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Abstract

Transmit beamforming (precoding) is a powerful technique for enhancing the channel capacity
and reliability of multiple-input and multiple-output (MIMO) wireless systems. The optimum
exploitation of the benefits provided by MIMO systems can be achieved when a perfect channel
state information at transmitter (CSIT) is available. In practices, however, the channel knowl-
edge is generally imperfect at transmitter because of the inevitable errors induced by finite
feedback channel capacity, quantization and other physical constraints. Such errors degrade the
system performance severely. Hence, robustness has become a crucial issue.

Current robust designs address the channel imperfections with the worst-case and stochastic ap-
proaches. In worst-case analysis, the channel uncertainties are considered as deterministic and
norm-bounded, and the resulting design is a conservative optimization that guarantees a certain
quality of service (QoS) for every allowable perturbation. The latter approach focuses on the
average performance under the assumption of channel statistics, such as mean and covariance.
The system performance could break down when persistent extreme errors occur. Thus, an
outage probability-based approach is developed by keeping a low probability that channel con-
dition falls below an acceptable level. Compared to the aforementioned methods, this approach
can optimize the average performance as well as consider the extreme scenarios proportionally.

This thesis implements the outage-probability specification into transmit beamforming design
for three scenarios: the single-user MIMO system and the corresponding adaptive modulation
scheme as well as the multi-user MIMO system. In a single-user MIMO system, the transmit
beamformer provides the maximum average received SNR and ensures the robustness to the
CSIT errors by introducing probabilistic constraint on the instantaneous SNR. Beside the ro-
bustness against channel imperfections, the outage probability-based approach also provides a
tight BER bound for adaptive modulation scheme, so that the maximum transmission rate can
be achieved by taking advantage of transmit beamforming. Moreover, in multi-user MIMO
(MU-MIMO) systems, the leakage power is accounted by probability measurement. The re-
sulting transmit beamformer is designed based on signal-to-leakage-plus-noise ratio (SLNR)
criteria, which maximizes the average received SNR and guarantees the least leakage energy
from the desired user. In such a setting, an outstanding BER performance can be achieved as
well as high reliability of signal-to-interference-plus-noise ratio (SINR).

Given the superior overall performances and significantly improved robustness, the probabilis-
tic approach provides an attractive alternative to existing robust techniques under imperfect
channel information at transmitter.



Declaration of originality

I hereby declare that the research recorded in this thesis and the thesis itself was composed and

originated entirely by myself in the School of Engineering at The University of Edinburgh as

a candidate for the Doctorate of Philosophy. I has not been submitted for any other degree or

award in any other university or educational institution.

List your exceptions here and sign before your printed name.

Huiqin Du

School of Engineering

University of Edinburgh, UK

2010

iii



Acknowledgements

Fist and foremost, I would like to thank my supervisor Dr. Pei-Jung Chung, for her invaluable

support and guidance. Her wealth of idea, clarity of thought, enthusiasm and energy have made

working with her an exceptional experience for me. These are a constant source of motivation,

and has resulted in the outputs which I would not have previously thought possible. Moreover,

as a friend, we have enjoyed lots of wonderful discussions about life, love and work, from

which I learn the self-esteem, self-respect, self-support and strive as female in modern. I am

truly privileged to have had Pei-Jung as a mentor.

Thanks to Professor Bernie Mulgrew for additional supervision. I am grateful for his taking

the time to give me lots of useful feedbacks and comments on my papers. And also thanks to

Professor Jacek Gondzio for letting me attend his mathematical class and having a wonderful

collaboration on convex optimization problem.

I must thank IDCoM members for being dynamic colleagues and for creating a friendly research

environment. During my time in Edinburgh, I have also had the opportunities to know and

interact with many other people, who enriched my experience.

Finally, I can never forget the overwhelming love and support of my family. I cannot thank

Mum and Dad enough for absolutely everything. They have always been there for me, listened

to me, and supported me in every way possible. Especially in my short holiday, they give all

their love to me and let me have full rest. Annual holiday at home becomes my important relay

station that injects with their love to support me starting new year research. Thank you so much
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Chapter 1
Introduction

1.1 Motivation

Multi-antenna diversity has been well established as an effective fading counter-measure for

wireless communications, which can further strengthen benefits of multi-input and multi-output

(MIMO) systems by taking advantage of transmit beamforming. The optimum exploitation of

its strengths requires perfect channel state information at transmitter (CSIT) which is typically

not available at transmitter because of the inevitable error induced by limited feedback channel

capacity, time-varying channels or other physical constraints. Such channel imperfections de-

grade the system performance significantly. It motivates the effort to develop robust algorithms

against channel imperfections.

Current robust transmit beamforming designs can be classified into the deterministic (or worst-

case) and the stochastic approaches. In the worst-case analysis, channel uncertainty is mod-

eled as deterministic and norm-bounded. Under such assumptions, conservative results are

achieved as the worst operational condition is rare. On the other hand, the stochastic approach

describes the channel state and channel uncertainty as random processes with mean or co-

variance known at transmitter, and focuses on average system performance without paying

attention to the extreme error level. The system performance may break down when persistent

extreme errors occur. It prompts the development of an outage probability-based approach that

accounts the channel uncertainty by using probability measurement. This thesis develops the

outage probability-based approach which provides robustness against the channel uncertainties

for both single-user and multi-user MIMO systems, and offers a tight upper bound of average

BER in robust adaptive modulation scheme.

1



Introduction

1.2 Thesis Contribution

This section summarizes the contribution of this thesis, which focuses on robust transmit beam-

forming design against the channel imperfections using outage probability specification. The

contribution can be divided into three parts: (1) designing a robust transmit beamformer for

single-user MIMO system and maximizing the received average SNR performance; (2) build-

ing a robust adaptive modulation scheme and optimizing the system throughput; (3) proposing

a robust SLNR-based downlink beamforming design for MU-MIMO system and improving the

SINR reliability.

(1) An outage probability-based beamforming is proposed in a single-user MIMO system

under imperfect CSIT. This design maximizes the average SNR and takes the extreme

conditions into account using the probability measurement. By keeping a low probability

of the instantaneous SNR being below an acceptable level, the outage probability-based

approach is more reasonable than the statistic-based beamformer and is less conservative

than the worse-case beamformer. A deterministic form for probabilistic constraint is ob-

tained which overcomes the main challenge in the probabilistic-constrained optimization

problem. This approach achieves good average SNR performance with well-controlled

outage probability, as well as a much broader error-tolerance range and more robustness

against error variance misspecification. More importantly, the computational complexity

of the probabilistic constraint is similar to the worst-case approach.

(2) A robust adaptive modulation scheme based on a lower bound of average BER is es-

tablished, which maximizes transmission rate and maintains an acceptable average BER

performance. Without involving extra Monte-Carlo calculations or conservative chan-

nel conditions, an outage probability specification is introduced to provide a tight BER

bound. The resulting final transmission is guaranteed to meet the target BER perfor-

mance. The proposed robust adaptive scheme provides considerable improvement of the

normalized system throughput and strong robustness against errors in CSIT, while guar-

anteeing the target BER under different scenarios.

2
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(3) A robust SLNR-based downlink beamformer is designed for both single-stream-per-user

and multiple-stream-per-user MU-MIMO systems. The proposed transmit beamformer

efficiently suppresses the inter-user-interference without perfect channel knowledge at

transmitter. More specifically, a probabilistic constraint is introduced to keep a low out-

age probability that the leakage power of desired user is higher than an acceptable level.

Under outage probability specifications, the extreme power leakage scenario is well con-

trolled, which implicitly leads to the improvement of SINR reliability. For both cases,

the proposed robust design reduces the leakage power as low as possible, and achieves

the desirable BER performance as well as the good SINR reliability performance.

1.3 Thesis Outline

This thesis consists of three main chapters with background at the beginning, and conclusion

followed with further work at the end. A brief outline of each chapter is as follows:

Chapter 2 discusses the wireless characteristics and MIMO modeling. It then focuses the

transmit beamforming technique including the beamforming structure and optimal de-

sign as well as the consideration of the impact of channel uncertainties on transmit beam-

former.

Chapter 3 designs a robust transmit beamformer for downlink single-user MIMO systems.

The chapter fist establishes the optimization problem that maximizes received SNR un-

der imperfect CSIT. To ensure the robustness, an outage probability-based constraint is

introduced by keeping a low probability of received SNR being below a pre-specified

threshold. The chapter then obtains a deterministic form for this specification and con-

verts the underlying probabilistic-constrained optimization problem into a convex prob-

lem, achieving the maximum average SNR. Finally, this chapter investigates the proposed

robust design numerically, including average SNR performance, and robustness against

to error and mismatched error variance.

Chapter 4 establishes a robust adaptive modulation scheme in the context of single-user MIMO

3
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system. This chapter first formulates a robust scheme based on lower bound of average

BER that maximizes the transmission rate while maintaining a target BER performance.

It is proved that the probabilistic constraint works as an alternative BER constraint by

keeping a low outage probability of instantaneous SNR below a pre-specified threshold.

The resulting optimization problem is transferred into convex problem that can be solved

by a standard toolbox. At the end of chapter, the proposed transmit beamforming is dis-

cussed about its benefits, including achieving the maximum transmission rate as well as

the target average BER performance, and providing the strongest robustness against the

channel imperfection.

Chapter 5 proposes a robust SLNR-based transmit beamforming design for both single-stream-

per-user and multiple-stream-per-user MU-MIMO systems. The chapter first builds the

leakage-based transmission scheme for the single-stream-per-user MU-MIMO system

under imperfect channel information. The optimization problem is formulated as the

maximization of average received SNR with a low outage probability of high leakage

power. Using Markov’s inequality, the probabilistic constraint is replaced by a determin-

istic form, and the resulting problem is solved through convex optimization tools. The

chapter then extends the single-stream-per-user scenario into the multiple-stream-per-

user case. Combining Alamouti code with SLNR-based solution, the hybrid scheme ex-

terminates the inter-stream-interference with the help of Alamouti code, and suppresses

the rest of interferences (inter-user-interference) by using the outage probability-based

transmit beamformer. In the end, the chapter investigates its SINR reliability and average

BER performance, and discusses the impact of parameters used in probabilistic constraint

on SINR performance.

Chapter 6 summarizes the main results of this thesis, discusses the development of transmit

beamforming design with scheduling algorithm for multi-user MIMO system, and out-

lines further work in cooperative transmission system.

4



Chapter 2
Background

The rapid growth of wireless communication services has brought several challenges in the de-

sign of reliable and efficient communication system. However, the physical susceptibility of the

wireless channel limits the development of high speed and quality services transmission. Thus,

channel characterization becomes a primary investigation before taking advantage of wireless

channel. In response to reliable data transmission, the MIMO channel is investigated, which

can provide diversity gain in the spatial domain without extra bandwidth expansion or transmit

power. In order to exploit the benefits of MIMO system, transmit beamforming (precoding) is

widely implemented for enhancing the performance and increasing the system throughput. A

major drawback of most existing transmit beamforming techniques is that they require nearly

perfect knowledge of the channel at the transmitter, which is typically not available in prac-

tice. The channel imperfections could lead to severe performance degradation. Hence, robust

transmit beamforming design is required to provide robustness against the imperfect channel.

In this chapter, Section 2.1 characterizes the wireless channel, including a brief introduction of

the wireless propagation, the small-scale fading channel and the frequent-nonselective narrow-

band MIMO channel. As a powerful approach to exploit the benefits of MIMO channel, trans-

mit beamforming technique is introduced in Section 2.2. This section first introduces the system

model and transmit channel information acquisition in Subsection 2.2.1 and 2.2.2, respectively.

In the context of its structure, depicted in Subsection 2.2.3, the transmit beamforming design is

discussed in both perfect CSIT and imperfect CSIT cases.

2.1 Channel Characterizations

In wireless communication channel, the transmission path between transmitter and receiver

varies from simple line-of-sight to multiple paths induced by the reflection from multiple ran-

5
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dom scatters in the propagation environment. Since the combination of these paths creates a

multi-tap impulse response, the wireless channel is extremely random and therefore is often

characterized statistically. Under the time-varying wireless channel, it is critical to acquire

channel state information. Different from channel acquisition at receiver that could produce ac-

curate information by aiding pilots, transmit channel acquisition suffers information inaccuracy

because of the errors from reciprocity/feedback channel [1].

2.1.1 Wireless Propagation

In wireless propagation, a signal is transmitted through wireless channel and arrives at the

destination along multipath, arising from scattering, reflection, refraction, or dielectrics. The

signal power drops off due to two effects: large-scale propagation and small-scale propagation

[2]. In small-scale fading, the signal fades rapidly as the receiver moves, while the local average

signal changes much more gradually with distance in large-scale fading. Fig. 2.1 illustrates

large-scale and small-scale fading variations graphically.

Large-Scale Propagation

Large-Scale propagation captures the path loss and shadowing, where the average received sig-

nal power decreases logarithmically with distance [2]. The path loss is the difference between

the effective transmitted power and receive signal power, and represents the signal attenuation

as a positive quantity. On a log-log scale, the average large-scale path loss is a straight line

shown in Fig. 2.1. The shadowing is caused by large terrain features, such as small hills and

tall buildings over a long distance. It makes the main signal path from transmitter to receiver

obscured by reflection, scattering and diffraction, representing as a dash line in Fig. 2.1.

Small-Scale Propagation

Small-Scale propagation, or simply fading, captures the variation of amplitudes, phases, or

multipath delays of the signal over a short period of time or travel distance, so that large-scale

propagation or path loss effects may be ignored [2]. A number of signals (two or more) ar-

rive at receiver through different paths, known as multipath waves. Depending on their phase
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Figure 2.1: Illustration of path loss, large-scale and small-scale

and amplitude values, the received signals are combined constructively or destructively, result-

ing in the rapidly-changed signal strength, random frequency modulation and time dispersion,

graphically displayed as dot line in Fig. 2.1.

This thesis will focus on the small-scale channel characteristics, leaving the large-scale charac-

teristics to the references such as [3].

2.1.2 Small-Scale Fading Channel

As mentioned in previous subsection, multipath in the radio channel creates small-scale fading

which could be influenced by following factors [2]:

• Multipath propagation : The signal energy is dissipated in amplitude, phase, and time

because of the presence of reflecting objects and scatters which creates a constantly

changing environment. More specifically, the random phase and amplitude of the differ-

ent multipath components caused fluctuations in signal strength, thereby inducing small

scale fading, signal distortion, or both. Moreover, multipath propagation can lengthen
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the transmit time, resulting in inter symbol interference.

• Speed of the mobile : The relative motion between the base station and the mobile causes

that the path lengths traveling from source to mobile are different. It changes the phase

of the received signal with apparent change in frequency of a wave. This phenomenon

is known as the Doppler shift which could be positive or negative depending on whether

the mobile receiver is moving toward or away from the base station. Moreover, different

signal components with multiple Doppler shifts contribute to a single fading channel tap,

known as Doppler spread. In general, it is inversely proportional to coherence time that

characterizes the time varying nature of the frequency dispersiveness of channel in the

time domain. High mobility commonly results in large Doppler spread and fast channel

time variation, consequently with high temporal channel selectivity.

• Speed of surrounding objects : If the surrounding objects in the transmission channel are

in motion, a time varying Doppler shift will be induced on multipath components. This

effect dominates the small scale fading as long as the surrounding objects have a higher

rate than the mobile. Otherwise, it may be ignored and only the speed of the mobile is

taken into account.

• The transmission bandwidth of the signal : In wireless propagation, the transmitted signal

arrives via multiple paths. The identical signal received at the destination thus arrives at

different time with different angles of arrival. The difference between the arrival moment

of the first multipath component and the last one is called delay spread. The reciprocal

of the delay spread is an approximative measure of the coherence bandwidth of the chan-

nel. Both delay spread and coherence bandwidth describe the time-varying dispersive

nature of wireless propagation. If the transmission bandwidth excesses the coherence

bandwidth, an equalization is needed.

Depending on the relationship between signal parameters and channel parameters, the trans-

mitted signals will undergo different types of fading.
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Flat or frequency selective fading

If the channel coherence bandwidth is greater than the bandwidth of the transmitted signal,

the received signal undergoes flat fading, otherwise, frequency selective fading. The flat fad-

ing channel is an amplitude varying channel, and related to narrowband channel, where the

bandwidth of signal is narrow compared to the flat fading channel bandwidth. Under such

conditions, the spectral characteristics of the transmitted signal are preserved, but the power

of the received signal varies from time to time. On the other hand, the frequency-selective

fading channel is known as wideband channel, when the bandwidth of the signal is wider than

the channel coherence bandwidth. In this case, different frequency components of the signal

are affected independently, and all parts of the signal could not be simultaneously affected by

a deep fade. However, due to the dispersion of frequency selective fading, the signal energy

associated with each symbol will be spread out in time. The resulting transmitted symbols are

adjacent in time to interference with each other, knows as inter symbol interference.

Fast or slow fading

Depending on the relative changes between the transmitted signal and the channel, a channel

may be classified either as a fast fading or slow fading channel. In a fast fading channel, the

channel response changes rapidly within the symbol duration, where the change rate is mea-

sured by Doppler spread. Frequency dispersion is caused by high Doppler spread, leading to a

considerable variation in amplitude and phase of the transmitted signal. When the channel re-

sponse changes much slower than the transmitted signal, the channel is known as a slow fading

channel which implies that the Doppler spread of channel is much less than the bandwidth of

signal. The amplitude and phase change imposed by the channel therefore can be considered

roughly constant.

In this thesis, the slow fading narrowband channel is taken into account, which is a single-

tap, frequency nonselective fading channel. Each tap contains multiple elements between all

pairs of transmit-receive antenna, and the channel has the same response over the entire system

bandwidth. In the following subsection, a model of the frequency-flat narrowband MIMO

channel will be introduced.
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2.1.3 Narrowband MIMO Channel Model

The MIMO wireless channel is created by using multiple antennas at both the transmitter and

the receiver. It can be degenerated into the multiple-input and single-output (MISO) that equips

only one antenna at receiver and the single-input and multiple-output (SIMO) with a single

antenna at receiver. The channel contains multiple paths between the transmit and receive

antennas. In this thesis, each path is assumed as frequency-flat narrowband channel.

Consider a complex narrowband MIMO channel with N transmit antennas and M receive

antennas in Fig. 2.2, it can be presented as a matrix H of size M ×N

H =




h11 h12 . . . h1N

h21 h22 . . . h2N

...

hM1 hM2 . . . hMN




, (2.1)

in which hij indicates the channel from transmit antenna j to receive antenna i. The elements of

narrowband MIMO channel matrix are assumed to be independent and identically distributed

(i.i.d) [2]. Take H ∈ CM×N for example, at least M × N scatters are required to get the

i.i.d channel. In practice, however, because of insufficient spacing between antenna elements

and limited scattering in the environment, the fading is not always independent, causing the

correlation between each path [4]. In general, different assumptions about the channel matrix

H lead to different approaches to improve the system performance.

Consider the single-user narrowband MIMO wireless system, the base station equipped with

N transmit antennas communicates with single user which has M antennas at receiver. In

each time slot, the data vector x is transmitted into fading channel. The received signal can be

expressed as

y = Hx + n , (2.2)

where
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Figure 2.2: Wireless communication channel

• H ∈ CM×N presents the wireless channel, and is assumed as flat fading channel.

• x ∈ CN×1 contains the signal transmitted to wireless channel.

• y ∈ CN×1 contains the received signals at input of MRC receiver.

• n ∈ CN×1 is additive white Gaussian noise (AWGN) at receiver. Each element of n

is complex normally distributed with zero mean and covariance matrix σ2IM , i.e. n ∼
CN (0, σ2IM ).

The channel model in (2.2) indicates that the transmitted signal vector x is projected onto the

channel matrix H and therefore, the number of independent data streams that can be supported

must be at most equal to the rank of the channel matrix.

2.2 Transmit Beamforming Technique

Transmit antenna array system has the potential to promise higher data rates and improve link

reliability without consuming extra bandwidth and transmit power. Including MISO to MIMO

architectures, the following benefits are provided compared to SISO systems.

• Array gain: Array gain is available through processing at transmitter, resulting in an
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Gain over SISO Array/Diversity gain Multiplexing gain Interference reduction
MISO (HM×1)

Transmit diversity
Beamforming/Precoding

SDMA

√
√

√
MIMO (HM×N )

Transmit/Receive diversity
CCI nulling

SDMA
Spatial Multiplexing

√

√

√
√

Table 2.1: Key Benefits of Different Smart Antenna Architectures

increase of average receive SNR. Transmit array gain depends on the number of transmit

antennas, and can achieve N with perfect channel state information at transmitter.

• Diversity gain: Diversity gain relies on the independence of fading paths in time/ fre-

quency/ space, used to mitigate fading in wireless links. Spatial (antenna) diversity

is preferred over time/frequecny diversity due to no expenditure in transmission time

or bandwidth. Different from array gain, the spatial diversity gain is possible by us-

ing suitably-designed transmit signal, such as space-time coded signal [5, 6], precod-

ing/beamforming signal [7,8], and spatial division multiple access (SDMA) [9]. Given a

MIMO channel with N transmit antennas and M receive antennas, the spatial diversity

can achieve (N ×M) if each link of MIMO channel fades independently and transmit

signal is suitably constructed.

• Spatial multiplexing gain: Spatial multiplexing gain is realized by transmitting inde-

pendent signals to individual antennas. Under rich scattering channel environment, the

receiver can separate the different streams to yield a linear increase in capacity. Given a

MIMO channel with N transmit antennas and M receive antennas, MIMO channel can

offer a linear increase, min(N, M), in capacity without additional power and bandwidth.

• Interference reduction: With the help of multiple antennas, the interference can be re-

duced at both transmitter and receiver sides by using the co-channel interference nulling

techniques [9]. Exact knowledge of the channel is required to reduce interference at re-

ceive side. For transmitter, the interference energy can be minimized under the signal
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preprocessing scheme, such as SDMA [9].

Moreover, Table 2.1 summarizes the basic architectures with different algorithms. Note that the

array gain, diversity gain and interference reduction are provided by both MISO and MIMO

system, but multiplexing gain that increases the point-to-point throughput is only offered by

MIMO systems.

There are two main techniques used to exploit the benefits of MIMO system under transmit

antenna arrays:

• Space-time coding provides diversity gain in fading environment without any knowledge

of spatial channel at transmitter [6, 9–13].

• Transmit beamforming/precoding provides spatially matched transmission or mitigates

interference under perfect CSIT [7, 8, 14–20].

This thesis will only focus on the transmit beamforming technique, leaving the space-time

coding as reference [5, 21].

In this section, the configuration of MIMO system with precoding will be illustrated, followed

with the transmit channel acquisition and the beamforming structure. Finally, the design of

transmit beamforming will be discussed based on both perfect and imperfect CSIT scenarios.

2.2.1 System Model

In the context of the narrowband MIMO channel, a single data is exploited by Gaussian dis-

tributed codeword into a vector s and then is multiplied with a linear precoder C before being

transmitted through the flat fading MIMO channel, illustrated in Fig. 2.3. Based on (2.2), the

received signal now can be presented as

y = Hx + n = HCs + n , (2.3)

where
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n

H

s X ŝy

i.i.d

Gaussian code

Figure 2.3: Configuration of a system with linear precoding

• C ∈ CN×L denotes transmit beamforming matrix.

• s ∈ CL×1 represents the transmit data exploited by Gaussian distributed codeword.

The receiver is assumed to have perfect knowledge of beamforming matrix C and channel

information H (reasons referred to Subsection 2.2.2). Since it can maximize the signal to noise

ratio (SNR) at output of thermal, the maximal ratio combining (MRC) technique is used at

receiver. The average SNR at the output of MRC receiver can be expressed as

SNR =
E

[
(HCs)H(HCs)

]

E [nHn]
=

Es

N0
tr

{
CHHHHC

}
, (2.4)

where Es = E
[||s||2] denotes the average signal power.

Regarding the importance of CSIT to transmit beamforming design, the next subsection will

discuss the methods of channel acquisition at transmitter side.

2.2.2 Transmit Channel Acquisition

When a signal enters the wireless channel after leaving the transmitter, the receiver tries to

detect the channel-modified signal correctly based on channel estimates, meanwhile the trans-

mitter attempts to transmit data dependably according to channel conditions. In this case, the
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A B

B A

Figure 2.4: Reciprocity-based methods

system performance considerably depends on the channel information at receiver and transmit-

ter.

In general, the receiver can estimate the channel accurately. The common method for obtaining

channel estimates depends on training signals completely known at receiver, and estimates

the channel using a least square approach [5]. Alternatively, blind techniques without explicit

transmit signals estimate channel information based on second-order statistics or finite alphabet

modulus [22, 23]. A more promising method is the semi-blind method which couples training-

based and blind techniques for the unknown symbols [24].

Compared with the channel information obtained at receiver, it is difficult to guarantee the

channel accuracy at transmitter, because of the errors in time-varying forward channel and

limited-capacity feedback channel. Two general techniques are used in channel estimation at

transmitter: reciprocity and feedback.

Reciprocity-based method : The reciprocity principle suggests that forward channel from

antenna A to another B is identical to the reverse channel, which requires the same

frequency in both forward and reverse channels at the same time and the same antenna

locations. In a full-duplex system, this principle suggests that the transmitter at A can ob-

tain the forward channel from the reverse channel, which the receiver at A can measure,

as illustrated in Fig. 2.4 that the transmitter A can obtain the forward channel (A → B)

from the reverse channel (B → A).

In practice, channel acquisition based on reciprocity can be implemented in time-division-
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A B

Figure 2.5: Feedback-based methods

duplex (TDD) systems. In TDD systems, the forward and reverse channel is generally as-

sumed identically, with a negligible turn-around delay comparing with channel coherence

time. For frequency-diversion-duplex (FDD) systems, the frequency offset between the

forward and reverse links is much larger than the channel coherence bandwidth, which

makes the reciprocity principle not applicable in FDD systems [5].

Feedback-based method : The channel information can be obtained using feedback channel,

where channel information is measured at receiver B and resent to the transmitter A

over the reverse link, depicted in Fig. 2.5. Through feedback channel, the outdated

error occurs with large feedback delay between channel measurement at receive B and

transmitter A, as well as quantization error because of limited feedback channel capacity.

Feedback-based method can be applied in both TDD and FDD systems, but is more

commonly used in FDD system. Although methods of reducing feedback overhead are

of practical importance [25], it is not a focus of this thesis.

This thesis follows the assumption that imperfect CSIT is obtained while accurate CSI at re-

ceiver estimated. The models of channel uncertainties will be built up and the impact on trans-

mit beamforming design will be discussed in the following section.
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2.2.3 Transmit Beamforming Structure

Transmitter contains an encoder and a linear precoder, as shown in Fig. 2.6. The encoder

assumes no channel knowledge, and could include either a channel code, space-time code or

both [5]. On the other hand, the precoder that exploits the CSIT can be viewed a process-

ing block to enhance system performance based on the available CSIT. The details of these

processing blocks are discussed next.

Encoder Structure

The encoder intakes data bits and performs necessary coding for error correction, and then

maps the coded bits into vector symbols. There are two methods in the symbol-mapping block:

spatial multiplexing and space-time coding [5]:

• Spatial multiplexing: The output bits of channel coding are generated as independent bit

streams which are mapped into vector symbols and fed directly into the precoder.

• Space-time coding: The output bits of channel coding are mapped into symbols first.

These symbols are then processed in space-time fashion.

Note that these two approaches have the difference in the temporal dimension of the symbol-

level code. Using spatial multiplexing, the symbols are spread over the spatial dimension alone,

so that there is just one symbol fed into precoder block. Space-time coding, on the other

hand, spread symbols over both the spatial and the temporal dimensions. Therefore, the spatial

multiplexing can be considered as a special case of space-time coding with the block length of

one [5].

In this thesis, the encoder is predetermined and is not the design target. It is assumed that

the spatial multiplexing block spreads the output bits of channel coding by using a Gaussian-

distributed codeword with zero mean and unit covariance, referred as white multiplexing. In

the context of the system model (2.5), the covariance of the mapped symbol vector s can be
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Figure 2.6: A linear beamforming structure

expressed as

E
[
ssH

]
= Es IN , (2.5)

where the covariance matrix of codeword is diagonal matrix.

Linear Precoder Structure

The precoder is a separate transmit processing block from the output symbols of the encoder

block. A linear precoder combines input shaper and multimode beamformer with power allo-

cation. The SVD of beamforming matrix C can be written as

C = UcΣcVH
c , (2.6)

where the right singular vector Vc and the left Uc are orthogonal and unitary matrices. Note

that each column of Uc represents a beam direction (pattern), and the matrix Uc is also the

eigenvectors of CCH , which is often referred to eigen-beamforming with the corresponding

beam power Σ2
c . Independent from CSIT, the right singular vector Vc works as an input shaping

matrix and combines the output of encoder to feed into each beam at each time instant. The

optimal matrix of Vc is achieved when it is equal to the left singular vector of code covariance

[21]. The incoming vector-fed symbols then are allocated with the square singular values Σc

as beam power, and finally transmitted through left singular vector Uc, shown in Fig. 2.6.
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To conserve the total transmit power, the precoder must satisfy

tr{CCH} = 1 . (2.7)

It indicates that the sum of power over all beams is a constant. For the individual beam power

allocation, it could be different according to the SNR, the CSIT, and the design criterion.

Under the assumption that the covariance of encoder is identity, this thesis focuses on the linear

precoding design based on available CSIT. The next subsection designs the downlink beam-

former with perfect CSIT.

2.2.4 Transmit Beamforming With Perfect CSIT

Perfect CSIT not only increases channel capacity, enhances system reliability but also reduces

receiver complexity. According to the discussion in Subsection 2.2.3, the input shaping matrix

is determined by the input code alone without channel information, while the precoding matrix

including power allocation is determined by the CSIT. Moreover, in the special case of isotropic

input (2.5), the optimal Vc is an arbitrary unitary matrix and usually omitted [5]. Since the

input-shaping matrix does not involve in the power constraint (2.7), this subsection only focuses

on the designs of optimal precoding based on perfect CSIT.

Transmit Beamforming Matrix

Different from the input-shaping matrix, the beamforming matrix is a function of the CSIT. In

the following, the optimal beamforming solution are presented based on perfect CSIT.

Consider a MIMO channel with M × N channel gain matrix, shown in (2.1). Each chan-

nel realization is perfectly known at both transmitter and receiver. Taking the singular value

decomposition (SVD), it has

H = VhΣhUH
h , (2.8)

where Vh ∈ CM×M and Uh ∈ CN×N are unitary matrix with VhVH
h = IM and UhUH

h =
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IN , Σh ∈ CM×N is a diagonal matrix with singular values of H, which is the square root of

its corresponding eigenvalue of HHH.

The optimal beam direction for all criteria are matched to the right singular vector of channel

matrix [8, 16, 26–31]

Uc = Uh . (2.9)

In this case, the input symbol vector is decoupled into orthogonal spatial modes of MIMO

channel. On the other hand, the optimal power allocation has multiple solution. For example, to

maximize the average SNR, the optimal power solution is to allocate all power on the strongest

eigen-mode of the channel [16, 26, 27]. It has the same power solution when minimizing the

mean square error (MMSE) between transmit signals and receive signals [28]. Under the system

ergodic capacity criteria, the transmit power is allocated in water-filling fashion, that is, higher

power is loaded on the direction that has larger eigenvalue, and reduced or no power in the

weak directions [8, 29–31].

2.2.5 Transmit Beamforming With Imperfect CSIT

In real scenarios, perfect channel information is not available at transmitter side because of

the error induced by limited feedback resources, delay or quantization, which leads to a severe

system performance degradation. It motivates the effort to develop a robust precoding scheme

against the channel imperfection. Before the development of robust transmit beamformer, the

imperfect channel model will be outlined first. The solution of precoding with imperfect CSIT

will be discussed with respect to the methods of addressing the channel uncertainty.

Imperfect Channel Model

Since the error in channel estimate at transmitter is inevitable, it is necessary to modify these

uncertainty before exploiting the benefits of MIMO systems. Different sources of error can

be identified depending on the CSI acquisition methods. In case of exploiting the channel

reciprocity, the error from the uplink estimates is usually considered as Gaussian-distributed
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random variable. When a feedback channel is used, additional errors induced by quantization

are assumed as uniformly-distributed random variables. More details are outlined as follows:

• Error in TDD systems: The TDD system allows transmitter to estimate the users’ chan-

nels on the uplink channel. As the channel is time varying, outdated channel knowledge

could be obtained, introducing channel uncertainties. When the channel of each user

is uncorrelated, each element of the error matrix can be considered as independent and

Gaussian distributed random variable with zero mean and a given variance. Over corre-

lated uplink channel, the error can be identified as jointly Gaussian with zero mean and

a given covariance matrix.

• Error in FDD systems: For FDD systems, the transmitter could estimate CSIT through

feedback channel. However, the feedback channel with finite capacity has to quantize the

channel response, resulting in the imperfection. The quantization methods include scalar

quantized and vector quantized. In scalar quantization, the real and imaginary parts of

all the components in channel matrix are quantized uniformly with a given quantization

step. Accordingly, the errors can be determined as independent and uniformly distributed

random variables on a symmetric bounded interval. On the other hand, in the vector

quantization1, each estimated channel with its own uncertainty is determined based on

the quantized index, corresponding to a given index region. And the error could be

uniformly distributed over the ellipsoid volume.

Over the flat-fading narrowband wireless MIMO channel (illustrated in Subsection 2.1.3), one

only has access to imperfect channel estimate, Ĥ ∈ CM×N , that can be modeled as follows,

H = Ĥ + E , (2.10)

where E ∈ CM×N is the error in channel estimates. To address the channel uncertainty, current
1Consider a space with N points {Hi}, each one representing the region given by Hi + Ri, the ith index

corresponding to Hi is sent (the number of bits for the feedback is equal to log2(N)). Each regionRi is polyhedron
defined by the intersection of a finite number of half-spaces. In this case, the uncertainty regions depend on the
channel estimates
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robust precoding strategies can be classified into the deterministic, statistical and probabilistic

approaches. The corresponding solutions will be discussed as follows.

Deterministic Approach

The deterministic approach considers the error belongs to a predefined uncertainty region and

tries to provide the best performance in the worst-case CSI mismatch scenario. Consequently,

it is also called as worst-case approach. A common assumption is that the error is bounded in a

spherical region [12, 32–44],

||E||F ≤ ξ , (2.11)

where || · ||F represents the Frobenius norm operation, and ξ is a pre-specified bound of un-

certainty region. According to the distribution of errors, the size of uncertainty region is deter-

mined by the inverse cumulative density function of the probability that provides the required

QoS to the user [16]. Regarding to imperfect channel model in (2.10), the estimated channel Ĥ

perturbs within an ellipsoid centered at a nominal channel H.

Based on the assumption of deterministic error (2.11), the worst-case technique is used to opti-

mize the worst system performance. The optimal transmit directions are just the right singular

vector of the nominal channel H [12, 32–44]. This means that the eigenmode transmission

is still optimal for the worst-case design [27]. Consequently, the power allocation problem is

simplified to the scalar power problem, and its optimal solution is designed based on multiple

criteria. For instance, [35] proposes a robust transmit beamforming design that embraces chan-

nel uncertainties both in the array response and the covariance. As for MIMO channel, [36]

minimizes the worst-case MSE with a linear equalization. Moreover, in multi-user MIMO sys-

tems, the worst-case approach is implemented to minimize the total transmit power [37], and to

optimize the QoS requirements, including minimizing MSE [34], maximizing SINR [38–41],

maximizing SLNR [12, 42–44]. Note that although the above solutions of optimal power allo-

cation could be different, they are consistent with the water-filling fashion.

In the worst-case approach, since the error are norm-bounded in region, the system performance

is optimized according to the worst scenarios, no statistics of the error in CSIT is required to
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be known. However, in wireless communication, it is not practical to use deterministic upper

bounds on the norm of the channel errors. Furthermore, the worst-case approach maximizes the

system performance based on the extreme cases. In this case, only conservative results could

be achieved since the worst-case scenarios occurs with a very low probability.

Statistical Approach

The statistical approach addresses the error by using statistical models for the channel or mis-

match between the presumed and actual transmitter CSI. In this approach, the channel uncer-

tainty is assumed as Gaussian distributed, and its mean or covariance is known at transmitter.

The optimal power allocation still follows the water-filling fashion, that is, the weakest eigen-

mode of CCH may be dropped to ensure its positive semi-definiteness, and the total transmit

power is re-allocated among the remaining modes [8, 14, 15, 28–30, 45–52]. The optimal beam

directions, on the other hand, depend on either mean, covariance or both under different criteria.

Taking BER criteria for example, the optimal beam directions depend on both the mean and

covariance, but as the SNR increase, they asymptotically depend on the covariance alone [15,

21,45,48,49]. For other criteria, the optimal beamforming matrix is approximately matched to

the eigenvectors of the average channel gain, including optimizing the ergodic capacity [8, 29,

45], the received SNR [14,30,46,47], the MMSE [28] and the average SINR for the multi-user

case [14, 28, 50–52].

However, this approach is model based, and therefore, can suffer from mismodeling of the CSIT

or channel statistics. For example, in real scenario, the accurate channel statistics is hard to be

worked out, and mismatch could exist. Based on over-predicted or under-predicted channel

statistics, the statistical approach could cause the performance degradation [16]. Moreover,

this approach could break down if a persisting serious error occurs, because it only focuses the

long-term performance without paying attention to extreme scenarios.

Probabilistic Approach

The probabilistic approach assumes that the imperfect channel estimate is deterministic with
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Gaussian-distributed error. The impact of CSIT error on system performance is considered

proportionally. More specifically, this approach measures the channel uncertainties by using

the outage probability, i.e., the probability that the performance degradation caused by the

error falls below a certain threshold. This approach is related to the statistical approach, which

assumes that the covariance of the mismatched error matrix is known at transmitter.

Under the above assumption, the eigen-mode transmission is still the optimal solution for all

criteria over single-user MIMO systems [41, 53–61]. However, the optimal power allocation

is quite different from that obtained by the aforementioned approaches, which depends on the

statistics of error matrix and the design criteria as well as the system configuration. Under the

assumption of the identically and independently Gaussian-distributed CSIT errors, the outage

probability specification for MISO system contains a single/mixture Gaussian distribution, and

the solution is obtained by solving a convex optimization problem as long as that the outage

probability specification is replaced by a deterministic form [41, 53–57, 61]. Note that such a

transformation is easily achieved by using Markov’s inequality or Q-function [1]. For MIMO

system, the probabilistic approach involves a mixture of noncentral χ2 distribution in the single

user case [59, 60], and a mixture of noncentral Wishart distribution in the multi-user case [62],

which causes the difficulty in obtaining the optimal solution of power allocation.

In the following chapters, the robust precoding for the single-user MIMO system will be con-

sidered first, followed by the devolvement of robust adaptive modulation scheme. Finally,

the robust downlink beamforming matrix is designed for both the single-stream-per-user and

multiple-stream-per-user multi-user MIMO systems.
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Chapter 3
Probabilistic-Constrained

Beamforming Design for Downlink
Single-User MIMO Systems

Transmit beamforming (precoding) is a powerful technique for enhancing performance of wire-

less multiantenna communication systems. Standard transmit beamformers require perfect

channel information at transmitter and are sensitive to errors in channel estimation. In prac-

tice, such channel imperfections are inevitable at transmitter due to the error induced by finite

feedback resource, quantization and outdated information, leading to a significant performance

degradation. Hence, it motivates robust design against channel imperfections. This chapter

proposes an outage probability-based approach to maximize the average SNR and take the

extreme conditions into account using the probability with which they may occur. Simulation

results show that the proposed beamformer offers higher robustness against channel uncertainty

than several popular transmit beamformers.

3.1 Introduction

Chapter 2 suggested that the transmit beamformer can further strengthen advantages of MIMO

systems, such as higher data rates, better quality of service (QoS) and larger coverage areas, by

exploiting CSIT. In the absence of accurate CSIT, the system performance degrades severely

when non-robust beamformer is implemented. Hence, robustness is a crucial issue for transmit

beamforming design.

Current robust transmit beamforming designs can be categorized into two classes with re-

spect to imperfect CSI characterization: the deterministic (or worst-case) and stochastic ap-

proaches. The worst-case approach describes channel uncertainty in deterministic model with
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norm-bounded error. In this case, the robust design aims at optimizing the worst-case perfor-

mance, but leads to overly conservative results as the worst operational condition is rare. This

philosophy has been proposed in [63, 64], and applied to robust receive beamformer design

against mismatches in the array response and the covariance matrix [33, 34]. Based on imper-

fect CSIT, robust transmit beamforming can provide the optimum uniform power allocation

for point-to-point MIMO channel [16, 26, 27, 65–67], MISO broadcasting channel [37, 68]. In

the stochastic analysis, the channel is usually modeled as complex random matrix with nor-

mally distributed elements, with perfect knowledge of channel statistics at transmitter side.

Here, the transmit beamforming design focuses on the optimization of average system perfor-

mance without paying attention to the extreme error level. With the help of channel mean or

channel covariance, examples include maximizing the ergodic capacity of MIMO/MISO chan-

nel [8, 29, 30], minimizing symbol error rate (SER) [14, 15, 45, 48, 49], and minimizing mean

square error (MMSE) over linear transceiver scheme [28]. Recently, a related direction is the

outage probability-based approach which considers the extreme scenarios proportionally by

introducing probabilistic constraints on quality of service (QoS), including transceiver design

of MISO system [56–58], receive adaptive beamforming [55, 69, 70]. In the MISO case, the

probabilistic constraint only involves a single/mixture Gaussian distribution, because of single

antenna equipped at receiver. The underlying design problem is easily solved by the standard

convex tools as long as it is converted into a deterministic form [56–58]. However, the de-

sign becomes much complicated in MIMO systems, since the probability could be a mixture

of noncentral χ2-distribution. There is no analytical solution for the probability of outage to a

pre-specified threshold for MIMO case in the previous works.

This chapter introduces a probabilistic constraint into robust transmit beamforming design for

downlink single-user MIMO systems, with the following contributions:

• A robust transmit beamformer is developed to maximize the average received SNR per-

formance and ensure the robustness against channel imperfections by introducing the

outage probability-based approach. This probabilistic constraint considers the extreme

scenario proportionally by keeping a low probability of the received SNR being below
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an acceptable level.

• A deterministic form is obtained for the probabilistic constraint, which overcomes the

main challenge in the proposed beamforming design. In the context of MIMO system,

the outage probability involves the weighted noncentral χ2-distributed random variables,

which is more complicated compared to the MISO case where only Gaussian distribution

is regarded. The resulting robust design is solved through convex optimization methods.

• An outstanding average received SNR performance is achieved under the proposed robust

scheme. Furthermore, it also demonstrates a much broader tolerance range as well as

higher robustness against mismatched error variance

The chapter is organized as follows. Section 3.2 proposes an outage probability-based approach

which is formulated as a probabilistic-constrained optimization problem. Section 3.3 is devoted

to reformulation of the outage probability specification into a convex deterministic form. Sec-

tion 3.4 gives numerical results. Finally, Section 3.5 concludes this chapter.

3.2 Robust Design Based on Probabilistic Constrained Optimiza-

tion

This chapter considers the MIMO wireless communication system. Due to limited feedback

resources, delay or quantization errors, one has only access to imperfect channel information,

which could degrade the system performance. To tackle the performance degradation, a proba-

bilistic constraint approach is introduced to provide robustness against channel imperfections.

The proposed algorithm maximizes the average SNR while keeping the probability for SNR

being below a pre-specified threshold low. It has the advantage of achieving optimal overall

performance while providing quality control for the extreme case. In contrast to the worst-case

approach that focuses on the worst-case performance [16,26,27], the probablity constraint takes

the errors into account proportionally. On the other hand, the worst case scenario that is ignored

by the stochastic approach [14, 15, 71] is also considered in the proposed approach.
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Considering the MIMO channel imperfections model in (2.10)

H = Ĥ + E .

It is assumed that the error matrix E ∈ CM×N consists of i.i.d complex normally distributed en-

tries with zero mean and variance σ2
e , that is, eij ∼ CN (0, σ2

e), (i = 1, . . . , M, j = 1, . . . , N).

Hence, the received SNR in (2.4) becomes a function of the channel estimate Ĥ and the random

error E,

f(Ĥ,E) =
Es

N0
tr

{
CH

(
Ĥ + E

)H (
Ĥ + E

)
C

}
. (3.1)

The proposed design is to derive a precoding matrix C that maximize the average SNR and

keeps a low outage probability of the instantaneous SNR below an acceptable level. More

specifically, the robust beamformer can be achieved by solving the following probabilistic-

constrained quadratical optimization problem,

maximize
C

E
[
f(Ĥ,E)

]
, (3.2)

subject to Pr
{

f(Ĥ,E) ≤ γ0

}
≤ ε , (3.3)

tr
{
CCH

} ≤ 1 , (3.4)

where Pr{A} denotes the probability of the event A, and γ0 and ε are the pre-specified threshold

and outage probability, respectively. The reformulation of problem (3.2)-(3.4) will be discussed

as follows.

Consider the eigen decomposition of ĤHĤ and CHC, we have

ĤHĤ = ÛhD̂hÛH
h , (3.5)

CCH = UcDcUH
c , (3.6)

where the diagonal matrix Dc = diag(d1, d2, . . . , dN ) where d1 ≥ d2 ≥ dN ≥ 0 consists of

eigenvalues of CHC in descending order. The corresponding eigenvectors are columns of the
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unitary matrix Uc. The matrices D̂h = diag(D̂1, . . . , D̂N ) and Ûh are similarly defined.

3.2.1 Objective Function

Given the channel estimate Ĥ, the objective function is obtained by taking expectation of

f(Ĥ,E) with respect to the random error E, such as

E
[
f(Ĥ,E)

]
=

Es

N0
tr

{
UcDcUH

c

(
ÛhD̂hÛH

h + Mσ2
eIN

)}
. (3.7)

It is well established in the literature [26,31] that a function with a structure similar to (3.7) can

be maximized over the eigen-modes, Uc, and the power allocated in each mode, Dc, separately.

In [21, 27], it is suggested that the eigen-mode transmission is optimal for SNR criteria. More

specifically, given the matrix Ûh, the optimal solution U∗
c satisfies the relation ÛhU∗

c = IN .

Inserting the optimal solution in (3.7), the objective function can be expressed as

E
[
f(Ĥ,E)

]
= E [f(Dc)] =

Es

N0
tr

{
Dc(D̂h + Mσ2

eIN )
}

. (3.8)

Note that the objective function depends on CCH only through its eigenvalues. Hence, the

design of the beamforming matrix becomes a power allocation problem.

3.2.2 Probabilistic Constraint

To mitigate the impact of large errors, the system performance is guaranteed by keeping the a

low probability that SNR falls below an acceptable level. Applying the eigen decomposition

(3.5) and (3.6), the randomly varied SNR in (3.3) can be simplified as

f(Ĥ,E) =
Es

N0

N∑

i=1

diZi , (3.9)

which is a weighted sum of independent noncentral χ2
ni

(δi)-distributed random variables Zi,

i = 1, . . . , N . For each random variable Zi ∼ χ2
ni

(δi), the noncentrality parameter is δi =

h̃H
i h̃i and the degree of freedom is ni = 2M . The vector h̃i ∈ CM×1 represents the i-th
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column of the matrix H̃ = ĤUc. The derivation of (3.9) is provided in Appendix A.

3.2.3 Probabilistic Constrained Optimization

Based on the average SNR (3.8) and the compact expression (3.9), the proposed beamforming

design (3.2)-(3.4) can be reformulated as the following probabilistic constrained optimization

problem

maximize
Dc

tr
{
Dc

(
D̂h + Mσ2

eI
)}

, (3.10)

subject to Pr

{
N∑

i=1

diZi ≤ γ̃0

}
≤ ε , (3.11)

tr {Dc} ≤ 1 , (3.12)

di ≥ 0 , i = 1, . . . , N , (3.13)

where γ̃0 = γ0(Es
N0

σ2
e)
−1, and (3.12) is a convex constraint derived from the power constraint

tr{CCH} ≤ 1 .

3.3 Reformulation of Probabilistic Constraint

The major challenge in (3.10)-(3.13) is to covert the probabilistic constraint (3.11) into a de-

terministic term, so that the optimum solution can be efficiently computed by standard tools

of mathematical programming. When the probabilistic constraint involves linear combination

of normally distributed random variables, it can be reformulated as convex constraint [72].

However, (3.11) involves a mixture of weighted noncentral χ2 distributed random variables.

In the following, the probabilistic constraint (3.11) will be replaced by a deterministic convex

constraint. Consequently, the original problem (3.10)-(3.13) can be reformulated as convex

optimization problem.
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Proposition: The outage probability constraint (3.11) can be replaced by the following convex

constraint
N∏

i=1

(
1
di

[
γ̃0/2

1 + δi/ni

])
≤ ε , (3.14)

where γ̃0 = γ0(Es
N0

σ2
e)
−1. If (3.14) holds, then (3.11) holds.

Proof: To decouple the design parameter di, the independence of Zi is exploited. Define the

event

Ai = {diZi ≤ γ̃0} , (3.15)

and

A =

{
N∑

i=1

diZi ≤ γ̃0

}
. (3.16)

By definition, A is a subset of the intersection of Ai (i = 1, . . . , N), that is

A ⊂ {A1 ∩ A2 ∩ . . . ∩ AN} , (3.17)

leading to the following inequality

Pr {A} ≤
N∏

i=1

Pr{Ai} . (3.18)

The event B decouples the random variables Zis so that the probability of event Ai depends

only on the noncentral χ2
ni

(δi)-distribution.

According to [73], the noncentral χ2
ni

(δi) distribution can be approximated by a central χ2

distribution as

Pr
{

χ2
ni

(δi) ≤ γ̃0

di

}
≈ Pr

{
χ2

ni
≤ γ̃0/di

1 + δi/ni

}
. (3.19)

Let

x′ =
γ̃0/di

1 + δi/ni
, (3.20)

which is determined by the SNR threshold γ̃0, estimated channel and the number of receive
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antenna M . Recall (3.19), we have

Pr
{
χ2

ni
≤ x′

}
= 1− Pr

{
χ2

ni
≥ x′

}

= 1−
∫ ∞

x′

2−ni/2

Γ(ni/2)
t′

ni
2
−1e−

t′
2 dt ′ (3.21)

Replacing the variable t′ = 2t, (3.21) can be further expressed as

Pr
{
χ2

ni
≤ x′

}
= 1− 1

Γ(ni/2)

∫ ∞

x′
2

t
ni
2
−1e−tdt

= 1− 1
Γ(ni/2)

Γ
(

ni

2
,
x′

2

)
, (3.22)

where Γ(a, x) denotes the incomplete gamma function, that is,

Γ(a, x) =
∫ ∞

x
ta−1e−tdt ,

namely [74], ∫ ∞

x
e−tpdt =

1
p
Γ

(
1
p
, xp

)
. (3.23)

Consequently, changing the variables

1/p = ni/2 = M , x = (x′/2)1/p , (3.24)

(3.22) can be reformulated as

Pr
{
χ2

ni
≤ x′

}
= 1− p

Γ(1/p)

∫ ∞

x
e−tpdt

= 1− 1
Γ(1 + 1/p)

∫ ∞

x
e−tpdt . (3.25)

Note that the property of gamma function yΓ(y) = Γ(y + 1) (y > 0) leads to replacing

p/Γ(1/p) with 1/Γ(1 + 1/p) in (3.25).
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Based on Appendix C, the upper bound of (3.19) can be expressed as

Pr
{

χ2
ni
≤ γ̃0/di

1 + δi/ni

}
<

(
1− exp

{
− γ̃0/di

2(1 + δi/ni)

})ni
2

. (3.26)

Let

f(x) = x− (1− e−x) , x ≥ 0 . (3.27)

Taking derivative with respect to x, it has

d

dx
f(x) = 1− e−x ≥ 0 , x ≥ 0 . (3.28)

Therefore, f(x) is a monotonic nondecreasing function for x ≥ 0. Furthermore, at x = 0,

f(0) = 0− (1− 1) = 0. Thus, the inequality is obtained as follows

(
1− e−x

) ≤ x , x > 0 . (3.29)

The inequality with positive exponent a > 0 on both sides is also valid, such as

(
1− e−x

)a ≤ xa , (3.30)

it immediately leads to

(
1− exp

{
− γ̃/di

2(1 + δi/ni)

})ni
2

≤
(

γ̃/di

2(1 + δi/ni)

)ni
2

(3.31)

by replacing x in (3.30) with γ̃0/di

2(1+δi/ni)
, and replacing a with ni

2 = M .

Combing the inequalities (3.19) (3.26) and (3.31), the following inequality is obtained

Pr
{
χ2

ni
≤ γ̃0

} ≤
(

1
di

[
γ̃0/2

1 + δi/ni

])
. (3.32)

According to (3.18) and (3.32), it is concluded that the outage probability constraint (3.11) is

satisfied if the deterministic constraint (3.14) is satisfied.
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Moreover, the constraint (3.14) can be represented as

([
γ̃0/2

1 + δi/ni

])
≤ det (Dc)

1/M ε . (3.33)

Since the n-th root determinant of semidefinite matrix is concave, it can be easily concluded

that (3.33) is convex.

Remark 1 The upper bound on the specification (3.11) is obtained by implementing the sharp

upper bound of incompletely Gamma distribution. Hence, the deterministic constraint (3.14) is

a conservative approximation to (3.11).

Remark 2 The approximation of the noncentral χ2
ni

(δi)-distribution through the central χ2
ni

-

distribution is most accurate when the ratio between the noncentrality parameter and degrees

of freedom is less than 0.2 [73]. For the proposed beamformer where δi = h̃H
i h̃/σ2

e and

ni = 2M , it corresponds to large estimation error for a fixed number of receive antennas.

Therefore, in critical situations, the QoS is well controlled by the approximate deterministic

convex constraint (3.14).

Remark 3 The inequality (3.14) is not convex, when di = 0 in (3.14). In practice, di = 0 can be

a extreme small power and ignored as zero. Thus, the convex form (3.33) can be implemented

in (3.10)-(3.13) instead of (3.14).

Replacing the outage probability specification (3.11) with the deterministic constraint (3.14),

the original problem is transformed to the following convex optimization problem with respect

to the design parameter Dc,

maximize
Dc

tr
{
Dc

(
D̂h + Mσ2

eIN

)}
, (3.34)

subject to
N∏

i=1

(
1
di

[
γ̃0

2(1 + δi/ni)

])ni/2

≤ ε , (3.35)

tr {Dc} ≤ 1 , (3.36)
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Figure 3.1: Average SNR vs. error variance σ2
e over i.i.d channel

di ≥ 0 , i = 1, . . . , N , (3.37)

which can be efficiently solved by standard tools of mathematical programming.

3.4 Simulation

In this section, numerical investigation of the proposed beamformer is presented under various

scenarios. A single-user MIMO system with N = 4 transmit antennas and M = 3 receive

antennas is considered. For comparison, standard designs for perfect channel information at

transmitter including the conventional one-directional beamformer, equal-power-loading beam-

former [5] and the robust minimax beamformer [26] are applied to the same batch of data. Note

that the worst-case approach [26] is chosen because it uses the same type of channel informa-

tion.
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Figure 3.2: (1− ε) vs. error variance over i.i.d channel

The simulation will be carried out for classical i.i.d channel and correlated fading channel. In

addition, the impact of mismatch error variance σ2
e on the proposed algorithm is numerically

investigated. Each realization performs 1000 Monte Carlo trials. Without any loss of generality,

the assumption for simulation are follows:

• Parameters in outage probability specification: The probabilistic constraint is introduced

to keep a low outage probability of SNR being below an acceptable level. In this case,

the outage probability ε should be set at low level, such as ε = 10%. Since the received

SNR is normalized by the variance of channel, the normalized SNR threshold γ̃0 should

set as high as possible, such as γ̃0 = 0.9 in all experiments.

• For simplicity, the variance of error is normalized by the variance of channel. The entries

in the error matrix E are i.i.d zero mean complex Gaussian distribution with variance σ2
e .

In the simulation, the normalized variance of error is varied from 0 to 1 with scale 0.05.
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Figure 3.3: Histogram of normalized SNR for σ2
e = 0.2, 0.5, 0.9 over i.i.d channel

Classical i.i.d Channel

The classical i.i.d channel is modeled as independent circularly symmetric complex Gaussian

random variables with zero mean and unit variance.

Fig. 3.1 shows the performance of average SNR versus noise over i.i.d channel. With increas-

ing noise level, the SNR performances of all the beamformers have degradation. The proposed

beamformer with the worst-case design and equal-power-loading beamformers perform sim-

ilarly since the theoretical eigenvalues of channel covariance are equally distributed over the

i.i.d channel. While, the one-directional beamformer exploits only one channel eigenmode and

degrades rapidly with increasing channel errors.
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Figure 3.4: Average SNR vs. error variance σ2
e over correlated fading channel with spread

angle δθ = 5◦

The empirical outage probability that the output SNR exceeds the pre-specified threshold is

shown in Fig. 3.2. The proposed algorithm keeps the target SNR at a probability larger than

98% over the entire error ranges. On the other hand, the worst-case approach provides robust-

ness over 0 ≤ σ2
e ≤ 0.7, however, breaks down for the large noise variance region.

To investigate the behavior of the proposed and worst-case beamformers, the histograms of the

normalized SNRs are shown in Fig. 3.3 with three noise variance, that is, σ2
e = 0.2, 0.5, 0.9. At

small σ2
e , both approaches have similar distribution entirely above the threshold 0.9. In medium

and high σ2
e cases, the worst-case beamformer trends to concentrate towards the threshold,

while the proposed beamformer has similar distribution as the small σ2
e case. In practice, the

channel uncertainty is not deterministic but randomly distributed, it is reasonable to measure

the imperfection by using the proposed approach.

Correlated Fading Channel
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Figure 3.5: (1−ε) vs. error variance over correlated fading channel with spread angle δθ = 5◦

Under the condition of rich scatter environment at receiver side or inequality spaced transmit

antennas, the correlated fading channel will occur. The channel is generated according to ”One-

Ring” model. Let λ be the wavelength of a narrow-band signal, d the antenna spacing, and δθ

the angle spread (details in Appendix D). We assumed that the angle of arrival is perpendicular

to the transmitter antenna array, for small angle spread, the transmit correlation is calculated

based on (D.2) with the condition that d = 0.5λ and δθ = 5◦, 25◦. Note that larger angle of

spread leads to less correlation and better channels.

Fig. 3.4, 3.5 and 3.6 present the δθ = 5◦ case with the true eigenvalues {0.9546, 0.0452, 0.0002}.

In Fig. 3.4, the probabilistic constraint approach provides the best performance of output SNR,

especially in high error level. For large error variance, such as σ2
e > 0.8, the gap between

the proposed approach and worst-case approach can be as large as 1.5 dB. With small spread

angle where the channel energy concentrates on one eigenmode, the performance of worst-

case approach and one-directional approach are similar, while the equal-power-loading scheme
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Figure 3.6: Histogram of normalized SNR for σ2
e = 0.2, 0.5, 0.9 over correlated fading chan-

nel with spread angle δθ = 5◦

performs worst.

Furthermore, Fig. 3.5 shows that the proposed algorithm always satisfies the probabilistic con-

straint and guarantees QoS at more than 98%. In contrast, the worst-case design significantly

degrades with increased error level. The largest gap between them can be achieved 70% at

σ2
e = 0.9. It can be consequently observed in Fig. 3.6 that the normalized SNR of the proposed

approach is steadily distributed above γ̃0 = 0.9 while the histogram of worst-case approach

rapidly shift to left with increasing σ2
e .

Simulation results obtained from δθ = 25◦ are presented in Fig. 3.7, 3.8 and 3.9. The corre-
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Figure 3.7: Average SNR vs. error variance σ2
e over over correlated fading channel with

spread angle δθ = 25◦

sponding eigenvalues are {0.4474, 0.4351, 0.1137} with more equally spread channel energy.

More precisely, in the small σ2
e region, the proposed beamformer has similar performance as the

worst-case and one-directional. With the increased σ2
e , the curve of one-directional degrades

while the worst-case beamformer trends to be the same as equal-power-loading. Although the

performance proposed beamformer degrades with increasing error level, but still outperforms

the worst-case and other two designs. Similarly to the pervious two scenarios, the probabilistic

constraint approach provides satisfying performance over the entire uncertainty region, while

the worst-case approach is much more sensitive to the random-distributed error with large vari-

ance.

Performance for Mismatch Error Variance

In the proposed approach, the variance of channel estimates error is assumed to be known.

In practice, the channel uncertainty is predicted according to the channel estimates and the
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nominal channel. However, this predicted error variance may have uncertainty as well. To get

further sight of the robustness in proposed beamformer, an investigation is processed under a

misspecified noise variance in estimated σ2
e . The correlated fading is also generated by using

(2.6) with σθ = 25◦. The robustness in proposed beamformer is shown in three scenarios σ2
e :

1. the true noise variance σ2
e

2. mismatched noise variance σ2
e,mis1 = σ2

e + ∆e,

3. mismatched noise variance σ2
e,mis2 = σ2

e −∆e,

Note that the deterministic mismatch ∆e = 0.2 is large relative to the considered range σ2
e ∈

[0.25, 0.75].

As observed from Fig. 3.10, the proposed beamformer has the overall best performance under
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nel with spread angle δθ = 25◦

perfect knowledge of error variance σ2
e , while followed by the curve associated with σ2

e,mis2 and

then with σ2
e,mis1. The difference between these three cases becomes remarkable for σ2

e > 0.65,

with twice degradation caused by σ2
e,mis1 than that by σ2

e,mis2. It is because that the normalized

threshold in (3.35) γ̃0 = γ0(Es
N0

σ2
e)
−1 only depends on the assumed error variance, which leads

to the following relationship of the implemented threshold among three cases

γ̃mis2 = γ0

(
Es

N0
(σ2

e + ∆e)
)−1

< γ̃0 < γ0

(
Es

N0
(σ2

e −∆e)
)−1

. (3.38)

With the mismatch ∆e = 0.2 case, the assumed threshold γ̃ is smaller than the true thresh-

old γ̃mis1, and leads to a tighter constraint and a better QoS control. But it also reduces the
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e −∆e, where ∆e = 0.2.

feasibility set of the optimization problem (3.34)-(3.37). In this case, the objective function

becomes worse with the reduced feasibility set, and consequently the optimal solution may not

be achieved. On the other hand, replacing γ̃0 with a small threshold γ̃mis2 relaxes the constraint

(3.37) and QoS control, which has lager impact on the algorithm shown in Fig. 3.10.

The performance of the worst-case design against mismatched error variance is also illustrated

in Fig. 3.10. The behavior of worst-case approach are similar as the proposed, that is, σ2
e,mis2

lies between the best performance from perfect case σ2
e and the worst performance from σ2

e,mis1.

At σ2
e = 0.7, the SNR gap between the perfect and σ2

e,mis2 is ∆SNRprob ≈ 0.42 dB for the

proposed approach, and ∆SNRworst ≈ 0.6 dB for the worst-case approach, respectively. Over

the entire observed region, since the performance of the latter one degrades 50% more than the

former, the proposed beamformer is more robust to mismatched noise level.
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3.5 Conclusion

In this chapter, a novel transmit beamforming design is proposed for single-user MIMO com-

munication systems, which maximizes the average received SNR and guarantees the robust-

ness against channel imperfections. The proposed beamformer optimizes average performance

as well as proportionally considers worst-case scenarios, which is more reasonable than the

statistic-based beamformer and is less conservative than the worse-case beamformer. The un-

derlying design is formulated as a probabilistic-constrained optimization problem by introduc-

ing an outage probability specification for received SNR. The main challenge of the optimiza-

tion problem is to find a deterministic form for probabilistic constraint. Under the assumption

that the channel estimate error is complex Gaussian distributed, the probabilistic constraint was

transformed into a convex one. The resulting convex optimization was efficiently solved by

modern software package, such as cvx [75].

Simulation results show that the proposed beamformer provides the best performance com-

pared to the popular maximin beamformer and outage probability are always well controlled.

Compared to the worst-case beamformer, the proposed beamformer has a much broader error-

tolerance range and more robustness against error variance misspecification. The proposed

algorithm obtains the largest gain when the channel is highly correlated. More importantly, the

computational complexity of the probabilistic constraint is similar to the minimax approach.

Given its superior overall performance and significantly improved robustness, the probabilis-

tic constraint beamformer provides an attractive alternative to existing transmit beamforming

design under imperfect channel information.
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Chapter 4
Robust Adaptive Modulation for

Downlink Single-User MIMO Systems

Adaptive modulation could enable a spectrally-efficient transmission by adapting transmission

parameters to a time-varying MIMO channel. Perfect channel information is crucial to adaptive

modulation scheme, which is typically not available. To enhance the robustness against chan-

nel imperfections, an outage probability specification is introduced as a tight BER constraint

by keeping the probability that SNR becomes smaller than a pre-specified threshold at a low

level. Under such a constraint, the proposed scheme maximizes the transmission rate by taking

advantage of transmit beamforming. Simulation results demonstrate that the proposed scheme

offers higher robustness and transmission rate than several popular modulation schemes.

4.1 Introduction

Adaptive modulation has the potential to increase system throughput considerably over time-

varying MIMO channels by adapting transmitter parameters to maintain acceptable BER per-

formance [76]. On the other hand, transmit beamforming as an effective fading counter pro-

vides antenna diversity gain to further enhance the performance of wireless communication as

well as relax the size and cost limitation of mobile units [5].

CSIT is crucial to an adaptive modulation scheme, where the transmission rate can be adapted

to achieve an acceptable average BER performance. However, the performance of adaptive

modulation could degrade significantly because only imperfect channel information is available

at transmitter side [15]. This has motivated many efforts to develop robust adaptive modulation

schemes that are robust against channel imperfections.
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Current robust schemes adapt the transmission rate while maintaining the target average BER

performance over MIMO channels. The average BER constraint consists of constellation

size and instantaneous SNR, which is difficult to formulate analytically because of Gaussian-

distributed errors in the CSIT. Thus, the existing robust schemes approximate the average BER

by the lower bound of average BER or worst-case BER. Constrained by the lower bound of

average BER, the system throughput is maximized by introducing an artificial modifying factor

which holds the BER requirement at a lower level, so that the final transmission scheme can

meet the target BER performance [47, 71, 77, 78]. However, the modifying factor depends on

various system parameters. Without an analytical expression, this factor is determined empir-

ically by extensive Monte Carlo simulations. Beside extra computation, Monte Carlo simula-

tions could cause the factor underdetermined or overdetermined, inducing performance degra-

dation. Alternatively, [26] represents the BER constraint deterministically based on worst-case

SNR instead of taking the expectation of the BER with respect to random-varied errors, which

is equivalent to setting the worst BER to satisfy BER requirement. In such a setting, a con-

servative solution of system throughput is achieved as the worst operational condition is rare.

Thus, it is necessary to exploit an alternative constraint that can provide a tight BER bound to

maintain target BER performance with respect to channel imperfection.

This chapter develops robust adaptive modulation scheme for single-user MIMO systems with

imperfect channel information with the following contributions.

• The proposed approach maximizes the throughput based on the lower bound of the aver-

age BER while maintaining an acceptable BER performance by implementing an outage

probability-based approach. This approach provides a tight BER bound by keeping a low

probability that the received SNR falls below the pre-specified threshold.

• A deterministic form is given for the threshold in the outage probability specification.

The implementation of probabilistic constraint is much efficient without involving extra

Monte Carlo simulation.

• The proposed scheme offers a significant increase of the throughput by taking advantage
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of transmit beamforming. It provides the strongest robustness against the channel un-

certainties compared to the state-of-the-art robust adaptive modulation schemes, while

guaranteeing the target BER.

The chapter is organized as follows. Section 4.2 gives a brief description of adaptive modulation

scheme in the single-user MIMO system. Section 4.3 develops the proposed robust adaptive

modulation scheme. Simulation results are presented and discussed in Section 4.4. Finally, a

conclusion of this chapter is given in Section 4.5.

4.2 Adaptive Modulation Scheme

In this chapter, adaptive modulation scheme is considered in the context of a single-user MIMO

system, shown in Fig. 4.1. By taking advantage of favorable channel conditions, adaptive

modulation scheme balances the link budget through adaptive variation of transmitted power

level, transmission rate and BER, which can provide a higher average link spectral efficiency

as well as reliable data transmission.

The variation over time of the wireless channel makes the adaptation in wireless environment

difficult. The transmitter must obtain the knowledge of current channel state via feedback

channel in FDD systems, or from the reciprocity of the channel in TDD systems. However,

these estimates are not only perturbed by noise, but also becomes the outdated estimates over

the time-varying channel, which may degrades the system throughput significantly. Hence,

these errors should be taken into account.

Based on the error model (2.10),

H = Ĥ + E ,

the resulting receiver SNR has the same expression in (3.1), that is,

f(Ĥ,E) =
Es

N0
tr

{
CH(Ĥ + E)H(Ĥ + E)C

}
,
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Figure 4.1: System model of adaptive modulation scheme

which a function of channel estimate Ĥ and random error E. The function f(Ĥ,E) is a mixture

of noncentral χ2-distributed random variables with 2M degree of freedom [59].

Since the BER for an AWGN channel with MQAM modulation and ideal coherent phase de-

tection can be expressed as [76, 79]

BER
(
K, f(Ĥ,E)

)
≈ 0.2 exp

(
−1.5f(Ĥ,E)

2K − 1

)
, (4.1)

which is a function of receive SNR f(Ĥ,E) and constellation size K. In the fading channel

with nonadaptive transmission (constant transmit power and rate), the received SNR varies

with time. In this case, the BER is obtained by integrating the BER in AWGN over the fading

distribution p(f), which can be bounded as follows

BER(K) ≤
∫ ∞

0
BER

(
K, f(Ĥ,E)

)
p(f)df , (4.2)

where p(f) represents the probability density function of f(Ĥ,E). Equation (4.2) indicates

that given a constellation size, the average BER performance is determined by the instantaneous

channel condition, namely, the instantaneous SNR.

The goal of robust adaptive modulation scheme is to maximize the system transmission rate

while maintaining an acceptable average BER performance with imperfect channel informa-
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tion. Under an average BER constraint, the transmission system can send more data by taking

advantage of favorable channel conditions, otherwise set the data rate to be small or zero in

poor channel condition. More specifically, the optimum transmission rate K can be achieved

by solving the following problem

maximize K , (4.3)

subject to BER(K) ≤ eb , (4.4)

where the transmission rate K is parameterized by average BER and target BER, and (4.4)

represents BER constraint with a pre-specified target BER eb, usually set as 10−3.

However, the average BER constraint can not be calculated in closed form due to the mixture

of noncentral χ2-distributed random variables f(Ĥ,E). A common alternative is to take the

lower bound of average BER [47],

BER(K) ≥ BER
(
K,E

[
f(Ĥ,E)

])
= 0.2 exp

(
− 1.5 γ

2K − 1

)
, (4.5)

where γ presents the average SNR, γ = E
[
f(Ĥ,E)

]
.

To satisfy the BER constraint, BER (K, γ) ≤ eb, a candidate approximation K̂ for transmission

rate can be found as

K̂ = log2

(
1− 1.5 γ

ln(5eb)

)
, (4.6)

which is determined by the average SNR. However, the transmission system based on this

approximated rate (4.6) could lead to (4.4) being violated, because of the convexity of the

average BER function. According to Jensen’s inequality (shown in Appendix E), the maximum

constellation size (4.6) is larger than the one obtained through the average BER constraint (4.4),

that is

K ≤ K̂ ⇒ BER(K) ≤ BER(K̂) ,

In this case, the target BER performance can not be maintained, since BER(K̂) could be larger

than the target BER in some scenarios, that is, BER(K̂) ≥ eb. In [47], a modify factor is intro-
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duced to set a low BER target but involves extra Monte Carlo computations. Alternate method

is to maximize the system throughput based on the worst-case BER constraint which leads to

pessimistic result. Unlike existing methods [26, 47], a probabilistic constraint is introduced in

this chapter that works as an upper bound on BER(K̂), and consequently maintains the target

BER performance.

4.3 Robust Adaptive Modulation Design

To efficiently guarantee that the system performance meets the target BER performance, a

probabilistic constraint is presented instead of the average BER constraint (4.4). The proposed

scheme adopts a lower bound of average BER without involving integral calculations. The cor-

responding system throughput K̂ is maximized subject to an outage probability specification

that keeps the probability for SNR below a pre-specified threshold at a low level. It has the ad-

vantage of being an upper bound of BER(K̂), while maintaining the target BER performance.

Proposition: In the proposed adaptive modulation scheme design, the maximum transmission

rate can be achieved by solving the following probabilistic-constrained optimization problem

maximize K̂ = log2

(
1− 1.5 γ

ln(5eb)

)
, (4.7)

subject to Pr{f(Ĥ,E) ≤ γ0} ≤ ε , (4.8)

where Pr{A} denotes the probability of the event A, and ε is the outage probability. The prob-

abilistic constraint (4.8) with pre-specified threshold γ0 and low outage probability ε efficiently

bounds the average BER based on approximated transmission rate BER(K̂), if the threshold

γ0 is satisfied

γ0 ≥ − γ

ln 5eb
ln

(
1− ε

5eb − ε

)
. (4.9)

Proof : Defining α = 1.5/(2K̂−1), the average BER based on approximated transmission rate,
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BER(K̂), can be expressed as

BER(K̂) =
∫ ∞

0
0.2 exp

(
−αf(Ĥ,E)

)
p(f)df , (4.10)

with its upper bound

BER(K̂) = 0.2
[∫ γ0

0
exp

(
−αf(Ĥ,E)

)
p(f)df +

∫ ∞

γ0

exp
(
−αf(Ĥ,E)

)
p(f)df

]
,

≤ 0.2
[∫ γ0

0
p(f)df +

∫ ∞

γ0

exp
(
−f(Ĥ,E)γ0

)
p(f)df

]
,

= 0.2
[∫ γ0

0
p(f)df + e−αγ0

(
1−

∫ γ0

0
p(f)df

)]
,

= 0.2
[
(1− exp (−αγ0))

∫ γ0

0
p(f)df + exp(−αγ0)

]
. (4.11)

Note that the second step is possible because of the monotonically decreasing exponent function

with global maximum at γ = 0 in the region [0, γ0] and local maximum at f(Ĥ,E) = γ0 in

the region [γ0,∞). The inequality (4.11) indicates that BER(K̂) is efficiently bounded by the

probabilistic constraint (4.8). In order to maintain the target BER performance, BER(K̂) ≤ eb,

we have

BER(K̂) ≤ 0.2 [(1− exp(−αγ0)) ε + exp(−αγ0)] ≤ eb , (4.12)

which is equivalent to,

γ0 ≥ 1
α

ln
(

1− ε

5eb − ε

)
. (4.13)

Substituting (4.6) into (4.13), the inequality (4.9) can be obtained immediately . In this case,

the target BER performance is guaranteed, where BER(K̂) is efficiently bounded by the proba-

bilistic constraint (4.8) if the threshold satisfies (4.9). ¤

Remark : To guarantee the validity of (4.13) valid in practice, the threshold γ0 should be non-

negative,
1− ε

5eb − ε
≥ 1 , that is eb ≤ 0.2 .

In practice, the target BER is usually set lower than 10−3 [76]. Moreover, since the outage
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1. Set up the maximum allowed BER target eb, such as eb = 10−3,

2. Calculate the maximum average received SNR by taking advantage of the
transmit beamforming:

2.1 Given the channel estimates Ĥ and the statistics of the error matrix E,
apply robust transmit beamformer C into the proposed scheme,

2.2 Under power constraint and outage probability specification (4.8), the
maximum average received SNR, defined as γmax, is achieved.

The underlying optimization problem is now equivalent to (3.34)-(3.37), and
consequently the optimal beamforming matrix can be achieved through the
same processing [80].

3. Calculate the maximum achievable constellation size K̂ which fulfills
BER(γmax, K̂) ≤ eb .

Table 4.1: Steps of Robust Adaptive Modulation Scheme

probability ε ¿ 1, we have to guarantee that

5eb − ε > 0 , that is ε < 5eb ,

so that the threshold γ0 is nonnegative, that is, γ0 ≥ 0. It is reasonable in practice. Take

eb = 10−3 for example, the outage probability could be any positive value such that ε < 0.005,

which is in accordance with the assumption of low outage probability.

Having the probabilistic constraint (4.8) as an upper bound of BER(K̂), the system through-

put is maximized by the optimization problem (4.7)-(4.8). It is equivalent to maximizing the

average SNR performance while keeping a low outage probability of the received SNR be-

low a pre-specified threshold, which is similar to that in (3.34)-(3.37). More specifically, the

maximum system throughput can be obtained by taking the three steps shown in Table 4.1.

Compared to the state-of-art robust schemes, simulation results show that the proposed adaptive

modulation scheme provides the highest transmission rate and enables the strongest robustness

against the CSIT errors while maintaining the target BER performance.
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Figure 4.2: Impact of CSIT error on BER performance (K = 3 and SNR = 20 dB)

4.4 Simulation

In our simulation, we consider a single-user MIMO system with multiantenna at both transmit-

ter and receiver sides (N ≥ M ). 103 Monte-Carlo runs are used to obtain each point. The pro-

posed framework of adaptive modulation scheme is compared to other adaptive schemes based

on different approaches, including the worst-case approach [26], one-directional approach and

equal-power-loading approach [5]. Without any loss of generality, the assumptions are sug-

gested as follows:

• Imperfect channel estimates : A correlated channel is based on (2.6) with fixed antenna

spacing d = 0.5λ and angle spread δθ = 25◦. The CSIT error (2.10) is assumed to

be Gaussian distributed with zero mean and covariance matrix σ2
eI, E ∼ CN (0, σ2

eI),

where the variance is varied from 0.01 to 1.
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Figure 4.3: Impact of CSIT error on system throughput performance (SNR = 20 dB)

• Other parameters : We set the target BER as 10−3 . The outage probability is ε = 0.001,

and the corresponding normalized received SNR threshold γ0 = 1.0419 based on (4.9).

Fig. 4.2 shows that the impact of CSIT error on BER performance with fixed modulation size

and SNR, i.e., K = 3, and SNR = 20 dB. With imperfect CSIT, the performances of all the

aforementioned beamforming techniques significantly degrade. Adaptive modulation based on

the one-directional beamformer suffers from the worst degradation, while the proposed scheme

suffers least. Note that, in the large error variance region, the difference becomes less, since

little information can be obtained at transmitter and BER tends to be same.

The impact of CSIT error on the normalized throughput performance is illustrated in Fig. 4.3,

where the normalized throughput is constellation size. It shows that the normalized through-

put degradation is relatively sensitive to error variances. The error variance increases up to

σ2
e = 0.1 can be tolerated without a noticeable performance degradation of the system through-
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Figure 4.4: Average normalized throughput comparison, γ0 = 1.0419 and ε = 0.1%

put performances. However, the system throughput drops sharply as long as σ2
e > 0.1, with

the most degradation in the one-directional approach. In both Fig. 4.2 and Fig. 4.3, the one-

directional approach has the worst ability to tolerate errors, followed by equal-power-loading

approach and then worst-case approach. Since the proposed scheme could achieve higher aver-

age SNR [59], the corresponding adaptive modulation scheme outperforms other three.

In Fig. 4.4 , the average throughput has been normalized with respect to the code rate, so that

the gains provided by the robust technique itself for different number of transmit antennas can

be compared directly. Here, we consider N = 4, M = 3 and σ2
e = 0.5;. With the same

channel conditions, the proposed scheme requires less transmit power than other schemes to

fulfill the BER constraint, thus larger constellation size is allowed to modulate the transmit

symbols, consequently, leading to the maximum normalized system throughput.

Fig. 4.5 shows that the average BER performance is well controlled below 10−3 under the

proposed scheme. Here, we consider the BER performance with three different constellation

56



Robust Adaptive Modulation for Downlink Single-User MIMO Systems

10 15 20 25 30 35

10
−10

10
−8

10
−6

10
−4

10
−2

SNR (dB)

B
E

R

BER constraint, σ
e
2=0.5

C−Rate 1
D−Rate 1
FD−Rate 1
C−Rate 2
D−Rate 2
FD−Rate 2

Rate 1: N=4; M=3

Rate 2: N=4; M=4

Figure 4.5: BER for the proposed robust adaptive modulation scheme, γ0 = 1.0419 and ε =
0.1%

rates

Mi = 2K





K ≥ 2, K ∈ R+ : Continuous Rate (C-Rate),

K ∈ {2, 3, 4, . . .}: Discrete Rate (D-Rate),

K ∈ {2, 4, 6, 8} : Finite Discrete Rate (FD-Rate),

and two different numbers of receive antennas : M = 3 and M = 4. It indicates that no matter

what the number of receive antennas is, the BER target can be achieved under probabilistic

constraint. Note that the BER bound of 10−3 breaks down at low SNR, since (4.1) is not

applicable to BPSK. Furthermore, because the BER increases monotonically with decreasing

constellation size, the exact average BER is much lower than 10−3 with discrete rate and finite

discrete rate, respectively.
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4.5 Conclusion

This chapter proposes a novel robust adaptive modulation scheme that significantly improves

the system throughput while satisfying the BER constraint. In the proposed scheme, the system

throughput is obtained based on the lower bound of average BER. In order to maintain the BER

target, a probabilistic constraint is introduced as a tight BER bound by keeping a low outage

probability that the SNR falls below a pre-specified threshold. Under such a specification,

the system throughput is maximized by utilizing transmit beamforming techniques under the

assumption of Gaussian-distributed CSIT errors.

Simulation results demonstrate the proposed robust adaptive scheme not only provides the

most significant improvement of normalized system throughput but also has the strongest error-

tolerated ability among the state-of-art robust adaptive schemes. Moreover, the proposed scheme

guarantees the target BER in different scenarios without involving extra Monte Carlo simula-

tions.
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Chapter 5
Probabilistic-Constrained

Beamforming Design for Downlink
MU-MIMO Systems

This chapter extends the single-user MIMO system to the MU-MIMO case. It has the poten-

tial to increase system capacity significantly by separating multiple users in the space domain

through appropriate signal processing. Unfortunately, these techniques require accurate CSIT

for their proper operations. With the inevitable channel imperfections, the main challenge for

transmit beamforming is to efficiently suppress the multiple interference from other users. A

robust transmit beamforming design based on SLNR criteria is proposed by introducing an

outage probability specification. Under such a constraint, the corresponding design for the

single-stream-per-user MU-MIMO system improves the average SINR performance implic-

itly by maximizing average SNR performance while keeping a low outage probability due to

leakage power. Moreover, this chapter also considers the multiple-stream-per-user case and in-

troduces a hybrid scheme that combines the proposed scheme with Alamouti code. Simulation

results show that under the help of outage probability specification, both proposed beamform-

ers achieve good BER performances, reliability of SINR levels as well as robustness against

channel uncertainties.

5.1 Introduction

MU-MIMO wireless system has gained considerable amount of interest since it can increase

data throughput and achieve higher diversity gain significantly. In a single-cell communication

system, a base station communicates with several users in the same frequency and time slots,

which leads to the multi-user interference at the end users. Thus, suppression of the multiple
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interference is crucial to either transmit beamformer (precoder) or receiver decoder. In attempt

to keep a low receiver complexity, it is reasonable to focus on transmit beamforming design.

To completely cancel the interference, accurate channel information is required at transmitter

side. However, it is usually not available due to errors induced by imperfect channel feedback,

estimation/quatization, leading to significant performance degradation. Hence, it motivates the

design of robust transmit beamforming techniques which not only suppresses the interference

but also ensures the robustness against the imperfect channel information.

With imperfect channel information, robust transmit beamformer is designed under a set of

QoS measurements. For MU-MIMO system, one of the metrics is the minimization of the

trace of the (weighted) MSE matrix [37,41,56]. Different from MMSE method that minimizes

the system error, SINR maximization optimizes the system performance directly, which can be

achieved through zero-forcing solution or iterative algorithm. In zero-forcing algorithm, the

multiple interference among different users can be driven to zero under the condition that the

number of antennas at base station has to be larger than the combined sum of all receive anten-

nas by all users [54,81]. When this configuration can not be met, an alternative method is under

investigation, which iteratively finds the optimum solution by maximizing the SINR [18], or

minimizing the MSE [39–41]. Since it couples optimization and feasibility simultaneously, the

algorithm can not obtain a closed-form solution and easily arrives to infeasible region. Recently,

a leakage-based approach is introduced in [12,42,52,82] and further developed in [44,62]. Al-

though it is a suboptimal solution in terms of SINR metric, the SLNR criteria decouples the

optimization and feasible problems and admits an analytical closed-form solution. In contrast

to the zero-forcing solution, the leakage-based scheme does not require any dimension condi-

tion on the number of transmit/recive antennas. Moreover, the SLNR criteria also provides fair

power allocation on the desired user, since larger power allocation on the desired user leads to

more power leakage to other users. Hence, given its simplicity and fairness, the SLNR criteria

is pursued as beamforming measurement in this chapter.

This chapter applies the outage probability-based approach to robust SLNR-based transmit

beamforming design for both single-stream-per-user and multiple-stream-per-user MU-MIMO
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systems, with the following contributions:

• The transmit beamforming maximizes the SLNR performance with the help of outage

probability-based approach over single-stream-per-user MIMO systems. In this scheme,

the average SNR performance is maximized with a low probability of the power leakage

above an acceptable level.

• A deterministic expression of the probabilistic constraint is obtained by using the mul-

tivariate Markov’s inequality for the single-stream-per-user case. Lagrangian relaxation

is introduced to drop the non-convex rank constraint on beamforming matrix. The re-

sulting optimization problem can be efficiently solved by modern convex optimization

algorithms and a lower bound solution is obtained.

• The robust SLNR-based transmit design for single-stream-per-user systems provides a

desirable BER performance and robustness against channel imperfections. Moreover, the

SINR reliability is improved implicitly by achieving the maximum SLNR performance.

• The single-stream-per-use transmission is extended to the multiple-stream-per-user case.

The resulting downlink beamforming design introduces a hybrid scheme that combines

Alamouti code with the leakage-based scheme. The inter-user-interference can be elimi-

nated by Alamouti code and the inter-symbol-interference is suppressed via probabilistic-

constrained leakage-based approach.

The remaining of this chapter is organized as follows. Section 5.2 describes the system model

of single-stream-per-user MU-MIMO transmission. The proposed design for the single-stream-

per-user case is formulated in Section 5.3. Section 5.4 extends the single-stream-per-user case

to the multiple-stream-per-user one. Numerical examples are presented and discussed in Sec-

tion 5.5. Concluding remarks are given in Section 5.6.
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U active users 

Figure 5.1: Block diagram of the MU-MIMO system

5.2 System Model of Single-Stream MU-MIMO System

From the traditional view of single-user MIMO systems, the capacity of MU-MIMO systems

can be enhanced because of the spatial degrees of freedom provided by multiple antennas, if

multiple users are properly scheduled to simultaneously share the spatial channel. This entails

a fundamental paradigm shift from single user communications to multiple, resulting in sub-

stantial benefit experienced by MU-MIMO system. Several key advantages are included, such

as providing a direct gain in multiple access capacity from multi-user diversity gain, holding

the multiplexing gain without multiple antennas at mobile and immunizing to the ill-behavior

of the propagation channel [82–84]. This section gives a basic model for MU-MIMO system,

and discusses the criteria selection for transmit beamforming design.

5.2.1 Shift from Single-User MIMO to Multi-User MIMO Systems

In contrast to the single-user MIMO system, the basic model of MU-MIMO system is illustrated

in Fig. 5.1. The base station equipped with N antennas communicates with U active users

simultaneously, each of which is equipped with Mk antennas. This subsection focuses on the

single-stream-per-user case firstly and the multiple-stream case will be discussed in Section
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5.4. Let sk denotes the transmitted data intended for user k. For each user the scale signal sk

is multiplied by a beamformer vector ck, thus the transmitted signal vector x ∈ CN×1 can be

presented as

x =
U∑

k=1

cksk = C s , (5.1)

where C ∈ CN×U is beamforming matrix as C = [c1, . . . , cU ]. Assuming that the channel is

a slow fading and i-th user is the desired user, the received signal vector yi for the i-th user can

be written as

yi = HiC s + ni = Hicisi +
U∑

k=1,k 6=i

Hicksk + ni , (5.2)

where the additive white noise ni ∈ CMi×1 is independent complex Gaussian distributed, i.e

ni ∼ CN (0, σ2
i IMi), and the MIMO channel for the desired user is Hi ∈ CMi×N . Without loss

of generalization, we assume that the desired signal power has unit power, that is, E
[||si||2

]
=

1 (i = 1, . . . , U). At the output of maximum ratio combining (MRC) receiver, the estimate of

the desired user can be expressed as

s̃i =
cH

i HH
i yi

||Hici||2 = si +
cH

i HH
i

∑U
k=1,k 6=i Hicksk

||Hici||2 +
cH

i HH
i ni

||Hici||2 . (5.3)

In (5.3), the first term is the desired signal, and the second term quantifies the inter-user-

interference. Note that all three parts (the desired signal, interference and sensor noise) are

statistically independent of each other.

Next subsection will discuss several popular criteria for transmit beamforming design and in-

troduce the SLNR criteria into the proposed designs.

5.2.2 Criteria Selection

Several works of transmit beamforming design have proposed to reduce the inter-user-interference

for the multiuser case. According to the system configuration, standard schemes can be classi-

fied into zero-forcing and SINR designs.

Zero-Forcing Measure
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Figure 5.2: Block diagram depicting the leakage from user 1 on other users

The zero-forcing design can perfectly cancel the inter-user-interference by choosing the beam-

forming matrix that enforces

Hick = 0 , ∀i, k = {1, . . . , U}, i 6= k . (5.4)

This criteria requires the number of transmit antennas at the base station to be larger than the

combined sum of all receive antennas by all users [13, 81, 85],

N > max
{∑U

k=1
Mk

}
.

This configuration is a necessary condition for zero-forcing algorithm, since it provides at most

N − 1 degree of freedom for the precoding to null out the interfering signals.

Two major disadvantages should be taken into account. First, the decoder at the receiver side

will suffer when the noise level increases [13], since the additive noise component at the re-

ceiver has been ignored when designing the downlink beamformers. In addition, zero-forcing

design imposes a restriction on the number of antennas: the number of transmit antennas at

the base station should be larger than the combined sum of all receive antennas by all users.
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However, it could be impractical when the number of active users is extremely large. In [85], it

is proposed that the time scheduling to as an alternative, so that a subset of the users is allowed

to communicate at each time slot, remaining the rest of them shut down. Under such a scheme,

some of the users in the network may can not communicate with the base station because of

unfair scheduling.

SINR Measure

In SINR-base scheme, the transmit beamforming design guarantees all the SINR performances

achieving the target thresholds. According to (5.3), the SINR for user i at the output of maxi-

mum ratio combining (MRC) receiver is taken into account, that is

SINRi =
||Hici||2

σ2
i +

∑U
k=1,k 6=i ||cH

i HH
i Hick||2

||Hici||2
. (5.5)

Regarding the limited transmit power, the transmit beamformer maximizes the SINR perfor-

mance [18]

maximize SINRi ,

subject to tr{CCH} ≤ 1 , i = 1, . . . , K . (5.6)

Two-stage approach is suggested in [18]: first checking the feasibility, then minimizing the

transmission power. If the constraints are infeasible, the system should reduce the number of

users by proper resource management.

Without requiring any dimension condition on the number of transmit/receive antennas, the

transmission is nonorthogonal, leading to the invertible crosstalk between the desired user and

other users. In this case, the SINR-based scheme is a complicated task, which couples the

optimization and feasibility together. The resulting solution only can be obtained iteratively

without a closed form.

SLNR-based Design

The concept of leakage is introduced in [42, 52], which considers the power leaked from the
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desired user instead of the interference induced by other users. Regarding this criteria, the

beamformer is designed to maximize SLNR. More specifically, the power allocated on the i-

th user is given by ||Hici||2, and the total power leaked from i-th user to all other user is
∑U

k=1,k 6=i ||Hkci||2, depicting in Fig. 5.2. With perfect channel knowledge at the receiver, the

average SLNR for the i-th user is obtained

SLNRi =
||Hici||2

Miσ2
i +

∑U
k=1,k 6=i ||Hici||2

=
||Hici||2

Miσ2
i + ||H̃ici||2

, (5.7)

where H̃i ∈ C(
∑U

k=1,k 6=i Mk)×N denotes an extended channel matrix that excludes Hi, i.e.

H̃i = [HT
1 , . . . ,HT

i−1,H
T
i+1, . . . ,H

T
U ]T .

The maximization of the average SLNR is achieved with the one directional beamformer [52]

copt
i = P

{(
Miσ

2
i I + H̃H

i H̃i

)−1 (
HH

i Hi

)}
, (5.8)

where P{·} is the principal eigenvector of the matrix.

Although it is suboptimal in terms of the output SINR metric, the SLNR-based solution can be

expressed in a closed form. More importantly, the maximum SLNR performance guarantees

the least leakage power from the desired user to the rest. It implicity reduces the interference

to the desired user, consequently leading to a reliable SINR performance. In addition, there is

no system configuration requirement for SLNR criteria. Subject to the above advantages, the

SLNR scheme will be considered as a measurement in this chapter.

5.2.3 Channel Imperfections

The advantages of MU-MIMO system mentioned at the beginning of Section 5.2 bring chal-

lenges. The most critical to MU-MIMO system is the availability of channel knowledge at

transmitter in order to properly serve the spatially multiplexed users. Perfect CSIT is crucial

to achieving high QoS at the desired user. However, in real scenarios, only imperfect channel
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information is available at transmitter which could degrade the system performance severely. It

motivates the efforts of robust design in the presence of channel imperfections.

For i-th user, the presumed channel Hip ∈ CMi×N can be expressed as

Hi = Hip + Ei , (5.9)

where the error matrix Ei ∈ CMi×N consists of i.i.d. complex normally distributed entries

with variance σ2
e . The subscript p is used to denote the presumed channel information. And the

corresponding interference channel H̃ip ∈ C(
∑U

k=1,k 6=i Mk)×N can be written as

H̃i = H̃ip + Ẽi , (5.10)

where the error matrix Ẽi is composed of (U − 1) transport error matrix Ei, that is,

Ẽi = [ET
1 , . . . ,ET

i−1,E
T
i+1, . . . ,E

T
U ]T . (5.11)

Since the CSIT of each user is independent, the constructed matrix Ẽi has the same distribution

of each component Ei, that is, i.i.d complex normally distributed entries with variance σ2
e . Note

that we assume that H̃i and H̃ip have the same rank, that is,

rank(H̃i) = rank(H̃ip) = min
(

N,
∑U

k=1,k 6=i
Mk

)
= N .

The next section will design a transmit beamformer which maximizes the corresponding SLNR

under inaccurate channel presumption.

5.3 Robust SLNR-based Beamformer Design for Single-Stream Case

To tackle performance degradation caused by the residual interference signals, the outage

probability-based approach is introduced, which is favorable to an achievable SLNR perfor-

mance of the desired user, and prevents a pessimistic result by considering the leakage power
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proportionally.

According to the error model (5.9) and (5.10), SLNR of the desired user becomes a function of

the presumed channel Hip and H̃ip and the random errors Ei and Ẽi

fi(Ei, Ẽi) =
cH

i (Hip + Ei)H(Hip + Ei)ci

Miσ2
i + cH

i (H̃ip + Ẽi)H(H̃ip + Ẽi)ci

. (5.12)

Instead of maximizing the SLNR directly, the average power allocation on the desired user is

maximized while keeping a low outage probability of the leakage power being higher than an

acceptable level. The proposed beamforming matrix can be obtained by solving the following

problem

maximize E
[
cH

i (Hip + Ei)H(Hip + Ei)ci

]
, (5.13)

subject to Pr
{

Miσ
2
i + cH

i (H̃ip + Ẽi)H(H̃ip + Ẽi)ci ≥ γ0i

}
≤ εi , (5.14)

where γ0i and εi denote the pre-specified threshold and outage probability for the desired user,

respectively. In the following, the above problem will be discussed and reformulated one by

one.

To simplify the expression (5.12), we define a new parameter Wi as follow

Wi , cicH
i , Wi ≥ 0 and rank(Wi) = 1, (5.15)

where Wi ≥ 0 denotes the matrix Wi is semi-positive definite.

5.3.1 Objective Function

Given the presumed channel Hip at transmitter, the objective function (5.13) is obtained by

taking the expectation of power allocated on i-th user with respect to the random error Ei

E
[
cH

i (Hip + Ei)H(Hip + Ei)ci

]
= tr

{(
HH

ipHip + σ2
eMiI

)
Wi

}
. (5.16)
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This chapter considers the system configuration that the number of transmit antennas is smaller

than the number of all receive antennas combined. With N transmit antennas, only N − 1

degree of freedom is provided, which is less than the subspace of all users. That means, we

can not guarantee the subspaces of all users are orthogonal to each other. Therefore, eigen-

decomposition approach can not be easily implemented into objective function.

5.3.2 Outage Probability Specification

Besides the desirable average SNR performance, the power leakage should be well controlled.

The outage probability-based approach is introduced, which guarantees a low probability of

the power leakage being higher than a pre-specified threshold, formulated in (5.14). In order

to efficiently achieve the optimum solution, the major problem is to convert the probabilistic

constraint (5.14) into a deterministic form.

Proposition The probabilistic constraint (5.14) can be replaced by into the following convex

form

tr
{
Wi

(
niσ

2
eI + H̃H

ipH̃ip

)}
≤ εiγ̃0i , (5.17)

where Pr{A} denotes the probability of the event A, and γ̃0i = γ0i −Miσ
2
i > 0.

Proof: Define

zi =
(H̃ip + Ẽi)ci√

tr{σ2
eWi}

,

the probabilistic constraint (5.14) can be rewritten in terms of zi and Wi,

Pr
{
tr{σ2

eW
H
i }||zi||2 ≥ γthi

} ≤ pi , (5.18)

where γ̃thi
= γthi

− Miσ
2
i . In order to guarantee the validity of the probabilistic constraint

(5.18), γ̃thi
should be positive, namely γ̃ > 0, because of nonnegative-definite random variable

||zi||2.

Based on Markov’s inequality (Appendix F), an upper bound of the probability in (5.18) is
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given by

Pr
{
||zi||2 ≥

γthi

tr{σ2
eWi}

}
≤ E

[||zi||2
]

γthi
/ tr{σ2

eWi} . (5.19)

Under the assumption of Gaussian-distributed error Ẽi, the random variable ||zi||2 is noncentral

χ2
ni

(λi)-distributed, with degree of freedom ni = 2
∑

k 6=i Mk and noncentrality parameter

λi = tr{H̃H
ip
H̃ipWi}/ tr{σ2

eW
H
i }. The resulting expectation for the random variables ||zi||2

is [86]

E
[||zi||2

]
= ni + λi .

In order to efficiently guarantee a low probability of serious power leakage, the upper bound

(5.19) is set less than pi. that is,

ni + λi

γ̃thi
/ tr{σ2

eWi} ≤ pi , where λi = tr{H̃H
ipH̃ipWi}/ tr{σ2

eWi} .

In such a setting, the inequality (5.17) is immediately obtained. To maintain the leakage power

at acceptable level, the outage probability pi is set as a small value.

Since Wi and
(
H̃H

ip
H̃ip

)
are semi-positive definite, the product of these two matrices is again

semi-positive definite. Thus, the resulting inequality (5.17) is convex since the sum of semidef-

inite elements less than a positive value is convex. ¤

Recall the beamformer matrix (5.15), the rank constraint on Wi is non-convex. In order to

convert the underlying design into convex one, Lagrangian relaxation is introduced to drop the

rank constraint, only positive semi-definite matrix constraint left. In this case, a lower bound

solution Wi is obtained with a lower cost [87]. Moreover, regarding the limited transmit power,

a constraint is set on the beamforming matrix Wi,

tr{Wi} ≤ 1 , (5.20)

so that each user is allocated with unit power.
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Regarding transmit power constraint (5.20), dropping the rank-one constraint (5.15), reformu-

lated objective function (5.16) and probabilistic constraint (5.17), the proposed beamforming

design (5.13)-(5.14) can be formulated as

maximize
Wi

tr
{(

HH
ipHip + σ2

eMiI
)
Wi

}
, (5.21)

subject to tr
{
Wi

(
niσ

2
eI + H̃H

ipH̃ip

)}
≤ εiγ̃0i , (5.22)

tr{Wi} ≤ 1 , (5.23)

Wi ≥ 0, i = 1 , . . . , U (5.24)

which can be efficiently solved by standard tools of mathematical programming [75]. Note

that the rank of the solution Wi is usually higher than one and, therefore, the optimal weight

vector cannot be directly recovered from Wi. As suggested in [20], a common approach is

to use randomization techniques. First, a set of matrices is generated with the distribution of

CN (0,Wi), and then the best solution is selected among such randomly generated candidates.

Due to the randomization, the constraint (5.22) may be violated by some of the weight matrix

candidates. The feasible weight vector can be found by simply scaling the vector. Finally, the

best candidate that satisfies the constraint (5.22) and maximizes the objective function (5.21) is

selected as the solution.

5.4 Robust SLNR-based Beamformer Design for Multi-Stream Case

The single-stream-per-user MU-MIMO system is now extended into the multiple-stream-per-

user case where the base station simultaneously transmits multiple stream to single user in the

selected users. Excluding interference coming from other users, the inter-stream-interference

can lead to performance degradation without perfect channel information. This section de-

signs a robust transmit beamforming combined with Alamouti codes with SLNR-based scheme,

shown in Fig. 5.3.

In the multi-stream-per-user case, the base station is equipped with N transmit antennas and
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each user has Mk receive antennas, where a multiple stream is transmitted from base station to

each user with the length of multiple data equal to Lk. To prevent the inter-stream-interference

caused by non-orthogonal beamforming matrix, the multiple stream sk ∈ CLk×1 is first ex-

ploited by Alamouti scheme [6]. Note that this chapter only considers the simplest case Lk = 2.

The transmitted coded block is given as follows

sk =




sk,1

sk,2


 ⇒ Sk =




sk,1 −s∗k,2

sk,2 s∗k,1


 , (5.25)

where the superscript ∗ denotes complex conjugation without transposition, and the power of

data vector sk is assumed as E
[
sisH

i

]
= I/2. The transmit coded block is multiplied by

Ck ∈ CN×2 before being transmitted. The transmit signal matrix X ∈ CN×2 can be presented

as

X =
U∑

k=1

CkSk , (5.26)

where beamforming matrix Ck are assumed to be normalized as tr{CH
k Ck} ≤ 2. The received

block for the desired user can be written as

Yi = Hi

U∑

i=1

CiSi + Ni = HiCiSi + Hi

U∑

k=1,k 6=i

CkSk + Ni , (5.27)

where Ni denotes the AWGN noise matrix, and each elements of Ni is i.i.d complex normally

distributed with zero mean and variance σ2
i .

Denote Fi = HiCi ∈ CMi×2, a reconstructed new matrix H̄i ∈ C2Mi×2 for the desired user

can be expressed as

H̄i =




F(1,1)
i F(1,2)∗

i . . . F(Mi,1)
i F(Mi,2)∗

i

F(1,2)
i −F(1,1)∗

i . . . F(Mi,2)
i −F(Mi,1)∗

i




T

, (5.28)

where Fk,l
i denotes the (k, l)-th element in matrix Fi. The rearranged receive block (5.27) can
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Figure 5.3: Block diagram of multi-stream MU-MIMO system depicting the leakage from user
1 on other users

be represented in terms of vector, that is

zi = H̄isi +
∑U

k=1,k 6=i
H̄ksk + ni , (5.29)

where zi =
[
Y(1,1)

i ,Y(1,2)∗
i , . . . ,Y(Mi,1)

i ,Y(Mi,2)∗
i

]T
, and therefore the vector ni is arranged

correpondingly. According to (5.28), we have

||H̄i||2F = 2||Fi||2F = 2||HiCi||2F , (5.30)

Based on the channel error model (5.10), (5.12) and (5.15), the SLNR at i-th user can be

expressed as

SLNRi(Ei, Ẽi) =
tr

{
CH

i (Hip + Ei)H(Hip + Ei)Ci

}

Miσ2
i + tr

{
CH

i (H̃ip + Ẽi)H(H̃ip + Ẽi)Ci

} , (5.31)

where Hip , H̃ip , Ei and Ẽi are defined in (5.10) and (5.12). Similar as the design problem in
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(5.13)-(5.14), the proposed beamforming design can be formulated as follows

maximize
Ci

E
[
tr

{
CH

i (Hip + Ei)H(Hip + Ei)Ci

}]
, (5.32)

subject to Pr
{

Miσ
2
i + tr

{
CH

i (H̃ip + Ẽi)H(H̃ip + Ẽi)Ci

}
≥ γ0i

}
≤ εi ,(5.33)

tr{CiCH
i } ≤ 2 , rank(Ci) = 2 , i = 1 , . . . , U . (5.34)

However, the underlying problem can not be solved unless it is converted into convex. Re-

vising the above optimization problem (5.32)-(5.34), the major challenge still lies in obtaining

deterministic form of the probabilistic constraint (5.33), which will be discussed as follows.

Proposition Under the assumption of Gaussian-distributed error, the probabilistic constraint

(5.33) can be replaced by the following deterministic form, that is

tr
{(

H̃H
ipH̃ip + σ2

eniI
)
Wi

}
≤ εiγ̃0i , (5.35)

where γ̃0i = γ0i −Mkσ
2
i > 0, and the matrix I is an identity matrix.

Proof : Define

T = (H̃ip + Ẽi)H(H̃ip + Ẽi) ,

the probabilistic constraint (5.33) can be simplified as

Pr
{
tr

{
TWi

} ≥ γ̃0i

} ≤ εi , (5.36)

where γ̃0i = γ0i −Mkσ
2
i . Applying the Markov’s inequality (Appendix F), the upper bound

for the probability in (5.36) could be obtained

Pr {tr {TWi} ≥ γ̃thi
} ≤ E

[
tr{TWi}

]

γ̃thi

. (5.37)

In order to keep the power leakage below the pre-specified threshold, the upper bound (5.37) is
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set less than pi,
E

[
tr{TWi}

]

γ̃thi

≤ pi . (5.38)

Moreover, under the assumption that the error matrix Ẽi is complex Gaussian-distributed, we

have

T ∼ CWN (ni, (σ2
eI)

−1H̃H
ipH̃ip , σ

2
eI),

where CWN (ni, (σ2
eI)

−1H̃H
ip
H̃ip , σ

2
eI) denotes that the matrix TN×N is complex Wishart dis-

tributed with degree of freedom ni = 2
∑K

k=1,k 6=i Mk, non-centrality parameter (σ2
eI)

−1H̃H
ip
H̃ip

and covariance matrix σ2
eI. The definition of noncentral Wishart distribution can be referred

to Appendix G. Based on the result given by [88], the mean of complex Wishart-distributed

matrix Ti can be expressed as

E [Ti] = niσ
2
eI + H̃H

ipH̃ip . (5.39)

Since the expectation and trace are both linear operators, E
[
tr{TWi}

]
can be expressed in the

following form

E
[
tr{TWi}

]
= tr{E [

TWi

]} = tr{E [T]Wi} . (5.40)

Substituting (5.39) and (5.40) into (5.36), it immediately leads to deterministic inequality

(5.35). Note that since the Wishart-distributed random variables are nonnegative definite, the

threshold γ̃thi
in the probabilistic constraint (5.36) should be positive, namely γ̃thi

> 0.

Since both Wi and (H̃H
ip
H̃ip) are semi-positive definite, the constraint (5.35) is convex. ¤

Taking the expectation of (5.32), and dropping the rank constraint in (5.34), the underlying

optimization problem can be reformulated by replacing the probabilistic constraint to a deter-

ministic one (5.35), such as

maximize
Wi

tr
{

(HH
ipHip + Miσ

2
eI)Wi

}
, (5.41)

subject to tr
{(

H̃H
ipH̃ip + σ2

eniI
)
Wi

}
≤ εiγ̃0i , (5.42)

tr{Wi} ≤ 2 , (5.43)
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Wi ≥ 0 , i = 1 , . . . , U , (5.44)

where tr{Wi} ≤ 2 is the power constraint on beamforming matrix, so that each symbol has

unit power allocated. It can be solved similarly as the single-stream-per-user case in Section

(5.3), that is, selecting the best solution from the randomly generated matrix candidates which

are drawn from CN (0,Wi).

5.5 Simulation

Consider MU-MIMO system with one base station (BS) equipped with 4 antennas and 3 users

each equipped with 2 antennas. The data symbols are generated using QPSK modulation,

and the results are averaged over 2000 channel realization. The probabilistic SLNR-based

beamformer (abbr. Proposed LBeam) (5.22)-(5.25) in comparison to worst-case SLNR-based

beamformer (abbr. as Worst-case LBeam) [44], uncertainty-modified SLNR-based beamformer

(abbr. as Uncertainty-M LBeam) [52], non-robust SLNR-based beamformer (abbr. as Non-

robust LBeam) [12], conventional single-user beamformer (abbr. as SU Beam) [5] and zero-

forcing scheme (abbr. as ZF Beam) [81] with no-interference beamformer as a comparison

benchmark. Without any loss of generality, we assume the following:

• The channel is zero-mean and unit-variance independent and identically distributed com-

plex Gaussian random variables. The variance of AWGN noise per receive antenna is

assumed to be the same for all user, σ2
1 = . . . = σ2

k = σ2. According to error model

(5.10), the variance of uncertainty is set as σ2
e = 0.9.

• Parameters in outage probability specification: The normalized threshold is set as γ̃0i =

0.9 and εi = 5%.

The single-stream-per-user case is first examined. To understand the behavior of the proposed

algorithm, the SINR outage performances at SNR = 0 dB and SNR = 10 dB are plotted in Fig.

5.4 and 5.5 respectively. In low SNR region (SNR = 0 dB), Fig. 5.4 shows that the proposed
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Figure 5.4: SINR outage probability performance at SNR = 0 dB (εi = 5%, γ̃0i = 0.9)

beamformer has the lowest outage probability, around 10% at SINR = 2 dB. It means for 90%

of the channel realizations, the achieved SINR is larger than 2 dB. As shown in the figure,

using the proposed beamformer results in an 1 dB improvement in 10% outage value com-

pared to the worst-case SLNR-based beamformer, and an 2.5 dB improvement compared to the

rest of SLNR-based beamformers and single-user one. Note that the zero-forcing beamformer

provides worst performance because of the antenna configuration that the number of transmit

antennas is smaller than the number of all receive antenna combined. When SNR increases to

10 dB (illustrated in Fig. 5.5), the proposed beamformer still provides the best performance

of SINR reliability among all compared beamformers, where 90% SINR is higher than 6 dB.

It has an 5 dB improvement compared to the worst-case approach. Meanwhile, the difference

between uncertainty-modified SLNR-based beamformer and non-robust SLNR-based become

larger, as the noise variance does not dominate in the SINR expression and the impact of un-

certainty becomes obvious. As shown in both Fig. 5.4 and Fig. 5.5, although it is a suboptimal
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Figure 5.5: SINR outage probability performance at SNR = 10 dB (εi = 5%, γ̃0i = 0.9)

solution with respect to SINR criterion, the proposed scheme still outperforms than all other

beamformers. It is because that the leakage power from the desired user is suppressed at low

threshold, which consequently tends to reduce the interference from all other users. Moreover,

in Fig. 5.5 the curves of the no interference, proposed and single-user beamformers present in

a shifting from right to left, while the similar case for worst-case, uncertainty-modified, and

non-robust leakage-based beamforming approaches and zero-forcing techniques. It indicates

that the proposed beamforming more efficiently suppresses the interference from other users.

Fig. 5.6 shows the average BER performance to further depict the difference among the pro-

posed beamformer and all other compared beamformers. The BER curves are plotted based on

SINR [1], such as

Pe =
[
1
2
(1− µ)

]2Mk 2Mk−1∑

k=0




2Mk − 1 + k

k




[
1
2
(1 + µ)

]k

,
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Figure 5.6: BER performance with σ2
e = 0.9 (εi = 5%, γ̃0i = 0.9)

where µ =
√

SINR
1+SINR , and SINR is defined in (5.5). At low SNR, the proposed beamformer

maintains an acceptable 10−3 BER at SNR = 3 dB for three simultaneously active users.

To achieve the same BER performance, SNR required to proposed beamformer is 2 dB less

than the worst-case SLNR-based beamformer. In medium and high SNR region, the proposed

beamformer also outperforms in term of error floor performance among all other compared

beamformers. Note that error floor occurs as long as that the interference is higher than noise

level. Significant error floor suggests higher interference involved, consequently with low SINR

output and poor BER performance. Thus, Fig. 5.6 indicates the SLNR criteria that reduces

leakage power from desired user is a smart and simple method to improve SINR performance.

Fig. 5.7 illustrates the error-tolerance ability of beamformers. It shows that the proposed

beamformer provides the strongest tolerance to error uncertainty, with absolute BER increased

1.15 × 10−5, i.e. from 3.5 × 10−6 to 2.5 × 10−5, when the variance of error is varied from 0

to 0.9. In the same scenario, the BER performance has the most degradation using uncertainty-
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Figure 5.7: Robustness in BER at SNR = 10 dB (εi = 5%, γ̃0i = 0.9)

modified SLNR-based and the non-robust SLNR-based beamformers, having around 1.5×10−3

absolute BER increase. Note that compared to the zero-forcing and single-user beamformers,

three leakage-based beamformers are sensitive to error uncertainty.

The parameters in probabilistic constraint (5.22) are crucial to the behavior of the probabilistic

SLNR-based beamformer. In order to investigate these parameters, Fig. 5.8 displays the SINR

outage probability performance under difference parameter selections, with two benchmarks

(provided by no-interference and zero-forcing beamformers). It is suggested that a better SINR

outage performance can be obtained with low outage probability and low leakage threshold,

such as εi = 5% and γ̃thi
= 0.3. In addition, it demonstrates that the outage-probability selec-

tion has more significant impact on SINR performance than leakage-threshold selection, which

gives the reason that in the previous simulation results, the proposed SLNR-based beamformer

can achieve good performance with εi = 5% and γ̃thi
= 0.9.
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Figure 5.8: Impact of parameter choosing on SINR outage performance at SNR = 10 dB

Finally, the SINR reliability performance for multiple-stream-per-user case shows in Fig. 5.9,

where the proposed beamformer with multiple stream is compared to the worst-case SLNR-

based and uncertainty-modified SLNR-based beamformers. In this case, besides the interfer-

ence induced by other users, the interference also comes from the symbols transmitted to the

same user. Thanks to Alamouti code, the inter-symbol-interference has been eliminated. In the

proposed hybrid scheme, the SINR reliability performance is only affected by the inter-user-

interference. The resulting beamforming technique provides the lowest SINR outage proba-

bility, around 10% at SINR = 6 dB. As shown in the figure, using the proposed beamformer

results in an 5 dB improvement in 10% outage value compared to the worst-case SLNR-based

beamformer, and an 7 dB improvement compared to other SLNR-based beamformers. Note that

under the same system configurations, the worst-case SLNR-based and uncertainty-modified

SLNR-based beamformers perform worse than those in the single-stream-per-user case, be-

cause of the inter-symbol-interference.
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5.6 Conclusion

A leakage-based transmit beamforming design for MU-MIMO communications is proposed to

maximize the average desired signal power and guarantee the leakage power under an accept-

able level. This approach is formulated as a probabilistic-constrained optimization problem so

that the probability of the leakage power higher than a pre-specified threshold is less than the

target percentage. Under the assumption of complex Gaussian-distributed estimate errors, the

probabilistic constraint is replaced by a deterministic convex one. By introducing Lagrange

relaxation, the resulting convex optimization problem is efficiently solved by modern software

packages. Furthermore, the proposed beamformer is further implemented into the multiple-

stream-per-user case with the combination of Alamouti code. In such a hybrid scheme, the

Alamouti scheme eliminates the inter-data-interference, while the probabilistic-constrained ap-

proach suppresses the inter-user-interference proportionally.
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Simulation results show that the proposed beamformer provides the best BER performance and

SINR reliability for both single-stream-per-user and multi-stream-per-user cases. Furthermore,

it also demonstrates the highest robustness against imperfect channel information.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

The MIMO system represents a promising technology in wireless communication which offers

a significant performance improvement over SISO systems, such as higher data rates, better

QoS and enhanced transmission reliability [5]. Transmit beamforming is one of the popular

techniques to exploit the benefits of MIMO system with the requirement of perfect CSIT. How-

ever, only imperfect CSIT is available in real scenarios, which leads to significant performance

degradation, and consequently posing challenges in system analysis and signal design. It moti-

vates to exploit a robust transmit beamforming against errors in CSIT.

Existing robust techniques can enhance the system reliability and channel capacity by optimiz-

ing either the average system performance or the worst-case system performance, but followed

with two major drawbacks. One of the disadvantages is that the statistic-based beamformers

only optimize the average performance based on channel mean or covariance. Without con-

sidering the extreme scenario, it could break down when persistent error occurs. On the other

hand, although the worst-case-based beamforming design provides robustness with the knowl-

edge of the extreme channel conditions, the system performance only achieve conservative

results, because the extreme case is rare in practice.

This thesis focuses on the exploiting of a flexible and reasonable transmit beamforming tech-

nique which provides a reliable and robustness transmission against the MIMO channel imper-

fections. The key in the proposed designs is the outage probability specification that measures

the impact of channel imperfection on system performance proportionally.

Chapter 3 introduces an outage probability specification to the robust transmit beamforming

design for single-user MIMO system. Regrading the average received SNR criteria, the prob-
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abilistic constraint keeps a low probability of the SNR being below an acceptable level. In

such a setting, the proposed transmit beamformer maximizes the average received SNR per-

formance with the consideration of unacceptable scenarios by probability measurement. The

probabilistic-constrained optimization problem is converted into a convex problem by trans-

forming the probabilistic constraint into a convex form, so that the underlying problem is ef-

ficiently solved by modern software package. The proposed beamformer provides the best

average received SNR performance compared to other popular transmit beamformers with well-

controlled low outage probability. Moreover, it offers much broader error-tolerance range and

more robustness against error variance misspecification than the worst-case beamformer.

Chapter 4 discusses the implementation of the probabilistic constraint in adaptive modulation

design for single-user MIMO system. The proposed adaptive modulation scheme achieves

the maximum transmission rate while maintaining an acceptable average BER performance.

Under the assumption of Gaussian-distributed errors in CSIT, the expectation of the average

BER is difficult to obtain, and replaced by its lower bound. To maintain the target average

BER performance, the outage probability-based approach is introduced to provide a tight BER

bound. Under such a constraint, the proposed scheme maximizes the transmission rate by

taking advantage of transmit beamforming. Given the same channel conditions, the proposed

scheme requires less transmit power than other popular schemes to fulfill the BER constraint,

allows larger constellation size to modulate the transmit symbols, and consequently leads to

a higher system throughput. Besides providing strong robustness against the CSIT errors, the

proposed scheme also maintains the target average BER performance under different scenarios.

Chapter 5 extends the single-user MIMO system into the multi-user case, and designs a SLNR-

based transmitter beamformer with outage probability specification when only imperfect CSIT

is available. Two scenarios are taken into account, that is, single-stream-per-user and multiple-

stream-per-user MU-MIMO systems. For single-stream-per-user MU-MIMO systems, the pro-

posed beamformer maximizes the average SNR performance while keeping a low outage prob-

ability of a pre-defined power leakage level. In a multiple-stream-per-user scenario, a hybrid

design combines Alamouti code with SLNR-based transmit beamforming technique. With the
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assistance of Alamouti code, the inter stream interference is exterminated, so that the leakage

power only comes from other users. The resulting optimized problem turns to the same problem

as the single-stream case. Under outage probability specification, the proposed scheme achieves

a reliable SINR level by maximizing the average SNR performance with well-controlled leak-

age power. Moreover, the proposed scheme not only achieves outstanding BER performance,

but also withstands the impact of channel imperfection on system performance.

Given the superior overall performances and significantly improved robustness, the outage

probability-based approach provides an attractive alternative to existing robust techniques under

imperfect channel information at transmitter.

6.2 Limitation of Work

In Chapter 3, the proposed beamforming is designed based on the assumption of perfect channel

information known at receiver. In practice, the channel information can not be perfectly esti-

mated at receiver. In this case, the receive beamforming could be jointly designed according to

the channel conditions.

In Chapter 5, the leakage-based robust transmit beamforming can achieve a sound QoS perfor-

mance by using probabilistic constraint with an implicit condition that the number of total user

is less than the number of transmit antenna. Under this assumption, the full multiplexing gain

can be achieved [89]. However, in a large user regime U À M , the channel spatial information

cannot simultaneously benefit from multiuser diversity, the transmitter performs user selection

and the corresponding beamforming can only support up to M out of K users at a time. More-

over, Chapter 5 did not consider the total system throughput which can be improved using a

proper schedular. In order to improve the throughput performance and fair allocation of the

power, scheduling strategy should be considered jointly with beamforming design.
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6.3 Future Work

Considering the channel imperfections at both transmitter and receiver, a joint transmitter-

receiver beamforming framework is required. In [90], MMSE V-BLAST structure provides

an attractive approach to address the channel imperfection at receiver with an improved BER

performance in comparison to the linear MMSE detector. Moreover, a worst-case MMSE V-

BLAST scheme is also considered under the assumption of norm-bounded errors [91]. This al-

gorithm outperforms in terms of BER and achieves the similar computationally efficient level as

the V-BLAST algorithm with perfect CSI. Note that since the channel uncertainty is modeled as

unknown but norm-bounded errors, the resulting solution could be conservative. Regrading the

performance improvement provided by MMSE V-BLAST scheme, it could be an attractive re-

search topic to jointly design the probabilistic-constrained beamforming and MMSE V-BLAST

receiver against to random-varied channel uncertainty.

Moreover, one of the fundamental lessons learned from information theory is that resource

allocation techniques help to exploit the gains of multiuser MIMO systems. Fairness in resource

allocation among the users is a key parameter and should be taken into consideration. As a full-

fair scheduling scheme, round-robin scheduler is a simple and efficient scheme, where all users

have the same priority for accessing the channel, but it does not exploit the multiuser diversity.

On the other hand, a exhaustive search that selects users that exhibit a compromise between a

high level of instantaneous SINR and a good separability of their spatial signatures to facilitate

user multiplexing [84]. However, its computation is high, roughly O(UK) for U ×K user set.

A practical and low complexity algorithm has been developed [92–96]. In this algorithm, the

transmitter chooses the single user with the highest channel capacity, then finds the next user

that provides the maximum sum rate form the remaining unselected users, and repeats until K

users are selected. In this case, the greedy scheduler achieves a higher throughput than round-

robin scheduler does, and has a low complexity, roughly U × K which much less than the

full search method. But the price is the unfairness in resource allocation among the users. A

tradeoff between the total throughput and the fairness among the user is proposed, known as the

proportional fair scheduler which chooses the user with the highest normalized-throughput or
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normalized-SNR [97]. Regarding the low complexity and fairness provided by the proportional

fair scheduler, further work can focus on the joint beamforming design with this suboptimal

scheduling in the context of leakage-based scheme.

To further improve spectral and power efficiency of wireless networks without the additional

complexity of multiple antennas, the conventional MU-MIMO systems have been extended into

the cooperative transmission that shares the antenna source and relays the signals in order to

create a virtual antenna array. Different from the traditional antenna array technology, synchro-

nization becomes a critical problem. It is because that the signals from the relay nodes tend to

arrive at the destination node at different time, resulting in frequency-selective fading channel.

Recently, the channel imperfection and asynchronization have been considered separately in

transmit beamforming design. Based on perfect channel state information, imperfect synchro-

nization in time and frequency has been addressed successfully, such as combining beamform-

ing with OFDM schemes [98–101], and designing distributed STBC [102–104]. On the other

hand, the QoS performance has been optimized under the worse-case channel condition by us-

ing convex optimization [105–107] without consideration of asynchronization. To survive in

the real scenarios, both asynchronization and imperfect channel estimates should be taken into

account simultaneously, which motivates the development of more robust beamforming. Re-

garding outage probability specification that provides robustness to channel imperfections and

the role of OFDM scheme in frequency selective channels, it could be an attractive framework

that combines the outage probability-based transmit beamforming with OFDM scheme against

channel imperfection and asynchronization.
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Appendix A
SNR Approximation in (3.9)

According to (3.5) and (3.6), the random varied SNR in (3.3) can be rewritten as

f(Ĥ,E) =
Es

N0
tr

{
(Ĥ + E)H(Ĥ + E)UcDcUH

c

}

=
Es

N0
tr

{[
(Ĥ + E)Uc

]H [
(Ĥ + E)Uc

]
Dc

}

=
Es

N0
tr

{
(H̃ + Ẽ)H(H̃ + Ẽ)Dc

}
, (A.1)

where H̃ = ĤUc, and Ẽ = ĤUc.

Since Dc is a diagonal matrix, the trace operation output of (A.1) can be expressed as follows

f(Ĥ,E)

=
Es

N0




d1
∑M

j=1(h̃j1 + ẽj1)H(h̃j1 + ẽj1) . . . . . .

...
. . .

...
... . . . dN

∑M
j=1(h̃jN + ẽjN )H(h̃jN + ẽjN )




=
Es

N0

N∑

i=1

di

M∑

j=1

(h̃ji + ẽji)H(h̃ji + ẽji) . (A.2)

Eq. (3.9) is easily obtained by defining Zi =
∑M

j=1(h̃ji + ẽji)H(h̃ji + ẽji).

Moreover, under the assumption that each element of error matrix E is zero-mean Gaussian

distributed with variance σ2
e , each element in matrix Ẽ still follows the Gaussian distribution,

such as ẽij ∼ CN (0, σ2
e), consequently, (h̃ji + ẽji) ∼ CN (h̃ji, σ

2
e). According to Appendix

B, the random variable Zi, (i = 1, . . . , N) is noncentral χ2
ni

(δi) distributed with noncentrality

parameter δi = h̃H
i h̃i and the degree of freedom ni = 2M .

89



Appendix B
Noncentral χ2 Distribution

Definition [86] : If Xi are k independent, normally distributed random variables with mean µi

and variance σ2
i , then the random variable

k∑

i=1

(
Xi

σ2
i

)2

(B.1)

is distributed according to the noncentral χ2
k(λ) distribution with degrees of freedom k and

noncentrality parameter λ =
∑k

i=1(µi/σ2
i ).

The probability density function is given by [86]

fX(x; k, λ) =
1
2
e−

x+λ
2

(x

λ

)k/4−1/2
Ik/2−1(

√
λx) , (B.2)

where Ia(y) is a modified Bessel function of the first kind given by

Ia(y) =
(y

2

)a
∞∑

j=0

(y2/4)j

j!Γ(a + j + 1)
.

The moment generating function is given by [86]

M(t; k, λ) =
exp

(
λt

1−2t

)

(1− 2t)k/2
. (B.3)

The mean, variance, skewness and kurtosis are [86]

µ = λ + k , γ1 =
2
√

2(3λ + k)
(2λ + k)3/2

, (B.4)

σ2 = 2(2λ + k) , γ2 =
12(4λ + k)
(2λ + k)2

. (B.5)
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Appendix C
Proof of Inequality (3.26)

Corollary [74] Let p 6= 1 be a positive real number. The inequalities

[
1− e−αxp]1/p

<
1

Γ(1 + 1/p)

∫ ∞

x
e−tpdt < 1−

[
1− e−βxp

]1/p
(C.1)

are valid for all positive x if and only if

α ≥ max
{
1, [Γ(1 + 1/p)]−p

}
, and 0 ≤ β ≤ min

{
1, [Γ(1 + 1/p)]−p

}
.

Taking the left side inequality in C.1, the inequality

Pr
{
χ2

ni
≤ x′

}
= 1− 1

Γ(1 + 1/p)

∫ ∞

x
e−tpdt <

(
1− e−xp) 1

p (C.2)

is valid as max
{

1,Γ(1 + M)−
1
M

}
= 1. Consequently, the upper bound on (3.26) is immedi-

ately obtained.
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Appendix D
One-Ring Channel Model

The correlated-fading channel, also called spatial fading correlated channel, may occur at ei-

ther one end of transmission link (i.e single-side correlated), or both ends (i.e. double-sided

correlated), because of insufficiently spaced antennas or limited number of scatterers. In this

thesis, the single-side correlated fading channel is considered and modeled by extending the

”one-ring” model [4], which is appropriate in the fixed wireless communication system with a

seldom-obstructed base station, shown in Fig. D.1.

The spatial fading correlation of the narrowband flat fading channel is determined from the

physical parameters, including antenna spacing, antenna arrangement, angle spread, and angle

of arrival. The covariance between Hij and Hmn can be represented as [4]

E
[
HijHH

mn

]
=

1
2π

∫ 2π

0
exp

{
−j

2π

λ

[
DTAi→S(θ) −DTAj→S(θ)

+ DS(θ)→RAm
−DS(θ)→RAn

]
dθ

}

≈ 1
2π

∫ 2π

0
exp

{
−j

2π

λ

[
dTx(i, j)

(
1− δ2

θ

4
+

δ2
θ cos 2θ

4

)

+δθ dTy(i, j) sin θ + dRx(m,n) sin θ + dRy(m,n) cos θ]} dθ ,(D.1)

where

• Spread angle δθ can be approximated as δθ ≈ arcsin(R/D), since the radius R and

the distance D between base station and subscriber unit are typically large compared to

antenna spacing.

• DTAi→S(θ), DTAj→S(θ), DS(θ)→RAm
and DS(θ)→RAn

present the distances between

based station and subscriber unit, illustrated separately in Fig. D.1. More specially,

dTx(i, j) and dTy(i, j) present the horizontal and vertical distances between antenna i

and antenna j, respectively. dRx(m,n) and dRy(m,n) are similarly defined.
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One-Ring Channel Model
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Figure D.1: One ring model for the single-side correlated fading channel

• The approximation is taken place when δθ is small, resulting in DTAi→S(θ)−DTAj→S(θ) ≈
dTx(j, n)(1− 1/4(R/D)2) + dTy(j, n)δθ sin θ.

In this thesis, the correlated channel information is referred to the single-side correlation at

transmitter where a uniform linear array is equipped, accordingly dRx(m,n) = dRy(m,n) =

dTx(i, j) = 0. The resulting correlation between two paths can be simplified as

E
[
HijHH

mn

]
=

1
2π

∫ 2π

0
exp

{
−j

2π

λ

[
dTx(i, j)

(
1− δ2

θ

4
+

δ2
θ cos 2θ

4

)]}
, (D.2)
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Appendix E
Jensen Inequality

In mathematics, Jensen’s inequality relates the value of a convex function of an integral to

the integral of the convex function. The simplest form of the inequality states that the convex

transformation of a mean is less than or equal to the mean after convex transformation.

Theorem: Let X be some random variable with a probability density function p(x), and f(x)

be a convex function , the expected value of f(X) is at least the value of f at the mean of

X [108]

E [f(X)] ≥ f(E [X]) . (E.1)

The opposite is true of concave transformations.

94



Appendix F
Markov Inequality

In probability theory, Markov’s inequality gives an upper bound for the probability that a non-

negative function of a random variable is greater than or equal to some positive constant. It

relate probabilities to expectations, and provide loose but still useful bounds for the cumulative

distribution function of a random variable.

Theorem [108] For any random variables, X ≥ 0

Pr{X ≥ a} ≤ E [X]
a

. (F.1)

It is also available for any positive function f : X → R+ for X , that is

Pr{f(X) ≥ f(a)} ≤ E [f(X)]
f(a)

. (F.2)

When f is a non-decreasing function, we have

Pr{X ≥ a} = Pr{f(X) ≥ f(a)} ≤ E [f(X)]
f(a)

. (F.3)
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Appendix G
Noncentral Wishart Distribution

Definition [86] : Consider X is a random n × p (n ≥ p) matrix, each row Xi of which is

independently and identically distributed

Xi ∼ Np(µi,Σ) , i = 1, . . . , n.

Then the matrix S = XTX is Wishart distributed, such as

S ∼ Wp(n,Ω,Σ) , (G.1)

with degree of freedom n, noncentrality Ω = Σ−1
∑n

i=1 µH
i µi. The probability density func-

tion is given by

f(X) = (2π)−
1
2
np|Σ|− 1

2
n exp

(
−1

2
tr{Σ−1}(X−M)H(X−M)

)
, (G.2)

where the matrix M is mean matrix of X, that is, M = [µ1; . . . , µn].
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[63] S. Verdú and V. Poor, “On minimax robustness: A general approach and applications,”
IEEE Transactions on Information Theory, vol. 73, pp. 328–340, March 1984.

[64] S. Kassam and H. Poor, “Robust techniques for signal processing: A survey,” IEEE
Proceedings, vol. 73, pp. 433–481, March 1985.

[65] D. Palomar, M. Cioffi, and M. Lagunas, “Joint Tx-Rx beamforming design for multicar-
rier mimo channels: a unified framework for convex optimization,” IEEE Transactions
on Signal Processing, vol. 51, pp. 2381–2401, September 2003.

[66] A. Abdel-Samad, A. Gershman, and T. Davidson, “Robust transmit eigen beamforming
based on imperfect channel feedback,” in IEEE Vehicular Technology Conference, 2004.
(VTC Fall 2004), vol. 3, pp. 2049–2053, September 2004.

[67] A. Abdel-Samad and A. Gershman, “Robust transmit eigen beamforming based on im-
perfect channel correlations,” in IEEE International Conference on Communication,
2005. (ICC 2005), vol. 4, pp. 2292–2296, May 2005.

[68] M. Shenouda and T. Davidson, “Tomlinson-Harashima precoding for broadcast chan-
nels with uncertainty,” IEEE Journal on Selected Areas in Communications, vol. 25,
pp. 1380–1389, September 2007.

101



References

[69] S. Vorobyov, Y. Rong, and A. Gershman, “Robust adpative beamforming using
probabilistic-constrained optimization,” in IEEE Statistical Signal Processing Workshop,
2005. Processing. (SSP ’05), 2005.

[70] S. Vorobyov, C. Haihua, and A. Gershan, “On the relationship between robust min-
imum variance beamformers with probabilistic and worst-case distortionless response
constraints,” IEEE Transactions on Signal Processing, vol. 56, pp. 5719–5724, 2008.

[71] S. Zhou and G. Giannakis, “Adaptive modulation for multiantenna transmission with
channel mean feedback,” IEEE Transactions on Wireless Communications, vol. 3,
pp. 1626–1636, September 2004.

[72] P. Kall and S. Wallace, Stochastic Programming. John Wiley & Sons, 1994.

[73] D. Cox and N. Reid, “Approximation to noncentral distribution,” The Canadian Journal
of Statistics, vol. 15, no. 2, pp. 105–114, 1987.

[74] H. Alzer, “On some inequalities for the incomplete gamma function,” Mathematics of
Computation, vol. 66, pp. 771–778, April 1997.

[75] M. Grant, S. Boyd, and Y. Ye, “CVX User’s Guide for cvx version 1.1.” (build 565),
November 2007.

[76] A. Goldsmith and S. Chua, “Variable-rate variable-power MQAM for fading channels,”
IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218–1230, 1997.

[77] S.-H. Hu and A. Duel-Hallen, “Combined adaptive modulation and transmitter di-
versity using longrange prediction for flat fading mobile radio channels,” in IEEE
Global Telecommunications Conference, 2001.(GLOBECOM2001), vol. 2, pp. 1256–
1261, 2001.

[78] M. Gidlund, “A sub-optimal eigenvalue-based adaptive modulation scheme for broad-
band MIMO-OFDM systems,” in IEEE Global Telecommunications Conference,
2001.(GLOBECOM2001), vol. 2, May 2008.

[79] S. Chung and A. Goldsmith, “Degrees of freedom in adaptive modulation: A unified
view,” IEEE Transactions on Communication, vol. 49, pp. 1561–1571, September 2001.

[80] P.-J. Chung, H.-Q. Du, and J. Gondzio, “A probabilistic constraint approach for ro-
bust transmit beamforming with imperfect channel information,” in Fourth IEEE Work-
shop on Advanced Signal Processing for Wireless Communication Systems (IEEE WS-
ASPWCS 2009), February 2009.

[81] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial
multiplexing in multiuser MIMO channels,” IEEE Transactions on Signal Processing,
vol. 52, pp. 461–471, February 2004.

[82] M. Lim, M., and D. McLernon, “Spatial multiplexing in the multi-user MIMO down-
link based on signal-to-leakage ratios,” in IEEE Global Telecommunications Conference,
2007. (GLOBECOM 2007), pp. 3634–3638, November 2007.

102



References

[83] D. Piazza and U.Spagnolini, “Random beamforming for spatial multiplexing in down-
link multiuser MIMO systems,” in IEEE 16th International Symposium on Personal, In-
door and Mobile Radio Communications, 2005. (PIMRC 2005.), vol. 4, pp. 2161–2165,
September 2005.

[84] D. Gesbert, M. Kountouris, R. Heath, C.-B. Chae, and T. Sälzer, “From single user to
multiuser communications: Shifting the MIMO paradigm,” vol. 56, no. 12, pp. 6044–
6056, 2008.

[85] R. Heath, M. Airy, and A. Paulraj, “Multiuser diversity for MIMO wireless systems
with linear receivers,” in Conference Record of the Thirty-Fifth Asilomar Conference on
Signals, Systems and Computers, 2001., vol. 2, pp. 1194–1199, 2001.

[86] T. Anderson, An Introduction to Multivariate Statistical Analysis. Wiley, 3rd edition. ed.,
2003.

[87] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[88] D. Maiwald, Breitbandverfahren zur Signalentdeckung und –ortung mit Sensorgruppen
in Seismik– und Sonaranwendungen. Shaker Verlag, Aachen: Dr.–Ing. Dissertation,
Faculty of Electrical Engineering, Ruhr–Universität Bochum, 1995.

[89] N. Jindal, “Mimo broadcast channels with finite rate feedback,” in IEEE Global Commu-
nications Conference, 2005. (GLOBECOM2005 2005), p. 1520C1524, November 2005.
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ABSTRACT

Multi-user multiple-input and multiple-output (MU-MIMO) wire-

less systems have the potential to provide a substantial gain by us-

ing transmit beamforming to allow multi-user communication in the

same frequency and time slots. The main challenge for transmit

beamforming design is to suppress the co-channel interference (CCI)

from other users. In order to completely cancel the CCI at each user,

perfect channel state information (CSI) is required at base station,

which is generally not available in practice. To overcome the perfor-

mance degradation caused by the imperfections, the most common

approach is the worst-case method, which leads to conservative re-

sult as the extreme (but rare) conditions may occur at a very low

probability. In this work, we propose a probabilistic-constrained

beamforming based on signal-to-leakage ratio (SLR) criterion un-

der consideration of inaccurate channel information. The simulation

results show that the proposed beamformer achieves the lowest bit

error rate (BER) and leaks the least transmit power from the desired

user to all other users among the state-of-art transmit beamformers.

Index Terms— Signal-to-leakage ratio, probabilistic constraint,

robust transmit beamforming

1. INTRODUCTION

MU-MIMO wireless system has gained considerable amount of in-

terest since it can significantly increase data throughput and achieve

higher diversity gain [1]. In MU-MIMO systems, a base station (BS)

communicates with several co-channel users by using the transmit

beamforming in the same frequency and time slots, which leads to

the CCI at the end users. Thus, it is crucial to design transmit beam-

former which can suppress the CCI at the end users.

In the attempt to completely cancel CCI, accurate channel in-

formation is required, which is usually not available due to errors

induced by imperfect channel feedback, estimation/quantization. It

leads to significant performance degradation. Hence, it motivates

to design robust transmit beamforming techniques which can not

only suppress MU interference but also ensure robustness against

the imperfections. Recent advances in robust MU-MIMO trans-

mit beamforming techniques model the uncertainty as an arbitrary

but Frobenius-norm bounded matrix, namely worst-case scenario [2]

[3]. However, worst-case approach leads to excessively conservative

performance as the worst operational condition is rare.

In this work, we adopt a recently developed transmit beamform-

ing technique based on probabilistic constraint for single-userMIMO

system [4] [5]. Note that the probabilistic constraint strategies have

been applied in robust receive beamformer designs [6] [7] [8].

Moreover, two criteria work as performance measurement of ro-

bust transmit beamformer, that is, signal-to-noise ratio (SINR) [2]

[9], and signal-to-leakage ratio (SLR) [1] [3] [10]. Due to coupling

between optimization and feasibility simultaneously, the SINR-based

transmit beamformer can only be obtained iteratively, without a closed

form solution. On the other hand, the leakage-based criterion leads

to a decoupled optimization problem and admits an analytical closed

form solution [1]. Hence, we pursue the SLR criterion for designing

transmit beamforming.

Our approach maximizes the average signal power at the desired

user and ensures the robustness against the CSI errors by keeping a

low probability of the worst-case power leakage performance. Ac-

cording to multivariate Chebyshev inequality, we derive a determin-

istic expression for the probabilistic constraint. Moreover, we intro-

duce Lagrangian relaxation to drop the non-convex rank constraint

and formulate the beamformer design as probabilistic-constrained

optimization problem. Under the assumption of Gaussian-distributed

error, the underlying problem can be efficiently solved by modern

convex optimization algorithms and a lower bound solution is ob-

tained. Simulation results show the proposed approach provides the

best BER performance, and also leaks the least power from desired

user to all other users, compared with several popular transmit beam-

forming techniques.

In the next section, we give a brief description of the system

model. Dropping rank constraint and transforming probabilistic con-

straint into deterministic form, the proposed approach is formulated

as a stochastic optimization problem in Section 3. Simulation results

are presented in Section 4. Finally, Section 5 concludes this work.

2. SYSTEMMODEL

Consider a downlink MU-MIMO system consisting of one base sta-

tion communicating with K users. The base station employs Nt

transmit antennas and each user is equipped with Nr;k (Nr;k ≥ 1)
receive antennas. Let sk denotes the transmitted data intended for

user k. For each user the scale signal sk is multiplied by a beam-

former vector ck, thus the transmitted signal vector x ∈ C
Nt×1 can

be presented as

x =
K∑

k=1

cksk = C s , (1)

where C ∈ C
Nt×K is beamforming matrix as C = [c1, . . . , cK ].

Assuming that the channel is slowly varied fading and i-th user is

the desired user, the received signal vector yi for the i-th user can be

written as

yi = HiC s+ ni

= Hicisi +

K∑

k=1,k  =i

Hicksk + ni , (2)

317978-1-4244-2710-9/09/$25.00 c© 2009 IEEE
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where the noise ni ∈ C
Nr;i×1 is independent complex Gaussian

distributed, i.e ni ∼ CN (0, σ2
i INr;i

), and the MIMO channel for i-

th user isHi ∈ C
Nr;i×Nt . In (2), the first term is the desired signal,

and the second term quantifies the CCI caused to i-th user from all
other users. Note that all three parts (the desired signal, interference

and sensor noise) are statistically independent components. We con-

sider the case that the number of transmit antennas is smaller than

the number of all receive antennas combined, such as

Nt ≤ max
i

{

∑K

k=1,k  =i
Nrk

}

,

in which the interference can not be exterminated by zero-forcing

scheme [1].

Since the transmit beamformer based on SINR criterion eas-

ily arrives in infeasible region [9], we design the transmit beam-

former based on SLR criterion instead. Assuming E
[

||si||
2
]

= 1,
(i = 1, . . . , K), the power allocated on the i-th user is given by
||Hici||

2, and the total power leaked from i-th user to all other user

is
∑K

k=1,k  =i
||Hkci||

2. With perfect channel knowledge at the re-

ceiver, the average SLR obtained from maximum ratio combining

for the i-th user is given by

SLRi =
||Hici||

2

∑K

k=1,k  =i
||Hkci||2

=
||Hici||

2

||H̃ici||2
, (3)

where H̃i ∈ C
∑K

k=1,k �=i Nr;k×Nt denotes an extended channel ma-

trix that excludesHi, i.e. H̃i = [HT
1 , . . . ,HT

i−1,HT
i+1, . . . ,HT

K ]T .
When perfect CSI is available at transmitter, maximization of the av-

erage SLR is achieved with the one directional beamformer [3]

c
opt
i = P

{

(H̃H
i H̃i)

−1(HH
i Hi)

}

,

where P{·} is the principal eigenvector of the matrix.

However, in real scenario, only imperfect channel information

can be accessed at transmitter. For i-th user, the presumed channel
Hip ∈ C

Nr;i×Nt can be expressed as

Hi = Hip +Ei , (4)

where the error matrix Ei ∈ C
Nr;i×Nt consists of i.i.d. complex

normally distributed entries with variance σ2
e . The subscript p is

used to denote the presumed channel information. And the corre-

sponding interference channel H̃ip ∈ C

∑K
k=1,k �=i Nr;k×Nt can be

written as

H̃i = H̃ip + Ẽi , (5)

where the error matrix Ẽi is composed of (K−1) transport error ma-

trix Ei, that is, Ẽi = [ET
1 , . . . ,ET

i−1,ET
i+1, . . . ,ET

K ]T . Since the

CSITs for each user are independent, the constructed matrix Ẽi has

the same distribution of each component Ei, that is, i.i.d complex

normally distributed entries with variance σ2
e . Note that we assume

that H̃i and H̃ip have the same rank, that is,

rank(H̃i) = rank(H̃ip) = min(Nt,

K
∑

k=1,k  =i

Nt) = Nt .

In this paper, we design a transmit beamformerC which maximizes

SLR under inaccurate channel presumption.

3. BEAMFORMER DESIGN BASED ON

PROBABILISTIC-CONSTRAINED OPTIMIZATION

To tackle performance degradation caused by imperfect channel es-

timates, we consider a probabilistic constraint approach. In contrast

to the minimax approach [1] that focuses on the worst-case perfor-

mance, the probabilistic constraint takes into account the degrada-

tion performance proportionally . This approach is favorable to an

achievable optimal power allocation on the desired user, and pre-

vents a pessimistic result due to worst-case performance of the power

leakage proportionally considered.

According to the error model (4) and (5), SLR becomes a func-

tion of the presumed channel Hip and H̃ip and the random errors

Ei and Ẽi

SLRi(Ei, Ẽi) =
c
H
i (Hip +Ei)

H(Hip +Ei)ci

cHi (H̃ip + Ẽi)H(H̃ip + Ẽi)ci
. (6)

To simplify the expression (6), we define a new parameter Ci as

follow

Ci � cic
H
i , Ci ≥ 0 and rank(Ci) = 1, (7)

whereCi is positive semidefinite.

In this work, instead of maximizing the SLR directly, we sep-

arately maximize the average power allocated on the desired signal

while keeping a low probability that the leakage power from the de-

sired signal is larger than a pre-specified threshold.

3.1. Objective Function

Given the presumed channel Hip at transmitter, the objective func-

tion is obtained by taking the expectation of the power allocated on

i-th user with respect to the random error Ei

E

[

tr{(Hip +Ei)
H(Hip +Ei)Ci

]

}

= tr
{(

H
H
ipHip + σ

2
eNrkI

)

Ci

}

. (8)

Note that as we can not guarantee the subspaces of all users are or-

thogonal to each other, eigen-decomposition approach can not be

easily implemented into objective function.

3.2. Probabilistic Constraint

To maximize the SLR performance, we also keep the probability

of the worst-case power leakage at i-th user larger than a threshold
low. That is, for a given pre-specified leakage power level γth and

an outage probability pi, the varied leakage power has to satisfy the

following probabilistic constraint,

Pr

{

tr{(H̃ip + Ẽi)
H(H̃ip + Ẽi)Ci} ≥ γthi

}

≤ pi , (9)

where Pr{A} denotes the probability of the event A.
Define

Zi =
(H̃ip + Ẽi)ci
√

tr{σ2
eCi}

,

it is easy to show that the random vector Zi has the following distri-

bution

Zi ∼ CN

(

H̃ipci
√

tr{σ2
eCi}

, I

)

.

Since the rank of H̃ip is equal to Nt and rank(H̃H
ipH̃ip) = Nt,

the random variables ||Zi||
2 is non-central χ2

n(λ)-distributed, with
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degree of freedom ni = 2Nt and noncentrality parameter λ =
tr{H̃H

ip
H̃ipCi}/ tr{σ

2

eCi} .

According to the Chebyshev inequality [11], we reformulate the

probabilistic constraint (9) as follow

Pr
{

tr{σ2eCi}||Zi||
2 ≥ γthi

}

≤
E
[

||Zi||
2
]

γthi
/ tr{σ2eCi}

, (10)

where the mean of the non-central χ2-distributed variable ||Zi||
2 can

be expressed as

E
[

||Zi||
2
]

= ni + λ .

Then, for pi ∈ (0, 1), the constraint (10) can be rewritten as

ni + λ

γthi
/ tr{σ2eCi}

≤ pi ,

Since λ = tr{H̃H

ip
H̃ipCi}/ tr{σ

2

eCi}, we have

1

tr{σ2eCi}

(

tr{σ2eCi}ni + tr{H̃
H

ip
H̃ipCi}

)

≤
piγthi

tr{σ2eCi}
,

tr
{

Ci

(

niσ
2

eI+ H̃
H

ip
H̃ip

)}

≤ piγthi
. (11)

In order to guarantee a low probability of worst-case performance,

the outage probability pi is set as a small value, and so does the

threshold.

3.3. Probabilistic Constrained Optimization

Recall the beamformer matrix (7), the rank constraint on Ci is non-

convex. In order to convert the optimization problem into convex

form, we introduce Lagrangian relaxation to drop the rank constraint,

such as

Ci � cic
H

i , andCi ≥ 0 . (12)

It means that we expect to find a lower bound solution Ci with a

lower cost than (7) but with high rank [12].

Based on average transmit power allocated on i-th user (8), the

reformulated probabilistic constraint (11), and relaxed rank constraint

(12), the proposed beamformer design can be formulated as

max
Ci

tr
{(

H
H

ip
Hip + σ2eNrk

I

)

Ci

}

, (13)

subject to

tr
{

Ci

(

niσ
2

eI+ H̃
H

ip
H̃ip

)}

≤ piγthi
, (14)

tr{Ci} ≤ 1 , (15)

Ci ≥ 0, i = 1 , . . . ,K (16)

which can be efficiently solved by standard tools of mathematical

programming [13]. Note that the rank of the solution Ci is usually

higher than one and, therefore, the optimal weight vector cannot be

directly recovered from Ci. As suggested in [14], a common ap-

proach is to use randomization techniques whose essence is to draw

multiple Gaussian random vectors form CN (0,Ci) and the best so-

lution is selected among such randomly generated candidates.

4. SIMULATION RESULTS

In our simulation, we consider multi-use MIMO system with one

base station (BS) equipped with 6 antennas and 3 users each equipped

with 3 antennas. The data symbols are generated using QPSK mod-

ulation. The proposed probabilistic-constrained beamformer is com-

pared with non-robust SLR-based beamformer [15], and worst-case

beamformer [3]. Without any loss of generality, we assume the fol-

lowing:

• Channel Mean Feedback: The channel coefficients are slowly

time-varying according to Jake’s model with Doppler frequency

fd. For i-th user, assume that the accurate channel and the

presumed channel are distributed as follows

Hi ∼ CN (0, σ2Hi
) , Hip ∼ CN (0, σ2Hip

) .

And E
[

H
H

i Hip

]

= ρσ2i I where the correlation coefficient

ρ determines the feedback quality. According to error model

(4), we have

Ei ∼ CN
(

0, σ2eI
)

, where σ2e = (1− ρ2)σ2Hi

Here we set σ2Hi
= 1, and the error variance σ2e = 0.01.

• Parameters in Probabilistic Constraint: According to [3], the

errors in covariance matrix of the desired user are bounded by

εi = 2.1852, while errors in leakage part bounded as εk =
11.5992. In order to make a fair comparison, we set threshold

γthi
= E

[

H̃
H

ip
H̃

]

ip

+ εk and outage probability to p = 0.1

for the proposed beamformer.

• Other Parameters: The white noise variance per receive an-

tennas is assumed the same for all users, σ2i = . . . = σ2K =
1. And BER is based on SNR at receiver side.

The proposed beamformer outperforms the state-of-art beam-

formers in MU-MIMO system in Fig. 1. More specifically, the pro-

posed beamformer maintains an acceptable 10−3 uncoded BER at

SNR −2 dB for three simultaneously active users. To achieve the

same BER, the SNR required to the proposed beamformer is 4 dB

less than the worst-case SLR-based beamformer, and 6 dB less than

the non-robust SLR-based beamformer, where the conventional one-

directional beamformer has the worst performance. Moreover, the

BER performance of the proposed beamformer trends to the same

performance as all other popular beamformers since the errors in

CSIT is not dominant in high SNR region.

To understand the behavior of the proposed algorithm, its SINR

outage at SNR = 0 dB is plotted in Fig. 2. It shows that an outage

value of 10% at SINR = 6.5 dB for the proposed scheme, which

means the achieved SINR is larger than 2dB for 90% channel real-

izations. Moreover, using the propose scheme, there is around 3.5
dB improvement in 10% outage value compared to the non-robust

SLR-based beamformer. It is because that the proposed beamformer

is designed to maximize SLR which reduces the power leakage from

i-th desired user to all other users, and consequently tends to reduce

the interference from all other users.

5. CONCLUSION

We proposed a novel SLR-based transmit beamforming design that

maximizes average desired signal power and guarantees a low proba-

bility of worst-case power leakage by using probabilistic constraint.

By introducing Lagrangian relaxation approach to relax rank con-

straint and transferring the probabilistic constraint into deterministic

form, the underlying problem was transformed into a convex opti-

mization problem, and a lower bound solution is efficiently obtained
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Fig. 1. The average BER performance over MU-MIMO system,

where one base station with Nt = 6 transmit antennas and K = 3

users equipped with Nrk
= 3 receive antennas

by modern tools under the assumption of the complex Gaussian-

distributed errors. Simulation results show that the proposed beam-

former achieves the lowest bit error rate at the same SNR stage, com-

pared with the worst-case design. Moreover, it effectively reduces

power leakage from the desired user and provides the highest SINR

reliability among the popular beamforming techniques.
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ABSTRACT

Adaptive modulation is a promising technique to increase
system throughput considerably. However, it relies on perfect
channel state information (CSI), and is sensitive to errors in
CSI. In this work, we maximize the system transmission rate
based on a lower bound of average bit error rate (BER) while
satisfying the transmit power and BER constraint. In order
to further enhance the system throughput, adaptive modula-
tion scheme is combined with a robust transmit beamformer
to obtain extra diversity gain. Moreover, to pay the penalty
for the lower bound of the average BER, we introduce a
probabilistic constraint by keeping a low outage probability
of signal-to-noise ratio (SNR). Simulation results show that
the proposed scheme provides the maximum system through-
put compared with several state-of-the-art robust adaptive
schemes, and always guarantees the target BER.

1. INTRODUCTION

Adaptive modulation has the potential to increase the trans-
mit rate by taking the advantage of favorable channel condi-
tions [1] [2] [3] [4] [5] [6] [7]. Perfect channel state infor-
mation is crucial to adaptive modulation, but is typically not
available due to errors induced by the imperfect (quantized,
erroneous, or outdated) feedback channel [8]. Thus, a robust
adaptive modulation scheme is required based on imperfect
CSI.

Although existing robust adaptive modulation schemes
at transmitter [5] [6] [7] take errors in CSI into account,
the system throughput does not achieve the maximum rate,
due to the improperly-paid compensation on average BER.
More specifically, the system throughput is determined by
the target BER and the average BER that the system achieves.
However, the latter is difficult to evaluate, and is usually
replaced by its lower bound, which carries a performance
penalty. To ensure that adaptive modulation still meets the
BER target, the compensation can be employed in two ways.
One approach is to artificially introduce a modifying factor
which can only be empirically determined through extensive
Monte Carlo simulations [5]. In another approach [6], the
BER constraint is satisfied under the consideration of worst-
case SNR scenario. Due to the excessive compensation, only
a conservative throughput can be achieved. Therefore, it is
necessary to investigate an efficient approach that employs
appropriate compensation on the average BER.

Recently, transmit diversity has been well developed to
enhance the performance of wireless communication when
perfect CSI is not known [6] [9] [10]. In order to reduce its
performance degradation caused by imperfect CSI, adaptive

modulation scheme incorporates transmit beamforming tech-
nique and leads to further improvement of system through-
put. For instance, in partial channel information scenarios,
the transmit beamformers based Alamouti scheme provide
extra two-dimensional diversity gain to adaptive modulation
scheme, which increase the system throughput [3] [5]. By
applying the transmit beamformer based on worst-case CSI
scenario, the robust adaptive modulation scheme achieves
the maximum transmission rate for any possible error in the
uncertainty region [6]. In this work, the recently proposed
transmit beamforming techniques [11] [12] are incorporated
into adaptive modulation scheme.

We design robust adaptive modulation scheme for mul-
tiantenna transmissions with imperfect channel information.
Under transmit power constraint, the transmitter here opti-
mally adjusts the power allocation and the signal constella-
tion to maximize the system throughput while maintaining
a prescribed BER constraint. In order to obtain an extra
diversity gain, the proposed adaptive modulation scheme is
combined with the transmit beamformer. Thus, a necessary
compensation is required. Here, we introduce a probabilistic
constraint to efficiently pay for the penalty to keep the outage
probability of SNR as low as possible. The proposed robust
adaptive problem is transformed into maximization of SNR
while satisfying a probabilistic constraint and transmit power
constraint, which can be solved by standard mathematical
tools. Simulation results show that the proposed adaptive
scheme significantly increases the system throughput com-
pared with other state-of-the-art robust adaptive modulation
schemes, while guaranteeing the target BER.

This paper is organized as follows. The system model is
described in Section 2. After a brief introduction of the stan-
dard adaptive modulation schemes in Section 3, the proposed
robust adaptive modulation schemes is developed in Section
4. Simulation results are presented and discussed in Section
5. Concluding remarks are given in Section 6.

2. SYSTEM MODEL

Consider a single-user wireless communication system with
Nt transmit antennas and Nr receive antennas (Nt ≥ Nr). The
channels are assumed as slow time-varying, and the trans-
mitter can track the channel variations via feedback channel.
However, perfect channel realization can not be accessed,
leading the imperfection taken into account in real scenario.
In this work, we assume that the transmitter can obtain the
imperfect channel information and the error statistics over
slow-fading channel.

Defining the perfect channel as H ∈ C
Nr×Nt and the esti-
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mate as Ĥ ∈ C
Nr×Nt , we have

H := Ĥ+E , (1)

where the channel matrix is H = [ h1, . . . ,hNt ] , and the error

matrix E ∈ C
Nr×Nt consists of i.i.d complex normally dis-

tributed entries with variance σ2
e . The information-bearing

symbol s ∈ C
P×1 is drawn from an appropriate signal con-

stellation of size M with average energy Es , spread by a pre-
coding matrix C ∈ C

Nt×P and transmitted through multiple
channels.

According to the error model (1), the SNR is a function

of the channel estimate Ĥ and the random error E,

γ =
Es

N0
tr

{

C
H(Ĥ+E)H(Ĥ+E)C

}

, (2)

where N0 is the energy of the additive white Gaussian noise
(AWGN) with zero mean and variance N0/2 per real and
imaginary dimension.

3. STANDARD ADAPTIVE MODULATION

The goal of adaptive modulation is to maximize the system
transmission rate, subject to BER constraint and power con-
straints. To simplify the design, we rely on the approximation
of the instantaneous BER, which is a function of received
SNR γ and constellation size 2k [2]

BER(k,γ) ≈ 0.2exp

(

−
1.6γ

2k −1

)

, (3)

where k is the transmission rate. The average BER can
be calculated by taking the expectation of the instantaneous
BER with respect to γ , as follows

BER(k) =
∫

∞

0
BER(k,γ) p(γ)dγ . (4)

Here, we define the BER constraint as

BER(k) ≤ BER0 , (5)

where BER0 is pre-specified value, usually defined as 10−3.
According to (3), (4) and (5), the optimization problem

can be formulated as

max k , (6)

subject to BER(k) ≤ BER0 , (7)

where the transmission rate k is parameterized by the average
BER and BER constraint.

4. ROBUST DESIGN WITH IMPERFECT

CHANNEL INFORMATION

In practice, the CSI can not be perfectly known, leading a
significant degradation performance of system throughput.
Thus, for robust adaptive modulation scheme, it is crucial
to take the errors in CSI into account. In this section, we
combine robust adaptive modulation scheme with recently
developed robust transmit beamforming technique [11] [12],
which can significantly enhance the system throughput.

Since the integral in (4) can not be calculated in closed
form, a common method is to take the lower bound of aver-
age BER [5],

BERL(k) = 0.2exp

(

−
1.6 γ

2k −1

)

, (8)

where γ is the average SNR. By considering BER constraint
(5), a suboptimal transmission rate can be expressed as

k′ = log2

(

1−
1.6 γ

ln(5BER0)

)

, (9)

where k′ denotes as the suboptimal transmission rate. Given
a pre-specified BER constraint, the maximum achievable
transmission rate increases with the average SNR [5].

However, according to Jensen’s inequality, the average
BER (4) may be larger than the target BER, leading the con-
straint (5) violated [5]. Two approaches are used to prevent
this. One introduces a modifying factor to set a smaller BER
target [5], which only can be empirically determined by ex-
tensive Monte Carlo simulation. Another approach [6] con-
siders the worst-case SNR, which leads conservative solution
due to extreme rare worst operational condition. In order to
efficiently maximize the system throughput, we propose a
novel approach which can intelligently and efficiently pre-
vent the constraint violation.

In order to avoid the suboptimal transmission rate violat-
ing the average BER constraint, we introduce a probabilistic
constraint that keeps a low outage probability of SNR.

To illustrate the novelty in the proposed scheme, we
investigate the relationship between average BER and its
lower bound. According to [13], the instantaneous BER,
BER(k,γ), can be approximated by a Taylor series about the
mean SNR γ that is truncated after the quadratic term, such
as

BER(k,γ) ≈ BERL(k)+(γ − γ) BER ′
L(k)

+
(γ − γ)2

2
BER ′′

L(k)+o(γ) ,

where BER ′
L(k) and BER ′′

L(k) are defined as first derivative

and second derivative of BERL(k) with respect to k. Ignoring
higher order terms and taking the expectation of BER, we
have

BER(k) ≈
∫

∞

0

[

BERL(k)+(γ − γ)BER ′
L(k)

+
(γ − γ)2

2
BER ′′

L(k)

]

p(γ)dγ

= BERL(k)+0.2
var{γ}

2
BER ′′

L(k)

= BERL(k)

(

1+
var{γ}

10

(

−1.6

2k −1

)2
)

.(10)

Note that the first-order term vanishes as a result of the ex-
pectation operation, and the approximation will be accurate
if the instantaneous SNR is well concentrated about its mean,
namely the variance of SNR var{γ} is small. It also clearly
indicates that the penalty of lower bound BER comes from
the ignored higher order terms.
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Figure 1: Average normalized throughput comparison, γth =
0.95 and pout = 10%

In recently proposed probabilistic-constrained transmit
beamforming techniques [11] [12], we find that the high-
order terms in (10) can be reasonably taken into account
with a properly defined outage probability constraint. We
define the probabilistic constraint that the SNR γ falls below
a threshold,

Pr{γ ≤ γth} ≤ pout , (11)

where the SNR threshold is defined as γth, and pout is a pre-
specified probability value that satisfies QoS requirements,
and Pr{A} stands for the probability of event A. Note that
by setting the threshold equal to or larger than the average
SNR, γ , and the outage probability at a low level, leading
well-concentrated random variables γ , correspondingly, the
difference between average BER and its lower bound is re-
duced without any extra compensation.

By taking the lower bound of average BER (8) and intro-
ducing the probabilistic constraint (11), our adaptive modu-
lation scheme (6)-(7) can be formulated as follows

max log2

(

1−
1.6 γ

ln(5BERL(k))

)

, (12)

subject to

BERL(k) ≤ BER0 , (13)

Pr{γ ≤ γth} ≤ pout . (14)

It indicates that the system throughput is determined by
the achievable average SNR and outage probability of var-
ied SNR. Applying the robust transmit beamforming [11]
[12], the average SNR is maximized while the robustness is
achieved by taking errors in CSI proportionally. Compared
to other popular robust designs [10] [6], simulation results
show that the probabilistic constraint approach has the best
performance. Consequently, it leads to the highest transmit
rate in the proposed adaptive modulation scheme.
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Figure 2: BER for the proposed robust adaptive modulation
scheme, γth = 0.95 and pout = 10%

5. SIMULATION RESULTS

In our simulation, we consider a single-user MIMO system
with multiantenna at both transmitter and receiver sides (Nt ≥
Nr). 105 Monte-Carlo runs are used to obtain each point.
The proposed adaptive modulation scheme is compared with
other adaptive schemes based on different approaches, such
as the worst-case approach [6] and the orthogonal space-time
block code (OSTBC) approach [14]. Without any loss of
generality, we assume the following:

• Channel parameters : The channel between pth and qth
transmit antennas can be presented as [15]

[HH
H]p,q ≈

1

2π

∫ π

0
exp

[

− j2π(p−q)∆
dt

λ
sinθ

]

dθ ,

where angle of spread ∆ is related to the channel state
information, λ is the wavelength of a narrow-band signal,
and dt the antenna spacing and ∆ the angle of spread. We
set dt = 0.5λ and ∆ = 30◦.

• Error in CSI : We assume that the error is Gaussian dis-
tributed with zero mean and covariance matrix σ2

e I, i.e.

ENr×Nt ∼ C N (0,σ2
e I).

In our simulation, the variance of the error is set as 0.6.

• Other parameters : We set the target BER as 10−3 . The
SNR threshold is γth = 0.95, and Es/N0 = 1. The outage
probability is pout = 10% .

In Fig. 1 , the average throughput [6] has been normal-
ized with respect to the code rate, so that the gains provided
by the robust technique itself for different number of transmit
antennas can be compared directly. In this case, 4 transmit
antennas and 3 receive antennas are considered. The eigen-

values of Ĥ
H
Ĥ are (0.4676,0.4104,0.1220,0). With the

same channel condition, the proposed scheme requires less
transmit power among other schemes to fulfill the BER con-
straint, thus larger constellation size is allowed to modulate
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the transmit symbols, consequently, leading to the maximum
normalized system throughput.

In Fig. 2, it shows that the average BER performance has
been well controlled below 10−3 under the proposed scheme.
Here, we consider the BER performance with three different
constellation rates

Mi = 2k

{

k ≥ 2, k ∈ R+ : Continuous Rate (C-Rate),
k ∈ {2,3,4, . . .}: Discrete Rate (D-Rate),
k ∈ {2,4,6,8} : Finite Discrete Rate (FD-Rate),

and two different numbers of receive antennas : Nr = 2 and
Nr = 3. It indicates that no matter the number of receive
antennas, the BER achieves the target by using the continu-
ous rate. Note that the BER bound of 10−3 breaks down at
low SNR, since (4) is not applicable to BPSK. Furthermore,
because the BER increases monotonically with decreasing
constellation size, the exact average BER is much lower than
10−3 with both discrete rates, such as D-Rate and FD-Rate.

6. CONCLUSION

We propose a novel robust adaptive modulation scheme that
significantly improves the system throughput while satisfy-
ing the BER constraint. In contrary to the conventional
schemes, the proposed scheme introduces the probabilistic
constraint to control the varied SNR, which efficiently min-
imizes the penalty for the lower bound on average BER by
keeping the probability that the SNR falls below a thresh-
old low. Under imperfect channel conditions, the robust
adaptive modulation scheme gains an extra transmit diver-
sity gain by combining with transmit beamforming, and a
high average SNR. With the robustness provided by proba-
bilistic constraint, the resulting system throughput achieves
the maximum rate. Simulation results demonstrate the pro-
posed robust adaptive scheme provides the most significant
improvement of the normalized system throughput among
the state-of-art robust adaptive schemes, and guarantees the
target BER in different scenarios, such as different numbers
of receive antennas and different constellation rates.
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ABSTRACT

Transmit beamforming is a powerful technique for enhanc-
ing performance of wireless communication systems. Most
existing transmit beamforming techniques require perfect
channel state information at the transmitter (CSIT), which
is typically not available in practice. In such situations,
the design should take errors in CSIT into account to
avoid performance degradation. Among two popular robust
designs, the stochastic approach exploits channel statistics
and optimizes the average system performance. The
maximin approach considers errors as deterministic and
optimizes the worst-case performance. The latter usually
leads to conservative results as the extreme (but rare)
conditions may occur at a very low probability. In this
work, we propose a more flexible approach that maximizes
the average signal-to-noise ratio (SNR) and takes the
extreme conditions into account proportionally. Simulation
results show that the proposed beamformer offers higher
robustness against channel estimation errors than several
popular transmit beamformers.

1. INTRODUCTION

Multi-antenna diversity is well motivated in wireless com-
munication systems because it offers significant advantages
over single antenna [1]. Perfect or partial knowledge of
the channel state information at transmitter (CSIT) can
provide further performance improvement.

However, in practical wireless systems, accurate chan-
nel estimates are not available due to errors induced
by imperfect channel feedback, estimation/quantization
errors or outdated channels. It is well known that the
performance of several nonrobust designs for multi-antenna
diversity degrades rapidly with increasing error levels. This
has motivated many works that take imperfect channel
information into account.

Existing robust transmit beamforming (or precoder)
designs can be categorized into the stochastic and the max-
imin approaches. The stochastic approach [2] [3] exploits
channel statistics such as mean or covariance and optimizes
the average system performance. On the other hand, the
maximin approach considers channel estimation errors as
deterministic and optimizes the worst-case performance [4]
[5]. While the stochastic approach focuses on the average
performance without paying attention to the extreme error
level, the worst-case approach is overall too conservative as
the worst operational condition is rare.

To overcome this problem, we proposed a more flexible
design based on probabilistic constraint using channel
covariance in [6]. In this work, we apply this approach
to transmit beamforming design under consideration of

imperfect channel estimates. Note that a similar strategy
was introduced into the design of adaptive beamformer at
the receiver side in [7].

Our approach maximizes the average Signal-to-Noise
Ratio (SNR) and ensures robustness against the CSIT error
by keeping the probability of the worst-case performance at a
very low level. Under the assumption that the CSIT error is
complex Gaussian distributed, this stochastic optimization
problem is further simplified to an equivalent deterministic
form which can be efficiently solved by modern convex op-
timization algorithms [8]. Simulation results show that the
proposed approach provides the best performance and high-
est robustness among several popular transmit beamformers.

In the following section, we give a brief description of
the system model. The proposed approach is formulated as
a stochastic optimization problem in Section 3. Section 4
is devoted to transformation of the probabilistic constraint
to a deterministic, convex constraint. Simulation results are
presented in Section 5. Finally, Section 6 concludes this pa-
per.

2. SYSTEM MODEL

Consider a single-user wireless communication system with
Nt transmit antennas and Nr receive antennas. The en-
coded signal s ∈ C

P×1 is spread by the precoding matrix
C ∈ C

Nt×P and then transmitted through a flat fading chan-
nel. The received signal y in the presence of additive white
Gaussian noise w is given by

y = HCs + w. (1)

The (i, j) element of the channel matrix H = [h1, · · · ,hNt
]

∈ C
Nr×Nt represents the response between the ith receive

antenna and the jth transmit antenna. Assuming perfect
channel knowledge at the receiver, the average signal-to
noise-ratio (SNR) obtained from maximum ratio combining
(MRC) is given by

SNR =
Es

N0

tr{CH
H

H
HC}, (2)

where Es = E
 
‖s‖2 ! is the average energy of the signal and

N0 is the noise power.

When perfect channel knowledge is available at transmit-
ter, maximization of the average SNR leads to the conven-
tional one directional beamforming which allocates all power
on the strongest eigen-mode of the channel correlation ma-
trix HHH. In practice, one has only access to an imperfect

estimate for the channel matrix Ĥ ∈ C
Nr×Nt , which is re-

lated to H as follows:

H = Ĥ + E, (3)
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where the error matrix E ∈ C
Nr×Nt consists of i.i.d.

complex normally distributed entries with variance σ2

e . The
goal of this work is to design a transmit beamformer C
that maximizes SNR under consideration of inaccuracy in
channel estimates.

3. ROBUST DESIGN BASED ON
PROBABILISTIC CONSTRAINED

OPTIMIZATION

To tackle performance degradation caused by imperfect
channel estimates, we consider a probabilistic constraint
approach. The proposed algorithm maximizes the average
SNR while keeping the probability for SNR being below
a pre-specified threshold γth low. It has the advantage
of achieving optimal overall performance while providing
quality control for the worst case. In contrast to the mini-
max approach that focuses on the worst-case performance,
the probability constraint takes the errors into account
proportionally. On the other hand, the worst case scenario
ignored by the stochastic approach is considered in our
approach.

Assuming the error model (3), the average SNR (2) be-

comes a function of the channel estimate Ĥ and the random
error E

f(Ĥ,E) =
Es

N0

tr{CH(Ĥ + E)H(Ĥ + E)C}. (4)

To simplify the expression (4), we consider the eigen-

decomposition of CCH = UcDcU
H
c and ĤHĤ =

UhDhU
H
h . The diagonal matrix Dc = diag(d1, d2, · · · , dNt

)
where d1 ≥ · · · ≥ dNt

≥ 0 are eigenvalues of CCH . The
corresponding eigenvectors are summarized in the unitary
matrix Uc. The matrices Dh = diag(D1, · · · , DNt

) and Uh

are similarly defined.

3.1 Objective function

Given the channel estimate Ĥ,we obtain the objective func-

tion by taking the expectation of f(Ĥ,E) with respect to
the random error E

E  f(Ĥ,E) ! =
Es

N0

tr{UcDcU
H
c (UhDhU

H
h + σ2

eNrINt
)}.

(5)
It is well established in the literature [4] that a function with
a structure similar to (5) can be maximized over Uc and Dc

separately. Inserting the optimal solution for Uc so that
UH

c Uh = I, we obtain the following objective function

f̄(Dc) =
Es

N0

tr{Dc(Dh + σ2

eNrINt
)}. (6)

Note that f̄(Dc) depends on CCH only through its
eigenvalues. Hence, the design of the beamforming matrix
becomes a power allocation problem.

3.2 Probabilistic constraint

To mitigate the impact of large errors, we guarantee the
system performance by keeping the probability that SNR
becomes smaller than an acceptable level γth to be low. More
precisely, given an acceptable SNR level γth and the outage

probability pout, f(Ĥ,E) satisfies the following probabilistic
constraint

Pr{f(Ĥ,E) ≤ γth} ≤ pout, (7)

where Pr{A} denotes the probability of the event A.

As shown in (7), the distribution of f(Ĥ,E) is crucial to
the implementation of our algorithm. Applying the eigen-
decomposition of CCH = UcDcU

H
c and permutation prop-

erty of the trace operation, (7) can be simplified to a mixture
of independent noncentral χ2

ni
(δi)-distributed random vari-

ables Zi, i = 1, · · · , Nt

f(Ĥ, E) =
Es

N0

Nt"
i=1

diσ
2

eZi. (8)

The noncentrality parameter is δi = 1

σ2
e

h̃H
i h̃i and the degree

of freedom is ni = 2Nr. The vector h̃i ∈ C
Nr×1 represents

the ith column of the matrix H̃ = ĤUc.

3.3 Probabilistic constrained optimization

Having derived the average SNR (5) and the compact ex-

pression (8) for f(Ĥ,E), our design can be formulated as
the following constrained optimization problem:

max
Dc

tr{Dc(Dh + σ2

eNrINt
)},

subject to

Pr{

Nt"
i=1

diZi ≤ γ̄} ≤ pout, (9)

tr{Dc} ≤ 1, (10)

di ≥ 0, i = 1, · · · , Nt (11)

where γ̄ = γth( Es

N0

σ2

e)−1 and (10) is a convex constraint

derived from the power constraint tr{CCH} ≤ 1.

4. REFORMULATION OF PROBABILISTIC
CONSTRAINT

The major challenge in our approach is to convert the
probabilistic constraint (9) into a deterministic one so
that the solution can be efficiently computed by standard
tools of mathematical programming. When the chance
constraint involves linear combination of normally dis-
tributed random variables, it can be reformulated as a
convex constraint [9]. However, (9) involves a mixture of
noncentral χ2-distributions. The following result shows
that the probabilistic constraint (9) can be replaced by a
deterministic convex constraint.

Proposition The probabilistic constraint (9) can be re-
placed by the following convex constraint

Nt#
i=1

$
1

d i % γ̄/2

1 + δi/ni & ' ni/2

≤ pout, (12)

where γ̄ = γth( Es

N0
σ2

e)−1, δi = 1

σ2
e

h̃H
i h̃i and ni = 2Nr. If

(12) holds, then (9) holds.

Proof : To decouple the design parameter di, we exploit the
independence of Zi, i = 1, · · · , Nt. Define the event

Ai = {diZi ≤ γ̄} (13)

and
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A = {

Nt 
i=1

diZi ≤ γ̄}. (14)

By definition, A is a subset of the intersection of Ai, i =
1, . . . , Nt,

A ⊂ B = A1 ∩A2 ∩ · · · ∩ ANt
(15)

which leads to the following inequality

Pr{A} ≤ Pr{B} =

Nt!
i=1

Pr{Ai}. (16)

The above expression has the advantage that the event Ai

depends only on the noncentral χ2ni
(δi)-distribution.

According to [10], the distribution of noncentral
χ2-distribution can be approximated by a central χ2-
distribution. Application of this result leads to the following
approximation

Pr{χ2ni
(δi) ≤

γ̄

di
} ≈ Pr{χ2ni

≤
γ̄/di

1 + δi/ni
}. (17)

To transform (17) to a deterministic form, we apply the

sharp upper bound on the integral 1
Γ(1+1/u)  ∞x e−tu

dt de-

rived in [11] to obtain the following inequality

Pr{χ2ni
≤

γ̄/di

1 + δi/ni
} <

"
1− exp(−

γ̄/di

2(1 + δi/ni)
) #

ni

2

.

(18)

Due to limited space, details about the derivation of (18)
will be given in a future publication.

To achieve a convex constraint, we apply the following
inequality to the right hand side of (18)

"
1− exp

"
−

γ̄/di

2(1 + δi/ni) # #
ni

2

≤

"
γ̄/di

2(1 + δi/ni) #
ni

2

.

(19)

Eq (19) follows immediately from the inequality

(1 − e−u)x ≤ ux for u = γ̄/di

2(1+δi/ni)
≥ 0 and x = ni

2
> 0.

Moreover, it is easy to verify that for positive ni

2
and

γ̄/di

2(1+δi/ni)
, (12) is a convex set in dis.

Combing the inequalities (16),(17),(18) and (19), we
conclude that the probabilistic constraint (9) is satisfied by
the convex constraint (12). �

Replacing the probabilistic constraint (9) with the deter-
ministic constraint (12), the original problem is transformed
to the following convex optimization problem

max
Dc

tr{Dc(Dh + σ2eNrINt
)},

subject to
Nt!
i=1

"
1

d i $ γ̄/2

1 + δi/ni % # ni/2

≤ pout,

tr{Dc} ≤ 1,

di ≥ 0, i = 1, · · · , Nt,

that can be efficiently solved by standard tools of mathe-
matical programming.

5. SIMULATION

In this section, we present simulation results to demonstrate
robustness of the proposed beamformer in various scenarios.
Here a single-user MIMO system with Nt = 4 transmit
antennas and Nr = 3 receive antennas is considered.
We also compare the proposed beamformer with existing
techniques, such as the conventional one-directional beam-
former, two-directional, equal-power loading beamformer
[1] and the robust minimax beamformer [4]. We choose [4]
for comparison because it uses the same type of channel
information. The outage probability pout is 10% and the
normalized SNR threshold γ̄ is 0.9 in all experiments.

In the first experiment, the proposed ap-
proach is applied to a well conditioned channel
Dh = diag(0.8064, 0.1901, 0.0035, 0) with the first eigen-
value much larger than the remaining eigenvalues. The
error variance σ2e varies from 0 to 1. The SNR averaged
over 104 Monte Carlo trials is plotted in Fig 1. With
increasing error levels, the performance of all beamforming
techniques degrade. For σ2e between 0 and 0.4, the proposed
approach, the maximin approach [4] and the one directional
beamformer perform similarly. For σ2e > 0.4, our approach
has a much slower decline in SNR than other beamformers.
The equal power loading beamformer has a significantly
lower SNR than other three beamformers because channel
information is not fully incorporated in its design.

In the second experiment, we consider the channel
condition Dh = diag(0.4676, 0.4104, 0.1220, 0) with two
closely spread eigenvalues. This indicates a larger correla-
tion between antennas. Fig 2 shows that the probabilistic
constraint beamformer still outperforms other three
beamformers. For large error region 0.5 < σ2e < 1, the
performance of all beamformers degrade more rapidly than
in the previous experiment. However, our approach shows
least sensitivity to channel errors.

In Fig 2, we also observe that when σ2e increases from 0
to 0.8, the decrease in SNR associated with our approach
is ∆SNR = −0.38 dB and other beamformers lead to a
decrease of more than ∆SNR = −1.83 dB. This is 4.8
times as high as that caused by the probabilistic constraint
approach. On the other hand, given a target SNR level, for
example, −0.8 dB, the probabilistic constraint beamformer
has the largest error tolerance range, σ2e ∈ [0 0.78], while
the worst case design achieves the desired performance only
for σ2e ∈ [0 0.63].

To summarize, the probabilistic constraint approach
outperforms the worst case design and other classical
beamformers over the entire error range. The gain in SNR
is most significant at high error levels. In other words,
our approach has the broadest tolerance range for channel
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Figure 1: Average SNR versus σ
2

e . pout = 10%, γ̄ = 0.9,
Dh = diag(0.8064, 0.1901, 0.0035, 0).

errors. Since the original stochastic optimization problem
has been transformed to a convex optimization problem,
the computational complexity is similar to the worst-case
approach such as [4].

6. CONCLUSION

We proposed a novel transmit beamforming design that
maximizes the average SNR performance and also guar-
antees robustness against channel estimation errors. Our
approach was formulated as a probabilistic constrained
optimization problem. Under the assumption that the
channel estimation error is complex Gaussian distributed,
the underlying problem was transformed into a convex
optimization problem which can be efficiently solved by
modern software packages. The resulting computational
cost is similar to many state-of-the-art robust transmit
beamformers. Simulation results show that the proposed
beamformer achieves higher robustness than the maximin
approach and leads to a much broader tolerance range for
channel estimation errors. It provides a promising alterna-
tive to existing robust transmit beamforming techniques.
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ABSTRACT

Transmit beamforming is a powerful technique for enhancing
performance of wireless communication systems. Most ex-
isting transmit beamforming techniques require perfect chan-
nel state information at the transmitter (CSIT), which is typ-
ically not available in practice. In such situations, the de-
sign should take into account errors in the channel estimates,
so that the beamformers are less sensitive to these errors.
Two robust approaches are widely used. The stochastic ap-
proach optimizes the average performance of the system and
assumes that the statistics, such as mean and covariance, of
the errors are known. The maximin approach assumes that
the errors belong to a worst-case uncertainty region and op-
timizes the worst-case system performance. This type of de-
sign usually leads to conservative results as the worst-case
conditions may occur at a very low probability. In this paper,
we propose a more flexible approach that optimizes the av-
erage beamforming performance and takes the extreme (but
rare) conditions into account proportionally. Simulation re-
sults show that the proposed beamformer offers higher ro-
bustness against errors in CSIT than serval state-of-the-art
beamformers.

1. INTRODUCTION

Multi-antenna diversity is well motivated in wireless com-
munication systems because it offers significant advantages
over single antenna [7]. Perfect or partial knowledge of the
channel state information (CSIT) can provide further perfor-
mance enhancement[10][11].

However, in practical wireless systems, the accuracy of
the CSIT is impossible to know due to errors induced by im-
perfect (quantized, erroneous, or outdated) channel feedback.
In such situations, the transmit beamforming design should
take into account errors in channel estimates. Existing ro-
bust transmit beamforming designs can be categorized into
stochastic and maximin approaches. The stochastic approach
[6] [10] [11] assumes that statistics of errors in CSIT, such as
mean and covariance, are known and optimizes the average
performance of the system. On the other hand, the maximin
approach considers channel estimation errors as determinis-
tic and optimizes the worst-case system performance [1] [2].
This approach provides robustness against any error in the
worst-case region. However, it is overly conservative as the
worst operational condition is rare. To overcome this prob-
lem, a more flexible probabilistic constraint is introduced in
[9] into the design of adaptive beamformer at the receiver
side.

In this work, we propose a robust transmit beamform-
ing technique that maximizes the average SNR performance
and use probabilistic constraints to keep the worst-case per-
formance at a very low probability. The aforementioned
stochastic approach only optimizes the average performance
without considering the worst-case scenario. On the other
hand, although the maximin approach provides the best per-
formance in the worst case, it is overall too conservative. To
keep balance between the average and the worst-case per-
formance, we take a more flexible approach in which the ex-
treme (but rare) conditions are taken into account proportion-
ally. Our approach maximizes the average SNR performance
and ensures robustness against the CSIT error by keeping the
probability of the worst-case performance at a very low level.
Under the assumption that the CSIT error is Gaussian dis-
tributed, this stochastic optimization problem can be further
simplified to equivalent deterministic forms which can be ef-
ficiently solved by modern convex optimization algorithms
[3]. Simulation results show the proposed approach provides
the best performance among several state-of-the-art beam-
forming techniques.

The paper is organized as follows. The system model is
described in Section 2. We formulate the proposed method
as a stochastic optimization problem in Section 3 and
simplify it to an equivalent convex optimization problem in
Subsection 3.1 and 3.2. Simulation results are presented and
discussed in Section 4. Concluding remarks are given in
Section 5.

Notation: (·)H denotes Hermitian transpose;E [·] stands for
expectation; tr{·} is the trace of a matrix;IK denotes the
identity matrix of sizeK; 0K×P denotes an all-zero matrix of
sizeK ×P; diag{x} stands for a diagonal matrix withx on
its diagonal;{·} j denotes thejth entry of a vector,h j denotes
the jth column of matrixH.

2. SYSTEM MODEL

We consider a single-user wireless communication system
with M transmit antennas and a single receive antenna. The
information-bearing signals is spread by the precoding ma-
trix C and then transmitted through the flat fading channel.
As we focus on symbol-by-symbol detection, the received
signaly in the presence of additive white Gaussian noisew
is given by

y = Chs+w. (1)

In the perfect CSIT case, the estimated channel at the trans-
mitter is error free and the output ˆs of maximum ratio com-
bining (MRC) at the receiver is given by
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ŝ = (Ch)Hy = hHCHChs+hHCHw. (2)

The average signal-to-noise ratio (SNR) at MRC receiver
output is

SNR= E

[

(

hHCHChs
)(

hHCHChs
)H

hHCHwwHCh

]

=
Es

N0
hHCHCh,

(3)
whereEs = E

[

|s|2
]

is the average energy of the signal and
N0/2 is the noise variance.

To extend the model to a system withN receive anten-
nas, we assume that the channel vectors observed on differ-
ent receive antennas are mutually uncorrelated. The channel
vector denotes ash j for jth receive antenna, and is arranged
into aM×N matrixH = [h1, . . . ,hN ]. Similar to the single-
receive-antenna case, the received signal at thejth antenna is
y j = Ch js+w j. The total receiver SNR at the output of the
MRC is

SNR=
Es

N0

N

∑
j=1

hH
j CHCh j =

Es

N0
tr{HHCHCH} (4)

which includes (3) as a special case corresponding toN = 1.

3. ROBUST BEAMFORMING BASED ON
PROBABILISTIC-CONSTRAINED OPTIMIZATION

We consider the case in which the transmitter does not have
exact channel state information (CSI) but has an estimateĤ
of the channel matrixH. The CSIT error matrix is given by

E = [e1, . . . ,eN ] = H− Ĥ. (5)

We assume thate j is complex normally distributed and inde-

pendent from the estimate channelĥ j, i.e. E
[

ĥH
j e j

]

= 0. In

the proposed approach, we optimize the average SNR at the
output of MRC receiver and achieve the robustness by keep-
ing the outage probability of the instantaneous SNR below a
pre-specified level. For simplicity, assumingEs/N0 is con-
stant in one symbol interval, we will drop the constant factor
Es/N0 from the SNR expression.

Our objective is to derive the precording matrixC that
maximizes the average SNR and has a low outage probabil-
ity. More specifically, the design of robust beamforming ma-
trix can be achieved by solving the following optimization
problem

max
C

E
[

tr{(Ĥ+E)HCHC(Ĥ+E)}
]

,

subject to

P {tr{(Ĥ+E)HCHC(Ĥ+E)} ≤ γ} ≤ p,

tr{CHC} = 1, (6)

whereγ denotes the SNR threshold,p is a pre-specified
probability value that satisfies quality of service (QoS) re-
quirements, andP {A} stands for the probability of eventA.
Typically we select a low probability valuep and high thresh-
old valueγ . The deterministic constraint tr{CHC} = 1 re-
flects the fact that the total transmitted power is limited by
the system.

To simplify the above problem, we consider the eigen-
decomposition ofCHC

CHC = UcDcU
H
c , (7)

whereUc = [uc1, . . . ,ucM ] consists of eigenvectors ofCHC
andDc = diag{dc1, . . . ,dcM} is a diagonal matrix with corre-
sponding eigenvaluesdc1 ≥ . . .dcM ≥ 0. The precoding ma-
trix C can be viewed as a weight matrix. The error covari-
anceRe is positive definite and can be factorized as

Re = VeV
H
e , (8)

where Ve is a nonsingular matrix. Then the product
VH

e CHCVe can be simplified as follows

VH
e CHCVe = (UH

c Ve)
HDc(U

H
c Ve) = PHDcP, (9)

whereP = UH
c Ve.

Since the average SNR depends on the beamforming ma-
trix C throughCHC, it suffices to optimize the objective
function with respect toUc andDc. DefineH̆ = UH

c Ĥ and
Ĕ = UH

c E. The objective function in (6) can be rewritten as

E
[

tr{(Ĥ+E)HCHC(Ĥ+E)}
]

= E
[

tr{(H̆+ Ĕ)HDc(H̆+ Ĕ)}
]

= tr
{

Dc
[

H̆H̆H +E
[

H̆ĔH]

+E
[

H̆HĔ
]

+E
[

ĔĔH]]}

= tr
{

Dc(R̆+ R̆e)
}

, (10)

whereR̆ = E
[

H̆H̆H
]

andR̆e = E
[

ĔĔH
]

.
The probabilistic constraint in (6) becomes mathemat-

ically tractable if we can find a closed expression for the
distribution of the random variable tr{(Ĥ+E)HCHC(Ĥ+
E)}. Applying a non-singular linear transformation [4], this
random variable can be written as

SNR = tr
{

(Ĥ+E)HCHC(Ĥ+E)
}

= tr
{

(Ĥ+E)H(VH
e )−1VH

e CHCVeV
−1
e (Ĥ+E)

}

= tr

{

[

PV−1
e (Ĥ+E)

]H
Dc

[

PV−1
e (Ĥ+E)

]

}

= tr
{

(H̃+ Ẽ)HDc(H̃+ Ẽ)
}

=
M

∑
i=1

dci

N

∑
j=1

(

h̃i j + ẽi j
)2

, (11)

whereH̃ = PV−1
e Ĥ andẼ = PV−1

e E . The random ma-
trix Ẽ has normal distribution with zero mean and covariance
matrix IM×M.

Using (10) and (11), the proposed approach can be refor-
mulated as follows:

max
Dc

tr{Dc(R̆+ R̆e)}, (12)

subject to

P

{

tr{(H̃+ Ẽ)HDc(H̃+ Ẽ)} ≤ γ
}

≤ p , (13)

tr{Dc} = 1 . (14)

The robust beamformer design is now in the form of a
probabilistic-constrained stochastic optimization problem.
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Under the assumption that the error in CSIT is Gaussian,
the stochastic optimization can be converted into a convex
optimization problem which can be efficiently solved using
modern convex optimization methods.

3.1 Relaxation of Convex Constraint

In convex programming, both the objective function and the
constraints are required to be convex. We replace tr{Dc}= 1
with an inequality constraint which is easier to satisfy, that is

tr{Dc} ≤ 1. (15)

This is equivalent to relaxing the constraint (6) to
tr{CHC} ≤ 1.

Theorem The optimization problem defined in (12)-(14)
is equivalent to that with the strict constraint (14) being
replaced by the relaxed constraint (15)

Proof: Suppose the optimal solution̄Dc lies in the region
tr{Dc} < 1. This implies that the maximum of (14) is given
by

tr
{

D̄c
(

R̆+ R̆e
)}

.

However, we can always construct another matrixD∗
c by

multiplying D̄c with a positive constantc = 1/ tr{D̄c} > 1,
so that the constraint tr{Dc} = 1 is satisfied. This leads to
the following inequality:

tr
{

D∗
c

(

R̆+ R̆e
)}

> tr
{

D̄c
(

R̆+ R̆e
)}

. (16)

This inequality (16) contradicts our assumption thatD̄c max-
imizes (12). Thus, a matrix̄Dc satisfying the constraint
tr{D̄c} < 1 can not be the optimal solution. In other words,
the optimal solution always satisfies the original constraint
tr{Dc} = 1. Hence, the objective function (12)-(14) can be
equivalently transformed into a convex optimization problem
by relaxing the constraint tr{Dc} = 1 to tr{Dc} ≤ 1. �

3.2 Reformulation of Probabilistic Constraint

To make the proposed approach tractable, we apply Imhof’s
results [5] to approximate the distribution of the quadratic
form tr{(H̃+Ẽ)HDc(H̃+Ẽ)} and transform the probabilis-
tic constraint into a deterministic constraint.

We consider the quadratic form (11) as a linear combina-
tion of noncentralχ2-distributed random variables

M

∑
i=1

dci

N

∑
j=1

(

h̃i, j + ẽi, j
)2

=
M

∑
i=1

dci χ
2
ni,δ 2

i
, (17)

where χ2
ni,δ 2

i
, i = 1, . . . ,M are independent noncentralχ2-

distributed random variables with degree of freedomni = N
and non-centrality parameterδ 2

i = ∑N
j=1 h̃2

i, j. Imhof has de-
rived an integral form of the cumulative distribution function
for random variables in the form of (17). Based on the results
of [5], the probabilistic constraint can be rewritten as

P {
M

∑
i=1

dci(ni + δi)
2 ≤ γ}

= 1−

(

1
2

+
1
π

∫ ∞

0

sinθ (u)

uρ(u)
du

)

=
1
2
−

1
2π

γ +
1

2π

M

∑
i=1

dci(ni + δ 2
i ) (18)

where

lim
u→0

sinθ (u)

uρ(u)
=

1
2

M

∑
i=1

dci(ni + δ 2
i )−

1
2

γ

lim
u→∞

uρ(u) = +∞

lim
u→∞

θ (u) =







−∞ : if γ > 0
+∞ : if γ < 0
π
4 ∑m

i=1 nidci |dci |
−1 : if γ = 0

With (18), the probabilistic constraint (11) can be trans-
formed into a convex constraint as follows

1
2
−

1
2π

γ +
1

2π

M

∑
i=1

dci(ni + δ 2
i ) ≤ p. (19)

With the relaxation (15) and the expression (19), the orig-
inal stochastic optimization problem (6) is now converted
into the convex optimization problem defined as follows.

max
Dc

tr{Dc(R̆+ R̆e)}, (20)

subject to

1
2
−

1
2π

γ +
1

2π

M

∑
i=1

dci(ni + δ 2
i ) ≤ p,

tr{Dc} ≤ 1

The optimal solution can be efficiently found by modern
convex optimization algorithms, such as CVX [3]. CVX soft-
ware package is a Matlab-based modeling system for convex
optimization that allows constraints and objective functions
to be specified using standard Matlab expression syntax.

4. SIMULATION RESULTS

The proposed beamformer is tested by simulation. We con-
sider a single-user MIMO system withM = 4 transmit an-
tennas andN = 3 receive antennas. A hundred Monte Carlo
trials were performed in each experiment. The proposed
beamformer is compared with existing techniques, such as
the worst-case one-directional, equal-power loading beam-
former and robust beamformer [1]. Without any loss of gen-
erality, we assume the following:
• Channel paraments: Angle of spread∆ is related to the

channel state information. The angle of spread deter-
mines the spatial correlations of the channel. For the
small angle spread, the correlation coefficient between
the pth andqth transmit antenna can be presented as [8]

[R]p,q ≈
1

2π

∫ π

0
exp

[

− j2π(p−q)∆
dt

λ
sinθ

]

dθ ,

whereλ is the wavelength of a narrow-band signal,dt the
antenna spacing and∆ the angle of spread.

• Sample covariance matrix: The channel covariance ma-
trix R̂ is estimated by sampling the instantaneous chan-
nels

R̂ =
1
N

N

∑
i=1

ĤĤH .
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Figure 1: SNR performance under the different parament se-
lection, where∆ = 45◦

• Estimated error at the transmitter: We assume that the
error is Gaussian distributed with zero mean and covari-
ance matrixσ2I, that is,

EM×M ∼ CN (0,σ2I).

In our simulation, the error is varied from 0.01 to 0.9.

Firstly, we compare performances under varies choices
of parametersγ and p , shown in Fig. 1. We set the
spread angle∆ = 45◦. With the same probabilityp = 0.1,
the high-threshold beamformer (γ = 0.9) outperforms the
low-threshold one (γ = 0.4). One the other hand, under the
same SNR thresholdγ = 0.4, the beamformer withp = 0.01
achieves an overall higher SNR thanp = 0.6. This implies
that a low outage probability ensures robustness against er-
rors. In Fig. 1, we can also observe that the proposed trans-
mit beamformer is sensitive to the selection of the outage
probabilityp.

Then we compare the average SNR performance of the
proposed transmit beamformer and four other existing meth-
ods. According to the quality of service (QoS) requirements,
we select a low probability valuep = 0.1 and a high SNR
thresholdγ = 0.9.

In Fig.2, the angle of spread is 5◦ and the correlation be-
tweenpth andqth channel is high. That means less knowl-
edge of CSIT can be obtained and the MRC output of SNR
is more sensitive to the error. In this case, worst-case robust
beamformers [1] [6] and one-directional beamformer [7] pre-
fer to focus all available power on the channel’s strongest di-
rection. And the equal-power-loading beamformer equally
loads the transmit power without considering CSIT. How-
ever, in the proposed beamformer, the instantaneous SNR is
controlled by the probabilistic constraint and the proposed
robust design offers the best performance over other beam-
formers.

In Fig.3, the spread angle is∆ = 25◦ and the channel en-
vironment is better than the channel in the previous experi-
ment. In this case, for the maximum MRC output of SNR,
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worst−case robust beamformer [1]
one−directional beamformer
equal−power−loading beamformer
proposed robust beamformer
worst−case robust beamformer [6]

Figure 2: SNR performance of one-directional beamformer,
equal-power-loading beamformer, worst-case robust beam-
formers [1] and [6], proposed beamformer versus error:γ =
0.9, p = 0.1, ∆ = 5◦

the transmit power trends to be loaded equally. The perfor-
mances of both worst-case robust beamformers tend to that
of the equal-power-loading robust beamformer. Meanwhile,
the one-directional beamformer offers the worst performance
as the error increases. On the other hand, the proposed beam-
former still offers the highest average SNR in the entire error
range.

5. CONCLUSION

In this work, we propose a novel transmit beamformer
design that maximizes average SNR performance and also
guarantees robustness against the CSIT errors. The robust
transmit beamformer design is formulated as a stochastic
optimization problem. Under the assumption that the CSIT
error is Gaussian distributed, the underlying stochastic opti-
mization problem is transformed into a convex optimization
problem which can be efficiently solved by modern software
packages. Simulation results show that the proposed robust
transmit beamformer is less sensitive to the errors in CSIT
and outperforms several state-of-the-art robust beamforming
algorithms.
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