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Abstract

In this thesis I study a model of self propelled particles exhibiting run-and-

tumble dynamics on lattice. This non-Brownian diffusion is characterised by

a random walk with a finite persistence length between changes of direction,

and is inspired by the motion of bacteria such as Escherichia coli. By defining

a class of models with multiple species of particle and transmutation between

species we can recreate such dynamics. These models admit exact analytical

results whilst also forming a counterpart to previous continuum models of run-

and-tumble dynamics. I solve the externally driven non-interacting and zero-

range versions of the model exactly and utilise a field theoretic approach to

derive the continuum fluctuating hydrodynamics for more general interactions. I

make contact with prior approaches to run-and-tumble dynamics off lattice and

determine the steady state and linear stability for a class of crowding interactions,

where the jump rate decreases as density increases.

In addition to its interest from the perspective of nonequilibrium statistical

mechanics, this lattice model constitutes an efficient tool to simulate a class

of interacting run-and-tumble models relevant to bacterial motion. Pattern

formation in bacterial colonies is confirmed to be able to stem solely from the

interplay between a diffusivity that depends on the local bacterial density and

regulated division of the cells, in particular without the need for any explicit

chemotaxis. This simple and generic mechanism thus provides a null hypothesis

for pattern formation in bacterial colonies which has to be falsified before

appealing to more elaborate alternatives. Most of the literature on bacterial

motility relies on models with instantaneous tumbles. As I show, however, the

finite tumble duration can play a major role in the patterning process. Finally a

connection is made to some real experimental results and the population ecology

of multiple species of bacteria competing for the same resources is considered.
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Chapter 1

Introduction

In recent years the study of biological, and in particular bacterial, systems

has become of interest in mathematics and physics. Biological systems provide

real world examples of non-equilibrium dynamics—where there is never a static

equilibrium but even at steady-state currents and flows exist—but remain

simple enough and easy enough to manipulate that progress can be made both

analytically and experimentally. Their study provides us with the possibility to

experimentally test the predictions of some more abstract mathematical models

and offers us inspiration to develop new ones.

In this thesis I construct a number of lattice models of the movement

and reproduction of bacteria. The non-interacting continuum limit of these

recovers the off lattice equations previously derived for non-interacting particles

obeying dynamics characteristic of bacteria such as Escherichia coli [2,3]. (These

equations are discussed in chapter 2.) I will also address interactions in the form

of density dependent motility parameters, and thereby connect also with the off

lattice approach of Cates and Tailleur [4]. Finally I will couple my models to

logistic population dynamics, which will allow me to investigate the population

ecology of multiple competing species.

Although real bacterial systems do not exist fixed to a discrete lattice, there

are a number of advantages to treating them as such for the purpose of analytic

or computational study. Both the microscopic run-and-tumble equations, and

the diffusive continuum equations found by coarse graining these, are difficult

to simulate efficiently off-lattice, particularly once interactions are included. On-

lattice the local density of particles is easy to determine and so density-dependent
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interactions are easy to include at relatively low cost computationally. Lattice

simulations are also easier to extend to higher dimensions as we will consider

towards the end of this thesis. For all these reasons, creation of a robust and

accurate lattice representation of bacterial motility is a worthwhile goal, even

from a purely phenomenological standpoint, whereby the purpose of a model is

to provide a fairly direct explanation for results seen in experiment.

A second motivation is more fundamental. Models of non-equilibrium statis-

tical mechanics can be broadly split into two categories: one phenomenological

as just described, the other comprising simple models which allow the study

of basic concepts and facilitate a more detailed understanding of the nature of

non-equilibrium physics. In the latter category we can think of lattice transport

models such as the exclusion [5] or zero-range [6] processes, for which some exact

analytical results can be found, as well as methods to characterise fluctuations and

large deviations in non-equilibrium states [7]. My models fall squarely into this

category of simple theoretical models, and indeed extend some of these examples;

I investigate both a zero-range process and a partially excluding system. For

these microscopic lattice models we can, under certain conditions, calculate exact

steady states and understand precisely how changes in the underlying dynamics

affect the probability distributions. More generally we can always write an exact

master equation for the probability of a configuration and utilise a variety of field

theoretic representations to derive the large scale fluctuating hydrodynamics, to

attempt to map the system to a free energy and to determine the steady state

behaviour and dynamic stability.

Though many of the results and techniques utilised in this thesis will apply

more broadly, and will be approached from the standpoint of theoretical physics,

my motivation throughout shall be the spatial and population dynamics of

bacteria. Before attempting to describe the models I have investigated I will, in

chapter 2, therefore briefly review the relevant features of bacterial motility and

reproduction. I describe several previous attempts at modelling these behaviours

and recount a few key concepts in non-equilibrium statistical physics.

Having thus established the background to this work, in chapter 3 I present

the basic mathematical frameworks required to build and analyse my models. I

describe the use of lattice models in statistical physics, discuss how to move from

the master equation for the evolution of the probability density for interacting
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particles on a lattice to the continuum Langevin equation for the density and

the fluctuating hydrodynamics for interacting particles. I will detail the field

theoretic techniques used to systemically derive the continuum behaviour of my

lattice models, the correct procedure to perform the diffusive rescaling and the

connection to large deviation functions. Finally I explain the various algorithms

used in my simulations and compare their efficiency.

Eventually we want to be able to describe systems in which bacteria interact

with each other through some density dependence in their motility. Before

considering that more complex case, however, in chapter 4 I look at what

understood be done about non-interacting bacteria undergoing the characteristic

run-and-tumble dynamics seen, for example, in Escherichia coli. In one

dimension, with both closed and periodic boundary conditions, we can in

fact calculate the full steady state probability distribution even for completely

inhomogeneous and anisotropic dynamics. I present that analytic solution and

several examples in chapter 4.

In chapter 5 I investigate the first interacting model of this thesis, a zero-range

process (where particles hop on a lattice with rates that depend on the density

at the departure site only) which can under certain conditions, which I detail, be

solved analytically. The model I use shows separation into high density single site

clusters against a low density background. I derive conditions for these clusters

to be finitely sized—in comparison to the more standard condensation seen in

zero-range processes where the clusters scale with the system size L. I examine

and characterise the dynamics of this clustering and show how the number of

clusters relaxes through a series of condensation and evaporation events toward

an analytically determinable steady state. As already explained, in addition

to being an interesting toy model that we can use to understand driven non-

equilibrium physics, our model also forms a direct lattice counterpart to some

well established phenomenological continuum models of bacterial dynamics. It

is unusual for a model to allow exact computations while credibly describing the

real behaviour of a physical system, and this is one of the reasons why this model

is of interest.

In chapter 6 I begin to develop a model which more closely resembles real

physical systems. I derive the steady state of the zero-range model from chapter 5

using the field theory technique from chapter 3 then extend the model to finite-
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range interactions. In so doing the isolated high density sites we saw previously

are replaced with extended contiguous domains. Further extending the model to

higher dimensions I measure the coarsening of these domains over time. Finally

I look at how the finite-range interactions lead to an effective surface tension and

derive an expression for this term from the microscopic dynamics.

In chapter 7 I introduce the final basic element of my bacterial modelling:

population dynamics. I present a model of bacteria interacting via a density

dependent motility which separate into high and low density domains due to

a dynamic instability. As seen previously off-lattice, the birth-death dynamics

then arrest this separation leading to a characteristic length scale on which a

variety of patterns from droplets to stripes form. Through the mappings derived

in chapter 6 I can quantitatively compare my simulation results to previous

analytical work off-lattice [1]. Finally I consider the robustness of my results

to a variety of implementations of the regulated cell division and find that so

long as the net growth rate declines as density increases the precise details can

be substantially altered without qualitatively altering the outcome.

Lastly, in chapter 8 I consider cooperation and competition between multiple

types of bacteria interacting on a common substrate and competing for common

resources. I examine the stability and steady state of a number of models,

extending a previous model of the growth of Proteus mirabilis colonies to two

dimensions and to include the effects of noise. I end with some preliminary

results on competition between two identical species of bacteria and show how

the multiple instabilities resulting from their interaction can result not only in

separation of the total density into domains of high and low density, but also in

the “dissociation” of the two species (whereby each domain is dominated by just

one of the two species present).
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Chapter 2

Background

Before we delve into the details of the models of bacterial dynamics and colony

growth described herein, we should first review a little of the background

literature. I begin by defining a few key concepts in the modelling of

non-equilibrium processes which will be useful for both the analytical and

computational treatments described in chapter 3. I then explain the importance

to the study of non-equilibrium systems played by biological processes and

describe the basic biological features we wish to understand. I review a number

of prior approaches to modelling their dynamics and touch on how this work will

go beyond those results. Finally in this chapter there is a brief discussion of

patterning in bacterial colonies, a topic which will be taken up in more detail in

chapter 7.

2.1 Non-Equilibrium Dynamics

The necessary background material on non-equilibrium dynamics can be found

in a large number of books on statistical mechanics (for example Gardiner [8]).

A brief overview of the most important concepts is included here as a reminder

for the ease of the reader.
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2.1. Non-Equilibrium Dynamics

2.1.1 What is a stochastic process? and a Markov

process?

A stochastic process is a sequence of random variables, say Xt, labelled by some

parameter which we shall call t, for say time, which can be discrete or continuous.

In our case the positions and internal states of the particles we model will take

the role of random variables, which will change over time in some not totally

deterministic manner.

Let us define then a particular configuration of the system we are interested

in as C, chosen from some state space N of all possible configurations, and a

trajectory to be a particular realisation of a sequence of configurations, say T =

{C1, C2, . . . , CT}, for a trajectory of T − 1 discrete configuration changes.

A Markov process is defined as a stochastic process where the probability of a

future configuration is dependent only on the current configuration, independent

of any prior states; mathematically

P [Ct+1|Ct, Ct−1, . . . , C0] = P [Ct+1|Ct] . (2.1)

For calculating results, both analytically and computationally, this property

makes our work considerably simpler and we will model all the systems considered

in this thesis as Markov processes.

Computationally, we need only store the current configuration, not the whole

history of the system, vastly reducing the required memory, while analytically we

can describe the evolution of the probability of a given configuration, P [Ct], in

continuous time, by an ordinary differential equation, called the master equation,

dP [Ct]
dt

=
∑
C′ 6=C

Wt (C ′ → C)P [C ′t]−
∑
C′ 6=C

Wt (C → C ′)P [Ct], (2.2)

where Wt (C → C ′) is the rate for a transition to occur between configuration C
and C ′ at time t.

In general, for a non-Markovian process we would need to write the master

equation as an integro-differential equation over all time from initialisation till

the current state.

In some cases we will be able to calculate the various statistical properties of

our system exactly, while in others we will have to make certain approximations
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2.1. Non-Equilibrium Dynamics

in order to proceed analytically. We can, however, even in these cases, determine

the properties of the system computationally. By starting the system in some

known configuration C0 and evolving it forward via some Markov Chain Monte

Carlo (MCMC) algorithm, using the transition rates W (C ′ → C), the system will,

if a unique steady state distribution exists, gradually approach this distribution,

P [C∞], and any particular realisation of the computer simulation can be seen as

having been sampled from this distribution. Through multiple simulation runs

we can, therefore, build up a picture of P [C∞], and other statistical properties,

which we can compare to our approximate analytical results. The details of the

algorithms used in this thesis are described in section 3.3.

2.1.2 Equilibrium and Non-Equilibrium Steady-States

For an equilibrium system in contact with a heat bath of inverse temperature β

we can write the probability of a configuration C as

P [C] ∝ e−βE[C], (2.3)

where E[C] is the internal energy of the state. This is the Gibbs-Boltzmann

distribution.

The dynamics of the system in the equilibrium state are reversible, so there

are no net currents and the probability of starting in some configuration C1 and

observing a given trajectory {C1, C2, . . . , CT} is equal to the probability of starting

in CT and observing the reverse trajectory {CT , . . . , C2, C1}. That is

P (C1)W (C1 → C2)..W (CT−1 → CT ) = P (CT )W (CT → CT−1)..W (C2 → C1). (2.4)

The transition rates between configurations and the probabilities of observing

each configuration must then obey a detailed balance relation

P [C]W (C → C ′) = P [C ′]W (C ′ → C) , (2.5)

for every pair of configurations C and C ′.
In contrast, for a non-equilibrium steady state, we require only that the right
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2.2. Biology: Bacterial Dynamics

hand side of the master equation vanishes, and hence that∑
C′ 6=C

P [C]W (C → C ′) =
∑
C′ 6=C

P [C ′]W (C ′ → C) . (2.6)

In this case there can be closed current loops even in the steady state and the

probability distribution will not be given by the Gibbs-Boltzmann distribution.

It is these non-equilibrium states which we shall, primarily, investigate in this

thesis. It should be noted that there is no general method to calculate the steady

state distribution for non-equilibrium processes and so the systems which can be

solved by specific means are thus of particular interest, as they highlight the kind

of steady-state for which we should look.

2.2 Biology: Bacterial Dynamics

The last decade has seen a growing number of studies of biological systems

conducted by physicists. Much of this work relies on tools not traditionally found

in biology. For instance, recent methods of nonlinear optics have made possible

observation of biological systems on much smaller scales than was previously

possible [9]. In other cases biological systems have helped shed light on questions

of fundamental importance in theoretical physics. Studies of bird flocks showed

that it may be possible to observe long range order in two dimensional systems

with a continuous symmetry if detailed balance is broken [10] (in equilibrium this

is forbidden by the Mermin-Wagner theorem [11]).

Bacteria provide one example of a biological system which is of great interest

to the study of non-equilibrium physics.

Movement on bacterial length scales is very different to that at scales we

are accustomed to in everyday life. Viscosity becomes far more important in

determining dynamics, while inertia becomes almost completely unimportant.

We can quantify the relative importance of the two through the dimensionless

number <, known as the Reynolds number, equal to the ratio of the inertial to

viscous forces. Mathematically < is given by

< =
a v ρ

η
, (2.7)
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2.2. Biology: Bacterial Dynamics

where a is a characteristic length - the size of the bacteria in our case - v is the

velocity of the object, ρ is the density of the fluid through which it moves and η is

the dynamic viscosity of said fluid. For a person swimming in water at standard

temperature and pressure the Reynolds number is typically of order O(106), while

for bacteria swimming in a typical medium it is of orderO(10−5). At low Reynolds

number the Navier-Stokes equation, governing the hydrodynamics of the system,

simplifies considerably

−∇p+ η∇2v =
��

���
���

��:0

ρ
∂ v

∂t
+ ρ (v · ∇) v, (2.8)

here p denotes the pressure in the fluid. We see that the inertial terms — and

hence any time dependence — drop out of the equation and, so find that any

reciprocal motion cannot lead to a net displacement over time; we always end back

where we started from such an action. This observation was referred to as the

Scallop Theorem by Purcell [12]; scallops, which have just one degree of freedom -

to open or close their shell - would not be capable of self-propelled motion at low

Reynolds number, and can move only by virtue of turbulent effects, i.e. because

at high Reynolds the time dependent terms in the Navier-Stokes equation do not

drop out and the process is not reversible. For bacteria, however, which do exist in

a low Reynolds environment, this type of propulsion is not possible, and multiple

degrees of freedom which allow them to perform a circuitous path in the phase

space of their physical configurations are required. This is exactly what some

species of bacteria, such as Escherichia coli, do, rotating helical flagella to propel

themselves forward by means of a series of relatively straight runs interspersed

with short periods of chaotic motion, known as tumbles, during which their

orientation changes at random and they experience little net displacement [13].

This can be seen as a type of non-Brownian diffusion where the steady state

probability distribution for particle position will not be Boltzmann.

Following experiments to determine their behaviour by Berg and others [14–

20] from the 1970s onwards, much is known about the dynamics and behaviour of

individual bacteria. Less, however, is known about their collective behaviour and

it is here that statistical mechanics can play a useful role. We have attempted

to create a microscopic model of their movement, from which information on

their collective dynamics and behaviour can be determined. Before we discuss
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2.2. Biology: Bacterial Dynamics

our models of bacterial dynamics, however, it is useful to review a little of the

biology of the organisms we hope to understand.

E. coli is a single celled, rod-shaped organism. It is approximately 2µm in

length and 1µm in diameter and is covered in, on average, 4-6 helical flagella [21]

approximately 20nm in diameter and several µm in length. By tethering a

bacterium and adding attractant and repellent chemicals, Larsen et al. [18] was

able to induce both runs and tumbles and observe that the tumbles are associated

with clockwise (CW) rotation of the flagella whereas runs are associated with

counter-clockwise (CCW) rotation, as observed by looking down the flagella

towards the cell body. During runs the flagella form a bundle at the rear of

the cell [15], forced together by geometrical and hydrodynamic constraints [19].

The polymorphic form of the flagella changes on rotating CCW, switching the

chirality of the helix and forcing the bundle apart [20]. For a more complete

account of the properties of bacterial flagella, their structure, assembly, genetics

and operation see Berg [16].

In the absence of chemotaxis, a directed movement along a chemical gradient,

the tumbles last approximately 0.1s and the runs 1s [14,20], with an exponential

distribution of durations. The runs and tumbles of different lengths occur at

random and with Poissonian statistics [14], justifying our later use of constant

rates for the bacteria in our model to move or change direction.

E. coli can also undergo chemotaxis, moving preferentially towards or away

from certain chemicals. Berg found that on exposing a culture of bacteria to

a gradient of serine, an amino acid, caused the run length to increase and the

tumble rate to decrease [14]. Non-chemotactic mutants showed no response to the

chemical. The change in behaviour for those bacteria which were chemotactic,

however, was quite pronounced: their speed increased by around 40%, the change

in direction from run to run decreased and the rate of tumbling decreased by a

similar amount. The behaviour also appeared different when moving up and down

the serine gradient. On swimming up the gradient the tumble rate decreased; on

moving down the rate was the same as in an isotropic medium of the same local

concentration [14].

In the last two decades, much of the work on bacterial motility has focused

on chemotaxis [22–26]. Schnitzer et al. analysed various strategies bacteria may

employ, e.g. changing their speed or tumble rate, and studied the differences
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2.2. Biology: Bacterial Dynamics

these techniques make to the steady state distribution. They found the density

of bacteria to be inversely proportional to the speed at a given location, ρ(x) =

ρ(0) v(0)
v(x)

[22]. That is, if, for some reason, bacteria move more slowly in one region

of space they will, by virtue of that fact, accumulate in that area.

Due to their size bacteria cannot perform spatial comparisons of chemical

concentrations; the chemicals they measure can diffuse across the length of the cell

much faster than the cell itself moves, but they can perform temporal integrations

to measure the change in concentration as they move [27]. It is often supposed

that, due to a gradient of the concentration of some chemical, there is a change

in tumbling rate, α(t), given by some response function:

α(t) = α0 +

∫ t

R(t− t′)c(t′)dt′ if

∫ t

R(t− t′)c(t′)dt′ > 0

= α0 if

∫ t

R(t− t′)c(t′)dt′ < 0.

(2.9)

The dynamics of the bacteria can then be described by a drift velocity

proportional to the gradient of the concentration of the chemical, vD = κ∇c [23–

25]. For wild type E. coli responding to changes in aspartate concentration Segall

et al. found the integral
∫ t
R(t − t′)dt′ = 0, with a positive peak over ∼ 1s

followed by a negative peak over ∼ 3s, so the bacterium senses only changes

in concentration and is blind to overall levels [28]—the approximate form is

shown in figure 2.1. For the moment my work will not focus on chemotaxis,

though chemotactic effects could be included within the framework described

here. Instead, I aim to better understand the transition from a probability density

for the position of a single bacterium to a density of many bacteria and to quantify

the effects of noise, interactions between bacteria and their connection to longer

time-scale population dynamics.

In investigating the population dynamics on long time scales we must consider

not just the movement of our bacteria but also their birth and death processes.

The life-cycle of bacteria turns out to be quite complex, and it is not always clear

exactly what we mean by “death” in this context. There can be different stages

at which the bacteria sequentially stop dividing, then stop moving; then at which

they can be revived by being placed in more advantageous environments - for

example with more nutrients; then a stage at which they cannot be revived but

still maintain their physical integrity; then finally they undergo lysis. In most of
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Figure 2.1: A sketch of the response function, R(t), for wild type E. coli.

our modelling we will not distinguish between these processes but simply assume

this complex behaviour, dependent on the local environmental conditions, can be

approximated by logistic growth, where the birth and death rates depend on the

local density of bacteria such as to lead to a fixed average carrying capacity. In

chapter 7 we examine this approximation in more detail and find that the logistic

approximation does not significantly compromise our results.

2.2.1 Prior Approaches to Bacterial Modelling

There have, in the past, been a number of attempts to predict the collective

behaviour of bacteria from a study of their individual dynamics [2, 4, 22, 23].

Schnitzer [2] defined a continuous space and time model with, in one spatial

dimension, the density of particles moving to the left at position x and time t,

L(x, t), and to the right, R(x, t), evolving via the equations

∂ R(x, t)

∂t
= −∂ vR

∂x
− αR

2
+
αL

2
∂ L(x, t)

∂t
=
∂ vL

∂x
+
αR

2
− αL

2
,

(2.10)

where v is the speed of the particles and α the tumbling rate for particles to

change from right moving to left moving and vice versa. Defining a total particle

density and current as the sum and difference of these respectively, he arrived at

the continuity equation

∂2 ρ

∂ t2
=

∂

∂x

(
v
∂ v ρ

∂x

)
+ α

∂ J

∂x
, (2.11)
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2.2. Biology: Bacterial Dynamics

where ρ = R + L and J = v(R − L). From this one can recover the results

of his earlier work [22] for the equilibrium distribution of non-interacting, self-

propelled particles with position dependent, but symmetric, rates. The paper

goes on to generalise the approach to non-symmetric rates, higher dimensions

and to include factors such as rotational Brownian motion and non-uniform

rates amongst particles. The paper incorrectly assumes, however, that the single

particle probability density, p, can simply be replaced with the particle density

for many bacteria by replacing ρ = N p. Even before we add interactions to the

model, however, this leads to equations for the bacterial density which do not

take account of noise; ρ is an inherently fluctuating quantity, where p is not.

Cates and Tailleur [4] follow a different path from equations (2.10). They treat

L(x, t) and R(x, t) as probability densities to find a single particle (bacterium)

moving left, or right, at a given location and time. To move from this

single particle description to a many-body problem they first take a diffusive

approximation of their continuity equation for the probability density, dp(x,t)
dt

=

−∇J(x, t), and recast it as an Ito-Langevin equation for the trajectory of the ith

particle:

ẋi(t) = A(xi) + C(xi)ηi(t) (2.12)

where A and C are given functions of the velocities and tumble rates related to

the diffusivity, D, and drift, V , by C2 = 2D and A = V + ∂D/∂xi and η is a

Gaussian white noise. They then assume that in order to account for interactions

between bacteria, A and C can then be replaced by counterparts which depend

on the local density of bacteria, A([ρ]) and C([ρ]). Following Dean [29], they can

then apply Ito’s Theorem1 and, after some algebra, arrive at the Fokker-Planck

equation for the many-body probability:

Ṗ([ρ]) =

∫
dx

δ

δ ρ
∂x

[
ρ V −D∂xρ−Dρ

(
∂x

δ

δ ρ

)]
P (2.13)

1Ito’s theorem states that for any function f(xi), if xi evolves via equation(2.12), then

ḟ(xi) = (A+ CLi)
∂f

∂xi
+ (C2/2)

∂2f

∂x2i
.

Identifying f with the density ρ then allows one to determine a continuity equation for the
collective density. From this standard methods, as detailed in, for example, Gardiner [8], allow
one to derive the Fokker-Planck equation.
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where V and D are functionals of ρ, and hence to the microscopic parameters of

the system. They attempt to map onto a thermal system by looking for solutions

of the form P ∝ e−F([ρ]) and arrive at the condition

V [ρ(x)]

D[ρ(x)]
= −∇

(
δFex
δ ρ(x)

)
(2.14)

for such a mapping to exist. In the case of one dimensional, non-interacting

particles with symmetric rates, this recovers Schnitzer’s result, ρ(x) ∝ 1/v(x).

Perhaps more interestingly, they also find solutions in some cases for interacting

particles. For example, for a translationally invariant system with even parity

(vR/L(ρ(x)) = vL/R(ρ(−x))), they find that under certain conditions the system is

unstable to spinodal decomposition. If the rates are also symmetric the condition

for spinodal decomposition is
dv

dρ
< −v

ρ
. (2.15)

If, for example, v(x) = v0 e
−λ ρ(x), the system is unstable for all ρ > 1/λ,

while if v(x) = v0 e
−λφ arctan( ρ(x)φ ), v(x) saturates at large ρ and the density can

become stable again. For φ > 2/λ there is a window in which the system can

phase separate into high and low density regions. Simulations of the Ito-Langevin

equations agreed with this prediction, though they were not able to simulate the

microscopic model directly; continuum simulations of this type would require a

long time to complete (see section 3.1 for more details).

They also consider the case of non-interacting sedimentation, where vR/L =

v ± µT mg. At steady state they found that ρ(x) = ρ(0)e−κx where κ = −vT α
v2−v2T

.

This shows an exponential profile, as in the case of a thermal system, but the

system collapses to zero height at finite g, when vT → v. This is due to the fact

that after this point both vR and vL point in the same direction. This is not the

case in a thermal system. Further to this work they have generalised the results

for sedimentation to higher dimensions and considered the case of trapping in a

harmonic potential and rectification by a wall of funnels [3].

In chapter 3 I will lay out the mathematical framework to re-derive the steady

state distribution and stability conditions beginning from a lattice based model.

Utilising a lattice approach allows us to compute simulations far more efficiently

and, importantly, to be able to extend our simulation results to more than

one spatial dimension without a prohibitive increase in the computational cost.
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Further, we can simulate the microscopic model directly, and not rely merely on

the Ito-Langevin equation.

In chapter 6 I shall then use this framework to investigate the effects of

interactions in the system and to examine the importance of non-locality and

coarse-graining in the density field.

As the density dependence in the jump (and later tumble) rates can be

implemented as a proxy for chemical signalling between bacteria, we expect that

the response will depend on number of bacteria across some spatially extended

region, which we shall have to account for through some form of coarse-graining

of that field. (In fact as multiple bacteria cannot exist in the same position, any

density dependent interaction necessarily requires some form of coarse-graining

to move from a description of each bacterium’s position to either a discrete or

continuous field.) On lattice this calculation is easy to perform, though, as we

shall see, the precise manner in which it is performed can have significant effects

on the resulting steady state and dynamics.

2.2.2 Patterning in Bacterial Colonies

The formation of patterns by groups of organisms is ubiquitous in nature [30],

from the clustering of ants [31] to the flocking of birds [32], and, as such, has

attracted a significant interest from the communities of ecologists, mathematical

biologists and, more recently, physicists. Given the wide range of situations and

scales at which patterns are observed, it is natural to wonder whether for each

situation evolution has led to specific pattern formation mechanisms that have to

be studied separately or if there are generic mechanisms that cover a large range

of situations. Though some example of such mechanisms, such as that discovered

by Turing [33], have already been uncovered, most of the modelling literature

has aimed at providing precise descriptions of given experiments, whose detailed

complexity can hinder the observation of any underlying generic features.

A striking example is pattern formation in bacterial colonies, where relatively

simple microscopic dynamics, such as the run-and-tumble swimming of E.

coli [34–38], the swarming of B. subtilis [39] or P. mirabilis [40], or the gliding of

myxobacteria D. discoideum [41], result at a macroscopic level in complex forms

of organisation. These patterning processes rely on interactions between the

bacteria that have various origins such as the secretion of chemotractants, steric
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2.2. Biology: Bacterial Dynamics

interactions, competition for food or quorum sensing. However, the question

remains whether these interactions, despite their variety, play a similar role in

different situations or, on the contrary, fulfil different purposes.

It was indeed recently argued [1], based on the study of a semi-phenomenological

partial differential equation, that any microscopic mechanism resulting macro-

scopically in density dependent diffusivity of the bacterial population could trigger

an instability. When damped by regulated division of cells, this instability results

in patterns of fixed size. Whether microscopic interactions between bacteria

generically result in such density dependent diffusivity, or on the contrary have to

be fine-tuned to do so, remained unanswered. Furthermore, it was not clear how

crucial the details of the modelling of the birth-death terms are to the patterning

process. This is of great importance since, were the mechanism to be robust

to generic microscopic changes of the bacterial dynamics, this would strongly

support its importance while the opposite would shed doubt on its practical

applications.

In chapter 7 we will show that the model is in fact robust to generic

microscopic changes, that we can derive the phenomenological equation from

which Cates et al. began from the microscopics and that the details of the birth-

death process are not crucial to their mechanism. Indeed, we show that whilst in

their previous work the target density of the growth term fell within the miscibility

gap of the interactions, for expanding colonies a finite target density does not even

need to exist to observe patterns on the time scale of the colony growth. It seems,

therefore, that generic underlying features may be present in bacterial, and indeed

other biological, patterning and that before more complicated explanations are

invoked this much simpler mechanism should first be considered.
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Chapter 3

Mathematical Frameworks

Having laid out the biological background to the systems we want to describe in

chapter 2, in this chapter I hope to relay to the reader the basic mathematical and

computational frameworks necessary to understand the results derived across the

remainder of this work. I begin by briefly reviewing the scope and applicability of

lattice models in statistical physics and explaining why we use them in this work

despite the inherently continuous nature of the processes they are used to model.

I then detail the field theoretic techniques utilised to move from that discrete,

microscopic description to a more coarse-grained continuum level, before, finally,

elaborating the algorithms used for my simulations and comparing their efficiency.

3.1 Lattice Models

Lattice models have, by now, a considerable history in statistical physics as

prototypical examples of equilibrium and non-equilibrium dynamics and have

been used to describe an extensive range of physical systems from traffic flow [42],

to accumulation of wealth in macroeconomic models [43], to biophysical transport

[44–46], while also revealing a wide variety of interesting physical phenomena from

phase transitions, to symmetry breaking, to condensation. In addition, they can

admit exact analytical calculation of statistical properties in some cases, as we

will see in chapters 4 and 5 and are easily amenable to computational treatments.

Lattice models are often far faster to simulate, as, for example, it is extremely

easy to define a local density - one has only to record an array of the occupation

numbers at each site. In contrast, in a continuum simulation much more complex
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Figure 3.1: Presentation of the model. Filled circles represent right moving
particles while unfilled circles denote left moving particles. Some of the possible
transitions are illustrated on the figure.

calculations are required to determine a locally coarse-grained density. This is

especially pertinent when working in more than one spatial dimension.

However, as the physical system we wish to model is inherently continuous, we

need to take a continuum limit at some point in order to compare our calculations

with experimental results; we will see in the coarse of this work that that is not

always entirely straightforward and must be handled with some care to ensure

the models are really equivalent.

3.1.1 Presentation of the Model: Run-and-tumble Dy-

namics on a Lattice

To model the finite persistence length in run-and-tumble dynamics on a lattice

particles jump repeatedly in the same direction, u, with rate d(u) and change

direction - tumble - with rate α(u); although in principle the tumble rate could

also depend on the direction u′ the particles face after the tumble ends, we do not

consider this possibility here. In 1d, this means particles can be either right-going

or left-going. Right-going particles jump with rate d+
i from site i to site i + 1

and tumble with rate α+
i . After a tumble, they become left-going particles with

probability 1/2. The corresponding rates for left-going particles are called d−i and

α−i , see figure 3.1. For now let us assume tumbles to be instantaneous. In reality

the duration of tumbles is typically of the order of one tenth of the duration of

runs [13]. There may be situations, however, where time spent tumbling may

increase, and where the finite duration of a tumble may have an effect on the

dynamics and steady state of the system. We shall consider the effect of finite

tumble duration in section 6.4.
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3.2. Deriving the Continuum Fluctuating Hydrodynamics

3.2 Deriving the Continuum Fluctuating Hy-

drodynamics

Let us start with the single particle process, and call P (k,+) and P (k,−) the

probability to find a bacterium at site k going to the right and to the left

respectively. The master equation reads

∂tP (k,+) = d+
k−1P (k − 1,+)− d+

k P (k,+) +
α−k
2
P (k,−)− α+

k

2
P (k,+)

∂tP (k,−) = d−k+1P (k + 1,−)− d−k P (k,−)− α−k
2
P (k,−) +

α+
k

2
P (k,+),

(3.1)

where the first term on the right hand side of each equation describes the

probability a particle jumped into site i, the second term the probability a particle

vacated site i and the last two terms the probabilities that a particle changed

direction.

Since we ultimately want to compare the run-and-tumble on lattice with its off

lattice counterpart, let us first take the continuum limit of the master equation.

Explicitly introducing the lattice spacing a and defining xk = ka, the master

equation (3.1) reads

∂tP (xk,+) = d+(xk − a)P (xk − a,+)− d+(xk)P (xk,+)

+
α−(xk)

2
P (xk,−)− α+(xk)

2
P (xk,+)

∂tP (xk,−) = d−(xk + a)P (xk + a,−)− d−(xk)P (xk,−)

− α−(xk)

2
P (xk,−) +

α+(xk)

2
P (xk,+).

(3.2)

We are interested in cases where the typical run length is much longer that the

lattice spacing so that d± � α±. Furthermore, when a→ 0 while v±(x) = d±(x)a

remains finite, one gets, at leading order,

∂tP (x,+) = −∇[v+(x)P (x,+)] +
α−(x)

2
P (x,−)− α+(x)

2
P (x,+) +O(a)

∂tP (x,−) = ∇[v−(x)P (x,−)]− α−(x)

2
P (x,−) +

α+(x)

2
P (x,+) +O(a),

(3.3)
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3.2. Deriving the Continuum Fluctuating Hydrodynamics

which is exactly the master equation for run-and-tumble bacteria considered

previously off lattice [2, 4] which we began from in equation (2.10). Following

the same path as there would lead (as described in section 2.2.1) to a Langevin

equation for the density of a large but finite number of bacteria

ρ̇(x, t) = −∇[ρV −D∇ρ+
√

2Dρη], (3.4)

where

D =
D

1 + ξ1

; V =
V

1 + ξ1

; V =
α−v+ − α+v−

2α
− v

α
∇v

+v−

v

D =
v+v−

α
; ξ1 =

v+

2α
∇v

+

v
− v−

2α
∇v

−

v
, (3.5)

with α = (α+ + α−)/2, v = (v+ + v−)/2. It was shown that (3.4) captures

the steady state of the off lattice model exactly [4] and in section 3.2.1 we will

show that it also describes the large scale behaviour of run-and-tumble bacteria on

lattice. For (3.4) to derive from an effective free energy there must exist an excess

free energy functional Fex[ρ] that satisfies the condition1 given in equation (2.14),

V

D
= −∇ δFex

δρ(x)
, (3.6)

which can be solved to give

Fex[ρ] =

∫ L

0

dx

{
ρ(x)

[
log

(
v+v−

v

)
+

1

2

∫ x

0

dx′
(
α+

v+
− α−

v−

)]}
, (3.7)

as long as, for periodic boundary conditions,
∫ L

0
dx(α−v+−α+v−) = 0. The total

free energy is then given by

F [ρ] =

∫
dxρ(log ρ− 1) + Fex[ρ]. (3.8)

Note that it is not always possible to write a free energy of this form for non-

interacting particles in higher dimensions, nor, in general, for interacting systems.

As we can see, there is no gradient term in this expression. This is due to the

1To arrive at this condition we need first to re-write equation (3.4) in the equivalent Fokker-
Planck form. Then, to see if an effective free energy exists one can look for solutions of the
form P([ρ]) ∝ exp(F). After accounting for the entropic term in the free energy, given by∫

dxρ(log ρ− 1), the remaining (excess) free energy Fex[ρ] must satisfy equation (3.6).
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3.2. Deriving the Continuum Fluctuating Hydrodynamics

fact that when deriving the continuum limit, terms of order a and higher are

neglected. If equation (3.4) leads to large gradients in the density, these higher

order terms should be included and may alter the result; these terms control

the surface tension, for example. These higher order terms could also violate

condition (3.6). We shall now proceed using a field theoretic approach to derive

the fluctuating hydrodynamics of the bacterial bath in a more general context.

This will provide an alternative derivation of the non-interacting case to that

presented previously in the literature [4], and will be able to account for the

effect of interactions at the microscopic level.

3.2.1 Fluctuating Hydrodynamics for Interacting Bacte-

ria

Bacteria do not exist as totally independent entities, free from the influence of

other around them. To create any realistic model of their behaviour, therefore,

we must be able to take into account interactions between bacteria. These

interactions may come in a variety of forms and, for example, be purely steric

in origin or mediated through the secretion and detection of some chemical

components. To model the latter situation exactly one should explicitly consider

additional fields for these components, and, indeed, that is what much of the

previous literature in bacterial modelling has sought to do.

Here we will take a different course, however, and attempt to model the

interactions through a general dependence of the jump and tumble rates on the

local density - the occupation number at each site in a lattice context. That is

we take the rates to be given by

d±i = d±i (n̄±i ); α±i = α±i (n̄±i ), (3.9)

where n̄±i is a coarse-grained occupancy that depends linearly but non-locally on

the occupancies of the whole lattice,

n̄±i =
∑
j

K±i−jnj. (3.10)

In general the coarse graining kernel K±i−j could also be a function of lattice

position though here we do not consider that situation, where the manner in which
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3.2. Deriving the Continuum Fluctuating Hydrodynamics

the density is felt by the particles varies with position. In principle we should also

consider the time delays involved in both the bacteria’s response to the changing

concentration of chemicals around them, which can be considerable when quorum

sensing and gene expression are involved, and to the time required for chemical

signals to themselves diffuse between bacteria. For computational and analytical

simplicity, however, we assume the interactions to be instantaneous.

We aim at describing large scale behaviour, i.e. on a colony size, and so to

derive a fluctuating hydrodynamics. In addition, this will allow us to compare

again the phenomenology on and off lattice and to look for cases in which there

is a “free-energy” like description, and for which we can thus characterise the

steady state. We follow a field theoretic approach to derive a continuum Langevin

equation for the system, from which we can deduce the appropriate Fokker-Planck

equation and the steady-state distribution.

3.2.2 Field Theory for Non-Interacting Particles

To illustrate the technique we shall use to construct the fluctuating hydrodynam-

ics for the full interacting case, let us first handle the non-interacting case and

re-derive equation (3.4).

Field theoretic representations of lattice gases using bosonic coherent states

were established in the 1970s following Doi and Peliti [47, 48]. The case where

each site is limited to a single particle can be handled in some cases in this

formalism [49], while more general finite occupancies could be handled using spin

coherent states [50]. Alternatively, probabilistic approaches from mathematical

physics have also been used [51–53]. Here we use an alternative derivation, based

on an approach à la Jansen and De Dominicis [54, 55] transposed in the context

of the master equation. This is very similar to the generating function approach

used by Biroli and Lefevre [56]. Beginning with a process discrete in both time

and space—with L lattice sites and N time steps—one writes the probability of
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a trajectory, with fixed initial conditions, as

P [
{
n+
i (tj), n

−
i (tj)

}
] ∝

∫ L∏
i=1

N∏
j=1

dJ+
i (tj)dJ

−
i (tj)δ

(
n+
i (tj+1)− n+

i (tj)− J+
i (tj)

)
× δ
(
n−i (tj+1)− n−i (tj)− J−i (tj)

)
P [
{
J+
i (tj), J

−
i (tj)

}
]

∝
〈 L∏

i=1

N∏
j=1

δ
(
n+
i (tj+1)− n+

i (tj)− J+
i (tj)

)
× δ
(
n−i (tj+1)− n−i (tj)− J−i (tj)

)〉
J

,

(3.11)

where n±i (tj) is the number of right (+) of left (−) moving particles at site i at

time tj, the Ji(tj)
± are the changes in the number of each type of particle at each

site at each time step and the bold faced J denotes the average is over all J ’s.

Re-writing the Dirac delta functions using imaginary Fourier representations this

can be written as

P [
{
n+
i (tj), n

−
i (tj)

}
] ∝

∫ L∏
i=1

N∏
j=1

dn̂+
i (tj)dn̂

−
i (tj)

×
〈

exp
(
n̂+
i (tj)

(
n+
i (tj+1)− n+

i (tj)− J+
i (tj)

)
+ n̂−i (tj)

(
n−i (tj+1)− n−i (tj)− J−i (tj)

))〉
J

∝
∫ L∏

i=1

N∏
j=1

dn̂+
i (tj)dn̂

−
i (tj) exp

(
n̂+
i (tj)

(
n+
i (tj+1)− n+

i (tj)
)

+ n̂−i (tj)
(
n−i (tj+1)− n−i (tj)

))
×
〈

exp
(
− n̂+

i (tj)J
+
i (tj)− n̂−i (tj)J

−
i (tj)

)〉
J

,

(3.12)

where it should be noted that the conjugate fields n̂±i are imaginary. The average

over the J ’s can then be calculated explicitly from the dynamics. Specifically,

a right moving particle can jump from site i to site i + 1 at time step j with

probability n+
i (tj)d

+
i dt, where dt is the duration of a time step. The corresponding

values of the J ’s are Ji(tj) = −1, Ji+1(tj) = 1 and Jk 6={i,i+1} = 0. Calculating all

other moves and the probability that nothing happens, which corresponds to all
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J±i = 0, we can write

N∏
i=1

〈
e−n̂

+
i (tj)J

+
i (tj)−n̂−i (tj)J

−
i (tj)

〉
J

=
N∏
i=1

[
1 + ni(tj)

+d+
i

(
en̂

+
i (tj)−n̂+

i+1(tj) − 1
)

dt

+ n−i+1(tj)d
−
i+1

(
en̂
−
i+1(tj)−n̂−i (tj) − 1

)
dt

+
α+
i

2
n+
i (tj)

(
en̂

+
i (tj)−n̂−i (tj) − 1

)
dt

+
α−i
2
n−i (tj)

(
en̂
−
i (tj)−n̂+

i (tj) − 1
)

dt
]
. (3.13)

As this is of the form 1 + kdt we can approximate it as exp(kdt) and write the

probability for the trajectory as

P [
{
n+
i (tj), n

−
i (tj)

}
] ∝

∫ ( L∏
i=1

N∏
j=1

dn̂+
i (tj)dn̂

−
i (tj)

)
exp

[
L∑
i=1

N∑
j=1(

n̂+
i (tj)

(
n+
i (tj+1)− n+

i (tj)
)

+ n̂−i (tj)
(
n−i (tj+1)− n−i (tj)

)
+ni(tj)

+d+
i

(
en̂

+
i (tj)−n̂+

i+1(tj) − 1
)

dt

+n−i+1(tj)d
−
i+1

(
en̂
−
i+1(tj)−n̂−i (tj) − 1

)
dt

+
α+
i

2
n+
i (tj)

(
en̂

+
i (tj)−n̂−i (tj) − 1

)
dt

+
α−i
2
n−i (tj)

(
en̂
−
i (tj)−n̂+

i (tj) − 1
)

dt

)]
. (3.14)

We can then take a continuous time limit and make the substitutions

n±i (tj+1)− n±i (tj)→ ṅ±i dt;
N∑
j=1

dt→
∫ T=Ndt

0

dt;
N∏
j=1

dn̂±i (tj)→ Dn̂±i .

(3.15)

The probability of a trajectory can then be written

P [
{
n+
i (t), n+

i (t)
}

] ∝
∫ ∏

i

D[n̂+
i , n̂

−
i ]e−S[n+,n−,n̂+,n̂−], (3.16)
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where the action S is given by

S = −
∫ T

0

dt
∑
i

[
n̂+
i ṅ

+
i + n̂−i ṅ

−
i + n+

i d
+
i

(
en̂

+
i −n̂

+
i+1 − 1

)
+ n−i+1d

−
i+1

(
en̂
−
i+1−n̂

−
i − 1

)
+

α+
i

2
n+
i

(
en̂

+
i −n̂

−
i − 1

)
+
α−i
2
n−i

(
en̂
−
i −n̂

+
i − 1

)]
. (3.17)

Note that generic changes of variables in (3.16) will result in Jacobians. If these do

not depend on the fields, n±i and n̂±i , they can be subsumed into the normalisation

of the path integral but they must be handled with care otherwise.

We further simplify by considering symmetric, constant, rates d+
i = d−i = d

and α+
i = α−i = α; the more general case causes little conceptual difficulty but is

considerably more cumbersome as an illustration. Let us then introduce the new

variables

ρi = n+
i + n−i ; Ji = d(n+

i − n−i ); ρ̂i =
1

2
(n̂+

i + n̂−i ); Ĵi =
1

2
(n̂+

i − n̂−i ) (3.18)

The action can then be written as

S = −
∫ T

0

dt
∑
i

[
ρ̂iρ̇i +

1

d
ĴiJ̇i +

d

2
ρi

(
e−(ρ̂i+1−ρ̂i+Ĵi+1−Ĵi) + eρ̂i+1−ρ̂i−(Ĵi+1−Ĵi) − 2

)
+

Ji
2

(
e−(ρ̂i+1−ρ̂i+Ĵi+1−Ĵi) − eρ̂i+1−ρ̂i−(Ĵi+1−Ĵi)

)
+

d

2
(ρi+1 − ρi −

Ji+1 − Ji
d

)
(
eρi+1−ρ̂i−(Ĵi+1−Ĵi) − 1

)
+

αρi
4

(
e2Ĵi + e−2Ĵi − 2

)
+
αJi
4d

(
e2Ĵi − e−2Ĵi

)]
. (3.19)

The continuum limit can be taken by explicitly introducing the lattice spacing a

and making the substitutions

ρi → aρ(x); ρ̂i → ρ̂(x); d→ va−1;
∑

i →
∫ `=La

0
dxa−1;

Ji → J(x); Ĵi → Ĵ(x); ∇i → a∇+ 1
2
a2∆, (3.20)

where ∇i is the discrete gradient, e.g. ∇iρi = ρi+1 − ρi, and ` is the system

length. After Taylor expanding the action in powers of the lattice spacing,

taking a diffusive rescaling of time and space and properly rescaling the fields,
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see Appendix A, we find that the fluctuating hydrodynamic action is given by

S0 = −
∫ τ

0

dt

∫ 1

0

dx

(
ρ̂ρ̇− vρ∇Ĵ − J∇ρ̂+ αρĴ2 +

αJĴ

v

)
, (3.21)

which is invariant under a further diffusive rescaling of space and time.

Going back to the definition of the probability (3.16), we can then work

backwards to recover a continuity equation for ρ from our action [50]. Starting

from

P [{ρ(x, t), J(x, t)}] =
1

Z̃

∫
D[ρ̂, Ĵ ]e−S0[ρ,J,ρ̂,Ĵ ], (3.22)

one can remove the quadratic term Ĵ2 by introducing a new field η(x, t) via a

Hubbard-Stratonovich transformation so that

P [{ρ(x, t), J(x, t)}] =
1

Z̃

∫
D[ρ̂, Ĵ , η]e−S0[ρ,J,ρ̂,Ĵ ,η], (3.23)

where the new action now reads (after some integration by parts)

S0 = −
∫ τ

0

dt

∫ 1

0

dx

(
ρ̂ρ̇+ v∇ρĴ + ρ̂∇J +

√
2αρ ηĴ +

αJĴ

v
− 1

2
η2

)
. (3.24)

The integral over ρ̂ and Ĵ then leads to

P [{ρ(x, t), J(x, t)}] ∝
∫
D[η]δ(ρ̇+∇J) δ

(α
v
J +

√
2αρ η +∇vρ

)
e−

1
2

∫
dxdt η2 ,

(3.25)

where the delta functions impose the two dynamic field equations

ρ̇ = −∇J ; J = −D∇ρ+
√

2Dρη; D =
v2

α
. (3.26)

Given its weight in (3.25), η(x, t) is a Gaussian white noise:

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). (3.27)

This is consistent with the calculation off-lattice for non-interacting, homoge-

neous and isotropic systems and validates the results obtained previously, see

equation (3.4).
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Fluctuating Hydrodynamics and Large Deviation Functions

Before going any further, let us make a brief detour to consider the connection

with the standard fluctuating hydrodynamics approach considered in the mathe-

matics literature [57]. Let us first note that from the definition of the continuum

limit, one has

N =
∑
i

ρi =

∫ 1

0

dxρ(x) (3.28)

The integral of the density field is thus an extensive variable. On the other hand,

the density field considered by mathematicians is often defined by

ρ(x) =
1

`

∑
i

ρiδ(x− ai) (3.29)

and satisfies the normalisation condition∫
dxρ(x) =

N

`
(3.30)

To make the connection between the two approaches, it is thus natural to rescale

our density term to make the extensivity apparent: ρ → `ρ. To ensure that the

conservation equation still has the form ρ̇ = −∇J , one must also rescale the

current field J → `J . Before introducing the η(x, t) field, the action thus reads

S0 = −`
∫ τ

0

dt

∫ 1

0

dx

(
ρ̂ρ̇− vρ∇Ĵ − J∇ρ̂+ αρĴ2 +

αJĴ

v

)
. (3.31)

One can again introduce the noise field and integrate over the conjugate fields ρ̂

and Ĵ to get

P [{ρ(x, t), J(x, t)}] ∝
∫
D[η]δ(ρ̇+∇J) δ

(α
v
J +

√
2αρ η +∇vρ

)
e−

`
2

∫
dxdt η2 .

(3.32)

Interestingly, the fields are now all intensive, and the smallness of the noise does

not come from a
√
ρ versus ρ noise prefactor, but from its explicit variance, read

in the Gaussian weight:

〈η(x, t)η(x′, t′)〉 =
1

`
δ(x− x′)δ(t− t′). (3.33)
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3.2. Deriving the Continuum Fluctuating Hydrodynamics

This is the usual fluctuating hydrodynamics, as considered, for instance, by

Bertini et al. [57]. In the large size limit, the first order correction to the

deterministic equation in a 1/` expansion is given by the addition of the noise

term
√

2Dρ. This noise is typically of order 1/
√
`, i.e. trajectories of probability

of order 1 have `η2 of order 1. Large deviations correspond to trajectories where

the noise can be of order one. They yield probabilities of order O(exp(−`)), and

remain described by the fluctuating hydrodynamics. Even less likely trajectories

of order O(exp(−`)2) are outside of the scope of this description.

3.2.3 Field Theory for Interacting Particles

Consider now the case of interacting particles where the jump and tumble rates

depend on the occupation numbers of each lattice site. Our velocity is then

modified to

v±(x)→ v±(ρ̄±(x), x), (3.34)

and the tumble rate to

α±(x)→ α±(ρ̄±(x), x), (3.35)

with ρ̄±(x) given by an integral over the density

ρ̄±(x) =

∫
K±(x− y)ρ(y)dy, (3.36)

where K±(x − y) are some kernels which account for how the coarse-grained

densities ρ̄±(x) depend on ρ(x).

Following the same path as that followed in section 3.2.2 for the non-

interacting case, one gets for the action

S = −
∫

dtdx

[
ρ̂ρ̇− v+(ρ̄+)v−(ρ̄−)

v(ρ̄+, ρ̄−)
ρ∇Ĵ − J∇ρ̂+

α+(ρ̄+)v−(ρ̄−) + α−(ρ̄−)v+(ρ̄+)

v(ρ̄+, ρ̄−)
ρĴ2

+
α(ρ̄+, ρ̄−)

v(ρ̄+, ρ̄−)
JĴ + `

α+(ρ̄+)v−(ρ̄−)− α−(ρ̄−)v+(ρ̄+)

v(ρ̄+, ρ̄−)
ρĴ

]
, (3.37)

where v = (v+ + v−)/2 and α = (α+ + α−)/2. The factor of ` in the final

term implies that, for the diffusive scaling to hold, at a scale `, the asymmetry

α+(ρ̄+)v−(ρ̄−) − α−(ρ̄−)v+(ρ̄+) must be of order 1/`. This is reminiscent of the

ASEP, where if the bias is much smaller than 1/
√
` the diffusive scaling holds
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3.3. Simulation Methods

(Edwards-Wilkinson universality class), as in the symmetric exclusion process,

but for larger asymmetries the dynamic exponent z is the same as Kardar-Parisi-

Zhang scaling [58]. Integrating over ρ̂ and Ĵ now yields the set of field equations

ρ̇ = −∇J ; J = −D∇ρ− V ρ+

√
v(α+ v− + α− v+)

α2
ρη, (3.38)

with

D =
v+v−

α
; V = `

α−v+ − α+v−

2α
− v

α
∇v

+v−

v
(3.39)

This formalism will later be used to analyse the effect of interactions on the

large scale behaviour of a system of run-and-tumble particles. In order to verify

that these calculations are correct, they will be compared to results obtained from

direct numerical simulation of the underlying microscopic dynamics. The details

of these simulations are briefly described in the next section.

3.3 Simulation Methods

Many of the analytical results contained in this work are compared with direct

simulation of the underlying microscopic dynamics to verify the approximations

we apply at various times. The analytical work is often guided by the results of

these simulations and much of the justification for the use of a lattice approach is

based upon the increased efficiency of the simulations, it is therefore important

to be clear as to the workings of those simulations and we detail the methodology

of their algorithms below.

3.3.1 Discrete Time Monte Carlo Simulations

The simplest way to reproduce the microscopic dynamics, and maintain the

correct stochastic treatment, is to perform a type of discrete time Markov Chain

Monte Carlo. We evolve forwards through time a particular realisation of the

master equation dynamics in each simulation run. To do so we follow the basic

procedure described below.

Begin by selecting one particular site (or particle) at random from a uniform

distribution, so that for N sites each should be updated, on average, once per N

iterations. Next determine the probability for some update to occur at the given

site within the time-step dt, that is for each possible transition out of the current
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3.3. Simulation Methods

configuration calculate the relevant probability. If the rate of each transition from

a configuration C to C ′ is given by W (C → C ′) the probability of each transition is

given by P (C → C ′) = W (C → C ′)dt where the time-step dt is fixed for the entire

simulation and chosen such that the total probability to leave any configuration

is never greater than 1, i.e.

dt =
1

max (
∑
C′W (C → C ′) , C) . (3.40)

Place the possible actions taken to alter the configuration of the system

in some, arbitrary, order, and determine which action if any is performed

by picking a random number between 0 and 1. If the number is between

0 and W (action 1)dt perform action 1, if it is between W (action 1)dt and

W (action 1)dt+W (action 2)dt perform action 2, and so on, if it is greater than∑
iW (action i)dt leave the system unchanged. Finally update the system clock

t→ t+ dt and repeat until t is greater than the desired run-time.

3.3.2 Continuous Time Monte Carlo Simulations

In many circumstances, discussed at the end of this section, the discrete time

procedure, though simple to implement, may not be efficient to run. In such

circumstances it may be more appropriate for one to use a continuous time

procedure instead.

In this case we must begin by calculating, for each and every site a rate for

some update to take place,

R(x) =
∑
C′
Wx (C → C ′) , (3.41)

where Wx(C → C ′) is the rate for an event to occur at a position x which takes

the system from state C to C ′. We then draw a time till the next event for each

site from a Poisson distribution of parameter R(x),

t(x) = − 1

R(x)
log(U), (3.42)

where U is a random number sampled uniformly between 0 and 1. These times

are ordered in a structure known as a heap. This is a complete binary tree where
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Figure 3.2: An example heap for a lattice of 10 sites. The time of the next event
at each site is shown inside the nodes, the position on the lattice is listed to the
right of each node. Note that the time at the parent of each node is smaller than
that of the children, but the children are not ordered.

each node is less than or equal to that of both its children. Thus the site with

the smallest time till the next event is always at the top of the heap and for N

objects in the heap the time to sort them scales as order logN - for comparison

a simple linear ordering of sites would require of order N moves to re-sort after

each update. See figure 3.2 for an example.

We pick the site with the smallest time and set the system clock equal to this

time. Having chosen a site to update we then choose which action to perform at

that site by the same method as for the discrete time procedure but replacing dt

with R(x) so that each configuration change occurs with probability

P (C → C ′) =
W (C → C ′)∑
C′W (C → C ′) (3.43)

so that
∑
C′ P (C → C ′) = 1, and there are no rejected updates, the configuration

is always altered. We then draw a new time for every site whose configuration

has been altered,

t′(x) = t(x)− 1

R(x)
log(U), (3.44)

and reorder the heap. We iterate the procedure by picking the site with the new

smallest time and repeat until the system time - and, necessarily, the time at
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3.3. Simulation Methods

every site - is greater than the desired run-time.

3.3.3 Comparison of the Two Simulation Procedures

Though a continuous time description more closely describes the real dynamics of

the particles we wish to simulate, we see no significant difference between the two

procedures. Therefore, in the simulations presented in this work both continuous

and discrete time algorithms are used for different problems, dependent on which

is expected to be the most efficient procedure for the specific conditions under

investigation.

Additionally, we may wish to record the position of each particle at each time-

step, if we wish to track specific particles, say, or simply the occupation numbers

at each site, if we do not. For the discrete time code this makes no difference

to the efficiency of the code, and requires only minor alterations to the source

code. For the continuous time code, however, instead of storing a heap of L sites,

each with a time until any one of the ni particles at that site moves or changes

state, we must store a heap of N = 〈n〉L particles, with a time until each one,

individually, changes. Recording the position of each particle drastically increases

the time it takes to run the simulations. If there are, for example, an average of

100 particles per site, 〈n〉i = 100 and the jump rate depends on the occupation

number of the site, then whenever any particle is moved, of order 100 new times

must be drawn. If we care only about the rate for an event to happen at a given

site, however, of order 1 new time must be drawn per particle moved. This is

clearly a significant difference in efficiency.

Similarly, when the jump rate at a given site depends not just on the

occupation number at that site but at many sites, the continuous time code may

require many new times to be drawn and become, correspondingly, inefficient. In

those situations the discrete time code will be used.

On the other hand, where the lattice is densely packed, or when there is for

some other reason a large difference between the maximum escape rate from a

configuration and the average escape rate, the discrete time code will generate

many rejected events, where an update is attempted but no action happens. In

this case the continuous time code may be more efficient.

In all cases the two sets of code have been compared numerically and found

to produce identical results, the only difference appearing in the computational
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time required to generate such results.
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Chapter 4

Non-Interacting Active Particles

The jump and tumble rates defined in section 3.1.1 may, in general, depend

on the occupation numbers of any lattices sites. Through this we may introduce

interactions to our system and consider the general case of N interacting bacteria.

Before we begin to deal with such complex cases in chapter 5, however, let us look

at the limiting case of non-interacting particles, where all interesting and non-

trivial effects come from heterogeneities or anisotropies in the jump and tumble

rates, and we can calculate the steady state probability distributions exactly.

For non-interacting particles, one can always handle the single particle case

first and compute the average occupancy ρ±i of left (−) or right (+) moving

particles on site i. As shown below, the steady-state distribution of n particles is

then given by a product on each site of a multinomial distribution of parameters

ρ±i .

4.1 Exact Results for Steady State

To calculate the steady state distribution we start from the continuity equation

d

dt

[
P (i,+) + P (i,−)

]
= Ji−1,i − Ji,i+1, (4.1)

where Ji,i+1 is the net probability flux between sites i and i+ 1, that is

Ji,i+1 = d+
i P (i,+)− d−i+1 P (i+ 1,−). (4.2)
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4.1. Exact Results for Steady State

As we are only after the steady state distribution we take the time derivative on

the left hand side of equation (4.1) to be zero, so all currents Ji,i+1 are constant

and equal to some J fixed by the boundary conditions.

The master equation for the density of left-moving particles at site i reads

0 = d−i+1 P (i+ 1,−)− d−i P (i,−) +
α+
i

2
P (i,+)− α−i

2
P (i,−). (4.3)

Using (4.2) to eliminate the first term on the right hand side of equation (4.3),

which is the only term to depend on site i + 1, we can establish a relationship

between the number of left and right moving particles on site i at steady state:

P (i,+)

(
d+
i +

α+
i

2

)
− P (i,−)

(
d−i +

α−i
2

)
= J. (4.4)

Equation (4.4), along with equation (4.2), leads to the recursion relation for right

moving particles

P (i+ 1,+) =
d+
i

d−i+1

2 d−i+1 + α−i+1

2 d+
i+1 + α+

i+1

P (i,+)− J α−i+1

d−i+1(α+
i+1 + 2 d+

i+1)
, (4.5)

which can be solved to yield

P (i,+) =
i−1∏
j=1

(
d+
j

d−j+1

2 d−j+1 + α−j+1

2 d+
j+1 + α+

j+1

)(
P (1,+)

− J

i−1∑
k=1

α−k+1

d−k+1 (2 d+
k+1 + α+

k+1)
∏k

m=1

(
d+j

d−j+1

2 d−j+1+α−j+1

2 d+j+1+α+
j+1

)) (4.6)

P (i,−) =

(
2 d+

i + α+
i

)
P (i,+)− J

2 d−i + α−i
. (4.7)

The probability to find a particle at any position and in either state can then

be calculated by noting that the total distribution must be normalised, i.e.∑
i [P (i,+) + P (i,−)] = 1 and that J is imposed by the boundary conditions.

For example, closed boundaries require that J = 0, while for periodic boundaries

we have the additional constraint that P (L + 1,±) = P (1,±). Note that the

probability densities for left and right moving particles do not have to be the

same, and, in general, will not be.
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4.2. Examples

The probability of a given configuration P (
{
n+
i , n

−
i

}
), is given by

P
({
n+
i , n

−
i

})
= N !

∏
i

P (i,+)n
+
i P (i,−)n

−
i

n+
i !n−i !

δ

(∑
i

(n+
i + n−i )−N

)
, (4.8)

where N is the total number of particles in the system. If we call the average

number of right or left going particles on a site ρ±i = N P (i,±), then in the limit

where N → ∞ and L → ∞, so that P (i,±) → 0, but ρ±i remains finite, the

probability of a configuration is given by

P
({
n+
i , n

−
i

})
=
∏
i

(ρ+
i )n

+
i exp(−ρ+

i )

n+
i !

(ρ−i )n
−
i exp(−ρ−i )

n−i !
. (4.9)

4.2 Examples

Where not stated otherwise the simulations we present here use reflecting

boundary conditions; if a particle tries to jump off one end of the lattice it is,

instead, kept where it is but turned around. All simulations are performed with

continuous-time Monte Carlo algorithms.

4.2.1 Position Dependent Rates with Closed Boundaries

First, we consider the case of a position dependent, but isotropic, jump rate and

a constant tumbling rate. As a simple example we use a top-hat function for

jump rate such that d±i = 1 + 10 θ(i− 150) θ(350− i), where θ(x) is the Heaviside

step function. Both the continuum and lattice theory predict that the average

occupancy should be inversely proportional to the velocity,

ρ(x) ∝ 1

v(x)
; ρi = ρ+

i + ρ−i ∝
1

di
. (4.10)

The results of the simulations and both predictions are shown in figure 4.1 (main).

In contrast to the jump rate, simply making the tumble rate depend on

position but maintaining isotropy has no effect on the predicted distribution.

Note that the free energy in equations (3.7) and (3.8) has no dependency on α

for isotropic rates. Using the same form as for the position dependent jump rate

in our simulations this can be verified numerically, see figure 4.1 (inset).
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Figure 4.1: Main: Steady state probability distribution for constant tumble
rates, α±i = 1 and isotropic jump rates d±i = 1 + 10 θ(i − 150) θ(350 − i). Data
averaged from the positions of 400, 000 particles. Inset: Steady state probability
distribution for constant jump rates, d±i = 10, and tumble rates α±i = θ(i −
150) θ(350− i). Data from 100, 000 particles. In both figures simulation data are
shown in red and the theory prediction (equation (4.10)) in blue. Both simulations
performed on a lattice of 500 sites and recorded at t = 5000.

4.2.2 Direction Dependent Rates with Closed Bound-

aries: Sedimentation and Chemotaxis

In many physical situations, however, bacteria do not move unbiasedly but

are affected by their external conditions. This may be due, for example, to

sedimentation due to gravity, where there is an asymmetry in jump rates between

left and right (or up and down) moving particles. Another case of interest may be

anisotropic tumble rates. Bacteria undergoing chemotaxis often vary their tumble

rate dependent on whether they are travelling up or down a chemical gradient.

Though a simple asymmetry in tumble rate does not fully capture this behaviour,

we do see particles preferentially move in the direction of a lower tumble rate, as

would be expected1.

These two cases show qualitatively the same behaviour, with an exponential

decay in the probability to find a particle at a given position in the unfavoured

direction. From equations (4.6) and (4.7), the probabilities for left or right going

1Whether the asymmetry appears in the tumble or jump rate makes no qualitative difference
to the results, and thus only the results for asymmetric jump rates are presented here (in
figure 4.2); taking α+

i 6= α−
i would produce the same effect.
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particles on lattice are

P (i,±) ∝ exp

[
i log

(
d+ (2 d− + α−)

d− (2 d+ + α+)

)]
≡ exp [i λlatt] , (4.11)

while in the continuum case the probability density is given (from equation (3.7))

by

ρ(x) ∝ exp

[
x
α− v+ − α+ v−

2 v+ v−

]
≡ exp [xλcont] . (4.12)

For expositional simplicity we consider homogeneous rates here. To examine the

difference between the lattice and continuum results, consider, for example, the

case of sedimentation, where d± = d0(1 ± ε) and α± = α0. The decay constant

in the continuum limit is then

λcont =
α0 ε

v0(1− ε2)
, (4.13)

and the lattice decay constant is given by

λlatt =
α0 ε

d0(1− ε2)
− ε α2

0

2 d2
0(1− ε2)2

+O
(
α0

d0

)3

. (4.14)

We can see then that the two decay lengths will be equal if the jump rate is much

larger than the tumble rate, i.e. for average run lengths much larger than the

lattice spacing. Both decay constants tend to zero as the asymmetry disappears,

ε→ 0, but the ratio λlatt/λcont remains finite.

In our simulations we use d±i = 10 ∓ 1 and α0 = 1, so the drift velocity, the

external bias, is much less than the self-propelled speed, i.e.
∣∣d+
i − d−i

∣∣ � d±.

The continuum theory predicts the distribution to be ρ(x) ∝ exp(−x/99), while

the lattice theory predicts P (i) ∝ (207/209)i. Both predictions are shown, along

with the simulation data in figure 4.2. The ratio of decay constants is

a λlatt

λcont

= 1− α0

d0(1− ε2)
+O

(
α0

d0

)2

≈ 0.95. (4.15)

Note that in equations (4.12) and (4.11) one constant multiplies lattice position,

i, and the other the continuum position, x, hence the factor of a. We see that

the difference between the lattice and continuum results vanishes in the infinite

run length limit, d0/α0 → ∞, unless ε = 1, in which case both decay constants
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Figure 4.2: Steady state probability distribution for constant tumble rates, α±i =
1 and jump rates d±i = 10 ∓ 1. Simulation data are shown in red, the lattice
prediction in blue and the continuum prediction in green. Data collected from
107 particles at t = 2000 on a lattice of 500 sites.

diverge.

4.2.3 Periodic Boundary Conditions

We can also calculate the expected probability distribution for periodic boundary

conditions. In this case our calculation on lattice is slightly more complicated as

we do not know the current a priori, but must determine it through the conditions

P (L+ 1,±) = P (1,±) and
∑

i

[
P (i,+) + P (i,−)

]
= 1.

We can write P (i,+) = C1(i)
[
P (1,+) − J C2(i)

]
, where C1(i) and C2(i) can

be read from equation (4.6). Then from the periodicity of the system we can

write the current as

J =
C1(L+ 1)− 1

C1(L+ 1)C2(L+ 1)
P (1,+) ≡ C3P (1,+). (4.16)

We can then use the normalisation of the distribution to determine P (1,+) as

P (1,+) =
1∑L

i=1

[
d+i +d−i +α+

i +α−i
d+i +d−i

C1(i) (1− C3C2(i)) + C3

d−i +α−i

] . (4.17)

As an example see figure 4.3 where we consider the case where the jump and
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Figure 4.3: The probability distributions at steady state for rates given by
equations (4.18). The distribution for left moving particles is shown in blue
and for right moving particles in red. The points show data from stochastic
simulations and the solid lines the theoretical prediction. Data from 2, 000, 000
particles at t = 200 on a lattice of 200 sites.

tumble rates are

d+
i = 10 d−i = 2

exp(−(x−100)2/5000)

α+
i = 1 α−i = 1.

(4.18)

The exact forms for the probability distributions are omitted here as these do not

reduce to a compact form and, though precisely calculable and consistent with

simulations - as seen in figure 4.3 - are not enlightening in themselves.

To successfully capture the behaviour of the bacteria we hope to model,

however, and to observe the patterning we wish to understand, non-interacting

models will not suffice. We turn, in the next chapter, therefore, to the effects on

interactions between our model bacteria and examine what effect they produce

in the statistical properties of our system.
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Chapter 5

Interacting Particles I: Saturated

Condensation

Before we examine the full interacting run-and-tumble model of bacterial

dynamics let us first turn to a simpler interacting system where we have just

one species of particle which can hop between sites on our lattice with rates

depending on the number of particles at the departure site, but not at any other

site on the lattice. We shall choose the functional form of this interaction such

that the hopping rate decreases with increasing particle density and observe that

this leads to particles accumulating on some sites and a separation into sites of

high density and others of much lower density.

It may appear on first glance that the microscopic model described in this

chapter and its resulting behaviour have little to connect them to the broader

narrative of this thesis in attempting to model and understand pattern formation

in bacterial colonies. However, the basic manner by which the separation into high

and low density sites is achieved - through a density dependent motility which

amplifies stochastic fluctuations to cause particles to agglomerate - is instructive.

Indeed, in chapter 6 we will investigate more general crowding type interactions,

where the velocity of bacteria decreases with increasing density, and the exact

results from this chapter will provide a useful guide in situations where we cannot

exactly calculate the steady state. For the reader who wishes to avoid the more

technical details and concentrate on the wider narrative, this chapter may be

avoided without significant detriment.

41



5.0.4 Zero-Range Processes

The stochastic dynamical model we investigate in this chapter is known as a

zero-range process (or ZRP) and has been extensively studied mathematically

(see [6,59] for reviews). The model was introduced and solved for its steady-state

behaviour by Spitzer [60], and it was realised a little over ten years ago that real-

space condensation [61] is possible at sufficiently large particle densities under

certain conditions on the hop rates [42], even within a spatially homogeneous

system (see also [6, 59]).

Real-space condensation, whereby a finite fraction of a system’s mass

accumulates within a microscopic region, is a spectacular phenomenon that is

observed in a wide range of dynamical systems. For example, it is manifested

experimentally in shaken granular gases in which particles can diffuse between

compartments [62, 63]: as the driving strength is reduced, the sand grains

cluster into a single compartment. One can also find examples in models of

macroeconomics, whereby a large fraction of the available wealth is accumulated

by a single individual [43], and of traffic flow, in which buses serving a single

route cluster together [42].

One of the requirements for a thermodynamic condensation transition to occur

as the total density of particles is increased is the absence of any restriction on

the total number of particles that may occupy a single site. In this chapter,

we are interested in the case where such unbounded growth of particle number

is inhibited. This can happen quite naturally within specific applications: for

example, the compartments in the granular gas experiments of [62, 63] are of

finite size, and once they contain more than a certain number of particles, any

extra particles may diffuse freely out of them. As we will show below, a vestige of

the condensation phenomenon may still be observed in the form of a separation of

the system into high- and low-density sites: we call this saturated condensation.

The key questions then are: (i) Under what conditions is saturated condensation

observed? (ii) How is the state of saturated condensation approached dynamically

from some given initial condition?

The dynamics of condensation onto a single site has also been previously

examined in the literature. There, the focus has been on the late-time coarsening

of the excess mass into a decreasing number of increasingly massive clusters,

which in a finite system ends with a process of mass exchange between the last
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remaining clusters [64,65]. In the steady state, for a finite system, the condensate

occasionally melts and reforms on a new site: the timescale of this process has

been the subject of some discussion [65–67].

Variants of the ZRP where mass accumulates on multiple sites—and in partic-

ular an extensive number of sites—are comparatively little studied. Schwarzkopf

et al [68] examined the statics and dynamics of a ZRP with transition rates

chosen in such a way that a single condensate is destabilized in favour of either a

finite number of extensive condensates, or a subextensive number of subextensive

‘mesocondensates’. In both cases, one still has a finite fraction of the mass

occupying a vanishingly small fraction of the sites in the thermodynamic limit,

and thus a true condensation transition is observed in this model.

By contrast, I consider here the case where the hop rates in the ZRP are chosen

such that the mass of condensates reaches a finite size that does not increase

with system size. This prevents a true condensation transition, but nevertheless

admits the possibility of saturated condensation discussed above. Since the true

condensation limit can be approached by taking the upper limit on the size of

a condensate to infinity, it seems clear that saturated condensation can have

interesting consequences at a phenomenological level even if no formal singularity

remains. This is similar to the equilibrium phenomenon of “micellization”

in which attractive particles can form clusters whose size is limited by their

packing geometry [69]. An analysis of this problem as an instance of saturating

condensation in equilibrium was offered by Goldstein [70].

After recalling the definition of the ZRP in section 5.1 and briefly reviewing

the conditions for a condensation transition in the homogeneous system (sec-

tion 5.1.1), we present in section 5.1.2 the conditions on the ZRP hop rates for

saturated condensation to occur. We then turn to the dynamics of the process.

One can first ask about the dynamics within the steady state. This involves

evaporation and formation of condensates, and in section 5.1.3 we calculate the

rates at which both processes take place. The remainder of this chapter, presented

in section 5.2, concerns an investigation of the relaxation to the steady state from

a prescribed initial condition. My main finding is that this is a nontrivial, two-

stage process. First, mass rapidly accumulates on sites that are selected by the

local dynamics and in a way that depends on the initial condition. The number

of such sites typically differs from its global equilibrium value. This gives rise to
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a much slower second stage in which condensates are nucleated and evaporate

as activated processes. We obtain a detailed portrait of both stages of the

relaxational dynamics through a combination of mean-field theory, calculation of

first-passage properties and an approach reminiscent of a fluctuation-dissipation

analysis. In certain cases, these approximations agree remarkably well with

stochastic simulations. These analytical results thus constitute a more complete

account of a nonequilibrium condensation dynamics than has been achieved so

far.

5.1 Presentation of the model: Steady state and

condensation

The model we consider is defined on a one-dimensional lattice of L sites with

periodic boundary conditions. Each site i can be occupied by an arbitrary

number of particles ni. Since the system is not connected to any reservoirs,

the total number of particles in the system N =
∑

i ni is constant. A particle can

move from site i to a neighbouring site i± 1 with rates u±i (ni), respectively (see

figure 5.1). We call d±i (n) the hopping rate per particle so that u±i (ni) = nid
±
i (ni).

(Note the distinction between per particle, d(n), and per site, u(n), rates; the

per site rate can be an increasing function of n even while the per particle rate

decreases, for example.) Qualitatively, our main results hold for both symmetric

and asymmetric hoping rates but to avoid redundancies we shall only present

the symmetric case. The definition of the zero-range process (ZRP) is that the

hopping rates depend only on the number of particles at the departure site and

not, for instance, on the occupancy of the target site. In general the rates could

also vary from site to site but in this work we consider only spatially homogeneous

systems.

5.1.1 Factorisation and condensation

Although the ZRP has been extensively reviewed in the literature [6,59] we shall

briefly summarise some known results that will be important in our understanding

of saturated condensation, deferring to these articles for further details. First,

because the interactions between particles are limited to a single site, the steady-
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Figure 5.1: Presentation of the model. The arrows indicate the allowed transitions
and the rates at which they occur.

state distribution of occupancies factorises. That is, in the canonical ensemble

one has [6]

P ({ni}) =
1

ZN,L

L∏
i=1

g(ni) δ
( L∑
j=1

nj −N
)

(5.1)

where the partition function ZN,L is given by

ZN,L =
∑
{ni}

L∏
i=1

g(ni) δ
( L∑
i=1

ni −N
)

(5.2)

and the factors g(ni) are determined by the hopping rates

g(n) =
n∏
j=1

1

u(j)
for n > 0 and g(0) = 1 . (5.3)

The delta functions in (5.1) and (5.2) simply enforce the constraint that the total

number of particles on the lattice is fixed. The marginal probability that a given

site has n particles is given by

pi(n) = g(n)
ZL−1,N−n
ZL,N

. (5.4)

As previously mentioned, the ZRP admits an interesting condensation transition.

Although it can be worked out directly from the canonical ensemble [71], the

condition for condensation is most easily seen in the grand canonical ensemble.

Introducing a chemical potential µ and the single-site partition function Z1(µ),
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the partition function for the L-site system reads

ZL(µ) =
∑
N

exp(µN)ZL,N =

[∑
n

eµn−
∑n
j=1 ln[u(j)]

]L
≡ [Z1(µ)]L (5.5)

Note that the only correlations between different sites in the canonical ensemble

come from the constraint on the total number of particles in (5.1). Since this

constraint has been removed in favour of a chemical potential, the sites are now

completely uncorrelated in the steady state and the L-site partition function

reduces to a single-site problem. To get more insight into Z1, one can rewrite

the hopping rate per particle as d(j) = d0 eh(j), where d0 is the hopping rate

of a single particle and eh(j) encodes the interaction between the particles. For

instance, h(j) = 0 for all j corresponds to non-interacting particles. The partition

function then reads

Z1(µ) =
∑
n

exp[−F (n, µ)] (5.6)

where F (n, µ) = f(n)− µn and we have introduced

f(n) = ln(d0)n+ ln(n!) +
n∑
j=1

h(j) . (5.7)

The marginal probability that a single site has n particles is then given by

p(n|µ) = eµng(n)
ZL−1(µ)

ZL(µ)

=
1

Z1(µ)
exp[µn− f(n)]

(5.8)

and the average number of particles per site by [6]

〈n〉 ≡ ρ =
Z ′1(µ)

Z1(µ)
. (5.9)

We thus see from (5.8) that f(n) plays the role of a single-site free energy, and

hence that F (n, µ) is a single-site grand canonical potential.

The general idea of ensemble equivalence is to ask what chemical potential µ

should be imposed to get a given value of 〈n〉. To detect a possible condensation

transition, one thus looks for the maximum density ρc for which equation (5.9)
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has a solution. If this maximum is infinite, then (5.9) is always solvable and there

is no transition. If, however, ρc is finite then equation (5.9) cannot be solved for

a density greater than ρc and the excess mass condenses on a single site, which

can thus carry a finite fraction of the total mass of the system. The breaking

of ensemble equivalence between canonical and grand canonical ensemble is a

signature of the condensation transition.

The condition for (5.9) to have a solution has been worked out and yields a

criterion on the form of u(n) to observe condensation. It can be summarised as

follows [6]:

• if u(n) decays to a non-zero constant more slowly than u(n) ' β(1 + 2/n),

one observes above a non-zero critical density the appearance of a single

condensate in a background fluid which remains at the critical density.

• if u(n)→ 0 as n→∞, condensation occurs at all densities and the fraction

of particles in the fluid phase tends to zero.

• otherwise, and in particular if u(n) increases as n→∞, condensation does

not occur.

The first two cases, in which there exists a true thermodynamic phase

transition, have previously received much attention in the literature (as reviewed

by Evans and Hanney [6]). What we shall show in the following is that the

third case also may also exhibit interesting condensation-like features, despite the

absence of a true condensation transition, where the stationary state supports a

coexistence of sites at two characteristic densities. This is the case we refer to as

saturated condensation.

5.1.2 Criteria for saturated condensation

As mentioned in the introduction to this chapter, it is natural to expect

condensation in real space to saturate at some large but finite value for the

mass of the condensate (e.g., in shaken granular gases when the finite size of the

compartments prevents true condensation). We will therefore consider systems

where the hop rate per particle d(n) asymptotically decreases to a finite but non-

zero value. Even if the total hop rate per site, u(n), initially decreases with n, it

eventually starts increasing again and there is no phase transition, as discussed
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above. However, we will show that the initial decrease in d(n) may suffice to

destabilise a homogeneous state, whereas the asymptotic growth of u(n) prevents

the formation of condensates with a mass that diverges with the system size.

One thus ends up with a steady-state containing an extensive number of finite-

sized condensates. Since there is no thermodynamic transition, canonical and

grand canonical ensembles remain equivalent. Therefore, we can perform our

analysis solely within the latter ensemble, and dispense with the cumbersome

constraint on the total number of particles. On the other hand, simulations are

most straightforwardly conducted in the canonical ensemble. Since we shall use

both ensembles in the following, we will refer equivalently to free energy or grand

potential with the understood assumption that chemical potential µ and number

of particles N are adjusted so that
∑

n n p(n|µ) = N .

For the system to start forming condensates (in a sense to be defined more

formally below) one needs the single site free energy f(n) to be non-convex, that

is f ′′(n) < 0 for some range of n. Flat profiles with such occupancies would then

be unstable under the dynamics and undergo spinodal decomposition. Treating

n as a continuous variable, we have f(n) '
∫ n

1
lnu(n′)dn′, and hence the second

derivative with respect to n is given by

f ′′(n) ' u′(n)

u(n)
(5.10)

which implies spinodal decomposition for occupancies such that u′(n) < 0. This

is exactly equivalent to the condition [4] that the hop rate per particle, d(n) =

u(n)/n, should satisfy the equation

d′(n) <
d(n)

n
. (5.11)

Such an instability could in principle lead to complete condensation: the

criterion (5.11) is indeed satisfied when the condensation transition occurs. This is

because the phase separation can lead to phase coexistence between a low-density

phase and a high-density phase whose density can diverge with system size, i.e.,

a macroscopic condensate. This is, for instance, what was found by Schwarzkopf

et al. [68], when the jump rates u(n) depend on the system size L in such a way

that the mass of each of the multiple condensates diverges in the thermodynamic

limit. For the high density sites to have finite occupancies, we will further require

48



5.1. Presentation of the model: Steady state and condensation

0 200 400 600 800
n

−40

−30

−20

−10

0

F
(µ
,n

)

ρ− ρ+

0 200 400 600 800
n

0.00

0.01

0.02

0.03

p
(n
|µ

)

Figure 5.2: Left: The grand potential density per site, F (µ, n), for the choice
u(n) = d0 n exp(−λφ arctan(n/φ)) discussed in the text, with d0 = 2.5, λ = 0.01,
φ = 250 and 〈n〉 = 100. The region unstable to spinodal decomposition is in blue:
it corresponds to the concave part of the grand potential. Right: The resulting,
normalised, probability distribution.

that f ′(n) → ∞ when n→∞; if fn → ∞ but f ′(n) remains finite the double

tangent construction will be between a finite low density and an infinite high

density. Combined with the fact f(n) is not everywhere convex this implies that

the free energy per site has a double tangent between two finite densities [72].

Under these conditions the grand canonical potential per site, F (n, µ), forms

a double well whose minima occur for finite values of n and give the typical

occupancy of the high- and low-density sites. ‘Saturated condensation’ now is

to be understood as referring to this scenario. In terms of the microscopic jump

rates, the requirement that f ′(n) → ∞ is equivalent to u(n) → ∞ as n → ∞,

so u(n) must be an unbounded increasing function of n or, correspondingly, d(n)

must either increase as n→∞, or decrease more slowly than 1/n.

Let us illustrate this with a concrete example of a function u(n) that leads

to saturated condensation, and which we will use repeatedly throughout the

remainder of this work, it reads

u(n) = d0 n exp[−λφ arctan(n/φ)] . (5.12)

Though this functional form may at first look rather unusual, we choose it

here as a convenient example of a function which rapidly decays towards a

non-zero constant value. With this definition, the hop rate per particle d(n)

initially decreases exponentially with n before it saturates at a constant value

d0 exp(−λφπ/2). A flat profile is unstable if u′(n) < 0, that is if λφ > 2 and
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n ∈ [ρ−, ρ+] where

ρ± =
λφ2 ± φ

√
λ2φ2 − 4

2
. (5.13)

As n → ∞, u(n) ∼ d0n exp(−λφπ/2) and is thus increasing linearly with n; the

condensates have finite size. This choice of rates gives rise to the double-well free

energy and bimodal probability distribution shown in fig. 5.2.

Note that the range [ρ−, ρ+] corresponds to the concave part of the free energy,

as expected from standard thermodynamics [73]. As long as the average density

lies between the two minima of F (µ, n), the steady state will be dominated by

configurations with condensates. Flat profiles will however be metastable outside

[ρ−, ρ+], thus requiring activated events to lead to condensation. Simulations of

the systems for rates obeying (5.12) show the predicted behaviour. On the left

panel of figure 5.3 one sees the results of simulations started with N particles

distributed randomly over the L sites. The average density ρ = N/L is chosen

either within or outside the condensation regime. The criteria for the condensate

to have finite mass can be checked by considering the family of rates defined by

dα(n) = d0 n
−α exp[−λφ arctan(n/φ)] (5.14)

One indeed sees that the minimum in the grand potential corresponding to the

high-density phase is at a finite value of n for α < 1 and diverges when α → 1

(see right panel of figure 5.3).

5.1.3 Condensation and evaporation dynamics in the

steady state

When the average density lies between the two minima of the grand potential,

there is a coexistence of high- and low-density sites in steady-state. Since the

grand potential barrier between them is finite (see figure 5.2), the instantaneous

number of condensates will fluctuate as low-density sites condense and high-

density sites evaporate. To discuss these processes in more detail, it is helpful

to formally define a condensate (or high-density site) as a site with a density

greater than the one at the peak in the grand potential between the two minima.

Likewise, when the density on a site lies below the value corresponding to this

peak, we refer to it as a low-density site. With this definition, the average densities
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Figure 5.3: Left: Steady-states of stochastic simulations for φ = 250, λ = 0.01,
d0 = 2.5. For these parameters, the minima in the grand potential correspond
to ρL ≈ 60 and ρH ≈ 800. Occupancies are averaged over a time window t ∈
[5000; 15000]. Green and blue symbols correspond to initial average densities
(ρ = 20 and ρ = 900 respectively) that are either below ρL or above ρH and
are as expected stable. For an initial density ρ = 300 between ρL and ρH (red
symbols), steady-state configurations typically exhibits a low density background
at ρ = ρL and high density condensates at ρ = ρH . Right: Semi-log plot of
the typical mass of the high density phase for different value of α, using the
rates (5.14). One sees that when α → 1, the mass of the condensate diverges as
expected.

of the high- and low-density sites in the steady state are

ρL =

∑npeak

n=0 n p(n|µ)∑npeak

n=0 p(n|µ)
and ρH =

∑∞
n=npeak

n p(n|µ)∑∞
n=npeak

p(n|µ)
(5.15)

while the average number of condensates in steady state is given by

neq
c = L

∞∑
n=npeak

p(n|µ) = L
ρ− ρL
ρH − ρL

. (5.16)

We may then also define the rate of evaporation of the condensates, Revap,

and condensation of the low-density sites, Rcond. At equilibrium these balance

in such a way that the number and size of the condensates remain constant on

average: Revap n
eq
c = (L− neq

c )Rcond.

Although formation and evaporation of a condensate require many hops

and are thus complicated processes, the corresponding rates can be computed

following a first-passage time approach [74]. Indeed if we know the first passage

time Tn,npeak
from a high density site n ' ρH to n = npeak, we can approximate
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the evaporation rate for a site with n particles by

Revap(n) =
1

2Tn,npeak

, (5.17)

where the factor of a half arises as a site at the peak can fall in either direction

with equal probability. To calculate the evaporation and condensation rates in

the steady state, we must therefore calculate the relevant first-passage times for

diffusion in a double well. To achieve this we follow previous approaches applied

to ZRPs undergoing a thermodynamic condensation transition [67,75].

We illustrate this procedure by computing the first-passage time to an

evaporation event. We thus consider a high-density site with n > npeak particles.

The rates at which the occupancy decreases or increases are given by

W (n→ n− 1) = u(n) = 2 d0 n e
−λφ arctan(nφ)

W (n→ n+ 1) ≡ uL .
(5.18)

In principle, the rate at which particles are added on top of a condensate depends

on the neighbouring densities. We will however assume their fluctuations to be

small and consider uL to be constant. The first-passage time from n particles to

npeak is denoted Tn,npeak
and, in continuous time, is the solution to the equation

Tn,npeak
= dt+ [1− (uL + u(n)) dt ]Tn,npeak

(5.19)

+u(n) dt Tn−1,npeak
+ uL dt Tn+1,npeak

Lengthy but standard algebra (see Appendix B) leads to

Tn,npeak
=

n∑
l=npeak+1

1

u(l) p(l|µ)

∞∑
m=l

p(m|µ) . (5.20)

Similarly one finds for the first passage time for condensation

T ′n,npeak
=

npeak∑
i=n+1

1

uH p(i|µ)

i−1∑
j=0

p(j|µ) . (5.21)

Note that to determine more accurately the rates of evaporation and

condensation we should in principle average over all starting positions above and
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Figure 5.4: Semi-log plot of the cumulative distribution function of evaporation
or condensation events in steady state for φ = 50, λ = 2.8/50, d0 = 2.5,
〈n〉 = 100. The blue line corresponds to the cumulative distribution function
of a Poisson distribution, CDF (t) = exp(−γ t) with γ ≈ 0.0036 as predicted by
equation (5.22). The red dots stem from 10000 simulations and can be fitted with
a rate γ ≈ 0.0031 (green line).

below the barrier, respectively:

Tevap =

∑∞
n=npeak

p(n|µ)Tn,npeak∑∞
n=npeak

p(n|µ)
and Tcond =

∑npeak

n=0 p(n|µ)T ′nnpeak∑npeak

n=0 p(n|µ)
. (5.22)

We can then define the escape rate from a configuration as the rate for either an

evaporation or condensation to occur:

Rtotal =
nc

2Tevap

+
L− nc
2Tcond

, (5.23)

where nc is the number of condensates. In this picture, the distribution of times

between events, either evaporations or condensations, for a system of length L

will be Poissonian with rate Rtotal. For a given choice of parameters, φ = 50,

λ = 2.8, d0 = 2.5, L = 5000 and 〈n〉 = 100, for example, equation (5.23) can

be evaluated numerically. First we compute µ so that 〈n〉 = 100 by solving

(5.9). We can then use expression (5.8) for p(n|µ) to compute Tevap and Tcond

from (5.20), (5.21) and (5.22). We last obtain from (5.23) that the total rate is

Rtotal ≈ 0.0036. To compare this theoretical prediction with numerics we compute

the cumulative distribution function of evaporation and condensation events from
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10000 runs: FCD(t) is the probability that the first evaporation or condensation

occurs after time t. The simulation data are shown in fig. 5.4; as predicted by

the theory the distribution is Poissonian and a fit to the simulation data gives

Rtotal ≈ 0.0031, which is within ∼ 15% of the predicted value. It may be inferred

that the discrepancy between these two figures results from the approximations

made in the first passage time calculation, namely that the neighbouring sites to

a condensation or evaporation event remain at a constant density throughout.

5.2 Two-stage dynamics of condensate forma-

tion

We now examine the relaxation of the system to its steady-state, which is

a nontrivial process. Starting from a homogeneous configuration within the

unstable region (n ∈ [ρ−, ρ+], see figure 5.2), the dynamics divides naturally into

two regimes presented in figure 5.5. At early times in the dynamics, an instability,

due to stochastic fluctuations, forms in the flat profile. This instability seeds a

number (nc) of condensates which then grow rapidly. At the end of this growth

stage, nc is in general not equal to the equilibrium number neq
c and the system has

not yet reached stationarity. A second stage then follows, taking place on much

longer timescales, during which activated events responsible for condensation and

evaporation of condensates lead the system towards its ultimate steady state.

This difference in relevant timescales between the two stages can be seen from

figure 5.5. Our aim in this section is to understand these two distinct relaxational

regimes.

Simulations of the stochastic system, started from random deposition of

N particles over the L sites of the lattice with N/L ∈ [ρ−, ρ+], show that

the positions of the condensates are, initially, anti-correlated (see figure 5.6).

Transient anti-correlations of this type are a general feature of systems obeying

a conservation law, see, for example, Cornell et al. [76]. This can be understood

as a consequence of the condensates being created through depletion of the

neighbouring sites, thereby preventing the formation of other condensates in their

immediate surroundings: if there is a condensate at site i, there is a decrease in

the probability to find another condensate in its vicinity. These correlations

survive until the late-stage dynamics when new condensates are formed and old
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Figure 5.5: Average density in the high density sites as a function of time for
parameters φ = 250, λ = 0.01, d0 = 2.5. The early dynamics (t ∼ 0 − 1000) see
the rapid formation of nc condensates that are rapidly growing. The late stage
dynamics t ∼ 103 − 105 correspond to formation and evaporation of condensates
that leads nc to neq

c and the average mass of the condensates to its equilibrium
value. Steps in the average density correspond to the evaporation of a condensate
that is redistributed on the surviving ones. (Note the switch from linear to
logarithmic scale on the time axis at t = 1000.)

condensates evaporate, thus smoothing out the correlations 1. Note that if we

started with the correct number of regularly-spaced condensates at the correct

steady-state density (which would be a highly correlated initial condition) the

correlations would be smoothed out on exactly the same timescales: correlations

are mainly due to the immobility of the condensates, which only get randomised

(by evaporation/condensation) in the late stage of the dynamics. Also, if one

starts with a global density within [ρL, ρH ] but well outside [ρ−, ρ+], there is no

initial instability since the flat profile is metastable and the first stage is thus

absent: the creation of condensates is then only due to activated events. We now

turn to a more detailed analysis of both stages.

5.2.1 Initial instability and growth stage

The early stage dynamics corresponds to the rapid growth of an instability around

the flat profile which leads to the formation of some number of condensates nc.

These condensates then rapidly grow and saturate at a density that generically

differs from that at the minimum of the high density well in the free energy.

Insight into this part of the dynamics can be gained by comparing the stochastic

dynamics of the system with its deterministic mean-field limit. The latter is

1As the model is factorisable there can be no correlations in the true steady-state.
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Figure 5.6: Snapshots of the correlation function gi(t) = 〈nj+i(t)nj(t)〉c /
〈
n2
j(t)
〉
c
,

where 〈x2〉c ≡ 〈x2〉 − 〈x〉2 and the averages are taken both over the lattice site j
and many simulations. Starting from an initially flat profile, an anti-correlation
between sites forms as the condensates condense which then gradually disappears
at late times when subsequent evaporations and condensations randomise the
positions of the condensates. The parameters of the simulation are d0 = 2.5,
Φ = 50, λ = .05 and 〈n〉 = 80.

obtained by replacing 〈u(ni)〉 by u(〈ni〉) = u(ρi); it reads

ρ̇i = u(ρi−1) + u(ρi+1)− 2u(ρi) . (5.24)

and can be integrated numerically using, for example, a simple Euler scheme.

Starting from an initial condition obtained by distributing at random N particles

among the L sites of the lattice, we see in figure 5.7 that stochastic and mean-field

dynamics agree very well, despite the fact that the mean-field approximation (by

definition) neglects both noise and correlations. We infer from this that activated

events and spatial correlations are not very important to understand the early-

stage dynamics and we shall thus proceed using this more analytically-tractable

mean-field framework.

At early times, the number of condensates that are created depends strongly

on the initial condition. For instance, starting the mean-field simulation from a

flat profile superposed by a cosine wave leads to the creation of a condensate from

each peak of the cosine wave, as shown in the left panel of figure 5.8. We shall first

focus on the case where the number of condensates is thus controlled. As time

goes on, the mass for the condensates is drawn from neighbouring sites, which

suggests a model of this particular condensate-formation process as one in which

sites have one of two time-dependent densities. Specifically each high-density site

has a density ρH(t), and is surrounded by a pair of low-density sites, both with

density ρL(t).
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Figure 5.7: The evolution of the average high and low densities: using
numerical simulations in the deterministic (red) and stochastic (blue) cases. Both
simulations were run with random (Poissonian) initial conditions and with the
parameters φ = 250, λ = 0.01, d0 = 2.5 and 〈n〉 = 130. Although the agreement
is not exact the qualitative behaviour is certainly similar. The slight lag between
the stochastic and deterministic cases is due to activated events increasing the
initial separation between high and low density sites and is not especially relevant
to an understanding of the dynamics.

 

 

ρ
i

200

400

600

50 80 110 140

i

Start

End

0 100 200 300 400

t

0

200

400

600

800

ρ
H

(t
)

Figure 5.8: Left: Starting from an initial profile which is flat plus a cosine
perturbation condensates grow at every peak (nc is 35% higher than neq

c ).
Increasing time is represented by a change in colour. Parameters are λ = 0.01,
φ = 250, d0 = 2.5 and 〈n〉 = 130. Right: The mean-field stochastic simulations
(red), as left, and the solutions to equations (5.25) (blue). The approximation
to consider just two densities gives a sharper change but the end points are in
excellent agreement.
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5.2. Two-stage dynamics of condensate formation

Within this simplification, the mean-field equations (5.24) reduce to

ρ̇H = 2 [u(ρL)− u(ρH)] ; ρ̇L = p`c [u(ρH)− u(ρL)] (5.25)

where we used the fact that condensates have two low density neighbours whereas

low density sites have a probability

p`c =
2nc
L− nc

(5.26)

of being next to a condensate. This simple approximation reproduces surprisingly

well the mean-field dynamics for this particular initial condition, as can be seen

from the right panel of figure 5.8. Inspection of equation (5.25) then gives a

simple picture of what is happening: in the spinodal region u′(n) < 0, so that

u(ρL) − u(ρH) > 0 and ρ̇H is positive whereas ρ̇L is negative. Consequently the

high density will increase and the low density decrease. This continues as long

as u(ρH) < u(ρL) but stops at the first moment when u(ρH) = u(ρL). This is

indeed what happens during the simulation, as can be seen on figure 5.9.

Note that according to the previous discussion, the average values of ρL and

ρH at the end of the growth stage can be deduced from the initial number of

condensates, using conservation of mass and requiring that u(ρH) = u(ρL) (see

equation (5.25))

nc ρH + (L− nc)ρL = N ; u(ρH) = u(ρL) . (5.27)

That is, we require the flux from high to low to match that from low to high

and that the total number of particles, N , is the sum of the number in a high

density state, ncρH , and the number in a low density state, (L− nc)ρL. Starting

simulations with different wavelength for the initial cosine perturbation indeed

leads to density ρH and ρL predicted by (5.27) where nc equals the number of

peaks of the cosine wave.

For more general initial conditions or in the stochastic case, we have not been

able to find a simple way to predict the number of condensates to be formed. The

saturation of their growth once formed however follows the same rules as above,

leading to high and low densities that in general differ from the steady-state ones

(see figure 5.9). Further changes in the average densities are due to activated

58



5.2. Two-stage dynamics of condensate formation

0 250 500 750 1000
n

60

80

100

u
(n

)

time = 0

0 200 400 600 800 1000
n

60
65
70
75
80
85
90
95

100

u
(n

)

time = 40

0 200 400 600 800 1000
n

60
65
70
75
80
85
90
95

100

u
(n

)

time = 100

0 200 400 600 800 1000
n

60
65
70
75
80
85
90
95

100

u
(n

)

time = 400

Figure 5.9: Snapshots of the hopping rate out of a site with n particles, u(n) =
d0 n exp(−λφ arctan(n/φ)), for mean-field simulations (crosses) and stochastic
ones (circles). The red and blue symbols represents the average high density
and low density sites. The blue lines show the steady state values of ρH and
ρL and the black line the function u(n). At time = 400, u(ρH) = u(ρL) and
the condensate thus stop increasing. One must then wait for activated events in
the stochastic simulations to get closer to the equilibrium values. The difference
between stochastic and mean-field predictions comes from the different number
of condensates that results from the initial instability.

events which change the number of condensates and increase both ρL and ρH .

These events are not captured by the mean-field approximation, and require a

distinct analysis that is discussed in the next section.

5.2.2 Activated events and late-stage dynamics

To understand the late stage dynamics, which is mediated by stochastic nucleation

and evaporation of condensates, we must investigate the activated crossing

between the two wells in the grand-potential landscape shown in figure 5.2.

We have observed that during the late-stage relaxation, the total mass in

the high-density sites remains approximately constant, despite the fact that

the number of such sites changes over time. Thus, the average density per

condensate increases in the step-wise fashion depicted in figure 5.10. When a
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Figure 5.10: Typical evolution of the average density and number of condensate
sites. Each steps correspond to the evaporation of a condensate that is
redistributed over the other high density sites. The parameters of the simulations
are λ = 0.01, φ = 250 and d0 = 2.5

condensate evaporates the excess density on that site is redistributed over the

other high-density sites, thereby increasing their average density; conversely,

when a new condensate forms, the average density decreases. Depending on

whether the late stage starts with too many or too few condensates, evaporation

or condensation will first dominate, before the two rates become closer and closer.

Once evaporation and condensation of new condensates balance, the steady state

described in section 5.1.3 is reached.

In the steady state, the rates of evaporation and condensation can be treated

as a first passage problem in a grand potential landscape—as shown previously in

section 5.1.3. Away from steady state, however, the rates are different from the

equilibrium ones and depend in general on the dynamics. Numerically, we can

measure the rates as a function of the fraction of condensates by recording how

long the system spends in a given configuration with nc condensates and averaging

over many runs. We now show that these nonequilibrium rates can also be

calculated by appealing to a fluctuation- dissipation-type argument and adapting

the equilibrium formalism correspondingly. The key to this approach is to assume

that when the number of condensates nc is sufficiently close to its equilibrium

value neq
c , the difference nc−neq

c could be due either to a spontaneous fluctuation

(which we are observing) or equivalently to the application of a small field. To

this end, we introduce a new ‘doubly-grand canonical’ ensemble that involves an

additional chemical potential µ′ conjugate to the number of condensates nc. The
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Figure 5.11: Left: the free energy per site for d0=2.5, φ = 50, λ = 3/50, 〈n〉 = 100
at steady state, where there are 40% of condensate sites. Right: the free energy
for the same microscopic rates and average occupancy but constrained to have
60% of condensate sites.

corresponding partition function is then given by

Ξ =
∞∑
N=0

L∑
nc=0

eµNeµ
′ ncZL,N . (5.28)

Defining a condensate, as before, as any site containing more than npeak particles,

the partition function can be re-written as

Ξ =
L∑

nc=0

eµ
′ nc

[ ∞∑
n=0

e−f(n)+µn

]L
=

L∑
nc=0

[ ∞∑
n=0

exp[−G(µ, µ′, n)]

]L
. (5.29)

where we have introduce a new thermodynamic potential

G(µ, µ′, n) = f(n)− µn− µ′ θ(n− npeak) (5.30)

G(µ, µ′, n) can simply be obtained by introducing a step −µ′ in the grand

potential F (µ, n), see fig. 5.11. The new marginal probability to observe an

occupancy n is then given by

p(n|µ, µ′) =
e−G(µ,µ′,n)

Ξ1(µ, µ′)
; where Ξ1(µ, µ′) =

∞∑
n=0

e−G(µ,µ′,n) (5.31)

To evaluate the rates of evaporation and condensation of the system in the

presence of nc condensates, one can thus compute numerically the values of µ
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5.2. Two-stage dynamics of condensate formation

and µ′ such that∑
n

n p(n|µ, µ′) = N and
∑
n

θ(n− npeak) p(n|µ, µ′) = nc (5.32)

We can then compute the rate of evaporation or condensation from a configuration

with N particles and nc condensates exactly as in section 5.1.3 where F (µ, n) is

now replaced by G(µ, µ′, n) (with the additional constraint that the equalities in

equation (5.32) must be solved simultaneously to derive µ and µ′). To compare the

results of these calculations with numerics we started 100 runs from nc = 275 and

100 from nc = 155. While these runs relaxed to the equilibrium value nc = 199 we

recorded the average time spent, τ(nc), by the system for each intermediate value

of nc and approximated Rtotal(nc) = 1/τ(nc). The results of these simulations

are compared with the theoretical predictions in figure 5.12. The fact that the

agreement between theory and numerics is not as good as in section 5.1.3 may

be due to the fact that we have poorer statistics (100 runs against 10000).

Another plausible explanation for this inconsistency is the assumption that

the neighbouring sites will have a constant density throughout the evaporation

or condensation process. In fact the neighbouring sites are likely to have higher

densities than otherwise during an evaporation and lower densities during a

condensation. As both high and low density sites sit in regions where u′(n) > 0, an

increase in density will increase the rate at which particles enter the evaporating

site whilst a decrease in neighbouring density will decrease the rate at which

particles enter a condensing site. Both these processes will have the effect of

increasing the average duration of a condensation or evaporation event, and

reducing the rates at which they happen. Hence the calculated evaporation and

condensation rates would be larger than the real rates as measured.

Nevertheless, we find that this ‘doubly- grand canonical’ construction provides

remarkably good estimates for the evaporation and condensation rates: even

where they are two orders of magnitude larger than in equilibrium, theory and

simulations are still within a factor 2 of each other.

In this chapter we have identified a saturated condensation scenario that may

occur within the zero-range process (ZRP). The steady state is characterized by an

extensive number of finite-sized condensates, as opposed to a single macroscopic

condensate that has previously been the focus of attention. Such a state may be
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Figure 5.12: Red points show data from stochastic simulations of the microscopic
dynamics. The time spent in a configuration with nc condensates was averaged
over multiple runs and the total rate to leave a given configuration was taken as
the inverse of this average time. The blue curve shows the rate calculated by using
equations (5.22) to determine the first-passage time to the peak and assuming a
site at the peak is equally likely to fall into either well. All data calculated with
d0 = 2.5, φ = 50, λ = 3/50, 〈n〉 = 100 and on a lattice of length L = 500 sites.

brought about, for example, by a constraint on the total mass that may occupy a

single site. We have determined the conditions on the hop rates within the ZRP

that must be satisfied for saturated condensation to arise, and have investigated

various aspects of the model’s dynamics, both within and en-route to the steady

state.

The scenario of isolated high and low density sites, however, does not

correspond directly to the real bacterial systems we want, in the end, to

model. In subsequent chapters we shall see similar separation into high and low

density regions—though in these cases the domains will be spatially-extended,

continguous regions rather than individual, isolated sites. Nevertheless, despite

this distinction, the exact results we have been able to calculate here will be

instructive in guiding our progress in investigating these more complex cases,

where exact results will be difficult or even impossible.

63



Chapter 6

Interacting Particles II:

Crowding Interactions and Finite

Duration Tumbling

In the preceding chapter we investigated a zero-range interaction and identified

a saturated condensation scenario that may occur within that model. Because

the steady state of that system factorised we were able to exactly determine the

steady state probability distribution and, from there, we could characterise the

evolution of the system as it moved from a uniform flat profile towards its steady

state. In particular, we found that the relaxation takes place in two stages: first,

some number of condensate sites is selected which depends on the initial condition

and is driven by a dynamic instability in the density profile, the conditions for

which to exist we also derived. These condensates grow rapidly until arrested by

the non-zero hopping rate even at very large on-site densities and a balancing

of the rates into and out of the condensates. At this stage, however, the system

remains in an out-of-equilibrium state that must then slowly relax through a

process of activated evaporation and condensation events.

Isolated sites of high and low density are not, however, realistic as a model

of real bacteria and in this chapter we will extend our analysis to the case

of finite range interactions, where the isolated sites are replaced by extended

domains. The manner in which we approach this change from zero to finite range

interactions, and the way in which we coarse-grain the local density field in order

to do so, turns out to be extremely important in determining the behaviour of
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6.1. Zero Range Interactions

the system. Here, again, the example of the zero-range case is useful in guiding

our examination.

Before we proceed with the finite range interaction, however, we first need to

extend the zero-range model we analysed previously to account for the run and

tumble nature of our bacterial dynamics and to move from a single particle species

description to a two species model. We then use the field theoretic techniques

from chapter 3 to derive the finite range results and, in so doing, re-derive the

zero-range results from a new direction.

Towards the end of this chapter we shall further extend the results to higher

dimensions and investigate the coarsening of the domains over time in two

dimensions. Finally we consider means by which bacterial motility could be

affected other than through a direct alteration of their mean velocity, and look

at the effect of finite tumble duration.

6.1 Zero Range Interactions

Though there is no generic solution for the steady state of interacting run-and-

tumble particles, there are limiting cases that can be solved exactly. We define

the number of left and right going particles on a site as, respectively, n−i and n+
i .

The total occupancy of a site is then ni = n+
i + n−i . The simplest interaction

we can add is a zero-range interaction—as considered in chapter 5, though now

generalised to multiple species of particle in order to account for run-and-tumble

type dynamics—where the rate for a particle to jump from site i with occupancy

(n+
i , n

−
i ) to site i± 1 is defined as d±i (n+

i , n
−
i ) and is a function of the number of

particles at the departure site but not dependent on the number of particles at the

arrival site. With this addition we can now see more complex behaviour and non-

trivial steady states, even for homogeneous and isotropic jump and tumble rates,

but can still, under certain conditions presented below, calculate the stationary

probability distribution exactly.

As for the single species zero-range process, we begin by assuming there exists

a factorised form for the steady state probability distribution of the form

P
({
n+
i , n

−
i

})
∝

L∏
j=1

gj(n
+
j , n

−
j ). (6.1)
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This ansatz can then be substituted into the master equation for P
({
n+
i , n

−
i

})
,

∂tP =
L∑
k=1

(n+
k +1)d+

k (n+
k +1, n−k )P (n+

k + 1, n+
k+1−1)− n+

k d
+
k (n+

k , n
−
k )P (n+

k , n
+
k+1)

+(n−k+1 + 1) d−k+1(n+
k+1, n

−
k+1 + 1)P (n−k − 1, n−k+1 + 1)− α−k

2
n−k P (n−k , n

+
k )

−n−k+1 d
−
k+1(n+

k+1, n
−
k+1)P (n−k , n

−
k+1) +

α−k
2

(n−k + 1)P (n−k + 1, n+
k − 1)

+
α+
k

2
(n+

k + 1)P (n−k − 1, n+
k + 1)− α+

k

2
n+
k P (n−k , n

+
k ).

(6.2)

Then, for periodic boundary conditions, one way we may choose to solve this

equation is to separately balance the fluxes for right moving particles entering

and exiting each site, left moving particles entering and exiting each site, and

particles tumbling between species on each site. We then arrive at three sufficient

conditions on the allowed rates for such a factorised form to exist:

gi(n
+, n− − 1) =c n− d−i (n+, n−) gi(n

+, n−)

gi(n
+ − 1, n−) =c′ n+ d+

i (n+, n−) gi(n
+, n−)

gi(n
+, n−)n− α−i (n+, n−) =gi(n

+ + 1, n− − 1) (n+ + 1)α+
i (n+ + 1, n− − 1),

(6.3)

in which c and c′ are arbitrary constants. The first two of these conditions

are the same as Evans and Hanney found for their two species model without

transmutation [6, 77], while the third arise from the need to balance tumbling

between states on the same site. Note that, in principle, there may be other ways

in which we can balance these terms which could arrive at different conditions on

the rates.

Putting the three conditions (6.3) together and eliminating the factors

gi(n
+, n−) yields two constraints on our choice of rates:

d−i
(
n+, n−

)
d+
i

(
n+, n− − 1

)
= d−i

(
n+ − 1, n−

)
d+
i

(
n+, n−

)
(6.4)

n+ α+
i (n+, n−)

(n− + 1)α−i (n+ − 1, n− + 1)
=

c

c′
(n− + 1)d−i (n+ − 1, n− + 1)

n+ d+
i (n+, n−)

. (6.5)
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One natural, but again not necessary, way to fulfil these conditions is to take

d+
i (n+, n−) = u+

i (n+)ωi(n
+ + n−)

d−i (n+, n−) = u−i (n−)ωi(n
+ + n−) (6.6)

for the jump rates. That is, the rate at which a left or right oriented particle

moves is taken to be a product of a function of the number of particles oriented

in that direction, and a function of the total number of particles on a site. Both

functions can vary from site to site; the first can also depend on the particle

species, but the second must be the same for both.

A sufficient conditions on the tumble rates is then to take

α+
i (n+, n−) = cu+

i (n+)Ai(n
+ + n−) (6.7)

α−i (n+, n−) = c′u−i (n−)Ai(n
+ + n−). (6.8)

The functions u+
i (n+) and u−i (n−) are the same as in (6.6); Ai(r) is a new,

unconstrained, function that appears in both rates.

Up to a constant that can be subsumed into the normalisation, the marginals

are given as

gi(n
+, n−) = γn

−
n+∏
j=1

1

jd+
i (j, n−)

n−∏
k=1

1

kd−i (0, k)
= γn

−
n∏
r=1

1

ωi(r)

n+∏
j=1

1

ju+
i (j)

n−∏
k=1

1

ku−i (k)
,

(6.9)

where γ = c/c′ and n = n+ +n−. We can then re-write the probability of a given

configuration as

P
({
n+
i , n

−
i

})
=

1

Z

L∏
i=1

gi(n
+
i , n

−
i ) =

1

Z
e
∑L
i=1 ln(gi(n+

i ,n
−
i )), (6.10)

where Z is a normalisation, and define an effective single site free energy

fi(n
+
i , n

−
i ) = − log(gi(n

+
i , n

−
i )). Note that this is independent of α±i (n+, n−); the

way in which we chose to solve the master equation does not lead to factorised

steady states for which the distribution can depend on the tumbling rates. As we

saw that asymmetric tumble rates could affect the equilibrium distribution for

the non-interacting case, we might suppose there are other solutions for the zero-

range process which admit distributions dependent on the tumble rates. Whether
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Figure 6.1: Left: The effective free energy density for the zero-range interaction
with jump rate given by equation (6.11) for α±i = 1, 〈ni〉 = 12, nm = 20 and
v0 = 10. Right: A typical snapshot of the system during its relaxation towards
equilibrium for the same parameters on a lattice of 200 sites and 2400 particles
at t = 1000.

or not these allow for factorised steady states remains to be determined.

To foreshadow the finite range interaction we will examine in section 6.2,

and to mimic the situation where an increase in density decreases the particles

motility (as, for example, they get in each other’s way) we now consider the

following particular form of the steady state for this two-species ZRP for jump

rates

d±i (n+, n−) =

{
v0

[
1− (n+ + n−)/nm

]
if n+ + n− < nm

v0/nm if n+ + n− ≥ nm
(6.11)

and tumble rate α±i = α. That is, the tumble rate is constant per particle and

the jump rate decreases linearly as density increases until reaching a constant

rate of v0/nm at n+ + n− = nm − 1. In this case the effective free energy

is double welled and the system separates into isolated sites of high and low

density. The relative numbers of high and low density sites to which the system

first separates are initial condition dependent. The system then relaxes via a

series of evaporations and condensations towards a fixed steady state. We see

that the saturated condensation behaviour observed in chapter 5 is qualitatively

reproduced for the two species zero range process. The free energy is shown in

figure 6.1 along with a typical snapshot of the system.

To this behaviour we can then add a drift term, e.g. to simulate sedimentation,

by biasing the jump rates in one direction and applying closed boundary

conditions. We see all the high density sites collect at one end of the lattice
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Figure 6.2: A time averaged snapshot of the steady state of zero-range process
with parameters nm = 20, 〈n〉 = 12 d+

i = 9, d−i = 11, α±i = 1. Data averaged
from 10, 000 snapshots between t = 40, 000 and t = 50, 000

and the low density sites at the other, see figure 6.2.

6.1.1 Crowding Interactions

Having set up a field theory apparatus in chapter 3 to derive a fluctuating

hydrodynamics for a general linear dependence on density in the jump rates,

let us turn now to a specific class of interactions. In particular we consider a

crowding interaction, where the velocity of the bacteria decreases with increasing

density, in which case we expect to see our system separate into regions of high

and low density as particles become trapped in regions of high density [4].

In general we expect to see qualitatively similar behaviour for any choice of

v(ρ) which decreases sufficiently quickly towards a finite non-zero velocity at high

densities. In the following we use

v±(ρ̄±) =

{
v0 (1− (ρ̄±)/ρm) if ρ̄± < ρm

v0/ρm if ρ̄± ≥ ρm
, (6.12)

as we did for the exactly solvable zero-range process described in section 6.1.

6.1.2 Derivation of the Zero Range Steady State by Field

Theoretic Methods

The field theory approach can describe many types of interaction, in particular

let us now consider the zero range interaction we met in section 6.1 in the context

of the fluctuating hydrodynamics we developed in section 3.2.1. This provides
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us with a benchmark to check that our fluctuating hydrodynamics is consistent

with the exact results we obtained previously.

For the zero-range process, where the velocity depends only on the occupation

at the departure site, our kernel is given by K±i = δi0 and in continuum

ρ̄±(x) = ρ(x). For simplicity, and to compare with our previous results we

shall take α±(ρ̄) = α. This simplifies equation (3.38) considerably and, indeed,

guarantees that α+v− − α−v+ = 0. From section 3.2.3 we know that the

fluctuating hydrodynamics describing the run-and-tumble bacteria with velocity

given in equation (6.12) are given by

ρ̇ = −∇J ; J = −D∇ρ− v0

α

(
1− ρ

ρm

)
∇
[
v0

(
1− ρ

ρm

)]
ρ+

√
2Dρη;

D =
v2

0

(
1− ρ

ρm

)2

α
. (6.13)

The corresponding Fokker-Planck equation is given by

Ṗ =

∫
dx

δ

δρ(x)
∂x

[
−v0

α

(
1− ρ

ρm

)
∂x

[
v0

(
1− ρ

ρm

)]
ρ−D∂xρ−Dρ

(
∂x

δ

δρ(x)

)]
P .

(6.14)

Note that a term ∇ δ
δρ

[D(ρ)] could be present in equation 6.14, but vanishes for

symmetry reasons (See [4, 78]). Looking for a free energy P ∝ exp[−F [ρ]] one

gets

−∇δF
δρ

= −∇
[

log ρ+ log
((

1− ρ

ρm

))]
, (6.15)

whose solution is

F [ρ] =

∫
dxρ(log ρ− 1)− (ρm − ρ)

[
log
(

1− ρ

ρm

)
− 1
]
, for ρ < ρm. (6.16)

For ρ ≥ ρm the free energy density f(ρ(x)) is given by

f(ρ(x)) = ρ

(
log

(
ρ

ρm

)
− 1

)
, (6.17)

which corresponds precisely to the free energy calculated exactly in section 6.1

(and shown in figure 6.1) for the total occupancy and in the continuum limit. An

example of this free energy for one choice of parameters is shown in figure 6.1

(left).
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6.2 Finite Range Interactions

We saw in section 6.1.2 that our fluctuating hydrodynamics admitted a free energy

and accurately reproduced the exact results for the zero-range process detailed

in section 6.1. Let us now extend that analysis to a system with finite range

interactions. As before we now take the coarse grained density ρ̄± to be given by

ρ̄±(x) =

∫
K±(x− y)ρ(y)dy. (6.18)

For smooth profiles, we hope that the differences between ρ̄± and ρ are small

so we can treat the free energy in equation (6.16) as a mean field theory. This

way we can still use the free energy we derived in section 6.1.2 to predict the

coexistence densities and instability to spinodal decomposition. The finite range

nature of the interactions will introduce correlations between sites which we hope

will manifest only via the surface tension [4]. We hope that this surface tension

will only effect a clustering of the high and low density sites without affecting

the coexistence densities. If the mean field theory captures the picture correctly,

spinodal decomposition occurs whenever the second derivative of the free energy

density is negative, i.e. for

1

ρ
+∇ log v[ρ] < 0⇔ 1

ρ
− 1

ρm − ρ
< 0. (6.19)

Thus, whenever ρm > ρ > ρm/2, the system should be unstable with respect to

spinodal decomposition.

Isotropic Kernels

If we use an isotropic kernel to calculate ρ̄± in our jump rates we do indeed recover

results consistent with the zero-range free energy. That is, if we take K+(x−y) =

K−(x − y) our simulations match the free energy predictions. In particular, we

have worked with a Gaussian kernel, where K±(x) = exp(−x2/k)/Z, with Z a

normalisation and k a parameter to control the range of the interaction. The

results of simulations using this kernel are shown in figure 6.3 along with the

predicted average high and low densities from the free energy. To calculate the

coexisting densities of the high and low density sites we form a double tangent

construction on the free energy [79]. As hoped the finite range nature of the
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Figure 6.3: Snapshot of typical density profiles for an average run length of 100
sites (red) and 10 sites (blue) for the isotropic, Gaussian kernel. The black lines
show the predicted average high and low densities. Data recorded at t = 1000
using 5000 particles with nm = 50, k = 2 and α = 1.

interactions effectively creates a surface tension, but does not significantly alter

the coexistence densities. Further, as expected we see no dependence in the steady

state on our choice of v0 and α.

Anisotropic Kernels

For anisotropic coarse graining kernels, however, the situation is more complex.

One simple and natural way to introduce an anisotropic kernel is to account for the

finite volume of bacteria by stating that there can be at most nm bacteria on each

lattice site and taking the occupancy at the arrival site as our n̄ in equation (3.10).

This forms a generalisation of the partial exclusion process [50,80] and results in

the jump rates

d±i (n+
i , n

−
i ) = d±i

(
1− ni±1

nm

)
. (6.20)

In this case the effective free energy is limited to a region where ρ < ρm and

this section is sketched in figure 6.4. A double tangent construction amounts

to looking for a density ρlow such that the tangent of the free energy density at

this point meets with the free energy density at ρ = ρm, as can be seen from

inspection of figure 6.4. This amounts to finding ρ such that

2
( ρ

ρm
− 1
)

= log
ρ

ρm
, (6.21)

which can be solved numerically and yields for the low density ρlow that coexists
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Figure 6.4: Free energy density of the exclusion model where the occupation
of a site is constrained to be smaller or equal to 100 particles by the choice of
rates (6.20).

with ρm
ρlow
ρm

= .203188. (6.22)

For a total average density larger that ρlow, the steady state should thus be a

combination of two phases, one with ρ = ρlow and one with ρ = ρm, the ratio of

the amounts of the two phases being set by constraint on the global mass.

Interestingly, although the theory correctly predicts a change from a flat profile

to phase separation, on examining the results of simulations of the underlying

lattice system we found that the densities into which the system separates do

not correspond to those predicted by the continuum theory. Indeed, while the

continuum theory had no dependence on the tumble rate α or the coefficient

of the jump rate v0, the simulations for an anisotropic kernel showed a strong

dependence on the ratio of these two parameters. The lower and upper densities

both varied considerably with the average run length r ≡ v0/α, as shown in

figure 6.5, and below r = 4 we see no separation at all.

This discrepancy is not limited to the particular choice of anisotropic kernel

we use as illustration above and is general to any anisotropic choice of K±(x).

We have also conducted simulations with smooth anisotropic kernels without

a hard limit on the number of particles per site, and saw exactly the same

qualitative effect. Thus we have seen that the relevant factor is indeed the isotropy

of the kernel but although the origin of the difference has been established, a

comprehensive explanation for the variation between isotropic and anisotropic

kernels is yet to be formulated.

Note that it is not in itself surprising that a fluctuating hydrodynamics

73



6.2. Finite Range Interactions

0 25 50 75 100 125 150 175 200

Lattice Position

0

20

40

60

80

100

O
cc

up
at

io
n

Figure 6.5: Snapshots of typical density profiles for an average run length of 100
sites (red), 20 sites (green) and 10 sites (blue). Data recorded at t = 1000 with
α = 1, nm = 100 and from 10, 000 particles.

developed to describe smooth profiles fails to quantitatively amount for the

coexisting densities of profiles of alternating high and low densities. One of the

reasons our fluctuating hydrodynamics works so well for the isotropic case is that

we always consider large occupancies on each lattice site. This means that the

model is close to mean-field in the same sense as the large spin limit of a spin

chain is well described by a continuous spin chain [50]. Smaller occupancies would

lead to quantitative differences between the predicted coexisting densities and

those predicted from the fluctuating hydrodynamics, even for isotropic kernels.

Furthermore, the Ito drift that was neglected in equation (6.14) for symmetry

reasons would not vanish for the anisotropic case. In fact even for the off-

lattice model, the fluctuating hydrodynamics developed previously [4] is only

valid for isotropic kernels and the quantitative mismatch between the fluctuating

hydrodynamics and the simulations on lattice for anisotropic kernels is thus not

that surprising. We nevertheless now try to shed some light on its origin.

Stability Analysis

One way we can analyse the difference between the isotropic and anisotropic

interaction kernels is to examine the dynamic stability of the two systems. We

consider a one dimensional system evolving from a homogeneous state under a

small perturbation and determine whether the system is dynamically stable or

unstable, whether the perturbations will, on average, grow or shrink.

One possibility is that the discrepancies we saw in figure 6.5 between the

theory and simulations arise from the assumptions behind the diffusive limit taken
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in the field theory, see section 3.2.1 and Appendix A. We therefore start from the

continuum microscopic mean field equations for homogeneous and isotropic rates,

i.e. after the continuum limit has been taken but before the diffusive limit,

ρ̇+ = −v∇
[
ρ+

(
1− ρ

ρm

)]
− α ρ+

2
+
α ρ−

2
(6.23)

ρ̇− = v∇
[
ρ−
(

1− ρ

ρm

)]
+
α ρ+

2
− α ρ−

2
. (6.24)

We expand around a flat profile and Fourier transform. We take ρ±(x) = ρ0/2 +∑
q δ
±
q exp(i q x) and arrive at

δ̇+
q = −v δ+

q i q

(
1− ρ0

ρm

)
+ v i q

ρ0

2 ρm

(
δ+
q + δ−q

)
− α

2

(
δ+
q − δ−q

)
(6.25)

δ̇−q = v δ−q i q

(
1− ρ0

ρm

)
− v i q ρ0

2 ρm

(
δ+
q + δ−q

)
+
α

2

(
δ+
q − δ−q

)
. (6.26)

We can re-write these two equations in matrix form as

δ̇q =

 −v i q (1− 3 ρ0
2 ρm

)
− α

2
v i q ρ0

2 ρm
+ α

2

−v i q ρ0
2 ρm

+ α
2

v i q
(

1− 3 ρ0
2 ρm

)
− α

2

 δq; δq =

(
δ+
q

δ−q

)
.

(6.27)

The eigenvalues of this matrix, which will then tell us whether the flat profile is

stable or unstable to small perturbations, are

λ±(q) = −α
2
±
(
α2

4
+ v2 q2

(
1− ρ0

ρm

)(
2 ρ0

ρm
− 1

))1/2

. (6.28)

It is clear that one of these eigenvalues will always be negative while the other is

negative for ρ0 < ρm/2 and positive for ρ0 > ρm/2. Hence a homogeneously flat

profile is stable when the average total density is less than half the maximum

density and unstable above that, with no dependency on run length. This

corresponds precisely with the stability predicted by the free energy derived

in section 6.2. That stability analysis was derived from a free energy which

considered only the total density (rather than the density of left and right moving

particles separately) and was itself calculated only after assuming a diffusive

scaling. That the diffusive scaling does not alter the criterion for instability

supports taking that limit and implies that the discrepancy between our lattice
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simulations and continuum free energy arises from another source.

We turn, then, to consider the dynamic stability of the lattice dynamics

directly. Beginning with the mean field equations for the anisotropic partial

exclusion process,

ṅ+
i = d n+

i−1

(
1− ni

nm

)
− d n+

i

(
1− ni+1

nm

)
− αn+

i

2
+
αn−i

2
(6.29)

ṅ−i = d n−i+1

(
1− ni

nm

)
− d n−i

(
1− ni−1

nm

)
+
αn+

i

2
− αn−i

2
(6.30)

we expand around a flat profile, taking n±k = n0 +
∑

q δ
±
q exp(i q k). After some

algebra, detailed in Appendix C, we arrive at a condition for there to exist

positive eigenvalues, i.e. for a flat profile to be unstable to small perturbations.

Specifically we see instability whenever the run length r = d/α satisfies the

following inequality

r >
1

2
(

1− n0

nm

)(
2n0

nm
− 1
) . (6.31)

Graphing this we can see that a flat profile will be stable in region I of figure 6.6

and unstable in region II. We see that for short run lengths the range of densities

in which the system will spinodally decompose is restricted and at run lengths

below 4 sites there is no separation at all. Conversely, in the limit that the run

length tends to infinity, i.e. where we effectively have two totally asymmetric

partial exclusion processes on the same lattice, the system is unstable for any

density between n0

nm
= 0.5 and n0

nm
= 1. This instability is in accordance with that

seen in our simulations.

In our simulations we found that when we replaced the anisotropic kernel

in the interaction terms with an isotropic one we recovered the density profiles

predicted by the continuous theory. We can also analyse the effect of an isotropic

density kernel on the dynamic stability.
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Figure 6.6: A flat profile is stable when in region I, but unstable in region II, for
a system with exclusion and homogeneous, isotropic jump and tumble rates. The
x-axis is the fractional density, i.e. n/nm.

Consider now the microscopic mean field equations

ṅ+ = dn+
i−1

(
1− 1

nm

∑
j

K+
j ni+j−1

)
− dn+

i

(
1− 1

nm

∑
j

K+
j ni+j

)
− αn+

i

2
+
αn−i

2

ṅ− = dn−i+1

(
1− 1

nm

∑
j

K−j ni+j+1

)
− dn−i

(
1− 1

nm

∑
j

K−j ni+j

)
+
αn+

i

2
− αn−i

2
.

(6.32)

In general K±j can take any values, we enforce only that they are both normalised,

i.e. that
∑

jK
±
j = 1. Relaxing this constraint would effectively re-normalise the

maximum density. This more general interaction reduces to the simple exclusion

case if we take K±j = δ±1,j and to the zero-range case if we take K±j = δ0,j.

For an isotropic kernel, where K±i = Ki, when we expand around a flat profile

we find that there exists a q such that λ+(q) is greater than 0 if and only if

nm > n0 > 0.5nm, see Appendix C for details, which matches the condition

we derived from our continuum free energy. Thus for an isotropic interaction

kernel we recover the continuum stability result while an anisotropic kernel will,

in general, not produce the same result. It thus seems the error comes from

the continuum limit itself, which is not valid for anisotropic kernels. While the

stability analysis accounts qualitatively for the difference between isotropic and

anisotropic kernels a theory which quantitatively accounts for the differences in

coexistence densities at steady state remains to be constructed.

77



6.3. Finite Range Interactions in 2D

6.3 Finite Range Interactions in 2D

Most cases of physical interest require a model in more than one dimension; it

is therefore natural to extend our analysis to higher dimensions. This can be

done on lattice relatively easily. On a square lattice in two dimensions we allow

the particles to jump between nearest neighbours. We therefore consider 4 types

of particle now instead of 2. We find that in two dimensions, the behaviour of

the run-and-tumble crowding model is qualitatively the same as in one. The

system separates into regions of high and low density, where those co-existent

densities are given by the same free energy as in one dimension. The field theoretic

approach developed in section 3.2.1 indeed generalises straightforwardly to higher

dimensions and yields the same fluctuating hydrodynamics. We find, however,

that allowing only nearest neighbour hopping results in an unrealistic surface

tension because of the anisotropy of the lattice [81, 82]; the regions of high and

low density form elongated, and thus anisotropic, domains, see figure 6.7 (left).

To correct this unphysical characteristic of our model we extend our dynamics

to allow next to nearest hopping along diagonal directions and consider 8 species

of particles, where the jump rates in the diagonal directions are scaled by a factor

of
√

2. The droplets then coarsen into more realistic curved domains, see figure 6.7

(right).

The stability conditions remain the same as do the coexistence densities

and the discrepancy between isotropic and anisotropic kernels. We examined

simulations with both the anisotropic partial exclusion kernel, and the isotropic,

Gaussian kernel on lattices of 500x500 sites for densities above the spinodal point.

The systems were seen to separate into droplets of higher and lower density which

then coarsened into discrete, contiguous domains, see figure 6.7.

We measured the coarsening of these domains and found them to scale as t1/3,

as we would expect for conserved model B type dynamics1 [84]. An approximate

measurement of the size of the domains was calculated by randomly sampling the

system and measuring the horizontal and vertical size of the encountered droplet

1Under the classification determined by Halperin and Hohenberg, model B is defined as
a Time-Dependent Ginzburg-Landau model with (critically) a conserved n-component order
parameter. Their schema classifies dynamic critical phenomena into a variety of models listed
from A to J [83].
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Figure 6.7: Snapshots of the two dimensional system using the partial asymmetric
exclusion and parameters nm = 20, d0 = 10 and α = 1. Explicitly, the jump rates
are given by d(n̄) = 10(1 − n̄/20) for n̄ < 20 and d(n̄) = 1/2 for n̄ > 20, where
n̄ij =

∑
k

∑
l 1/Z exp(−((i− k)2 + (j − l)2)/κ)nkl and κ = 2. Occupation of sites

is indicated by colour (see the bar next to each plot for numbers). Left: allowing
only nearest neighbour hops and no diagonal movement. Right: allowing for
diagonal hops. Both simulations performed using 400, 000 particles and recorded
at t = 2500.

at that point. Mathematically, we define

Lx(i, j) = max {k ∈ N : |ni,j − ni+m,j| < n∗, ∀m ∈ [0, k]}
+ max {k ∈ N : |ni,j − ni−m,j| < n∗, ∀m ∈ [0, k]} , (6.33)

where n∗ is an arbitrary cutoff to distinguish the two domains but ignore random

fluctuations. Computations were made with a number of choices for n∗ and the

particular choice of cutoff was found to have no significant effect on the results.

We calculate the vertical size in an analogous fashion and average the lengths

over a large number of points on the lattice. Though this does not give an exact

measure of the droplet size it is sufficient to show the scaling of the domain size

with time whilst being quick to calculate numerically.

Using this procedure we determine that the domains increase in size with

an exponent of approximately 1/3, i.e. 〈Lx〉 (t′) = (t′/t)1/3 〈Lx〉 (t). The two-

point, connected, equal time correlation function C(j, t) = 〈ni(t)ni+j(t)〉 −
〈ni(t)〉 〈ni+j(t)〉 was also calculated numerically from the data and fit reasonably

with a re-scaling C(x, t) = C(x/a1/3, t a). The data for both these measurements

can be seen in figure 6.8.

As can be seen from the figures the choice of kernel does not change the
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Figure 6.8: Left: The average diameter of domains over time for an anisotropic
kernel (green), Gaussian kernel with k = 1 (red) and k = 2 (blue). The solid lines
show asymptotic behaviour with an exponent of 1/3. Right: The correlation
function C(j, t) for the anisotropic kernel simulations. The x-axis has been
rescaled x → x/t0.33 so that data computed at t = 250 (red), t = 500 (blue),
t = 1000 (green), t = 2500 (black) and t = 5000 (magenta) superimpose. Both
figures derived from data for 240, 000 particles and with parameters nm = 10,
α = 1 and d0 = 10 on a lattice of 200× 200 sites.

coarsening exponent, only the relative speed of coarsening, with interactions over

a larger number of sites taking longer to reach a steady state than those with

shorter ranges.

6.4 Hydrodynamics with Finite Tumbling Du-

ration

For wild-type E. coli the typical tumble duration is much shorter than the time

between two tumbles (approximately 0.1s tumbling against 1s swimming) so that

most of the literature on bacterial motility relies on models with instantaneous

tumbles. The implications of finite tumble duration have been considered in

several papers [4,24,27], but in those cases it was concluded that such modification

resulted primarily in only minor quantitative changes.

As we will show in this section (and expand upon further in chapter 7),

however, when we allow the switching rates between tumbling and running to

depend on bacterial density, the finite tumble duration can play a major role

in patterning processes and must be explicitly included within the model. We

therefore define our system by two densities, that of running bacteria and that of

tumbling bacteria, and three dynamical parameters, the swim speed, the tumble
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rate and tumble duration. We shall also perform these calculations explicitly

in an arbitrary number of dimensions, d, in order that they be as general as

possible and can be easily applied to the two dimensional results we will examine

in chapter 7.

We start with a single run-and-tumble particle at position x at time t and

with velocity v = v u, where u is a unit vector denoting the direction the particle

faces. We define R(u,x, t) and T (x, t) as the probability of finding it in a running

or tumbling state respectively. Note that in the tumbling state we do not define

a direction u.

For clarity we will, initially, consider only constant run speed v, R to T

interconversion rate α and reverse conversion rate β. Our dynamics are then

governed by the equations

Ṙ(u,x, t) = −∇ · (vR(u,x, t))− αR(u,x, t) +
1

Ω
βT (x, t)

Ṫ (x, t) = α

∫
S

R(u,x, t)dS − βT (x, t),
(6.34)

where the integral in the second line is over all directions and Ω is the solid angle,

in d dimensions given dπd/2/Γ(d/2 + 1). Introducing the total density of running

particles (in any direction) P =
∫
S
RdS and the total density of all particles (in

any state) ρ = P + T , we see by summing equations (6.34) that

ρ̇(x, t) = −∇ · J(x, t)

J̇(x, t) =

∫
S

[
v∇ · (vR(u,x, t)) +

β

Ω
vT (x, t)− αvR(u,x, t)

]
dS.

(6.35)

We now define Gi =
∫
S
vi∂jvj R(u,x, t)dS and Hij =

∫
S
vivj R(u,x, t)dS, so that

J̇i = −Gi − αJi. (6.36)

If we now take the time derivative of Gi we obtain

Ġi =

∫
S

vi∂jvj∂kvkRdS

+

∫
S

vi∂jvj
βT

Ω
dS −

∫
S

vi∂jvjαRdS.

(6.37)
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The final term in equation (6.37) can be split to read∫
S

vi∂jvjαRdS = (∂jα)

∫
S

vivjRdS + α

∫
S

vi∂jvjRdS

= (∂jα)Hij + αGi.

(6.38)

Then, taking the time derivative of Hij we obtain

Ḣij = −
∫
S

vivj∂kvkRdS +
βT

Ω

∫
S

vivjdS − αHij (6.39)

Noting that the second term in that equation can be simplified by the identity∫
S

uiujdS =
Ω

d
δij, (6.40)

so that

Ḣij = −
∫
S

vivj∂kvkRdS +
v2βT

d
δij − αHij. (6.41)

In general we will want to examine the large length scale behaviour of the system

and so, following the rescaling we applied in section 3.2.2, we now make a diffusive

approximation; that is we let t→ `2t and x→ `x and match terms of equal order

in powers of 1/`. In doing this we arrive at the approximation for H,

Hij =
v2βT

dα
δij. (6.42)

Returning to equation (6.37), the second term on the right hand side can be

expanded as∫
S

vi∂jvj
βT

Ω
dS =

∫
S

uiujdS
vβ∂jvT

Ω
+

∫
S

ui∂jujdS
v2βT

Ω

=
vβ∂ivT

d
,

(6.43)

where the second term on the right hand side vanishes by symmetry and the first

term was simplified using equation (6.40). Equation (6.37) can then be simplified

to read

Ġi =

∫
S

vi∂jvj∂kvkRdS − αGi − (∂jα)
v2βT

dα
δij +

vβ∂ivT

d
. (6.44)
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Finally, under another diffusive rescaling, and combining terms, we can write Gi

as

Gi =
vβ

d
∂i

(
vT

α

)
, (6.45)

and, subsequently,

Ji = − 1

α

vβ

d
∂i

(
vT

α

)
. (6.46)

To now remove the explicit reference to the probability density of tumbling

particles, and leave us with a single probability density to find a particle in any

state, we return to equation (6.34) and take the second time derivative of T to

yield

T̈ = α

∫
S

ṘdS − βṪ

= α [−∇ · J + βT − αP ]− βαP − β2T.

(6.47)

Again, following a diffusive approximation, we find that only the final four terms

of equation (6.47) are relevant under the re-scaling and we can write

0 = αβT − α2P − βαP − αβ2T. (6.48)

Replacing P = ρ− T and rearranging this equation then leads us to

T =
α

β
P → T =

α

α + β
ρ. (6.49)

Putting all this together, then, we arrive at the equations

ρ̇ = −∇ · J
J = −D∇ρ+ Vρ

D =
v2

dα(1 + α/β)

V = − v

dα
∇[

v

1 + α/β
].

(6.50)

The hydrodynamic equations derived by Cates and Tailleur [4] for the behaviour

of run-and-tumble bacteria in one dimension and with instantaneous tumbles, are

thus generalised to cover finite duration tumbling and movement in an arbitrary

number of dimensions.
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6.5 Density Dependent Tumbling Rate and Du-

ration

Consider now, as an explicit example, the case where v is independent of the local

density but the tumbling rate α and tumble duration τ = β−1 are functions of ρ.

The large scale long time dynamics is then given by

ρ̇ = −∇ · J
J = −D∇ρ+ Vρ

D =
v2

α(1 + ατ)

V = D
∇[ατ ]

1 + ατ
= D∇ log(1 + ατ)

(6.51)

Note that this dynamics can be recast under a pure diffusion equation with density

dependent collective diffusivity Dc

ρ̇ = ∇ · (Dc(ρ)∇ρ) ; Dc = D(1−
d
dρ

(ατ)

1 + ατ
) (6.52)

If the tumbling rate or the tumbling duration increases with density, this can

have the same effect as the velocity of the particles decreasing with density.

Consider, as a mathematically simple example, an exponentially increasing rate,

ατ = α0τ0eλρ, then a flat profile becomes unstable when Dc < 0, i.e. when

1

ρ
<

ατ

1 + ατ
λ (6.53)

When ρ → ∞, the r.h.s goes to λ while the l.h.s goes to zero, so that at high

enough density, flat profiles will indeed be unstable, as shown in the illustrative

snapshot in figure 6.9.

In chapter 7 we shall return to a variant of this model and discuss the

implications and relevance of it in more detail in the context for a colony of

bacteria undergoing both density dependent interactions and cell division.
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Figure 6.9: Snapshot of a simulation of a system with τ = exp(0.1ρ̄), α = 1,
v = 10. Recorded at t = 100 from a simulation of 1, 000, 000 particles on a lattice
of length L = 200 sites.

6.6 Non-local interactions and surface tension

In section 6.2 we considered the implications of finite range interactions and

defined a kernel K(x). One effect of allowing the dynamics to depend on a

coarse-grained density, which is not strictly local, is to create an effective surface

tension and replace isolated sites of high or low density with continuous, extended

domains.

In previous, continuum studies interacting run-and-tumble bacteria (such as

the no-growth limit of Cates et al. [1]), a semi-phenomenological approach was

taken to the dynamics and to the diffusion equation was added an ad-hoc surface

tension:

ρ̇ = ∇[Dc(ρ)∇ρ]− κ∆2ρ. (6.54)

In equation (6.54) Dc is the collective diffusion, as in the previous section, ρ0 is

a carrying capacity and κ controls the surface tension.

The parameter κ in equation (6.54) is phenomenological. Following our

procedure to coarse-grain the local density, however, we can derive an expression

for κ from our microscopic parameters.

In principle, the density field of N interacting bacteria is defined as ρ(x) =∑N
i=1 δ(x − xi). However, physically the Dirac functions have to be smoothed

out, at least on the level of particle size, or more probably at the level of the run-

length, on which bacteria measures the local gradient of chemicals. Replacing

δ(x− xi) by a smooth slightly non-local function creates higher order gradient in
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the equations of motion that are responsible for the surface tension term. Let us

define

ρ̄(x) =

∫
dyK(x− y)ρ(x) =

∫
dyK(y)ρ(x− y) (6.55)

and expand ρ̄(x) in gradients of ρ

ρ̄(x) = ρ(x) + a∇ρ+ σ∆ρ+O
(
∇3ρ

)
(6.56)

a =

∫
dyK(y) y (6.57)

σ =

∫
dyK(y) y2 (6.58)

(6.59)

Note that for a symmetric kernel, K(x), a = 0 and thus ρ̄(x) = ρ(x) + σ∆ρ.

Then, for a system interacting through a density dependent tumble rate α,

one thus has to replace α(ρ̄) by α(ρ(x) + σ∆ρ) in the equations of motion and

expand. In practise this will generate many higher order gradients. The only one

that interests us here, though, is the first correction term that is linear in the

derivative of ρ. Indeed, any terms like (∆ρ)2 are of the same order as ∆2ρ but

only the latter plays a role in analysing the stability of a flat profile. In practise

this term is given by

−D ρ(ατ)′

1 + ατ
σ∆2ρ (6.60)

and indeed corresponds to the term introduced phenomenologically in equa-

tion (6.54). The value of the parameter κ is thus constrained by the microscopic

details of the model:

κ = D
ρ(ατ)′

1 + ατ

∫
dyK(y)y2 (6.61)

Given this mapping, we can, then, determine all the parameters required to

describe the behaviour of the system at a mesoscopic level from the microscopic

dynamics. To apply these results to real experiments, however, we shall have to

add one final feature to our model: population dynamics.

The timescales on which our patterns form are sufficiently long that we

cannot neglect the effect of birth and death processes if we wish to accurately

characterise their behaviour. Further, experiments are often carried out from a

small inoculation in the centre of a plate which then grows outwards to fill a

dish forming patterns in the wake of an expanding front. Mimicking this type of
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behaviour is impossible without explicitly including cell division.

We therefore turn to this issue in the next chapter and consider how regulated

cell division will affect the results we have so far determined.
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Chapter 7

Arrested Coarsening: the Effect

of Regulated Cell Divison

In chapter 6 we investigated a number of two dimensional models of run-

and-tumble bacteria interacting through density dependent motility. We saw

that when the collective diffusivity becomes negative, homogeneous systems can

become unstable with respect to small stochastic fluctuations and the system can

split into regions of high and low bacterial density. In figure 6.8 we saw that

these domains coarsen over time, and eventually, for any finite system, we will be

left with a single region of high density and a single region of low density—this

separation being driven by the need to minimise the interface between the two

domains.

If, however, we want to form more complex patterns at steady state, as we see

in many real bacterial colonies, this coarsening process will have to be arrested at

some point. Some other feature of the dynamics will have to balance the surface

tension and fix the domain size at some finite scale, independent of the total

system size. To this end, in this chapter, we add to our model a description of

the population dynamics. On the timescales on which the coarsening of domains

occurs we can no longer ignore the effects of cell division, which, as we shall see,

are precisely what is required to arrest the coarsening.

The effect of regulated cell division or the birth and death of bacteria, is to

allow the formation of long-lasting patterns. These patterns appear to be robust

to the precise form of the interactions and to the method by which “death”

is modelled. The precise meaning of this term is discussed in some detail in
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section 7.4. Previously Cates et al. [1] showed, using a semi-phenomenological

model, that a birth-death process could arrest separation in bacterial colonies and

lead to pattern formation. Here I show both that their phenomenological model

can naturally arise from a variety of microscopic dynamics and that a regulation

of cell division at high densities (with no death) can lead to qualitatively similar

results to their model.

The model of a density dependent motility which instigates an instability,

which is driven to coarsen by a surface tension before being arrested by cell

division is thus shown to provide all the dynamics required for patterning to

occur. This simple and generic mechanism, which can arise from a variety of

microscopic models, thus provides a null hypothesis for pattern formation in

bacterial colonies which has to be falsified before appealing to more elaborate

alternatives.

As I described in chapter 2, bacterial colonies are capable of producing

quite striking pattern formation [34–41, 85–87]. These patterns can arise from

many different microscopic interactions; be they chemotaxis, quorum sensing,

steric interactions, competition for food, or even a combination thereof. The

simple model we investigate here shows, for differing parameter ranges and initial

conditions, the formation of both regular and amorphous dots, concentric rings

and discs and regular or amorphous stripes or lamellae.

7.1 Presentation of the Model

Let us consider a population of run-and-tumble bacteria, modelled with finite

tumble time as in section 6.4, interacting through some density dependence in

one or more of their motility parameters: the swim speed v, the rate to enter

a tumbling state α or the rate to start swimming again β (or equivalently the

tumble duration τ = 1/β).

As we have seen previously, at the end of chapter 6, (and now working

explicitly in two spatial dimensions) on time scales longer than 1/α and 1/β,

but shorter than the cell generation time, this dynamics gives rise to a diffusive

behaviour which, to second order in a gradient expansion, can be approximated
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mathematically by the equation

ρ̇(r) = ∇ ·
[
D0

(
1 + ρ

d

dρ
log

v

1 + ατ

)
∇ρ
]

; D0 =
v2

2α(1 + ατ)
. (7.1)

If v/(1 + ατ) is a decreasing function of ρ, the collective diffusivity,

Dc = D0

(
1 + ρ

d

dρ
log

v

1 + ατ

)
, (7.2)

can become negative. In this case any flat profile will be unstable and

equation (7.1) leads to infinitely sharp gradients. In reality, higher order terms

in the gradient expansion will smoothen these gradients and including these

terms we discover an effective surface tension given by −κ∆2ρ. As described

in section 6.6, we can calculate κ from the microscopic dynamics and find that

in this case it will be given by

κ =
D0σρ

2

d

dρ
log

v

1 + ατ
. (7.3)

Interestingly, it should be noted that the instability requires only that Dc become

negative; the bare diffusivity, D0, can, however, remain constant or even be

an increasing function of ρ while the system overall leads to instability and

patterning. This highlights the need experimentally for a measure of the collective

diffusivity and to go beyond the mean-squared displacement, which would yield

only the bare diffusivity D0.

To illustrate this point, consider choosing the tumble rate and velocity to be

given by

v = v0 exp(−λρ/2), α =
−C + (C2 + 2τCv2)

1/2

2τC
, (7.4)

so that the bare diffusivity is constant, D0 = C, and the collective diffusivity is

given by

Dc =

C5/2

(
−2

√
1 +

2τv20e
−λ ρ

C
− 2− 4τv20e

−λ ρ

C
+ λρ

√
1 +

2τv20e
−λ ρ

C
+ λρ

)
τe−λ ρv2

0(
1−

√
1 +

2τv20e
−λ ρ

C

)(
1 +

√
1 +

2τv20e
−λ ρ

C

)2√
1 +

2τv20e−λ ρ

C

,

(7.5)

so that λ is some parameter we can then control to change the collective diffusivity
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Figure 7.1: Left: The collective diffusivity, Dc(λ), as a function of λ. Calculated
at ρ = 50, C = 10, v0 = 10, τ = 1. The critical value of λ is λc = 0.05798
(calculated numerically). Right: Snapshots of systems with different values of λ
either side of λc. Top left: λ = 0.02. Top right: λ = 0.04. Bottom left: λ = 0.06.
Bottom right: λ = 0.08. As predicted the bottom two systems are unstable, while
the top two remain homogeneous. All simulations recorded at t = 100.

from positive to negative. At some critical value of λ, denoted λc, the collective

diffusivity should become negative and the uniform profile becomes unstable (see

figure 7.1).

To measure the collective diffusivity directly, one could, for example, consider

the decorrelation of density fluctuations on time scales short than the generation

time and extract Dc from the Fourier transform of the Van Hove pair correlation

function [88]

〈δρ(q, t)δρ(−q, t)〉 ∝ exp
[
−Dcq

2t
]
. (7.6)

This may be difficult to perform experimentally, but has recently been performed

by Differential Dynamic Microscopy (DDM) in homogeneous suspensions of

bacteria where interactions were minimal [89].

On larger timescales the population dynamics of the bacteria become impor-

tant, however, and we must explicitly extend our model to include the birth-death

dynamics. In section 7.4 we shall consider more specifically what birth-death

dynamics are most appropriate for our model and what effect the choice has on

our results. For now, let us simply add a logistic growth term to equation (7.1).

The full evolution of the density is then given by

ρ̇ = ∇ · [Dc∇ρ]− µρ
(

1− ρ

ρ0

)
− κ∆2ρ, (7.7)
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where µ controls the timescale of the population dynamics relative to the motility

and ρ0 sets an average carrying capacity at any given point in space.

Equation (7.7) is exactly that proposed by Cates et al. [1] as a semi-

phenomenological description of interacting and dividing run-and-tumble bac-

teria. Their analysis showed that it could lead to pattern formation and might

be a generic mechanism underlying more complex models previously proposed.

In this chapter we show that this equation is not artificially created to provide

the desired behaviour but can arise from a variety of microscopic models and is

robust to changes in the details of such microscopic behaviour.

7.2 Qualitative Behaviour and Simulation Re-

sults

Though the analysis in this chapter concerns purely continuum descriptions

of the dynamics, and indeed continuum descriptions modelled after a diffusive

approximation and without explicit noise, the simulations against which they are

compared remain of the stochastic, lattice variety described in previous chapters.

As the coarse-grained density ρ̄ is determined with an isotropic, Gaussian kernel,

we expect, as shown in chapter 6, that the results thus obtained will nevertheless

coincide.

We simulate a uniform population of bacteria in a two dimensional box with

periodic boundary conditions and choose to implement all interactions in the

motility through a tumbling rate given by

α[ρ̄(x)] = α0 exp[λρ̄(x)], (7.8)

that is a tumbling rate which increases with increasing density and, therefore,

produces a diffusion which decreases as density increases. In the simulations we

adopt a simple logistic dynamics as in equation (7.7) (and detailed microscopically

in section 7.4). The coarse-graining of density is performed using an isotropic

Gaussian kernel so that

ρ̄(x) =

∫
dy

1√
2σπ

exp(−y2/(2σ))ρ(x− y). (7.9)
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We see an initially uniform suspension of bacteria become unstable and

aggregate into high density dots surrounded by a low density background. (Note

that changing the parameters of the models, the converse (low density dots

against a high density background), or even lamellae, is also possible.) As time

increases we see these dots of high density coarsen into larger domains, as we did

in section 6.3.

In this model, however, on longer timescales the population dynamics begins

to play a significant role, and acts to arrest the coarsening process, resulting in

the aggregates of higher density stabilising at a finite size.

To understand the origin of the arrest, consider the flux of bacteria between

a high density droplet and its low-density surroundings. The transfer of bacterial

mass is given by the flux through the interface. This is proportional to the length

of the interface and thus to the radius of the droplet. The variation of the mass in

the droplet due to the birth-death process is however proportional to the area of

the droplet, and thus to the square of its radius. Balancing the two contributions

to guarantee a steady state is thus only achieved for a given radius beyond which

the droplets will not coarsen.

Most experiments on patterning in bacterial colonies are performed in soft

agar, to prevent convection and maintain steady conditions over long times. This

makes considering a uniform initial condition difficult experimentally and most

of the interesting patterns have been observed starting from a central inoculum.

We therefore ran simulations where a small colony of bacteria starts in the centre

of the 2d box. The agar concentration used experimentally is low enough that we

can assume it has little impact on the run-and-tumble dynamics [90]. In this case

we see an unstructured lawn propagate through the box in a manner reminiscent

of a Fisher wave. Once the density in the central part of the lawn rises above a

given threshold, determined by λ, a ring is nucleated and the density in its wake

drops again. This process occurs repeatedly and results in a sequence of static

concentric rings (see figure 7.2). These dynamics are strikingly similar to those

observed experimentally for S. Typhimurium [36, 38].
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Figure 7.2: A snapshot of the concentric rings formed behind the front when
starting from a central inoculum. By altering the parameters of the system the
rings can remain stable or be transient eventually breaking into dots, as seen at
the centre of this graph. Simulation performed on a lattice of 200×200 sites with
the parameters: v0 = 3.3, α0 = 1, λ = 0.037, µ = 0.01, ρ0 = 100, σ = 2.2.

7.3 Determining the Phase Diagram from Sim-

ulation and Analytics

Let us now try to understand this behaviour analytically and to show that

the coarsening is indeed arrested by the birth-death process (and not by some

other effect). We will begin by analysing the linear stability of the dynamics

and investigate the effect of a small stochastic fluctuation around a flat profile.

Following Cates et al. [1] let us consider a perturbation around the fixed point of

the logistic term ρ = ρ0 +
∑

q eiqx. After Fourier transforming, we find that the

growth rate Λq of each Fourier mode is given by

δ̇ρq = Λqδρq; Λq = −µ− q2Dc(ρ0)− κq4, (7.10)

for full details see Cates et al. [1].

If the growth rate Λq is positive for any of these modes the system will be

unstable and random fluctuations should grow, destroying any uniform flat profile.

Conversely, if Λq is negative for all q then a profile ρ(x) = ρ0 will be stable with

respect to small fluctuations.
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Figure 7.3: Left: Characteristic curves for Λ(q) in the precense of both stabilising
features, growth and surface tension. Centre: Curves for Λ(q) for the same
parameters but without birth and death. Right: The same plot of Λ(q) with
birth and death but for strictly local interactions—that is without any surface
tension.

Note that the presence of the logistic term in equation (7.7) now means that,

in contrast to the stability analysis we examined in section 6.2, the rate Λ0 is

always strictly negative. The presence of the birth and death terms stabilises the

small q modes, and thus sets an upper bound on the length scale for any pattern

formation, as we described earlier.

At the other end of the scale, as κ is strictly positive, the surface tension term

in equation (7.7) stabilises large q modes. We thus see a characteristic length scale

emerge from the linear stability analysis and any instability in the dynamics will

lead to the formation of finitely sized domains, exactly as we require for steady

state pattern formation. In figure 7.3 we can see examples of characteristic curves

for Λq as a function of q with and without the stabilising features of the dynamics.

Without the surface tension no coarsening occurs as the largest eigenvector occurs

for q →∞, as seen in figure 7.3.

By determining under what conditions equation (7.10) can be solved for Λq >

0, we can then determine criteria on the microscopic parameters for ρ0 to be

unstable. Those criteria read

1

ρ0

< − d

dρ

(
log

v

1 + ατ

)
;

−v2

2α(1 + ατ)

(
1 +

d

dρ

(
log

v

1 + ατ

)
ρ0

)
> 2
√
µκ

(7.11)

Recalling from section 6.6 that we can express κ in terms of the microscopic

parameters as

κ = σρ
v2

2α(1 + ατ)

d

dρ

(
log

v

1 + ατ

)
(7.12)

we can therefore express our criteria for the stability or otherwise of ρ0 purely in
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terms of the microscopic parameters that enter into our simulations.

This formulation of the criteria allows us to easily determine whether, for any

set of microscopic parameters, a given system will be unstable to fluctuations

around the carrying capacity ρ0. To compare with the results of Cates et al. [1],

however, let choose a set of microscopic motility parameters that lead to the

same diffusivity as they consider. Specifically let us take v(ρ) = v0 exp(−λρ/2),

α(ρ) = α0 and τ(ρ) = τ0 so that the collective diffusivity is given by

Dc =
v2

0

2α0(1 + α0τ0)
e−λρ

(
1− ρλ

2

)
. (7.13)

Let us further simplify, non-dimensionalising the equations by replacing

t′ = µt; x′ = x
(µ
κ

)1/4

; u =
ρ

ρ0

, (7.14)

and defining the new parameters R and Φ via

R =
v2

0

2α0(1 + α0τ0)
√
µκ

; Φ =
λρ0

2
. (7.15)

In terms of these parameters the stability criteria are given by

Φ ≥ 1; R ≥ Rc = 2
exp(2Φ)

Φ− 1
, (7.16)

and the resulting phase diagram, as reported by Cates et al. [1], is shown in

figure 7.4.

In addition to calculating the phase diagram analytically, however, we can

also run simulations. This allows us a method to check the mapping derived in

section 6.6. If our mapping is accurate, and we can calculate the mesoscopic

parameters R and Φ from the microscopic ones, we should be able to determine

precisely where we are in the phase diagram for any particular simulation.

To check the mapping I thus ran 90 simulations for different values of R and Φ

(6 different values of R for Φ in steps of 0.1 from 1.1 to 2.5). For each simulation

I chose values of R on either side of the predicted transition line and recorded

the qualitative pattern (or lack of pattern) observed. In each simulation I held

ρ0 = 40, v0 = 10, α0 = 1 and σ = 1.5 constant. I then changed the growth rate

µ and interaction strength λ to alter the two parameters R and Φ.
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Figure 7.4: The phase diagram for the arrested phase separation. The black
line marks the theoretical boundary as determined by Cates [1]—above the line
the system is unstable and will separate, below the line the system will remain
homogeneous. The points mark the results of simulations of my lattice-based
code. Pink circles denote no separation, blue denote lamellae, green denote
amorphous dots of high density against a low density background and red denote
regular dots.

In figure 7.4 I therefore include not only the analytic lines, but also the

computational data for the phase diagram, which reveal a remarkable overlap,

despite the approximations that were required in moving from lattice simulations

to continuum equations, in taking a diffusive limit and in coarse-graining the

non-locality of the interactions.

Cates et al. [1] calculated (via an amplitude equation, detailed in the

supplementary information of their paper) that in the range 1.08 ≤ Φ ≤ 1.58 the

transition is supercritical (continuous), while outside this range the transition is

subcritical. In the subcritical case there may be nucleation type events which

could lead to separation and pattern formation due to fluctuations prior to

crossing the transition line, as we see in figure 7.4. The results are, however,

broadly in quantitative agreement and those discrepancies we do see fit easily

within our analytic understanding of how the diagram should appear.

This level of analysis tells us only whether a uniform flat profile in a particular

parameter range is unstable or not, however; not the steady state pattern

that would then be formed. For that detail we would need to go beyond a

linear stability analysis to address the amplitude equation for each possible

pattern. In this work we instead look qualitatively at our simulations across

a range of parameters and observe a variety of pattern forms—droplets of high

density in a sea of low density, inverted droplets of low density against a high
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density background and lamellae, interspersed strips of high and low density.

Interestingly, these generally random and irregular lamina can even be regularised

into evenly spaced stripes by breaking the underlying dynamical symmetry and

adding a drift in one direction (see figure 7.5).

We see then a variety of patterns which can be formed by this relatively

simple microscopic model, and which can arise from a variety of microscopic

interactions—through the tumble rate, tumble duration or velocity—so long as

certain conditions are met. One might be concerned, however, at the somewhat

arbitrary nature of manner in which the birth-death process was added to the

model and to what extent it could affect our results. We turn, then, to consider

more carefully what we mean by death in the context of these models and how

precisely to model it.

7.4 What do we mean by “Death”: a Compari-

son of Different Methods to Limit Growth

“Death”, for bacteria, is not a simple, spontaneous act, easy to capture in a

mathematical model or simulation, but a slow, complex process that happens

in stages. Bacteria progressively stop swimming and dividing, but can still

be recovered by being placed in a more advantageous environment, (i.e. where

there is more nutrient) then eventually die, (i.e. cannot be recovered) and finally

undergo lysis [91, 92]. In our simple logistic model we should thus consider that

“death” is simply the bacteria leaving the standard run-and-tumble-and-divide

dynamics, but the question arises: should we record each stage as a separate

population?

To some extent our answer may depend on the type of interactions we want

to model—for steric interactions, immobile, non-reproducing bacteria will still

take up space and block mobile bacteria—for chemical signalling, they may not

interact in any significant way with the still active bacteria. We may have a

situation where we must replace a velocity which depends on density via the

exchange v(ρ)→ v(ρactive, ρinactive) or via v(ρ)→ v(ρactive). In the latter ρinactive

disconnects from the evolution of the active population and can be neglected if all

we are concerned about is the number of active bacteria. (If we wish to know the

total number of bacteria for some reason, to compare with observed experimental
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Figure 7.5: Snapshots of a variety of patterns which can be formed by the
mechanism of an instability instigated by density dependent motility, arrested
by logistic growth. Top Left: amorphous droplets of high density against a low
density background (v0 = 10, λ = 0.09, α0 = 1, µ = 0.0338, ρ0 = 40, σ = 1.5).
Top Right: regular droplets of high density against a low density background
(v0 = 10, λ = 0.06, α0 = 1, µ = 0.1, ρ0 = 50, σ = 1). Bottom Left: amorphous
lamina of high and low density (v0 = 10, λ = 0.11, α0 = 1, µ = 0.1354, ρ0 = 40,
σ = 1.5). Bottom Right: regularised lamina - with the same parameters as the
bottom left, but with an added drift towards the right of the graph (we replace
v(ρ) = v0 exp(−λρ) with v(ρ, θ) = v0(1 + 0.2 cos(θ)) exp(−λρ), where θ is the
angle between the direction in which the bacteria is moving and the horizontal).

99



7.4. What do we mean by “Death”: a Comparison of Different Methods to Limit
Growth

evidence, for example, we must of course record the inactive population as well.)

The question becomes clouded still further if we allow that the bacteria may still

be motile, and indeed interacting, but no longer dividing. In this case our logistic

growth model may need closer examination. Do the non-reproducing motile

bacteria count towards the carrying capacity to the same extent, for example?

Indeed, more broadly, should the growth be treated as logistic at all? What

does that mean microscopically? The logistic term, unlike the diffusion an

drift terms, did not arise in equation (7.7) from coarse-graining or averaging

microscopic behaviour but was added phenomenologically after the continuum,

diffusive approximation was performed. How, then, do we back that into the

microscopic dynamics?

Generally, to model logistic growth microscopically, one can consider the

reactions A → A + A occurring with some rate a + bρ and A → ∅ with a

rate c + dρ (where a, b, c and d are some arbitrary constants and A denotes a

single particle). What, then, do we take for the four constants? In most of the

simulations presented in this thesis I take b = c = 0, i.e a constant per particle

birth rate independent of local density and a “death” rate which increases as

density increases. To check whether this choice of parameters affects the results

qualitatively let us consider some other possible rates. One significantly different

choice could be to eliminate death entirely and simply have a growth rate which

decreases as density increases and food becomes relatively scarcer; we would then

take c = d = 0 and b < 0. This would imply that ρ = ρ0 is no longer a stable fixed

point from above—that is ρ = ρ0 is still a solution to the deterministic dynamics

but is not stable to fluctuations increasing ρ—and, as such, we might therefore

expect to see qualitatively different results in the simulations.

Pushing the boundaries even further, we could eliminate any fixed point

entirely and replace the logistic growth with a decreasing growth rate which never

reaches zero, whilst still removing death. We could, for example, take the growth

rate to be proportional to exp(−ρ/ρ0). In this case there is no fixed carrying

capacity and growth will continue indefinitely. Note that this is not presented

as a realistic choice, but represents an extreme implementation of the population

dynamics where we might expect our previous results to break down.

In fact, when we run simulations with both these choices for the population

dynamics we still see patterns form, albeit on a strictly transient basis (see
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Figure 7.6: A snapshot of rings formed from growth of an initial inoculum in the
centre of the graph for a system with no death. There is a slight broadening of
the central ring, but otherwise the pattern is qualitatively the same as the rings
seen in figure 7.5. The simulation is performed on a lattice of 200×200 sites with
parameters: α0 = 1, v0 = 3.3, λ = 0.037, σ = 2.19, with growth rate obeying
µ(ρ) = 0.01 exp(−ρ/100).

figure 7.6). Eventually the rings would coarsen and the gaps between them would

be filled in. In a real system the dead bacteria would also undergo Brownian

diffusion, again leading to a coarsening over time of the rings. The time taken to

see such effects however is far beyond that of the simulations or experiments (an

immotile bacteria would take several months to diffuse the width of one of the

rings, which is around 2mm).

To understand why we still see ring formation and regions of very low density

even at relatively late times (as compared to the spread of the colony), consider

an inoculum of bacteria growing from a very low density. As the density of

bacteria passes through the instability formed by the interaction (which we can

now no longer calculate analytically as there is no fixed point around which

to expand our stability analysis but which still exists as the interaction term

has not changed) the population separates into high and low density regions.

As there is no death, the density of the high density regions is now no longer

fixed and continues to rise. Both the growth and dynamics are exponentially

damped; however, this increase, in absolute density and in spatial extent, is

extremely slow. Over the characteristic timescales on which the colony as a whole

expands and the patterns initialise, we see very little difference between this quite

extreme population dynamics and the more analytically tractable and perhaps

realistic logistic birth-death process. Our results seem, therefore, to be resistant
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to changes in the method used to model the population dynamics so long as the

net rate of growth per bacterium—taking into account any “death”—decreases

with increasing density. Overall it appears that the mechanism that hinders the

coarsening is the saturation of the birth term and not the existence of a stable

fixed point. We can be confident that, though there is debate as to the precise

microscopic dynamics, the resolution of this debate is not essential to our results

and indeed our mechanism for patterning is quite general.

Beyond the various modifications to the microscopic dynamics we have

considered, there is, however, one important difference between real experimental

systems [14,20,28,90,93] and our models. In chapter 3 we considered the coarse-

graining of the density to account for dependence of the motility on the density

in some region around the bacteria. We said then that to be strictly accurate we

should include time delays when considering, for example the interactions to be

mediated by some chemical components. Explicitly adding these external fields

to our simulations is possible, but would simply return us to the same complex

description already present in the literature [23, 37, 38, 40, 94, 95] and that we

wanted to avoid.
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Chapter 8

Multiple Species Models

Until this point we have considered only systems in which we have a single

species and type of bacteria growing and interacting. In most real world

situations, however, living organisms will not exist in a state of isolation but

in an environment in which many agents of different forms interact, whether

through competition for resources, predation or some other form of competitive

or collaborative interaction. To understand the origins and role of cooperation,

competition and biodiversity we need to consider multiple types of particles at

once.

One common method to study such systems in recent years has been

evolutionary game theory—particularly for the study of cyclic competition

between species, where, for example, species A has some advantage over species

B, B an advantage over C and C an advantage over A. These simple systems can

reveal quite complex behaviour for the emergence of co-existence and extinction

of species and both spatial and temporal pattern formation. Though in this

chapter we consider only the situation of neutral evolution, where no species has

an inherent fitness advantage, the interested reader is recommended the review by

Frey [96] for an overview of the evolutionary game theory concept and application

to microbial colony dynamics.

Even in systems that are neutral with respect to fitness, and in fact in systems

with purely diffusive motility (without predation, kinesis, taxis or environmental

variability) stochastic birth and death processes can lead to clustering and

patterns [97]. The inherent irreversibility of the birth-death process at a

microscopic level—where death can occur anywhere, but birth only where there
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are already parent organisms—means that even if the steady-state of a system

is uniform on average, in particular realisations clustering can occur and species

can become dissociated—that is separate into regions of only one species or the

other—purely through the effect of random fluctuations.

Here we consider both the effects of these random fluctuations and more

direct interactions between species of bacteria. Specifically we introduce a model

of multiple, interacting “species” of bacteria and consider the case first where

bacteria can switch stochastically between species (to model for example some

genetic switch which alters growth or motility) and then the case of completely

distinct species. We will examine the limiting case where the type switching

model can be solved analytically, and investigate approaches to solving it more

generally. A related model of swarming and swimming Proteus mirabilis colonies

is developed and compared to the existing literature. Finally, competition

between multiple species of bacteria eating the same food source is considered

and the potential for pattern formation in such a system is analysed.

8.1 Presentation of the Two Type Model

Consider two type of particles, for simplicity of notation initially in one dimension,

potentially with different dynamics and with transmutation between type. Each

type can then be in either a left or a right moving state. Each particle can switch

from left to right moving and vice versa at rates αL/R, from type S to F , denoting,

say, a slower and a faster type, at rates βSL/R and from F to S at rates βFL/R.

The evolution of the probabilities to find a particle in a given state, left or right

moving, type F or S, at some position x at time t is then given by

ḞR = −∇ (vFR FR)− αFR FR
2

+
αFL FL

2
− βFR FR + βSR SR

ḞL = ∇ (vFL FL) +
αFR FR

2
− αFL FL

2
− βFL FL + βSL SL

ṠR = −∇ (vSR SR)− αSR SR
2

+
αSL SL

2
+ βFR FR − βSR SR

ṠL = ∇ (vSL SL) +
αSR SR

2
− αSL SL

2
+ βFL FL − βSL SL.

(8.1)
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For the moment let us take all rates to be symmetric between left and right

movement and change variables to

F = FR + FL S = SR + SL

JF = vF (FR − FL) JS = vS(SR − SL).
(8.2)

Then our equations become

Ḟ = −∇JF − βF F + βS S

Ṡ = −∇JS + βF F − βS S

J̇F = vF

(
−∇ (vF F )− (α + βF )

JF
vF

+ βS
JS
vS

)
J̇S = vS

(
−∇ (vS S)− (α + βS)

JS
vS

+ βF
JF
vF

)
.

(8.3)

Taking the diffusive limits J̇F = 0 and J̇S = 0 but Ḟ 6= 0 and Ṡ 6= 0, i.e. where

α� βF/S so the type switching occurs on a much longer timescale than the run-

and-tumble behaviour, leaves us with two equations for the diffusion and reaction

of two types of particles, F and S:

Ḟ = −∇
[ −vF
α(α + βF + βS)

(βS∇ (vS S) + (α + βS)∇ (vF F ))

]
− βF F + βS S

Ṡ = −∇
[ −vS
α(α + βF + βS)

(βF∇ (vF F ) + (α + βF )∇ (vS S))

]
+ βF F − βS S.

(8.4)

8.1.1 Stopped Limit

Equations (8.4) are, in general, not easy to solve, even at steady state. There is,

however, one limit we can immediately consider in which the dynamics become

considerably more simple. In section 6.4 we examined bacteria which took a finite

time to tumble. In this case we had, in effect, multiple alternating “types” of

bacteria: a swimming type and a tumbling type. If we now take the limit where

the speed of the S particles, vS, equals zero, we approach a qualitatively similar,

though not identical, situation. In this case, as for the finite tumble problem

considered previously, progress is more tractable. The evolutions of F (x, t) and
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S(x, t) now reduce to

Ḟ = −∇
[ −vF
α(α + βF + βS)

(α + βS)∇ (vF F )

]
− βF F + βS S

Ṡ = βF F − βS S.
(8.5)

The steady state of these equations is then easy to calculate and is given by

S(x) =
βF
βS
F (x)

F (x) ∝ 1

vF (x)
.

(8.6)

That is we find that in this limit the distribution of F particles is unchanged

from their distribution in the absence of a switching interaction and functionally

depends only on their velocity. The switching interaction acts only to control the

relative number of fast and slow particles and so as an overall normalisation on

the distribution of F particles.

8.2 Switching interaction

Let’s now consider the case where one of the switching rates, say βS—the S to F

rate—depends on the local density of particles. For simplicity we’ll take βS(S)

and not βS(S, F ), though, in the absence of other interactions the behaviour

would be similar. All other rates are constant and homogeneous. In the vS = 0

case, then, at steady state F (x) must be constant and independent of position—

F (x) is proportional to 1/vF (x), which is constant as we are considering the only

interaction or inhomogeneity to be in βS. S(x), however, need not be. If we take,

for example, our standard form of interaction

βS(S) = exp(−λφ arctan(S/φ)), (8.7)

where the switching rate decreases as density increases but stops at a finite value,

never entirely stopping, then we have

S exp(−λφ arctan(S/φ)) = βF F ≡ constant,
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Figure 8.1: Left: A snapshot of the lattice system with parameters α = 1, vS = 0,
vF = 10, βF = 1, λ = 0.01, φ = 250 and 〈n〉 = 200. f type particle occupations
are shown in red, s type particles in green. Right: A snapshot of the lattice
system with the same parameters except with vS = 0.1.

which, for certain values of βF and F may have more than one solution. Hence,

S can show separation into different densities. On lattice this manifests as a

constant, flat background of F particles and isolated sites of high densities of S

particles, with lower densities of S particles on other sites, see figure 8.1 (left).

If we now restore vS to be non-zero and run the simulations again we once

more see separation into high and low densities of S particles, but now with

extended domains of high density, figure 8.1 (right).

For the stopped limit we can, however, go further and calculate the full

probability distribution for a given site to have s particles of type S and f of

type F . Treating the problem as a zero range process and considering the case

where both switching rates and the jump rate for the F particles can depend on

the local density at the departure site, then the master equation is

dP ({si, fi})
dt

=
L∑
i=1

[
uFi−1

(si−1, fi−1 + 1)P (. . . , si−1, fi−1 + 1, si, fi − 1, . . . )

+uFi(si, fi + 1)P (. . . , si−1, fi−1 − 1, si, fi + 1, . . . )

+BSi(si + 1, fi − 1)P (. . . , si + 1, fi − 1, . . . )

+BFi(si − 1, fi + 1)P (. . . , si − 1, fi + 1, . . . )

− (BSi(si, fi) +BFi(si, fi) + 2uFi(si, fi))P (. . . , si−1, fi−1, si, fi . . . )] ,

(8.8)

where uF (s, f), BF (s, f) and BS(s, f) are the per site rates. We now look for

steady state solutions and assume the probability of a given configuration can be
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written in the factorised form

P ({si, fi}) =
1

Z

L∏
i=1

gi(si, fi). (8.9)

Balancing the fluxes at each site for particles jumping between sites and changing

from one type to the other we arrive at the conditions

uFi−1
(si−1, fi−1 + 1)gi−1(si−1, fi−1 + 1)gi(si, fi − 1) = uFi(si, fi)gi(si, fi)gi−1(si−1fi−1)

BFi(si, fi)gi(s,i , fi) = BSi(si + 1, fi − 1)gi(si + 1, fi − 1).

(8.10)

The first of these can be rewritten as

gi(si, fi) =
gi(si, fi − 1)

uF (si, fi)
, (8.11)

and, hence, the probability of a given configuration can be written as

P ({si, fi}) =
1

Z

L∏
i=1

si∏
j=1

BF (si − j, fi + j)

BS(si + 1− j, fi − 1 + j)

si+fi∏
k=1

1

uF (0, k)
, (8.12)

where without loss of generality we have taken g(0, 0) = 0 and the normalisation

factor, Z, is chosen such that
∑
{si,fi} P ({si, fi}) = 1. Switching, then, to a

grand canonical ensemble, and introducing a chemical potential, µ, to fix the

total number of particles N =
∑L

i=1 si + fi, we can write the partition function,

Z, as

Z =
∑
si,fi

e
∑L
i=1

([∑si
j=1(ln(BF (si−j,fi+j))−ln(BS(si−j+1,fi+j−1)))−∑si+fi

k=1 ln(uF (0,k))
]
+µ (si+fi)

)
.

(8.13)

For a homogeneous set of transition rates the probability for a given site to have

s particles of type S and f particles of type F is then given by

p(s, f |µ) =
1

Z(µ)
e[
∑s
j=1(ln(BF (s−j,f+j))−ln(BS(s−j+1,f+j−1)))−∑s+f

k=1 ln(uF (0,k))]+µ (s+f).

(8.14)

For an S to F switching interaction as in equation (8.7), a constant F to S rate,

and constant jump rate per particle, the distribution is shown in figure 8.2.
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Figure 8.2: The probability distribution for a site to have s S particles
and f F particles for rates uF (s, f) = 10 f , BF (s, f) = f , BS(s, f) =
s exp

(
−2.5 arctan
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))
and an average density of 〈n〉 = 200.
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8.2.1 Stability Analysis

To understand this instability better let us linearise equations (8.4) around a flat

profile and Fourier transform. We will take

F = f0 +
∑
q

δfq exp(−i q x)

S = s0 +
∑
q

δsq exp(−i q x),
(8.15)

which lead to the matrix equation Ṗq = ΛqPq, where Pq =

(
δfq

δsq

)
and

Λq =

(
−vF vF

ᾱ
(α + βS(s0))q2 − βF −vF vS

ᾱ
βS(s0)q2 + βS(s0) + β′S(s0)s0

−vS vF
ᾱ

βF q
2 + βF

−vS vS
ᾱ

(α + βF )q2 − βS(s0)− β′S(s0)s0

)
,

(8.16)

where β′S denotes the derivative of βS(s) with respect to s and ᾱ = α(α + βF +

βS(s0)). The flat profile will be stable if the eigenvalues of Λq are negative for all

q. For q = 0 the eigenvalues of Λ0 are

λ(1) = 0 and λ(2) = −βS(s0)− β′S(s0) s0 − βF .

Thus the condition for the q = 0 mode to be unstable is β′S ≤ −βS+βF
s

. For q 6= 0

we can look for the eigenvalues crossing zero for some value of q and find that

there is a crossing if

β′S(s0) ≤ −
αβS (s0) +

v2S
v2F
αβF +

v2S
v2F
βF

2 + (βS (s0))2 + 2βF
vS
vF
βS (s0) +

v2S
v2F
q2(

α + βF
vS
vF

+ βS (s0)
)
s0

.

(8.17)

In the vS = 0 limit this reduces to the condition β′S(s0) ≤ −βS(s0)
s0

. The stability

analysis also predicts that at large enough vS a flat profile will become stable for

any density. By solving (8.17) for vS for the marginal case where the inequality

becomes equality we obtain a maximum value for vS for any given density, as

plotted in figure 8.3.
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Figure 8.3: The density of S particles, s0, for which a flat profile will be unstable
as a function of vS. Within the area bounded by the curve the system is unstable
and outwith stable. Other parameters are vF = 10, α = 1, β = 1, λ = 0.01,
φ = 250.

8.3 Perturbation Analysis

To move beyond the stability analysis, and to determine something about the

steady state distribution for the vS 6= 0 case, let us take a perturbative approach

to the problem. We know what the steady state for the vS = 0 case looks like, so

perhaps we can expand around this in some form for small but non-zero vS.

Starting from the basic equations for multiple type run-and-tumble, (8.1), let

us look at the isotropic case where vS/vF � 1; here we might possibly be able to

perturbatively expand around the solvable limit of one type being immotile, i.e.

vS = 0. We define the densities of F and S particles as a series in vS/vF ≡ ε:

FR = FR0 + ε FR1 + ε2 FR2 + . . .

FL = FL0 + ε FL1 + ε2 FL2 + . . .

SR = SR0 + ε SR1 + ε2 SR2 + . . .

SL = SL0 + ε SL1 + ε2 SL2 + . . .

(8.18)

We define the total number of fast and slow particles at a given position, S and

F , and the currents, JS and JF , similarly. To zeroth order, the system is identical

to the vS = 0 limit, so, for the case considered before of βS = βS(x) and all other
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rates constant, we can immediately write down that at steady state

F0R =
F0

2
= F0L

S0R =
βFF0

2 βS
= S0L ≡

S0

2
.

(8.19)

At first order in ε we have

Ḟ1R = −vF ∇ (F1R)− αF1R

2
+
αF1L

2
− βF F1R + βS S1R

Ḟ1L = vF ∇ (F1L) +
αF1R

2
− αF1L

2
− βF F1L + βS S1L

Ṡ1R = −vF
2
∇ (S0)− αS1R

2
+
αS1L

2
+ βF F1R − βS S1R

Ṡ1L =
vF
2
∇ (S0) +

αS1R

2
− αS1L

2
+ βF F1L − βS S1L.

(8.20)

At steady state Ṡ1 = Ṡ1R + Ṡ1L = 0 and Ḟ1 = Ḟ1R + Ḟ1L = 0 which imply that

0 = βF F1 − βS S1 and 0 = −∇JF1 . (8.21)

Then defining σ
F/S
n = F/SRn − F/SLn and taking the differences between the

equations for left and right movers for each type we have

0 = −∇S0 − (α + βS)σS1 + σF1

0 = −vF∇F1 − (α + βF )σF1 + σS1 .
(8.22)

Now, if we look for states with no overall current for either fast or slow particles

when considered on their own, i.e. where
∫
JS/F (x)dx = 0, then we can take

JS/F = vS/F
(
σ
S/F
0 + ε σ

S/F
1 + ε2 σ

S/F
2 + . . .

)
so that to first order in ε

JS = −vF ε
vF ε∇S0

α + βS

JF = 0

F = F0 + ε

∫
− βS
vF (α + βS)

∇S0

S =
F0 βF
βS

+ ε
βF
βS

∫
− βS
vF (α + βS)

∇S0.

(8.23)
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At second order in ε

Ḟ2R = −vF ∇ (F2R)− αF2R

2
+
αF2L

2
− βF F2R + βS S2R

Ḟ2L = vF ∇ (F2L) +
αF2R

2
− αF2L

2
− βF F2L + βS S2L

Ṡ2R = −vF ∇ (S1R)− αS2R

2
+
αS2L

2
+ βF F2R − βS S2R

Ṡ2L = vF ∇ (S1L) +
αS2R

2
− αS2L

2
+ βF F2L − βS S2L,

(8.24)

which imply that

−vF ∇σF2 − βF F2 + βS S2 = 0

vF ∇− σS1 + βF F2 − βS S2 = 0.
(8.25)

These two equations together then imply that ∇σF2 = −∇σS1 . In fact if we check

equations (8.3), we see that the currents JS(x) and −JF (x) can, at steady state,

differ by, at most, an overall additive constant and for systems with no overall

mass current JF (x) = −JS(x), i.e. σFn = −σSn−1.

Now let us compare these results with simulations of equations (8.1). We will

consider the case where the switching rate from slow to fast is given by

βS(x) =
1

1 + 9 exp (−(100− x)2/100)
, (8.26)

i.e. constant far from x = 100 and with a sharp decrease around that point.

All other rates will be independent of position. The results of this comparison

are shown in figures 8.4 and 8.5. As we can see the perturbation expansion

approaches the correct form for the probability densities F and S but is a less

good prediction of the currents as these are defined slightly differently for the

spatially continuous theory and lattice simulations. Specifically, in the lattice

simulations the currents that balance are defined as JS(i) = SR(i)−SL(i−1) and

JF (i) = FR(i)− FL(i− 1), i.e. over a bond between sites, not on site, whereas in

the continuous theory JS(x) = SR(x)− SL(x) and JF (x) = FR(x)− FL(x).

To check the veracity of the perturbation expansion we consider the rms

deviation between the densities predicted by the theory and those recorded in

the simulations. To calculate this difference we subtract the predicted density

from the measured density for each lattice site, square these differences, average

them over the extent of the lattice and plot the square root of the resulting mean.
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Figure 8.4: Data for a switching rate βS(x) as in equation (8.26). All other rates
are constant. vS = 0.1, vF = 1. The density of slow particles (upper curves) and
fast ones (lower curves) are shown for mean-field (deterministic) simulations and
at 0th, 1st and 2nd order in the perturbation expansion. The simulation data
points are shown in red, the 0th order theory in pink, 1st order in blue and 2nd
order in green.
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Figure 8.5: Data for a switching rate βS(x) as in equation (8.26). All other
rates are constant. vS = 0.1, vF = 1. Plotted are the currents for fast particles,
JF = vF (FR − FL), and for slow particles, JS = vS(SR − SL), as calculated from
the simulations (points) and at 2nd order in the perturbation theory (solid lines).
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Figure 8.6: Left: The rms deviation between simulation and perturbation
expansion, to first order, as a function of the ratio ε = vS/vF . In red the data for
vS held constant equal to 0.1 and in green with vF held constant equal to 10.0,
both for a lattice of 200 sites. Right: The rms deviation as a function of lattice
length with vS = 0.1, vF = 10.0. In both figures α = 1, 〈n〉 = 400, βF = 1 and

βSi =
(

1 + 9 e−
1

100 (100− 200
L
i)

2)−1

, where L is the lattice length.

This average deviation is recorded for a fixed lattice size and choice of rates α and

βS/F for a number of different values of the jump rate ratio, ε, see figure 8.6 (left).

ε can be taken towards zero in two manners, by decreasing vS or by increasing vF .

It was found that on decreasing vS the average deviation tends to zero as would

be expected. However, if vS is held constant and vF is increased the average

deviation does not tend to zero in the limit ε → 0, but instead tends to a finite

value. This suggests that there exists some other scale, call it v∗, in relation to

which vS must also be small, i.e. that we require not only that vS � vF but also

that vS � v∗.

One immediate place we can look to improve the perturbation approach is to

consider how decreasing the lattice spacing and increasing the number of sites

on the lattice (so that the rates, which are a function of position, vary more

smoothly) affects the deviations between theory and simulation. Effectively,

as lattice length increases the system should resemble the continuum limit to

a greater degree and, hence, deviations due to the discretization should be

minimised. Indeed, it appears that below a lattice length of around 1000 sites,

for this choice of parameters, the deviations increase considerably, but above that

level there is little change with lattice length, see figure 8.6 (right).

The error from the perturbative expansion can therefore be attributed

partially to the discretisation of the system, though this can be avoided if one uses

suitably smooth profiles, i.e. a large enough number of sites. Note that we have
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8.4. Proteus mirabilis and Periodically Expanding Colonies

no analytical method to predict what ‘enough’ means, however. (We determine

that empirically from the simulation data.) Even for small discretisations, i.e.

large lattices, an error remains, though. This increases quickly with ε and never

disappears if vS 6= 0. Hence the perturbation method is of limited use for most

practical applications. We need, then, to find a better method if we want to

determine the steady state for two transmuting, motile species. Note also that

we deal here only with static colony sizes; for colonies with realistic population

dynamics the problems will become more pronounced still.

As we saw from the analysis in section 8.2.1 and in chapter 7, however, even

in these complex cases we can still make qualitative predictions about the nature

of the steady state and the stability of a homogeneous phase.

8.4 Proteus mirabilis and Periodically Expanding

Colonies

Proteus mirabilis offers us one example of a species of bacteria which exists in

multiple states during its life, which has been known of for over a century [98].

Proteus cells exist in two forms: a shorter swimming type, which in the dense

agar concentrations we shall consider is immotile but can grow, and an extended

swarming type, which can join with other swarming cells to form rafts which

are then motile. As the swimming cells grow, instead of dividing into multiple

swimming cells, they can, instead (if the local density is large enough), continue

to grow as one cell and form a hyper-flagellated swarming cell—a process called

differentiation. The swarming cells, which are motile when formed into rafts, will

after some period of existence eventually turn back into multiple swimming cells

(consolidation), which then grow as normal. For a review of the behaviour and

microscopic swarming dynamics of Proteus see Rauprich et al. [99] or Allison and

Hughes [100].

We therefore see a cycle of behaviour where a population of swimming cells

grow and divide until they reach some threshold density ρ1, at which point some

fraction of them r will begin to differentiate into swarming cells. The densities

of both the swimming cells, ρswim, and swarming cells, ρswarm then both increase

for some time. This phase carries on only for a limited time, however, so once the

density of swimmer cells passes a second threshold ρ2 the differentiation process
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8.4. Proteus mirabilis and Periodically Expanding Colonies

Figure 8.7: Schematic of the lifecycle of a Proteus cell. Swimming cells can
reproduce at a rate r0 or differentiate into swarmer cells at a rate r (which is
a function of rho given in equation (8.28)). Swarmer cells can diffuse with a
diffusivity D (which again is a function of the density, this time of swarmer cells)
or consolidate back into swimmer cells at a rate r∗.

ends. Once the number of swarming cells increases above a third threshold ρ3 they

can form rafts and become motile. These motile rafts then spread out from the

initial colony position, increasing the size of the colony, until enough swarming

cells have consolidated back into swimming cells that ρswarm < ρ3. The rafts are

then no longer motile. The newly formed swimming cells—the product of the

consolidation of the swarming cells—at the edge of the colony then grow until

ρswim > ρ1 again, more swarming cells can be formed, and the process repeats.

In this way we see the boundary of the colony grow through a series of periodic

expansions, for a schematic of the behaviour of a cell see figure 8.7.

Czirók et al. [101] modelled this behaviour via the coupled differential

equations

ρ̇swim = r0ρswim + r∗ρswarm − r(ρswim)ρswim

ρ̇swarm = −r∗ρswarm + r(ρswim)ρswim +∇D(ρswarm)∇ρswarm,
(8.27)

where r0 is the growth rate of swimming bacteria, r∗ is the consolidation rate

to turn back into swimming bacteria from swarming, r(ρswim) is the rate to

differentiate into swarmer cells and D(ρswarm) is the diffusivity. The functions r

and D are given by

r(ρswim) =

{
r if ρ1 < ρswim < ρ2

0 otherwise

D(ρswarm) =
D0

2

(
1 + tanh

(
2α
ρswarm − ρ3

ρswarm

))
,

(8.28)

where D0 and α are two constants which allows us to tune the motility of the
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8.4. Proteus mirabilis and Periodically Expanding Colonies

swarmer cells.

This phenomenological model was able to reproduce the observed expansion of

the colony front—though they were only able to test their results in one dimension

and did not take into account the effect of noise on the system, nor could they

reproduce the steady state behind the front. In their model the density of bacteria

behind the front continues to grow indefinitely with no upper bound. Previous

studies, such at Hallatschek and Korolev’s [102] analysis of Fisher waves in

the stochastic Fisher-Komolgorov-Petrovsky-Piscounov (sFKPP) equation, have

shown that the presence of noise can have significant qualitative effects on front

dynamics. It is, therefore, interesting to consider whether the results of the

Czirók model are altered if we consider an inherently stochastic particle based

description, instead of their PDEs.

To extend their analysis, we simulate a two-dimensional lattice model of the

Proteus dynamics based on the multiple transmuting species model described

in section 8.1, though now coupled to a logistic population dynamics for the

swimming cells. Because we simulate the bacteria as individual agents the

simulations presented here have an innate stochasticity built into them. The

rates for switching between type and diffusivity of the swarming cells are taken

as in equations (8.28). The swimming cells are taken to be non-motile, i.e. vs = 0

in the language of section 8.1.

As Czirók et al. observed [101], we see a periodic extension of the colony

front, which proceeds isotropically. Defining the colony as including any site

on the lattice with a total bacterial density above some arbitrary threshold ρ4

we can measure the average diameter of the colony and plot that against time

(see figure 8.8). We see that the inclusion of noise and the extension to higher

dimensions do not radically alter the results obtained from the deterministic one

dimensional equations. (Note that changing the arbitrary threshold ρ4 does not

significantly alter any of our results, merely introducing a small overall shift in

the colony size at any given time and increasing or reducing the susceptibility of

the measurements to small fluctuations at the boundary.)

Our model still does not account for the observed behaviour behind the colony

front; to describe that correctly would probably require the explicit introduction

of a field describing the food source—which could be depleted and lead to an

arresting of the growth of the colony in its interior. Such an extension of our
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Figure 8.8: The average radius of a colony of Proteus bacteria. The radius is
calculated by counting the number of lattice cells which have a total bacterial
density greater than an arbitrary threshold dividing the result by π and taking
the square root. The data come from a simulation carried out with parameters:
α = 20, r0 = 0.7, r∗ = 0.7, r = 0.07, ρ1 = 1000, ρ2 = 1500, ρ3 = 15 and D0 = 50.

model would be relatively simple to add computationally, though would add

significant additional analytic complexity.

The model thus described seems to capture the front dynamics well, though

at the expense of a considerable number of free parameters (r, r∗, r0, D0, α, ρ1,

ρ2 and ρ3). When planning this study it was hoped that this could be reduced,

though this was not found to be possible (though it was neither shown to be not

possible!). These exploratory simulations do, however, successfully extend the

model of Czirók et al. to a more realistic dimensionality and properly account for

the effect of noise.

8.5 Competition Between Multiple Species

Rather than consider a single species of bacteria which can exist in multiple forms,

we may wish instead to consider a situation where we have multiple different

species of bacteria occupying the same substrate. We can then think how the

multiple species could interact with each other and what sort of qualitative states

could be formed.

One obvious consideration would be to determine if, as a result of birth and

death processes, one species or other will come to dominate the space, either

through some fitness advantage or through random fluctuations. We then need

to connect the multiple species models to the population dynamics of chapter 7.

Let us consider first just two species of bacteria, of equal fitness, occupying the
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8.5. Competition Between Multiple Species

same space, consuming the same food supply and interacting, therefore, through

coupled logistic growth terms. We want to know how the populations of the

two species vary over time—whether one species does come to dominate—and

how interactions in the motility, either of one species or across species, affect

the overall populations. Can interactions lead to separation of the species into

different spatial region? Can they lead to the dominance of one or other species

happening more quickly than in a neutral environment?

To determine if interactions in either the population or motility can lead to

separation of species, let us examine the linear stability of the diffusion level

equations governing the populations’ dynamics, given by

ρ̇A(x, t) = ∇ ·
[
Dcol
A ∇ρA(x, t)

]
+ µAρA

(
1− ρA + ρB

ρ0

)
− κA∆2ρA

ρ̇B(x, t) = ∇ ·
[
Dcol
B ∇ρB(x, t)

]
+ µBρB

(
1− ρA + ρB

ρ0

)
− κB∆2ρB.

(8.29)

The collective diffusivities for each species in equation (8.29) may depend on

either or both of the bacterial densities, depending on the form of microscopic

motility interaction. There may be no motility interaction between species—

so that Dcol
i = Dcol

i (ρi)—there may be an interaction which depends on the

total density, a steric interaction for example—so that Dcol
i = Dcol

i (
∑

i ρi)—or an

interaction which depends on both densities in some non-symmetric manner—so

that Dcol
i = Dcol

i ({ρi}).
As ever, we expand around a flat profile at the carrying capacity ρ0 and Fourier

transform to determine the stability of the dynamics. We now have potentially

two growth rates and two surface tension coefficients. We choose to rescale the

densities, space and time by

uA/B =
ρA/B
ρ0

; x̃ =

(
µA
κA

)1/4

x; t̃ = µAt. (8.30)

We end up, after expanding around uA = uB = 1/2, with the two equations

δ̇qA = −q2 Dcol
A√

µAκA
δqA −

1

2
δqA −

1

2
δqB − q4δqA

δ̇qB = −q2 Dcol
B√

µAκA
δqA −

µ̄

2
δqA −

µ̄

2
δqB − κ̄q4δqA,

(8.31)
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8.5. Competition Between Multiple Species

where we have defined the ratios µB/µA = µ̄ and κB/κA = κ̄.

Note that even when Dcol
A/B depend on both densities, in the linear analysis

the only cross terms come from the birth-death competition. This is in contrast

to the transmuting case presented in section 8.2.1 where there are cross terms of

the form ∇ (DAB∇ρB) + ∇ (DAA∇ρA) for ρ̇A (and similar terms for ρ̇B) which

lead to additional cross terms in the stability analysis.

The matrix Λ in the equation ˙δq = Λδq will always be of the form

Λ =

(
A(ρ0)q2 − q4 − 1

2
−1

2

− µ̄
2

B(ρ0)q2 − κ̄q4 − µ̄
2

)
, (8.32)

where A(ρ0) and B(ρ0) are two functions of the density ρ0 around which we

expand. The resulting eigenvalues from this matrix are of the form

Λ±(q) =
1

2

(
(A(ρ0) +B(ρ0)) q2 − (1 + κ̄)q4 − 1

2
(1 + µ̄)

)

± 1

2

((
(A(ρ0)−B(ρ0)) q2 − (1κ̄)q4 − 1

2
(1− µ̄)

)2

+ µ̄

)1/2

.

(8.33)

As in section 8.2.1 we have two eigenvalues now. In the limiting case where

the dynamics of the system is symmetric between the two species, that is where

κ̄ = 1, µ̄ = 1 and Dcol
A = Dcol

B , these eigenvalues simplify considerably to be

Λ+(q) =
Dcol

√
µκ
q2 − q4; Λ−(q) =

Dcol

√
µκ
q2 − q4 − 1. (8.34)

The corresponding eigenvectors also simplify considerably. Where in general they

depend on q and the microscopic parameters in some complex fashion and cannot

be easily related back to the two species’ densities, for symmetric dynamics they

are given by

v+ =

(
1

1

)
; v− =

(
1

−1

)
. (8.35)

One of these eigenvalues then tells us the stability of total density ρ = ρA + ρB,

and the other which gives us the relative stability between species—whether the

two species will dissociate. Neither of these eigenvalues may be positive, implying

we have a homogeneous flat profile at steady state, one may be positive, and the
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Figure 8.9: A snapshot of a system of two species of bacteria with identical
microscopic dynamics competing for a common food supply. The simulation is
performed with an interaction in the jump rate so that vA/B = 2 exp(−0.1ρA/B),
i.e. each species’ velocity depends only on the density of that species. The other
simulation parameters are: α0 = 1, µ = 0.1 and ρ0 = 100.

other negative, implying that the system will just separate into high and low

density regions but with no systemic separation between A and B, or both could

be positive, such that bacteria separate into different regions for each species. For

an illustration of the species dissociated state see figure 8.9.

Though this work is only at a preliminary stage (and included as an illustration

of the more complex situations we can model using the frameworks developed

throughout this thesis) the results obtained so far are already interesting. The

above analysis, for example, suggests that even where the microscopic dynamics

have no obvious mechanism for dissociating species—where Dcol depends on the

total density only, say—we can still see such an instability. Further, we calculated

only the stability around ρA = ρB = ρ0/2; the stability around some other

solution of ρA + ρB = ρ0 could yield different results. Indeed, an instability

around equal densities could force the system into a dissociated state which then

subsequently was unstable to changes in total density.
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8.6. Outlook

8.6 Outlook

There are a number of avenues open for further work on the topic of multiple

interacting and reproducing bacteria. It may be interesting to calculate the

fixation times for one or other species to completely dominate a space, by means

of a first passage approach for one species to disappear (to go extinct). Is this time

then altered by interactions in any systemic manner? In the case of separation into

micro-colonies, one could expect the smaller effective population size to equate to

a faster fixation time; a quantitative analysis of this effect for various interaction

strengths would be worthwhile.

Related to this project, and returning to the models of switching between

multiple phenotypes, there may be more we can investigate. The survival prob-

ability and average density after some catastrophe (in which some large fraction

of all bacteria are killed), with or without switching to an immune/dormant

state, could be interesting to examine. Assaf et al. [103] analysed a non-spatial

(well-mixed or mean-field) logistic growth model and considered the effect of a

catastrophe implemented by a drastic reduction in the birth rate for some fixed

time. Following a generating function approach to solving the master equation

and making an eikonal approximation (similar to the WKB approximation in

quantum physics) they were able to calculate the phase trajectories with an

effective classical Hamiltonian and find some analytic solutions. Our models

are considerably more complex than that considered there, though there may

be results we can obtain, at least in a well-mixed environment. Further results

for spatially structured systems could then be examined numerically. The two

measures 〈ρ〉 and P (ρ > 0) could be determined (either analytically or measured

from simulations) and compared. Are there conditions for conflict between

them—when might one be favoured over the other?
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Chapter 9

Conclusion

In this work I have presented several classes of lattice models based on the

run-and-tumble dynamics of certain species of bacteria, notably Escherichia

coli. I calculated the exact steady state probability distributions for both

inhomogeneous, anisotropic, non-interacting and zero-range interaction models.

For more general types of interaction I used a field theoretic approach to derive

the continuum fluctuating hydrodynamic equations and from there derived a

mapping to a free energy like functional describing the steady state profile for

a crowding interaction. I analysed the linear stability of both the continuum

and lattice microscopic mean field equations. This allowed me (in chapter 6) to

isolate a condition on the coarse-graining I employed in the interaction terms.

If the coarse-graining is taken in an isotropic manner then the zero-range free

energy will work as a mean field theory.

This work builds on earlier treatments of run-and-tumble bacteria where

interactions between bacteria were not included [2, 22]. It provides a lattice

counterpart to prior continuum approaches and qualitatively reproduces results

obtained off lattice, where a similar, though not exactly equivalent, density

dependence was considered [4]. My approach on lattice provides a microscopic

justification for the manner in which this density dependence is addressed;

previously it was added in an ad-hoc manner after the diffusive approximation had

been taken, whereas in this work the dependence is intrinsic from the microscopic

definition of the dynamics. That this produces qualitatively similar results

justifies the way in which the dependence was handled previously. My work also

reveals a condition on the coarse-graining procedure for this density dependence
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for free energy mapping to work; it must be taken isotropically, so that particles

moving in any direction feel the same effective local density. Further, in deriving

a mapping between the method of this coarse-graining and an effective surface

tension, I have shown that it is possible to calculate all the parameters required

to determine the dynamic linear stability from the microscopic dynamics.

This work provides a means to simulate microscopic run-and-tumble dynamics

efficiently, which is particularly important in two or more dimensions where

microscopic simulations off lattice are very computationally expensive. It

illustrates potential hazards in comparing lattice simulations and continuum

theoretical predictions and offers some insight into how to avoid those problems

by carefully choosing how to implement non-local interactions in the lattice

dynamics. Note that early studies of off-lattice run-and-tumble dynamics actually

had to discretise space to do simulation for position dependent swimming speed

in order to compare with their theoretical predictions [22].

My work in chapter 6 has extended those prior models [2, 4, 22] to consider

more carefully the effect of a finite tumble duration in the context of a density

dependent motility. Whilst most previous work has taken tumbling to be

instantaneous I have shown that in this context the finite nature of the tumbling

can have a significant effect on the dynamics and steady state behaviour.

By coupling the microscopic model of run-and-tumble motility to a model

of population dynamics I have (in chapter 7) been able to produce a simple

mechanism by which patterning can arise in bacterial colonies. A dynamic

instability arising from a density dependent motility is driven to coarsen by a

small non-locality in the interaction which induces an effective surface tension.

This coarsening is then arrested by the population dynamics. This mechanism

is quite generic and I believe should form the basis of a null hypothesis against

which more complex models of pattern formation should be tested.

Indeed, in chapter 7 I showed that this mechanism can arise from a variety of

microscopic models and that ‘death’, as such, is not even required for patterns to

exist. It is merely required that the net growth rate decreases as density increases.

Currently this statement is of a qualitative nature only, and the patterns may be

fleetingly transient depending on the precise choice of parameters. It would be a

productive exercise, in the future, to form more precise mathematical conditions

here.
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Nevertheless, I hope the techniques presented in this thesis will further

develop the use of lattice simulations in the context of bacterial population

growth. The lattice approach may, for example, help to provide new analytic

and computational results for run-and-tumble dynamics in higher dimensions,

generalizing previous studies to more general external potentials for sedimentation

and trapping [3]. Or, as described in chapter 8, the work may lead to new

possibilities to study competition between multiple species of bacteria.

In terms of the specific results presented in this thesis, the saturated

condensation process considered in chapter 5 complements existing treatments of

the condensation dynamics for the version of the ZRP with a true condensation

transition [64–68]. In those works the focus has primarily been on the late-time

scaling behaviour of cluster size, and the characteristic timescales for evaporation

and reformation of condensates. Within the model of saturated condensation

discussed here, I have obtained a more complete account of the dynamics—

including the nontrivial behaviour of the number of condensate sites—from very

early times right through to the steady state. In particular, I found that

the relaxation takes place in two stages: first, some number of condensate

sites is dynamically selected which depends on the initial condition. These

condense rapidly, but leave the system in an out-of-equilibrium state that slowly

relaxes through activated evaporation and condensation events. A mean-field

approximation proved reliable in analysing the first stage, and a first-passage

calculation conducted within a specially-constructed ‘doubly’ grand canonical

ensemble well described the second.

This first-passage calculation, while reasonably accurate (within a factor of

two over two orders of magnitude), does show some discrepancy when compared

with the relaxation rate measured from simulation data. As I discussed at the

end of chapter 5 this difference may arise from the approximations made in order

to perform the analytic calculation. It is not clear, however, how (or indeed if)

this could be improved upon.

More serious, perhaps, is the absence of a satisfactory explanation for the

number of condensate sites formed from a uniform initial condition. One would

anticipate that the early-time noise would play a major role in determining this

number, although I have been unable to relate these two quantities directly. This

very early time dynamics presents itself as one possible route by which this work
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could be continued.

Additionally, since I believe the model to reproduce more faithfully experi-

mental situations such as the shaken granular gases than the traditional version

of the ZRP, it would be very interesting to investigate both early- and late-time

dynamics of the corresponding experiments [63].

With regards to the work presented in chapter 6, there remain a number

of open questions regarding the coexistence densities for interacting bacteria.

Although the fluctuating hydrodynamics correctly predicts the existence of phase

separation, the coexistence densities are accurately predicted only for isotropic

kernels and large lattice occupancies. Quantitative predictions beyond this case

are yet to be derived. More general non-linear interaction kernels have also not

yet been considered.

Questions and potential openings for future study arise from the work on

population dynamics considered in chapters 7 and 8 as well. Firstly, there is a

need to calculate the collective diffusivity, Dcol, empirically from the simulations

by measuring the decorrelation of fluctuations. Holding the single particle

diffusivity, D, constant and changing Dcol, as described in section 7.1, we can look

at the correlation functions as you approach the transition and verify that it is the

collective and not single particle diffusivity (as measured by the mean-squared

displacement of the bacteria) that controls the onset of instability. Though we

have shown via simulation that homogeneous profiles become unstable at the

point when the microscopic parameters are predicted to result in a negative

collective diffusivity, backing this measurement directly from the data would

strengthen the argument further.

Secondly, different ‘death’ mechanisms require further investigation to ensure

that these do not qualitatively alter the results. In section 7.4 I detailed some

work in ensuring the robustness of the model; more could be done explicitly

counting bacteria in different states (motile and growing, motile non-growing,

non-motile, dead). A more quantitative account of the conditions on the net

growth rate (as a function of density) required for pattern formation could also

be formulated.

Finally, a derivation of the two-dimensional, finite tumble time results

conducted using the full field theoretic treatment would allow us to determine the

noise terms in the resulting reaction-diffusion equation governing the evolution
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of the bacterial density. It could then be interesting to check the noise terms

explicitly against the simulations.

Further to these obvious extensions of the work presented in this thesis, a

number of other avenues for future work also present themselves. In relation to

the ring formation seen in chapter 7, the role of the front dynamics in facilitating

patterning in the trailing bulk phase could be investigated in more detail. It

appears from preliminary examination that even where no instability exists at

the target density—that is where λ(q) < 0 for all q at ρ = ρ0—patterning can

still occur if the front passes through a density region of instability—if λ(q) >

0 at some ρ < ρ0. It remains an open question, however, as to under what

circumstances and in what manner such patterning can become fixed behind the

front. If the pattern is not stable and permanently fixed, can we estimate the

length or time scales for patterns behind the front to remain? Can we make

analytic progress in analysing the front stability? If we can determine the front

shape, ρ(x, t), and look for a frame in which it is time independent, can we perform

the stability analysis in that frame? It may be very difficult (or indeed impossible)

analytically, but can we find simulations in which the shape is important? i.e

where the stability around a flat profile gives a different result to that seen in

simulations, implying that the stability around the front shape is different? All

these questions remain to be answered.

128



Appendix A

Hydrodynamic Limit and Scaling

of Fields in the Action

The microscopic action for the non-interacting, homogeneous and isotropic model

can be written as

S = −
∫ T

0

∑
i

[
ρ̂iρ̇i +

1

d
ĴiJ̇i +

d

2
ρi

(
e−(ρ̂i+1−ρ̂i+Ĵi+1−Ĵi) + eρ̂i+1−ρ̂i−(Ĵi+1−Ĵi) − 2

)
+

Ji
2

(
e−(ρ̂i+1−ρ̂i+Ĵi+1−Ĵi) − eρ̂i+1−ρ̂i−(Ĵi+1−Ĵi)

)
+

d

2
(ρi+1 − ρi −

Ji+1 − Ji
d

)
(
eρi+1−ρ̂i−(Ĵi+1−Ĵi) − 1

)
+

αρi
4

(
e2Ĵi + e−2Ĵi − 2

)
+
αJi
4d

(
e2Ĵi − e−2Ĵi

)]
. (A.1)

The continuous limit can be taken by explicitly introducing the lattice spacing a

and making the substitutions

ρi → aρ(x); ρ̂i → ρ̂(x); d→ va−1;
∑

i →
∫ `=La

0
dxa−1;

Ji → J(x); Ĵi → Ĵ(x); ∇i → a∇+ 1
2
a2∆ (A.2)
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where ∇i is the discrete gradient, e.g. ∇iρi = ρi+1− ρi. This overall substitution

and the Taylor expansion of the action then gives

S = −
∫ T

0

dt

∫ `

0

dx

[
ρ̂ρ̇+ v−1Ĵ J̇ − vρ∇Ĵ − J∇ρ̂+

αρ

4

(
e2Ĵ + e−2Ĵ − 2

)
+

αJ

4v

(
e2Ĵ − e−2Ĵ

)]
+ aS1, (A.3)

where the neglected term S1 is given by

S1 = −
∫ T

0

dt

∫ `

0

dx

[
vρ
[
− 1

2
∆Ĵ + (∇ρ̂)2/2 + (∇Ĵ)2/2

]
+ J

[
−∆ρ̂/2 +∇ρ̂∇Ĵ

]
+ v/2

(
∇ρ−∇J/v

)(
∇ρ̂−∇Ĵ

)]
+O(a). (A.4)

To calculate the correct manner in which to rescale our fields let us begin by

considering a system ` times larger and rescaling t → t`α, x → x`, ρ → ρ/` so

that the action is given by

S = −
∫ T/`α

0

dt

∫ 1

0

dx

[
ρ̂ρ̇+ `

Ĵ J̇

v
− `α−1vρ∇Ĵ − `αJ∇ρ̂− `αα

4
ρ
(
e2Ĵ + e−2Ĵ − 2

)
− `α+1 α

4v
J
(
e−2Ĵ − e2Ĵ

)]
(A.5)

For the Ĵ terms to not blow up we need to have Ĵ small. We therefore expand

the exponentials to give

S = −
∫ T/`α

0

dt

∫ 1

0

dx

[
ρ̂ρ̇+ `

Ĵ J̇

v
− `α−1vρ∇Ĵ − `αJ∇ρ̂− `ααρĴ2 + `α+1α

v
JĴ

]
.

(A.6)

If we explicitly take Ĵ to scale as Ĵ → Ĵ`−β and J → J`−δ we get

S = −
∫ T/`α

0

dt

∫ 1

0

dx

[
ρ̂ρ̇+ `1−β−δ Ĵ J̇

v
− `α−1−βvρ∇Ĵ

− `α−δJ∇ρ̂− `α−2βαρĴ2 + `α−β−δ+1α

v
JĴ

]
. (A.7)

130



Now, we need the coefficient of each term to be of order 1 or smaller so that no

terms blow up so

1−β−δ ≤ 0; α−1−β ≤ 0; α−δ ≤ 0; α−2β ≤ 0; 1+α−β−δ ≤ 0.

(A.8)

However, as we do not want to simply be left with ρ̇ = 0 we need α − δ = 0

and as we also want to retain a noise, which corresponds to the Ĵ2 term, we also

require that α− 2β = 0. That leaves our action

S = −
∫ T/`α

0

dt

∫ 1

0

dx

[
ρ̂ρ̇+ `1−3β Ĵ J̇

v
− `β−1vρ∇Ĵ − J∇ρ̂− αρĴ2 + `1−βα

v
JĴ

]
.

(A.9)

Which tells us that β ≤ 1, β ≥ 1/3 and β ≥ 1 which imply that β = 1 and hence

α = 2 and δ = 2. Injecting these scalings back into the action gives

S = −
∫ T/`2

0

dt

∫ 1

0

dx

[
ρ̂ρ̇+ `−2v−1Ĵ J̇ − vρ∇Ĵ − J∇ρ̂+ αρĴ2 +

αJĴ

v

]
(A.10)

where the macroscopic observation time τ = T/`2 is supposed to be of order 1.

The term in Ĵ J̇ is thus irrelevant and we can check that the hydrodynamic action

S0 = −
∫ τ

0

dt

∫ 1

0

dx

[
ρ̂ρ̇− vρ∇Ĵ − J∇ρ̂+ αρĴ2 +

αJĴ

v

]
(A.11)

is invariant under further diffusive scaling. Note that the scaling of the fields

considered here is arbitrary and we could choose to look at currents J , Ĵ

larger than 1/`2, 1/`. This would correspond to trajectories whose probabilities

are smaller than exp(−`), which are not correctly described by fluctuating

hydrodynamics and large deviations. One can also check that under this rescaling,

the action S1 stays of order 1 and aS1 is thus, indeed, negligible.

For one isolated bacterium the run-and-tumble dynamics is a variant of a

random walk and is known to be diffusive at large scales [2,4]. It is therefore not

surprising that we find α = 2. In the presence of interactions (as in section 3.2.3),

a uniform density profile of bacteria will continue to exhibit diffusive behaviour;

the interactions will simply rescale the diffusivity. If interactions cause the profile

to become unstable, however, the model can nevertheless give rise to length

scales which grow in a non-diffusive manner, as for example for coarsening (see
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section 6.3).
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Appendix B

Solution of the first passage time

problem

The first passage time from n particles to npeak is denoted Tn,npeak
and, in

continuous time, is given by the solution to the equation

Tn,npeak
= dt+ [1− (uL + u(n)) dt ]Tn,npeak

+ u(n) dt Tn−1,npeak
+ uL dt Tn+1,npeak

(B.1)

This equation states that the time to go from n to npeak particles (l.h.s) is dt plus

the time to go from the new number of particles, obtained after a time interval

dt, to npeak. With probabilities u(n) dt and uL dt, there are now n − 1 or n + 1

particles, while with probability 1−(uL+u(n)) dt there are still n particles, hence

the three terms of the r.h.s. Equation (B.1) then reduces to

(uL + un)Tn,npeak
− uL Tn+1,npeak

− u(n)Tn−1,npeak = 1 (B.2)

with boundary condition Tnpeak,npeak
= 0. Now, define the difference dn = Tn,npeak

−
Tn−1,npeak

so that

u(n) dn − uL dn+1 = 1. (B.3)

Note that the evolution of the probability to find n particles at a site, p(n|µ), is

given by

dp(n|µ)

dt
= u(n+ 1) p(n+ 1|µ) + uL p(n− 1|µ)− (u(n) + uL) p(n|µ) (B.4)

≡ Jn+1,n − Jn,n−1 (B.5)
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where Jn+1,n = u(n+ 1) p(n+ 1|µ)−uL p(n|µ). At steady state the left hand side

of this equation must equal zero, so the current, J must be constant. However, as

p(n < 0|µ) = 0 and v0 = 0, J−1,0 = 0 and hence this constant must be zero. This

implies that u(n+ 1) p(n+ 1|µ) = uL p(n|µ) so the solution to the homogeneous

version of equation (B.3) is:

dn =
1

u(n) p(n|µ)
. (B.6)

To solve the inhomogeneous equation, then, we look for solutions of the form

dn =
cn

u(n) p(n|µ)
. (B.7)

where cn is to be determined. Substituting this expression back into equa-

tion (B.3) gives

−uL
cn+1

u(n+ 1) p(n+ 1|µ)
+ u(n)

cn
u(n) p(n|µ)

= 1. (B.8)

The detailed balance condition, u(n+ 1) p(n+ 1|µ) = uL p(n|µ), then implies

cn − cn+1 = p(n|µ), (B.9)

so that cn =
∑∞

l=n p(l|µ) and the first passage time is given by

Tn,npeak
=

n∑
l=npeak+1

1

u(l) p(l|µ)

∞∑
m=l

p(m|µ). (B.10)
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Appendix C

Stability Analyses

Beginning with the mean field equations for the partial exclusion-like interaction,

ṅ+ = d n+
i−1

(
1− ni

nm

)
− d n+

i

(
1− ni+1

nm

)
− αn+

i

2
+
αn−i

2
(C.1)

ṅ− = d n−i+1

(
1− ni

nm

)
− d n−i

(
1− ni−1

nm

)
+
αn+

i

2
− αn−i

2
(C.2)

we can expand around a flat profile and take n±k = n0 +
∑

q δ
±
q exp(i q k) to

investigate the linear stability. In matrix form the resulting equations can be

written as

δ̇q =

d(1− n0

nm

)
(e−iq − 1) + dn0

2nm
(eiq − 1)− α

2
dn0

2nm
(eiq − 1) + α

2

dn0

2nm
(e−iq − 1) + α

2
d
(
1− n0

nm

)
(eiq − 1) + dn0

2nm
(e−iq − 1)− α

2

δq,
(C.3)

where δq = (δ+
q , δ

−
q ) as before. Defining the run length as the ratio d/α = r, we

can write the eigenvalues of this matrix as

λ±(q) = α

(
− 1

2
+ r

(
1− n0

2nm

)
(cos(q)− 1)

±
[
−r2

(
1− 3n0

2nm

)2

sin2(q) +
1

4
+

(
r2 n2

0

2n2
m

− r n0

2nm

)
(1− cos(q))

] 1
2
)
.

(C.4)

Again, one eigenvalue is always negative while one can be positive or negative.

In this case, however the condition for stability is no longer independent of q and
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r. In particular, we find that λ+ > 0 when

−2 r2

(
n0

nm

)2

− 2 r2 + 4 r2

(
n0

nm

)
− r + cos(q) (2 r2

(
n0

nm

)
− 2 r2

(
n0

nm

)2

) > 0.

(C.5)

Further, if we want to know only under what conditions on r and n0

nm
there exist

any positive eigenvalues, we can consider the simpler condition

−2 r2

(
n0

nm

)2

− 2 r2 + 4 r2

(
n0

nm

)
− r + 2 r2

(
n0

nm

)
− 2 r2

(
n0

nm

)2

> 0, (C.6)

which implies that

r >
1

2
(

1− n0

nm

)(
2n0

nm
− 1
) . (C.7)

For the more general case where the microscopic mean field equations are

given by

ṅ+ = d n+
i−1

(
1− 1

nm

∑
j

K+
j ni+j−1

)
− d n+

i

(
1− 1

nm

∑
j

K+
j ni+j

)

− αn+
i

2
+
αn−i

2
(C.8)

ṅ− = d n−i+1

(
1− 1

nm

∑
j

K−j ni+j+1

)
− d n−i

(
1− 1

nm

∑
j

K−j ni+j

)

+
αn+

i

2
− αn−i

2
, (C.9)

we can perform a similar analysis. Once again we expand around a flat profile,

this time to obtain

δ̇+
q = d δ+

q e
−i q
(

1− 1

nm

∑
j

K+
j n0

)
− d δ+

q

(
1− 1

nm

∑
j

K+
j n0

)
− α

2

(
δ+
q − δ−q

)
− d n0

2nm

(
δ+
q + δ−q

)∑
j

K+
j e

i(j−1)q +
d n0

2nm

(
δ+
q + δ−q

)∑
j

K+
j e

ijq (C.10)

δ̇−q = d δ−q e
i q

(
1− 1

nm

∑
j

K−j n0

)
− d δ−q

(
1− 1

nm

∑
j

K−j n0

)
+
α

2

(
δ+
q − δ−q

)
− d n0

2nm

(
δ+
q + δ−q

)∑
j

K−j e
i(j+1)q +

d n0

2nm

(
δ+
q + δ−q

)∑
j

K−j e
ijq. (C.11)
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Now, we can define a new function κ±(q) =
∑

jK
±
j exp(i j q). With this

definition, and the normalisation of K±j , we can simplify equations (C.11).

δ̇q =

d(1− n0

nm
− dn0

2nm
κ+(q)

)
(e−iq − 1)− α

2
− dn0

2nm
(e−iq − 1)κ+(q) + α

2

− dn0

2nm
(eiq − 1)κ−(q) + α

2
d
(
1− n0

nm
− dn0

2nm
κ−(q)

)
(eiq − 1)− α

2

δq,
(C.12)

For isotropic kernels, where κ±(q) = κ(q), it turns out we can write the

eigenvalues in a relatively simple form and, even without knowledge of the specific

shape of Kj, we can analyse the conditions under which there will exist positive

eigenvalues. We start by writing the eigenvalues of the matrix in equation (C.12)

as

λ±(q) = α

(
− 1

2
+ r

(
1− n0 (1 + 1/2κ(q))

nm

)
(cos(q)− 1)

±
[
− r2

(
1− n0 (1 + 1/2κ(q))

nm

)2

(1− cos(q)) (1 + cos(q))

+
1

4
− 1

2

r n0 κ(q)

nm
(cos(q)− 1) +

1

2

r2 n2
0 κ

2(q)

nm

2

(1− cos(q))

]1/2
)
.

(C.13)

The larger of these two eigenvalues will be positive if

−2 r2−r+
r n0

nm
− 2 r2 n2

0

n2
m

+
4 r2 n0

nm
+κ(q)

(
2 r2 n0

nm
− 2 r2 n2

0

n2
m

+
r n0

nm

)
> 0. (C.14)

Further, as K(x) is always positive, κ(q) will have a maximum at q = 0, where

κ(0) = 1, and so we can examine the simpler condition

−2 r2 − r +
2 r n0

nm
− 4 r2 n2

0

n2
m

+
6 r2 n0

nm
> 0. (C.15)

When this inequality is fulfilled we will see instability. Given that r must be

positive this means any isotropic density kernel will be unstable in the range

n0 ∈ [0.5nm, nm].

137



Bibliography

[1] M. E. Cates, D. Marenduzzo, I. Pagonabarraga, and J. Tailleur. Arrested phase
separation in reproducing bacteria creates a generic route to pattern formation.
Proceedings of the National Academy of Sciences, 107(26):11715–11720, 2010.

[2] M. J. Schnitzer. Theory of continuum random walks and application to
chemotaxis. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,
48(4):2553–2568, 1993.

[3] J. Tailleur and M. E. Cates. Sedimentation, trapping, and rectification of dilute
bacteria. Europhysics Letters, 86:60002, 2009.

[4] J. Tailleur and M. E. Cates. Statistical mechanics of interacting run-and-tumble
bacteria. Physical Review Letters, 100(21):218103, 2008.

[5] R. A. Blythe and M. R. Evans. Nonequilibrium steady states of matrix-product
form: a solver’s guide. Journal of Physics A: Mathematical and Theoretical,
40(46):R333–R441, 2007.

[6] M. R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zero-
range process and related models. Journal of Physics A: Mathematical and
General, 38(19):R195–R240, 2005.

[7] Bernard D. Non-equilibrium steady states: fluctuations and large deviations of
the density and of the current. Journal of Statistical Mechanics: Theory and
Experiment, 2007(07):P07023, 2007.

[8] C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry, and
Natural Sciences. Berlin: Springer, 2004.

[9] V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W.
Hell. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement.
Science, 320(5873):246–249, 2008.

[10] J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical xy model:
How birds fly together. Phys. Rev. Lett., 75(23):4326–4329, 1995.

[11] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism
in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett.,
17(22):1133–1136, 1966.

138



BIBLIOGRAPHY

[12] E. M. Purcell. Life at low reynolds number. American Journal of Physics, 45:3–
11, 1976.

[13] H.C. Berg. E. coli in Motion. Springer, New York, 2004.

[14] H. C. Berg and D. A. Brown. Chemotaxis in Escherichia coli analysed by three-
dimensional tracking. Nature, 239(5374):500–504, 1972.

[15] H. C. Berg and R. A. Anderson. Bacteria swim by rotating their flagellar
filaments. Nature, 245(5425):380–382, 1973.

[16] H. C. Berg. The rotary motor of bacterial flagella. Annual Review of
Biochemistry, 72(1):19–54, 2003.

[17] H. C. Berg. Motile behavior of bacteria. Physics Today, 53(1):24–29, 2000.

[18] S. H. Larsen, R. W. Reader, E. N. Kort, W. Tso, and J. Adler. Change in direction
of flagellar rotation is the basis of the chemotactic response in Escherichia coli.
Nature, 249(5452):74–77, 1974.

[19] R. M. Macnab. Bacterial flagella rotating in bundles: a study in helical geometry.
Proceedings of the National Academy of Sciences of the United States of America,
74(1):221–225, 1977.

[20] L. Turner, W. S. Ryu, and H. C. Berg. Real-time imaging of fluorescent flagellar
filaments. Journal of Bacteriology, 182(10):2793–2801, 2000.

[21] H. C. Berg. Marvels of bacterial behavior. Proceedings of the American
Philosophical Society, 150(3):428–442, 2006.

[22] M.J. Schnitzer, S.M. Block, H.C. Berg, and E.M. Purcell. Strategies for
chemotaxis. Symp. Soc. Gen. Microbiol., 46:15–34, 1990.

[23] R. Erban and H. G. Othmer. From individual to collective behavior in bacterial
chemotaxis. SIAM Journal on Applied Mathematics, 65(2):361–391, 2004.

[24] P.-G. de Gennes. Chemotaxis: the role of internal delays. European Biophysics
Journal, 33:691–693, 2004.

[25] M. A. Rivero, R. T. Tranquillo, H. M. Buettner, and D. A. Lauffenburger.
Transport models for chemotactic cell populations based on individual cell
behavior. Chemical Engineering Science, 44(12):2881 – 2897, 1989.

[26] D. A. Clark and L. C. Grant. The bacterial chemotactic response reflects a
compromise between transient and steady-state behavior. Proceedings of the
National Academy of Sciences of the United States of America, 102(26):9150–
9155, 2005.

[27] Y. Kafri and R. A. da Silveira. Steady-state chemotaxis in Escherichia coli.
Physical Review Letters, 100(23):238101, 2008.

139



BIBLIOGRAPHY

[28] J E Segall, S M Block, and H C Berg. Temporal comparisons in bacterial
chemotaxis. Proceedings of the National Academy of Sciences, 83(23):8987–8991,
1986.

[29] D. S. Dean. Langevin equation for the density of a system of interacting Langevin
processes. Journal of Physics A: Mathematical and General, 29(24):L613–L617,
1996.

[30] J.K. Parrish and L. Edelstein-Keshet. Complexity, pattern and evolutionary
trade-offs in animal aggregation. Science, 99:9645–9649, 1999.

[31] G. Theraulaz, E. Bonabeau, S. C. Nicolis, R. V. Sol, V. Fourcassi, S. Blanco,
R. Fournier, J.-L. Joly, P. Fernndez, A. Grimal, P. Dalle, and J.-L. Deneubourg.
Spatial patterns in ant colonies. Proceedings of the National Academy of Sciences,
99(15):9645–9649, 2002.

[32] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic.
Interaction ruling animal collective behavior depends on topological rather than
metric distance: Evidence from a field study. Proceedings of the National Academy
of Sciences, 105(4):1232–1237, 2008.

[33] J.D. Murray. Mathematical Biology, volume 2. Spinger-Verlag, New York, 2003.

[34] E.O. Budrene and H.C. Berg. Complex patterns formed by motile cells of
Escherichia coli. Nature, 349:630–633, 1991.

[35] E.O. Budrene and H.C. Berg. Dynamics of formation of symmetrical patterns by
chemotactic bacteria. Nature, 376:49–53, 1995.

[36] D E Woodward, R Tyson, M R Myerscough, J D Murray, E O Budrene, and H C
Berg. Spatio-temporal patterns generated by Salmonella typhimurium. Biophys.
J., 68:2181–2189, 1995.

[37] M.P. Brenner, L.S. Levitov, and E.O. Budrene. Physical mechanisms for
chemotactic pattern formation by bacteria. Biophys. J., 74:1677–1693, 1998.

[38] R. Tyson, S.R. Lubkin, and J.D. Murray. A minimal mechanism for bacterial
pattern formation. Proc. Roy. Soc. Lon. B, 266:299–304, 1999.

[39] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, and N. Shigesada.
Modeling spatio-temporal patterns generated by Bacillus subtilis. J. Theor. Biol.,
188:177–185, 1997.

[40] S. E. Espiov and J. A. Shapiro. Kinetic model of proteus mirabilis swarm colony
development. Journal of Mathematical Biology, 36:249–268, 1998.

[41] O.A. Igoshin, A. Mogilner, R.D. Welch, D. Kaiser, and G. Oster. Pattern
formation and travelling in myxobacteria: Theory and modeling. Proceedings
of the National Academy of Sciences, 98:14913–14918, 2001.

140



BIBLIOGRAPHY

[42] O. J. O’Loan, M. R. Evans, and M. E. Cates. Jamming transition in a
homogeneous one-dimensional system: The bus route model. Physical Review
E: Statistical, Nonlinear, and Soft Matter Physics, 58(2):1404–1418, 1998.

[43] Z Burda, D Johnston, J Jurkiewicz, M Kamiński, MA Nowak, G Papp, and
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