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Abstract 
I explore the genetic and environmental basis of inheritance using modern 

techniques, in particular high-density genotyping arrays, and older techniques, in 

particular family history, to explore some longstanding questions about the way we 

inherit complex traits. 

Using pedigree data and the parent-offspring regression technique, I estimate narrow 

sense heritability (h2) of human lifespan in 20th Century Scotland as 0.16, lower than 

commonly cited studies in other populations. I also observe similar concordance 

between spouses as between parents and offspring - suggesting my estimate of 

heritability may include significant within-family environment effects and thus 

should be considered an upper bound. 

Using genome-wide array data to identify runs of homozygosity, from 150 cohorts 

across the world and up to 350,000 subjects per trait, I show that cognitive function 

and body size are associated with the total length of genome-wide runs of 

homozygosity. Contrary to earlier reports in substantially smaller samples, no 

evidence was seen of an influence of homozygosity on blood pressure and low-

density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. An 

association between genome-wide homozygosity and complex traits arises due to 

directional dominance. Since directional dominance is predicted for traits under 

directional evolutionary selection, this study provides evidence that increased stature 

and cognitive function have been positively selected in human evolution, whereas 

many important risk factors for late-onset complex diseases have not.  

The analysis of less common single nucleotide polymorphism (SNP) variants in 

genome-wide association studies promises to elucidate complex trait genetics but is 

hampered by low power to reliably detect association, whilst avoiding false positives. 

I show that addition of 100 population-specific exome sequences to 1,000 genomes 

global reference data allows more accurate imputation, particularly of less common 

SNPs (minor allele frequency 1–10%). The imputation improvement corresponds to 

an increase in effective sample size of 28–38%, for SNPs with a minor allele 

frequency in the range 1–3%. 
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Inheritance of complex traits remains a field wide open for discovery, both in 

determining the balance between nature and nurture and discovery of the specific 

mechanisms by which DNA causes variation in these traits, with the prospect of such 

discoveries illuminating biological pathways involved and, as knowledge deepens, 

facilitating prediction. 
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Glossary 
 

Allele One of a number of genetic variants 

present in a population 

Causal Variant A genetic variant that has a causal effect 

on the complex trait (as opposed to one 

that is merely associated with variation in 

the trait, due to LD) 

Complex Trait An observed characteristic that is 

affected by a large number of genetic 

factors and the environment  

Dominance The process by which a heterozygote is 

not precisely intermediate to the two 

homozygous forms, but is more similar 

to one homozygous form than the other. 

(eg brown eye colour is dominant: a 

heterozygote for blue/brown eye alleles 

has brown eyes, rather than an 

intermediate colour)    

Directional Dominance A consistent genome wide pattern of 

dominance favouring either an increase 

or decrease in a complex trait 

Epistasis The process by which the effect of one 

gene is affected by variation in another 

gene, i.e. interaction between genes.  

F The measure of the degree of inbreeding 

in  an  individual  0  ≤  F  ≤  1 

FROH The genomic measure of F based on 
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observed runs of homozygosity. 

Single nucleotide polymorphism (SNP) A single base of the DNA genetic code 

that varies between individuals.  

Genome The complete (~3 billion base pair) 

genetic code of an individual 

Genome Wide Association Study 

(GWAS) 

A study of the association between 

individual genetic variants (typically 

SNPs) across the genome and a trait  

Genomic Relationship Matrix (GRM) A measure of the relatedness between 

individuals based on genotype 

Genotype The combination of genetic variants 

(alleles) specific to an individual. In 

human autosomal chromosomes, 

individuals have two alleles at each 

locus. 

Genotyping array An assay platform that measures 

genotype at many (often ~100k – 3M) 

variables sites (often SNPs) 

Heterozygote An individual whose genotype is two 

different alleles at a genetic locus. 

Homozygote An individual whose genotype is two of 

the same alleles at a genetic locus. 

Identity-by-descent (IBD) A homozygous genotype arising due to 

identical alleles being inherited from a 

single common ancestor 

Imputation Estimation of genotypes using statistical 

inference techniques and knowledge of 

linkage dis-equilibrium between 
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genotypes at known and unknown loci  

Heritability The degree to which a trait is determined 

genetically, as measured by the 

proportion of variance attributable to 

genetic causes. Heritability is population 

specific as both genetic and non-genetic 

variation in a trait is specific to a 

population. 

Linkage Disequilibrium (LD) The association in genotype at different 

loci, often due to their genomic 

proximity and co-inheritance. 

Minor Allele Frequency (MAF) The frequency of the less common allele 

in a population 

Run of Homozygosity (ROH) A contiguous region of the genome in 

which all observed genotypes are 

homozygous, the region, including 

intermediate  unobserved loci, is inferred 

to be IBD.  

Summed Runs of Homozygosity (SROH) The sum of the length (in base pairs) of 

all observed ROH in an individual. 
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Chapter 1 Introduction 

1.1 Complex Traits 
 

Complex traits are observed characteristics which are affected by a large number of 

inherited genetic factors and the environment, as well as interactions between 

them[1]. Human height is a classic example of such a trait [2], but susceptibility to 

common late-onset diseases, which are the main causes of death in the West, and 

many disease risk factors such as blood pressure and cholesterol levels are also 

complex traits [3]. The propensity of such traits, especially height, to run in families 

may have been obvious for centuries and was first quantified by Galton as long ago 

as 1886 [4], but it was not until  1918 that Fisher first described how the observed 

distribution of  such traits could arise despite  particulate Mendelian inheritance  

from the small contribution to the phenotypic variance  of many (unknown) inherited 

genetic variants[5]. 

Thus, there has long been an understanding of some aspects of the inherited (or 

genetic) basis of such traits. In particular, the extent to which traits run in families 

has been formalised mathematically, into a measure called (narrow-sense) 

heritability (h2). h2 measures the proportion of phenotypic variance explained by 

additive genetic factors and a variety of techniques have been developed to estimate 

heritability from pedigree data, for example twin concordance, or the amount of 

variance explained within as opposed to  between families [6] . 

Equation 1-1 

ℎଶ =    𝑉஺𝑉௉
 

 

Where 𝑉஺ = additive genetic variance and 𝑉௣ is total phenotypic variance[6]. 
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However, although the amount of genetic variation could be estimated and such 

estimates were replicated, the underlying genetic variants affecting the traits were 

unknown.  

The first breakthrough in identifying clinically important genetic variants was 

linkage analysis, which looked at how a trait and a genetic marker co-segregated, or 

were inherited together, within families [7].  However, although more than 12,000 

monogenic disease loci have now been identified [8] , until the 1990s the success in 

identifying the genetic basis of diseases had not extended to complex disease but 

instead had mainly been restricted to rare, early onset diseases and to single genes 

with very large, often devastating, effects [3].  

However, with the advent of the human genome project and its completion in 2003, 

mapping the ~3 billion base pairs of the human genetic code and making them 

widely available to researchers, geneticists promised society a revolution in the 

diagnosis and treatment of complex disease and, even more excitingly, in its 

prediction and prevention[9]. The subsequent development of genotyping arrays, 

whereby 100k-1m single-nucleotide polymorphism (SNP) markers could be 

genotyped simultaneously across a patient's whole genome, facilitated substantial 

effort in Genome-wide Association Studies (GWAS). In a GWAS, a phenotype (such 

as disease status or a quantitative trait) is tested across a study population for an 

association with the genotype of each of many hundreds of thousands of SNPs across 

the genome.  GWAS researchers hope that a causal allele, even if not on the SNP 

panel adopted, is in linkage disequilibrium (LD) with a SNP measured, thereby 

causing an association between some genotyped SNPs and the trait under study and 

thus locating a causal region of the genome[3]. Whilst the work scored many 

successes, [10], it tended to find that susceptibility to common diseases was caused 

by many genetic variants of small effect. Even when aggregated, the causal alleles 

discovered only explained a small proportion of the total known genetic variance [3]. 
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This in turn led to larger and larger studies with greater statistical power, discovering 

variants of even smaller effect size [10] [11].  

 

1.2 Missing Heritability 
 

Despite ever larger studies identifying more and more variants of small effect, most 

of the expected heritability of complex traits based on pedigree studies has yet to be 

pinned down to specific variants. For example, whilst 180 SNPs have been found 

that affect human height in a study of 180,000 people, those SNPs only explain one 

fifth of the accepted heritability [2], exemplifying the problem known as missing 

heritability [12]. As a result the allelic architecture underpinning most complex traits 

remains a matter of controversy[13]. 

I suggest that missing narrow-sense (additive) heritability must arise in one of two 

ways (perhaps in combination): either the accepted consensus estimates of narrow-

sense heritability are over-estimates or there are genetic variants whose additive 

contribution has not yet been robustly identified. This could be due  to causal regions 

not yet being identified at all, or incomplete linkage of the true causal variant with an 

identified marker in the region. I exclude systematic under-estimation of effect sizes, 

due to the   known   tendency   in   the   opposite   direction:   the   winner’s   curse   [14]. 

Overestimation of additive heritability in humans might arise due to dominance, 

epistasis, gene-environment interactions or common environmental confounding 

[15]. However, the general predictive success  of  the  breeder’s  equation,  which  uses  

heritability to estimate the effect of artificial selection[16], suggests that, at least in 

some animals, additive genetic variance is similar in scale to that estimated from 

pedigrees. At the same time, we must recognise that results from domesticated 

animals, where environmental confounding can be controlled by experimental 

design, cannot be directly interpreted in natural human populations. On the other 

hand, if present heritability estimates are broadly correct, there are many unidentified 
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additive genetic variants contributing too little genetic variance for existing GWAS 

power to detect them. Such variants must either be only weakly linked to the markers 

being analysed, uncommon (in itself likely to cause weak LD with common 

markers), or have small effects, as GWAS should have already found common 

variants of large effect[12]. Genetic research can thus productively attack this 

problem at both ends: improving top-down estimates of heritability and identifying 

more and more causal variants. 

 

Fairly recently, researchers showed that around half of the heritability of human 

height should be explicable by common markers of the type present on modern 

genotyping arrays, if only studies were large enough to attain sufficient power to 

reliably detect the small effect sizes  concerned [17]. The study estimated heritability 

based on a seeming oxymoron – the genomic relationship matrix (GRM) amongst 

unrelated individuals. The contradiction is resolved by understanding that apparently 

unrelated individuals are distantly related, and, importantly, the degree of 

relationship varies. Furthermore amongst such subjects, relatedness at one part of the 

genome should not be informative of relatedness at another part: restricted maximum 

likelihood (REML) estimates of heritability thus only reflect variance explained by 

relatedness locally in the genome, rather than allelic correlations at distant loci 

inferable from local relatedness, as is the case in higher kinship studies.   This 

research thus suggested that increasing statistical power from increased sample size 

using existing GWAS arrays, and otherwise conventional techniques, would yield 

more and more common variants, but explained heritability would still only reach at 

most half of estimated total heritability.  
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The above relationships can be conveniently summarised in the following equation 

(following Zaitlen et al.’s  nomenclature) [18]  

 

Equation 1-2 The postulated transitive nature of narrow sense heritability estimates   

h2
ped  > h2  >  h2 

g > h2 
gwas 

Heritability is the proportion of variation in a trait for a population that is explained by 

genetic differences amongst the population. This is known as broad sense heritability and 

denoted H2. A specific portion of that heritability is additive – i.e. is transmitted between 

generations, and is therefore of particular interest. This is called narrow-sense heritability 

and denoted h2.  

h2
ped  : narrow sense heritability estimated using familial resemblance techniques 

h2 : true (unknown) narrow sense (additive) heritability 

h2
 g : heritability measured using a genomic relationship matrix, using common SNP 

genotyping arrays, in an unrelated population 

h2
 gwas : heritability measured using variance explained by well-established GWAS loci 

 

I.e. we postulate that family studies (h2
ped) over-estimate narrow-sense (i.e. additive) 

heritability. Such studies typically look at how relatives resemble each other more 

than the general population and partition variance in the trait into within family and 

between family components, in lay terms, the studies look at how strongly a trait (eg 

height) runs in families (i.e. families as a whole being short or tall). Using these 

techniques can lead to over-estimation of narrow sense  heritability for two broad 

reasons.  Firstly, total (broad sense) heritability, includes genetic variance which 

arises from non-additive causes, such as dominance variation and epistasis. 

Dominance variation, for example, gives rise to sibling resemblance. It can be 

difficult to distinguish total heritability from additive heritability and this can lead to 
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over-estimates of narrow-sense heritability.  The second broad reason that family 

resemblance studies may over estimate heritability (in both the broad and narrow 

sense) is that families typically share a common environment (eg socio-economic 

status) and this can lead to familial resemblance (eg educational attainment) that is 

not a result of genetics.  

GRM studies of unrelated subjects under-estimate heritability (h2
g) as they 

(intentionally) fail to capture loci not in LD with the array SNPs. And finally, 

variance explained by discovered GWAS SNPs is lower still, due to insufficient 

power to identify truly associated array SNPs , beyond reasonable doubt.  

Precisely where true h2 lies within the interval between h2
ped  and   h2 g remains a 

matter of speculation, with Zuk et al. postulating a role for epistasis [11] inflating 

h2
ped, whilst Yang et al. suggest h2

g ’s  exclusion of  rare variants may be the principal 

explanation for the gap between h2
ped  and  h2

g.   In any case, for many complex traits 

around half of estimated h2
ped remains unexplained by h2 g [17] and thus much more 

work is needed. To refine these limits we should seek to increase h2
g through use of 

denser arrays or sequence data, with more rare variants, and increase h2
gwas through 

larger studies and improved imputation. At the same time, improvements in estimates 

of h2
ped  are needed, by narrowing confidence intervals and avoiding biases such as 

environmental confounding, and interactions such as dominance and epistasis. 

1.3 Better estimating (narrow-sense) heritability using  h2
ped 

 

Although the mathematical definition of h2 is precise (Equation 1-1) and its 

consequences – the part of genetic value passable between generations [6]  – clear, 

measurement of heritability in human populations remains controversial. One source 

of controversy is practical: large studies are needed to estimate variance components 

with any accuracy. The other source of controversy is the methodology itself. Studies 

of inheritance are known to be subject to confounding of genetic and environmental 

effects, especially due to common familial environment, whilst twin studies assume 
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that shared environment is equal for monozygotic and dizygotic twins [18]. Well 

powered analysis of inheritance, particularly if it avoided the twin design and 

allowed probing of non-genetic familial resemblance, is thus still worthy of interest, 

especially if the trait is an interesting one. 

 

 A large study of the inheritance of human lifespan between parents and offspring fits 

the bill and is a study design which avoids (non-additive) dominance variation 

unintentionally giving rise to inflation of additive estimates of variance components 

[6].  Researchers commonly cite an estimate of 0.25 for the (h2) heritability of human 

longevity, despite the study concerned not being well-replicated, not quoting 

confidence intervals and using twins [19]. A useful study could consider intra-

marriage correlations as well as intergenerational ones, with the potential to confirm 

or challenge the genetic basis of missing heritability, albeit with other experimental 

design limitations, such as the effect of assortative mating. Such a study would give 

useful new estimates of additive genetic variation in one of the traits of greatest 

interest to people – the length of their own lives. 

1.4 Non-additive genetic variation 
Much of the focus of genetic research, especially in animals, is on additive variance, 

partly as this is the variation upon which selection can act [6]. Nonetheless many 

genetic mechanisms exhibit dominance or recessivity [8] and epistasis, as well as 

gene-environment interaction,  which will all contribute to inheritance of complex 

traits. 

Although apparently non-additive variation, such as recessive effects, do contribute 

to additive variation [6] and can thus be identified using an additive model, it is 

interesting to try to discern such effects more directly. However simply extending 

GWAS techniques, where hundreds of thousands of genetic markers are tested to 

other models would multiply the problems of multiple testing.  Directional 

dominance, where there is a consistent genome-wide pattern of dominance is of 
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particular interest, as its existence has long been speculated upon based on 

evolutionary considerations and evidence from some of the earliest genetic studies 

using pedigrees and measures of inbreeding [20]. Modern molecular techniques 

using genomic runs of homozygosity (ROH) [21] allow the study of directional 

dominance even in outbred populations, where consanguinity is not practiced, akin to 

the use of the GRM to estimate heritability in unrelated populations. Determining the 

existence and extent of directional dominance thus provides an interesting insight 

into the evolution and inheritance of complex traits. 

 

1.5 Imputation 
 

Whilst understanding of the inheritance of complex traits can be furthered by top 

down inferences (such as the estimate of h2) or genome-wide analyses such as 

directional dominance, such analyses provide little or no information on the 

biological mechanisms underpinning the trait. Bottom up understanding of genetic 

inheritance stems from the identification of genetic variants associated with 

phenotype.  Whilst, linkage between (phenotypic visually observable) markers and 

other traits was observed as early as 1905 [22] ,  it took many more years before 

individual SNPs could be genotyped, and the subsequent  developments of Sanger 

and next generation sequencing before the reference human genome could be 

assembled, facilitating the development of genotyping arrays and whole genome 

sequencing, finally enabling large scale GWAS – genome-wide scans across general 

populations for the association between SNPs and  complex traits. 

Although whole genome sequencing continues to fall in cost, most GWAS presently 

have array data as their base genotypes. Whilst modern arrays typically assay 100k-

1m SNPs, they only capture a small proportion of the more than 40 million SNPs  

found at a global population level [23]. A genetic study using array data alone 

therefore loses power due to incomplete LD between the array SNP and the causal 

variant.   At the same time, different studies have used different genotyping arrays, 
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which have measured different SNPs. Combining studies is only straightforward for 

SNPs that have been genotyped on all arrays – therefore substantially reducing the 

number of SNPs that can be analysed, or reducing the number of studies that can be 

combined.  Using genotype array data alone thus has two drawbacks – reduced 

power and difficulties in meta-analysis. 

Imputation, a process by which genotyping array data is used to estimate genotypes 

that are not genotyped on the array, can overcome these drawbacks. Firstly it can 

increase power, by estimating the latent genotypes accurately. Secondly the imputed 

genotypes can be used as a common panel across all studies wishing to participate in 

a meta-analysis [24], an approach, now regular practice [2]  enabled by imputation.   

Thus, improving the accuracy of imputations offers the prospect of improving the 

ability of meta-analyses to identify causal DNA variants affecting the inheritance of 

complex traits and illuminating the biological processes involved.   

 

1.6 Conclusion 
 

As suggested above, I saw the opportunity to research the inheritance of complex 

traits in three seemingly diverse areas  

x using family history to measure the extent to which human longevity runs in 

families and investigate whether this is nature or nurture; 

x using genome-wide array data to determine the extent of distant parental 

relatedness and its effect on complex traits; and 

x improving the quality of estimation of genotypes at loci that have not been 

directly genotyped, to facilitate the discovery of causal variants underpinning 

complex traits.  
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  My argument is simple: much remains to be discovered about the inheritance of 

complex traits in human. A combination of long established methodology, 

unprecedented amounts of genomic information now available and new techniques, 

offers the prospect of insights into both bottom up and top down understanding of 

how inherited DNA contributes to who we are. 
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Chapter 2 The inheritance of human lifespan in 20th 
Century Scotland 
 

Abstract 

We estimated the narrow sense heritability (h2) of human longevity, conditioned on 

living beyond the age of 42. Data on age at death were drawn from Scottish public 

records for 2,984 individuals with rare surnames born in eastern Scotland around 

1900, and their parents: the EASTER study. We also collated 1,854 Orcadian parent-

offspring trios, where the offspring was born between 1880 and 1920.These trios 

were ancestors of subjects in the Orkney Complex Disease Study, ORCADES. 

Using the correlation between parent and offspring, we estimate h2 for longevity as 

0.166 (95% CI 0.126-0.206) in these populations, which is somewhat lower than 

previous recent estimates (0.22-0.35) in other populations, which we suggest may be 

inflated due to methodological problems in the other studies, or the special nature of 

the other populations under study. We also note that our measured correlation 

between spouses is very similar to that between parents and offspring. We infer that 

latent shared within family environment effects may be included in our estimate. We 

therefore believe our estimates should be considered as upper bounds for heritability 

of lifespan in our population.  

This is the first large non-twin based study of the inheritance of human longevity in a 

general population, living in conventional developed 20th century western society. 

Our results suggest the genetic heritability of longevity may be somewhat lower in 

these societies than suggested by previous studies elsewhere. 
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2.1 Introduction 
Human longevity is (literally and arguably metaphorically) the ultimate human 

phenotype and is a consequence of many intermediate complex trait and disease 

phenotypes and other genetic and environmental factors, including chance. Research 

into the inheritance of longevity has a long history. The first such paper appears to be 

from 1899 by Beeton and Pearson, who analysed the correlation between the 

lifespans of aristocratic English fathers and sons [25] and a wide range of studies 

were reviewed in 1964[26]. Often these studies relate to specific and unusual 

populations and the people under study lived a long time ago. In more recent years, 

whilst there have been a large number of successful genome-wide association studies 

[27] and heritability estimates [28] for disease incidence that are the common causes 

of death in the developed world, the heritability of longevity has been less 

conclusively analyzed, for a number of reasons. 

Whilst age at death is straightforward to measure objectively, the preceding  process 

obviously takes a lifetime. Thus for studies using healthy subjects, the delay to the 

subjects’   deaths   will   normally   exceed   the   time   horizon   of   the   researcher.   One  

obvious approach is thus to look at subjects already dead. Although genotypic 

information is unlikely to be available, public or other records can be used to identify 

family members (especially twin pairs) and determine their age at death, and thus 

investigate the inheritance of lifespan, using established techniques [6], although 

secular changes in longevity can complicate analysis. 

In recent years, only a few sufficiently large studies have estimated the heritability of 

human longevity (measured by age at death or susceptibility to death), with estimates 

in the range of 0.22-0.5 [29] [19] [30] [31] [32]. The studies can be conveniently 

grouped into two categories – twin studies and studies of other kinds of relative pairs. 

Twin-based studies typically compare the correlation in a trait of monozygotic and 

dizygotic twins, and attribute the excess correlation in monozygotic twins as being 

solely due to the complete genetic sharing. Such estimates will include dominance 

and epistatic effects and thus estimate broad sense heritability. They also implicitly 
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assume that environmental similarities between monozygotic and dizygotic twins are 

the same. The largest twin study of human longevity, using age at death as the 

phenotype, has estimated heritability of 0.25, but with unclear standard errors [19].  

A second approach is to look for phenotypic correlation amongst siblings or parents 

and offspring. These studies suffer the disadvantage of not necessarily being able to 

control for within family environment, but for parent offspring designs, the approach 

avoids dominance and common maternal and childhood environment effects, whilst 

introducing inter-generational effects and within family effects. Heritability of 

longevity (+/- 1 SE) of 0.25 (+/- 0.05) was estimated amongst the Old Order Amish, 

an isolated population with an unusual and communal living environment, that had 

been stable over generations [30]. Two other recent studies have estimated the 

heritability of longevity in the range 0.35-0.5, using more difficult to interpret 

statistics of relative mortality risk, using complex methods [32] [31]. 

Rather than estimating heritability of lifespan, other researchers have considered 

long-livedness, perhaps beyond age 90 or 100, as a binary trait. These studies have 

sometimes [33,34], but not always [35] shown excess concordance between blood 

relatives in long-livedness, relative to controls. However, we shall not consider such 

approaches further here, as they lend themselves less well to the estimation of 

heritability of lifespan per se. 

It is therefore of interest to estimate accurately the narrow sense heritability of 

longevity, defined simply as age-at-death, in social settings more typical of Western 

European life in the 20th Century, using parent–offspring correlations.  

The ScotlandsPeople Centre (National Records of Scotland and the Court of the Lord 

Lyon 2012) in Edinburgh has publicly available computer indices of birth, death, and 

marriage records from the year 1855 to the present. Records can be searched by 

name and year and visually inspected on the computers at the Centre itself. 

Importantly   women’s   maiden   names   are   indexed, which assists greatly in the 
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identification of correct parents. Scotland is therefore an excellent place to research 

the genetics of longevity in modern populations, using pedigree methods. 

The Orkney Complex Disease Study (ORCADES) is a family-based, longitudinal 

community study of the genetics of complex traits, based in the Orkney Isles in 

Scotland [36], for which we have gathered pedigree information directly from 

participants, supplemented by data from the ScotlandsPeople Centre. 

We have conducted two population-based studies, looking at the inheritance of 

longevity by measuring the correlation in lifespan between offspring born around 

1900 and that of their parent. The first study – EASTER- was created entirely for this 

project and looked at people with rare surnames born between 1892 and 1910, who 

died in Fife or Angus (two contiguous counties on the eastern shores of Scotland). 

We specifically selected offspring with rare surnames to facilitate tracing their 

parents’  death  records.  The  second  study  looked  at  ancestors  of  ORCADES  subjects  

born between 1880 and 1920. 

2.2 Method 
 

2.2.1 EASTER Data Gathering  
We  ran  an  automated  web  extraction  on  the  Scottish  Records  Office’s  online  indices  

to generate lists of names of people who had died in the regions of interest after the 

age of 42. The age of 42 was chosen to minimize the number of deaths from either 

World War and from accidents. These were filtered for people with rare surnames to 

facilitate   the   tracing  of   parents.   “Rare   surnames”  were  names  with   fewer   than  150  

matching electronic earlier male records with the same surname  - i.e. possible father 

death records for the death in question. The death records for these candidate 

subjects were then looked up manually and parental details captured. The online 

database was then searched for other deaths with the same surname and the resultant 

candidate parent death records were reviewed manually to find the matching parent. 

To ensure that we were matching the correct parents to the correct children, we 
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cross-checked the parent forenames, spouse names and occupations listed on both the 

child and parent death certificate, allowing some leeway for spelling of surnames, as 

that sometimes changes from record to record for the same individual. Matching on 

this basis, although manual, was almost always clear and unambiguous, with any 

doubt usually being resolvable by further cross-reference to the marriage certificate. 

Records   were   skipped   if   tracing   proved   too   difficult,   if   the   individual’s   cause   of  

death was suicide, war death, or accident, or if the individual was identified as a 

sibling of someone already in the dataset, or the analyst did not believe there was an 

unambiguous match. For the subject, we gathered dates of birth and death, whereas 

for the parents we gathered age-at-death. We also gathered socio-economic 

information   in   the   form   of   the   subject’s   and   father’s   occupations   and   the   usual  

residence at death. 

For the EASTER study, they were 4,385 candidate trios. However, after, exclusions, 

for example due to the inconvenience of not being truly a rare name, or due to 

sibship, or the offspring or either parent having died by accident, war or suicide, and 

excluding  any   trios   that  were   incomplete,  usually   due   to  one  parent’s  death   record  

not being found, there were 3,266 trios, with offspring born 1892-1910 available for 

analysis. 

2.2.2 ORCADES Data Gathering  
The initial data available for the ORCADES study was in a different format: pedigree 

information is available for 2,124 ORCADES subjects, most of whom are still alive. 

However,  age  at  death   is   recorded   for   subjects’   ancestors.  We  considered  potential  

trio offspring  up   to   and   including  as   the   subjects’   grandparents   (and   thus  potential  

parents  in  the  trios  from  the  subjects’  great  grandparental  generation).  8,470  unique  

trios were identified. However, in many cases at least one member of the trio was 

still alive, after excluding trios where members were alive, there were 5,650 trios. To 

increase comparability with the EASTER data and reduce the effect of any secular 

trends in longevity, the ORCADES study was then restricted to trios, whose 

offspring were born 1880-1920, leaving 1,858 for analysis. As cause of death was 
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not recorded, we did not exclude individuals who died through suicide, accident or 

war. 

Of the 3,266/1,858 EASTER/ORCADES trios, a further 282/200 were excluded 

because one trio member had died before the age of 42. The final number of trios 

was 2,984 (1,630: 1,354 with Male: Female offspring)/1,658 (832: 836 with Male: 

Female offspring) for the EASTER/ORCADES cohorts respectively. Offspring were 

typically born in 1900 and on average died in the late 1970s. Parents were typically 

born in the 1860s and died on average around 1940 (Table 1 and Table 2). Figure 1 

plots the distributions of age at death in these datasets. 
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Table 1 Mean, Median and Standard Deviation of Year of birth, Year of death and Age at death for 
the EASTER study 

  Sons Daughters Fathers Mothers 
 Count 1630 1354 2984 2984 
      
Age at death Mean 71.9 77.9 71.1 72.5 
 Median 72.8 79.8 72.5 74.5 
 SD 11.4 12.2 11.6 12.2 
      
Year of birth Mean 1902 1902 1868 1870 
 Median 1903 1902 1868 1871 
 SD 5.31 5.25 9.08 8.44 
      
Year of death Mean 1974 1979 1939 1943 
 Median 1975 1981 1940 1944 
 SD 12.8 13.6 15.3 14.9 
 

Table 2 Mean, Median and Standard Deviation of Year of birth, Year of death and Age at death for 
the ORCADES study 

  Sons Daughters Fathers Mothers 
 Count 832 826 1658 1658 
      
Age at death Mean 74.3 76.9 74.2 74.1 
 Median 76 79 76 77 
 SD 11.1 12.5 11.4 12.4 
      
Year of birth Mean 1901 1900 1864 1868 
 Median 1901 1901 1864 1868 
 SD 11.3 11.5 13.6 13.1 
      
Year of death Mean 1975 1977 1939 1942 
 Median 1975 1978 1939 1942 
 SD 15.6 17.8 16.9 17.8 
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Figure 1 Distribution of Ages at death for subjects included in the final study dataset 

 

Row 1 is the EASTER study 

Row 2 is the ORCADES study 

All statistical analyses were carried out using the software package R [37] and the 

library RMETA [38]. For each cohort, the correlation in lifespan was calculated 

between offspring of each sex and each parental sex. A combined correlation was 

calculated for both sexes and both parents, from the correlation in the residuals, for 

each generation separately after fitting sex as a fixed effect (i.e. residuals from a 

linear model: age-at-death ~ sex).  

Initially consideration was given to fitting further covariates available in the 

EASTER study, such as occupational class and location. However, the variance 

explained by these covariates was small and including them in the analytical model 

made little difference to the results (supplement 2.5.1). As a consequence, the 

decision was made not to fit available socio-economic covariates (in EASTER), to 

give a more consistent protocol across the two studies.  
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The estimated correlations from the two studies were combined using the Inverse 

variance method and Fisher's z-transformation of correlations. Narrow-sense 

heritability (h2) was estimated as twice the correlation between offspring and parent. 

 

2.3 Results 
We estimated narrow sense heritability using parent-offspring regression. Figure 2 

shows the relationship for each sex separately. Visual inspection suggests the 

relationship is broadly linear, although some graphs appear to show that a parent 

dying past age ninety was associated with greater offspring longevity than the linear 

regression implied.   
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Figure 2 Regression of parent age at death on offspring age at death, split by sex 

 

To aid visibility (and in the graph only) parental ages have been split into 5-year age brackets. 
Offspring age at death shown is the mean in parental age bracket. 
Error bars are 1 standard error of the offspring mean in each bracket. 
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The correlations between parent and offspring lifespan (95% CI) ranged from 0.016  (0-

0.0859) (ORCADES daughter-father) to 0.1604 (0.1068-0.214) (EASTER 

daughter/mother), as shown in Table 3.  The  correlation  between  the  fathers’  and  

mothers’  lifespan was of a similar magnitude to that with their offspring.   Father-

mother correlation in lifespan was 0.075 (n=2,983,95% CI 0.039-0.112) for EASTER 

and 0.051 (n=1,656, 95% CI 0.002-0.100) for ORCADES. 

Table 3 Correlation in Parent and Offspring ages at death 

Study Offspring Parent Number of 
Duos 

Correlation 
in ages at 
death (1) 

95% CI 

 daughter mother 1354 0.1604 0.1068-
0.214 

 son mother 1630 0.0902 0.0408-
0.1396 

EASTER son father 1630 0.0659 0.0165-
0.1153 

 daughter father 1354 0.0696 0.0154-
0.1238 

 offspring parent 5968 0.0959 0.0701-
0.1217 

      
 daughter mother 826 0.0787 0.0093-

0.1481 
 son mother 832 0.0697 0.0005-

0.1389 
ORCADES son father 832 0.0755 0.0063-

0.1447 
 daughter father 826 0.0163 0-0.0859 
 offspring parent 3316 0.0601 0.0255-

0.0947 
For the two rows where all offspring are regressed on both parent, the correlation is in 

age at death residuals having fitted sex as a fixed effect (i.e. age-at-death ~ sex) to each 

generation.  
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Figure three illustrates these results graphically. The observed correlations across the 

different parent and offspring sexes and across studies appear broadly mutually 

consistent, although the correlation between EASTER mothers and daughters 0.16 is 

rather higher than the overall correlation 0.08. Nonetheless, in meta-analysis testing for 

heterogeneity across the different sex results and studies, the observed correlations 

appear to be mutually consistent, p-value = 0.071.   

 

Figure 3 Forest plot of observed correlation of parent and offspring ages at death and 95% CI 

 

The combined estimate across the two studies of the correlation between parent and 

offspring age at death is 0.0831 (95% CI 0.0629-0.103). The combined estimate of 

heritability is thus 0.166 (95% CI 0.126-0.206). There was no statistically significant 

(p>0.05, even before allowing for multiple testing) evidence of differences in 

correlations  between parents and offspring, for ORCA & EASTER, father & mothers, 

intra-sex & inter-sex and sons & daughters (p= 0.100,0.066,0.146,0.516 respectively). 

Across all the offspring groupings, we do not believe that our study design is 

significantly influenced by unintentional under or over sampling parts of the distribution 

of offspring age at death. Firstly we are interested in the regression, not the mean. A 

shift in the mean of the explanatory variable should not affect the measured slope. 

Whilst truncation might affect correlations, we note the stable standard deviations 
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across our generations, sexes and studies. Finally, the empirical evidence does not 

suggest an age-related slope – both from visual examination of the betas in Figure 2 and 

the results in Supplementary note 2, where removal of the more extreme ages, often 

increasing the mean age at death, had little effect on observed correlation.   

 

2.4 Discussion 
 

Our study is the first to study of sufficiently large scale to establish reasonably tight 

estimates of the heritability of lifespan for populations with normal living environments 

in 20th Century Western Europe.  Using regression on over 8,300 parent-offspring 

relationships, for children born in Scotland around 1900, we estimate the (narrow-sense) 

heritability of human lifespan in that population as 0.166 (95% CI 0.126-0.206). The 

parent-offspring method estimate has the advantage of avoiding common maternal, and 

dominance effects, whilst within family environmental effects may still be (wrongly) 

captured in the estimate [18].  Our estimate is lower than the most commonly cited, 

0.25, in a Danish twin study [19] and other recent estimates [30]  [31]  [32].   Whilst 

accepting no single study should claim to be definitive, we believe our study of 20th 

century Scotland, its method and size of our study have given a better estimate than 

previously available of the heritability of lifespan in modern western populations. 

The suggestive curvature of the regression in Figure 2 raises the intriguing possibility 

that especial long-livedness, say beyond age 90, is more heritable than variation within 

the normal range and thus survival may not have homogeneous genetic risk basis across 

all ages. This in turn provides support for GWAS case-control studies of non-agenarians 

[39], albeit recognising such studies may be focused on the distinct trait of particular 

livedness. 

Returning to overall heritability, Zaitlen et al [18] considered in detail different genomic 

methodologies for measuring heritability for a range of traits. Their results, which 

looked at relatedness other than twins, always showed heritability lower than published 
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twin studies. Our results are consistent with this. Zaitlen et al [18] also tried to discern 

the relative effects of dominance, epistasis and common familial environment, by using 

different relationships. They showed that analysis based on avuncular relationships gave 

lower estimates of heritability than parental relationships, which were in turn lower than 

estimates based on siblings and plausibly concluded that shared environment could 

account for the differences observed, whilst dominance or epistasis alone could not 

[18].   

We found spousal correlations of similar magnitude to parent offspring correlations, 

suggesting there is intra-familial resemblance of a non-genetic basis. We agree with 

Zaitlen et al that modelling common environment is complex, and merits further 

investigation, noting even their avuncular estimates of heritability may therefore be 

overstated. It is tempting to estimate the non-genetic correlation between parents and 

offspring as equal to the whole correlation between spouses, and thus simply subtract 

spousal correlation from total related pair correlation to estimate genetic correlation. 

However, we are reluctant to do so, both in principle for any complex trait and for a 

number of reasons pertinent to lifespan. Firstly some spousal correlation could be 

genetic, due to assortative mating – most plausibly for a trait like height, but potentially 

for well-being traits that could affect longevity. However, even if spousal correlation is 

due to shared environment, it is unclear how that sharing compares with parent-

offspring sharing. Given the formative nature of the early years of life, parental 

influences  on  aspects  of  a  child’s lifestyle may be greater than that of each parent on the 

other. On the other hand, assortative mating based on lifestyle choices or perceived 

well-being, as well as a greater proportion of lifetime spent together, could mean 

spousal common environment-induced correlations could be greater than those between 

parents and children. On balance, we believe that it is very likely that there is a common 

environment induced correlation between parents and offspring in our study, but we 

have little evidence of its extent. Our heritability estimates therefore represent upper 

bounds of the heritability of longevity in 20th century Scottish populations. 

We found no statistically significant evidence of difference between the sexes in the 

inheritance of longevity. Nonetheless, the substantially greater mother-daughter lifespan 
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correlation than other parent-offspring correlations in the EASTER study is visually 

striking. The pattern across the different parent–offspring sex-pairs is similar both in 

ORCADES and the study of the Old Order Amish by Mitchell et al. [30]. On the other 

hand, a study of European Royal lineages found much stronger correlation between 

paternal age-at-death and offspring age-at-death than for mothers and offspring [40] and 

a study of 18-20th century French Jura Department suggested stronger inheritance of 

longevity by daughters rather than sons, but with little distinction by the sex of parent 

[41]. More surprisingly, one study, of unclear size and unusually large heritability 

estimates, found greatest inheritance across rather than within the sexes [42]. There is 

thus, as yet, little consensus, on the existence, let alone nature, of sex-based differences 

in the inheritance of longevity and our study only complicates this picture. 

There is a wide range (0.0 – 0.5) of previous, commonly cited, estimates for the 

heritability of longevity [43], [32]. This wide span of estimates appears to us to arise 

from four main sources. Firstly heritability of any trait may vary from population to 

population due to different causal alleles segregating and differing environments[6].  

Secondly, different phenotypes are measured.  Whilst we have favoured the 

straightforward age at death approach (over a sixty year span between the ages of 43 

and 103), other studies have looked at complex models of mortality risk and given some 

of the highest estimates for heritability (0.35 and 0.5) [31] [32]. Thirdly, different study 

designs (eg twin as opposed to parent-offspring) will have different biases. Finally, 

sampling variance remains quite large even for moderately sized studies, such as the 

study of the Old Order Amish and our study, where the standard error of the heritability 

estimates was still 0.05 [30] and 0.02 respectively. Given these complications, we 

suggest future heritability studies always quote clear standard errors on their estimates, 

following Beeton and Pearson’s  good  example  from  as  far  back  as  1899  [25]. We also 

suggest it would be beneficial if, where possible, researchers (also) gave estimates of 

heritability for the age at death trait rather than or as well as derived traits such as 

relative risk statistics or case-control measures, due to the simplicity and comparability 

of age at death and to facilitate meta-analysis. 
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Our upper bound estimate of heritability of 0.166 contrasts somewhat with the central 

estimate of Herskind et at – 0.25 – with unstated standard error [19], despite some 

reasonable similarities between the studies. In both studies, subjects were born around 

the end of the 19th Century. Both studies were of a general population in developed 

Western Europe. However, despite the difference in population and socio-economic 

differences between Scotland and Denmark, the principal difference does appear to be 

one of study design.  Herskind’s  study  compared  monozygotic  and  dizygotic  twins  and  

fitted a model of additive inheritance, dominance and common environmental effects, 

supposing that the relative inheritance between twin categories of such effects followed 

their expected values in the case of genetic effects and were equal for common 

environment. Our study assumed that additive variation passed between parents and 

offspring but other effects did not. With regard to genetics both study designs appear to 

correctly model the established modes of inheritance but also capture epistasis, although 

there is limited power to distinguish between dominance and additive variance in the 

twin design [6]. However confounding environmental effects cause (different) 

difficulties for both study designs. The assumption that environmental sharing is the 

same for both classes of twin is hard to test and seems implausible, with any extra 

environmental sharing for monozygotic twins, being falsely attributed to genetics. The 

parent-offspring design assumes that both generations were subject to the same 

environmental factors affecting the trait, which at a time of societal change may well 

not be true for lifespan, and is indeed evidenced by the differing lifespans amongst the 

generations. False attribution of paternity will also reduce estimates of heritability. We 

thus believe the Herskind method is leading to inflation of heritability, consistent with 

Zaitlen et al’s   [18] general findings on twin methods. Furthermore, the Danish study 

found a model with dominance variation and no common family environment effect or 

additive genetic variance, provided the best fit [19] . We find such a model entirely 

implausible, both on general considerations and the contradiction with our findings of 

substantial parent-offspring correlation that can arise from common family environment 

effect or additive genetic variance, but not dominance. To be fair, Herskind found an 

additive model gave almost as good a fit, but their results still estimated no common 

environmental effects. At the same time, inter-generational changes may have reduced 
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our estimates of heritability, nonetheless, we conclude that our upper bound 0.166 for 

heritability of longevity is a more persuasive result, with larger studies using further 

study designs being justified. 

Mitchell  et  al’s  study  of  the  Amish  also  estimated  the  narrow-sense heritability of age-

at-death as 0.25, although this time a standard error (0.05) is given. The Amish study 

uses the same method as ours, parent offspring regression. However this time the 

population has a very different character – in particular the communal living 

environment of the Amish. The presumed absence of a family specific shared 

environment, confirmed by the observed lack of spousal correlations, suggest that 

Mitchell’s  study  is  a  particularly  sound  study  of  narrow  sense  heritability.  However,  it  is  

also plausible that the uniform environment of the Amish is reducing the environmental 

variance component of longevity and so increasing the proportion of phenotypic 

variation explained by genetics – and thus narrow sense heritability of lifespan could 

well be higher in the Amish than populations with a more conventional Western 

lifestyle. We thus conclude that our upper bound estimate of 0.166 for heritability of 

lifespan is more relevant to 20th Century populations living a conventional Western 

lifestyle,  than  Mitchell’s  excellent  study  of  a  different  population. 

Our estimate of heritability of longevity (0.16), contrasts with higher estimates of the 

heritability of the incidence of common killer diseases such as coronary artery disease 

(0.49) [44] and   Alzheimer’s   disease   (0.58)   [45], although heritability estimates for 

cancers are somewhat lower and vary by type [46]. A naïve estimate of the heritability 

of lifespan would simply be a weighted average of the heritability of the diseases 

causing death. Our estimate appears lower than that. This could be for a number of 

reasons. Firstly, for the reasons already outlined, methodological bias may have led to 

inflation of the estimates of disease heritability. Secondly, there may be less genetic 

correlation amongst diseases than the environmental correlations (e.g. due to smoking), 

resulting in a lower genetic proportion for a combined trait. More intriguingly, there 

may be antagonistic pleiotropy between the disease traits, inducing negative correlations 

in genetically caused disease susceptibility. Finally, on top of susceptibility to killer 

diseases, there may be other environmental drivers of lifespan, perhaps affecting frailty, 
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that reduce heritability of lifespan. Indeed, all of these effects may together contribute to 

the lower heritability of lifespan, than many common diseases, we observed. 

The low heritability of lifespan, and the lack of success of existing methods in 

genetically predicting even complex traits that are more heritable in humans [47], 

suggests that DNA is unlikely to be an effective predictor of relative lifespan. Instead 

we postulate that prediction based on biomarkers observed later in life [48], perhaps 

supplemented by DNA information, will be of more use to individuals and actuaries 

wishing to predict individual lifespan.  

Our study has suggested a revision downwards from commonly cited estimates of the 

heritability of lifespan in modern western populations to 0.16 or less, perhaps 

confirming previous doubts over estimates obtained from twin studies. We have found 

an intriguing, but not statistically significant suggestion of sex-based differences in 

parent-offspring correlations of longevity, but substantially more data is needed to 

resolve both the existence and cause of any such differences.  
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2.5  Supplementary Tables 
2.5.1 Analysis of effect of including available Socio-Economic factors 

in EASTER model. 
Method 
Occupations were coded according to industry and level. Industry was divided into 

seven broad categories: mines and quarries (mines); mills and factories (mills); 

agriculture, horticulture, and animal husbandry or slaughtering (agriculture); transport, 

delivery, local council labour, and domestic service (service); tradesmen, artists, 

merchants, and restaurateurs (trades); professional fields such as health, finance, or 

education (professionals), military and maritime (military). There were also separate 

categories for wealthy landowners (wealthy) and people whose industries could not be 

determined (unknown). These categories were based on the Historical International 

Standard Classification of Occupations (HISCO) (van Leeuwen & Maas 2010), though 

not all occupations in the dataset were represented in the HISCO database, and in the 

interest of keeping the number of industry categories down while still leaving room for 

the  “wealthy”  and  “unknown”  groups,  not  all  of  the  HISCO  categories  were  used.   

Level was determined by what job the person performed within a given industry. Level 

1 was for generally unskilled or physical labour. Level 2 was for skilled physical labour 

or supervisors of unskilled workers. Level 3 was assigned to non-physical labour, such 

as sales or clerical work. Level 4 was for ownership, leadership or strictly managerial 

positions. These were based on the HISCLASS (van Leeuwen & Maas 2005) 

categorization method for HISCO (van Leeuwen & Maas 2010). People whose 

industries   were   categorized   as   “unknown”   were   coded   initially   as   being   Level   1,   as  

most  of  them  were  “general  labourers”.  If  keywords  pertaining  to  other  levels  appeared 

in the listed occupation, then they were recoded accordingly.  

Age at death residuals were calculated from 

Offspring_age_at_death ~ Offspring _location+ husband_level+ husband_industry, and 

parent_age_at_death ~ father_level+ father_industry+ offspring_location,  
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As separate location information was not available for parents, and neither was mother-

specific occupational details.  
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Results 
Table 4 Analysis of the effect to estimated correlations by fitting available socio-economic variables in the EASTER study 

Study Offspring Parent Proportion 
of 
Variance 
Explained 
by 
covariates 
Offspring 

Proportion 
of 
Variance 
Explained 
by 
covariates 
Parents 

Number of 
Duos 

Correlation 
in ages at 

death 
without 

fitting 
covariates 

Correlation 
in age at 

death 
residuals 

Standard 
Error of 

Correlation 
of 

residuals 

 Daughter Mother 0.0318 0.019257 1354 0.1604 0.1513 0.0269 
 Son Mother 0.0281 0.0258447 1630 0.0902 0.0712 0.0247 
EASTER Son Father 0.0281 0.0152424 1630 0.0659 0.0536 0.0247 
 Daughter Father 0.0318 0.0116785 1354 0.0696 0.0639 0.0271 
 Offspring Parent 0.082 0.0152675 5968 0.0959(1)  0.084 0.0129 
 

1: For the multi-sex offspring parent line, the correlation is in age at death residuals having fitted sex as a fixed effect (i.e. age at death ~ 

sex) to each generation.  The proportion of variance in age at death explained by sex for the (multi-sex) aggregate offspring-parent lines, 

only was 0.0592 (offspring) 0.0036 (parents)  

The   correlations   between   parents’   ages   at   death   residuals   was   0.0680   (compared   with   0.0751   in   the   raw   ages   at   death   themselves), 

n=2,984. 
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2.5.2 Analysis of Effect of excluding any trio where one member had an extreme age at death 
Table 5 Comparison of correlation in Parent and Offspring ages at death, including and excluding extreme ages at death 

 

Study Offspring Parent Number of 
Duos 

Correlation 
in ages at 

death ages 
>42 

Correlation 
in ages at 
death 50-

99 only 

Standard 
Error of 

Correlation 
ages 50-99 

only 
 Daughter Mother 1145 0.1604 0.1643 0.0292 
 Son Mother 1389 0.0902 0.0773 0.0268 
EASTER Son Father 1389 0.0659 0.0584 0.0268 
 Daughter Father 1145 0.0696 0.0777 0.0295 
 Offspring Parent 5068 0.0959 0.0926 0.014 
       
 Daughter Mother 665 0.0787 0.0173 0.0388 
 Son Mother 721 0.0697 0.0969 0.0371 
ORCADES Son Father 721 0.0755 0.1135 0.0371 
 Daughter Father 665 0.0163 0.062 0.0388 
 Offspring Parent 2772 0.0601 0.0736 0.0189 
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Chapter 3 Optimisation of Runs of Homozygosity 
calling for use in meta-studies using PLINK 
with a variety of genotyping arrays 

3.1 Introduction 
Geneticists now commonly use meta-analysis across genetic cohorts to increase 

statistical power to detect associations between complex traits and genetic factors 

[2]. As the number of genotyping platforms used by geneticists continue to increase, 

it becomes more and more desirable to admit a variety of genotyping arrays into such 

meta-analyses. The meta-analysis technique is particularly well established for 

GWAS, where imputation is used to create, by panel augmentation,  a common 

comparable set of variants, despite starting with different variants from different 

arrays [49], However for studies of long runs of homozygosity (ROH), imputation 

techniques are complex and less well established. Indeed one previous large ROH 

association meta-study limited participation to one genotyping array, thus avoiding 

the issue of how to combine arrays [21], although another did use imputation 

techniques to combine varied arrays [50]. 

Before proceeding to undertake trait-ROH association studies using multi-array 

meta-analysis, it is therefore desirable to investigate the effect of genotyping array on 

measured SROH (summed length of ROH for an individual) using directly typed 

SNPs and develop a practical protocol which maximises accuracy whilst minimising 

differences between arrays. The approach has intuitive appeal – ROH should be 

evident from runs of consecutive SNPs apparent whatever genotyping platform is 

used and avoids the practical complexities of imputation. PLINK [51] offers a 

reasonably reliable [52] sliding window based measurement of SROH, which is 

straightforward to run, whilst offering the possibility of tuning a number of SNP-

related  parameters [51] thus making it a natural candidate for measuring SROH in 

meta-analysis. However, assessments of array dependent accuracy and consistency 

can only be derived from real data if ROH have been accurately measured for the 

subjects and if the subjects have been genotyped on a variety of arrays. 
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The 1000 Genomes (1kG) [53] and International HapMap consortium (HapMap) 

[54] projects have genotyped 851 subjects on three different genotyping arrays, 

which when combined provide a very dense (2.5M) SNP panel, and, as we shall 

show, cover the great majority of SNPs on three frequently used commercial arrays. 

We therefore compared measured SROH from the combined 2.5M panel and three 

commercial array SNP panels for these subjects, to determine if a PLINK protocol 

could be developed that was sufficiently accurate, yet relatively insensitive to 

genotyping array chosen. 

3.2 Method 

3.2.1 Genotypes 

Omni2.5 array genotypes for 2,141 subjects were downloaded from the 1kG website 

(http://www.1000genomes.org). Similarly, genotypes for 1,184 subjects were 

downloaded from HapMap (http://hapmap.ncbi.nlm.nih.gov/) for Illumina 

Human1M and the Affymetrix SNP 6.0 arrays combined. 

The HapMap data had already been subject to quality control (QC). The individual 

population files were merged, while subjects that were not also on the 1kG panel 

were removed. This gave a HapMap two array dataset with 851 samples genotyped 

at 1.65M SNPs. 

For the 1kG array data, genotypes with a GenCall score less than 0.6 were set to 

missing.  SNPs that were then missing in more than 5% of samples or with a minor 

allele frequency of less than 3% were removed, whilst samples with more than 3% of 

SNPs missing were also removed. Again, only samples that appeared on the HapMap 

panel were retained, giving 851 samples with genotypes at 1.60m SNPs. 

The two resultant panels were merged giving a post-quality controlled combined 

dataset of 851 samples at 2.70m SNPs. 

SNP lists for the following commonly used arrays were obtained from 

http://www.well.ox.ac.uk/~wrayner/strand/: Illumina HAP370CNV (HAP370), 

HumanOmniExpress-12v1 (OmniX) and Affymetrix GenomeWideSNP 6 (Affy6).  

http://www.1000genomes.org/
http://hapmap.ncbi.nlm.nih.gov/
http://www.well.ox.ac.uk/~wrayner/strand/


  
 

The inheritance of human lifespan in 20th Century Scotland  35 
 

Simulated arrays for the above genotyping arrays were then obtained by extracting 

the SNP list concerned from the combined panel of 2.7m SNPs. We thus in effect 

had 851 subjects genotyped on 3 different commonly used arrays and could also look 

at the particularly dense full panel (ALL). 

It is common to prune SNPs for LD prior to ROH calling (ROH-LD), to reduce the 

preponderance of population wide haplotypes, associated with regions of high LD 

[36]. After applying the QC and extracting a representation of the three different 

commercial arrays from the ALL panel, the remaining SNPs were then pruned for 

pairwise linkage disequilibrium, to remove SNPs within a 50 SNP window that had 

r2 > 0.1 using the following PLINK options --indep-pairwise 50 5 0.1, consistent 

with our previous approach [21]. We now had reconstructed unpruned and pruned 

genotypes for 3 commercial SNP arrays, allowing us to compare and contrast the 

effect of the array under different ROH calling parameters.  

Table 6 shows the numbers of post QC SNPs recovered and the number of autosomal 

SNPs further cleaned for MAF > 0.05 and genotyping rate >0.03, for each of the 3 

genotyping arrays under analysis along with reference count of SNPs sourced for 

each array. The drop in SNPs from the full list of SNPs on the array was always less 

than 10%, which looks reasonable, allowing for SNPs dropped in QC, and so the 

SNP subsets recovered were judged as reasonable proxies for the SNPs that would be 

genotyped  by  these  chips  in  a  study’s  post-QC dataset.  More importantly, we had 3 

SNP panels of differing sizes, from two different array manufacturers, enabling 

measurement of the effect of using different arrays to determine SROH and SROH-

LD. 
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Table 6 Counts of array SNPs recovered from merged array panel and comparison with count of 
SNPs in reference list for each array. 

Array Reference 
Count of 
SNPs on 
array 

Count of 
(post QC) 
SNPs 
recovered 

Autosomal 
SNPs   
MAF >0.05 
Geno >0.03 

Autosomal 
SNPs  
 MAF >0.05 
Geno >0.03 
after LD 
pruning 

HAP370 370303 343526 289410 54296 
Affy6 934969 907686 569386 61458 
OmniX 731345 709756 623795 70801 
ALL  2611121 1954192 104744 
 

To simplify visual comparisons individual 1kG populations were amalgamated into 

continental groupings, in accordance with the usual 1kG nomenclature: AMR 

(Mixed Americans), EUR (Europeans), ASN (East Asians), SAN (South Asians), 

AFR (Africans) 

3.2.2 ROH Determination 

ROH were determined using PLINK [51].  In order to assess the effect of using 

different genotyping arrays to determine ROH and to develop a protocol to minimise 

the effect of array, we first sought to develop a gold standard against which array 

results could be measured. We reasoned that the densest panel available should be 

able to capture ROH most precisely, providing that effective allowance for 

genotyping errors, which might falsely break a true ROH, was made. 
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The PLINK parameters all considered ROH of 1.5Mb and above, but varied the 

number of SNPs (25-100) needed to form an ROH and the maximum number of 

permitted (presumed false) heterozygotes (1-2) found in an ROH. The full list of 

parameters is shown in Table 7. 

 

Table 7 PLINK Parameters considered to create gold standard ROH calling from ALL SNP panel. 

Label SNPs kb Gap kb Density 
(kb/SNP) 

Missing 
allowed 

Hetero-
zygotes 
allowed 

SNP:25 Het 1 25 1500 1000 50 5 1 
SNP:50 Het 1 50 1500 1000 50 5 1 
SNP:50 Het 2 100 1500 1000 50 5  2 
SNP:100 Het 2 * 100 1500 1000 50 5  2 
SNP:100 Het 3 100 1500 1000 50 5  3 
 

Parameterisation * using the ALL panel was subsequently adopted as our gold 

standard.  

 --homozyg-window-snp was always set equal to the value of --homozyg-snp 

We also used a permitted minimum density (50KB/SNP), consistent with that of the 

individual array protocol we eventually adopted. The change permits more kb/SNP 

than McQuillan et al [55] , and, as we show later, is helpful for arrays with sparser 

coverage. The change in minimum density makes little or no difference for the dense 

2.5m SNP panel being used at this stage, but we adopt it here for the sake of 

consistency with the later analysis.  

Our approach was to examine the correlation of measured SROH under the different 

PLINK parameters. To avoid a few outlying subjects with particularly large SROH 

dominating the analysis (and improving measured correlations), we considered 

comparisons with subjects whose SROH did not exceed 30Mb, as well as sometimes 

including comparisons of all subjects. 
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3.2.3 ROH-LD Determination 

Under LD pruning, care is necessary to ensure that SNP thinning successfully 

removes population wide haplotypes, even for a particularly dense gold standard 

reference panel. Bearing this in mind, our analysis proceeded as before. 

Again, we examined the sensitivity of the dense panel to different –homozyg 

parameterisation and then compared the sensitivity of different PLINK 

parameterisations to the choice of SNP panel. Furthermore, although McQuillan et al 

[55] had adopted minimum ROH lengths of 1Mb when LD pruned SNPs were 

considered, we decided to use 1.5Mb to maintain consistency with the unpruned 

analysis. As for unpruned SNPs, we varied the number of SNPs (12-100) needed to 

form an ROH (reducing the lower bound to account for the lower number of SNPs 

after pruning)  and the maximum number of (presumed false) heterozygotes (1-2) 

found in an ROH. The full list of parameters is shown in Table 8. 

Table 8 PLINK Parameters considered to create gold standard ROH-LD calling from SNP Panel 
ALL 

Label SNPs Kb Gap kb Density 
(kb/SNP) 

Missing 
allowed 

Hetero-
zygotes 
allowed 

SNP:12 Het 1 12 1500 1000 250 5 1 
SNP:25 Het 1 25 1500 1000 250 5 1 
SNP:37 Het 2 37 1500 1000 250 5  1 
SNP:50 Het 1 * 50 1500 1000 250 5  1 
SNP:100 Het 2 100 1500 1000 250 10 2 
 

Parameterisation * using the ALL panel was subsequently adopted as our gold 

standard for ROH calling on pruned SNPs. 

--homozyg-window-snp was always set equal to the value of --homozyg-snp 

3.3 Results 

3.3.1 Unpruned ROH calling  

Our analysis showed that using full SNP panel measured SROH was insensitive to 

the choice of PLINK options listed in Table 7, as illustrated visually in Figure 4 
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 Figure 4 Comparison of identified ROH (minimum length 1,500kB) for 851 subjects under varying numbers of minimum SNPs and permitted heterozygotes, 
Chromosome 1, using ALL SNP panel PLINK parameterisations are as defined in Table 7 

 

AFR:African 

AMR: American 

ASN: Asian 

EUR: European 

SAN: South Asian 
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The visual similarity in SROH under the different PLINK options considered was 

confirmed by examination of the correlation of SROH for the ALL panel between the 

adopted gold standard and the alternative options considered, the regression for 

which is illustrated in Figure 5. Pairwise correlations between the alternative PLINK 

commands exceeded 0.97, even when subjects analysed were restricted to the more 

difficult to call shorter SROH < 30Mb, correlations exceeded 0.94. We also note the 

different protocols result in slightly different ascertainment levels (i.e. points tending 

to lie above or below the y=x line, with regression coefficients fitted through zero of 

0.91 – 1.14). The effect is limited and in the absence of checking against an external 

even better gold standard (for example the 1kG sequence data at SNPs latent on the 

array panels), it was not possible to determine categorically which PLINK 

parameterisation was objectively best. However, the high degree of concordance 

meant we felt that further testing was unnecessary.  We therefore adopted ROH 

called using the ALL panel with 100 SNPs and up to 2 heterozygotes in a 

homozygous window – line SNP:100 Het 2 in Table 7, as our gold standard. 
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Figure 5 Correlation of measured SROH between gold standard PLINK basis and under alternative PLINK parameters as defined in Table 7 
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3.3.2 Pruned ROH-LD calling 
We next considered whether a PLINK parameterisation could be determined so as to 

give a similar close correlation between measured SROH when using the LD pruned 

SNP panels from different arrays. We reduced the minimum density from 50 kb/SNP 

to 250 kb/SNP to broadly reflect the five-fold or more reduction in the panel 

densities, caused by pruning.  

The PLINK parameters considered again varied the number of SNPs (12-100) and 

the number of heterozygotes (1-2) permitted in an ROH, as shown in Table 8, above. 

The purpose in LD pruning is to reduce identification of ROH arising from 

population-wide haplotypes, whilst maintaining identification of ROH arising from 

more recent consanguinity.  Our analysis (illustrated in Figure 6) showed that using 

the ALL-LD pruned SNP panel, ROH calling was very sensitive to the number of 

SNPs specified. This is perhaps not surprising – our purpose has been to thin SNPs in 

regions of high LD to a point where SNPs are sufficiently sparse to be missed by our 

ROH calling. Sensitivity of ROH calling based on the number of thinned SNPs is 

thus in essence what we have tried to achieve. Population-wide ROH, for 

Chromosome 1, can again be identified by the vertical bands in Figure 6. Elimination 

of these happened as the required number of SNPs rose from 37 to 50. Similar results 

were obtained for the other chromosomes, except chromosome 6 (Figure 7), where 

even with a requirement for 100 SNPs, population wide bands are still evident. This 

result contrasts strongly with that for unpruned SNPs, where measurement was 

relatively insensitive to the number of SNPs required in a ROH. 
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Figure 6 Comparison of identified ROH for 851 subjects under varying minimum SNPs and ROH length, Chromosome 1, using ALL SNP panel PLINK 
parameterisations are as defined in Table 8. 
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Figure 7 Comparison of identified ROH for 851 subjects under varying minimum SNPs and ROH length, Chromosome 6, using ALL SNP panel PLINK 
parameterisations are as defined Table 8. 
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Figure 8 Correlation of measured SROH using ALL-LD Pruned SNPs between gold standard PLINK basis and  PLINK parameters as defined in Table 8 
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The sensitivity of ROH calling to the number of SNPs required was further 

confirmed by the low correlation between the different parameterisations. 

Correlation in SROH between the 12 and 50 SNP requirement was only 0.12, whilst 

correlation in SROH between the 50 and 100 SNP requirements was 0.8. 

Furthermore, as was to be expected, as the number of SNPs required increased, less 

SROH is measured, as illustrated in  

 

Figure 8. 

The required numbers of SNPs in an ROH for the ALL panel after LD pruning was 

thus an, empirically informed, judgment call using the degree of thinning in Figure 4 

as a guide, and we settled upon 50 for our gold standard when used with the dense 

ALL (LD pruned) SNP panel. The need for a judgement call contrasts with the 

relative insensitivity of results without LD pruning. 

Having determined suitable gold standard parameterisations using our ALL very 

dense SNP panel, before and after LD pruning, we next wished to understand the 

optimal approach to different panels. In particular, whether ascertainment bias would 

be substantial between chips and whether a single command could be used for SNP 

panels used in off-the-shelf genotyping arrays. The PLINK parameters considered 

varied the number of SNPs required from 25 to 100 and the number of heterozygotes 

from 1 to 2, as shown in Table 9 
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. 

Table 9 PLINK Parameters considered to call ROH from unpruned SNPs on commercial arrays 
under consideration 

Label SNP 
window 

SNPs Kb Gap kb Density 
(kb/SN
P) 

Missing 
allowed 

Hetero-
zygotes 
allowed 

        
SNP50:
Dens20 

50 50 1500 100 20 5 1 

PLINK-
1500 

50 100 1500 1000 50 5 1 

SNP50 50 50 1500 1000 50 5  1 
SNP25 25 25 1500 1000 50 5  1 
SNP100 100 100 1500 1000 50 10 2 
 

Requiring 50 SNPs and a density of 20 kb/SNP is close to that adopted by McQuillan 

et al [21] (although here –snp has been explicitly set to the de facto override perhaps 

unintentionally imposed in McQuillan et al [21] by their –window-snp option).  We 

also consider PLINK defaults, subject to using 1,500 kb minimum length, with other 

parameterisations varying the number of SNPs needed from the PLINK default 

parameterisation.   

We found that for the less dense HAP370 panel, correlations between the Gold 

Standard and bases SNP50:Dens20 and PLINK1500 were low (0.68 and 0.82 

respectively). Both parameterisations were often underestimating SROH, as Figure 9 

shows (points generally fall below the y=x line in rows 1 and 2 of column 1). In both 

cases  areas  with  sparser  SNP  coverage  were  being  missed,  in  PLINK’s  case  due  to  

the insistence of 100 SNPs, whilst for SNP50:Dens20 the density criterion was too 

stringent. Consistent with this, in both cases SROH estimation improved with the 

denser arrays (points lie closer to the y=x line in columns 2,3 and four of columns 1 

and 2). 

On the other hand, the SNP25 and SNP50 parameterisations achieved correlations 

with the gold standard in excess of 0.88 and 0.93 respectively, for all the panels 

considered, again with improving correlation as the panel density increased. 

Furthermore the SNP50  parameterisation does not appear significantly to 
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systematically over or under estimate SROH, relative to the gold standard – points 

straddle the y=x line in rows 3 of Figure 6 and the regression coefficients are close 

to, but slightly exceed, 1 (1.09. 1.12 and 1.01 for Illumina HAP300, Affymetrix 6 

and Illumina Omni respectively). Results permitting 2 heterozygotes (SNP:100 Het 

2) have similar, but slightly worse correlations, and, perhaps not surprisingly, over 

estimate SROH particularly for the less dense panel – the final row of figure 6.  
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Figure 9 SROH under Gold standard compared with various PLINK parameterisations and for various commercial arrays

c: correlation 

PLINK 
parameterisa
tions are as 
defined in 
Table 9 

x and y axis 
limits are 
[0,30Mb]. 
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These results show that for 1500kb ROH, the PLINK default parameterisations, 

except that the minimum SNPs be reduced from 100 to 50, provide closest 

correspondence to the gold standard determined using a dense chip and suggest that 

this is a good basis for estimating true SROH across varied unpruned SNP panels, 

with typical density available on off-the-shelf arrays. 
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Whilst accuracy of called SROH is perhaps the most important feature of a protocol, 

we were also interested in the extent of ascertainment bias that might be present. I.e. 

whether although all reasonably accurate, SROH called from different SNP arrays 

might differ between the arrays. Admittedly if called SROH from two arrays is close 

to the truth, the difference between them cannot be that great, but we still felt it 

important to measure the difference. We found that pair-wise correlations between 

the three commercial arrays considered, using the SNP:50 protocol, exceeded 0.93, 

as illustrated in Figure 10. 

Figure 10 SROH across different genotyping platforms under adopted PLINK homozyg parameters 

 

 

  c : correlation 

x and y axis limits are [0,30Mb]. 

The slopes of the regression, fitted through the origin, in Figure 10 are 0.959, 0.886, 

and 0.914 for Aff6-Ill370, Aff6-IllOmni and Ill370-IllOmni respectively, with 

standard errors in the slope estimates less than 0.005. 
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We repeated the protocol optimisation for the LD-pruned panels and considered the 

number of SNPs required in an ROH in the range of 25-50, whilst permitting a gap of 

1Mb between ROH for the ROH to be combined and requiring density to exceed 

250kb/SNP, as shown in Table 10. 

Table 10 PLINK Parameters considered to call ROH from pruned SNPs on commercial arrays 
under consideration 

  

Label SNPs Kb Gap kb Density 
(kb/SNP
) 

Missing 
allowed 

Heteroz
ygotes 
allowed 

       
SNP25 25 1500 1000 250 5 1 
SNP30 30 1500 1000 250 5 1 
SNP35 35 1500 1000 250 5  1 
SNP40 40 1500 1000 250 5  1 
SNP50 50 1500 1000 250 5 1 
 

For the commercial array panels and the range of numbers of SNPs considered (25-

50) correlations exceeded 0.7, and were sensitive to the numbers of SNPs specified. 

For all three panels, results were most highly correlated with the gold standard when 

35 SNPs where required in a ROH (correlation 0.89, 0.92, 0.93 for HAP370, Affy6 

and OmniX respectively), as illustrated in Figure 11,which also shows correlations 

with the ALL panel, which would not be available in practice. Furthermore the 

SNP35 parameterisation does not appear significantly to systematically over or under 

estimate SROH – points straddle the y=x line in rows 3 of Figure 11 - and the 

regression coefficients are close to 1 (0.877, 0.993 and 1.07 for Illumina HAP300, 

Affymetrix 6 and Illumina Omni respectively).  
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Figure 11 SROH-LD under Gold standard compared with various PLINK parameterisations and for various commercial arrays 

 

c: 
correlation 

PLINK 
parameteri
sations are 
as defined 
in Table 10 

x and y axis 
limits are 
[0,30Mb]. 
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Figure 12 SROH-LD across different genotyping platforms under adopted PLINK homozyg 
parameters 

c : correlation 

x and y axis limits are [0,30Mb] 

 

Finally, we again wished to examine SROH-LD correlations between the different 

arrays.  We found pairwise correlations between the chips of 0.89-0.91 comparison 

was restricted from subjects with SROH-LD < 30000 , as shown in Figure 12 whilst 

under the easier test,  when all subjects were included, correlation always exceeded 

0.98. The slopes of the regression, fitted through the origin, in Figure 12 are 0.84, 

1.02, and 0.89 for Aff6-Ill370, Aff6-IllOmni and Ill370-IllOmni respectively, with 

standard errors in the slope estimates less than 0.005.  

 

 

Thus our analyses suggests that the adopted PLINK commands are suitable for the 

determination of SROH and SROH-LD, for commercially available SNP panels with 

SNP counts in the range we considered.  
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3.4 Discussion 
 

Our newly adopted parameterisation for determining SROH is the PLINK default, 

except the minimum ROH length is 1,500 kb (vs. 1,000 kb as PLINK default) and 50 

SNPs (vs.100 as PLINK default) are required to call a ROH. Whilst ROH length is 

predominantly a matter of preference for recent or more distant consanguinity 

detection, the number of SNPs required is important and our adopted number of 

SNPs is more appropriate for typical genotyping arrays with 300k-800k post-QC 

SNPs, even for our longer ROH and denser unpruned panel.  For determining SROH-

LD, our preferred parameterisation again uses the PLINK defaults except that the 

minimum ROH length is 1,500 kb, the required SNP density is a least one SNP per 

250kb (vs 50kb as PLINK default) and 35 SNPS (vs 100 as PLINK default) are 

required to call a ROH. Once more, other than ROH length, our adopted parameters 

appear more appropriate than PLINK defaults, which were possibly not designed for 

such heavily pruned panels. 

These parameterisations accord closely with the approach of McQuillan et al [21], 

which used the default requirement for a 50 SNP sliding window, thus broadly, and 

presumably inadvertently, at least 50 SNPs in a ROH, despite having set the explicit 

SNP requirement as 12 under LD pruning. Our reduction in density allows areas of 

low coverage to be captured and increases correlation with our denser gold standard, 

panel suggesting that the capture of these areas is not creating false positives. 

Although our pruning strategy differed, our results suggesting 35-50 SNPs as being 

optimal appear somewhat consistent with those in a recent study by Howrigan et al 

in optimisation of IBD calling using simulated data[52], which found that 35-65 

SNPs were appropriate. However, closer examination suggests that the differences 

between that study and this study here, eg with respect to ROH length, the form of 

gold standard, and the much lighter pruning in Howrigan et al’s   study,   all mean it 

would be easy to over-interpret the significance of the agreement.    
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Our results unambiguously suggest that our preferred parameterisation for measuring 

SROH and SROH-LD is a suitable for use in a multi-array ROH consortium, given 

the practical and accuracy considerations.  The protocol works well across the array 

densities typically used by genetic consortium members. The protocol is simple and 

independent of array. At the same time, measured SROH and SROH-LD are closely 

correlated with our best available estimate of reality and measured SROH and 

SROH-LD are closely correlated across genotyping arrays. Although measured 

SROH is sensitive to the genotyping array used, the sensitivity is limited and will 

still permit effective detection of the effect of SROH on traits using meta-analysis 

across genotyping arrays, should it exist. We therefore recommend the following 

PLINK parameterisations for ROH consortia measuring 1.5Mb ROH 

SROH: --homozyg --homozyg-window-snp 50 --homozyg-snp 50 --homozyg-kb 

1500 --homozyg-gap 1000 --homozyg-density 50 --homozyg-window-missing 5 --

homozyg-window-het 1; and 

SROH-LD: --homozyg --homozyg-window-snp 35 --homozyg-snp 35 --homozyg-kb 

1500 --homozyg-gap 1000 --homozyg-density 250  --homozyg-window-missing 5 --

homozyg-window-het 1. 

This is, of course, the parameterisation we shall adopt in Chapter 4. 
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Chapter 4 The effect of genome-wide homozygosity on 
16 complex traits 

 

Abstract 

Cousin marriage has long been associated with rare, often devastating, Mendelian 

disorders [56]  and Darwin was one of the first to recognise that such inbreeding 

reduces evolutionary fitness in plants [57] . However, the effect of the more distant 

parental relatedness common in modern human populations is less well understood. 

Genomic data now allow us to investigate the inbreeding effects on traits of public 

health importance by measuring the overall length of homozygous segments (runs of 

homozygosity, ROH), which are inferred to be inherited identical-by-descent from a 

common ancestor. Given the low levels of inbreeding prevalent in most human 

populations, information is required on very large numbers of people to provide 

sufficient power [21,36]. Here we use ROH which reflect both recent and remote 

inbreeding in a study of 16 health-related quantitative traits in up to 354,224 

individuals from 102 cohorts and find statistically highly significant associations 

between individual genome-wide summed runs of homozygosity (SROH) and four 

complex traits: height, forced expiratory lung volume in 1 second (FEV1), general 

cognitive ability (g) and educational attainment (nominal p<1 x 10-300, 2.1 x 10-6, 2.5 

x 10-10, 1.8 x 10-10). In each case increased homozygosity was associated with 

decreased trait value. Similar effect sizes were found across four continental groups 

and in populations with markedly different degrees of mean inbreeding, providing 

convincing evidence for the first time that homozygosity, rather than other genetic or 

environmental confounding, contributes to observed phenotypic variance.  Contrary 

to earlier reports in substantially smaller samples [58,59], no evidence was seen of an 

influence of background inbreeding on blood pressure and low density lipoprotein 

(LDL) cholesterol, or ten other cardio-metabolic traits. Since inbreeding depression 

is predicted for traits under directional evolutionary selection[20] , this study 
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provides evidence that increased stature and cognitive function have been positively 

selected in human evolution, whereas many important risk factors for late-onset 

complex diseases have not.  

 

4.1 Introduction 
The inheritance of complex traits has non-additive components as well as additive 

ones. This is most obvious for Mendelian traits, although for complex traits the 

extent of dominance variance is difficult to measure, due to environmental 

confounding [6] . A special form of non-additivity, known as directional dominance, 

arises when the dominance is biased in one direction on average over all causal loci, 

for instance to decrease the trait, rather than dominant alleles at some loci increasing 

the trait value while others decrease it. Such directional dominance is expected to 

arise in evolutionary fitness-related traits due to directional selection[60].  Non-

additive directional dominance gives rise to a subtle, but potentially interesting form 

of complex trait inheritance. 

Directional dominance can be observed through the study of inbreeding, since 

inbreeding influences complex traits through increases in homozygosity (especially 

of minor homozygotes) and corresponding reductions in heterozygosity, most likely 

resulting from the increased action of minor deleterious (partially) recessive 

mutations[20]1.  Historically inbreeding has been measured using pedigrees [61,62]. 

However, such techniques cannot account for the stochastic nature of inheritance, nor 

are they practical for the capture of the distant parental relatedness present in most 

modern day populations. High density genome-wide single nucleotide polymorphism 

(SNP) array data can now be used to assess inbreeding directly, using genomic runs 

of homozygosity (ROH), as called by genomic analysis software packages. Such runs 

are inferred to be homozygous-by-descent and are common in human 

populations[63,64]. An additional method of ROH-calling first prunes the SNP panel 

for linkage disequilibrium (LD) and thus disregards many of the ROH created by 

                                                 
1 Note – for complex traits we shall use the words dominance and recessivity almost interchangeably 
as the (+/-) sign of dominance deviation is arbitrary, depending on the (arbitrary) choice of scale. 
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common segregating haplotypes (showing strong LD), leaving those comprised of 

alleles in weak LD, which originate from more recent pedigree loops. SROH, or 

SROH* (for LD-pruned ROH calling), is the sum of the length of these ROH, in 

megabases of DNA. A   genomic   version   of  Wright’s   inbreeding   coefficient,   FROH 

(FROH*), may now be inferred as the ratio of SROH (SROH*) to the total length of 

the genotyped genome. Like pedigree-based F (with which it is highly 

correlated[36]), FROH estimates the excess probability of being homozygous at any 

site in the genome. FROH has been shown to vary widely within and between 

populations[55] and is a powerful method of detecting inbreeding effects[65]. 

 

4.2 Method 
 

4.2.1 Summary 
We meta-analysed the regressions of traits on SROH for 159 sub-cohorts. Sub-

cohorts were created from 102 population-based or case-control genetic studies, by 

separating different genotyping arrays, cases and controls or ethnic sub-groups to 

ensure each sub-cohort was homogeneous. The full list of participating sub-cohorts is 

shown at Appendix 1a ROHgen Participating cohorts). Where a sub-cohort had been 

ascertained on the basis of a disease status associated with a particular trait, that sub-

cohort was excluded from the corresponding trait analysis.  

 ROH with a length of at least 1.5 Mb were called from quality controlled dense 

genome-wide SNP array data (minimum 300,000 markers), using PLINK (--

homozyg --homozyg-window-snp 50 --homozyg-snp 50 --homozyg-kb 1500 --

homozyg-gap 1000 --homozyg-density 50 --homozyg-window-missing 5 --homozyg-

window-het 1 ). In chapter 3,  we showed that SROH called with these parameters is 

relatively insensitive to the density and type of array used. The association between 

the trait and SROH was measured using a linear model in R; Trait ~ SROH + age + 

sex. In addition the first three within cohort principal components of the relationship 

matrix were fitted, as were any other cohort-specific covariates known to be 

associated with the trait, including further principal components, and any trait-
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specific covariates such as medication. For family-based studies, we also fitted the 

mixed model, using grammar+ type residuals and full hierarchical mixed modelling 

using GenABEL and hglm. In the principal results, effect sizes estimated using hglm, 

where available, were used over grammar+, which were in turn used in preference 

over fixed model-only estimates. Inverse-variance meta-analysis of all sub-cohorts’  

effect estimates was performed using Rmeta[38] , on a fixed effect basis  

4.2.2 Cohorts 

Data from 102 independent genetic epidemiology studies were included. All subjects 

gave written informed consent and studies were approved by the relevant research 

ethics committees. Homogeneous sub-cohorts were created for analysis on the basis 

of ethnicity, genotyping array or other factors. Where a cohort had multiple 

ethnicities, sub-cohorts for each separate ethnicity were created and analysed 

separately. In all cases European-, African-, South or Central Asian-, East Asian- and 

Hispanic-heritage individuals were separated. In some cases sub-categories such as 

Ashkenazi Jews were also distinguished. Ethnic outliers were excluded, as were the 

second of any monozygotic twins and pregnant subjects. For case-control and trait 

extreme studies, patients or extreme-only sub-cohorts were analysed separately to 

controls. Where case status was associated with the trait under analysis the sub-

cohort was excluded from that study (see below).  

 

Subjects within a sub-cohort were genotyped using the same SNP array, or where 

two very similar arrays were used (e.g. Illumina OmniExpress and IlluminaOmni1), 

the intersection of SNPs on both arrays – provided the intersection exceeded 300,000 

SNPs. Where a study used two different genotyping arrays, separate subcohorts were 

created for each array, and analysis was done separately. Paediatric cohorts were not 

included. 
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4.2.3 Genotypes.  
All subjects were genotyped using high density genome-wide (>300,000 SNP) 

arrays, from Illumina, Affymetrix or Perlegen. Custom arrays were not included. 

Each   study’s   usual   array-specific genotype quality control standards for genome-

wide association were used and are shown in Appendix 1b ROHgen Intra-Cohort 

Genotype QC). 

 

4.2.4 Phenotypes  
We studied 16 quantitative traits which are widely available and represent different 

domains related to health, morbidity and mortality: height, body mass index (BMI), 

waist: hip ratio (WHR), diastolic and systolic blood pressure (DBP, SBP), fasting 

plasma glucose (FPG), fasting insulin (FI), Haemoglobin A1c (HbA1c), total-, HDL- 

and LDL-cholesterol, triglycerides, forced expiratory volume in 1 second (FEV1), 

ratio of FEV1 to forced vital capacity (FVC), general cognitive ability (g) and years 

of educational attainment (EA). Phenotypic QC was performed locally to assess the 

accuracy and distribution of phenotypes and covariates. Further covariates were 

included when the relevant GWAS consortium also included them. The trait 

categories were anthropometry, blood pressure, glycaemic traits, classical lipids, lung 

function, cognitive function and educational attainment, following models in the 

GIANT [2], ICBP [11], MAGIC[66] , CHARGE[67] , and Spirometa [68]   and 

SSGAC [69]    consortia. By happy accident, and unlike Spirometa, the model for 

FEV1 did not include height as a covariate. Effect sizes for FEV1 therefore include 

size effects that also underpin height. We considered re-analysis adding height as a 

covariate, however this was impractical due to the scale of the meta-study, but does 

mean that the FEV1 study is measuring scale rather than lung function independent 

of scale, which would be an interesting, entirely separate, albeit interesting, trait.  

Studies assembled files containing study traits and the following covariates: sex, age, 

three principal components of ancestry, lipid-lowering medication, ever-smoker 

status, anti-hypertensive medication, diabetes status and year of birth (YOB). 

Educational attainment was defined in accordance with the ISCED 1997 

classification (UNESCO), leading to seven categories of educational attainment that 
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are internationally comparable [69].   LDL   values   estimated   using   Friedewald’s  

equation were accepted. Cohorts without fasting samples did not participate in the 

LDL-cholesterol, triglycerides, fasting insulin or fasting plasma glucose analyses. 

Cohorts with semi-fasting samples fitted a categorical or quantitative fasting time 

variable as a covariate. Subjects with less than 4 hours fasting were not included. 

 

Where subjects were ascertained, for example, on the basis of hypertension, that sub-

cohort was excluded from analysis of traits associated with the disorder, for example 

blood pressure. A list of traits excluded by sub-cohort ascertainment is shown in 

Table 11 

 

Table 11 Traits where cases were excluded 

Ascertainment basis Traits for which Cases excluded 
Type-2-Diabetes Fasting insulin, HbA1c, fasting plasma 

glucose 
Hypertension Blood pressures 
Venous thrombosis, Coronary artery 
disease (CAD) 

Blood lipids  

Obesity, metabolic syndrome As CAD, plus BMI, waist-hip ratio, 
fasting insulin and fasting plasma 
glucose 

 

Somewhat unusually for a large consortium meta-analysis, the majority of the 

analysis after initial genotype and phenotype QC was performed by a pipeline of 

standardised R and shell scripts, to ensure uniformity and reduce the risk of errors 

and ambiguities. The standardised pipeline was used for all stages from this point 

onwards.  

 

4.2.5 Calling Runs of Homozygosity. 
As a further layer of QC, pre ROH-calling, SNPs with more than 3% missingness 

across individuals or with a minor allele frequency less than 5% were removed. 
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 Autosomal runs of homozygosity exceeding 1.5 Mb in length were called using 

PLINK [51] , with the following settings as specified in Chapter 3--homozyg-

window-snp 50 --homozyg-snp 50 --homozyg-kb 1500 --homozyg-gap 1000 --

homozyg-density 50 --homozyg-window-missing 5 --homozyg-window-het 1. LD 

pruned runs of homozygosity were called, after excluding non-independent SNPs 

with r2 exceeding 0.1, using the same parameters except --homozyg-window-snp 35 -

-homozyg-snp 35 --homozyg-density 250. The sum of runs of homozygosity was 

then calculated for unpruned (SROH) and pruned (SROH*) SNPs4. FROH was 

calculated as SROH/(3x109) reflecting the length of the typically genotyped 

autosomal genome. Copy number variants (CNV) are known to influence 

cognition38; however, prior calling of CNV and ROH in one of our cohorts reduced 

the SROH by only 0.3%[36], making it implausible that deletions called as ROH 

influence our findings. 

 

4.2.6 Trait association with SROH. 
 

 The association between trait and SROH or SROH* was calculated using a linear 

model  

trait ~ SROH (or SROH*) + age + sex + pc1 + pc2 + pc3. 

 

Pc1-pc3 were the first 3 principal components of the genetic relationship matrix. 

Additional covariates were fitted for some analyses (shown below) or for some 

cohorts where analysts were aware of study specific effects (e.g. study centre). For 

BMI, WHR, FEV1, FEV1/FVC and g, trait residuals were calculated for the model 

excluding SROH, these residuals were then rank-normalised and the effect of SROH 

on these rank-normalised residuals estimated. Triglycerides and fasting insulin were 

natural log transformed. Additional covariates were as follows: age2 was included as 

a covariate for all traits apart from height and g. BMI was included as a covariate for 



  
 

The inheritance of human lifespan in 20th Century Scotland  64 
 

WHR, SBP, DBP, FPG, FI and HbA1c. Year of birth (YOB) was included a 

covariate for EA and ever-smoking for FEV1 and FEV1/FVC. Where a subject was 

known to be taking lipid-lowering medication, total cholesterol was adjusted by 

dividing by 0.8. Similarly, where a subject was known to be taking anti-hypertensive 

medication, SBP and DBP measurements were increased by 15 and 10 mm Hg, 

respectively. 

 

4.2.7 Relatedness. 
 Where the cohort was known to have significant kinship, genetic relatedness was 

also fitted, using the mixed model. The polygenic model was fitted in GenABEL 

using the fixed covariates and the genomic relationship matrix[70] . GRAMMAR+ 

(GR+) [71] residuals were then fitted to SROH as well as the full mixed model being 

fitted   simultaneously,   using   GenABEL’s   hierarchical   generalised   linear   model  

(HGLM) function [72] . Populations with kinship thus potentially had six estimates 

of  βFROH: using fixed effects only, and using the mixed model approaches, GR+ and 

HGLM) for SROH and SROH*.  

4.2.8 Confounding 
To investigate potential confounding, where available, EA was added as an ordinal 

covariate  and  all  models  rerun,  giving  revised  estimates  of  βFROH. This is potentially 

an over adjustment for g due to the phenotypic and genetic correlations with EA[73]. 

Meta-analyses were rerun for various subsets, according to geographic and 

demographic features of the cohorts. Cohorts were divided into more homozygous 

and less homozygous strata with the boundary being set so each within-stratum meta-

analysis had equal statistical power (simply by summing the rank ordered weights in 

the base analysis). 

 

Cohort phenotypic means and standard deviations were checked visually for inter-

cohort consistency, with apparent outliers then being corrected (e.g. due to units or 
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incorrectly specified missing values), explained (e.g. due to different population 

characteristics) or excluded. 

 

4.2.9 Meta-analysis 
In   the   principal   analyses,   for   cohorts   with   relatedness,   HGLM   estimates   of   βFROH 

were preferred, however where HGLM had failed to converge, results using GR+ 

were included. These results were combined with those for unrelated cohorts which 

had been determined on a fixed effect only basis. Result outliers were defined as 

individual  cohort  by  trait  results,  which  failed  the  hypothesis,  cohort  (βFROH) = pre-

QC meta-analysis  (βFROH), with a t-test statistic >3.  Analyses were performed with 

and   without   outliers   for   βFROH in phenotypic units and in intra-sex phenotypic 

standard deviations. The principal results we present are for FROH (i.e. no LD 

pruning), with outliers included for the hypothesis tests (which turns out to be more 

conservative),  but  with  outliers  excluded  when  estimating  βFROH [74] . Meta-analysis 

was performed using inverse variance meta-analysis in the R package Rmeta [38] , 

with  βFROH taken as a fixed effect and alternatively as a random effect.  

4.2.10 Heritability in ORCADES 
Heritabilities and correlations for the four traits showing ID were calculated in 

ORCADES using bivariate restricted maximum likelihood in GCTA [17]  and the 

same base phenotypes and genotypes as the main study. 
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4.3 Results 
 

We found marked differences by geography and demographic history in both the 

population mean SROH and the relationship between SROH and SROH* Figure 13. 

As observed previously [36,55], isolated populations have a higher burden of ROH 

whereas African heritage populations have the least homozygosity. Populations 

differed by an order of magnitude in their mean ROH. There are clear differences by 

continent and population type both in the mean SROH, and the relationship between 

pruned and unpruned ROH. Isolated populations have a higher amount of SROH 

whereas African heritage populations have the least homozygosity. Africans also 

have less unpruned SROH for their level of pruned ROH (they are nearer to the y=x 

line in Figure 13), suggesting that they have fewer shorter ROH and that more of 

their ROH are of recent pedigree, although inter-continental differences in LD 

complicate the picture. These results are consistent with the out of Africa hypothesis 

[75], that humans emerged from Africa to populate other parts of the globe, creating 

population bottlenecks in non-African populations. This is expected to give rise to 

more population-wide long haplotypes in non-African populations, and thus more 

and longer ROH not arising from recent parental relatedness, particularly on an 

unpruned basis, whereas after pruning for linkage disequilibrium, such ROH will be 

discounted. Conversely for African populations long ROH can be expected to arise 

from more recent parental relatedness, as haplotypes arising from more distant 

parental relatedness will have been broken down by recombination. As would be 

predicted we find more unpruned mean SROH for non-African populations, but 

difference is much less marked for the standard deviation of SROH (Figure 14).  

 

We found that the mean and standard deviation of SROH for a cohort (pruned or 

unpruned)  is related, with a higher coefficient of variation for pruned SROH (points 
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lie  further above y=x in Figure 14 ). As statistical power to detect an association 

with SROH is driven by variation in SROH, cohort mean homozygosity is thus a 

broad guide to power (for a given sample size). It is interesting to note that on an 

unpruned basis, European and African populations separate due to mean SROH, but 

not the standard deviation of SROH. However the mean separation is much less 

apparent on a pruned basis (Figure 14). It is also interesting to note the higher 

coefficient of variation of pruned SROH of Asian relative to other populations.  
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Figure 13 Runs of Homozygosity by Cohort - mean pruned and unpruned homozygosity. 

 

SC.Asian is South & Central Asian, E.Asian is East Asian, Eur.Isolate is European isolates. The 
ten most homozygous cohorts are labelled: AMISH are the Old Order Amish from Lancaster 
County, Pennsylvania; HUTT, S-Leut Hutterites from South Dakota; NSPHS, North Swedish 
Population Health Study, 06 and 09 suffixes are different sampling years from different 
counties in Northern Sweden; OGP, Ogliastra Genetic Park, Sardinia, Italy; Talana is a 
particular village in the region; FVG, Friuli-Venezia-Giulia Genetic Park, Italy, omni and 370 
suffices refer to subsets genotyped with the Illumina OmniX and 370CNV arrays; HELIC, 
Hellenic Isolates, Greece, from Pomak villages in Thrace and MANOLIS from Mylopotamos 
villages in Crete. The coefficient of standard error in cohort mean SROH (CSE =mean/SE of the 
mean estimate)  varies for each cohort. For unpruned SROH it is between 1% and 12%, with a 
median of 6%. For pruned SROH, it is between 1% and 25% with a median of 6%. The CSE is 
affected by sample size and variation in SROH relative to the mean (mean and SD of SROH) 
vary together as illustrated in Figure 14 Runs of Homozygosity by Cohort - relationship 
between mean and standard deviation.   
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Figure 14 Runs of Homozygosity by Cohort - relationship between mean and standard deviation – 
unpruned and pruned 

  



  
 

The inheritance of human lifespan in 20th Century Scotland  70 
 

 

We studied βFROH, (defined as the effect of FROH on the trait under a linear model) on 

16 complex traits of biomedical importance 

. 

 

Trait units are intra-sex standard 

deviations. 

 βFROH is the estimated effect of FROH on the 

trait 

95% confidence intervals are also plotted. 

 + indicates phenotype was rank 

transformed 

* indicates phenotype was log 

transformed.  

BMI, body mass index; BP, blood pressure; 

FP fasting plasma; HbA1c, haemoglobin 

A1c (glycated haemoglobin); FEV1, forced 

expiratory volume in one second; FVC, 

forced vital capacity; HDL, high density 

lipoprotein; LDL, low density lipoprotein 

 

For height, FEV1 (a measure of 

lung function), educational attainment (EA) and g (a measure of general cognitive 

ability derived from scores on several diverse cognitive tests), we found the effect 

sizes were greater than two intra-sex standard deviations (SD), with p-values all less 

than 10-5. Thus the associations could not plausibly be explained by chance alone, as 

detailed in Table 12. 
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Table 12 Effects of genome-wide burden of runs of homozygosity on four traits.  

Phenotype Outliers Height FEV1+ Educational 

Attainment 

Cognitive 

g+ 

Subjects  354,224 64,446 84,725 53,300 

P-association Included <1 x 10-300 2.1 x 10-6 1.8 x 10-10 2.5 x 10-10 

P-heterogeneity Included 0.014 0.10 1.2 x 10-5 0.071 

βFROH-SD Excluded -2.91 -3.48 -4.69 -4.64 

SE  βFROH-SD Excluded 0.21 0.73 0.58 0.73 

βFROH-units Excluded -0.188 -2.2 -12.9 -4.64 

SE  βFROH-units Excluded 0.014 0.46 1.83 0.73 

Units  m litres years SD 

First cousin 

inbreeding 

depression 

Excluded -1.2 -137 -9.7 -0.29 

Units  cm ml months SD 

P-association is P value for association, P-heterogeneity is P value for heterogeneity 
in a meta-analysis between trait and unpruned FROH,  βFROH-SD is the effect size of 
FROH on trait expressed in units of intra-sex phenotypic standard deviations and SE is 
the   standard  error.   βFROH-units is the effect size estimate in the measurement units 
and SE the standard error. The P values for those traits showing evidence for 
association are calculated including 5 outlying cohort-specific effect size estimates 
(an outlier was defined as T-test statistic over 3 for the null hypothesis that the 
cohort effect size estimate equals the meta-analysis effect size estimate), which is 
conservative as the majority of these are in the opposite direction. Beta estimates 
however exclude these outliers, for which there is evidence of discrepancy, and 
should thus be more accurate. + indicates phenotype was rank transformed; FEV1 is 
forced expiratory lung volume in one second; g is the general cognitive factor (first 
unrotated principal component of test scores across diverse domains of cognition). 
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To ensure that the results were not driven by a few outliers, we repeated the analysis 

excluding extreme sub-cohort trait results. In all cases, when excluding outliers, the 

effect sizes and their significance remained similar or increased. After exclusion of 

outliers, these effect sizes translate into a reduction of 1.2 cm in height and 137 ml in 

FEV1 for the offspring of first cousins, and into a decrease of 0.3 SD in g and 10 

months less educational attainment.  

Whilst we consider a fixed effect basis to be the most plausible basis for the effect of 

FROH we considered the possibility that a random effect was a better model. P-values 

for heterogeneity of effect sizes were above 1% for all the traits except educational 

attainment, which had a p-value of 1.2 x 10-5. Nonetheless, we also analysed the 

effect of FROH as a random effect across the meta-analyses (i.e. the effect of FROH 

differed in each cohort). Whilst p-values decreased (due to reduced power), they still 

remained lower than 0.00026. On the other hand, mean effect sizes remained similar 

or increased, detailed results are shown in Supplement 4.6. So under fixed or random 

effects meta-analysis, the results are similar and lead to the same conclusion. 

To ascertain if a torso size endophenotype underpins both the height and FEV1 

signals, and the degree to which the educational attainment and g signals are shared, 

we explored heritabilities and correlations in the ORCADES cohort.  
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Phenotypic correlations within the cognition- and stature-related traits were 0.37 and 

0.43, respectively, whilst phenotypic correlations between the cognitive and stature 

traits were in the range 0.087-0.176, with genetic correlations exceeding phenotypic 

correlations and environmental correlations being lower, as shown in Table 13. 

 

Table 13 Heritabilities and phenotypic, genetic and environmental pairwise correlations 

  Heritability Correlation 
Trait 1 Trait 2 Trait 1 Trait 2 Phenotypic Genetic Environmental SE 

Genetic 

height FEV1 75.9% 43.2% 43.4% 59.7% 24.9% 5.7% 

g EA 54.6% 48.2% 37.0% 59.6% 13.2% 7.4% 

height g 75.9% 56.7% 17.6% 23.0% 8.0% 6.9% 

height EA 76.0% 50.5% 10.1% 14.0% 4.2% 6.9% 

FEV1 g 45.1% 56.5% 16.2% 19.1% 13.3% 9.1% 

FEV1 EA 45.2% 51.0% 8.7% 27.2% -8.3% 9.0% 

 

The strong (additive) genetic correlations within stature and cognition traits (both 

60%) suggest βFROH is acting on shared endophenotypes within these trait areas. The 

fact that the FEV1/FVC (forced vital capacity) ratio is not associated with ROH 

further points to the effect being on lung/chest size rather than airway calibre. The 

cognition effects cannot be wholly generated by height as an intermediate cause, 

given the greater effect size for FROH for cognition. This is emphasised further by 

lower heritabilities of cognition and the observed low genetic correlations. 

Although it has been suggested that βFROH* exceeds βFROH [21], as haplotypes only 

recently brought into the homozygous state might harbour more deleterious variants, 



  
 

The inheritance of human lifespan in 20th Century Scotland  74 
 

we found no evidence for this; results were similar with either measure, as shown in 

Table 14. 

Table 14 Estimated BetaFROH under pruning and no pruning 

FROH Edu Height FEV1 g 

pruned -5.24 -3.03 -3.67 -5.00 

unpruned -4.69 -2.91 -3.48 -4.64 

Units are intra-sex trait standard deviation units 

We then performed a number of analyses to exclude confounding. As SROH is not 

heritable (in the narrow sense), a genetic association with population structure or 

non-sibling relatedness and any heritable trait is not expected as a matter of course. 

As noted already, we found only small differences (4-12%) between βFROH and βFROH*.  

This implies that signals of similar strength originate from both ancestral and recent 

haplotypes, and lends indirect evidence that the observed effects are not due to recent 

socioeconomic confounding, which would associate with βFROH and βFROH* in different 

ways. We also found very small differences (3-11% reductions) in estimated βFROH, 

when comparing the fitting of polygenic mixed models as opposed to fixed-effect-

only models, suggesting that polygenic confounding was not substantially affecting 

the results, as shown in Table 15 and Figure 15. 

Table 15 Estimated  βFROH under No and different mixed modelling of polygenic (additive) genetic 
variance  

Polygenic 
effect 

Edu Height FEV1 g 

None  -5.41 -3.63 -3.02 -5.32 

Grammar+ -4.91 -3.44 -3.08 -5.08 

HGLM   -4.78 -3.37 -2.86 -5.13 

 



  
 

The inheritance of human lifespan in 20th Century Scotland  75 
 

Figure 15 Signals of inbreeding depression (βFROH)are similar under pruning and fitting polygenic effects as a covariate 

 

 

 

gr_res: grammar+ [71]   residuals were calculated allowing 
for (mixed model) polygenic effect of relatedness  and other 
fixed covariates. The effect of FROH on these residuals was 
then calculated. 

hglm: full hierarchical generalised linear model [76]  used to 
assess effect of of FROH on  trait while simultaneously fitting 
the (mixed model) polygenic effect of relatedness  and other 
fixed covariates 

 

pruned: SNPs pruned for LD prior to ROH calling 

unpruned: Full SNP panel used 

 

 

 

The same cohorts are analysed in each row to ensure the effect of the aspect being analysed is the only variable 

 



  
 

The inheritance of human lifespan in 20th Century Scotland  76 
 

Figure 16 Signals of inbreeding depression (βFROH) are robust to stratification by geography or demographic history or inclusion of educational attainment as 
covariate.  
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Cohorts are divided by continental biogeographic ancestry (African, East Asian, South & Central Asian, Hispanic), with Europeans being divided into 

Finns, other European isolates (self-declared), and (non-isolated) Europeans. Meta-analysis was carried out for all subsets with 2000 or more samples 

available, total sample size  per  subset  is  given  in  the  plot.  βFROH is consistent across geography and in both isolates and more cosmopolitan 

populations. 

 

Cohorts were divided into High and Low ROH strata of equal power and meta-analysis repeated – the effects are consistent across strata for all four 

traits. The mean SROH is also shown for each stratum in megabases.   

 

To assess the potential for socio-economic confounding, where available, educational attainment was included in the regression model and compared 

to a model without educational attainment in the same subset of cohorts. The signals reduce slightly when the education covariate is included; the 

analysis is not possible for educational attainment as a trait. The numbers indicate the total number of samples in each analysis; they differ because of 

missing individual educational data within cohorts. + indicates phenotype was rank transformed. FEV1, forced expiratory lung volume in one second; 

g is the general cognitive component (first unrotated principal component of test scores across diverse tests of cognition); SC Asian is South & Central 

Asian, E Asian is East Asian, trait units are intra-sex standard deviations and the genomic measure is unpruned SROH.  
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We continued to evaluate the risk of confounding by conducting stratified and 

covariate analyses. We found effects of similar magnitude and in the same direction 

for all four traits across isolated and non-isolated European, Finnish, African, 

Hispanic, East Asian and South and Central Asian populations 

We further tested whether the effect sizes were similar when cohorts were split into 

more and less homozygous groups. The effect sizes were very similar even though 

the degree of homozygosity (and variation in homozygosity) varied 3-10-fold 

between the two strata (depending on which cohorts contributed to the trait). Finally, 

we fitted educational attainment as a proxy for potential confounding by socio-

economic status; this covariate was available in sufficient cohorts to maintain power. 

The estimated effect sizes for height, FEV1 and g all reduced (17%, 18% and 35%, 

but this might have been expected given the known covariance between these three 

traits and EA, and the association we found between educational attainment and 

FROH. (Figure 16). 

 

Finally, we examined whether estimated effect sizes were influenced by the 

genotyping array used. 
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Figure 17 No evidence that estimation of BFROH is influenced by choice of genotyping array  

 

Y axis labels show the genotyping array grouping and the number of subjects measured 

AFF5: Affymetrix GeneChip 500k / 5.0 series 

AFF6: Affymetrix Genome-Wide Human SNP Array 6.0 

ILL 300: Illumina HAP 300/370CNV series 

ILL 5 : Illumina HumanHap550 series 

ILL 6: Illumina 610/660/670  series 

ILL Om: llumina Human Omni series 

 

Although power is limited for the phenotypes with smaller sample sizes, there is no 

statistically significant evidence that genotyping array influences the estimated effect 

sizes (95% confidence intervals all overlap), confirming the protocol developed in 

Chapter 3.  

 

bFROH

−8 −6 −4 −2 0

AFF 5 2425
AFF 6 4376
ILL 300 7528
ILL 6 14377
ILL Om 22955

Cognitive g+

bFROH

−8 −6 −4 −2 0

AFF 5 2065
AFF 6 9973
ILL 300 12995
ILL 5 4998
ILL 6 8087
ILL Om 30255
Other 9425

Education Attained

bFROH

−8 −6 −4 −2 0

AFF 5 23591
AFF 6 54279
ILL 300 62645
ILL 5 19972
ILL 6 77880
ILL Om 87617
Other 26875

Height

bFROH

−8 −6 −4 −2 0

AFF 5 9907
AFF 6 19611
ILL 300 8208
ILL 5 5934
ILL 6 9459
ILL Om 9349

FEV1+

Analysis of estimated bFROH by genotyping array
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4.4 Discussion 
In a very large meta-analysis of up to 350,000 subjects and across 102 diverse 

cohorts, we find statistically highly significant associations between individual 

genome-wide summed runs of homozygosity (SROH) and four complex traits: 

height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability 

(g) and educational attainment. Purely to give a sense an intuitive sense of the 

magnitude of the effect observed, and on the simplistic assumption that the effects 

can be extrapolated on a linear basis well outside the observed range of 

homozygosity, the observed effect sizes would be equivalent to the offspring of first 

cousins being 1.2 cm shorter and having 10 months less education. Stratified analysis 

showed consistent effects across continents and cohort mean homozygosity. 

Despite the modest reductions in estimated effect sizes for FROH on height, FEV1 and 

g, when fitting educational attainment as a covariate, the persistence of an effect 

suggests that most of the signals we observe are genetic. The similarity in effect sizes 

across continents, consistency of effects with and without fitting relatedness and 

when using FROH or FROH* and in particular in populations with very different degrees 

of homozygosity, all appear inconsistent with confounding due to environmental or 

additive genetic effects. 

It is also interesting to consider the potential influence of assortative mating, which is 

commonly observed for human stature, cognition and education[77]. Given the 

polygenic trait architectures, the phenotypic extremes could be more genetically 

similar to each other and hence the offspring more homozygous. However, at least in 

its simplest balanced form, the increase in genetic similarity would be equal at both 

ends of the phenotypic distribution, leading to no linear association between such 

genetic similarity and the trait; both tall and short people would be more 

homozygous. Furthermore, humans also mate assortatively on BMI, for which we 

see no effect. A more complex possibility, a form of reverse-causality, could arise 

when subjects from one trait extreme (e.g. more educated people) are on average 

more geographically mobile, and thus have less homozygous offspring, with those 

offspring in turn inheriting the trait extreme concerned[78]. We do not think that this 

mechanism can account for our results, since it does not readily explain the 
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constancy of our results under different models, especially the similarity in βFROH for 

either more or less homozygous populations. Moreover, we observe similar effects in 

multiple single village cohorts, and the Amish and Hutterites, where there is no 

geographic structure and/or no sampling of immigrants, hence such confounding by 

differential migration cannot occur. 

Our results are consistent with previous genomic[21] and pedigree[79] studies, which 

have shown inbreeding effects on stature with similar effect sizes (0.01 increase in F 

decreases height by 0.037 SD[79] versus 0.029 SD in the present study). Our 

genomic confirmation of directional dominance for g and discovery of inbreeding 

effects on educational attainment in a wide range of human populations adds to our 

knowledge of the genetic underpinnings of cognitive differences, which are currently 

thought to be largely due to additive genetic effects[80]. Our findings go beyond 

earlier pedigree-based analyses of recent consanguinity to demonstrate that 

inbreeding depression is not a result of confounding and influences demographically 

diverse populations across the globe. The estimated effect size is consistent with 

pedigree data (0.01 increase in F decreases g by 0.046 SD in our analysis and 0.029-

0.048 in pedigree-based studies) [81,82]. It is germane to note that one extreme of 

cognitive function, early onset cognitive impairment, is strongly influenced by 

deleterious recessive loci[83], so we can speculate that an accumulation of recessive 

variants of weaker effect may influence normal variation in cognitive function. 

Although increasing migration and panmixia have generated a secular trend in 

decreasing homozygosity[84], the Flynn effect, wherein succeeding generations 

perform better on cognitive tests than their predecessors[85], cannot be explained by 

our findings, because the intergenerational change in cognitive scores is much larger 

than the differences in homozygosity would predict. Likewise, the inbreeding effect 

on height cannot explain a significant proportion of the observed inter-generational 

increases, nor do inbreeding effects potentially comprise a material part of missing 

(broad sense) heritability, as the observed variation in homozygosity and the meta-

analysed effect sizes, suggest very low proportions of variance explained.  For 

example, the estimated proportion of phenotypic variance explained is 0.01% for 
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height in Generation Scotland, a typical European population, and 0.1% for cognition 

in ORCADES, a typical genetic isolate.     

Inbreeding depression is ubiquitous in plants and is seen for numerous fitness-related 

traits in animals[86], but no effect was observed for the 12 other mainly cardio-

metabolic traits in which variation is strongly age-related. This suggests that previous 

reports in ecological studies or substantively smaller studies using pedigrees or 

relatively small numbers of genetic markers may have been false positives[58,59]. 

The lack of directional dominance on these traits does not, however, rule out many 

dominant variants, provided dominant variants acting in different directions are 

cancelling out. ROH analyses within specific genomic regions are warranted to map 

recessive effects even when there is no genome-wide directional dominance. Such 

recessive effects have been observed for a subset of cardiovascular risk factors [87] 

and expression traits [88]. 

 

Whilst, directional dominance obviously suggests a search for specific loci where the 

direction of such dominance arises, it far from precludes the existence of loci with 

opposite dominance, nor does it preclude the existence of, on average neutral, 

dominant loci for the other traits. Localised determination of association between 

runs of homozygosity and phenotype could thus offer an alternative to GWAS and 

regional heritability [89] to the detection of genes affecting complex traits, and 

illumination of the genetic architecture underpinning them, although power will 

depend on the nature of local dominance. 

The finding that βFROH and βFROH* appear equal for the four traits also raises 

interesting questions as to the nature of the selective pressures on these traits – in 

particular whether the pressures were ancient rather than modern. Equally although 

our study has shown clear evidence for inbreeding depression measured by ROH, it 

has not examined whether identity-by-state (IBS) as measured using SNPs, would 

capture similar or different amounts of inbreeding depression. Indeed a multivariate 

analysis, which would plausibly be well powered in ROHgen, could well disentangle 

the effects of  IBS, FROH and FROH*. 
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4.5 Conclusions 
 

We have demonstrated the existence of directional dominance or inbreeding 

depression, on four complex traits (stature, lung function, cognitive ability and 

educational attainment) whilst showing any effect, if it exists,  on the other 12 traits 

is at least an order of magnitude smaller. This suggests past directional selection for 

some alleles increasing size and cognition, but not for the other twelve traits, 

although they are associated with late onset disease in modern settings. The 

inheritance of complex traits thus has trait specific architecture of subtle, perhaps 

surprising, forms.  
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4.6 Supplement: Comparison of fixed and random effects meta-
analyses for key phenotypes 

Phenotype n beta se_beta p effect_type 
Cognitiveg+ 53300 -4.64 0.73 2.50E-10 fixed 
Cognitiveg+ 53300 -4.59 1.00 4.37E-06 random 
EA 77798 -4.69 0.58 4.44E-16 fixed 
EA 77798 -4.96 0.80 6.84E-10 random 
Height 352859 -2.91 0.21 <1E-300 fixed 
Height 352859 -3.12 0.28 <1E-300 random 
FEV1+ 64446 -3.48 0.73 2.13E-06 fixed 
FEV1+ 64446 -3.47 0.95 2.59E-04 random 
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Chapter 5 Using local exome sequences to impute 
hidden variants and increase power of 
Genome Wide Association Studies.  

5.1 Introduction 
Modern genome wide arrays usually only capture 300k-1M genetic variants, whereas 

known population variation in the human genome exceeds 37.5m sites [23]. As there 

is no a priori reason to suspect genome wide arrays to have captured causal loci, 

causal loci are likely to remain hidden to the researcher using only array data.   A 

commonly used technique in Genome-wide association study (GWAS) is imputation, 

where further genetic variants known to exist in other populations are inferred into 

the study population. Meta-analyses, in particular, routinely use genotype imputation, 

principally to ensure a common panel across studies, but also to give dense 

coverage[49]. Accurate imputation of less common variants (minor allele frequency 

MAF, 1-10%) may be particularly useful as commercial genotyping arrays often 

provide poor coverage of such variants, and imputation improves association power 

most for less frequent causal variants[24]. Although there is still no certainty that 

causal variants are captured even by a dense imputation, the likelihood is obviously 

increased as are the prospects of capturing a variant in strong LD with a causal 

variant. Imputation and, in particular, dense accurate imputation therefore offers the 

prospect of getting closer to hidden causal variants. 

The recently released 1000 Genomes haplotypes [23] are a particularly large and 

dense reference panel that will be commonly used as an imputation reference panel, 

particularly in GWAS consortia. At the same time, theoretical studies and empirical 

studies using other primary reference panels, have shown that imputation accuracy in 

a study population can be increased by use of an additional reference panel such as 

whole genome or exome sequence data drawn from a subset of the population under 

study [24] [90] [91] [92] [93] [94] [95]. 

 



  
 

Local exome sequences improve imputation accuracy  86 
 

It is therefore useful to quantify the likely benefit of adding local reference data to 

1000 Genomes data, particularly for less common variants, and especially if the 

population is genetically distant from the 1000 Genomes populations.  

We used data from the CROATIA-Korcula2 and Orkney Complex Disease studies 

(ORCADES) [36] [96]. Both studies are family-based, cross-sectional community 

studies of the genetics of complex traits. The Croatian island of Korčula is in the 

Adriatic and the ORCADES study is based in the Orkney Isles in Scotland.  

 

Genotypes obtained from the whole exome sequencing of 91/89 CROATIA-

Korcula/ORCADES quality controlled samples were used to supplement the 1000 

Genomes reference panel. We focused on less common (MAF 1-10%) exonic 

variants already in 1000 Genomes which, unlike low frequency, and rare (MAF<1%) 

or private variants, can be meta-analysed in typically sized consortia.  

We thus seek to determine if imputation accuracy can be improved by the addition of 

local sequences to a global reference panel. 

5.2 Method 
The ORCADES and CROATIA-Korcula studies both had ethical approval for 

genetic research into the basis of complex traits, approved by the appropriate 

committees in each country. For ORCADES the committees were the Orkney Local 

Research Committee and the North of Scotland Research Ethics Committee 

(approval Orkney: 27/2/04). For CROATIA-Korcula the committees were the Ethics 

Committee of the Medical School, University of Split (approval id 2181-198-03-

04/10-11-0008) and the NHS Lothian (South East Scotland Research Ethics 

Committees; REC reference 11/AL/0222). All participants provided written informed 

consent. 

Array genotypes were obtained from Illumina Hap370CNV array, at 319,552 SNPs 

for CROATIA-Korcula subjects and Illumina Omni1 array at 1,140,419 SNPs or the 

Illumina Human Hap300 array at 293,687 SNPs for ORCADES subjects. For 

ORCADES a common panel of intersecting Hap300 and Omni1 SNPs was first 
                                                 
2 In  accordance  with  the  cohort’s  own  convention  the  cohort name has been spelt without an accent. 
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created. The panel for CROATIA-Korcula was then restricted to these SNPs, to 

ensure similar panel sizes. 

Subjects to be sequenced were selected from the wider study populations that were 

genotyped on the Illumina Hap (370CNV/300) arrays to minimize relatedness, and 

thus to maximize representation of study population haplotypes. The selection was 

carried out by tracking the identity-by-descent sharing structure, as determined by 

the array genotypes using the program ANCHAP [97]. Whole exome sequences of 

99/95 CROATIA-Korcula/ORCADES subjects were generated using the Agilent 

SureSelect All Exon 50 Mb kit and 234,746/217,015 variants were identified. 

Quality control (QC) of genotyping array data, that were subsequently used for 

imputation, was in accordance with best practice for association studies[98]  

The  Korčulan/Orcadian  (99/95)  exome  sequenced  subjects’  array  genotype  data  was  

quality controlled alongside the other 801/1069 samples available in each population. 

892   Korčulan   subjects   were   genotyped   using   the   Illumina   Hap370CNV   array,   at  

319,552 SNPs. Orcadian subjects were genotyped on the Illumina Omni1 array at 

1,140,419 SNPs or the Illumina HumanHap300 array at 293,687 SNPs. An 

intersecting panel of 178,477 SNPs was obtained for 1159 Orcadian subjects. 

Individuals that failed to genotype at more than 3% of SNPs were excluded, and 

SNPs that failed to genotype in more than 10% of samples, or failed a test for Hardy-

Weinberg equilibrium (p-value=10-6) were excluded. In creating the reference panel, 

our aim was to create a robust and diverse local panel, so genetic outliers were not 

excluded, provided that other QC thresholds were satisfactory. Our array data was 

remapped using LiftOver[99] from NCBI build 36 to build 37.3, to match the exome 

and 1,000 Genomes data - 9,181/4,607 SNPs were not successfully mapped to the 

newer build.  

1,538/2,115 SNPs and 0/1 samples failed QC, resulting in 892/1158 samples 

genotyped at 308,833/171,749 SNPs for CROATIA-Korcula/ORCADES. To avoid 

possible discrepancies associated with a different size of SNP panel, the larger 
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CROATIA-Korcula panel was then restricted to those intersecting SNPs on the post-

QC Orkney panel (but not vice-versa).  

 As illustrated in Figure 18, post QC array data of 170,134/171,749 SNPs for 

892/1158  Korčulan/Orcadian   subjects  were   then  pre-phased simultaneously (within 

each population) using SHAPEIT v1.r416 [100] [101] including the maximal 

pedigree structure permitted by the software (non-overlapping nuclear families) to 

create a phased set of study genotypes ready for imputation using IMPUTE2 v2.2.2 

[102]. The simultaneous phasing of all (892/1158) study subjects allowed all these 

subjects’   phasing   to   inform   the   phase   of   the ~100 subjects taken forward as a 

reference panel and for imputation. 

Figure 18 Preparation of array data and local reference panel for imputation. The genotype data 
were quality controlled and phased. These data were then used in further downstream analysis.   

 

Exome sequence data were also subjected to rigorous QC to ensure they were of high 

quality so that that the local reference panel we created did not have a significant 

number of incorrect haplotypes. Variants were called by first aligning the raw 

sequence data to the human hg19 reference genome using the Stampy short read 

aligner[103] (with BWA utilized as a pre-mapper[104]). Genotype calls were 

produced  from  the  resulting  alignments  using  GATK’s  unified  genotyper,  following  

GATK’s   recommended   best   practice   for   variant   detection   from   exome   sequence  

datasets[105]. Variants were required to have a phred-scaled quality of at least 40. 

Individual sample genotype calls with a phred-scaled quality less than 20 were 

regarded as missing. Variants that were called in less than 50% of subjects, or with a 

minor allele frequency of less than 0.75% were removed (hence inclusion required at 

least two minor alleles across samples). All variants that mapped to more than one 

homologous region or failed a test of Hardy-Weinberg equilibrium (HWE) with a p-
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value of less than 10-4, were also removed, leaving 99/95 CROATIA-

Korcula/ORCADES subjects genotyped for 102,192/97,052 variants. The HWE test 

was a more stringent test than for the array data reflecting lower sample numbers and 

the desire to particularly ensure integrity for reference data. We restricted our 

analysis to individuals with exome sequences and merged the exomes with the array 

data for these subjects. Subjects/variants with more than 50/30 mismatching calls, 

between the array and sequence data were excluded, although no variants failed this 

test. This resulted in exomes for 93/90 subjects genotyped at 102,192/97,052 exonic 

SNPs being merged with array data at 170,134/171,749 SNPs for these individuals. 

The resulting panels had 265,929/262,513 variants which were 99.91%/99.92% 

concordant, based on the genotypes called on both panels for 6,397/6,285 

overlapping variants. As the overall genotypic concordance could mask 

discrepancies for minor alleles, particularly the less common variants of interest, 

concordance rates for minor allele calls were calculated in the MAF 1-3% range 

separately. Only 1/1 (CROATIA-Korcula/ORCADES) call was discrepant on each 

overlapping panel, giving minor allele concordance of 99.7% in both studies for 

these variants. 

8,150/10,964   Korčulan/Orcadian   variants other than single base substitutions, for 

example insertions or deletions, were excluded. 119/110 conflicting map positions 

and individuals called at fewer than 80% of the combined SNP panel were then 

excluded, leaving 91/89 subjects typed across 257,633/251,439 SNPs. Our focus was 

on the potential to improve power in meta-analyses, so polymorphisms that were 

unique to each cohort were excluded. This was done by comparison to the 1000 

Genomes project map and those variants not present in the 1000 Genomes reference 

data or with mismatches in allele codes were excluded. 

The merged sequence and array data consisting of 233,195/232,096 variants for 

91/89 subjects were then phased by SHAPEIT, using the recommended Ne of 11,418 

and the default settings [100], to create reference haplotypes, as shown in the lower 

half of Figure 18. 



  
 

Local exome sequences improve imputation accuracy  90 
 

Having created suitable post-QC array data and secondary reference panels, 

imputations were performed using genome-wide array data plus (i) 1000 Genomes 

haplotypes [24] alone or (ii) 1000 Genomes haplotypes together with local data as 

reference panels. Both imputations were then compared with known genotypes and 

an assessment of accuracy across all subjects was made for each SNP, as illustrated 

in Figure 19. 

Figure 19 Illustration of the procedure to estimate imputation accuracy.  

 

 

We used a drop one-out cross-validation approach. For the imputation step each 

subject was removed from the reference   panel   in   turn,   and   this   subject’s   exome  

sequence SNPs were then imputed using either the 1000 Genomes reference panel 

alone  or   in   conjunction  with   a   second   local   reference   panel.  All   subjects’   imputed  

allelic dosages were then compared with the exome sequence  genotype  data  (“gold  

standard”). 

Imputation of the 91/89 subjects with and without the benefit of local reference data 

was carried out using IMPUTE2, using the phased reference panel option, the phased 

array data haplotype option, and with the software splitting the genome into chunks, 

which had been predetermined to be less than 5Mb in size and avoiding crossing the 

centromeres. Ne was set to 20,000; all other settings were left at their default values. 

For the one panel imputation, the 1000 Genomes Phase 1 worldwide integrated 

variant set (March 2012 release) [23] as available on the IMPUTE2 website [102] 

was used. The two-panel imputation added the phased local reference data as a 
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secondary panel (we did not use the merge panels option). All other settings for the 

two-panel imputation were identical to the one panel imputation. We performed 

imputations for each subject with local exome data separately, with the study 

subject’s   own   haplotypes   removed   from   the   secondary   reference   panel   so   that   the  

haplotypes of the individual to be imputed were not present in the reference data. For 

a given SNP, the accuracy (r2) of the allelic dosages imputed was measured across 

samples against the known exome sequence-called genotypes. 

As evidenced by the genome-wide SNP array concordance data, noted above, there 

was close agreement between the exome sequence and independent genotyping data, 

indicating that the sequences were a suitable gold standard. Furthermore exome array 

data were also available for the CROATIA-Korcula study (although not ORCADES) 

and concordance between exome array and exome sequence genotypes was 99.5% 

and was similar across all MAF bands 

The dual use of exome sequences both as a secondary reference panel and as the gold 

standard to obtain imputation accuracy was considered appropriate  since  a  subject’s  

imputation panel did not include their own sequence, avoiding circularity at the 

imputation stage.  
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5.3 Results 
We found a significant increase in accuracy (r2 of imputed against known allele 

dosages across samples for a given SNP) from use of a local reference panel, which 

was often substantial for less common variants (Table 16). 

Table 16 Mean accuracy of imputation (r2 of allelic dosage across all samples for a SNP) averaged 
across SNPs split by Minor Allele Frequency (MAF) 

 

MAF 1-3.2% 3.2-10% 10-32% >32% 

Population Korčula Orkney Korčula Orkney Korčula Orkney Korčula Orkney 

N SNPs 12132 12123 11548 10677 16243 15262 10174 9265 

r2 1kG 0.504 0.586 0.729 0.778 0.868 0.894 0.894 0.913 

r2 1kG+LRP 0.697 0.753 0.841 0.867 0.916 0.931 0.934 0.944 

Increase r2 0.193 0.167 0.112 0.089 0.049 0.037 0.039 0.031 

Std dev.  0.309 0.295 0.182 0.157 0.093 0.078 0.074 0.065 

Inc. Sample 38% 28% 15% 11% 6% 4% 4% 3% 

 

MAF  bins  increase  by  factors  of  √10,  to  create  four  exponentially  increasing  bins.   

N SNPs: number of SNPs in MAF bin 

1kG: 1000 Genomes used as reference panel 

1kG+LRP: 1000 Genomes plus local reference panel 

Increase r2: Average across all SNPs in MAF bin increase in r2  

Std dev: The standard deviation (across SNPs) of the increase in r2 at each SNP 

Inc. Sample: Increase in effective sample size for GWAS (=Increase r2/ r2 1kG) 

The standard errors of mean increases are less than 0.003. All improvements in r2 are significantly 
different from zero and significantly different between MAF bands (P<0.001, two-sided t tests). 
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Variants with a minor allele frequency in the range 0.01 – 0.032 showed an increase 

in imputation accuracy of 0.193/0.167 (38%/28% improvement) for CROATIA-

Korcula/ORCADES and 0.112/0.089 (15%/11% improvement) for variants with 

MAF between 0.032 and 0.100. The high accuracy of the 1000 Genomes imputation 

for more common variants (MAF >0.1) provided more limited scope for 

improvement in this category, although even for the most common variants 

(MAF>0.32) the accuracy of imputation increased by 0.039/0.031 (4%/3% 

improvement) for CROATIA-Korcula/ORCADES after adding the second (local) 

reference panel. 

Much of the improvements arise from SNPs that have an r2 close to zero with the 

1000 Genomes-only imputation and which were imputed more accurately with the 

addition of the local panel (Figure 20). For CROATIA-Korcula/ORCADES 12%/9% 

of all SNPs imputed poorly (r2<0.2) using 1000 Genomes data alone. About one-fifth 

(17.1%/19.9%) of these poorly imputed SNPs imputed well (r2>0.8) after the 

addition of the local reference panel. 

Figure 20 Frequency plot of imputation accuracy (r2) using 1000 Genomes data alone against 1000 
Genomes plus a local reference panel for SNPs with Minor Allele Frequencies (MAF) of 1-3.2%.  
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SNPs that were less frequent in 1000 Genomes than in our sequences generally 

improved more, as illustrated in Figure 21, where areas of greater improvement are 

generally observed towards the right-hand side in the figure. The effect is more 

pronounced   in  Korčula   and   is   particularly  marked   for   variants  where  MAF   is   less  

than 1% on 1000 Genomes European panel. 

Figure 21 Plot of mean improvement in imputation accuracy (r2) for SNPs with minor allele 
frequency (MAF) in the range 1-10% in our exome sequence data. 

 

Counts of the SNPs in each cell of Figure 21 are shown in supplementary information at the end of 

this chapter. 

We also looked at r2 increase as a function of European 1000 Genomes MAF. As 

stated above, for SNPs with a MAF of 1-3.2% in our local sequences, the mean 

increase in r2 was 0.193/0.167. For these SNPs, the increase in r2 was 0.297/0.264 for 

those in the European 1000 Genomes MAF band <1%, 0.137/0.112 for MAF band 1-

3.2% and 0.086/0.072 for MAF >3.2%. 

5.4 Discussion 
Our results show that use of a secondary local reference panel in addition to the 1000 

Genomes reference haplotype data can significantly increase the quality of 

imputations, particularly for less common alleles and the improvement is greater 

when the study population is genetically further from the populations in the reference 

data. 
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We estimated imputation accuracy using a leave-one-out cross-validation approach, 

in which we compared known genotypes to imputed ones using either the 1000 

Genomes reference panel alone or accompanied by a panel obtained from sequence 

data of individuals from our study populations. Although we took care in our cross-

validations to avoid circularity by using the leave-one-out approach in the 

imputations, for practical reasons, especially computing time, the phasing stage was 

done only once including all subjects (and therefore included the subject being 

blinded at the imputation stage). We acknowledge that this could potentially slightly 

inflate the reported increase in accuracy when using the second reference panel. 

Imputation accuracy is not only affected by the quality and composition of the 

reference data used, but also by the design of the genotyping array, in particular array 

density and whether the array captures population specific variants [106]. A dense, 

locally relevant array used to genotype the study population will improve the quality 

of imputation compared to a less dense one, when using a global reference panel, and 

thus reduce the potential scope for improvement when adding local sequence data. 

However, where the study population’s  haplotypes  are  distinct,  due  to  recombination,  

from the reference panel population, the use of a denser array can be expected to 

improve the imputation but the denser array will also allow even better matching of 

local haplotypes, and so there should be a further benefit from use of a local 

secondary reference panel. 

Consistent with this hypothesis, the accuracy of base imputations using only the 1000 

Genomes reference panel was greater for ORCADES than CROATIA-Korcula, 

presumably due to the greater proximity of Orkney to subjects in the 1000 Genomes 

reference panel. Twenty three Orcadians, 77 mainland British and 100 of northern 

European ancestry individuals are present in the 1000 Genomes data, and principal 

component analysis shows that Balkan populations   (such   as   Korčula)   are   more  

distant from the nearest subjects in 1000 Genomes (Tuscans, from central Italy, 

N=100), than the variation observed within the British Isles[23] [107]. This suggests 

to us that, as might be expected, imputation improvement due to addition of local 

data will be most marked for populations genetically distant from 1000 Genomes 

samples. Whilst part of the benefit arises from including reference data with allele 
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frequencies closer to the study population, the capture of representative local 

haplotypes further contributes to the increase in imputation accuracy, and this latter 

effect will be more marked, or at least require fewer local subject to be sequenced, in 

isolated populations, where fewer distinct haplotypes will be segregating. 

Similarly the much greater improvements in accuracy for SNPs where the MAF is 

greater in our sequences than 1000 genomes, perhaps not surprisingly, shows that 

local sequences will add value to imputations in regions of the genome where drift, 

or other forces, have created a distinct genetic structure.  

Comparing these results with those of other researchers who have examined the 

benefits of study specific reference panels, often using 1000 Genomes like us or 

HapMap [108] as primary panels, whilst illuminating, is not straightforward. 

Inevitably, different types and sizes of reference panels are used, as well as different 

genotyping arrays for the subjects whose genotypes are to be imputed. This is further 

complicated by different study protocols and differing genetic structure of the study 

populations. With these caveats, our results of an r2 of 0.70-0.75 from 90 reference 

panel subjects in addition to 1000 Genomes seem consistent with those of Liu et al 

[95] and Auer et al [94], for MAF 1-3%. Neither of these studies used a global 

reference panel, but Liu et al, in their verification step, attained an r2 of around 80% 

with ~2,000 subjects on their (array data) reference panel with unfiltered results, 

whilst Auer et al obtained an r2 of 82% with 761 exome reference panel subjects, 

albeit filtering out lower quality results, using an Rsq threshold of 0.8, where Rsq is 

equivalent to the squared correlation between nearby imputed and genotyped SNPs 

[94]. Furthermore the latter study demonstrated that the use of exome imputation can 

reveal genome-wide significant associations, not discovered by conventional 

genotyping arrays, as did the study by Holm et al [109], who were able to discern a 

local rare variant causing sick sinus syndrome, in a large Icelandic study, due to the 

benefit of adding 87 whole genome sequences to the reference data for their 

imputation. 

Many aspects of our study were similar to a study by Surakka et al [92]. Their 

Finnish study used 200 (CEU+TSI) HapMap [108] subjects as their primary 
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reference panel and added 81 local subjects genotyped by a genome wide array. For 

alleles with a MAF <5%, they obtained a median r2 of 90% for their global panel 

only imputation rising to 94% after the addition of their local panel. In our study, we 

report mean r2, but our median r2 was 0.77/0.83 rising to 0.88/0.92 after adding the 

local reference panel for CROATIA-Korcula/ORCADES for a MAF bucket 3-5%. 

The choice of a 3-5% MAF is intended to correspond to typical array SNPs with 

MAF<5%. Our results therefore appear consistent with the results of Surakka et al. 

despite the differences in study design. The study by Uricchio et al [93] obtained 

much higher mean r2 (99%), and the technique used for imputation, identifying runs 

of identity-by-descent (IBD), should be particularly accurate, but its application is 

restricted to populations which share long haplotypes to a much greater extent than is 

common in most genetic studies, and we therefore feel our strategy of using 1000 

Genomes  reference  data  and  adding  sequence  data  from  a  subset  of  one’s  own  study  

subjects is a good practical way forward for many studies.  

A proportionate increase in r2 has the same effect on power as a corresponding 

increase in study size[110] so the use of high quality sequence data has the potential 

to provide substantially greater power in GWAS studies for less common variants, 

particularly those very poorly imputed using 1000 Genomes alone but well imputed 

with the addition of local exome sequence data.  

Our study focused on the exome, but the results should extend to any other genomic 

region of interest. Moreover, the similar results obtained in our study for two 

independent populations suggest that corresponding benefits will be found in other 

studies.  

The meta-analysis of multiple populations imputed using local exome sequence data 

will likely identify new SNP associations. However the amount of variance 

explained by less common variants individually is likely to be small and will make 

their detection challenging. This will put increasing emphasis on the use of analytical 

methods that consider jointly groups of variants, be it gene [111] , regional 

heritability [89]  or network based analyses [112]. Such analyses can also incorporate 

the potentially valuable information provided by variants private to individual 
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populations including the 24,438/19,343 variants identified by the exome sequencing 

of the CROATIA-Korcula and ORCADES samples that are not present in 1000 

Genomes and hence we have not considered here. 

Given the cost and significant practical difficulties in subject recruitment, sequencing 

a subset of cohort members, for either part or all of the genome, and using these 

results for imputation will increase power in association studies to discover variants 

associated with complex traits. Given the density of imputation panels, such 

imputations will facilitate discovery of variants closer to or perhaps even exactly the 

elusive causal loci we seek. 
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5.5 Supplementary Information 

5.5.1 Counts of SNPs in each cell underpinning Figure 21 

Each cell shows the count of SNPs for the MAF intervals defined by the intersection 

of row and column headers, where row and column headers represent the lower 

bounds of those intervals. 

CROATIA-Korcula 

Local Exome Sequence MAF  

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

1kG MAF           

0.10 2 5 6 19 40 88 114 107 91 130 

0.09 4 9 24 26 57 91 111 143 102 107 

0.08 3 13 44 49 152 159 139 146 84 106 

0.07 10 38 78 86 196 170 151 142 84 90 

0.06 25 108 144 128 243 199 169 134 80 72 

0.05 79 179 225 180 303 281 168 98 62 33 

0.04 205 300 306 202 274 193 117 68 26 23 

0.03 560 622 514 288 260 187 67 44 14 12 

0.02 955 817 456 178 194 81 28 11 4 2 

0.01 2097 1068 523 178 100 39 9 3 3 0 

0.00 3933 934 210 52 30 8 0 0 1 0 
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ORCADES 

Local Exome Sequence MAF  

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

1kG MAF           

0.10 1 7 17 22 38 71 91 119 103 121 

0.09 3 7 15 56 60 80 111 107 122 158 

0.08 3 24 49 66 122 140 164 156 147 153 

0.07 8 65 86 101 134 179 178 175 114 90 

0.06 45 111 133 144 170 217 189 153 110 68 

0.05 105 184 256 203 242 227 217 146 96 55 

0.04 195 300 319 246 231 220 125 86 51 28 

0.03 544 614 489 380 255 157 92 65 38 23 

0.02 1005 740 481 266 170 103 43 31 14 8 

0.01 2075 1004 499 251 137 61 22 15 4 3 

0.00 3880 1039 296 116 41 22 7 0 0 0 

MAF: Minor allele frequency 

1kG: 1000 Genomes
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Chapter 6 Conclusion 

6.1 Findings  

 
My first finding estimated that the genetic basis of human lifespan is less than 16% 

of the total variation in the trait, somewhat less than previously suggested by the 

most cited study[19]. I also found that correlations in  spouses’  lifespans  were  broadly 

equal to that between parents and offspring, suggesting that my estimate may be 

arising from family environment, not genes, and that true heritability may be closer 

to zero. This has two implications, firstly it re-emphasises the need to control for 

shared environment when estimating heritability and secondly it suggests that 

relatively little of the variation in human lifespan can be attributed to genetic causes. 

My second finding, was an association, not plausibly explained by chance, between 

genome-wide homozygosity (as measured by FROH) and four traits, with an effect 

size of minus 2-4 phenotypic standard deviations per FROH.  I suggest that genetics is 

the most plausible explanation for this finding, based on its robustness to 

stratification by continent and other tests of confounding. I thus showed that 

cognitive ability and stature were both subject to directional dominance. 

Thirdly, I showed that the imputation (estimation) of unmeasured genotypes can be 

materially improved by using exome sequence data drawn from the local population, 

over and above that achievable by the currently popular the 1,000 genomes reference 

panel [23] , and that for conducting a GWAS  on less common variants with a minor 

allele frequency in the range of 1-3%, this improvement in accuracy was equivalent 

to an increase in the total sample size of 28-38% in the two populations studied.  
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6.2 Implications 

 
The qualitative result that more data, which are more population-specific, can 

improve prediction of genotypes, is perhaps, obvious. Nonetheless, the knowledge 

that a 28-38% increase in effective sample size for GWAS in the MAF range 1-3% 

can be achieved relatively cheaply by the addition of ~100 local sequences, will 

guide researchers asking the specific question as to the benefit of such sequence data, 

when faced with the cost, and often impracticality of recruiting further subjects. 

More generally the explosion in sequence data in large scale studies, such as UK10K 

[113] ,  can not only help trait association analysis in those  studies, but also improve 

imputation, particularly of less common and rare variants,  in existing cohorts with 

genotyping array data, extracting continuing research value for deeply phenotyped 

studies such as ORCADES [36], with the prospect of on-going discovery or 

replication of new genetic associations  with complex traits.        

The lower estimate for the heritability of human longevity than commonly assumed 

has a number of implications. 

 Firstly, it suggests that further research is needed to establish robust unbiased 

estimates of heritability of complex traits in human populations. Robustness will 

require large sample sizes and powerful study designs (for example thousands of 

parent-offspring samples).  Elimination of bias is more difficult, due to the 

confounding effects of family environment and socio-economic factors. The studies 

of Zaitlen at el used extended genealogies [18]  and, more recently, admixture 

mapping [114] in an attempt to reduce confounding of trait and genetic relatedness  

by within family environment effects and both produced significantly reduced 

estimates of heritability. Further work is needed, both in terms of replication and to 

test further methods to control for environmental associations with relatedness, such 

as careful measurement of confounding factors as environmental correlations with 

relatedness may still be present in more distant relationships. If true heritability for 

many complex traits is generally lower than commonly reported, this has simple and 
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obvious consequences for the question of missing heritability [12] – not as much is 

missing as was thought. But also for the search for causal variants – present 

commonly used genotyping arrays are capturing an even greater proportion of the 

(additive) genetic variation than presently believed [17]. And thus larger and larger 

GWAS using existing arrays can be expected to explain a larger proportion of the 

true heritability [17], whilst the search for variants not well tagged by present 

genotyping arrays may be less fruitful, or at least explain less variance than is 

presently supposed. 

Secondly, the limited genetic role suggests that, improvements in human lifespan 

within the current observed range can be achieved through environmental 

interventions, although chance will inevitably continue to play a role.   

Thirdly, it suggests that conventional GWAS is going to find the search for longevity 

variants a particularly hard task. In any case, the search for causal variants is 

exacerbated by low sample sizes used in longevity studies (a few thousand) [115]  

compared with, for example, height (more than 700,000)  [116] due to the difficulty 

of collection and the fact that in typical population-based cohorts, such as 

ORCADES[36], most subjects were recruited in middle age and are still very much 

alive. All of which perhaps explains why only two variants associated with longevity 

have thus been reliably replicated [117] and a recent meta-analysis with 20,000 long-

lived cases found only one new variant (on chromosome 5) associated with long-

livedness [118].  

Fourthly, and perhaps most interestingly, researchers estimate susceptibility to 

individual killer diseases [44] [45] [46] is higher than our estimate for lifespan, 

although one recent study did suggest that a polygenic score based on disease 

susceptibility did weakly associate with short term survival [119]. This calls into 

question a naïve assumption that variation in longevity mainly arises due to variation 

in killer disease susceptibilities and leaves much room for biomedical factors 

affecting lifespan beyond those of immediate clinical relevance.  

Finally, individualised prediction of human longevity may better focus on 

environmental factors, or biomarkers of ageing [48] rather than genetic factors set at 
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birth, confirming the case for lifestyle and medical interventions to improve long-

livedness. 

The perhaps surprising lack of heritability of human lifespan, initially suggests that 

the search for the genetic basis of mortality is a pointless task. However, limited 

heritability itself raises a number of interesting questions. Are there complicated 

genetic effects on death and disease, which have limited or no overall effect? For 

example are genetic risk factors for one disease protective against other diseases due 

to antagonistic pleiotropy [120], or more speculatively still are risk factors for 

mortality at one stage in life, protective at other stages? This would raise interesting 

questions about the causes of disease and the efficacy of its prevention. Both such 

hypotheses could account for a genetic basis for disease susceptibility, but not overall 

lifespan, as could simpler models such as environmentally driven frailty preceding 

partly genetically caused subsequent disease, or the statistical nature of combination 

of somewhat dependent individual environmental and somewhat independent genetic 

risks. Research into these questions could proceed along the following lines. Studies 

of all cause mortality using cox models, could be made using different hazard ratios 

for different decades of age. Similarly all cause mortality analysis could be tested for 

association with known genetic risk factors for disease on SNP at a time, or using 

polygenic risk scores [121]  for specific diseases, or all major causes of death 

simultaneously.  In any case, my result suggesting limited heritability of lifespan, 

even if verified, still clearly leaves open much space for understanding the genetic 

and wider bio-medical basis of ageing and lifespan, two of the most interesting and 

complex traits. 

 

The presence of inbreeding depression for size and cognition is proposed to arise 

either due to deleterious partly recessive alleles or overdominance and recent work 

suggests the deleterious partly recessive hypothesis is more supported by the 

evidence [20]. Thus decreases in these traits have been disfavoured by evolution, 

with purifying selective pressures keeping recessive alleles at low frequency but not 

eliminating them. This suggests the existence of (recessive) rare alleles perhaps of 
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moderate effect which may form a material part of the genetic basis of these traits 

and more generally, the existence of dominance variation for these traits, suggests 

that it may exist for other traits, even those without directional dominance, although 

even for height GWAS has yet to reveal strong evidence of recessive loci [116]. The 

genetic covariance between body size and cognition also suggests an underlying trait 

of generalised healthy development, linked to evolutionary fitness, again for which 

there may be directional dominance, and plausible association with evolutionary 

fitness. If true, focus on such variants could prioritise research into pathways of 

particular interest to developmental biologists.   

Multiple avenues for further research using ROH into are suggested. Firstly, the 

extension to additional traits, especially fitness-related ones such as fertility is an 

obvious priority. Methodological extensions are also called for, for example looking 

at different lengths of ROH, pruned or unpruned ROH, and perhaps also just 

considering heterozygosity as measured directly by an array – which will measure 

IBD over a short genomic segment. Indeed a multivariate analysis of this form, could 

well reveal precisely what sort of homozygosity is leading to the association, and 

facilitate exploration of the other side of the coin – i.e. the benefits of increased 

heterozygosity. A further methodological extension could consider whether LD 

pruning is the best way to distinguish common and rare haplotypes. At the same 

time, and perhaps of greater bio-medical   relevance,   βFROH could be measured on a 

regional, rather than genome-wide basis, giving indications of genes, or other 

functional elements that are associated with dominance. Power considerations will be 

important here: on the one hand FROH measured within a small region (FROH:region)is 

likely to vary fully across  [0:1], indeed it may well be a binary trait depending on 

the length of the region, but on the other hand for a specific region most subjects will 

have FROH:region =0. Study of FROH:region will thus have power aspects in common with 

those of rare variants, and again as with rare variants, researchers would have the 

hope that large effect sizes, might be detectable, even after compensation for 

multiple testing.  Given the power considerations, meta-analysis will be particularly 

important. A   first   analysis   could   study   βFROH:region. Development of a uniform 

protocol, as adopted in ROHgen, will be important, most obviously in terms of 
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specifying precisely each region to be considered and developing a reporting 

protocol to enable centralised meta-analysis, in much the same way as GWAMA 

studies do for imputed SNPS. However, further research into the optimal region size 

and perhaps nature (eg genic) is needed first, balancing issues of multiple testing, 

haplotype length, and allelic heterogeneity between studies. Optimisation of ROH 

calling parameters for regions, rather than the whole genome should also be 

considered. Having found such regions, further analysis could then reveal whether 

particular haplotypes carry the causal (recessive) allele and fine mapping might 

reveal it. Whilst all populations should be amenable to ROH-trait analyses, 

populations in which ROH are highly variable (in particular South and West Asian 

ancestries, Latino/Hispanic Americans, isolated populations and populations in 

which consanguinity is practiced)  will be most powerful. Analysis of ROH thus 

offers the prospect of theoretical and biological insights into the nature of complex 

traits.  

The existence of directional dominance and the inference of rare non-additive alleles 

of moderate effect suggests that revisiting estimation of dominance variation in 

human populations, using modern techniques might be of value. The confounding 

effect of common family environment is well known as a source of bias in 

dominance variation estimates, [6], but large studies such as Generation Scotland 

[122] and UK Biobank  may enable more careful control of such bias, particularly  

by the application of modern genomic techniques using unrelated individuals [17], 

which would avoid the effect of family environment, at the expense of a much less 

powerful study design, requiring the large sample sizes that are only just becoming 

available. An alternative approach could investigate to what extent h2
GWAS (the 

genetic variance explained by robustly identified genetic variants) can be increased 

by inclusion of a dominance term in the genetic model, most obviously to the ~700 

known variants affecting human height [116], although this would require robust 

establishment of the existence of dominance first and then unbiased estimates of the 

dominance components at each GWAS SNP. Our result finding directional 

dominance using ROH thus appears to be the end of the (admittedly long) beginning 

of homozygosity studies in humans, rather than the beginning of the end. 
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6.3 Final Words 
The unprecedented scope and scale of data becoming available to researchers 

through whole genome sequencing, and projects such as UK Biobank, means that the 

benefits to ordinary people from the genomics era will eventually fulfil its potential, 

while at the same time giving the sheer joy of many new discoveries to researchers. 

In the words of Cynthia Morton, 2014 President of the American Society of Human 

Genetics  and  my  full  agreement,  human  geneticists  are  “having  the  time  of  our  lives”  

[123] .  
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Appendix 1a ROHgen Participating cohorts 
Cohort Full name PMID reference 

AEGS1 Athero-express biobank study 15678794 

AEGS2 Athero-express biobank study 15678794 

AGES-Reykjavik 
Age gene/environment 
susceptibility Reykjavik Study 17351290 

AIDHS/SDS Sikh Diabetes Study 23300278 

ALSPAC 
Avon Longitudinal Study of 
Parents and Children 22507742 

AMISH 
Amish Heredity and Phenotype 
Intervention Heart Study 18440328, 18805900 

ARIC 
Atherosclerosis Risk in 
Communities 2646917 

ASCOT-SC 
Anglo-Scandinavian Cardiac 
Outcomes Trial 11685901 

ASCOT-UK 
Anglo-Scandinavian Cardiac 
Outcomes Trial 11685901 

ASPS 
Austrian Stroke Prevention 
Study 7800110, 10408549 

ASPS-Fam 
Austrian Stroke Prevention 
Study 

 B58C British 1958 Birth Cohort 17255346 
BASEII Berlin Aging Study 23505255 
BBJ Biobank Japan 24390342 

BRIGHT 
British Genetics of 
Hypertension 12826435 

CARDIA_CARe_AA 

Coronary Artery Risk 
Development in Young Adults 
Candidate Gene Association 
Resource  3204420 

CARL Carlantino Study 
 

CHOP - African American 
Children's Hospital of 
Philadephia 

 
CHOP - Caucasian 

Children's Hospital of 
Philadephia 

 
CHS (African American) Cardiovascular Health Study 1669507 

CHS (European) Cardiovascular Health Study 1669507 

CIDR_T2D 
Starr County Health Studies' 
Genetics of Diabetes Study  6637993 

CILENTO Cilento Study 17476112 , 19550436  

CLHNS 
Cebu Longitudinal Health and 
Nutrition Study 20507864 

COLAUS Cohort Lausannois 18366642 
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COPSAC2000 
Copenhagen Prospective 
Study on Asthma in Childhood 15521375 

Corogene case Corogene study 21642350 
Corogene control Corogene study 19959603 
CROATIA_Korcula Croatia-Korcula study 24170729 
CROATIA_Split _370CNV Croatia-Split study 24170729 
CROATIA_Split+OMNIX+ Croatia-Split study 24170729 
CROATIA_Vis Croatia-Vis Study 24170729 

DESIR 

Data from an Epidemiological 
Study on the Insulin 
Resistance syndrome 8927780 

DNBC Danish National Birth Cohort 11775787 

EGCUT_370 
Estonian Genome Centre 
University of Tartu 24518929 

EGCUT_OMNI 
Estonian Genome Centre 
University of Tartu 24518929 

eMERGE_PAD 

Genome-Wide Association 
Study of Peripheral Arterial 
Disease  18176561 

EPIC 

European Prospective 
Investigation into Cancer- 
Norfolk 10466767 

ERF 
Erasmus Rucphen Family 
Study 15845033 

FamHS Human 1M-Duov3 Family Heart Study 11713718 
FamHS Human 6100-
Quadv1 Family Heart Study 11713718 
FamHS HumHap550K Family Heart Study 11713718 
Fenland Fenland Study 20935629 

FHS Framingham Heart Study 
14819398; 1208363; 

17372189 
FINRISK/ENGAGE Finrisk study 19959603 

FTC_1 Finnish Twin Cohort 
23298696,17254406,12

537860,12537859  

FTC_2 Finnish Twin Cohort 
23298696,17254406,12

537860,12537859  

FTC_3 Finnish Twin Cohort 
23298696,17254406,12

537860,12537859  

FUSION 

Finland-United States 
Investigation of NIDDM 
Genetics 17463248 

FVG 
Genetic Park Friuli Venezia 
Giulia 

 
GeneSTAR AA GeneSTAR study 

3170971; 2128738; 
16551714 

GeneSTAR EA GeneSTAR study 
3170971; 2128738; 

16551714 

GENOA (African American) 
Genetic Epidemiology Network 
of Arteriopathy 15121494 

GENOA (European) 
Genetic Epidemiology Network 
of Arteriopathy 15121494 
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GoDARTS 
Genetics of Diabetes Audit and 
Research in Tayside Scotland 22456734 

GOLDN 
Genetics of Lipid Lowering 
Drugs and Diet Network 17446329 

GOYA 
Genetics of Obesity in Young 
Adults 21935397 

GRAPHIC 

Genetic Regulation of 
Ambulatory Blood Pressure in 
the Community 2253977 

GS:SFHS 
Generation Scotland: Scottish 
Family Health Study 22786799 

H2000/Genmets case Health 2000 
 H2000/Genmets control Health 2000 
 HBCS Helsinki Birth Cohort Study 21613556 

HELIC_MANOLIS 
Hellenic Isolates - Minoan 
Isolates 24343240 

HELIC_POMAK Hellenic Isolates - Pomak 24343240 

HPFS-Affymetrix 
Health Professionals Follow up 
Study 

 
HPFS-Illumina 

Health Professionals Follow up 
Study 

 
HPFS-Omni 

Health Professionals Follow up 
Study 

 
HRS Health and Retirement Study 24671021 

HRS Health and Retirement Study 24671021 

HUFS 
Howard University Family 
Study 19609347 

Hutterites Hutterites study 23932459 
HyperGEN - African 
Americans HyperGEN study 10964005 
HyperGEN - Caucasians HyperGEN study 10964005 

HYPERGENES - 
Normotensives 

European Network for Genetic-
Epidemiological Studies 22184326 

InCHIANTI Invecchiare in Chianti 11129752 

INCIPE 

Initiative on Nephropathy, of 
relevance to public health, 
which is Chronic, possibly in its 
Initial stages, and carries a 
Potential risk of major clinical 
Endpoints 

 

INCIPE2 

Initiative on Nephropathy, of 
relevance to public health, 
which is Chronic, possibly in its 
Initial stages, and carries a 
Potential risk of major clinical 
Endpoints 

 
INDICO_case Indian Diabetes Consortium 23209189 

INDICO_control Indian Diabetes Consortium 23209189 
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IPM-BioMe 
Institute for Personalized 
Medicine BioMe biobank 23583978 

JHS Jackson Heart Study 16320381 

KORA F3 
Cooperative Health Research 
in the Region of Augsburg 16032513, 16032514 

KORA F4 
Cooperative Health Research 
in the Region of Augsburg 16032513, 16032514 

LBC1921 Lothian Birth Cohort 1921 
14717632 and 

22253310  

LBC1936 Lothian Birth Cohort 1936 
18053258 and 

22253310 
LHS_EA Lung Health Study 8500311 

LOLIPOP_EW610 
London Life Sciences 
Prospective Population Study 21909115 

LOLIPOP_EWA 
London Life Sciences 
Prospective Population Study 18940312 

LOLIPOP_EWP 
London Life Sciences 
Prospective Population Study 18193046 

LOLIPOP_IA317 
London Life Sciences 
Prospective Population Study 18454146 

LOLIPOP_IA610 
London Life Sciences 
Prospective Population Study 19820698, 19651812 

LOLIPOP_IAP 
London Life Sciences 
Prospective Population Study 18193046 

LOLIPOP_OmniEE 
London Life Sciences 
Prospective Population Study 23222517 

MAYWOOD Maywood Study 8793366; 20400458 

MEGA FU 
Multiple Environmental and 
Genetic Assessment 22253578 / 15701913  

MESA 
Multi-ethnic Study of 
Atherosclerosis 12397006 

METSIM METabolic Syndrome In Men 19223598 

MICROS Micro-isolates in South Tyrol 17550581 
NHS-Affymetrix Nurses Health Study 

 NHS-Illumina Nurses Health Study 
 NHS-Omni Nurses Health Study 
 

NIGERIA Nigerian Study 
8880560; 20400458; 

22615923 
NIHS Norfolk Island Health Study 24314549 

NSPHS_06 
North Swedish Population 
Health Study 

 
NSPHS_09 

North Swedish Population 
Health Study 
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NTR Netherlands Twin Registry 
 

   23186620; 23298648 
OBA French Adult Obese  19151714 
OGP Ogliastra Genetic Park 19247500 

OGP Talana 
Ogliastra Genetic Park - 
Talana 19247500 

ORCADES HAP300 
Orkney Complex Disease 
Study 18760389 

ORCADES OMNIX 
Orkney Complex Disease 
Study 18760389 

Pegasus Pegasus Study 
 

PIVUS 
Prospective Investigation of the 
Vasculature in Uppsala Seniors 16141402 

PMNS Pune Maternal Nutrition Study - 

PREVEND 
Prevention of REnal and 
Vascular ENd-stage Disease 11004219 

PROSPER 

Prospective Study of 
Pravastatin in the Elderly at 
Risk 12457784 

QFS Quebec Family Study 24533236 

QIMR 
Queensland Institure of 
Medical Research 

 RAINE Raine Study 
 RS Rotterdam Study 
 

SHIP Study of Health in Pomerania 20167617 

SHIP-TREND 
Study of Health in Pomerania - 
Trend 20167617 

SIGNET Sea Islands Genetic Network 18835935 
Sorbs Sorbs Study 21559053; 22907691 
SR Silk Road Study 

 
STR 

Swedish Twin Registry - 
Twingene study 23137839 

THISEAS_CAD cases 

The Hellenic study of 
interactions between SNPs & 
Eating in Atherosclerosis 20167083 

THISEAS_CAD controls 

The Hellenic study of 
interactions between SNPs & 
Eating in Atherosclerosis 20167083 

TRAILS-population cohort 
Tracking Adolescents' 
Individual Lives Survey 23021478 

TwinGene 
Swedish Twin Registry - 
Twingene study 23137839 

TwinsUK_317K Twins UK study 23088889 
TwinsUK_610K Twins UK study 23088889 

ULSAM 
Uppsala Longitudinal Study of 
Adult Men 1216390 

VB Val Borbera Study 19847309 

WELLGEN Wellcome Genetic Collection - 
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WGHS 
Women's Genome Health 
Study 18070814 

YFS Young Finns Study 18263651 
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Appendix 1b ROHgen Intra-Cohort Genotype QC  

Cohort 

Call rate 
[filter 
detail / N 
individua
ls 
excluded
] 

Heterozygosi
ty  [filter 
detail / N 

individuals 
excluded] Ethnic outliers / other exclusions 

Individual
s post GT 
QC 

Call rate  
[filter detail 
/ N SNPs 
excluded] 

 SNP 
number 
in QC'd 
dataset  

AEGS1 0.85 ±3s.d. 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 657 0.97  403,832  

AEGS2 0.98 ±3s.d. 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 869 0.97  535,983  

AGES-Reykjavik 0.97 NA 

BeadStudio 0.4 Threshold;Gender 
mismatch; Mismatch previous 
genotypes 3219 97%/3,767  325,094  

AIDHS/SDS 0.93 FDR<1% 
Ethnic outliers; duplicates; gender 
mismatch; IBS  1616 0.98  474,231   

ALSPAC 0.98 FDR<1% 
Ethnic outliers and cryptic relateds 
already removed 3326 0.97  526,688  

AMISH 0.95 NONE gender mismatch; pedigree mismatch 1827 0.95  318,792  

ARIC 0.95 FDR < 1% 

Ethnic outliers based on principal 
components; duplicates; gender 
mismatch; Discordant genotype with 
earlier TaqMan genotyping; 1 of each 
1st degree relative pair 11562 0.9  685,812  
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ASCOT-SC 0.99 

separately 
<1%, >1% 

MAF, excl +/- 
3 SD 

Ancestry outliers by PCA; duplicates & 
related by 0.25 IBD pi_hat threshold; 
gender mismatch 2493 0.98  923,591  

ASCOT-UK 0.95 NA 

Ancestry outliers by PCA: iteratively 
removing individuals +/-6sd on first 10 
PCs; duplicates, 1st & 2nd deg rels 
excluded 3804 0.97  283,291  

ASPS 0.98 FDR<1%  /  1 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 829 0.98  566,930  

ASPS-Fam 0.98 FDR<1%  /  0 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 388 0.98  617,191  

B58C 0.97 
No exclusions 

applied 
Exclusion of duplicates, contamination, 
non-European identity 6491 None  519,040  

BASEII 0.9 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1990 0.98  867,143  

BBJ 0.98 NA Ethnic outliers; related subjects 30322 0.99  477,784  

BRIGHT 0.97 
Het > 0.3 or 
Het < 0.225 

Non European ancestry; duplicates; 1st 
or 2nd deg relatives; gender mismatch 1948 0.95  446,472  

CARDIA_CARe_AA 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 867 0.95  739,824  

CARL 0.97 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 630 0.97  309,430  

CHOP - African 
American 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch 1704 0.95  528,421  

CHOP - Caucasian 0.95 NA 
Ethnic outliers; duplicates; gender 
mismatch 2263 0.95  513,420  
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CHS (African American) 0.95 NA 

Gender mismatch, discordance with 
known sex or prior genotyping, lack of 
consent for DNA studies. 823 0.97  963,248  

CHS (European) 0.95 NA 

Gender mismatch, discordance with 
known sex or prior genotyping, lack of 
consent for DNA studies. 3271 0.97  306,655  

CIDR_T2D 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 1808 0.95  741,072  

CILENTO 0.95 NA - 1512 0.95  189,751  

CLHNS 0.97 
None 

excluded 
Duplicates; one member of 1st-degree 
relative pairs 1798 0.9  422,494  

COLAUS 0.9 NA - 5636 0.7  460,885  

COPSAC2000 0.98 mean–(4*SD)  

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 555 0.98  486,373  

Corogene case 0.95 ? 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  2235 0.95  554,987  

Corogene control 0.95 ? 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  1887 0.95  554,987  

CROATIA_Korcula 0.97 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 897 0.98  307,625  

CROATIA_Split 
_370CNV 0.97 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 499 0.98  321,456  

CROATIA_Split+OMNIX
+ 0.98 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 491 0.98  679,002  

CROATIA_Vis 0.97 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 960 0.98  289,827  

DESIR 0.9 FDR<1% Ethnic outliers; no duplicates 697 0.95  309,126  
DNBC 0.98 3 sd Ethnic outliers; duplicates; gender 2277 0.98  525,129  
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mismatch; IBS incompatible with 
pedigree 

EGCUT_370 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 2392 0.95  335,036  

EGCUT_OMNI 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 7295 0.95  710,831  

eMERGE_PAD 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 3048 0.95  520,994  

EPIC 0.94 
<23% or 

>30%: n= 20 
Ethnic outliers; duplicates, crytptic 
relatedness 2417 0.9  397,438  

ERF 0.98 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 2856 0.95  315,663  

FamHS Human 1M-
Duov3 0.98 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1490 0.98  921,414  

FamHS Human 6100-
Quadv1 0.97 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1674 0.98  536,610  

FamHS HumHap550K 0.98 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 971 0.98  504,843  

Fenland 0.95 
27.35% or 

>28.82% relatedness check, duplicate check 1402 0.9  362,055  

FHS 0.97 
5SD from 

mean Ethnic outliers; excess Mendelian errors 8471 0.97  382,077  

FINRISK/ENGAGE 0.95 NA 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  5312 0.95  257,671  

FTC_1 0.95 
excluded if 

F>0.05  
Duplicates ; Gender mismatch; 
Sequenom fingerprint; MDS plot 964 0.95  511,568  
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FTC_2 0.95 

excluded if 
F>0.05 or F<-

0.03 
Duplicates; Gender mismatch; 
Sequenom fingerprint; MDS plot  1308 0.95  549,060  

FTC_3 0.95 

excluded if 
±3SD from 

mean  
Duplicates; Gender mismatch; 
Sequenom fingerprint  1780 0.95  259,726  

FUSION 0.85 NA 

ethnic outliers; duplicates; gender 
mismatch; T2D case sample; 
overlapping METSIM samples 1158 0.95  315,635  

FVG 0.97 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 

1230 
(OmniEx) 
+ 330 
(370k) 0.97 

  633354 
(OmniEx)
; 330151 

(370k)  

GeneSTAR AA 0.9 NA 

gender mismatch [n=2]; duplicate [n=1]; 
Mendelian error rate > 5% [n=4]; ethnic 
outliers [n=12] 1203 0.99  818,154  

GeneSTAR EA 0.9 NA 

gender mismatch [n=1]; duplicate [n=0]; 
Mendelian error rate > 5% [n=10]; ethnic 
outliers [n=7] 1988 0.99  817,738  

GENOA (African 
American) 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1263 0.95  762,766  

GENOA (European) 0.95 NA 
Duplicates; gender mismatch; IBS 
incompatible with pedigree 1386 0.95  668,293  

GoDARTS 0.98 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 2903 0.97  601,463  

GOLDN 0.96 NA 

4 duplicate samples deleted; Identified 
sex mismatches were due to sample 
switches that we were able to identify 
and correct using our family data 822 0.96  654,753  

GOYA 0.95 
35 individuals 

excluded 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 792 0.95  545,349  
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GRAPHIC 0.9 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1012 0.97  616,550  

GS:SFHS 0.98 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 9863 0.98  615,104  

H2000/Genmets case 0.95 ? 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  855 0.95  555,388  

H2000/Genmets control 0.95 ? 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  867 0.95  555,388  

HBCS 0.95 ? 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  1676 0.95  546,814  

HELIC_MANOLIS 0.98 visual 

Ethnic outliers; duplciates; sex 
discrepancies; GWAS concordance for 
exomechip, MAC=1 outliers for 
exomechip 1267 

OmniExpres
s = MAF<5% 
99% & 
MAF≥5%  
95%; 
Exomechip = 
95% Gencall 
& 99% zCall  719,305  

HELIC_POMAK 0.98 visual 

Ethnic outliers; duplciates; sex 
discrepancies; GWAS concordance for 
exomechip, MAC=1 outliers for 
exomechip 1007 

OmniExpres
s = MAF<5% 
99% & 
MAF≥5%  
95%; 
Exomechip = 
95% Gencall 
& 99% zCall  699,817  

HPFS-Affymetrix 90-98% NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 3598 0.97  668,283  

HPFS-Illumina 95-98% NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1368 0.97  459,999  
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HPFS-Omni 95-98% NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1812 0.97  565,810  

HRS 0.98 None 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 9991 0.98 

 
1,029,958  

HRS 0.98 None 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 2279 0.98  453,277  

HUFS 0.9 NA 
Ethnic outliers; duplicates; pedigree 
inconsistencies; relatives 1018 0.95  808,465  

Hutterites 0.95 NA 
IBS mismatch with pedigree; gender 
mismatch 1415 0.95  271,486  

HyperGEN - African 
Americans 0.98 

 

17 subjects excluded for poor quality 
DNA, suspected sample switches, 
gender mismatch, or Mendelian 
incompatibilities 1083 0.97  837,134  

HyperGEN - Caucasians 0.98 
 

49 subjects excluded for poor quality 
DNA, suspected sample switches, 
gender mismatch, or Mendelian 
incompatibilities 1270 0.97  358,327  

HYPERGENES - 
Normotensives 0.95 

Het > +3sd or 
Het < -3sd 

Ethnic outliers; heterozigousity; 
duplicates; gender mismatch; IBS 
incompatible with pedigree; call rate < 
95% 1709 0.97  840,212  

InCHIANTI 0.98 NA N/A 1210 0.98  495,343  

INCIPE 0.98 
Het > +3sd or 

Het < -3sd 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 940 0.97  651,801  

INCIPE2 0.98 
Het > +3sd or 

Het < -3sd 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1996 0.97  280,746  
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INDICO_case 0.99 
Het > +3sd or 

Het < -3sd 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1110 0.95  520,244  

INDICO_control 0.99 
Het > +3sd or 

Het < -3sd 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1105 0.95  519,022  

IPM-BioMe 0.98 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; related individuals (PI_HAT > 
0.2) 10511 0.99 

 575,981 
(AA), 

543,387 
(EA), 

574,377 
(HA)  

JHS 0.95 FDR<1% 
Ethnic outliers; duplicates; gender 
mismatch.  3028 0.95  868,969  

KORA F3 0.97 5sd European descent 3077 0.98 
 

2,380,310  

KORA F4 0.97 5sd 

mismatch of phenotypic and genetic 
gender; 
check for European ancestry; 
check for population outlier; 
mismatch with genotypes of same 
individual on other genotyping chips if 
available; 
individuals from KORA S4 cohort were 
removed 2927 0.98  558,446  

LBC1921 0.97 NA 
Ethnic outliers; gender mismatch, 
relatedness 517 0.98  549,692  

LBC1936 0.97 NA 
Ethnic outliers; gender mismatch, 
relatedness 1005 0.98  549,692  

LHS_EA 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 1394 0.95  528,696  

LOLIPOP_EW610 0.95 NA 
Duplicates, gender discrepancy, 
contaminated samples, relatedness, call 927 0.95  544,620  
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rate <95% 

LOLIPOP_EWA 0.95 NA 

Duplicates, contaminated samples, 
relatedness, samples already in EW610, 
call rate <95% 582 0.95  374,773  

LOLIPOP_EWP 0.95 NA 

Duplicates, contaminated samples, 
samples already in EW610, call rate 
<95%. 644 0.95  184,469  

LOLIPOP_IA317 0.95 NA 

Duplicates, samples already in IA610, 
gender discrepancy, ethnic outliers, 
contaminated samples, relatedness, call 
rate <95%. 2121 0.95  245,892  

LOLIPOP_IA610 0.98 9 subj 

Duplicates, gender discrepancy, ethnic 
outliers, contaminated samples, 
relatedness, call rate <95%.  6548 0.95  544,390  

LOLIPOP_IAP 0.95 NA 

Duplicates, contaminated samples, 
samples already in other IA data sets, 
call rate <95%. 638 0.95  170,055  

LOLIPOP_OmniEE 0.99 26 subj 

Duplicates, samples already in IA610 or 
IA317, gender discrepancy, ethnic 
outliers, contaminated samples, 
relatedness, call rate <98%, extreme 
heterozygosity 1018 0.98  692,266  

MAYWOOD 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 743 0.95  859,332  

MEGA FU 0.95 FDR<1% Ethnic outliers, gender mismatch 1311 0.98  497,563  

MESA 0.95 NA 
Ethnic outliers; duplicates; gender 
mismatch;  6357 0.9  881,666  

METSIM 0.85 NA 

ethnic outliers; duplicates; gender 
mismatch; discordance with previous 
genotyping 10080 0.95  681,803  

MICROS 0.98 NA FDR<1% 1328 0.98  304,383  

NHS-Affymetrix 90-98% NA 
Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 4398 0.97  668,283  
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pedigree 

NHS-Illumina 95-98% NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 3493 0.97  459,999  

NHS-Omni 95-98% NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 3364 0.97  565,810  

NIGERIA 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype; 
cryptic relatedness 1188 0.95  794,766  

NIHS 0.98 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 506 0.99  552,846  

NSPHS_06 0.95 FDR < 1% genetic outliers, twins, duplicates 691 0.9  306,086  
NSPHS_09 0.95 FDR<1% genetic outliers, twins, duplicates 345 0.9  631,503  

NTR 0.95 

F<-.10 & F > 
.10 / 61 

subjects 
excluded 

Ethnic outliers (detected with the help of 
1000 Genomes PCs and parental 
birthplace; N=321); ; individuals with 
lesser genotyping quality detected with 
PCA; duplicates; gender mismatch; IBS 
incompatible with pedigree; CQC < 0.4 
(a quality metric from Affymetrix 
representing how well allele intensities 
separate into clusters) 8815 0.95  498,592  

OBA 0.9 FDR<1% Ethnic outliers; no duplicates 664 0.95  317,054  
OGP 0.97 FDR<1% - 378 0.95  347,878  
OGP Talana 0.97 FDR<1% - 783 0.95  342,202  

ORCADES HAP300 0.98 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 854 0.97  287,208  

ORCADES OMNIX 0.98 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 1361 0.97  615,658  
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Pegasus 
94%  
(n=323) 

 < 16% or > 
21% (n=7) 

Ethnic outliers (<80% European 
ancestry); unexpected duplicates; 
cryptic relatedness  

7,473 
(4,561 
prostate 
cancer 
cases + 
2,912  
controls) 0.95 

 
1,240,751  

PIVUS 0.95 3SD of mean 
Ethnic outliers; duplicates; gender 
mismatch 949 

95 % (99 % 
if MAF < 5 % 
)  738,583  

PMNS 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree; PCA outlier; lack of phenotype 1038 0.95  625,046  

PREVEND 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree; sample mixups 3649 0.95  259,583  

PROSPER 97.5% 

>3sd, 11 
samples 

excluded 
sex mismatch, duplicates, non-
caucasion, familiar relationships 5244 0.975  557,192  

QFS 0.95 NA - 928 0.95  543,713  

QIMR 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 

 19360 
(12655 
with at 
least RoH 
phenotype
) 0.95  268,314  

RAINE 0.97 
HET < 0.30 / 3 

individuals 
Replicates, Relatedness (Pi > 0.1875), 
gender mismatch 1494 0.95  535,632  

RS 0.98 FDR<0.1% 
Ethnic outliers; duplicates; gender 
mismatch; familial relations 6291 0.98  520,025  

SHIP 0.92 NA duplicates; gender mismatch 4079 0.97  589,871  

SHIP-TREND 0.94 NA duplicates; gender mismatch 986 0.97 
 

1,265,745  
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SIGNET 0.95 NA 
Ethnic outliers; duplicates; gender 
mismatch; incomplete phenotype 1303 0.95  817,797  

Sorbs 0.94 NA 
Ethnic outliers; duplicates; gender 
mismatch; IBS>0.2 705 0.95  378,513  

SR 0.97 FDR<1% 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 664 0.97  612,292  

STR 0.97 NA 

1) Sex-check (heterozygosity of X-
chomosomes); 2) Deviations in 
heterozygosity of more then 5 SD from 
the population mean; 3) Cryptic 
relatedness check 9617 0.97  581,537  

THISEAS_CAD cases 0.95 >3SD 
Ethnic outliers; duplicates; gender 
mismatch 359 0.98  733,202  

THISEAS_CAD controls 0.95 >3SD 
Ethnic outliers; duplicates; gender 
mismatch 543 0.98  733,202  

TRAILS-population 
cohort 0.95 

heterozygosity 
>4SD 

duplicates; gender mismatch; non-
caucasian 1354 0.95  255,254  

TwinGene 0.98 NA cryptic relatedness, gender mismatch 10728 0.97  644,556  

TwinsUK_317K 0.98 

heterozygosity 
across all 

SNPs  ≥2  s.d. 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 2040 

97% (SNPs 
with 
MAF.5%) or 
99% (for 1% 
MAF < 5%)  290,787  

TwinsUK_610K 0.98 

heterozygosity 
across all 

SNPs  ≥2  s.d. 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree 3614 

97% (SNPs 
with 
MAF.5%) or 
99% (for 1% 
MAF < 5%)  489,586  

ULSAM 0.95 3SD of mean 
Ethnic outliers; duplicates; gender 
mismatch 1116 

95 % (99 % 
if MAF < 5 % 
) 

 
1,621,833  

VB 0.9 NA 
Ethnic outliers; duplicates; gender 
mismatch; Mendelian errors 1785 0.9  332,887  



  
 

Appendix 1b ROHgen Intra-cohort genotype QC 
 

WELLGEN 0.95 NA 

Ethnic outliers; duplicates; gender 
mismatch; IBS incompatible with 
pedigree; PCA outlier 1062 0.95  623,816  

WGHS 0.98 NA 

Consistency between self-report and 
multi-dimensional scaling using 1443 
ancestry informative markers 23294 0.98  339,596  

YFS 0.95 NA 
Duplicate/related; Gender mismatch; 
Cryptic relatedness; Heterozygosity  2442 0.95  546,674  
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The analysis of less common variants in genome-wide association studies promises to elucidate complex trait genetics but is
hampered by low power to reliably detect association. We show that addition of population-specific exome sequence data
to global reference data allows more accurate imputation, particularly of less common SNPs (minor allele frequency 1–10%)
in two very different European populations. The imputation improvement corresponds to an increase in effective sample
size of 28–38%, for SNPs with a minor allele frequency in the range 1–3%.
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Introduction

Genome-wide association study (GWAS) meta-analyses rou-
tinely use genotype imputation [1]. Accurate imputation of less
common variants (minor allele frequency MAF, 1–10%) may be
particularly useful as commercial genotyping arrays often provide
poor coverage of such variants, and imputation improves
association power most for less frequent causal variants [2].
The recently released 1000 Genomes haplotypes [3] are a

particularly large and dense reference panel that will be commonly
used as an imputation reference panel, particularly in GWAS
consortia. At the same time, theoretical studies and empirical
studies using other primary reference panels, have shown that
imputation accuracy in a study population can be increased by use
of an additional reference panel such as whole genome or exome
sequence data drawn from a subset of the population under study
[2] [4] [5] [6] [7] [8] [9].
It is therefore useful to quantify the likely benefit of adding local

reference data to 1000 Genomes data, particularly for less
common variants, and especially if the population is genetically
distant from the 1000 Genomes populations.
We used data from the CROATIA-Korcula and Orkney

Complex Disease studies (ORCADES) [10] [11]. Both studies are
family-based, cross-sectional community studies of the genetics of
complex traits. The Croatian island of Korčula is in the Adriatic
and the ORCADES study is based in the Orkney Isles in Scotland.

Genotypes obtained from the whole exome sequencing of 91/89
CROATIA-Korcula/ORCADES quality controlled samples were
used to supplement the 1000 Genomes reference panel. We
focused on less common (MAF 1–10%) exonic variants already in
1000 Genomes which, unlike low frequency, and rare (MAF,1%)
or private variants, can be meta-analyzed in typically sized
consortia.
In this paper, we therefore seek to determine if imputation

accuracy can be improved by the addition of local sequences to a
global reference panel.

Methods

The ORCADES and CROATIA-Korcula studies both had
ethical approval for genetic research into the basis of complex
traits, approved by the appropriate committees in each country.
For ORCADES the committees were the Orkney Local Research
Committee and the North of Scotland Research Ethics Committee
(approval Orkney: 27/2/04). For CROATIA-Korcula the com-
mittees were the Ethics Committee of the Medical School,
University of Split (approval id 2181-198-03-04/10-11-0008) and
the NHS Lothian (South East Scotland Research Ethics Commit-
tees; REC reference 11/AL/0222). All participants provided
written informed consent.
Array genotypes were obtained from Illumina Hap370CNV

array, at 319,552 SNPs for CROATIA-Korcula subjects and
Illumina Omni1 array at 1,140,419 SNPs or the Illumina Human
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Hap300 array at 293,687 SNPs for ORCADES subjects. For
ORCADES a common panel of intersecting Hap300 and Omni1
SNPs was first created. The panel for CROATIA-Korcula was
then restricted to these SNPs, to ensure similar panel sizes.
Subjects to be sequenced were selected from the wider study

populations that were genotyped on the Illumina Hap (370CNV/
300) arrays to minimize relatedness, and thus to maximize
representation of study population haplotypes. The selection was
carried out by tracking the identity-by-descent sharing structure,
as determined by the array genotypes using the program
ANCHAP [12]. Whole exome sequences of 99/95 CROATIA-
Korcula/ORCADES subjects were generated using the Agilent
SureSelect All Exon 50 Mb kit and 234,746/217,015 variants
were identified.
Quality control (QC) of genotyping array data, that were

subsequently used for imputation, was in accordance with best
practice for association studies [13] and is described in detail in
Methods S1. As illustrated in Figure 1, post QC array data of
170,134/171,749 SNPs for 892/1158 Korčulan/Orcadian sub-
jects were then pre-phased simultaneously (within each popula-
tion) using SHAPEIT v1.r416 [14] [15] including the maximal
pedigree structure permitted by the software (non-overlapping
nuclear families) to create a phased set of study genotypes ready for
imputation using IMPUTE2 v2.2.2 [16]. The simultaneous
phasing of all (892/1158) study subjects allowed all these subjects’
phasing to inform the phase of the ,100 subjects taken forward as
a reference panel and for imputation.
Exome sequence data were also subjected to rigorous QC to

ensure they were of high quality so that that the local reference
panel we created did not have a significant number of incorrect
haplotypes. Variants were called by first aligning the raw sequence
data to the human hg19 reference genome using the Stampy short
read aligner [17] (with BWA utilized as a pre-mapper [18]).
Genotype calls were produced from the resulting alignments using
GATK’s unified genotyper, following GATK’s recommended best
practice for variant detection from exome sequence datasets [19].
Variants were required to have a phred-scaled quality of at least
40. Individual sample genotype calls with a phred-scaled quality
less than 20 were regarded as missing. Variants that were called in
less than 50% of subjects, or with a minor allele frequency of less
than 0.75% were removed (hence inclusion required at least two
minor alleles across samples). All variants that mapped to more
than one homologous region or failed a test of Hardy-Weinberg
equilibrium (HWE) with a p-value of less than 1024, were also
removed, leaving 99/95 CROATIA-Korcula/ORCADES sub-
jects genotyped for 102,192/97,052 variants. The HWE test was a
more stringent test than for the array data reflecting lower sample

numbers and the desire to particularly ensure integrity for
reference data. We restricted our analysis to individuals with
exome sequences and merged the exomes with the array data for
these subjects. Subjects/variants with more than 50/30 mismatch-
ing calls, between the array and sequence data were excluded,
although no variants failed this test. This resulted in exomes for
93/90 subjects genotyped at 102,192/97,052 exonic SNPs being
merged with array data at 170,134/171,749 SNPs for these
individuals. The resulting panels had 265,929/262,513 variants
which were 99.91%/99.92% concordant, based on the genotypes
called on both panels for 6,397/6,285 overlapping variants. As the
overall genotypic concordance could mask discrepancies for minor
alleles, particularly the less common variants of interest, concor-
dance rates for minor allele calls were calculated in the MAF 1–
3% range separately. Only 1/1 (CROATIA-Korcula/OR-
CADES) call was discrepant on each overlapping panel, giving
minor allele concordance of 99.7% in both studies for these
variants.
8,150/10,964 Korčulan/Orcadian variants other than single

base substitutions, for example insertions or deletions, were
excluded. 119/110 conflicting map positions and individuals
called at fewer than 80% of the combined SNP panel were then
excluded, leaving 91/89 subjects typed across 257,633/251,439
SNPs. Our focus was on the potential to improve power in meta-
analyses, so polymorphisms that were unique to each cohort were
excluded. This was done by comparison to the 1000 Genomes
project map and those variants not present in the 1000 Genomes
reference data or with mismatches in allele codes were excluded.
The merged sequence and array data consisting of 233,195/

232,096 variants for 91/89 subjects were then phased by
SHAPEIT, using the recommended Ne of 11,418 and the default
settings [14], to create reference haplotypes, as shown in the lower
half of Figure 1.
Having created suitable post-QC array data and secondary

reference panels, imputations were performed using genome-wide
array data plus (i) 1000 Genomes haplotypes [2] alone or (ii) 1000
Genomes haplotypes together with local data as reference panels.
Both imputations were then compared with known genotypes and
an assessment of accuracy across all subjects was made for each
SNP, as illustrated in Figure 2.
Imputation of the 91/89 subjects with and without the benefit of

local reference data was carried out using IMPUTE2, using the
phased reference panel option, the phased array data haplotype
option, and with the software splitting the genome into chunks,
which had been predetermined to be less than 5 Mb in size and
avoiding crossing the centromeres. Ne was set to 20,000; all other
settings were left at their default values. For the one panel

Figure 1. Preparation of array data and local reference panel for imputation. The genotype data were quality controlled and phased. These
data were then used in further downstream analysis.
doi:10.1371/journal.pone.0068604.g001
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imputation, the 1000 Genomes Phase 1 worldwide integrated
variant set (March 2012 release) [3] as available on the IMPUTE2
website [16] was used. The two-panel imputation added the
phased local reference data as a secondary panel (we did not use
the merge panels option). All other settings for the two-panel
imputation we were identical to the one panel imputation. We
performed imputations for each subject with local exome data
separately, with the study subject’s own haplotypes removed from
the secondary reference panel so that the haplotypes of the
individual to be imputed were not present in the reference data.
For a given SNP, the accuracy (r2) of the allelic dosages imputed
was measured across samples against the known exome sequence-
called genotypes.
As evidenced by the genome-wide SNP array concordance data,

noted above, there was close agreement between the exome
sequence and independent genotyping data, indicating that the
sequences were a suitable gold standard. Furthermore exome
array data were also available for the CROATIA-Korcula study
(although not ORCADES) and concordance between exome array
and exome sequence genotypes was 99.5% and was similar across
all MAF bands.
The dual use of exome sequences both as a secondary reference

panel and as the gold standard to obtain imputation accuracy was
considered appropriate since a subject’s imputation panel did not
include their own sequence, avoiding circularity at the imputation
stage.

Results

We found a significant increase in accuracy (r2 of imputed
against known allele dosages across samples for a given SNP) from
use of a local reference panel, which was often substantial for less
common variants (Table 1).
Variants with a minor allele frequency in the range 0.01–0.032

showed an increase in imputation accuracy of 0.193/0.167 (38%/
28% improvement) for CROATIA-Korcula/ORCADES and
0.112/0.089 (15%/11% improvement) for variants with MAF
between 0.032 and 0.100. The high accuracy of the 1000
Genomes imputation for more common variants (MAF .0.1)
provided more limited scope for improvement in this category,

although even for the most common variants (MAF.0.32) the
accuracy of imputation increased by 0.039/0.031 (4%/3%
improvement) for CROATIA-Korcula/ORCADES after adding
the second (local) reference panel.
Much of the improvements arise from SNPs that have an r2

close to zero with the 1000 Genomes-only imputation and which
were imputed more accurately with the addition of the local panel
(Figure 3). For CROATIA-Korcula/ORCADES 12%/9% of all
SNPs imputed poorly (r2,0.2) using 1000 Genomes data alone.
About one-fifth (17.1%/19.9%) of these poorly imputed SNPs
imputed well (r2.0.8) after the addition of the local reference
panel.
SNPs that were less frequent in 1000 Genomes than in our

sequences generally improved more, as illustrated in Figure 4,
where areas of greater improvement are generally observed
towards the right-hand side in the figure. The effect is more
pronounced in Korčula and is particularly marked for variants
where MAF is less than 1% on 1000 Genomes European panel.
Counts of the SNPs in each cell of Figure 4 are shown in table

S1.
We also looked at r2 increase as a function of European 1000

Genomes MAF. As stated above, for SNPs with a MAF of 1–3.2%
in our local sequences, the mean increase in r2 was 0.193/0.167.
For these SNPs, the increase in r2 was 0.297/0.264 for those in the
European 1000 Genomes MAF band,1%, 0.137/0.112 for MAF
band 1–3.2% and 0.086/0.072 for MAF .3.2%.

Discussion

Our results show that use of a secondary local reference panel in
addition to the 1000 Genomes reference haplotype data can
significantly increase the quality of imputations, particularly for
less common alleles and the improvement is greater when the
study population is genetically further from the populations in the
reference data.
We estimated imputation accuracy using a leave-one-out cross-

validation approach, in which we compared known genotypes to
imputed ones using either the 1000 Genomes reference panel
alone or accompanied by a panel obtained from sequence data of
individuals from our study populations. Although we took care in

Figure 2. Illustration of the procedure to estimate imputation accuracy. We used a drop one-out crossvalidation approach. For the
imputation step each subject was removed from the reference panel in turn, and this subject’s exome sequence SNPs were then imputed using either
the 1000 Genomes reference panel alone or in conjunction with a second local reference panel. All subjects’ imputed allelic dosages were then
compared with the exome sequence genotype data (‘‘gold standard’’).
doi:10.1371/journal.pone.0068604.g002
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our cross-validations to avoid circularity by using the leave-one-
out approach in the imputations, for practical reasons, especially
computing time, the phasing stage was done only once including
all subjects (and therefore included the subject being blinded at the
imputation stage). We acknowledge that this could potentially
slightly inflate the reported increase in accuracy when using the
second reference panel.
Imputation accuracy is not only affected by the quality and

composition of the reference data used, but also by the design of
the genotyping array, in particular array density and whether the
array captures population specific variants [20]. A dense, locally
relevant array used to genotype the study population will improve
the quality of imputation compared to a less dense one, when

using a global reference panel, and thus reduce the potential scope
for improvement when adding local sequence data. However,
where the study population’s haplotypes are distinct, due to
recombination, from the reference panel population, the use of a
denser array can be expected to improve the imputation but the
denser array will also allow even better matching of local
haplotypes, and so there should be a further benefit from use of
a local secondary reference panel.
Consistent with this hypothesis, the accuracy of base imputa-

tions using only the 1000 Genomes reference panel was greater for
ORCADES than CROATIA-Korcula, presumably due to the
greater proximity of Orkney to subjects in the 1000 Genomes
reference panel. Twenty three Orcadians, 77 mainland British and

Table 1. Mean accuracy of imputation (r2 of allelic dosage across all samples for a SNP) averaged across SNPs split by Minor Allele
Frequency (MAF).

MAF 1–3.2% 3.2–10% 10–32% .32%

Population Korčula Orkney Korčula Orkney Korčula Orkney Korčula Orkney

N SNPs 12132 12123 11548 10677 16243 15262 10174 9265

r2 1kG 0.504 0.586 0.729 0.778 0.868 0.894 0.894 0.913

r2 1kG+LRP 0.697 0.753 0.841 0.867 0.916 0.931 0.934 0.944

Increase r2 0.193 0.167 0.112 0.089 0.049 0.037 0.039 0.031

Std dev. 0.309 0.295 0.182 0.157 0.093 0.078 0.074 0.065

Inc. Sample 38% 28% 15% 11% 6% 4% 4% 1%

MAF bins increase by factors of !10, to create four exponentially increasing bins.
N SNPs: number of SNPs in MAF bin.
1kG: 1000 Genomes used as reference panel.
1kG+LRP: 1000 Genomes plus local reference panel.
Increase r2: Average across all SNPs in MAF bin increase in r2.
Std dev: The standard deviation (across SNPs) of the increase in r2 at each SNP.
Inc. Sample: Increase in effective sample size for GWAS.
The standard errors of mean increases are less than 0.003. All improvements in r2 are significantly different from zero and significantly different between MAF bands
(P,0.001, two-sided t tests).
doi:10.1371/journal.pone.0068604.t001

Figure 3. Frequency plot of imputation accuracy (r2) using 1000 Genomes data alone against 1000 Genomes plus a local reference
panel for SNPs with Minor Allele Frequencies (MAF) of 1–3.2%.
doi:10.1371/journal.pone.0068604.g003
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100 of northern European ancestry individuals are present in the
1000 Genomes data, and principal component analysis shows that
Balkan populations (such as Korčula) are more distant from the
nearest subjects in 1000 Genomes (Tuscans, from central Italy,
N= 100), than the variation observed within the British Isles [3]
[21]. This suggests to us that, as might be expected, imputation
improvement due to addition of local data will be most marked for
populations genetically distant from 1000 Genomes samples.
Whilst part of the benefit arises from including reference data with
allele frequencies closer to the study population, the capture of
representative local haplotypes further contributes to the increase
in imputation accuracy, and this latter effect will be more marked,
or at least require fewer local subject to be sequenced, in isolated
populations, where fewer distinct haplotypes will be segregating.
Similarly the much greater improvements in accuracy for SNPs

where the MAF is greater in our sequences than 1000 genomes,
perhaps not surprisingly, shows that local sequences will add value
to imputations in regions of the genome where drift, or other
forces, have created a distinct genetic structure.
Comparing these results with those of other researchers who

have examined the benefits of study specific reference panels, often
using 1000 Genomes like us or HapMap [22] as primary panels,
whilst illuminating, is not straightforward. Inevitably, different
types and sizes of reference panels are used, as well as different
genotyping arrays for the subjects whose genotypes are to be
imputed. This is further complicated by different study protocols
and differing genetic structure of the study populations. With these
caveats, our results of an r2 of 0.70–0.75 from 90 reference panel
subjects in addition to 1000 Genomes seem consistent with those
of Liu et al [9] and Auer et al [8], for MAF 1–3%. Neither of these
studies used a global reference panel, but Liu et al, in their
verification step, attained an r2 of around 80% with ,2,000
subjects on their (array data) reference panel with unfiltered
results, whilst Auer et al obtained an r2 of 82% with 761 exome
reference panel subjects, albeit filtering out lower quality results,
using an Rsq threshold of 0.8, where Rsq is equivalent to the
squared correlation between nearby imputed and genotyped SNPs

[8]. Furthermore the latter study demonstrated that the use of
exome imputation can reveal genome-wide significant associa-
tions, not discovered by conventional genotyping arrays, as did the
study by Holm et al [23], who were able to discern a local rare
variant causing sick sinus syndrome, in a large Icelandic study, due
to the benefit of adding 87 whole genome sequences to the
reference data for their imputation.
Many aspects of our study were similar to a study by Surakka

et al [6]. Their Finnish study used 200 (CEU+TSI) HapMap [22]
subjects as their primary reference panel and added 81 local
subjects genotyped by a genome wide array. For alleles with a
MAF ,5%, they obtained a median r2 of 90% for their global
panel only imputation rising to 94% after the addition of their
local panel. In our study, we report mean r2, but our median r2

was 0.77/0.83 rising to 0.88/0.92 after adding the local reference
panel for CROATIA-Korcula/ORCADES for a MAF bucket 3–
5%. The choice of a 3–5% MAF is intended to correspond to
typical array SNPs with MAF,5%. Our results therefore appear
consistent with the results of Surakka et al. despite the differences
in study design. The study by Uricchio et al [7] obtained much
higher mean r2 (99%), and the technique used for imputation,
identifying runs of identity-by-descent (IBD), should be particu-
larly accurate, but its application is restricted to populations which
share long haplotypes to a much greater extent than is common in
most genetic studies, and we therefore feel our strategy of using
1000 Genomes reference data and adding sequence data from a
subset of one’s own study subjects is a good practical way forward
for many studies.
A proportionate increase in r2 has the same effect on power as a

corresponding increase in study size [24] so the use of high quality
sequence data has the potential to provide substantially greater
power in GWAS studies for less common variants, particularly
those very poorly imputed using 1000 Genomes alone but well
imputed with the addition of local exome sequence data.
Our study focused on the exome, but the results should extend

to any other genomic region of interest. Moreover, the similar

Figure 4. Plot of mean improvement in imputation accuracy (r2) for SNPs with minor allele frequency (MAF) in the range 1–10% in
our exome sequence data.
doi:10.1371/journal.pone.0068604.g004
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results obtained in our study for two independent populations
suggest that corresponding benefits will be found in other studies.
The meta-analysis of multiple populations imputed using local

exome sequence data will likely identify new SNP associations.
However the amount of variance explained by less common
variants individually is likely to be small and will make their
detection challenging. This will put increasing emphasis on the use
of analytical methods that consider jointly groups of variants, be it
gene [25], regional heritability [26] or network based analyses
[27]. Such analyses can also incorporate the potentially valuable
information provided by variants private to individual populations
including the 24,438/19,343 variants identified by the exome
sequencing of the CROATIA-Korcula and ORCADES samples
that are not present in 1000 Genomes and hence we have not
considered here.
Given the cost and significant practical difficulties in subject

recruitment, sequencing a subset of cohort members, for either
part or all of the genome, and using these results for imputation
will provide significant added value to association studies.
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both islands and the admin team in Edinburgh and Croatia. The SNP
genotyping for both cohorts was performed in Helmholtz Zentrum
München, Neuherberg, Germany.

Author Contributions

Conceived and designed the experiments: CSH JFW PN. Performed the
experiments: PKJ. Analyzed the data: PKJ JP RFM. Contributed reagents/
materials/analysis tools: JEH VV CH RM DG OP NDH IR HC AFW
CSH JFW PN. Wrote the paper: PKJ CSH JFW PN.

References

1. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, et al. (2008)
Practical aspects of imputation-driven meta-analysis of genome-wide association
studies. Hum Mol Genet 17: R122–128.

2. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat
Genet 39: 906–913.

3. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. (2010) A
map of human genome variation from population-scale sequencing. Nature 467:
1061–1073.

4. Zeggini E (2011) Next-generation association studies for complex traits. Nat
Genet 43: 287–288.

5. Jewett EM, Zawistowski M, Rosenberg NA, Zollner S (2012) A coalescent model
for genotype imputation. Genetics 191: 1239–1255.

6. Surakka I, Kristiansson K, Anttila V, Inouye M, Barnes C, et al. (2010) Founder
population-specific HapMap panel increases power in GWA studies through
improved imputation accuracy and CNV tagging. Genome Res 20: 1344–1351.

7. Uricchio LH, Chong JX, Ross KD, Ober C, Nicolae DL (2012) Accurate
imputation of rare and common variants in a founder population from a small
number of sequenced individuals. Genet Epidemiol 36: 312–319.

8. Auer PL, Johnsen JM, Johnson AD, Logsdon BA, Lange LA, et al. (2012)
Imputation of exome sequence variants into population- based samples and
blood-cell-trait-associated loci in African Americans: NHLBI GO Exome
Sequencing Project. Am J Hum Genet 91: 794–808.

9. Liu EY, Buyske S, Aragaki AK, Peters U, Boerwinkle E, et al. (2012) Genotype
imputation of Metabochip SNPs using a study-specific reference panel of
,4,000 haplotypes in African Americans from the Women’s Health Initiative.
Genet Epidemiol 36: 107–117.

10. McQuillan R, Leutenegger AL, Abdel-Rahman R, Franklin CS, Pericic M, et al.
(2008) Runs of homozygosity in European populations. Am J Hum Genet 83:
359–372.

11. Polasek O, Marusic A, Rotim K, Hayward C, Vitart V, et al. (2009) Genome-
wide association study of anthropometric traits in Korcula Island, Croatia. Croat
Med J 50: 7–16.

12. Glodzik D, Navarro P, Vitart V, Hayward C, McQuillan R, et al. (2013)
Inference of identity by descent in population isolates and optimal sequencing
studies. Eur J Hum Genet.

13. Weale ME (2010) Quality control for genome-wide association studies. Methods
Mol Biol 628: 341–372.

14. Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method
for thousands of genomes. Nat Methods 9: 179–181.

15. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and
accurate genotype imputation in genome-wide association studies through pre-
phasing. Nat Genet 44: 955–959.

16. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype
imputation method for the next generation of genome-wide association studies.
PLoS Genet 5: e1000529.

17. Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and
fast mapping of Illumina sequence reads. Genome Res 21: 936–939.

18. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

19. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A
framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nat Genet 43: 491–498.

20. Marchini J, Howie B (2010) Genotype imputation for genome-wide association
studies. Nat Rev Genet 11: 499–511.

21. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, et al. (2008) Genes
mirror geography within Europe. Nature 456: 98–101.

22. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second
generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–
861.

23. Holm H, Gudbjartsson DF, Sulem P, Masson G, Helgadottir HT, et al. (2011) A
rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat
Genet 43: 316–320.

24. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models
and data. Am J Hum Genet 69: 1–14.

25. Huang H, Chanda P, Alonso A, Bader JS, Arking DE (2011) Gene-based tests of
association. PLoS Genet 7: e1002177.

26. Nagamine Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, et al. (2012)
Localising loci underlying complex trait variation using Regional Genomic
Relationship Mapping. PLoS One 7: e46501.

27. Cabrera CP, Navarro P, Huffman JE, Wright AF, Hayward C, et al. (2012)
Uncovering networks from genome-wide association studies via circular genomic
permutation. G3 (Bethesda) 2: 1067–1075.

Local Exome Sequences Improve Imputation for GWAS

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e68604


	cover sheet
	all_v1.00

