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Abstract

Let A be a normal operator on a complex Hilbert space,ﬂand let o(A)
and Tp (A) denote the spectrum and the appro:dmaté point spectruﬁ:
of A respectively. Then, o(A) = T {A) , and the Gelfand- Naimark
Theorem proves that there exists a 1-1 correspondence between the set
of characters on C"(ﬁ) and o(4) (= ?l-f (A) ). The approximate point
spectrum turns out to be the relevant part of the spectrum in the
study of characters on the dL algebra generated by an arbitrary
operator a : if ¥ is a character on C‘(O.)l then P(a)e Oaf ta) [9].
Chapter I of the present thesis is devoted to the definition and
study of the approximate point spectrum of arbitrary élements of
c- algebras,

For the study of cﬂaracters on GL aigebras generated by more tﬁaﬁ
one opérator, the appropriate generalization of the approximate point
spectrum turns out to be the concept of the joint approximate point
spectrum. In chapter IT we study the .latter concept.

In chaptertIII the results of the two previous chapters are used
to prove a rational functional calculus for the joint approximate
point spectrum of a commuting family of operators.

Chapter IV is concerned mainly with the applications of the methods
developed in the previous chapters to the theory of characters and
finite operators.

Finally, applications to various topics (such as Rosenblum’s

theorem) are scattered throughout the present work.
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Chapter. I
General Theory of the Approximate Point Spectrum
§1. Definition and elementary properties of the approximate point
spectrum,

1.1, Introduction~ In this section we recall certain_results
and establish certain others which will be repeatedly used in our
later work. In order to avoid unnecessary repetition we state
here that, unless otherwise stated, every C'-algebra under consideration

. in this work will be assumed to contain .an identity ,In
particular, any C.—subalgebra of a given unital C'-algebra will be
assumed to contain the identity element of the given C.-algebra.

If &4 is a (wnital) C-algebra, and (@), p is a family of
elements of A , the (unital) C:subalgebra. of cﬁgenerated by
the family /QA Jyen Will be denoteld by C* ( /QA),\GA) ; when AN
is finite, say A={%--,n} , we shall also use the notation
Cc*(a,,- -, a,).

The state space of a C:algebra J} w111 be denoted 'bjE/od);
it is a w'-compa.ct convex subset of the dual space- of c/¢ « The
set of extreme points of E/f/d)(i.e. the set of puré stétes of ‘#)
is denoted by@(f/d). Since by our convention t'/d'is implicitly
assumed to be unital,' the Krein-¥illman theorem shows that every
state of w@t is a v:—limit of finite convex combinations of pure
states of J;.

If £ is a pure state of r/d, the set
M= [YecR 7Y o}
is a maximal left ideal of%f' » and conversely, every maximal left
ideal of & is of this form for some pure state of ¥ [22; Th. 2.9.5. ].
the

We note incidentally that by Cauchy-Schwartz inequality for

positive linear functionals, we also have
c/{{ = [ Ye A Plrf) =0 (\/zevdJ} .

1



"Ch. I, ¢l. 1.2.- 1.2.2

1.2. The Approximate Point Spectrum- Let A be a bounded linear
operator on a complex Hilbert space J¢ . The approximate point spec—
trum of A ywhich we shall denote by %'P(/Q), is defined to be the

set of complex numbers /\ with the following property:
Veso, Ju st vel, 1704 Il Ar-rviig €Nl

Concerning the approxi.mé.te point spectrum, the following

proposition is proved in [41] :

1.2.1. Proposition~ For A€ @L(I),we have

Gp(A) = fAcoth) - CTAN(A-AT) # Ca}
{ Aeain)y « BR(H)(A-XD) #BELH)]

where O(A) denotes the spectrum of A (which is the same relative

toBL(1d) a.ndC?A) )e

We remark that the condition AE€U(A) is superfluous, since the

*
condition C*(A )(A-A1) $C () autometically implies that AeC ().

Using proposition 1.2.1l., we may now define the approximate

. 4
~point spectrum of elements of arbitrary C-algebras as follows:

l.2.1.1. Definition- Let cx¢be a (unital)C.-walgebra, and let aead’-
‘The approximate point spectrum of @ is the set
[ AeC . dd(a-Al)%*Ud}'
We then i'lave the following analogue of proposition 1l.2.1, :

» »
1.2.2, Proposition- Let Hve a C-algebra, and let & be an

element of y4. Then
* C”' }
G (a) = fAe : Cla)ca-n) ¢ C @
2
(: { Neala) . Clay(a-M) -’»"Cm)} ) -
L
Remark- Note that since by our general comvention, C o) is
assumed to contain the identity element of {Jd , the symbol < (Q)

. * ()d‘
may be used to denote the spectrum of a relative to C(a)or

without ambiguity.



: 1.2.2.1.
Ch. I, sl,

Proof- Let /\Gg;(a)az_:d suppose on the contrary, that Ci(a)(a-/\l) = C;a)_
Then /= b(@-X1) for some b¢ C;.d), so that Iér/d(a-,\l) ; but (‘/d(ﬂ—/h)
is clearly a left ideal ofuq', hence od/G-Jl):V%which
is a contradiction. Thus . C?a)} o)
% (a) € freC . Cacan) ¢ o
Conversely, let Ae ?‘“'9‘1(;) and suppose on the comtrary that
ﬂfa‘/{’) = 74 . since C(a )fa-Ar1) is a proper left ideal in C*(O)‘
there exists a maximal left ideal e/ of C 74 ) such that o/ 2
C*(a)(a-/\l) ; then, there exists a pure state 2 of C;a)such that
A = [{?Gf\i(a} ; P(7'7):o}.
Extend P to a pure state Fofud— o Since c/dfo-/\l) = Od» there
exists an element & ofr/¢such that /= 6/a-A1), Then, applying

the Cauchy-Schwartz inequality to (;v we have

9 ~ 2
/ = /FN(/)/ = /P/b/a—/\))}
£ pUb8’) f ((a-N)(a-)
= £ rbs*) P( (a-4)'a-1)
Q

gl

since @-A GML( .

The contradiction shiws that

o (a) D {Aef; C;a)(a-)\l)_tC*(a)}. A
ap _ pel

1.2.2.1. Remarks- (a) Suppose that(® is any C*-algebra containing
C'(a) (we assume as usual that the identity element of (fa)is the
same as that of @). Then essentially the same argument as that
used above shows that
oa-P(a) - {Afg ! 8(0-/\‘) #CB} K
in other words, the approximate point spectrum of an operator is
independent of the Ctalgebra containing it,

(b)=- Later on [ Theovewm 3.3.) we shall give other equivalent
characterizations of the approximate point spectrum which will '
show, amongst other things, that when cﬁ: Qif(:—ﬁ)for some Hilbert

3
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Ch. T, &1.
space /¢ ,the present definition coincides with the usual definition

of the approximate point spectrum as was given in 1 2. o
1.2,2.2. Corollary- Letcff be a C—algebra and let acH .Then, /legP(a)
e

»
if and only if there exists a pure state £ of ((a) such that nwg = AL

where /] and /[ are the associated irreducible representation and

cyclic vector, respectively.
Proof'- Necessity: If /\eom}, then C(al (2-A1) -76(\/“}, so the

left ideal (“fa)/a-m) is contained in a maximal left ideal dfof C /a /

given by

N = {1@(‘%/ : f’(r'%}:o}

where PFGD{(/O)) Hence
/ 77007 - A/‘// - £ I7/a ME 77 (a-NE >

e (ta-n'a-4) ) s, 4

!

-

el a-2)ta-2))

L

0.

3!

since &-A F% ; hence ﬂ/a)f /\J{
Sufficiency: If /\¢O‘/a} there exists O€ CY‘” such that ba@-Ai=l;

if now 77 is any 1rredu01b1e representation of C(a) ,Wwe have

/= Nci)=nrb)(n@-A1)
hence /\¢ O (N@). In particular, 77(4)5‘(,1"/}_{ for any non-zero €

For Hilbert space operators the necessity part of the above

corollary may be found in £aj
Later on [ cf. &3 ] we shall give a more general treat -

ment of the behaviour of < 2p

(a2) under representations.
We close this section with the following proposition which

relates the approximate point spectrum to the theory of charact

EIr'Se



Ch. I, s1. . R B

1.2.3. Proposition- Let d¢be a Cealgebra, and let aeo‘#. r ¥
*
is @ character on (@), then Pra) € U'P(a).
Proof- The proof in [ 4, proposition ¥} pay be adapted to the

more general presentcase, using proposition 1.2.2. . Ve omit the

details,
A‘'more general result will be proved in chapter II, proposition 1l./.

Let howy4be a C:algebra, and let @ be an arbitrary element
of C/¢. The above proposition suggests that in studying all the
characters on C?a),we sheuld begin by choosing a point A in Oa'P(a/
and determine whether there exists a character ® on Cfa)such
that $¥@):). In certain special cases, corollary 1.2.2.2. may be
used to reduce the original choice of A to a point in the point
spectrun of @ (i.e. the set of eigenvalues of Q ).

To be more preclse, suppose (2 is an operator such that for
every irreducible representation’ of C/a) (or of %) y N is
an operator of the same class; examples of such operators 1nc1ude
the class of all hyponormal 0perators ( a'a > aa” ), the class
of all paranormal operators (a" - 2/’& a+ /’ 2o T VI'yo),
etc. « To fix the ideas, let @ be hyponormal. For any irreducible

representatlon T of C/a) on a Hilbert space J¢ » We have
rne)* e - N’ rca)”
ncaa - aa") > o
since Q'@ ) aa” and Tl is order preserving.
L
Hence 7]¢a)is a hyponrmal operator on ,7¢
Let now /\G%-P (@) ; by corollary 1.2.2.2., there exists a pure
state P of C‘(a) ,with the corresponding irreducible representa-
tion 7] and cyclic vectorf such that
r r
2 = A
nf’ (@) 5§° A r

so that /\ is an eigenvalue of the hyponormal operator 7/70 (a),



¢hi I, s1.

: | . |
Suppese now that there exists a character 'Y on C(I},/a)).such

that

?\f’('nfla) ) = A

. *
then, defining the positive linear functional ® on C (a) by

h @(b) :'Y(ﬂf/b))' ( VbEC?a))
we have
Cp(:) = '\[/(nm)- Y1) = |
(aa)-ﬁf(n{aa)) “V(nzcu @) = MI (H
({’(aa)~“f(77(a0 ")) = 'Y(W(a)”(a)) (W)
2
!‘P(a)l = ,’T(”(O’ ){ : (1)
Hence, for each be C?(a) , we have ' .

/ ‘F(ab)._ ‘F/a)‘tp(b)/ / ‘1”((0—/\')5)/

2 Slra-aycan ) C6T)

o -
by (i), (ii), and (111) gbové. i{ence,
Peab) = Pa) w(b) (vbe Clas)
Similarly, we have |
Pea’b) = Ped) eeb) (Vbe Claw)

Thus - » ‘F is a character on C'(a) .

Thus, we have shown that , if‘ every point in the i)oint spectrum
of an arbitrary hyponormal operator gives rise to a character,then
the same _is true of every'point in the approximate pﬁint spectrum
of an arbitrary hyponormal operator.

The above method, as well as alternative methods, will be used
in chapter IV in the study of characters on C.-algebras generated

by certain classes of operators,
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“é2. flquivalent Characterizations of the Approximate Point Spectrum
The purpose of this section is to obtain certain characterizations
of the approximate point spectrum, and to show, as a result, that
the to definitions given in 1.2, and 1.2,1.1. coincide in the
case of bounded linear operators on a Hilbert space.

We shall begin by recalling certain definitions.

Let ¥ be a topological vector space, and let L ve a non-empty
subset of X .

We say that L is absolutely convex if whenever {l. s, ln} is
a finite set of elements in L ,and {)t‘ e A“ } is afinite set
of complex numbers with i- '/\J'i £1 , we have Z“ /\J' lj' el .

The linear subspace ofF_‘,? spanned by X m.;.i‘ be denoted by Span (£);
the closed linear subspace of * spanned by £ is denoted by [£]. _

Let V4be a C.-wa_lgebra, and let a604'. “A bounded linear functio-

nal f on (ydis said to be left-multiplicative with respect to Q

if* the following condition is satiafied:
f(ra) = Faxrfca) (Vzeoq')

Similarly, -(: is said to be right-multiplicative with respect to

@ if the following condition is satisfied:

-f(ax):-F(‘t)-F(a) (\'/16&4’)

Similar definitions apply if 7( is a bounded linear functional

on C*(a) .

2,1. Lemma~ Let f be an absolutely convex subset of a Hilbert
space & such that ¥= [£ ] ,and 1et ACBE(X). Then, A is

positive if and only if

AL L> o (viel) (D

Proof- Necessity is obvious.
n
Sufficiency: Suppose (i) above is satisfied, and let Z /\J LJ.

az
be an arbitrary finite linear combination of elements of _Z’

where



/\J.€ g ) LAGLO | <<‘.=‘)5‘r“"'“)--
n
Assuming, without real loss of generality, that Z l)\d'l>u,'we have
. 4=
o = . A
Salo= 2wl () e
— T8 : ) "
()'\ 33\ Rz

Z I)\él
J=1

= i\%x\(irk\“k>

e k= ’
where
: [ = —“—-)iB ( k:\,z,---,n)_
n k Sy .
Since Z”TR l =] and 7 J;x absolutely convex,it follows that
R=1 n
. ' ; let [: Pkl .
i: by € £ k%' ko
Then ) )
LA ( %:'Aéla',), AZ xa\‘é p =
R Jogn), Y >e
= 4=
= "\ 2
(D)) 2aLt >
e
o)

by (i). Hence

<ALLS o (Vie s (2)) (1),

Finally, let X be an arbitrary element of ¥ . There exists

a sequence ln of elements of Spon (Z) such that 7 = b by

n-»°0

Hence

Zﬁi,z> = fn ALY > > 0

n 5 ©o )

8



Ch, I, 462, ' S 2.1.1.-2.2
. Therefore A is positive,

2.1.1, Corollary- With the notations of lemma 2.1., let A be a

complex number such that
P QE(IY) (A- A1) # BL(I) (i)

(i.e., AE g;/ﬁ) in the sense of definitionl.2.1.1,).
Then, given a positive number € there exists a non zero element l

of .-Z" such that

9 2
Ja-an)bl g e Nl (ii)

Proof- Let A satisfy (i), and suppose, on the contrary that (ii)

does not hold. Then there exists a positive number € such that

3 p
NA-ADLE > € 1IN (Vied)

C((A=AD(A-A1) -€1)L 1D o (viel) .
By lemma 2,1., this implies that

(A*-XT)(A-)1) 2 €1,

. . . .
so that the positive operator {A - ’\) (A-A ) is bounded

below, hence is invertible; let B bve the inverse. Then

BE(H)(A-2) D BL(IY)( BCALII)(A-A1))= GBI

contradicting (i).

This completes the proof.

2¢2. Theorem- Let 0/4 be a C'-algebra, let aec/f; and let e Q:

(a )- The following conditions are equivalent:
(1) <‘/4‘(a-'/“)# (‘/¢ (ieee, /\eg-/a) in the sense of definition/.2-II).
P

(ii) There exists a pure state P of & such that

2
Pta)=A 4 Pa):= IA] .
(iii) There exists a state -F oszf' such that

2
£Fra)y=A & Fca'a)= 12",



Ch.T, §2. 2.2.1.
(iv) There exists a state ‘F of rjlisuch that 4‘ is left mult -

iplicative with respect to @ w1th fea)- =) '
(v) There exists a pure state P ofu¢ such that £ is left

multiplicative with respect to @ with Pla)=/4 .

(b) - Let A be a bounded linear operator on a Hilbert space ]q',
let ,Zo be an absolutely convex subset of J¢ with ,7¢; [of ] ’
and let A¢ g .

The following conditions are equivalent:

(1) e % (A ) in the sense of i.2., i.e.,

Veso Jx st xeJ¥, x#o, ¢ I|(A-ADx 1€
(i1) o
Z € 111l
Veso 37 st Yek, d70,9 NA-21) 31 £
(c)<— With the above notatiops, suppose t/d: @/(Jd),and a = /4 .

Then, the conditions a(i)- a(v), b(i), and b(ii) are all equivalent ..

We defer the proof of the above theorem to chapter II, vhere a more

general result will be proved; c.f. theorem l.ke .

* - V¢
2.2.,1. Corollary- Let ddbe a C-algebra, and let Q@é€c’t, Then,

the approximate point spectrum of @ is a compact subset of C .

Proof- It is well known that %-P /Q).¢¢ [ 27; problem 63 ].
In order to show that O" (A ) 1is closed, let /\ be a

sequence of elements of U (0.) ,and suppose that /\ - A ; by

P
2.2.a(iv), there exists a corresponding sequence {; G /ﬂ)

such that

{:(xa): /\nﬁ(t) ( VeeH, Vo).

by the wt-compactness of E/Vd) there exists a subnet {n of {

and a state ‘ﬁ of‘y4 such that
£ (wtlimt),

It is then easily verified that

10 -



Ch. I, 82,

fera) =feofta) = p e, ( ved)
hence, A€ OQ—P (o) '-lﬁy theorem 2.2. .

Ve remark that for.bounded linear operators on a Hilbert space,
an elementary proof of th\e.above corollary may be given; c.f. [ 27,
problem 62].

The question now arises as to whether the existence of a self-
adjoint linear functional -F which is left multiplicative with respect
to @ with {(a)‘:,\ implies the existence of a stateg with the same
property. In some special cases, the answer is in the affirmative.
For example, if @ is an isometry, and if a self-adjoint linear
functionaI is left-multiplicative with respect to Q@ then, an easy

' ) *
argument shows that ‘F' is a character onC (0.) . However,

C*ta)

we are unable to provide an answer in the general case.
Ve close this section with the following remarks concerning

theorem 2.2. . _

‘ (i)—- Throughout the statement of theorem 2.2., the ’criplé (r/% E(P/d)’
O)(Od))may be replaced by the triple ( C*(a), E(C?a)}l O)(C?a)))
without changing any of the conclusions; further, each condition in
the resulting theorem will be equivalent to the corresponding
conditi.on in theorem 2.2.; e.g., the existence of an -Fe E(Cr(d)) with

-f('(a) = 1((1.) -f(a) =z /\q((’t) (VIGC*(Q))

is equivalent to the existence of a Q¢ E(od,) with
Yta) = §eurye) = ) Ga) (vieed) |
c.f., the proof of 1.2.2. .
(ii)- Let A€o (a) ; by theorem 2.2., there exists -F@ E(&da)
ap

such that

1
£eoy=Ar & f(arar=[A].

Since Wt Closure

there exists a net)C in E(od) such that each {is a convex combination
o .

‘of pure states:

11



Ch. I, é3. : ’ 3.1, '

_ ; £ so 3 A=
£ - gxéﬁa (gée@w,xéz 2 )

and such that
6,9 :
ol (w-1limit)
It is natural to ask whether the pure states ‘E. may be chosen
p) .

so as to satisfy (i) above. This questdon will be answered in §5..

& 3+ Representations-
In this section we examine the behaviour of the approximate
»
point spectrum under representations of the underlying C-algebra,

In particular, we obté.iri an exten¥{ion of corollary l.2.2.2. .

3.1. Proposition- Let dﬁbe a C.-ﬁlgebra, and let dé‘yeﬂ‘,and
Ae 02 o Suppose that there exists a non degenerate represen-
tation 0] of (')4‘ on a Hilbert space J# such that A€ gp(ﬂ(a)) -
Then Ae o (a) -
ap _ .
Proof- Let A g CZ“P(T'!(Q)). By 2.2.a(iv), there exists a state 'F
of @BL (J¢ ) such that | |
finy)=2A ,

and Cianm) = AfA) ( VAe &L (%)),

Define a linear functional on&ﬁ— by

G(x) = (fom ) (VrecH) .

Since «F is positive and Y] is a sthomomorphism, it follows that %
is positive, Further since V] is non degenerate, we have N ()= I )

so that

)

%(l): nf(nm): v((l):l

12



Ch. I, §3. o : | 3.1.1.

hence %G E((‘}d) .

Now, for each X in Ji,we have
4(xa) £ (nexay)
= £ neo @)
A Sinew)
Aoy

H

1]

tt

~ and

%(Q) = 4(“(&)) = A
hence by 2.2.a(iv), we have. /\ € OO'P @) .

 3.1.1. Remark- With the above notations, suppose -Fis also
right_multiplicative with respect to IM(a) . Then, % is also

right.multiplicative with respect to Q.

The following example shows that if A € g, (@) s then it is
not neéessarily the case that /\6 gp(n(a)) for any arbitrary
| representation of 6)4‘-.
Let Jst be an infinite dimentional Hilbert space, and let
kf(]‘#} be the two-sided ideal of all compact operators on /2

Let ga[fé [J¢} 'denote the corresponding Calkin algebra:
Gtk (K= GLiw JFer)

Finally, let /7 be the natural homomorphism of &Y (FE) onto

Zalh (JL) aefined by
Ara) = A+ ZLT) ( Ae®BLii) ).

Then, for any compact operator A4 in @f (JY ) we nave TI(A)=0,

so that g (1A= {of .

Thus, it is sufficient to take any compact operator with

non zero approximate point spectrum to obtain the desired example.

On the other hand, no such phenomenon can occur if [] injective.

Vie need the following lemma:

13



Cho I’ é}. . . A3.2._v 3.3'.
3.2, Lemma~- Let 2 € 04— , and let Tl be a non degenerate repre —

sentation of vd « then,

My ) = n(CT@)

-
Proof - For each polynomial P (a, o’ ) in Aand Q& we have

. > :
N ( bta,a))= P, n@")
hence, by continuity, .
*
n(Clm) ¢ Clnw).
On the other hand, NM( (%a) ) is a C-algebra [22; Ch.1, Cor 12.3. ]

and contains N (a ) , hence
*
n(cv) 2 C (n@)

This completes the proo'f.

) #
3.3. Proposition- Let 0‘4‘ be a C-algebra, and let aec}fr , and

Aco (a) . Suppose Il is a non degenerate representationof cﬂ'

on a Hilbert space J& such that

Cta) o ker 11 ={o}

Then, A€ T (n@)-

P

Proof- Suppose not; then, there exists an operatoy 8 in

C*(n(ay) such that

B(nwy-Av) =1 ;

by lemma 3.2., B = N (b) for some be C*(Q) . Hence

1

neb) (n-at) =1,

i.e.,

1
—

n(b-i1))

since b(@-Al)e C%a), this implies that

ba-py) =1
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contredicting Ae O&P (@) .
This completes the prcfof.
3,3,1. Corollary- With the notations of proposition 3+3., Suppose

N is a faithful represéntation -ofc)d . Then /\e%-P(r\(a)).

Proof- Since T} is faithful, the condition
A ke - §
CHta) Oy Rer T = 10

is trivially satisfied.

3,3.2, Corollary- Let A ve a simple Clalgebra, let Q€ dZL,
and A 6(]2 . Suppose that ] is a non degenerate representation

of c)d-. Then

- Gy (2) & /\G"&F(W’) :

Proof- Since c)4 is simple, every representation ofc/d is
_necessarily injective. The result now follows from proposition

3.,1., and corollary 3.3.1l. .

3.3.3. Corollary- Let Tl be the universal representation of

’ »
a C-algebra c)4‘on a Hilbert space J¥ , and let a € od , end

/\§§\ .

A necessary and sufficient céndition that A€ Oap (a) is

that /\ be an eigenvalue for N (&) .

Proof- Let /\G%‘ (@) . Since the universal representation of
C/¢ is faithful, corollary 3.3.l. implies that /\ ¢ Oq‘P('ﬂ(QJ).

Hence, by 2.2.a(iii), there exists a state -F of ﬂ(CA) such that
Linwy) =2, (h

‘ 2 .
and ‘C(n(a)*“(a)): 1Al ().

On the other hand, every state of l']{(f/'A) is a vector state

[ 35; 1emma 4.2, 1; " hence, there exists a vector J in JE

15
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with ||D Il z1such that 1C: Wy . Then,

| (nea-an o= £ (M@’ AD (w-a1)9, 9 5

- F((n(aﬂ AN ( N@)-A1))

=0
by (i) end (ii).
Hence, A is an eigenvalue for T (Q) .
Conversely, if /\ is an eigenvalue for Tl(&) , then in particul -
ar, )\ggp( T(a)); hence, by proposition 3.1l., A € (cj"P(a) o

This completes the proof.,

3,3,3,1, Remarks- (i) All the results of this section remain
valid ifd4 is replaced by C?a) , and T] is replaced by & non -
degenerate representation of C'{a) ; cef., the remark at the end
of §2. .

(ii)- The above corollary is ‘the generalization of corollaiy
1.2.2.2. promised at the beginning of this section. .

(iii )~ The first explicit example of a representation of .a.
C*-walgebra for which the conclusion of corollary 3.3.3. holds ‘Was
given, in another context, by S.K.Berberian as follows:

Let /& be a separable Hilbert space; there exists a Hilbert
space :k and a faithful representation‘vof @Z’(Jq!) into @r/]‘)
such that, for each A€ BL()

T (A) = q?;(nm))_—op/nm}) ;

c°f¢[5; §3 ]o

It may be proved that, if A is normal, quasinormal, subnormal
hyponormal , paranormal, or normaloid,then /7(A ) belongs to the
same classes of operators, respectively [. 34; theorem 1 -J. Thus,

for Berberiansrepresentation, the content of the remark at the

16
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end of §1. applies to these classes of operators.

&4, The ultraweak closure of %/4 .

Let cx4be a von Neumann algebra(V.N, algebra) , and let 14604;
and /\ech(A). Since the left ideal r/d//q-/\l) is proper, its norm-
closure is again a proper left ideal. In this section we examine
| the corresponding property of Cﬂﬂ(ﬂ—/\]} with norm-closure
replaced by the closure in any one of the weak, ultraweak, strong,
and ultrastrong operator topologies. As a rgsult, we give necessary
and sufficient conditions for the existence of eigenvalues for
bounded linear operators on a Hilbert space.

We begin with fixing some notations and recalling certain results.

The weak, ultraweak, strong, and ultrastrong operator topologies
will be denoted by T , gw, T -, and ¢, , respectively. For the
properties of the above topologies, we refer to | 21; Ch, I, $3 1.
The norm topology will be denoted by T, .

If o/’ is a subset of @f(»ﬁ') , the clbsure of Mrin
the topology z_"J will be dehoted by C/-I-/Tté. .

For Ae BL(JY), let

IS
o VIeZ } .

and,

x. £ s {feld

Then — T

¥ n

rte {en )"

The right support of /4 is defined to be the projection Q onto
% . @ is the smallest projection with the property A=AG.

The right support of A is denoted by Supp A .

4.1, Lemma~- Let A be a V.N. algebra acting on a Hilbert sPace.7¢;

let Ae (/d , and let (B be the V.N. algebra generated by A .

17
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Then SwppRe B .

Proof- Let Q =swtp A, let T be an arbitrary element of (B/
where, ®'is the commutant of @ , and let Y be an arbitrary point
in Yanfae ﬂ* ; thus, | | .

M- A*f for some § € Jd .
e Th - TAE =ATS,
since Te @B ; hence .
T( vange Iq*) _C. yange H )
so, by continuity,
T (rmge Q) €

i.e. T is invariant under the raﬁge of Q.

yangé Q ,

On the other hand, since Te CBl implies Té @ ’ , the same
argument shows that T’is also invariant under the range of Q

It follows that / commutes with Q . Since | was arbitrary, it
follows that () commutes with (8, i.e., Q e A}" - @ .

This completes the proof.

4.2. Lemma~ Let A and 8be bounded linear operators on a Hilbert

space J¢% .

(a)- The following conditions are equivalent:

i)-
Y mn%eAangeB;
(ii)- There exists a bounded linear operator C on J¥ such that
A = 6C .
(b)- Suppose A and 8 are positive, and A< 8 . Then, there
exists ) e (BX(J¥)such that
) A% DB* » em
(ii) Suﬁo D¢ Supp 8

If A and B belong to a V.N. algebra, then so does [ .

18
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For the proof we refer to [ 23; Th. 1 ] and [ 21;.Ch. I, §1, lemma 2 ].

The following example shows that the T w ~closure ofc/4/q need
o

not be proper, in general,

4.3, A Counter Example- Let 174: @[/JQ’), where J? is an infinite -
)
dimentional Hilbert space, and let A be a non invertible
positive operator with dense range. Since for a positive operator

the spectrum, and the approximate point spectrum coincide, we have

An A
M. AL

Then,y{{is an ultraweakly closed left ideal of'.-/¢ ; hence[?l; C"'I, $3]

Let

there exists a projection /Din t/¢such that
M - AP
Since u¢/4 C Vd F , ‘there exists anoperator B in ﬁ"such that-
A= BP _; since A is positive this implies A = Pbﬁ . Hence,
" we have
Yomge A C range 'D,
so that, since A has dense range, and the range ofPis closed, we

get
Yarge P = J ¢,

i.e., P: I « Therefore

An A
¥e remark that, for the purpose of the above eiample , it is
essential that ,J¢ be infinite—dimen.sional; cefe 4,5,2.3,1(ii).
Later on, we shall construct a whole clsss of operators for which

the above phenomenon occurs; c.f. corollary 4.5.2.2. .

19
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L.L4.Proposition- Let (‘/4be a V.N.alge}b'rav acting on a Hilbert
space J¢ , and let /46% . Then
—_—c —_ — T
AR AR AR AR
proof- Since (A A % is an ultraweakly closed left ideal, it
is weakly closed[%/; ¢h.I, $3, (o~ 3], Since,on the other hand,

Tw . .
V4ﬂ is the smallest weakly closed left ideal which contains

y4ﬂ , we have

- T —r
oTw w
AA 2 A4 (1) .
Also, T - convergence of operators implies a-convergence, so
. ow

we have the reverse inclusion in (i). Hence

Zw

Tow q A
AA _ AA (3i) .

Next, for convex subsets of y¢ , the T (resp. Z,,, )-closure
o

is the same as the T, (reSp. T )-closure [ 21; Ch. I, &3 ];

os

since 04/9 is obviously convex, it follows that
—_— =T ‘
AA 2 AA T e
—T - T
74/4 ” = yd” .

and,
(2V]

(iv), -
The result now follows from (ii), (iii), amd (iv).

The following result is probably well-known, but we can find

no reference for it, and therefore include a complete proof.

4.5, Proposition- Let Vq{be a V,N,algebra acting on a Hilbert

sPacé J¢ , and let ﬂe% . Then
AB Y- AQ ( Iz w,a,5,55)

where, Q = Supp A .

Proof- By proposition 4.k., it is sufficient to prove the

20
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result for the case T. = T .
4 . r a ow

Since 04/? 7« is an ultraveakly closed left ideal, there

exists a projection Pin J4’such that
Cow 4

In particular, AA c odp ,s0, there exists anelement B in

04‘ such that A= BP , i.e., A= PB" ; hence

Yange A* C vange P
so. that

vange G C vonge P ]
ie., < P . |

On the other hend, since A = AQ , we have
Ah = AAG S A ;

since 0‘4P is the smallest Zc.;w— closed left ideal which contains

Ji/q , and since U¢Q is a T, - closed left ideal, it follows

.
4
P

that

AP c A,

Hence

p - BQ
for some Beyd' ,i.e., /Déa .

This completes the proof.

4.5.,1. Corollary- With the notations of proposition L4.5., let

68 be the V.N. algebra generated by /4 » Then
T

@ﬂ d-: @6 | (a/'zw,aw,s,a:),_

Proof- By lemma L4,l,, we have Q € @ « A similar reasoning

as that of the above proposition now gives the result.
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4e5.2. Theorem~- Let d‘%be a V.N. algebra, let A € A and let
Q = SWpp A .

A necessary and sufficient condition that either of the two
conditions (i) and (ii) below hold is that Q be a non- trivial
projeétion (i.ee, @+ I ) :

(1) o |

(‘/d” J¢ &#. (}j=0,0om,50s)

(ii) . |
@/4 / #@ '(J:o;a‘wlslo's).

In particular, (i) and (ii) are equivalent.

Proof- (i)- The necessity follows from proposition 4.5. .
To prove the sufficiency, suppose Q # I , and assume, on the

contrary, that

then, there exists a net of operators AZ in ¢ such that

Bd A —_ I ultraweakly.
Since 0 is non-trivieal, _there exists D€]¢ such that 9;0 ,
ani (D =0 . Then
<EAD, D> —<p, D> =) ;
but :
AD = A&D =0 Y]
so (*) cannot hold.

The contradiction establishes the result.

(ii)- Using corollary 4.5.1., part (ii) may be established by
a similar reasoning.
Finally, (i) and (ii) are equivalent, since each one of them

is equivalent to the condition that Q be non-trivial,

22
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L.5.2.1. Remark- ¥ith the notations of theorem 4L.5.2,, let @
be any V.N. algebra containing A. Then each one of t‘ne.conditions

(i), and (ii) is equivalent to the following condition:

%KJ - g (J._—wlaw)slow);

compare proposition 1.2.2. .

For the next result, we shall need certain elementary properties
of weighted shift operators.

Let J¢ be an infinite- dimensional Hilbert space with an ortho-
nornmal basis {e.n inzo, n,z,-...} . A (unilateral) weighted shift is an

operator \W which satisfies the relation

Wen =« € (n:o,!,i,-.-)

n N+

for some bounded sequence of complex numbers {o{n }’Q .
=0
Wie shall need the following two results:
(a)- Suppose {o{n }“ is a bounded sequence of complex numbers such
nso

that & 20 (W¥w) . Then W has no eigenvalues.
.-
nc

b)- Suppose I « is a sequence of positive numbers such that
pp n$, .2 P

% —» 0 . Then, O'(V\/):‘{o} .
For the proof of the above results, we refer to [ 27; No. 75 J.

L.5.2.2, Corollary- Let c/4: @ﬂ(r]d’), where & is an infinite
dimen&idﬁal Hilbert space with an orthonormal basis {en}n, and let
nso
{o(“ }°° be a sequence of positive numbers such that o, —> 0 .
nzo

. &0
Then, the weighted shift W defined by the sequence {d“}satisfies

Aw 2 4
AW s oA (= wiow, S o),

—

7

and

| Proof- Since o (W) :{o}, and % (W) 2@, ve have g;,(w);io}, i.e
AW 2 4 .
On the other hand, let Q: supp W, and suppose C\) 1. Then,

there exists a non- zero element Y) of ,79" such that QD:O . So,

23
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WY - \/\)Q':) = 0.

This is impossible, since W has no eigenvalues.

Hence, Q = 1 ,and the result follows from theorem L.5.2. .

L.5.2.3. Theorem- Let (’/4: @t/,w*) for spme Hilbert space r7¢,
and let /\e(f y and F—\é:&21
(a)- Each one of the following conditions is necessary and

sufficient for /\ to be an eigenvalue for A

(1)

T, | .
c}%(ﬂ_/\) Jj:o}{' | (J=w oS, o5).

(ii) There exists a 5 - continuous state -F such that -ﬁ is
left-multiplicative with respect to A and +(A)= A .

(b)—. Let A¢ Z, (A) ,' and let {¢ E (J4) be left-multiplicative
with respect to A with ({A):/\. |

A necessary and sufficient condition that Ae %, (A)is that -(

be Z.J —~continuous ( J=w,ow,5,o0s ) .

zZ, ’
z - d
Proof- a(i). Suppose (A—/U # Vd‘. By theorem L.5.2.,
there exists a non zero vector ¥) in J¢ such that @D =0 ; hence
(A-A)D =(A-A)RPYH =0,
i.e., Ais an eigenvalue for A .
Conversely, let A be an eigenvalue for A , with corresponding

eigenvector § , and suppose, on the contrary, that

— tow
Ah-1) T =cA.

Then, there exists a net of operators Z in(‘A’such that

T.(A-4) — 1 ultraveakly.
In particular,
ST (A-D)E, £5 b8
~ but this is impossible, since (A-A)f =0, and f_;‘: o .
This proves a(i), | |

2



. Ch. I, §L’- ' ~14-050205-10

a(ii)- Let /\GU‘P(A); there exists a vector ¥) in J¢ such that
Nl=1 and (A-A)D-0. Let -C: U)D be the vector state defined by V) .

An elementary calculation shows that

- (vgecd).
wp(sg):ugp(a)wglﬂ)-/\wg(s) |

V]

follows that a(ii) is necessary.

Hence, since &) is a Zj —continuous state ( J.: wow,S, oS )it

Conversely, fix J in {w,aw, s, os)x , and let { ve a CJ-—
(]

continuous state with

S | »
-C(BP:):-F(B)-C(A) - a2 fe (veech). (

Let
' d% = {Bedd'" 7[(8*8):'0}'

Then o/‘{is a proper left ideal ofa¢ , and is 'CJ —~losed, since
o

'F is Z; - continuous. Further, using (*#), an easy calculation
-] ~ .

shows that

AlA_r) ¢ M ;

hence, ( since c/‘{is '5 -closed) we have

T %

AA-N P ¢ M,
hence, by proposition L.k.,
—_. T .
0/4//4_ A) d C m { J=w,ow,S,03 }'
Therefore, A ¢ CP(A) by .a(i).

Part (b) follows from part (a).

This completes the proof.

4.5.2,3.1. Remarks- (i) Every ultraweakly continuous state of rfﬁ

has the form

£ - Z Dy, (9 e, U901 =12,)

=)

[21; Ch.I, §3 W. ). ] . Theorem k.5.2.3. then implies that if § is
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left-multiplicative with respect to A , then, there exists a single
vector ¥ in J9¢ with N9\ =y, ;such that the corresponding vector |
state (AJD is left-multiplicative with respect to A ; moreover,
WylA) = feay .

(ii)- Let oA be a V.N. algebra acting on a finite- dimensional
Hilbert space J4, Then , for each A in %'P (A) » the CJ' - closure
of 0)4' (A-A) s again a pr;oper left ideal of 04’ . This is
because for a firi/\te-—dimensional Hilbert space, the point spectrum and
the approximate point spectrum coincide (pro_of:z:;compactness of the

unit ball) . The assertion now follows from theorem 4.5.2.3. .

$5. A geometric Characterization of O&P (A) .

Let @ be an element of a C- algebra 054 . By corollary 3.3.3.,
the investigation of the approximate point spectrum of @ is
equivalent to that of the approximate point spectrum of 7(Q)
vhere 71 is the universal représentation of &4’ . The purpose of
this section is to give a geomet‘frig characterization of %‘P (T@)
in terms of certain faces ofE(n((,d)),and,’as a result, to resolve
the problem raised at the end of §2.

Let ¥ be a convex subset of a real linear space. A subset F
of % is called a face of ¥ provided that the following two conditions
are satisfied:

(a)- F is convex;

(b)- whenever P, o ¢ X , and, odx ¢ | , then

(P +ll-o) - € F implies £ o e F

Let yd' be a C'—algebra acting in its universal representation on
a Hilbert space ,751- . There exists an inclusion- reversing bijection
between the norm—closed left ideals offf" and the w—closed faces
of E(d"} . If the ideal 9 corresponds to the face F(9) , then

(cefe, [ 35; theorem 5.14 ], and [421; theorem 5.11 J )
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the Qfollov:in@ hold:

FI3)={FeEtt) . fihnro (vhe3)S,

and

J=frel: fian)=0 (vie FL9)) }.

For the rest of this section, it will be assumed, unless a statement
is made to the contrary, that the C.-algebra cﬁ' acts in its universal

representation on a Hilbert space .
Let /}ecﬂv, let £ be a subset of [Z(cfh) , and let AeC . ve

say that £ has property ( ’?4},\ ) provided that

F(8A)=£tBIftA)=Af18)  (VBecd, Vfek ).

5.1. Lemma- Let A€ 0¢ , and let g be a norm—closed left ideal |

of od such that

AA-4) ¢ I (1).
Then, the corresponding face of 3 defined by

F(9)-= f/eE/o@): £1x'x)=0 (vxej)}

has property ( eh/‘ )e

Proof- By (1), we have (A-A) ¢ j ; hence, by the aefinition
of F(?) we have
FlA-A)(A-2))=0 (VFe F(9) ).

Let & bg an arbitrary element of ij , and let 'FG F(3) . Then
T2 Vi
| Fe8a)-Afesr] = [ F(8A-11)]
< £(88") HiA 3) (A-1)
=0

J
hence,

F(8A)= )\f8) ( VBeck, VieFU)).
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This completes the proof.

5.2. Theorem- Let A be an element of o , and let A¢ g/; (p) .

Define a subset f; 4 of EtcA) vy
/

{756 EleR) : £ has propfrig(@)/, ) }
Then
(i)‘ Fﬂj A is a non-empty W:compact face of E/ﬂ) , and
the corresponding norm-closed left ideal 3( /;’; A ) defined by.‘

S5 ek s e

contains od(n A).

(11)- If £ is & subset of £(cA) with property ( £ , ),
then £ C F -

W

(iii)- Let (? be the intersection of all norm-closed left ideals

w
of 4# containig w¢ (A-2) . Then
A .

IE,) =%

Proof- (i). By theorem 2.2.a(iv), the set FA , 1is non-empty.
: ) ,
It is easily verified that fr-'; y is convex. To show that F, A
/J 7

is W.—compact, let {‘E} be a net of elements of /g A ~and suppose

J

that

7€ _— -[ (.w: topology)
Then

£ ((AZT)(A-2)) — L(1A%T)1A-)) .

since -)(g F (Vy), we have
“« AA

£ ((AXT) (A=A D=0

hence

F A~ T)ta-a)) =0
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so (as in the proof of lemma 5.1.), we have £ € /; i It follows

. x
that /7’4'/‘ is w-closed, hence, being a wiclosed subset of the w—

~ compact set E(cR) , it is wtcompact.

Next, we show that /C,’q'/; is a face of E(‘ﬂ) .Let

Foalrl-cdoel  eo ¢ Feh);pinst).

Then, since 7[6 /5 4 o Ve have
J

2 CLAIINA-A)) + U-)((AZF)(A-1))=0 ;

hence

CAS3I(A-A)) = o ((A~T)A-1)) = 0,
i.e., CO,O‘G E‘J,A . Thus, F/-J,A is a face of E(&¢),

Finally, we show that
Ah-4) ¢ J(E,).

Let X(A-A) be an arbitrary element of 82 (A- 2 ) , and let 7[

be an element of IL,;//, ; then

F(xea-0)"( xea-n))= £h-2)"Xxa-2))
=0
since 7(has property ( /:),\ )e The result now follows from the
definition of § (G,)-
This completes the proof of part (i).
(ii)~ This obviously follows from the definition of E‘?,A .
(iii)- Let F( (g) be the corresponding face of % . By lemma 5.1

F(%) has property (5 y ) . Hence, by part (ii), we get
. J

F(Y) ¢ f,
Therefore,

Y 29(E,).

Conversely, since by part (i) j (F 1 ) is a closed left ideal

A,
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of % containing Vd (A - A), and since % is the smallest closed

left ideal of off which contains of (A- A ) , it follows that

GcIlg,)

This completes the proof of part (iii).

This completes the proof.

We are now in a position to answer the question which was raised

at the end of § 2.

5.3. Theorem- Let A ¢ p/q—, let Ae %-P (’4) , and let '[é‘ E(&¢)
be left-multiplicative with respect to 4 with )[_v//‘)‘) = A (by theorem

2.2. such a state always exists). Then, there exists a net {£ } in

E (o/ﬁ») such that .

(i).Bach )5 is a finite convex combination of pure states £. of Ji
A . ' dJ

vith
fy (8A4) = ém) £a)=Afc8)  (vBed).
. d J
(ii). )5 —_ 7[ (Wr topology).

Proof- Let f';I/' be the corresponding face constructed as in

theorem 5.2. . Then, £ € /g by theorem 5.2.(ii).

) A

On the other hand, since F,; p is a wicompact convex set, we
J

have, by the Krein- l{illman theorem,

fe C(ext(r,)) | (*)

where Ext (/;_q /l) denotes the set of extreme points of }2; A

7/ /

Since FF),/I is a face of £ (cH) , every extreme point of 5,{ ,
/
is an extreme point of £ (cA)and is therefore a pure state of cﬂi,
The result now follows from ( %), and the fact that /% J |has
4

ropert /D .
property ( /p 4 )

This completes the proof.
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5.3.1. Remark-The conclusion of theorem 5.3. remains true if c/d‘
| 3
is any C-algebra (not necessarily acting in its universal representation).
In fact, let Q¢ cA— , and suppose that 'F is a state of Uq‘which is
left-multiplicative with respect to @ with f (@)= A . Define the
property ( e) y ),and the face /g A as before., Exactly the same
? 2

reasoning as that used in the proof of theorem 5.2.(i) shows that /C:l-:/l
is a w—compact face of £ (cf) ; also, fe /C‘;‘A . The argument

of theorem 5.3. now goes through without any change.

. *
5¢.3.2. Proposition- Let y¢ be a C-algebra acting in its universal
representation on a Hilbert space J¥ , let Ae A » Aeqg. (A), and
ap

let &« be a positive number. Then, with

oL
H=((A*-%)(A-1))
we have

Al(B-N) = AH

where . denotes norm-closure.

Proof- Let ;: be a state of c/Qi . An application of the Cauchy-
Schwartz inequality, together with the functional calculus shows
that the following two state*ment/i are equivalent:

f is left-multiplicative with respect to A and §(A)=A . (1)

{ is left-multiplicative with respect to Hand §(H)z0 . (2)
( The Cauchy- Schwartz inequality shows that, with H replaced with
(A X)(A-A) » (1) and (2) above are equivalent. If n is a non-

l
negative integer, the conditions { (K )s0and 76( K ” ) =0
are equivalent for any positive operator K ; c.f. the remarks
immediately preceding pf0position 1.6. of chapter II, Hence, by the

. o
functional caleulus, the conditions f (KJ=0 and (K )=0 are

equivalent for any o with oL« £ 1 . A similar reasoning then shows
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. d 3 i . V
that the conditions 7(( K)=o0and -[(/( ) = 0 are equivalent for
any positive number o . Since for a positive operator K the condition
f(K)-oautonatically implies that § is left-multiplicative with
respect to K ,it follows that (1) and (2) ebove are equivalent ).

In particuiar,

, Aeg}(ﬂ)e_—_—} Oeq;?LH).

Hence, with the notations of theorem 5.2., we have

i.e.,

I(E, )9, ).

The result now follows from theorem 5.2.(iii).

ile close this section with the following remark concez“ninf:r the
above proposition and theorem 5.2. . Let A4e¢ c};, let Ae 00:F (A),
and let K = (A~ 2) (A-)). By theorem 5.2. and the above proof,
the norm—closed left ideal 3 (Fk,o) is the-smallest norm-closed
left ideal such that the corresponding face F‘;’o has property(Pk’o ).
If Ji is a separable C“—algebra, the following converse holds: Given
Proper

a norm-closed left ideal 3 of c}“ , there exists a positive operator

R such that
3 = S ( FR’ 0 ) .
4 ; . |
For, every norm—closed left ideal in a separable C-algebra is the

norm-closure of a principal left ideal generated by a positive

operator [hl;page 26 ]. The result now follows from theorem 5.2.(iii).
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. Chapter II

The Joint Approximate Point Spectrum of Operators
$1. The Joint Approximate Point Spectrum of a Finite Number of
Operators
1.1. Introduction- Let /?,,_ ce /4n be bounded linear operators
on a Hilbert space Jﬁ}. The joint approximate point spectrum of /%?
SR /']n is, by definition, the set of n-tuples (/\l ) - ..l)n) of

.complex numbers with the following property:

Vveso Jx st weld, 70, ”(/?J'- g\.){lléelhll (é=‘,---m).

For n=1, the above definition reduces to that of the approximate
point spectrum of a single operator.

In this séction, the above definition is extended to arbitrary
(unital) Ctalgebras, and a characterization of the joint approximate
point spectrum will be given which will showthat, for (BZ (J%)the
two definitions coincide. In particular, Theorem 2.2. will be shown
to be a special case of Theorem 1.4. belov;.

1.2. Definition- Let cfbe a Cralgebra, and let @, ..., @ be
elements of J$ . |

The joint approximate point spectrum of @,,..., &, is defined

to be the set
| { (,\u_..”\“)e@n: 204/&4._AJ)¢0¢}
n d=

where Z 0‘4' (Gb‘-/\.) denotes the left ideal of Ji generated by a‘—/\, )
J=! d
> Cl',, - /\ h . .

The joint approximate point spectrum of a‘ J e, an will be

denoted b .
eno y joc;/, (au“‘)a;s)

1.2.1, Proposition- With the notations of Definition 1.2., let

*
@ be any C-algebra containing Q', ce, Qe Then

,To,;/, (a,..,a)- g()\',...,/\n)e(fn_. g@(o;‘._j.);f@} -
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Remark: Thus, the joint approximate point spectrum of Q,., ..., Q@

» . .
is independent of the C-algebra containing { a,. - a 3 .
n

Proof- The proof is essentially the same as that of proposition

1.2.2. of chapter I. We omit the details.

Before presenting the main result of this section, we state the
following lemma, which may be proved in the same way as lemma 2.1.,

and corollary 2.l.1l. of chapter I .

1.3. Lemma- Let A, , - - -, /}n be bounded linear operators on a
Hilbert space J¢ , let & be an absolutely convex subset of J%

such that [ £] = J¢ , and let (A ,.. .l‘)\") € C': Suppose that
PG (F) (A A) g @(T),
Jd=i

Then, given a positive number € , there exists a non-zero element

of f such that |
Ay~ A1l < e (Jet2s ).

..
1.4. Theorem~ Let 4‘/4be a C-algebra, let a4, ,.. ., &, be

. n
elements of ¢4, and let (4, .. ., Ayel.
n

(a)- The following conditions are equivalent:

(1)-

) A n) A

(A, A ) e Jog, (G a)

in the sense of definition 1.2. .

(ii)- There exists a pure state /A of c/q’such that

x 2 .
Io(a) = AJ 4 ("(aa):IA) (J:I)Z,---,n).

(111) There exists a state -F of,}g‘ such that
1,2
Feaj)= Aj ¢ f1g a)—“a/ R

3k
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(iv)- There exists a state -<F of cA’such that, for each 4 ,
(d=1,...,n ) » £ is left-multiplicative with respect to Q and
‘F{a ‘): A .

d d .

(v)- There exists a pure state [° ofd‘f'such that for each
(J.:[ n ) s f° is left- multiplicative with respect to @-and

e y

0- :/\.'
F/,/) ¢

(b)-Let A,, .. ., A, be bounded linear operators on a Hilbert

space J#« , let < be an absolutely convex subset of ,.7‘#— with ,.7¢ =

[2] ,anatet (4,.. 4 )el-

The following corditions are equivalent:
(1)-
(A A e g (Aihy)
in the sense of definition 1.1, , i.e., '

Vere 2 st. xel, z7o0, //(i-../b)z’/éé//zl/ (d=}--.1),
(ii)-

. e iy (d=4--n).
Veso 31 st. leZ, lz0, //m_j-)lllé |

(c)=- With the above notations, suppose 04 = & (Jd), and
/4‘/‘ = ,/. {o(: .o n ) . Then, the conditions a(i)-a(v), b(i),

and b(ii) are all equivalent,

Proof: We first prove part (a).
a(1) = a(ii)- Suppose
Q ,...
(/\“,..’/\n)é",.T(%'},(no .av)). ‘
n
Then, the left ideal ZJQ’ (OJ'-:)- )is a proper left ideal of d4'

J=
so it is contained in a maximal left ideal d‘{of t'/d given by

M - {xeryd: EAPEL (Vé’eod)}
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for some pure state P of (/4';

In particular,

A (aj - Adf) c M (d=1,...n)

For each fixed § (=7, --,0) , taking X to be 4 - 'j,t , and

”» .
to be / and (6?- /}J) respectively, we get

Cla-A;)=0 ¢ ("/(@‘-/\J')*(ad'_ Ad-)) =0,
Hence
Plaj)= A & e@a)=Ix10  (d=) .
a(ii) — a(iii). This is trivial. |
a(iii) =pa(iv). Let { satisfy a(iii). Then, for each fixed

J in {l n} » and each X in rﬁ we have, by Cauchy—Schwartz

inequality, : ; 2

)
| frxay) - frotfea) | = /f(x(cg,--/b-))l
o ;

Hence

foeap)= Ao (J=h. n).
a(iv) =>a(v). Let { have the stated property in a(iv). Let

H= frech: Fae=o (vied)].

It is easily seen that c/ris a proper closed left ideal ofc}g.Let

n

a i
./2—:' ’xJ (8- A))
be an arbitrary element of Z dd (ca; ,U Then, for each 7 in

ra
V¢ ,We have. ' /-
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,r(g(zq (a;- 4))) -
me BT LETE

E
0,

f/;;fxd‘ad'/-_— 7[(?{/')7[/%’}: /} 1[/?9') (d=1-un).

since

Hence

Zc/d-(at/—/\‘/)cf//ﬂ c A

It follows that Z&{C}-J.)ls contained in a maximal left
j:: /

ideal Mo %given by some pure state f. It then follows (as in

the proof of a(i)=> a(ii) ) that foreach J (,/. l,. }015

left-multiplicative with respect to each ijth (’/0) /\ .

a(v) —a(i). Let P have the stated property in a(v); let

*
C/”(:I{zec)d- : P(’(Z/:o},
Then, J{# qu ,and it is easily verified that
n ]
Zp/i(a'_ A) e M C A
. /T4 =T ¢
d":'
This completes the proof of part (a).
Next, we prove part (v).
b(i)=y b(ii). Let b(i) be satisfied. By lemma 1.3., it is

sufficient to show that

5L (A Yy) ¢ BT

4=
Suppose not; then, there exits operators 8, ) - 50 in

@Z ( J¥/ such that
gf B (4 4) =1

Hence, for each & in J# ,we have
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PEN = I 2 B (A F Il

!

d=
% f WG N4,

-

so that
: -1
; I A= 428 00 % ™M JEN

where

M= awp 181
14 n
~ This contradicts the hypothesis in b(i).

The required implication thus follows.

b(ii) = b(i). This holds trivially.

This completes the proof of part (b).

(c)- We shall prove that a(i) is equivalent to b(ii).

a(i) = b(ii). This is lemna 1l.3. .

b(ii) =» a(i). Partially order the set of all finite subsets "3-
of‘"d+( the set of all positive-integers) with respect to inclusion.

For each element [ of ’E} , with

F - {W\‘, W‘i:"';mk§
say, let | '

W\F_: wmax ‘L‘M., Wlx»“',mki-

By the hypothesis, given Fe Aﬂ’ , there exists an element xF
of X such that lllFuzl, and such that the corresponding vector

state satisfies

W, ((A- V(A - /\J))z ?L‘F (=t n) .

Since E(ﬁ[ (JQ—'}) is wecompact, the net { w : FE ?j
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. has a cluster point -F in | (@i (1d) ) . We claim that

* .
f (A= 4)"(A- ) = 0 (d=), ) .
For let & be an arbitrary positive number; choose an integer w

such that v-}-’-\ € ; let Fo: {m] . Then, for each Fe ’:3' with
FQ F; ,we have
o (= 40 (A= ) £
* _ .
wz’: ((AJ._ ’\J) ('Ad' AJ)) £

—l- £ € (J:}).,.)n),‘
m

~

hence

LU0 (A= dp)) €6 (J=1n).

Since &€ was arbitrary, this establishes our claim.
Thus, b(ii) = a(iii)e=>a(i) .

This completes the proof of the theorem.

l.4.1. Remarks-d(a). In the course of the proof we have shom
that, if a state -F satisfies one of the following three conditions

then it satisfies all three:
(1)- :
. *n- . =l ...n
feap)= A a fea°a)- 14; 1 (dzl,--yn)

(2)-
. * ) _ '_—;'.‘.'
f ((QI--{}-)(@'-,AJ))—O (J ")

(3)- 1[ is left-multiplicative with respect to 4, (J-'— l.i,n),

d
and -F(aJ-) = /L .
(b')- The equivalence of a(iv) and a(v) is proved in [ 37; theorem L ]

by a different method,

The following proposition may be used to reduce tho—gtndy—at-

39



Ch. IT, ¢1. ' S 1.5 .
the study of the joint approximate point spectrum of a finite
family of operators to that of the spectrum of a single positive

operator.

»
1.5. Proposition- Let & , ..., 2, be elements of a C-algebra

A Land 1et (A,..., ,\“)e(f". Then

(/\l)"'; /\n) € qu(a\;-";aﬂ) . (1)
if and only if
0 € o( ) (-4 ) (2)
=

Pfoof- If ) "

0 ¢ o ( 2 @-4)(4-Aj) )
4=

there exists 6 in t‘/¢such that

5( (Cf/”(a A))"’

hence
[cﬁ (8-4j) = H,
J=

i.e.,
(A, 0,) ¢ Ja, (@, 0,).

Conversely, let (2) be satisfied. Then

%(Z(a—/l)(ad ))#Dd,
so, there exists a max1ma1 left 1deaJ_o+{6f cﬂi,given by a
corresponding pure state P such that

%(Z(a 4084 ) € M

: /:I
It follows that
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In particular,
P((4- A7) (8j-4)) =0 (f=t,-n) -

The result now follows from Remark 1l.4.1.(a) and theorem 1l.4. .

| ]
Let A be a positive operator in a C-algebra oﬁ¢, and let 4CEf?ﬂ949-
For each non-negative integer m ,we have, by the Cauchy-Schwartz

inequality,

1 4,
FOR™) < (Fem) ™.

Hence, if 7[/" ] =0 then

foh7T) =0 (m=o,b---)
L

f(h¥)
Conversely, suppose =0 for some non-negative integer m..

Then,

where
/ /

: Fn 7"
A= h . A e A
Hence, by Cauchy-Schwartz inequality,

L
o< feh) e f£C4T) 1) =0,
i.e., 7[(/\):0.

4
2

Using proposition 1.5. and the above result, we have the

following characterization of the joint approximate point spectrum:

*
1.6. Proposition: Let @,, ..., @, be elements of a C-algebra

A, and 1et (Aveo 2 )e €

The following conditions are equivalent:

(1)-

4

(A, . A € ,]'%‘P(a.,...,a")

L
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(ii)- There exists a non-negative integer vwasuch that
A

L
: * am * ™
(0,0,...,0) € Ich(m,-X,)(a.-»\.)’, L asA @A)

(iii)- For each non-negative integer wm , we have
L 1

) am™ A \ ).JM)

(0,0,.-,0) € T (@-))a-A) (@A) (Ba-An) )

Proof- Let (i) ve satisfied. By proposition 1.5;, we have
n

* .
0e o (D @-X) (G-
J=!
Hence, there exists a state -F ofu#such.that

_"")'\)

n )
7[(%(“4“ 3" (8- Ag) ) =0 (4

In particular,
Flla-4) (4- A)) =0

Hence, (ii) holds with wva=0 .

(J.:,l"'ln)..

Conversely, if (ii) holds for some non-negative integer m then,

there exists a state -{ of Vdvsuch that
WC(MJ.)ZO (4= Y-um)
where ™ X
N b, M)
= (o) L

By the remarks preceding the‘present proposition, it follows that

-1("((0&'-?\&')'(0&'-/\&)):0 ((i:\i"',h)_

Hence
n
*,
) Q. - A =0
£ Z_(Q,; >b)(dz\d))
=
Hence, by proposition 1.5., (i) holds.
Next, we show the equivalence of (ii) and (iii).
Clearly, (iii) implies (ii).

Let now (ii) be satisfied for some non-negative integer W . As
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before, there exists a state 4 of:A' such that

‘F(\’\a\:o (éz\""’f‘))

vhere A
2™

hos ((0-) (a5-0p) (b

Hence

b ] -:\;“'l“)‘
£ (o5 tai-%)) =2 s

Therefore L
. . am .:'.”’n; :,an).
4? (v(qj-)ﬁ ) (Cﬁ")g) ) ‘=0 (A ) wm: |

Hence (iii) holds.

This completes the proof.

We close this section with the following result which relates
the concept of the joint approximate point spectrum to the theory
of characters.

E

1.7. Proposition- Letdlbe a C-algebra, let Q,, ..., &, be

2

*
- elements of & ,and suppose that @ is a character on ( (a,.-,a, ).

Then

( ¢, -, P, )e Jq;p (a,...a,)
Proof- Supp;se, on the contrary tﬁat

(P, ..., ea)) ¢ % O

By proposition 1.2.1., we have

e “a. ... a )
ZC(Q,;---,Q,,) (%’—P{j})-’ C(an' , Ay
J-"—I

)

»
Hence there exists elements X, ... %X,  in C (a,,---, a,,} such

that
n

)y (g-edy) =
/=
L3
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Then

-~
i

1) = (la( ZYJ (2~ W‘f/'))) :
Je

n y .
. D bey) T4 ()
J})
=0
which is absurd,

This completes the proof.

§2. The existence of ICT (a,. a).
Q/D [ J n '

Tt was noted in Chapter I that the approximate point spectrum
of a single operator is always non-empty. This is no longer the
case for the joint approximate point spectrum in general.

In this section, we give examples of operators whose joint
approximate point spectrum is empty, and then establish some

conditions under which the joint approximate point spectrum is

non—-empty.

2.1, Examples-
(a)- Let J% be an infinite-dimensional Hilbert space, and let

7(:]%@ J¢2 , where |
Fy = T (d=1,2) .
Let o//D be the projection of,ﬂ/ onto ,]?/ (d= / 3) . Since
¥ end ]95- (4= 2) have the same Hilbert space dimension,
it follows that JP is equivalent to /. (d= 1,3 ) . Hence, for

&
each /o/.;llz) , there exists a partial isometry y such that

\0//' \{/ = ]k (a/':/,“:.)

vy te 7 (d=112)
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4 2.1.(a)

(Thus, V. is in fact an isometry for =12 )
Oa‘f /V“ \/2 );Qand let

(/\,)A,)GI%'P(V,

By theorem l.L., there exists a state -( of @Z (k) such that

(VA€ BIK) ) J=2).

Suppose now that

f(AV) =) £(A)

In particular, with A= y ,we have

2 .
/AJI = (J:’,ﬂ).

Hence, putting /}: y\j *, we get

| YR IAAY.

so that .
(d=1,2).

Therefore,

which is absurd.

Thus, ,].o- /V V?) ﬁ

We remark that there ex:.sta unitary operators é( and é( which

satisfy
bl 3
d U =1

u =1
such that C‘(u\,\ki) is simple; c.f. [ 17 ]

L5
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S‘,l'\n\-\\w( \—D )
The_seme analysis @6 that of the above example then shows that

JZ; /U“ a3}3¢'

(b)- We shall give an example of two self-adjoint operators
whose joint approximate point spectrum is empty.
‘ *
Let c/d: /sz (f), the C-algebra of complex 2 x 2 matrices.

Let A and B be elements ofuﬁ defined by

2.

and

It is easily verified that /4 and B are self-adjoint; suppose that
the joint approximate point spectrum of ﬂ and 8 is non-empty, and

let

(A1) e Tg, (AB). (i)

Then, in particular,

Aeq, ) 4 Ieg (87,

so that /\ and/’ are real numbers; further, by proposition l.5., we

have

7 | 2
oeo(lh-4)) ¢ oea((B-1)

2
olet (,4«-/\)230 ¢ ol (B-1'=0.

An elementary calculation shows that

46



Ch. II, §2. 2,1.(b)

PP SV S 2
(A-2) = 2
a ‘-—?A /'f (H—A)
| 2 z,'-fl’z _ I
(8-1) = ( ] ;
- /7 4
Hence, we must have ¢ Ty
2
(/+(3 D3 (e -2)t) = (d=20) (11)
bl
//’+7)2:/7. (1i1)

On the other hand, by (i) and pr0position'1.5., we must have

olet (/ﬁ-/\)?ﬂﬁ-/')z); 0.
But,
M(/AA)JJB/’/) )
(/+(:7-,\) f(/u/) )( 1l ) +/f’+ )/ -
(6- 2, L) (6-22)- L) =

(! + (2 ,\) )(/ (4- A))
(1 L)% (ld- D))=
//"+ ){7+(?—)\)-r(‘+ )\) ),

by (ii) and (iii). Since A\ and ' are real numbers, the last

+//*+ ) (14023 (4 ).

expression is always positive; so

dit ((A-N)'+ 61 #0,

a contradiction.

Thus

Jaa} {A/Bj:¢

L7
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We remark that the existence of self-edjoint (indeed positive)
operators whose joint approximate point spectrum is empty, is a
consequence of a general result in the theory of characters to be

proved in chapter IV, theorem 2..4..

We now turn to the investigation of necessary and sufficient
_conditions for the non-emptiness of the joint approximate point

spectrum of operators.

' »
2,2. Proposition- Let Q ,... Q be elements of a C-algebra rﬂ', .
N 2 LY .
let (A. e, )\n Ye (C“, and let T be a non-degenerate represen-

tation of cﬁ' such that

C*(a\,..., a,) N Rer T1 :Ago} .

Then

(Avse, M) e 9 (Q,.., Q)

)

if and only if

-

(A, M) 2}0ﬂmd,-~,1uag)

)

The proof is essentially the same as that of proposition 3.3.

of Chapter I. We omit the details.,

2.3, Theorem- Let an o an be elements of a C-algebra Jﬂ'

let (A,..,

)

Ay) g@‘: and let 1) be the universal representation of

04' on a Hilbert sPace:N‘ .

A necessary and sufficient condition that

(As o Aa) € dg, (4,--,0.) (1)

is that

, (i1)
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where

Q; = suep (M@ - A)) (=) m)

Proof- Suppose (i) is satisfied; since N is faithful, proposition

2.2, implies that
(As--y M) e Ag (n@y - nia,) .
Hence, there exists a state {~of rl(cﬂi) such that
Cenap)=A £e8)  (VBe®IM, dtin)

Since every state of T\{c)d) is a vector state, there exists a
vector § such that // J{//:/, and such that the corresponding vector

state wf satisfies

'S . .1”;--',’!')~
we((10g)- A7) (1G)-4;))=0 (4

For each a’ PE l...n) s let

(nea)= X )Y )

’
be an arbitrary element of the range of 77_/%‘) - A‘/' . Then

l<(nea )= 2 )0, £> /7: -/45"/9)-4),-):‘, 251
< Ile(n G- e )-%)f £5
_ 1l (g (1)
=0.
$1 JU { vange (ncay_ 3)f

It follows that (ii) holds.

Hence

n
Conversely, if JVCB 7 Ij , then there exists a vector SF in
=
,_7¢ such that //S‘x//:l and

Q'fc:o A A((/‘:,)"'/")'
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Since for each 0, /0{ =l...n)>
(11¢a;) — A;) 6? 77)@,'/;/)0,-/
an easy calculation shows that the vector st.ate wx‘[ defined by f

is left-multiplicative with respect to eech 77(3-) and satisfies
Wf(ﬂmo,l): /\J (ol:’/,n)
Hence, by theorem 1l.4.,
a),... Q,)
(All“') /\n)ej—cz-f (77/’}’ ln n );
so that

F(Au -";A/\n ) 6 'Toa‘P (Q,, K a"}

by proposition 2.2, .

This completes the proof.

The following lemma gives a sufficient condition for the joint

approximate p6int spectrum to be non-empty.

2.4, Lemma- Let /4“ o An be bounded linear operators on

a Hilbert space J¥ . Suppose that J/is a non-zero closed subspace

of J¥ such that k is inyar’iant under each '4J (,/ l,n) 5 let
/3.’: ".]J /.7( (the restriction of %Z/ to J’ ).
Ir
/ /
(A, A, )e JO‘;P (A, .-, A)
then

(A, ) e TG (Ao Anl.

Proof- Suppose not; then, there exists a finite set {Jj,...‘ Bf
n

of elements of &(JQ’/ such that
Z B.hy-A) = e N
| Let /Dbe the progectlon of,]?: onto % > lfet g-,z 5(7( (d=4-yn ),

50
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and let

R .:l,.,-,n}
Dd - P8 (d )

so that
] h)-

1]
[\

D; € BX(X) (d

A simple calculation then shows that
n

Z::, 9‘(’3""\‘;) = Igcp

contradicting the hypothesis(by theorem 1.4.(0) De -

This completes the proof.

2.4,1. Remark- It is well- known that, if Q is an element of
a Banach algebra c)¢, aﬁd if @ is a topological divisor of zero
in c}¢,then¢Q is a topological divisor 6f zero as an.element of
any Banach algebra containing cli ( thus,tl:is”permanently

» N
singular ). The above lemma has a similar interpretation.

We are now ready to state and prove the main result of this

section.

s A
2.5. Theorem~- Let c/ibe a C-algebra, let 77 be the universal

n

representation of c/4 on a Hilbert space J¢ , and let @,..., Qa
be elements of‘cﬂi . ‘

Suppose that
(1)
(/\1)---, /\,,_,)e ,:/'-O- (a’n"') an—l) .

and

(ii) the sﬁbSpaces
(1106 % ) (%) ( J=1-
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*
are invariant under 7] (a;) .

Then, there exists a complex number An such that

()‘\ LR )\n ) € JO&? (al)"'lla'\)'

Proof- Let
@J = Supp ( neg;) - 73-) (d=4. n-0)
and put
) S
Q = 1= (};/‘Qd. ) R
and

¥ = Q1)

By (i) and theorem 2.3., & is a non-zero closed subspace of J% .
#*
By (ii),(\f'}"'Q)(,]yis invariant under T(Q,) ,so0 K is invariant

J=1 d
under ﬂ[?‘/. Hence, there exists a complex number /\“ such that

/
A, € g, (n@.) )
/ .
where T\(Qn) is the restriction of ﬂ(q“)to 3( .

On the other hand, since

QJQ = C\)QA =0 (c‘"rn,ﬂ-\)

we have

/ T ) .
QJ =0 ‘ (d:|;---,n~\>
!

where C)J.is the restriction of C\z to k .

Hence

(2 Geex) Q) BE(X)(n@)"),) 3 Gr )
o=t ’

Hence, by lemma 2.4., we have

( 2_;03&"00// Gy )+ BLL19) (716 A) # BLITH
/= |
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' Since, for each d > //}/,ﬁ.'n-,)

@e(19) (108)-4) = BLI) (10%)-4:) @

C Be(1) G

it follows that

> @ity (ng) =) 7 BICH.
d=t

Hence

(A ,' -, AN € ;YoaP (Ti@,),..., na,) ) -

The result now follows from proposition 2.2.- .

2.5.1. Corollary- Let {Q,..., @, | be a finite set of pair-

#
wise commuting operators in a C-algebra oﬂi. Then, given

(’\l» T )‘n-l ) € ITCKP (Q\""' an—l ):

there exists a complex nﬁmber)nsuch that

'(AI)‘\" ) /\n )é‘ JCZP (ql"".' av\)

In particular, the joint approximate point spectrum of a')”.
J

Q; is non-empty.

Proof- Since C%\commutes with ay‘ (d=1,..., n-1) , condition

J
(ii) of theofem 2.5. is trivially satisfied. This proves the
first part.

The second part follows, by induction, from the first part
and the fact that the approximate point spectrum of a single

operator is always non-empty.

This completes the proof.

The above corollary was first raised,as an open question,in

[20; problem 2 ] ; it was first solved by J.Bunce [ 10; proposition 1)
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and, independently, by W. Zelazko [ 57; theorem ] . Bunce’s
proof makes a similar use of lemma 2.4., while Zelazko uses the

jdea of the joint topological divisors of zeroj c.f., [50] and [56].

2.5.2. Corollary- With the notations of theorem 2.5., suppose
2.5.(i) holds. Suppose, further, that there exists a set { b,',

..., b i of elements ofc/4 such that

Q, = ba' (G- 2 ) (§=V- )

Then, the conclusion of theorem 2.5. holds.

Proof- We have
* F %) Nk
n (a,) = (NG)-A7) THUED
Hence

' *' | “ Y .- P -
vonge (TI(R,))C  Yowe (TMg)-A ) (d=)n)
. * . " . _
In particular, T1(4) is invariant under the range of [ (ad. )"’_ >‘d' ,
(Bt ) - |

The result now follows from theorem 2.5. .

We close this section with two examples where the situation
described in corollary 2.,5.2. occurs naturally.

The following simple lemma will be neededbelow.

»
2.6. Lemma- Let Q and b ve positive elements of a C-algebra

‘/4 such that @ ¢ b . Suppose that
(A 1) e ,TOQP (a,b).
Then AL [ . '

Proof- There exists a state (of c/dsuch that

fay=) ¢ f(by=1".

5
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Hence

A= {(a) éﬂ {ev) =‘F

This completes the proof.

2.7. Examples-
(a)- Let J¥be a separable Hilbert space. Let Wbe the (unilateral)

weighted shift defined by the sequence of weights

'{«)‘3) \)\) \)""3 ’

where o<t P ¢y &
Let 2= (§ £ ... ) be an arbitrary element of J% . An easy

0 %y

calculation shows that

Wx = (o, f,, BE, 65, ),

and
,W*'l;'-' (d{:p; )lfs‘; 5“1.;);' C )‘.
henge‘ : L , é . - .
CWW Ty o £ BT, D VEL
. =2
and
_ 2 2 2 2
SWW, oS - da\{lz+ B &) + Zs\ﬁ,\.
So »

2 ? 1 b
C OWW- Wwht, a0y = T, (B L U-B)
| >0

. (4 )
since oLaad BL} .

Let now /\&OP(W); then (proposition 1.6.)
a

puy

0€a(tm-n)tw-i)?) .

On the other hand, since
. * A
(W=A) (W-X) £ (W-p) (Wo )
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there exists an operator B in @234 ) such that \
1 \

2
? -+
(o) (wW=d) ) 2 B (-3 CW=)))
(Ch.I, lemma 4.2.(b) ).
Hence, by corollary 2.5.2., there exists a complex number r(

such that

~\-

- L
* 2 »
‘ - Z3) (W=-X) )
(M, 0) € :ch(m_mw N o, W

Therefore,

- o «
(A, 0 € Tg, (v, W
by lemma 2.6. and proposition 1.6. .

We remark that corollary 2.5.1. is not applicable here, since
W is not normal (in fact,\W is an example of a hyponormal

operator which is not subnormal; c.f. [ 27; solution 160 J.

(b)- Let W be the (unilateral) weighted shift defined by the ‘

sequence of ﬁeights

Ca )

It may be shown that there exists a positive number M such

that
(W-2) ( w—,\)* £ ™ (W-)\)*(w— A)

for all complex numbers )\ ; c.f.[ 54; Example].
As in example (&), an application of corollary 2.5.2. then

shows that
J'%-P (W, W) = {(/\,7\) : )\ecg;(\m } :

We remark that, W is an example of an M-hyponormal operator
which is not hyponormal ( to show that Wis not hyponormal, choose

an X = (};‘g‘“._,) 1nJ¢w1thf =0 +~and O(If/(/f/ it is
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. o«
then easily verified that (W W 1,1 > £ ¢cWW T, 1> )

§ 3. The joint approximate point spectrum of a finite family

of commuting operators.
Let yd be a Banach algebra, and let @ and b ve commuting

elements of (94. It is well-—kﬁovm that

T(a+b) € al@) +oCb)

and that
orab) € o atb)

cefel 47; theorem 11.23 ]
In this section, we shall obtain analogous resuls.for the

joint approximate point spectrum of commuting operators, and
extend the result to direct sums of operators.

a } be a pair-wise commuting

3,1. Proposition- Let {a,,

. i _
set of operators in a C-algebra cﬁ' . Then
R n °
* - . ) (/]
J=!
and ( 9 2f %(4) )
o qp (1% ) {1y (henh) € d% (93%)]
=1 J:'
(¢ o(@;)‘
Remark- The expression Z- O_P (2 denotes the set
U'(ad) ’ “ln)}

R

The express:Lon /'7 o(a) is defined 51m11ar1y.
» o
Proof- Let A GO‘ ( ZQ
ap -, ¢

{ -Z- ad.- > au al)"

3=
is a pair-wise commuting set of elements of cﬂf theorem 2.5.

; since the set

')' Q'\ }
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implies the existence of an n-tuple (/\\, NN )\“ ) of complex

numbers such that
n
| (29),0,.-.,a,) .
(A) XIJ"'))‘n) € 30‘1}((%\6)) Vo ) \n
By theorem l.4., there exists a state-r of}q such that

IR
2

and

-ﬁ(laa-) = )\a' -F(v() (Vtecﬁ; 3=).oom)

In particular,

(Ao Ay e AT
further,
" )
S fap - £(24) N
a=\ = o
Hence

¥

- n
QF(%-'ad )¢ {JX )
Conversely, suppoée that 4
(A /\“)G JO;P(G,,---,Q,,).

then, there exists a state 'rofc)d'such that -fis left-multipli-

1y - ")

cative with respect to each QJ with “{:(0 )= \d' ; hence, -( is

1=

a8

left-multiplicative with respect to Z aé with -F( Z )= Z"JW
=

This completes the proof of (i).
(ii) may be proved in a similar way.

This completes the proof.

Let d{ s e odn be V.N.algebras acting on Hilbert spaces
J¥, . .. ,.J9 respectively. Let
] n
AR%A (J=h - ym)
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Let /= @ T be the direct sun of the operators [/ A

defined on the Hilbert space ch = @ .jd' by

n 7
T = @ Ty,
where d =l
n
7 = f’f,”d (€29 s d=tm)
Let

Afr 8T e i)}

n

Then, Aisa V.N.algebra acting on the Hilbert space J9 = @ '7%/'
d=
[21; Ch.T , $2. ]. Ve call /F the direct sum oft/d , A, ,

and denote it by @ C)ﬁ

3.2, Prop051t10n— For eachd (J=1,... n), let U¢ be a V.N.

algebra acting on a Hilbert space 1‘7 , let /2[ and 5 be elements

ofgff let A= @)q ,5@8 ,andﬂ: é(‘/z?{.
J_' dl
Then

h
To, (A,8) ¢ O Jg (4.6

Proof- Let (/\ f’)efz, and suppose that
Ar) ¢ U o(f‘) 8,7 .

Then, for each J (0/: b, ,,} ythere exists operators /2’~and

B! iwd. such that
d d ‘ , ‘

A’ /,%-_,\,5# )+5-/<§,'_/”55_):375_ (d=)en).
Define ﬂ and /3 on @,7‘; by

A @ Aa ¢ B @
/
then, /4 and B are in o#’. further, an easy calculation shows

that
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A (A-NTy )+ B(B-IIy) =
D ((hh -1y )+ (88— [ Jog)) =

5%1 '<5¢‘ - JKJ¢' g

3.2.1.(a)- 3.2.1(b)

Hence

O, 1) ¢ Jg (A8

This completes the proof.

3¢2.1. Remarks-

(a)- Proposition 3.2. may easily be generalized to cover the

case of any finite number of operators in (}ﬁi

(b)- Proposition 3.2. fails if finite direct sums are replaced

with infinite direct sums.

To see this, define a sequence of operators /qn as follows:

2- ,00
o | ,
O o o o
A e e
3—
o | o 0
0 o \ o0

etcs o

It is easily verified that, for each J‘ (/;4 {,... ), we have
O‘/lqd'}: Oa-lb //99,‘):/0] )
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so that

(=)
O (a, (h)) =1}
_ ap
47 o ' o
On the other hand, @ A is the unilateral weighted shift A
c) 1
defined by the sequence of weights

-0

{"(n}= {‘,OJI,|“0, \,l,\,o,...}
nso

The spectral radius, and the norm of@ﬂ are given by
a =

- %
v(A) = T M’P(ﬂ i) )

and R co no

NAN = A L]

n>o
respectively [ 27; solution 77 J.

Hence

It follows that there exists a complex number /\ such that l)\l;—]

and /\6(2} (B) (c.f. chapter IV, §4, theorem 4.8. ).

Hence
g’F(g}'A&‘) d %) %, (Ay)

§ 4. The joint spectrum in Banach algebras,

Our attention has so far been confined to the joint approximate
point spectrum of operators in 6La1gebras. However, even for
applications to bounded linear operators on a Hilbert space, it
is necessary to consider the joint spectra of oﬁir&tors on a
Banach space (c.f. corollary h.6 1. ) The present section is

therefore devoted to developing the necessary tools for the latter

purpose.
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4.l. Definition- Let 3£ be a Banach space, let A, ) -, A“
be bounded linear operators on £ , and let A, ) EC'; and B-@L(X),
(a)- The joint left spectrum of A, e, A, is defined to

be the set of n-tuples (A, ..., ) ) of complex numbers such that

ZCB(A&-)\ <) 7@ .

lhe joint left spectrum is denoted by Iq ( A\ Yoo, Aa) .

(b)-The joint approximate point spectrum of A,, .- ., A,

is the set of n-tuples (A\,.-., )\,‘)of‘ complex numbers such that

Veso Fw st xe¥, 270, A -3l € € (§=1--,n)

The joint approximate point spectrum is denoted by IC‘;P(A‘;-“,A,‘) .

(c)- The joint right spectrum of /4,, e An is defined to

be the set of n-tuples //\ X /\ ) of complex numbers such that

Z(ﬂ N )@ 2B

The joint right spectrum is denoted by ,:]—O; (A, yoen, ’4-& ).

(d)- The joint spectrum of A, , .- /4" ,which we shall

7

denote by (7(7- ( A“ . An/ is defined by

T (A s An) = T (P Bo) 0 TG i)

4.1.,1. Remarks,

(l)— When n=1, the above definitions reduce to those of the
left spectrum, approximate point spectrum, right spectrum, and
spectrum of a single operator, respectively.

(2)-1f X = ,.7¢ for some Hilbert space .7¢ , then definitions
4,1.(a) and 4.1.(b) are equivalent.- However, for an arbitrary
Banach space 3 , the two conditions need not be equivalent, even

if n=1; we always have

]Oa;, /A,)"', An) c _(?'/ﬂl)")/qn-/
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but the reverse inclusion is false, in general; c.f. [ Si; proposition
1.7. ]

(3)~- Definition 4.1.(d) is one of several possible (in general
distinct ) definitions of fhe joint spectrum;c.f. [ 51; Introductiqn ].
Our definition is the same as that given in [7; §2,'definition 11 ]

and used in [29 ]J..

4.2, Proposition- Let ,4‘ ) o, /4" be bounded linear operators
on a Banach space %X, and let @ = BL(X) .

(i)- Suppose that

(A, A )eda (A, . A).

Then

(A.,...,)\J-)G,To(ﬁ,,.-.,ﬁa) (d=l,--n)-

(ii)- Let {/Z, ... A }be a commuting set of normal elements of a
’ ” .

: *
C*-algebra o,QL , and let @ be the set of characters on ( (A., oo, Ag ).

Then
Jo (A, A, ) = Ig (A, .., A,)

- feay, ., wA)) ¢ed f .

Proof- (i). For each n-tuple (/, ... /¥ )of complex numbers,

and each fixed c{ in !/; ey n } ,We have

o "

L BlA-Ai)e ) Blh-X)
o[._: Jd=i
% ' n

g//g/-_ A) 8 ¢ g(@-_@j )@,

and

The result now follows form definition 4.1.(d).

(ii). Let
4

(F, .. lh)e Tg (A, A).

P

Then, there exists a state fofc.}ﬂv such that
. . -
F (XA ) = [ FOX) (d=1.-,n)-
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For each (/.( J=1,...,n) we have -
r — v *
FOAFIA-T)) = HB-100 (8- <0
Hence (c.f. remark l.4.1.(e) ), f is also left-multiplicative with
respect to each A. with £/A4 ). [ . Therefore
J J T d
f] < 8

*
C(a,, ...
In particular, (e An)

(/_Y,-,._.,ﬁn)e,fgf‘, (A, A)

by proposition 1l.7. . Hence,

To (A, Ay Tg, (A, A,)
by definition 4.1.(d).
Next, applying the above reasoning to the set {ﬁl ) - --, Ba }

we see that, given

(Ary.oo, Ao € J'qP (A, A)

there exists (¢ @ such that

LP(AJ): )\d (3=1,.-,n).

Hence, by proposition 1.7., we have

/*7_?,; (ﬁl""/An): {(()0(,9'),) ?/ﬂ")) (Pe@}.

This proves (ii) and completes; the proof of the theorem.

’

4,2.,1. Remark- The property expressed in 4.2.(i) is called the
projection property of the joint spectrum. The projection property
does not hold, in general, for the commutant and the bicommutant

definitions of the joint spectrum; for an example, we refer to

[ 51; page 144 ].

Throughout the rest of this section, ]¢ denotes an infinite-

dimensional Hilbert space, € = @f(ﬂ) is given the Banach
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space structure of @f/,f¢}, and @ will denote the complex

unital Banach algebra of bounded linear operators on x .

L.3. Lemma- Let { A, -, A, } ( respectively {Bu 0 Bal )
be a set of operators in X . For each o/‘/ J.: I --ynl define the

’ "
operators F- and /j on ¥ by

dJ
/—;-’(x)-.— Ay X (jotyer i XEXE)
) C’{' (x)= X8 (f=t--m i XEX)
Then , i} (J: )
/j eq | 6 e @ |
and the following inclusions hold:
To (F.. c Jg, (A, A, (1)
Tor (F,.--,F,,) ¢ Jo- (A%, A) (1)
Ja (f,.. F)CJo-(s,..., 8) (131)

) n

e (F" L) e g (8. B0 )

Proof- We shall only prove (i), since the other inclusions

may be proved in a similar way.

Let (A‘ PR -,/\ )e f: and suppose that
> @I (A-d)= B
Then J=
2 G AN e

for some S € BLIY) (0/:/,...,").
For eachJ. /J= ..., n ) » define a bounded linear operator G

d
on JSL by
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J

Then, for each X in % , We have
Ao

D (GA (- A g-(x)) -

G-(x)= 6’/\’ | | (c/.:/,...ln,' xXe¥)

£ J
(Z G (A= Xly) ) (0=
Honoe
JZj 6;'(5'/—/}‘ he ) = he

/

(/\“"';An )¢ 'TO[ /E"'E) ).

This completes the proof.

Loy, Lemma- Let {A,, SR f (respectively {8,, - 8. } )
/
be a mutually commuting set of elements of 3 , and let 5 and

n

5’ ((/:-’ /..., n) be defined as in lemma 4e3. .

For each c/ /9’;’/'-',") define a bounded linear operator 5— on
X vy
Fi(x)= A X-X8 (d=1) -0, XEX).
J/ / d
Then, the set

[FE, L E F £ E.E}

Fi J 2 )
is a mutually commuting set of elements of @ .

Proof- Let J/ and R be in ,r/, 2,...’ n} , and let X be an
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arbitrary element of x . then

/;‘,C; (x)

1]

;5'-//4kX)
Ay A X

= A’S)qg:/\'

= /f,; /':, (x) .

1!

Hence, the set

[E, - Ff

is mutually commuting.

Similarly, the set

(£ F) S

is mutually commuting.
Next, for each arbitrary / and R in {(/, -?,---,n} and each X in

'{ we have
/ n /
= (6‘//X))8k
- f‘; f‘; (X)) .
Hence the set
p F/;}

/ / —_
{E/--'Fn,/—,/"'ln
is mutually commuting.

Finally, since for each  , we have

/3—' - 5_ FJ /d:ll...

it follows that the set
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isi‘ mutually commuting.,
This completes the proof.

sa
e

The following theorem, which is similar to corollary 2.5.1.,

is proved in [29].

4.5. Theorem- Let{Z-, ..., 7.} Ve a mutually commuting set

of elements of @ , and suppose that

(A, - M., ) € ,Tol (T,

LN

7).

-)

Then, there exists a complex number /\“ such that

()‘|) sty )\v\) GJOE (T;JJT“)

4.5.1. Corollary- Let {7;,...’ 7; } be a mutually commuting

set of elements of CB , and suppose that

(Al.i~~' /\

) n—y

) e j(.'{ (T, Twd

- Then, ‘there exists a complex number A ~such thst
. w

(A, .., dn) € g (T,...T).

Proof- By [ 51; lemma 2.10. ] ,we have

. —_— * *
To (T, %)= Tg (15, )
’ *
where 7,' ) e, 7; are the conjugate operators defined on

*
the conjugate Banach space x o

The result now follows from theorem L.5. .

The following convention will be adopted below:
" :
Let S: and S; be subsets of C . The expression S" - §2

denotes the set of elements

{((’\\" Pl)) T ()\n_““}) § .
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\2}
of ( such that

(A, .. a)€S ¢ (M. . TheS,.

/e are now ready for the main result of this section.

L.6. Theorem- Let {ﬂ,, o, A, } (resp. { 8,,..., 8, } )
be a mutually commuting set of operators in X . For each. d )

(/=1,...,n) , define a bounded linear operator 5"_ on X by

Fon) = fx-rly i xex)
Then

(i)- The joint left spectrum of /1:; Ce Fn is non-empty, and

Jg (F,. .. FR) € Jg (A, A)
~ Jop (65, 8)).

(ii)- The joint right spectrum of /,‘—) - /‘; is non-empty, and

J_O; /EJ...)E) g J-(Z-f /A,’J""’A:)'
— "Taaf /3' l-")Bn)-

(iii)- The joint spectrum of ﬁ . f; is non-empty, and

T (F,  F ) ¢ Jo (A \A)
- J—O' /Bu"'lg,,)_

/ N

Proof- (i). For each o/ (0’.5’/‘ ., n) let 5 andé'f' be defined

as in lemma 4.3.; since /‘,"_l, - }-:) mutually commute, their

joint left spectrum is non-empty; let

Fooo E
(Ao A dedg (- R
By lemma 4.4. and theorem 4.5., there exists a 2n-tuple @

(A:))A'n A” /\”)

) LR ) n
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of complex numbers

such that
(Ao hn, Aa du, A oo A )
/ 'l)

J?.(FI") E)"NF;/I"'/ Fnl F: ;E)

e
(1)

Let E%’be the commutative unital Banach algebra generated by

the set

AR S A S A A

-and the identity operator on x.

By (1) and definition 4.1.(a), we have
Z:;/F_,\),Zﬁ‘/F AJ+Z 3/F-U¢3

By the Gelfand theory of commutative Banach algebras [ §; Ch. 2 ]
there exists a maximal ideal oA of :% » and a corresponding non-

zero multiplicative linear functional ¢ on ;f‘, such that

| J-Z:,g( "MZS’/F )ZS/F-/)ch
_ and uﬁ{: ker ?9.

In particular,

Y’(é; } = %y' /J::I )
/ g :
(Plf;"}; /L, (lel .‘n),
ClE) - AL Cd=1,-n)
so that
)‘J = *P(FJI) )
= el
= AN (d=1--yn) (2)
Moreover, since
FEL ker
J':J
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we have
/

N, X)) e Jg (F). F)

c Jgf/A,,..-,A,,)' (3)
by lemma 4.3.(i).
Similarly,
(A, A0) e Tg (8% .87 (x)

Part (i) now follows from (2), (3), and (4).
A similar analysis establlshes part(ll)

Finally, by parts(l) and (11) and definition 4.1, (d), we have

(T (A, .. A)- Tg(68,.,8))0u
(,.7—0' (/q ) - -, Aﬂ,)_— JqP (B,,~') Bn)) E
/‘7—0- (AIJ -y 14,,).—‘07-0. /6,,---, Bn)

since each one of the sets

|

Jd (g:)"';ﬁn)-— ']_0 (8""16")

and

¥ "'/Bn
]O‘ (/41 /4,,)-"7—2}(5" )

is contained in
Jo (A -, A)-TT(8,..,8,).

This completes the proof.

4.6.1. Corollary- (Rosenblum’s theorem)- Let A and & be bounded
linear operators defined on a Hilbert space ,]¢ s,and let F be the

operator defined on FL/7¥) by

Fex)=AX-X8 (xeBLI)).
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Then
o(F) ¢ grh)-c(8)

Proof- Take /= / in 4.6.(iii)

Corollary 4.6.1. was first proved by Rosenblum in[ 46 ]
in the case where A and 8 are elements of a Banach algebra; his

proof involves computing an integral formula for the resolvent

of /. A more elementary proof is given in [ 42; corollary 0.13],

. where a number of applications of corollary 4.6.1. are also given.

4.6.2, Corollary- Let A and B ve bounded linear operators
on a Hilbert space ,,7¢)

(a)-If
% (A") 0 7 (8) = ¢
then, éiven Y in B, there exists X in B such that
AX—- X8 =Y
(b) (Rosenblum’s corollary)- If
arh) N o) =@

then, giveny in @ ,there exists a unique X in @ such

that

AX-x8 =Y

Proof- (a) follows from theorem 4.6. by taking Jd=1 in 4.6.(ii)
and (b) follows from corollary 4.6.1 (since F is now invertible).

This completes the proof.

& 5. Compactness of "7-%-/’ (4, -, a,) .
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Let a,, ... a; be elements of a C:algebra A. If the
Jjoint approximate point spectrum of Q, .-. 4, is non-empty
(in particular, if q )-. ., Q, mutually commute ) then; an
argument similar to that used in the proof” of corollary 2.,2,1,

of chapter Ishows that the joint approximate point spectrum of

e Qn is, in fact, compact.

a,,
h The purpose of this section is to give a characterization
of the joint approximate point sp‘ectArum and to show, as a result,
.that., ,T(gf (0” ..., G, ) is homeomorphic to a space consisting of
equiyalence classes of a certain subset of E /od} « The result
on the compactness of ,.7%0 /4:, -, Qn)will then follow as a

corollary.

For fhe rest of this section, § will denote a fixed sét of
elements {a', N/ fof a Ctalgebra (ﬂ' » Whose joint approximate
point spectrum will be assumed to be non-empty.

,.‘A subset £ of E(Dd) is said to have property P(S) if and
onlir if each element of Eis left multiplicative with respect to
QJ' ' (J=’,-~-,n}-

A state § is said to have property P(S) if ana only if the

set {7(} has property Fs) .

Let ‘
X = { *FéE/&d) . £ has /Jroperiy P/S)}
Define a mapping & : ¥ ]g; /0’,...1%) by

0/7[) = (7[/4,)1 -y 7[[0»)))5

By theorem 1.4.(iv), the map B is surjective.
- . '
The sets x and 'Tcgf /q’) . ..Ian} are given the relative w—topolog'a

and the usual topology of C“,respectively.
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Recall that a mapping ¥ of a topological space ¥ into a
topological 3pacea& is said to be a closed map provided that ¢
maps closed sets of ¥ into closed sets of c\} . It is easily seen

that T is a closed map if and only if for each subset X of X,

T(X) € T(X)

where — denotes the respective closure operations.

5.1 Proposition- The map §. ¥ Jo (a,. o) defined by
» af ll J n N

6f)-(fe,, .. £ta))

is a continuous, closed, surjective map.

In particular, B is a quotient map.

Remark- Given two topological spaces%\ and {3- , and a mapping
T: '3€._>, (g—- s we say that ¥ is a quotient map, provided that ¢
is surjective, and that a subset W of r\} is open if and only if

'C-' (W) is open in X .

Proof- Let
(A, oA e ,Tc%P (e, .-, a,)

and, with € an arbitrary positive number, let

Voo {0t e T a1l <€)
be an arbitrary neighbourhood of (A, .. . A ) in Igf (Q”-.., a, ).

By theorem l.4.(iv), there exists an element '(of ¥ such that
0

(Ao A = (£a@),.. {a,)

Let L{r be the neighbourhood of £ in ¥ defined by
(-3
-]

[»%96 : l{(q/-)-{lg-)/éé (-1 m)f

7
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It is ’t';hen easily' verified that
fel, = sd)eV.

Hence & is continuous,
Next, we prove that & is closed.
By the remark immediately preceding the proposition, it is

sufficient to show that
”
e —_—
b(x) ¢ 6(X")
where Xis an arbitrary subset of 'x o

Let

ol A o,

be a sequence of elements of @( X) , where

_)[kjex (k:),?;'~-)

and suppose that
fk(g) s (AL, A
as k_>oo « Then

ﬂ(ﬁd) — )\d (cj:‘,---,‘\)
as Rseq .

Hence, since for each k ,the state {is left-multiplicative

with respect to aJ (§=),...n), it follows that

* .
fk(("a’”"ﬁ“‘g—"ﬂ)-ﬂ. (d=1--,n) (1)
as Rym .
Partially order the set ':3' of all finite subsets of the set of

: . .
all positive integers I[N with respect to inclusion; for each Fe’}

.let

W\F = Amp iw\: W\GF}
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By (1), corresponding to each element For ’\3- , there exists an

element f, of {£ 17 such that
o R R=

' -
» \ ( '_‘ )
€ (a_xy(a-r)) ¢+ §=hom)
\ ku( 4 A) d- " ) MF
Thus, letting ’CF = §, sme et a well-defined net { ’CF : FG’HS
]
of elements of'\,}. By the W:compactness of E(C/d) » the net
‘ Lt
{)[F : 7[5 ’3} has a w-limit point <F, say; then, “FG X .
Further, a similar calculation as that given in the proof of
theorem l.4.(c) shows thét, for each J (0’._— oo, n)s 7[i§ léft-
multiplicative with respect to 3 with -[(ad‘); /\d‘ .

Hence

( /\n-- .,)\.,,): (‘((0.),...,‘({&,‘) )
| - 68H).

This proves (1) and completes the proof of the theorem.

Let X be as before. Define a relation ~~, on 'X‘ as follows:

Given -( and ‘3 in % , let
£~ 9

if and only if

fiopy=Gtay) L)

It is easily seen that ~~ is an equivalence relation on ¥ .
Let "i denote the corresponding et of equivalence classes, and
let P: ¥ 'i be the corresponding quotieﬁt map, which sends
each element of x to its eguivalence class.

Clearly, we have

¥ - {6UA) : Ae Js,f,f%-w%)}
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5.2. Theorem- The map @ induces a homeomorphism

T : %__4’,7207,) (@, -.,@a,)

[aY4
where ¥ is given the quotient topology.

Remark- The situation may be described by the following

commutative diagram:

*x
P 74
{i‘ .\» ,_IO' (an - aa-\)

Proof- We define T as follows: Let -f be an arbitrary element of

~
¥ ; then, the set

-/ ~

o(r{fi)
is a one point set in ,7%‘/, [a;,..,a). If we let C(«)()denote this
n
point, then we have defined a map
~
T: ¥ — J’g; (a4, -, an/

such that for each 7[in X » we have

6if) =t (PF)) .

This completes the definition of T .

Since, by proposition 5.1., & is a quotient map, a standard

topological argument shows that T is a homeomorphism (see [38; Ch.?'

Th.11.2 , for example ).
This completes the proof.
~s
5.3. Theorem- The topological spaces 'x s % , and :7;? {q; ,a,,)
are compact.

»
Proof- To prove that ¥ is w—compact, it is sufficient to show

that it is weclosed.

7
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Let{ﬁ}be a net of elements of x , and suppose that

Q —> ‘C ' (w‘—topolo&')

For each fixed element A in Jﬂ, and each fixed J in {I, c ey, n}
)

we have

7[.,: (va;) — "f(z%')
and

-;5 (x) —> fa)
and

£ (a4 ) > £ a;)
ot d
Since each 6 is 1eft4multiplicative with respect to ad we have

£ (ra; )= £ oo 49
Hence .

feva)= Foot
i.e.,-)(ex.

 d
Thus, & is w-compact.
Next, since 8is a closed map, we have

B(x) C B6(F )

—

= G(¥)
c O(¥)

Hence, since

9(%\):: J‘ad; (al)"'lan)’

it follows that JEg,j (4,.-,4 )is closed.
. . n
Hence, since Jo~ (q Q.} is a bounded subset of @ (it is
ap 1,

contained in the polydisc
[ ) e 1051 €050 =110

78



Cho II, §6o . ) ' 5.’-}-0-§6o
for example) it follows that J—%-f (a“ ..., a )is compact.
n
~
Finally, since ‘X‘ is homeomorphic to the compact space ,,7;&)’ {a',..;an)
~ :

it follows that ¥ is compact.

Thi.s completes the proof.

5.4, Remark- Let S'= {q,..., Q“‘ iand let Az (A, ., An)
be a fixed point in ,]—OP (a",_.' qQ ); we say that a state{ has
a n

property f (S) provided that
7[‘”34' ) = f(uf/g-): jfh) (xecd d=1-3n)

For each A i , let
or each A in Jg}’ (a',“_'qnj

£ ety £ b porey BSOS

—

It is then easily verified that

K - [E_é 2 A e,Tg)‘D(a,,--,an)} |

The sets E/l correspond to generalized versions of the maximal

faces @considered in §5 of chapter I .

FA))\

§6- Finite V.N. algebras-

Let c‘/dbe a V.N.algebra acting on a Hilbert space ,7¢ . If A
is an element of Ue"then, in general, o/#4) :,tgl;/ﬂ) . In the case
where r/¢ is finite V.N,algebra, strong relations exist between
the various spectra, which it is the purpose of this section to
develop . We shall also consider the case of certain non-commutative

»
C~-algebras,

 Let 0¢be a V.N.algebra, and let P and Qbe projections in C/d’
(i)- /Dis said to be equivalent to Q if and only if, there exists

a partial isometry V in c#such that
¥ v
\/V = P ¢ V V: Q
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The equivalence of P ana Ois denoted by f~ Q .
(ii)- P is said to be weaker than () if and only if, ‘there exists

a projection R in U#such that

P~ R E Q .
This is denoted by /0 4 Q

A projection Fin c}!is said to be finite if and only if, there
does not exist a proper subprojection of F in c}"which is equivalent
to P,i.e.,

Q/QGJ? . PvQLP.

A V.N, algebra is said to be finite if and only if, the identity
ofJﬁ is a finite projection. This is equivalent to the following
condition:

Vhenever A € J; satiafies A A = !} , then Aﬁ =1 ;

c.f.[21; Ch.3, 68 ,Th.1.].

The following lemma must be well-known, but we can find no

reference for it, and therefore include a complete proof.

6.1. Lemma- Let A be a bounded linear operator on a Hilbert
space J%, and let /{eq-/ﬂj .

If O (A) ,then 5.
%¢% en Aegjﬂ)

Proof- Suppose A ¢g/" (A) ; then, A_/J 1is left invertible,
— # -
hence it is bounded below. If A fl‘f, (A", then A_ A is injective

so, since i _
{,éer (,Qi;\-)} = {mnge (/4-/‘)]) '

it follows that A - A has dense range.
On the other hand, an operator which is bounded below and has
dense range is invertible.

This contradicts A€co(A).
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Hence ;\Gcé (A’);
6.2. Proposition- Let Jlbe a finite V,N. algebra, let A €v4',
and let /\GQ\ o Then
(i)-Ae af;(/;) if and only if Ae cg (A).
(ii)-)\e g (A)if and only if A€ o-(A*) .
ap ap
(111)- oAy = o (p) -
ap
Proof- let 1

. * 2
A_ )= Ul(A-2)(A-A))

be the polar decomposition of A—/) . Let
. * »
Q: UU R P= u u ’
It is well-known that
Q = Supp (A-A) )
and that

*.
P = SuJupp (A"A) .

loreover

P~ Q
By theorems 4.5.2. and 4.5.2.3. of chapter I,

A €3, (A)if and only if Pzl

and

)‘eo‘;(ﬁ,)if and omly ir P+ 1.

Sincerfi is finite, we have

P2z T irendaomyir Q=1 .
This proves (i).

— »
To prove (ii), let )\E?P (A) ; then, AEOI(A), hence
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By lemma 6.1., either :\_e% (H‘)or Ae O‘P(ﬁ) .

The result now follows from(i) .

Finally, let /\ be an arbitrary point of O(fA) . By lemma 6.1.,
either /\egP (h)or XEOP (') ; hence, by part (i), either )\egrm)‘
or Mg OP (@) ; hence

T & G (A

Since the reverse inclusion is obvious, this establishes (iii).

This completes the proof.

6.2,1. Remark- Proposition 6.2,(iii) is also a consequence of
the fact that in a finite V.N.algebra cyd- s, the set of invertible

operators is dense in ﬂ ; c.fe [15]).

Suppose now that odis not finite; take an element A in Qd'

such that

Aa =1 ¢ AR <

It is easily seen that 0€o(8)whereas 0¢<a7’(ﬂ)since A is isometric

Hence (c.f., [ 16; theorem 3 ] ),

6.3. Theorem- A V.N, algebra c)#is finite if and only if

o(h) = 7, (#)
for all A in rﬂi—.

Proof- Proposition 6.2.,(iii) and the above example.

dtb . . . .
Let e a commutative C -algebra. By proposition 4.2.(ii), we

have

(A, .., Aa ) e ,Tglp (a,... a,)
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if and only if

6.b.

(™ oo, ha ) e ZYGQP(AT,...,AJ

The rest of this section is devoted to the study of the above

[
result in more general (non-commutative) C-algebras.

Let A“ - A” be bounded linear operators on a Hilbert space

Jé .

The joint point spectrum of /q, P [4"

set of n-tuples of complex numbers (A“ .

‘s

following condition is satiafied:

is defined to be the

’\n) such that the

Jx eJy <t 1#0 ¢ Ad"(::/\d'l (d=),--n) .

The joint point spectrum is denoted by J-Of (A“ -y ﬂ,, ).

Clearly

TG (A h) € TG Ahy).

' »
6.4. Proposition- Let Jg be a C-algebra acting on a finite-

dimentional Hilbert space J‘)! , and let A“ ..

ofyq-. Then
7%, (4, .., h,) - Tg

Proof- It is sufficient to show that

. An be elements
)

/Al""l Hn)

Ay Ay ).
']—O/; /A/)“‘/An)—?Jg;D/ "4

Let

(A, A) € Tg, (A, 8,0

Let & be a sequence of positive nubers decreasing to zero. By
n

theorem 1l.4.(c), there exists a sequence {'X
and

I -4 Il € ¢

83

k}in J¢ such that //al/:;
k=1

(c/: ll...)”'- k:l,%... )



Ch. II, §6. ' | © 6.5.- 6.5.1.

Since ,.7¢ is finite-dimensional, the unit ball of JE is compact;
. ha’d .
hence, there exists a subsequence {'Lh ; of §“(hiand an element o ¢ ¢
. m wm:)

with /ly)l=)such that

’th—'? % as ™M-—poo
Hence

I (Ad- Aé) 1l =o | (Eé:‘,-..)“),

i.e.,
(A - A € T LB, Ba).

This completes the .proof.

For the r@st of this section, the following convention will be

adopted:

. "
If §is a subset of C , the symbol S denotes the set

{ (A., oA e (G 30) es}_

. : :
6.5. Theorem- Let r}i be a C-algebra acting on a finite-dimen -
sional Hilbert space, let {Q‘, ces, an f be a commuting set of

"
elements of c& , and let (A, ,.. . M) € (" - Then

(/\\ ) - - -,/\“) € A—ca’? (a,---a,)

if and only if

- * %
()\\)""))\n) € :gf (al).'./a")
We defer the proof to appendix T .

6.5.1. Remarks -

(a)- With the assumptions of theorem 6.5., we get
Jol(a,..,a)= Jg 4,.,q,)

(b)- The conclusion of theorem 6.5. is false if the assumption
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of commutativity is dropped.
To see this, let cf- /‘Z(([‘), and let

5 / o ¢ ‘o
/7= Q: :
0 o ’ ° |
Then, /D and Qare equivalent projections, so there exists a partial

isometry V in /\42 (d\)such that

V=P 4 W=,

It is then easily verified that

AV AG = A

whereas
Vel +GA # oA
(0,0) ¢ 7L (V. G)
and

(0,0) € T, (V;G").

. * v
Let 04be a C-algebra, and let /7 be an irreducible representation
of ¢4 ona Hilbert space J¥. We say that j is finite-

dimensional provided that J¥ is a finite- dimensional Hilbert space.

*
6.6. Theorem- bLet od be a C-algebra such that every irreducible.
representation of od is finite-dimentional, and let {a“ o, By }

be a mutually commuting set of elements in A « Then

“7.%, (8,.--,q, )= Jg, (a,---Qq,)

In particular

Jo la,, ..., a, ) :ch:,, a,,---,a,)
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Proof-'Let
(Avy -, A e I%F(a” c,0.) .
By theorem 1l.k., there exists a pure state £ such that

» ' ’
© ). C - — (d=y,... ) 1
C((a-x) (a;-X)) =0 | o). (1)
Let T]P, fp sand JQI;, be the associated irreducible represéntation,

cyclic vector, and Hilbert space, respectively; then, for each J

(J=l,---,n) » Wwe have

2 T
Il r;,(aJ,,\J.,gP Il - (@((3-3.)(3 /),)),i, ‘Ii S

= e (@-4) (%-%))

=0
Cby (1), i.e.,

(As -0 A e doy (nay, ..., na,) ).
Hence, by theorem 6.5.,
<Al ) ..))\“) € IOQ.P (n(a|) ’r: 5 n(qﬂ) )
Therefore, by theorem 1.4.,, there exists a pure state F’of‘ ﬂ(w)
such that :
/ » 0T / vd) -=I... )
. - . ﬁ (Vﬂen{ / J 77"
e (A ma) )= A eln)
Define ﬁon c/4-by
| g(z)___(/oon)(Y) (Vlél‘/d/;

A similar calculation as that given in proposition 3.1. of chapter I

L 4
shows that ﬁ is left-multiplicative with respect to each aJ.with

* e .
g(aJ ) = Ad (d:',/“")"/-

Hence

(Al)"'; ;‘-n) € Jg-f (a",~~-) Q:) .
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The converse may be proved similarly.
Finally, the last part follows from the first part and definition
l{-ol.(d)c

This completes the proof.

. :
6.6.1. Corollary- Let od'be a C-algebra such that every irreducible

representation ofc)¢ is finite-dimensional. Then

———

ol(a) = = * |
) g‘P(a) %}(a) (‘c/ouvec,d«).

6.6.2 Remarks- (a). Examples of e—algebras all of whose represen-

tations are finite-dimensional include the class of n-homogeneous

]
aLalgebras and, in particular, C-algebras of the form

Vd: 8‘;(){)@ Mn(m)
where X is a compact Hausdorff space. '

(b). In the case where oﬁLis a V.N.aigebra, the condition

ola) = gfjm)' (Vaced)

is equivalent to the condition:

oﬂghas a uniformly dense invertible group.
( c.f.,[ 15; theorem 5 ],and theorem 6.3. ).

On the other hand, this is no longer the case for arbitrary

%
C-algebras; in fact, with

A - E;(x) @ M(C)

corollary 6.6.1., and remark (a) above imply that

‘\»

o(a) = g;)(o«) (Voecd) .
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However, ‘it may be shown that «74 has uniformly dense invertible
A

groupl\if and only if, the topological dimension ofr/i is at most

1l (CA' denotes the set of unitary equivalencle classes of irre-

ducible representati.ons of t/d',with the Jacobson topology; it

mey be identified with X ) ; e.f. [ 4L; proposition 2 ].
Nevertheless, condition (1) above entails analagous results

to those of proposition 5 of{ 44 ] , even in the absence of the

uniform density of the invertible grouia; for example:

” .
Let c/4be a C-algebra such that

ag(a) = q;/, (a) (Vaead).

Let e &

The following conditions are equivalent:
(i)- 2 is invertible
(ii)- ‘F("'?) >0 for each state ‘1[ of (‘/q’ .

(iii)- L (¥"t) > 0 for each pure state [° of A

Proof- If , for a state (résp. pure state ) -F , We have

¥
£(+"c) =0
then, by proposition 1.5., % is not invertible.

Conversely, if 2 is not onvertible, then, since

AAO'(1) = UQ'P (x)

J

it follows that O Go} (x); hence, by proposition 1.5., there
Q
exists a state( resp. pure state)fsuch that -f( r) =06

This completes the proof,

We do not know whether the following equality (which holds true

L
in any commutative C- algebra) is valid in all finite V.N. algebras:

Nola,..,a)= Jg}(a”_.‘,an)
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where a‘,..., Q@ are pair-wise commuting elements of & .
n

However, we have the following result:

6.7. Proposition- Let ud-be a finite V.N.algebra, let @,..., a,

be pair-wise commuting elements of cﬁi, and let

(A ,... A e Jota,.. ., a,) 1)

Then, either
(/\n-‘-',An) € Jcaff(an“')a'}) (2)

or, there exists (/7,... [}) el 'such that

(ﬁ:,- /")e.Td (a, "»‘an)

Z A
J-:

Proof- Suppose that (1) holds and (2) does not hold. Then, by

and

definition 4.1.(d),
iy - T » +
(A, ..., M) e ,Tgf (e,...a )

Hence, by proposition 3.1.(1),

so that, by proposition 6.2.(ii), we have

Z/\ eo(Z

The result now fo;;;ws from pr0p081t10n 3.1.(1).
Vie close this section with the following result concerning
cohyponormal operators. . -
Recall that an operator  is said to be cohyponormal if it
satisfies the following iﬁequality:
ooty aa
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6.8. Proposition-'Let &,,..., @ _ be cohyponormal operators

#
in a C—algebracfi . Then

I%'f a,,...,Q,) = ,]'%‘ a,.. ,a )

L]

Pfoof- Let

(/7 /’)e]d‘(a,---,a,,)

By proposition 5.1., there exists a state {T ofc}4 such that

f([(a [roca--f;))=o0

Since
(@-F) (8- 17) 5 (&-f)G-l;) (4=,
it follows that
n ‘ _
f(5 a-r0g-T;)) =0,
i.e., , , J"
(/\’:1 ,f'n)f Jg/;, /al’ ;an)

by proposition 5.1l. .

The result now follows from definition 4.1.(d) .
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Chapter IIT
Spectral lMapping Theorem for Joint Approximate Point Spectrum
$1l. The joint approximate point spectrum'of infinite families of
operators.
1l.1. Introduction- The main purpose of this chapter is to prove
a spectral mapping theorem for the joint approximate point spectrum
of commuting elements of d: algebras. In the present section, the
notion of the joint approximate point spectrum of finite families
of.operators is extended to that of the approximate point spectrum
of any (not necessarily finite) family of operaiors. Ve shall also
‘consider the questions of existence and compactneés.
Throughout the rest of this chapter, the letter /—’denotes an
indexing set which may or may not be infinite.

The following definition is givenin [ 29 Jand [ 51 ] .

. o
1.2, Definition- Let Jbe a C-algebra, let (ag )Ce r be a

M -tuple of elements ofJ‘ , and let (/\t)c bée a [ -tuple
. - €

r

of complex numbers.

Ve say that (/\c )Cer' is in the joint approximaté peint

spectrun of (Qg)  p» if and énly if the left ideal of &

generated by the set of elements
{ o - A, Tel }
is a proper left ideal ofqﬁ' .

The joint imat int t f (& i1l be
joint approximate point spectrum of ( € )reT" wi

denoted by (a
'7—00; t)fe r—x

In what follows, the left ideal of y¢generated by a set of

elements { a : zel” } will be denoted by Z odat
ce”
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L]
1.3. Theorem- Let {Q. ter}be a family of elements of a C-algebra

A, and 10t (A, ), & C

(a)- Let -( be a state (respectively, pure state) ofc)d'

following conditions are equivalent:

(1)-

‘F(%at) = ‘(('X.)‘((a’z) = /\C‘C('l) ( Vied, Veel').
(i1)- 2

faa -, & fedda- ) (Veel).
(iii)- :

£ ¢ (ac_)\c)*(ac—)‘,)) =0 (Veel).
(b)=- The following conditions are equivalent:
(1)-
Jo (a
(Ao € 4G oo
(ii)~ There exists a state £ of‘.yd‘such that
fera, = frofag) = A de (Ve VeeT')

(iii)- There exists a pure state [ of‘y4‘ such that

Plra,) = PV @)= A P (Vied, veel')

(c)- A necessary and sufficient condition that

(A )rer' y :%-F Cedeer

is that any one of the conditions a(i)- a(iii), b(i), b(ii), andb(iii)

be satisfied.

Proof- (a)— An application of Cauchy-Schwartz inequality for
positive linear furictionals proves part (a); c.f. chapter II,

Remark l.4.1. (a).
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(b)- Let b(i) be satisfied. Then, there exists a maximal left

ideal oMot e such that
204(&,—/\5) cM .

Let cel
M - {z@wd.- P(z*z)-w} ,
vhere (Og@(ﬂ) .
For each ge [ , we have
Ara, - A ) € M

hence, as in the proof of Theorem l.4.(a), (a(i) = a(ii) ) of

chapter IT, we get
P((dt-'\c)(“z”\r’)” (Veel) .

Hence, by part (a),

e (ra,) = C(r)ela,)s= );:ﬂ"t) (VeeT, Veecd).
Therefore, b(i) == b(iii)

Conversely, suppose b(iii) is satisfied, and let

M - Z(z.eud PPeTt) = o} :

It is easily verified, as in Theorem l.4. ( a(v) =3 a(i) ) of

chapter IT, that for eachze W ,

Aca,.A) c M,

hence, sinced{{ is a left ideal, we get

S Aea-A)coH.

e[

Therefore, sinteo/f[ is a proper left ideal, it follows that b(iii)

=% b(i).

The equivalence of b(ii) and b(iii) is proved in the same way

as that of a(iv) and a(v) of Theorem 1l.4. of chapter II.
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This completes the proof of part (b).
Finally, part (c) follows from parts (a) and (b).

This completes the proof.

The following example shows that, in contrast to the case of
a finite number of operators, condition b(i) of Theorem 1l.4. of
chapter IT is not equivalent to any one of the conditions of the

above theorem, if Fis an infinite set.

1J,. Example- Let /#be an infinite-dimensional Hilbert space,
let A4 be a non-invertible positive operator on .77" s and suppose

that lq has dense range. For each n ( n=g1,2,... ) , let
A
3n
A, = (A)
Since 0 € 00;, (A) , there exists a state -f of BL(¥such that

Lixa)=fafm =o (Wxe @) |

Hence (c.f. the remark immediately preceding proposition 1.6. of

chapter IT )

Coxan=fooftay=o  (VXe®LW); =02,

i.e.,
(0,0,- - ) € :g? (AmAn"')
On the other hand, suppose that tﬁé following were true:

Veso Jred st 10 4 UA L £eWul  (nzon,..) 0y

Let Q be the projection onto the range of ﬂ « Then, for each Z€J¢

/qn X — Q'Z as n-—oo
[ 53; 1, lemma 2 ]. However, since A has dense range, we have

d-=1 . Therefore, (i) is impossible.
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. . .
‘Let a'and 0’1 be operators in a C-algebra. It is a simple
consequence of the definition of the joint approximate point

spectrum that

(X, Ag) € Agy (81 39)
if and only if

(Mg, A € Ag, (g, )

The following proposition gives an analogous result for the

joint approximate point spectrum of any family of operators.

1.5. Proposition~ Let {at : ré‘T‘Ebe a family of elements of a
L 3
C-algebra A , let(A)Y € ajr: and let © be a bijective mapping
T re

of r' onto i_tself. Then,
(A, )cer € qu-? (edeer ()
if end only if
T a
A@(r) )zer € ’XOO_F ( =182 )cer'

Proof- Suppose that (1) does not hold; then

D Acag x) =B

te” .
hence, there exists a finite set of indeces T, , Tg, - . -, T,
such that "
Z ﬂ (az = AZ- ):
i d d
| J=! ,

. . - . : . ’ ' . r_l
Since e is bijective, there exist elements T, 52 by T in
such that

/ .
AN (321,30
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Ch. III, 2. _ 1.5.- 2.1.

Hence

n
J:I
i.e.,

( ) - ¢ IQ;F (a@‘f’)ce(‘

Q(z) te
The converse ‘is proved in a similar vay.

This completes the proof.

The following proposition generalizes proposition 1.7. of chapter

IT to the case of infinite families of operators.

1.5. Proposition~- Let [(a'z: ze[" } be a family of elements of a

*
C‘—algebra cﬁ', and let P be a character on C ((Q,; )teF ). Then

(P(at)) ejo @) -

Proof- Suppose not; then, there exists a finite set of indices

-

1> &g, .., T, in rsuch«that

Z&i(at_ ela, )) 8t

Since the restmctlon of ‘f to C (Q.

T

2eee, a.c )1s a character on

n

C (Qr s e, atn ), this contradicts proposition 1.7. of chapter II.

This completes the proof.

§2, Existence and Compactness of ,TO' (Q’z )Cer-

2.1. Theorem- Let {02 ;z:er'} be a family of elements of a
¥
C-algebra r)4 » and suppose that for each finite subfamily [C% : ze/:f
we have .

Ao (G)  #¢. (2)

Then

:Icg? (a‘)ﬂl" Q. (2)
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Ch. III, §2.

In particular, the conclusion holds if the family {QC crel g

is mutually commuting.

Proof- The following proof is based on [ 10; proposition 5 J.
Partially order the set =hof all finite subsets of | = with
respect to inclusion. By (1) and theorem 1l.4. of chapter II, for

each element I: of ’3' ,» there exists a state ‘-';of' c}#' such that

fr,(mv) : {m ?(az) (el s Veed) (3)
By the compactness of E(&’) , the net { 5 € 3 } has

0

a linit point £ in € (ef) ; we clainm that

fora - Ffo, (el Veed)
For let T be an arbitrary element of r' ; for each element |:' of
A'-} with Y:f_) {—} we have, by (3),

£ (2= ,Cmfm) (vaedd)

hence, for each arbltrary but flxed element X ofc/QL , we have

fuat):f(uf(aco)

Since T and X were arbitrary, this proves (4).

Hence, by theorem 1.3.,

(Qaz))ur e 1, (%),

This completes the proof.

The following theorem is the main result needed in the next
section where the spectral mapping theorem for the joint approximate
point spectrum is proved.

The following convention will be adopted:

Let [ ( resp. /A ) be an indexing set, let @, )Cer' (resp.(l:v)ve,\ )
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Ch. IIT, $2. 2.2,

be a /—_’—tuple (resp. A -tuple) of elements of A , and let (/\c )ce["
(resp.(}( )veA )be a [ -tuple (resp. A -tuple) of complex

numbers, The expression

( ()\E )cer (I )veA ) jU (( el b")"‘A) (1)

means that the left ideal of cf" generated by the set of elements

{ (@, - A) ,(b,-I%) : zel”, vea }
is a proper left ideal ofy#‘.
As in theorem 1.3.; it is easily verified thst (1) is equivalent
to the existence of a state -F ofyd- such that for each ¢ (resp. \% )

-C is left-multiplicative with respect to QT (resp. bv ) with

-C(at)-_- /\t (resp. ‘C( bv)= T'\, ).

2.2. Theorem- Let(Ct.c >C€ r bea | -tuple of elements ofc‘}i,
let (bv) VGA be a mutually commuting A -tuple of elements of od)

and suppose that
AQ,:QB (VCG‘F‘VUGA)

Then, given

there exists a -tuple (/.ly )veA of complex numbers such that

((»\,:)C » Mven) & Jg (e, eer » Godoen )

Proof- The a.rgument is essentially the same as that given in
theorem 2.5. of chapter II.we shall therefore merely outline the

proof,

Let Tl be the universal representation of 0¢ on a Hilbert space

,:7?" « For each T ¢ F , let

-
Q =su,’,>(r7(czc)_x\c ),

T
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Ch. III, §2. 2.3,

and put

and

K =Q(®) .

Then, ¥ is a non-zero closed subspace of J¢ . Since each 6\, (ve)
comnutes with each a, (ve[7)., it follows that F is invariant
'under eachn(év ) .« For each ve/l let ﬂ/é),be the restricfion of
f'l(év ) to ,k . Since the operators bv commute, theorem 2.1, implies

the existence of a /] ~tuple of complex numbers such that

(1), e J% (786, ,

The argument may now be completed as in theorem 2.5. of chapter II

This completes the proof,

The rest of this section is devdtea to a brief study of the
compactness of the joint approximate point spectrum of infinite
families of operators. While a similgr argunent as that presented
in corollary 2.2.1. of chapter I shows that ,Too'lp ( 05)(€Fis
compact whenever it is non-empty ( for example, the proof in
[ 10; proposition 2 ] may be adgpted to yield the result) ﬁe shall,
instead, use theorem 5.3. of chapter IT to give a simpler proof.

For the rest of this section, (Qt )Ce/'" denotes a fixed /" -
tuple of elements of p/q", and it will be assumed that the joint

approximate point spectrum of (0’5 )ce I is non-empty.

2.3, Theorem~ The joint approximate point spectrum of (at)w[-,

is a compact subset of CF .

Proof~ Since
( c (o (a))
T e € 1105
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Ch. III, §2.

end since each set on the right-hand side is compact, it is r
sufficient to prove that ,.Tq;/, (Qc )c‘e[" is a closed subset of [\

Let

ce[”

By definition 1.2,, there exists a finite set of indices VR ITRRE

.
() € '\ Tz (2)

L

Z:h in r such that

n ! =
that is, /=)

(/,r“._.‘ Fo) ¢ ,Toa'f(aé’,..., a )

By theorem 5.3. of chgpter II, there exists open balls

8(/’5,;5,),”-, 5(/\{3;6,),

where, for each J: L3,...,n,
€. ) - | -Al < €
§(lrig)={AeC: 1N | < 5.}
such that
b -
( /’7 5(/%_ ; 5))/) ,];c;(at‘,...,%)_¢ (1)‘

Jd=1
Let C/ be the open set in [/-' defined by

w - Mu,

where zer
u ] C if C?té (3:\,...,\«\)
t l =C. .: ...vn
B, ;6) i T=g (d=1,un)

Then, by (1) and the definition of ({ ,we have-

(Tq Goeep ) O U =B 5
since { is an open subset of fr‘ containing (/7( )ce[" s, it follows

that (,\F\ J%f‘ (Qc )ce\"' is an open subset of CF .
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Ch. III, $3. 3.1- 3.2.

This completes the proof.

For an altemative.proof, see [ 51; proposition 1.9. ].

& 3. The Spectral HMapping Theorem-
3.1. Introduction- Let Q be an element of a Banach algebra &4' )
and let P andq be complex polynomials such that ? has no zeros

on the spectrum of A . Then, with

-} ~)
_ 'F(a): Peay Tta) - Q@) pw)

the usual spectral mapping theorem states that.

-1
ol 7((0.)): ﬁcr(a)) = [P(A) 1A) : A é‘o'(a)} ;

c.fe, [ 6 ].

The purpose of this section is to prove a similar result for
the joint approximate point spectrum»of any commuting family of
elements of a Cialgebra. As a result, we shall also prove a spectral
mapping theorem for the joint spectrum of operators.

| Since the joint approximafe point spectrum of operators may,
in general, be empty, we shall assume that the operators under
consideration mutually commute. We remark, however, that the
commutativity assumption may be replaced by any other condition
which entails the conclusion of theorem 2.2. .

Throughout the rest of this section, [ﬂ will denote a fixed
indexing set which may or may not be finite,

The main theorem of this section is as follows:
342+ Theorem- Let (CZ_C )Ce[" be a pair-wise commuting /’:.tuple

o
of elements of a C-algebradz" , and let (Ibr )te[" , and (75)2:6[#

be /_'-tuples of complex polynomials,
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~ Ch. III, 3. 3.2,(a)- 3.2.(c).

(a)- We have

Top (@), (P(ac)) [,):

{((/\z )(e[_. ) (/:: ("\t)’)té[’—.) : ’(/*t)'cef_,e ,75‘ (Q ) [_,j

In particular,

"7—05,0 ('i (4 ) )te

i

l((Pr ( 4) )re/" " (/\f)ce/"’ g*@/’(%)“f’ }

(b)~ If for each T¢ ’ has no zeros on the approximate
PP
z -l

point spectrum of @ ,then ‘i(az ) is left-invertible; and if ?(%)
T z T

is any left inverse for ?t (at) then

. -/ ’
Jq;/: ( (ac)ce/" ! (2(?:) /gmr))ce[”' )

is non-empty and equals
-
{((MCGP ) (‘t CA) P (A) )ter) : ('\c) e Ia?( 3 rr}
(c)- If for each T ¢ l_’ ‘i has no zeros on the spectrum of
Q@ , then q, (Q ) is invertible; and if CL (a ) is the . inverse

of ‘{ (a ) , then, with

S (£) = B(£) Cl(r‘) (zel $eora) )

and

=)
4. (a_) -ba)Ta) =? 2)p) (zel”)

N

we have

o (%), 0 (404D )

A (A)y) o
(% At))z:er‘) : (/\t)-cer-é 3“? (%)fGF}

{((/\ )

T ter\ )
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Ch. III, 3. 3.3.- 3.0,
In particular, .

= : € (a,)
T, ={400) L+ o e Ty o

tel cer'} '

The proof will be based on the following two preliminary results:

3.3. Lemma- Let & be an element of a C:algebra K , let f ve
be a state ofc}z" which is left-multiplicative with respect to Q
with -F(o.) =A, and let F be a complex polynomial., Then, «F is

left-multiplicative with respect to P(Q)and

£ipiar) = plfear) = p(/\)'.
Proof- Let

c R
Pes)= ) 8 (§eC;xeC, rmn),
k:o

Then, for each Y € ¢~,f4— , we have
S \t
fer ptay) =4 (Z"-(k 1o )
k=0
n
. ) A feo
R=o ¥
since -F is left-multiplicative with respect to @ . Hence,

-;('I,PUU) = '*C(’I)P(/\) (VIGOd),

and
Lepray) = PA)

This completes the proof.

» Wd_
3ek. Proposition- Let @ be an element of a C-algebra , let 'F
be a state of <‘/‘4 which is left-multiplicative with respect to @

with {(Q) =)\, and lét P andCL be complex polynomials.,
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. Ch. ITI, ;3. | ‘ 3.k.(a)- 3.-4-.(b)-

(a)- If CL has no zeros on the appro>imate point spectrum of Qo
' -1
then C{,(O.) is left-invertible; and if % (&) is any left inverse
-t
for 4 (a ) then, { is left-multiplicative with respect to (@) P(a)

and

4 ( f@) plf@)
40 PA)

£ 4@ Pl )

(b)- If% has no zeros on the spectrum of Q. then q (a) is
< -1
invertible; and if § (a) is the inverse of 94 (@) then, with

ACA) = P(/\)iM)_' (Aeata)) |

and

-1 -1
Ala) = po)g@ = 9w PRI,

we have that -(is left-multiplicative with respect to A(a)and

. . -\
f(/&(a)) = A(((m) = G) PCA)

Remark- By theorem 2.2. of chapter I, we have Ae O&P (a).

- )
Hence, since O¢ ‘1{ (%-P (@)), the expression Cl()\) is meaningful.

Proof- (a). It is clear that 9 (Q) is left-invertible.
Let now | be a left inverse for 9, (@) . By lemma 3.3., £ is
left;-multiplicative with respect to 9, (A) . Hence,
/= feny = £ 00300 )
fo) £ (%)
T f0)

1]

\l

hence, we have,

-
fovy= 90 (1)
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Ch. IIT, §3.

Next, we have

= oo = £ Q] Ga))
Yy

by lemma 3.3., so that

1) = Jaml @

Therefore, by (1), (2), and theorem 2.2, of chapter I, -ﬁ is left-
multiplicative with respect to t hence, if ¢ is an arbitrary

element ofﬂ , we have ( with (= 1(0') )
1((1 ‘L(a) r(a) ) = -fa q,ta) ) )C(P(a))
oLt S

4 P S

This coppletes the proof of part (a).

(b)- This is clearly a special case of part (a).

This completes the proof.

We now turn to the proof of theorem 3.2.

(a)- Let

(A) € j?} (at)rer*

T ter

By theorem 1.3., there exists 4 € EC ¢# )  such that

- .('(-La)z.(('[) -C(Q):)\ ‘((1) (Vlébd’, V‘Cér') (l)
Hence, by lemma 3.3.,

-f(mp(a)) -Qx)-g(ha)) P(A)-fct) (Vmeeﬂ’f Vce\") (2)

Therefore, by (1), (2), and theorem 1.3.b(ii), we have

(Ao (RO e To(%eep - (W0 L)
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Ch. III, ;3.

Conversely, suppose that
(()\C )ce\" ) (Ft )r:er') € IO&\’<(Qc)cer ! (\;(q‘))cer ) ;

then, there exists 4 € EC c®) such that for each T€ |7 , £

is left-multiplicative with respect to 0~t and Fc (Q‘:) with

‘F(az) = >\'C (Vee 1) (3)
and

Q(ﬁcg))z‘% (veel)
But (3) implies (as in the proof of lemma 3.3.) that

.F(‘)Céai)):‘?c()\'c) (Veel')
Hence

= PAg) (Veel) .

This completes the proof of the first part of (a).

To prove the second part, let

“{u )cer' € 3-05? (R eap )cer

Since the set )
. T rer'}
{at, P‘(a&) )

is a mutually commuting set, there exists (theorem 2.2.) a r'_tuple

(A ) of complex numbers such that
T tel”

( (/\t)cer ) (P‘)cer) € I%P((%)ter‘ , (\;L%) )cer )

Hence, by the first part of (a),

(M) =(P (X))
Ce T¢e

er K

Conversely, let

(Mg )CCP € JOO-P (Qz:)zer‘
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Ch. IIT, §3.

Then, : ' P :
((Ac)cer‘ y ( c(’\c)).cer- )e
30\3( B .‘5\"‘.’ (\’( Neep ) g

hence, in particular,

(PM)) e Io (beay)
cep X
Thls completes the proof of part (a).
(b)- The proof is much the same as the proof of the firstpart
of (a), the only difference being the use of proposition 3.k.

instead of lemma 3.3. . We omit the details.

(¢)- The first part is clearly a special case of part (b).

To prove the second part, let

(‘vt)z:er' ]’o— (4, (a )

.\ A
Since for each T ¢ [ , q’ (Q ) is thetwo-sided inverse for 1 (Qt) ,
> % T

the set
{Q._C)Ab;(ab,) :z",',a’er'}

is a commuting family of elements of 09¢, Hence, by theorem 2.2.,

there exists a [—1 —tuple (/\t )t [_' of complex numbers such that
) €

((‘Ctr') 'c.cel-—.) GI ((a) )(/-Sc(ai))cer )

Hence, by the first part of (c),

“ ) LV.C) 'C€'r' = (A-CC)\‘C) )'C

The ‘ converse may be proved as in the second part of (a).

This completes the proof of the theorem.

The above theorem throws some light on the structure of the
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Ch. IIT, §3. : 3.5.

joint approximate point spectrum of ojerators. More specifically,.

part (b) shows that, whereas in order that the joint approximate
point spectrum of,say two operators be non-empty it is sufficient
that the operators commute, the commutativity condition is far
from necessary. For instance, let A be a left-invertible operator
with left inverse aL"such that @ and a;'do not commute (e.g., let
QA be a non unitary isomectry); then, taking P(f):l and ?(f) = f
in theorem 3.2.(b), we have that the joint approximate point

l
spectrum of @ and a,l is non-empty, and in fact

y - o
- ): AecC (Q}f
J%f(a, 2, )= {(A,A Zp
In fact, we have the following corollary:

3.5. Corollary~ Let (Qz )re/"’ be a commuting F—tuple.of
isometries in a C‘-algebrayq' . There exists a 1-1 correspondence
», A
between the set of characters on ( ( (ac )cer' )and the set of
ints in g (a : '
poi 'Tap * )Cel—'

Proof- For esach Te¢ /_1 ,define the complex polynomials 'br (1“)

andgc{f) by
f::.(f):} )‘ Z(():Sé

Since each Q is left-invertible, q has no zeros on the approxi-
z T

mate point spectrum of at ; hence, by theorem 3.2.(b),
#

a Q Q —

J"F ( (r)re/"’ ( ‘)cep)—

l{((,\t)tgf" s (A )ce[") ’ -(‘/\r)re/"'e 5’}/%)“/*} (1)

. - a .
Let now (/\c )rer‘ be an arbitrary point of :rO;P ( 3 )'ce r

By (1) and the remark immediately preceding theorem 2.2., there

exists a state -F of()d/such that for each z , -(is left-multiplicative
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.Ch. IIT, $3.

»
vith respect to Qtand Oi with

flagy =X (Veel) .
Hence, if X is an arbitrary element of oq' s ve have
a4 &
‘F(O;_x)= -F('z o )

feat) ﬁa;)
fe fa) (Veel)

so that §1s also mght-multlpllcatlve with respect to each 0, .

Therefore, the restriction %of «; to C (( )is a

t cel”

character on Ct(a ) ) with

el

Jtagy = fuar-A

The converse is proposition 1.5, .

This completes the proof.

Let(a.b )cq_‘be a mutually commuting ['-tuple of elements of a
.
C-algebra d' .

The joint spectrum of (a,t )te["’ denoted by Jo (Qc )cer' is
defined to be the set

"7—0‘5/’ (ac)re[" v "7—?- (av)tef"

where , ,,To’; (a’c )CEI"’ is the joint right spectrum of (4, )Ce["

defined by

J’o @),

C: A ) A o).
o {(A ks C):_P(atAt # }

When /" is a finite set, the above definition coincides with
definition 4.1.(d) of chapter II. Note also that the joint spectrum
f(at )“/_' is non-empty (theorem 2.1, ), and compac‘t (theorem 2.3.).
Cleé.rly, the analogue of theorem 3.2. holds for the joint
right spectrum of (a,c ) ; the statement of the relevant theorem

ce ’
may be obtained from the statement of theorem 3.2. by replacing
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Ch. IIT, §3.

" : . 1
(joint) approximate point spectrum  with "(joint) right spectrum
throughout,

For each T , let /g and ?C , and /6‘ be defined as in theorem

3.2.(c), and let

(A ) e Jo (@) .

CG[”

- Then, either

(A) pep € A (&) cep

(A cep € T @)rep

Hence, by theorem 3.2.(c) and its analogue for the joint right

spectrum, we have

(440 ), € 7% (40) )eep

or
(4 (A ) ey € Iq(/g(c;;))“,ﬂ

resPectively. Thus, in either case, ‘we have
(8A)) e € T (8@))

by the above definition.

A similar reasoning shows that if

(M)

then, there exists

€ Jo (Ar(at))re,_,

refv
</\t)t€[’ € ,Ta/'ar)w/_,
such that
(/'C)CEF = (4. ())) :

re

e have thus proved the following spectral mapping theorem for

110
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Ch. IIT, $3. 3.6.

for the joint spectrum:

3.6. Theorem- Le’c(a.c)t__G be a pair-wise comsuting [Ztuple of

r
»

elements of a C-algebra v¢ , let (Pc )Cef" ,and (21;)C€/" be [~ tuples

of complex polynomials such that for each T , q% has no zeros on-

the spectrum of % , and let

| -1
A (€)= Pe) L) ( feocay)

and

Then

Jo (xg(cg)gelf {MCM':))reﬁ: (Ac)cerf Jo (%)CGP} :

We close this chapter with the following remarks concerning
theorem 3.6. « In the case of a finite number of commuting
elements of a complex unital Banéch algebra, the polynomial
spectral mepping theorem (i.e., theorem 3.6. with no Z:present)
was proved in [ 19; proposition 3 ]. The same result was extended
to the case of any commuting family of elements of a complex
unital Banach algebra in [29 ]. See also [ 4; £1.1. ], where
theorem 3.6. is proved in the case of a finite family of

mutually commuting elements of a complex unital Banach algebra.
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Ch. IV, §1. Chapter TV = - ~ Ll.-l.2.
Characters and Finite Operators
§1. Finite operators. |

1.1, Introduction- This chapter consists mainly of the applicati
ions of the results developed in the previous chapters to the theory
of characters and finite operators. The present section is devoted
meinly to the definition and certain general properties of finite
operators; examples of specific classes of finite operators will

be given in § 4.,

. » 4
1.2, Definition- Let J" be a C-algebra, let @ be a C-subalgebra
of¢/¢ , and let fe E((‘/d) . The state-f is said to have the

trace-like property relative to@ provided that

Lexby = £bx)  (Veeed, W8e@) (1)

[43] .
An element Q ofy¢ is said to be finite provided that for each

‘Te ‘%L » there exists a state 75 of %such that

| £, (xa)= 4, (az) | (1i)
[ 557,

- »*
Let 4,, . .., Q, be a finite number of elements of & C-algebra
04 . Recall that the joint numericel range of @, , . . 'Jd’n

denoted vy J 1/ (a,, .., 4, )is the set of n-tuples of complex

numbers (’\l.’ S A“) such that
A =4ca- /-:/,... )
i =fa) d=h

for some £ € E(c#) [ 7;Definition 11, $2 ). In particular, the

numerical 'range of a single operator @ is the set

Via) = {/\é q—: : /\;—f(@) for some -[eE/od)}
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Ch. IV, §1. 1.3.- 1.k

hen Ud: @.{p(,ﬁi) ,and A=AHe¢€ @lﬂ(]¢) » the numerical
range of A as defined above is precisely the closure of the

ordinary numericel range of A defined by
{4/41,1) e J¥ 2 //x//:/}
Thus, to say that Q is finite is equivalent to saying that, for

each Ié‘cxd— » 0¢€e Viax- ZQ2) . Much more is true, however:

N :
l.3. Theorem- Let QA be a finite element of a C-algebra 94 . Then

there exists -Fé‘ E((‘/d) such that

fax) < ftxa (Veekt) .

Proof- [55;Theoren 4 ].

Using theorem 1.3., we may now relate definitions 1.2. (i), anad

1.2.(ii) as follows:

- »
l.4. Proposition- Let 4 be an element ef a C-algebra Mﬂ. Then
A is finite if and only if there exists a state {ofy# such that

*
-Fhas the trace-like property with respect to C (@) :

Lexb)= £be) ( VeeR, VbeCras ) (1).

Proof- The sufficiency is obvious.
To prove the necessity, let ( by theorem 1.3. ){be a state of

_ which satisfies
fray)- ﬁxa) (Vied) (2) .
Since {is self-adjoint, we have
Fea*y) = £(xa’) (Veecd ) (3) .

Using (2) and (3) in succession, it follows that for each non-

negative integer n ,we have

fca'x)=fza’s (Viecd) @),
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Ch. IV, 1. . o 1.5.

and

n n
- frar"e) s f(xa* ) (Vaed ) (5).
¢ '
Let now i < e ?Lk be an arbitrary product of non-negative

! .

integral powers of Q and a'; here, each 7/. ( 1€ 4 € k ) is

* . * .
either Q or @, and each f/ (/1< 4 <« k ) is a non-negative

integer. Then, for each X ¢ ﬂ ,We have
¢, t 4 %, /
FOL 8% )= £(7" 7" «]")

[(xz&'...%k)

where equality in, e.g., the first line follows form (L) if 91=a,
/

and from (5) if 9 - 2. Hence, by linearity and continuity, -F
+ .
satisfies (1) .

This completes the proof.

The following proposition giveé a necessary and sufficient

condition for an operator to be finite.

*
1.5, Proposition~ Let @ be an element of a C-algebra A , and let -
A= Q4o a,2 be the decomposition of Q into its self-adjoint parts.
A necessary and sufficient condition that @ be finite is that

for each X e <y¢ s

(0,0) € JV((ax-2a), (a,x-2a,)) (1)
Proof- Let (1) be satisfied for each x c¢cd . then,for each zeod)

there exists £ ¢ £ (o4) such that

7((6}/'7(—7(%-):0 (d=1,2).
Hence
feax-xa)= £((ax-x3) c@x-13,))
=0
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so that @ is finite.
€onversely, let @ be finite. By theorem 1.3., there exists fe F(cd)

such that

flax-xa)=o (viect),
i.e.,
Fflax-xa)- f(é(a,z—xa:)) - (viedd) (2).
Let A be an arbitrary self-adjoint element of v)d-; since X and
ai are self-adjoint, the operator (,'(azx_ - —x,ai) is self—adjoint; hence,
the right- hand side of (2) is a real number. Similarly,‘ the left-
hand side of (2) is purely immaginary. Hence,
7[(0.'1_')(@'): 7[((:(&21—-20!)):0 (3).
If now X is an arbitrary element of J , with 7= ‘Zl + dxz the
decomposition of % into its self-adjoint parts, we have, by (3),

. f(a,z' - 'Llal) = 7[.(%1: -7 4’1): 2,

and

f\(azzz'zzaz) ;0} |

-7[(Q,12 - Q)
so that
£ 2,1-24,) =f/a,z-m,) =0,

i.e., (1) holds. This completes the proof,

Let xec4 be a singular,non-finite operator, and let Z='2’+l:xz be
the decomposition of y into its self- adjoint parts., Then, there

exists ng(w}such that 7[(1);-0 . Hence, 7(\('(,) = 7[}?1) =0.
However, since % is not finite,there exists no state of ﬂ‘which

' »
has the trace- like property relative to C{'xl)'(:). This shows that
the answer to the following question is in the negative:

Question: Let /;' and AZ be self- adjoint elements of JJ— , and let
(0,0) € JV(h, hy) .
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Does there exist a state {‘of(}i such that for each % eydl
‘)[(/}"X.):[('I/}'} (d=1,2)

In connection with the above question, we remark that, if his a
self-adjoint element of a C—algebra J?' and if 0 € V(k) then there
exists a state fof ud such that 7[\(/?) =0 and

Flkz) = £czk) (Veeed) .

For, the numerical range of a self-adjoint operator is the convex
hull of its spectrum [ 7; corollary 11, §5 ]; the condition 0¢ V(R)

then implies that there exists )\J‘ eo'(k) (J':I'...’ n) such that
n

zz os )U =0 (}x € ”? ch/ =1 ).
J'l

Since k is self-adjoint, correspondlng to eachIEJ R there emsts

e @C(k) such that

/\J__(P(k) (J:l,...,n)
Extend each Cs to a state F of A ; by the Cauchy-silwartz

inequality, we have
,5.(/@1); 5(1/?): /l,-f('z) | (a'.:’z“v"f Veed) .

If now we define a state { of 4 by

f=§ﬁ6

/

we have
£lk)= Z f/k)- Zd
J)

and

fexk) = Jé— 4 F (k)= 2 j.f(z){m_

-

= 'f(kl) .

This proves our assertion.
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In later -sections, we shall also be interested in families of

finite operatbrs. The following two results contain the relevant

information in this direction.

1.6. Proposition- Let {at : z’e/—’} be a family of elements
of a Ctalgeb_ra 04' . A necessary and sufficient condition that there
’ . *
exist -)[é' E(p/do) with trace-like property relative to C(a‘)cef'

is that there exist fe E/&d)which satisfies

frea)= feax) (Veel”, eedh).

1.7. Proposition- Let [% el j be a family of elements
®
of a C-algebrac/g‘ . Suppose that for each finite subfamily lf% : Ce/:}

there exists + € [ (&Zi—) such that
f(zat):f(acz) (Veel, veek) .

Then, there ‘gaxists gé E (O¢) such that

'
Ie2b)= J(bz) (V6e CG) Vi),

Proposition 1.6. may be proved in the same way as proposition
l.h., while proposition 1.7. may be proved in essentially the same

way as theorem 2,1. of chapter III. We omit the details.

Further consideration of finite operators suggests the conside-
ration of the followin9 three questions: lLet @ be an element of

a C'—algebra.ﬂ ; ..
’ nontiovial

(i)~ Does there exist a.;>\bounded linear functional -f on ,}4— such that

-(-‘(ax)_—_f(la) | (Veed) )=

(ii)- Does there exist a state '(of c/q'which satisfies (1) above?
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(iii)- Does there exist a pure state Lo A which satisfies (1) ,
It is clear that (iii) == (ii) == (i). The equivalence of (i) and
(ii) was first proved by J.W. Bunce in [ 11; proposition 5 ]. On the
other hand, we shall give an example to show that (ii) does not ,

in general, imply (iii), and then show that under certain conditions

a restricted form of (iii) is equivalent to (ii).

Let(@{ Il. 1) be a finite-dimensional C-algebra with norm J/.// .
Since B is the algebraic linear span of its unitaries, there
exist unitary elements U ..., U, in @ such that the u‘,/.'s

are linearly independent, and such that every element of @ can

. )
be written as a unique complex linear combination of the lﬁ," :

n :

=)oy (€€, J=t,-yn) .
J=!

Ve call the set {c{., ce .o, ; the associated sequence of ¢ .

Define a new norm /[ //, on @ by
n
Il =} el (Vie®)
J= |
vhere {o/‘ ’oes, dn} is the associated sequence of A . Since @ is

finite-dimensional, the new norm /. I is equivalent to the original

norm //- I/ . Hence, there exists a positive number M such that

Hell < Ml (Vxe®).

In particular, if U is a unitary element of @ then the associated

sequence satisfies

n
Dl ] = Hull ¢ Ml =M
d=1

since U is unitary.

We now have the following result:
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1.8. Theorem- Let @ be a finite-dimensional Ct'subalgebra of

a C:-algebra 0/4 « There exists a state -fof%’ such that

fexb)={tbz) (Veed, vie@®) .
Proof- We shall give a proof using the fixed point theorem of '
Kakutani [ 24 ; theorem V.10.8 ].
Letta be the unitary group of (¥ , and let Z(u‘, yooome, 4, }:9
~be a finite set of linearly independent elements of U such that
@ is the algebraic linear span of S « By the preceding remarks,
there exists a positive number M such that if W is any element of

‘Z{ with associated sequence {qw ce ., ‘*n} then

le;] < M : (J:;;...,n) 1),

4 /
Let u be an arbitrary but ftxed element of % . For each f@pd

define a mapping 7;‘ 7[ on A by

(7o £ ) ()= £(uzu) (Vrect) (o).
: /
Clearly, 7‘;7[ € Dd’ ; further, it is easily verified that the
map
) 7
defined by

£ Tf

is linear. Let

yzfﬁ:ue?é};

we claim that

/
(1) y is a group of linear transformations on (7¢ ;

(11) F(E(A)) c E(ed) ; ana
(iii) y is equicontinuous on £ (c4 ) .
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’ /
To prove (i), let U and W be elements of Y , let -,[e A ,

and let zecd . Then, by (2),

(7. T.)fF= T Frwzw)
= f((wu)'z (wu) )
= 7;'7[(2))

vhere

V- wu € U

To prove (ii), let -Fe E(A), we U , and let 2'X be an

arbitrary positive element of w¢; then

Lf (x%)= £ xws (xu)) 30,

and

TF (1) = frau)=1,
so that 7;17[@‘5(0@’) . |

Finally, we prove (iii). Let

V= [feod/.- [fexl e Mﬂ;--m}}

be an arbitrary neighbourhood of zero in 04 where

20 4 Yed (d=1,...,m)
Let '
N L.
:'Zf,h,,f U Z, U, (Sifzlyoin; k= loym).

Y,
end define a w-neighbourhood of zero W in c® by

/ et nc Rl m)b
We { Feod’s 1F(Y,)]¢ & @i b mf
We shall show that if 7[; g € E(ﬂ) with ({\_g) c W

then

T.(F-3) eV . (Vuew)
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Let U be an arbitrary element ofca with associated sequence

{d,,...,o( S.vT‘nen,foreachk,lékéw\ » we have

[ T (7812 | = [ 6-7) (w20 ]
—///9)(50, « ) k(fd w) |

@ o (f-3) (‘j 7%/ /

}

1] /(M)(“ )|

e _g.
-

) Min? ’
)e

)
—
™,
M“ f}‘\/\s

Q|

IN
™,

U,
u
O
"

-\(
J
hence, (7[ j) € V/ . This proves (iii

It now follows from the Kakutani fixed point theorem that the

' ™
¢

"W

, 1.e., there exists

group ly' has a fixed poiﬁt in & (w-)
fe E(ﬂ) such that for VLLGCZL,

T £ ()= fen) (veech)

i.e.,

£Feu'vu)= Lee) (Viell, Veeed) |

In particular, replacing Aby UL , we get
Frux)= ey, (Vuell, Vied).

Since @ is the algebraic linear span of its unitaries, this shows
that

Febe)=f(xb) (Vbe®, WreA) .

This completes the proof.

1.8.1. Corollary- Let 0¢be an approximately finite-dimensional

C'l-algebra. There exists 7[6 E(&d} such that

fezy) = £riv) (Ve VY ecd) . (1)
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Proof- Let

T onz n
* 13
where each (‘Jd’n is a finite-dimensional C-subalgebra‘ofc}f- with

A c A4 (n=1,% . ..) (é)

n net

Partially order the set F of all finite subsets of the set of

positive integers with respect to inclusion; for each Fe # let

MF: Mmiy\; Y\GF}'
By theorem 1.8., for each F , there exists a state ‘FF of A

such that '
ﬁF (ab) = (F(ba) (Va, ¥bech ) (3) .
Mg

+#
Let .{ be a w-limit point of the neti ¥ ; Fe ’3’-} . It is then

easily verified , using (2), (3), and the definition of ( , that

Loy = feda) (VeVhe Detty)
hence, by continuity, (1) holds. i

This completes the proof.

Let now o4 - Mh (€) (n3y3 ). Then A is singly generated

by an invertible operator @ [ 53 ; pege & ]. By theorem 1.8.,

there exists -;\e E(cqd) such that

'((Y.“é): f(“&z) (VeVied) (1).
On the other hand, if there were a pure state { satisfying (1)
above then)( would have to be a character on C?Q): /\7" (f) .
( 43 ; proposition 5 ] . Since @ is invertible, the kernel o -F
would be a non-trivial closed two-sided ideal of Mn ( f) . But
this is impossible, since /\4" ((\) is simple. |

The above example shows that the implication (ii) = (iii)
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mentioned immediately before theorem 1.8. does not hold in general.,

For the next theorem, we shall need the following result, which
is due to Anderson [2].

Let J% ve a separable Hilbert space, and let @ be a separable
C- subalgebra of the Calkin algebra Ealk(/Z) = QL) [ #Z (%) .

Then, any state of @ may be extended to a pure state of Calk (7¢).

In the next theorem, we shall assume that Vd EN/,74 /,-7¢) for
some separable Hilbert spaceﬁZ « If n is an element of r/¢ , then

L]
C’( @+ ¥ZL(M))is singly generated, hence it is a separable C-
subalgebra of Ea,[k/JW.

1.9, Theorem- Let a,epd , and suppose that there exists fé‘ /_:(04)

such that

fbe) = fics) ( vb Ve e Cla))
and

LOFIH )= [} a).
Then, there exists ¢ (P(c4)such that

plbc) = plCb) (V6 Ve e Cla)) (2).

Proof- Let £:'[C/"'(0J ; definef? on C\*(a.,.JCZ(,Jd)) by
~ f(b+j’f/J¢))“f(A) (vbelCltar)

By (1), fls well-defined; further, since fe E(C(a)) , it is
easily verified that 7[\6‘ E(C (Q.fﬁf{_ﬂ))) Hence, by Anderson’s
theorem, there exists /° € @(&ﬁ(ﬂ))such that

Plby F219)) = £ (be L))  (vbeClar).

Define a linear functional P onﬂ by

Plx)= P (s FLLW) (veecd).
By [ 22; 2.11.8.(ii) ], P is a pure state of & , and it is then
easily verified that P satisfies (2).

This completes the .proof.
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We present an example to illustrate theorem 1.9. .

1.9.1., Example- Let A4 - BL(IY) where JE is an infinite-
Sepavable

dimensional Hilbert space, and ieta be the unilateral forward
shift. Tt may be proved that (0(a) / ¥L(7¢) is isometric and
» -isomorphic to the C“-algebra of complex valued continuous
functions on the unit circle [18; theorem 2 ], and that XX (J%)
is the smallest closed two-sided ideal of C*(a)-

In order to find a state 7[ of‘r)i which satisfies the hypotheses
of theorem 1.9., we shall use the Schauder-Tychonoff fixed point

theorem [ 24 ;theorem V.10.5 ] .

Let

S-{feEwd) . f(xtm))=1ol i

Then, S is a w'—compact convex subset of E(MZ) . For each 7[€§

{

define a ﬂ:apping 70_' 7( on yd by

»
7L cx)= f£raxa) (Veeed)
Tt is easily verified that f4f € £ (c8) ; further, if % is
any compact operator then a."x Q 1is again compact (since KL(78)

is a two-sided ideal of BZL(JY) ), so that

T4 (%2(10)) = fo} (VheS) -

Tt follows that the map 7 defined on § by

7{——2*27[ (£fe§)

*
maps S into itself. Finally, we show that 7; is w-continuous. Let

{ £ | ve a net of elements in S and soppose that

£( —\:’;";\o (‘QGS\)

Then, for each gy¢ we have
¥ ¥
~E(O_xa) — {(“ ra)
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i.e.,

TQ)E (v) — I'E,(U,

so that
“

w .
T, 5 T4
. ' »
Thus, 1 is a w-continuous mapping of the w-compact convex set &
into itself; b"g the Schauder-Tychonoff fixed point theorem, there

exists -ﬁe S such that T“-f = -f s 1e€e,

'F(a.*xa):-c(l) (Vied) .
In particular, replacing X by QX we get
flary= $(ray  (vaedd)
since O'Q. = | . Hence, by proposition 1.4, ve have
fibuy= Foxby  (WheCla), Veed)

and, also \f( Kﬁ(;’i)):{o},since -Fe g. _

Thus, the hypotheses of theorem 1.9, are satisfied.

Yie close this section with the following theorem concerning

L4
commutative C-algebras.

»
1.10. Theorem- Let 8 be an abelian C'—subalgebra of a C-algebra

cyd' . There exists a state § of Ji such that

Lbr) = {ezby (Vred, Vbe®).

Proof'- Letczc be the unitary group of@ « For each « 6%

and each f € £ (c4) aefine a nap A £ on o vy
THlz)= fruzus (Vieeh) .
For each & € 2 define Z; on ECeh) by
L fTF,
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Ch. IV, ¢2.
and let ; .
/;:[7; . ué&j.
Since is commutative, it is easily verified that '3 is a

comnuting family of affine mappings,mapping the\w::-ompact, convex
set £( (‘/4') into itself; further, a similar reasoning as that
of examl;le 1.9.1. shows that each 7“- is wtcontinuous; hence, by
the Markov-Kakutani fixed point theorem [ 24 ; theoremV 10.6. ]
there exists a fixed point, i.e., there exists '7C € E(w’)

such that

f(u'xu) = 7[(2) (Vlédd‘, Wi e?l) .

hence,

£eba) = fcib) (Vhecl, Vbe®) .

This completes the proof.

$2. Characters. -

2.1. Introduction- In this section we study the theory of
characters on C'-algebras generated by families of operators. Using
the methods developed'in chapters I and II, we shall Show that the
concept of the joint approximate point spectrum of operators is
directly related to the theory of characters,even in the case of
a C.—-algebra generated by a single operator & : the existence of
a character on C'(a.) is equivalent to the non-emptiness of the
joint approximate point spectrum of @ and. e

Let Mgbe a Ctalgebra, and let Qbe a C’:-subalgebra of 04'

( we assume, as usual, that @ contains the identity of (%i )e

A character on @ is a self-adjoint multiplicative linear

functional ‘f on @ such that C,"(l‘)_:/.( Actually, the condition

that ¢ be self- adjoint is redundant; c.f. [ 6; §16, proposition 3] ).
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The set of all characters on @ will be denoted by ®8 .
*
Let P e (DCB and let X X be an arbitrary positive element

of @‘. Since P is self-adjoint and multiplicative, we have

¢ - | v |2_ I
('l 'X.) = ) - J
so that (Pis, in fact, positive. Hence, since Y(i)=1], it follows

that Pe E(R).

Rext, suppose that
'?3(“‘0(){;'1‘0“(‘2 ' (oéo(ll)
where {) {; € E(®) Then, for each ¢ €} we have
X
0= P((x-‘ecv)) (x-s))

= (1= ’Cn\((l—vcu)*(i—wu)) +
o« Fq ((z-pww) (-¥w))

so that .
| 0 = £ ((v-%t0) (1-¥w))
= {3 (1o ey (=)
Hence’
Liv-teny) = ¢ =) =0,
'(;(i) = {( V(I)) = @)
and

wC:—zn) = -R( ey) = CU

It follows that f ¢ @(CB) . Thus, every element of @@ is
a pure state of @ .

The following result relates the theory of characters to that of

finite operators.

L]
2.2. Proposition-~ Let Q@ be an element of a C-algebra o/d‘.
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x .
(i)- If there exists a character on C (a)then @ is a finite
element of&4 .

(ii)- If there exists a pure state P of¢y‘4 such that

Plax) = Plxa) C (Viedd)

then

(olc"(a) € ¥ cvay

Proof- (i). Let We CD C*a)’ since (Pe @( C(a)), there exists

a pure state .f ofc/q* such that

‘c 3 =
| C(a) f
If now A is an arbitrary element of (‘A',we have, by the Cauchy-

Schvartz inequality,

\ wc(xa) ¥(1)§(a‘)l l -((x(a \{’(a)))l
£ {ed 1C((a-te(a>) (a-e(@)
=0

since '”C(a) q}

Similarly,

Cfa)”’

{(ax) = -f(a) vC('L) (Weed),

This proves (i).
(ii)~ Let P have the stated property in (ii). By proposition

l.4., we have

Pieb)= etbe) (Viech VbeCln).

The result now follows from [ 43; proposition 5 ].

This completes the proof,

The following lemma will be used in our future work without

specific mention. The proof is simple and is omitted,
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. ®
2.3. Lemma- Let {az ; cef"'} be a family of elements of a C-algebro
. — . L
(‘/¢ - Suppose that there exists ¢ | (pﬂ) (or E(C(@)) ) such

that

Plea)= Plan)=Pa@)  (Veel, vieClay )

cel’
Then
| (PIC* a © Q)C"(a '
(He)eer eer

e now turn to the question of necessary and sufficient conditions

for the existence of characters.

2.4+ Theorem-~ Let [Qc : Te f"f be a family of elements of a

. 4
C-al ebraC/4 and let (A and (f’ ) be | -tuples of complex
g (A, )ce/_, e up p

numbers.,

(a)- Suppose that

(()\C )ter'_ (T )te/").e J%-f ((a‘ )tE/" % )1'9/" ) ().
Then — :
e = ’\r ( Veel? ).

and there exists Lf € @ * such that
Cheay) -

Pra, )= A, (Veel™) .

(b)- A necessary and sufficient condition that there be a

» .
. character on C (Qc ) rel is that

o ((a (@, @
AR e ) ¥
Proof- (a). Let a(l) be satisfied; then, there exists a state '{

ofoﬂ such that

fczq.c):Acf(l) (Vzec/d) VV'CG‘/-’))
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and

-f(ta;)z Vt‘f(l) Ve, Veel) .

*
In particular, for each £¢ [° and each beC (Qc )ce]_' we have

A= ftay= Lty - T,

and _
f(%b): f(b;a:) = “(”3;) ((a;): z\t-f(b) .

Hence, for each z¢ [7 , fis also right-multiplicative with
respect to @ with {(Qc):/\. It follows that the restriction
C e y

of‘fto C)ce[" is a character.

This proves (a).

r

(b). Suppose that P is a character on (e )te]"" Extend ¢

to a pure state -F of fy‘# « It follows, as in the proof of proi)ositiora

2.2.(i) that
f(x (a,-%¥@)))=0 (Vrecd, VCef')')

and

‘F( z(cg_ W{)))-‘-‘O ( V¢eck, Veel' ).

Hence, by the remark immediately preceding theorem 22 . of chapter

IIT, we have

(P g + (902)) e ) €

Jo a *
'“/a/? ((r)r{_/ﬂ , (aé)teF )
The converse follows from part (a).

This completes the proof.

* L
2.,4.1. Remark- Let @ be a C-subalgebra of a C-algebra oﬂf‘ , and

suppose that there exists a cheracter P on Q . Then, for each
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indexed family { bv : ve/\} of elements of @ we have

g (¢4, Jen G)yen )28,

and, in particular,

YV veA
This is because the restriction of ¢ to C(by)yg/\ is a character

'700/’ (6) #@}

-and the assertion then follows from theorem 2.4. (b).
In particular, with the notations and- hypotheses of theorem

2.4.(a) we have that

J%-P((Qt)re/"’ ’ (ata't}ce/_,) #¢ (1) .

The question nov ariges as to whether every point belonging to
the left- hand side of (1) gives riSe to a character on C*(O._c)cer‘ :
The answer is no in general as the following example shovs.

Let b be a non-unitary isometric operator on an infinite-
dimensional Hilbert space J¢ , and let a-= b‘ . Since b does not
have dense range (otherwise, it wouid be invertible since it is -
bounded below), there exists a unit vector & in J¢ such that 5?1'0;

let 7[_— “j!" be the vector state defined by & ; then

Fla'a)= £066") =6, 65> =0,

hence

4
(0,0) € *7_%7,0 (a, aa )

(proposition 1.6. of chapter II ). However, there is no character

*
Pon Cra) with P(a)-0; otherwise, we would have

/= P(r) = (Na’a}: /P(a)/zzo
which is absurd.

On the other hand, we have the following result:
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~ 2.5. Theorem- Let {Q: : ?‘Z’e/_'f bé a family of elements of-
V'
a C-algebra A , and let (/1 )“_r, and (/Yt )ref'be F—tuples of complex |

numbers, Suppose that

((/\c)cer , (I deer ) €

;\Tgf*((at)ce)"‘ , @ a D eep ) (1)
If
-/\CFO (Veel) (2
then there exists Pe @Cn (B> ep such that
Plo)= A (Veel) .

Proof- By (1), there exists a state -‘-‘ ofc}i such that

ftra ) = A, 4(1) (Veeed, Veel™) (3)

and

fada )= P (veedt Vel y W)

Then, for each re [ we have
| | 2 2
Mo = fca’a )= [fia )l - /A ] (5) .

hence, if € is an arbitrary element ofoq’ and T is an arbitrary

element of /_' ,we have

fra,x) = f('z a)

L f (x'2}a) ( by (2) and (3) )

C

L fe) frala)  wy )

T
:/\t fex)

by (5), so that -f 1s also right-multiplicative with respect to
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each Q. . Vie may now take Y = jc * .
T | C (0.5 )CGP
This completes the proof.

We shall prove two more general theorems concerning the existence

of characters,

2.6. Theorem- Let {ac : cg["} be a family of elements of a
»
C-algebra <y4 , and let

(A ). cer

Suppose that there exists a [ -tuple (°‘r: )ce

€ '\_I(‘J’-P ac)

of positive numbers

r
such that

( (O‘ )ter1 ? (Ot )cer‘)e :I:?p((hi)tep ) (bt )ter‘) (1)

where, for each z , 0 =0, and
(4

-

he = ((a-4) (a-2)) "

end

k

T

* dt
((@-A)(a-A)) ®.

Then, there exists a character ‘-P on C‘(&c )cer‘ such that

]

Pla,) = A, (Veel™) -

Proof- By (1), there exists -FG E( s ) such that

‘C(lnt):-((kc)zo (Vcep) (2.

Let r be an arbitrary but fixed element of [' . In the following
argument, we shall assume that the corresponding positive number

o(tis less than or equal to 1 ; the case whereo 3 | is settled
T

similarly.

By the functional calculus, there exist non-negative integers
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m and "\ such that
|

r m
<(a‘c"/\c) (qr;-)‘t)) < h

T
and

4
x 20
((a.-A)(a-A)) ¢ Ry

hence, by (2), |

nf(((%dt)* (ac-,\c))w) -0

and |
: ».
- Q- ) =0
£« (@-4) (a-2))
It follows (c.f. the remark immediately preceding proposition 1.6.

of chapter II ) that

. » :
fa-2) (a-2))=0
and
- (a_- =0
£ Cla-nr)ta-7
Therefore, by remark 1l.4.1.(a) of chapter II, .“ is left-multiplicative

¥
with respect to Q and Q with -F(Gr)=/\ . Since T was arbitrary, this
T T z

completes the proof.

. . .
2.6.1, Corollary- Let @ be an element of a C—algebracﬁ' and

suppose that the following condition holds:

VAeq @, Jo,M elR, suh that

% o(
((a-2) (a*-2)) < M (@-%) (a-2) ) (1)

Then, every state of J’which is left-multiplicative with respect

to @ is also right-multiplicative with respect toa .

Proof- Let 7[6 E(od) be left-multiplicative with respect to @
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vith -F(Q) =A ; then AEgP(CL) (chapter I, theorem 2.2.a(iv) );'

hence, there exists positive numbers o and M such that (1) above

holds. | .
Let nowd?be the enveloping V.N, algebra of o}f, aﬁd extend 7C :

to a state f of o . By lemma 4.2,b(ii) of chapter I, there exists

an element 6 of‘d;i such that
% . - “/y
((a-p)(a®-])) = bWa’-7)(a-1)) (2) .

Now

3y a-n) = £ D) a-2)) =0

since { is left-multiplicative with respect to Q and §(a)=). Hence

. by the functional calculus, we have

f( ((a’li)(a-A))d) =0 (3)

Therefore, by (2), (3), and the Cauchy-Schwartz inequality, we

heve

- : o
f(((a-p(a=0) ) =0
It now follows, as in the proof of theorem 2.6., that; is left-
R -
multiplicative with respect to Q and @& with )((a.) =A . Since

9 = this completes the proof.
-FIC'(Q_) (lC'(O.) ’

2,7. Theorem- Let {Q._c-. e[ } be a family of elements of a

’
C-algebra A . Suppose that there exists a state § ofcd such that

| feay = el (Veel ) .

Then
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' Proof- For each yx ecf and eachc e /7 we have

,/f(‘tat)--ﬁz)vfmc)/::
| £ (xca-fwn)] <

£(xx") f((%”_f(—a:))(%—f(ac))) 3

g ) 2 2
Afear] ¢ fea'a) < hai = lfal,
it follows that'
f(za?)f{m/(g):o

so that f is left-multiplicative with respect to each a,c ,
Similarly, 7( is right-multiplicative with respect to each ac .

This completes the proof.

$3. Fully Charactered Operators.

3¢l. Introduction- Let Q@ be a normal operator in a C‘—aalgebra d¢
It is well-known that there exists a 1-1 correspondence between
the set of characters on C'(a,) and the spectrum of @ . Now,

for a normal operator, we have ofa) = (a) ; further,

ap
any pure state that is leff-multiplicative with respect toa is
also right-multiplicative with respect to @ . This, together with

proposition 1.2.3. of chapter I, motivates the following definition :

|
3¢2. Definition- Let @ be an element of a C~algebra o‘d' .
We say that @ is fully charactered provided that every pure
state of 0¢which is left-multiplicative with respect to @ is

also right-multiplicative with respect to @ .

3+3. Proposition- Let @ be a fully charactered element of 04,
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and let )Cé‘ E (04) . If fis left-multiplicative with respect

to @ then f is also right-multiplicative with respect to @ .

Proof- By -Remark 5.3.1. of Ch. I, Fmay be expressed as a

w-limit of convex combinations of pure statesf ojc}q' each of Wh.lch
is left-multiplicative with respect to Q w1’ch f (a) = -)[(a,)

(Va:,' ). By definition 3.2., each ﬁ is also right- multip-
licative with respect to @ ; hence f is also right-multiplicative
with respect to@ . |

- This completes the proof.

3.3.1. Remarks- (a). Suppose that @ is a fully charactered
o ¢ . ﬁ'
element of a C-algebra dd- , and let @ be a C-algebra contalnig

dl. If -f-‘ is a state of @ which is left-multiplicative with
respect to Q , then "" is also right-multiplicative with respect

to @ . For, by proposition 3.3.,

'F, € @C'(a)

C(a)

The Cauchy-Schwartz inequality now proves the required result.

Thus, the property that’an operator is fully charactered is
independent of the C‘—algebra containing the operator.
(b)- If o is fully .charactered then @ need not be fully charactered.‘
For example, if Q is a non-unitary isopetzy then, by corollary
2.6.1., & is fully charactered. However, a,' is not fully charactered

(remark 2.4.1. ).

3.4 Proposition- Let Q be a fully charactered element of a
»
C-algebrad# .
(1)- ’lfhere exists a 1-1 correspondence between @C.(a) and OG—F .

(ii)- For each A e o la)  swe have

F
()\A)GZY‘,(aa)
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In particular,

*
/\eqP(a) = A eo;?(cu

(iii)- Suppose that cA’acts in its universal representation on a

, 1
Hilbert space J% , and let @ = i (a*2)?* be the polar decomposition
of @ . Then

ATO;,, (a,u) @

and there is a 1-1 correspondence between ,fO‘ {0. Lb ) and

C*a,u) .

Proof- (i). Let A'e ZP (a) ; by theorem 2.2, of chapter I,
there exists a pure state -f ofr/4 such that -f is left—multiplicative
with respect to @ with §(a) A ; by definition 3.2., £ l C*a)
is a character on C (a) .

Conversely, if P is a character on C*(a) then, by proposition
1.2.3.. of cﬁhaiater I, we have Y(a) ¢ f?P (a) .

This proves (i).

(ii). Let A eoaP (@) ; by part (i), there exists YPe @C'(a)
such that Y(a) = A . Hence

(A, 2) e JUQ'P (a,a")
by the proof of theorem 2.4.. In particular, we have A 62}(0.') .

This proves (ii).

(iii). Suppose first that there exists A ¢ % (o) with Ago.
By part (i), there exists Pe () .« C*(a) Such that fla)=).
r

Extend ¥ to a state «f- of &4 (note that u e J ) Then,

by the Cauchy-Schwartz inequality, we have

'FCIQ):""(Q.I):: -;(a)&z) ' (Vzeoa:a)

S0 bthat |
'FA(Q). :.-;-. (l..L.u,*a,) = 7C(u,u',')7((a) _ (1)
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and

Lary. frwewa’y = Fruo £t (2)

and

1 .
.C(u').((a)zgtu'a): -f((a'w'): \ £ar) (3) .
Hence, since A = -((a.) £ 0 , we have

‘C(u.'u) =§(uu'):l ¢ 1 fwl= .

It follows (as in the proof of theorem 2.7.) that

-F l Chw) ¢ @ C*tuy
Since
£l Ctay € Q)
it follows that
e @
”C'(a,u) = c*a,u)

In particular,

(‘F(a), ftu) ) e Iﬁ? (a,u) .
by proposition 1.7. of chapter II.

Next, suppose that O‘;P (a) :{o} . By part (ii), we have

*
(0,0) ¢ ’T?p (a,a’)
Since di is in its universal representation, it follows that
(0,0) € JG, (a,a”)
so, there exists a vector £¢ J%  such that /&//z1 and

af = a'fF -0 ()

S~

* -
Now & ¢ is the support projection of (a'a)* , s0 [53;

L ©0
‘ 9n
lemma 2 ] it is the strong 1limit of the sequence { (d'a)z }’m N
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by (4), we have

L

: .
@%2) ¢ =0 (h=01,2...)

*
hence «’u f=0 . Similarly, uw ¢ _ 0 . Therefore, the vector

AN
state & defined by is a character on C (@, u ) with

w - W _
Y (a) - J‘,/Q)_O

In particular,

(0,0) ejcgf (a u)

This proves the first part of (iii).
To prove the second part, let
‘ *
(4,1) € Tg, (2, ")
. - T ,
Then, there exists 7[6 ﬁ- (ada N) such that{ is left-multiplicative

with respect to @ and ¢, with

ftay=) ana flu)=/ .

Since @ is fully charactered, fis also right-nultiplicative
with respect to @ (remark 3.3.1.(a) ). Therefore, the equalities
(1), (2), and (3) above hold. The proof may now be completed as in

the proof of the first part by distinguishing between the cases

A=o0 and A#o .

S *
Finally, if there exists a character on C (Q’LL') then, by

proposition 1.7. of chapter II, we have

( Play, Qruh )e J% (a,u’),

This proves (iii) and completes the proof of the theorem.

Our next result concerns reduced V.N.algebras of given V,N,

algebras which are singly generated by a Fully charactered operator,
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3¢5 Theorem- Let Jibe a V.N.algebra acting on a Hilbert space

J¢ and suppose that 04 is singly generated by a f'uil charactered
g y y

operator 4 . If £ is a central projection in J then, with

X =E#) e 8= EA]y

we have

(i) the operator 8 is a fully charactered element in the reduced

V.M. algebra £c4 £ ; and

(ii) there exists a 1-1 correspondence between (_P C#(B')

and %-P(B)

Remark- The reduced V,N.algebra E%E is the set of
operators 7 on X such that T:(ES)/»JC for some 5‘6‘ C‘/¢’ J

c.f., [21; ch. I,62. ].

Proof- Let ? be a state of Edd’g - such that g is left-

multiplicative with respect to §,and put 9(8)-j. Define £

ondiby
fex) - 9( (EX)/;c) (Yreed) ().

It is easily verified that ¢ £(c4) .

Let now X and Y be arbitrary elements of 04 and let f be an

element of _k ; then

((E xy)], )§ =(EXT)E
_ (EXE)(EYE)&

-_-((EX)/k ) ((EY)/;()J(r

so that

(EXY)/J(: :(/z.r)r)éc)((fy){yC ) - (2) .
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Hence, by (1) and (2), we have : :

foxyy = 3(cen), JUEVL,)) . (VAVY eot)
If now Xis an arbitrary element ofcﬁ' swe have

{fixpy = IExl ). B )
= 3((EX)\3c) . 3(8)
= 2500
so that 4 is left-multiplicative with respect to A with ‘F(ﬁ) =A.
Since A is fully charactered, proposit;ion 3.3. shows that f is‘ a
character on C.(A). It is then easily seen that ‘-‘3 is a character on
C*B) .In parti'c,;ular, %is also right-multiplicative with
respect to B . This proves (i),
To prove (ii), we need mer;ely note that the A‘C'..algebra C’(B)
is singly generated by the fully charactered operator B ,and apply
proposition 3.4.(i).

This completes the proof.

We conclude this section with an analogue of the Gelfand-
Naimark theorem for normal operators,

The following lemma will be needed below,

3.6, Lemma~ Let { Q. : ce r'} be a family of elements of a
¥

C-algebra o ,and suppose that each @, is fully charactered.

Then, given

(Ag) e Jo ca) (1)

t@r‘ ap = < Te
there exists LF € @ c* (@c)cep such that

Proof- Let (1) be satisfied; there exists a pure state { of A

such that for each ¢ , -f is left-multiplicative with respect to Q’c

12
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with §(ac) = )\C(theorem 1.3.(c) of chapter III). Since each Q

| is fully charactered, ; is also right-multiplicative with respect
to each Q . Hence, we may take Y- *F\ C*a.y |

T v lcel
This completes the proof.

3.7+ Theorem- Let {Q‘c T Te r' } be a family of elements of

L
a C-algebra ¢/4 . Suppose that for each

(/\c)tp‘_, € :\'0' (a)ter'

there exists Pe @ c’ aq) cepr such that

W(Qt)=)\c (Veel™) ;

let

3= {xe C;q:)ter: Pry=o (Ve @C*(au )-ceT) }

* ,
Then, J is a closed two-sided ideal of C (&) o and the

*
"C-algebra

Clareer [

’ *
is isometrically -isomorphic to the C-algebra of complex-valued

continuous functiogs on ATO’ (A )t 6]"

Proof- This is essentially proved in [ 10; proposition 5 ]. For
while proposition5 of [ 10] is proved for commuting families of
hyponormal operatoArs on a Hilbert space, an examinatioﬁ of the
proof shows that the only propertyof a hyponormal operatof used
‘in the proof is that any family of hyponormal operators satisfies
the condition expressed in the hypothesis of the present theorem.

Ve therefore omit the full proof.

¥We remark that the conclusion of the above theorem holds

trivially if ,\T(T ca ) = @ ; and that the conclusion
e “cep
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holds for any family of fully charactered operators ( lemma 3.6.).

Question: Is j a minimal closed two-sided ideal of" Cf(a) ?
. r teT-, .

3.7.1. Corollary- Let @& be a fully charactered element of a
»~ *
C-algebrar‘/q' and let 6 be an element of C(Q) which commutes with
b . Then with 9= {ZGC"(A) : Ple) =o (V?chf(“)}' we have
) ot b) = '

and C“(b)‘/y is isometrically »-isomorphic to % ( a"}’ b)) .

Proof- Let A€ %‘P(b) . Since Q a.ndb commute, there exists

Meo (@) such that
ap

(A,f') € J_Ua"f, (61 al) ;
hence, there exists 7[6 E{ a¢) such that f is lef‘t—mlultiplicative

with respect to @ and b with
Feay=[ & ftbi=4

Since A is fully charactered, f/C"’(a) € Q C"(a,) ; hence

| ’F/C'(é) e Ocys) -
The second part follows from theorem 3.7. .

This completes the proof.

& 4. Some Examples .

4.1. Introduction- In this section, we give some examples of
fully charactered and finite operators. We shall also be interested
in the existence of states -F of aC..'algebra &4’ such that -F
satisfies the trace-like property expressed in definition 1.2.(1)
with respect to the cfalgebra generated by a fully charactered

*
element Q@ of a# ,and such that -F is not a character on C (&) .
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4.2, Is;ometries— Let Odbe a C’—algebra, and let Q e yd‘ « The
operator @ is said to be an isometry, provided that @'2 =/ . By

corollary 2.6.1. (with ot = M = | ), every isometx;y is fully

charactered. In particular, @ is a finite operator by proposition

2.2.(1). | |
Let J# be an infinite-dimensional separable Hilbert space with

o0

basis {en} and let & be the unilateral shift defined by
n=0

— =0 I'2‘._.. .
ue =e, ( n=o, ], )

1

Then & is an isomefry, and it is well-known that o _(w )= "I’ where

ap
T={4eC: [il=].
[27; problem 67]. By theorem 3.7. C?u) /j is isometrically

¥ - isomorphic to Z} (7/-’) where

9= el e (Ve Bena))

We now show that

KLow) ¢ 9

assuming by [197 that xf(M) ¢ C'(u).
 Since /-uw”e JC,(,'(,/¢) and

2
?(/-— uu'}:/- /(F/L()/:O ( V()DGJC;‘(())

we have

j N KL(w) 27

If there exists £ € ,J%t (JT%) such that ?(:4)}*0 for some
Pe @Ci‘(“} then, the kernel of % would be & non-trivial closed
_ two-sided ideal of KL (¢ ) ; this is impossible since L (JE)

is simple; hence

*sem)c e Ctu) .

The above result ( namely, that EL(J¢) C j ") is in

accordance with Coburn’s result which proves that ,,k.f(,fd/ is the

5
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A .
smallest closed two-sided ideal of (C(w) ; c.fs, [ 18 ].

#
Let @ be a non-unitary isometry in a C-algebra 0‘4 . The following

argument proves the existence of a state <F such that

~F(bz)=¥(zb) (Vrech, VheCla)

and
‘pl (a) @ Ca)

Let

S - {{cE(od) fw)=o }

(note that S¢ (@ since @ is non-unitary ). Then S is a wecompact

convex subset of E(cf) and the mapping-l;defined on S by

,
* =
T‘-f (v)= f(e'xa) (Vleéi, vfeS)
is a w:continuous mapping of S into itself. By the Schauder-

Tychonoff fixed poiﬁt theorem, there exists -9\6 S such that

Lava) = $eo (Vved) -

It is then leasily verified that -;has the required properties.

L.3. Quasinormal Operators- The class of quasinormal operators
was first introduced by A.Brown in [ 81].
An operator Q is said to be quasinormal provided that @ and
a*a comnute.
%
Let @ = u (a'a) be the polar decomp051t10n of @ . Then, Q
i1s quasinormal if and only if ¢ and (a'a) commute [27, problem 108]-

hence . / : L

aa’ a(aa) 7 (cca)‘
(aa) LL&L (ﬂa)
< Juull a'a

|

a'a .
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Hence, by corollary 2.6.1: (with o= M=) ), every quasinormal

operator is fully charactered,
We present an alternative proof of the existence of characters

%
on C (a) ,using theorem 2.5. .
Let A e ap (a) ; since Q. and a'o. commute, there exists
- He o (a%a) such that
af
(A, M) e,Ta- (2, a2 ) .
If A,to then, by theorem 2. 5., there exists (FG @ C (a) such

that @@) =) ; if A =0 then there exists ﬁe E (C (@) ) such that

foy = feat) <o,

hence

o(‘C(Qa) ‘((aa)-—o

so that £ @ r ) witn fia)=o .

We remark that every isometry is quasinormal (since in this
case Q_“Q =1 ).

L.4. Hyponormal Operators- An operator @ is said to be hypo-
normal provided that _a'a. > aat [27; no. 160 ]

By corollary 2.6.1., (witha= M = | ), every hyponormal
operator is fully cﬂaractered. Here, we present an alternative
proof of the existence of characters on C*(Q) refei;\ed to at the

end of §1 of chapter I. Thus, it is sufficient to prove that

\/,\eo%(a,), HTGQC‘( s-t. pa)=)

Let A\ e o (o) with eigenvecforf (NWEfW =1 ). Then

S7E YN = caalE £ - \f\\2
£ cofaf, fy - 1A
=0
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so that

— 4
ap
The result now follows from theorem 2.4. .

The existence of characters on the c- algebra generated by a
hyponormal operator acting on a Hilbert space vas first proved by
Bunce in [ 9 ] . The result was later extended to commuting fémilies
of hyponormal operators in [ 10 ] anda [ 37 ].

Ve remark that every subnormal operator is hyponormal [ 27; no.
160 ]; that the partial isometry in the polar decomposition of a
hyponormal operator is easily seen to be hyponormal; and that the
example given in example 2.7.(a) of chapter I shows that there
exist hyponormal operators which are not subnormal [ 27; problem

160 ].

4.5. Quasi- hyponormal Operators- An operator a is said to be

quasi- hyponormal provided that

”22 #* ?
a a - (aa) >0

[ 4 ).
Let & be a positive integer. An operator 4 is said to be
hyponormal of order A provided that afis quasi- hyponormal [ 39 1.
Let @ be quasi- hyponormal, and let fe £( C @) ) be left-

multiplicative with respect to @ with f?a;#o . Then
4 9
[ Fear] = £lara®)
> F (a*2)t)
2
= [ fea)]” Fraa®)
i
2 | Farl
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so that f(aof) z lCla) \2 ; hence, «F is also right-multip-
licative with respect to @ and {‘e @C*(a) ‘
In particular, if a quasi-hyponormal operator is left—invertible
(i.e., if 0 ¢ U“P (0) ) then @ is fully charactered.
Essentially the same argument shows that, if QLis a hyponormal
operator of order ,2“ for some integer n > 0,and if a state -r
is left-multiplicative with respect to Q then «F is also right-

multiplicative with respect to Q. ,provided that £(a)%0 .

Ve remark that every hyponormal operator is quasi-hyponormal.

The converse is false as is showm by the operator

1
A A
T -
O 0

where A is a non-normal hyponormal operator with Re o-(ﬁ) > (0]
(eege, take Az U 4 | , Where U is the unilateral shift); c.f.

[ 39; theorems 2 and 3 1.

L.6. M~hyponormal and Dominant Operators- An operator Q is said
to be lM-hyponormal provided that there exists a real number ™M

such that for all A ¢ G s

. 2 _
(@-A)Y(a* X)) ¢ M (a*-X)(a-x)
[ 54 ].

An operator Q is said to be dominant provided that for each

A‘G ol(a sthere exists a positive number ™M such that
) p A

(A-A)(a*. 3 ) < M, (Qt3)(a-p)
[ 52].

By corollary 2,6.1., every l-hyponormal and every dominant
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operator is fully c“haractered'. |

We remark that e'very hyponormal operator is M-hyponormal, and
every l-hyponormal operator is dominant. Example 2.7.(b) of chapter I
shows that there exist }M-hyponormal operators which are not
hyponormal,-and the example given in [ 52;example 2] shows that
there exist dominant operators which are not M-hyponormal for any

real number M .

L.7. Paranormal Operators~ The class of paranormal operators

’ n

was first introduced in [ 30 ] under the name "operators of class N .
The definition and properties of paranormal operators was later

extended to C-algebras in [ 36 ] and studied in [ 40 ].

An opera:tor Q@ is said to be paranormal,provided that
22 2
L *
aa -2xaai A 30
for all non-negative numbers A .
Let R be a positive integer. A bounded limear operator A on

a Hilbert space & is said to be a C(/V, k) operator, provided

that
k

Il Axll < //ﬂkl // (V:r. 5'7¢; //z//:/).

~

[ 32 ],and [33 ]. Thus, a paranormal operator is a C(/V, 1)
operator,and conversely.
. .
Let rA be a C-algebra, and let a€¢/¢ be paranormal. We use
e
the Shauder—’l‘ychonof‘f fixed point theorem to show that @ is finite.

By the definition of paranormal operators we have , for each 660‘4’

omd Frieod § € E(A’) 23,
~F(66)A 2 £ (6a"a ) A +ff6a'aé);o (VAso0

so that

2 "
(f(éafa_g))zg £e667) /(ba,’a.zb) (vbeck).
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Let f be a state ofcﬁ' such that

Fraat) = jaatll .

Then,

'F/Cf(aaf) € C-DC*(aa") ’

hence, . )
(Flaa*y) =(f(aa"aa’))
< fla a'zazﬂ.') {taa’)
= (f(fm"))gf(a’a)
so that £ (a'a) > £¢ad) ; also
fta*a) < Na'2il = llea’ll = fraa”) ;
hence

fta*a) = faa®) = Il 221l

For the rest of the argument we shall assume, with'ou{; real loss
of generality, that jaf=/ .

Let A
S = {feE/od} : f/a:'a):f(aa'):/} .
By the above remarks, $# ¢ ; further,it is easily verified that

5 is a w'-compact convex subset of E{dﬁ) « For each -fé‘ 5

define zf on 4 by
oof (z)= fratza) (Vrecdt).
then 7 f ¢ £lef) ; further,
, b4
IF (aa%)= f(a%aaa) 3 (fran) ) = |

and

fea'ae’a) < ara'al =1
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.4
so that /7, £ (@'a")=1 . Similarly,

24 2
Zfta%a)= ftatal) > (f (a2)) -
and

13
£¢ a2y < hata’ll £1

So that Z‘f{a"a}:l . It follows that the map 7, : S —» S

defined by 7[\.__,. 7‘; f maps S into itself. Also, it is easily
'

seen that Z is w-continuous. Hence, there exists a fixed point

i.e., there exists £€ 5 such that

fra*xa) - £x) ' (Viecd).
If now % is an arbitrary element of & ,we have
| Fxa) _ f(az)/ =/ f(za)- f/aaza)/
=/ £Ccr- o.a)z.a.)/

£(-a%)’) £ (')
0

IN

since f{afa )=

This completes the proof..

We remark that every C(le) operator is normaloid (c.f. 4.8.
for normaloid operators) [ 32 ] , so that every C(N, R)
operator is finite. Also, every quasi-hyponormal operator is
paranormal, but the converse is false in general (49 1. Finally,

there exists a normaloid operator which is not paranormal [ 26 IR

L.8. Unimodular Contractions and Normaloid Operators— An operator

Q is said to be normaloid provided that

Y(a)= llal

where Y(a.) denotes the spectral radius of q [ 27;n0.174 1.
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Ch. IV, g4, - 1.8.1.- 4.8.1.1.

Let 04 be a C'-algebra, and let 2 ¢ d’* be normaloid. Since
flejl = reta) = Mf:{/AI c A ev(a)f

it follows that corresponding to each positive integer v , there

exists A€ o (&)  such that

Nall -+ < 14,] < iall
Since o (@ ) is compact, it follows thaf there exists A € ocla)
such that . '
[Al = dlell
Ir A < %-P (@) then,there exists a state 7rof 04 suéh that -[(d):/\

so, by theorem 2,7., we have

Fl . e

Cay Ctas
If, on the other hand, A Ggp (a') then, since
rea*) = rta)= Nall = lla®l

we may apply the same reasoning to a,‘and conclude that

f , € @C"(a}

C*la )
Thus, we have proved the following result:

4.8.1, Theorem~ Given a normaloid operator @ ,there exists a

character P on C*(Q.) such that |Y(a)|=z Jlal .

Alternative proofs of the above result may be found in [ 43 ]

and [ 3; corollary 3.1.3. ].

4.8.1.1. Corollary- Let of be a V.N.algebra, let @ € (‘/d be
L .
normaloid, and let @ = «w (@'a) * be the polar decomposition of @.

Then (& is normaloid.

Proof- By theorem 4.8.1., there exists ¥¢ @ such that

[Ptay] = /el

Ca)
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Ch. IV, §i.
Extend"(fto a state 7[of 04— ; by the Cauchy-Schwartz inequality,

we have

Llbx)= fexb) ( Viecs, Vbe Clay).

In particular, since & €o¢ » We have

featar) = frute )= fru’) Flas
so that s
P@a)’) _

2

[ fay | | $le]

. . ¥ . . .
Since & is a partial isometry, 4w & is a projection,so

‘ 2
Ney = fa'ull =1
hence
[ Loy ] = 1£euh]=1 = llull .
Therefore, by theorem 2.7., we have

‘p/("(u)

and, in particular, 7[/L(} ¢ o/u) ; hence

€ @C"(u)

/=] Ftur] < rtw) £ hull =1,
i.e., (¢ is normaloid.

This completes the proof.

We remark that there exist non-normaloid partial isometries;

U - (‘.’ ’).
0 0

We shall use the above result to give a decomposition theorem

for example, let

for arbitrary elements of V.N. algebras., The following lemma

will be needed:
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Che IV, &4, 4.8.2.
: ¥ :
4.8.2, Lemma— Let X be an element of a C-algebra 0¢ . There

exist a unitary operator we Q¢ ,and a normaloid operator aech

such that X= UA.

*
Proof- Let t‘}’; denote the unit ball of the dual of rzd :

04':-[7[6‘&' N //7[//:/] .

Assuming, without real loss of generality, that //z//=!, the Hahn-

Banach theorem implies that the set § defined by

¢
NG [feofg ;o fr) = //r//=l}
is non-empty. An elementary argument shows that Sisa wf-compact

¥
convex subset of V?; let -fbe an extreme point of S ; then 7C is

. * )
an extreme point of 0/¢ . For suppose
!

fet-f 4+ <4 (f/:eofft' 0Lwsl).

17

Then
/ = f(z) = (/—ot){(l) + o {(z)'

so that

VEAOVES (J=1,2) -

Since /is an extreme point of the unit ball in the complex plane,

it follows that
‘g () = ‘(;(l) =

so that {, '(;_G S . Since -{was an extreme point of S , 1t follows
”
that ;-_— 7(; = -g ,50 that «fis an extreme point ofyd .
X !
Now by [ 45 ; lemma 4 ], there exists a unitary operator « ech

and a pure state g of y¢ such that

F(3)=Gruy) (YVyech)
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Ch. IV, §4. , A 4.8.2.1.
In particular,
l= ftx)=Jtur) ¢ luxl <1

so that

Jtuy) = Nurj =

¢
Hence, L % is normaloid, and o = u («X)

This completes the proof.

4.8.2.1. Corollary~- Let X be an arbitrary element of a V.N.

algebra . . Then,
= WU VA
where {is unitary, 7/ is a normaloid partial isometry, and. his

a positive operator in Jiz.

Proof- Corollary 4.8.1.1., and lemma 4.8.2. .

The question now arisesas to whether every normaloid operator
is fully charactered. The following example shows that the answer
is no, in general.

Let ﬂ: /‘43(0:‘) , and define an operator /4 by the matrix

A

il
(]
&0

o

0 0 o
where « % 3 . Then
I o 0
*
A = 2 o
0 0 of

“and an elementary calculation shows that

. U
AA = t§ o
-0 4

0 2
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Ch. IV, 4.
r 2 B
The eigenvalues of the matrix A 4 are 3+ /5 ,and « ; hence,

2
since « > 3 , J§ ,we have

~

NAIN = | ﬂ’ﬂ/ﬁ: o .

Also, the eigenvalues of A are 1,2, and « , so that

Y(A) = 1Al = o
i.e., /) is normaloid,
Suppose now that there exists a character ‘f’ on C*(A) with
¥(A)=) . Then
(1,1)€ T (A4
which means that there exists a non-zero vector Z = (%, LY ;)

: *
( t for trrams.pose) such that /42: X and A 7= 2 . Now

X+ %\ X,
ﬂ 1= 1% : ﬁtz = Wi
23/ ! o 1y
so that the only solution to the simultaneous equations Ay = %
¢

¥ .
and A'r = ¢ is (0,0,0)" .
Thus, corresponding to the point /Go‘{ﬂ):oq} (A) ,there is
* :
no character on C (A) , so that A is not fully charactered.

We remark that the above example uses a2 general construction
given in [ 25; theoren 1 ]:
Ifﬂ is an operator acting on a Hilbert space then,there exists

an operator 8 such that A® 8 is normaloid.

Finally, we shall consider a sub-class of the class of normaloid
operators,first introduced by B. Russo in [48 ], whose elements
are fully charactered.

*
Let @ be an element of a C-algebra N4‘ . We call @4 a unimodular
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' Ch. IV, §L. | L.,

contraction provided that \|a \1£1| and

oy c fAeC : Ial=)] .
Clearly, every unimodular contraction is normaloid. See also [ 31 ].
Let now § € E(dzi) be left-multiplicative with respect to Q

with f(a):)\ . Then /\ € o‘-‘P (&) € o) >solr]=1. Since

l=1A1 £ hall £

—

we have

| Sy = 1a) = Nall =

Hence, by theorem 2.7., {is also right-multiplicative with

respect to Q . Thus, is fully charactered.

ile close this section with the following remark: There exists
a normaloid operator @ , such that @is not a C(N,R) operator

for any positive integer k ; cofe [ 33;theorem 1 ].

4.9. Weighted Shifts and Bi-normal Operators- Let ,.7¢ be an
o0
infinite-dimensional Hilbert space with basis { &, }n .
A (unilateral) weighted shift is an operator Wwhich satisfies

the relation
We, = « € (n=0,1,2, -.)

-0
for some bounded sequence of complex numbers {c(h} [ 27; no. 75 1.
nse

Using the theory of Banach limits, it may be shown that there

exists ; ¢ E(@®f£(3d) )such that
3(x8)= 3(BX) (VXe@ra), vBeR)

»
where @ denotes the C-algebra generated by the set of all
weighted shift operators; c.f. [ 12; ¢3 J.

r
An operator A is said to be bi-normal provided that A A
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Ch. IV, §4. 4.10,
. _ .
commutes with 44 ; c.f. [ 13 Jand [ 14].
It is easily verified that every weighted shift operator is
bi-normal. In view of the above result for weighted shifts, the

following question is of interest:

Question: Let A € BL( M) be bi-normal. Is A finite?

4.10. Concluding Remarks- Througout the present section, we
we have considered only the case of C’-algebras generated by a
single operator.The extension to the c.ase of a C’-.-algebra generated
by a commuting family of operators follows immediately from lemma
3.6., provided that each operator is fully charactered. For
example, if {at : ter'} is a commuting family of dominant operators
(cefe,ko6. ), then the joint approximate point spectrum of {Qt: tef‘}

is non-empty (chapter II, corollary 2.5.1. ), and for each

(A, PeJ (tter

there exists a character on C (Q )‘CE r with

('P(at)z /\.C (V‘CGI_')-

In particular, there exists ¢ E (cf) such that

{('ib): {(bx) (Vle‘ﬁ" VBGC(a)rel )

(proposition 2.2.(i) ).
For non commuting families of operators, nothing can be said
in general, as is shown by examples 2.1.(a) and 2,1.(b) of chapter

II. Finally, we wish to pose three problems.

Come'tw\

»
Problem 1. Let & be a C-algebra, and let a)b € e ve finite

operators. Is there a state {ofc/# such that

Q(zc):&cx) ( ViecH, VceC*(a,b))?
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Ch' IV’ §l§'l
&
Let us call an operator fully charactered in the weak sense

provided that the following condition holds:

VA eqwta) , F9e @C*m) st Ylay= A

By proposition 3.L4.(i), every fully charactered operator is

fully charactered in the weak sense.

Problem 2. Suppose Q is fully charactered in the weak sense.

Is O fully charactered ?

Problem 3. Let Q and b ve two commuting operators, each of

vhich is fully charactered in the weak sense, Is there a character

on C*(o., b) 2
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Appendix I

The Joint Approximate Point Spectrum of Elements of Finite-dimensional

C'—algebras.

The purpose of this appendix is to prove theorem 6.5. of chapter

IT, that is to prove the following theorem:

Theorem A- Let c)¢be a Cf-algebra acting on a finite-dimensional

Hilbert space J¢ sletaq, ..., a, be mutually commuting elements. of
d¢,and let /\, PR /\n be complex numbers. Then
n
) Ala_y) = A
dJ= ’

if and only if
n
Z(a._/\.)pd s
. ¢/ d
. J= ‘
The following observations will simplify the statement of
theorem A,
First, since the joint approximate point spectrum of operators
is independent of the C‘—algebfa containing the operators (Chapter
II, proposition 1,2.1.), we may assume that 04-.- @BL( ).

Next, since the conditions

(A, .M, e,Tgr(a“;_.la,,)
and
(o, ..., 0) € ,T%rf { O-4, -, a-4.)

are equivalent, we may assume that

- =0 ' (J._—/I...)n).
/\o'

Finally, since J¥ is finite-~dimensional, we may assume that

A= BLlH) = /\4,”/([\) (m3),

Thus, it is sufficient to prove the following theorem:
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Theorem B. LetJl :M([\) » and let @, ..., A4, be mutually
m ( J n

commuting elements ofgﬁ . Then

Z'lt/da'o/ ::t/d

. o=t )
"if and only if
n
Z Qa, V4 = (# -
J=r ?
Before presenting the -~ proof of theorem B, we recall .

some definitions and results from the theory of rings and modules.
Let ﬁ be a ring, and let Mbe an ﬂ-module.
A finite chain of submodules of M is a sequence ML (oéi €n )

of submodules of M such that

2M=0
™ #

. D
¥ n-y

M=M, 2 M, 2
The lermgth of the chain isn .
A composition series of M is a maximal chain, that is a chain
in which no extra submodules can be inserted. |
Suppose that a module Mhas a composition series of length n
for some non-negative integer n . Theh, every composition series
of M has length v» , and the lenght of M ,denoted by E(Y]) , 1s

defined to bewn .

Let F be a ring, let aecd , and let v(a) denote the right

annihilator of

Yia) = { xeed o.x:&}.

Then, the map § , &4 —> acd defined by % —p O
induces a module isomorphism of (%/y(a) and adt. If, further,

A has finite length then,so do @ A ana ﬂ/)’(a,),and the

following holds:

JiacA ) = (e ) _ ¥ (vear) .

Finally, we remark that , if o#is the ring of mMxw- matrices
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then Z/r/d—) - , end, in particular, (1) holds for every element

aoqut.

Reference: [ 1; §13 J.
We now turn to the proof of theorem B. We begin with

Lemma 1,- Let & ,..., &, be pair-wise commuting elements

n

of <y¢, and suppose that

=h,o,n) (1)
adf/d@)"(a{‘:):ﬁ' (L l 1_")
Then ‘
2 ' n
(Z ab-u@)ﬂ(ﬂr(ac)): {D} (2) -
L =) L= .
Proof- The proof is by induction on n . For w=1 the proof

follows from (1).
Suppose now that the result is true for any n.-\ commuting

elements of o sand let &, ... O satisfy the hypotheses of

A2

the lemma. Then, by the induction hypothesis, we have

(i—;a&) N (,('ﬁ ey ) = fel OF

¢z
Since
a A @ re)=cH
we have, for each ¢ ( R £ tén )>

a. A - 2, a A + a v
c acd +a Y4,)

since @ and & commute; hence,
(2 1

n
2 a. A
L:Z' @‘r/q' = aaoq't'f,é ¢

n
c QIU@-;-Z__Q; Y(Q;)
7=2

since the right-hand side of the above inclusion is obviously
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contained in the left-hand side, we get

n n
Fat - adt, [ ara
=l =2

We claim that the sum in (4) is, in fact, a direct sum. For,let

4]
Z ¢ ZaL. rea ) ;
5

then, ¢
n
x: Z a‘, yb
e=2
where
2/ € )’(0") (L=2'
hence, ' n "
ar = ) Qa7 =) aai =9,
¢=2 e=1
T xe vca,).

Thus, b\a(l))

n n
2T.C%‘c/1 = -Cgcﬂi é)éig— 4%; réa;)

c=1

7@(5@;0@*}0 ((SYCQU)

(%4}

By (5), there exist j|,_..)3“ in S such that

doe rea,) (¢=23,...

and

y: a,'y’.* .Z-_QQ‘:?L' .

By (6), we have f e y(q ). Also
[}
hence

therefore,

ad e a S N r(a,):f"f-
] I
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Hence " g
7=2 4 .
¢=2
By (6), we also have
n
'Q% c (\ (e, )
=1

hence,

L=

7€ (‘_gaao‘d’) N (évca¢)>= {o
by (3). il

This completes the proof.

Corollary 2. - With the hypotheses of lemma 1 , suppose further

that
n

Sach el

¢!

2.2'"/4% = o

Proof- By lemma 1, we get

Then

(3(*(%)) = fo}

Hence

Y ( gﬂ%):f"},

i.e.,
A
5 Aa, - A
t

This completes the proof.

Ve shall need one more lemma.

Lemma 3. Let a,,. S, 0 be commuting elements of Vdj
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then, there exists a positive integer R such that

erﬂ@ )’/Qf):ﬂ (e=1,...,n) (1) .

Proof- For each ¢ ( 1 £(<¢ n ), we have

bJ
Y(QL-)QY(&L.)_C_ ...gv(o.f)g... (A:L?,...);
hence, there exists a positive integer k; such that
h; kpﬁA
Yla, ) = v(a, ) (B=1%...) .

Let h: won {h.} ; then
14tén

Y(a,;k) :Y(Q.f+é) (c=ty.om; 821,20 (2)
We shall now prove that (1) above holds for K .
For the rest of this argument, let ( be an arbitrary but fixed
element of {‘;---,n} . |

Yle first show that
(a® A) 0 (v 103 o)
Let . '
k k
xela;d)N (v@;)).

k
Then % = Q'; "3 for some '3 et so

2k
Q. Y= ak(af%): & x =0

. v
since X,é Y(ab,k) . Hence

2k
de v(a, )- Y(Q;k)

by (2). Therefore o - Q.k'g =0.
This proves (3).

Next, we show that

k
a; 4 Y(a‘;k) = A (&).

We have( see the remarks immediately preceding lemma 1 )

/(A ) - Z(afm s lraly),
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Also

Ao derat) - liatay , reak)) .
‘Hence
, R :
HeA)=Y(a Aorat)
so that
A - Q;Aﬂ @ r/Q;k) .

Since ¢ was arbitrary, this completes the proof.

Ve are now ready for the proof of theorem B.

Proof of theorem B.( T.Lenagan )- Suppose that
n
) a.ch =4 (1).
=1
By lemma (3), there exists a positive integer A such that
A :
A - db.aﬁi@rmf) (¢=ly-,n) (2).

Now, (1) implies that

Afdoé&@:& (3) .

~ For, multiplying both sides of (1) by c% , we get
n
3
afldd' = a,&d+£a,a(:(‘/¢
. 2 -‘n
cacd, ) QL-JL

since @ and Q. commute; hence ¢=2

{ (4 " 2 n
0¢-_— Za,-,d Calod-fza‘-ﬂ Q(ﬁ,
c= ¢ - ‘:2
so that I ‘

n
2 -
QJ,LZQ‘-J!—&{.
e=2
An easy induction shows that

CQAEji + !zz aacﬂi = Cfﬁ.

Applying the same reasoning to the n commuting elements é PN An
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of J— ,defined by

4 p |
é:'—"’lx, éR:Q;z ém: a (3¢m &n)
we obtain

: n
A A
cz{o¢+d_,<‘/¢+za‘;0d=od.
¢=3 .
By induction, it follows that (3) holds.

Now, by (2) and (3), the n comnuting elements @
]

) -, Q&
satisf‘y the hypotheses of corollary 2. Hence,

_fwfafs(-,d.

Since for each ¢ (1€ <£n ), we have

Wi‘%‘k c ”d“.; ,

it follows that

A Zcﬂlafngydaé_@%;
n =i L=
hence Z Cﬂao = A -

The converse

may be established by a similar reasoning, by
replacing right

annihilators with left annihilators, and repeating
the above arguments,

This completes the proof.,

We remark that the assunption J,— M(C) nay be considerably
. m
weakened; for example, the result remains true if ydis any

artinian ring (c.f. [ 28;theorem 1 ] ).

Finally, we present an alternative proof of theorem B, based
on the following result:

Let A, 8, C , and O be complex nxn matricés and suppose. that

C and D commute. Then, the 2nx2n matrix K defined by

<= (¢ 5)
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is invertible if and only if

cat(ﬁo;56)¢o-

For the proof we refer to [ 27; solutiqn 56 1.

Alternative proof of theorem B.- VWe restrict the proof to-the
case of two comnuting nxn matrices Aand 8 .

Define the 2nx2n matrices M, A/, and § by

M A -8) N At g* s (O In)
'<<8‘ At/ ’('-&A), “\I o

vhere I is the nxn identity matrix.' An elementary calculation
n : .

shows that
S=8""ama Sms - n.
Hence |
TiN) = O'/S‘MS:l) =0T(M)

since similar operators have the same sPectrum[’ 27; problem 60 ].

Hence, by the above resﬁlt, we have
. ) * r

olet (AAYBE )=0 if and only ir olet (A"A+B'8) =0

i.e.,
AA T + 88T s invertible ' (i)
if and only if '
, , , |
AA+ B 8 is invertible (ii) ,

By proposition 1.5. of chapter II, (i) and (ii) are equivalent

to

(0,0) ¢ Tq, (4] 8)
and

(0, 0) é J(ja-f [A/K)
respectively. » |

This completes the proof.
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