choosing to work with the reciprocal of 

the bearing spectrum rather than the spectrum itself is 

that the results obtained for the means and variances of 

P(e1) and P(e1) do not couple through the reciprocal 

function. 	These results cannot be extended to Pme( 6i) 

and Pmu(ei)  without resorting to inequalities. 

Furthermore, Pmu(ei)  is theoretically equal to infinity 

when there are no sensor positioning errors present as 

demonstrated in Chapter 2. 	The function is very unstable 

since a small increase in the value of the denominator in 

(3.44) causes a large decrease in the value of Pmu(ei). 

Pj(e1), however, is much more well-behaved, being 

theoretically equal to zero when there are no sensor 

positioning errors. 

Notice that (3.46), (3.47), and (3.48) all contain 

quadratic forms in q1. 	In other words, all three 

equations contain an expression of the form 	which 

is denoted by P(e1). 

P(e1) = 	 (3.49) 
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The matrix n is equal to R, R 1 , or YsY depending on 

which bearing estimation technique is being used. 

Pbf(el) = gbfg 	 (3.50) 

P(e1) = O2meii 	 (3.51) 

p(e1) = N 124 emut 	 (3.52) 

where 

ebf = 	 (3.53) 

me = 	 (3.54) 

?mu = !sY 	 (3.55) 

The next three sections of this chapter discuss the 

effects of sensor positioning errors on the matrices bf' 

and Omu l 	Following this, the mean and variance of 

P(e1) are derived and the means and variances of Pbf( 01), 

P(e1) and P(e1) are then obtained by substituting 2bf' 

or Omu  for 0 as appropriate. 
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3.9 The Quadratic Form for Conventional Beamforing 

From the discussion earlier in this chapter, the lengths 

of the components of Aun  and Un  in the direction of Zm are 

nm and Cnm. 	The phase shifts corresponding to Ac nm  and 

nm are denoted by Aynm  and Wnm  respectively and are 

calculated in the same way as 

= 2 nm 	 (3.56) 

4'nm = 2 nm 	 (3.57) 

Recalling the relationship between £nm, Cnxn , and Enm 

given in (3.5), 'Pnm , 	and A4Pnm  must be related to each 

other as follows. 

4'nm = 4'nm - 	nm + 
	

(3.58) 

Like 1m' 4'lm is always zero and this can be confirmed by 

setting n equal to 1 in (3.58) 

4'lm = 	= 0 
	

(3.59) 

A similar set of equations can be derived for the phasors 

corresponding to A'4' 	and 4'nm• 	These are denoted by 

and qnm  and are calculated as follows. 
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qnm = 
	

(3.60) 

qnm = exp(j4'nm) 
	

(3.61) 

The relationship between qnm ,  qnmi and Aqnm  can be 

obtained by substituting (3.58) into 	(3.61) . Since the 

phasors are all of unit magnitude, addition of phase 

shifts can be achieved by multiplying the corresponding 

phasors. 

qnrn = exp(j(nm - M'nxn + 

= 

= nrnqmq1rn 	 (3.62) 

Like q1t qirn is always equal to 1. 

qim = 

1 2  = 

= qim 

= 1 	 (3.63) 

As explained in Chapter 2, the covariance matrix R is 

related to the bearings of the signals through the matrix 

H, which has the M signal vectors im  as its columns. 

= 	+ 	 (3.64) 
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When sensor positioning errors are present, q m  is replaced 

with the (unknown) signal vector corresponding to the true 

sensor positions. 	This vector is denoted by qm  and is 

defined as follows. 

= [1 q2rn q3rn 	qJT 	 (3.65) 

When there is only one signal present, H only has one 

column, this being the signal vector q1. 	The signal 

correlation matrix Ra  is reduced to a one by one matrix 

whose only element is (a)ii 	Recall from Chapter 2 that 

an element (Ra)mm  on the leading diagonal of Ra  is equal 

to the power of signal in, denoted by A. 	It follows that 

(a)11 is equal to A. 	These observations allow (3.64) 

to be simplified as follows when there is only one signal 

present. 

= Aq 1 q + cI 
	

(3.66) 

When R is evaluated according to (3.66), an element Rnn on 

the leading diagonal can be expressed in terms of A 2, and 

as follows. 

Rnn = Aq1q1 + 

= AflqI 2  + 

= A + cT3 (3.67) 
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An off-diagonal element Rhi  is as follows. 

Rhi =  It  h 0 i 	 (3.68) 

Combining (3.67) and (3.68), the definition of the matrix 

ebf, which is equal to R, can be written in the following 

form. 

Abf 	 h= i 

(bf)hi = Rhi = 
	

(3.69) 
It 
	

h96  i 

where 

Abf = A? + awl 
	

(3.70) 

bf = A? 
	

(3.71) 

3.10 The Quadratic Form for Minimum Energy 

There is a matrix identity [16] which states that if a 

matrix is of the form R = STUN + I then its inverse is 

given by R 1  = I - SWUH where W = [I + TUHS31T. 	This 

can be used to gain some insight into the inverse of the 

covariance matrix R, which is required for the minimumn 



energy method. 	The first step is to divide both sides of 

(3.66) by c. 

1 	A 
- R = - q1qI1f + I - (3.72) 

Now apply the matrix identity, setting S and U equal to 

a-,A-,/aw  and T equal to I. 

1 	1 	A1 	 A1 	A1 1 -1  Al 
- R = I - - q 1  I + I - q 1  - q 1  I - 

	

- 	o.w- 	o•w 	c•w 	o•w 

A 21 	

[[ 	

A1 1' 
= 	- - 	1 + IIqII 2  -Iii qlji 

- 	o. J_J 

A 	'[[ 	NAf1 i -i 
= I -- g 1+-Ill Iji 

	

- 	
c7 

A 	 1 
= I--q 1 	 Iq 

	

- 	
1+NA/3 

AT 
= 	- 	 ji gg 	 (3.73) 

aW2 + NAT
j  

 

The matrix R 1  is therefore as follows. 
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1A? 
= —II 

- 	 qjq1  
~ NAf - - 1 	(3 .74) 

Thus an element (R 1 ) 	on the leading diagonal of R 1  can 

be expressed as follows. 

1 
(R)nn  

CT W2 

A? 
n11} 

1 
=-1 - 

o.'  
Iqn1 

(2  I 

	

1 	A? 
(3.75) 

Similarly, an off-diagonal element (R')hj  has the 

following form. 

A? 

	

= 
- 	 qhqj1i 	h ~ i 	(3.76) 

+ NA?) 

The definition of the matrix £2me,  which is equal to 

is obtained by combining (3.75) and (3.76). 

Ame, 

(Ome)hi = (R')hj 
= 	 * 

neqh1qi1 

h= i 

hi 

(3.77) 
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where 

1 
Ame 
	 (3.78) 

- 

z 1  

me = - 	
+ NAT) 
	 (3.79) 

3.11 The Quadratic Form for MUSIC 

As noted earlier, the matrix Ys has the M signal subspace 

eigenvectors as its columns. 	The M signal vectors qm  

also span the signal subspace, although they are not 

normally collinear with the corresponding eigenvectors. 

However, the signal subspace is one-dimensional when there 

is only one signal present. 	In this case, Ys only 

contains the eigenvector yN  which must be collinear with 

the signal vector q1. 

1 
Ys = 	= 	 ( 3.80) 

The division by 'N is necessary because eigenvectors have 

unit length whereas signal vectors are of length IN. 	The 

the matrix product V 5V, which is required for MUSIC, is 
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therefore as follows. 

YsY = 	g1. 7N_ g s  

	

g' 	= 	• 	1' 	 (3.81) 

An element (V S )on the leading diagonal of YsY has 

the following form. 

1 	* 	1 	 1 
( YsY ) nn = j qiq 	= 	Iqt 2  = 	 ( 3.82) 

An off-diagonal element (VsV)hj  is as follows. 

1 	* ( YsY )hi = 	h1i1 	 (3.83) 

Combining ( 3.82) and (3.83), the definition of the matrix 

which is equal to YsY' can be written as follows. 

Amu, 	 h= i 

(mu)hi = ( YsY )hi = 
	

(3.84) 

'rnuqh1qj1 
	h#i 

where 

Amu _ mu _j 1 
	

(3.85) 
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3.12 The Mean of the Cosine of the Phase Error 

The expressions for E[P(e1)3 and VCP(e1)J derived later 

in this chapter are found to contain references to 

E[coSM'nm] and 	 This section relates the 

expected values of cosq' 	and COS24nm  to the variance of 

the sensor positions o. 

Since the cosine is a non-linear function, it is difficult 

to derive a precise relationship between the distribution 

Of AkPnm and that of COSl)nm (or cos 2nm . 	A good 

approximation can, however, be obtained by using the 

series expansion of the cosine function up to the sixth 

order term (101]. 

(AtPnm  \2 (APnm  )4 (APnm 
 )6 

cos 	1 - 	+ 	- 	 (3.86) 
2! 	4! 	6.! 

(2LWnm) 2  (24'nm)4 (2'nm)6 
cos2A'4'nm 	1 - 	 + 	 - 	 (3.87) 

2! 	 4! 	 6! 

For example, if AkPnm  is p121  cos' 	should be zero. 

When cos' 	is approximated using (3.86), the result is 

-0.001. 

Expressions for E[cosA4nm]  and  E[cos2A4'nm3  are obtained by 

taking the expected value of both sides of (3.86) and 
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(3.87) 

EC(Pnm) 2 3 	E[(4Jnm) 4 ] 	E[(.4'nm) 6 J 
E[cosA4'nm] 	1 	 +  

2! 	 4! 	 6! 

(3.88) 

4E[(4'nm) 2 3 	16E[(4'nm) 4 ] 

E[COS2A4'nm3 = 1 - 
	 + 

2! 	 4! 

64 E [ (A4) 1 ) 6 J 
(3.89) 

6! 

Recall that the error Aenm  has a normal distribution with 

a mean of zero and a variance of o. 	Since Aynm  is equal 

to 21TEnm, Aynm has a normal distribution with a mean of 

zero and a variance of 47T 2cT. 	The moment generating 

function [97] of 4'nm'  denoted by G(), is therefore as 

follows. 

G(p) = exp(2i 22 ) 	 ( 3.90) 

The moment generating function allows the expected values 

of powers of 4nm  to be obtained using the following 

relationship. 

E[(q')iJ = G(i).(0) 	 (3.91) 
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G(i)(0) denotes the ith  derivative of G(p) with respect to 

P evalutated at p = 0. 	The following expressions for 

E[('l)nm) 2 J, E[(14)nm) 4 J, and EC(A4nm)63  are obtained 

through repeated differentiation of (3.90). 

E[(A4'nm) 2 J = G 2 (0) = 4ir 2o 2 	 (3.92) 

E[(4'nm ) 4 j = G (4) (0) = 48n4 	 (3.93) 

= G( 6 )(0) = 9601r6 aP6 (3.94) 

The approximations for E[COS4'nm]  and  E[cos2A.4'nm3  are 

obtained by substituting (3.92), (3.93) , and (3.94) into 

(3.88) and (3.89). 

E[CO5I4'nm] =1 - 27T 2a + 2n4o - 4 7T 60 6 	(3.95) 

E[COS 2 4'nm3 = 1 - 8n 2o + 32tT 4o - q. •7T 60 6  (3.96) 

(3.95) and (3.96) can be checked (partially) by setting o 

to zero, in which case E[cos4'nm3  and  E[cos24'nm3  both 

evaluate to 1. 	This is to be expected since Acnm  and 

are always equal to zero when there are no sensor 

positioning errors present. 



145 

3.13 The Mean of the General Quadratic Form 

It has been shown that the matrices 2bf me' and nmu  all 

have the following general form. 

A 	 h=i 
(3.97) 

It 
hi = 
	 h 76  i 

A and C are set to Abf  and Cbf ,  /tme and  Cme,  or Amu  and 

Cmu depending on which bearing estimation technique being 

used. 	This section derives an expression for the mean of 

P(e1) in terms of A and C and it is then straightforward 

to obtain the means of Pbf(el), P(e1), and P(e1) bymu 

setting A and C to the appropriate values. 	The first 

step in finding the mean of P(e1) is to expand the matrix 

multiplications in (3.49) 

P(e1) = 

N N 
c = 	q1 hjqil 

h=1 i=1 

(3.98) 

Notice that whenever h = i in (3-98), a reference an 

element on the leading diagonal of n is produced. 	These 

elements can be isolated from the off-diagonal elements by 

re-writing (3.98) as follows. 
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P(e1) = h=l 
ih 

= IIqh1I'Qhh 

iOh 

N 	N 

= 
10hh 11 1hji1} 

h=1  
ih 

The qualifier ih indicates that i takes all values in the 

range 1 to N except the current value of h and it follows 

that Ohi  in (3.99) always refers to an off-diagonal 

element. 	The next step is to substitute the definition 

of 0 given in (3.97) into (3.99) 

P(e1) = h 

	

(3.100) 

=l  
ih 

Recalling the definition of the phasor q nm  given in 

(3.62), qhl = qh1qh1q11 and  qj1 = 41Aq1Aq11 and 

(3.100) can therefore be expanded as follows. 
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P(e1) 

= 	
+ 4 ~ qhlAqhlAqll~'~ 	1 qh iill 

h=1 
 

ift 

=

+ 1; 	1qhlJ 1 J~ i1J 1 JAq11J 1Aq*lAqil 

ih 

= 	

+ c AqhlAqil 

h=l 	i=1

}  

iOh 

= NA + q1qj1 	 (3.101) 

h=1 i=1 
ih 

Consider the sequence of terms of the form q1qj1 

produced by the nested summations in (3.101). 	If, for 

example, there is a term in which h = 3 and i = 7 there 

must also be a term in which h = 7 and i = 3. 	Thus each 

term Aq1qj1  is accompanied by its conjugate Aq1qh1, 

allowing (3.101) to be re-written as follows. 

N-i 

PO (81) = NA 

+ 	

Iqiqji + 	 (3.102) 

h=1 i=h+1 
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Now, a complex number plus its own conjugate is equal to 

twice the real part of the number. 

+ qhqhl = 2Re[q1Aq1J 	 (3.103) 

Recall that &qhl and Aqil both represent phasors of unit 

length. 	The phase angles of q1 and qj1  are 	4'h1 and 

4i1 respectively, so the product Aq w l&qil represents a 

phasor with unit length and phase angle AYil - h1• 	It 

follows that the real part of q1qj1  is equal to the 

cosine of & 40il - 

Re[q1q1J = cos(4'ii - 	h1) 	 (3.104) 

The expression for P(e1) can now be simplified by 

substituting (3.103) and (3.104) into (3.102). 

N-i 

P(e1) = NA + 

	

cos(1 - 	h1) 	(3.105) 

h=1 i=h+1 

The expected value of P(e1) is therefore as follows. 

N-i 

E[P(e1)J = NA + 

	

E[cos(1 - 	h1) 3 
 

h=1 i=h+]. 	 (3.106) 
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The expected value of cos(i4'1 - Wh1) can be expanded 

using a double-angle formula. 

E[cos(4Jii - APh1)3 = E[cos4'jlcos4'hl 

+ Siflá4'jlSiflt1Jhl] 	(3.107) 

Since h and i are always different, ATM  and Afil are 

independent random variables and (3.107) can therefore be 

re-written as follows. 

E[cos(4'1 - '1'h1)3 = EEcosq'13EccosAq'13 

	

+ E[sinA4'jl3E[sinMhl3 	(3.108) 

Now, AYhj has a normal distribution with a mean of zero, 

so a particular value of ASO  say p, has the same 

probability of occurring as -. 	Since sin(-p) = -sin(p), 

E[sin4'hl3 must be equal to zero. 	The same argument 

applies to E[sin'13. 	Thus the sine terms in (3.108) 

vanish. 

ECcos('1 - 	'h1) 3  = E[cosA4'13E[cosJ13 	(3.109) 

The expression for P(e1) can be simplified by 

substituting (3.109) into (3.106) 
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E[P(e1)J = NA + 

	

E[cosilJEEcoshi] 

h=]. i=h+1 	 (3.110) 

Since the angles APhl and AYij have the same statistics as 

the general angle M'nm E[cosq'1J and  E[cos41]  are both 

equal to EECOS1'nm3. 

N-i 

E[P(e1)] = NA + 

	

(E[cosnm3 )2 

h=1 i=h+1 

	

= NA + N(N - 1)(EEc0sPnm]) 2 	(3.111) 

3.14 The Mean of the Spectrum Value at the True Bearing 

From (3.49), P(e1) is the quadratic form qq 1 , which 

appears in the definitions of Pbf(ei),  Pj(e1), and 

	

Pm (e1) given in (3.50) , (3.51) , and (3.52). 	The matrix 

	

Ca is set to 2bf' eme' or  Omu  as appropriate. 	From 

(3.97), Ca is characterized by by A and C. 	For example, Ca 

is set to Cabf  by setting A equal to Abf  and C equal to 

bf• 	The expected values of Pbf(el),  P(e1), and me 

P(e1) can therefore be expressed in terms of the 

expected value of PCa(el). 
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ECPbf(e1)3 = E[P(e1)3, 	A = Abf, 4  = 4bf 	(3.112) 

E[P(e1)] = E[P(e1)], 	A = Ame, 	= ';me 	(3.113) 

ECPj 	 = in(e1)J = N - E[P(e1)J, 	A = Amu, ' 	u 
(3.114) 

Now, an expression for E[P(e1)3  in terms of A and ' is 

given in (3.111) and Abf, Cbfp Amer Cme, Amu, and Cmu  are 

defined by (3.70), (3.71), (3.78), (3.79), 	and (3.85). 

The expected values of bf(81)'  P(e1), and P(e1) are 

therefore as follows. 

E[Pbf(el)J = N(A + c) + N(N - 1)A 2 (ECcos4'nm3 ) 2  
(3.115) 

N r Af 
E[P(e1)3 = - 	

- ________ 
me aW2 I 

N(N - 1)A 
- 	

+ NA 	
(EEc0s'nm3) 2 	(3.116) 

T) 	
M 

 

E[P(e1)] = (N - 1)(1 - (E[cos4'nm]) 2 ) 	 ( 3.117) 

The expected values of Pbf(61),  P;(e1), and Pj(e1) are 

related to the variance of the sensor positions ap2  through 

(3.95), which defines E[CO54)nm3  in terms of cr. 
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Figure 3.24 shows the close agreement between the 

simulation results and the curves predicted using (3.115), 

(3.116) , and (3-117). 	Recalling that the results for 

minimum energy and MUSIC correspond to the reciprocals of 

Pme(e) and  Pmu(e), it is evident that E[Pbf(e)], 

ECPme (e)J, and E[Pmu (e)] all decrease as CF2  increases. 

The effect is most pronounced when the minimum energy and 

MUSIC techniques are used. 	When a2 =0, E[P(e1)J and 

E[P(e1)J are both close to zero and EEPme (6)J and 

ECPmu (e)J must therefore have large values. 	As cr,2  is 

increased, E[P(e1)J and E[P(e1)] both increase and 

EEPme (e)] and E[Pmu (e)] decrease rapidly since the 

gradient of the reciprocal function has its largest 

(negative) value in this area. 

It should be stressed, however, that there is no simple 

quantitative relationship between E[P me (ei)] and 

ECPj(e1)J. 	In particular, ECPme (ei)] 0 1/E[P;(e1)] 

since the reciprocal function distorts the distribution of 

me(el) (97]. 	The same applies to E[Pmu (o)] and 

E[Pjj(e1)]. 

When there are no sensor positioning errors, there are no 

errors in the bearings of the peaks in the spectra. 	In 

this case, Pbf(el), P(e1), and P(e1) describe the peak 

heights (or their reciprocals). 	These values are 
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calculated by evaluating (3.115) , (3.116), and (3.117) 

with CP2  set to zero. 	From (3.95), E[cosA'nm J = 1 when 

is zero. 

Pbf(el) = N 2A + N, 	ap2  = 0 	 (3.118) 

N 
P(e1) = 	 , 	o = 0 	 (3.119) 

P(e1) = 0, 	o = 0 	 (3.120) 

The expressions given in (3.118) , (3.119) , (3.120) are in 

agreement with results published elsewhere [16]. 	Notice 

that Pbf(el)  and the reciprocal of P(e1) are both 

linearly proportional to the signal power A and the noise 

power aw2 , thus confirming the statement made in Chapter 2 

that conventional beamforining and minimum energy both 

produce bearing spectra which have units of power. 

3.15 The Variance of the General Quadratic Form 

This section derives an expression for the variance of 

P(e1), which is then used in the next section to obtain 

the variances of Pbf(el),  Pj(e1), and Pj(e1). 	The 

first step is to produce expressions for (P(e1)) 2  and 
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hence the mean square value E[(P(e1)) 2 3. 	From the 

expression for P(e1) given in (3.101) , (P(e1)) 2  is as 

follows. 

N N 

(P(e1)) 2  = {NA + c 	Aqh1&qi1j 
h=1 i=1 

iOh 

= N 2A 2  + 2NAC 

h=1 i=1 
i Oh 

	

+ C2 
	[AqhlAqil 	&qpl ,&qrll 

	

h=1 i=1 	p=1 r=1 

	

ih 	 rOp 	(3.121) 

The nested summations in the square brackets must be 

	

treated with care. 	Although there are some terms in 

which h, i, p, and r are all different, there are several 

terms in which p and/or r duplicates h and/or i. 

As in (3.99), the approach is to re-write the summations 

so that the special terms are isolated. 
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(P(e1)) 2  = N 2A 2  + 2NA 

h=1 i=1 
iOh 

+ C2 	[(qqi1) 	
I 

*lA 2 	 ( Aq*1) 2Aqi,Aqpl 

	

h=1 i=1 	 p=1 

	

i0h 	 ph 

+ 	 + + qjiAqi} 

+  ~ ~ Aqh*lAqil&qp*l&qrll 

p=1 r=1 
ph rOh 
pOi rOi 

rp 

(3.122) 

It is straightforward to show that (3.122) evaluates to a 

real number, the argument being the same as the one which 

was applied to (3.101). Consider the two summations in 

which h and i run from 1 to N. 	If there is a step at 

which, say, h = 3 and i = 7, there must also be a step at 

which h = 7 and i = 3. 	The terms produced when h = 7 and 

i = 3 are the complex conjugates of the ones produced when 

h = 3 and i = 7. 	Inside the curly brackets, the 

conjugate of each term is actually produced by a different 

term. 	For example, when h and i are reversed, 

becomes 	 which is the 
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conjugate ofq 1 (Aq 1 )2Aq1 . 	Similar rules apply to the 

other terms. 

As in (3-101), the sum of a term and its conjugate is 

equal to twice the real part of the term. 	In (3.122), 

the real part of each term can be expressed using the 

sines and cosines of the angles APhl ,  A %Pil , 	p1' and 

M)rla 	When the expected value is taken, the sines vanish 

as before. 	The following expressions are needed to 

obtain the expected value of (P(e1)) 2 . 

E[q1q1 + qliqh1] = 2E[Re(Aq1q1)J 

= 2E[cos(P1 - 

= 2E[cos4'13E[cosA4'hl3 

	

= 2(EEcosnm3 ) 2 	(3.123) 

The termsq1qp1  and  qj1q1  have the same form as 

* 
gh1qj1. 

E[q1Aq1 + 	 = 2(E[cosA4'nmJ) 2 
	

(3.124) 

	

E[q1q1 + AqpiqhJ = 2(ECcosE4nmJ) 2 
	

(3.125) 
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+ (q 1 q 1 )2J 

= 2E[Re((q 1 q 1 )2)3 

= 2ECcos(24'1 - 2A4'h1)3 

= 2ECcos2A4.'j13E[cos2Aqihl] 

= 2(ECcos2b&9'nm3) 2 	 (3.126) 

E[(q1 ) 2 j1p1 + Aq1 (qh1 ) 2q1J 

= 2EERe ( (q11  ) 2 ilp1I J 

= 2EEcos(M'1 + 4s1 2h1)3 

= 2E[cos4'jl3E[cosPpl3E[cos2M'hl3 

= 2(EEcos'PnmJ) 2EEcos29)nm] 	(3.127) 

The term plus its conjugate has the same 

form as (3.127). 

E[q1 (qj1) 2q1 + 	3.1)2AghlAqpl31J 

= 2(E[COSM'nm3) 2EECOs2L1)nm3 	(3.128) 

+ 

= 

= 2EEcos(41 - M'hl + 	r1 - 4'p1)] 

= 

= 2(E[cosA']) 4 	 (3.129) 

Applying these expressions to (3.122), the mean square 

value of P(e1) is as follows. 
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E[(P(e1)) 2 3 = N 2A 2  + 2N2(N - 1)A4(ECcosA4'J)2 

+ N(N - 1) 2 (EEcosM)nm3) 2  + N(M - 1)4 2  

+ 2N(N - 1)(N - 2)2{(EEcosM)nm3)2EEcos2A4JnmJ 

+ (EEcosnm3) 2 1 

	

+ N(N - 1)(N - 2)(N - 3)4 2 (E[cos4'nm3 ) 4 	(3.130) 

The calculation of the variance of P(e1) also requires 

the square of the mean. 	From (3.111) , (E[P(e1)]) 2  is as 

follows. 

= {NA + N(N - 1)4(EEcosAq)nmJ)212 

= N 2A 2  + 2N2(N - 1)AC(EEcosA4'nm]) 2  

	

+ M2(N - 1) 2 4 2 (E[CospnmJ) 4 	(3.131) 

The variance of PO(el) is the mean square value minus the 

square of the mean [97]. 

V[P(e1)3 = E[(P(e1)) 2 ] - (E[P(e1)3) 2 	(3.132) 

Substituting (3.130) and (3.131) into (3.132) , the 

variance of P0(e1) is as follows. 
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VCP(e1)3 = N(N - 1)C2[2(3 - 2N)(E[COSA4'nm3 ) 4  

+ 2(N - 2){EECoS2A4nm3 + 1}(EEcospnm3)2 

+ (EEcosA4'nm3) 2  + 1 
	

(3.133) 

(3.133) can be checked (partially) by setting c to zero, 

in which case E[cosJ = E[cos24'nm3 = 1 and V[P(e1)3 

evaluates to zero. 	This confirms that the variance of 

the peak height (or its inverse) due to sensor positioning 

is zero when there are no errors present. 

3.16 The Variance of the Spectrum Value at the True Bearing 

The variances of bf(°1)  P(e1), and P(e1) can be can 

be expressed in terms of V[P(e1)3 in much the same way 

that the means were related to E[P(e1)3. 

V[Pbf(el)J = V[P.(e1)3, 	C = bf 
	

(3.134) 

V[P;(e1)] = V[P1(e1)3, 	4  = me 
	 (3.135) 

VCP(e1)3 = V[P(e1)3, 	4 = mu 	 (3.136) 
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An expression for V[P(e1)J  in terms of 4 is given in 

(3.133) and 4bf ,  Cme, and Cmu  are defined by (3.71) 

(3.79), and (3.85). 	The variances of Pbf( 61), P(81), 

and P(e1) are therefore as follows. mu 

V[Pbf(el)] = N(N - 1)Al2(3 - 2N)(E[COS4'nmJ) 4  

+ 2(N - 2){EECO52&Pnm] + 11 (EEcos4)nmJ)2 

+ (EEcos 64mnm3) 2  + 
	

(3.137) 

N(N - 1)A 
vCPj I-1 	 2(3 - 2N)(ECcOSE'nm3) 4  

+ NA) 2  

+ 2(N - 2){E[COs2Vnm] + 11 (ECcos.4'nm3 )2 

+ (EEcosM'nmj) 2  + 1 	(3.138) 

V[P;(e1)J = 	(N - 1)[ 	 A. 2(3 - 2N)(EEcos'PnmJ)4 

+ 2(N - 2){E[COS2Pnm] + 1}(E1cosqnm3 )2 

+ (EEcosM'nm3) 2  + 1 	 (3.139) 
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Figure 3.25 compares the simulation results for the 

variances of Pbf(el),  P;(e1), and P(e1) with the curves 

predicted using (3.137), (3.138), and (3.139). 	In all 

three cases, the variance increases with cT. 

3.17 The Mean and Variance of the Peak Height 

Although the theoretical work discussed in this chapter 

does not predict the means and variances of Pbf(61 + 

+ e1), and Pj(e1 + Ae1), it is possible to 

produce bounds for these means and variances using the 

expressions for the means and variances of Pbf( 81), 

P(e1), and Pj(e1) derived earlier. 

Since the peak is, by definition, the highest point in the 

spectrum, the peak height P(e1 + e1) must be greater than 

P(e1) whenever Ael 0 0. When Ael = 0, e1 + Ael = e1 and 

p(e1 + &e1) must be equal to P(e1). 	It follows that in 

the general case P(e1 + e1) >, P(e1), which in turn 

impplies that P(e1 + Ael) < P 1 (e1). 	These 

observations lead to the following inequalities for the 

peak heights (or their inverses). 
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bf(°1 + Ael) >, Pbf (el  ) 	 (3.140) 

Pj(e1 + e1) 	P;(e1) 	 (3.141) 

P(e1 + 	P(e1) 	 (3.142) 

Taking the expected value of both sides in (3.140), 

(3.141), and (3.142), the following expressions for the 

mean of the peak height are obtained. 

E[Pbf(e1 + e1)3 >, E[Pbf(el)] 	 (3.143) 

E[P(e1 + 	E[P(e1)J 	 (3.144) 

. mu 
	+ e1)] 	E[P(e1)J 	 (3.145) 

As ap2  increases, V[e1]  increases (as shown earlier) and 

large values of Ael become more common. 	As a result, the 

spectrum point represented by P(e1) tends to be further 

from the peak. 	Thus the gap between E[P(e1 + e1)3 and 

E[P(e1)J widens as a 2  increases. 

These predictions are confirmed by Figure 3.26, which 

compares the simulation results for E[Pbf(81 + 

EEP(e1 + Ae1)J, and E[P(e1 + e1)3 with the 

theoretical curves for EEPbf(el)J, E[P(e1)3, and 

E[P1(e1)]. 
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A similar set of inequalities is obtained for the 

variances of Pbf(°1 + e1), P(e1 + el), and me 

mu + e1). 	Figure 3.27 compares the simulation 

results for V[Pbf(e1 + e1)3, V[P;(e1 + e1)], and 

V[Pj(e1 + 	1)3 with the theoretical curves for 

V[Pbf(el)], V[P;(e1)J, and VIP -1 (el)3. 	By inspection, 

the bounds on the variance of the peak height are as 

follows. 

V[Pbf(e1 + e1)3 . V[Pbf(el)] 	 (3.146) 

V[P(e1 + 	V[P;(e1)3 	 (3.147) 

V[P(e1 + 	v[PX(ei)] 	 (3.148) 

Comparing the results for the mean of the peak height with 

the results for the variance, notice that (3.146) 

(3.147), and (3.148) all define upper bounds whereas 

(3.143), (3.144), and (3.145) specify a lower bound for 

conventional beamforming and upper bounds for the other 

two techniques. 	The reason for this is that as 

increases, E[Pbf(el)J  decreases and V[Pbf(el)J 

increases. 	Thus an increase in EEPbf(ej)J is accompanied 

by a decrease in E[Pbf(el)J. 	Since E[Pbf(el + ei)] is 

greater than E[Pbf(el)J, the corresponding value of 

V[Pbf(el + e1)3 is less than V[Pbf(el)J. 
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In the case of minimum energy, however, E[P(e1)] and 

VCP(e1)J both increase as o is increased. 	Since 

E[P;(e1 + e1)J is less than E[P(e1)J,  it follows that 

vEP(e1 + ie1)J is less than V[P(e1)J. 	The sameme  

argument applies to MUSIC. 

3.18 Summary 

This chapter has considered the effects of sensor 

positioning errors on the bearing estimation process. - 

The first step was to define notation for the errors in 

the sensor positions and the resulting errors in the phase 

measurements obtained from the array. 

The bulk of the chapter was devoted to two pieces of 

theoretical work, the first of which derived expressions 

for the mean and variance of the error in the estimated 

bearing of a signal in terms of the variance of the sensor 

positions. 	This material was based on a geometric view 

of bearing estimation which was explained through a series 

of graphical constructions. 

The second piece of work addressed the behaviour of the 

bearing spectrum at the true bearing of the signal. 	This 

material was mainly algebraic in nature and showed how the 
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sensor positioning errors coupled through the conventional 

beamforming, minimum energy, and MUSIC spectral estimators 

introduced in Chapter 2. 

Computer simulations were used to confirm the theoretical 

results and also to achieve some insight into effects 

which were not covered by the theoretical work. 	In 

particular, it was shown that the theoretical expressions 

describing the spectrum at the true bearing of the signal 

could be used to construct bounds on the mean and variance 

of the peak height. 
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CHAPTER 4 AN ARRAY CALIBRATION ALGORITHM 

4.1 Introduction 

This chapter develops an array calibration algorithm to 

compensate for sensor positioning errors in direction 

finding arrays, the aim being to provide a solution to the 

problems identified in the last chapter. 	Like the 

material presented in Chapter 3, the calibration algorithm 

is an original piece of research. 

As explained earlier, there are two distinct sets of 

sensor positions, referred to as the intended positions 

and the true ones. 	The intended positions model the 

ideal array geometry, while the (unknown) true positions 

incorporate the sensor positioning errors and are the 

result of one particular attempt at setting the array up. 

Although the snapshots obtained from the array are 

influenced by the true sensor positions, the bearing 

estimation algorithm used to analyze the snapshots 

normally operates on signal vectors derived from the 

intended positions. 	This inconsistency lowers the 

quality of the bearing spectrum as demonstrated in 

Chapter 3. 
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If the true sensor positions could be discovered, the 

bearing estimation algorithm could be given signal vectors 

corresponding to these positions rather than the intended 

ones and the inconsistency would be removed. 

The calibration algorithm described in this chapter 

attempts to deduce the true sensor positions by analyzing 

snapshots obtained while signals with known bearings are 

being received. 	If the errors in the sensor positions 

are small, the intended positions provide good initial 

estimates of the true ones and the accuracy to which the 

true positions can be estimated is limited only by the 

quality of the covariance matrix, which depends on factors 

such as the signal to noise ratio and the number of 

snapshots processed. 

Once the estimated sensor positions have been obtained, 

they are used in place of the intended ones when 

performing bearing estimation on unknown signals. 

Provided that the estimated positions are closer to the 

true positions than the intended ones were, some 

improvement can be expected in the performance of the 

bearing estimation algorithm. 

The general layout of this chapter is similar to that of 

Chapter 3. The problem is approached initially from an 

intuitive standpoint using a series of graphical 



172 

constructions which in turn suggest a more mathematical 

treatment. 	Computer simulations are used to investigate 

the performance of the calibration algorithm. 

4.2 Array Calibration and Bearing Estimation 

Since array calibration and bearing estimation are 

essentially inverse problems, it is instructive to 

consider the similarities and differences between them. 

In both cases, the presence of signal in reveals the 

component £nm  of the true position u of each sensor in 

the direction of the vector z. 

In bearing estimation, z m  is initially unknown and it is 

necessary to explore a range of bearings as shown in 

Figure 4.1(a) . 	In general, it is only possible to 

reconcile all of the distances Enm  with the assumed sensor 

positions when the axis of transmission of signal in has 

been identified correctly as illustrated in Figure 4.1(b). 

The exception to this rule arises when ambiguities are 

present as in the linear array example described in 

Chapter 2. 	In this case, the observed distances e nm  can 

be accounted for by bearings other than the true one. 
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In array calibration, the signal bearings are assumed to 

be known already. 	Figure 4.2(a) shows an array receiving 

a single transmission from the direction z1. 	The vector 

and the distance Enl  provide information about the 

position of sensor n since the sensor must lie on the line 

perpendicular to z  passing through the point n11  as 

shown by the dashed line in the diagram. 

In principle, there is an ambiguity in the value of enm 

since the measurement is made indirectly through the 

phasor qnm,  which contains an unknown number of 217 

cycles. 	However, the distance Enm  derived 

(unambiguously) from the intended sensor positions is 

likely to be very close to Enm  and the matter can 

therefore be resolved by identifying the possible values 

for Cflm  based on qnm  then choosing the one closest to 

The construction shown in Figure 4.2(a) only reveals the 

components of the sensor positions in one direction. 	To 

determine the positions completely, a signal from a second 

direction 2  must be processed as shown in Figure 

4.2(b). 	This provides the additional information that 

sensor n lies on the line perpendicular to 2  passing 

through the point En2Z2. 

Combining the two constraints, it follows that the true 

position of sensor n is at the intersection of the two 
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dashed lines as illustrated. 	The process is essentially 

a novel application of triangulation. 	In common with 

other forms of triangulation, processing of more than two 

directions provides increased confidence about the point 

of intersection. 	The next section describes a particular 

advantage of using three or more signals for array 

calibration. 

4.3 Sources of Error in Array Calibration 

Although the calibration procedure is based on the 

assumption that the signal bearings are known accurately, 

it is important to understand how the performance of the 

method degrades when this assumption is false. 	Any 

errors in the directions of the vectors Zm  cause the 

sensor positions to be estimated incorrectly. 

By analogy with the approach used in Chapter 3 for bearing 

estimation, it is possible to identify true and intended 

bearings for the calibration signals. 	Snapshots from the 

array are determined by the true bearings but are analyzed 

using the intended ones. 

Figure 4.3(a) shows the effect of bearing errors if there 

are only two calibration signals present. 	When 
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triangulation is performed to locate sensor n, the dashed 

lines intersect at the wrong point. 	There is no way to 

detect this error. 

Figure 4.3(b) demonstrates the advantage of using more 

than two signals. 	When bearing errors are present, the 

dashed lines generally enclose an area rather than 

intersecting at a point and this provides a warning that 

the triangulation has failed. 

Even if the vectors Zn  are known accurately, errors can 

arise in the measurement of the distances Cflm,  which are 

obtained from the off-diagonal elements of the covariance 

matrix R. 	As explained in Chapter 2, the effect of 

received noise is confined to the leading diagonal of R 

when the expected value is calculated. 	However, for 

practical measurements based on a finite number of 

snapshots, some corruption of the off-diagonal elements is 

inevitable. 	These errors are most pronounced when the 

signal to noise ratio is low and/or a small number of 

snapshots are used. 

Errors in the distances Enm  are similar in effect to 

errors in the vectors 2m'  causing the triangulation to be 

performed using inappropriate lines. 	As before, the 

problem can usually be detected if more than two 

calibration signals are present. 	Indeed, if the 
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triangulation does produce an area rather than a point, 

the errors could be in the vectors 2m'  the distances Enin , 

or both. 

Throughout this discussion, it is acknowledged that the 

lines used for triangulation are unlikely to intersect 

perfectly at one point even under favourable conditions. 

Thus references to the lines crossing at a point also 

include the case of the lines enclosing a very small area. 

To summarize, the performance of the calibration procedure 

depends on factors such as the accuracy to which the 

bearings of the signals are known, the signal to noise 

ratio, and the number of snapshots used to form the 

covariance matrix. 	Problems in any of these areas 

produce errors which affect the triangulation process in 

similar ways and this is demonstrated using computer 

simulations at the end of the chapter. 

4.4 An Iterative Approach to Array Calibration 

Having established the basic idea of using triangulation 

to discover the true sensor positions, the next step is to 

develop a precise mathematical interpretation of the 

process. 	The observations made in the previous section 
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regarding the effects of errors have some influence on the 

choice of algorithm. 

Since triangulation involves calculating the point of 

intersection of a number of lines, the problem could be 

expressed in terms of solving simultaneous equations. 

However, the fact that the lines might fail to cross at a 

single point creates serious difficulties for this 

approach. 	When more than two calibration signals are 

present, the problem is over-determined and the system of 

equations becomes inconsistent if the lines enclose an 

area rather than intersecting at a point. 

As noted in the previous section, the lines would normally 

be expected to enclose at least a small area. 	Although 	a 

stable solution might be possible using pseudo-inverse 

techniques [85],  the following iterative scheme is 

preferred. 

The technique to be described is based on a gradient 

search algorithm [1021. 	Extending the notation used in 

Chapter 3, un  is considered to be an estimate of the true 

sensor position tin . 	The value of u at the ith  step in 

the iteration is denoted by i(i) and the initial value 

u(0) is set to the intended position of sensor n. 
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The algorithm adjusts the estimated sensor positions u in 

an attempt to make them converge to the unknown true 

positions u. 	Figure 4.4 shows the true and estimated 

positions of sensor n at steps i and i + 1 in the 

iteration. 	The aim is to update the estimate so that 

+ 1) is closer to un  than u(i) was. 	It follows 

that if a circle is drawn with Ti(i) on its circumference 

and its centre at u then u(i + 1) should lie inside the 

circle as illustrated. 

The optimal direction in which to move the estimate is 

given by the vector difference Un - u(i), which is the 

error between the true value and the estimate, but this 

vector is unavailable since u is unknown. 	However, the 

components £nm  of Un  along the axes of transmission are 

available and these can be used to guide the estimate 

towards u in a non-optimal manner. 

The component of un(i)  in the direction of Zm  is cnm(i). 

Recalling the definition of Acnm  given in Chapter 3, the 

component of the error - Un is  cnm(i) - 1m() as 

shown in the diagram. 	If the algorithm manages to reduce 

nm() - 	lm() to zero for all of the M signals 

simultaneously then un(i)  must have become equal to tin . 

More precisely, ii(i) will have become equal to the 

estimate of u implied by the assumed signal bearings Zm 

and the measured distances Cnm. 



182 

Y (wavelengths) 

Estimated position of 
sensor n will-be inside 
circle at step i+1 if 
estimate has improved 

- 

- 

Estimated position of 
sensor n at step i 

Un 	

I\ 

1 " 	True position 
I 	 of sensor n 

I 
I I  

I 
E3 	 j 

/ 

"12(i)12(i) 

n2  

X (wavelengths) 
r -_# 
n1 

c1(i) - OE11(i) 

Figure 4.4 Distances for calibration algorithm 



183 

At each step, the algorithm updates the estimated position 

un(i) of. each sensor by adding or subtracting a small 

amount of each vector Zm. 

+ 1) = 	(i) - 
M 	U  mm 	

(4.1) 

m=l 

i is a small constant which determines the step size in 

the iteration. 	The weight rnm(i)  depends on the error 

nm(i) - elm (i) in the estimated position of sensor 

along the axis of transmission of signal in. 	If the error 

is zero then the weight is zero as well. 	Otherwise, the 

weight is a small number whose sign is the same as that of 

the error. 	For example, if the error in ü(i) in the 

direction of zm  was positive, nxn()  would also be 

positive, causing a small amount of z m  to be subtracted 

from n()  in an attempt to reduce the error. 

For non-zero errors, the precise magnitude of llnm(i)  is 

related to 	nm( 	- E1m(i) in some non-linear way 

through the gradient of the cost function, which is 

introduced in the ne ct section. 	However, an 

understanding of the sign of nm()  is sufficient for the 

present discussion. 
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Although the subtraction of h1nm (i) m  from un(i) is 

performed specifically to reduce the error along the axis 

of signal in, it also changes the error in every other 

direction except for the one perpendicular to z. 	In the 

straightforward case where two signals are being received 

from perpendicular directions, it is clear that the 

iteration can minimize the errors along the two axes 

independently. 	However, in the general case where the 

directions are not perpendicular, all M of the i.Lr nm (i)zm  

terms subtracted from u(i) affect all M of the errors 

+ 1) - Iei(j + 1) at the next step in the 

iteration. 	The aim of the following analysis is to 

demonstrate that the algorithm converges despite this 

interaction. 

Figure 4.5 shows an enlarged view of the true position of 

sensor n and the estimated positions at steps i and i + 1 

of the iteration. The large circle, shown only partly in 

the diagram, is the one discussed earlier. 	If it can be 

shown that ii(i + 1) is consistently placed inside this 

circle then the estimate must improve at each step. 

The argument is as follows. 	Although zm  can point in any 

direction, the vector (nm(i) - 	1m(1))m is limited to 

a range of bearings covering ir radians. 	The reason for 

this is that if zm  was replaced with -zn,  the sign of 

nm(i) - ci(i) would change and (nm(i) - 
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would be unaltered. 

If the vectors (AEnm(i) - 'im())m are drawn starting at 

the true position of sensor n, they form chords of a 

circle as illustrated. 	The limits of the range of 

bearings which the vectors can cover are obtained from the 

tangent to the circle at the true sensor position. 	At 

both ends of the range, Zm  IICS along the tangent, causing 

nm) - 	1m()' and hence rnm(i),  to vanish to zero. 

When cnm(i) - Elm(i) is not equal to zero, the vector 

/.Lflnm(i)Zm always points in the opposite direction to 

- 	im())m and it follows that the direction of 

1flnm () m  always lies in the range of bearings from which 

- 	1m())m is excluded. 

From (4.1), the vector 	+ 1) - un(i) giving the 

displacement from ii(i) to un(i + 1) is the resultant 

formed by summing -/Lrnm(i)zm  over the M signals as 

illustrated in Figure 4.6(a). 	Although the precise 

direction of the resultant depends on the magnitudes of 

the vectors in the summation, the direction always lies 

within limits determined only by the set of vectors Zm  and 

the signs of the weights rnm(i). 	In Figure 4.6(b), the 

vectors 	'1nm()m have been re-drawn so that they all 

start at the same point. 	These vectors define a range of - 

bearings, which is from -/1n1(i)z1 to Mfl3(1)Z3 in the 
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example, and the direction of the resultant formed by 

summing the vectors must lie within this range. 

Returning to Figure 4.5, for u(i + 1) to lie outside the 

large circle, there would have to be at least one vector 

nm()m pointing out of the circle. 	However, this 

could only happen if z was a tangent (to both circles), 

in which case rtnm(i)  would be zero, thus excluding Zm from 

the summation in (4.1). 

It follows that the resultant can never lie along the 

tangent to the large circle at the estimated sensor 

position and must therefore point into the circle. 	This 

guarantees that the estimated sensor position moves 

towards the true one at each step in the iteration. 

In this discussion, it has been assumed that the length of 

the resultant is small compared with the radius of the 

large circle. 	Otherwise, the estimated sensor position 

could overshoot the true one and land outside the circle 

as shown in Figure 4.7. 	This problem is most likely to 

occur close to convergence when the radius, which is the 

remaining error in the estimate, becomes small. 

It follows that the calibration algorithm, in common with 

many other iterative processes, is sensitive to the choice 

of the step size 1. 	A smaller step size causes slower 
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convergence but may reduce the error remaining between the 

true and estimated sensor positions after calibration. 

4.5 The Array Calibration Algorithm 

This section shows how the signal subspace concepts 

developed in Chapter 2 can be used to produce the 

coefficients rknm(i) required by the calibration algorithm. 

The approach described here produces a calibration 

algorithm that is closely related to the MUSIC technique 

for bearing estimation. 

While the calibration signals are present, snapshots are 

obtained from the array and the covariance matrix R is 

calculated in the usual manner. 	The eigenvalues and 

eigenvectors of R. are calculated and the eigenvectors 

corresponding to the M largest eigenvalues form the 

columns of the matrix Yw as before. 

The X and Y components of u(i) and Zm  are denoted by 

X((i)), 	(n())' X(zm), and (m) 	For each of the M 

calibration signals, m()  is the signal vector calculated 

from the bearing of the signal and the estimated sensor 

positions u(i). 	Since the sensor positioning errors are 

assumed to be small, m(1)  is very close to the (unknown) 
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signal vector qm  which would be obtained using the true 

sensor positions. 

At each step in the iteration, the calibration algorithm 

must assess the current estimated sensor positions n() 

and adjust them so that they improve at the next step. 

The key is to use the signal subspace approach adopted in 

MUSIC. 	The length of the projection of q(i) on to the 

noise subspace is denoted by IIPm (i)11 2 . 	From Chapter 2, 

IIPm(i)11 2  is calculated as follows. 

IIPm (i)11 2  = gm (i)ywyjm (i) 	 (4.2) 

Since qm  is a true signal vector, it must lie entirely in 

the signal subspace. 	Thus qm  has no component in the 

noise subspace. 	If there were no sensor positioning 

errors along the axis of transmission of signal m, 

would be equal to qm  and would therefore lie entirely in 

the signal subspace. 	In this case, q(i) would have no 

component in the noise subspace and lIpm (i)11 2  would be 

equal to zero. 

IIPm (i)11 2  = 0, 	gm() = qm 
	 (4.3) 

If, however, there are errors along the axis of signal in, 

gm() generally fails to lie completely in the signal 

subspace and must therefore have some component in the 
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noise subspace. 	It follows that IIpm(i)112  is greater than 

zero. 

IIPjn (i-)11 2  > 0, 	gm() 0 g 
	

(4.4) 

Thus IIPm(i)112  is a measure of the sensor positioning 

errors along the axis of transmission of signal m, being 

(theoretically) equal to zero when there are no errors in 

that direction. 	The cost function J(i) is defined to be 

the sum of IIPm(i)11 2  over all M signals. 

J 	
m(I2 
	

(4.5) 
m=1 

The algorithm manipulates the estimated sensor positions 

u(i) in way which minimizes i(i), thus reducing the 

IIPxn(i)11 2  terms together. 	In terms of the graphical 

constructions used earlier, varying u(i) so as to 

minimize IIPm (i)11 2  tends to steer the sensor on to the 

dashed line perpendicular to Zm  passing through the point 

EnmZm . 	Similarly, minimizing J(i) guides the sensor 

towards the point of intersection of the M dashed lines, 

thus achieving the triangulation. 

If the lines enclose an area rather than crossing at a 

point then the sensor cannot lie on all of the dashed 
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lines at the same time and the UPm(i)112  terms cannot all 

be zero simultaneously. In this case, it is impossible 

to reduce J(i) to zero. 

The iteration used to minimize J(i) is a gradient search 

algorithm. 	The N estimated sensor positions Ci(i) are 

updated in parallel as follows. 

a 
+ 1) = u(i) - 	 J(i) 	 (4.6) 

au(i) 

To implement (4.6), it is necessary to differentiate the 

cost function J(i) with respect to each of the estimated 

sensor positions U(). 	This differentiation is possible 

since J(i) is a function of the IIp1 (i)II 2  terms, which are 

themselves related to the positions u(i) through the 

signal vectors im (i). 

The first step is to differentiate IIPm(i)11 2  with respect 

to X(Un(i))  and Y(u(i)). The matrix multiplications in 

(4.2) can be expanded as follows. 

N-M 

lip 02 

= 	

mvph}{ 	Vqpm }] 	 (4.7) 
h=1 p=1 	p=1 
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In the interests of compactness, the iteration count i has 

been omitted. 	CIPM is the pth element of the signal 

vector m(i)  and Vph  is an element of Vi.. 	Since q^nm and 

qnm are the only terms affected by X(ü(i)) and Y(u(i)), 

it is sufficient to consider only the influence of these 

terms when forming the partial derivatives. 	By 

inspection, the coefficients of q̂ nm  and qnm in IIPm II 2  are 

as follows. 

N-M 	N 

Coefficient of 	 tvnhpm'Tph} 	(4.8) 
h=1 	p=l 

Coefficient of q: 	 (4.9) 

Notice that when p is equal to n in (4.8), the coefficient 

of qnm  contains a reference to However, multiplying 

the coefficient by inm  produces a constant. 

(Vhmvnh)nm = InmI 2 IvnhI 2  = tvflhI 2 	(4.10) 

The same result is obtained when p is equal to n in 

(4.9). 	Since the derivative of a constant is zero, the 

differentiation can be simplified by excluding the 

constants altogether. 	The partial derivative of IIPm(i)11 2  

with respect to X(i(i)) is then as follows. 
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N-H 	N a 	 a 
IIPmII2 = [ 	

{v 	m'1ph}] 	 qnm 
ax(u) 	h=1 	p=1 	

ax(u) 
pOn 

N-M 	N 	 a 
+ [ 	

[vnhVhpm}] 
ax( u ) 

qnm 

h=1 	p=1  
pn 	 (4.11) 

q 	is related to X(u) and Y(u) as follows. 

qnrn = exp[jq.'J 

= exp[j2nJ 

= exp[j2Trun .zm 3 

= exp[j2iT(X(Ci)X(z) + Y(un)Y(zm))J 	(4.12) 

Having expressed q in this form, it is straightforward 

to find the partial derivatives of q and m with 

respect to X(i). 

a 
cflm = j21TX(z)q 	 (4.13) 

ax(u) 

a 
nm = -j2TTX(z)q 	 (4.14) 

The partial derivative of IIPm II 2  with respect to X(u) is 

obtained by substituting (4.13) and (4.14) into (4.11) 
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a 	 N-M 	N 

IIPxnIl 2  = 2TTX(zm )[ nm 	fvnh qpmVph} 
ax() 	 h=1 	p=1 

pn 

- 	fvnh  ~ Vphqpm 
}] 

pOn 	(4.15) 

Noting that the two expressions in the square brackets are 

complex conjugates of each other, (4.15) can be re-written 

as follows. 

a 	 N-M 	N 

IIPmII 2  = _4TTX(zm)Im[nm m1ph}] 
3X (n) 	 h=1 	p=1 

pn 	(4.16) 

lin[] denotes the imaginary part (which is itself a real 

number). 	The partial derivative with respect to Y(i(i)) 

is identical to the right hand side of (4.16) except that 

X(zm) is replaced with (m) 	Re-introducing the 

iteration count i, r(i)  is defined as follows. 

nm() = 

pn 	 (4.17) 
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The partial derivatives of IIpm (i)11 2  with respect to 

X(i(i)) and Y(u(i)) can now be expressed in terms of 

X(Zm), Y(Zm ), and nm() 

a 
IIPm (i)11 2  = flnm (i)X(Zm ) 	 (4.18) 

3x(u(i)) 

:  
ay 	

IIPm (l)11 2  = flnmU)Y(2m) 	 (4.19) 
(u1. (i))  

Combining ( 4.18) and (4.19), the derivative with respect 

to the vector u(i) is as follows. 

a 

au (i) 
IIPm (i)11 2  = flnm( i) m 	 (4.20) 

Recalling the definition of the cost function J(i) given 

in (4.5), the derivative of J(i) is the sum of the 

derivatives of the individual IIPm(i)112  terms. 

M a 	 a 	 M.  
J(i) = 	 IIPm (i)11 2  = 

M= ' l an(i) 	 in=1 	(4.21) 

The final step in the derivation is to substitute (4.21) 

into the gradient search algorithm defined in (4.6). 



198 

n(i + 1) = n(i) - 
	

(4.22) 

m=l  

When combined with the definition of nnm(i)  given in 

(4.17) , equation (4.22) specifies how the estimated sensor 

positions should be updated during the array calibration 

procedure. 	Notice that (4.22) is identical to the scheme 

originally proposed in (4.1), although the form of the 

weights rnm(i)  was unknown at that point. 	Figure 4.8 

provides a summary of the algorithm. 

The remainder of this chapter demonstrates the performance 

of the array calibration algorithm using computer 

simulations. 

4.6 Computer Simulation of the Array Calibration Algorithm 

The simulation system includes a program which models the 

calibration algorithm described in this chapter. 	The 

main inputs to the program are the intended sensor 

Positions tin , the vectors Zm  describing the bearings of 

the calibration signals, and the eigenvectors Yn of a 

covariance matrix formed while the calibration signals are 

present. 	The main output from the program is a set of 
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estimated sensor positions u n (i), which are approximations 

of the unknown true sensor positions u. 

Although the true sensor positions would be unknown in a 

real application, they are available in the simulation 

system. 	The calibration program takes the true positions 

tin as additional inputs and measures the errors between 

these positions and the estimates un(i). The overall 

error between the two sets of positions after the ith  step 

in the iteration is denoted by D(i), which is defined to 

be the magnitude flu - u(i)II summed over the N sensors. 

JIn - 'n(i)lI 
	

(4.23) 
n=l 

The program outputs the error D(i) and the cost function 

J(i) after each step, thus allowing D(i) and J(i) to be 

plotted against the step number, i. 	This provides a 

means of investigating the convergence properties of the 

calibration algorithm. 

The covergence test shown in Figure 4.8 is implemented by 

stopping the iteration whenever the counter i reaches a 

specified limit, the cost function J(i) falls below a 

given value, or the improvement IJ(i-1) - J(i)f in the 

cost function falls below a certain threshold. 
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All of the simulation results presented in this chapter 

are based on the circular array used in Chapters 2 and 

3. 	This array defines the intended sensor positions 

u. 	A set of true sensor positions u was formed by 

modelling the process of setting up the array with the 

variance of the sensor positions a2  set to 0.001. 	This 

was performed using the program described in Chapter 3, 

resulting in an initial overall error of D(0) = 0.218 

wavelengths. 

The first set of results consists of a series of bearing 

spectra which demonstrate the improvements obtained using 

the calibration algorithm. 	The array was calibrated 

using three signals with bearings of -108, 18, and 90 

degrees and relative frequencies of 0.999, 1.0, and 1.001 

respectively. 	All three signals had a power of 20dB 	and 

an initial phase angle of zero degrees. 	The noise power. 

was set to 10dB. 

Figures 4.9 and 4.10 show MUSIC bearing spectra for the 

calibration signals themselves. 	The spectra were 

generated using the same covariance matrix but different 

sets of sensor positions. 	The covariance matrix was 

formed using 1600 snapshots obtained at a sampling rate of 

3.4567 samples per cycle. 	In the bearing spectrum 

obtained from the true sensor positions, which is shown in 

Figure 4.9(a), there are no errors in the bearings of the 
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signals. 	It should be stressed, however, that this 

spectrum would only be available if the true sensor 

positions were known. 

Figure 4.9(b) shows the spectrum obtained using the 

intended sensor positions. 	The bearings of the peaks are 

-102, 22.5, and 88.5 degrees, giving an overall bearing 

error of 12 degrees summed over the three signals. 	This 

is the bearing spectrum which would be produced by a 

conventional ( i.e. uncalibrated) bearing estimation system. 

The bearing spectrum shown in Figure 4.10(a) was generated 

using a set of estimated sensor positions produced by the 

calibration algorithm with the step size J2 set to 0.005. 

The iteration stopped after 627 steps when IJ(i -1) - J(i)I 

fell below the specified limit of 10 - 12. 	The final value 

of the cost function J(i) was 4.90 x iø 	and the 

algorithm reduced the overall error from 0.218 to 0.0299 

wavelengths. 	The bearings of the peaks in the resulting 

spectrum are all correct (within the 0.5 degree 

granularity of the plot). 

The calibration process was repeated with a covariance 

matrix formed using 6400 snapshots. 	All of the other 

parameters remained unchanged. 	The algorithm terminated 

after 455 steps, IJ(i-1) - J(i)I having fallen below 

10-12. 	The improved quality of the covariance matrix 
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allowed the algorithm to form a better approximation of 

the true sensor positions. 	The final value of the cost 

function J(i) was 7.52 x 10 	and the overall error D(i) 

was reduced from 0.218 to 0.00896 wavelengths. 	Figure 

4.10(b) shows the bearing spectrum obtained by combining 

the estimated sensor positions with the original 

covariance matrix. 	The bearings of the peaks in the 

spectrum are all correct. 

As anticipated, the use of the estimated sensor positions 

in place of the intended ones yielded improved bearing 

spectra for signals with unknown bearings. 	In Figures 

4.11 and 4.12, the three calibration signals have been 

replaced with two new signals with bearings of -45 and -18 

degrees and relative frequencies of 1.001 and 1.0 

respectively. 	Both signals had a power of 20dB and an 

initial phase angle of zero degrees. 	The noise power was 

0dB and the covariance matrix was formed using 500 

snapshots obtained at a sampling rate of 3.4567 samples 

per cycle. 	Figure 4.11(a) shows the bearing spectrum 

which would be produced if the true sensor positions were 

available. 

The spectrum •obtained using the intended sensor positions 

is shown in Figure 4.11(b). 	The peaks are at -48 and 

-13.5 degrees, giving an overall bearing error of 7.5 

degrees. 	Figure 4.12 demonstrates the improvement 
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achieved by replacing the intended sensor positions with 

the estimated positions derived from the three calibration 

signals. 	Using the estimates obtained from 1600 

snapshots, the bearings of the peaks are -46 and -17.5 

degrees, meaning---that the overall bearing error has been 

reduced from 7.5 to 1.5 degrees. 	When the estimated 

sensor positions based on 6400 snapshots are used, the 

bearings of the peaks are correct (to within 0.5 degrees). 

The next set of results investigates the behaviour of the 

cost function J(i) and the error D(i) while the iteration 

is converging. 	It should be stressed that D(i) would not 

be available in a real application since the calculation 

involves the true sensor positions. 

As noted at the start of the chapter, the use of three or 

more calibration signals has the advantage that errors in 

the bearings of the signals can be detected. 	If there 

are only two signals present, such errors cannot be 

discovered. 	This effect is demonstrated by the 

simulation results. 

In Figure 4.13, the cost function J(i) and the overall 

error D(i) are plotted on a logarithmic scale against the 

step number j. 	The error D(i) is normalized so that the 

original error D(0) is at zero on the vertical axis. 

There were two calibration signals with bearings of 18 and 
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90 degrees and relative frequencies of 1.0 and 1.001. 

Both of the signals had a power of 20dB and an initial 

phase angle of zero degrees and the noise power was 0dB. 

The covariance matrix was calculated by finding the 

expected value using the procedure described in Chapter 2, 

thus allowing the errors caused by averaging over a finite 

number of snapshots to be eliminated. 

The step size 11 in the iteration was set to 0.005. 	As 

anticipated, the cost function decreased at each step in 

the iteration. In this example, the convergence of J(i) 

to a small value accurately reflects the behaviour of the 

unknown error D(i). 

Figure 4.14 shows the effects of errors in the bearings of 

the signals. 	The calibration algorithm was supplied with 

the same covariance matrix again but the bearings of the 

signals were specified incorrectly as being 20 and 87 

degrees. 	Under these conditions, the improvement in the 

error D(i) was extremely small. 	Notice, however, that 

the cost function J(i) converged to a small value as 

before. 	Since D(i) would not be available in a real 

application, the problem would remain undetected. 

To demonstrate the advantage of using more than two 

signals, the process was repeated using three calibration 

signals with bearings of -108, 18 and 90 degrees and 
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relative frequencies of 0.999, 1.0, and 1.001 

respectively. 	All of the signals had a power of 20dB and 

an initial phase angle of zero degrees. 	The noise power 

was 0dB and the covariance matrix was calculated by taking 

the expected value as before. 

Figures 4.15(a) and 4.15(b) show the behaviour of the cost 

function 3(i) and the error D(i). 	Notice the shape of 

the D(i) curve close to convergence. 	Having attained a 

minimum value, the estimate then gets slightly worse again 

before finally settling down. 	This effect is caused by 

inaccuracies in the computation of the eigenvectors of the 

covariance matrix. 	In principle, a MUSIC spectrum 

derived from the expected value of the covariance matrix 

would have peaks of infinite height for the reasons 

discussed in Chapter 2. 	In practice, however, the peaks 

are large but finite due to imperfections in the 

eigenvectors. 

Since the calibration algorithm relies on the eigenvectors 

of the covariance matrix, it is also affected by such 

errors. 	In practice, the weight nm()  is not precisely 

equal to zero even when the estimated position of sensor n 

is correct with respect to signal m. 	The effect on the 

estimated sensor positions is small, although it is 

exaggerated somewhat by the logarithmic scale used in the 

diagram. 	It is worth pointing out that the problem is 
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not related to the step size used in the iteration. 	If a 

smaller step size is adopted, the error D(i) traces out 

the same curve over a larger number of steps. 

Figure 4.16 shows the effects of errors in the bearings of 

the signals. 	The calibration algorithm was supplied with 

the same covariance matrix again but the bearings of the 

signals were specified incorrectly as being -107, 87, and 

20 degrees. 	As in the example where two signals were 

present, the improvement in the error D(i) was very small. 

However, with three calibration signals the cost function 

J(i) also showed a small reduction, thus providing a 

warning that the calibration had not been successful. 

This happened because the iteration was unable to optimize 

the estimated sensor positions with respect to all three 

signals simultaneously. 	These results confirm that the 

cost function J(i) provides a more faithful indication of 

the error D(i) when the number of calibration signals is 

greater than two. 

The next set of results explores the relationship between 

the quality of the covariance matrix R and the final 

values of J(i) and D(i) achieved by the iteration. 	As 

discussed earlier in the chapter, the effect of received 

noise is to add random errors to the off-diagonal elements 

of the covariance matrix. 	These errors are most 
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pronounced when the signal to noise ratio is low and/or a 

small number of snapshots are used. 	The only way to 

eliminate such errors completely is to obtain the expected 

value of the covariance matrix, although this is clearly 

impossible in practice. 

To investigate the effects of noise, the calibration 

algorithm was applied to a large number of covariance 

matrices formed using different numbers of snapshots over 

a range of signal to noise ratios. 	There were three 

calibration signals with bearings of -108, 18, and 90 

degrees and relative frequencies of 0.999, 1.0, and 1.001 

respectively. 	All of the signals had a power of 20dB and 

an initial phase angle of zero degrees. 

The signal to noise ratio was defined to be the ratio of 

the power of one of the signals to the noise power, 

meaning that a noise power of 20dB corresponded to a 

signal to noise ratio of 0dB. 	The signal to noise ratio 

covered a range from 0dB to 60db in steps of 10dB. 	At 

each signal to noise ratio, 20 covariance matrices were 

formed using 400 snapshots, another 20 using 1600 

snapshots, and a further 20 using 6400 snapshots. 

For each block of 20 covariance matrices, the calibration 

algorithm was applied to each matrix in turn and the 

averages of the final values of the cost function J(i) and 
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the error D(i) were calculated. 	The calibration 

algorithm was also applied to the expected value of the 

covariance matrix at each signal to noise ratio. 	The 

step size L was set to 0.005 and each calibration was 

terminated when the improvement in the cost function 

J(i+1) - J(i)I fell below 10. 

The results are shown in Figure 4.17. 	As anticipated, 

the error D(i) after calibration decreased when the signal 

to noise ratio or the number of snapshots was increased. 

When the expected value of the covariance matrix was used, 

there were no errors in the off-diagonal elements of the 

covariance matrix and the results were therefore 

independent of the signal to noise ratio. 

The final set of results relates the finishing values of 

1(i) and D(i) to the accuracy to which the bearings of the 

calibration signals are stated. 	This was investigated by 

generating a single covariance matrix then applying the 

calibration algorithm several times with random errors 

added to the bearings of the signals. 

There were three calibration signals with bearings of 

-108, 18, and 90 degrees and relative frequencies of 

0.999, 1.0, and 1.001 respectively. 	All of the signals 

had a power of 20dB and an initial phase angle of zero 

degrees. 	So as to ensure that the results were not 
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influenced by errors in the off-diagonal elements, the 

covariance matrix was formed by taking the expected 

value. 	The noise power was 0dB. 

Sets of incorrect signal bearings were generated by adding 

random numbers to the true bearings of the calibration 

signals. 	The random numbers had a normal distribution 

with a mean of zero. 	The variance assumed a number of 

values in the range from 0 to 0.5 degrees (squared). 	For 

each variance, 20 sets of incorrect signal bearings were 

generated and the calibration algorithm was applied to 

each one in turn. 	The final values of the cost function 

J(i) and the error D(i) were averaged over the 20 sets of 

bearings. 	The step size ii. was set to 0.005 and each 

calibration was terminated when IJ(i-1) - J(i)J fell below 

iø- . 

The results are shown in Figure 4.18. 	Although the 

calibration algorithm only achieved dramatic reductions in 

D(i) when the signal bearings were specified accurately, 

the error was reduced by approximately one order of 

magnitude across the entire range of variances. 	As the 

bearing spectra at the start of this section demonstrated, 

an improvement of this size is big enough to make a 

significant difference to the bearing spectrum. 
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4.7 Summary 

This chapter has developed a calibration algorithm to 

compensate for sensor positioning errors in direction 

finding arrays. 	The key point is that the degraded 

performance of an uncalibrated array is caused by the 

mismatch between the true sensor positions and the ones 

assumed by the bearing estimation algorithm. 	If the true 

sensor positions can be discovered, the performance of the 

system can be improved considerably. 

The array calibration algorithm attempts to identify the 

true sensor positions by analyzing snapshots obtained 

while two or more signals with known bearings are being 

received. 	The positions are deduced through a process of 

triangulation. 

The algorithm takes the form of an iteration in which a 

set of estimated sensor positions is steered towards the 

(unknown) true positions, the intended sensor positions 

being the initial estimates. This goal is achieved by 

minimizing a cost function which is based on the signal 

subspace concepts presented in Chapter 2. 

The improvements obtained using the calibration algorithm 

were demonstrated using computer simulations. 



222 

CHAPTER 5 CONCLUSIONS 

5.1 Material Covered 

This thesis has examined some of the signal processing 

algorithms used for bearing estimation with particular 

attention to the MUSIC technique. 	A derivation of MUSIC 

from first principles produced an understanding of the 

signal subspace approach to bearing estimation and 

introduced many of the concepts required for the original 

research. 

This was followed by an analysis of the effects of sensor 

positioning errors on the bearing spectrum. 	A 

statistical approach produced theoretical results, most of 

which were independent of the particular array geometry 

being used. 	These results were confirmed using computer 

simulations. 

Having identified the effects of sensor positioning 

errors, an array calibration algorithm was developed to 

reduce the sensitivity of the bearing estimation process 

to such errors. 	The algorithm estimated the true sensor 

positions by exploiting two or more signals with known 

bearings. 	Computer simulations demonstrated the 
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improvements obtained after calibration. 

5.2 Specific Achievements 

Recalling the aims of this work stated in Chapter 1, the 

two main objectives were to characterize the sensitivity 

of bearing estimation algorithms to sensor positioning 

errors and to reduce this sensitivity through array 

calibration. 	These two areas were addressed in Chapters 

3 and 4 respectively. 

In Chapter 3, the conventional beamforming, minimum 

energy, and MUSIC bearing estimation techniques were 

compared in the presence of small sensor positioning 

errors. 	With only one signal present, all of these 

methods are normally unbiased estimators of signal bearing 

and the analysis demonstrated that they remain unbiased in 

the presence of sensor positioning errors with the assumed 

statistics. 

However, the variability of the bearing indicated by the 

spectrum increased with the size of' the sensor positioning 

errors and it was shown that the variance of the bearing 

was directly proportional to the variance of the sensor 

positions. 	If the array geometry was taken into account, 
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the constant of proportionality could be calculated for a 

particular bearing. 	It would be straightforward to 

average this over a range of bearings in order to produce 

a figure of merit for a particular array. 	The constant 

was independent of the bearing estimation technique being 

used. 

Further results provided insight into the behaviour of the 

mean and variance of the peak height. 	As the variance of 

the sensor positions increased, the mean peak height 

decreased while the variance of the peak height 

increased. 	Although the theoretical results described 

the height of the spectrum at the correct bearing rather 

than the true peak height, they provided theoretical 

limits for the peak height. 	Results for all three 

bearing estimation techniques were produced. 

Computer simulations verified the theoretical curves which 

had been predicted. 	The simulations were also used in 

areas not covered by theoretical work, such as 

demonstrating the decreased resolution of the MUSIC method 

in the presence of sensor positioning errors. 

In Chapter 4, an array calibration algorithm to compensate 

for sensor positioning errors was developed. 	It was 

shown that when two or more signals with known bearings 

are present, the true sensor positions are observable from 
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the array snapshots provided that each sensor is within 

half a wavelength of its intended position. 

An iterative scheme was used to guide a set of estimated 

sensor positions towards the true ones, taking the 

theoretical sensor positions as initial values. 	Computer 

simulations demonstrated the effectiveness of the 

technique in reducing the errors in the estimates. 

The errors remaining after calibration were summed over 

all of the sensors and expressed on a logarithmic scale. 

It was found that the overall error decreased as the 

signal to noise ratio or the number of snapshots was 

increased. 

Although the algorithm relied on accurate signal bearings, 

the effects of incorrect bearings were considered. 

Errors in the bearings caused the sensor positions to be 

estimated incorrectly and in extreme cases the estimated 

positions were worse than the intended ones. 

However, the behaviour of the cost function provided a 

warning of this problem if more than two signals were 

present. 	Computer simulations showed the tolerance 

required for the signal bearings in a particular scenario. 

The author has presented two conference papers on. the 
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calibration algorithm (1031, [104] 

5.3 Limitations 

The results obtained in Chapter 3 for the spectrum height 

in the minimum energy and MUSIC methods are somewhat 

awkward in that they apply to the reciprocal of the 

function used in forming the spectrum. 	It would, 

however, have been extremely difficult to take the 

analysis any further without resorting to an inequality as 

E[1/XJ 0 1/ECX3. 	Since the results are precise as far as 

they go, the mental adjustment required to think in terms 

of the reciprocal seems worthwhile. 

An obvious limitation of the work described in Chapter 4 

is the reliance on signals with known bearings. Indeed, 

this will render the method impractical in some situations. 

It is worth noting, however, that one of the radio 

direction finding systems marketed by the company 

sponsoring this work incorporates a very rudimentary 

calibration mechanism which was requested by the 

customer. 	A portable transmitter is moved around to 

provide calibration signals from different directions. 

It appears that users are willing to accept such 
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procedures if they offer an improvement in performance. 

5.4 Suggestions for Further Research 

In Chapter 4, the possibility of implementing the 

calibration algorithm using matrix inversion was mentioned 

briefly. 	It might be worthwhile to investigate this 

approach and compare it with the iterative scheme adopted. 

As noted in Chapter 1, a number of papers describing other 

calibration algorithms were discovered while this thesis 

was being prepared and these techniques should be compared 

with the method described in Chapter 4. 	Some authors 

have described algorithms which are claimed to operate on 

calibration signals with unknown bearings, thus making the 

process more practical. 

It would be interesting to extend the analysis presented 

in Chapter 3 to include theoretical results for the peak 

height as well as the height of the spectrum at the 

correct bearing. 	This would require a more sophisticated 

approach than the one adopted in Chapter 3 since the peak 

height depends on the incorrect bearing, which is itself a 

random variable. 
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A NEW CALIBRATION ALGORITHM TO DETECT SENSOR POSITIONING ERRORS 
IN DIRECTION FINDING ARRAYS 

L.P.H.K.Seyxnour, C.F.N.Cowan, and P.M.Grant 

Introduction 

In bearing estimation, the outputs from a set of sensors are analysed to determine the bearings 
of signals arriving at the array [1,2,31. The positions of the sensors are normally assumed to be 
known precisely. However, if there are errors in the positions then these assumptions are false and 
the bearing estimation is less accurate. Brandwood [4] presents examples of bearing spectra 
obtained using incorrect positions. - 

This paper compares the effects of sensor positioning errors on the conventional beamforming, 
Minimum Energy, and MUSIC bearing estimation techniques. High resolution methods, such as 
MUSIC, are shown to be the most sensitive. A new calibration algorithm to compensate for such 
errors is outlined. The new method is an extension of MUSIC in which transmissions with known 
bearings are analysed to determine the true sensor positions. These are subsequently used by a 
conventional bearing estimation algorithm to determine the angles of arrival of unknown 
transmissions. Simulation results illustrate the effects of sensor positioning errors and the 
improvements obtained using the new algorithm 

Comparison of Bearing Estimation Techniques 

The simulation results described below were obtained using an array consisting of five sensors 
evenly spaced around a circle of radius 0.5k with a sixth sensor at the centre. These "theoretical" 
sensor positions describe the intended array geometry. A second set of positions was produced by 
adding small errors to the theoretical coordinates. The total sensor positioning error, expressed as 
the sum of the X and Y displacements over all of the sensors, was 0.05k. These "true" sensor 
positions represent the actual array geometry in the presence of sensor positioning errors. 

The covariance matrix was formed using 1500 snapshots based on the true sensor positions. 
The sampling rate was approximately 8.3 samples per cycle. Two transmissions, with bearings of 0° 
and 123°, were present throughout the sampling period. Each had a power of 0dB. The SNR was 
10dB. This is defined to be the ratio of the power in one of the transmissions to the power of the 
additive noise component in the output from one of the sensors. The noise level is the same for all 
of the sensors and is uncorrelated between sensors. 

The conventional beainforming [2], Minimum Energy [2], and MUSIC [3] techniques were 
compared in the presence of sensor positioning errors. Bearing spectra were generated using the 
following expressions. 

1'BF(0 ) = 

1'ME( 0) =  
eM (0)R_ 1 e(0) 

MU( 0) = H 

where e(e) is the signal vector for bearing 0 7 , R is the covariance matrix, and VW is a matrix having 
the noise subspace eigenvectors as its columns. 

The authors are with the Department of Electrical Engineering, University of Edinburgh, 

The King's Buildings, Edinburgh, EH9 31L, Scotland. 
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Normally, the true sensor positions are unknown and the theoretical ones must be used 
instead. The effect of this substitution was investigated by generating bearing spectra using signal 
vectors corresponding to the theoretical sensor positions. The results are plotted in Figures 1(a), 
1(b), and 1(c). These should be compared with Figures 1(d), 1(e), and 1(1), which show the 
corresponding spectra obtained using the true sensor positions. 

The conventional beamforming and Minimum Energy techniques are seen to be relatively 
insensitive to sensor positioning errors. The use of the theoretical positions in place of the true 
ones has very little effect on the bearing spectra. When the true sensor positions are used, MUSIC 
performs significantly better than the other two methods. However, the use of the theoretical 
sensor positions has a dramatic effect on the MUSIC spectrum. The peak heights are reduced 
considerably and there are small errors in the measured bearings. 

The poor performance in the presence of sensor positioning errors is not caused by the 
incorrect positions per se but by the inconsistency between these positions and the theoretical ones 
assumed in the bearing estimation process. If the true positions could be discovered and used in 
place of the theoretical ones then the performance of the system would be improved. 

In the proposed calibration method, the array is illuminated with transmissions from known 
directions and the sensor outputs are analysed to determine the true sensor positions. This "position 
estimation" problem is closely related to the normal bearing estimation one. 

The system thus has two modes of operation. In the calibration mode, transmissions with 
known bearings are provided and the new calibration algorithm is used to estimate the true 
positions of the sensors. In the normal operational mode, the estimated sensor positions are used by 
a bearing estimation algorithm to measure the bearings of unknown transmissions. Since the 
calibration algorithm is based on MUSIC, it is recommended that MUSIC should be used to perform 
the bearing estimation. 

Calibration Algorithm 

The calibration algorithm uses triangulation to determine the true positions of the sensors. A 
detailed mathematical description of the technique has been published elsewhere [5]. The following 
discussion presents a brief outline of the method. 

In Figure 2, two transmissions with bearings Oi and 02 are being received simultaneously. 
The unit vectors z1 and 12 point towards the transmitters. Thus the directions of propagation are 
- z1 and - z2. Each sensor position is described by a vector giving the displacement from the 
origin. The position of sensor n is . To simplify the diagram, only one sensor is shown. 

During calibration, the bearings of the transmissions, 01 and 02, are known precisely. Thus 
the vectors z1 and i2 are available. The aim of the calibration process is to determine the true 
position, u n ,  of each sensor. A transmission with a bearing of 01  can only reveal the component of 
u 7  in the direction of the vector z1. In order to measure the position completely we require 
components in at least two different directions. The process is thus one of triangulation. Clearly, 
the technique is more reliable if several directions are processed rather than only two. The 
maximum permissible number of calibration transmissions is limited by the number of sensors in 
the array. 

The calibration algorithm exploits the fact that the signal vectors e(01) and e(02) should lie 
entirely in the signal subspace [3]. However, this will only be the case if the signal vectors are 
calculated using the true sensor positions. Signal vectors corresponding to incorrect sensor 
positions will generally have some component in the noise subspace. 

We define a cost function for a set of sensor positions by summing the lengths of the 
projections of the signal vectors onto the noise subspace. The cost function can be differentiated 
with respect to the X and Y coordinate of each sensor. The calibration algorithm manipulates the 
sensor positions in an attempt to minimise the cost function. The process is performed iteratively 
using a gradient search algorithm. The iteration is initialised using the theoretical sensor positions. 
In practice, these are likely to be very good estimates of the true positions. 
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Figure 3 shows the MUSIC spectrum obtained after calibration using the new algorithm. The 
array was calibrated using the signals at 0° and 123 ° . The spectrum was generated using signal 
vectors corresponding to the estimated sensor positions produced by the calibration algorithm. The 
total sensor positioning error has been reduced from 0.05X to 0.002X. The resulting spectrum is 
very similar to the one that would be produced using the true positions as shown in Figure 1(f). 
The improved performance is maintained for transmissions from other bearings. 

The use of a calibration algorithm to compensate for sensor positioning errors in direction 
finding arrays has been considered. The method relies on calibration transmissions with known 
bearings and is related to MUSIC. Simulation results have been presented to demonstrate the 
improved performance of the bearing estimation process when the new algorithm is used. 
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BEARING ESTIMATION IN THE PRESENCE OF SENSOR POSITIONING ERRORS 

L..P.H.Seyniour, C.F.N.Cowan, and P.M.Grant 

Department of Electrical Engineering. University of Edinburgh 
The King's Buildings, Edinburgh, EH9 31L, Scotland 

ABSTRACT 

A new calibration algorithm to compensate for sensor 
positioning errors in direction finding (DF) arrays is 
introduced. Transmissions with known bearings are analysed 
to determine the true sensor positions, which are subsequently 
used by a conventional bearing estimation algorithm to 
determine the angles of arrival of unknown transmissions. The 
proposed calibration algorithm is based on Schmidt's MUSIC 
method for bearing estimation. Simulation results illustrate the 
effects of sensor positioning errors, the improvements 
obtained using the new algorithm, and its robustness in the 
presence of other sources of error, such as uncorrelated noise 
and finite averaging. 

INTRODUCTION 

In bearing estimation, the outputs from a set of sensors 
are analysed to determine the bearings of signals arriving at 
the array [1,2,3]. The positions of the sensors are normally 
assumed to be known precisely. However, it there are errors 
in the positions then these assumptions are false and the 
bearing estimation is less accurate. Brandwood [ 4 1 presents 
examples of bearing spectra obtained using incorrect 
positions. However, no solution to the problem has been 
reported. This paper introduces a new algorithm to 
compensate for sensor positioning errors. 

A comparison of the conventional beamforming [2], 
Minimum Energy [2], and MUSIC [3] bearing estimation 
techniques showed that the errors in the bearing spectrum 
depend on the choice of bearing estimation algorithm as well 
as factors such as the size of the positional errors and the 
bearings of the transmissions. Small errors tend to cause a 
reduction in peak heights while larger ones can produce bias 
in the bearings as well. The algorithms have inferior 
resolution and detection properties in the presence of sensor 
positioning errors. Unfortunately, methods such as MUSIC, 
which can offer excellent performance under favourable 
conditions, tend to be the least robust. 

This effect is illustrated in Figures 1 and 2. Figure 1 
shows the MUSIC spectrum obtained under normal 
conditions. In Figure 2, small errors have been introduced 
into the positions of some of the sensors. These results are 
described in detail below. 

The poor performance in the presence of sensor 
positioning errors is not caused by the incorrect positions per 
se but by the inconsistency between these positions and the 
theoretical ones assumed in the bearing estimation process. 

If the true position, could be discovered and used in place of 

Power (dB) 
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Figure 1. Bearing Spectrum using True Sensor Positions 

the theoretical ones then the performance of the system would 
be improved. 

In the proposed calibration method, the array is 
illuminated with transmissions from known directions and the 
sensor outputs are analysed to determine the true sensor 
positions. This "position estimation" problem is closely related 
to the normal bearing estimation one. 

The system thus has two modes of operation. In the 
calibration mode, transmissions with known bearings are 
provided and the new calibration algorithm is used to estimate 
the true positions of the sensors. In the normal operational 
mode, the estimated sensor positions are used by a bearing 
estimation algorithm to measure the bearings of unknown 
transmissions. Since the calibration algorithm is based on 
MUSIC, it is recommended that MUSIC should be used to 
perform the bearing estimation. 
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CALIBRATION ALGORITHM 

Figure 3 shows an array of N sensors receiving M 
calibration transmission, simultaneously. Each senior position 
is described by a vector giving the displacement from the 
origin. The theoretical position of sensor a is ~ f,  while 	is 
its true position. Additionally, we shall use 	to denote an 
estimate of the true position. The array is always positioned 
so that sensor 1 lies at the origin. 

(1) 

The bearing of transmission in is em.  The unit vector  Im  
points towards the transmitter. Thus the direction of 
propagation is During calibration, the number of 
transmissions, Al, and the bearing of each transmitter, 1 .,  are 
known precisely. 

The following symbols are used to indicate the I and Y 
components of , 	 , and Jxr. 1 	lxu_ 	. 	

Xzm 
= 	,= 	 '!,n 	 (2) 

Yr. 	yun 	)'In 	 rn 

The column vectors & and 	contain the I and Y 
components of the estimated sensor positions, . 

= [o '142 	
;Un 	 (3) 

= 	 11n 	YIS,IJ] 

There are three possible signal vector, for transmission 
in. These correspond to the theoretical senior positions 	. 
the true ones 	, and the estimates 	, and are denoted by 

and imrespectively. They are defined as follows. 

bearing of 
transmission in 

EN 

Y (wavelengths) 

I 
X:I~tn X (wavelengths) 

true position of 
sensor n 

1- 

theoretical position of 
sensor a 

Figure 3. Sensor Positions and Transmission Bearings 

fin 	11 e2 	8flrn 	iNrn] 	 (4) 

[i q2rn 	qnrn 	hlNrnJ 

,7t 	 'lam 	'NmJ 

where 

ezp{j27,,,} 	 (5) 

exp{J2a,,} 

q 	= exp(J21T1m} 

	

The matrix V 	has the N—Al noise subspace 
eigenvectors as its columns. 

VW —
[1 Y2 	 N—MJ 	 (6) 

where 

YA = [vlh 5'2h 	t'nh 	t'NhJ 

The length of the projection of an estimated signal 
vector, &onto the noise subspace is given by 

lip 	
2.11 	H. 

	

qffl 	 (7) 

where If denotes the Hermitian transpose. 
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The true signal vector,, qm , produce projections with a 
length of zero since they He entirely In the signal subspace (31. 

ILe,,s 112 -0 with j, - 1,n (8) 

However, an estimated signal vector corresponding to 
incorrect sensor positions will not He entirely in the signal 
subspace. Therefore it must have some component in the noise 
subspace. 

lip 112>  0 withim * qm 	 19) - 

In particular, conventional MUSIC processing assumes that 
the theoretical sensor positions are correct by setting 

i.  - ff5 .  
We can define a cost function for a set if estimated 

sensor positions, & and , by summing IIp,  II over the M 
calibration transmissions. 

M 
2 T 	11  pt II 	 (10)  

M N—U 
a 	 F J2,wx,  Ynhil"..9m ~h 

 •ff 
I i 

m1h1 

+JTXr Vish flm YJ' Jls ] 	(13) 

U N—U 
a 	 F 	

- s .ff 

m1h'1 

5. 	 "-1 +J21Ty5Yhqrn 	Jnj 

where • denotes the complex conjugate. 

RESULTS 

The notation emphasizes that J(,) is a function of the 
estimated sensor positions only. The transmitter bearings, f,,,, 
are known constants. The eigenvectors, yfi , can also be 
regarded as constants once they have been computed. 

If J(,) = 0 then all of the estimated signal vectors, 
He entirely in the signal subspace. In this case, the 

estimated sensor positions, & and , producing those signal 
vectors are assumed to be correct provided that a number of 
conditions regarding the number of calibration transmissions, 
M, and their bearings, , are satisfied. 

From (4), if there is an error in the position of sensor is 

then transmission m can only reveal the component of that 
error in the direction of the vector s,,. In order to measure 
the error completely we require components in at least two 
different directions. The process is thus one of triangulation. 

Clearly, the technique is more reliable if several 
directions are processed rather than only two. In the case of 
the calibration algorithm, the maximum permissible number of 
calibration transmissions is limited by the number of sensors 
in the array. 

The algorithm manipulates the estimated sensor 
positions,and 	, in an attempt to minimise the cost 
function, 	The process is performed iteratively using 
a gradient search algorithm. The estimates at step £ are 
denoted by & (I) and & (i). The process is initialised using the 
theoretical sensor positions. In practice, these are likely to be 
very good estimates of the true positions. 

1r' j(0) = 	ii 	1, . . . ,N 	(11) 

At each step, the estimates are updated as follows. 

(12) (i+1) = 4 (i) + si--J( 	) 
I 4 

(i+ 	& (i) + j —  __J(,) 
 a& 	41 - L(i) 

& is the step size in the iteration. The partial derivatives of 
J( ,) with respect to & and & are obtained analytically 
and are as follows. 

Scenario 

The simulation results described below were obtained 
using an array consisting of five sensors evenly spaced around 
a circle of radius 0.5 wavelengths with a sixth sensor at the 
centre. These were the theoretical sensor positions. 

SNRs of between 15dB and 60dB were investigated. The 
covariance matrix was formed using either 1600 snapshots, 
6400 snapshots, or analytically through mathematical 
expectation,. When snapshots were used, the sampling rate 
was approximately 8.21 samples per cycle. 

The total sensor positioning error for a particular array 
was expressed as the sum of the I and I displacements over 
all of the sensor,. This measure is plotted on a logarithmic 
scale in the graphs. 

Three calibration transmissions were present throughout 
the sampling period. The bearings of the transmissions were 
.127, 0, and 123 degrees. Each had a power of OdE. 

MUSIC with Calibration. 

Figures 1, 2, and 4 illustrate the improved bearing 
estimation achieved by the new algorithm. The plots are all 
produced using MUSIC, however a different set of sensor 
positions has been used for each spectrum as discussed below. 
The total sensor positioning error is 0.02 wavelengths. The 
SNR is 40dB and the covariance matrix was formed using 
6400 snapshots. 

Figure 1 shows the spectrum obtained using the true 
sensor positions. This is a typical MUSIC spectrum with large, 
sharp peaks at the correct bearings. Clearly, this spectrum 
could not be obtained in practice since the true sensor 
positions are unknownl 

The spectrum produced using the theoretical sensor 
positions is presented in Figure 2. This illustrates the 
performance that would be obtained using conventional 
MUSIC processing. The peak heights have been significantly 
reduced and there are small errors in the measured bearings. 

Figure 4 shows the spectrum obtained alter calibration 
using the new algorithm. The total sensor positioning error 
has been reduced from 0.02 to 0.0002 wavelengths. Since the 
error is so small, the resulting spectrum is very similar to the 
one that would be produced using the true positions as shown 
in Figure 1. 
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Figure 4. Searing Spectrum using Estimated Sensor Positions  
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Figure 5. Performance with Noise 

Performance with Noise 

Figure 5 shows the relationship between the SNR and 
the performance of the calibration algorithm. The SNR is 
defined to be the ratio of the power in one of the 
transmissions to the power of the additive noise component in 
the output from one of the sensors. The noise level is the 
same for all of the sensors and is uncorrelated between 
sensors. The vertical axis shows the total sensor positioning 
error after calibration. This is normalised so that zero 
corresponds to the original error of 0.02 wavelengths. 

The three lines in Figure 5 were produced by computing 
the covariance matrix in different ways. When the 
mathematical expectation is used, the noise only affects the 
elements on the leading diagonal since the noise signals from 
different sensors are uncorrelated. A change in the SNR has 
the effect of adding a constant to each of the eigenvalues. 
However, the eigenvectors are unaffected. Thus the 
performance of the calibration algorithm is independent of the 
SNR. Note that this level of performance cannot be achieved 
in practice since an infinite number of snapshots would be 
required to approach the expectation whereas the signal 
environment is likely to be stationary only for a finite period 
of time. 

The Figure also shows the performance obtained when 
the covariance matrix is formed using a relatively small 
number of snapshots. Results are plotted for 1600 and 6400 
snapshots. The performance of the calibration algorithm 
improves with increasing SNR. The logarithmic scale reveals 
an approximately linear relationship. 

CONCLUSIONS 
The use of a calibration algorithm to compensate for 

sensor positioning errors in direction finding arrays has been 
considered. The method relies on calibration transmissions 
with known bearings and is related to Schmidt's MUSIC 
technique. 

Simulation results have been presented to demonstrate 
the improved performance of the bearing estimation process 
when the new algorithm is used. The robustness of the 
method in the presence of uncorrelated noise has also been 
illustrated. 
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