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Abstract 

Let /9 be a normal operator on a complex Hubert space, and let 0-(1q) 

and c, (/9) denote the spectrum and the approximate point spectrum 

of /9 respectively. Then, o-(/9) 	- (/9) , and. the G-elfand- Naimark 

Theorem proves that there exists a 1-1 correspondence between the set 

of characters on C(/9) and cr(4) (= 	(#9)  ). The approximate point 
Of 

spectrum turns out to be the relevant part of the spectrum in the 

study of characters on the C- algebra generated by an arbitrary 

operator 0.. : Ifis a character on 	then 	 [9]. 
OIF 

Chapter I of the present thesis is devoted to the definition and 

study of the approximate point spectrum of arbitrary elements of 

C- algebras. 

For the study of characters on C- algebras generated by more than 

one operator, the appropriate generalization of the approximate point 

spectrum turns out to be the concept of the joint approximate point 

spectrum. In chapter II we study the latter concept. 

In chapter III the results of the two previous chapters are used 

to prove a rational functional calculus for the joint approximate 

point spectrum of a commuting family of operators. 

Chapter IV is concerned mainly with the applications of the methods 

developed in the previous chapters to the theory of characters and 

finite operators. 

Finally, applications to various topics (such as Rosenbluin's 

theorem) are scattered throughout the present work. 
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Chapter. I 

G-enera]. Theory of the Approximate Point Spectrum 

l. Definition and elementary properties of the approximate point 

spectrum. 

1.1. Introduction- In this. section we recall certain results 

and establish certain others which will be repeatedly used in our 

later work. In order to avoid, unnecessary repetition we state 

here that, unless otherwise stated., every (f-algebra under consideration 

in this work will be assumed to contain an identity In 
I 

particular, any C-subalgebra of a given unita]. C-algebra will be 
* 

assumed to contain the identity element of the given C-algebra. 

If cA is a (unital) Ct-algebra, and 	is a family of 

elements of cX, the (unital) C-3ubalgebra of c,4generated by 
the family (4 	will be denoted by C 	wiien A 

is finite, say A.f",n1 , we shall also use the notation 

iF 
The state space of a C--algebra 04 will be denoted by 

it is a w-compact convex subset of the dual space of C4 . The 

set of extreme points of F(W)(i.e. the set of pure states of 
is denoted by(2(C4). Since by our convention c-is implicitly 

assumed to be unital, the Krein4illman theorem shows that every 

state of 4 is a v'-limit of finite convex combinations of pure 

states of 04. 

If f is a pure state of c., the set 

"~ = [ Y'g A : (7) = 0 ) 
is a maximal left ideal of 	, and conversely, every maximal left 

ideal of 4 is of this form for some pure state of c4 [22; Th. 2,9.5. ]. 

We note incidentally that by Cauchy-Schwartz inequality for 

positive linear functionals, we also have 

= [ --4 AC4 
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Ch. I, qsl. 
	 1.2.- 1.2.2 

1.2. The Approximate Point Spectrum-Let i') be a bounded linear 

operator on a complex Hubert space 	• The approximate point spec- 

trum of A) ,which we shall denote by -(,9), is defined. to be the Op 

set of complex numbers A with the following property: 

	

ye >° st. 	 o 	 1 Ii L 	II II.. 

Concerning the approximate point spectrum, the following 

proposition is proved. in [Cj J 

	

1.2.1. Proposition- For 	t(,1),we have 

a() :.C)( 	C
lip 

(J} 

A 6 cr () 
 

where c(F) denotes the spectrum of f (which is the same relative 

to 	andC(A)). 

We remark that the condition Acr'A) is superfluous, since the 

condition C'A )(A-AI) C) automatically implies that A EG(f). 

Using proposition 1.2.1., we may now define the approximate 
S 

point spectrum of elements of arbitrary C-algebras as follows: 

1.2.1.1. Definition- Let c>be a (unital)C-algebra, and let C4ECA. 

The approximate point spectrum 'of 6t is the set 

t 'A's C : 

We then have the following analogue of proposition 1.2.1. 

1.2.2. Proposition- Let Abe a C-algebra, and. let Ck.be an 

element of c4.  Then 

(e C 	Ca (j) C)) 

(= 	{ 	(a) C)(LT -)  

Remark- Note that since by our general convention, C) is 

assumed to contain the identity element 	the symbol afO) 

may be used to denote' the spectrum of o. relative to 	or C54d 

without ambiguity. 

2 



1.2.2.1. Ch. I, l. 

Proof- Let A(a)arid suppose on the contrary, that C1(')(0-') C(a). Op 

Then / 6(-A)) for some 6Cta, so that /&(a4i) ; but c(Q-A /) 

is clearly a left ideal of A hence cf4('0-AI)c.'1'which 

is a contradiction, Thus 	
* 

C(H 

Conversely, iet)c' and suppose on the contrary that 

Since C( )(a-Ai) is a proper left ideal in C(a) 

there exists a maximal left ideal cXof C"4) such that CX 2 

-NC ; then, there exists a pure state f of Csuch that 

(_ fLC C *(Ck; 

Extend j0 to a pure state of 	. Since Cfif 	CA there 
exists an element 6  ofC''such that /6t'Q-Ai) Then, applying 

the Cauchy-Schwartz inequality to ewe have 

2 

1 (6b')  

since Q-A ecX 

The contradiction zhi2wZ that 

or (A) 2 Aeç: 	 £ 

1.2.2,1. Remarks- (a) Suppose that is any C-algebra containing 

C(Q) (we assume as usual that the identity element of Cz)is the 

same as that of (2). Then essentially the same argument as that 

used above shows that 

ap c(a): 

in other words, the approximate point spectrum of an operator is 

independent of the C* -algebra containing it. 

(b)- Later on [Ty 	 we shall give other equivalent 

characterizations of the approximate point spectrum which will 

show, amongst other things, that when 14_ C13tCltlkor  some Hubert 
3 



Cli. •I, 61. 	 1.2.2.2. 

space J,the  present definition coincides with the usual definition 

of the approximate point spectrum as was given in 1.2. 

1.2.2.2. Corollary- Letclbe a dr-algebra and. letaJ Then, AETa) 

if and only if there exists a pure state P of C(a) such that fl to) 'e 

where 17 and are the associated irreducible representation and 

cyclic vector, respectively. 

Proof-Necessity: If A(a), then (a)Q_AI)$C ), so the 

left ideal ('(a)(a-As) is contained in a maximal left id.ealc.4'of C (a ) 

given by 

where frG'2- ). Hence 

(a)- 	 (Q-A)1 

((0- A) I> 

S 

since O-,4EcX ; hence 7(0)! Af. e 

Sufficiency: If Alcr(a), there exists bC(' such that 667-A'JI; 
at)  

if now 77 is any irreducible representation of C(a) ,we have 

/ = fl(') 	n(6) (n(a)Ai) 

hence A (7(fl(a)). In particular, 77(a)/tA f for any non-zero 

For Hilbert space operators the necessity part of the above 

corollary may be found. in C  J 

Later on 	3 ) we shall give a more general treat- reat- 

ment ment of the behaviour of 	(a) under representations. OP 

We close this section with the following proposition which 

relates the approximate point spectrum to the theory of charact-

ers, 

4 



Ch. i,,1. 	 1.-2.3. 

1.2.3. Proposition- Let cbe a C'4-algebra, and let 0 	If 

is a' character on 	then 'i°(a) e ap 
(Qi. 

Proof- The proof in [ 9 , pYOOSttLbP1 ?I may be adapted to the 

more general presentcase, using proposition 1.2.2. . We omit the 

details. 

more general result will be proved in chapter II, proposition 1.7. 

A 
Let now cfl- be a C-algebra, and let O.be an arbitrary element 

of c,4. The above proposition suggests that in studying all the 
characters on ,C(a),we should begin by choosing a point A in Cr (CU 

and determine whether there exists a character on Cia) such 

that f't'a)A. In certain special cases, corollary 1.2.2.2. may be 

used to reduce the original choice of A to a point in the point 

spectrum of 0. (i.e. the' set of eigenvalues of a ). 

To be more precise, suppose a is an operator such that for 
11 

every irreducible representation'of C(0) (or of C') ,ll4Vis 

an operator of the same class; examples of such operators include 

the class of all hyponormal operators ( ck'a > act* )the class 

of all paranormal operators (cV'2a- 2/1 	. 	o 3VY V/ 0), 

etc. • To fix the ideas, let abe hyponormal. For any irreducible 

representation Ti of C,'cvon a Hubert spaceX , we have 

r7(z)*/1(Q) - /7a)T7(0) 

T7(*at) >,o 

since fa >, 2 	and Ti is order preserving. 
Hence 77(Q)is a hypo5. (Q 	 rmal operator on 

Let now AGW1, (Q) ; by corollary 1.2.2.2., there exists a pure 

state 1P  of C() ,with the corresponding irreducible representa-

tion 77 and cyclic vector!  such that 

r7,0 (a) 5 , =s 

so that /\ is an eigenvalue of the hyponormal operator 7 (a) •  

5 



Ch I, 11. 

SuDpoe now that there exists a character 7' on 	ri (a) ) such 

that 

then, defining the positive linear functional 92 on 	by 

1'(r7 Ib)) 	( VbC(a)) 
we have 

(l) =.I 
14 	 2 

't(fli fl (a)) 
 

F 	e 

(u') 	( nan')) 	( 	
a fl(a)) )AI 	(ii) 

Hence, for each L E C(a) , we have 

I (ab) (a)(b) 
 

by (±), (ii), and (iii) above. Hence, 

("6 e C'a)) 
Similarly, we have 

O() (f() 
	

(Vb 6 Cia) 

Thus., is a character on C'a). 

Thus, we have shown that , if every point in the point spectrum 

of an arbitrary hyponormal operator gives rise to a. character,then 

the same is true of every point in the approximate point spectrum 

of an arbitrary hyponormaJ. operator. 

The above method, as well as alternative methods, will be used 

jfl; chapter IV in the study of characters on C*.algebras  generated 

by certain classes of operators. 	 - 



Ch. I,-2. 	 -2.1. 

2. Equivalent Characterizations of the Approximate Point Spectrum 

The purpose of this section is to obtain certain characterizations 

of the approximate point spectrum, and to show, as a result, that 

the fo definitions given in 1.2. and 1.2.1.1. coincide in the 

case of bounded linear operators on a Hubert space. 

We shall begin by recalling certain definitions. 

Let 	be a topological vector space, and let 2°  be a non-empty 

subset of 

We say that Z' is absolutely convex if whenever j 	S is 

a finite set of elements in 2° ,and. 	,..., ) 'j  is a finite set 
Vt 

of complex numbers with Z I I 	, we have 	C 2°  

The linear subspace of 	spanned by .r will be denoted by  

the closed linear subspace of ' spanned by 2° is denoted by L'1. 

Let c.4be a C-algebra, and let aEc,4. A bounded linear functio-

nal f on C,4is said to be left-multiplicative with respect to a 

if the following condition is satiafied: 

c)f(a) 	(Vte CA ) 

Similarly, -( is said to be right-multiplicative with respect to 

if the following condition is satisfied: 

Similar definitions apply if f is a bounded linear functional 

on C (a) 

2.1. Lemma- Let 2" be an absolutely convex subset of a Hubert 

space f] ,and. let 	 Then, 4 is such that '  

positive if and only if 

/u ) 1> >,°  

Proof- Necessity is obvious, 

Sufficiency: Suppose (i) above is satisfied, and let 

be an arbitrary finite linear combination of elements of 2' 

where 

7 



Ch. I, 2. 

€ £ 	 = , , ..•, 	).. 

Assuming, with.out real loss of enera1ity, that 	)A>b,we have 

(E I 

where 

'I 
:t 	,fl 

IA 

Since 	I and .t is absolutely convex,it follows that 

;let 	 Ik 

Then 

( , Ae j ) 	> = 

:A 
VI 

 

1 	L 

) 

by (±). Hence 

( VLecn(Z') ) 

Finally, let ( be an arbitrary element of 	• There exists 

a sequence I of elements of 5o* (t) such that 	= 

Hence 



Ch. I,2. 	 2.l.±.-2.2 

Therefore ,4 is positive. 

2.1.1. Corollary- With the notations of lemma 2.1., let A be a 

complex number such that 

&°(1c) ('-2J) 	 (i) 

in the sense of definitionl.2.1.1.). OP 

Then, given a positive number E there exists a non zero element I 

of 2' such that 
2 

II (1—A 1  ) 	H 	111111
2

I  

Proof- Let A satisfy (i), and suppose, on the contrary that (ii) 

does not hold. Then there exists a positive number e such that 

II (h-At) L 	>, 	III 	(VI e or ) 
i.e., 

(wee). 

By lemma 2.1., this implies that 

so that the positive operator (A ,)) ( A 	) is bounded 

below, hence is invertible; let B be the inverse. Then 

£&'(N) (A— , 	zo(J9f) ( 8 (/ ,i ) (A- A 1)) = 

contradicting (i). 

This completes the proof. 

4 2.2. Theorem- Let c19-  be a C-algebra, let Cc/1 and. let / 

(a )- The following conditions are equivalent: 

04(Q-Ai) t c.4- (i.e., AC-o--(0) in the sense of definition /441).  
OP 

There exists a pure state 1P  of e,such that 

A 	4 	f(aa) =IA! 
There exists a state .f of 	such that 

f'-a=A 4 
	

IA! 



Ch.'I, § 2. 	 2.2.1. 

(iv) There exists a state f of C14 such that 	is left mult - 

iplicative with respect to with 

(v) There exists a pure state f of c.4-such that 0 is left 

multiplicative with respect to a with t°(a) 

(b) - Let A be a bounded linear operator on a Hubert space 

let 	
° 
be an absolutely convex subset of .X- with J~ z ELI] 

and let AGC. 

The following conditions are equivalent: 

(i),) ci-, (/3) in the sense of i.2., i.e., 

Ve>o 3X c.&. x6,11 	t 0' 1 4 1/(IA1)2iI 1 11 

(c)- With the above notations, suppose 4= CRZOO,and a- /4 

Then, the conditions a(i)- a(v), b(i), and b(ii) are all equivalent. 

We defer the proof of the above theorem to chapter II, where a more 

general result will be proved;' c.f. theorem 1.4. 

A - 
2.2.1. Corollary- Let c,4 be a C'-,algebra, and. let Qec'. Then, 

the approximate point spectrum of cL is a compact subset of C 

Proof - It is well known that 	 [ 27; problem 63Op ]. 

In order to show that 	( ) is closed, let A be a 

sequence of elements of '70, (a..) ,and suppose that 	- A ; by 

2.2.a(iv), there exists a corresponding sequence 	E(c4) 

such that 

vte  

by the w-compactness of E(4) there exists a subnet 	of 

and a state ofC4 such that 

It is then easily verified that 



Ch. I,2. 

ft)ff(a =A 4t) 
	

(v) 
hence., A ie ackp-  ( ci.) .by theorem 2.2. 

Vie remark that for bounded linear operators on a Hubert space, 

an elementary proof of the above corollary may be given; c.f. [ 27, 

problem 62]. 

The question now arises as to whether the existence of a self-

adjoint linear functional f which is left multiplicative with respect 

to O. with f(OJ=A implies the existence of a state with the same 

property. In some special cases, the answer is in the affirmative. 

For example, if a is an isometry, and if a self-adjoint linear 

functional is left-multiplicative with respect to Q, then, an easy 

argument shows that 4'f 	is a character onC(Cx) . However, 

we are unable to provide an answer in the general case. 

We close this section with the following remarks concerning 

theorem 2.2. 

(±)- Throughout the statement of theorem 2.2., the triple (c.E'c.ø')1  

00) )maybe replaced by the triple ( C4'(a), E(Ca'), 1Pt'Cai,') 

without changing any of the conclusions; further, each condition in 

the resulting theorem will be equivalent to the corresponding 

condition in theorem 2.2.; e.g., the existence of an 4'E E(C)) ;h 

(ia): fc ç() A 	) 	 CC (a) 
is equivalent to the existence of a 	 with 

c.f., the proof of 1.2.2. 

(ii)- Let AGc,(c,.) ; by theorem 2.2., there exists
ctP 

such that 

Since 	 - closure 

E(c-4)= Co(cP(-)) 

there exists a net F  in 	such that each is a convex combination 

of pure states: 

11 



3.1. 

and such that 

	

c - 	(w-limit) 

It is natural to ask whether the pure states £. may be chosen 

so as to satisfy (i) above. This question will be answered. 

3. Representations- 

In this section we examine the behaviour of the approximate 

point spectrum under representations of the underlying C-algebra. 

In particular, we obtain an extenion of corollary 1.2.2.2. 

3.1. Proposition- Let cAbe a C-algebra, and let ac,4,and 

A E C 	. Suppose that there exists a non degenerate represen- 
tation 11 of c4 on a Hilbert space J such that AeT1 (00  

Then  
OP 

Proof- Let A e c(fl(Q)). By 2.2.a(iv), there exists a state OP 

of 	 such that 

and 	
= A (A 	v)). 

Define a linear functional on4by 

(v 

Since is positive and fl is a ..-homomorphism, it follows that 

is positive. Further since V) is non degenerate, we have no) 

so that 

()-P fl(i)) 	 I 

12 



Ch. I, ;3. 

hence I e E(c..4) 
Now, for each X in C,4 ,we have 

(Q)(fl(") 

TI (a) 

A 

A 

and 

hence by 2.2.a(.iv), we have A 6  CY (&) 

3.1.1. Remark- With the above notations, suppose 	also 

right-multiplicative with respect ton() . Then, Iis also 

right- multiplicative with respect to 0.. 

The following example shows that if A 	(&) ,then it is 
CLP 

not necessarily the case that A G0 (-) for any arbitrary QP 

representation of A. 

Let .79 be an infinite d.imentional Hubert space, and let 

kl(.N) be the two-sided ideal of all compact operators on 

Let 	a1k (N) denote the corresponding Calkin algebra: 

;JA (',.N)  

Finally, let Ti be the natural homomorphism of ese 	onto 
'L4 (jçz) defined by 

ri (,9) 7 4 	 (46 ONO). 

Then, for any compact operator /9 in 	 we have 11(4)O 1  

so that 
ap 

Thus, it is sufficient to take any compact operator with 

non zero approximate point spectrum to obtain the desired example. 

On the other hand., no such phenomenon can occur if fl injective. 

We need the following lemma: 

13 



Ch. I, ;3. 	 3.2.- 3.3. 

3.2. Lemma- Let 	C4- , and let 11 be a non degenerate repre - 

sentation of c4.  then, 

C(n) TI C 

Proof- For each polynomial (a 3  o) in 0, and a*  we have 

T, 
( (a, 

GLx))= 	 ; 

hence, by continuity, 

( C 6L) ) C C*( n ). 

On the other hand, n( Co. ) is a C-algebra [Z2 CkI C. 1..3. j 

and contains fl (ct) , hence 

n (Ca)) 2 
C*( 

This completes the proof. 

4 
3.3. Proposition- Let c4  be a C

*
-algebra, and. let 	c/-', and 

A o-  (a) -Suppose ri is a non degenerate representation of c4 
ap 

on a Hubert space ,W- such that 

Ca) n key 

Then, G  

Proof- Suppose not; then, there exists an operator 5 in 

C(n'a)) such that 

B ( T100_Al ) = I 

by lemma 3.2., B = fl (b) for some 6LcC*(a.) . Hence 

fl(b) (n(a-AI) 	I, 
i.e., 

ri ( b (a-.\') ) = I .  

Since b (- Al) € C(c) , this implies that 

14  



Ch. I, 3. 	 3.3.1.-  3.3. 

contradicting Ac 	(Q) 

This completes the proof. 

3.3.1. Corollary- With the notations of proposition 3.3., suppose 

fl 	is a faithful representation of C4 . Then ap 

Proof- Since T is faithful, the condition 

ker fl 

is trivially satisfied. 

3.3.2. Corollary- Let C14be a simple Ca1gebra, let Q 

and A C' . Suppose that fl is a non degenerate representation 

of A. Then 
a.) 	Aeo(11(QP 

Proof- Since CA is simple, every representation of c,4 is 

necessarily injective. The result now follows from proposition 

3.1., and. corollary 3.3.1. 

3.3.3. Corollary- Let fl be the universal representation of 

a C-algebra c4 on a Hilbert space 	, and let a. 	, and 

ALC 

A necessary and sufficient c6ndition that A E 	(04 is  

that A be an eigenvalue for fl (a.) 

Proof- Let A cr (a) . Since the universal representation of 
A 

op 
CJ- is faithful, corollary 3.3.1. implies that )E aCIP (ii(a)). 

Hence, by 2.2.a(iii), there exists a state -f of ri(cA) such that 

-( rl(c&)) 	 (I) 

avid 	
"11 (00 	 (H) 

On the other hand, every state of fl (C4) is a vector state 

1 	lemma 1.2, J 
• 	hence, there exists a vector 9 in 

15 



Cl-i. I, 3. 	 3.3.3.1. 

with fl'DlHsuch that çZ 	
1
). Then, 

f(cn(a ) x  )i) ( Ti(J-K1 ) 

BE 
by (i) and. (ii). 

Hence, A is an eigenvalue for T1 (O.) 

Conversely, if A is an eigenvalue for fl(0) , then in particul- 

ar, )cr(fl(a)); hence, by proposition 3.1., Ae(r (a) 
CL  

This completes i7he proof. 

3.3.3.1. Remarks- (i) All the results of this section remain 
t 

valid if C4  is replaced. by C (a) , and 77 is replaced by a non - 

degenerate representation of C'a) ; c.f.,the remark at the end. 

of 2. 

The above corollary is the generalization of corollary 

1.2.2.2. promised at the beginning of this section. 

The first explicit example of a representation of a 

* 
C-algebra for which the conclusion of corollary 3.3.3. holds was 

given, in another context, by S.K.Berberian as follows: 

Let .l91be a separable Hilbert space; there exists a Hubert 

space 	and a faithful representation" of C'(7) into 

such that, for each /1 Vov 

c.f.15; .s3 I. 
It may be proved that, if ,4 is normal, quasinormal, subnormal 

hyponormal, paranormal, or normaloid.,then 17(A) belongs to the 

same classes of operators, respectively [3Li ; theorem 1 ). Thus, 

for Berberian's representation, the content of the remark at the 

16 



Ch. I,c4. 	 Li. 

end of fl. applies to these classes of operators. 

4. The ultraweak closure of 

Let 04 be a von Neumann algebra(V.N. algebra) , and let 

and. Aeq(A). Since the left ideal 	 is proper, its norm- 
ap 

closure is again a proper left ideal. In this section we examine 

the corresponding property of .4(14-AI) with norm-closure 

replaced by the closure in any one of the weak, ultraweak, strong, 

and ultrastrong operator topologies. As a result, we give necessary 

and sufficient conditions for the existence of eigenvalues for 

bounded linear operators on a Hubert space. 

We begin with fixing some notations and recalling certain results. 

The weak, ultraweak, strong, and ultrastrong operator topologies 

will be denoted by Z , C , 	., and. C , respectively. For the 
) 	 MI 	

S 

properties of the above topologies, we refer to L 21; Ch. I, 	3 ]. 

The norm topology will be denoted. by Z, . 

Ifc.4"is a subset of 	 , the closure of cA'in 

the topology . will be denoted by dY' 	. 

For 	 let 

% AerA {: m°}, 

and, 
i V1e}. 

Then 	 * %J= 
[eJ 

The right support of A is defined to be the projection Q onto 

Q is the smallest projection with the property 

The right support of /1 is denoted by 

1.1. Lemma- Let C4be  a V.N. algebra acting on a Hubert space.fr/' 

let , LccA , and let 	be the V.N. algebra generated, by A 

17 



Ch. I,J4-. 	 1.2. 

Then SIArrf€ G3 

Proof- Let Q St.k 	, let The an arbitrary element of 

where 	is the coxninutant of 	, and let 9 be an arbitrary point I 

in Yaqe 	; thus, 

soe & 

Then - 
TO J/ E , 4Th, 

since /Gc 	; hence 

T( yc2yVe t) C 

so, by continuity, 

T(veQ) C  
yo,,1eQ, 

i.e. T is invariant under the range of Q. 
/ 	 * 	/ 

On the other hand, since 	implies YE 	, the same 

argument shows that Tis also invariant under the range of Q. 
It follows that 7 commutes with Q . Since T was arbitrary, it 

follows that Q commutes with 03 ', i.e., Q 	= c2 

This completes the proof. 

4.2. Lemma- Let /? and 6 b bounded linear operators on a Hubert 

space ,79. 

The following conditions are equivalent: 

(i)- 

re ,4 C 

(ii)- There exists a bounded linear operator Con Jsuch that 

A6C. 

Suppose / and 6 are positive, and 	. Then, there 

exists 	(X) such that 
41 

(1) 	 , and. 

(ii) S1 D c Su..pp 8 

If /1 and ,6 belong to a V.N. algebra, then so does £ 



Ch. I,,. 

1or the proof we refer to [ 23; Th. 1 ] and  [ 21;.Ch. I,l, lemma 2 ]. 

The following example shows that the Z -closure ofAq  need 
CrW 

not be proper, in general. 

4.3. A Counter Example- Let 	 where 	is an infinitQ.. 

	

dimentional Hubert space, and let A 	be a non invertible 

positive operator with dense range. Since for a positive operator 

the spectrum, and the approximate point spectrum cdincide, we have 

Let 	 - 

c/it  

Then,cAI'is an ultraweakly closed left ideal of c4 hence[21;Ch.I] 

there exists a projection fin c-4 such that 

4f'. 
Since C,414 c CA P 

J. there exists an operator B in c..*such that 
A = 8 P; since f- is positive this implies / = P5 	. Hence, 

we have 

4 c YO-Age P, 

so that, since A has dense range, and the range of/'is closed, we 
get 

yO..ve P 	JcL. 

i.e., 	. Therefore 

c.4. 

We remark that, for the purpose of the above example, it is 

essential that _19. be infinite-dimensional; c.f. 4.5.2.3.1(ii). 

Later on, we shall construct a whole clsss of operators for which 

the above phenomenon occurs; c.f. corollary 4.5.2.2. 

19 
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.Jf.Proposition- Let c,4be a V.N.algebra acting on a Hubert 

space N-, and let 46C4 • Then 

cxw- 	

r 

r 
Proof- Since 	 is an ultraweakly closed left ideal, it 

	

is weakly closed[21; ch.11 	Co-,. 3]. Since,on the other hand, 

cfltl 	is the smallest weakly closed left ideal which contains 

,44 , we have 
- 

	

c44 	cAA 	(i). 

- 

Also, --C - convergence of operators implies t -convergence, so 
o- .., 

we have the reverse inclusion in (i). Hence 

	

c,411 	C,4 A 	 (ii) 

Next, for convex subsets of c4, the C (resp. 	)_closure 
Cr 

is the same as the t (resp. t5 )_closure t 21; Ch. I, § 3 ]; 

since c4tq is obviously convex, it follows that 

	

,44 	
S

C,4 Iq 

and, 

	

,44 	elm- (iv) 

The result now follows from (ii), (iii), and (iv). 

The following result is probably well-known, but we can find 

no reference for it, and therefore include a complete proof. 

4.5. Proposition- LetC4 be a V.N.algebra acting on a Hilbert 

spacej9~ , and let 	• Then 

4Q (d CCL)S,C5) 

where, QL4pp A 

Proof- By proposition 4.4., it is sufficient to prove the 

20 
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result for the case t. 

Since c4,9 °' is an uJ.traweakly closed left ideal, there 

exists a projection f in c'4  such that 

C 

In particular, c.41q C c/-I? ,so, there exists an element B in 

4 such that ,Q 8P , i.e., / 	; hence 

-fcnce A* c yOMe P , 

so. that 

ae Q 	yce P 

P . . 
On the other hand, since ,4 AQ , we have 

4A = A4Q ç cAQ; 

since since cAP is the smallest C - closed left ideal which contains 

and since 	is a 	closed left id?ai,  it follows 

that 

Hence 

for some 5 e c,4 , ± • e., j'40 
This completes the proof. 

4.5.1. Corollary- With the notations of proposition 2+.5., let 

68 be the V.N. algebra generated by 4. Then 

	

of = W 	(i 	&, S, cr5). 

	

Proof- By lemma I.l., we have Q Le 	A similar reasoning 

as that of the above proposition now gives the result. 

21 
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4,5.2. Theorem- Let c/4be a V.N. algebra, let M ê C4 and let 

trI A 
A necessary and sufficient condition that either of the two 

conditions (i) and (ii) below hold is that LR be a non- trivial 

projection (i.e.,Q I ) 

(i) 	 r, 

d 

In particular, (i) and (ii) are equivalent. 

Proof- (i)- The necessity follows from proposition 4.5. 

To prove the sufficiency, suppose Q 	, and assume, on the 

contrary, that 

a~,_q 
O-W = . 

then, there exists a net of operators 	, n c) such that 

I 	 ultraweakly. 

Since Qis non-trivial, there exists ig 19- such that 

and. Q9 = 0 	Then 

5&9> 	> 	 (); 

but 

A _q = ,9c2..7=o, 

so () cannot hold.. 

The contradiction establishes the result. 

(ii)- Using corollary 4.5.1., part (ii) may be established by 

a similar reasoning. 

Finally, (i) and (ii) are equivalent, since each one of them 

is equivalent to the condition that Q be non-trivial. 

22 
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4.5.2.1. Remark- With the notations of theorem 4.5.2., let Co 
be any V.N. algebra containing A. Then each one of the conditions 

(i), and (ii) is equivalent to the following condition: 

17 

compare proposition 1.2.2. 

For the next result, we shall need certain elementary properties 

of weighted shift operators. 

Let .19be an infinite- dimensional Hubert space with an ortho- 

normal basis je 	Y.O,I,2,....} . A (unilateral) weighted shift is as 

operator W which satisfies the relation 

e 	 ( 	... ) 

for some bounded sequence of complex numbers ° r. 
We shall need the following two results: 

Suppose {et' 	is a bounded sequence of complex numbers such 
viro 

that o( n. o ('y ) . Then V'./ has no eigenvalues. 

Suppose la,ris a sequence of positive numbers such that nzo 
o • Then,  

For the proof of the above results, we refer to [ 27; No. 75 ]. 

4.5.2.2. Corollary- Let 	 Z"(,.7.), where )Y- is an infinite 

dimenkional Hubert space with an o±rthonormal basis je 	and let 

}°° be a sequence of positive numbers such that otç .o 
Then, the weighted shift W defined by the sequence {satisfies 

Proof- Since cr(Vv)_io}, and  Cr we have 	 i.e. 

On the other hand., let Q= StA pp W, and. suppose Q # I . Then, 

there exists a non- zero element D of J4 such that Q9 =0 . So, 

23 
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WD vJOO =0. 

This is impossible, since V'J has no elgenvalues. 

Hence, Q = 1 ,and the result follows from theorem 4.5.2. 

4.5.2.3. Theorem- Let 	 for some Hilbert space 

and. let A € 	and P c Cr. 

Each one of the following conditions is necessary and 

sufficient for A to be an eigenvalue for A 

(1) 

A M-A)C4 	(d to ,,S,cs). 

(ii) There exists a 5. - continuous state f such that 	is 
left-multiplicative with respect to and. f(A)=A 

Let Acr () , and let 4'€ E (c4) be left-multiplicative 
OP 

with respect to F with cu ) 
A necessary and sufficient condition that A€ a-i, (A)is that - 

be 	.-continuous ( = ci,S,c,S 	) 

Proof- 	i). Spose 	 . By theorem 4.5.2., 

there exists a non zero vector in ,79 such that 	= 0 ; hence 

(A -,A) D = M-A ) Q 'q =0, 

i.e., A is an eigenvalue for / 

Conversely, let A be an eigenvalue for 4 , with corresponding 

eigenvector/ , and suppose, on the contrary, that 

Then, there exists a net of operators T inc4such that 
01 

T ('4-A ) —> I 	ultraweakly. 

In particular, 

4f 

but this is impossible, since (A—A)jo, and 

This proves a(i). 

24 
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a(ii)- Let AGo- (A); there exists a vector n in 14 such that 

and (A-A)o. Let f=  W be the vector state defined by '9 

An elementary calculation shows that 

C'u
- 

 
(BA ) - £4 (8) (.AJ () 

Hence, since C',  is a 	-continuous state ( J 	 's ) it 

follows that a(ii) is necessary. 

Conversely, fixJ. in 	S, 	, and let 	be a 

continuous state with 

) 	
Af() 	

(y).() 

Let 

c/c feecA: 88)°3. 

Then c/tis  a proper left ideal of c4 , and is 	-closed, since 
J. 

is 	continuous. Further, using (), an easy calculation 

shows that 

eA("4—") c 

hence, ( since At is .-closed) we have 

hence, by proposition 4.4., 

W 

Therefore, 	 by.a(i). 

Part (b) follows from part (a). 

This completes the proof. 

4.5.2.3.1. Remarks- (i) Every ultraweakly continuous state of C4' 

has the form 

{i; C6- I, § 3 T. I. J . Theorem 4.5.2.3. then implies that if - is 

25 
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left-multiplicative with respect to A , then, there exists a single 

vector ) in ,:14 with fly, such that the corresponding vector 

state 	is left-multiplicative with respect to A ; moreover, 

(ii)- Let c4  be a V.N. algebra acting on a finite- dimensional 

Hilbert space .7c/ Then , for each Ain Cr (() , the 	- closure 

of CA (A— A ) is again a proper left ideal of C4 . This is 

because for a fin,e-dimensional Hubert space, the point spectrum and 

the approximate point spectrum coincide (proof:&compactness of the 

unit ball) • The assertion now follows from theorem 4,5.2.3. 

§5. A geometric Characterization of cr (A) 

Let abe an element of a C- algebra 	. By corollary 3.3.3., 

the investigation of the approximate point spectrum of 0.  is 

equivalent to that of the approximate point spectrum of 17(0') , 

where 77 is the universal representation of 	• The purpose of 

this section is to give a geometric characterization of 	(T7ftU) CIP 

in terms of certain faces of(p(c4)),and, as a result, to resolve 

the problem raised at the end of 2. 

Let k be a convex subset of a real linear space. A subset F 

of 	is called a face of ' provided that the following two conditions 

are satisfied: 

/ is convex; 

whenever 10, ,- 	 , and., 0 cK  e I , then 

Let 04 be a C-algebra acting in its universal representation on 

a Hilbert space 	. There exists an inclusion- reversing bijection 

between the norm-closed left ideals ofcA and the w-closed. faces 

of 	 • If the ideals corresponds to the face F(3) , then 

(c.f., [ 35; theorem 5.14 J, a.nd. [4.1; tbeorern 5.11 ] ) 
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the foUowin, hold: 

F(J) = j f6 50) : c(t)=o (V 9)J, 

and 

i 	/ Iq e cA .' f=o (vcf())I. 

For the rest of this section)  it will be assumed, unless a statemni 

is made to the contrary, that the C-a1gebra A acts in its universal 
representation on a Hubert space 

Let d 6 C4. , let E be a subset of 	'ce') , and let A G C . We 

say that Ehas property ( /,,j ) provided that 14 

(8A)= ff'o 	(V8CA, VIE). 

5.1. Lemma- Let ,4C c4, and let 9 be a norm-closed left ideal 

of A such that 

Then, the corresponding face of 5 defined by 

F() ffQ() : (X)=O (VXCS)3 

has property ( 'A )• 

Proof- By (1), we have (4-A) E.3 ; hence, by the definition 

of F(.9) we have 

( (,at)(AA))O 	(VfGF()). 

Let 8 be an arbitrary element of C4 , and let 'E FlY) • Then 

2 

/?')-A)) 

hence, 

f(9) = A18 
	

( V5E4 VIeFW). 

27 
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This completes the proof. 

5.2. Theorem- Let /9 be an element of 	and. let  
Of 

Define a subset F. A of C(at) by 

jks ' ) j - F (.• c 	p'opert 	A 
Then 

is a non-empty vT-compact face of E(c4) , and 

	

the corresponding norm-closed left ideal 3 ( F, 	defined by 

,9(F /Xe: f(Xx) 	(Vf)] 
contains 

If E is a subset of 	 with property ( / 

then L= 

Let 	be the intersection of all norm-closed left ideals 

of C14 containig 4 (,q-A) . Then 

Proof- (i). By theorem 2.2.a(.iv), the set F 	is non-empty. 

It is easily verified that F 	is convex. To show that 

is w-compact, let 	be a net of elements of 	and suppose 

that 

w topology) 

Then 

Of  

since f c F (Vj, we have 

hence 

WV 
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so (as in the proof of lemma 5.1.), we have f e 'A . It follows 

that is w-close&, hence, being a w!closed subset of the vil 

compact set E('c) , it is wtcompact. 

Next, we show that 	is a face of 	.Let 

c + 	a- e F 
Then, since 7C 	we have 

hence 

('f-fl(A-)) 0, 

i.e., 	f A 
Thus, 

Finally, we show that 

A is a face of 

j(). 

Let X (i-,) be an arbitrary element of c. (A- A ) , and let f 
be an element of F,9,A  ; then 

c( (X (d -A))* ( x— A))) 

out 

since has property ( ' A ). The result now follows from the Aj  

definition of j ('A ) 

This completes the proof of part (i). 

This obviously follows from the definition of 

Let F( i) be the corresponding face of 	. By lemma 5.1 

F() has property 'A ) . Hence, by part (ii), we get 

Therefore, 

Conversely, since by part (i) 9) is a closed left ideal A j A 
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of 	containing 4 (A - A) , and since 	is the smallest closed 

left ideal of a4 which contains cA(A- A) , it follows that 

This completes the proof of part (iii). 

This completes the proof. 

Vie are now in a position to answer the question which was raised 

at the end of § 2. 

5.3. Theorem- Let A G 	let A eo- (,9) , and let fe 

be left-multiplicative with respect to ,4 with f(4)A (by theorem 

2.2. such a state always exists). Then, there exists a net 	in 
01 

E (c4) such that 

(i).Each 	is a finite convex combination of pure states 	of CA 

with 

£(5A= (8).(A)AJo (V5) 
I 

(

CW 

w topology). 

Proof- Let 'A be the corresponding face constructed as in 

theorem 5.2. . Then, 7C G F, 	by theorem 5.2.(ii). 

On the other hand, since F. 	is a w-compact convex set, we 

have, by the Krein- Jiillman theorem, 

* 

c& Co(Ext()) 
LU 

where Er 	denotes the set of extreme points of 
Ali  /I 

Since 	A is a face of 5(c4) , every extreme point of F. 

is an extreme point of E(4) and is therefore a pure state of 

The result now follows from ( *), and the fact that 'A has 

property ( '
Aj 

This completes the proof. 
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5.3.1. Remark-The conclusion of theorem 5.3. remains true if CA 

is any C-algebra (not necessarily acting in its universal representation). 

In fact, let a e 	, and suppose that -P is a state of c. which is 

left-multiplicative with respect to Q. with 	 . Define the 

property ( ' A ),and the face E A  as before. Exactly the same 

reasoning as that used in theproof of theorem 5.2.(i) shows that 

is a wi-compact face of E(c4) ; also, [ 1A . The argument 
of theorem 5.3. now goes through without any change. 

J 5.3.2. Proposition- Let c/i- be a C*-algebra acting in its universal 
representation on a Hubert space 	, let ,4 e c,4, A C-0-(4)' and 

QF 

let o( be a positive number. Then, with 

we have 

C4  

where 	denotes norm-closure. 

Proof- Let be a state of t4 • An application of the Cauchy-

Schwartz inequality, together with the functional calculus shows 

that the following two statekment,are equivalent: 

	

is left-multiplicative with respect to A and 	A. 	(i) 
is left-multiplicative with respect to H and f(H)o . ( 2) 

( The Cauchy- Schwartz inequality shows that, with H replaced with 

(i) and (2) above are equivalent. If n is a non- 
negative integer, the conditions 4' (< ) 	and f (k " ) = 0 
are equivalent for any positive operator J< ; c.f. the remarks 

immediately preceding proposition 1.6. of chapter II. Hence, by the 

functional calculus, the conditions f( K) 	and 	 are 

equivalent for any o( with o 	I • A similar reasoning then shows 
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that the conditions f( k) = a and 	 0 are equivalent for 

any positive number o( . Since for a positive operator /t the condition 

f(ko automatic ally implies that f is left-multiplicative with 

respect to )(,it follows that (i) and. (2) above are equivalent ). 

In particular, 

A<=> oap o(.H) 

Hence, with the notations of theorem 5.2., we have 

lq j  

The result now follows from theorem 5.2.(iii). 

We close this section with the following remark concerning the 

above proposition and theorem 5.2. . Let ,4 cA, let A o- (A) 

and. let < = (A'— ) (A-). By theorem 5.2. and the above proof, 

the norm-closed left ideal 3 (F<  ) is the-smallest norm-closed 

left ideal such that the corresponding face F 	has property (P 

If c4 is a separable C-algebra, the following converse holds: Given 

a norm-closed left ideal 9 of e, there exists a positive operator 

R such that 

.3 = 	(f 0  ) 
* 

For, every norm-closed left ideal in a separable C-algebra is the 

norm-closure of a principal left ideal generated by a positive 

operator 141;page 26 3. The result now follows from theorem 5.2.(iii). 
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Chapter II 

The Joint Approximate Point Spectrum of Operators 

1. The Joint Approximate Point Spectrum of a Finite Number of 

Operators 

1.1. Introduction- Let i7, ,... , An  be bounded linear operators 

on a Hubert space 79. The joint approximate point spectrum of 
, / is, by definition, the set of n-tuples (A I ) 	.,)) of 

complex numbers with the following property: 

V € >0 

For n=l, the above definition reduces to that of the approximate 

point spectrum of a single operator. 

In this section, the above definition is extended to arbitrary 

(unital) C-algebras, and a characterization of the joint approximate 

point spectrum will be given which will show-that, for 

two definitions coincide. In particular, Theorem 2.2. will be shown 

to be a special case of Theorem 1.4. below. 

1.2. Definition- Let eAbe a C-algebra, and let a,.., C be 

elements of cA. 
The joint approximate point spectrum of O, 	Q,, is defined 

to be the set 

where 	c (ad._I,.) denotes the left ideal of 	generated by a 

I) 

The joint approximate point spectrum of Q 	a will be 
denoted by 70-  a, 

1.2.1. Proposition- With the notations of Definition 1.2., let 

be any C%-algebra containing 2 .. an  . Then 

I(Q11 ...1 a)  
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Remark: Thus, the joint approximate point spectrum of 0., a • .. a. 

is independent of the C-algebra containing 	O, 	• a 

Proof- The proof is essentially the same as that of proposition 

1.2.2. of chapter I. We omit the details. 

Before presenting the main result of this section, we state the 

following lemma, which may be proved in the same way as lemma 2.1., 

and. corollary 2.1.1. of chapter I 

	

1.3. Lemma- Let /1, 	•, f3, be bounded linear operators on a 

Hubert space Jc/- , let 20  be an absolutely convex subset of 

such that 
[PJ ,J , and let (A..., A) e C. Suppose that 

Ut7). 

Then, given a positive number £ , there exists a non-zero element 

I of f such that 

1.4. Theorem- Let c..4be a C-algebra, let 0., , . . - a.   be 

elements of c.4, and let (A - •, A) le (1. 

(a)- The following conditions are equivalent: 

M_ 

CA 	 C'4 
i.e. 	

ILI 
 

(A,,. 	A ) e T0—
p  (

a. ) ... Ll) 
('a 

in the sense of definition 1.2. . 

There exists a pure state f of cA'such that 

* 	 2 
4 e(1) 	

(J:s,2,...,n 

There exists a state -f ofeA such that 
if 

ç( 	) 	A 	 ); /A/ 
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There exists a state -f of 4such that, for each S 

is left-multiplicative with respect to a* and 

There exists a pure state f) of cA such that for eachd,  

(dr' 	, ) , p is left- multiplicative with respect to d.and 

(b)- Let /1, , 	., A. be bounded linear operators, on a Hubert 

space JL, let . be an absolutely convex subset of 7/ with 

[ t3 , and let 	..,Ajef. 
The following coüd.itions are equivalent: 

in the the sense of definition 1.1. , i.e., 
(Jl...,ri) 

A 	.L. t€.e)  b4°, 

(c)- With the above notations, suppose C4 = 0 (Jo'), and 

A. 	a(/ I . .. ,, ) . Then, the conditions a(i)-a(v), b(i), 

and b(ii) are all equivalent. 

Proof: We first prove part (a). 

a(i) 	a(ii)- Suppose 

J (a11 ...,a) 

Then, the left ideal Z,4(- ) is a proper left ideal of CA 

so it is contained in a maximal left ideal ckof C)4  given by 

= I ZG• 	
(Ve) 
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for some pure state f of c'4  

In particular, 

c,4 d-'d c 
cM 

For each fixed d (o1'j,v) , taking Xto be a 	,and 

to be / and (a_ ,j)  respectively, we get 

( 	 o. 

Hence 

4 

a(ii) .z. a(iii).  This is tiivial. 

a(iii)>a(jv). Let f satisfy a(iii). Then, for each fixed 

d in /1, ...,ri] , and each Xin c4we have, by Cauchy-Schwartz 

inequality, 

/ c(•) - z)) / 	/ 	toza 	/ 

Hence 

f(ad)z •(t) 

a(iv) >a(v). Let f have the stated property in a(iv). Let 

f(z)o (VE)J. 

It is easily seen that c/ris a proper closed left ideal of c.'4 .Let 

; 	
dd'3d 

be an arbitrary element of T Cd (2,_A.). Then, for each I  in 

,we have. 
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c( (I 

c(.ai) 	, A1ffZj) 

since 

Hence 

CCA 

It follows that Ic,('a.-A.)is contained in a maximal left 
d' d ' 

idealcAfof  c/I given by some pure state f. It then follows (as in 

the proof of a(i) 	a(ii) ) that foreach 	 , f'iS 

left-multiplicative with respect to each a.with 

a(v)za(i). Let f have the stated property in a(v); let 

CR = j -X  C- CA . e ( -t # X) = 0 ) - 

Then, A( --,t c4 ,and it is easily verified that 

frt 	c'. 

This completes the proof of part (a). 

Next, we prove part (b). 

b(i). b(ii). Let b(i) be satisfied-. By lemma 1.3., it is 

sufficient to show that 

Suppose not; then, there exits operators 5, 	 in 

((Jc) such that 

Hence, for each f in )V- ,we have 
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1/ f ii 
	

lit: Sá (A 	•) 1 /1 

~I 	ii 5• .1/ /1 (fj - Aj) 

so that 

where 

i?In 

This contradicts the hypothesis in b(i). 

The required implication thus follows. 

b(ii) z>b(i). This holds trivially. 

This completes the proof of part (b). 

(C)— We shall prove that a(i) is equivalent to b(ii). 

a(i)b(ii). This is lemma 1.3. 

b(ii) = a(i). Partially order the set of all finite subsets 

of 1N( the set of all positive integers) with respect to inclusion. 

For each element F of I , with 

F- jv 	
4.
e .. wj i 	)• 	.1 

say, let 

.., M1W i . 

By the hypothesis, given F€ '1 , there exists an element X  
of )' such that I 	, and such that the corresponding vector 

state satisfies 

0) "(A A 
d 	Ad)) 4 J 	(i=' •• 

VPIf 

Since 	 is we-compact, the net [ W 	F 
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has a cluster point -' in E ( 	Ld.)  ) . We claim that 

£ ((•- A)(- Ad)) = 	( jr), 

For let E be an arbitrary positive number; choose an integer w. 

such that -1- 	E ; let F. 	. Then, for each Fe ' with 

F 	we have 

bi ((A- Ad)d  
d 

(64  

vn - 

hence 

E 

Since Ewas arbitrary, this establishes our claim. 

Thus, b(ii)= a(iii)=>a(i) 

This completes the proof of the theorem. 

1.4.1. Remarks- (a). In the course of the proof we have shown 

that, if a state f satisfies one of the following three conditions 

then it satisfies all three: 

((-J'(•.- A1)) c 

(3)- -(' is left-multiplicative with respect to ad (dz 1 . . . v 

and 

(b)- The equivalence of a(iv) and a(v) is proved. in 1 37; theorem l- .j 

by a different method. 

The following proposition may be used to reduce t- 
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the study of the joint approximate point spectrum of a finite 

family of operators to that of the spectrum of a single positive 

operator. 

1.5. Proposition- Let aa. be  elements of a Calgebra 

,and let (A,...) A)et' Then 

(i) 

if and only if 

(2) 

Proof- If 

o cr  

there exists hin c,* such that 

( 
hence 

C14 ( ' - As') CA 

Tcr 
(a1J..,afl) 

Conversely, let (2)be satisfied. Then 

( 	(ad' A)( ad' A)) ~ 

so, there exists a maximal left ideal cAZ'of C,4 ,given by a 

corresponding pure state f such that 

C-114 ( . — . ) 
t( 	AJ ) 

It follows that 

Me 
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In particular, 

((- Ad)dd 0 

The result now follows from Remark 1.4.1.(a) and. theorem 1.2*. 

Let A be a positive operator in a CA-algebra 04, and. let 

For each non-negative integer hi ,we have, by the Cauchy-Schwartz 

inequality, 	 _L 

Hence, if 	then 

—o 

fm) 
Conversely, suppose 1 	J0 for some non-negative integer ni. 

Then, 

where 

	

I 	 / 

	

— 	- 

/ 
X/Z 	.h 	..... fl. 

Hence, by Cauchy-Schwartz inequality, 

o!~ [(h) 

i.e., f'Ao. 

Using proposition 1.5. and the above result, we have the 

following characterization of the joint approximate point spectrum: 

1.6. Proposition: Let a,, 	., a 	be elements of a C-algebra 

CA , and. let (A1 ..., x).cc' 
The following conditions are equivalent: 

(i)- 
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There exists a non-negative integer visuch that. 

(0)0).. )0) 	ja((o-A(a1-.. . (a-( - )) 

For each non-negative integer ?n, we have 

TA 

 

(0)  O).••) a of  

Proof- Let (i) be satisfied. By proposition 1.5., we have 

0Cr( 	
()*(Q)) 

Hence, there exists a state 	of c,4such.that 

(J -i...) 

In particular, 

[((-•) 
(.-.))rO 

Hence, (ii) holds with wO 

Conversely, if (ii) holds for some non-negative integer w then, 

there exists a state 	of c,4-such that 

o 	 ( 	••))) 

where 

By the remarks preceding the present proposition, it follows that 

=0 

Hence 

( 	 . 	 d•- 	
) 

Hence, by proposition 1.5., (i) holds. 

Next, we show the equivalence of (ii) and (iii). 

Clearly., (iii) implies (ii). 

Let now (ii) be satisfied for some non-negative integer  Wi0. As 
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before, there exists a state f ofc,4 such that 

where 

((a)(oA)) 

Hence 

Therefore 

o 
	 ; 

Hence (iii) holds. 

This completes the proof. 

We close this section with the following result which relates 

the concept of the joint approximate point spectrum to the theory 

of characters. 

1.7. Proposition— LetC4be a C"  algebra, let 	 be 

elements ofC4,and suppose that 	is a character on C (Q,, ) 

Then 

( 	a 	•.. Wo ) ) e 

— (
a . . . a 

Proof— Suppose, on the contrary that 

(a)) 	ap 

By proposition 1.2.1., we have 
if 

 

a, 	a) 

Hence there exists elements X, 	• 	in 
 C*(,...1 a) such 

that 
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Then 

wxj ) 

which is absurd. 

This completes the proof. 

2. The existence of J M;-P  6a,' ...'  Q,) .• 

It was noted in Chapter I that the approximate point spectrum 

of a single operator is always non-empty. This is no longer the 

case for the joint approximate point spectrum in general. 

In this section, we give examples of operators whose joint 

approximate point spectrum is empty, and then establish some 

conditions under which the joint approximate point spectrum is 

non-empty. 

2.1. Examples- 

(a)- Let IV be an infinite-dimensional Hubert space, and. let 

69fc' ,where 

(c//,2). 

Let 	be the projection of' onto 	.2 ) • Since 

and .7/ (j,, 2) have the same Hubert space dimension, 

it follows that 	is equivalent to 4 (.j,, . ) . Hence, for 

each d (Jy) , there exists a partial isometry V such that 

(d'1) 

(i,2) 
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(Thus, V is in fact an isometry for  

Suppose now that 	(V V)1Ø,  and. let 

(\OP \'). 

By theorem 1.4.)  there exists a state f of t (.) such that 

f(,4 \'.) 	A.  

In particular,-with 	 ,we have 

	

/ Ad/ 	' 	 (s'I). 

Hence, putting 	 , we get 

	

V. V. 	c( 	(S:,) 

A. 7C(V v.')  

so that 

Therefore, 

2= 
[)f(v*) 

*,-f  

= 

which is absurd. 

Thus, ,Jar (' 1 v)ø• 
We remark that there edst4 unitary operators 	and. 	which 

satisfy 
2 

LL I c U2  

such that 	is simple; c.f. [ 17 ]. 
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Th 	rme analysis 4w that of the above example then shdyis that 

(b)-. We shall give an example of two self-adjoint operators 

whose joint approximate point spectrum is empty. 

Let c-4 t"1 (C) the C-algebra of complex 2 x 2 matrices. 

Let ,4 and 5 be elements of CA defined by 

/2 1 

Lj. 

and 

2 t 
—t 	0 

It is easily verified that ,4 and. 5 are self-adjoint; suppose that 

the joint approximate point spectrum of /4 and 8 is non-empty, and 

let 

Then, in particular, 

Ao(A) 4 
ap 

 

so that A and.11  are real numbers; further, by proposition 1.5., we 
have 

2
2 

OEc7('('/4—A)) 4 oeo-((5-P)) 

i.e., 	
2 

An elementary calculation shows that 
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2 	
(2 A) 2  

(,-A) 

and 
 

2 

) Hence, we must have 

On the other hand., by (i) and. proposition 1.5., we must have 

d 
But, 

114 

LI 

(p) (+ (2-A)L-) ), 

by (ii) and. (iii). Since ) and are real numbers, the last 

expression is always positive; so 

a contradiction. 

Thus 

r-7 	(,q1B)ø 
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We remark that the existence of self-adjoint (indeed positive) 

operators whose joint approximate point spectrum is empty, is a 

consequence of a general result in the theory of characters to be 

proved in chapter IV, theorem 2.4.. 

We now turn to the investigation of necessary and sufficient 

conditions for the non-emptiness of the joint approximate point 

spectrum of operators. 

2.2. Proposition- Let a •.. Q be elements of a C-algebra cA, 

let (A1 	 and let T'i be a non-degenerate represen- 

tation of 	such that 

...) aj 	er fl 

Then 

(As) .. ., 	;T a- 	(Q1) . .., 

if and only if 
L 

(As) 
.. •, 	

3—  

The proof is essentially the same as that of proposition 3.3. 

of Chapter .1. We omit the details. 

2.3. Theorem- Let Q, 	be elements of a C-algebra CA 

let (A13 ... ,\ )
and let '11 be the universal representation of P. 

c4 on a Hilbert spaceN- 

A necessary and sufficient condition that 

Vi- 
OLF 

~ I 
c1# 	' 

48 
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is that 
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where 

Proof- Suppose (i) is satisfied.; since fl is faithful, proposition 

2.2. implies that 

(A 	. . . A ) 	o(t 1 	..ynQ)) ap 

Hence, there exists a state ç0f 11(c,4) such that 

ç 	fl(c4) ) = A fc ) 	(Ve3Gl'1); 

Since every state of 	is a vector state, there exists a 

vector 	such that i/f/Ii, and such that the corresponding vector 

state Wf  satisfies 

For each 	 let 

(p(0 - 
 

;•) 

be an arbitrary element of the range of 77.() 	Aj . Then 

(77 

ii 91/(n (•)- )P(J- ) .1> 

t 

= liD/I 	 (fl(a')_A•)) 

Hence 	 0 

of 

It follows that (ii) holds. 

Conversely, if 	. 	, then there exists a vector f in 

14 such that ////- I and 
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Since for each1 (d 

an easy calculation shows that the vector state tA), defined, by f 

is left --multiplicative with respect to each 	and. satisfies 

tE (17t'tj))= Ad 

Hence, by theorem 

A) 	
( 77 M, 	(a) 

(A,,... 	
)# 

so that 

(A 	A) 	(.• '1 

by proposition 2.2. 

This completes the proof. 

The following lemma gives a sufficient condition for the joint 

approximate point spectrum to be non-empty. 

2.4. Lemma-'Let f,,.. ., /I n  be bounded linear operators on 

a Hubert space1 . Suppose that 'is a non-zero closed subspace 

of J such that 	is invariant under each (Q/11 ..,pI ) ; let 

/ (the restriction of ,4 to .k 

if 

then 

rcr  

Proof- Suppose no then, there exists a finite set 	B 3 

of elements of cii'(,.1tl) such that 

. 	 =. 
01  

LetPbe the projection of 	onto vt , let  

50 
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and let 

P8; 	 , 

so that 

L 1  e 
	 (d =J,..•,) - 

A simple calculation then shows that 

contradicting the hypothesis(by theorem 1.4.(c) ). 

This completes the proof. 

2.4.1. Remark- It is well- known that, if Q.is an element of 

a Banach algebra c4, and ifa  is a topological divisor of zero 

in C14 ,then CL is a topological divisor of zero as an element of 

any Banach algebra containing A( thus, a. is permanently 
,) 

singular ). The abovelemina has a similar interpretation. 

We are now ready to state and prove the main result of this 

section. 

1 

2.5. Theorem- Let c4 be a C-algebra, let 17 be the universal 
representation of 	on a Hubert space X, and. let 

Q1, 
... 	a.,, 

be elements of C,4 

Suppose that 

 

and 

the subspaces 

(771 	
)(J) 
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are invariant under Ti (s). 

Then, there exists a complex number 	such that 

Q1 .. 

Proof- Let 

and put 

Q 
and. 

By (i) and theorem 2.3., , is a non-zero closed subspace of 

By (ii),(Q)(is invariant under 11(Q) ,so .k is invariant 
F'd 

under 11(Q). Hence, there exists a complex number )¼ such that 

where 11 M.) is the restriction of 'fl(Q)to 

On the other hand, since 

we have 

Q . 	0 

where 	is the restriction of Q. to k. 
Hence 

(a),- Aj 
Hence, by lemma 2.4, we have 

t(i) rn' A) 
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Since, for each d 	(Q/...., -i) 

	

i°($) 771d 	WO) 	G'' 

0/ (1,14) Q. 

it follows that 
1) 

2 Q3tcicH (77(•)—•) 

Hence 

. J 	) c 	(fl,,.:., n to, i). 

The result now follows from proposition 2.2. 

	

2.5.1. Corollary- Let { 	. Q 	be a finite set of pair- 

wise commuting operators in a C-algebra J4. Then, given 

	

Al 	•, ), ) 	I 	 ), 

there exists a complex number such that 

(Al 	) 	- ., 	) ') 	£ ( • 

In particular, the joint approximate point spectrum of 

Q is non-empty. 

Proof- Since acommutes with Q 	(d'•-•, r-) , condition 

(ii) of theorem 2.5.  is trivially satisfied. This proves the 

first part. 

The second part follows, by induction, from the first part 

and the fact that the approximate point spectrum of a single 

operator is always non-empty. 

This completes the proof. 

The above corollary was first raised.,as an open question,in 

[20; problem 2 ] ; it was first solved by J.Bunce [ 10; proposition i] 
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and., independently, by W. Zelazko [ 57; theorem  ] 	• BUflC5 

proof makes a similar use of lemma 2.1+., while Zelazko uses the 

idea of the joint topological divisors of zero; c.f., [50] and  [56]. 

2.5.2. Corollary- With the notations of theorem 2.5., suppose 

2.5.(i) holds. Suppose, further, that there exists a set { 61, 

b 	of elements °f..'4  such that 

Then, the conclusion of theorem 2.5. holds. 

Proof- We have 

Hence 

YCt, 0111  

* 
In particular, 11 (ci.) is invariant under the range of fl 	- 

The result now follows from theorem 2.5. 

We close this section with two examples where the situation 

described in corollary 2.5.2.  occurs naturally. 

The following simple lemma will be needelbelow. 

2.6. Lemma- Let 0.. and b be positive elements of a CO-algebra 

such that 0. 4 b . Suppose that 

G r 4  (c ) b). 

Then A€ Ii 

Proof- There exists a state fof c4 such that 
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Hence 

A= -1(a) 5 f6) = 

This completes the proof. 

2.7. Examples- 

(a)- Let ,1be a separable Hubert space. Let W be the (uni1atera.) 

weighted shift defined by the sequence of weights 

{ ) ) I) ) 

where 	 . 

Let 	(ff 	
. ) be an arbitrary element of,J. An easy 

calculation shows that 

\t'.Ji = (o, 	 ) 

and 

hence 

W 	-x ) ex 
> 	

Z 

CIO 

 

v,. 

and 
00 

+ 
	+ 

p'3 
So 

(WW- WWi,> ;(+  

since oij3g 

Let now A6o(W); then (proposition 1.6.) 
op 

0 	(\N— (w—) ) 

On the other hand, since 

W—) (—A)e~  
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there exists an operator .3 in t( i1. ) such that 
i 

(ch.I, lemma 4.2.(b) ). 

Hence, by corollary 2.5.2., there exists a complex number 

such that 

()o Ot 

Therefore, 

(w,v\t) 
a? 

by lemma 2.6. and proposition 1.6. 

We remark that corollary 2.5.1.  is not applicable here, since 

\r'J is not normal (in fact, \j..Jis an example of a hyponormal 

operator which is not subnormal; c.f. [ 27; solution 160 ]. 

(b)- Let\i'Jbe the (unilateral) weighted shift defined by the 

sequence of weights 

It may be shown that there exists a positive number M such 

that 

for all complex numbers A ; c.f.[ 4; Example]. 

As in example (a), an application of corollary 2.5.2. then 

shows that 

(w, w) = { (A) : E() 

We remark that, 'Al is an example of an ti-hyponormal operator 

which is not hyponormal ( to show that Wi8 not hyponormal, choose 

an X ( 	) in J4 with 	0 ,and O /1/ ' /4 / ; it is 
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then easily*  verified that 	 ). 

3. The joint approximate point spectrum of a fini1e family 

of commuting operators. 

Let CA be a Banach algebra, and. let 0. and b be commuting 

elements of C..4. It is well-known that 

cr(a..,.h)  

and that 

cr(ab) c 0-0) 0-(b)  

c.f.[ 47; theorem 11.23 ]. 
In this section, we shall obtain analogous resuis .f or the 

joint approximate point spectrum of commuting operators, and 

extend the result to direct sums of operators. 

3.1. Proposition- Let (a,, S.., 	 J be a pair-wise commuting 

set of operators in a C-algebra c,4 . Then 

£ 
J r i  

and 	 ( 
c  

da-p 

	

p (a1') 	
/ 	

A. (A,,..., A) e J 

(c 
Remark- The expression 	 denotes the set 

1 	' 	(') 
The expression f•7 a() is defined similarly. 	- apd 	 - 

d' 
Proof- Let A 	 since the set 

VI 

qf 

, a' 
	,  

is a pair-wise commuting set of elements of c.4, theorem 2.5. 
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implies the existence of an n-tuple (A s, 	) ) of complex 

numbers such that 

(A ) 	 (() 

By theorem 1.4., there exists a state 4' of 	such that 

and 

In particular, 

(A... A 	
? 

further, 

= 

Hence 

C - 

Conversely, suppose that 

(A•. .,Aj 	() • 	). 

then, there exists a state fof cA- such that f is left-multipli- 
cative with respect to each 2- with (Oj)z A 	hence, -( is 

left-multiplicative with respect to 	0a. with  f ( ¶ ) 1 
This completes the proof of (1). 

(ii) may be proved in a similar way. 

This completes the proof. 

Let Cii, - 	, 	be V.N.algebras acting on Hubert spaces 

• 	, ,7V respectively. Let 
n 

- 
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Let 

T= 0 
	be the direct sum of the operators 7, ., 

at= 
 defined on the Hubert space ,Y9 	 by 

= 

where

ly  

	

- 	 d' 

= 

Let 

[T: T& 	(T c 	j•n). 

Then,A is a V.N.algebra acting on the Hilbert space 

[ 21;  Ck. I , 2. ] . We call 	the direct sum of 	, 
Vk 

and denote it by 
d 

3.2. Proposition- For each 	/ ... ,), let 4 be a V.N. 
algebra acting on  Hubert space 	, let 	and 	be elements 

of CA., let A , 	 , and 
d 	 V 

Then 

c (2' Jb- (i; 8) 

Proof- Let (A, 	11,  and suppose that 

'T9_'  

Then, for each d (c/—i 	, ) ,there exists operators /and 

/3 	in c4 such that 
I 

Define A and. /3 on 	by 

-69 Ac4 4 B4 

	

/ 	 d' 
then, 4 and 	are in 	further, an easy calculation shows 
that 

59 
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8'(8-I,74 

0' 
(A0I-. 	pI.)): 

n 

Pl~d 
_IP7c?• 

Hence 

(), ff) 	
r, Of (,, 8). 

This completes the proof. 

3.2.1. Remarks- 

Proposition 3.2. may easily be generalized to cover the 

case of any finite number of operators in C4 	• 

Proposition 3.2. fails if finite direct sums are replaced 

with infinite direct sums. 

To see this, define a sequence of operators A,. as follows: 

(0 
:), 

/0 0 o\ 

\o i.oI, 

/0 0 0 0 

? 	11 a 00 

I 0 0 ) 0 a t o 

etc. .• 

It is easily verified that, for each d ( i a,... ) , we have 

a- (A)fo] aD 

1.9 
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so that 

O   
d'0 

On the other hand,ED 	is the unilateral weighted shift 
'I 

defined by the sequence of weights 

{ 	
, 0 , 1, l , 0, 	% 	1,t , 0, 	. 	} 

The spectral radius, and the norm ofA -are given by 

k-oo %. fl >O and 	 / 

respectively II 27; solution 77 ]. 
Hence 

Y( c\ ) = 11 	\\ = I 

It follows that there exists a complex number A such that 

and AGO () (c.f. chapter IV, 4, theorem 48. ). 

Hence 

06 

d C) 0 (A) 
CT 	 J= Jr 	°r d 

§ 4. The joint spectrum in Banach algebras. 

Our attention has so far been confined to the joint approximate 

point spectrum of operators in C-algebras. However, even for 

applications to bounded linear operators on a Hubert space, it 

is necessary to consider the joint spectra of op.rators on a 

Banach space (c.f. corollary 4.6.1. ). The present section is 

therefore devoted to developing the necessary tools for the latter 

purpose. 
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4.1. Definition- Let 3€ be aBanach space, let A1 	-. , AIF 

be bounded linear operators on 	, and let (.A,..., ) C 	J3d  

(a)- The joint left spectrum of A, 	
., 

A 	is defined to 

be the set of n-tuples (A1) 	, 	 ) of complex numbers such that 

VN 
DB (Ai-y") :t . 

The joint left spectrum is denoted by 	C A,.•.,A,) 

(b)-The joint approximate point spectrum of 

is the set of n-t.uples (Au ...., ))of complex numbers such that 

/c >o 	x. .r.t. 	3E' 	to, Il(1-X.)1l(~ ' 	 •) 

The joint approximate point spectrum is denoted by or 

(c)- The joint right spectrum of 1q, . . . 	 is defined to 

be the set of n-tuples( 	
, ) of complex numbers such that 

The joint right spectrum is denoted by 	fO (A1 ...1 4, ). 

(a)- The joint spectrum of 	. . 
	

,which we shall 

denote by rib, (,9 	is defined by 

Jo(A,1.A) ,79 (4 s . .;41'7T";V 

J+.l.l. Remarks. 

(i)- When n=l, the above definitions reduce to those of the 

left spectrum, approximate point spectrum, right spectrum, and 

spectrum of a single operator, respectively. 

(2)- If 3C = 	for some Hubert space X , then definitions 

4.1.(a) and Ll.(b) are equivalent. However, for an arbitrary 

Banach space 3E , the two conditions need not be equivalent, even 

if n=l; we always have 
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but the reverse inclusion is false, in general; c.f. [ 51; proposition 

1.7. :i. 

(3)- Definition )f.l.(d) is one of several possible (in general 

distinct ) definitions of the joint spectrum;c.f. [ 51; Introduction ] 

Our definition is the same as that given in [7;.f2, definition 11 ] 

and used in [29 ].- 

4.2. Proposition- Let /, J . •. 	be bounded linear operators 

on a Banach space 9C, and let 6 	cB.c(x) 

(i)-. Suppose that 

(A1) ...,)e(A,...lAn). 

Then 

tTcr(As) ..., d ) 	(d',•-,) 

(ii)- Let [4 ... 	be a commuting set of normal elements of a 

-algebra c,  and let be the set of characters on C(t%,.. ., 4). 

Then 

.7c7-(A1) ...) A,). 	,Tcr (A, 1 ...A,,) 

Proof- (i). For each n-tuple (t ... / )of complex numbers, 

and each fixed in / /j.. 	 ,we have 

and 

The result now follows form definition 4.1.(d). 

(ii). Let 

- An 	Jcr (A*....  '4') 
Of 	

, 

 

Then, there exists a state cof. such that 
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For each d ( i = I,. .., n) we have 

F ((,.'- •) (. - 	= cU. -  
Hence (c.f. remark 1.4.1.(a) ), JL' is also left-multiplicative with 

respect to each A. with 	 Therefore 

fJ C A,  .. 
In particular, 	

(A) , .,An )  

(/ ) ...)e QP T(A)) ...) A.) 

by proposition 1-7-- - Hence, 

by definition )+.l.(d). 

Next, applying the above reasoning to the set [ /, , . .. 
we see that, given 

€ 4cr 
Ot 

there exists Cf ç 	such that 

Hence, by proposition 1.7., we have 

J~7 091 

This proves (ii) and completes the proof of the theorem. 

4.2.1. Remark- The property expressed in 4.2.(i) is called the 

projection property of the joint spectrum. The projection property 

does not hold, in general, for the commutant and the bicommutant 

definitions of the joint spectrum; for an example, we refer to 

[ 51; page 144. ]. 

Throughout the rest of this section, ,4 denotes an infinite- 

dimensional Hubert space, 	J 	(t) is given the Banach 
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space structure of 	('9), and 6Y will denote the complex 
unital Banach algebra of bounded linear operators on 

1.4 .3. Lemma- Let f A,, ••, A, ] ( respectively (6 j  	, L3, I ) 
be a set of operators in 3€ . For each J (/ i, • , ,,) define the 

operators Iand Fon ' by 

(i-_I)..., 	; x) 

and. 

(x) 	x 	 (d , 	• fl X £ ) 

Then 

F 03 

	

, 	 (c/ 	i,..•) 

and the following inclusions hold: 

/ 
/ c ,..7 	(A,1...,  An) 	(i) 

,Tc c Jcr 
af I 

	 (ii) 

I, 

cl- 
	

(,.c) To: 	
(5••,5,1) 

(iii) 

Tc 	(f'1 F') cJr(,i...5) (iv) 

Proof- We shall only prove (i), since the other inclusions 

may be proved in a similar way. 

Let (A,,. •.,A)Lc  f and suppose that 

Then 

for some 	 XY,1) 	'. •••,,,)• 

For each,/ 	), define a bounded linear operator 

on$- by 
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G(x) 

Then, for each X in ' , we have 

Hence 

01 

/ 

(A,, 	,A Fn J 
V) ) 

This completes the proof. 

Lemma- Let 	.. . An / ( respectively f5,..., 31)  3 ) 

be a mutually commuting set of elements of € J. and let F and. 

i 	(/)...?)) be defined as in lemma 4.3. 
at 

For each d (/ 	•,,) define a bounded linear operator F. on 

by 

F(X)= 	 (di•-•,; xc). 

Then, the set 

{,. •) 	J•••)) 

is a mutually commuting set of elements of 

Proof- Let J and. A be in fi, a,.., ?J , and. let Xbe an 
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arbitrary element of 	. then 

/ 

	

F.'/(x) 	(AX) 

Hence, the set 

{ 'i 

is mutually commuting. 

Similarly, the set 

is mutually commuting. 

Next, for each arbitrary i and. in /i, ,.. , 	and. each X in 

we have 

= 

(,(x)) 8 

Hence the set 

is mutually commuting. 

Finally, since for each d we have 

FF. (Q 	), 

it follows that the set 
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is mutually commuting. 

This completes the proof. 

The following theorem, which is similar to corollary 2.5.1., 

is proved in [29]. 

4.5. Theorem- Letf T 	7; J be a mutually commuting set 

of elements of 8 , and suppose that 

. ,,A,) 	,Jcr (7,.••7, ) 

Then, there exists   complex number A such that 

() •••) 

4.5.1. Corollary- Let f7... 7; J be a mutually commuting 

set of elements of 	, and suppose that 

(As., •. ., A, ) 	1c 	IT1 ,.. ,T) 

Then, there exists a complex number Asuch thst 

(A1, • 	.A.1  ) €• rc- (T, 

Proof- By [ 51; lemma 2.10. ] 	,we have 

where T 	• • T 	are the conjugate operators defined on 

the conjugate Banach space 3€ 

The result now follows from theorem 4.5. . 

The following convention will be adopted below: 

Let S and 	be subsets of C. The expression 5' - 

denotes the set of elements 
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of C such that 

We are now ready for the main result of this section. 

4.6. Theorem- Let (4, •., A I (resp. 	8, , . .. , 	) 

be a mutually commuting set of operators in 9C . For each. J , 
define a bounded linear operator Fon T by 

I4,XY 	 ). 

Then 

The joint left spectrum of F. ., F 	is non-empty, and. 

) 	f) C ,Tc7 (4,,...) Afl ) , fl - 
- Jp (• 8:). 

The joint right spectrum of 	- . 	is non-empty, and 

	

Tcç (i . - •, ') 	c 	c- (4",. - i) 

The joint spectrum of Fa 	is non-empty, and. 

	

I 	- 

	

Proof- (i). For each 	 letF andf be defined W 	61  

	

as in lemma 4.3.; since 	. F 	mutually commute, their 
joint left spectrum is non-empty; let 

(A,, 	•. , .L ) 	To- 
(/-j 

 -Fn - 

By lemma 4.4 and theorem 4.5., there exists a 2n-tuple 0& 

SM 
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Of complex numbers 

(1\11...j 	A':,. ..,A: ) 

such that 
/ 

(A11. 	
•••, 	) 

,', 
 

Let 	be the commutative unital Banach algebra generated by 

the set 

F,',,f;, 

and the identity Qperator on 

By (1) and definition i-.l.(a), we have 

(_ .) + 	( 	J 

By the Gelfand theory of commutative Banach algebras 16; Ch.2], 

there exists a maximal ideal cl1 of 	, and a corresponding non- 

zero multiplicative linear functional ('f on 	, such that 

and.  

In particular, 

so that 

(Q1 / j .,1) (2.) 

Moreover, since 

p.'  

II '(fA 
d d 
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we have 

ej(/...F') 

	

J 1)  (n,, 	•1A) 	 (3) 
by lemma 4..3.(i). 

Similarly, 

: ) £ r:Tcl:p 

(5 * 	• 	
() 

Part (i) now follows from (2), (3), and  (4.). 

A similar analysis establishes part(ii). 

Finally, by parts(i) and (ii), and definition 4..1.(d), .we have 

(Tc7 ( 

	

,,....12?,A,).-. 	Jq'1.,:)) u 

7 	(/9,*) ,   

,Tcr (A,, -•) a) 
since each  each one of the sets 

J 	 I (8*6*) 
a, 

and 

/3 

	

"A 
	J - (8,., . - • 	,,) .,,'- 	ap af 

is contained in 

This completes the proof. 

4..6.1. Corollary- (Rosenblum's theorem)- Let A and ,6 be bounded 

linear operators defined on a Hubert space ,J ,anã. let Fbe the 

operator defined on ,'f,fq) by 

	

F(x) = AX X.8 	 (x 
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Then 

or( F) g cr,'/9)cr(8) 

Proof- Take c//  in 4.6. (iii) 

Corollary 4.6.1. was first proved by Rosenblum in[ 4 ] 

in the case where #4 and .6 are elements of a Banach algebra; his 

proof involves computing an integral formula for the resolvent 

of F. A more elementary proof is given in [ 42; corollary 0.131, 
where a number of applications of corollary 46.1. are also given. 

14 .6.2. Corollary- Let 1A and. 5 be bounded linear operators 

on a Hilbert space 

(a)- If 

(/9*) 	
() (8) = 5 

then, given / in , there exists )(' in (8 such that 

(b) (Rosenbluin's corollary)- If 

cr(A) fl c7(5) = 0 
then, given)' in (3 there exists a unique X in 	 such 

that 

Proof- (a) follows from theorem 4.6. by taking di in 4.6.(ii) 

and (b) follows from corollary 4.6.1 (since F is now invertible). 

This completes the proof. 

§ 5. Compactness of ,Tc 	(Q, , - - •, c) 
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Let 	• . -, Q be elements of a C-algebra C.54. If the 
joint approximate point spectrum of Q, - . Q n is non-empty 

(in particular, if Q 	• 	mutually commute) then,a.n 

argument similar to that used in the proof of corollary 2.2.1. 

of chapter Ishows that the joint approximate point spectrum. of 

•., Cl is, in fact, compact. 

The purpose of this section is to give a characterization 

of the joint approximate point spectrum and to show, as a result, 

that .Ja (Q, . Q ) is homeomorphic to a space consisting of 

	

alp 	I01 

equivalence classes of a certain subset of F (c) . The result 
on the compactness of Tq(, . . Q )will then follow as a 

	

corollary. 	 £ 

For the rest of this section, S will denote a fixed set of 
elements (Q1 , .., ajof a C-algebra A, whose joint approximate 
point spectrum will be assumed to be non-empty. 

.A subset if of E(a) is said to have property P(S) if and 

only if each element of Fis left multiplicative with respect to 
• 

A state c is said to have property P(S) if and only if the 

set W has property P(s) 

Let 

Define a mapping 9 • 3C- 7cr (Q.. )by 
Of ' 	'' 

(1) 
By theorem 1.4.(iv), the map is surjective. 

The sets SC  and ,7b (Q, - -It? are given the relative w-topolog 
and the usual topology of C,respectively. 

73 



Ch. II, 	 5.1. 

Recall that a mapping tof a topological space 9C into a 

topological space 	is said to be a closed map provided that t 

maps closed sets of T into closed sets of C4 • It is easily seen 

that t is a closed map if and only if for each subset X of 3C , 

where - denotes the respective closure operations. 

5.1. Proposition- The map O:9E_ 7o- (a 	defined by 

0(1) = ( Am, ),.. f(a)) 

is a continuous, closed, surjective map. 

In particular, 9 is a quotient map. 

Remark- Given two topological spacesX' and 	, and a mapping 

: 3C, 	, we say that is a quotient map, provided that - 

is surjective, and that a subset U of iis open if and only if 

t (U) is open in 

Proof- Let 

and, with E an arbitrary positive number, let 

V 	(r%)..,r) 	 IPj-A1~e} 

be an arbitrary neighbourhood of(')¼,,.. . ) ) in t 	 ) 

By theorem 1.4.(iv), there exists an element -1 of ' such that 

.. fa ) 

Let U be the neighbourhood of 7r in X defined by 
-16 	 a 

U 	= 	[ -r - X : / ~ (0 -) 	/ 
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It is then easily verified that 

- 	Uç 	== 

Hence & is continuous. 

Next, we prove that 5 is closed. 

By the remark immediately preceding the proposition, it is 

sufficient to show that 

5(x) 	c 

where Xis an arbitrary subset of 

Let 
00 

00 

() 

be a sequence of elements of 	(X) 	, where 

(fr,) 

and suppose that 

as 	• Then 

() -> 

as 

Hence, since for each k 	,the state 7r is left-multiplicative 

with respect to Lt. 	, it follows that 

as 

Partially order the set 	of all finite subsets of the set of 

all positive integers INt with respect to inclusion; for each 
let 
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By (1), corresponding to each element F of 	, there exists an 

elementof 	such that 
0 	 - 

Thus, letting- 	,we get a well-defined net t 
F : FE 

of elements of-. By the wcompactness of E(CA) , the net 

f 	:] has a -limit point f, say; then, -f £ x 
Further, a similar calculation as that given in the proof of 

theorem 1.4.(c) shows that, for each J 	, -. ,), 	is left- 

multiplicative with respect to C. with [('a1) , 

Hence 

(A1) -. .,A= ( f(C11  )).. -) f(a') ) 

.= & (-)C) . 

This proves (1) and completes the proof of the theorem. 

Letbe as before. Define a relation .%j  on 	as follows: 

Given -ç and.  5  in 	, let 

if and only if 

Ok 

It is easily seen that -.# is an equivalence relation on 

Let ' denote the corresponding set of equivalence classes, and 

let j: ?C.3C be the corresponding quotient map, which sends 

each element of 3C to its equivalence class. 

Clearly, we have 

I 
,I  . . -.1 1  ) 7T?  (6?, 	n ) . 
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5.2. Theorem- The map & induces a homeomorphism 

. a ) 

where E. is given the quotient topology. 

Remark- The situation may be described by the following 

commutative diagram: 

-.. 

Proof- We define r as follows: Let - be an arbitrary element of 

then, the set 

(p-I1iI) 
is a one point set in Z7 Q  (a,.. Q). If we-let C(f)denote  this 

1p 

point, then we have defined a map 

T : r)C _- 	(Z, 

such that for each 	, we have 

9(c) 	(p(c)). 

This completes the definition of Z 

Since, by proposition 5.1., & is a quotient map, a standard 
topological argument shows that 	is a homeomorphism (see 138;  C).2 1  

1k. 11.2, for example ). 

This completes the proof. 

5.3. Theorem- The topological spaces 'DC , 	, and Z12I  
Of a d'  

are compact. 

Proof- To prove that 	is w-compact, it is sufficient to show 

that it is we-closed. 
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Let 	ibe a net of elements of .4 and suppose that 01 	 X 

—p c (W-topolo) 

For each fixed element X in c4, and each fixed J in [Ii.. •, vi] 

we have 

£ (ad. ) f( 	 / 

and. 

and 

Since each 6 is left-multiplicative with respect to 	we have 

£ (lcj ) = 	1 CA 	d 

Hence 

i.e., - Q :;:. 
Thus, 	is w-compact. 

Next, since & is a closed map, we have 
(4* 

c 
= 

cë75. 
Hence, since 

- rc- (Q.. Q)
ap 

it follows that 7& (Q,,..,Q)is closed. 

Hence, since Jc- (q,.. Q) is a bounded subset of C (it is 
QP Iv' 

contained in the polydiso 

[ ..~tfi 
) . - . $ rn ) 6 r . . 

EN 
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for example) it follows that JT(Q,,....0)is compact. 
-IV 	

OP 

 

rb  

Finally, since t3C is homeomorphic to the compact space ,7'  

it follows that 	is compact. 

This completes the proof. 

5.-. Remark- Let 6= (Q,..., Q 1 ,and let  

be a fixed point in ,7&(Q 1... Q); we say that a state f has cp 
property P (5) provided that 

- £(9. ) f(T)r()= 	(; 

For each A in let  qj, let 

= {fEM)Aos PYOPLOrty PA('54  
It is then easily verified that 

alp 
A Lr- 

The sets E correspond to generalized versions of the maximal 

faces4k considered in §5  of chapter I 
IWV 

§6- Finite V.N. algebras- 

Let C4be a V.N.algebra acting on a Hilbert space 	If /9 

is an element of C4 then , in general, fi)oM). In the case 

where C4 is finite V.N.algebra, strong relations exist between 

the various spectra, which it is ±the purpose of this section to 

develop . We shall also consider the case of certain non-commutative 

C-algebras. 

Let C.4 be a V.N.algebra, and let P and Qbe projections in tA 

(i)- 	is said to be equivalent toQif and only if, there exists 

a partial isometry V in c4such that 

vv'P vv=Q 
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The equivalence ofP and Qis denoted by 

(ii)- P is said to be weaker than Qif and only if, there exists 

a projection R in C.4such that 

This is denoted by /) 	Q. 

A projection f in C4 is said to be finite if and only if, there 

does not exist a proper subprojection of P in c,4which is equivalent 

to P,i.e., 

A V.N. algebra is said to be finite if and only if, the identity 

of 	is a finite projection. This is equivalent to the following 

condition: 

Whenever /9G C)3 satiafies /34 	/ , then 	1 

c.f.[21 , C6.3 §8 , Th. i.] 

The following lemma must be well-known, but we can findno 

reference for it, and therefore include a complete proof. 

6.1. Lemma- Let Abe a bounded linear operator on a Hubert 

space ,1-, and let ,4-(4) 

If Ac'i'A),then ;',e I- 
QP P 

Proof- Suppose A7 ('j) ; then, ,.2 is left invertible, 

hence it is bounded below. If A 9'cr ($), then /.... 4 is injective 

so, since 

f her (Au)]  

it follows that /3 -A has dense range. 

On the other hand, an operator which is bounded below and has 

dense range is invertible. 

This contradicts ,Ac(). 
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HencecT(ç). 
1) 

6.2. Proposition- Let c.'be a finite V.N. algebra, let / CtA v  

and. let A1' . Then 

A Cr 07A) if and only if A€ (f. 

CT (A)if and only if A Eo-  (A ) Ap 

Q?) - 
01 

Proof- let 
2 

be the polar decomposition of A—A . Let 

Q uu* ,  

It is well-known that 

L&f (A - A ) 

and. that 

P = c4fl (A-A) 

Moreover 

By theorems 4.5.2. and. 4.5.2.3. of chapter I, 

AcA)if and. only if PI 

and. 

(f') P if and only if Q 4 I 

Since ci4 is finite, we have 

if and only if Q z* I 
This proves (i). 

To prove (ii), let )G () ; then, AGO(A), hence 
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By lemma 6.1., either AGO' (f)or \€o() 

The result now follows from(i) 

Finally, let  be an arbitrary point of c(A) . By lemma 6.1., 

either )Gcr (A)or X 	(A*) ; hence, by part (1), either A- () 
op 	 P 

or 	a' (ç) ; hence 
P 

cr(c\) CCr 

Since the reverse inclusion is obvious, this establishes (iii). 

This completes the proof. 

6.2.1. Remark- Proposition 6.2.(iii) is also a consequence of 

the fact that in a finite V.N.algebra C.4 , the set of invertible 

operators is dense in C34 ; c.f. 115  

Suppose now that C4is not finibe; take an element /4 in c.4-
such that 

AA=J 4 Ai' 

It is easily seen that Oo-(A)whereas Oc(#)since A is isometric 

Hence (c.f., [ 16; theorem 3 ] ), 

6.3. Theorem- A V.N. algebra exis  finite if and only if 

0-1/4) = c fft) 

for all A in C)4- . 

Proof- Proposition 6.2.(iii) and the above example. 

S 
Let cirbe a commutative C -algebra. By proposition 4.2.(n.), we 

have 

CIP 

FIN 
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if and only if 

The rest of this section is devoted to the study of the above 

result in more general (non-commutative) C-algebras. 

Let A,) ... / be bounded linear operators on a Hubert space 

The joint point spectrum of A,, - • 
	

is defined to be the 

set of n-tuples of complex numbers (A,,. . . 	such that the 

following condition is satiafied: 

e1- (~O 4 A8 

The joint point spectrum is denoted by ,Tc1 (/4,,. 

Clearly 

6.4. Proposition- Let C4 be a C-algebra acting on a finite- 

d.imentional Hubert space 	, and let A,) . . . 	 be elements 

of C14 . Then 

Proof- It is sufficient to show that 

T Jr (4,.-,/4) a 	 af 
Let 

Let 	be a sequence of positive nubers decreasing to zero. By 
00 

 

theorem 1.4. (c), there exists a sequence ( ox, ]inJ4 such that llI/i 

) 
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Since$ is finite-dimensional, the unit ball 0rJ9 is compact; 
00 

hence, there exists a subsequence {.x 	of $k1and an element 

with I!flisuch  that 

as 	-°O 
Vh 

Hence 

)ç £ 	(A,.-.1  

This completes the proof. 

For the rest of this section, the following convention will be 

adopted: 

If S is a subset 6f 	, the symbol S denotes the set 

EC: 	 GS 

6.5. Theorem- Let c.4 be a C*  algebra acting on a finite-dimen-. 

sional Hubert space, let fQ,, . .., 	j be a commuting set of 

elements of CA  and let (A1 .\ ) ef'. Then 

(A,, ...,A)e 
OF  

if and only if 
* 

., 	) 	ra (a, . . • a., ) 

We defer the proof to appendix I 

6.5.1. Remarks - 
(a)- With the assumptions of theorem 6.5., we get 

(b)- The conclusion of theorem 6.5. is false if the assumption 
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of commutativity is dropped. 

To see this, let CIC 	and let 

( I : 0 	), 	
Q= (0 1 

Then, P and Qare equivalent projections, so there exists a partial 

isometry Vin fri (')such that 

V'v=P 4 VV=Q. 

It is then easily verified that 

c4V~c40 =J2 
whereas 

V C'4 t Qc ~t & 

Jcr (vQ) q,) 

and 

(v,Q1) 
Qf 

Let c/f be a C-algebra, and let fl be an irreducible representation 

of 	c.4 on a Hilbert space ,.79. We say that 77 is finite- 
dimensional provided that 7i is a finite- dimensional Hubert space. 

6.6. Theorem- Let CYJ be a C4-algebra such that every irreducible, 

representation of c5 is finite-dimentional, and let (a1,.. ., 
be a mutually commuting set of elements in cA • Then 

,T,- t 	J 
at 	 4P 

In particular 



Ch. II, J6. 

Proof- Let 

A)Ia'(ct,..,c&). 

By theorem 1.4.., there exists a pure state f such that 

(* =o 
(1) 

Let fl, € 	,and $ 	be the associated irreducible representation, 
d0 	 /° 

cyclic vector, and Hubert space, respectively; then, for each j 

,?) 	) 	, we have 
2 

1/ 	ri 	(• - A 	) 	II 	 (°•-#•)) 	> d 	do 	ô' 

c 	a' 

by (1) , i.e., 

Hence, by theorem 6.5., 
* 	* 

., 	) 	£ 	Tcr 	11(Q1 ) , 	.j TI (0, 	) 
v A 	

q 
Therefore, by theorem 1.4.., there exists a pure state f of 17(c'4) 

such that 

jO 
 

(VAe71 ( 4);d.,v) 

Define 	oncAby 

(i) =(fofl)(T) (V 	4. 

A similar calculation as that given in proposition 3.1. of chapter I 

shows that 	is left-multiplicative with respect to each &with 

go 
 

Hence 

N O 	 Jcp- 
op 
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The converse may be proved similarly. 

Finally, the last part follows from the first part and definition 

4.1. (d). 

This completes the proof. 

6.6.1. Corollary- Let c4 be a C-algebra such that every irreducible 

representation of 	is finite-dimensional. Then 

Cr () = cr(*) 	 (op 	or c-) 

6.6.2 Remarks- (a). Examples of s-algebras all of whose represen-

tations are finite-dimensional include the class of n-homogeneous 

C-algebras and., in particular, C-algebras of the form 

4= (X)®M() 

where X is a compact Hausd.orff space. 

(b). In the case where o*is a V.I'T.algebra, the condition 

is equivalent to the condition: 

has a uniformly dense invertible group. 

( c.f.,[ 15; theorem  5 ],and theorem 6.3. ). 

On the other hand, this is no longer the case for arbitrary 

C-algebras; in fact, with 

(')® M(C) 
I 

corollary 6.6.1. and remark (a) above imply that 

Cr (oJ a? 

M. 



Ch. II, 6. 

However, it may be shown that CA has uniformly dense invertible 

group if and only if, the topological dimension ofis at most 

1 (c.4 denotes the set of unitary equivalence classes of irre-

ducible representations of CA P ith the Jacobson topology; it 

may be identified with X ) ; c.f. [ 44; proposition 2 ]. 

Nevertheless, condition (1) above entails analagos results 

to those of proposition 5 of[ 41t J , even in the absence of the 

uniform density of the invertible group; for example: 

A 
Let c/i be a C-algebra such that 

5 (a) 	 (Vaec-4 ). 

Let zec$4. 

The following conditions are equivalent: 

7_ is invertible 

F(i'1 ) > 0 for each state I of C,4 

10  () > 0 for each pure state f of CA 

Proof- If , for a state (resp. pure state ) f , we have 
f1 
t() = 

then, by proposition 1.5.,  X is not invertible. 

Conversely, if Xis not bnvertible, then, since 

- c•QP - (x) - 
it follows that 	(x); hence, by proposition 1.5., there 

ap 

exists a state( resp. pure state)fsuch  that 	X) .0 

This completes the proof. 

We do not know whether the following equality (which holds true 

in any commutative C- algebra) is valid in all finite V.N. algebras: 

Jcr(& Q)Jc7(cZ A) 1, 
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where a,, . . a are pair-wise commuting elements of C.'4 

However, we have the following result: 

	

6.7. Proposition- Let cA-be a finite V.N.algebra, let 	••, Q 

be pair-wise commuting elements of CAP  and let 

(A)  I  . 	. , 	) 	 (.. . a) 	(i) 

Then, either 

(A1: 	 jr 	(. .Q) 	(2) 
et 

or, there exists (/,.. 
fl) EC such that 

(a,, - 1P1. )  

and 

Proof- Suppose that (i) holds and (2) doesnot hold. Then, by 

definition )+.l.(d), 

eT  

Hence, by proposition 3.1.(l), 
P1 

e Cr
OP 

Ze) 
0'- 	 I-, 

so that, by proposition 6.2.(ii), we have 

Ac' (Ea) 
d' 

The result now follows from proposition 3.1.(l). 

Vie close this section with the following result concerning 

cohyponormal operators. 

Recall that an operatoris said to be cohy-ponormal if it 

satisfies the following inequality: 

01 	
>,I 
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6.8..-Proposition-'Let C 	•, a 	be cohyponormal operators 

in a C-algebra c.-4 . Then 

1Tc, (Q,... . ., Q) 	Icr (ci, .. •, O) 

Proof- Let 

(f 	1t)  e Tcr 
qp I  

By proposition 5.1., there exists a state f ofcA such that 

f(_ 
Since 	 0' 

it follows that 

0 

i.e.

Ct  

, 	 01=1  

rT of 

by proposition 5.1. 

The result now follows from definition 4.1.(d) 
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Chapter III 

Spectral Napping Theorem for Joint Approximate Point Spectrum 

k].. The joint approximate point spectrum of infinite families of 

operators. 

1.1. Introduction- The main purpose of this chapter is to prove 

a spectral mapping theorem for the joint approximate point spectrum 

0 
of commuting elements of C- algebras. In the present section, the 

notion of the joint approximate point spectrum of finite families 

of operators is extended to that of the approximate point spectrum 

of any (not necessarily finite) family of operators. We shall also 

consider the questions of existence and compactness. 

Throughout the rest of this chapter, the letter P denotes an 

indexing set which may or may not be infinite. 

The following definition is given in [ 29  ] and { 51 3 

1.2. Definition- Let 04 be a C-algebra, let (Q cer be a 

r -tuple of elements of C'4, and let (,A r 	r be a J' -tuple 

of complex numbers. 

We say that (Ac)c€r is in the joint approximate paint 

spectrum of (OLt)cer if and only if the left ideal of 

generated by the set of elements 

is a proper left ideal of cA. 
The joint approximate point spectrum of (a rF will be 

denoted by ,Ta-  (2 ) 
Op 

In what follows, the left ideal of C4 generated by a set of 

elements [a : reT'jwill be denoted by 	E cA-a 

91 
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1.3. Theorem- Let {Q.. crbe a family of elements of a C-aigebi.a 
, and let 	6 Q 

c T  C 

(a)- Let 	be a state (respectively, pure state) of C,4  . The 

following conditions are equivalent: 

a.) = f(X) T(L%r
) = A 

r 
 -f(-t) 
	

(Vt€c, vcP). 

-c(a) = 

2 

a 4* Ca. ) 
C 

(Vc€ r). 

f( 

	

aC  _A ) (Q - 	) =o 

(b)- The following conditions are equivalent: 

M_ 

e ''p 	ccr 
(ii)- There exists a state 	of 	such that 

A-c() 	(Vic., V) 

(iii)- There exists a pure state f of,4 such that 

O()  e('Qr ) = ).10() 	(Vi&ck Vr) 

(c)-  A necessary and sufficient condition that 

'' °-r)t ter
rr of  

is that any one of the conditions a(i)- a(iii), b(i), b(ii), and.1(iii) 

be satisfied. 

Proof- (a)- An application of Cauchy-Schwartz inequality for 

positive linear fi.nctionals proves part (a); c.f. chapter II, 

Remark l.)+.l.(a). 
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(b)- Let b(i) be satisfied. Then, there exists a maximal left 

ideal cJlIof c4 such that 

Let 	 ccr 

X= 1 X G C4 p(Z*Z)0] 

where 

For each 	, we have 

c(e2r _Ar ) 

hence, as in the proof of Theorem 14.(a), (a(i) ==> a(ii) ) of 

chapter II, we get 

/0 	 OL (Vcr). 

Hence, by part (a), 

° ( -t&) e(7-)e(Q) )f(- ) 	(Vcr,  

Therefore, b(i) 	>b(iii) 

Conversely, suppose b(iii) is satisfied, and let 

CM /4.. e(z)= 0] 

It is easily verified, as in Theorem 1.1. ( a(v) ==> a(i) ) of 

chapter II, that for each re F J. 

c( Q- A) c 

hence, sinceeR is a left ideal, we get 

z .4 (0~ - A, ) !g 0-& - 

Therefore, since o/¼ is a proper left ideal, it follows that b(iii) 

=> b(i). 

The equivalence of b(ii) and b(iii) is proved in the same way 

as that of a(iv) and a(v) of Theorem 1.4. of chapter II. 
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This completes the proof of part (b). 

Finally, part (c) follows from parts (a) and. (b). 

This completes the proof. 

The following example shows that, in contrast to the case of 

a finite number of operators, condition b(i) of Theorem l.)-. of 

chapter II is not equivalent to any one of the conditions of the 

above theorem, if fl is an infinite set. 

14. Example- Let ,l be an infinite-dimensional Hubert space, 

let 4 be a non-invertible positive operator on IVL  and suppose 

that t4 has dense range. For each n ( n=o,l,2,...  ) , let 

Since 0 	(,4) , there exists a state f oft(,uch that 
op 

Hence (c.f. the remark immediately preceding proposition 1.6. of 

chapter II ) 

ç(x 	;(x ) f 	=0 

(ao - - - 	€ ;q- 

On 

O 

On the other hand, suppose that the following were true: 

-t4 	•140  4. \( Alnx tl 4 C 	 - ). (i) 

Let Q be the projection onto the range of A . Then, for each X 6119! 

4,, % —+ 	as yi .- 

[ 53; S 1, lemma 2 ). However, since A has dense range, we have 

0 = 1 	. Therefore, (i) is impossible. 
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Let a and abe operators in a C-algebra. It is a simple 
consequence of the definition of the joint approximate point 

spectrum that 

U,12 ) 

if and only if 

The following proposition gives an analogous result for the 

joint approximate point spectrum of any family of operators. 

1.5. Proposition- Let {a : 1- be a family of elements of a 

C-algebra c4,  let (A ) 6 	and let 9 be a bijective mapping 

of r onto itself. Then, 

(A ) 	6 c 	re (1) 

if and only if 

) 6% .6(r) Ul" 	T(Tr 

Proof- Suppose that (i) does not hold; then 

2 
r&r 

hence, there exists a finite set of ind.eces t1  V 	. • 

such that 

s ,4ç Ar )r 

Since e is bijective, there exist elements V, Z, 	., ,, in P 

such that 

Z 
	

( 
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Hence 

e(r)  

( 	'rep 	af @(C) ter 

The converse is proved in a similar way. 

This completes the proof. 

The following proposition generalizes proposition 1.7.  of chapter 

II to the case of infinite families of operators. 

1.5. Proposition- Let 1O: c/' 3 be a family of elements of a 
C-algebra c.'4", and let (P be a character on C? Then 

(r)LC
Jr (a) 

of c Cer 

Proof- Suppose not; then, there exists a finite set of indices 

r in rsuchthat 
.1' 	• 	y 

n 

)1a,- go(4) ) c$ 
.Ii 

Since the restriction of 	to C (c ... a "is a character on V 	'ci 
V1 

Ct( ar 	a ); this contradicts proposition 1.7.  of chapter II. • 

This completes the proof. 

2. Existence and Compactness of T9 

2.1. Theorem-Let {O :er1 be a family of elements of a 

C-algebra C4 , and suppose that for each finite subfamily [a : refl] 

we have 	 - 

Then 

to- (a) (2) 
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In particular, the conclusion holds if the family { a : 

is mutually commuting. 

Proof- The following proof is based on [ 10; proposition 5 ] 

Partially order the set '' of all finite subsets of 	with 

respect to inclusion. By (1) and theorem 1.4. of chapter II, for 

each element fl of 	there exists a state of 	such that 

(X o- 	(i)  1:(at) 	 • v) (3) 

By the compactness of E(ce) , the net { 	, 	 has 

a limit point f in E (c.4') ; we claim that. 

(vS ' 'tC4 (14 ) 

For let tbe an arbitrary element of fl ; for each element 	of 

with 	D 	we have, by (3), 

f () 	
f().(a) 	(Vt) 

hence, for each arbitrary but fixed element 	1.we have 

(ia) = c() f(a) 

Sincet0  andX were arbitrary, this proves (4). 

Hence, by theorem 1.3., 

(f(a)) 	G o () 
Op C rel- 

This completes the proof. 

The following theorem is the main result needed in the next 

section where the spectral mapping theorem for the joint approximate 

point spectrum is proved. 

The following convention will be adopted: 

Let ' ( resp. A) be an indexing set, let (Q. ) 	(resp.([ ) A ) r. cr 
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be a fl-tuple (resp. IL -tuple) of elements of cA, and let Q 
(resp.(l)

VC 4  ) be a r'-tuple (resp. A. -tuple) of complex 

numbers. The expression 

( 	(A 	 )C_ jo-wc A 	o p(°tr '(6vvQA) 	(1) 

means that the left ideal of t4 generated by the set of elements 

(a 	- 	, (6 - 	t e fl)  v £ A 

is a proper left ideal of C,4. 
As in theorem 1.3., it is easily verified thst (i) is equivalent 

to the existence of a state f of c4 such that for each (resp. Y ) 
4" is left-multiplicative with respect to Ck (resp. 6, ) with 

I 

2.2. Theorem- Let(Q 
C ) 	be a F -tuple of elements of 

let (6 ) A be a mutually commuting ./L -tuple of elements of 64  V VC-1 

and suppose that 

= ar 6V 	(Vr/'1  VA) 

Then, given 

(A 	 V t:) 	G r°- (Q 

there exists a A -tuple 	ve A of complex numbers such that 

(A 	) 	
(of tcr 	A) 

Proof- The argument is essentially the same as that given in 

theorem 2.5. of chapter II. We shall therefore merely outline the 

proof. 

Let fl be the universal representation of C14 on a Hubert space 

For each CC r  , let 

= 	(Tic cc 	), 
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and put 

and. 

Q 1-  VQ 
"p. 

2.3. 

Then, . is a non-zero closed subspace 0fJ4 • Since each L. (t.'eJI) 

commutes with each a ( 	it follows that ,' is invariant 

under each174) . For each vJ1 let n(l)) be the restriction of 

nil) ) to j'. Since the operators 6 commute, theorem 2.1. implies 

the existence of a /1 -tuple of complex numbers such that 

(II
v  ) 
	TC-  

i 

The argument may now be completed as in theorem 2.5.  of chapter II 

This completes the proof. 

The rest of this section is devoted to a brief study of the 

compactness of the joint approximate point spectrum of infinite 

families of operators. While a similar argument as that presented 

in corollary 2.2.1. of chapter I shows that Tq r OZ; 	is 

compact whenever it is non-empty.( for example, the proof in 

[ 10; proposition 2 ] may be adpted  to yield the result) we shall, 

instead, use theorem 5.3. of chapter II to give a simpler proof. 

For the rest of this section, (lZr )r€p denotes a fixed P - 
tuple of elements of 09, and it will be assumed that the joint 

approximate point spectrum of (iZ 
' - r 

is non-empty. 

2.3. Theorem- The joint approximate point spectrum of (ar ) e 

is a compact subset of C 

Proof- Since 

C Jr (Q) 	n(at)) 
Of C -

ar 
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and since each set on the right-hand side is compact, it is 

sufficient to prove that 	(Q 	is a closed subset of C. 
Let 

( 	£ C\ p  c cefl 
a (a ) 

By definition 1.2., there exists a finite set of indices t ta,,. • 

in F such that 

0. 	AZ7 

that is, 	
rd 	W 

(1'.•,& 

By theorem 5.3. of chapter II, there exists open balls 

/ 
where, for each 	/, 	... 

ir-l. 3 
such that 

( n 6()) 	 Q
rn 

(1) 

Let U be the open set in 	defined by 

: f7U 
where 	 ner 

Cl 	(1C 
	if 

r 
 

Then, by (i) and the definition of U ,we have -

( 0 crer' ) n U = 

since CL is an open subset of (P containing (fir ) 	, it follo's 
that C \ ,Ta' is an open subset of C r' 
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This completes the proof. 

For an alternative proof, see [ 51; proposition 1.9. ]. 

§3. The Spectral Mapping Theorem- 
3.1. Introduction- Let 0. be an element of a Banach algebra 

and let P  and I be complex polynomials such that I has no zeros 
on the spectrum of a . Then, with 

c() 	P() 1 (a) 	(a) (a) 

the usual spectral mapping theorem states that. 

or (a)) 	Q)) [PM W.' A 

c.f., [ 6 ]. 

The purpose of this section is to prove a similar result for 

the joint approximate point spectrum of any commuting family of 
I 

elements of a C-algebra. As a result, we shall also prove a spectral 

mapping theorem for the joint spectrum of operators. 

Since the joint approximate point spectrui of operators may, 

in general, be empty, we shall assume that the operators under 

consideration mutually commute. We remark, however, that the 

cornmutativity assumption may be replaced by any other condition 

which entails the conclusion of theorem 2.2. 

Throughout the rest of this section, P will denote a fixed 
indexing set which may or may not be finite. 

The main theorem of this section is as follows: 

3.2. Theorem- Let 	) 	be a pair-wise commuting P_tuple 

of elements of a C-algebra >4 and let (/ ) 	and. 	) LC 

be P-tuples of complex polynomials. 
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(a)- We have 

) :(A )  
t rep 	Of 	re 

In particular, 

c ) (A 	jcr (a) I ((Ac))rep 	 OpCC 

If for each r 	, 	has no zeros on the approximate 

point spectrum of Q.. ,then 	(Q. ) is left-invertible; and. if (ti) 
V 	 t 

is any left inverse for 	(a. ) then 

	

p (cer (VV) 	) 
is non-empty and. equals 

-I 

)):
} Cre 	of V Ce' 

If for each 	, q, 	has no zeros on the spectrum of 

a , then 	(Q ) is invertible; and. if (4, (.c ) is the inverse 
t 	 T. V 

of 9 (Q ) , then, with 
V —I 

(1) = (sc) 	(refl; 	( 
and 

5 (a)  

we have 

,Tc (('cZ) 	 )= V vrep) 

[((A) 

 

(A (A) ).(A)
r 
	(Q) Cer ' 	 r Of 
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In particular, 

	

Ta- (4(a)) 	-~(AA)) 	(A) 	£z, (Q) 
	i rCr 	 t 

The proof will be based on the following two preliminary results: 

3.3. Lemma- Let 6. be an element of a C-algebra c , let f be 

be a state of C# which is left-multiplicative with respect to Q. 

with 4(a ) =A, and let be a complex polynomial. Then, T is 

left-multiplicative with respect to P ((X) and 

Proof- Let 

Then, for each 'Z C e4 , we have 

OL 	 Z 	0. ) 
k:0 

= 

since f is left-multiplicative with respect to a . Hence, 

	

f ( - 	Lc)) = c(t) (A) 	(y), 

and 

This completes the proof. 

I,' 3.4. Proposition- Let Q. be an element of a C-algebra C?r, let 

be a state of 4 which is left-multiplicative with respect to 0- 

with with -('(a ) A and let and be complex polynomials. 
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If I has no zeros on the approximate point spectrum of 

then (a)(a)is left-invertible; and. if 9, (a) 	is any left inverse 

for 	(0-) then, 	is left-multiplicative with respect to 	
'(Q) 

and 

f( ¶(a)) ) 	
())'p(f()) 

If 9,. has no zeros on the spectrum of 0. then , (a) is 

invertible; and. if t (a )  is the inverse of 	0.) then, with 

( A ) 	PA) 	 (A() 

and. 

(a) 	 VaP(a) 

we have that is left-multiplicative with respect to 6(a) and 

Remark- By theorem 2.2. of chapter I, we have A £ 	(ow) 

Hence," since 0 	o (a), the expression ¶(A)is meaningful. 

Proof- (a). It is clear that 	is left-invertible. 

Let now t be a left inverse for 	. By lemma 3.3., f is 

left-multiplicative with respect to C1.1 ,(&) . Hence, 

hence, we have, 

(i) 
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Next, we have 	 * 

by lemma 3.3., so that t .  

(2) 

Therefore, by (1), (2), and. theorem 2.2. of chapter I, f is left-

multiplicative with respect to I ; hence, ifZ is an arbitrary 
element of 	, we have ( with 1:: 

¶)) f( (a) 

- f(i)f(a) c) 

This coipletes the proof of part (a). 

(b)- This is clearly a special case of part (a). 

This completes the proof. 

We now turn to the proof of theorem 3.2. 

(a)- Let 

(/t )r 	
ro- (ct ) r  OF 

By theorem 1.3.,  there exists -1' £ E ( c54 ) such that 

_f(x a 4- 	(vt,vcr) (1) 

v 	 v 	t 

Hence, by lemma 3.3., 
(V,Vt 	

(2) 

Therefore, by (i), (2), and. theorem 1.3.b(ii), we have 

(c 	00) ) 
c r

)(O'V)) 	)€ 
).

r C-
rev, 

' 	cEr 
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Conversely, suppose that 

(A 
cer ' ce  

then, there exists -FG E( cSAr) such that-for each tE -1 	, 

is left-multiplicative with respect to OL and. 	(a ) with 

(Vcr) 	() 

and 

f ta )) t 	(vtGr) 

But (3) implies (as in the proof of lemma 3.3.) that 

TO~(O_) ) 	 vtr) 
Hence 

tt 	 (vter). 

This completes the proof of the first part of (a). 

To prove the second part, let 

Since the set 

is a mutually commuting set, there exists (theorem 2.2.) a rtie 

(A 	of complex numbers such that 
r 

( (A)
'ce f- ' 	r & r 	 (( 	e r rer ) 

Hence, by the first part of (a), 

re r
_t t -C Gr 

Conversely, let 

€10- (ci) 
ICC or 	Z; ter 



Then, 

( 	cr ) ((Ac) 

((a 	((Q)) 	
S) 

rer 	t C ce' 

hence, in particular, 

( 	(X) ) 	£ J 	( LQ ) 
C 	ccr 

This completes the proof of part (a). 

The proof is much the same as the proof of the firstpart 

of (a), the only difference being the use of proposition 3.4. 

instead of lemma 3.3. . We omit the details. 

The first part is clearly a special case ofpart(b). 

To prove the second part, let 

(V) 	•To- (4Sa) 
ret' 	 t 	cefl 

Since for each tG r 	is*ketwo-sided inverse for "t (CL ) 

	

C C 	 C 

the set 

1 -c 

is a commuting family of elements of c... Hence, by theorem 2.2., 
there exists a P -tuple (A ) 	of complex numbers such that 

((A ) 	(V) 	) Q 	((a) 	(At&))r re  ' 	 QP 	t€fl 

Hence, by the first part of (c), 

('tr r - r 
The converse may be proved as in the second part of (a). 

This completes the proof of the theorem. 

The above theorem throws some light on the structure of the 
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joint approximate point spectrum of operators. More specifically,. 

part (b) shows that, whereas in order that the joint approximate 

point spectrum of,say two operators be non-empty it is sufficient 

that the operators commute, the commutativity condition is far 

from necessary. For instance, let 0.. be a left-invertible operator 

with left inverse a such that a and 	do not commute (e.g., let 

a be a non unitary isometry); then, taking (fLi and 

in theorem 3.2.(b), we have that the joint approximate point 

spectrum ofaanda is non-empty, and in fact 

-I  7 	(Q, a') [(A, A ): 	 j af 

In fact, we have the following corollary: 

3.5. Corollary- Let (a 	be a commuting r'-tuple of 
isometries in a C-algebrac..4. There exists a 1-1 correspondence 

between the set of characters on C ( 	)and the set of 

points in 7& ( "op r cr 

Proof- For each V 	,define the complex polynomials 

and 
1.

(IF)  by 

) 

Since each Q is left-invertible, q has no zeros on the approxi- 
V 

mate point spectrum of a. ; hence, by theorem 3.2.(b), 
V 

,J7 ( (a) 	(Q0  ) 	) = a? 	 VCer 

) 	) (A;')
er  ) .. 

(Ar) c 
	. rer 	ap V  repJ W 

Let now (A ) 	be an arbitrary point of Tc ( 	r 
By (i) and the remark immediately preceding theorem 2.2., there 

exists a state - of,4'such that for each , f is left-multiplica+ve 
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* 
with respect to OL and. O with 

t 

Hence, if X is an arbitrary element of c , we have 

f(ac 	ç( Ot ) 

so that f  is also right-multiplicative with respect to each c 

Therefore, the restriction of c to C 	) is a 

character on C(ci)t€r  ') with 

(&) = f(c) 

The converse is proposition 1.5. . 

This completes the proof. 

Let (a,) rbe a mutually commuting r_tupie of elements of a 
ce 

C*_algebra c;*' 

The joint spectrum of (cZ ) 	, denoted. by7ir (a )cer IS  
t rer 

defined to be the set 

J•°• ( a ) 	U cp r rep 

where, ,Jcr (a 	tep is the joint right spectrum of (Or 
rer' 

defined by 
P 

re = 	) 
E 	 (a-A) 

When ris a finite set, the above definition coincides with 

definition 4.1.(d) of chapter II. Note also that the joint spectrum 

of (a 	is non-empty (theorem 2.1.), and compact (theorem 2.3.). 
V rc-r 

Clearly, the analogue of theorem 3.2. holds for the joint 

right spectrum of 	the statement of the relevant theorem r, cer 
may be obtained from the statement of theorem 3.2. by replacing 
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"(joint) approimate point spectrum'  with "(joint) right spectrum"  

throughout. 

For each t , let ,P and 	, and 4 be defined as in theorem 

3.2.(c), and let 

G  Jrep o- ( % ) ceTl 

Then, either 

£ ,Jç 'rep 

or 

G 

Hence, by theorem 3.2.(c) and its analogue for the joint right 

srectrum, we have 

(A (A r ) 	,J7 
C 	 a.p 

or 

( 	(A)) r  € ' "t'%) )rcp 

respectively. Thus, in either case, we have 

° 	rrr 
by the above definition. 

A similar reasoning shows that if 

£ ,70-  (A (a)) r t rep 
then, there edsts 

6 

such that 

(t 	 (4 (A)) 
rer' 	C rep 

We have thus proved the following spectral mapping theorem for 
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for the joint spectrum: 

3.6. Theorem- Let(av 
)cc 

 pbe a pair-wise commuting fltup1e of 

elements of a C-algebra c.A, let 	ccr 
,and. be P.. tuples 

of complex polynomials such that for each t , LJ  has no zeros on 

the spectrum of Ob, and let 
t 

( ) c 

jar 	C() 	I. C V rep 	V  rep 	t rep 	V 

We close this chapter with the following remarks concerning 

theorem 3.6. . In the case of a finite number of commuting 

elements of a complex unital Banach algebra, the polynomial 

spectral mapping theorem (i.e., theorem 3.6. with no present) 

was proved. in [ 19; proposition 3 ]. The same result was ectend.ed 

to the case of any commuting family of elements of a complex 

unital Banach algebra in [29 ]. See also [ i; § 1.1. ], where 

theorem 3.6. is proved in the case of a finite family of 
mutually commuting elements of a complex unital Banach algebra. 

and. 

Then 

ill 

C' 
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Characters and. Finite Operators 

1. Finite operators. 

1.1. Introduction- This chapter consists mainly of the applicatL. 

ions of the results developed in the previous chapters to the theory 

of characters and finite operators. The present section is devoted 

mainly to the definition and certain general properties of finite 

operators; examples of specific classes of finite operators will 

be given in § 4. 

1.2. Definition- Let 04 be a G'-algebra, let 	be a CL.subalgebra  

of C,4 , and. let 16, j 	E7c4) . The state -f is said to have the 
trace-like property relative to 	provided. that 

= 	 Vie) (1) 

[43] 

An element a.ofc. is said to be finite provided that for each 

xG 04 , there exists a state 	of C4  such that 

(a.) 	 (11) 
[ 55] •  

Let a, . . . cZ., be a finite number of elements of a C-algebra 

C4 . Recall that the joint numerical range of a, , . . . , an  
denoted by ,TV (a., )  . . a.)is the set of n-tuples of com1.ex 

numbers (A 	..., ) ) such that 

for some ce E(cA) [7; Definition 11, §2 ]. In particular, the 

numerical range of a single operator Ct is the set 

Vt'a. = 	A= ,('ez. 	TOY some
ow  
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When c4 	 , and a = 14 	 , the numerical 

range of ,4 as defined above is precisely the 	closure of the 
ordinary numerical range of /9 defined by 

Thus, to say thata is finite is equivalent to saying that, for 

each XG 	, 	G 	'.. 	) . Much more is true, however: 

1,1 1.3. Theorem- Let Q. be a finite element of a C
*
-algebra ct . Then 

there exists -FG &(c) such that 

c(a )  fa Vie CA 
Proof- 155;Theorem 4]. 

Using theorem 1.3., we may now relate definitions 1.2.(i), and 

1.2.(ii) as follows: 

4 1.4. Proposition- Let 4 be an element ef a C-algebra ctr • Then 

is finite if and only if there exists a state çofc14 such that 

has the trace-like property with respect to C(o) 

f(76)= 16z 	(Vc' 	VeC) (1). 

Proof- The sufficiency is obvious. 

To prove the necessity, let ( by theorem 1.3. )f be a state of 

which satisfies 

() 	(2). 

Since f is self-adjoint, we have 

(Vc4) 	(3). 

Using (2) and (3) in succession, it follow5 that for each non-

negative integer V1 we have 

-f'z) z f(za) 	(Vc,) 	() 
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and 

fa)= Ca) 	() (5) 

Let now 	. . . 	 be an arbitrary product of non-negative 

integral powers of aanad; here, each 
,. 
( / ~ d ~ '4 	) is 

either O.or Q, and each 	( / 	ik 	) is a non-negative 
integer. Then, for each Z c CJI ,we have 

= r- 

f(z 	'. 	
• 7*) 

where equality in, e.g., the first line follows form (4) if 

and. from (5) if 	Hence, by linearity and continuity, f 
satisfies (i) 

This completes the proof. 

The following proposition gives a necessary and sufficient 

condition for an operator to be finite. 

1.5. Proposition- Let 61 be an element of a C-algebra c.J , and le 

a.. 	a. . 	. be the decomposition of a into its self-adjoint parts. 

A necessary and sufficient condition that 61 be finite is that 

for each X P a , 

(oo) C JV((az_za,) (a2 x -a)) 	(1) 

Proof- Let (i) be satisfied for each Z 	 . then ,for each X 66 

there exists 	 such that 

Hence 

114. 



Ch. Iv, j; 1. 

so that cl.is  finite. 

Conversely, let a be finite. By theorem 1.3., there exists ceE(c4) 
such that 

T((-xQ)) 	(Vt&c) (2). 

Let 'be an arbitrary self-adjoint element of cA -; since X. and 

are self -adjoint, the operator c(a - xc) is seif-adjoint; hence, 

the right- hand side of (2) is a real number. Similarly, the left-

hand side of (2) is purely immaginary. Hence, 

f 	 c(() 	 (3). 

If now X is an arbitrary element of A , with 	Z 	-x the 
decomposition of X into its 'self-adjoint parts, we have, by (3), 

I(, z, - , a,) = f 	, - 	= 0 
and 

so that 

i.e., (1) holds. This completes the proof. 

	

Let 	€c.4-be a singular, non-finite operator, and let Z:#tX be 

the decomposition of X into its self- adjoint parts. Then, there 

	

exists 	'4) such that 	. Hence, Px,f() 0. 

However, since X is not finite,there exists no state of eAwhich 

* has the trace- like property relative to C(,;). 
This shows that 

the answer to the following question is in the negative: 

Question: Let 1 and A be self- adjoint elements of cP$- , and let 

(0,0) 
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Does there exist a state çoicA such that for each z 

In connection with the above question, we remark that, if k is a 
self-adjoint element of a C'-algebra C..4 ,and if 0 6 V(k)then there 

exists a state f of 04 such that f(k) =0 and 

PA-4) = ç(k) 
	

(Vz). 

For, the numerical range of a self-adjoint operator is the convex 

hull of its spectrum [ 7; corollaxy 11, 5 J; the condition 06 V(k) 

then implies that there exists ,Aso(A) (J...n) such that 

- 	 ( 	iR; 	')• Oe. 

Since h is self-adjoint, corresponding to each 	there exists 

E0 	such that 

Extend each 	to a state of 	; by the Cauchy-Shwartz 

inequality, we have 

If now we define a state ('of A by 

Ce 
d d 

we have 

c(k) 0,• 

and 

vi dd d 

This proves our assertion. 

116 



Ch. IV 	1. 	 1.6.- 1.7. 

In later sections, we shall also be interested in families of 

finite operators. The following two results contain the relevant 

information in this direction. 

1.6;  Proposition- Let 	: rcflj be  family of elements 

of a C-algebra 	. A necessary and sufficient condition that there 

exist .f 	(') with trace-like property relative to C(c 

is that there exist f'E(C4)which satisfies 

(VcC In j  Vr'). 

1.7. Proposition- Let aZ'/ 3 be a family of elements 

of a C*  algebra cJ4. Suppose that for each finite subfamily f ( rep 3 
there exists 4 F () such that 

f( a) f(  

Then, there exists 	e E (c.) such that 

If 

Cc'a- VX 
(zb)= '(t) 	 (Y6E 

Proposition 1.6. may be proved in the same way as proposition 

1.4., while proposition 1.7.  may be proved in essentially the same 

way as theorem 2.1. of chapter III. We omit the details. 

Further consideration of finite operators suggests the conside-

ration of the followinj three questions: Let a  be an element of 

a 6-algebra c,4 ; 
(i)- Does there exist abounded linear functional f on &4 such that 

(Vtc4) (1) ? 

(ii)-. Does there exist a state -( of 04which  satisfies (i) above? 

117 



Ch. IV,jl. 

(iii)- Does there exist a pure state -of cA which satisfies (i) 

It is cler that (iii) 	(ii) =>(i). The equivalence of (i) and 

(ii) was first proved by J.W. Bunce in [ 11; proposition 5 is On the 

other hand, we shall give an example to show that (ii) does not 

in general, imply (iii), and then show that under certain conditions 

a restricted form of (iii) is equivalent to (ii). 

Let((, fl. 1/) be a finite-dimensional C-.algebra with norm 

Since G is the algebraic linear span of its unitaries, there 

exist unitary elements (4., 
, . - • 

a, 	in 63 such that the 

are linearly independent, and such that every elementof 0 can 

be written as a unique complex linear combination of the 	S 

(pci 
We call the set 1q, - - 	 the associatedsequence of Z 

Define a new norm ii. 	on 	by 

	

j.j 	(vicc8) 

where [c?, .. ' ] is the associated sequence of Z. . Since 
finite-dimensional, the new norm //. //, is equivalent to the original 

norm II- II . Hence, there exists a positive number ('1 such that 

	

//zJ/, ~ 14 1/7— // 	(Vx.c8). 

In particular, if U is a unitary element of 	then the associated 

sequence satisfies 

['1/lu/I :H 
drzl 

since Uis unitary. 

We now have the following result: 
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1.8. Theorem- Let 	be a finite-dimensional CLsubalgebra of 

a C*  algebra c.4. There exists a state ,CofcA- such that 

= f(6z) 
	

(V.41  V6eg). 

Proof- We shall give a proof using the fixed point theorem of 

Kakutani [24 theorem V.10.8 ]. 

Let Z. be the unitary group of C9 , and let Id, 	- , Un IS' 
be a finite set of linearly independent elements ofZC such that 

is the algebraic linear span of 5' . By the preceding remarks, 

there exists a positive number M such that if U. is any element of 
? with associated sequence 	. . ., q#] then 

/c40j l 	1N.-7 	 r)) 	(i) 

Let U be an arbitrary but fixed element of 	• For each 

define a mapping 7 f 	on 4 by 

(7ç) (x) = CU.*zu 	(Vtec$) (2)•  

Clearly, 7 f 	CA' ; further, it is easily verified that the 

map 

T 	C4 

defined by 

c -+ 7;c 

is linear. Let 

we claim that 

(1) 3 is a group of linear transformations on cA; 
(E (c4)) c E (4) ; and 

is equicontinuous on E (c) 
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To prove (i), let t( and wbe elements of C4 , let 
and let . Then, by (2), 

(77fz 	ZT(w0z) 

= ç(()* (Wa)) 

where 

To prove (ii), let -jG E(c.) , 	, and let 	be an 

arbitrary positive element of 	then 

i(* 	f((!(zL)) >,o, 
and 

so that 

Finally, we prove (iii). Let 

be an arbitrar.j neighbourhood of zero in C'4 where 

O 	c 	
(ci1j.ip1)) 

Let 

and define a wneighbourhood of zero Winby 

We shall show that if 	 E (c4)with  

then 
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Let Ubean arbitrary element ofC with associated sequence 

{ 	, 	oç 	.Then, for each ) 	I 	k . 	, we have 

/T 	 4) (uz) /  

01=, 
p., 

/I ;-;c(  
- d4 I=l 

/'./ 	1(14) ( 	k k/  

C12n 

hence, 	(- ) 	V . This proves (in). 

It now follows from the Kakutani fixed point theorem that the 

group 	has a fixed point in b (4) 	, i.e., there exists 

f c E ( c-4) such that foi Vt 

14 f(z)= 4) 
	

Vx LC  

f(i 1 u)= f() 
	

(fr24 y4). 

In particular, replacing 'by LX. , we get 

4cL) = 7C(v j ) 
	

(Vte2.L1  Vec'J). 

Since 	is the algebraic linear span of its unitaries, this shows 

that 

( V6 6 0, "i.c4). 

This completes the proof. 

1.3.1. Corollary- Let C4 be an approximately finite-dimensional 

C-algebra. There exists f E(c4) such that 
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Proof- Let 

c4:04 

where each C.4,, is a finite-dimensional C-subalgebra of.4 with 

ç C, 4 	 (ni, 	•. ) 	(2) 

Partially order the set T of all finite subsets of the set of 

positive integers with respect to inclusion; for each F 1 	let 

F 	 vF1. 

By theorem 1.8., for each F , there exists a state fF 
of c/I- 

such that 

4: (aJ 	4: (ba) .(Ya,Vbe) (3) 
F 	 F 

Let 	be a w4-limit point of the net 	F 	j. It is then 

easily verified , using (2), (3), and the definition of f , that 

(vv t4), 
hence, by continuity, (1) holds. 

This completes the proof. 

	

Let now c/I = fri ((1') ( n > 	Then cA is singly generated 

by an invertible operator ct[ 53 ; page 814- ]. By theorem 1.8., 

there exists PG E ( 	) 	such that 

	

-f ( -t I  ) :: f( I x ) 	(VVcc) (1). 

On the other hand, if there were a pure state f  satisfying (i) 

above then  would have to be a character on 	a/I/((). 

[ 43 j  proposition 5 ] . Since Q. is invertible, the kernel o c 
would be a non-trivial closed two-sided ideal of fri ( C) . But 

this is impossible, since I'1, (C) is simple. 

The above example shows that the implication (ii)  
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mentioned immediately before theorem 1.8. does not hold in general. 

For the next theorem, we shall need the following result, which 

is due to Anderson [2]. 

Let ,/- be a separable Hilbert space, and let 6 be a separable 

subalgebra of the Calkin algebra C 0OIL('J)  

Then, any state of 	may be extended to a pure state of 'a.L* (.1p). 

In the next theorem, we shall assume that 0,4 	 for 

some separable Hubert space 	• If a is an element of cA' , then 

. 	fr/))is singly generated, hence it is a separable d'— 

subalgebra of 	tk ,(1G'). 

1.9. Theorem- Let 	, and suppose that there exists lc? fr(C4) 

such that 

f(bc)=f(cI 	 (V4VcCu) 
and 

7C('f(1))= fo] 

Then, there exists (° 1p cP('C.4)8Ueh that 

r(C) 	 (V6VcC*()) (2). 
Proof- Let 	- 	; define f on C('a + X(,1)) by 

By (1), f is well-defined; further, since fGE(Ca) , it is 

easily verified that f 
E(c*(-©z7j))). 

Hence, by Anderson's 

theorem, there exists Pg 69(&—A6X))such that 

.2'(.1)) = 	(6 
•D(Jç)) 	 (t"6 C ' 'iZ)). 

Define a linear functional f on 	by 

10 
	

(vc4). 

By [ 22; 2.11.8. (ii) ], f is a pure state of cA , and it is then 

easily verified that 10  satisfies (2). 

This completes the proof. 
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We present an example to illustrate theorem 1.9. 

1.9.1. Example- Let C4 '(jçi) where ,.J is an infinite-

dimensionaiHilbert space, and letQ be the unilateral forward 

shift. It may be proved that C'a. /7(,jçz) is isometric and 
A 

-isomorphic to the C-algebra of complex valued continuous 

functions on the unit circle [1k; theorem 2 3 	and that  

is the smallest closed two-sided ideal of C(a). 
In order to find a state f ofcA which satisfies the hypotheses 

of theorem 1.9., we shall use the Schauder-Tychonoff fixed point 
theorem [24; theorem V.10.5 3 

Let 

Then, S is a w-compact convex subset of E(c4) . For each 

define a mapping 7 	on C4 by 

(x)  

It is easily verified that T 7r  6 	further, if X is OL 

any compact operator then a X OL is again compact (since k.M) 
is a two-sided ideal of .°(J') ), so that 

Tf  

It follows that the map T defined on 5 by 

() 

IF 
maps 5 into itself. Finally, we show that 	is w-continuous. Let 0. 

{ f 	be a net of elements in S and soppose that 

Then, for each 	c.4 we have 

-P ( exoo 
Of 

—p 
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so that 

- 

Thus, T is a w-continuous mapping of the wcompact convex setCL S 

into itself; b the Schaud.er-Tychonoff fixed point theorem, there 

exists 4 	' such that 	 , i.e., 

(Vtc. 

In particular, replacing % by O..% we get 

(Q) 	-ç() 	 (Vic), 

since cCa 	. Hence, by proposition l.)+., we have 

cb) 	(VbecQ,VeJ 

and, also -ç 	jc) 	J03 since 4C- 

Thus, Thus, the hypotheses of theorem 1.9. are satisfied. 

We close this section with the following theorem concerning 

commutative C -algebras. 

1.10. Theorem- Let G be an abelian C-subalgebra of a C-algebra 
. There exists a state -ç of c.4 such that 

Proof- Let 	be the unitary group of (23 . For each a 
and each -f E(c4) define a map T 	on ag by 	- - 

7 -f ( -z ) = ;( Le *x u.)- (Vc). 

For each 	C 	define T on 	 by 
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and let 

u&J 

Since 	is commutative, it is easily verified that 	is a 

commuting family of affine mappings,mapping thcompact, convex 

set E( C4) into itself; further, a similar reasoning as that 

of example 1.9.1. shows that each T is we-continuous; hence, by 

the Larkov-Kakutani fixed point theorem [24; theoremV 10.6. ] 
there exists afixed point, i.e., there exists fe E(CA) 

such that 

-r(u1L) 

hence, 

f6z. 	f(t) 

This completes the proof. 

Vt22). 

(VA V6e). 

2. Characters. 

2.1. Introduction- In this section we study the theory of 

0 
characters on C-algebras generated by families of operators. Using 

the methods developed in chapters I and II, we shall show that the 

concept of the joint approximate point spectrum of operators is 

directly related to the theory of characters,even in the case of 
* 

a C-algebra generated by a single operator a the existence of 

a character on Cct) is equivalent to the non-emptiness of the 

joint approximate point spectrum of a. and 0.'. 

Let c.4be a C-algebra, and let Qbe a C-subalgebra of, 

( we assume, as usual, that e contains the identity of C.4 ). 

A character on Q is a self-adjoint multiplicative linear 

functional Cf on 	such that °(i)/.( Actually, the condition 

that Cf be self- adjoint is redundant; c.f. [ 6; 16, proposition 31 )- 
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The set of all characters on 	will be denoted by 

Let Cf G 0,8 and. let 2C 
# 
Z be an arbitrary positive element 

of 	Since (f is self-adjoint and multiplicative, we have 

J'f'(z)I =1 

so that Cf is, in fact, positive. Hence, since (f(g) 	, it follows 

that T e E(8). 

Next, suppose that 

(p 
(i—) -p 	 (oLoCL) 

where f. 	Then, for each 	we have 

so that 

Hence 

= 

(())*(w))) 

o 

-x — (t))) 

and 

f~ t -Z ) = f( (i)) 

It follows that 	
. 	

. Thus, every element of 	is 

a pure state of 

The following result relates the theory of characters to that of 

finite operators. 

2.2. Proposition- Let Q. be an element of a C-algebra c4. 
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it 
(1)- If there exists a character on C (a)then . is a finite 

element of,4 

(ii)- If there exists a pure state f of e4 such that 

f(a) = tO(.4:Q) 
	

(V c) 
then 

(01 	
CI a) 

Proof- (i). Let since c5(C'a)), there exists 

a pure state of C..4 such that 

C) 
If now is an arbitrary element of C.4,we have, by the Cauchy- 

Schwartz ineuality, 

c()((a)1 	 (OL) 

=0 

since f 
'C'(a 	

& 

Similarly, 

_r (Q) = f(a)ç) 

This proves (i). 

(ii)- Let ,0 have the stated property in (ii). By proposition 

we have 

Vz LC 	V66(ta)). 

The result now follows from 143 proposition 5 ]. 
This completes the proof. 

The following lemma will be used in our future work without 

specific mention. The proof is simple and is omitted. 
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2.3. Lemma- Let { a1  : cGfl 	be a family of elements of a C-algehro. 

C4 . Suppose that there exists 	(..4 ) (or E(C*a) ) such 

that 

(f(ycy 	f'-x.)'(a) 	(Vcr,  
tel 

Then 

G 6 
 C(a) 	C(a) 

1e  now turn to the question of necessary and sufficient conditions  

for the existence of characters. 

2.4. Theorem- Let [a 	rr') be a family of elements of a 
Ctalebra A and let (Ar,) 

Cer 
and (f) 	be P-tuples of complex 

numbers. 

(a)- Suppose that 

(a , 	' 	(1). ((A 
re 	 rep 

( ep)'  P 	 / 

Then 

= 	 (VreP) 

and there exists 'f 6 	c*L•(Q•c) 	such that rer   

(vtGr) 
(b)- A necessary and sufficient condition that there be a 

character on C (at )r is that 

J0- ((a, ) 	(Q;) 	) VC-P 	re 
Proof- (a). Let a(1) be satisfied; then, there exists a state 

of 04 such that 

CL 
I 

	 (VEcf, Vref') ,  
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and. 

-1( L) 	 (Vic. ) VceT). 
t 

t 
In particular, for each C 	and. each 6 e C (cZC  ) e we have c 

= 	-1( Q) = 
and. 

(ab)= f(b') = f(b) (a)= A (6) 
t 

Hence, for each 	, f is also right-multiplicative with 

respect to a with -,Cc 
C )j. It follows that the restriction 

of f to C (Q) 	is a character. 

This proves (a). 

(b). Suppose that T is a character on C( 	ef' Extend (f? 

to a pure state of c5 . It follows, as in the proof of proposition 

2.2.(i) that 

-1' CX (a - t°(Q))) 	0 	(VicM, VeP), 

and. 

Vrer). 
t 

Hence, by the remark immediately preceding theorem 2.2.. of chapter 

III, we have 

TO ap 	.' 	, r 	
zer ) 

The converse follows from part (a). 

This completes the proof. 

2.4.1. Remark- Let 	be a C-subalgebra of a C-algebra o4, and 

suppose that there exists a character T  on 	. Then, for each 
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indexed family J 	: V Lc A] of elements of G we have 

(( 	
) 

and, in particular, 

(') 	40. 
a,D 	' Vt/I 	

It 

This is because the restriction of? to 	 is a character 

and the assertion then follows from theorem 2.2+. (b). 

In particular, with the notations and hypotheses of theorem 

2.4,(a) we have that 

(1) 

The question now ariSes as to whether every point belonging to 

the left- hand side of (i) gives riSe to a character on 

The answer is no in general as the following example shows. 

Let 6 be a non-unitary isometric operator on an infinite-

dimensional Hubert space 70 , and let a 6 . Since 6 does not 

have dense range (otherwise, it would be invertible since it is 

bounded below), there exists a unit vector 4f in 79t such that 

let ji= W be the vector state defined by f ; then 

hence 

(0, o 	 (a, ez. 
t
z) 

(proposition 1.6. of chapter II ). However, there is no character 

'Pon C(a) with °(a)o; otherwise, we would have 

1= gow 	()= 

which is absurd. 

On the other hand, we have the following result: 
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2.5. Theorem- Let { fl : CGf' j be a family of elements of 

a C-algebra c4, and. let(A ) 	and (/) 
 rcP 

be P-tuples of complex 

numbers. Suppose that 

((A) Cer, ) 	 6 

* 
(a) t 	 •t t  

If 

A 
( VC: cr) 	(2) 

then there exists If 	such that 
C °ter 

(p() 	) 	 (Vc€.r.) t 	t 

Proof-.By (1), there exists a state -ç of c.4- such that 

A 	
VreP) (3) 

and 

a ) 	ç -c(.) 	(Vt £t V eV ) (1f) 

Then, for each 	we have 

2 
I1r ) 	 /A / 	(5). C. V 

hence, if 'is an arbitrary element of CA and C is an arbitrary 

element of f' ,we have 

"a' a) 

L -r (ia: a) 	by (2) and (3)) 

L t) -f(Q a) 	(by (if)) V r 

A £(Z) 

by (5), so that 4' is also right-multiplicative with respect to 
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each 0. . We may now take 'f =  -ç t 	 c -(O.)t p 

This completes the proof. 

We shall prove two more general theorems concerning the existence 

of characters. 

2.6. Theorem- Let [a : rer'3 be a family of elements of a 

C-algebra (>4, and let 

	

(A 	 cp rrer 

Suppose that there exists a r-tupie °' cc 
r 

of positive numbers 

such that 

((0 ) 	(
or)t er ) 	

.J71(h) 

	

rer 	 C rep 	ter) 	
(1) 

where, for each r , 0 o , and 
C 

o( 

= ((a- A
C 

)*(0. 	
)) 

c  
t 	C C. 

and 

01 

= ((a_A)(aA) ) 
C  

Then, there exists a character (f on Ca cep  such that 

= 	 (Vtcr). 

Proof- By (1), there exists f  E ( c$4 ) such that 

-c(kt  )f(h C  )0 
	

(Vtr) (2)  

Let r be an arbitrary but fixed element of P . In the following 

argument, we shall assume that the corresponding positive number 

oe is less than or equal to 1 ; the case where o>  I is settled t 

similarly. 

By the functional calculus, there exist non-negative integers 
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yn and fl such that 

((a_Aj (%- A )) ~ ic 
and 

* 

hence, by (2), 

and 	

((* 

c( ((-) (%-)) ) Ic 

It follows (c.f. the remark immediately preceding proposition 1.6. 

of chapter II ) that 

and 

f 
Therefore, by remark l..l.(a) of chapter II, 4' is left-multiplicat ive 

It 

with respect to Q anda with4(OjA . Since t was arbitrary, this 
T, 	- 	 r 

completes the proof. 

2.6.1. Corollary- Let 0. be an element of a C-algebra c.4 and 

suppose that the following condition holds: 

VA £ Cr (&), 3 0, M 	iR 	sL46 tha+ 

(M-A) (a)) 	M (ck -) 	(i) 

Then, every state of C4 which is left-multiplicative with respect 

to a.. is also right-multiplicative with respect to a. 

Proof- Let f 	be left-multiplicative with respect to a. 
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withf(&) = ,A ; then Acr(a.) (chapter I, theorem 2.2.a(iv) ); 

hence, there exists positive numbers o? and  such that (i) above 

holds. 

Let now C.4 be the enveloping V.N. algebra of C141  and extend 

to a state f of 	. By lemma 4.2.b(ii) of chapter I, there exists 

an element 6 of C.4 such that 

(2) 

Now 

sinceç is left-multiplicative with respect to CL andf(&)A. Hence 

by the functional calculus, we have 

c( (()(a-))) =0 	 (3) 

Therefore, by (2), (3), and the Cauchy-Schwartz inequality, we 

have 

It now follows, as in the proof of theorem 2.6., that f is left-
multiplicative with respect to 0. and  with ç(a) =A . Since 

,this completes the proof. 
C(ct; 

2.7. Theorem- Let 	rer 3 be a family of elements of a 

C-algebra cA . Suppose that there exists a state f oft4 such that 

-ç 	€ 

	

cer 	
• ter  
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Proof- For each 7_ec'4' and ëacht Le f' we have 

/ 	) - f() c(Q)/ = 
2 

f(r) H (a))(  

since 

it follows that 

(z 	 f '? ) fcz) 'a )  0 

so that T is left-multiplicative with respect to each a 
Similarly, f is right-multiplicative with respect to each 

r. 
This completes the proof. 

3. Fully Charactered Operators. 
3.1. Introduction- Let O.be a normal operator in a C-algebra 

It is well-known that there ecists a 1-1 correspondence between 

the set of characters on C(a.) and the spectrum of a. Now, 
for a normal operator, we have O(O-) = 	(a..) ; further, 

any pure state that is left-multiplicative with respect to €2. is 

also right-multiplicative with respect to a . This, together with 
proposition 1.2.3. of chapter I, motivates the following definition 

3.2. Definition- Let a. be an element of a Cr-algebra 

We say that a is fully charactered provided that every pure 
state of 	which is left-multiplicative with respect to 0 is 

also right-multiplicative with respect to a. 

.3.3. Proposition- Let abe a fully charactered element of 
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and let fe £ (c4) . If 7C is left-multiplicative with respect 

to a then f is also right-multiplicative with respect to 0 

Proof- By '.Remark 5.3.1. of Ch. It f may be expressed as a 

w-limit of convex combinations of pure statesf 4c4 each of which 
IV 

is left-multiplicative with respect to Q. with 

( 	). By definition 3.2., each f 
is also riht- multip- 

licative with respect to Q. ; hence f is also right-multiplicative 

with respect to 0,  

This completes the proof. 

3.3.1. Remarks- (a). Suppose that 0.. is a fully charactered 
VL 

element of a C-algebra C4 , and let 	be a C'-algebra containig 

If f is a state of 	which is left-multiplicative with 

respect to Q , then f is also right-multiplicative with respect 

to .. For, by proposition 3.3., 

cI* () 
The Cauchy-Schwartz inequality now proves the required result. 

Thus, the property that an operator is fully charactered is 

N 
independent of the C-algebra containing the operator. 

(b)- If Ct.is fully charactered then a*need  not be fully charactered. 

For example, if 0. is a non-unitary isometry then, by corollary 

2.6.1., C. is fully charactered. However,CL is not fully charactered 

(remark 2.1.1, ). 

3.4. Proposition- Let C.. be a fully charactered element of a 

C-algebra 

There exists a 1-1 correspondence betweenQC*Ca)and QP 

For each A € 	( j ,we have 
QP 

( 	) E 	(aOL* ) 
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In particular, 

€ 	(a) => A ec- 
0? 

(iii)- Suppose that c.4 acts in its universal representation on a 
Hubert space 19t , and let Qa (a a) be the polar decomposition 

of Q • Then 

,Tc (Q ) aof  
)tØ 

and there is a 1-1 correspondence between ,.7cr,,, (c%, tt) and 
C'au) 

Proof- (i). Let A'€cr (&) ; by theorem 2.2. of chapter I, 
OLP 

there exists a pure state f of C4 such that is left-multiplicative 
with respect toa with 	; by definition 3.2., 

is a charaàter on C'(c) 
* Conversely, if tf is a character on C (04 then, by proposition 

1.2.3. of chapter I, we have If 	G o [a.) 
OP 

This proves (5.). 

Let Ac(cu ;  by part (i), there exists 9 	QCa. 
such that f(&) =A . Hence 

(A ) 

by the, proof of theorem 2.L.. In particular, we have A Eo 
(Q*) 

This proves 

Suppose first that there exists A& 	() with Ao. 
By part (i), there exists 	 such that 1(a)=A 

Extend (f to a state f of cT rw  (note that a c c..4 
rw 

). Then, 

by the Cauchy-Schwartz inequality, we have 

c)c(cj 	fl  -ç() '  
so that 

(044 (a) 	(U?)f(l) 	 (1) 
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and 

) 	 ft Lk ' Lk ) 	(&) 	
(2) 

and 

ç 	 = fLa 	f((a') - 	 () 

Hence, since ) 	 0 , we have 

-c(uu) = 	I 

It follows (as in the proof of theorem 2.7.)  that 

4' 1* C (ut) 
Since 

C4 
E  

it follows that 

cL CC ,L1) 

In particular, 

	

u ) 	ro (a) u 

by proposition 1.7.  of chapter II. 

Next, suppose that cJ-(&)_0 	. By part (ii), we have CT 

(0, o ) e 	(2, a.*) 

Since C4 is in its universal representation, it follows that 

(0)  0) & ,,Tc (ae) 

so, there exists a vector  c 19t 	such that i1ll_- and 

cjo..tfO 	 (4.) 

I 
Now It It is the support projection of (a # z)  .Z ,so [53 ; 

00 

lemma 2 ] it is the strong limit of the sequence / (cZZ) 
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by (4), we have 	
/ 

(a1)/ 	o 
	

() = 0' 1, 1A, . . ) 

hence U.'Uf::O . Similarly, 1LU.f_ 0 . Therefore, the vector 

state 	defined by/ is a character on C1(a, U) with 

(a.) 

In particular, 

(0,0) & 30- (a,u
dip 

 

This proves the first part of (iii). 

To prove the second part, let 

	

Then, there edsts 	& 	such that f is left-multiplicative 

with respect to a. and (/,with 

and 

Since a. is fully charactered, .[ is also right-multiplicative 

with respect to a(remark 3.3.1.(a) ). Therefore, the equalities 
(1), (2), and (3) above hold. The proof may now be completed as in 

the proof of the first part by distinguishing between the cases 

Ao and AtO. 

Finally, if there exists a character on C (c,k') then, by 

proposition 1.7. of chapter II, we have 

	

If (0- 	(f( ) ) 	Jo- (tZ, u')

Of 

 

This proves (iii) and completes the proof of the theorem. 

Our next result concerns reduced V.N.algebras of given V.N. 

algebras which are singly generated by a Fully charactered operator. 
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3.5. Theorem- Let 04be a V.N.algebra acting on a Hilbert space 

,70 and suppose that 4 is singly generated by a fully charactered 
operator ,4 . If E is a central projection in &# then, with 

- 	E(,0) and  5:: 

we have 

the operator 8 is a fully charactered element in the reduced 

V.N. algebra Ec4 	; and 

there exists a 1-1 correspondence between 	
c'c ) 

and 
OP  

Remark- The reduced V.N.algebra EC.4'E is the set of 

operators T on 	such that 	 for some 	£ 

c.f., [21; Ch. 1,52. 1. 

	

Proof- Let q be a state of 	 such that g is left- 

multiplicative with respect to 8 ,and put (5)-,4. Define 
on C4 by 

f( X)  

It is easily verified that Te E(c4) 
Let now X and.)' be arbitrary elements of a# and let /' be an 

element of , ; then 

(E xy)/ )i (Ex)f 

= (EXE) (EYE)f 

.('Ex/)((EY)I.,)l 

so that 

(Exy)/ =((Ex/ )(EY1 ) 	 ( 2). 

141 



Ch. IV,3. 	 3.6. 

Hence, by (i) and (2), we have 

f(xy) 	(UE))L 	(v,xvy €4) 

If now Xis an arbitrary element of c.4 ,we have 

B ) 

((Ex)lx )  

so that f is left-multiplicative with respect to fwith f(v )  A 
Since A is fully charactered, proposition 3.3. shows that -ç is a 
character onC(). It is then easily seen that is a character on 

C ( 	. In particular, is also right-multiplicative with 

respect to 8 . This proves (i). 

To prove (ii), we need merely note that the IC-algebra C (6) 
is singly generated by the fully charactered. operator 8 ,and apply 
proposition  

This completes the proof. 

We conclude this section with an analogue of the elfand-

Ngimark theorem for normal operators. 

The following lemma will be needed below. 

3.6. Lemma- Let { 
	t 9 r 3 be a family of elements of a 

C-algebra C4 and suppose that each a. is fully charactered. 
Then, given 

(,\ ) 	€ 	( a t r p 	at, •c 

there estsE' 	 such that 

(.f(Q)  = A-c,  

Proof- Let (1) be satisfied; there exists a pure state f of 
such that for each c , is left-multiplicative with respect to 

(1) 
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with 	 A (theorem 1.3.(c) of chapter III). Since each Q 

is fully charactered, f is also right-multiplicative with respect 

to each Q. Hence, we may take j 
T 	 ter  

This completes the proof. 

3.7. Theorem- Let 	ter 	be a family of elements of 

a C-algebra c.4 • Suppose that for each 

(A) 	e 3°' () rp 	 •c 

there exists 'fe 	 such that 

M'a ) = A t 	t (VcP) ; 
let 

Cca ) 	: 	( VC QC* )  }. 
*1  

c rr 
Then, 5 is a closed two-sided ideal of C 	C 	and the 
* 
C -algebra 

* 
is isometrically 'isomorphic to the C-algebra of complex-valued 

continuous functions on ,77 (e2)
Of 	

r c er  
Proof- This is essentially proved in [ 10; proposition 5 ]. For 

while prop osition5 of [10] is proved for commuting families of 

hyponormal operators on a Hubert space, an examination of the 

proof shows that the only propertof a hyponormal operator used 

in the proof is that any family of hyponormal operators satisfies 

the condition expressed in the hypothesis of the present theorem. 

We therefore omit the full proof. 

We remark that the conclusion of the above theorem holds 

trivially if ,7cr ( ) 	= 0 ; and that the conclusion , 	r- rep 
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holds for any family of fully charactered operators ( lemma 3.6.). 

Question: Is 	a minimal closed two-sided ideal of L. () 
V cej' 

3.7.1. Corollary- Let et be a fully charactered element of a 
P. 
C-algebra 04 and let be an element of C) which commutes with 

b . Then with 	1eC) 	) = 0 	 we have 

	

VA'cr()j 	C'6) OP 
Cr and C(L)/, is isometrically i-isomorphic to 

Proof-Let )iG c(b) .. Since a and b commute, there exists 
OLF 

Cr () such that 
OP 

	

(A ff) 	Jcr1, (6 a..) ; 

hence, there exists -fc L(c..-) such that f is left-multiplicative 

with respect to a. and. 1) with 

fc)/' 4.  f(6)=A. 

Since a is fully charactered., FIC*(a)  G 0 C(a) ; hence 

C) 	C'b) 

The second part follows from theorem 3.7. 

This completes the proof. 

li-. Some Examples 

4.1. Introduction- In this section, we give some examples of 

fully charactered and finite operators. We shall also be interested 

in the existence of states of a Calgebra &4 such that 

satisfies the trace-like property expressed in definition 1.2.(i) 

with respect to the c It  algebra generated by a fully charactered 
element 0. of c.4 ,and such that f is not a character on C(0.) 
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4.2. Isometries- Let O4be a C-algebra, and. let 0 Gc4. The 

operator . is said to bean isometry, provided that aa = i . By 
corollary 2.6.1. (with oe.= M = S ), every isometry is fully 

charactered In particular, a. is a finite operator by proposition 
2.2.(i). 

Let,10 be an infinite -dimensional separable Hubert space with 
00 

basis /eJand let abe the unilateral shift defined by 

ae e 	 )• 1 	

Ii 

Then tt is an isometry, and it is well-known that cr (a) 
rji 

where 
Of 

7- [*C: 
127; problem 673. By theorem 3.7. Ca.' /5 	is isometrically 
N_isomorphic to 	 where 

	

= [ e Cu) 	)o (v 
We now show that 

c 
cssurnrng,b [Jfl, that  

Since I— 	 and 

2 
/f,'t/o 	( VW C(u) ) 

we have 

j () k(rN) -tø 

If there exists fr C 	(,7) 	such that c"(A)to for some 
PG 	C#(u) then, the kernel of (f would be a non-trivial closed 

two-sided ideal of Z(,*) ; this is impossible since 

is simple; hence 

t(Jcz) g. ,ç Ca,'. 

The above result ( namely, that 	t',lO) c 5 	) is in 

accordance with Coburn's result which proves that 	 is the 
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smallest closed two-sided ideal of C(u-) ; c.f., [ 18 ]. 

Let Q, be a non-unitary isometry in a C*_algebra c54 . The following 
argument proves the existence of a state f such that 

-(bz) = f(-t 6) 	
(Vxec4, VbGC) 

and 

C*'a) ~ 0 C*6( a )  

Let 

(note that 	0 since a is non-unitary ). Then S is a w-compact 
convex subset of E(c4) and the mapping ldefined on  by 

CL 

CL (v4,vceS) 
is a w-continuous mapping of S into itself. By the Schauder- 

Tychonoff fixed point theorem, there exists 4€ S such that 

4:'(a*) c() 

It is then easily verified that -ç has the required properties. 

4.3. Quasinormal Operators- The class of 'quasinormal operators 

was first introduced by A.Brown in [9]. 
An operator & is said to be quasinormal provided that a and 

a? a.. commute. 

":2 
Let a 	(cfa.) be the polar decomposition of a,. Then, e. 

10 '/2 
is quasinorinal if and only if t4 and (a2) commute [27; problem 1081. 

hence 	 / 

a-a? - e (al)2' (dt2) 
L 

~ tw'// a*I& 
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Hence, by corollary 2.6.1. (with -'.M = I ), every quasinormal 

operator is fully charactered.. 

We present an alternative proof of the existence of characters 

on C'(a) using theorem 2.5. 

Let 	oj (a) 	; since aand Q.Q. 	commute, there exists 

f€ c- (fQ.) 	such that 

ata) 

If 	o 	then, by theorem 2.5., there exists T C
C( 	such 

that 	; .ifAzo then there exists 4E E (Ccu ) such that 

f(a ) = f'c2c& ) = 0 
hence 

0 (co) ~ -1(oa) =0 

so that -cc I C(o) ivith f(ct)=o 

We remark that every isometry is quasinormal (since in this 

case aa = ) ). 

44.. Hyponorma3. Operators- An operator a is said to be hypo- 

normal provided that 	aa? [27 no. 160 ]. 
By corollary 2.6.1., (with a( M 	), every hyponorma1 

operator is fully charactered.. Here, we present an alternative 

proof of the existence of characters on C(CL) refeid to at the 

end. of ,ci of chapter I. Thus, it is sufficient to prove that 

Let A o- (OL with eigenvector ( f U 	). Then 

II 	_q 	 At 
JAI 

=0 
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	 4.5. 

so that 

The result now follows from theorem 2.4. 

	

The existence of characters on the 	algebra generated by a 

hyponormal operator acting on a Hubert space was first proved, by 

Bunce in [ 9 ] . The result was later extended to commuting families 
of hyponormal operators in [ 10  ] and.  [ 37 ]. 

We remark that every subnormal operator is hyponormal [ 27; no. 

160 ]; that the partial isometry in the polar decomposition of a 

hyponormal operator is easily seen to be hyponormal; and that the 

example given in example 2.7.(a)  of chapter I shows that there 

exist hyponormal operators which are not subnormal [ 27; problem 

160 ]. 

4.5. Quasi- hyponormal Operators- An operator a is said to be 

quasi- hyponormal provided. that 

2 	 2 
c. a _(dz) > o 

)49 ]. 

Let h be a positive integer. An operator a  is said to be 

hyponormal of order / provided that dis quasi- hyponormal [ 39 ]. 

Let 2 be. quasi- hyponormal, and let f '( C(a)) be left-

multiplicative with respect to 0-with  ,t(a)tO . Then 

4 

f ((Lz'a)2) 

z/ç(4)/ ç(ctc) 
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so that 	( &*) 	I 	\ 	; hence, f is also right-multip- 
licative with respect toQanLI .4' 02 	(*() 

In particular, if a quasi-hyponormal operator is left-invertible 

( i.e., if 0 % o-  ( 04 ) then C is fully charactered. 

Essentially the same argument shows that, if Lis a hyponormal 

operator of order 	for some integer n 0 , and if a state 4% 
is left-multiplicative with respect to Q. then f  is also right-

multiplicative with respect to a. ,provid.ed that 

We remark that every hyponormal operator is quasi-hyponormal; 

The converse is false as is shown by the operator 

T( 
0 

where A is a non-normal hyponormal operator with Re o-( ,4) > ,0 
(e.g., take A = U I, where U. is the unilateral shift); c.f. 
[ 39; theorems 2 and 3 3. 

14.6. M-hyponormal and Dominant Operators- An operator Q. is said 

to be M-hyponormal provided that there exists a rea1 number M 
such that for all A £ C 

2 	- 
(c_A)(a.*...,A.) 	M (ci_))(o.-A) 

i: 54 3. 
An operator 0- is  said to be dominant provided that for each 

a- (a. 	,there exists a positive number MA such that 

(Q_A)(a*_ 	M (Q-o --A 
1 52]. 

By corollary 2.6.1., every 14-hyponormal and every dominant 
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operator is fully charactered. 

We remark that every hyponormal operator is 14-hyponorinal, and. 

every M-hyponormal operator is dominant. Example 2.7.(b) of chapter Li 

shows that there exist M-hyponormal operators which are not 

hyponormal, and the example given in [ 52; example 2] shows that 

there exist dominant operators which are not 14-hyponormal for any 

real number ]I 

47. Paranormal Operators- The class of paranormal operators 

was first introduced. in [30 ] under the name" operators of class N 

The definition and properties of paranormal operators was later 

extended. to C-algebras in [ 36  ] and studied in 140 1-
An operator Q. is said to be paranormal ,provided that 

.2 
a -2AeA'),0 

for all non-negative numbers \ 

Let A be a positive integer. A bounded linear operator A on 
a Hubert space ,7 is said to be a C(A', k) operator, provided 

that 
k 

/I,// < //,qz// 	(Vze7$,//x//i). 

[ 32 ],and [33]. Thus, a paranormal operator is a C(,V 2) 
operator, and conversely. 

Let o4be a C-algebra, and let aco4 be paranormal. We use 

the S}uder-Tychonoff fixed point theorem to show that a. is finite. 

By the definition of paranormal operators we have, for each 6A 
owot 	- -F e 	 2 I * 1(66*) A 	2 

so that 

(c6)2 
7C( t)  f ( I2 ) 
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Let f be a state of o4 such that 

f (&a* ) = //&o!II 

Then, 

Ct(cct*) 
E 

hence, 	 2 
(7C'( tzacta')) 

= (f(eza)) f(a'a,' 

so that f(lzla) ? 	; also 

/1 	II 	1/ a // = [('a 0- 

hencehence 

-r (a. 'a.) = f(Q e) = ii e A ii. 

For the rest of the argument we shall assume, without real loss 

of generality, that # a11=1 

Let 

	

5 = j 7C 6 E ~4) : 	) =- f(aaf) = / I - 

By the above remarks, 	0 ; further,it is easily verified that 

S is a wtcompact convex subset of E(c_,4) . For each 
define T7C on c.4by 

f(z ) = 0k2) 	 (VCA)'- 

then 	E(c4) ; further, 

T rr (aa,"),  
and 

I (a'a.a"a) 4 //aaa.'a// =1 
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so that 	 . Similarly, 

(ga) / 

and 

f( c 2a) 	a all 	i 

so that Tf(Z"2)1 . It follows that the map T.. 
defined, by f._ ' f maps 5 into itself. Also, it is easily 
seen that T is w#-continuous. Hence, there exists a fixed point 
i.e., there exists f6c S such that 

= )C(z) 	 (Vt Le cA). 
If now z is an arbitrary element of ci ,we have 

/F(za)/' ) / 

since 

This completes the proof. 

We remark that every C(r 	operator is normaloid (c.f. 4.8. 

for normaloid operators) [ 32  ] , so that every C( N) k ) 
operator is finite. Also, every quasi-hyponormal operator is 

paranormal, but the converse is false in general 149 ]. Finally, 
there exists a normaloid operator which is not paranormal [2 6 ]. 

4.8. Unimodular Contractions and, Nonnaloid Operators- An operator 

c2. is said to be normaloid provided that 

Y(a)= 110. 11 

where'r(a.) denotes the spectral radius of Q. [ 27;no.174 ]. 
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Let cJ# be a C-algebra, and. letaLe c) -J  be normaloid. Since 

//a// = r(a) = 44p f/Al A e va)] 

it follows that corresponding to each positive integer V) , there 

exists A,G r(&) 	such that 

Since a-(Q) is compact, it follows that there exists A G 0 (a.) 

such that 

/A/= //ci,.l( 

If A 	- (a.) then,there exists a state [of 4 such that ap 

so, by theorem 2.7., we have 

-f- i 
(— (a) 

If, on the other hand, A G o,  (a?) then, since cp 

Y(a?) = Y((2) = 1/04/ = //at// 

we may apply the same reasoning to 0- and conclude that 

G 

Thus, we have proved the following result: 

48.1. Theorem- Given a normaloid operator a. ,there exists a 
character ( on C*(&) such that 1 T(a) = HaLI 

Alternative proofs of the above result may be found in [i-3 ] 

and [3; corollary 3.1.3. 3. 

Corollary- Let 04 be a V.N.algebra, let R. 6 CA be 

normaloid, and let 4z = (. (a.') 2  be the polar decomposition of (2. 
Then C& is normaloid. 

Proof- By theorem 	there exists 
f 7C?a) 

such that 
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Extend (f to a state f of c.4 ; by the Cauchy-Schwartz inequality, 
we have 

f( x)= f() 	 ( V:€c41  V6eCi.). 

In particular, since £1. £ C.4 , we have 

ç(' 1L ) [(tc) [(a) 

so that 

/ ft 	______ 
- 

____ 
- I )/ /ft'a)/ 

Since (.4 is a partial isometry, U. U is a projection,so 

14 ,,2__ 

hence 

/1(u)1 = /f(')/ / = J/U.Il 

Therefore, by theorem 2.7., we have 

f.  /  
C(u) 

and, in particular, )(U) 	; hence 

i.e., (.4  is normaloid. 

This completes the proof. 

We remark that there exist non-normaloid partial isometries; 

for example, let 

. 1° u 	/ \O 0 

We shall use the above result to give a decomposition theorem 

for arbitrary elements of V.N. algebras. The following lemma 

will be needed: 
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24.8.2. Lemma- Let z be an element of a C*_algebra c4 . There 

exist a unitary operator a ig C.4- ,and a normaloid operator Q. e CA 

such that x = 

Proof- Let CA denote the unit ball of the dual of 

Assuming, without real loss of generality, that I/-tf/I, the Hahn-

Banach theorem implies that the set 9 defined by 

is non-empty. An elementary argument shows that S is' a w-compact 

convex subset of cA; let f be an extreme point of S ; then f is 

an extreme point of c. . For suppose 

1= f() 

(ec; ocI) 

Then 

so that 

Since /is an extreme point of the unit ball in the complex plane, 

it follows that 

f, () = f, (t) 	I 

so that 	S • Since f was an extreme point of S, it follows 
that f f 	f ,so that f is an extreme point of 

Now by [j 	; lemma if ], there exists a unitary operator et 604 

and a pure state g of .4 such that 

~'(I) ± Y(Uv 
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In particular, 

1= f"z, = Y (e) 	/fU// '--~J 

so that 

//u./ / = 1 

Hence, U'X. is normaloid, and 	= z (uz) 

This completes the proof. 

4.8.2.1. Corollary- Let Z be an arbitrary element of a V.N. 

algebra cJ. Then, 

where qis unitary, -jr is a normaloid partial isometry, and 4 is 

a positive operator in c4. 

Proof- Corollary 4.8.1.1., and lemma 4.8.2. 

The question now ariseas to whether every normaloid operator 

is fully charactered. The following example shows that the answer 

is no, in general. 

Let 4= M. (C) , and define an operator #4 by the matrix 

I, I 0 

,4 (0 2 o 
0 c( 

where o?> 3 . Then 

0 	0 

o 
\o 0 

and an elementary calculation shows that 

	

ft 	i 	0 

	

A'A ( , 	0 

0 - o oe  
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The eigenvalues of the matrix 4 r,4 are 3 ± /3 ,and. ac' ; hence, 

since o( > 3 .. 	,we have 

1/ A  

Also, the eigenvalues of /? are 1, 2, and c 	so that 

r(A ) = IIA1I=oe 

i.e., /1 is normaloid. 
I 

Suppose now that there exists a character Cf on C (4) with 

Then 

(i j) 
,rc (94*) 

t 
which means that there exists a non-zero vector z = 	T j 13) 

( t for tispose) such that 	and 	= Z • Now 

/ 
,4 	I 

2z 
 ) 	,q'; (l.ZL 

so that the only solution to the simultaneous equations /?r X 

and. 	 is (O s, 0, 

Thus, corresponding to the point / o-(A):c (4) ,there IS 

no character on C*(A, , so that ,4 is not fully charactered.. 

We remark that the above example uses a general construction 

given in [25;  theorem 1 ]: 

If /1 is an operator acting on a Hubert space then,there exists 
an operator 8 such that 9 8 is normaloid.. 

Finally, we shall consider a sub-class of the class of normaloid 

operators,first introduced. by B. Russo in {4g ], whose elements 

are fully charactered. 

'4 Let 	be an element of a C-algebra c.fl • We call 0, a unimod.ular 
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contraction provided that 1Q.\!~I and 

oic) ç 	 IAi=i } 
Clearly, every unimodular contraction is norinaloid. See also [ 31 3. 

Let now f E- ( CA) be left-multiplicative with respect to 0.. 

with 	 • Then A 	(o.) C c- () ,so 	Since 

I= IA) 	la 11 !~ 

we have 

Hence, by theorem 2.7., .çis also right-multiplicative with 

respect to a. Thus, ais fully eharactered. 

We close this section with the following remark: There exists 

a normaloid. operator 0., such that Qis not a C(N,) operator 

for any positive integer k ; c.f. [ 33;theorem 1 ]. 

4.9. Weighted Shifts and Bi-normal Operators- Let,.# be an 

infinite-dimensional Hubert space with basis [ e nTOC'O - 

A (unilateral) weighted shift is an operator Wwhich satisfies 

the relation 

c( 

for some bounded sequence of complex numbers {a( 	[ 27; no. 75 3. 

Using the theory of Banach limits, it may be shown that there 

exists f c E ( Qf (J(t) )such that 

(X3)  

fTJ where L denotes the C-algebra generated by the set of all 

weighted shift operators; c.f. [ 12; §3 ]- 
An operator .4 is said to be bi-normal provided that 
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commutes with 	c.f. [13 ] and.  [ 141. 

It is easily verified, that every weighted shift operator is 

bi-normal. In view of the above result for weighted shifts, the 

following question is of interest: 

Question: Let 4 e 	%() be bi-normal. Is A finite? 

4.10. Concluding Remarks- Througout the present section, we 

we have considered only the case of Ce-algebras generated by a 

single operator.The extension to the case of a C-algebra generated 

by a commuting family of operators follows immediately from lemma 

3.6., provided that each operator is fully charactered. For 

example, if fa. 	: is a commuting family of dominant operators 

(c.f.,4.6. ), then the joint approximate point spectrum of Q: trJ 
is non-empty (chapter II, corollary 2.5.1. ), and for each 

(Ar ) 	G ,)o (a)r 
there exists a character on C 	0-r 	with 

In particular, there exists -Fe  E () such that 

fb) = f(b) 
(proposition 2.2.(i) ). 

(v tdVb€C(&) —1) 
t 

For non commuting families of operators, nothing can be said 

in general, as is shown by examples 2.1.(a) and 2.1.(b) of chapter 

11 -Finally, we wish to pose three problems. 

,.4 Problem 1. Let 04 be a C
*
- 	 c2. algebra, and let h c.X1i be finite 

operators. Is there a state fofcA such that 

(Vc. )  VC Le C 
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Let us call an operator fully charactered in the weak sense 

provided that the following condition holds: 

'A&o-  ( O.) S.c. 
—CLc 

By proposition 3.4.(i), every fully charactered operator is 

fully charactered in the weak sense. 

Problem 2. Suppose OL is fully charactered in the weak sense. 

Is a fully charactered ? 

Problem 3. Let Q and 6 be two commuting operators, each of 

which is fully charactered in the weak sense. Is there a character 

on C(e b) ? 
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Appendix I 

The Joint Approximate Point Spectrum of Elements of Finite-dimension&L 

G -algebras. 

The purpose of this appendix is to prove theorem 6.5. of chapter 

II, that is to prove the following theorem: 

Theorem A- Let 4be a C-algebra acting on a finite-dimensional 

Hubert space ,M ,let a, 	be mutually commuting elements. of 

	

c'4,and. let A 	. 	be complex numbers. Then 

if and only if 

The following observations will simplify the statement of 

theorem A. 

First, since the joint approximate point spectrum of operators 

is independent of the C'-algebra containing the operators (Chapter 

II, proposition 1.2.1.), we may assume that 04= cze(r1v-). 

Next, since the conditions 

	

At 	•-. ) /Afl ) 	,Th- 

and. 

(a, •., o) 	,J- 	(cyA,) .. 
Op 

are equivalent, we may assume that 

Ao 	 (jr/,,r), 

Finally, since it is finite-dimensional, we may assume that 

Thus, it is sufficient to prove the following theorem: 
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Theorem B. Let C4 =I"l((), and let a , ... at, be mutually 
commuting elements of C4• Then 

if and only if 

a. = 

Before presenting the 	proof of theorem B, we recall 

some definitions and results from the theory of rings and modules. 

Let 4 be a ring, and let M be an c4-module. 

A finite chain of submodules of1is a sequence M(0_en ) 

of submodules of M such that 

MM 0 M o 	 n 

The length of the chain is n 

A composition series of 1 is a maximal chain, that is a chain 

in which no extra submodules can be inserted. 

Suppose that a module thas a composition series of length r 

for some non-negative integer n • Then, every composition series 

of Mhas length v , and the lenght of M,denoted by(M) , is 

defined to be v 

Let c4be a ring, let a. G c,4 , and let Y(C) denote the right 

annihilator of 

a-o } 

Then, the map 	C,4 ..> 	defined by  

induces a module isomorphism of C.4/y(C)  and ck.c$. If, further, 

C4 has finite length then, so do €. 	and C./Y(),and the 

following holds: 

Finally, we remark that , if 	is the ring of Yiixi. matrices 
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then 	 , and, in particular, (i) holds for every element 

0 of a) 

Reference: [ L 	13 ]. 

We now turn to the proof of theorem B. We begin with 

Lemma 1.- Leta, . 	be pair-wise commuting elements 

of /f, and suppose that 

r(c )  =cA 
	 (1). 

Then 

a-ck)n( .n r)= 	 (2). 

Proof- The proof is by induction on n • For Yj= the proof 

follows from (i). 

Suppose now that the result is true for any n-I commuting 

elements bf'o4 and let OL,, 	c 	satisfy the hypotheses of 
the lemma. Then, by the induction hypothesis, we have 

A, 	n 
( 	

r(.)) 
Since 

ac,4- 	 -4- 

we have, for each C. 	 n 	), 

+ a. Y(t,),  

since and a  commute; hence, 
C. 

C. 
	 L2  C4 t  

n 

:1=2 
since the right-hand side of the above inclusion is obviously 

163 



contained in the left-hand side, we get 

- 4 2 Qr(Q)  

We claim that the sum in (4) is, in fact, a direct sum. For,let 

z  2.rCa,) ; 
then, 

where 

e 

 

hence, 	
Y) 

= 	 q. a1  • = J 

SO 
 

Thus, b,(I))  

Q Y(0,) 
(_I 

Let now 
V) 

'Q(2cc)() 	caL ) 
C- l 

By (5), there exist 	 inc' such that 

 

 

* 

X. 6 r (a, ) 
and 

f 

By (6), we have 	y(j). Also 

n. 
Q 	) - 	 0 

hence 

- 	- r(ez,)) - 	 CL- 

therefore, 
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Hence 

By (6), we also have 

hence, 

by (3). 

This completes the proof. 

Corollary 2. - With the hypotheses of lemma 1 , suppose further 

that 

CA 
Then 

Proof— By lemma 1, we get 

ioi n
Hence  

( 

i.e., 

c4Q 

This completes the proof. 

We shall need one more lemma. 

Lemma 3. Let a 
I ,OLbe commuting elements of 
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then, there exists a positive integer k such that 

(1). 

Proof- For each ( 	' . r ), we have 

	

4 	/ ç rCa..) c 	c Y(a,)C...  

hence, there exists a positive integer ) such that 

' ) =  
Let k=MOfx}. ; then 

	

= 
	• 	) (2) 

Y( Ctz

We shall now prove that (i) above holds for 

For the rest of this argument, let L. be an arbitrary but fixed 

element of 	... 

We first show that 

(a 	) 	
(OL

k 
to 	

o} 

Let 

(a)fl ()). 

Then % 	for some 'j cc.4; so 

k 
CL La. )ctxo 

since X..r(a.k) . Hence 

	

'( C 	) 	(Q• ) 

	

by (2). Therefore 	 o. 
This proves (3). 

Next, we show that 

Y()CA 

We have( see the remarks immediately preceding lemma 1 ) 

/(c)- /(ah )+ (r(c ) ), 
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Also 

r (a)) I ( 	 /( r()). 

Hence 

= / (a. cd e r (aft) )j 

so that 

Since £ was arbitrary, this completes the proof. 

We are now ready for the proof of theorem B. 

Proof of theorem B.( T.Lenagan )- Suppose that 

(1) 

By lemma (3), there exists a positive integer A such that 

- 	 (2) 

Now, (i) implies that 

I 	 (3). 

For, multiplying both sides of (i) by Cl , we get 

rk 

a,4 	a• cA' 
since Q and .commute; hence 	L 

a. 	C a4Za- c 
so that 

4- Z 	Ca  
An easy induction shows that 

C-4. 
Applying the same reasoning to the r commuting elements 
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of c,4,defined by 

we obtain 

By induction, it follows that (3) holds. 

Now, by (2) and (3), the n commuting elements tZ'', 

satisfy the hypotheses of corollary 2. Hence, 

Since for each c. ( 	v ), we have 

it follows that 

hence 	a.. 

The converse may be established by a similar reasoning, by 

replacing right annihilators with left annihilators, and repeating 

the above arguments. 

This completes the proof. 

We remark that the assuntion cI./1(C) may be considerably 

weakened; for example, the result remains true if 04 is any 

artinian ring (c.f. [ 29;theorem 1 ] ). 

Finally, we present an alternative proof of theorem B. based 

on the following result: 

Let 19 , 8, C, and b be complex nxn matrices and suppose that 

C and b commute. Then, the 2nx2n matrix k defined by 

S 

\C 0 
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is invertible if and only if 

For the proof we refer to [ 27; solution 56 ]. 

Alternative proof of theorem B.- We restrict the proof to-the 

case of two commuting nn matrices /land5 . 

Define the 2nx2n matrices H, iV, and' by 

8 \ / 
M ( 
	(,1". 

) 	

0 I 
 S. 

where I is the nxn identity matrix. An elementary calculation 
shows that 

Sç and SMSw. 

Hence 

= 

since similar operators have the same spectrum[ 27; problem 60 3. 
Hence, by the above result, we have 

ee.t (A At. 6 ) =o if and. only if c' (44 +8t5)  o 

A T 
-- 	is invertible 	(i) 

if and only if 

is invertible 	(ii) 

By proposition 1.5. of chapter II, (i) and. (ii) are equivalent 
to 

(°°)1 	iL3) 
and 

(0, c7) 0 Tc,)  (,4,8) 
respectively. 

This completes the proof. 
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