
Verification in ASL

and

related specification languages

Jorge Farrés-Casals

Ph.D.

University of Edinburgh

1992

Abstract

In recent years a new framework for specification has been defined around ASL

[SW 83, Wir 86, ST 88a, ST 88b]. Stress has been put on defining a specification

language consisting of a few powerful specification building operations (SBO's

for short) with simple semantics and an elegant implementation notion. Some

important features of this work are the generalization to an arbitrary institution

[GB 84] of a lot of previous work done on algebraic specification and the 1,study of

behavioural abstraction in the context of a model-oriented specification language.

This basic research on formal specifications is generally regarded as the basis

for a new generation of specification languages. These specification languages

will instantiate ASL with their institution of interest, and will define their own

specification constructs and implementation notion in terms of ASL's primitive

SB 0's and implementation notion.

However, any useful formal framework for program development needs an in-

ference system for the implementation relation, i.e. proofs that one specification

implements another must be produced by a fixed family of rules without model-

theoretical considerations. This poses a new and difficult problem to ASL due

to its model-oriented nature and the great generality of both the implementation

relation and the SBO's.

In this thesis we study this problem starting from a simple specification lan-

guage with only three SBO's, and progressively adding other common SBO's.

In the course of this analysis we encounter four main problems for the verifica-

tion of implementations: hiding of auxiliary functions, behavioural abstraction,

reachability constraints and parameterization. These problems can be considered

classical of algebraic specifications and the study of their verification aspects at an

institution-independent level provides valuable results for many other specification

languages.

New results for the verification of implementations w.r.t. specifications with

hidden parts and abstracted specifications at an institution-independent level are

the main contribution of the thesis. Verification of reachability constraints is

shown to be below the institutional level. In this case, a common institution for

constraints is formally presented showing some ignored verification aspects. Fi-

nally, an original presentation of parameterization and structured implementations

concludes the thesis.

In conclusion, this thesis presents a collection of sublanguages, infeience sys-

tems and side conditions which add a new dimension to the fascinating job started

by ASL in [SW 831.

Statement

The work described in this thesis is my own and the thesis was composed

by myself. Parts of chapters 3 and 4 were previously published in [Far 89] and

[Far 90], respectively.

Acknowledgements

I would like to thank my supervisor Don Sannella for introducing me to the topic

of formal specifications and helping me closely along my research, as well as for

being so encouraging and patient with me.

Many other people helped me during my stay in Edinburgh. Professor Rod

Burstall acted as my second supervisor and encouraged me in the difficult be-

ginning. Many others, particularly among the PhD students, helped toimprove

my understanding in many areas of theoretical computer science and became my

friends, among them I like to mention Eugenio Moggi, Bernhard Steffen, Luo,

Pawel, Claudio, Andreas, Bill, Ed, Barry, Michael, etc.

I would also like to mention, despite their short stay in Edinburgh, Andrzej

Tarlecki and Terry Stroup for their good insight in many problems, and Mauro

and Gloria for their wonderful enthusiasm.

Home in Barcelona, I must thank my old professors for teaching me well and

for their personal involvement in helping me to come to Edinburgh, in particular

I have to mention Professor Fernando Orejas who kept his interest in my progress

for four years.

Finally, it is a pleasure to mention the very good group of friends which made

of Edinburgh a warm city.

My PhD study was initially funded by La Caixa and during the last two years

by the Ministerio de Educación y Ciencia.

Table of Contents

Introduction
	 5

1.1 Specifying software systems5

1.2 ASL and related languages10

1.3 Verification: what are the main problems?11

1.4 Related work13

	

1.5 	Overview of the thesis18

Preliminaries
	 21

	

2.1 	Institutions 21

	

2.2 	ASL and constructors26

2.3 ASL(EQ) - ASL in the algebraic institution36

	

2.4 	Derived syntax 45

	

2.5 	Other institutions49

	

2.6 	Entailment in ASL 53

Theorem proving

	

3.1 	Introduction55

1

Table of Contents

	

3.2 	Proving ATU = A 58

	

3.3 	Proving ASL = A 59

3.3.1 Theories versus model classes60

3.3.2 Inference rules versus SBO's63

	

3.4 	Proving k+ASL = A74

	

3.5 	Specification entailment78

4. Specifications with hidden parts 	 82

	

4.1 	Introduction82

	

4.1.1 	Example84

4.2 Proving DA = DA89

4.3 Persistent and independent enrichments101

4.4 Inheriting strategy - soundness 109

4.5 Inheriting strategy - completeness114

4.6 Proving k+ASLI=DATU118

	

4.6.1 	Generalizing the antecedent 118

4.6.2 Generalizing the consequent119

	

4.6.3 	DATU* consequents120

	

4.7 	Difficult cases121

	

4.7.1 	Failing independence121

4.7.2 	Failing persistency124

Table of Contents

Abstracted specifications
	 125

	

5.1 	Introduction12.5

	

5.2 	Abstractions134

	

5.2.1 	Quotient abstracted institutions137

	

5.2.2 	Observational abstractions146

5.3 Proving satisfaction of all observable theorems147

5.3.1 Behavioural abstraction and EQ153

5.4 Treating abstraction as hiding165

5.4.1 Verification techniques for T0 D0 165

5.4.2 Behavioural abstraction and first order logic172

	

5.5 	Example179

Specifications with reachability constraints 	 190

	

6.1 	Introduction190

	

6.2 	Institutions with constraints191

	

6.3 	Reachability constraints193

	

6.3.1 	A logic of reachability constraints195

6.3.2 Reachability constraints and sentences211

6.4 Structured specifications with constraints224

6.4.1 Proving constraints from specifications224

6.4.2 Specifications with hidden generators227

6.4.3 Behaviourally abstract specifications with hidden generators 232

Table of Contents 	 4

Structure and Proofs 	 242

	

7.1 	Introduction242

	

7.2 	Revisiting MATU 244

	

7.3 	Shared subspecifications249

	

7.3.1 	Inferring subspecifications252

	

7.4 	Modular entailments263

	

7.4.1 	Specifications as arrows265

7.4.2 Modular programming269

7.4.3 Modular programming and constructors272

7.5 Structure and theorem proving274

7.5.1 Modular programming and data abstraction275

Conclusions 	 281

	

8.1 	Main conclusions281

	

8.2 	Problems and solutions283

8.3 Negative results and trade-offs287

	

8.4 	Future developments289

Chapter 1

Introduction

1.1 Specifying software systems

Generally a specification is a description of a system establishing some require-

ments that the engineer must fulfil in the implementation of the system. Alterna-

tively, a specification can be a document describing the properties of a system to

the users.

Similarly, in computer science, specifications appear as descriptions of tasks

that programs should achieve and as descriptions of programs for the users. Ideally,

these descriptions must capture all the requirements/properties which need to be

fulfilled/known and only those. In practice, these two kinds of specifications are

confused in only one, and we talk about specifications of program behaviours

which happen to be all that a user needs to know and all that the programmer

needs to fulfil.

A common approach to the specification of software systems considers a system

to be a black box and its specification to be a description of the relation between

the input and the output of the system. These specifications are known as algebraic

specifications.

5

Chapter 1. Introduction 	 6

Algebraic specifications

Algebraic specifications are called algebraic because they only refer to the function-

ality of the system and can denote, at most, an algebra defining the input/output

relation of a system.

When the output is uniquely defined for each input, an algebraic specification

denotes an algebra. Otherwise, an algebraic specification denotes a class of al-

gebras, i.e. all the algebras which satisfy the input/output requiremerts in the

specification.

This approach simplifies specifications greatly; perhaps too much, since it ig-

nores possible requirements on time, limited resources, non-determinism, synchro-

nization, etc. Nevertheless, the problem of correctness, i.e. the production of

results according to the requirements, is conveniently isolated in the algebraic

framework.

There exist a large variety of algebraic specification languages. They differ in

the logics used to express the input/output requirements, in the operations used

to structure the specification and in the semantics.

Very popular among specification languages are those using equations to ex-

press requirements, parameterization to structure specifications and initial seman-

tics to interpret them (see [GTW 76, EM 85]). We shall say that these languages

follow the initial approach to specification.

Alongside the initial approach there are many other alternative approaches.

Some of them, like the initial approach, use equations and define each specification

to denote an isomorphic class of algebras, for example the final approach [Wan 79,

Kam 83] and the initial-behavioural approach [GGM 76, NO 88].

Chapter 1. Introduction
	

7

Other specification languages have a loose semantics allowing a specification to

denote a class of non-isomorphic algebras. Among these CLEAR [BC 77, BC 80]

and LARCH [GHW 851 use semantics based on theories, whereas ASL-related

specification languages allow specifications to denote arbitrary classes of algebras

[SW 83, Wir 86, ST 88a] or structures [WB 891.

Finally, common non-algebraic specification languages such as Z [Spi 85] and

VDM [Jon 801 use a model to specify a software system. These languages are not

considered algebraic because they present a mathematical model for the system

instead of some requirements on the relationship between the input and the output

of the system. Nevertheless, semantics as those given to Z in [Spi 85] consider

that an abstract model specification denotes only the algebra implicitly described

through the model. In this sense, these specification languages are also algebraic.

The basic difference remaining between abstract model specifications such as Z and

common algebraic specifications is the way in which requirements are expressed,

that is using some predefined mathematical models or using some axioms and a

satisfaction relation between axioms and models respectively.

The reasons for this proliferation of specification languages can be found in the

difficulties of combining a specification language with a flexible notion of imple-

mentation and an effective verification method.

Formal production of software

All frameworks for the formal development of programs consist of three basic

elements: a specification language, a notion of implementation and an inference

system to prove implementations correct.

These three elements together allow us to write a high level specification of

the problem and refine it successively into more detailed specifications until a

Chapter 1. Introduction 	 8

specification is obtained which is so low level that it can be executed, in other

words a program. And finally, provided the implementation relation is transitive,

the proof system allows us to prove the correctness of the program w.r.t. its original

specification by proving that each refinement step is a correct implementation.

The requirements for a good specification language are basically two: sufficient

expressive power and simplicity of use. The first requirement should ensure that

a specification language allows us to describe the behaviour of the software sys-

tems we want to specify. The second requirement concerns various aspets of the

language such as modularity, readability, re-usability, etc.

A good notion of implementation is expected to relate a high level specification

to a more concrete, detailed or complete specification. Formalizing this relation,

including all that our intuition suggests and no more, is a very vague task. Nor-

mally, the implementation relation is expected to be transitive and to embody

informal concepts such as:

A implements B if A completes the input/output description given in B.

A implements B if A can simulate B.

A implements B if A is more deterministic than B.

Finally, an inference system should be available for proving that such imple-

mentation relations hold, i.e. proving that A implements B for any of the cases

mentioned above. These proofs are called correctness proofs and we can say

that A is proven correct w.r.t. B if A is proven to implement B. This terminology

extends the idea of a program being correct w .r.t. a specification.

The nature of these proofs depends on the definition of implementation cho-

sen, but it always involves proving that all the input/output requirements in B

are satisfied by the models of A or something 'constructed' from them. A good

Chapter 1. Introduction 	 g

inference system should be sound and complete with respect to the relation of

implementation, so that all valid implementations and only those can be derived

in the system.

If we look at the literature we find many proposed notions of implementation

but none of them is in very widespread use. The reason comes from the difficulty of

combining useful specification languages and implementation concepts with prac-

tical proof systems. The different frameworks can be roughly classified according

to the priority given to each of these issues.

The most common specification languages are the ones stressing the proof Ca-

pabilities which are considered the bottleneck for the framework. For this purpose,

the expressive power of specifications and the flexibility of the implementation

notion are constrained in different ways so that sensible verification methods are

attained.

OBJ [FGJM 851, among others, is developed on top of a re-writing engine. This

results in a good proof system for the language but it limits from the beginning

all aspects of the specification language and the implementation notion.

Specification languages with semantics expressed in terms of theories (LARCH

[CHW 85]) or, even, presentations (finite sets of sentences) provide complete proof

systems by definition, provided the underlying logic has a sound and complete

inference system. Unlike OBJ these languages do not expect automatic proofs

but they still enforce serious constraints on the specification language and the

implementation notion.

Other frameworks for formal program development stress the need for a comfort-

able specification language to ease specification design. Some languages propose

the use of a high level of modularity and stronger logics, e.g. Clear [BG 80], others

Chapter 1. Introduction 	 10

encourage specifications via the use of abstract models allowing the definition of

type representations, e.g. Z [Spi 851.

Finally, most recent approaches stress the need for a simple, composable and

general implementation notion. Among these languages we find most of the spec-

ification languages with loose semantics, such as ASL [SW 83].

1.2 ASL and related languages

ASL was originally presented by D.Sannella and M.Wirsing in [SW 83] and devel-

oped later in [Wir 86, ST 88a].

ASL is a specification language designed around a few specification building

operations (SBO's) with simple semantics and powerful enough to describe most

of the operations in other specification languages and most of the relations of

simulation used in implementation notions.

At the same time, ASL has institution-independent semantics [ST 88a] which

means that ASL is independent of the logic used to express the requirements in

a specification and, also, independent of the nature of the models which can be

algebras or other mathematical structures. The notion of implementation used in

ASL [ST 88b] is institution-independent, transitive (vertically composable) and

distributes w.r.t. the structure of specifications (horizontally composable).

The purpose of ASL is to investigate the foundations of algebraic specifica-

tion languages. In this sense, ASL shows that a lot of work can be done at the

institution-independent level, in particular the semantics of the SBO's, the defi-

nition of implementation, results on vertical and horizontal composability, some

inference rules for sentences, equivalences among specification terms, etc.

ASL is not so much an established specification language as a tool for research.

For this reason, ASL often appears with slightly different semantics or SBO's, and

Chapter 1. Introduction 	 11

sometimes, ASL is completely hidden behind friendlier specification languages

such as PLUSS [Gau 84]. In this thesis, we shall also play with the basic SBO's,

building a number of different languages and sublanguages. Because of that, we

often refer to them collectively as ASL and related languages.

Among other specification frameworks, the framework based on ASL is distin-

guished by the stress on generality and flexibility, disregarding systematically the

existence (or not) of good verification methods.

Focussing research on specification semantics and implementation has led to a

• very general framework where verification faces at least as many difficulties as in

all other specification frameworks combined.

This thesis seeks a formal system for proving implementation steps to be correct

in ASL and related languages. In the process, we use ASL as a tool to investigate

the verification of implementations in general. Analogously to results obtained for

the semantics of structuring operations and the implementation notion, we shall

show how many verification aspects are independent of the logic used and, also,

exhibit trade-oils between sensible verification methods and the expressive power

of specifications and the flexibility of implementations.

1.3 Verification: what are the main problems?

In this section the main problems faced in the verification of implementations in

ASL and related languages are surveyed.

In order to be formal, verification must rely on an inference system, that is,

a fixed collection of axioms and inference rules which can be combined in formal

Chapter 1. Introduction
	

12

proofs. In this sense, verification techniques based on semantic constructions

between models such as [Hoa 72] and [Sch 871 are discarded.

The problem with inference systems is that they work at the level of theories

and there are some very common concepts in algebraic specification which can

only be properly described at the level of models. There are four main sources of

problems:

Hiding auxiliary functions is a simple abstraction operation with a very

simple semantics at the level of models. However, at the level of theories,

theory morphisms are a very poor approximation to hiding.

Similarly, behavioural abstraction can only be described by a theory mor-

phism in very concrete cases where a set of observations characterize a be-

haviour (see chapter 5) whereas defining behavioural abstraction at the level

of models only takes a few lines.

Induction principles associated to reachability constraints are a second order

concept and can be described at a model theoretic level by means of infinitary

rules such as

P(0),P(1),...,P(k),...

Vn. P(n)

for natural numbers. On the other hand, there is no first order consistent and

complete axiomatizable theory for arithmetic, by Gödel's first incomplete-

171

	

	ness theorem (cf. [Bar 77, BJ 80]), so theories are inadequate for specifying

the natural numbers completely.

Parameterization produces neat structured specifications if the meaning of

the parameters is respected by all the parameterized specifications used, i.e.

Chapter 1. Introduction 	 13

if they are invariant'. At the theory level, conservative extensions are a very

poor approximation to invariance.

Due to at least these four reasons, specification languages tend to discard some

of these common constructions in order to ease verification.

1.4 Related work

Although this thesis studies verification of implementation steps in ASL, the ac-

tual work refers to verification of implementation steps in arbitrary specification

languages using the mentioned four constructions.

For this reason, this does not only relate to specific work on verification in

ASL such as [Bre 891, but also to a lot of previous work on proving correctness of

implementations w.r.t. structured algebraic specifications.

In the following we review work and results in different frameworks for each of

the four main sources of verification problems.

Hiding in the literature

Hiding some of the components specified in an algebraic specification is an old

common practice in equational specifications [GTW 761 which is fully justified in

[TWW 78, BBTW 81]. The use of hidden parts enhances the expressive power of

equational logic to include all functions of interest (semi-computable functions).

'The more popular term persistent is avoided in this context since it is formally

defined in chapter 2 for another purpose. However, both invariance and persistency (as

defined in chapter 2) extend the standard notion of persistency from functors to SBO's.

Chapter 1. Introduction 	 14

For the same reason that using hidden parts enhances expressive power, it

prevents an adequate semantics based on presentations or theories, and it makes

verification rather difficult.

In the literature, verification is frequently restricted to proving theorems from

specifications with hidden parts. This is not a major problem and an institution-

independent and complete rule is given in [ST 88a].

On the other hand, proving implementations correct w.r.t. specificatjons with

hidden parts is difficult. Proofs are frequently ad hoc, exploiting the implementa-

tion of the hidden components (if present) or using a general weakening rule for

adding some extra components to the implementation.

Similarly, in abstract model specifications many details of the representation are

hidden, i.e. they do not need to be implemented. In this context, the problem is

known as specification bias and it gives rise to known problems in the verification

of data reifications (see [Jon 86]).

Some specification languages such as CLEAR [BC 80] and LARCH [GHW 85]

prefer to substitute true hiding by a theory-based SBO. This is not a solution to

the problem but a decision to give up true hiding in exchange for another SBO

with a better proof treatment but with less expressive power and, probably, less

clear semantics.

Behavioural abstraction in the literature

Algebraic specifications aim to describe the input/output behaviour of a system.

Good algebraic frameworks for software development should allow any system

respecting the input/output behaviour of a specification to be among its valid

implementations. Unfortunately, this is frequently not the case.

Chapter 1. Introduction 	 15

Since early work in [GGM 76] the initial approach to specification has been

questioned for its unsatisfactory treatment of behaviour. The final approach and,

more successfully, the initial-behavioural approach give semantics to equational

specifications in such a way that all desired implementations are valid.

This improvement of the semantics results in a loss on the proof-theoretical

side. In the initial approach all ground terms are different unless they can be

proven equal using equational logic [GM 81, MS 85], i.e. equational logic is com-

plete for ground equations. This property is lost in the final and initial-behavioural

approaches.

Theorem proving is still feasible in the final and initial-behavioural approaches

using proofs by consistency [KM 87, Lin 87] but they are rather more cumber-

some. Note, also, that for proving implementations correct, the initial approach is

much simpler since all requirements for ground terms are encapsulated in a finite

presentation.

In many approaches abstraction is related to an explicit or implicit collection of

observable sentences or terms, e.g. ASL [Wir 86, ST 871. In these cases correctness

proofs might proceed by proving that all observable consequences of a specification

are satisfied in its implementation. In practice, some of these proofs are not

difficult using induction on observable contexts [Hen 88, Hen 89].

Outside the scope of equational specifications, specification languages with loose

semantics frequently interpret the equality symbol used in specifications as an

arbitrary equivalence relation or congruence [WB 89]. This solution works for some

well-known examples where the implementation of the equality symbol involves,

basically, an abstraction function from the values of the implementation to those

in the specification. However, no attempt has been made to relate this technique

to a formal notion of behaviour.

Chapter 1. Introduction

Finally, in abstract model specifications a strong concern with behavioural ab-

straction has led to abandoning implementation relations based on abstraction

functions, as has been common practice since [Hoa 721, in favor of relations be-

tween abstract and concrete values [Nip 86, Jon 86, Sch 87]. This results in more

complicated proofs of correctness.

Reachability constraints in the literature

A reachability constraint prevents models of an abstract data type from having

more values than those finitely generated by its operations; i.e. a reachability

constraint imposes an induction principle. This technique is frequently used in al-

gebraic specifications in order to specify standard models such as natural numbers,

finite lists, etc.

Reachability constraints can be explicitly applied in some specification lan-

guages but, often, they are automatically imposed by the semantics of the lan-

guage. In any case, reachability constraints increase the expressive power of first

order specification languages but make a complete theorem prover out of the ques-

tion [MS 851.

The lack of a complete proof system for first order theories with an induction

principle does not seem very serious since, very frequently, a common induction

rule such as structural induction [Bur 69] allows all desired theorems to be proven.

Nevertheless, for proving implementations correct, reachability constraints in

one specification must be satisfied by reachability constraints in another specifica-

tion. This aspect of proofs of correctness has long been neglected [Ri: 391.

Some theory-based specification languages prefer to substitute :rue induc-

tion principles by a structural induction schema (see the LARCH semantics in

[GHW 85]); this results in a simpler proof system but reduces the expressive

Chapter 1. Introduction 	 17

power, e.g. it prevents specifications from distinguishing between standard and

non-standard natural numbers.

Persistency in the literature

Parameterized specifications are persistent if they do not affect the meaning of

their parameters.

Since early work in the initial approach [TWW 78, Ore 83, EM 851 pesistency

has been shown to be a sufficient and almost necessary property for interpreting

parameter passing as putting together the equations from the parameterized speci-

fication and the parameter. In other words, persistency allows the prover to ignore

the functional semantics of parameterized specifications and work safely with the

combination of equational presentations.

Conversely, if parameter passing is defined to be a putting together of sets

of equations, persistency guarantees a functional interpretation of parameterized

specifications which results in clearer semantics allowing structured implementa-

tion and verification.

Results in [Ore 83] show persistency to be a necessary condition for correct

parameter passing in the initial approach. H.Ganzinger presents in [Gan 83] a

proof-theoretic sufficient condition for persistency in the same context.

For specification languages with loose semantics the standard notion of per-

sistency must be generalized from relations between models to relations between

classes of models. In this thesis, we use two different generalizations, one called

persistency and another called invariance, both defined in chapter 2.

In the context of specification languages with loose semantics, persistency

(resp. invariance) is rarely mentioned [Ber 871. However, the basic concerns about

structured implementation and verification are explicitly stated [GB 80, ST 88b].

Chapter 1. Introduction 	 18

In practice, performing structured correctness proofs depends a great deal on

preserving the meaning of whole subspecifications during implementation steps

[Far 89]. This idea is formalized in this thesis by the relationship between invari-

ance and a calculus for the management of subspecifications in proofs of correct-

ness.

1.5 Overview of the thesis

ASL is basically the combination of five SBO's plus mechanisms for abstraction

and parameterization. Starting from a subset of three of these SBO's and adding,

later, the rest one by one or in groups we define and study many different sublan-

guages of ASL.

This thesis progresses from simpler to more difficult sublanguages studying

the verification of implementation steps in each of them. This journey includes

the study of theorem proving in ASL and of the four main sources of verification

problems mentioned above.

Chapter 2 introduces the necessary background for the thesis. In particular, it

includes the definition of the specification language, the implementation relation,

and the notion of logical system (institution) which parameterizes the specification

language.

Chapter 3 gives an account of the results obtained by substituting actual spec-

ifications by theories approximating them. In this way, verification of correctness

of implementation steps is reduced to theorem proving. This procedure is shown

to be insufficient unless specifications are severely constrained. This chapter in-

troduces the notion of M-completeness for characterizing inference rules, shows

Chapter 1. Introduction 	 19

that the rule for hiding is not M-complete, and gives various inference rules for

common algebraic constructors.

Chapter 4 deals exclusively with the problem of hiding, first in isolation and

then in the context of the other specification building operations. This chapter

defines an institution-independent strategy for proving implementations correct

w.r.t. specifications with hidden parts, shows that this strategy is sound and com-

plete provided some conditions are met, and discusses the nature of these side

conditions as well as how they can be established.

Chapter 5 deals with the problem of abstraction and behavioural abstraction.

First some general notions related to the definition of abstraction are discussed,

with the result that abstraction is identified with a certain kind of hiding and

verification techniques for it are therefore inherited from chapter 4. Behavioural

abstraction and related proof techniques used in the literature are analyzed in the

context of our general results.

Chapter 6 deals with the problem of reachability constraints. In this case, there

is little to say for an arbitrary institution, so detailed research is dedicated to the

algebraic case. An inference system for the inference of reachability constraints

in the algebraic framework is presented and shown to be sound and complete for

single constraints and sets of independent constraints. Some known concepts such

as sufficient completeness are revisited in relation to the interaction of reachability

constraints and equations.

Finally, chapter 7 faces the matter of structure in specifications. In particular,

it studies in which cases the structure of specifications can he used to structure

proofs of correctness. Notions such as invariance turn out to be essential and are

introduced via an inference system for shared suhspecifications.

In summary, we expect to provide a wide review of the most important prob-

lems in the formal verification of implementations, working in a framework general

Chapter 1. Introduction
	

20

enough to include most possible cases. This panoramic view of the situation should

help to distinguish the good kind of specifications and implementations, Z'. e. those

which possess adequate proof methods.

Chapter 2

Preliminaries

2.1 Institutions

The concept of institution [GB 841 formalizes the idea of logical system. An in-

stitution is a category of models and a family of sentences, both indexed by a

category of signatures and with a relation of satisfaction between models and

sentences, such that satisfaction is preserved by translations along signature mor-

phisms. These minimal requirements allow very many logical systems to be viewed

as institutions, in particular, most of those used in formal specifications such as

equational logic, Horn clause logic, higher order logic, infinitary logic, etc.

Definition 2.1.1 An institution I consists of

a category SIG, whose objects are called signatures,

afunctor Sen: SIG -* Set, giving for each signature E a set whose elements

are called sentences over that signature, >-sentences,

a functor Mod : SIC - Cat° 1' giving for each signature E a category whose

objects are called models over that signature, E-models, and whose arrows

are called E-morphisms,

21

Chapter 2. Preliminaries
	

22

4. and a relation I=Ec IMod()I x Sen(Y) for each E E ISIGI, called E -

satisfaction, such that for each morphism o : El -+ E2 in SIC, the sat-

isfaction condition

M J=E2 Sen(a)(p) if Mod(a)(M)

holds for all M E IMod(Y2)I and 	Scn(E1).

It is common practice to write o) instead of Sen(a)(ço) and MI instead of

Mod(cr)(M), so that the satisfaction condition can be expressed as

M 1=E2 o) if MI I=i P

It is also very common to extend E-satisfaction from sentences to sets of sentences,

so that for any ç Sen(E) and model M E IMod(E)I satisfaction is defined as:

MI=E 	4 VçE.M=Eço

Similarly, E-satisfaction can be extended to a relation between sets of E-sentences,

so that for any 4M, 2 C Sen(E) satisfaction is defined as:

44 	2 4 VM E IMod(E)I. M 	44 M 1--r, 42

Particular cases include the satisfaction of a sentence by a set of sentences 	ça

and satisfaction between single sentences, p l=E p', for cp, o' E Sen(E) and

Sen (s).

Occasionally, we shall use the notion W E between E-models and sets of E-

sentence to mean that a E-model does not satisfy any sentence in a set of E-

sentences.

These concepts were first introduced in [BG 80] and studied further in [GB 84,

GB 86, GB 90, Tar 86a, Tar 86b]. The concept of institution allows the structural

mechanisms of a specification language to be defined for an arbitrary institution

[ST 88a], so that a great deal of work can be done, once and for all, at an institution

independent level and reused for any particular institution.

Chapter 2. Preliminaries
	 23

Sometimes the notion of institution is too general and some extra conditions

are frequently added. Unless the contrary is stated, we shall assume institutions

to have a finitely co-complete category of signatures and a finitely co-continuous

model functor, like institutions with composable signatures in [ST 921 and reason-

able and exact institutions in [DGS 911.

Intuitively, these properties allow the symbols defined in different signatures

to be put together in a single signature without confusion but respecting "shared"

symbols, in particular a pushout signature is a finite co-limit in SIG. Moreover,

if the model functor Mod preserves finite co-limits (finitely co-continuous), every

finite co-limit diagram in SIG produces a limit diagram in Cat. In particular these

properties imply the amalgamation lemma (cf. [EM 85, ST 88b]).

Lemma 2.1.2 (Amalgamation lemma) Let I = (SIG, Mod, Sen, 1=) be an in-

stitution such that SIG is finitely co-complete and Mod is finitely co-continuous.

Consider a pushout in SIG as in the diagram:

E12

Oy- \0_1

I

El 	E2

o, \1 lo, 2

Then, for any two models A E IMod(1)I and B E IMod(E2)I such that Alai =

BI2, there exists a unique E12-model A ED B such that (A B)l,2i = A and

(A e B)I1' = B. A B is called the amalgamated union of A and B.

A fundamental piece missing in the definition of institution is an inference sys-

tern allowing a sentence to be concluded from a set of sentences in a given logical

system. That is why sometimes a institution I is equipped with a sound inference

system I-', as in [HST 89a].

Chapter 2. Preliminaries 	 24

Usually an inference system i-' is presented in the form of some axioms and

some inference rules which allow us to conclude judgements of the form

where cp is a E-sentence and 1' is a finite set of E-sentences for a signature E in I.

Therefore, an inference system i-' denotes a r.e. relation between finite sets

of sentences and sentences over each signature. We shall call this relation the

consequence relation of i-' written 7.E(F,) 9 1'(Sen(E)) x Sen(E) for every

signature E in I,

(,)E7?.E(0)

An inference system F' is sound w.r.t. I if

= 	IEP

And it is complete if the converse holds,

= [=r' p

The most common institutions used in formal specifications, such as equational

logic, first order logic, Horn clause logic, etc., are equipped with sound and com-

plete inference systems. This thesis will assume that every institution I is equipped

with a sound inference system 0; completeness of 1- 1 will not be required.

Finally we need a concept to relate different institutions. Although some details

have been a topic of discussion, we shall adopt institution morphisms as defined

in [GB 84] with a slight technical difference as proposed in [ST 92].

Definition 2.1.3 Let

Ii = {SIG1,Modl,Senlj='} and 12 = {SIG2,Mod2,Sen2,I= 2 }

be two institutions. Then, an institution morphism a 11 -412 consists of

Chapter 2. Preliminaries
	

25

a functor as! G: SIG1 -p SIG2,

a natural transformation aM0d : Mod1°=c G : Mod2°, 1 that is for each

E E ISIG11 (i.e. E E ISIG1°l) there exists a functor

aModE: Modl(E) -+ Mod2(cxsJG())

which is consistent with changes of signature; i.e. for all signature morphism

a:E—*E'inSIGl (i.e. u 0 ':>Y-E inSIG1°),

Mod1°"(a°); aMOd = aModE '0
(,0P

SJG . A/fod2°)(o°)

a natural transformation ag 	asIc; Sen2=Sen1, that is for each E E

ISIG1I there exists a function,

asen E : Sen2(asic(>)) - Senl(E)

which is consistent with changes of signature; i.e. for all signature morphism

0: E -b E' in SIG1

asenE; Senl(0) = (asIc; Sen2)(cr); asE'

such that the following satisfaction condition holds

M := aSen E() jif aMOdE(M) 2
I 	SIG() (

for all E E ISIG1I, M E Modl(E) and p E Sen2(a sj ()).

Intuitively, an institution morphism describes the situation in which satisfac-

tion is independent of the change of institution.

'Recall that Mod1° : SIG1 01' - Cat, Mod2 0 : SIG2 -# Cat and 	: SIG1 0 - SIG

SIG2°" are as functors Mod 1 : SIG 1 -* Cat P, Mod2 : SIG2 - CO O P and asm
SIG1 -* SIG2 but considered between the opposite categories.

Chapter 2. Preliminaries 	 26

2.2 ASL and constructors

In the following we give the syntax and semantics of a specification language like

the one described in [SW 83, ST 88a, Wir 861 parameterized by an institution

I. Note that here we use the name ASL for the union of six specification build-

ing operations - SBO's for short - to which parameterization mechanisms, an

abstraction operation and some other SBO's called constructors may be added a

posteriori.

Syntax

ASL(I) is a specification language with raw terms

SP==ASPIT,SPID,SPIM()SPISPUSPIE E

where is a finite set of sentences, E a signature and a and t signature morphisms

in the institution I.

Now, we can recursively define a signature for each of these terms.

Definition 2.2.1 Given an institution I, the signature of an ASL(I) term SP,

written Sig [SP], is defined as follows:

Sig[ASP} = Sig[SP]
	

Sig[TSP] =1°-
Sig[DSP] =1 a
	

Sig[M(C , L) SP] = Sig[SP]

Sig[SP1 U SP21 = Sig[SP1]
	

Sig[e] = E

where the notation I a and la refers respectively to the source and target objects

Of an arrow a.

Chapter 2. Preliminaries 	 27

Among all raw terms we can distinguish the well-formed terms, which are those

satisfying the following context conditions:

Definition 2.2.2 Given a specification SP of signature E,

• ASP is well-formed if 0 c Sen(E) and SF is well-formed.

• T4 TSP is well-formed if j. o• = E and SP is well-formed.

• D Y SP is well-formed if Ia. = E and SF is well-formed.

• M(,)SP is well-formed if Ia =1 t and I(a; t) = E and SP is well-formed.

SP1 U SP2 is well-formed if SP1 and SP2 have the same signature and

SF1 and SF2 are both well-formed.

E is well-formed.

Semantics

Every well-formed specification SF in ASL(I) denotes a signature Sig[SP] in SIC

and a class of models Mod[SP] among the models IMod(Sig[SP])I. The signature

of a well-formed specification Sig[SPJ is as defined for all specification terms and

Mod[SP] is defined recursively as follows:

Definition 2.2.3 Given an institution I = (SIG, Mod, Scm, 1=) the class of mod-

els denoted by a well-formed specification in ASL(I), written Mod[SP}. is defined

as follows:

Mod[A5P] = {M E Mod[SP] I M j= }

Mod[T5P] = {M E IMod(Ia)I I MI E Mod [SP]}

Chapter 2. Preliminaries 	 28

Mod[DSP} = {MI, I M E Mod[SP]}

Mod[M(, 4)SP] = {M E Mod[SP] I M, is a-minimal}

Mod[SP1 U SP21 = Mod[SP1] fl Mod[SP2]

Mod[e El = IMod(E)I

where a model M E IMod(Ia)I is a-minimal if for every model N E IMod(Ia)I,

any monomorphism m : N - M such that mi. : NI -+ MIa is an isomorphism,

is in fact an isomorphism in Mod(Ia).

Intuitively, A b is the basic specification mechanism requiring some axioms to

be satisfied. These axioms can be a list of equations, some first order axioms or

something else depending on the institution used.

Ta and D provide the mechanisms to enlarge, reduce and modify the signature

of a specification and the models accordingly, e.g. in the course of an enrichment

or hiding. According to their original names in [ST 88a], Ta and Da for a: E

should be read as:

• translate a >2-specification SP to another signature E' along a, and

• derive a E-specification from a specification SP over a richer signature >2'

using a

respectively.

U allows specifications over the same signature to be combined, giving the

union of their requirements. Frequently, the specifications to be combined refer

to different components of a system and, therefore, they are defined over different

signatures. In this case, a Ta operator should be used to expand the signature of

each specification to a common one so that U can be applied.

Chapter 2. Preliminaries
	

29

Although defined as a binary SBO, U is often used as an n-ary operation

meaning a successive application of binary U operations. Associativity of U makes

the order of application irrelevant.

M() allows some basic models of a specification to be selected. The pre-

cise meaning of basic model varies according to the meaning of the arrows in the

category of models. Later, we shall see that taking models to be algebras and

monomorphisms in Mod(1 ci) to be injective homomorphisms, M(,) constrains

some sorts to be finitely generated. For a given target signature I t , the choice of

ci and t decides which sorts are finitely generated and which operations are the

generators.

Occasionally in some proofs we may use another SBO, namely {}. This oper-

ation takes a model and delivers a specification as follows: Given a signature >

and a E-model A,

- {A} is well-formed

- Sig[{A}} = E and Mod[JAI] = {A}

Equality between ASL specifications will be often used to indicate that two

specifications have the same signature and class of models

SP1 = SP2 if Sig[SP1] = Sig[SP2 and Mod[SPI] = Mod[SP2]

We shall use the name selectors for those SB 0's L which always yield a speci-

fication with a class of models contained in the class of models of the parameter,

Chapter 2. Preliminaries
	

30

i.e. Mod[L SP] C Mod [SP} for any specification SP. In ASL, A, M(U , L) and U2

are selectors.

We shall use the name constructors for those SBO's k whose semantics are

defined pointwise by a function fk over the class of models of the parameter, i.e.

Mod[k SPJ = {fk(M) I M E Mod[SP]} for any specification SP. In ASL, D a is a

constructor where fDa is

There some general facts of interest holding for the different SBO's.

Proposition 2.2.4 Specification building operations U, A, 	T and all

constructors are monotonic w.r.t. inclusion of model classes, i.e. if Mod[SP1] ç

Mod[SP2] then Mod [SP1] c Mod[eSP2] for all SBO's and specifications SP1

and SP2.

Proof Immediate from their definition. D

Because of this fact, the following inequality

Mod[eSP1] U Mod [SP2] C Mod [SP12]

where Mod[SP12] = Mod[SP1] U Mod[SP2] holds in general. Moreover, the oppo-

site inclusion holds for SP1, SP2 built using the SBO's defined above.

Proposition 2.2.5 Specification building operations U, A, M(,), T and all

constructors distribute over the union of model classes, i.e. for all specifications

SP', SP1, SP2 and SP12 such that Mod[SP12] = Mod[SP1] U Mod[SP2],

Mod[AaSP12] = il'Iod[ASPl] U Mod[ASP2]

2 More precisely, not U but the unary SBO's " U SP2" and "SP1 U -" for arbitrary

specifications SF1 and SF2, are selectors.

Chapter 2. Preliminaries 	 31

Mod [M(,) SP1 2] = Mod [M< > SP 1] U Mod [M(a, t) SP2]

Mod[SP' U SP121 = Mod[SP' U SP1] U Mod[SP' U SP2]

Mod[SP12 U SP'] = Mod[SP1 U SF'] U Mod[SP2 U SF']

Mod[TSP12] = Mod[T,SPl] U Mod[TSP2]

Mod[k SF12] = Mod[k SF1] U Mod[k SF21 	for all constructors k

Proof By definition, the fact that a model M € Mod[SP12] is included or not

in Mod[ASP12],Mod[M< cr,t>SF12],Mod[SF' U SF121 and Mod[SF12 USP'] de-

pends on M and on 4, M(a, t) and SP' respectively, but not on which other models

appear in SF12. This "pointwise" selection of the models results in distributivity

over the union of model classes.

In the case of T and an arbitrary constructor k the resulting class of models

Mod[Tcj SF12] (and Mod[k SP121 respectively) is defined pointwise for each model

in Mod[SP12]. Hence, distributivity also holds.

EU

Distributivity of a SBO over the union of model classes implies that that SBO

is defined pointwise, i.e. Mod [SF] = UAEMOd[SP] Mod[e{A}]. This property is not

to be confused with distributivity of a SBO over U.

Proposition 2.2.6 Specification building operations U, A, M() , T and all in-

jective constructors distribute over U, i.e. Mod [(SP1 U SP2)] = Mod[eSP1 U SP2].

Proof Since all these SBO's distribute over the union of model classes, we have

that

Mod[e(SP1 U SP2)] = 	U 	Mod [{A}]
AEM0d[SP1 U SP21

and, by definition of U,

Mod [(SP1 U SP2)] = 	U 	Mod [{A}] c Mod[SP1 USP21
AEMod[SP1]flMod[SP2]

Chapter 2. Preliminaries 	 32

On the other direction, we must ensure that each SBO satisfies that

VA E Mod [{Mi}], B E Mod [{M2}}. A B

for any two different models MI and M2.

Injective constructors are just those constructors satisfying this property.

The same property holds trivially for selectors since they do not change any

model, and also for T, since two models cannot be equal and have two different

reducts.

0

There are two other properties of interest of an arbitrary SBO's w.r.t. a spec-

ification.

Definition 2.2.7 Given a specification building opera- Sig[SP]
	Sig [SP}

tion , a specification SP and a pair of morphisms (t, cr)

	la such that It = Sig[SP], 10 = Sig[SP] and E =,j.t =10, 	
t\

then 	 E

is persistent w.r.t. SP and (t, o) if for all models A E Mod[SP], there

exists a model B E Mod [SP] with the same reduct, Al , = Bl.

• 6 is invariant w.r.t. SP and (t, a), if for all models A E Mod[SP], every

model B E Mod [{A}] has the same reduct, Al, = Bl.

Note that a SBO can be persistent w.r.t. a specification SP and a pair of

morphisms (t, a) without being invariant and vice versa. In the case of persistency,

invariance may fail because for some A E Mod{SP} the reduct Al, belongs to

Mod[DSP] but not to Mod[D{A}}. In the opposite direction, if invariance

holds, for some A E Mod[SP] it may happen that Mod[{A}J = 0 and that

Al, V Mod[D,SP].

Chapter 2. Preliminaries
	

33

k+ASL

In a stepwise process of refinement, it is often convenient to mix parts of a spec-

ification with pieces of program corresponding to parts of the specification which

have already been implemented.

In order to formalize this, we can consider these pieces of program to. be also

SBO's. By doing so, we enrich ASL to give a richer specification language k+ASL

by adding a generic specification building operation (P, A), where P stands for a

piece of program and A for some properties P satisfies.

Definition 2.2.8 A programming language £ is compatible with an institution

I = (SIC, Mod, Sen, 1=) if each program P in £ denotes a triple

IIP]1= (E1,E2,fp)

where El, E2 E ISIGI andfp : lMod(E1)I -' IMod(E2)I.

Then, the new SBO can be formally defined as follows.

Definition 2.2.9 Given an institution I = (SIC, Mod, Sen, 1=) and a compatible

programming language £, and let P be a program in £ with semantics

JIP]j= (E1,2,fp)

then, (P, A)SP is well-formed if SP is well-formed, Sig[SP] = El and A C

P(Sen(1)) x Sen(2) such that for all 	E A and AlE Mod(1)I,

M=El 	fp(M) 2

Moreover, the signature and models for such a well-formed (P, A)SP are defined

as:

• Sig[(P,A) SP] =2

Chapter 2. Preliminaries
	

34

• Mod[(P,A)SP] = {fp(M) I M E Mod[SP]}

The semantics of (P, A) are completely defined by the program P. The purpose

of A is to state all the relevant properties of P in order to allow verification of

specification entailments involving such a program (see chapters 3 and 7).

Note that these pieces of program are SBO's in k+ASL and, more precisely,

they are constructors, the so-called generic constructors.

Now, k+ASL is not only parameterized by an institution but also by the pro-

gramming language used in the generic constructors, thus k+ASL(I, £).

A+ASL

Normally ASL comes equipped with a parameterization mechanism based on A-

abstraction (see for example [SW 83, Wir 86, ST 88a]). Here, we consider such a

mechanism as an extra feature which can be added to ASL, i.e. to the original six

SBO's, to make up the richer language A +ASL.

Raw terms in A +ASL are those of ASL plus those generated by the inclusion

of specification variables and lambda applications:

SP== ... IXE I(AX:>. SP) SP

the signature of which is defined by:

Sig[XE } = E 	Sig[(AX : E . SP1)SP2] = Sig[SPI]

Well-formed terms in A +ASL are those closed terms whose actual parameters

are of the required signature and which respect all the rules laid down in the defini-

tion of well-formed term in ASL. This can be summarized saying that well-formed

terms in A +ASL are recursively defined by the 6 rules given in the definition of a

well-formed ASL term (Definition 2.2.2) plus the following seventh rule:

Chapter 2. Preliminaries 	 35

• (AX : E.SP1)SP2 is well-formed if Sig[SP2] = E and SP2 and SP1[fE /X E J

are both well-formed.

where SP1[CE1XEJ is the specification term SP1 where all free occurrences of XE

have been substituted by

Finally, the models of a well-formed term are defined by adding:

Mod[(AX : E. SP1)SP2] = Mod[SP1[SP21XE I]

to those rules laid down for ASL. By definition of well-formed term in A +ASL,

solving all parameter substitutions reduces any well-formed A +ASL term to a well-

formed ASL term for which Mod has already been defined. As for simply typed

lambda calculus, the Church-Rosser property guarantees Mod to be well-defined

over well-formed terms in A +ASL and, in particular, Sig[(A X : E. SP1)SP2] =

Sig[SP1[SP21X]] for well-formed terms.

Since well-formed terms are always closed, the signature of each variable can

always be inferred from the context. For this reason, subscripts indicating the

signature of each variable will be dropped.

Lambda expressions of the form (A X : E. SP) are operations which can be

used to build up specifications, i.e. they are SBO's but not specifications. For

this reason verification of structured specifications, treated in the last chapter of

the thesis, is mostly about arbitrary specification terms satisfying some semantical

conditions between terms and subterms. Parameterization can be used to group

explicitly (at the syntactical level) specification terms with semantical significance.

SBO's of the form (A X : E. SP) are monotonic w.r.t. the inclusion of model

classes like ordinary SBO's in ASL, however, it may be the case that (A X : E. SP)

does not distribute over the union of model classes despite the fact that all SBO's

Chapter 2. Preliminaries 	 36

used in SP distribute. This is due to the possible multiple occurrences of a formal

parameter X in SP [SST 90].

a+ASL

Occasionally we may use the name a + ASL to refer to the extension of ASL with

an abstraction SBO as in [SW 83, ST 871. However, no details will be given of

that new operation until chapter 5 where it will be shown to be redundant.

2.3 ASL(EQ) - ASL in the algebraic institution

Although most of the work in this thesis is valid for an arbitrary institution,

in section 6.3 referring to reachability constraints, sections 3.4, 6.4.1 and 7.3.1

referring to FQRD-constructors (see definition below), and section 5.3.1 referring

to behavioural abstraction, the algebraic institution is used.

This is probably the most widely used institution in work on formal specifi-

cation and merits some special attention. In this section we review some basic

definitions from algebra and revisit ASL(I) in the case where I is the algebraic

institution EQ i.e. ASL(EQ).

The algebraic institution : EQ

In the following the institution EQ is defined by providing a category of signatures

SIC, a model functor Aig SIC -p Cat", a sentence functor Eq SIG -p Set and

satisfaction relations { =E } EEIsIGI.

Chapter 2. Preliminaries
	

37

A signature is a pair (5, Q) where S is a set of names (sort names) and 1 is a

family of sets of names (operation names) IQ-,,--)-ES ' ,-ES. An element f of 1Z is

denoted by f : w -* s.

A signature morphism a : (S,1) - (S', Q') is a pair (as , an) where as

S -* 5' and an is a family of sets of functions {a,, : IL,8 -' Ii'. 	(s)}(JES•,sES

where o(w) means application of as to every component of w, i.e. a(si ... s) =

as(si) ... o s (s).

Two signature morphisms al : (Sj) - (S', Q) and a2 : (S', Q) - (S"j")

compose by composing the functions they consist of; i.e.

o1; a2 = (als; a2s', {a1,,; a21(W),1S($)}WES.,$Es)

Identity morphisms are those with a pair of identity functions between sorts and

operation names.

Signatures together with signature morphisms form the category SIG of sig-

natures of EQ.

For the sake of readability, we shall omit the subscripts and superscripts of a.

Given a signature E = (S, I) a (total) E-algebra consists of an S-indexed

family of sets (carriers) JAI =def {IAI,}SEs and function IA : lAl3, X...xlAl., l4l

for every f:s 1 ,...,s—*sin1l.

Let A and B be two E-algebras. A E-homomorphism from A to B, h

A -i B, is an S-indexed family of functions {h 3 } 3€s between the corresponding

carriers, i.e. h 5 : 1A1 5 -p IBl, which is consistent with the operations in Il, i.e.

for all! : s1,...,s,, -* s in Il and a t E lAl, 1 ,...,an e lAl,, h5(fA(al,...,a)) =

f5 (h 3 , (a1) ..., h,,, (an)).

Two s-homomorphisms hi : A - B and h2 B -' C compose by corn-

posing the functions they consist of, i.e. hi; h2 = {hl,; h23 } 5 . Identity E-

Chapter 2. Preliminaries
	

RR

homomorphisms h : A -+ A consist of an identity function h5 for each carrier

1A1 3 .

The algebras over a signature E together with their E-homomorphisms form a

category Alg(E).

Given a signature morphism a : E --+ ', the a-reduct of a E'-algebra A' is

defined as the s-algebra A'l,, such that for all sorts s in E, I(A'I)I 5 =
and for all 	s1 ,...,s0 -+ sin E, fA'I a = 0 (f)A

We can also define the a-reduct of a E'-homomorphism h' : A' -p B', where

A' and B' are E'-algebras, as the E-homomorphism h'Ia : A'I —p B'I with

(h'I a) s =def h, (3) for all sorts s in E.

With this, 4, turns out to be a functor from A19(E) to Alg(E), and therefore

we can define Aig : SIC -f Cat' as the functor mapping each signature E to

a category of models Alg(E) and each signature morphism a : E —p E' to 4.
Alg(E') - Alg(E), that is, Aig is the model functor in EQ.

Given a signature E = (S, Il), a s-term t of sort s over an S-indexed set of

variables X disjoint from 1, is either a variable x E X, or the composition of a

function name f: S1,..., s, -+ S E with >-terms ti ,..., t, over X of sort s1 , ..., s,,

respectively.

The set of terms over each sort plus the rules for composing smaller terms to

form bigger terms constitute a E-algebra, the so-called term algebra, TE(X).

The carrier of a sort s in TE(X) consists of all E-terms of sort s over X.

A valuation of X over a s-algebra A is a E-homomorphism ij': TE(X) - A.

'Note that f is a constant for n = 0.

Chapter 2. Preliminaries 	 39

Fact 2.3.1 A valuation ii of X over A is uniquely defined by the values assigned

to each variable in X and, if X is empty, v over A is unique.

The latter is the case because a E-term without variables can be uniquely

evaluated in a -algebra A by substituting each constant and function name by

its value in A, thus there is a unique E-homomorphism U: Tr (ø) - A; i.e. TE(ø),

usually written Tr,, is an initial object in the category Alg(E). Analogously for

terms with variables, the value of a term over X in an algebra A is uniquely

determined by the values assigned to the variables.

Final objects in Alg(E) are algebras with each carrier being a singleton. In

this case, all functions and constants have a unique possible interpretation and

therefore, there is a unique E-homomorphism from an arbitra.j E-algebra A to a

final E-algebra 1E, h: A -*

Given a signature E = (S, ci), a E-equation consists of an S-indexed set of

variables X and a pair of E-terms over X of the same sort s E S, tl, t2 E I TE(X)Is,

and it is normally denoted by VX. t = t2. A E-algebra A satisfies a E-equation,

A = VX. ti = t2, if ti and t2 evaluate to the same value, u(tl) = v(t2) (written

also A, ii = ti = t2), for all valuations ii : TE(X) - A.

Given a signature morphism o : E - E', the translation of a E-term t over

X according to o is a '-term over o(X), o(t), where a(X) is a S'-indexed set of

variables such that, for all s E S
I-

X, 4 E a(X) a(s) if X E X 3

and a(X) 8 i is empty for those sorts s' E 8' which are not the image of any

sort in S. Then, a(t) is the '-term over a(X) resulting from the substitution

4 lndices prevent variables of different sorts with the same name in X from being

confused in a(X).

S iolr MUk ~CJCOVN.5 	 903 	•

o 	e.c,\es 	 - 	 01-k 	Lckve \LQ Sc 	r-vr.€.

Chapter 2. Preliminaries
	 40

of all function names f in t by a(f) and variables x E X by x, E a(X) a(s) .

Finally, the translation of the E-equation VX. t = t2 along a is the E'-equation

VX'. a(tl) = a(t2) where X' is o(X).

The functor Eq mapping each signature E to the set of s-equations and each

signature morphism a to the translation function between equations, is the sen-

tence functor Eq : SIG -* Set of EQ. And each satisfaction relation =E is as

defined above between E-algebras and F,-equations.

Fact 2.3.2 (GB 84) The satisfaction condition holds in EQ.

It is the case that SIG has finite co-limits and Alg preserves finite co-limits,

therefore the amalgamation lemma holds in EQ.

Moreover, the institution EQ is equipped with a sound and complete infer-

ence system FEQ. This is called multi-sorted equational logic and it has been

extensively used in algebraic specification (c.f. [GM 81, EM 85]).

Some more algebraic background

Given a set of E'-equations eq, we can define Mod[A eq CE'] to be the full subcate-

gory of Alg(E') composed of those algebras satisfying the equations in eq. It is a

well-known result of universal algebra (see [GTW 76)) that:

Fact 2.3.3 For every morphism a : E -p ' and set of E'-equations eq, the left

adjoint Free eq : Alg(>) -p MOd[A eq C E '] of the reduct functor ..J : MOd[A eq f E 'J -*

Alg(E) exists.

In particular, considering 	to be an empty signature, Freer can only be

applied to the empty algebra and it produces an initial E'-algebra (unique up

to isomorphism) in the category Mod[A cq fE'] of E'-algebras which satisfy eq.

Chapter 2. Prelirhinaries
	 41

A subalgebra B of a s-algebra A is another E-algebra such that for every sort

s in E , 1Bl 3 c JAI, and for all! : -' s in E and b 1 E lBI31,...,b E BI,,

fA(b l ,...,b)=fB(bI ,.,b).

We say that a subalgebra of a -algebra A is reachable on sort s if it differs

from A only on lA1 3 , and it contains no proper subalgebra which differs only on

lAl 3 . Similarly reachability can be defined with respect to a set of sorts.

Fact 2.3.4 For all (S, 11)-algebras A and set of sorts G c S there is .a unique

reachable subalgebra ReachG(A) of A on sorts C.

Taking all carriers of sorts not in C as identical to the corresponding carriers

in A, we can construct the subalgebra ReachG(A) taking as carriers for sorts in

C only those values in A which are finitely generated from constants and values

of sorts not in C. By construction, all values in ReachG(A) should be included in

any subalgebra of A which respects carriers of sorts not in C; hence uniqueness.

Intuitively, R&LChG removes from each carrier of each sort in C those values

which can not be computed (reached) using the operations in Il and the values of

the sorts not in C. Often, these non-reachable values are called "junk".

The definition of reachable algebra on a set of sorts is clearly related to the

general notion of minimal model. Consider a category of algebras Alg((S, 11)) and

a set of distinguished sorts C C S, then the models of a well-formed specification

M(,id(sfl))SP where a : (S \ C, Il') -' (S, Il) with an arbitrary set of function

names Il' C 11 are:

{A E Mod [SP] I A is reachable on sorts G}

If a second morphism i : (8, 11) - 	is considered then the models of the specifi-

cation M(,)SP are:

{A E Mod[SP} I Al is reachable on sortsG}

Chapter 2. Preliminaries
	 42

Alternatively to the definition above, we can also say that a (S, 1)-algebra A

is reachable on sorts C c S if there is a (S \ G)-sorted set of variables X (disjoint

from Il) such that for every value v E lAi r of a sort r E G there exists a term

t,, E IT(s ,n) (X)l and a valuation ii: T(s , cl) (X) -p A such that v(t) = v. Because

of this definition reachable algebras are also called finitely generated algebras.

Let V/ 	denote the quotient of the set V modulo the equivalence relation

cvxv.

A congruence 	on a (S,f)-algebra A is a S-sorted equivalence rela-

tion 	IAI x J AI which is consistent with the operations of A, i.e. for all

f : s, ..., Sn —p s in f, if a1 , b1 E IAL1 , ..., a,,, b,, E 1A1 8 ,, and a1 	b1 , ..., a,,

then fA(al, ..., a,,) 	fA(b l , ..., b,,). Some well-known facts of universal algebra

follow:

Fact 2.3.5 Let - be a congruence on a E-algebra A, then A/ "-' is a well-defined

E-algebra, where IA! i = lAl/ '-' and for all f : si,...,s,, —p s in E and

a1 E 1A1 31 , ... ,an E 1A13,,, fA/.-..([all,..., [an]) = [fA(al,...,a,,)].

Fact 2.3.6 For any set eq of s-equations and E-algebra A there is a least con-

gruence ' 	such that A/ 	eq. eq

Constructors FQRD

In algebraic specifications is common to express implementation relations via the

combination of some constructors {Ehr 81, EKMP 82, ST 88bJ. For this use,

there are some standard constructors used in equational specifications, namely,

free-extension, quotient, restriction to the reachable subalgebra and derive along

a signature morphism.

Chapter 2. Preliminaries 	 43

term Sig[term] Mod [term] Context conditions

FeqSP {Free(A) 	A E Mod[SP]} Sig[SP] =I a; eq C Sen(Ia)

Qeq SP Sig[SP] {A/--7 j A E Mod [SP]} eq ç Sen(Sig[SP])

RGSP Sig[SP] {Reach G (A) I A E Mod [SP]} G c Sorts(Sig[SP])

Note that derive is not included since D is already one of the six SBO's in ASL

and therefore it enjoys institution-independent semantics in contrast td' F,

and R0.

These constructors are powerful enough to describe useful implementation re-

lations [Ehr 81], they have simple model-theoretical semantics and they have been

treated in the literature together with equational specifications for a long time. In

this thesis, generic constructors as defined in 2.2.9 are preferred because of their

institution-independent semantics and their explicit proof-theoretical significance,

nevertheless FQRD constructors will still be considered in some sections where

concrete examples are presented.

Abstraction

Although no abstraction operation has been defined for ASL above, ASL(EQ) is

frequently extended to include an abstraction SBO which closes the class of models

of a specification w.r.t. behavioural equivalence [SW 83, ST 87]. In the algebraic

institution, this is often understood as defining some sorts of a specification to be

non-observable.

The semantics of abstraction will be discussed in detail in chapter 5, both for

the general case and for EQ.

Chapter 2. Preliminaries 	 44

Algebras as functors

Since early work by F.W.Lawvere [Law 63] (cf. [GTWW 75, Poi 86]), there has

been an alternative categorical definition of an algebra.

Given an algebraic signature E = (S, Il), there is a category St E with finite

products, defined as follows:

objects are words w E 5*,

morphisms are tuples of E-terms (t1 , ..., t)(x1) ..., x,) : S1 ... Sm +

where x, is a variable of sort s, for all i = 1, ..., m and t is a term of sort sj

over variables x1, ..., 	for all j= 1, ..., ii,

and composition is substitution

(ti,...,tn)(xi ,...,xm);

= (tflti /yi , ..., 	-, t[t1 /yi , ..., t/y])(x1) ..., Xm)

Intuitively, the objects are sort names and the morphisms are the function

names in E going from the parameter sorts to the result sort. Since morphisms

must be closed under composition, all composite functions must also be included.

Moreover, since functions in E may have no parameters (constants) or more than

one parameter, sort names must be replaced by words of sort names and functions

by tuples of functions.

Note that in the literature, except in [Poi 86], it is customary to consider the

arrows in St, reversed, that is going from the sort of the result to the sorts of the

parameters. In this case StE is closed under finite sums (co-products) instead of

products, but this difference is irrelevant.

Now, E-algebras can be seen as product-preserving functors from StE to the

category of sets Set.

Chapter 2. Preliminaries 	 45

Theorem 2.3.7 (Law 63) The category of E-algebras is isomorphic to the cat-

egory of functors F : St E -+ Set preserving finite products with natural transfor-

mations as morphisms.

This functorial view of algebras will be used in chapter 5 in connection with the

definition of behaviour, and also as a motivation for the category of specifications

considered in chapter 7.

2.4 Derived syntax

Although the syntax of specifications has been fixed above, such a presentation

of specifications is only useful for expressing inference rules or structural proper-

ties in a concise form. The actual writing of specifications becomes tedious and

unreadable unless a derived language or at least a derived syntax is used.

Since its first appearance in [SW 83], ASL has been promoted as a kernel

language upon which real specification languages can be defined. In this sense,

the semantics of languages such as PLUSS [Gau 84, BGM 89] and Extended ML

[ST 86] have been defined in terms of ASL. However, in the examples given in

this thesis we want to use as little extra syntax as possible, that is why we shall

only define a concrete syntax for a few common constructions in ASL(EQ).

1. SP = sorts S {sort names}

operations fl {function names over sorts in S}

axioms 4 {sentences over the signature (S,)}

end

defines SP to be the specification Ae (sci) in ASL(EQ) and any other insti-

tution with algebraic signatures. These specifications are commonly called

basic specifications.

Chapter 2. Preliminaries
	

46

SP = sorts S

hidden-sorts HS (hidden sort names)

operations ci {function names over sorts in S}

hidden-operations HQ {hidden function names over sorts S U HS}

axioms 4 {sentences over (S U HS, ci U H1l)}

end

defines SP to be a basic specification with a part of the signature hidden,

DAaJ e(SUHS,OUHQ) where t is the inclusion t: (S, ci) 	(S U HS, ci U HQ).

Let SP' be a specification over a signature (8', ci'), then

SP = Enrich SF' by

sorts S

operations ci {functions names over sorts in S U S'}

axioms 4 {sentences over (SUS',flufl')}

end

defines SP to be a specification Ab TLSP' where t is the inclusion of the

signature (S', ci') into the extended signature (S U s', ci u ci'). Enrich is

defined for ASL over any institution having algebraic signatures.

Enriched specifications may be written as (A T L)SP' in order to emphasize

each single enrichment. This can be formalized in terms of parameterized

specifications as follows:

Definition 2.4.1 An enrichment by F,-axioms 4D, w.r.t. a signature in -
elusion te : E c_ is a parameterized specification (A X : E. T,, X)

which produces a specification over E when it is applied to a specification

over E. Enrichments are usually written as (AD, TLC).

Chapter 2. Preliminaries
	

47

This notation is particularly useful in the following case where two enrich-

ments are considered. We also use this notation in institutions without

algebraic signatures, where the combination of translation along a signature

morphism and imposing axioms has an effect analogous to enrichment in

EQ.

4. SP = Enrich SP' by

Hidden {Hidden enrichment}

sorts HS

operations HQ

axioms ODh

in {Visible enrichment)

sorts S

operations Il

axioms '1V

end

defines SP to be a specification D,, (Ao T V)(A h TLh)SP' where i, t and

t 0 are inclusions as follows, assuming (S', Il') to be the signature of SP":

Ik: (S',Il') -* (S'U HS, 1'UHQ)

t:(S'UHS,1'UH1l)c_3(S'UHSUS,1i'UH1lU1l)

Note that enriching with the help of some auxiliary sorts and functions re-

suits in a different specification term than enriching a specification with a

part of the signature hidden, which produces D(AVu h TL h; L V)SP'. Al-

though both terms specify the same class of models, the former specification

term is appropriate for those specification transformations defined in chapter

4.

Chapter 2. Preliminaries

Let SP' be a specification over a signature (S', 1'), C and S be disjoint sets

of sorts included in S' and F be a subset of Il' using sorts in S U C, then

SP = Reachable on G using F from S

SP

also written M(G,F,S)SP', defines SP to have as models those models of SP'

in which the carriers of sorts in G are finitely generated by the functions in

F using the carriers of sorts in S. Formally, SP is M(,)SP' where t and a

are signature inclusions as follows:

(5,0) 4 (S u C, F) 4 (S', 1)')

An M(,) operator in EQ, and in particular M(G,F,S), is commonly called a

reachability constraint. Often the same name is used in other institutions

where M(,) is similarly related to reachable or finitely generated models.

In chapter 6, constraints M(, 4) are treated as sentences <<a, t>> in an insti-

tution with constraints (Theorem 6.2.1). In particular, constraints M(G,F,$)

written in the form

Reachable on G using F from S

can be used as sentences in the axioms part of a specification.

SP = Non-observable on NO {Non-observable sorts}

SPI

defines SP to be a specification TO D Q SP where o is an abstraction morphism

shifting sorts in NO from observable to non-observable. The definition of

o and the meaning of T0 D0 will be clear once abstraction morphisms and

behaviours are defined in chapter 5.

Chapter 2. Preliminaries 	 49

2.5 Other institutions

In this thesis results at the institutional level are regarded as exceptions. Most

work studies institution-independent aspects of verification while isolated sections

are expressed mainly in terms of ASL(EQ). However, other common institutions

are also used.

Some results in chapter 6 and many examples through this thesis refer to

institutions which enrich the algebraic institution EQ by adding other kinds of

sentences and extending the satisfaction relation accordingly. In these cases, both

the category of algebraic signatures SIG and the model functor Aig are as in EQ.

Normally the sentences of EQ are enriched with conditional equations, disjunc-

tions, negation, etc.

Technically, it is easier to define the institutions of first order logic FOL and

first order logic with equality FOLEQ, then most institutions of interest are

specializations of FOLEQ (as presented in [GB 84]). In the following a similar

simplified presentation is given:

FOL

Given the category SIG of algebraic signatures, SIGF is a category as follows:

• Objects: Pairs (E, Q) where E = (S,) is a standard algebraic signature,

E E ISIGI, and Q is a S-sorted set where each Q5 is a set of binary predicate

symbols.

• Morphisms: Pairs (a,f) : (1, Qi) - (2, Q2) where a : 	-* 2 is an

algebraic signature morphism and f : Qi -p Q2 a function mapping each

r E Q1 3 to a predicate f(r) E Q2a (s) for all s E S.

Chapter 2. Preliminaries
	

50

For any object H = (E, Q) in ISIGF I, we define a II-structure A to consist of

a E-algebra AE and a relation rA c IA E I s x IAE I 8 for each r E Q3.

Let A and B be two 11-structures. A structure morphism h : A - B is a

E-homomorphism h : AE -p B E such that for all r E Q3 in H and (a, b) E rA,

(h3 (a), h3 (b)) E rB.

The structures over an object H together with their structure morphisms form

a category Str(H).

Given a morphism r = (o,f) : H -+ H' in SIGF, the r-reduct of a H'-structure

A' is defined as the II-structure A'IT such that (A'I T) E = (A') I, and rAil,. = f(r)As.

Moreover, the r-reduct of a H'-structure morphism h' is the II-structure morphism

WI T = h'1 1i7

Hence j,- is a functor from Str(H') to Str(H) and Str : SIGF -p Cat°7' is the

functor mapping each object H in SIGF to the category of structures Str(H) and

each morphism r in SIGF to the reduct functor .4-.

The set of first order formulae over an object H = (, Q) in SIGp and an

S-sorted set of variables X is recursively defined as the smallest set Fol(H) such

that:

for all ti, t2 E I Tr(X)I,, and r E Q3, r(tl, t2) is in Fol(H).

true and false are in Fol(H).

-'F is in Fol(H), provided F E Fol(H).

Fl A F2 and Fl V F2 are in Fol(ll), provided Fl, P2 E Fol(IT).

5. V : s. F and 3 x : s. F are in Fol(H), provided FE Fol(H) and x E X.

Chapter 2. Preliminaries 	 .51

First order sentences over H, Fos(H), are those formulae in Fol(fl) without free

variables, i.e. every variable in a sentence occurs in the scope of a quantifier which

binds that variable.

Satisfaction between a first order II-formulae and a H-structure A w.r.t. a

valuation ii: TE(X) - AE is defined as follows:

A,v = r(tl,t2) iff (v(tl), v(t2)) ErA.

A, JI = true and A, v K false.

A,zi = Fl A F2 if A,zi = Fl and A, z' = F2.

A, z' = El V F2 if A, ii = Fl or A, ii = F2.

A,v-'FiffA,vF.

A,v = V x : s.F if for all v E I A F, I 8 , A,z'(,) = F.

A, ii 	x: s. F if there exists a value v E IA E I 3 , A, '(x,v) 	F.

where 	: TE(X) - Ar, is the valuation which maps x to v and the rest of the

variables x' E X to ti(z ').

Satisfaction between a first order 11-sentence V and a H-structure A is defined

as follows:

A=ça4 	A, v i

where u, is the unique valuation v : T - A:.

First order sentences can be translated along a morphism r in Sf CF Dv trans-

lating the terms and variables involved in each sentence, analogously to the va:

that terms and variables in equations are translated along algebraic signature mor-

phisms. These translations preserve satisfaction and therefore, SIG-. Str. Fos and

= form an institution.

Chapter 2. Preliminaries 	 52

We shall refer to this institution as the institution of first order logic, denoted

FOL. Compared to the standard institution of multisorted first order logic (see

[GB 84]), this is a simplified version restricting predicates to be binary and with

arguments of the same sort.

First order logic with equality, FOLEQ, is another institution similar to FOL

but with a distinguished infix predicate =, over each sort s in all signatures.

This predicate is called equality and it must be preserved by signature morphisms,

7-(=3) = r(a). Moreover, every structure in FOLEQ must interpret the equality

predicate as the identity relation.

If we restrict the predicates of a FOLEQ structure to only the distinguished

equality predicate, structures and first order signatures are in a one-to-one corre-

spondence with algebras and algebraic signatures respectively. In the following,

we shall use the term ALG for the institution whose signatures are algebraic

signatures, models are algebras, sentences are first order sentences using a single

binary predicate = over each sort and satisfaction is as in FOLEQ, i.e. = must

be interpreted as identity on each sort. In fact, taking ALG and limiting the

logical connectives used in first order sentences we can get institutions such as

conditional equational logic or equational logic.

Most examples, unless limitation to EQ is necessary, are given in ALG and

the derived syntax defined in section 2.4 for ASL(EQ) is used for ASL(ALG).

Occasionally, some examples in sections 5.4.2 and 6.4.3 use FOL.

Chapter 2. Preliminaries 	 53

2.6 Entailment in ASL

ASL, like any other specification language, needs a notion of implementation or re-

finement by means of which we can state that one specification refines/ implements

another specification. This question has been deeply studied in [ST 88b]..

Here, we choose a notation closer to logic and say that SF2 entails SP1, writ-

ten SP2 = SF1, if Sig[SP2] = Sig[SP1] and Mod[SP2} 9 Mod[SP1]. Including

constructors and abstraction in our specification language allows complex rela-

tions of implementation such as the constructor and abstractor implementations

described in [ST 88b] to be viewed as entailments. For example, SP2 = SP1 if

SP1 -- SP2 in the notation of [ST 88a].

This thesis is mostly dedicated to finding an inference system for entailment.

Since this task depends critically on the complexity of the structure of the an-

tecedent SP2 and the consequent SP1, we shall increase their complexities step

by step. For example:

• ASL = ASL refers to entailments where the antecedent and the consequent

are written using the six basic SBO's. This corresponds to so-called refine-

ments in [ST 88b] and implementations in [SW 831.

• k+ASL = ASL refers to entailments where the antecedent can make use

of the SBO's in ASL plus the constructors (generic constructors (F, A) re-

lated to a programming language and/or FQRD constructors in ASL(EQ)),

whereas the consequent can only use the six basic SBO's. This case includes

constructor implementations as in [ST 88b].

• k+ASL = c + ASL refers to entailments as in the previous case but a!-

lowing the consequent to include abstraction. This case includes abstractor

implementations as in [ST 88b].

Chapter 2. Preliminaries 	 54

• ASL J= A refers to entailments where the consequent is a set of sentences

(a specification using only A t and es as specification building operations).

This refers to theorem proving in ASL; in particular SP = is a special

case where the consequent is A{}fE for a certain signature E.

• DATU = ATU refers to entailments whose antecedent uses D, A, T, U

and cr, whereas the consequent can only use A, T a U and CE.

At the end of the thesis there is an index referring to the different entailments

considered and where they are treated. In general, this thesis progresses from the

easy to the difficult cases.

Chapter 3

Theorem proving

3.1 Introduction

Proving theorems in the context of specifications can have two purposes. In the

first place, proving that all models of a specification satisfy a certain property

helps us to understand what the specification means. This is especially useful in

specification design when we want to check that our specifications mean what we

expect. Consider for example a specification of sets in terms of emptyset, singleton

and union, as in figure 3-1. Taking the finitely generated sets (Fin-Set) we obtain

a specification of finite sets; however, this might not be clear to the user.

Alternatively, sets can be specified in terms of 0 and insert as if they were

lists with two extra axioms identifying those lists which differ in the order of

the elements or the number of occurrences of an element (commutativity and

idempotence of insertion). We may wonder if in the specification FinSet, given

above, an operation insert defined as

V e:elem; S:set. insert(e, S) = {e} U S

satisfies properties such as commutativity and idempotence. If this is the case we

would feel more confident about our specification Fin-Set.

55

Chapter 3. Theorem proving
	

56

Set = 	sorts elem, set

operations

0: set

U_: set, set -> set

{..}: elem -> set

axioms

V S:set. S U 0 = S

V S:set. S U S = S

V Si, S2:set. Si U S2 = S2 U Si

V Si, S2, S3:set. (Si U S2) U S3 = Si U (S2 U S3)

end

Fin-Set = Reachable on {set} using 10, _U_, {.j} from {elem)

Set

Figure 3-1: Sets of elements

In the second place, theorem proving plays an important role in proving entail-

ments between specifications and, therefore, in proving correctness of implemen-

tations.

In order to prove a specification entailment correct it must be proven that all

the properties required in the consequent are satisfied by the antecedent. These

properties are not exclusively axioms, they may include reachability constraints

and other kinds of requirements depending on the specification language consid-

ered. Nevertheless, axioms are going to be an important part of the requirements

and therefore, a large amount of theorem proving is commonly involved in proofs

of correctness of entailments.

Consider for example the specifications Set and FinSet and an implementation

by lists. If we take Set, the specification (consequent) is just a collection of axioms

and correctness can be proven by proving each axiom in Set to be a theorem of

Chapter 3. Theorem proving 	 57

the implementation (antecedent). If we impose a reachability constraint on Set,

we obtain Fin-Set which cannot be reduced to a collection of axioms (not even

an infinite one); however, any proof of correctness has to include a proof that the

axioms in Set hold in the implementation independently of how the reachability

constraint is verified.

Because of the double use of theorem proving, we are not only interested in

how to prove theorems from specifications but also to which extent a specification

(consequent) can be reduced to a collection of axioms, which could then be shown

to be a consequence of another specification, the antecedent. This idea is usually

formalized in terms of reduction rules which transform structured specifications

into plain lists of axioms.

In this chapter, we are concerned with theorem proving for k+ASL; in other

words, we restrict the general problem SF2 = SF1 to the case where SP2 is a

specification in the language k+ASL and the consequent SP1 is a set of axioms,

i.e. has the form Ater,.

In the following sections inference rules for the different SBO's are given to

allow us to infer theorems from specifications in k+ASL. Some reduction rules will

also be given; however, it is not necessary to give many of these explicitly since the

definition of an exact inference rule (see 3.3.11 below) characterizes inference rules

which can be used to transform structured specifications into equivalent collections

of axioms.

Chapter 3. Theorem proving 	 58

3.2 Proving ATUI=A

In this section we focus on antecedents in ATU. ATU is the simplest structured

specification language since all specifications can be reduced to an equivalent col-

lection of axioms, i.e. a specification of the form A t er,; in this sense it can be said

that ATU is equivalent to A.

The reduction can be easily done by repeatedly applying the following equiv-

alences from left to right:

TA I,eE = A)EEl 	for a: E - 	 T,eE = e' 	for o, : E -*

AlcE U A 4 e = A ,lu2eE 	 er. U SP = SP

AlA2eE = A1u2€E 	 SP U CE = SP

This fact has been presented in the literature under different names. These equiva-

lences are considered as definitions of T and U in presentation semantics [EM 851 1

or in module algebra [BHK 86] but, in specification languages with model-oriented

semantics such as ASL, they take the form of equivalences. Specifications of the

form AeE are called flat specification and the reduction from arbitrary struc-

tured specifications to flat specifications is called flattening.

The equivalence between ATU and A allows us to reduce theorem proving

over ATU to theorem proving over A, transferring the inference to the underlying

logic since A$1EE = A <~2 cr, holds in ASL(I) if and only if 11 I=E 12 with the

satisfaction relation = of I. Hence, we can use the inference system F_I available

for that institution.

'Called first level semantics in [EM 85].

	

Chapter 3. Theorem proving 	 01

The structure provided by T and U can be removed before starting to prove

theorems. However, the structure may be useful in guiding the theorem prover

towards the premises needed in the proof of a theorem (see [SB 83] for details).

For this reason, although we are glad to know that ATU-specifications can be

reduced to A-specifications, we shall not always do that reduction in our proofs.

We prefer to give an inference system strong enough to perform such reductions

if the user wants but he can also ignore them if it is convenient.

This feature of T and U can be used for solving ATU J= A but also fr solving

ATU = ATU. This has no analogy in the other SBO's. Neither M, Da nor

abstraction can be reduced (eliminated) in a language of presentations; that is why

verifying specification entailments involving them is difficult, particularly if M,

D, or abstraction appear in the consequent (see chapters 6, 4 and 5 respectively).

3.3 Proving ASL = A

In this section we are concerned with proving theorems from ASL specifications.

Some research in [ST 88a] proved the following inference rules to be sound:

	

SP1Hp 	 SP2F-ço
SP1 USP2F- 	 SP1 USP2F-

SPI-p 	 SPFo) 	 SPF-
TC SP F- a() 	D, SPF 	 M()SP H

The main task of this section is to complete this list of rules and to provide a

characterization of them in order to know how good they are and, in particular,

if they give rise to reductions of specifications to presentations. First, we give

some general definitions about how a theory relates to a class of models and,

analogously, how an inference rule relates to a specification building operation.

Chapter 3. Theorem proving 	 NEI

3.3.1 Theories versus model classes

In general, a set of sentences 4D denotes the class of models satisfying I but some

classes of models cannot be represented by a set of sentences and, in particular, this

turns out to be the case for the model classes of some specifications in ASL(EQ).

In this section we study the possible relations between a class of E-models F and

a theory L over E which tries to capture the properties of F in an institution

I = (SIG, Mod, Sen, 1=).

Definition 3.3.1 Given a class of E-models F, we define Th[]P] as

Th[F] = {w E Sen(E) I F E c}

Given a set of E-sentences , we define Mod[] as

Mod[] = {M E IMod()I I M I=E }

Then, the closure of a set of E-sentences under semantic entailment is the set

of>-sentences Cl() = Th[Mod[]].

A theory A over E is a set of E-sentences closed under semantic entailment;

i.e. CI(A) =A.

Corollary 3.3.2 For every two theories L and L. 2 , satisfaction between theories.

Al HE L2, is equivalent to theory inclusion, Al D L2.

The operators Th and Mod on classes of models and sets of sentences form a

Galois connection [BC So].

In the following we define some relations between a class of models and a theory

which tries to capture its properties.

Chapter 3. Theorem proving 	 61

Definition 3.3.3 Given a class of E-models F and a theory L over

A is sound w.r.t. F if t C Th[F].

L is complete w.r.t. F if LX D Th[F].

L is M-sound w.r.t. F if Mod[A] D F.

A is M-complete w.r.t. F if Mod[i] ç r.

When the inclusions are proper we use the terms strictly sound, strictly com-

plete, and so on.

is exact w.r.t. F if Mod[i] = F.

Definition 3.3.4 Given a specification SP and a theory L over Sig[SP], L is

sound (complete, M-sound, M-complete or exact) w.r.t. to SP if A is

sound (complete, M-sound, M-complete or exact) w.r.t. Mod[SPJ.

These definitions are related by the following propositions.

Proposition 3.3.5 L is sound w.r.t. F iffL is M-sound w.r.t. F.

Proposition 3.3.6 If A is M-complete w.r.t. F then A is complete w.r.t. F.

Corollary 3.3.7 If A is exact w.r.t. F then L is sound and complete w.r.t. F.

These follow from standard properties of Galois connections and from the defini-

tion of theory. For example:

Proof of Proposition 3.3.5 If A is sound w.r.t. F then ç Th[F]. Applying

Mod on both sides gives Mod[A] D Mod[Th{F]], and recalling that Mod[Th[F]] D F

we get Mod[A] 2 F which is the definition of M-sound.

If L is M-sound w.r.t. F then Mod[L] 2 F. Applying Th on both sides, and

recalling that L c Th[Mod[i]] we get A c Th[F] which is the definition of sound.

0

Chapter 3. Theorem proving
	

62

Note that proposition 3.3.5 is a consequence of the Galois connection since

F C Mod[Th[F]] and 0 C Th[Mod[4}] for arbitrary classes of models F and sets

of sentences 1. The inclusion in the opposite direction does not always bold, i.e.

there are generally more models in the closure Mod[Th[F}] than in F. However,

since theories are already closed under entailment Th[Mod[L\]] C A holds, hence

proposition 3.3.6.

As a result of the difference between complete and M-complete we flEd that a

theory A can relate to a class of models F in six different possible ways: can be

exact; sound and complete but not exact; sound but not complete; M-complete

but not sound; complete but neither M-complete nor sound; or not related to F.

But not all these cases can occur for the same class of models.

Definition 3.3.8 A class of models F is axiomatizable if F = Mod[Th[F]].

Proposition 3.3.9 A class of models F is axiomatizable if every complete theory

w.r.t. F is also M-complete w.r.t. F.

Proof Assume every theory L complete w.r.t. F is also M-complete w.r.t. F.

Take L to be Th[F]. Trivially, Th[I'] 9 Th[F], hence Th[F] is complete w.r.t. F.

By the assumption, Th[F] must also be M-complete w.r.t. F, i.e. Mod[Th[JT]] C F.

Finally, since by definition of Th and Mod it holds that F c Mod[Th[]P]] we

conclude that Mod[Th[F]] = F.

In the other direction, suppose F is axiomatizable. If A is a complete theory

w.r.t. F then L D Th[F]. Applying Mod on both sides, Mod[] C Mod[ThF]J = F.

hence L is also M-complete w.r.t. F. 0

Now we can classify theories again. For an axiomatizable class of models a

theory can be exact, sound (and M-sound) but not complete, complete (and M-

complete) but not sound, or not related.

Chapter 3. Theorem proving
	

63

On the other hand, if a class of models is not axiomatizable all the relations

are possible except the exact one.

3.3.2 Inference rules versus SBO's

Inference rules are rules which allow us to infer a theory from another theory.

1
Definition 3.3.10 An inference rule A from E 1 to E 2 is a binary relation be-

tween sets of E 1 -sentences and E2 -sentences.

The theory iinf inferred from a theory A using A is z11j = Cl({çol

L. (,p) E A}).

Rules such as
.cPI- w

1a4)r r orM

used in [ST 88a] have an immediate interpretation as inference rules in this sense:

A = {({ça},u(ço)) I W is a Sig [SP] -sentence}

Similarly, expressions such as .SP I- p (provided P(,)) denote inference

rules. In this case, the inferred sentences p are independent of the specification

to which is applied. The inference rule denoted by such an expression is

A = {(ø,ço) I P(o)}

For example, ASP F- (if ço E) denotes an inference rule whose inferred theory

is the closure of &

Note that inference rules infer theories, therefore, we do not consider the actual

sentences that a rule can deliver but only their closure. If we say that a rule

.cp i- f((I, '

'rut "

0

:rc 0 WA 	VI CVXLE

I- g)

s 0v-fc1c1cL

t.A& WLL CS oJ 1.t-4 iv f1

Chapter 3. Theorem proving
	

64

is complete, this means, in practice, that it is complete when it is used together

with rules such as

SPFço1 SPI-ço2
SPFrp

(1,2 I-' 2)

for a sound and complete inference system P.

Now, we can extend the definitions given for theories w.r.t. specifications to

definitions for inference rules w.r.t. SBO's:

Definition 3.3.11 Given a unary SBO we say that:

An inference rule A is sound w.r.t. , if whenever it is applied to a theory L

which is sound w.r.t. a specification SP (i.e. w.r.t. Mod[SP]), it yields a sound

theory w.r.t. SP (i.e. w.r.t. Mod[eSP]).

An inference rule A is M-complete w.r.t. , if whenever it is applied to a

theory A which is M-complete w.r.t. a specification SP, it yields an M-complete

theory w.r.t. LSP.

An inference rule A is complete w.r.t. , if whenever it is applied to a theory

A which is complete w.r.t. a specification SP, it yields a complete theory w.r.t.

tsP.

An inference rule A is exact w.r.t. , if whenever it is applied to a theory

which is exact w.r.t. a specification SP, it yields an exact theory w.r.t. SP

(equivalently, A is exact w.r.t. if A is sound and M-complete w.r.t.).

For binary or n-ary SBO's we can easily extend the definitions of inference

rule and inferred theory in order to infer a theory from several theories. Then.

the definition of soundness (M-completeness, completeness or exactness) of the

inference rule requires sound (M-complete, complete or exact) theories for each of

the arguments.

Chapter 3. Theorem proving 	 65

With reference to the presentation of an inference rule, it is worth noticing that

the union of inference rules between the same signatures is also an inference rule.

Therefore, we can also characterize collections of inference rules as sound, com-

plete, M-complete or exact, meaning that the union of them is sound, complete,

M-complete or exact.

The inference rules given in [ST 88a] for U, T, D, and M(), plus some others

for A, can be characterized as follows:

Theorem 3.3.12

SP1}-ço 	 SP2Fp
SP1USP2Fp 	SP1USP2Fp

SPF'
T. T SP I- a(ço)

SP F 0' (W)
DSPF

SPFçc'
M<,>SP F ça

A,SPFcp (if cpE)

Sound and M-complete (exact).

Sound and M-complete (exact).

Sound and complete.

Sound.

Sound and M-complete (exact).

Proof

SP1 F- a 	 SP2 F-
_____ is a sound and M-complete inference

SP1USP2F.p 	SP1USP2Fço

rule w.r.t. U.

Chapter 3. Theorem proving

Let Al and L2 be M-complete theories w.r.t. SP1 and SP2, i.e. Mod[i] c

Mod[SPi] for i E 11, 21. The inferred theory is L1j = Cl(iM U L2). Then,

by monotonicity of the intersection, Mod[L1j fl Mod[L2] 9 Mod[SP1]

Mod[SP2] = Mod[SP1 U SP21, and by the definition of the models of a

theory

Mod[IM] fl Mod[A2] = Mod[IM U L2] = Mod[Cl(/M U L2)]

We conclude that Ai,,f is an M-complete theory for SP1 U SP2.

Analogously, and considering the inclusion in the opposite way the inference

rule can be proved M-sound and therefore sound.

	

SP I- W 	is a sound and M-complete inference rule w.r.t. Ti,,.
TSP F a(p)

Given an M-complete theory Li for SP, the inferred theory has models

Mod[L jJ = {A E IMod(1 o J A = Cl(o(L))} or, equivalently, {A E

IMod(Ia)I I A = a(L)} which by the satisfaction condition is

{A E IMod(Ia)I I A = L}

Finally, by definition of the models of a theory, the same class of models can

be expressed as {A E IMod(Io)I I A. E Mod [A]} which, by M-completeness

of A , is included in {A E IMod(Ic)I IAI E Mod[SP]} = Mod[TSP}. We

conclude that ij is an M-complete theory for TSP.

Analogously, and considering the inclusion in the opposite way the inference

rule can be proved M-sound and therefore sound.

SP F a()

	

D, SP F 	is a sound and complete inference rule w.r.t. Di,.

Let be A a sound theory w.r.t. SP. The inferred theory is 	Cl(cr'L)

where 	'L\ =j(pi E Sen(J.a) I () E z}. Then,

Chapter 3. Theorem proving 	 67

Mod[SPJ C Mod[L]
	

since A is sound w.r.t. SP

C Mod[cr(cr 1 L\)]
	

by definition of o,- 1 A

= {A E IMod(1o)I IA 1= a(o1L)}

= {A e IMod(Ia)I I Al , 1= c,._1}
	

by the satisfaction condition

Applying the o-reduct functor to both sides

Mod[DSP] C f Al, I A E IMod(Io)I and Al, H o._ 1 }

C {A E IMod(la)I I A = o'}

= Mod[a 1 z]

= Mod [L\1]

therefore the rule is sound.

On the other hand, let L be a complete theory w.r.t. SP, Th[Mod[SP]] C

L, and consider an arbitrary sentence E Th[Mod[DSP]]. By definition

of Th, every model of DC SP satisfies W. Hence, for all M E Mod[SP],

Ml 1= W. Applying the satisfaction condition, M = oa). Since M is

an arbitrary model of SP, we can generalize to Mod[SPJ = a(). Hence,

cr() E Th[Mod[SP}] 9 A and by definition of A jq , ° E Ajq. Generalizing

again, we obtain that Th[Mod[DSP]I c Ajq as desired.

SPHp
M()SP H 	is a sound inference rule w.r.t.

For all sound theories A for SP, since M is a selector, Mod[M() SP} c
Mod[SP] C Mod[A] = Mod[A].

SPF-
 ASP F- (if E) 	is a sound and M-complete in-

ASP H

ference rule w.r.t. A.

Chapter 3. Theorem proving 	 M.

For every M-complete L for SP, the inferred theory &,,f = CI(A U 4)) has

models Mod[L j] = {A E Mod[L}l A = 4)}. Considering the definition

of A and the M-completeness of L it follows that Mod[& 1] c {A E

Mod[SP] I A = 4)} = Mod[ASP].

Analogously, and considering the inclusion in the opposite way the inference

rule can be proved M-sound and therefore sound.

Technically, our version of ASL differs from [ST 88a] in the definition of A t as

a SBO instead of using basic specifications. For this reason, we need an extra rule

of inference for fr . In this case, since 6E is a nullary SBO, we can directly present

a theory instead of an inference rule.

Proposition 3.3.13 The set of tautologies over E is an exact theory w.r.t. e.

Proof Trivial since all models satisfy tautologies.

The most interesting aspect of this characterization is that the completeness of

the inference rule for D does not entail M-completeness. This can be shown by

an example from [BHK 86] which may be translated into ASL over the institution

ALG as in figure 3-2.

The models of NStNat are the non-standard models of the natural numbers.

It is well-known that there exist non-standard models of the natural numbers ele-

mentarily equivalent to the standard model, therefore the class of models denoted

by NStNat is not axiomatizable in first order logic.

Summing up, we have a specification SP with an exact theory (SP is the spec-

ification NStNat before hiding reach and inf), and a non-axiomatizable speci-

fication of the form D.J SP, the specification NStNat. In this situation, no exact

rule for Da can exist since such a rule should infer an exact theory for DU SP from

an exact theory for SP.

Chapter 3. Theorem proving

NStNat = sorts flat

hidden-sorts

operations

0: nat

suc: nat -> nat

hidden-operations

reach: nat -> nat

inf: nat

axioms

V x:nat. 036 suc(x)

V x,y:nat. (suc(x)=suc(y)) = (x=y)

reach(0)=O

V x:nat. (reach(x)=0) = (reach(suc(x))=O)

reach(inf)=suc(0)

end

Figure 3-2: Non-standard natural numbers

Chapter 3. Theorem proving

In specification languages with (first order) theory-based semantics such as

LARCH, the models of a specification analogous to NStNat include the standard

model of the natural numbers against all intuition.

Looking at the inference rules given above, we may feel disappointed by the rule

for M(). The relation of M(,) to term generated models and therefore to induc-

tion seems clear, but no rule takes advantage of that. In fact, an induction rule

cannot be treated at the same level as the other rules because it is not iistitution

independent.

Induction, in contrast to the rules given above, assumes the existence of terms

and therefore of sorts and algebraic-like signatures. Moreover, by its institution

independent definition, M() only happens to impose finite term generation insofar

as the morphisms in each category, Mod(), of models over a signature E are

functions over the carriers of each sort. That means that our assumptions are not

only on the nature of the signatures and the models but also on the morphisms

between the models. Consider for example, a category of models over E whose

objects are algebras, Alg(E), but whose morphisms are not homomorphisms but

an ordering according to the cardinality of the carriers. Then, M(,) does not have

anything to do with term generated models or induction.

Nevertheless, we are especially interested in those cases where M() is related

to induction. In the following we give the obvious rule for M() in an institution

such as FOLEQ.

Induction rule

As mentioned in the preliminaries, most constraints M() are of the form M(G,F,S)

when they refer to an institution where constraints are interpreted as reachability

constraints.

Chapter 3. Theorem proving 	 71

Proving inductive consequences has been extensively treated in the literature.

\Ve shall only give a brief account of the results.

A second order induction axiom can fully express the effect of a reachability

constraint on one sort; e.g. in the case of arithmetic M({ fla },{O,, c},O) amounts to

VP. (P(0) AV x. (P(x) = P(suc(x)))) = (V x. P(x))

However, if the second order axiom is replaced by a first order schema

(A(0) A Vx. (A(x) => A(suc(x)))) = Vx. A(x) for all first order formulae A

restricting A to be a predicate expressible in first order logic, completeness is lost

by Gödel's incompleteness theorem.

This induction schema is an example of structural induction where the gener-

ated terms are ordered by the relation between a term and its immediate subterms.

The idea of translating a reachability constraint into a structural induction schema

does not rule out using other induction schemes such as complete induction:

Vx. (Vz. (z <x = A(z)) = A(x)) = Vx. A(x) for all first order formulae A

which can be derived from the schema of structural induction (see [Men 711

page 126).

In general, structural induction is extensively used in computer science [Bur 69,

BM 79, CC 88] but it is not always so simple as in the case of arithmetic since we

must deal with multisorted structures with possibly mutually recursive generators.

Frequently induction must be nested or simultaneously done on several sorts and

often auxiliary predicates for the sorts of the parameters must be guessed by

heuristics (see [BM 79] for details).

Consider for example a specification SP with sorts {s 1, s2, s3, s4} where the

latter two are constrained by M(G,F,S) with

Chapter 3. Theorem proving 	 72

G={s3,s4} 	F={f1:s1—s3, 	S={sl,s2}

f2: s2, s3 -* s4,

13: 53,54 -* s4}

In this case we can simultaneously prove predicates Q,3 and QA by induction as

follows

SP F Vx : sl. Q53 (f1(x))

SP F V : s2; y: s3. Q8(y) =. Q54 (f2(x, y))

SP F Vy3 : s3; y4 : A. (Q,3 (y3)A Q.4 (y4)) 	Q34(f3(y3, y4
M(G,F,S)SP F (Vy: s3. Q8 (y)) A (Vy: A. QA (Y))

After these considerations a general structural induction rule for M(G,F,S) can

be defined as follows.

Proposition 3.3.14 Given a specification SP over a set of sorts including dis-

joint sets S (basic sorts) and G (generated sorts), the rule

SP F ASEGAO PEFS V • : S, -9: G. (()= Q8(°p()))
M(G,F,S)SP F ASEGVY : s.Q,(y)

is sound where Q is a G-indexed set of predicates, Y a S-sorted sequence of vari-

ables, 	a G-sorted sequence of variables, 	is the concatenation of 7 and , F.

those operations in F delivering a value of sort s, and 	the conjunction of the

appropriate predicates in Q applied to a given G-sorted sequence of variables.

Proof We shall simultaneously prove that

V y : s.Q8 (y)

holds for the models of M(G,F,S)SP for all s E G assuming that the premises of

the rule hold for the models of SP.

Since s is a generated sort, by definition of M(a,F,$) in EQ, every value a of

sort s in G must be the value of a term ta E IT(aus,F)()I for an S-sorted set of

Chapter 3. Theorem proving 	 73

variables 7. Since ta uses only the function symbols in F, we can substitute the

conclusion V y : s. Q, (y) by the schema V: S. Q 3 (t()) for an arbitrary term t of

sort s using only the function symbols in F.

Assuming that all the premises in the rule hold, we start structural induction

on t()

• Let the term t() be a constant c of sort s. Then, Q,(c) holds since it is

among the premises of the form (() = Q8 (op(i))) for empty and y.

• Let t() be a term op(, t1 (jfl, ..., t(xy)), with subterms t1 , ..., t,, of

sorts s1 , ..., Sn in G, S-sorted sequences of variables , ..., 	and G-sorted

sequences of variables 	and op E F. By induction hypothesis,

predicates Q hold for the respective subterms, i.e.

...,: S. T1 , ..., : G. Q31 (ti (j)) A ... A Q8 (t(xy))

Moreover, considering the premise

V: S. Yi : s 1 y, : s,. (Q31 (y) A ... A Q.. (y.)) = Q8 (op (,y1 , ... , y))

in the rule, we conclude that

G.

Finally, since Q3 (t()) holds for all terms t using function symbols in F and

variables in 5, we conclude that

= Vy : s.Q3 (y)

El

This rule looks very demanding since properties for generated sorts can only

be proven simultaneously with a property for each generated sort. In practice,

Chapter 3. Theorem proving 	 74

if we are interested in proving Vx : s. P(x), a complete family Q with Q, = P

can be chosen. In the example above, properties for s3 can be proven by taking

Q true since no value of s3 can be generated from the values of s4. However.

in general other Q,i may be needed and theorem provers must undertake some

synthesis of auxiliary predicates, see e.g. Boyer-Moore's theorem prover [BM 79].

Structural induction is a first order schema. In ASL(EQ) such a schema cannot

be expressed as it is above since no quantifiers or implications are available in EQ.

In this case, structural induction has to be moved to the metalanguage.

Despite the fact that other induction schemes can be explicitly derived from

structural induction, the system is bound to be incomplete due to basic results of

mathematical logic. We shall call those systems which fail to be incomplete only

because of induction satisfactory systems, in order to distinguish them from

other - generally worse - incomplete systems.

3.4 Proving k+ASL = A

In order to prove theorems from specifications with constructors, a few more infer-

ence rules are given. Generic constructors and FQR D- constructors are considered,

however complete rules are never attained.

Generic constructors (P, A)

Generic constructors come with a sound inference rule embedded in their defini-

tion

Chapter 3. Theorem proving
	

75

Proposition 3.4.1

ence rule.

SP I-

(P,A)SP I-
provided ((,97) e A is a sound infer-

Soundness is trivial by definition. The incompleteness of the rule is also clear

since there is no way to know what the program P really -does, apart from what

is recorded in A.

The advantages of such constructors are methodological. Carrying A allows us

to treat the program P as a black box: Whatever the program P does, it will be

unknown unless it is explicitly asserted in A. This restricts greatly the use we can

make of P but it makes sure that, whenever it is used, all that we need to know

(prove) about it is in A.

FQRD-constructors

The standard algebraic constructors FQRD in EQ are the most well-known set of

constructors. Although they make sense only in the context of an algebraic-like

institution, some details are worth giving.

Contrary to generic constructors such as (P, A), constructors in FQRD are,

essentially, model-theoretical operations. For this reason, inference rules for F, Q

and R (D has already been treated at the institution-independent level) are scarce

and may depend on awkward side conditions.

Proposition 3.4.2 eq F VX. tl = t2

Qeq SP F VX. ti = t2
is a sound inference rule.

Proof By definition of quotient Al eq1= eq for all A E Mod[SP], then by

soundness of equational logic eq F VX. ti = t2 implies that Al .-'J= VX. t = t2

for all A E Mod[SP], hence QCq SP VX. ti = 12. 0

Chapter 3. Theorem proving
	

76

tl=t2 Proposition 3.4.3 	SPI- VX. 	 is a sound inference rule.
Qeq SP F VX. ti = t2

Proof Let A be a model of SP and a congruence on A, and assume that

A=VX.t1=t2 but Al, VX.t1=i2

Then, there must exist a valuation v.... : Ts9[sp](X) - 	such that A/', V.....

ti = t2. Define ji : Ts19[sp](X) - A to be a valuation which delivers for each

x E X a representative of v.....(x), i.e. [v(x)] =

Since congruences commute w.r.t. all operations in A, v,...(tl) = [v(tl)J and

consequently [v(tl)J 54 [v(t2)] so their representatives must be different v(tl)

v(t2), hence

A,v K II = t2

Thus A K VX. tl = t2, which is a contradiction. 0

SP F VX. 11 = t2
Proposition 3.4.4 	RGSP I- VX. ti = t2 	is a sound inference rule.

Proof Let A be a model of SP and A' a subalgebra of A, and assume that

A=VX.t1=t2 but A'&VX.t1=t2

Then, there must exist a valuation v' such that A', xi' K ti = t2. Define xi

TS91SPJ(X) -p A to be a valuation which extends xi ' to A, i.e. v(x) = v(x) for all

x E X.

Finally, since the interpretation of the function symbols in A and A' is the

same when applied to values existing in the suhalgebra A' we conclude that

v(tl) = v'(tl) 	zi'(t2) = v(tl)

Hence, A, xi K 11 = t2. Thus A K VX. tl = 12, which is a contradiction. 0

eq F VX. 11 = t2
Proposition 3.4.5 	eq Sp F VX. ti = 12 	is a sound inference rule.

Chapter 3. Theorem proving 	 77

Proof By definition, for a : E -p E', Freer : A1g(>) -p Mod[(E', eq)]. Then, it

eq holds that Mod[FSP] C Mod[(E', eq)] and since Mod[(E', eq)] = Mod[Cl(eq)] it

follows that all semantic consequences of eq hold in Mod[FSP]. By soundness

of equational logic the rule is sound. 0

A free extension FSP is sufficiently complete if it does not add new values to

the old sorts, although it can confuse (quotient) some of the old values. Formally,

is sufficiently complete if the unit associated to the pair 	and 	for all

eq A E Mod[SP] is a surjective homomorphism from A to (Free" A)I,.

A free extension FSP is consistent (or hierarchically consistent) if it pre-

serves the old values of the old sorts along the extension, although it may add new

ones. Formally, FSP is consistent if the unit associated to the pair 	and

for all A € Mod[SP] is a injective homomorphism from A to (FreeA)I.

Note that these definitions generalize the standard definitions of consistent and

sufficiently complete free extension which refer exclusively to the reachable models

of SP or, equivalently, to its initial model (see [Ber 87] for discussion).

Proposition 3.4.6 SPFVX. tl=t2
I- a(VX. ti = t2)

is a sound inference rule

provided FSP is sufficiently complete and consistent.

Proof If a free extension is sufficiently complete and consistent then it preserves

the meaning of the symbols in SP. Formally, the unit associated to the pair F

and 4 for all A E Mod[SP} is an isomorphism from A to (Free,"A)I.

VA E Mod [SP]. (FreeA)l 	A

Considering an arbitrary model A E Mod[SP] and an equation VX. tl = t2,

if A = VX.tl = t2 then (Freeeq 	1= VX. tl = t2 and, by the satisfaction or

condition, Free eq A= (V X. 11 = t2). o

Chapter 3. Theorem proving 	 78

3.5 Specification entailment

The main conclusion that can be extracted from the inference rules given in this

chapter and their characterizations is the following:

Proofs of specification entailment based on reducing specifications to equivalent

theories are of very limited use.

In fact, we can only expect an exact reduction of specifications to theories

for ATU-specifications, since no other SBO has an exact rule. This result was

already expected due to the greater expressive power of specifications in ASL(I)

than common theories in I for common institutions used in formal specification.

This result shows the most striking difference, from a proof theoretic stand-

point, between ASL and other common specification languages where semantics

are directly given in terms of presentations or theories.

Once the idea of reducing specifications to theories has been discarded, emphasis

has been put on the characterization of some inference rules (mostly obtained from

[ST 88a]).

The definition of sound and M-complete inference rules helps us to analyze

the nature of some inference rules and provides a better alternative than reducing

specifications to exact theories; that is, reducing specifications to sound or M-

complete theories.

We can use these reductions to prove SP2 SP1 as follows:

Theorem 3.5.1 (Basic rule) Given an institution I, if there exists an M-complete

theory K for SP1, a sound theory A2 for SP2 and A2 H1 K, then SP2 j= SPI.

Chapter 3. Theorem proving 	 79

Proof Since F 1 is sound, L\. F1 El implies A2 	, which by corollary 3.3.2

means that A2 2 A,. Applying Mod we get Mod[4j c Mod[], and by defini-

tion of M-complete and M-sound (equivalent to sound) Mod[SP2] 9 Mod[A 2] ç

Mod[] c Mod[SP 1]. °

The situation where the theorem ap-

plies can be represented by the diagram

on the right. Every figure represents a

class of models; in particular, squares

represent axiomatizable classes of mod-

els.

;P1

Mod []

vIod [4j

The theorem states that the inclusion of the two ovals can be proved by showing

the inclusion of the two squares. In practice, this can be performed by a theorem

prover using the inference system provided with the institution j_I plus the infer-

ence rules presented in this chapter, in such a way that only sound rules are use

for the antecedent SP2 and only M-complete rules are used for the consequent

sP1.

Looking at the drawing the basic rule seems obvious but also the lack of any-

thing better unless every class of models described by the specification language

can be characterized by an exact theory. The situation can only be improved by

increasing the expressive power of theories and/or weakening the expressiveness

of the specification language.

Going back to the inference rules provided in this chapter, we find no M-

complete rules apart from those which are also sound, and therefore exact. In

principle, M-complete rules may not be sound and still be useful during the appli-

cation of the Basic rule defined above. This is clear in the case of an abstraction

Chapter 3. Theorem proving 	 M.

operation a where a rule
SPI-p

aSP Hço

is not sound since some "non-observable" theorems in SP may not hold in the

abstracted specification cxSP, however, the rule is useful in the sense that an

entailment

SP2 = aSPi

could be proven correct by showing that SP2 = SP I, since the rule for abstraction

is M-complete. Essentially, we prove that the antecedent satisfies more require-

ments than those needed.

Unfortunately, our research did not produce any interesting M-complete rule

for Dc. or M(c.,) even among unsound rules.

Restricting to the inference rules presented in this chapter, the rules in II and

the basic rule, entailments SP2 = SP1 can only be proven to hold if SP1 is an

ATU-specification. The limitation to ATU means, for institutions such as EQ,

that we are unable to specify standard models of natural numbers or to use any

hiding/abstraction mechanism in the consequent. In the context of a stepwise

refinement of specification into programs, the antecedent of the first entailment is

used as the consequent of the second entailment and so on,

SP,. SF n1 1= ... = SP2 H SP1

hence the restriction to ATU-specifications is extended from the original specifi-

cation of the problem SP1 to SP,,-,.

On the other hand, SP2 can be a specification in k+ASL since the basic rule

only requires sound inference rules for those SBO's used in the antecedent. The

problem on this side comes from the incompleteness of some sound rules which

may prevent some valid entailments from being derivable. This is particularly true

for M(c.,) and some model oriented constructors such as F. RG and Q in EQ.

Chapter 3. Theorem proving

All these considerations lead to a very limited collection of provable entailments

SP2 J= SP1. In following chapters we shall gradually improve the situation but

we can already identify which are the main problems.

The impossibility of using D7 in the consequent is the first important problem.

A solution will be found in chapters 4 and 5.

The impossibility of using M(G,F,S) in the consequent despite having an induc-

tion rule is the second problem. A solution in EQ will be found in chapter 6.

However, the impossibility of using constructors in the consequent is not such

an important problem. Constructors are normally thought of as pieces of a speci-

fication which have already been implemented during a refinement step (see con-

structor implementations in [ST 88b]). Therefore, later refinements should not

re-implement constructors.

According to this view, constructors are mostly relevant in the antecedent.

Constructors in the consequent will play a very limited role mostly related to

decomposing large consequents for modular verification. These structural aspects

of verification are addressed in chapter 7.

Chapter 4

Specifications with hidden parts

4.1 Introduction

In the last chapter we came across the particular nature of D. D is the only

SBO having no exact inference rule despite having a sound and complete inference

rule.

In the context of proving SP2 = SP1, such a characterization means that

using D in SP2 has no unpleasant consequences since every valid theorem in SP2

(over DATU) can be inferred (completeness). However, D, cannot be eliminated

from a specification (no exact rule) and therefore, if D0 is used in SP1, proving

SP2 J= SP1 cannot be reduced to simple theorem proving.

This technical problem happens to be a well-known problem in proofs of cor-

rectness of implementation steps. Specifications using D are known in the liter-

ature as specifications with hidden parts (hidden functions and/or hidden sorts)

[TWW 78], or specifications with a bias [Jon 80]. In any case, when such specifi-

cations act as consequent, i.e. when they express the requirements which must be

met by the antecedent or implementation, verification becomes hard.

Many algebraic specifications of a system, especially if they are large, provide a

lot of information describing functions and data types which are not interesting to

Chapter 4. Specifications with hidden parts 	 83

the user of the system or to the person implementing that system. This auxiliary

structure (hidden parts) helps to define the functions and sorts of interest but

they are not meant to be implemented.

Hidden parts are the standard way to express requirements in abstract model

specifications. In VDM, for example, data types are specified by representing them

in terms of some predefined types such as lists, sets, mappings and sequences.

These predefined types are the means for expressing requirements but they are

not intended to be implemented. Changing the representation of thespecified

data types in the implementation is known as data reification [Jon 80, Jon 861,

and correctness proofs can be very difficult. For example, consider a compiler

function which is specified by a simple interpreter and then implemented in a more

efficient way without respecting any of the structures by means of which compiler

was specified. The proof of correctness would be a great deal more difficult than

the proof of correctness of a direct implementation of the interpreter.

Algebraic specifications became popular as a way to define the elements of a

system without representing them in terms of more primitive concepts, avoiding

the definition of any extra structure. However, it has been shown that hidden

functions are in general necessary for specifying computable functions in equational

logic [Maj 77, TWW 78, BBTW 811, therefore the use of hiding is not characteristic

of a specification style but is a fundamental SBO for writing abstract specifications.

The necessity of using hidden functions in order to specify some computable

functions proves that in some institutions some extra expressiveness is achieved

using hiding; this results in the impossibility of flattening arbitrary specifications

containing D. Technically, the characterization of the inference rule for D as

complete but not M-complete witnesses this fact.

In some powerful logics, such as second order logic (SOL), the hiding of func-

tions does not provide enhanced power. But in common logics used in formal

specification, such as equational or first order logic, it certainly does. Intuitively.

Chapter 4. Specifications with hidden parts 	 84

hiding can be seen as a second order feature which can be added to weaker logics.

Thus, correctness proofs in DATU = DATU are going to cause some of the same

difficulties as the introduction of second order existential quantifiers does in SOL.

4.1.1 Example

The cases we are mostly interested in are those where some auxiliary functions/sorts

are defined in order to specify some desired functions/sorts but the implementa-

tion does not follow the bias, i.e. the auxiliary structure is not implemented. With

these cases, we expect to cover the most common difficulties involved in proofs of

entailment w.r.t. specifications with hidden parts.

For example, suppose we want to add a function mre: listnat -> nat which

computes the most repeated element in a list, to a specification ListNat of lists of

natural numbers. Soon we realize that the available functions in ListNat, i.e.

[J: 	list

nat, list -> list

car: list -> nat

cdr: list -> list

0: 	nat

suc: nat -> nat

>: nat, nat -> bool

true, false: 	bool

{empty list}

{adds an element to a list}

{returns the first element of a list}

{ removes the first element from a list}

are not enough to conveniently define the new function. We proceed by defining

an auxiliary function which counts the number of repetitions of a natural number

in a list of natural numbers, as in figure 4-1.

Any efficient implementation of mre will not implement count itself but will

instead implement a function which computes simultaneously the frequencies of

Chapter 4. Specifications with hidden parts 	 85

SP1 = 	Enrich ListNat by

Hidden

sorts

operations

count: listnat, nat -> nat

axioms

V x:nat. count([J, x) = 0

V x:nat; 1:1istnat. count(x::1, x) = suc(count(1,x))

V xl,x2:nat; 1:1istnat.

(x136x2) = (count (xl::1x2) = count(1,x2))

in

sorts

operations

mre: listnat -> nat

axioms

(1) 	V x:nat; 1:1istnat.

end

(count(1, mre(1)) > count(1,x)) = true

Figure 4-1: Lists with a mre (most repeated element) function

Chapter 4. Specifications with hidden parts

all elements in the list. In a stepwise refinement methodology, the specification in

figure 4-2 leads in the direction of the desired implementation by defining mre in

terms of a new function frequencies: listnat -> set(nat x nat) and some

extra structure defining sets of pairs of natural numbers SetPairsNat (with sort

name set (flat x nat)) and lists of pairs of natural numbers ListPairsNat (with

sort name list(nat x flat)).

The function frequencies yields a set of pairs, where each pair contains a

counter and an element of the argument list; for example

frequencies([1,3,2,1])={(1,3),(1,2),(2,1)}

Then we have that

car(sort(frequencies([1,3,2,1])))=(2,1)

and so mre([1,3,2,1])=1.

In the next refinement step frequencies can be made visible, i.e. forced to be

implemented, or its definition may be changed to yield a table. Moreover picking

the largest element need not be implemented using car (sort (...)). Eventually,

after a few steps we obtain a correct and efficient implementation.

The above refinement step is proven correct by showing that the axiom (1) which

defines mre in the specification SP1 can be deduced from the implementation, SP2,

together with the definition of count (the hidden part of SP1); this repeats the

"proof procedure" already used in [San 86]. Informally the proof proceeds by

proving that:

1. The frequencies of the elements of a list are in the set created by frequencies.

V 1:1istnat; x:nat.

(count(1,x)40) = (count(1,x),x)E frequencies(1) = true

Chapter 4. Specifications with hidden parts

SP2 = 	Enrich LisiNat by

Hidden

sorts

operations

{operations of SetPairsNat and ListPairsNat}

sort: set(nat x flat) -> list(nat x flat)

frequencies: listnat -> set(nat x nat)

axioms

{axioms of SetPairsNat and ListPairsNat}

frequencies([])= 0

V l:listnat; x:nat.

(R i:nat. (i,x)Efrequencies(l) = true)

(V i:nat. (i,x)Efrequencies(l) = true =

frequencies(x: :1) = frequencies(l)\{(i,x)}U{(i+1,x)})

V l:listnat; x:nat.

(, i:nat. (i,x)Efrequencies(l) = true) =

(frequencies(x: :1) = frequencies(l)U{(1,x)})

{ Axioms for sorting a set of pairs by the first

element of the pair, in decreasing order }

in

sorts

operations

sire: listnat -> flat

axioms

mre([]) = 0

V l:listnat. (1 54 []) =

(mre(l) = proj2(car(sort(frequencies(l)))))

end

Chapter 4. Specifications with hidden parts 	 88

All counters in the set created by frequencies denote frequencies.

V i,x:nat; 1:1istnat.

((i,x)E frequencies(1) = true) = i = count(1,x)

By definition of sort and car the term car (sort (s)) yields the pair in the

set s with the highest counter.

V s: set (nat x nat). (so 0) =

((V i,y:nat. (i,y)Es = true) = (projl(car(sort(s))) ~ i = true))

Similarly taking s to be the set of frequencies of a list 1,

car(sort(frequencies(1)))

yields the pair with the highest frequency.

V 1:1istnat. (i=[]) V

((V x:nat. (i,x)Efrequencies(1) = true) =

(projl (car (sort (frequencies (1)))) ~!i = true))

Hence, mre(1) is the most repeated element in 1 provided 1 is not an empty

list, and zero when 1 is empty. Therefore, it is always the case that:

V x:nat; 1:1istnat. count(1, mre(1)) > count(1,x) = true

Apart from the technicalities of the proof, the interest of this example arises

from the difficulty in generalizing this style of proof to a specification language

with arbitrary use of hiding and justifying that it is sound.

The rest of the chapter is divided into six sections. Section 2 gives a formal

presentation of the problem and some simple strategies are shown not to be sat-

isfactory. Section 3 emphasizes the special structure of specifications such as SP1

Chapter 4. Specifications with hidden parts

and introduces two properties applicable to specifications of this form: persis-

tency and independence. In section 4 the inheriting strategy, a formal version of

the strategy used in the above example, is presented and proved sound for per-

sistent hidden parts. In section 5 the inheriting strategy is proven complete for

independent specifications. Section 6 generalizes the inheriting strategy to the

case of k+ASL = DATU. Finally, section 7 copes with some difficult cases falling

out of the scope of the inheriting strategy.

4.2 Proving DA DA

A general setting in which to study entailment proofs between specifications with

hidden parts is ASL = ASL. For the time being, we shall ignore reachability

constraints (see chapter 6) and focus on DATU = DATU.

However, the problem can be simplified to DA J= DA without loss of general-

ity since considering some transformation rules in addition to those for A TU in

section 3.2 allows the elimination of T and U in DATU.

Proposition 4.2.1 The following specification transformations are sound for all

specifications SP, SP1 and SP2, morphisms a and cr1, and set 4 of sentences

AD U SP = Da A a)SP

TC DaISP = Dc i' T'SP

SP1 UDc SP2=Da(Tc SP1 USP2)

DSP1 U SF2 = D(SP1 U TaSP2)

where cr1' and a' are defined by the following pushout diagram:

//\
\01 /01 1

Chapter 4. Specifications with hidden parts 	 90

Proof

AD aSP = DcyAa()SP

The proof can be presented as a chain of equalities between classes of models:

Mod[ADa SPJ

= {Al a I A E Mod[SP] A Al,

= {AI a I A e Mod[SP] A A 1= a()} by the satisfaction conditiqn.

= MOd[Dcr A a()SP]

T0 D01 SP = D1 TqsSP

The proof can be presented as a chain of equalities between classes of models:

Mod[Tu Dai SP]

= {A I Al,,, E Mod[D a1SP]}

{Al 3 BEMOd[SP].Bl ui Al a }

= {Clai' I CIi E Mod[SP]} since for every A and B such that BIa1 = Ala,

there is a C such that Cl,,, = A and CIV' = B

i.e. C=AEDB.

= {Clai ' I CE Mod[Ta 'SP]}

Mod[Dt11T1SP1

SP1 UDaSP2Da (Tu SP1 USP2)

The proof can be presented as a chain of equalities between classes of models:

Mod[SP1 U Da SP2]

= {A I A E Mod [SP1] A (2 B E Mod[SP2]. Bla = A))

= {B19 I B E Mod[SP2] A B E Mod[TSP1]}

MOd[Da (Ta SP1 U SP2)]

Chapter 4. Specifications with hidden parts
	

91

4. DSP1 U SP2 = Da(SP1 U TorSP2)

Proven analogously to 3 above.

Theorem 4.2.2 Every specification SP over DATU is equivalent to a specifica-

tion of the form DAe E , where the reduction from SP to DA $ eE is computable.

Proof It is enough to consider the reduction rules from ATU to A, the comma-

tativity rules for D given above (considered from left to right) and the rule

= DSP

where T a =j. a'. Then, every specification SP in DATU can be transformed

first into a specification D, SP' for some signature morphism a and a specification

SF' in ATU (using the commutativity rules for D4 and, from that, it can be

transformed into a specification DAe E using the rules in section 3.2.

•i

These proofs are among those presented in [EWT 831. Nevertheless, in [EWT 83]

the result is only stated for the particular institution they use. Results in [Bre 89]

also repeat a similar proof, however all results are unnecessarily restricted to

algebraic signatures and to D. with injective signature morphisms. For this reason,

proofs have been given again instead of using a corollary to the normal form results

in [Bre 89] or [EWT 83].

Taking advantage of these results, DATU = DATU is reduced without loss of

generality to the following task:

Chapter 4. Specifications with hidden parts
	

92

Task 1: 	Da2A2fEff2 D0i A i f i

Given two finite presentations 41)1 and 4D2 over signatures
H1 	>H2

EH1 and >H2 which are two extensions of E, prove that

all models over E obtained by restricting models of 4D2 can be 	\11o,
obtained by restricting models of 1)1.

Note: In order to simplify notation signature morphisms cr1 and cr2 are as-

sumed to be inclusions ii and t2. However, no advantage of this assumption will

be taken unless stated.

Given such a task there are only two reasonable things one may try to do:

prove that (14 follows from 2 in an appropriate signature, or prove that all

visible consequences of (14 follow from (1)2. Unfortunately, the first approach only

works for some trivial cases and the second one is unsound.

First naïve approach. 	
EH

In this approach we want to mix in our reasoning sentences

over EM and over EH2 without confusing their auxiliary
H1 	EH2

symbols; therefore, we consider the pushout signature EH

and try to prove that tl'('1)2) = t2'(1) (we will also write 	\tl/t2

this as (12 HEH 1).

In an institution such as first order logic, this amounts, by the Craig interpolation

lemma, to the existence of a finite set of sentences (1 over E such that

(2) 1)2 HH2 (1' 	and (1' hEH1 41

Turning around the argument, a refinement D 2 A 2 C EH2 H DtlA4uCEhrl can only

be proven correct in this fashion if there exists an intermediate fiat specification

A,CE such that (1 satisfies (2).

Chapter 4. Specifications with hidden parts
	

93

However, if this is the case, the symbols in the hidden part of 4I1 are rather

trivial since their properties can be inferred from sentences in 1 which do not

mention them.

This approach offers surprisingly little. We may think that at least those imple-

meritations which proceed by implementing the hidden part should be provably

correct. For example, given a the specification SP1 in figure 4-1 as consequent we

propose SF3 in figure 4-3 as antecedent.

In this case the proof is easier because the implementation follows the bias of

the specification, and we can directly prove that 2 I=EH2 1.

The difference with the approach just proposed is the ex- EH1 	EH2
istence of a morphism t3 (identity in this example) which 	

\i 3/

is missing in the general case.

On the the other hand, the existence of t3 does not guarantee that a refinement

can be proved correct in this fashion since the same symbols may have different

meanings in the two specifications.

For example, consider the result returned by count in the specification SF4

(see figure 4-4). In this case, the result of count is double the result returned

by count in SP1. Therefore, although SP4 1= SP1 is a correct entailment and

Sig[5P4] = Sig{SP1}, the bias is not followed and the proof method above does

not work.

Second naïve approach

More realistic is the second approach where we prove that:

2 tEH2 tF1(Cl(11))

Chapter 4. Specifications with hidden parts
	

94

SP3 = 	Enrich LisiNat by

Hidden

sorts

operations

count: listnat, nat -> nat

axioms

{ Axioms of count as in SP1}

in

sorts

operations

mre: listnat -> nat

axioms

mre([])= 0

V x:nat; 1:listnat.

(count(1,x)+1 < count(1,mre(1)) = true =

mre(x::1) = mre(1))

V x:nat; 1:1istnat.

(count(1,x)+1 > count(1,mre(1)) =true =

mre(x::1) = x)

end

Figure 4-3: Lists with a mre function, version 3

Chapter 4. Specifications with hidden parts
	

95

SP4 = 	Enrich ListNat by

Hidden

sorts

operations

count: listnat, nat -> nat

axioms

V x:nat. count(fl,x) = 0

V x:nat;].:listnat. count(x::1, x) = count(1,x) + 2

V xl,x2:nat; 1:1istnat.

(x1x2) = (count (xl::1,x2) = count(1,x2))

in

sorts

operations

mre: listnat -> nat

axioms

{ Axioms of mre as in SP3}

end

Figure 4-4: Lists with a mre function, version 4

Chapter 4. Specifications with hidden parts 	 96

where t1 1 forgets the sentences which mention symbols not in E. Unfortunately,

due to the difference in expressive power between flat specifications (even if they

are infinite) and presentations with hidden parts studied in [Maj 77, TWW 781,

this proof strategy is, in general, unsound [BHK 86, Far 89]. For example (from

[BHK 86]), suppose we are asked to prove

Nat = NStNat

where Nat is a specification of the natural numbers including the standard inter-

pretation alongside the non-standard interpretations, whereas NStNat (figure 3-2)

specifies the class of the non-standard models of the natural numbers. It is well-

known that all the first-order properties of the non-standard models of the natural

numbers are satisfied by the standard models; however the entailment is incorrect.

In many cases this strategy is sound but t1'(C1(1)) is infinite and not finitely

presentable, making the proof very hard. Even worse, if the strategy is sound and

t1'(0(1)) happens to be equivalent to a finite presentation 4, we may be able

to prove that 2 = 4 but it may be difficult to prove the equivalence between

and t1'(Cl(4'1)), in particular this may be as difficult as the original task.

Consider for example the specification of max: listnat -> nat which yields

the maximum element of a list of natural numbers, by means of an auxiliary

function sort: listnat -> listnat, as in figure 4-5.

The function max can be directly specified using the available operations in

ListNat:

(3) 	max: listnat -> nat

max([]) = 0

V 1: listnat ;x:nat.

(max(1)>x = true = max(x::1) = max(1))

V 1:listnat;x:nat.

(max(1)<x = true => max(x: :1) = x)

Chapter 4. Specifications with hidden parts 	 97

SP5 = 	Enrich ListNat by

Hidden

sorts

operations

sort: listnat -> listnat

axioms

{ Axioms for sorting }

in

sorts

operations

max: listnat -> nat

axioms

max([}) = 0

V 1:1istnat. 154[] = max(1) = car(sort(1))

end

Figure 4-5: Lists with a max function

Chapter 4. Specifications with hidden parts
	

98

Then, the visible consequences of SP5 can be finitely axiomatized by adding

(3) to ListNat so that an implementation D2A2eEff2 can be proven correct by

proving <1)2 = ListNat U (3). In this case, the strategy turns out to be sound.

But, in fact, there is still the problem of proving that the proposed axiomati-

zation (3) is correct, in other words, that ListAatU (3) 1= SP5, but this is just

another instance of our general task in the particular case that EH2 is equal to E,

which can be as difficult as the task we started with (see e.g. histogram example

in [San 86]).

A strategy based on second order existential quantifiers

A hiding operator, D, with an inclusion t, can be seen to a certain extent as a

second order existential quantifier. If we can quantify over functions it is very

easy to specify functions such as mre in figure 4-1 by writing a sentence such as

the following:

32 count: listnat, nat -> nat. {Axioms for count) A {Axioms for mre}

Keeping this analogy in mind, a new strategy resembling the introduction rule

for 32 in SOL can be found. The introduction rule of 32 says that before being

able to assert that a function with a certain property exists. an explicit function

with that property must be given; then, introducing 32 discharges (hides) this

function.

In the implementation of mre via frequencies, the 32_ strategyamounts to

explicitly including count in the implementation in spite of the fact that it is not

needed. Once count is in the implementation. the proof can easily be performed

ignoring the hiding.

Formally this strategy can be presented as the following rule:

Chapter 4. Specifications with hidden parts
	

RE

Proposition 4.2.3 Given signature morphisms al : E - EH1, a2 : E -i EH2

and a: >H1 - EH, and sets of sentences 1 c Sen(EH1), M C Sen(EH2) and

C Sen(>H), then

D, (A T i;)D 2 Ac 2 eEH2 k A i E 1 	D 2 A 2 eEH2 Dyi ; a (A T i;)D 2 A 2 eEH2

D2A2eEH2 1= D 1 A 1 e 1

is sound.

Proof Soundness follows immediately from the transitivity of = and the mono-

tonicity of D, 1 w.r.t. model class inclusion (entailment), since the conclusion is the

composition of the premises after applying D1 to both sides of the first premise.

Note that (A 1, T,, ; ,) is an enrichment to the antecedent (implementation)

which must be guessed. The second premise can be seen as a side condition

guaranteeing the persistency of (A t TI; ,) w.r.t. D2A2cEH2 and (idE , (al; a)),

and the first premise is the desired proof ignoring the hiding provided by D I . The

following theorem shows that this rule can solve our task (Task 1).

Theorem 4.2.4 (Wir 91) Given signature morphisms al : E - EM and a2:

-p EH2, a set 11 of >2H1-sentences and a set 42 of EH2-sentences such that

D 2 A 2 eEff2 =

then, there exists a signature EH, a morphism a : >H1 - EH and a set 40 of

EH-sentences such that

D0 (A T, 1 ;)D2A2eEH2

and

D2AI,21EEH2 	Dgy1 ; (Ap Ti;)D2A2eEH2

Chapter 4. Specifications with hidden parts 	 100

Proof Take cr and 	to be idEHl and (1)1 respectively and substitute in the

conclusion of the theorem

(A1 Ta1)Da2A02fEH2 	A D 1C 	Da2A2fEH2 	D,i(A,i T1)D O 2A02eEH 2

The first entailment holds trivially since any model of the antecedent has to satisfy

c11 and therefore it is also a model of A1eEH1.

In order to prove the second entailment, consider an arbitrary model A E

Mod [D2A2eEH2]. According to the assumption, D 2 A 2 fEH 2 j= D1A1eEH1, we

know that A E Mod[D l A l eEHl]. By definition of D2 and D 1 , there exists a

EH2-model B and a H1-model C such that

A = Bj2 = CI,i 	B IEH2 2 	C hEH1 'I'l

thus A E MOd[Dgi(Ai Tl)D2A2eEH2].

Considering this theorem and the normal form result in theorem 4.2.2 for

specifications in DATU, we may think that DATU(I) J= DATU(I) has a sound

and complete inference system, provided I-' is sound and complete. However, this

is not the case unless persistency, i.e. D2A2eEH2 J= Do,, ; o, (A Tai ;)D 72A2eEH2,

can be proven. A similar result found in [Wir 91] asserts the existence of a complete

inference system for DATU = DATU but that relies on the fact that persistency

is treated as a side condition instead of a premise.

In a more general form the 3 2
-strategy can be presented as:

PSP2 j= SP1 	SP2 j= D 1 PSP2
SP2 = D 1 SP1

where P is a parameterized specification (A X :.J. cr1. SP) taking specifications over

.t cr1 and producing specifications over Ian = Sig[SP1].

Chapter 4. Specifications with hidden parts
	

101

Analogously to the rule above, soundness of this rule follows immediately from

the transitivity of = and the monotonicity of Dai w.r.t. entailment.

In fact, the first rule corresponds to the particular case in which SP2 and

SP1 are specifications D 2 A 2 eEH2 and AlcHl, and P is a parameterized spec-

ification (A X :. o1. DA b T i; C X). Nevertheless, for specifications in DATU the

normalization results in theorem 4.2.2 allow the first rule to be used without loss

of generality.

The drawback of the 2-strategy is the need to guess , or P in general. In the

following sections a technique is presented for taking to be a part of 4D1 in cases

such as count in the specification of mre. But, in general, guessing 4D amounts

to implementing the hidden part of the consequent specification in order to prove

correctness, and this is indeed a high price for not following the specification bias.

We conclude that given the general task of proving entailments between speci-

fications with hidden parts, naIve techniques fail to handle examples such as the

one in section 4.1.1, and indeed there are very few cases where entailment can be

proven. Alternatively, a complete strategy exists but it requires the prover to do

a lot of work. In the following section we present some restrictions to the general

case needed to handle all the examples presented, using a method like the one

sketched for the example at the end of section 4.1.1.

4.3 Persistent and independent enrichments

The main difference between the general case as it has been presented in the last

section and the examples, is the existence of a structure in the axioms of the

examples which allows us to distinguish some of them as defining the hidden part

Chapter 4. Specifications with hidden parts
	

102

and some others as using the hidden part in order to define a visible enrichment.

Therefore, we shall assume that our task carries such a structure.

In general, we shall distinguish within the visible 	EM 	 EH2

part, E, those visible symbols in terms of which

the hidden symbols are defined, E0, the inclusion

along the hidden enrichment, Il k , and finally the 	EOH1

inclusion along the (visible) enrichment tl,, on top

of the hidden enrichment. 	
E0

tE

In the example SP1 in figure 4-1, E0 is the signature of ListNat, tlh adds count,

and tl, adds mre producing the whole signature EM, which is then constrained

by hiding count along tl.

In general, we shall require signature morphisms Il k , ii,,, tE and ti as in the

figure to form a pushout diagram. In the case where all morphisms are inclusions,

H1 is the union of E and EOH1, and E0 is their intersection.

Such a structure of the signature must be imposed upon the sentences so that,

instead of having a single set of sentences 44 over EHI and consequent D144eEH 1 ,

we have three sets of sentences:

4lo : set of sentences over EO.

'1'lh: set of sentences over EOHI specifying the hidden part.

1: set of sentences over EM specifying a visible enrichment

using the hidden part.

Therefore the task becomes:

Task 2: D2A2eff2 =

Now, we must establish the conditions under which such a decomposition cap-

ture the informal ideas of specifying the hidden part and using the hidden part for

Chapter 4. Specifications with hidden parts 	 103

specifying a visible enrichment. In order to do that, we define the concepts of

persistent and independent enrichment.

Definition 4.3.1 An enrichment by >-axioms I w.r.t. a signature inclusion

—* E is a parameterized specification (AX : E. A t , T, X)which produces

a specification over E, when it is applied to a specification over E . Enrichments

are usually written as (A be T e

Given a signature inclusion i : E —* E and a set of -sentences e, an

enrichment (A e Tte) (orAX : E. A, T C X) is persistent w.r.t. a E-specification

SP jff(Ae T) is persistent SP and (dE,t e), i.e. for all A E Mod[SP] there is a

model B E Mod[(A T)SP] which extends A, Bite = A.

Given signature morphisms 1E, il, tl and tlh form-

ing a pushout diagram as in the figure above, and

sets of sentences 411h over EOH1 and over EM,

an enrichment (A1 h TLl h) is independent w.r.t. a

E0-specification SP and an enrichment (A sic T i ,,)

if for all A E Mod[(Alh Ttl h)SP] and B E

Mod[Dtl(AlvTtiv)(A,l h Ttl h)SP] such that B 11 =

AiLlh, there exists C E

such that Cl,,,,= A and C1,1 = B.

C

ii1V "~1~11

T 	 B
A

= B 11

Remarks

1. An enrichment to a presentation is a theory extension, and a persistent

enrichment is a particular kind of conservative extension, in the terminology

of [Kei 77, BP 90].

Chapter 4. Specifications with hidden parts 	 104

If ti,, and zl,, are inclusions, we can require tl and 1E to be inclusions as

well without loss of generality. Moreover, if the pushout of inclusions exists,

inclusions tl and 1E are unique given tl,, and tl,,.

Often translations T, where t is an inclusion can be inferred from the con-

text. In this case, they can be omitted so that 	is used instead of (A, Ti e)

for arbitrary enrichments. Moreover, we write [i,,] to denote hidden enrich-

ments so that D41(A10 T,1V)(Ajh T, 1 jSP can be written as 1[41,,]SP.

We shall use this short notation in some explanations, though the full nota-

tion is kept in the results and their proofs.

Since Mod is assumed to preserve finite co-limits, according to the amalga-

mation lemma, there is a unique model C which is the amalgamated union

A e B (w.r.t. -I"h and -I'E)• Therefore, we can define independent enrich-

ments by saying that: 41,, is independent w.r.t. SP and 41, if the class of

models of11,,SP is closed under amalgamated unions between models of

l,,SP and models of1[1,,}SP.

From an intuitive point of view, persistency of a hidden enrichment 41,, w.r.t.

a specification SP ensures that no models of SF is indirectly excluded by some

requirements of 4DI h , i.e. [1,,]SP is equivalent to SF or, as expressed in the

2-strategy, SF = [1h]SP. Independence of a hidden enrichment 41,, w.r.t.

specification SF and a later visible enrichment 11,, means that the choice of a

particular model in the hidden part does not exclude any of the models of the

overall specification 1 1 [1,,JSP.

In next section we shall see how these conditions relate to entailment proofs,

but we show first how independence is related to persistency.

Chapter 4. Specifications with hidden parts 	 105

Independence versus persistency

We might think that a more natural condition to place upon a visible enrichment

on top of a hidden enrichment is to require persistency for the visible enrichment,

at least w.r.t. the hidden symbols. This notion is formalized as relative persistency.

Definition 4.3.2 Given signature morphisms 1E, tl,,

ti and ti,, forming a pushout diagram as in the fig-

ure, an enrichment (A 1 T1 0) is relatively persistent

w.r.t. a previous enrichment (AI , l h T,lh) and a specifica-

tion SP, if for all A E Mod[(AlhT,lh)SP] for which 	 t1

there exists B E

such that BItE 	= 	AftIh, there exists C 	E 	
'lh

Mod[(A10 T,l V)(Alh T,l h)SP] such that Cl,,,, = A.

This property states persistency of the second enrichment w.r.t. that part of the

signature added during the first (hidden) enrichment. Technically, C extends A

as in the definition of persistent enrichment, but now A is not an arbitrary model;

hence, relative persistency is weaker that persistency. Intuitively, the axioms of

cannot further constrain the symbols to be hidden but can add new require-

ments on the visible symbols defined in SP.

It is not difficult to see that independence entails relative persistency.

Proposition 4.3.3 If an enrichment (A1 4 Ttl h) is independent w.r.t. a specifica-

tion SP and a later enrichment (A 10 T110), then (A 10 T, 10) is relatively persistent

w.r.t. (A1 h T,l h) and SP.

Proof Definitions 4.3.1 and 4.3.2 define independence and relative persistency

in the context of four signature morphisms tE, Ii, tl and tl,, forming a pushout

Chapter 4. Specifications with hidden parts 	 106

diagram as in the figure above, and sets of sentences 4'h over EOH1 and I1 over

>H1.

By definition of independence, for all A E Mod[(Alh TLI h)SP] and

B E Mod[D i (A 1 Tj1 v)(A1 h TL1 h)SP] such that BILE = Al,,,, there exists

C E Mod [(AlVTLlV)(A$lhTLlh)SP] such that Cl,, ,, = A, hence relative persis-

tency holds.

RMI

But, independence is more than relative persistency of the visible enrichment.

Consider the specifications:

Exll = 	sorts s

operations a,b: s

axioms a~6b

end

Ex 12 = 	Enrich Exll by

Hidden

sorts

operations h: s

axioms

in

sorts

operations v: 5

axioms v=h

end

Here, both enrichments are persistent but the hidden enrichment fails to be

independent because there exists an algebra {a = 1, b = 2, v = 1, h = 21 which is

not a model of the overall specification (EM without considering h hidden) but

which can be obtained as the amalgamated union of a model of Ex 12
{
a = 1, b =

Chapter 4. Specifications with hidden parts 	 107

2, v = 1} and a model of the Ex 11 with the hidden enrichment {a = 1, b = 2, h =

2}.

Since neither relative persistency nor persistency (as in Ex12) are enough to

guarantee independence, we may think that persistency is weaker than indepen-

dence as relative persistency has been shown to be. However, independence of

(A$lh T1h) w.r.t. SF and (A i T41) does not guarantee persistency of (A 1 TLI U)

w.r.t. (A1 h Ttl h)SP. Consider for example:

Ez21 = 	sorts s

operations a,b: s

axioms

end

Ex22 = 	Enrich Ex21 by

Hidden

sorts

operations h: s

axioms

in

sorts

operations v: s

axioms

v=a

vb

end

In this case the hidden enrichment is independent: given models for {s; a, 6, v}

and {s; a, 6, h} if v = a = 6 in the first and both agree in {s; a, b} then their amal-

gamated union is a model of the overall specification (Ex22 without considering

h hidden). But the visible enrichment is not persistent since it requires a = b.

Chapter 4. Specifications with hidden parts

Summing up, independence and persistency are unrelated. Relative persistency

is a weak notion of persistency which is necessary for independence.

Independence versus persistent functors

It is very common to find cases like count in SP1 where the hidden part is totally

defined; i.e. (A1 h TL1 h) is a persistent functor over the models of SP. Then

independence follows automatically:

Proposition 4.3.4 Given a specification (A1 h Tl h)SP such that for all A E

Mod[SP] there exists exactly one (up to isomorphism) B E Mod[(Aj h Tjl h)SP}

such that BI1h = A, then for every enrichment (A 1 TL1 V) and morphisms ti and

1E forming a pushout diagram as in the earlier figure, (A1 h TL1 h) is independent

w.r.t. SP and (A 1 T1).

Proof For 	any 	given 	model 	B 	of

D1(A1 0 TL1 V)(A1 h TLl h)SP, there is (up to isomor-

phism) a unique A E Mod[(Alh Ttl h)SP] such that

A 111 = BItE. On the other hand, by definition of B

D1 there exists a C E Mod[(Ac i Tl v)(Al h Ttlh)SP] 	A

such that C1 = B. Since CILl h; ti v = AItl h , by the

uniqueness of A we conclude that C is also an exten- 	 A 	-
' 	

- L) ILE
sion of A, CI iv = A. 0

The relation between persistent functors and amalgamated unions is not new.

If we consider a specification language where specifications only denote isomorphic

classes of models and hidden enrichments are required to be persistent functors

(such as basic and parameterized specifications in the initial approach [EM 85])

the extension lemma establishes a similar connection.

Chapter 4. Specifications with hidden parts 	 109

Persistency in some particular cases

If we consider models to be algebras without empty carriers and signature mor-

phisms to be inclusions, persistency of a enrichment (A1,, TL1h) w.r.t. SP depends

exclusively on the relationship between SP and the presentation 41h Hence, en-

richments (A 0 T) for an inclusion t are persistent w.r.t. any specification SP over

the appropriate signature.

On the other hand, if a non-injective morphism or is considered, prsistency

of (A D Tc,) w.r.t. SP also depends on a. For example, let si and s2 be two sorts

which are mapped to the same sort s12 by an algebraic signature morphism a;

then no model A E Mod[SP] with different carriers fA 31 and I AI,,2 can be extended

to a model of T T SP, or to a model of (AT)SP for any &

Similarly, if models of SP include algebras with empty carriers, extending the

signature of the specification may add constants and functions preventing some

carriers from being empty, hence violating persistency.

4.4 Inheriting strategy - soundness

As we noticed in section 4.1.1, some proofs of specification entailment can be

carried out by importing the hidden part of the consequent into the antecedent

and then proving that the visible part of the consequent follows from the enriched

antecedent. The machinery introduced in the last section provides the means to

formalize such a proof strategy.

The notation corresponding to task 2 is enhanced with a new pushout as in

figure 4-6, so that signature E H combines the hidden symbols of the antecedent

and the consequent.

Chapter 4. Specifications with hidden parts
	

110

EH

'V
H1 	EH2

tl,,/ t\1 /t2

OH1
1tE

EO

Figure 4-6: Signature morphisms in Task 2.

Now for task 2

D2A,2fEH2 = Di(Ai, Tt1 V)(A.I h T1 h)A1 o eEo

abbreviated as D 2 A 2 eEH2 1= 1[1h]10, we can offer the following rule:

Theorem 4.4.1 (Inheriting strategy) Given presentations 	over EO, 4b1h

over >20H1, 44,, over EM and 2 over EH2, the rule

2 1 4 'h HEH 	4'2 I=EH 4)10

D,2A26EH2 = D j (A 1, i ,, T1 V)(A1h T1h)A10eEo

is sound, provided the signature morphisms are arranged according to the two

pushouts of figure 4-6 and (A 1h T,1h) is a persistent enrichment w.r.t. A 10 EO

Proof For an inconsistent presentation 42 the theorem holds trivially.

Otherwise, let A be a model of D, 2 A 2 eEH2 ; then there exists B2 = 42 such

that B212 = A, and C E PJod[(Az, lh TL1 h)A1 o Eo] such that CItl h = 	C

is guaranteed to exist because, by the rule's second premise 42 =EH 	so

A 11 = (D1 0 and, by persistency of (A q1 Ttl h), AIE can be extended to an algebra

C as required.

Chapter 4. Specifications with hidden parts
	 111

Now, we consider amalgamated unions B1 = A e C

and G = B 1 ED B2 according to the diagram at the

right.

By the satisfaction condition it can be shown

that G =EH 2 U 	Then from the rule's

first premise G 	I== 41,, therefore G 2 ', 	E

Mod[(As 1 T1 V)(Ajh T1h)A10eEo] and finally A =

GIi; 2'h E !t'Iod[D i (A4 i T1v)(A1 h T41h)A$1OCEO]. 0

G

B 1 	B2

-\1,l\ /-1,2
A

C I
l_ILE

Persistency is a sufficient condition for the soundness of the rule but it is not

necessary. That is, a correct entailment

D2A1b2eEH2 	Di(Ai, T1 V)(Az1 h T1 h)A1 o o

may satisfy the premises of the rule and (A h T1 h) not be persistent w.r.t. Al 0 CEO.

The crucial point for considering persistency as an adequate condition has to

do with the quantification it involves, i.e. which parts of which specifications are

involved in the condition for soundness among and 42. For example,

let

VlO ,'Il h ,Il v , 02.

==

mean that Condition is a necessary and sufficient condition for soundness of the

rule. In our case we have (by theorem 4.4.1 and theorem 4.4.3 below)

V44 0 , 'h•

Persistent (A1 h Ttl h) wrt A 10 e 0 	 2. Ru1e(1 o , lh, 1,,,(D2)

which means that persistency is adequate when we look for a condition on 	and

1,, independently of what 41, and 2 might he. From a methodological point of

Chapter 4. Specifications with hidden parts 	 112

view, this is satisfactory since we would expect that specifications (consequents)

are written before their implementations (antecedents) and that inner enrichments

are written before outer ones; thus, at the time of writing the specification of the

hidden part 4l,, only (Pl o is known.

Other sufficient conditions for soundness can be found which involve different

parts of the specifications, e.g.

Proposition 4.4.2 (Inheriting strategy 2) Given presentations 10 over EO,

over YOHl, 'I1 over EH1 and M over EH2, the rule

2 , 1 h hH 'I1 v 	M [--EH 41

D 2 A $2 EEH2 = D 1 (A 1 , T1 v)(A1 h TL1 h)A1oeEo

is sound, provided the signature morphisms are arranged according to the two

pushouts of figure 4-6 and (A1 h Ttlh) is a persistent enrichment w.r.t. DIE; 2 A 2 6 2 .

Proof Looking at the proof of theorem 4.4.1 we realize that only models A E

for A E Mod[DL2 A 2 eEH 2] need to be extended to EOH1, thus persistency of

(A1h TLl h) w.r.t. DtE; 2A,2cEH2 guarantees soundness. 0

This condition is weaker than persistency of (A t T, 1h) w.r.t. Al 0 cEo since it

requires persistency over fewer models as Mod[D E ; t2 44)2fEH2] c Mod[A$10 CEO].

It is also an analogous condition to that required in the 3 2-strategy which gen-

eralizes the inheriting strategy. Nevertheless, this soundness condition asks for

re4uirements on the antecedent (implementation side), and that may not method-

ologically desirable. This condition is used in the following chapters where hiding

is combined with abstraction and reachability constraints; however, it is not an

adequate condition to consider when designing specifications which are to appear

as consequents in specification entailment proofs.

Chapter 4. Specifications with hidden parts 	 113

To conclude we prove, as promised above, that persistency is indeed necessary

as a condition on 10 and 'h.

Theorem 4.4.3 Given finite presentations 	over EU and 1,, over EOH1, if

the rule

2,'h J=EH 1v M EH Dlo

DL2A$2€EH2 1= Di(A,i,, TL1 v)(A1 h T1 h)A1 0 1E0

is sound for all 02 and 01, then (A 1h T41h) is persistent w.r.t. Al0eEo, provided

signatures and morphisms are arranged as in figure 4-6.

Proof Given a non-persistent (A$lh Tjlh) w.r.t. A,1 0 eE0, there exists a model of

A 10 e 0 which cannot be extended to a model of (A1 h Ttlh)A,10 CEo, hence

Al 0 eEo V DL1 h (A1 h Tt1 h)At , 1o eEo

then if we choose 4D2 and 	such that ID2 = (LE; t2)(1 o) and 1,, = 0 we get

L D1(A,1 TL1 v)(A1 h T1 h)A10 EO

while the premises of the rule hold trivially. 0

So far, we have presented the inheriting strategy as a rule for proving speci-

fication entailments involving consequents with a persistent hidden enrichment.

Now, we shall show that the inheriting strategy is good enough for proving all cor-

rect specification entailments involving consequents with an independent hidden

enrichment.

Chapter 4. Specifications with hidden parts 	 114

4.5 Inheriting strategy 	completeness

In this section we show how the inheriting strategy is sufficient for proving re-

finements of specifications with an independent hidden enrichment. Later the

converse will be proven as well, confirming from a proof-theoretic standpoint that

ndependence is not just intuitively reasonable but also very convenient.

Theorem 4.5.1 Given a correct entailment

D 2 A, 2 eEH2 = D,1 (A ol ,, T1 V)(A$1 h TL1 h)A1 0 cro

where (A1 h T1 h)
is independent w.r.t.

AI, l0 eEo and (A 1 T 10), then it is always the

case that

2 IEH 10 and 2,'h krH 1 v

provided signatures and morphisms are ar-

ranged as in the figure on the right.

EH

ly \
E H 1 	EH2

tl,l t\1 /t2

EOH1
1LE

EO

Proof The first entailment (1) 4D2 t=EH 4)l o holds from the composition of the

two following entailments:

D2A2cEff2 = DL1(A1 V T1 V)(A1 h T1 h)A1 o fEo

D 1 (A 10 T j j(A $l T11 h)A1 O fEo = TA 00

where the first entailment is an assumption of the lemma and the second holds

trivially.

In order to prove that 2, 41 h I_—EH 	we assume the contrary (2) 2, 'h KEH

4'1, and prove that the hidden enrichment cannot be independent.

Chapter 4. Specifications with hidden parts 	 115

By (1) and (2) there exists aEH-algebra C such that

C I=EH 	U 4)2 U 4) 1 h 	G V=H 4)1,,

Taking the appropriate reducts it is clear that

GIE0H1 E Mod[(A1h Ttl h)A1 , 1 0 CEo]

GIE E MOd[D 2 A 2 C EH2 I

CIEH1 V Mod[(A iu ,, T1,,)(A1 h T1 h)A1 o eEo]

G

L/ \\

CIEHI

./ 	GIE
G IE0H 1 '_LE

GIEo

and since the entailment is correct we can also conclude that

GJE E A'Iod[D i (A, i ,, T1V)(A$j h T1 h)A$1 o eEo]

Now, taking the amalgamated union GIEOH1 @ Gir, = GIEH1 we come to a

contradiction with independence, since according to it GJEH1 should be a model

of (A 1 ,, T1 V)(A1 h TLi h)Az1 o fEo but it is not. 0

With theorems 4.4.1 and 4.5.1 we have the basis for a sound and complete

inference system for specifications with persistent and independent hidden enrich-

ments. Moreover, we give another theorem justifying the choice of independence

as an adequate property w.r.t. the completeness of the rule, just as we gave the-

orem 4.4.3 to justify the choice of persistency w.r.t. soundness. \Ve start with a

new definition:

Definition 4.5.2 A model A of a specification SP is abstract implementable

if there exists afiat specification AeE such that AeE = SP and .4 E Mod[Aej.

Abstract implementability heavily depends on the expressiveness of the logical

system used in specifications. In FOLEQ we cannot expect it to hold in gen-

eral, but if we allow code as axioms, then all computable models are abstract

implementable.

Chapter 4. Specifications with hidden parts
	

116

In the following theorem, the necessity of independence as a condition for

completeness depends critically on the abstract implementability of one model.

Theorem 4.5.3 Given finite presentations 4Dl o over EO, 1)l,, over EOH1 and

over >H1, if D2A2eEH2 = D i (A, i Tj1 v)(A1h TL1 h)A1 o fEo implies that

1)2 7 1)l h =EH 1)1 w for all finite presentations 1)2 over EH2, then (A$lhTtlh) is

independent w.r.t. Al 0 eEo and (A 10 T 10), provided signatures and morphisms

are arranged as in figure 4-6 and all models of Di(A,i TL1V)(A1 h T1 h)A,1 o eEo

are abstract implementable.

Proof Given a specification (A 1 TL1 V)(A1 h T41 h)A1 o cEo such that (A1 h Tjl h)

is not independent w.r.t. A 10 ey o and (A 1 Ti), there exist A and C such that

C E Mod[(A , lh T41 h)A$I O CEO] A E Mod[D i (A i Tt1 V)(A1 , j h Tt1 h)A1 0 CEo]

AIEO = CIEO

A 0 C io Mod[(A 10 TjlV)(Al h Tjl h)Al o CEO]

But, if A is abstract implementable there exists a flat specification A A 6F, such

that

A E Mod[A ,A CE] A A eE = D 1 (A 10 T1v)(A1 h Tt1 h)A1 0 Eo

and by the amalgamation lemma A C must satisfy 'Mh, 	and 1)A

AeC=EH1hU (DA

but, since A C is not a model of (A 10 T1v)(A1 h T1 h)A1 O EO we know that

AC Kr y (D i v

hence, 	V=EH 1)l v .

Finally, taking 1)2 to be t2(41) A) we have both

D 2 A 2 EH2 1= DL1(A1 V TL1v)(A1 h Ttl h)A$1 O cr

Chapter 4. Specifications with hidden parts 	 117

and

2,'h 	EJf I1 v

The fact that A might be not abstract implementable does not matter for our

purpose. We are only concerned with showing that no weaker condition than

independence can be required in order to obtain completeness for the rule. Then

the above lemma must be understood as saying: Independence is a necessary

condition for completeness, for an arbitrary logical system.

Independence is not necessary for the success of the inheriting strategy. In fact,

for any consequent Di (Ai Tt1 v)(A1 h Tt1 h)A , 1 0 eEo where independence does not

hold, there exist an antecedent ADCE where 0 is the contradiction, such that

AOCE 1= D1(Ai TjV)(A1 h T1 h)AIo fEo can be proven using the inheriting strat-

egy.

Nevertheless, in practice, the lack of independence of (A1 h T1 h) w.r.t. A,1 0 eE0

and (A 10 Ti) arises because some elements defined in the visible enrichment are

"closely" dependent on the interpretation of the hidden elements, as in specifica-

tion Ex 12 above. In such cases, each model of the visible part corresponds to only

one or a few possible models of the hidden part; therefore, each visible model ex-

cludes some possible interpretations of the hidden symbols. In this situation, the

models of the antecedent Mod[D 2 A 2 eEH2], unless empty, contain a model A for

which there exists a model C E Mod[(A , lh TL1 h)A1 0 o] such that A 11 = CItl h

but A EDCV=EH 401v as in the proof above, hence the inheriting strategy fails.

In conclusion, although independence is not necessary from a formal point of

view, it is necessary nearly always in practice.

Chapter 4. Specifications with hidden parts 	 118

4.6 Proving k+ASLf=DATU

The results for task 2 are good but it remains to be seen how they can be used in

a more general context such as k+ASL = DATU.

We start by relaxing the form of the antecedent specification from D 2 A 2 €EH2

to an arbitrary specification over k+ASL.

4.6.1 Generalizing the antecedent

Unlike specifications in DATU, it is not always clear how an arbitrary specifi-

cation SP2 in k+ASL can be reduced to an equivalent specification of the form

D 2 A 2 f EH2 . Sometimes, we can expect to obtain a sound theory 2 w.r.t. SP2

such that 2, 'h I=EH 41, and M t=EH 1o. Then, by soundness of the inher-

iting strategy (where t2 is the identity on E) it follows that:

SP2 J= A2EE J= Di(Aj T41 V)(A1 h L1h)"1OE0

Alternatively, we can generalize the inheriting strat-

egy so that the hidden enrichment can be inherited

by SP2 leading to an enriched antecedent 	 >H1

(At1v(1 h) TL1)SP2 	 tl

This generalized strategy can be presented leaving 	 EOH1

premises in the form of specification entailments, as 	
tE

2 in the -strategy.
EO

Chapter 4. Specifications with hidden parts 	 119

Proposition 4.6.1 Given presentations 4M O over EO, 41, over >1OH1, 1,, over

EM and a specification SP2 over E, the rule

(At1 V (1h) TL1)SP2 = (A, i TLl V)(Al h Ttl h)Al o eo 	SP2 1= DLl(Atl V (l h) TL1)SP2
SP2 E= D1(Asj Ttl V)(Alh TI h)A O eo

is sound.

Soundness follows immediately from the soundness of the 3 2-strategy. On the

other hand, completeness considerations like those exhibited by the ipheriting

strategy in the last section are not applicable.

4.6.2 Generalizing the consequent

Similarly we can generalize each component of the consequent specification so that

D41(A1 TL1 V)(A1h T11 h)A1 0 EO is substituted by a specification in A +DATU of

the form

DlPPhSP1

where parameterized specifications P, for (AX : >OH1. P,, (X)) and Ph for (A X:

EO. Ph(X)) take the place of the visible and hidden enrichment respectively, and

the specification SP1 takes the place of A, 10 CEO.

Applying the 3 2-strategy we obtain a rule as follows:

P SP2 J= P,. P,, SP 1 SP2 = D1 P SP2

SP2 = DlPPhSP1

where P for (AX : E. P(X)) is an arbitrary parameterized specification and t'

is a signature morphism t': Sig[SP2] -' Sig[P,SP2].

We can say that the inheriting strategy is being used when P is an "extension"

of Ph It is not the purpose of this section to discuss in general the extensibility of

parameterized specifications which has been a popular topic of discussion in the

initial approach [TWW 78, EM 85, Ore 87] and also in ASL [SST 90]. Here, we

Chapter 4. Specifications with hidden parts 	 120

just consider that the inheriting strategy is a particular instance of the 3 2-strategy

where P, is obtained by extending Ph from parameter specifications over E0 to

parameter specifications over E.

4.6.3 DATUt consequents

Despite the previous generalizations it is clear that consequents will not always

have a form like:

D1P,, PhSP1

Among the specifications in DATU we shall distinguish those which restrict the

use of D to the context of persistent and independent hidden enrichments and

call that sub-language DATU* .

Using the a2-strategy (described in section 4.2) and the rules reducing arbitrary

specifications in DATUto the form DAeE (see theorem 4.2.2) we have a complete

inference system for DATU = DATU, provided I-' is sound and complete and

persistency can be decided.

Nevertheless, restricting to specification entailments in DATU DATU* has

the advantage that they can be proven using the inheriting strategy instead of the

12-strategy. This makes a very significant difference to provers which do not need

to guess a convenient enrichment at each application of the 2-strategy. More-

over, since persistency and independence of the hidden enrichments are implicitly

required, DATU f= DAT(P has a complete inference system.

The . notation will be used in other chapters below in order to require the same

restrictions on the use of D in DATU* in more complex specification languages

such as ASL and k+ASL.

- u \u

Ck AitcJL(M)

OV\ lk 	I IAL08L 	S P dP_ G~k
ki ~)" WA

LcIce

1L cXw (Clft~-
Le (V CA

S
	

1IVii) 	bI\Tu* 	aç c (opii 	(,(A

.SL W¼.

Chapter 4. Specifications with hidden parts 	 121

4.7 Difficult cases

Inheriting the hidden part from the consequent to the antecedent is a fruitful

strategy in those cases where a distinguished set of axioms defines the hidden part

precisely enough. Persistency and independence ensure that. Nevertheless, when

these side conditions are not satisfied we are driven into a more general strategy

such as the 3 2-strategy.

In this section some guidance is given for those cases where the consequent has

the form

D1lPPhSP1

but either persistency of Ph w.r.t. SP1 or independence of Ph w.r.t. SP1 and P

fail.

4.7.1 Failing independence

Many times independence fails in specifications with a persistent hidden part. This

is normally the case for specifications whose auxiliary functions or sorts are not

defined with enough detail. We may not bother defining very precisely an auxiliary

function because for each of its possible realizations there are some valid models

of the visible part. However, this leads to a failure of independence. Consider for

example, the specification of a scheduling function as in figure 4-7.

Although scheduler seems to be hidden, the function next gives some infor-

mation about which choice of the function has been assumed. This dependency of

a visible function on a hidden function which is not completely defined prevents

the hidden enrichment from being independent.

Chapter 4. Specifications with hidden parts 	 122

Schdler = Enrich ListNat by

Hidden

sorts

operations

scheduler: listnat -> listnat

axioms

{ Axioms requiring 'scheduler' to deliver

some arbitrary permutation of the parameter. }

in

sorts

operations

next: listnat -> nat

axioms

V l:listnat. next(l)=car(scheduler(1))

end

Figure 4-7: Specification of a scheduler

Chapter 4. Specifications with hidden parts 	 123

If scheduler were completely defined as being, for example, a function to sort

a list in descending order then the hidden enrichment would become independent

automatically (see proposition 4.3.4).

On the other hand, if next is a less completely defined function, independence

can hold without changing scheduler. For example, suppose the only requirement

on next (1) is to yield a value of the list scheduler (1):

V l:listnat. next(l) E scheduler(l) = true

Now, the hidden enrichment is independent because no realization of next excludes

a possible behaviour of scheduler.

Using the 3 2
-strategy amounts to requiring the completion of the definition of

the hidden part as far as needed to attain independence.

Consider an antecedent SP2 where next produces the maximum of the list.

The entailment SP2 = Schdler cannot be proven correct by the inheriting strat-

egy. The lack of independence means that we are not inheriting enough axioms

to complete the proof.

The 2-strategy can be seen as a procedure which forces the prover to complete

the definition of the hidden part as far as necessary to complete the proof. For

example, choosing 4 in the 3 2-strategy to be the definition of scheduler as a

sorting function in descending order would suffice. In general 4 can be chosen to

be 'h - as in the inheriting strategy - plus some extra axioms completing the

definition of the hidden symbols.

In consequence, we can say that the hidden symbols can be used in the visible

part insofar as they are adequately defined. If some hidden symbols are inade-

quately defined w.r.t. how they are used, the hidden enrichment lacks indepen-

dence and the definition of the hidden symbols generally needs to be completed

Chapter 4. Specifications with hidden parts
	 124

during the proof of correctness (see discussion at the end of section 4.5 about

independence being generally needed for the success of the inheriting strategy).

4.7.2 Failing persistency

Non-persistent hidden parts are a more serious problem although not so frequent

in practice.

A non-persistent hidden part cannot be inherited to the antecedent' because

this could cause some of the antecedent's models to be excluded from consideration

in the proof, leading to a situation where an incorrect entailment is proven correct.

Non-persistent hidden enrichments can be considered errors in the sense that

the existence of some auxiliary functions and sorts should be transparent to the

rest of the specification.

Applying the 3 2-strategy amounts to asking for a new persistent definition, 4D,

of the hidden part. In other words, such a strategy is equivalent to going back to

the specification, writing a correct (persistent) definition, , of the hidden part,

leaving the old 1,, as additional requirements on the visible part - added to

or 4DI O - and starting the proof of correctness according to the inheriting

strategy.

Chapter 5

Abstracted specifications

5.1 Introduction

In this chapter we are concerned with specifications using abstraction and be-

havioural abstraction. Unlike the other SBO's in ASL, the definition of abstract

has been controversial (c.f. [SW 83, ST 87]) as has also been the general notion of

abstraction in the field of algebraic specifications (c.f. [GGM 76, Rei 87, MC 85,

NO 88]) and its relationship to the notion of abstract implementation (c.f. [Hoa 72,

Ehr 81, EKMP 82, BBC 86]).

Since early work in [0GM 76], the interpretation of an abstract data type as an

algebra (abstracted) up to isomorphism has been seriously debated. The problem

is essentially linked to the distinction between observable and non-observable sorts.

If all sorts are observable then abstraction up to isomorphism is appropriate

in the sense that it fully captures the idea of a system seen as a black box. The

sorts of the algebra represent the different kinds of input/output values while the

functions (their graphs) represent the relation of the input to the output.

However, algebras, when denoting data types, contain at least one sort repre-

senting the values of the data type in question (distinguished phylum in [GH 78]).

The values of this data type are, in general, abstract entities which do not corre-

spond to any kind of input/output value (observable value for short), e.g. states

125

Chapter 5. Abstracted specifications 	 126

in an automaton. Abstraction w.r.t. isomorphism only admits as models of a

data type algebras with isomorphic carriers. So, in the case of the specification

of an automaton which recognizes a particular language, automata with different

configurations of states cannot be models of the same specification, even if they

recognize the same language.

In order to bring into algebraic specification an idea similar to equivalence

of automata, the notion of behaviour of an algebra w.r.t. some observable sorts

has been defined (among others in [COM 76, MC 85]). Then, two algebras are

behaviourally equivalent if they have the same behaviour', that is if they agree on

all computations from observable sorts to observable sorts. Applying behavioural

abstraction to a specification closes its class of models with respect to behavioural

equivalence.

Behavioural abstraction can be generalized to non-algebraic institutions by

explicitly indicating those sentences which are observable, as does abstract in

[ST 87, ST 88a]. Then, behavioural abstraction becomes the particular case in

which the observable sentences are all the equations between terms of observable

sorts.

In this chapter we shall propose a new account for abstraction and in particular

behavioural abstraction according to the following informal requirements.

1. Abstraction should be defined as an institution-independent operation, like

the other SBO's in ASL.

'Most frequently, behavioural equivalence is defined without an explicit definition of

behaviour.

Chapter 5. Abstracted specifications 	 127

Behavioural abstraction should be a particular instance of abstraction for

the case in which models are algebras and observations are defined in terms

of observable sorts.

The user should be able to decide if a sort is observable or not when defining

a specification. Moreover, any specification can be further abstracted, when-

ever it is used in a bigger context, for example by turning some observable

sorts into non-observable sorts.

Abstraction in ASL should be related to D since both operations "hide",

in an informal sense, some details of a specification which do not need to be

implemented.

This is realized by considering an institution morphism from the original institu-

tion to another abstracted institution where TD, happens to mean abstraction

in some cases or exactly what it meant in the original institution in others.

But before giving details of this approach, some others are surveyed showing

which of the above requirements are not satisfied.

Historical survey

Without pretending to be exhaustive, a few approaches are sketched trying to

capture the range of alternatives among specification languages with tight or loose

semantics, and among the latter distinguishing those with a notion of institution

from the rest.

Probably the simplest way to deal with behavioural abstraction is to ignore it,

considering specifications to denote isomorphic classes of algebras and proposing

a relation of abstract implementation as in [GTW 76, EKMP 82, Ehr 81]. In this

Chapter 5. Abstracted specifications 	 128

case, those models which are behaviourally equivalent to a model of the specifi-

cation without being isomorphic to it, are expected to be valid implementations.

For example, many algebras which fail to be models of a specification are among

the valid implementations because there exists a homomorphism from them to a

model of the specification (quotient step in [EKMP 82, Ehr 81]).

Often abstract implementation are such that by considering an appropriate

restriction of the signature, taking a subalgebra and performing a quotient', any

valid implementation can be turned into a model isomorphic to the initial'model of

the specification. Therefore, as in [Hoa 72], a value can be represented by several

values in the implementation but never the other way round. In an example such

as the automaton specification referred above, if it is the case that the automaton

denoted by the initial model of the specification (up to isomorphism) is not mini-

mal then some behaviourally equivalent models will not be valid implementations.

Hence, this approach fails the second requirement.

Some other approaches genuinely concerned with behaviour and still faithful to

initial semantics have been developed [Rei 81, Rei 87, MG 85, NO 88].

Reichel's work explicitly introduces abstraction via canons of behaviour. Es-

sentially, two algebras are behaviourally equivalent if they have a common quotient

via congruences which leave their observable carriers untouched. This definition

takes good care of specifications such as the automaton example above, but junk in

non-observable sorts must be preserved in the implementation. Hence the second

requirement does not hold.

In [MC 85] a definition for behaviour of an algebra is presented as a new alge-

bra whose operations are the observations of the former one, i.e. those sequences of

2 A subalgebra must be chosen before taking the quotient. Reversing the order of the

operations results in a weaker notion of implementation [EKMP 82].

Chapter 5. Abstracted specifications 	 129

old operations computing observable values from observable values (a new concise

categorical definition will be given below). Behavioural abstraction is obtained

by including as models of an abstracted specification all algebras having the same

behaviour. In [Niv 87, NO 881 a similar setup is defined by changing the notion of

homomorphism in such a way that isomorphism means behavioural equivalence.

Both works lead to the same notion of behaviour and make it compatible with

initiality. Nivela's work goes further, taking into account the most common con-

structions related to initial semantics, but what we consider more relevagt is that

in her approach behaviour is a concept embedded into a new institution instead

of being defined separately. These approaches fail in the first requirement since

their notions of behaviour are intimately linked to EQ (the standard institution

of total algebras and equational logic).

Another way to avoid the problems posed by the initial approach of [GTW 76]

is to consider the model designated by a specification to be not the initial one but

the final one [0GM 76, Kam 83, Wan 79]. In this way a notion of implementation

based on homomorphism will succeed in examples such as the automaton specifi-

cation mentioned above since the final model is precisely the minimal automaton

recognizing the required language. However, apart from technical problems re-

lated to the existence of final models, this approach violates the third requirement

since there is no explicit way to apply or not to apply finality.

Specification languages with loose semantics fit more comfortably with the prob

lem of defining behaviour. Since the models of a specification do not need to

be isomorphic, one possibility is to change the definition of satisfaction for equa-

tions between non-observable values to mean equivalence w.r.t. all visible contexts;

hence, the equality symbol means indistinguishability (see for instance [Hen 88,

Cog 90]). Problems with behaviour and loose semantics usually appear when look-

Chapter 5. Abstracted specifications 	 130

ing at proof techniques or when trying to generalize the idea of abstraction to an

arbitrary institution.

First, we consider cases such as [WB 89] where equality is treated as in stan-

dard first order logic. Following [Men 71], equality is an ordinary predicate symbol

satisfying some extra axioms, namely, reflexivity, transitivity, symmetry and ex-

tensionality w.r.t. any well-formed formula. Normal models are those in which

the equality symbol is interpreted as identity, but other models are possible. In

[WB 891 multi-sorted first order logic with equality is used in this way, sb that for

many specifications their class of models is automatically closed up to behavioural

equivalence. The advantages are proof-theoretical but from the point of view of

abstraction this approach fails the third requirement since the user cannot decide

in which sorts equality should mean identity, and it fails the second requirement

as well since no model of an specification with an inequality a 54 b can give the

same value to a and b, even if a and b belong to a non-observable sort.

Other approaches making an explicit distinction between observable and non-

observable sorts when using equations lead to [Gog 90] where this is concisely

presented as a new institution for behaviour. The only inconvenience is its com-

mitment to EQ which makes the first requirement fail.

Heading towards a more general definition of behaviour, [SW 831, [Wir 86]

and [ST 87] propose to consider observable terms and observable sentences as an

alternative to observable sorts. [Wir 86] accompanies generality with some proof

theoretical results but only [ST 87] presents a institution independent definition:

Observational abstraction. An approach based on an observability predicate ObsO

such as [Wir 86] does not satisfy our third requirement properly since a given

specification cannot be further abstracted later by any means, contrary to what

an abstraction operation in [ST 87], a closure as proposed below, the parameter

passing mechanism in [Cog 90] or even a Non-Obs() assertion can do.

An abstract o63 operation as in [ST 87] defines abstraction w.r.t. an arbitrary

Chapter 5. Abstracted specifications 	 131

set of sentences Obs called observations. Models of an abstracted specification

abstract ob,SP include all those models over Sig[SP] which satisfy the same ob-

servations as a model of SP. In particular, observable sorts can be defined in terms

of observations by including enough sentences in Obs so that the carrier of an ob-

servable sort is completely determined up to isomorphism. This approach satisfies

our requirements except for the last one. Unfortunately, this new operation does

not relate (observational) abstraction to D, the other abstraction mechanism in

ASL.

In our proposal we aim to preserve the good properties of abstract but shift-

ing the general problem of abstraction from the specification language into the

underlying institution as in [NO 881 and [Gog 901, so that abstract becomes a

derived operation: a particular instance of TD,.

Proof techniques

Despite the multitude of approaches to behavioural abstraction, the available proof

techniques for proving behavioural equivalence are essentially two: explicit defini-

tion of congruences and proving agreement on all observations.

Consider for example the classic implementation of a stack by an array and a

pointer. The axiom

V S:stack; x:elem. pop(push(x,S)) = S

is not satisfied in the implementation as such. The first proof technique suggests

to formalize the appropriate congruence on array-pointer pairs which corresponds

to stack equality, e.g. all arrays with the same pointer which agree in the values

of the array for indexes below the pointer are considered equal (see for example

[Wan 82, \VB 89]). The second proof technique substitutes the problematic axiom

by its infinite set of observable consequences, i.e.

Chapter 5. Abstracted specifications 	 132

V S:stack; x:elem. top(pop(push(x,S))) = top(s)

V S:stack; x:elem. top(push(y,pop(push(x,S)))) = top(push(y,S))

and proves that all these hold in the implementation. By considering the recursive

definition of observation, an induction schema can be used (see context induction

in [Hen 88]).

All the approaches to behavioural abstraction can be classified depending on

which proof technique they use, if any.

Model theoretical notions of implementation such as in [Hoa 72] and behavioural

inclusion such as that in [Sch 87] (page 223) consider, by definition, that an ab-

stract implementation must satisfy the (infinite) set of observable theorems of the

specification. However, the main result of such approaches is precisely showing

that an appropriate kind of congruence characterizes all such implementations.

Hence, the latter method is normally used in the proofs.

For example, given a notion of observation such as equalities between closed

terms of observable sorts, we obtain a notion of behavioural equivalence between

algebras, i.e. two algebras are behaviorally equivalent if they satisfy the same

observations. Then, a model-theoretical construction between algebras, e.g. corre-

spondences in [Sch 871 and abstraction functions in [Hoa 721, is proposed in such

a way that if the construction can be done between two algebras then they will

be behaviourally equivalent. Defining an abstraction function amounts to using

a congruence, e.g. in the case of stacks, all arrays with equal values below the

pointer are mapped to the same abstract stack. Then, these characterizations can

be understood as a proof of soundness of a technique such as the construction of

an abstraction function (or correspondence).

Chapter 5. Abstracted specifications
	

133

Algebraic specification approaches such as [Ehr 81, EKMP 821 do not use an

explicit notion of abstraction, but a notion of implementation which embeds it

(see historical survey above). In this case a quotient step is included in the imple-

mentation notion. This quotient involves a congruence relating those values of the

implementation which represent the same abstract value. Hence these approaches

use explicit definition of congruences.

Also some loose approaches justify the use of congruences taking a first order

interpretation of equality, e.g. [Wan 82, WB 89].

In contrast, those approaches taking definitions of abstraction in terms of ob-

servations or observable sorts without exploring any further, are committed to

proving that antecedent and consequent agree on all observations. Therefore, no-

tions of abstraction such as in [NO 88, MC 85, Gog 90] support, by default, proving

agreement on all observations. We have also in this group: [ST 87] which gives

an explicit rule for abstract, [Wir 861 which extends the calculus of equational

implications with some explicit rules for handling the Obs() predicate, [Hen 88]

which provides context induction to deal with an infinite number of observations

and [Lin 87] which uses proofs by consistency.

In this chapter, since abstraction is treated as a particular meaning for TD we

shall revisit the proof techniques for hiding presented in the last chapter, which

give rise to the two well-known proof techniques just surveyed.

Chapter 5. Abstracted specifications 	 134

5.2 Abstractions

At a very general level, we view the abstraction operation in ASL as TD, in an

abstracted institution. In this sense, the abstracted institution is the enrichment of

an (original) institution by some new signatures and signature morphisms and the

corresponding models and sentences. This extra structure corresponds, intuitively,

to abstract models (behaviours), abstract signatures (behaviour signatures) and

observations.

Imagine the case of the institution for equational logic EQ. We can define

a new institution Beh(EQ) where signatures are either standard algebraic sig-

natures such as (S, Q) or abstracted signatures containing an explicit set of ob-

servable sorts, e.g. ((8,11), 0) where 0 C 8, as is standard in behavioural ab-

straction. Models over the abstracted signatures are behaviours as defined in

[MG 85] instead of algebras, and the reduct functor -10 for a signature morphism

o : ((S, Il), 0) - (S, Il) maps each (S, 11)-algebra to its behaviour. Sentences

over an abstracted signature are those sentences of the original institution which

cannot distinguish between two algebras with the same behaviour. The result

is an abstracting institution morphism a EQ -* Beh(EQ) from the original

institution EQ to the abstracted institution Beh(EQ).

The abstraction operation in ASL is TD,,. Therefore, the essence of ab-

straction is the reduct functor -10 which maps to the same behaviour - model

of Mod(((S, 11), 0)) - all those algebras in Alg((S, 11)) which are behaviourally

equivalent. Thus, T 0 D0 performs the closure of the models of a specification SP

over (S, 11) w.r.t. behavioural equivalence.

Mod[T0 D0 SP] = {A E A1g((S,11)) I Al, = B10 and B E Mod[SP]}

Chapter 5. Abstracted specifications
	

135

In the following sections we shall study some abstracted institutions and how

proof techniques for T and D can be used in cx + ASL = cx + ASL, but first we

shall devote some time to a general definition of abstraction.

Definition 5.2.1 Given two institutions,

I = (SIG, Mod, Sen, =) 	al = (cxSIG,ilfod,aSen, =°)

and an institution morphism (cxSIG) cx Mod , aS en),

cxSIG : SIC - aSIC

cxM od : ModOP=.aOP c; cxMod°

aSen : asic; aSen=,Sen

then al is an abstracted institution w.r.t. the original institution I if cxsJG is

a full and faithful functor (i.e. there exists a full subcategory of aSIC isomorphic

to SIC in Cat) and there exists a functor C : aSIC —i SIG and natural trans-

formations i : asIc; C=Id51 and o : I4sjc=C; aSIG forming an adjunction

(C, asiG, 0, i).

Morphisms such as (cx sJG , aM0d) as) are then called abstracting institution

morphisms.

Functor asw maps the original signatures and signature morphisms in SIC to

their corresponding signatures and signature morphisms in the full subcategory of

aSIC isomorphic to SIC; furictor C yields the original signature (signature mor-

phism) corresponding to each abstract signature (signature morphism) 3 ; natural

transformation i gives for each original signature E a morphism i r, C(cx sjc ()) -+

'The name C is chosen to mean concrete, as opposite to abstract.

Chapter 5. Abstracted specifications
	

136

E; and natural transformation o gives for each signature H in the abstracted in-

stitution a morphism on : H -p crsjc(C(H)), that is, if as,c is an inclusion, OH is

a morphism from H to its corresponding original signature.

A few facts follow directly from the definition (see [Mac 71]).

Fact 5.2.2 Given an arbitrary abstracting institution morphism

(agfG,crMod,aSen) : I—i aI

with adjunction (C,a SIG , O,i), then

for every signature E in SIC, E C(aSIG(E)),
	

(See LHCkC

C preserves colimits,

aSIG preserves limits,

. for all E E ISIGI, all morphisms h : H -+ asjc (E) in oSIG can be uniquely

decomposed into h = o; crSJG(o) where o : C(H) —* E is a morphism in

SIC and on H — crslG(C(H)) is the unit for H.

In practice, SIC can be chosen to be a full subcategory of aSIC so that

(C,crsjc ,o) is a reflection. Then, E can be thought of as identical to C(asjo (E))

and a510 (E); morphisms ir, : C(a510 (E)) — as identity morphisms idE in SIC,

and morphisms O : [I -p asJG(C(H)) as morphisms in aSIC mapping an arbitrary

H to its corresponding original signature C(H), e.g. for C(H) = E, on H —* E in

aSIC.

Notational conventions The original institution is denoted by I and the ab-

stracted institution by al as in the definition. The unit of C is usually denoted by

o and unit morphisms on are called abstraction morphisnis. Functor aSIG and

Chapter 5. Abstracted specifications 	 137

the morphisms iE, corresponding to the counit i, will be systematically dropped

since they can be cancelled to the left and to the right, in other words we shall

proceed as if (as is frequent in practice) E = asIG(E) = C(asia()) and iE = idE .

The symbol E will be reserved to denote objects of SIG (original signatures) and

H for arbitrary or proper objects of crSIG (abstracted signatures).

This definition of abstraction allows to view some known institutions as ab-

stracted institutions, e.g. the institution of first order logic in section 5.42 below.

However, we normally think of the abstracted institution as an enrichment of a

given original one. The following section formalizes this construction.

5.2.1 Quotient abstracted institutions

Following [ST 87], an abstraction operation on a specification SP over E yields

another specification cr=SP over the same signature whose models are the closure

of the original class of models w.r.t. a given signature-sorted equivalence relation

among the models'. For each E-specification SP

Mod[cxSP] = {A E IMod(E)J I A E B, B E Mod[SP]}

Keeping this general idea in mind we define the following enrichment to a given

institution.

Definition 5.2.3 Given an institution I = (SIC, Mod, Sen,), and the follow-

ing:

4 1n [ST 871 is not sorted by the signatures, but this difference is not important.

Chapter 5. Abstracted specifications 	 138

A category aSIC with a full inclusion' aSIG: SIC -* aSIC.

A reflection (C,agjc,o) with C : crSIG - SIC and 0: IdasJG=.C; aSj.

An IaSIGI-sorted equivalence relation 	among the models of I such that

c IMod(C(ll))I x IMod(C(H))l for all H E IaSIGI.

V 	(MX (c(r\ 	p 	rcz (c(t 	n4 3 Ic(k\ 	
L rr1 -)rr j1

. An krSICI-sorted set Obs of sentences in I such that Obsn c Sen(C(H)) for

all H E IaSICI.

J& SQC(Tn\\. 	'fE 0s.- 4 	-5 C(L('f 6 0~ ç
TTZ 	fcr j(L.. 1TI—)TrZ

Functors crMod : aSIC -* Cat" and aSen : aSIC -p Set, and a relation I=?i E

laMod(ll)l x aSen(H) for each II e IcrSIGI are defined as follows:

• aMod(E) 	Mod(E) if E is one of the original signatures. Otherwise,

aMod(H) = Mod(C(H))/
.
1

aMod(cr) = Mod(u) if o• is one of the original signature morphisms. For

every unit morphism on : H - C(H) in aSIC, aMod(on) is a mapping

from every model M in Mod(E) to its equivalence class [M] in Mod(E)/ n ,

also written MI...

• aSen(E) = Sen(E) if E is one of the original signatures. Otherwise, aSen(ll) =

Obs11 .

cxSen(a) = Sen(o) if o is one of the original signature morphisms. For

every unit morphism O : H -p C(H) in aSIC, aSen(on) is an inclusion

from Obs 1-j into Sen(E), usually called o n as well.

5 Functor asic is defined to be a full inclusion instead of an arbitrary faithful and

full functor in order not to overload the notation.

'Proof that these functors are well-defined is included in the following proposition.

V r 	vocleL 	ove, x 	 is c 	€-ed otcc-&.

Chapter 5. Abstracted specifications 	 139

• 	= I=E if E is one of the original signatures. Otherwise, M 	if for

all A E M, A hC(H) in I.

If (aSIG, cMod, crSen, =') satisfies the satisfaction condition then it is called a

quotient abstracted institution of I, denoted by cb,I.

cSen(E) = Sen(>)

ED
I on 	

aSen

LID
cSen(ll) = Obsj1 C Sen(E)

aMod(E) = Mod(E)

crSIG

on 	
cEMod 	Ji

CA10.

ctMod(ll) = Mod(E)/

In the above definition cxMod and crSen are only defined on the objects of cxSIG,

the original morphisms and the unit morphisms. The following proposition shows

that to be enough.

Proposition 5.2.4 Given a situation as in the previous definition, cMod and

aSen are well-defined functors over all morphisms in cSIG.

Proof In their definition aMod and cxSen are explicitly defined over all objects,

original morphisms and unit morphisms in aSIC. Now, we must prove that they

are implicitly defined for an arbitrary morphism h : Hi -p 112 in aSIC.

Since (C,aSIG,O) is a reflection, the unit morphisms o n , and 0n2 make the

following diagram comi

	

o 	cO5 	d

	

tn t') =:

3e4

I

nute in aSIC.

allow Mod cvv'tcl

CCCL) (f 	 -

WQ

ovev' 	ri.t—rz

cJ 	AE1Hc(C(tTZ))

all 	T EOLS1TA

r i- 	1&RJ\e- SS -

Chapter 5. Abstracted specifications 	 140

Hi °' C(H1)

1C(h)

H2
0112

 C(H2)

Consider two possible functors a Mod1 and crMod2 which satisfy the requirements

given for cxMod.

For all unit morphisms orj we know that aMod1 and cxMod2 agree and since

they are functors

-1
cxMod(H 	

0111
i) 	Mod(C(Hi))

aModi (h) IaMod2 (h) 	IaMod(C(h))

I 	I
aMod(H2) 	

10H2 	
Mod(C(112))

we have that

-10112; crModi (h) =
-10112; aMod2(h)

And finally, since -10112 is a surjective mapping onto aMod(112) and therefore epi

and left-cancellable, the equation is reduced to

aModi (h) = aMod2 (h)

hence aMod is well-defined.

The same reasoning applies to crSen with the difference that the inclusions

crSen(on) : Sen(C(H)) 4_ aSen(H) go in the opposite direction and they are not

epi but mono. 0

Since cxMod and aSen are guaranteed to be well-defined we only need a condi-

tion between and Obs characterizing when (cxSig, aMod, aSen, 1=") is indeed a

quotient abstracted institution.

Chapter 5. Abstracted specifications 	 141

Theorem 5.2.5 Given a situation as in the previous definition

(aSig,cMod,ciSen, =)

satisfies the satisfaction condition if for all signatures H in aSIC, models A, B E

JM,od(C(II))j and sentences W E cSen(H),

A 	B 	(A C(fl) 	B C(fl))

Proof Assuming the satisfaction condition to hold and considering an abstrac-

tion morphism on : H -p E in cxSIG, i.e. C(H) = E, we have that for all

W E aSen(H) (implicitly on (p) = p E Sen(E))

VA E Mod(E). IAIO =j ç 	A hE)

Since _I maps A to its equivalence class [A]=11 E Mod(E)/ ri, by definition of

this can be rewritten as

VA E Mod(s). ((VB E [A]=. B J=E ç) A =E)

Taking the implication from right to left we can produce the following sequence

of equivalences

VA E Mod(E). ((VB E [A] 11 . B 	') 	A hE o)

VA E Mod(E). (VB € [A]r 11 . B)V(A Kr p)

== VA € Mod (E). (VB € Mod (E). (A H B = B I=E)) V (A V r V)

== VA € Mod(E). (VB € Mod(E). (A rj B) V (B)) V (A K r
VA, B E Mod(>). (A O n B) V (B 	p) V (A

== VA, B E Mod (E). (A 	B = (A =E = B I -- r,))

Considering that A 	B is equivalent to B 	A, we can apply this fact twice

on the same pair of models to obtain

VA,BEMod().(A n B = (AHBE))

Chapter 5. Abstracted specifications 	 142

for all y E aSen(H).

In the other direction, j satisfies the satisfaction condition whenever o is an

original morphism because the satisfaction condition is already satisfied in I.

For each abstraction morphism on : 11 -' , i.e. C(H) = E, and models

A, B E Mod (E), we assume that for all sentences p E cSen(H)

AB = (A= E B H r,)

Taking the implication from left to right and writing explicitly the quantifiers over

models we have that for all sentences 	crSen(H)

VA,B EMod(>).(A r1 B = (A Hr, co'B H E W)))

The same chain of equivalences as before can be applied to obtain

VA E Mod(E). ((VB E [A]= 11 . B t=E ') = A Hr, ')

Implication in the opposite direction holds trivially since A E [A]=11 , hence

VA E Mod(E). ((VB E [A]= 11 . B I=E c) 	A 1=E ço)

Using the definition of 	and 	we get

VA E Mod(E). (AI 0 I=j ço 	A hE ç')

for all p E cSen(H), as desired.

Finally we have to prove that the satisfaction condition holds for an arbitrary

morphism h : Hi - 112 in cESIG.

Since (C,asfG ,o) is a reflection, the unit morphisms Ofli and 0fl2 make the

following diagram commute in cSIG.

Hi 	Fi= C(H1)

a=C(h)

H2 °fl2 	2 = C(112)

	

Chapter 5. Abstracted specifications
	

143

Since cSen is a functor the corresponding diagram in the category of sets also

commutes, z. e.

oSen(h); aSen(o ri2) = cSen(o n1); Sen(u)

Taking an arbitrary sentence V E Sen(H1), we get

aSen(on2)(crSen(h)()) = Sen(cr)(aSen(o n1)())

and since oSen(orn) and cSen(o rj2) are inclusions, this is reduced to cSenh)(cp) =

Sen(a)(ç); that is to say, in the standard shorter notation:

h((o) =

Now, for every model M E IMod(E2)1 since the satisfaction condition holds in

the original institution, we have that

	

MIa I:=E1 çø 	M k r,2 h(p)

Since the satisfaction condition holds w.r.t. unit morphisms (proved above), we

know also that

(Ml)I0111 J=i 	M, 1E1 P

and similarly

MI02 ri h(W) 	M h92 h()

At the same time, since cMod is a functor the following diagram commutes

guaranteeing that (M10112)I,, = (MI)I0111.

aMod([I1) 	
-I 0111

Mod(E1)

-Ih

-10112
aMod(1T2) • 	Mod(E2)

Chapter 5. Abstracted specifications 	 144

Combining the last three equivalences with this equation we conclude that:

(M1 o112)I h I=i cp 4=> MJ0112 hfl2 h(p)

Now, it suffices to note that cxMod(on 2) (written 10112) is a full functor. Therefore,

every model in IaMod(112)I is a 0 2 -reduct of at least one model in IMod(2)I.

Hence, any equivalence holding for an arbitrary reduct M1 0112 also holds for an

arbitrary A E faMod(112)J, i.e.

Al l, I:= i W 	A =?j2 h(p)

Finally, we can easily show quotient abstract institutions to be abstracted

institutions as defined in page 135.

Proposition 5.2.6 Given a quotient abstract institution cb 3 I, there exists a ab-

stracting institution morphism from I to aI.

Proof Given institutions I = (SIG, Mod, Sen, 1=) and

= (cxSIG, aMod, aSen, =x)

as those in definition 5.2.3, we consider the tuple (a SIG, aM0d, as) defined as:

a510 : SIG - aSIG is the full inclusion from the signatures in I to the

signatures in aI.

aMod : Mod°"=t'a 0 ; cxMod° is defined for all signatures E E ISIGI as the

identity functor

M0d E = IdM0d(E)

aSen : asiG; aSen='.Sen is defined for all signatures E E ISIGI as the identity

function

asE = IdSen()

Chapter 5. Abstracted specifications
	

145

Using these definitions it is not difficult to verify that all the conditions required

by institution morphisms hold and, in particular, the satisfaction condition

M HE asE(p) if aM0dE(M) SIG(E) Y

for all E E ISIGI, M E aMod(E) and W E aSen(ci sJG (E)), becomes

M=E'p if M=ço

for all E E ISIGI, M E aMod(E) and ç E aSen(E). Furthermore, considering

the definitions of aSen and ciMod over original signatures in definition 5.2.3, we

obtain a trivial statement:

M=Ep if M=Eco

for all E E ISIG, ME Mod(>) and w E Sen(E).

Finally, since reflections are adjunctions and inclusion functors are always faith-

ful, we conclude that

(oSIG,cM od) cS en) : 1 -+

is an abstracting institution morphism.

0

From now on, we shall drop the subscripts for abstraction morphisms so that an

abstraction morphism o : H -+ E implicitly refers to a unit morphism on : H -p

as,a(C(H)) whose target signature is an original signature E.

In a quotient abstracted institution cb3I and for an abstraction morphism

o : H -p , the closure operator T0 D 0 means abstraction in the sense of a= in

[ST 87]; i.e. for any s-specification SP

Mod[T0 D0 SP] = {A E IMod()! I A =—n B, B E Mod[SP]}

Chapter 5. Abstracted specifications
	

146

In general, the closure operator TD, for a signature morphism u : El —+ E2

is equivalent to an abstraction with respect to the kernel induced by the reduct

functor _, i.e. Ker(_I) c IMod(E2)I x IMod(E2)I and TU DC SP = aKer (_14SP

for any E2-specification SP. The construction of c 3 I is just a way to force the

kernel for abstraction morphisms to be a given equivalence relation

We can conclude that abstraction in ASL is defined as follows:

Definition 5.2.7 Abstraction in ASL(c 63 I) is a derived SBO 	defined as

c=.XX:E. T O DØ X

for each abstraction morphism o: H —+ E.

5.2.2 Observational abstractions

Following [ST 87], an abstraction operation a= is called observational abstraction

w.r.t. a signature-sorted set of sentences Obs if is a signature-sorted equivalence

=- such that for each signature E and for every A, B E Mod(E),

A =Obs B 	(VV E O6E A 	B =)

This concept can be easily defined for quotient abstracted institutions as fol-

lows

Definition 5.2.8 A quotient abstracted institution c,I with reflection (C, c sj , o)

is called observational, and denoted by cob 3 I, if for each signature H and models

A, B E Mod(C(H)), the equivalence relation =n satisfies

A 	B if 	aSen(H). (A C(fl) 4 B :C(H) p)

Note that observations are ordinary sentences which cannot discriminate be-

tween two equivalent models (this requirement comes from theorem 5.2.5). Ob-

servational abstractions occur in the particular case that the equivalence relation

Chapter 5. Abstracted specifications 	 147

is exactly the one induced by the observations Obsr, which, by definition of a

quotient abstracted institution, is aSen([I).

In this case A n B can be tested by checking if A and B agree on the observa-

tions Obsn . For this reason, observational abstraction is related to the existence of

proof techniques for entailment when the consequent contains abstraction, i.e. for

DATU = a + DATU, as for example in proving entailment w.r.t. a behaviourally

abstracted specification.

In a non-observational abstraction we cannot know if two >-models which

satisfy the same observations are equivalent or not w.r.t. H for an abstraction

morphism o : II -' E. This makes it impossible, at the specification level, to

decide if SP2 = a SP1 is correct. For example, suppose n is the identity

relation and Obsn is empty; then all E-models satisfy the observable theorems of

a specification a=ri but none of them is a model of a=SP1 unless it is also a

model of SF1.

5.3 Proving satisfaction of all observable theo-

rems

In this section we study in whichcases SP2 = crSP1 can be proven by showing

all observable theorems of the consequent SP1 to hold in the antecedent SP2.

This relies, essentially, on the provability of behavioural equivalence between two

models by proving agreement on all observations, but some side conditions render

these proofs particularly interesting.

In terms of specification entailment, we intend to prove SP2 j= a 11 SP1 by

proving that there is a sound theory 1X2 w.r.t. SP2 and an M-complete theory Al

Chapter 5. Abstracted specifications 	 148

w.r.t. SP1 such that

A2 =E L1 fl Obs1-

which is equivalent to requiring the inference rule

SPI=p
çaeObsn

cxSP = ç'

to be M-complete w.r.t. a.

Substituting 	by its definition T, D,,, we realize that the inference' rule just

introduced for abstraction is the composition of the inference rules given for Ta

and D in chapter 3, taking into consideration that ço E Obs11 if o(p) = W.

SPFoo)
	

SPFo
DSPF- p 	 1 7 .1' I- O)

Unfortunately, the rule for Da is not M-complete and, therefore, the rule for c

is not M-complete unless some side conditions are met.

Definition 5.3.1 A quotient abstracted institution oI is called well-behaved

if for every abstraction morphism o : II -+ E, theory L over E and partition

(0, 6) of the set of fl-observations (i.e. on -a =@ and 0 U Y = Obsr1), it is the

case that whenever there exists a model A E Mod(E) such that

A=E(LflObsn)UO and AE

then, there exists also B E Mod(E) such that

B=EAUO and BEJ

Intuitively, we can imagine A to be an abstracted specification and A a model sat-

isfying the observable theorems of that specification, i.e. A J= Lfl Obs11 . Then, in a

well-behaved institution, there must exist a model B of A which is observationally

equivalent to A, hence A is a model of the abstracted A.

Chapter 5. Abstracted specifications
	 149

In particular, a well-behaved abstracted institution requires observations to be

rich enough so that if a theory A is inconsistent with a certain partition (O,) of

the observations, then this partition should also be inconsistent with the observable

part of the theory A fl Obs1-j.

Lemma 5.3.2 Let &ObsI be a well-behaved institution and o H -p 	an ab-

straction morphism. If J is an inconsistent theory over E then z fl Obs11 is also

inconsistent.

Proof If there exists A such that A t=E A fl Obs11 then we can partition Obs1-j
into (ObsA , ObsA) with ObsA = { E Obs n I A l=E } and ObsA = Obs11 \ ObsA .
Applying the definition of well-behaved institution, A must be consistent. 0

Theorem 5.3.3 Given a well-behaved observational institution aOb,I, the infer-

ence rule
SP=p

cc' E Obs11
D, SP 1=

for every abstraction morphism o: H -* E is M-complete.

Proof Let A be an M-complete theory for SP, i.e. Mod[i] c Mod[SP]. The

inferred theory is Lj = A fl Obsn .

If A is inconsistent so is Lj.j by the previous lemma, and Mod[L1 j] 9 Mod[D0 SPJ

holds trivially.

Otherwise, it is enough to show that for all fl-models M such that M)=?j Lf

there exists a model B E Mod[SP] such that B E M, since applying reducts

M = B10 E Mod[D0 SP] as desired.

In an observational institution, M is characterized by a partition (ObS Af , ObsAf)

of the set of observations Obsn depending on whether they are satisfied or they

are not satisfied in M, i.e. ObS M U ObsM = Obsn and

Chapter 5. Abstracted specifications 	 150

M = { A E Mod (E) I A I=E Obs j , A W r Obs }

Moreover, by construction, M is an equivalence class of s-models w.r.t. SObs and

therefore it cannot be empty. Hence, there exists a E-model A E M and, since
AK L_.a A

fYi 	 1-inf,

A E=E (A fl Obsn) U Obsm and A Wr.Obsm

In a well-behaved institution, there must exist a E-model B such th.t B I=E
A U ObsM and B W r ObsM , therefore B E M. At the same time, B E Mod[L] and

by M-completeness of i, B E Mod[SP] as required.

Since the soundness of the rule without the side condition has already been

proven (see section 3.3), the rule is exact.

Corollary 5.3.4 In a well-behaved observational institution aob,I, any specifica-

tion SP in a -f ATU is equivalent to a presentation 4)sp Sen(Sig[SP]) which

can be obtained by adding an equivalence

=

to those given for ATU in section 3.2.

Unfortunately, the theory G1() fl Obs1-j may not have a finite presentation

even if 0(4') has. This is the case of the common specification of stacks where a

non-observable axiom

pop(push(x,S)) = S

gives rise to an infinite set of observable consequences

Chapter 5. Abstracted specifications 	 151

top(pop(push(x,S))) = top(s)

top(push(y,pop(push(x,S)))) = top(push(y,S))

which cannot be expressed by an equivalent finite presentation. This problem

arises also in first order logic [Sch 91] and prevents abstraction in a well-behaved

observational institution from being trivial. In practice, well-behaved observa-

tional abstractions allow entailment proofs by proving satisfaction of all observable

theorems, but they do not tell us how to perform such proofs. In the end, we must

rely on appropriate proof techniques such as context induction [Hen 881 or proof

by consistency [Lin 87].

Comparing our proof results for abstraction in well-behaved observational insti-

tutions to those in [ST 87, ST 88a], a few comments can be made.

Defining abstraction to be the closure T. D,, allows us to give the inference rule

for abstraction in terms of those for Da and T, so that no extra rule is needed.

Well-behaviour of an abstracted institution is not such a new requirement.

Fact 13 in [ST 871 shows that in order to be able to reduce abstracted first order

presentations to equivalent first order presentations, observations are required to

be closed under negation and conjunction. Well-behaviour can be derived from

this closure.

Using an institution-independent notion of negation and conjunction, we can

extend that result to an arbitrary quotient abstracted institution. Consider for

example the definition of closure under negation and conjunction given in [Tar 86a]

for an arbitrary institution, then the following result follows:

Proposition 5.3.5 Given an institution a b3 I with a reflection (C.cisjc,o), if

for every H E IoSICI each Obs n is closed under negation and (possibly infinitary)

conjunction, then a,I is well-behaved.

Chapter 5. Abstracted specifications 	 152

Proof Let o : [I - E be an abstraction morphism, A a theory over E , (0, 0) a

partition of Obsn and A a model such that A =E (A fl Obsri) U 0 and A I4O.

If A U 0 is consistent, there exists a model B J=E L. U 0. Moreover, for any

observation E J its negation must belong to 0, since A must satisfy either

or . Then, B cannot satisfy iT because B J=E 0; hence B E•

If A U 0 is inconsistent, we come to a contradiction in each possible case:

If A is inconsistent then the contradiction 0 (negation of the conjuiiction of

an empty set of sentences - (Aø)) is in L and therefore in Li fl Obs11 since

Obsrj is closed under negation and conjunction. Hence A satisfying An Obs11

cannot exist.

If 0 is inconsistent then A satisfying 0 cannot exist.

Otherwise, there exists a set of sentences 	0 in contradiction with A.

Since Obs11 is closed under infinite conjunctions there exists ço j E Obs11

equivalent to and, since it is closed under negation, -ip E Obs11 as well.

Since Li U is inconsistent, Li must include -iça$, hence - ~o t E Li fl 0bs.

Finally (Li fl Obsi-i) U 0 is inconsistent since 	E 0.

Ist

If the logic of the sentences is compact, closure under possibly infinitary con-

juctions can be replaced by closure under finite conjunctions, like in the case of

first order logic in fact 13 of [ST 87].

Another example in [ST 87] where observations are open formulae fails to be

well-behaved. That proposal is intuitively sound since it includes as observable

all values of an observable sort, even those which are not reachable
- note that if

observations are first order sentences we cannot refer individually to non-reachable

Chapter 5. Abstracted specifications 	 153

values. Unfortunately, such a modification leads to a logic of open formulae which

is no longer compact - see the counterexample in [ST 871 where an infinite set of

observations are in contradiction with a first order sentence while no finite subset

is.

In this chapter we are not so much concerned with the problem of finding a

realistic set of observations which is at the same time well-behaved, as was the

case in [ST 87]. Our goal is to develop a certain proof theory for specifications

with abstraction, and in this sense observational and well-behaved institutions are

those allowing entailment proofs to be performed by proving satisfaction of all

observable theorems.

In the following we review some common abstracted institutions for behavioural

abstraction, and analyze them for observationality and well-behaviour.

5.3.1 Behavioural abstraction and EQ

Probably the most well-known example of abstraction is behavioural abstraction

of an equational specification w.r.t. some non-observable sorts. In the following

we present some abstracted institutions related to this idea.

Beh(EQ)

This abstracted institution matches the standard intuition of behavioural abstrac-

tion w.r.t. some non-observable sorts (as in [MG 85, NO 88, ST 87, Cog 901

reviewed above).

First a category of signatures of behaviour is defined (as explicitly given in

[Gog 901 and implicitly standard long before):

Definition 5.3.6 Given the category SIG of algebraic signatures, signatures of

behaviour form a category Beh(SIG) as follows:

Chapter 5. Abstracted specifications 	 154

• Objects: Pairs (E, 0) where E is an object of SIG and 0 a set of sorts in

E.

• Morphisms: Arrows o- : (El, 01) - (E2, 02) where o- : El -p E2 is a

morphism in SIC such that a(01) 9 02. Identities and composition are as

in SIC.

According to this definition there is a full subcategory of Beh(SIG) which is iso-

morphic to SIG, namely the full subcategory containing signatures (E, Sorts(E)).

Hence, there is a full and faithful functor Behsj0 : SIC -* Beh(SIG) which maps

each signature E to its equivalent (E, Sorts(E)) and is the identity on signature

morphisms.

Behaviours of algebras w.r.t. some observable sorts can be defined as in [MG 85],

or equivalently, a concise definition can be given in terms of the functorial inter-

pretation of an algebra.

Definition 5.3.7 Given an algebraic signature E and an algebra

A:StE—* Set

then, the behaviour of an algebra A w.r.t. a set of sorts 0 in E is a functor

M: St-r(0) -' Set

where StE(0) is the minimal full subcategory of StE containing all the sorts in

O and being closed under products. Then, M is the restriction of A to such a

subcategory.

A behaviour M is also an algebra since, like A, it is a product preserving functor

from a category with finite products to Set. However, the signature of M is no

longer E but a generally infinite signature with a function name for each E-term

using variables over observable sorts and delivering a value of an observable sort,

as explicitly defined in [MG 85].

Chapter 5. Abstracted specifications 	 155

Now we are able to define an abstracted institution w.r.t. EQ using signatures in

Beh(SIC), considering behaviours to be the models of the abstracted signatures,

and equations between terms over observable sorts to be the sentences of the

abstracted signatures.

Technically, we shall define the new abstracted institution as a quotient ab-

stracted institution, repeating the construction given in definition 5.2.3. In order

to perform such a construction original signatures are required to form a full sub-

category of cx SIC; since this is not the case for SIC we are going to consider

SIC' to be the full subcategory of signatures in aSIC of the form (E, Sorts(E))

and EQ' = (SIC', Alg', Eq', =') to be the obvious equational institution defined

over SIC', i.e. Alg(E) = Alg'((E,Sorts(E))), Eq(E) = Eq'((E,Sorts(E))) and

E = 	E,Sori3(E)).

Lemma 5.3.8 Let Beh sJG be the full inclusion from SIC' to Beh(SIC), C

Beh(SIC) -* SIC' a functor defined as follows

C((E, 0)) = (E, Sorts(>)) 	C(a)

and 0: IdBh(sJc)=iC; BehsIG a natural transformation such that for every Beh(SIC)-

signature (E, 0),

O(E,o) : (E, 0) -i (E, Sorts(E))

Then, (C, Beh s!G , o) is ,a reflection.

Proof We shall prove that for each signature of behaviour (, 0) its unit mor-

phism O(E,o) : (E, 0) -* (, Sorts(E)) is a universal arrow.

Since morphisms in Beh(SIC) are also morphisms in SIC' and each morphism

O(E,o) in Beh(SIC) is just the identity d(E,S o rj3 (E)) in SIC', it is trivial that for each

morphism h : (, 0) - (s', 0') - which is also a morphism h : (, Sorts(s))

(E', Sorts(')) in SIC' - there exists a unique h' such that

id(E , sors(E)) ; h' = h

Chapter 5. Abstracted specifications 	 156

because h' must be h.

The abstracted institution Beh(EQ) is defined as follows:

Theorem 5.3.9 Let EQ' = (SIC', Aig', Eq', =') be the institution of equational

logic with signatures of the form (E, sorts(E)) for all E E ISIGI and consider the

following:

The category Beh(SIG) and the full inclusion Beh sIG : SIC' - Beh(SIG).

The reflection (C,Beh sjc ,o) with C: Beh(SIG) - SIC' and

0: IdBh (sJG)=.C; Behsja as defined in lemma 5.3.8.

The I Beh(SIG) I -sorted equivalence relation 	between algebras defined for

all (E, 0) E lBeh(SIG)I and >2-algebras (i.e. (E, Sorts (E)) -algebras) A and

B as: A =(E,o) B if A and B have the same behaviour w.r.t. 0.

.. The I Beh(SIG) I -sorted set of equations Obs defined for all (>2,0) as:

Obs(E , o) = {VX. tl = t2 E Eq(E) I sort(tl) E O,sorts(X) c 0}

Then, Beh(EQ) = (Beh(SIC), cxMod , cSen, =°) defined as in definition 5.2.3

using the above components is a quotient abstracted institution of EQ'.

Proof Applying proposition 5.2.4 and theorem 5.2.5, Beh(EQ) is an institution

unless two algebras with the same behaviour can satisfy different sets of observa-

tions.

However, for all (>2,Sorts(E)) E ISIC'I and >2-equations (i.e. (>2,Sorts(>2))-

equations) VX. ti = t2 E Obs(E , o) , both terms ti and t2 correspond to mor-

phisms in StE which are also in SIE(0) since they are arrows from a product of

Chapter 5. Abstracted specifications 	 157

observable sorts - sorts of variables in X - to an observable sort - the sort of

ti and t2.

All E-algebras (i.e. (E, Sorts())-algebras) A and B with the same behaviour

M map morphisms ti and t2 in StE to the same functions M(ti) = A(tl) = B(ti)

and M(t2) = A(t2) = B(t2) in Set. If functions M(tl) and M(t2) produce the

same result for all valuations of the variables in X, equation VX. ti t2 is

satisfied by A and B; otherwise, neither A or B satisfy the equation. Hence, the

equation does not distinguish A from B.

IN

By construction, the closure T0 D0 w.r.t. an abstraction morphism 0: (E, 0)

(E, Sorts(E)) is behavioural abstraction, for a notion of behaviour as in [MG 85].

If T0 D0 is applied to a specification SP with a class of models closed up to iso-

morphism, then TO DO SP is also closed up to isomorphism, as with behavioural

abstraction in the sense of [SW 83, NO 88, ST 871.

Unfortunately, Beh(EQ) is not observational.

In first place, in order for Beh(EQ) to be observational the set of algebras

behaviourally equivalent to any given one should be closed up to isomorphism

but, in this case, it is not. This can be easily fixed by changing A B to

mean that A and B have isomorphic behaviours w.r.t. 0, so that T0 D0 directly

means behavioural abstraction as is standard. We shall refer to this variant by

Beh'(EQ).

However, there are still cases where two algebras satisfying the same observable

equations are not behaviourally equivalent (see examples in [ST 87]).

This lack of observationality is caused by non-reachable values in observable

sorts. Since equations can only refer to them globally, two algebras may satisfy

Chapter 5. Abstracted specifications 	 158

the same equations while non-reachable values are more numerous in one algebra

than in the other. This is analogous to cases where non-isomorphic algebras satisfy

the same equations, e.g. all non-empty algebras over a signature without function

symbols or constants satisfy the same trivial equations.

The lack of observationality, as discussed at the end of section 5.2.2, prevents

Beh(EQ) from being useful at specification entailment proofs; in particular, the-

orem 5.3.3 does not apply.

BehR(EQ)

The lack of observationality of BeW(EQ) can be solved by considering only reach-

able algebras.

Unlike ordinary algebras, reachable algebras are characterized up to isomor-

phism by a set of equations, i.e. if two reachable algebras satisfy the same ground

equations then they are isomorphic.

Similarly, since behaviours are also algebras, reachable behaviours are charac-

terized up to isomorphism by a set of observable equations.

Proposition 5.3.10 If two E-algebras A and B are reachable on observable sorts

O and they satisfy exactly the same ground observable equations in Obs(E,o), then

the behaviours of A and B w.r.t. 0 are isomorphic.

Proof Let M and N be the behaviours of E-algebras A and B w.r.t. 0.

Behaviours M and N are algebras over a, generally, infinite signature E O which,

by construction, has sorts 0 and functions names all s-terms from observable to

observable sorts.

Considering that A and B are reachable on sorts 0, their behaviors M and N

are reachable E o -algebras. Moreover, since observable equations in Obs(E, o) are

Chapter 5. Abstracted specifications
	

159

pairs of E-terms from observable to observable sorts, we have that E o -equations

are equivalent to equations in Obs(E , o).

If A and B satisfy exactly the same ground observable equations in Obs(Eo) ,

their behaviours M and N satisfy exactly the same ground s o -equations, hence

M and N are isomorphic.

Let the institution BehR(EQ) be as Beh'(EQ) but considering only those

signature morphisms which are isomorphisms in SIG and those algebras which

are reachable, i.e. with models defined for all (S, 1) E I SIG I as

IMod((S,1l))I = {A e Alg((S, Q))j I A is reachable on S}

The restriction on the signature morphisms guarantees the a-reduct of a reachable

algebras to be also reachable. Then, taking observations to be all ground equations

over observable sorts, the following results hold:

Theorem 5.3.11 BehR(EQ) is an observational institution.

Proof For all abstraction morphisms o : H -* E, the set of observable equations

Obsri includes all ground equations over observable sorts. Therefore, by proposi-

tion 5.3.10, any pair of reachable algebras A, B E IAI9(E)I such that

must have isomorphic behaviours, hence A 	B.

Conversely, if A 	B then, by theorem 5.2.5, both models must agree on all

observations. Hence, BehR(EQ) is observational.

FM-

Chapter 5. Abstracted specifications 	 160

In order to prove that BehR(EQ) is also well-behaved, we must recall that

multi-sorted equational logic HEQ (c.f. [CM 81, EM 85]) is a complete inference

system w.r.t. satisfaction in EQ, that initial algebras satisfy the "no confusion"

principle, i.e. given a set of equations J if an initial algebra among those satisfying

4' satisfies a ground equation ip then , and also the following fact:

Fact 5.3.12 (Hen 88) Given a equational presentation 	over E and a set of

observable sorts 0 in E, all observable ground consequences of 1 in 1_EQ can be

derived from the observable ground consequences of each equation in 1.

A proof of a more general fact can be found in theorem 6.22 of [Hen 881. This fact

is used in [Hen 88] to prove the soundness of context induction, here, the same

fact serves to prove the well-behaviour of BehR(EQ).

Theorem 5.3.13 BehR(EQ) is a well-behaved institution.

Proof Let o : H -p E be an abstraction morphism, A an equational theory over

E, A a s-algebra satisfying Li fl 0bs (the observable theorems of z) and (0,)
the partition of Obsn such that

A=EQ and AWE

Then, we take B to be an initial E-algebra (unique up to isomorphism) satisfying

equations A U 0 and prove that B 	Assume B = , by cases:

y is not a ground equation. In this case, by definition of O, 	trivially.

p is a ground equation. Since initial algebras satisfy the "no confusion"

principle ground equations cannot be satisfied by B unless they follow from

A U 0, hence A U 0 l=E p which, by completeness of FEQ, is equivalent to

LUOFEQp.

Chapter 5. Abstracted specifications 	 161

In this situation we can use fact 5.3.12 to conclude that <p can be derived

from the observable ground consequences of each equation in A U 0. By

induction on the length of such a derivation we prove that <p is not in RJ:

<p is an observable ground consequence of an equation <p ' E A U 0. If

<p' E L, since A is closed under entailment, <p must also be in L and

therefore <p V U. On the other hand, if <p' E 0 it means that A satisfies

<p' and therefore A satisfies V, hence <p io 0.

<p follows from some observable ground consequences 4 of each equation

in L& U 0. By the induction hypothesis no equation in 4D belongs to ,

hence 4 	0. Then, by definition of 0, A satisfies and therefore A

satisfies <p, hence <p

We conclude that no equation satisfied by B is in 0 and therefore B !0 as

expected.

Well-behaviour of BehR(EQ) follows from the existence of initial models

among those satisfying a set of equations, restricting to ground observations

and fact 5.3.12. The same properties and, therefore, well-behaviour also hold

in Beh(EQ) if observations are required to be ground equations.

Other institutions

The reader might protest that using BehR(EQ) is too much restrictive, in par-

ticular because limiting signature morphisms to be isomorphisms prevents writing

any sensible structured specification. In this situation we can search for still an-

other institution.

First, as proposed in [ST 87] we can shift to a stronger logic so that obser-

vations can be open formulae. Doing this, we stick to the standard semantics of

Chapter 5. Abstracted specifications 	 162

behavioural abstraction as in [SW 83, MG 85, NO 881 and obtain an observational

institution, however well-behaviour is lost. We shall call this abstracted institution

BehO(EQ).

Alternatively, we can preserve well-behaviour by not changing the notion of

observation or model, and obtain observationality by changing the relation

and thus the semantics of T0 D0 when some observable sorts are not finitely gen-

erated. We shall call such an abstracted institution BehQ(EQ).

Proposition 5.3.14 Let EQ' = (SIG', Aig', Eq', 1=') be the institution for equa-

tional logic with signatures of the form (E, sorts(E)) for all E E I SIG I and consider

the following:

The category Beh(SIG) and the full inclusion Beh SIG : SIC' - Beh(SIG).

The reflection (C, Beh 510 , o) with C: Beh(SIG) - SIC' and

o : IdBh(sJG)=?C; BehsJG as defined in lemma 5.3.8.

The lBeh(SIG)J-sorted equivalence relation 	between algebras defined for

all (E, 0) E JBeh(SIG) and E-algebras (i.e. (E, Sorts (E)) -algebras) A and

B as:

A 	B if VV E Obs (E , o) . (A E=E 	B I=E)

. The JBeh(SIG)I-sorted set of equations Obs defined for all (, 0) as:

Obs(E , o) = {VX. t = 12 E Eq(E) I sort(tl) E 0,sorts(X) c 0

Then, BehQ(EQ) = (Beh(SIG),aMod,cSen,I=) defined as in definition 5.2.3

using the above components is an observational institution aob3EQ'.

Chapter 5. Abstracted specifications 	 163

Proof Applying proposition 5.2.4 and theorem 5.2.5, BehQ(EQ) is a quotient

abstracted institution. Considering definition 5.2.8, BehQ(EQ) is observational

trivially.

0

Another institution we may think of is Beh(ALG); i.e. we repeat over ALG

the construction of Beh(EQ) over EQ. In this case, the notion of abstraction in

Beh(ALG) is like that in Beh(EQ) and the only difference concerns observations,

which now can be defined to be closed under negation and conjunction in order to

have a well-behaved abstracted institution. This approach, despite dealing with

first order sentences over equality, is basically an algebraic approach.

Some comparisons

The above institutions for behaviour are closely related to those explicitly or im-

plicitly defined in [SW 83, MG 85, ST 87, NO 88, Hen 88, Gog 90].

Among them the only one defining explicitly an institution for behaviour is

[Gog 90], the so-called hidden sort equational institution. However, the models

over signatures with non-observable sorts are just ordinary algebras, therefore for

a morphism o (, 0) - (E, Sorts(s)), it holds that Mod[T0 D0 SP] = Mod[SP].

The closest of these approaches to Beh(EQ) is [GM 82, MG 85]. Behaviours

as defined here are equivalent to theirs (from there comes the name) although

their definition is not formulated in terms of functors but directly considering

infinitary signatures with a new function symbol for each term from observable

sorts to observable sorts expressible in the original signature.

In [NO 88] the models over a signature with non-observable sorts are as in

[Cog 90] but there are more arrows between them. The new homomorphisms

Chapter 5. Abstracted specifications 	 164

relate behaviourally equivalent algebras in such a way that closure under isomor-

phism produces the same result as in Beh'(EQ), i.e. closure up to behavioural

equivalence.

Finally, a= in [ST 87] uses an explicit relation of equivalence between mod-

els as we do, although equivalence classes of models are not considered models

at all, nor is an explicit institution for behaviour defined. The two approaches

presented in [ST 87] are observational by definition; the one using ground obser-

vations corresponds to BehQ(EQ) and the other using open formulae corresponds

to BehO(EQ).

In [Hen 88] only finitely generated models are considered and, usually, only a

part of the carrier of a sort is defined as observable, however when whole carriers

are considered observable we obtain abstraction as in BehR(EQ). Note that

in [Hen 881 behavioural equivalence is defined directly as the satisfaction of the

same observations, which happens to be consistent with the standard notion of

behavioural equivalence due to the observationality and well-behaviour of this

institution.

Provided that all specifications define isomorphism-closed classes of models, the

semantics of TD, in Beh'(EQ) (also [NO 88]), BehO(EQ) (also [ST 87]) and

Beh(EQ) (also [MC 85]) are the same. If we are only concerned with algebras

with reachable observable sorts, then BehR(EQ) (also [Hen 88]) and BehQ(EQ)

(also [ST 87]) are also the same.

We can conclude that, among the institutions considered here, in order to

obtain an M-complete rule for abstraction and keep behavioural abstraction as

meaning what is expected, we should use BehR(EQ). Essentially, we should not

hide the generators of observable sorts.

Chapter 5. Abstracted specifications 	 165

5.4 Treating abstraction as hiding

In the introduction of this chapter we informally classified proving techniques

related to behavioural equivalence in essentially two categories: those using explicit

definition of congruences and those proving agreement on all observations.

In our framework, the second technique relates to entailment proofs by proving

satisfaction of all observable theorems studied in the last section. There, we paid

attention to those cases in which abstraction is "better" than hiding, in the sense

that it has an exact inference rule.

In this section we treat abstraction as ordinary hiding, that is, we apply the

proofs techniques developed for hiding in chapter 4 to the particular case where

the operation D, uses an abstraction morphism o, i.e. D0 . This approach does

not require an exact rule for abstraction.

In the case of behavioural abstraction in first order logic, this abstraction as

hiding approach turns out to be related to proofs by explicit definition of congru-

ences as used in the literature.

5.4.1 Verification techniques for T0 D0

Chapter 4 presented some proof techniques for the verification of entailments be-

tween specifications in DATU. Considering abstraction to be the application of a

pair T0 D0 using an abstraction morphism o, the same techniques are applicable to

the verification of entailments between abstracted specifications. However, some

problems arise depending of which abstracted institution we use. For instance,

taking Beh(EQ) to be our working institution leads to rather poor results.

Chapter 5. Abstracted specifications

Consider task 1 as presented on page 92 and take al and a2

to be an abstraction morphism 0: II -'

D0 A 2 e 	D0 A 1 e \0/O
rl

All results in chapter 4 related to the inheriting strategy rely on a pushout dia-

gram of signatures which combine in one single signature the visible symbols plus

the hidden symbols of the antecedent and the consequent. This basic construct

delivers a trivial result in the case of Beh(SIG) and an abstraction morphism o

as in the figure.

Proposition 5.4.1 Given the following diagram in Beh(SIG)

(EV

OO' S)
(,o)

where S is the set of sorts in E and 0 c S, then the pushout signature is also

(E ' S).

Proof Assume there exists a signature (+, 0+) and a pair of signature mor-

phisms al, o,2 : (,S) -* (, 0) such that o; cr1 = o; cr2 (the diagram corn-

mutes).

Since signature morphisms in Beh(SIC) are also signature morphisms in SIC,

we can consider the original category of signatures, so that the new two morphisms

must satisfy idE ; cr1 = idE ; cr2, hence cr1 = cr2. This proves that there exists a

Chapter 5. Abstracted specifications 	 167

morphism a from (E, S) to (E, Of); e.g. a = cr1 = cr2

(E, O)

,1Z lor 	o,2 J !

(E,

(El 0)

Since the top part of the diagram must also commute, cr1 = id(E , $); a, and iden-

tities are cancellable so uniqueness of a follows immediately.

I

In this situation, techniques based on the pushout of signatures turn out to

be irrelevant since proving that the axioms of the consequent follow from the

antecedent in the pushout signature is the same as ignoring abstraction, e.g. using

the rule
SP2 1= SP1

TODQSP2 = TQDOSP1

The lack of "proper" pushouts compels us to use abstracted institutions with

a richer category of signatures such as SIGF in the next section, or to use the
3 2-strategy where a pushout of signatures is not required.

Apart from the lack of a "proper" pushout of signatures, Beh(EQ) has still

another problem regarding the application of the inheriting strategy.

The inheriting strategy is based on the "inheritance" of some axioms lk

specifying some auxiliary hidden symbols from the consequent to the antecedent.

In the context of abstraction, the auxiliary symbols include a sort which is not

hidden but made non-observable; then, 'h should include those axioms defining

Chapter 5. Abstracted specifications 	 168

the auxiliary sort. Unfortunately, in Beh(EQ) it does not make sense for an

axiom to specify a sort; in other words, it is not possible to divide the equations of

a specification in two, those specifying the sorts and those specifying the functions

on those sorts.

This situation is improved in the institution of first order logic where equality

is defined as an ordinary predicate. In this case, the definition of theequality

predicate for non-observable sorts plays the role of 401h in the inheriting strategy.

Also in a institution with equational logic and reachability constraints' (see next

chapter), the situation is improved since equations among generators and the

reachability constraint itself can play the role of 41 h•

Using the 32-strategy

Due to the difficulties discussed above entailment proofs in Beh(EQ) as in Task 1

have to rely on the] 2-strategy:

	

_____________ k SP1 	Da2SP2 1 Dai; a(ATui;c)Da2SP2
D2SP2 1= D 1 SP1

where (A T,, ; ,) is an enrichment to the antecedent (implementation) which must

be guessed. Considering o1 and o2 to be an abstraction morphism o : [I - we

obtain

	

Dor (A D Tcy)To Do SP2 H SP 	D0 SP2 Do; o (A t To ; o)Do SP2
DOSP2 1= D0 SP1

where is a set of E-sentences.

The second premise of the rule requires (At To;) to be persistent w.r.t. DO SP2.

In the particular case where o is the identity, it means that s-sentences in 4

should not exclude any model (behaviour) in Mod[D0 SP2]; hence 1 may include

E-sentences without observable consequences. Phrasing the same idea the other

way round we obtain the following proposition:

	

Chapter 5. Abstracted specifications 	 169

Proposition 5.4.2 Given an observational and well-behaved institution aohI,

an abstraction morphism o : H -i E, specifications SP2 and SP1 over E and

a set of >-sentences 1 such that no consequence of 41 is observable in H, i.e.

Cl() fl Obs11 = 0, then
A o TO DO SP2 = SP1

DOSP2 1= D0 SP1

is sound.

Proof Take an arbitrary model M in Mod[D0 SP2]. According to the semantics

of Da , M is the o-reduct of a E-model A in Mod[SP2],

M=Al, 	AEM0d[SP2]

Divide Obsn into two sets of observations 0 and J such that

AE

Since has no observable consequences, A satisfies (Cl() fl Obsn) U 0 and, by

definition of well-behaved institution, there exists a -model B such that

	

BI=EU 0 	BWE

Moreover, B satisfies the same observations as A therefore, in an observational

institution, we know that

M= Al, =B1 0

Considering that the models of D0 (A T O)DO SP2 are:

{Bf 0 I B 	A (3 A E Mod[SP2]. Al,, = BJ 0)}

we can conclude that M E Mod[D 0 (A T O)DO SP2] and in general

DO SP2 = D, (At TO)D O SP2

Considering that this entailment holds, the rule proposed is a particular case

of the 3 2
-strategy, hence soundness follows.

Chapter 5. Abstracted specifications 	 170

In order to understand well the strength of the 3 2-strategy it is important noting

that SP2 and 4) affect the specification

A, TØ DO SP2

at different levels, contrary to what happens in a specification such as T0D0 A,SP2.

In Beh(ALG), the models of A t TO DO SP2 are algebras which satisfy 4) and have a

behaviourally equivalent algebra in Mod[SP2] whereas, in the second specification,

models are algebras with a behaviourally equivalent algebra which is a model of

SP2 and satisfies 4). Therefore, a model of A, TODO SP2 may have a behaviour

the algebras of which cannot be a model of SP2 and satisfy 4) at the same time,

hence

A,T0D0SP2 T0D0A,SP2

In relation to the 3 2 _strategy, this means that an enrichment (A, T0) may be

persistent w.r.t. DOSP2 despite the fact that neither (A, TIdE) nor (T0 D , TidE)

are persistent w.r.t. SP2. This last situation arises in the following example.

Consider the following purported entailment:

DO SP2 = D0 SP1

where SP2 and SP1 are specifications as in figure 5-1 and o is an abstrac-

tion morphism which makes sort s non-observable, i.e. o : (({s}, {a, b}), 0)

(({s}, {a, b}), {s}).

2 	 . Using the 3 -strategy and taking o to be the identity morphism and 4) to be

{ a 54 b}, we are required to prove that

A{ a36b}T 0D0SP2 H SP1

D0SP2 Do(A{ a Eb}T o)D0 SP2

The first entailment holds trivially since the only axiom in SP follows immediately

from the antecedent using the inference rules shown for A, in chapter 2.

Chapter 5. Abstracted specifications 	 171

SP1 = 	sorts s

operations

s

S

axioms aj4b

end

SP2 = 	sorts s

operations

S

s

axioms a = b

end

Figure 5-1:

The second entailment requires the persistency of the chosen enrichment. In

an observational and well-behaved institution this is also trivial since a 4 b has no

observable consequences. Otherwise, we should check that each algebra satisfying

a = b is behaviourally equivalent to another algebra satisfying a b w.r.t. the

set 0 of observable sorts. In this case, this is not difficult to verify since no sort is

observable and {a L b} is a consistent presentation.

On the other hand, it is clear that A{a j4b}SP2 is inconsistent and therefore

D0 SP2 K D0A{a 34b}SP2 	D0 SP2 K D0 T0 DO A{ a0b}SP2

When this kind of situation does not arise, we can use the following simplified

rule
AT 0 D0 SP2 = SP1 	DO SP2 = D0 A,SP2

DO SP2 = D0 SP1

since

D0ASP2 J= D0A,T0D0SP2

Chapter 5. Abstracted specifications 	 172

follows immediately from SP2 = TO DO SP2 and the monotonicity of the SBO's.

5.4.2 Behavioural abstraction and first order logic

Work done in the context of the algebraic institution EQ can be repeated for

FOL and FOLEQ considering predicates to be functions delivering values of a

distinguished observable sort Bool. In this section we take a different but rather

common approach, suitable to institutions where equality is treated as anordinary

predicate which does not need to be the identity in the models. In this case,

pushouts of abstracted signatures can contain two different equality relations,

one from the consequent specification and one from the antecedent specification,

leading to proof techniques based on the handling of different equalities during

the proof of refinement, as in [Wan 821. This approach generalizes the so-called

ultra-loose approach where equality is treated as an ordinary predicate [WB 89],

in this case visible.

Technically first order signatures (from SIGF) play the role of the signatures of

the abstracted institution among which we distinguish a subcategory of signatures

to play the role of "original" signatures, namely, those signatures with a single

predicate "," for each sort s.

Definition 5.4.3 Recall that SIGF is the category of multisorted first order sig-

natures as defined in section 2.5. SIG= is its full subcategory with objects: pairs

(>, Q) where E = (S, l) is an algebraic signature, E E ISIG, and Q is a S-sorted

set where each Q3 is a singleton {,}.

Then, the inclusion functor 51Cr - SIGF forms a reflection with a functor C

as follows:

Chapter 5. Abstracted specifications 	 173

Lemma 5.4.4 A functor C : SIG -* SIG= defined over every signature (E, Q)

and morphism (a,f) : (El, Qi) - (E2, Q2) in SIGF as

C((E, Q)) = (E, {{} I s E Sorts(E)J)

C((a,f)) = (o, {P 	I P E Q1 3 and s E Sorts(El)})

is a left adjoint of the inclusion SIG i-' SIGF with unit o where 	= (idE , cQ)

and Cq is the unique S-sorted function from each set of relations Q, to the singleton

{E,}.

Proof We shall prove that for each signature (E, Q) in SIGF, its unit morphism

(idE , cQ) : (E, Q) -+ (E, {{} I s E Sorts(E)}) is a universal arrow.

(E, Q)_(idE, cQ) (E, {{} I s E Sorts(E)})

a' \ I (a/ x)

SE Sorts (E')})

Let (a,f) be an arbitrary morphism as in the diagram, then there is a unique

(cr',f') making the diagram commute (idE , cQ); (a', f') = (a,f) since:

there is a unique a' such that idE ; cr' = a, that is a' = a,

there is a unique function f' sorted by Sorts(E) with codomain {{} s E

Sorts(E')} since each {,} is a singleton, and singletons are final objects in

Set.

U

Chapter 5. Abstracted specifications 	 174

Considering the institution of first order logic FOL, we can define an institution

FOL= which restricts FOL to the category of signatures SIG.

Taking into account the functor C in the previous lemma, the institution

morphism (inclusion) from FOLZ to FOL is an abstracting institution morphism.

Therefore, hiding of equality can be formalized as an abstraction operator along

an abstraction morphism such as (idE , cQ).

An abstraction operation T(idE ,c Q)D(idE ,c Q) w.r.t. an arbitrary abstraction mor-

phism (idE , cQ) : (E, Q) -* (E, {{} I s E Sorts()}) in FOL relaxes the mean-

ing of equality of those sorts with an empty Q, in the abstracted signature. If Q3

is empty, D(Id,CQ) hides "" and T(idE ,cQ) restores it with an arbitrary meaning,

so that after the abstraction the equality symbol can denote an arbitrary predi-

cate. If Q3 is not empty D(idE ,C Q) makes several copies of the identity and T(IdE ,c Q)

collapses them again, so that the resulting predicate is again the same.

Considering the inheriting strategy, abstraction w.r.t. FOL —p FOL has two

advantages over abstraction w.r.t. EQ

In first place, the category of abstract signatures SIGF is rich enough to include

"proper" pushouts.

Proposition 5.4.5 The following diagram is a pushout in SIGF

w {})
(idE, iV\dE, i2)

(idE, c'N\,,/"dE CQ)

(,O)

where il and i2 form a pushout in Set w.r.t. the two CQ and W denotes disjoint

unzo n

Chapter 5. Abstracted specifications 	 175

Proof It must be a pushout since it is the pairing of two pushouts in SIC and

Set respectively. U

Such pushouts are very important when proving entailment between abstracted

specifications because they allow the hidden equalities of the antecedent and the

consequent to be combined in a single signature, as is common practice in the case

of hidden functions.

The second advantage concerns the identification of some axioms as specifying

the hidden part. Since equality is treated as an ordinary predicate, some ax-

ioms specifying are included in the specification. Then, equality predicates on

non-observable sorts are regarded as auxiliary functions defined in the hidden en-

richment and the axioms specifying these predicates are regarded as axioms 'h

in the inheriting strategy.

This kind of abstraction is weaker than behavioural abstraction. Models of an

abstracted signature are reducts forgetting the equality symbols but not the carriers

of the non-observable sorts; consequently Al,, = B10 implies that IAI, = 1B1 3 for

all sorts s, therefore T0 D0 does not mean behavioural abstraction. Nevertheless,

treating abstraction as the hiding of results in a sound proof strategy and many

practical implementations such as stacks implemented by array-pointer pairs, can

be proven correct in this fashion.

There are still a number of issues which make the hiding of equality a very

peculiar kind of of hiding.

We know from chapter 4 that the inheriting strategy is sound only for persistent

hidden enrichments and complete when the hidden enrichment is independent

w.r.t. the visible enrichment and the basic specification.

Chapter 5. Abstracted specifications
	

176

In the case of abstraction w.r.t. FOL - FOL, the definition of equality

predicates frequently violates persistency and is very rarely independent.

Consider for example the specification of stacks Stack in figure 5-2. Axioms

like

V s:stack; e:elem. pop(push(s, e)), acks

or even

V s, s' :stack. S,1ackS' 	P0P(S)siackP0P(s')

violate independence because the interpretation of pop (visible enrichment) is de-

pendent on the interpretation of =3t0ck (hidden enrichment).

Usually lack of independence forces the user to complete those axioms defining

the hidden part 41h (see section 4.7). In the case of Stack implemented by arrays

with pointers, the extra axioms correspond to the definition of 'jack in terms of

the implementation. This fact prevents, in the context of FOL, entailment proofs

with abstracted consequents from being fully automatized.

A more serious problem is the lack of persistency. In the context of hiding

auxiliary functions, this was regarded as a bug in the specification design (see

section 4.7).

In the case of abstraction in FOL, persistency is violated if the definition of

for a non-observable sort s imposes requirements on the structure of the carrier

set.

7 Note that predicates are added to the concrete syntax defined in chapter 2 in order

to represent specifications in ASL(FOL).

Chapter 5. Abstracted specifications 	 177

SElern = 	sorts stack, elem

predicates —elem— elem x elem

operations

axioms

V e:elem. e e ,em e

V el,e2:elem. elE e ,em e2 = e2 e ,em el

V el,e2,e3:elem. (elE c jem e2 A e2E e,em e3) 	ele3

end

Stack = 	Enrich SElem by

Hidden

sorts

predicates - Esiack _: stack x stack

operations

axioms

V s:stack. ss

Vsl,s2:stack. 1 jack 2 	2 siack 1

V sl,s2,s3:stack. (51 a gackS2 A S2E s jack53)

in

sorts

predicates

operations

empty: stack

push: stack, elem —> stack

top: stack —> elem

pop: stack —> stack

axioms

[1] V s:stack; e:elem. pop(push(s, e)) s j acks

V s:stack; e:elem. top(push(s, e))E e ,em e

V s, s':stack.

(P0P(5)31kpop(S')A tOP(S)Eeiemtop(S'))

V s, s':stack; e, e':elem.

(SsackS'A eezcme')= push(s, e) 3 g c push(s', e')

end

Chapter 5. Abstracted specifications 	 178

For example, we can write first order axioms specifying , to be an equivalence

relation such that -'(ab) analogously to SP1 in figure 5-1. This means that no

model can assign the same values to constants a and b, thus the definition of

(hidden enrichment) is not persistent w.r.t. an empty specification €({s},{ab)). In

consequence, implementations analogous to SP2 in figure 5-1 assigning the same

value to non-observable constants a and b are incorrect.

In such cases the lack of persistency can be understood as an indication that

the hiding of 	is not a good method for treating abstraction.

This is not only true for the inheriting strategy but also for the a2 -strategy

since in such an example no persistent enrichment to

SP2 = 	sorts s

predicates 	s x s

operations

s

s

axioms a 3b

end

can define a new predicate 	satisfying a 0 ld_3 b and a 0 ld_3 a at the same

time.

On the other hand, if only first order sentences of the form VX.tl 	t2 are

considered, then all hidden enrichments specifying 	are persistent. This is in

fact what happens in equational specifications such as Stack when equations are

"read" as first order sentences in which the equality symbol denotes a congruence

relation.

Chapter 5. Abstracted specifications 	 179

a 	 a 	 bW (::

t)

Figure 5-3: Automaton specified in Automat

5.5 Example

To close this chapter, we shall dedicate some time to the case of finite automata.

This example was used in the introduction of the chapter and it is at the very

origin of the whole issue of behavioural abstraction.

We shall sketch three correctness proofs for three similar specification entail-

ments in Beh(ALG). In each case, we prove that an abstract specification of the

automaton Automat in figure 5-3 is implemented by a specification of the automa-

ton ImplAut in figure 5-4, but the notion of abstraction is different in each case.

This gives an idea of the trade-off between abstraction and proof complexity, as

well as exhibiting the smooth transition from hiding to behavioural abstraction.

Consider the first order specification of a five-state automaton in figure 5-5.

Intuitively, Automat specifies a five state automaton as in figure 5-3 with a final

state- f and an error state e. The transitions are computed by a function t and a

predicate v_check determines the sequences of values accepted by the automaton,

Chapter 5. Abstracted specifications 	 180

a EDbO
\b
	

/ab

C
el 	

a, 6

Figure 5-4: Automaton specified in ImplAut

in this case the language:

aa*b

State 1 accepts the first a, state 2 accepts the second a or an ending b, and state

3 accepts successive a's or an ending b. The same language can be recognized by

a four state automaton where 2 and 3 are combined into a single state.

Imagine that we choose an implementation with a single state for 2 and 3, and

two error states discriminating the errors produced after the final state from the

others, as in figure 5-4. This can be formalized as the specification ImplAut in

figure 5-6.

Now we shall prove that D2ImplAut = DaiAutomat for appropriate mor-

phisms a2 and al. Three different cases are considered.

Visible v_check In the first case we choose al and a2 to be inclusions with

source signature

I al =102 = sorts v, bool, list of v

operations a, b: v

Chapter 5. Abstracted specifications 	 181

Automat = sorts

state, v, bool, list of v

operations

e,f,1,2,3: state

a,b: v

true, false: bool

[]: list of v

:_: v, list of v -> list of v

t: state, v -> state

check: state, list of v -> bool

v_check: list of v -> bool

axioms

a0b A (V x: v. (xa)V(xb))

true54false A C V x:bool. (x=true)V(x=false))

{Some axioms defining list of v, [] and ::}f

V x:v. t(e,x)=e A t(f,x)=e

t(1,a)2 A t(1,b)=e A t(2,a)=3 A t(2,b)=f

t(3,a)=3 A t(3,b)=f

V s:state. (s=1)V(s=2)V(s=3)V(s=e)V(s=f)

1572 A 103 A 1oe A 1f

23 A 254e A 2f

30e A 354

e$f

check(f,[])= true

V s:state. (s$f) = check(s,[])= false

V s:state; h:v; tl:list of v.

check(s,h: :tl)=check(t(s,h) ,tl)

V l:list of v. v_check(1) =check (1,1)

end

Figure 5-5: Automaton recognizing aab, version 1

f Details on the specification of lists of values are omitted. In the following

chapter we shall see how reachability constraints can be used as sentences.

Chapter 5. Abstracted specifications 	 182

ImplAut = sorts

state, v, bool, list of v

operations

el,e2,f,1,2: state

a,b: v

true, false: bool

0: list of v

:_: V. list of v -> list of v

t: state, v -> state

check: state, list of v -> bool

v_check: list of v -> bool

axioms

ab A (V x:v. (xa)V(x=b))

truefalse A C V x:bool. (xtrue)V(x=false))

{Some axioms defining list of v, [] and ::}

V x:v. t(elx)=el A t(e2,x)=e2 A t(f,x)=e2

t(1,a)2 A t(1,b)=el A t(2,a)=2 A t(2,b)=f

V s:state. (s1)V(s=2)V(s=el)V(s=e2)V(s=f)

12 A 1e1 A 1e2 A 1f

2e1 A 2e2 A 254f

e154e2 A e1f

e254f

check(f,[])= true

V s:state. (sf) 	check(s,[])= false

V s:state; h:v; tl:list of v.

check(s,h: :tl)=check(t(s,h) ,tl)

V l:list of v. v_check(l)=check(1,l)

end

Figure 5-6: Automaton recognizing aab, version 2

Chapter 5. Abstracted specifications 	 183

true, false: bool

[]: list of v

:_: v, list of v -> list of v

v_check: list of v -> bool

In other words, we hide state, e, f, 1, 2, 3, t and check in Automat. This

is the case of a specification with a hidden part as defined in the previous chapter

and not a proper abstraction as defined in this chapter

In order to apply the inheriting strategy the specification D1 Automat has to be

re-written in the form of a specification with a hidden enrichment defining state,

e, f, 1, 2, 3, t and check, and a visible enrichment defining v_check. The

resulting specification looks like this:

Values = 	sorts v, bool, list of v

operations

a,b : v

true, false: bool

0: list of v

:_: v, list of v -> list of v

axioms

a54b A (V x: v. (xa) V (xb))

end

Automatl = Enrich Values by

Hidden

sorts state

operations

e,f,1,2,3: state

t: state, V -> state

check: state, list of v -> bool

Chapter 5. Abstracted specifications 	 184

axioms

in

sorts

operations

v_check: list of v -> bool

axioms

V 1:1ist of v. v_check(I) =check (1,l)

end

The hidden enrichment consists of all the axioms in Automat except those

defining the visible sorts v, list of v and bool and the last axiom specifying

v_check. Briefly, the non-trivial part of a proof according to the inheriting strategy

is to prove that:

Enrich ImplAut by the definition of

old-state, old-e, old-1, ... 	J Vl:list of V.

old-t, old-check 	 I 	v_check(l)=old_check(old_1,1)

using axioms in Automat

where old-state, old-e, old-1, ... are those symbols in the pushout signa-

ture corresponding to the sort state and constants e, i, ... in Automatl.

In this case, the hidden enrichment is persistent w.r.t. the specification of sorts

v and bool and it is also independent since the relevant states and functions of

the hidden part are totally defined.

A theorem prover proceeding by induction on the list 1 completes the proof.

Visible check In the second case we choose al and a2 to be morphisms in

Beh(SJG) with the following abstract signature H as source:

H =I al =j.cT2 = sorts v, bool, list of v

non_obs_sor-ts state

Chapter 5. Abstracted specifications 	 185

operations a, b: v

true, false: bool

11: list of v

:_: v, list of v -> list of v

check: state, list of v -> bool

v_check: list of v -> bool

In other words, we make the function check: 	
EH

state, list of v -> bool visible and the sort

state visible but non-observable. 	 El 	 E2

In order to distinguish hiding from abstraction we

decompose ci and a2 into 0; tl and into 0; t2 re-

spectively, as in the diagram aside, so that the tar-

get signature of o is:

= sorts v, bool, list of v, state

operations a, b: v

true, false: bool

0: list of v

V, list of v -> list of v

check: state, list of v -> bool

v_check: list of v -> bool

Then, we prove that

DODL2Imp1AUt = D0 DiAntomat

applying the 2 2-strategy simultaneously to the hiding and the abstraction steps.

This is performed by adding a persistent enrichment (A To; Li; 2') to the an-

tecedent, i.e. proving that

D,2, A T i; t2' T0D0D 2 ImplAut = Automat

Chapter 5. Abstracted specifications

In this case the set of EH-sentences 4D is chosen to be the union of the following

three sets:

Sentences specifying the hidden functions in D 1 Automat:

{V x:v. old_t(o]Le,x)=ol&e A oltht(olcLf,x)=olcLe,

olcLt(ol&1 , a)=ol&2 A ol&t(ol&1 ,b)old_e,

olcLt (old_2 , a)=olcL3 A oltht (old_2 , b)=olcLf,

old_t (olcL3 ,a)=ol&3 A old_t (o1L3 ,b)olcLf,

V s: state. (s=o1cL1)V(s=o1d_2)V(s=o1d_)V(s=o1d_e)V(s=o1j1),

o1d_1o1d...2 A o1&1o1cL3 A olth154ol&e A ol&1oold.1,

...}

where old-t, ol&e, olcLl, ... are those symbols in the pushout signa-

ture corresponding to the function t and conants e, 1, ... in Automat.

Equations between states in Automat and states in ImplAut:

fold-1=1 , old-2=2 , old-e=el , olcLee2 , ol&f=f }

All sentences specifying the hidden functions in D 2 ImplAut except axioms:

{V s:state. (s1)V(s2)V(sel)V(s=e2)V(s=f),

el54 e2 }

Adding the hidden functions in D 2 ImplAut amounts to ignore D 2 during

the proof, as it happens in the inheriting strategy. In this case, however, this

cannot be done since these two axioms are inconsistent with the previous

sets of sentences already included in 	Excluding these axioms solves the

problem.

The sentences in 1 are consistent among themselves and with the observa-

tions from D0 D 2 Imp1Aut. This fact is enough to guarantee the persistency of

Chapter 5. Abstracted specifications 	 187

(A, T t i ; t2' T0) w.r.t. D0 D 2 ImplAut since the specification D0 D 2 ImplAut defines a

unique behaviour (up to isomorphism).

Finally, the proof is concluded by proving that:

check(olLf, []) true

V s:state. (sj4olcLf) 	check(s,[])= false

V s:state; h:v; tl:list of v.

check(s,h: :tl)check(oldt(s,h),tl)

V l:list of V.

v_check (l) =check (old-1, 1)

which follows from the definition of check in 0 (taken from ImplAut) considering

that olcL1=1 and old_f =f in the first, second and fourth sentence, and working

case by case through each possible state s and value h in the third sentence.

Visible t Analogously to the previous case, we could also make the transition

function t: state, v -> state visible and come to another solution by taking

c1 to include the definition oft in ImplAut instead of the definition oft in Automat

and proving that:

check(old_f, [])= true

V s:state. (sold_f) 	check(s,[])= false

V l:list of V.

vcheck(l) =check (old_1,1)

V x:v. t(old_e,x)=old_e A t(old_f,x)=old_e

t(old_1,a)=old_2 A t(old_1,b)=old_e A t(old_2,a)=old_3

t(old_2,b)=old_f A t(old_3,a)=old_3 A t(old_3,b)=old_f

which follows from the definition of t in (taken from ImplAut) considering that

old-1=1, old-2=2, old-e=el, old_e=e2 and old-f=f. Note that, unlike in the

Chapter 5. Abstracted specifications 	 188

previous case, the axiom

V s:state; h:v; tl:list of v. check(s,h::tl)=check(t(s,h),tl)

does not need to be considered since it is directly included in &

There are two conclusions we can extract from these three proofs.

In first place, the situation of having a specification with a hidden part or

a behaviourally abstract specification are very similar. The difference is just a

technicality depending on which functions and sorts we want to hide; for example

if we want to "hide" sort state but let check or t be visible, then state has

to be considered as a visible but non-observable sort and the whole specification

behaviourally abstracted.

The second conclusion regards the complexity of entailment proofs. The more

we hide/abstract the consequent specification the harder we have to work at the

level of theorem proving.

In the first case of the example we hide more than in the other two cases

and a theorem prover has to perform induction over lists of values. In the last

case, we hide very little and, although quite a lot of work may be involved in

checking the persistency of the chosen enrichment (checking consistency of with

the observable consequences of ImplAut), the actual amount of theorem proving

is reduced to a few simple substitutions.

On the other hand, the use of proper abstraction in the last two cases requires

choosing the right set of sentences & This demands a creative task from the

prover and a proof of persistency which might he very difficult to obtain.

Interpreting specifications Automat and ImplAut in first order logic and treat-

ing abstraction as the hiding of the equality predicate 	between states does

Chapter 5. Abstracted specifications 	 WIR

not lead to a correct proof of the entailment since axioms in Automat require

states 2 and 3 to be different. This will also happen in the ultra-loose approach.

Chapter 6

Specifications with reachability

constraints

6.1 Introduction

This chapter is concerned with entailments where specifications use M() , and

reachability constraints in particular. We shall survey problems such as MTU =

MTU, DMTU J= DMTU and ASL = ASL. On the whole, we go over the

same problems tackled before, but considering constraints M(,) and a mixture of

constraints and axioms MA, instead of just axioms A.

Some ideas from the theory of institutions, in particular, duplex institutions,

allow operations such as M(,) to be viewed as a special case of A{}. The only

problem is that, contrary to more common institutions, duplex institutions I gen-

erally lack an underlying inference system F 1 .

The reasons why a language with institution independent semantics distin-

guishes two operations A and M() are mainly historical. Frequently, however,

there is a well-known inference system for sentences whereas there is no inference

system available for sentences combined with constraints.

The proving techniques related to languages ATU, DATU, DATU* and c +

ATU extend immediately to MATU, DMATU (i.e. ASL), DMA TU* (also called

190

Chapter 6. Specifications with reachability constraints 	 191

ASL) and a + MATU respectively. However, a inference system dealing with

combined sets of sentences and constraints is needed.

Since the institution independent treatment of M() with respect to proofs is

very poor, we shall devote most of this chapter to working out an inference system

for reachability constraints in EQ. This can be understood as a typical example

of combining two different kinds of sentences with two different inference systems

into one institution. Using such a popular institution also allows the whole system

to be put into practice for useful specifications.

Section 2 recalls those results in the theory of institutions which allow M(,)

to be regarded as a special case of A. Section 3 studies the particular case of

reachability constraints in EQ, presenting an inference system H- to cope with

M = M and an inference system H.EQ in order to cope with MA = MA. Section

4 studies MATU, DMATU and a + DMATU as straightforward extensions of

ATU, DA TU and a + DATU where axioms are a mixture of ordinary sentences

and constraints.

6.2 Institutions with constraints

Constraints M(C , L) can be considered as sentences provided their satisfaction is

invariant under change of signature (satisfaction condition).

In order not to confuse a SBO M(,) with the corresponding sentence, we

introduce the following notation:

Theorem 6.2.1 Given an institution I = (SIC, Mod, Sen,), there exists an

institution with constraints over I, I' = (SIC, Mod, Sen', 1=') such that for all

E ISICJ

Chapter 6. Specifications with reachability constraints 	 192

• Sen'(E) = Sen(E) U {a,t>> I a,tare morphisms in SIG. Ia =It, and I
t= E}

• Sen'(cr') for a signature morphism a' : E -p E' extends Sen(a') to take

account of the new sentences so that for all E-sentences <<a, t>>,

Sen'(a')(<<a, ij>>) = <<a, (t; a')>>

• 	extends =E to take account of the new sentences so that for all M E

I Mod(E)(and E-sentence <<a,t>>, M I= <<a,t>> if MI, is o, -minimal.

Proof It is not difficult to see that constraints <<a, t>>, like ordinary sentences,

satisfy the satisfaction condition. Considering an arbitrary signature E, a

sentence <<a, t>>, a signature morphism a': E -p E' and a E-model M,

M 	<<a,(t; a')>> if M1 	<<a, t>>

holds trivially since (MI,,41, = MI(,;,yI), hence both sides are satisfied if and only

if Ml(, ; , ,) is c-minimal. 0

A similar situation is explained and generalized in [GB 90], where an institu-

tion C(I) is constructed by adding data constraints to an arbitrary institution

I. Or, more generally, a duplex institution D(a) can be defined for an arbitrary

institution morphism o.

It is also usual practice to prove that a particular kind of constraint satisfies the

satisfaction condition and add it directly to the original institution, e.g. bounded

data constraints in [Mos 89].

In terms of the specification language, 	becomes superfluous since we can

choose a institution with constraints I' which includes constraints as sentences so

that

M(,1 ,,)SP can be written

Chapter 6. Specifications with reachability constraints 	 193

We are generally concerned with inference systems for specifications over an ar-

bitrary institution equipped with an underlying inference system for its sentences

1-1 . Therefore, if constraints are included in the institution, the treatment of M is

transferred to the institution level which should provide an underlying inference

system F-11 .

We may wonder if this is fair and why other SBO's are not transferred to the in-

stitution level. The difference is that the rest of the operations - T, U, D0, and

- have a proof theoretical treatment at the institution independent level', whereas

M() only has institution independent semantics in terms of the morphisms in the

category of models, and these morphisms are completely independent from the rest

of the institution, in particular, independent of the sentences and their satisfac-

tion. Therefore, nothing substantial can be said about proving entailment between

specifications with constraints M(a, t) in an arbitrary institution.

Attempts to improve this situation propose to enrich the definition of insti-

tution, which would make it feasible to give M(,) a proof theoretical treatment

at the institution independent level. In this direction, some work is in progress

[GB 86, Poi 89, Mes 89].

6.3 Reachability constraints

Reachability and data constraints are introduced in specification languages in

order to increase their expressive power. In particular, they are useful for the

definition of standard models up to isomorphism.

It is known that axiomatizations in FOL cannot be categorical unless they

describe a finite model, by the Löwenheirn-Skolem theorem. Moreover, even if we

restrict our models to countable ones, it is not always the case that a l o-categorical

axiomatization exists; e.g. sound axiomatizations of arithmetic always include

Chapter 6. Specifications with reachability constraints
	

194

non-standard countable models. Summing up, implicit or explicit reachability

constraints are needed if we want to be able to talk about things such as the

standard model of arithmetic in a first order language.

In nature, a reachability constraint can be seen as a second order axiom or an

infinitary axiom. For example, arithmetic can be defined up to isomorphism by

VP. (P(0) A (V n. P(n) = P(suc(n))) = (V n. P(n))

or by

Vn. (n = 0) V (n = suc(0)) V (n = suc(suc(0))) V

However, there is no complete inference system for second order logic [Bar 771,

and inference systems for infinitary logic L 1 use infinitary rules in order to be

complete [Sco 661.

On the other hand, a reachability constraint provides a sound induction schema

which can be added to our inference system as described in in section 3.3.2 and,

what is more important, entailments can still be proved correct by relating the

reachability constraints used in the antecedent and the consequent. In fact, what

is a disadvantage when we try to prove theorems from a constrained specification,

becomes an advantage when proving entailment.

For example, in FOL an entailment SP2 = M{,}SP1 can only be correct if

SP2 also contains a reachability constraint on sort s or all the models of SP2

have a finite carrier for sort s. Otherwise, by the Löwenheim-Skolem theorem.

there would exist some infinite models of SP2 having a carrier of s of a higher

cardinality than in any model of M{ 3 }SP1.

But before we start intermixing constraints with other sentences, let us focus

on a simpler case.

[ecAY '\ 	CL. f\.A ' 	 2Lo3

Chapter 6. Specifications with reachability constraints 	 195

6.3.1 A logic of reachability constraints

In this section we produce an inference system for specifications M 	M in

EQ. Or, in other words, we find an adequate underlying inference system for an

algebraic institution whose only sentences are reachability constraints. We shall

call this system If-.

First, an inference system can be given capturing those cases where a con-

straint is strictly stronger than another one; e.g. when the generators of every sort

are preserved or reduced in the antecedent, while the set of constrained sorts is

preserved or enlarged. These cases correspond to trivial cases that can be auto-

matically checked, and indeed they are very much used in practice.

We start by recalling some notation from chapter 2. There, we decided that

algebraic specifications M(,)SP for signature inclusions a and t as follows:

(S, 0) 	(S U G, F) 	(S', ci')

will be written M(G,F,S)SP. Moreover, in this situation, an algebra over (S U G, F)

is a-minimal if it is reachable on sorts G. In other words, given a (S', 1l')-algebra

A its t-reduct is a-minimal if there is a S-sorted set of variables X (disjoint

from Il) such that for every value v E lAi r of a sort r E C there exists a term

E IT(su a,F)(X)I and a valuation v: T(SUG,F)(X) -, 	such that v(t) = v.

Reachability constraints are sentences in an institution with constraints over

EQ, therefore a reachability constraint M(G,F,$) is a (S', ci')-sentence < C, F, S >>.

In general, a triple <<G,F,S>> is a (S', Q')-sentence if C and S are disjoint.

G U S c 5', functions names in F use sorts in S U C and F C P. Henceforth.

E-sentences which happen to be constraints are called s-constraints.

In this section we shall restrict our attention to reachability constraints of the

form <<C, F, S >>. This can be done without loss of generality if we consider

Chapter 6. Specifications with reachability constraints 	 196

only injective signature morphisms, so that a reachability constraint <<C, F, S>>

translated along a' is equivalent to <<e?(G),o(F),a'(S)>>. For non-injective

morphisms this is not generally true since two generated sorts could be identified

into a single sort having as generators all the generators of the two original sorts.

In the following we shall define which are the generator operations of a generated

sort and which generated sorts are one-point.

Definition 6.3.1 Given a signature (5', 1k'), the generators of a generated sort

r E G w.r.t. a (S',Il')-sentence <<G, F,S>>, are the constants k : r and opera-

tions f : -* r used in the set of terms I T(SUG,F)(XS)I,. where Xs is a non-empty

S-indexed set of variables. The generators of r w.r.t. <<G, F,S>> are denoted by

Fr .

A generated sort r E G is one-point w.r.t. a (5', W) -sentence <<C, F, 5>>

if I T(SUG,F)(XS)IT is a singleton for Xs being a S-indexed set of variables with at

least two variables of each sort.

A (S',IZ')-sentence <<G,F,S>> is 0-free if for all sorts r in G,

IT(SU G,F)(A'S)I r 0 0

where X s is a non-empty S-indexed set of variables.

Note that the union of all generators UrEG Fr can be smaller than F due to an

operation op - s E F over an unconstrained sort s 0 C or due to a sort

r E C which has no terms I T(suc,p)(Xs)I,. = 0 despite having an operation

op : -* r E F.

Consider the following example:

S={sl,s2} 	1l={fl:sl—s2

Chapter 6. Specifications with reachability constraints 	 197

cl : s2

c2 : s2}

G={s3,s4} 	F={f2:sl,s2—*s3

s2,s3 - sl

s4 - s3

f5 : s4 - s4}

In the term model T(SUG,t-ILJF), the carriers of si, s3 and s4 are empty, and

I Tsuc,rjO = {c l, c2}. In the free generated model T(SUG,F)(XS), the carrier

of s4 is still empty but the carriers of si, s2 and s3 are infinite:

I T(SUG,F)(Xs)IaI = {x, z,f3(y,f2(x, y)),f3(y,f2(x,f2(z, y))), ...}

I T(sUG,F)(Xs)133 =If 2(x, y),f2(x,f2(z, y)),f 2(f3(y,f2(x, ,)), y), ...}

for all x, z E X, 1 and y E X32 . At the same time F33 = {f2} and F34 = 0.

Using these definitions it is possible to prove the following results about consis-

tency in a language of reachability constraints.

Lemma 6.3.2 All models of a E-constraint < C, F, S>> are isomorphic to a per-

sistent extension of a quotient of T(SUG,F)(XS) for some S-indexed set of variables

X5.

Proof Given an arbitrary E-algebra A 1=E <<C, F, S >>, take Xs to be an S-

indexed set of variables with as many variables in each sort s E S as values in

1A1 3 . By definition of finitely generated and construction of T(suG,F)(Xs), there

is a surjective homomorphism h : T(SUG,F)(XS) -* A, fort : (S U C, F)
E. Considering the kernel induced by h, we conclude that Al, is isomorphic to

T(SUG,F)(Xs)/Ker(h).

107

Chapter 6. Specifications with reachability constraints 	 198

Proposition 6.3.3 Some results about consistency are the following:

Every individual (S U G, F)-sentence <<C, F,S>> is consistent'.

Every finite set of 0-free reachability constraints over a signature is consis-

tent.

Proof The first fact can be proven considering that a term generated model

T(SUG,F)(XS) for any S-indexed set of variables Xs satisfies trivially <<C, F, 5>>.

The second fact can be proven considering a final (5', 1l')-algebra I. In this

case all terms IT(suG , F)(Xs)I, for every (S', Q')-sentence <<C, F,S>>, S-indexed

set of variables Xs and sort s E 5', evaluate to the same value in I. Hence

the existence of a term for each sort in C guarantees reachability, I

G,F,S>>.

Ui

Despite these results, it is not easy to check if an arbitrary set of reachability

constraints is consistent or not.

For example consider the following (5', Q) -constraints:

5' = {sl,s2,s3} 	ft = {fl : sl - s2

f2: sl - s3

c2 s2

ci = <<{ s2,s3},{fl,f2},{s1}>> 	c2= <<{s3},0,0>>

1 Note that a (S',Il')-sentence <<G,F,S>> may not be consistent because a sort

r E G has no generators but there exists a function symbol in ci' \ F with co-arity r.

Chapter 6. Specifications with reachability constraints 	 199

Constraint c2 requires the carrier of sort s3 to be empty since no generators or

generating sorts are included. Constraint ci requires carriers of s2 and s3 to be

generated from s using functions f and f 2; if s3 has an empty carrier s and s2

must also have empty carriers. Finally, since Il' includes a constant c2 s2, the

carrier of sort s2 cannot be empty in any (S', S1')-algebra, hence the union of ci

and c2 is inconsistent.

Assumption From now on, we assume our constraints to be 0-free. This can be

effectively checked and guarantees consistency, which is a rather natural condition

for a specification building operation.

Definition 6.3.4 A consequence relation F between E-constraints is defined as

<<G2, F2, S2>> F- <<Gi, Fl, Si >> if the following two conditions hold:

All generated sorts are inherited: G1 C G2.

For all generated sorts r E Gi, no new generators are added, Fl,. D F2r ,

or r is a one-point sort w.r.t. <<G2, F2,S2>>.

Theorem 6.3.5 Given two 0-free E-constraints <<G1, Fl, Si >> and <<G2, F2, S2 >).,

then

<<C2,F2,S2>> 1= G1, Fl, S1>> if < G2,F2,S2>> I- << GI, F1,S1>>

Soundness proof Let tl and t2 be the inclusions (Si U Cl, Fl) - E and

(S2 U G2, F2) E, A a s-model of <<G2, F2, S2>> and assume <<G2, F2, S2>> I-

<<Cl, Fl, Si>>. Then, by definition of satisfaction, every value v E IAI I. for

r E G2 can be reached by some term t e I T(52u02,p2)(X52)Ir for an S2-indexed

set of variables Xs2 and a valuation v2 : T(52 U O2,p2)(X5 2) -* A 1,21

v2(t) = V

Chapter 6. Specifications with reachability constraints 	 200

Since Cl c G2, the same holds for all r E Cl.

Replace all subterms ti, ..., tn of t of sorts in Si by new variables xi, ..., xn

to yield a term t'. By construction of t, the new variables are of sorts in S2 U

G2, hence there exists an (S2 U G2)-indexed set of variables X 5 including those

variables in Xs2 and the new variables xl, ..., xn. Extend z2 to a valuation v2'

T(52uG2,F2)(Xs) - A 2 such that v2(xi) = v2(ti) for each new variable xi.

If no new generators are added, Fi r D F2r , we can show, by induction on the

height of t', that t' E I T(S1 U G1,F1)(X5l)J r where X51 is an Si-indexed set including

variables xl,...,xn.

Suppose that t' is op(x) for a certain function symbol op : s -p r. If neither

s E Si nor $ E Cl, then op V Fl, and therefore op cannot be a generator in F2,

in contradiction with op belonging to a term t e IT(g 2U G2 ,F2)(X5 2)I r . Ifs E Cl

then s E C2 as well but, by construction of t', the variable x can only be of a sort

in Si or in S2 and no sort can be in Cl fl G2 and in Si U 82 at the same time,

hence we conclude that s E Si. By construction of t', x X5 1 is a new variable

and op E Fi r thus t' E IT(Sl U Gl,pl)(XS1)I,..

Suppose that t' is op(t") for a certain function symbol op : s -p r. As before,

s must belong to either Si or Cl. If s E Si then, by construction t" must be a

variable x and the previous case applies. If s E Cl, by the induction hypothesis

t"e IT(sl u Gl,Fl)(Xs l) 1 3 and since op E Fl,., t' E IT(S 1U G 1 ,F1) (XS 1)f,. as well.

If op has several parameters the same reasoning applies to each of them.

Summing up, t' E IT(slucl , Fl)(Xsl)j, for an Si-indexed set of variables Xs1

and there is a valuation vi : T(SLUQI,j'l)(Xsl) -f A1 , 1 such that vl(xi) = v2'(xi) for

the new variables xl, ...,xn, and t' evaluates to the same value as t, i.e. vl(t') =

as expected.

In those cases where r is a one-point sort, the carrier IAI, must be a sin-

gleton and therefore reachable from whatever set of generators we chose for r

Chapter 6. Specifications with reachability constraints 	 201

provided at least one term of sort r can be generated, and this is guaranteed since

<G1, Fl, S1>> is 0-free.

Completeness proof Assuming <<G2,F2,S2>> V <<Gi,F1,S1>)., we con-

sider those cases in which the inference can fail:

If Cl 	G2 then we can choose a sort r E Cl which is not generated in

G2, F2, S2 >>. Now, consider a final algebra A over E extended in sort r

to a bigger carrier, e.g. lAi r = {..L,*} while for all s' 54 r, 1A1 8 ' = {..L} and

the functions taking a parameter of sort r are extended in the only possible

way, i.e. yielding always ..L. By construction A still satisfies < G2, F2, S2>>

but it fails to satisfy <<Cl, Fl, Si>> since * cannot be generated in A; hence

<<G2,F2,S2>> Kr, <<Gi,F1,S1>>.

If for a sort r E Cl it happens that Fir F2r and r is not a one-point sort

w.r.t. < G2 1 F2,S2>>, we can choose a generator op : -+ r E F2, which

is not a generator in Fi r .

Now, we consider the E-algebra A with carriers lAI n = {..L,*} for all sorts

except for one-point sorts w.r.t. ZG2, F2, S2>> which take carriers lAl 8 ' =

{ ±}, and constants and functions defined as follows:

• Functions (or constants) f : - r which are not in F2, always yield

I, j.. if 	' F2r then f() = 1.

• Functions f : si, ..., sn -' r which are the only generator of a sort,

F2r = {f}, are the identity on one of the parameters of the sorts

with biggest carrier, i.e. f(xi, ...,xn) = xi such that IAI S , 2 IAI j for

j =

• For functions (or constants) which are generators of a sort with several

generators, F2r = If 1,12,...), we pick one of them to yield always *

Chapter 6. Specifications with reachability constraints 	 202

while the rest of the generators always yield I. If op E F2, then op is

the generator which is chosen to yield *.

By construction of A and since < G2, F2, S2>> is 0-free, i and * are reach-

able in all sorts which are not one-point sorts w.r.t. < G2, F2, S2 >>, hence

A = <<G2, F2, S2>>. However, A K <<Gi, Fl, Si>> because * E IAI,. is

not reached unless op is used.

Lu]

As argued in [Far 891 many entailments preserve the generators from antecedent

to consequent and simple matching of identical constraints is very frequent. Here,

this result generalizes previous work on matching constraints to the point that it

achieves completeness for single 0-free constraints of the form <<G, F, S>> in the

absence of other kinds of sentences.

The next step towards a true logic of constraints is to extend such an inference

system to deal with several simultaneous 0-free constraints. But this brings some

new problems.

A reachability constraint which constrains several sorts simultaneously can be

a stronger requirement than a set of constraints containing a single reachability

constraint for each sort. Consider for example a signature E = (S', 1k') with

S'={sl,s2} 	fl'={f:s1—s2

g: s2 -+ si

cl sl

c2 .s2}

and a E-algebra A with 1A1 31 = 10, 1, e} and 1A1 32 = 10', 1', e'} such that ci = 0,

c2 = 0', 1(0) = 1(1) = 1', 9(0') = g(l') = 1, 1(e) = e' and g(e') = e. Values e

	

Chapter 6. Specifications with reachability constraints 	 203

and e' are mutually generated, hence algebra A satisfies constraints,

A I=E <<{sl},{cl,g},{s2}>> 	and 	A 1=E <<{s2},{c2,f},{sl}>>

but A does not satisfy a constraint on both sorts simultaneously

A K E <{s1,s2},{c1,c2,f,g},O>>

since neither e nor e' are ever generated using cl, c2,f and g.

This situation arises because sorts sl and s2 are mutually dependnt sorts

according to the following definition:

Definition 6.3.6 Two sorts sl and s2 are mutually dependent in a signature

(8, 1) iffsl -c s2 and s2 — + * sl, where —'s is the transitive closure of the relation

defined between sorts in S as follows: s' —' s if there exists a function name

f : w —p s in f and s' is included in the sequence w.

On the other hand, joining sets of generators generally leads to weaker con-

straints. Consider for example,

A 	<<{sl}, {cl,f, g}, {s2}>>

but A does not satisfy the two constraints,

A jL <<{sl},{cl},{s2}>> and A K r,

Taking in consideration the contrary effect of joining sets of sorts and joining

sets of generators, we define a correct join constraint in such a way that generators

cannot he joined and joining sorts has no effect.

Definition 6.3.7 The join constraint of two E-constraints < GI, Fl, S1> and

<<G2, F2, 52>>, written <<GI, Fl, Si >N<<G2, F2, S2>>, is another s-constraint

<<Gm, FM, SN>> such that

Chapter 6. Specifications with reachability constraints 	 204

GN=C1uG2

FM = (UEG1 Fl) U (UJEG2 F2)

SN = (Si U S2) \ (Cl u G2)

The result is called a correct join constraint if Gi and G2 are disjoint and every

pair of mutually generated sorts rl and r2 in (GM U SN, FM) is also mutually

generated in either (Cl U Si, Fl) or in (G2 U S2, F2).

Correct join constraints relate to their component constraints according to the

following results:

Proposition 6.3.8 For every correct join constraint <<Cl, Fl, Si >>N<< G2, F2, S2>>

over

<<Gi, Fl, Si >M< G2, F2, S2>> =E {<<Gl, Fl, S1 >, < G2, F2, S2>>}

Proof By construction of the join constraint, all generated sorts of zGi, Fl, Si >>

are inherited, Cl ç GM. Moreover, since Gi and G2 are disjoint the set of gen-

erators FM, for a sort in r E Cl is as Fir and, in general FM,. c Fir for all

r E Cl. Hence,

<<Cl, Fl, Si >>N<<G2, F2, 52>> I- <<G1,F1,S1>>

By soundness of F-, the first constraint follows from the join, and similarly for the

second constraint.

U

Correct join constraints can only bring together generated sorts which are not

mutually generated. In the example shown above, joining constraints

<<{sl},{ci,g},{s2}>> 	and 	<<{s2},{c2,f},{si}>>

Chapter 6. Specifications with reachability constraints 	 205

is not correct since f generates s2 from si and g generates si from s2.

Correct join constraints are always weaker than the union of the original con-

straints.

Proposition 6.3.9 For all correct join constraints cG1, Fl, Si >>N<<C2, F2, S2>>

over

{<<C1,F1,S1>>,<<G2,F2,S2>>} 	<<G1,F1,S1>>NG2,F2,S2>>

Proof Let tl, t2 and t be the inclusions (Si U G1, F1) - E, (S2 U G2, F2)

and (SNU GN,FN) E, Aamodelof {<<G1,F1,S1>>,<<G2,F2,52>>} and v

a value in a generated carrier lAi r for r E GI (the following argument is symmetric

for r E G2).

By definition of satisfaction, since A t=E <<G1, Fl, Si >>, there exists a term

t E I T(S1UGl,F1)(XS1)ir for an Si-indexed set of variables Si and a valuation

ii : T(S1UG1,F1)(Xs1) -+ 41 such that v(t) = v.

Let xl, ..., Zn E X51 be the free variables of I from which xi, ..., xk belong to

sorts in G2. Since A I= r, < G2, F2, 52>> the values denoted by variables xl, ..., xk

can also be generated. Let vi be the value of v(xi) for i = 1, ..., k; there exists a

term ti E I T(52uG2,F2)(X52)1 for each vi for an S2-indexed set of variables and a

valuation v': T(5211G2,F2)(Xs2) -* AI2 such that v'(ti) = vi.

Combining Xsi and X5 2 into a single ((S1US2)\G2)-indexed set of variables X

and combining valuations ii and v' into one valuation i/': T(SIUGD,F)(X) -p A,

we have that

u"(t[tl/xl,...,tk/xk])= v

Considering the free variables in ti, ..., tic belonging to sorts in Cl we can iterate

the process again until only variables of sorts in (Si U S2) \ (Cl U C2) are left.

By definition of correct join constraint, we are guaranteed not to fall into a

cycle. No mutual dependency of the sorts generated in one constraint w.r.t. those

Chapter 6. Specifications with reachability constraints 	 206

sorts generated in the other constraint guarantees a well-founded ordering for

induction.

In the base case the free variables of t are assumed to be of sorts in SN, and

in the induction step values v vk are generated, by induction hypothesis, by

terms ti', ..., tk' over an (SM)-indexed set of variables.

Summing up, there exists always a term t' E I 	 and an

(SN)-indexed set of variables X5 , and valuation v" such that v"(t') = V.

Since all generated sorts in the join constraint are also generated in zG1, Fl, Si >>

or < G2,F2,S2>>, it follows that A = << Gl,F1,S1>>N(<G2, F2,S2>>, as ex-

pected.

In practice, correctness of a join constraint is commonly satisfied. Consider a

specification language based on ASL(EQ) where specifications

M(G1,F1,s1) ... M(Gfl,F,sfl)SP are guaranteed to satisfy that:

Reachability constraints do not constrain already generated sorts, i.e. Ci in

M(G,F,$) is disjoint from U1< < Ci.

Generating sorts in one constraint are not constrained in successive con-

straints, i.e. Si in M(G,F,S,) is disjoint from Ul< i <j Ci.

From this and the fact the generated and generating sorts are disjoint in each con-

straint, it can be concluded that all join constraints <<Cj, Fj, Si >>N<< Gk, Fk, 8k>>

for k <j are correct.

It is normal practice in specification design to use constraints arranged in such

sequences. More general definitions of reachability constraint, such as the one we

use, are chosen on theoretical grounds. In our case, such a general < C, F, 8>>

Chapter 6. Specifications with reachability constraints 	 207

satisfies the satisfaction condition and algebraic laws such as commutativity anal-

ogously to arbitrary sentences. Although we treat this more general case, we can

well believe that correctness of join constraints is very common in practice.

In the following we give an inference system for multiple constraints which is

complete when constraints of the form <<G, F, S>> are arranged in sequences as

above.

Definition 6.3.10 A consequence relation H- between finite sets of constraints is

defined by the following set of rules:

<<G2,F2,S2>> I- << GI, F1,S1>>
CH- 0
	

0 Il- {<<0,F,S>>} 	{<z<G2, F2,S2>>} H- {<z<G1, F1,S1>>}

<ZG1,F1,S1>>N<<G2,F2,S2>> is correct
{G1,F1,S1>>,<<G2,F2,S2>}H- {G1,F1,s1>>Nd2,F2,s2>>}

C21 H- C1 	C2H-C11 C211-C12 	C2H-C3 C31f-C1
C21 U C22 H-Cl 	C2H-C11 U C12

	
C2H-C1

Theorem 6.3.11 (Soundness) For all sets of 0-free reachability constraints Cl

and C2,

C2H-C1 ==> C21=C1

Proof We prove soundness of a proof in Fl- by induction on the rules used.

Case Ti: -,-

By definition of satisfaction all models of the appropriate signature satisfy a con-

straint with no generated sorts, hence 0 1= {<<0, F,S>>}.

Case 	<<G2,F2,S2E-CG1,F1,S1>.
{G2,F2,S2>} F{<G1,F1,S1.}

By soundness ofl- (Theorem 6.3.5), it must hold that <C2, F2, S2> = < Cl, F1,Sl>;

hence

{zG2,F2,S2>>} = {<<Gl,Fl,Sl>>.}

Chapter 6. Specifications with reachability constraints 	 208

Case 	<G1,F1,S1><G2,F2,S2> is correct

{<G1,F1,S1>,<G2,F2,S2>) I- {<G1,F1,s1><G2,F2,S2>}

Immediate by proposition 6.3.9.

C211-C1 	C2 1-C11 	C2 1-C12 	C21-C3 	C31-G1 Cases 	 C21uC22FC1 	C21-C11uC12 	 C2 1-C1

These rules are sound by the definition of satisfaction between sets of sentences in

an institution.

This inference system can be proven complete w.r.t. entailment between sets

of constraints having correct joins as discussed before. In order to do that, it is

enough to replace each set of constraints by the join of all its constraints. By

propositions 6.3.8 and 6.3.9 such a reduction is sound, so that completeness of Ff-

follows directly from completeness of F.

Theorem 6.3.12 (Completeness) For all sets 010-free reachability constraints

Cl and C2 such that all joins among constraints in Cl and in C2 are correct,

C21=C1 == 	C21+-C1

Proof For all C2 = Cl we can prove by structural induction on Cl that a

formal proof can be derived in H-.

Case Cl = 0

C2 J= Cl holds for all C2 since C2 FF0 is immediately derivable by the first

inference rule.

Case Cl = {<<Gl,Fl,Sl>>}

By structural induction on C2 we prove that C2 = Cl implies C2 Fl- Cl for any

singleton Cl:

Chapter 6. Specifications with reachability constraints 	 209

• If C2 = 0 and C2 J= <<Cl, Fl, Si >>, it follows that < G1,Fl,S1>> can-

not impose any restriction at all, so Cl must be empty. In that case,

0 If- {<<0, Fl, Si >>} is immediately derivable by the second inference rule.

• If C2 = {<<G2, F2, S2>>} then by completeness of F for single constraints

(Theorem 6.3.5) and the third inference rule, it follows that

{<<C2,F2,S2>>} H- {<<Gl,F1,Sl>>}

is derivable.

e If C2 = C21 U C22 we consider the join <<G21, F21, S21>> of all con-

straints in C21, and the join <<G22, F22, S22>> of all constraints in C22.

By proposition 6.3.9 C21 = 'G2l,F2l,S2l>> and, by induction hypoth-

esis, C21 If- {<<G21, F21, S21 >>}. Similarly C22 H- {<<G22, F22, S22>>}.

Combining these derivations and using the fourth rule we can derive that

C21 U C22 H-{<<G21, F21, S21 >>N<<G22, F22, S22>>}

At the same time, by proposition 6.3.8, we have that <<G21,F21,S21>> =

C21 and <<G22, F22, S22>> = C22, hence

{<<G21, F21, S21 >>, <<G22, F22, S22>>} 1= <<Cl, Fl, Si >>

Applying proposition 6.3.8 again we conclude that

<<C21,F21,S21>>NG22, F22, S22>> = <<Gi, P1,51>>

Finally, by the previous case,

{<<G21, P21,521 >>N<<G22, F22, S22>>} H-{G1, Fl,Sl >).}

is derivable. Putting this derivation together with that above using the last

rule we conclude that C12 U C22 If- {<G1, Fl, Si>>).

Chapter 6. Specifications with reachability constraints 	 210

Case Cl = C11 U C12

Whenever it is the case that C2 = Gil U C12, it is guaranteed that all models of

C2 are also models of Cli and C12; i.e.

C2 Gil 	C2=C12

Therefore, by induction hypothesis it holds that C2 H- Cli and C2 H- C1 I, so that

applying the sixth rule C2 H- C1 U C12 can be derived.

Similarly to the inference system proposed for single constraints, H- only takes

account of the simplest implications and it is complete for constraints of the form

<<G, F, S>>. Unfortunately, this requires constraints in C2 to constraint disjoint

sets of sorts. Consider for example a more difficult case such as:

S'={s} 	1'={a:s

b

C : $}

and (S', 1l')-constraints

ci = <<{s}, {a, b}, 0>> 	c2 = <<{s}, {a, c}, 0>>

c3 = <<{s},{b,c},0>> 	c =

In this case, it holds that {cl, c2, c3} = {c} since among all (S, Q')-algebras only

the trivial (one-point) algebras satisfy the three constraints ci, c2 and c3, and all

these models satisfy c, although {cl, c2, c3} 1V {c}.

From a more technical standpoint, examples such as this are quite peculiar

since they deal with "finite" constraints; e.g. ci is equivalent to a sentence Vx

S. (x = a V x = b), and by translating all three constraints to this form we can

Chapter 6. Specifications with reachability constraints 	 211

infer using FOLEQ that Vx : S. a = x. If we deal with constraints which are

only equivalent to proper infinitary sentences, then a finite consequence such as

V x : S. a = x could never hold because of some fundamental results of model

theory (see theorem 6 in [KK 67]).

Nonetheless, as argued before, multiple constraints on one sort are not used in

practice; only a generalization of constraints in order to make them comparable to

normal sentences has introduced such a possibility. Therefore, we should consider

H- as complete for a specification language whose only sentences are reachability

constraints of the form <<C, F, S >>. In terms of specifications in ASL, H- provides

a complete inference system in this sense for M = M.

6.3.2 Reachability constraints and sentences

In section 6.3.1, we dealt with an algebraic institution whose only sentences are

reachability constraints. However, reachability constraints are never used on their

own but, most probably, combined with equations, conditional equations or first

order sentences with equality.

From a proof-theoretical standpoint, we have two different kinds of sentences:

reachability constraints equipped with a complete inference system IF as defined

above and ordinary sentences with another inference system in the case of

equational logic a complete inference system l.-EQ.

By taking the union of these two kinds of sentences, we can easily define a new

institution with constraints over I as in theorem 6.2.1, but there is very little we

can directly say about inference for such mixed sets of sentences. Some general

work on the combination of different logics can be found in [HST 89a], but not

much can be said in general.

Chapter 6. Specifications with reachability constraints 	 212

In the following we refer to EQ with reachability constraints, but also to other

institutions with signatures, models, terms and reachability constraints as in EQ,

e.g. ALG.

In terms of specifications in ASL, we are addressing the problem of MA = MA.

Independent strategy

The results obtained for a logic of constraints give raise to an immediate. strategy

for proving entailments such as Ac2A$2eE ACIAtler, in EQ, namely

2HEQ1 	C2H-C1

AC2A2€E E AClAjeE

where 44 and 02 are sets of 1-sentences and Cl and C2 are sets of E-constraints.

This is called the independent strategy because it corresponds to taking the

union of the inference rules of the different logics in order to prove entailment be-

tween heterogeneous sets of sentences. However, given the two complete inference

system 1EQ and H- their union is incomplete w.r.t. the union of their sentences.

Cases where the independent strategy fails are easy to find, e.g.

M(G1,F1,sl)A1cE=Reachab1e on {nat} by {O, suc}

sorts nat

operations

0: nat

suc: nat->nat

+ : nat, nat->nat

axioms

V n:nat. 0+n=n

V n,m:nat. (suc m)+n=suc(m+n)

V n,m:nat. m+nn+m

end

Chapter 6. Specifications with reachability constraints 	 213

M(a2,F2,s2)A2cE= Reachable on {nat} by {O, suc,

sorts nat

operations

0: nat

suc: nat->nat

+ : nat, nat->nat

axioms

V n:nat. O+nn

V n,m:nat. (suc m)+n=suc(m+n)

end

where it is the case that M yEQ 1 and <<G2,F2,S2>> I/<<G1,F1,S1>> but

the refinement is correct, M(G2,F2,52)A42eE 1= M(G1,F1,s1)A1eE.

In order to improve this situation, specific rules must be given to infer sen-

tences from sentences and constraints, MA = A, and to infer constraints from

sentences and constraints, MA = M. The first problem has already been tack-

led using induction principles in theorem proving (section 3.3.2), whereas the

second problem remains to be studied. The results are expressed in the form

of an inference system for constraints parameterized by a set of sentences, i.e.

G2 1 F2, S2>> F, <<Cl, Fl, Si >> means that <<Cl, Fl, Si >> can be inferred

from and <<G2,F2,S2>>.

Characterization of F-,

As we saw in section 6.3.1, ZC2,F2,S2>> F <<G1,F1,S1>> checks whether

all generated sorts in <<Cl, F1,S1>> were already generated in <<G2, F2,S2>>

by the same or fewer generators. Now, I- must take into account that some

generators in <<G2, F2, S2>> may be excluded during the check because they are

redundant w.r.t. the rest of the generators and oD.

Chapter 6. Specifications with reachability constraints 	 214

Definition 6.3.13 Given a E-reachability constraint <<C, F,S>> and a gener-

ated sort r E C, a generator op E Fr is redundant in <<C, F,S>> w.r.t. a set

of E-sentences (D if for all E-algebras A such that A H E 4D

A=EZC,F,S>> if A=EG,F\{op},S>>

In general, a pair (S", F") is redundant in a E-constraint <<G,F,S>> w.r.t.

if S" C S, F" ç F and for all algebras such that A HE

A H E <<G,F,S>> if A I=E <<G,F\ F",S\S">>

Considering the definition of satisfaction of a reachability constraint, redundancy

of a pair (S", F") in a E-constraint < C, F, 5>> can be rephrased as follows:

Let t and t" be inclusions

(CU (S \ S"),F\ F") 	(CU S, F) 	E

and A a Y-algebra such that A HE and A HE < C, F, S >>, if all values of a

sort r E C are denoted by a term t E IT(GUS,F)(XS)I I. for an S-indexed set of

variables Xs and under a valuation i/ : T(Gus,F)(Xs) -+ Al,, then all values can

also be produced by a term t' E I T(cu(s\s'l),F\Fu)(Xs\sFs)J,. for an (S \ S")-indexed

set of variables Xs\sll and under a valuation

ii ' : T(Gu(s\su) , p\plI)(X s\su) 	Al,,, ; ,

This definition of redundancy can be considerably simplified if algebras with

empty carriers are not taken into account.

Definition 6.3.14 Given a set of sorts S, the S-indexed set of variables X S is

defined as follows: for all sorts s E S, X 3 = Ixi I i E .Al} where Al is the set of

the natural numbers.

Chapter 6. Specifications with reachability constraints 	 215

Lemma 6.3.15 Given a signature inclusion t : (G U S, F) - 	a E-constraint

<<C, F, S>> and a model A l=E <<C, F, S>> without empty carriers, then for

every value v E lAI r for r E C there exists t,, E I T(GUS,F)(XS)IT and a valuation

ii: T(GUs,F)(Xs) - A, such that v(t) = v.

Proof By definition of satisfaction of a E-constraint <<C, F. S >>, for every

model A t=E <<C, F, S>> there exists an S-indexed set of variables Xs such that

for each value v E lAi r for r E G there exists a valuation ii : T(GUS,F)(XS) -. Al,

and a term t E I T(Gus,F)(Xs)l such that v(t) = V. In other words, each value v

is generated from a finite set of values of each sort s E S

V8 = {v(x) I x is a variable in t of sort s}

We can order the values in V8 so that V, = {v1 , ..., v}. Then, a valuation v'

T(G U S,F)(XS) can be defined for each sort s in S as follows:

z/(x 1) = v, 	for all i = 1, ..., n

v'(x 1)=J. 	for all i>n

where I is an arbitrary element in IA I. Since A has no empty carriers, v' is

well defined and, by definition, there exists a term t' E I T(GUS,F)(XS)I,. such that

v'(t') = V.

Assumption In the following we shall assume all models to be algebras without

empty carriers. This does not produce any problem since reachability constraints

are already assumed to be 0-free.

In order to take care of redundancy in H and to produce, at the same time,

a sensible inference system, we have to avoid referring to models and particular

valuations. In the following two sufficient criteria for redundancy are presented.

Chapter 6. Specifications with reachability constraints 	 216

First proof criterion

Proposition 6.3.16 (First proof criterion) Given a set of s-sentences , a

E-constraint <<C, F, S>> and a pair (S", F") such that S" ç S, F" c F and

V E IT(GuS , F)(2 S)I r . 3t' E IT(Gu(S\Sh1),F\Fh1)(2S\Sh1)I r . cJ3 I=E VX5 . t = t'

for every sort r E C then (S", F") is redundant in <<C, F, 5>> w.r.t. &

Proof Let t and t" be the inclusions

(Cu (S \ S"),F\ F") c (Gu S, F) 	E

and A a E-algebra without empty carriers satisfying 4 and <<G, F, S >>. Accord-

ing to lemma 6.3.15, every value v E IAI for r E C can be produced by a term

t,, E IT(GUs , F)(X g)1 7. using a valuation ii: T(Gus,F)(Xs) —* 4 such that v(t) = v.

By assumption, there exists also a term

t; E I T(Gu(s\s II),F\FIl)(X5\5ll)I,. c I T(GUS,F)(XS)Ir

such that 	VX. t = '' hence v(t) = v. V

Taking the t"-reduct of the valuation v, we obtain a homomorphism over

(Gu(S\S"),F\ F")

T(cus,p)(Xs)I'll —3

which by definition can be restricted to terms in IT(au(S\s),F\F)(XS\su)J

ii' : T(Gu(s\su),p\Fll)(Xs\slI) -

so that v' is a valuation with v'(t) = v thus A I=E <<C, F \ F",S \ S">>.

Entailment in the other direction follows immediately from

<<C,F\F",S\S">>F- <<G,F,S>>

and soundness of I- w.r.t. constraint entailment (Theorem 6.3.5).

Chapter 6. Specifications with reachability constraints 	 217

This fact together with an inference system FALG provide a sufficient criterion

for checking redundancy of some sorts and functions in a reachability constraint

w.r.t. a presentation. For example, consider

E = sorts flat

operations

0: nat

suc: nat -> nat

flat, nat -> nat

= { V n:nat. 0+nn,

V n,m:nat. (suc m)+nsuc(m+n)}

It is not difficult to check that "+" is redundant in <<{nat}, {o, suc, +}, 0>>

w.r.t. using the above criterion. In this case, it is enough to prove by structural

induction on terms of sort nat that every term containing "+" is equal to a term

without "+".

In fact, the above criterion characterizes redundancy in EQ when the set of

generating carriers S in a constraint <<C, F, S>> is empty.

Proposition 6.3.17 Given a signature (G, F), a set of (G, F)-equations and

a constraint <<C, F, 0>>, if a pair (0, F") is redundant in <<C, F, 0>> w.r.t. 1D,

then

Vt E IT(G,F)I r . 3 t' E IT(G,p\F1)I r . 'I 1(G,F) VO. t = t

for all sorts r E C.

Proof Let i be the inclusion

(G,F\F")c* (G, F)

Chapter 6. Specifications with reachability constraints 	 218

and I the quotient of T(G,F) modulo the least congruence generated by the equa-

tions in & By definition of least congruence, we have that

vj (t) = v,(t') if (D 	G,F) VO. t = t'

where vj T(G,F) -i I maps each term to its quotient class of terms in the algebra

I. In other words, the algebra I under valuation vj characterizes those equations

satisfied by all the models of D.

By definition of I, it is clear that I =(G,F) 4 and also that I =(G,F) <<G, F, 0>>,

and since (0, F") is redundant in < G, F, 0>> w.r.t. 4, I G, F \ F", 0>>

as well.

Then, every term t E IT(G , F)I r for r E G denotes a value v,(t) E Ilk which

can be generated by a term t' E I T(G,F\FII) I r under a valuation which can only be

VI, i.e. vj (t') = zij(t), hence 1 I=(QF) VO. t = t'.

Redundancy and sufficient completeness

Sufficient completeness of a free extension F,,, SP, as defined on page 77, means

that no new values are added to old carriers. In particular, having a generated

sort r E G with a redundant generator op E Fr in < G, F, 0>> w.r.t. a set of

equations eq is equivalent to sufficient completeness of Fe(F€(ØØ)) with

(0,0) + (C,F\ {op}) - (G, F)

In fact sufficient completeness as originally defined [GH 78] looks very similar

to our criterion for checking redundancy (when all sorts are generated), whereas

our definition in chapter 3 is analogous to the model theoretic definition in [Gau 78,

Gan 83, EM 85].

Chapter 6. Specifications with reachability constraints 	 219

In the literature, both definitions refer to initial semantics, and while the model

theoretic definition requires that: no new values are added to old carriers, the proof

theoretic definition requires that: every new term must be provably equal to an old

one (using equational logic). For equational specifications with initial semantics

both definitions are equivalent but for loose semantics their trivial generalizations

are not equivalent any more [Ber 87].

Second proof criterion

Unfortunately, if sentences are not equations, there are redundancies that we can-

not prove using the above criterion, even if the set of generating carriers S is

empty. For example:

= sorts nat

operations

0: nat

suc: nat -> nat

rand: nat -> nat

= { V n:nat. 0+nn,

V n,m:nat. (suc m)+n=suc(m+n),

V n:nat. rand(n)=n V rand(n)=suc(n)}

In this case the function rand is clearly redundant in <<{nat}. {o, suc, rand}, 0>>

w.r.t. II" since rand cannot produce other natural numbers than those generated

by 0 and suc. However, the proof criterion fails since given a term rand(0) E

T({nat},{O,suc,r,d}) J there is no term t' E I T({flat},{O,suc}) I such that for all A satis-

fying V, A = rand(0) = t'.

Chapter 6. Specifications with reachability constraints 	 220

A difference between satisfying the above criterion and actual redundancy is

that, for redundancy, given a term t, the term t' may be different for each model

of 4b, while in the above criterion, t' must be same in all models of 4. For this

reason, the proof criterion is not a necessary condition for redundancy in ALG.

—In tight sp€cifiation4guagc3 whcrc only onc me44of--is_onsi.dered4ip

to isomorphism), for example the initial model, this problem disappears.

Cases such as the redundant function rand make us think that our proof crite-

rion should be improved.

Proving redundancy as it stands in the definition involves a quantification over

models which is not acceptable from a proof-theoretic point of view. We cannot

expect to give a different term equivalent to rand(0) for each possible model of

V. However, if we want to prove that rand is redundant, we can show that all

possible results of rand (t) are natural numbers generated by 0 and suc, assuming

that term t is generated by 0 and suc.

I WO

Taithig the institution FOLEQ and ineluding set4heory in all our spoifiGations!,}

an express our second proof sriterion followg:

Proposition 6.3.18 (Second proof criterion) Given a set of E-sentences

including set theory, a E-constraint <<G, F, S>> and a pair (S", F") such that

S" ç S, F" ç F and

Vt E IT(G us,F)(Xs)I. 3 T' ç IT(Gu(s\sIl),F\FI1)(Xs\sll)J. 	VXs . t E T'

then (S", F") is redundant in <<G,F,S>> w.r.t. &

-Set theory is a first order theory S-Th whish san be assumed to be insluded in all

o 	 ove 	

]

spocificationc 	r ASL(FOLEQ

E T 	'1A 6 i 	e 	rLc as cxvi 	J!o 	 jo VA
ft :

r 	eT .

QQ,vk

1 	U 	J
'V\ 11e5 	 Q f0 	LL CLSjco

1 CA\1 	cLj uirxcl

Chapter 6. Specifications with reachability constraints 	 221

Proof The proof proceeds analogously to the proof for the first criterion (propo-

sition 6.3.16) taking into consideration that if a s-algebra without empty sorts A

satisfies

A=EVXS. tE T'

there exists a term

t e T' ç IT(GU(S\Sh1),F\Fh1)('t 'S\S)Ir c IT(GuS,F)('S)l r

and a valuation ii : T(GUS,F)(XS) -* Al, such that v(t,) = v(t).

[II

The second criterion is almost equivalent to redundancy when T' includes all

terms t' equivalent to t in some model of 'Ii. At the same time, the second criterion

is equivalent to the first criterion when T' is a singleton.

Redundancy of the function rand in the example presented above can be proven

using the second proof criterion by taking T' = {t, suc(t)} for every term t E

T({nag},{O,suc))I.

EQ 	JL 	tc&v 	isj1ov

This second criterion is defined for FOLEQ including cot theory among their.-.

scntcncc3 uqfortunte1y this prevents their inference systems from being complete
LAC ttQ. 'Uk
44€ to incomplotenooc of Dot theory ac proved by Cödel. However, we consider

this approach satisfactory just as we consider an induction schema satisfactory for

proving inductive theorems.

According to this second criteria for redundancy, we can give an inference system

F between constraints parameterized by a set of sentences 1' which extends I- as

follows:
<<G1, Fl, S1>> I- <<G2,F2,S2>>

<<Cl. F1,S1> 1-0 <G2,F2,S2>

(S", F") is redundant in <<C, F, S>> w.r.t. 41

zG.F,S>>F-. <<G,F\F",S\S">>

Chapter 6. Specifications with reachability constraints 	 222

An inference system H- between sets of constraints is defined to be the same

as H-, but using I- instead of F- for single constraints.

Completeness of IF does not hold. This is so because of the same consider-

ations as in H- about using several constraints on one sort. Another reason for

this is because, as has just been said, we have no complete system for redundancy,

which leads to incompleteness of F-.

Solving MA = MA

Taking into consideration the proof criteria for redundancy, we can also give an

overall inference system for mixed sets of constraints and sentences in ALG. Such

a system must include: the inference system for sentences FALG, the inference

system for sets of constraints H-, an induction schema such as the one proposed

for MA = A in section 3.3.2 and a rule to take care of redundant generators.

An inference system H_G between pairs consisting of a set of equations and

a set of reachability constraints is defined by the following rule:

42 	 1 	C2 U- 2 C1

(C2,2) HALG(Cll)

where 	 is the inference system FALG plus the induction rules which

follow from reachability constraints in C2.

In the general case, the system is incomplete for several main reasons:

Incompleteness of the induction rule w.r.t. the inductive consequences of a

theory.

Incompleteness of set theory which Fessolts in incompltns of the second

criterion for redundancy.

3. Incompleteness caused by the simultaneous use of constraints over the same

sort.

Chapter 6. Specifications with reachability constraints 	 223

4. Incompleteness caused by the existence of sets of sentences which can entail

reachability constraints on their own.

The first two reasons have been sufficiently explained. The third refers to

the incompleteness of 11- unless the sets of constraints can be correctly joined as

discussed in section 6.3.1 and in the example with three constants on page 210.

The fourth reason refers to those cases where reachability can be imposed by

the sole use of sentences. In institutions such as EQ or FOLEQ, this is' the case

for presentations with only finite models. For example:

Vx : boot. (x = true) V(x =false) J= <<{bool},{true,false},O>>

where a reachability constraint is equivalent to a first order sentence. In this case,

we should explicitly add a rule inferring a reachability constraints from disjunctions

of the form Vx: r. (x = vl) V (x = v2) V ... V (x = vn).

In other institutions the problem can become harder. For example, if we

consider FOL with only enumerable models, rational numbers are axiomatizable

using only sentences (see page 76 of [Men 71]). Therefore a reachability constraint

over rational numbers follows from a set of first order sentences.

Summing up, incompleteness arises in very specific situations about which we

can do very little in general. In practice, almost all entailments we find in algebraic

specifications, and in particular the example on page 212 where the independent

strategy fails, are derivable in the system presented above. For this reason, we

shall consider FALG satisfactory w.r.t. MA MA in ALG.

Chapter 6. Specifications with reachability constraints 	 224

6.4 Structured specifications with constraints

Our purpose in this section is proving entailments ASL = ASL and ASL = M in

particular, using the satisfactory inference systems already developed for DATU =

DATU and MA f= MA.

Since reachability constraints can be seen as a particular kind of sentences

and the inference system for DATU = DATU is parameterized by the underlying

logic of the sentences _I but is institution independent otherwise, we obtain an

inference system for ASL = ASL by using our satisfactory inference system for

DATU =: DATU and an underlying inference system dealing with ordinary sen-

tences and constraints. In the case of ALG and restricting signature morphisms

to be injective, H_ALG can be used.

In the following, we shall briefly revisit the inference rules for theorem proving

and the inheriting strategy for D but keeping in mind that sentences are reach-

ability constraints or a mixture of constraints and another kind of sentences such

as equations.

6.4.1 Proving constraints from specifications

In chapter 3 theorem proving was studied, in particular DATU = A, and it

was shown to be adequate for DATU = ATU due to the M-completeness of the

inference rules for T, and U. Results in theorem 3.3.12 are independent of the

nature of the sentences, and therefore they hold for reachability constraints. For

example, we can say that

SP I- <<cr,t>>
T, , SP H o'(<<a, t>>)

is sound and M-complete (exact)

Chapter 6. Specifications with reachability constraints 	 225

and similarly for sentences being pairs consisting of a set of constraints and a set

of ordinary sentences, e.g.

SP I- (o(C),o())
DSPF (C,4)

is sound and complete

As explained in chapter 3, SBO's with an exact inference rule can be eliminated

to yield a normalized specification. That is why inference systems for ATU =

ATU, MTU = MTU and MATU = MATU are immediate from the underlying

inference systems 1- 1 , Ff and F , for A = A, M = M and MA = MA respectively.

In the case of specifications with constructors k+ASL = A, little has been said

in general. For generic constructors, an explicitly given relation between sentences

is all that can be inferred whereas for FQR-constructors the results given are only

valid for equations.

If sentences happen to be constraints, generic constructors (P, A) should in-

dude an explicit relation between constraints in A. In the case of FRQ in the

algebraic institution EQ with reachability constraints, some new inference rules

are given below.

Proposition 6.4.1 SP F < G,F,S>> 	is a sound inference rule. _________________
Qeq SP F <<G,F,S>>

Proof Given a signature inclusion t: (C US, F) 	Sig[SP] and an algebra A E

Mod [SP], for r E C and for every v E IAI,. there exists a term tv E I T(GUSp)(XS)Ir

and a valuation il : T(GUs,F)(Xs) -, A such that v(t) = v. By definition of the

quotient algebra A/ -'7 there exists a surjective valuation v Q : T(Gu s,ç-)(Xs)

Al '-7 	defined as L.'Q(t) = [v(t)] . Then vQ(t) 	[v] and, since ií is surjective.

all values in IA! 	1. (quotient classes of values in Air) are some valuation of

some term in T(GUs,F)(Xs).

Chapter 6. Specifications with reachability constraints 	 226

Proposition 6.4.2 	
RGSPF <<G,Si,S\ C>>

	where Sig[SPJ = (S,1l) is

a sound inference rule.

Proof Given a (S, Si)-algebra A E Mod [SP], by definition of ReachG, ReachG(A)

is reachable on sorts in C; that is to say, carriers IReach(A)I r for r E C are finitely

generated from sorts not in G using all the functions in Si, hence ReachG(A) J=(s,o)

G, Si, S \ C

Proposition 6.4.3
SP F <<G,F,S>>

RGISPI- <G,F,S>> is a sound inference rule

provided G' r) S = 0 and <<G',Si',S'\ G'>> for (S', Q) = Sig [SP] is 0-free.

Proof Given a (S', Si')-algebra A E Mod[SP], the operation RGI removes non-

reachable values from carriers JAI for sorts r E G'. By cases:

- If r E C, RG' may remove some values from IAI, but not all of them

since <<C', Si', S' \ G'>> is 0-free. Hence, because C' fl S = 0 all values

in JReachGl(A)l,. continue to be the evaluation of a term in T(GUS,F)(XS) for

a certain S-indexed set of variables Xs as they are in lAi r .

- If r V C, RGI may remove some but not all values from lAI r . Since r is

neither a generated nor a generating sort in <<G, F, S >>, reachability of A

on sorts C is not affected.

107

Proposition 6.4.4 SP <<C,F,S>> 	
is a sound inference rule FCeQSP F <<a(C),ft,S'>>

provided Ia =

Chapter 6. Specifications with reachability constraints 	 227

Proof A free extension can quotient the elements of the old carriers and add

some new reachable values to them. Since quotients cannot prevent reachability

from holding, all generated sorts continue to be generated.

Proposition 6.4.5 	
F,el SP I- <<G,cl',a(S)>>

	is a sound inference rule

provided a : (S,) - (o, (S)

Proof By definition of F0 , carriers in the new sorts G are generated from the

carriers in old sorts a(S).

6.4.2 Specifications with hidden generators

In chapter 4 some strategies to deal with hiding, DATU = DATU, have been

presented. Strategies and results are independent of the nature of the sentences

and therefore immediately translate into strategies for ASL 1= ASL. Nevertheless,

checking for persistency and independence have a very different intuition when

sentences are reachability constraints.

In the examples seen in chapter 4, persistency and independence looked like

very reasonable requirements: Persistency as used there guarantees that the specifi-

cation of some auxiliary functions does not affect the visible part and independence

makes the choice of a model of the whole specification independent of the choice

Of model for the auxiliary functions when they are not completely defined. Some

difficult cases where these requirements are not met, studied at the end of that

chapter, stem from mistakes in the design of the specification or an incomplete

specification of the auxiliary functions respectively, according to this view.

In chapter 5, the same proof strategy is applied to abstracted specifications.

In that context, independence rarely holds and persistency is easily violated.

Chapter 6. Specifications with reachability constraints 	 228

SP = 	Enrich Bool by

sorts elem, set

operations

axioms

end

Figure 6-1: Booleans plus sorts for elements and sets

Now, if we consider that the hidden part of the consequent includes some of

the generators and a constraint for a given sort, independence is generally lost and

also persistency is lost unless the generated sort is hidden.

Example

Consider for example a specification of sets generated by 0, singleton {..} and union

- U where the only visible functions are insert, choose and remove, such as

Set in figure 6-2, built on top of SP in figure 6-1. A user may implement such a

specification using a representation of sets by lists as described in the specification

Impi in figure 6-3.

It is our goal to prove that Impi = Set. Since Set has the form of a specification

SP with a hidden and a visible enrichment we may apply the inheriting strategy.

First of all, it makes little sense to discuss the persistency of the hidden genera-

tors, 10, _U_, {_} }, w.r.t. the visible sort set. In general, an enrichment including

the hidden generators of a visible sort is never persistent w.r.t. the specification

of the sort they generate, unless the generators are redundant. Moreover, in-

dependence fails since other operations on sets such as insert and remove are

intimately dependent on the generators.

The most dramatic side of this problem is that the example corresponds to a

common refinement style:

Chapter 6. Specifications with reachability constraints 	 229

Set = 	Enrich SP by

Hidden

sorts

operations

0: set

U: set, set -> set

{...}: elem -> set

axioms

Reachable on {set} using {O, _U_, {}} from {elem}

V S:set. S U 0 = S

V S:set. S U S = S

V Si, S2:set. Si U S2 = S2 U Si

V Si, S2, S3:set. (Si U S2) U S3 = Si U (S2 U S3)

in

sorts

operations

insert: set, elem -> set

choose: set -> elem

remove: set, elem. -> set

E: elem, set -> bool

axioms

V e:elem; S:set. insert(S, e) = {e} U S

V el,e2:elem. el = e2 * e1E{e2} = true

V e:elem. eE 0 = false

V e:elem; S1,S2:set. eE(SiUS2) = (eES1 V eES2)

V e:elem; S:set. eEremove(S, e) = false

V el,e2:elem; S:set. (el54e2) = (e2Eremove(S, el) = e2ES)

V S:set. (S54 0) = (choose(S)ES = true)

end

Figure 6-2: Sets with hidden generators

Chapter 6. Specifications with reachability constraints 	 230

Impi = 	Enrich SP by

Hidden

sorts list

operations

a: list -> set

0: list

elem, list -> list

axioms

Reachable on {list} using {D, ::} from {elem}

Reachable on {set} using {a} from {list}

in

sorts

operations

insert: set, elem -> set

choose: set -> elem

remove: set, elem -> set

E: elem, set -> bool

axioms

V e:elem; L:list. insert(a(L), e) = a(e::L)

{Defining choose, remove and E in terms of list operations}

end

Figure 6-3: Sets represented by lists

Chapter 6. Specifications with reachability constraints 	 231

First a data type is specified in terms of its own constructors using a reachability

constraint and some axioms (e.g. sets in terms of 0, {} and U, natural numbers

in terms of 0 and suc, stacks in terms of empty and push, etc.), and then the

implementation is carried out in terms of some primitive data types (e.g. lists,

arrays, pointers, etc.) substituting the set of generators by a unique abstraction

function, c. Moreover, if the original generators are too low level, they are hidden

from the user.

This may not be the most common approach when lists implement kts but it

is certainly the approach used when arrays implement lists or stacks.

At first sight, our inference system for DATU = DATU seems to fail badly

in all the interesting cases where the hidden functions are generators. However,

we recall from chapter 4 that persistency of the hidden enrichment w.r.t. the

specification on which it is built is not necessary, as explained in proposition 4.4.2,

the hidden enrichment only needs to preserve those models which are actually used

in the antecedent (implementation). This is also the case in the 3 2-strategy, where

SP2 k Do i ;a (AT c, i;)SP2 is required (see section 4.2).

Although both the 32
-strategy and the inheriting strategy as formulated in

proposition 4.4.2 can be used, only the 3 2-strategy will deliver some good results.

The reason for this stems from the close relationship between the interpretation

of a sort and the interpretation of its generators. This "strongly interdependent"

relationship ruins independence of the hidden enrichment defining the generators

and, in almost all cases, prevents the success of the inheriting strategy.

Using the 3 2-strategy in our example, we are required to prove the persistency

of an enrichment over Impi such as

EIrnpl = 	Enrich Impi by

sorts

operations

Chapter 6. Specifications with reachability constraints 	 232

0: set

U: set, set -> set

{_}: elem -> set

axioms

Reachable on {set} using 10, _u_, {.j} from {elem}

0 = a(D)

V e:elem. {e} =

V Li, L2:list. a(Li) U a(L2) = a(append(L1, L2))

end

This holds since all possible sets generated from a list by ce can also be generated

by 0, _U and {...} using their definitions in EImpl.

At this point we may recognize this as common practice in correctness proofs,

particularly in abstract model specification. Nevertheless, this criterion is com-

monly used in an ad hoc fashion whereas here it belongs to a general strategy for

Dc,, in the particular case that sentences include reachability constraints and some

generators are hidden.

Similarly to the last chapter for behavioural abstraction, the basic concepts of

persistency and independence arise again as key factors in the proof of specification

entailments. The multiple re-use of the same ideas shows the flexibility of our

institution-independent results in chapter 4.

6.4.3 Behaviourally abstract specifications with hidden

generators

Very often, sorts with hidden generators happen to be non-observable sorts. In this

case, as discussed in [ST 88b], the reachability constraint does not constrain the re-

Chapter 6. Specifications with reachability constraints 	 233

suiting specification since a non-reachable algebra is, most of time', behaviourally

equivalent to its reachable subalgebra. However, many proofs of specification en-

tailments extend the antecedent, e.g. using a persistent enrichment, to the point

that the hiding in the consequent specification can be ignored; in this situation,

also reachability constraints on non-observable sorts must be proven to hold in the

extended antecedent.

In fact, when the hiding of constructors together with behavioural abstraction

take place in a consequent specification, we run into sophisticated spe'cification

entailments known as data reification in abstract model specification languages

(see for example chapter 8 in [Jon 86]).

Proofs can be carried out in our system using the 3 2
-strategy for the hidden

generators and we can either prove all observable consequences or treat behavioural

abstraction as hiding. Representation invariants like those used in [Jon 86] usu-

ally help to prove that the generators of the antecedent are redundant w.r.t. the

generators of the same sort in the consequent and therefore the constraint in the

consequent is persistent w.r.t. the antecedent.

Example

Consider an example of data reification where a table specified in terms of a list of

(index, value) pairs, as shown in Tabll of figure 6-5, is implemented by a B-tree,

as specified in Tab12 of figure 6-6.

In this case we have to prove that Tabl2 	Tab/i where Tab/i contains simul-

taneously hidden generators and non-observable sorts.

3This is always the case when observations are ground equations.

Chapter 6. Specifications with reachability constraints 	 234

Pairs = 	sorts index, value, pair, table

operations

(_,_): index, value -> pair

axioms

end

Figure 6-4: Index and value pairs plus a sort for tables

Behavioural abstraction cannot be ignored since theorems such as:

V i:index; v:value. remove (insert (T_empty, i, v), i) = T_empty

hold in Tabll but not in Tabl2. But, contrary to the case of stacks implemented

by arrays and pointers, several different tables in Tabll can have a unique repre-

sentation in Tabl2. In abstract model specifications this phenomenon is called im-

plementation bias and makes proofs more complicated (cf. section 9.1 in [Jon 86]).

The entailment proof can be carried out as follows:

1. The hidden enrichment of Tabll is added to Tabl2 and proven persistent.

This enrichment includes the specification of lists and the function ad with

the reachability constraint over table by ad, so that we obtain an enriched

antecedent ETabl2 as in figure 6-7.

Due to the lack of independence, ad must be further specified in E7abl2 in

terms of a2 and B-trees. This can be done by a single axiom p as follows:

[] V T:tree. a2M = al(tree2list(T))

with tree2list: tree -> list delivering the preorder traversal of a tree

in the form of a list.

From this definition, all those tables generated by a2 from trees can also

be generated using ad from lists. This can be formally proven by showing

Chapter 6. Specifications with reachability constraints 	 235

Tabll = 	Non-observable on {table}

Enrich Pairs by

Hidden

sorts list

operations

1: list -> table

{Standard operations on lists of (index, value) pairs)

axioms

Reachable on {table} using {cd} from {list}

Reachable on {list} using {[], ::} from {pair}

{Standard axioms on lists of (index, value) pairs}

in

sorts

operations

T_empty: table

insert: table, index, value -> table

remove: table, index -> table

look-up: table, index -> value

axioms

T_empty = c1([])

V i:index; v:value; L:list. insert(crl(L), i, v) = c1((i,v)::L)

V i:index; v:value; L:list. look_up(1((i,v)::L), i) = v

V il,i2:index; v:value; L:list. ilj4i2 =

look_up(1((i2,v)::L), ii) = look_up(al(L), ii)

V i:index. remove(ül([]), i) = al([])

V i:index; v:value; L:list.

remove(al((i,v)::L), i) = remove(al(L), i)

V il,i2:index; v:value; L:list. i1j4i2 =

remove(a1((i2,v)::L), ii) = insert(remove(cil(L), ii), i2, v)

end

Chapter 6. Specifications with reachability constraints 	 236

Tab12 = 	Enrich Pairs by

Hidden

sorts tree

operations

mark: value

a2: tree -> table

{Standard operations on B-trees of pairs (index, value)

ordered by index)

axioms

Reachable on {table} using {a2} from {tree}

Reachable on {tree} using {tree-empty, node) from {pair}

{Standard axioms for B-trees of pairs (index, value)

ordered by index)

in

sorts

operations

T_empty: table

insert: table, index, value -> table

remove: table, index -> table

look-up: table, index -> value

axioms

T_ernpty = o2(tree_empty)

V i:index; v:value; T:tree.

insert(c2(T), i, v) = c2(tree_add(T, i, v))

V i:index; v:value. look_up(a2(leaf(i, v)), i) = v

V il,i2:index; v:value; T1,T2:tree.

(il-<i2 = look-up (o2 (node (T1,T2,j2)), ii) = look_up(a2(T1), ii))

A (il>i2 => look-up (a2 (node (T1,12,j2)), ii) = 1ook_up(c2(T2), ii)

V i:index; T:tree. remove(c2(T), 1) = a2(tree_add(T, i, mark))

end

Chapter 6. Specifications with reachability constraints 	 237

ETabl2 = Enrich Tab12 by

sorts list

operations

cr1: list -> table

{Standard operations on lists of (index,value) pairs)

axioms

Reachable on {table} using {c1} from {list}

Reachable on {list} using {[], ::} from {pair}

{Standard axioms on lists of (index,value) pairs}

end

Figure 6-7: Enriched antecedent specification

the redundancy of ({tree}, {a2}) in <<{table},{a2,al},{tree, list)>>)

w.r.t. a set of axioms defining lists and trees plus the corresponding in-

duction schemata, and using H- to prove that:

{.z{table}, {a2}, {tree} >>} H- {<{table}, {c2, ai}, {tree, list) >>}

If{<<{table}, Jai}, {list} >>}

Summing up, all models satisfying <<{table}, {a2}, {tree} >> also sat-

isfy <<{table}, jai}, {list} >>; i.e. adding <<{table}. Jai}, {list} >> to

Tabl2 is a persistent enrichment.

We can assume the specification of lists to be persistent w.r.t. the definition

of (index, value) pairs, hence the specification of lists is also persistent w.r.t.

Tabl2.

Chapter 6. Specifications with reachability constraints 	 238

2. Prove that all visible consequences of Tabll hold in A{ (,}ETabl2, i.e. all

sentences such as

V i: index; v: value. look-up (insert (T..empty,i,v),i) = v

V i: index; vl,v2:value. look-up (insert (insert (T_empty,i, vi) ,i,v2),i) = v2

This amounts to restricting to those tables which can be generated by

T_empty, insert and remove, under a context which can only be look-up

since it is the only operation yielding an observable value from a non-

observable table. We shall call the whole collection of visible sentences

Due to the persistency of the enrichment over Tabl2 and since L,,,j only

refers to symbols defined in Tabl2, it suffices to prove that

Tabl2 = Aif

but there are at least three ways to do this proof.

(a) The most straightforward solution seems to be structural induction on

the tables used in &nf, that is, those generated by T_empty, insert

and remove.

In Tab12, T_empty, insert and remove are specified in terms of o2

and trees. Hence, in order to inductively prove a theorem on table we

need to do a simultaneous induction on sorts table and tree, where the

predicate on sort tree stands for something like: a tree generated by the

definition of T_empty, insert and remove in Tabl2. Such a predicate

is usually known in abstract model specifications as a representation

invariant. In this case, due to the complexity of insert and remove,

it is very hard to find such an invariant. By the definition of B-tree we

know that insertions and removals must preserve the balance of a tree

but it is difficult to know, a priori, if some other subtle properties also

hold.

Chapter 6. Specifications with reachability constraints 	 239

Another problem is that there is no obvious way to inductively present

/.Üf without referring to lists. Unlike Stack and other specifications

without hiding studied in [Hen 881, we cannot identify the operations

used in the observable terms and the generators of tables.

(b) In order to overcome these difficulties, we can try to prove something

stronger than Lç, namely a property holding for all tables generated

from lists instead of those generated by T_empty, insert and remove.

Consider the following set of sentences from Tabll:

V i:index; v:value; L:list. looLup(czl((i,v)::L), i) = v

[Li] 	V il,i2:index; v:value; L:list. i1i2 =>

looLup(c1((i2,v)::L), ii) = looLup(cd(L), ii)

Since all tables are reachable by al from a list and by definition of

insert and remove in Tabll, it is enough to prove that Li is satisfied

by A{,,}ETabl2.

At this point we need to complete W so that all tables generated from

a list can also be generated from a tree.

[so'] V L:list. al(L) = o2(list2tree(L))

with list2tree: list -> tree inserting all the elements of a list into

an empty tree. 	-

We could have chosen p to be {,'} in the first instance, but at

that point there was no obvious need. Note that the pair of functions

list2tree and tree2list plays the role of a many-to-many relation

between lists representing tables and trees representing tables like the

retrieve relation in reification proofs [Jon 86], but they are at the spec-

ification level instead of being model constructions.

Now, Li can be proven to hold in A{'}ETab12. First. o1 is replaced

by its definition in terms of o2 and list 2tree and then we can proceed

by induction.

Chapter 6. Specifications with reachability constraints 	 240

As before, we can devise a simultaneous induction on tree and table so

that a predicate states an invariant over trees generated by list2tree,

e.g. distinguishing trees with at most one value for each index. But, in

contrast to the previous attempt, we expect to prove the two theorems

in A rather than an infinite set of theorems L1.

(c) Alternatively, we can treat behavioural abstraction as the hiding of

a predicate STable in Tabil in the context of first order logic. The

predicate flble should be explicitly defined by some axiornt such as

reflexivity, transitivity and congruence omitted in Tabli and used in

the following axioms:

T_enipty E Table

V i:index; v:value; L:list. insert(al(L), i, v) STable al((i,v)::L)

V i:index. remove(cd([]),) 	 1(D)

V i:index; v:value; L:list.

remove(y1((i,v): :L), 1) 	Ta61C remove(1(L), i)

V il,i2:index; v:value; L:list. i14i2 =

remove(1((i2,v)::L), ii) 	Ta6IC insert (remove (al (L), ii), i2, 	v)

Similarly to the example of stacks in the last chapter (see page 177), this

hidden enrichment specifying the predicate Table is persistent w.r.t. to

the specification of the sort table because two tables are never required

not to be equivalent (see discussion at the end of section 5.4.2).

Applying the 32 -strategy -strategy we can define 	from Tabll as a predicate

—TabIl in ETab12. When defining Ta611, it is difficult to identify exactly

those trees which correspond to the same list for a certain sequence

of operations on tables. It is easier to choose 	Tabll big enough to

include the desired cases and still respect different observations. In this

particular example, we can define = Tabll to identify all those trees with

the same most recent values for each index.

Chapter 6. Specifications with reachability constraints 	 241

In the end, this approach might not be very different from the previous

one. For example TabI1 can be defined in ETab12 as follows:

V T1,T2:tree. T1Tabj lT2

list2tree(tree2ljst(T1)) = list2tree(tree2ljst(T2))

Proving that Tab,, is a congruence on sort table w.r.t. the rest of

the operations in ETa612 requires us to prove that look-up does not

distinguish between equivalent tables, and that is similar to proving

A{l}ETab12 1= A as above.

3. The rest of the proof is standard theorem proving.

Chapter 7

Structure and Proofs

7.1 Introduction

In previous chapters we were especially concerned with specification entailments

where the consequent is flat or has a special structure. In the course of this

analysis, three main problems in ASL proofs have arisen, namely: proving entail-

ment w.r.t. specifications with hidden parts, proving entailment w.r.t. abstracted

specifications and proving entailment involving specifications with reachability

constraints. Now, we are acquainted with these problems and have some proof

techniques to deal with them, however no attempt has been made to accommodate

correctness proofs to the structure of specifications.

According to what has been said in previous chapters, confronting the problem

of proving SP2 = SP1 for arbitrary structured specifications SP2 and SP1 there is

little we can directly do. In general, SP1 over ASL can be flattened by eliminating

T and U, putting together all axioms and all constraints and grouping all hiding

into a single D, so that SP1 becomes a specification such as DU A(C , F)C E for a

set of ordinary s-sentences 'I and a set of s-constraints C. This is done by the

systematic application of the reduction rules for T and U w.r.t. theorems and

constraints - see sections 3.2 and 6.4.1 - plus the permutation rules for D - see

section 4.2.

242

Chapter 7. Structure and Proofs 	 243

Then, if D, is trivial, SP2 J= DA(c,.w r. can be solved by mixed theorem prov-

ing of ordinary sentences and constraints, as described in section 6.3.2. Otherwise,

we try to reduce SP1 to a specification with a hidden and a visible enrichment,

so that the inheriting strategy or the 3 2-strategy can be used.

Summing up, we are using a two-step procedure: first the consequent is reduced

(normalized) to a poorly structured specification and then a simple strategy based

on mixed theorem proving completes the proof.

As it was already pointed out in section 3.2, this two-step procedure may make

proofs harder or even impossible. Specifications SF2 and SF1 are, commonly,

steps in a sequence of entailments from specification to implementation; therefore,

we can expect many bits and pieces of SP1 to be shared by SP2, and both have

a similar structure since only a few aspects of a specification are refined at a

time. If a proof of SP2 = SF1 ignores these structural similarities by flattening

SP1, the proof becomes harder. Moreover, consequents with constructors cannot

be flattened because the inference rules for the constructors are not M-complete,

hence entailment proofs cannot use a two-step procedure as sketched above.

The main goal of this chapter is to show that matching the structure of the

antecedent to the structure of the consequent makes correctness proofs easier.

Section 2 formalizes the relation between inference rules and specification trans-

formations so that a homogeneous presentation of the two-step strategy can be

given. Section 3 studies how whole subspecifications of the consequent can be

viewed as single requirements and dealt with as a unit. Section 4 is concerned

with modular implementations and, in particular, with the case of consequents

with constructors, SP1 over k+ASL. In section 5 our attention is drawn to the

structure of the antecedent and how it can ease theorem proving.

Chapter 7. Structure and Proofs 	 244

7.2 Revisiting MATU

Although in the previous chapters we seemed to encourage the use of reduction

rules and inference systems for sentences (theorem proving) and constraints, we

promised to give a more homogeneous presentation which allows taking advantage

of the structure of specifications during entailment proofs. In this section, the so-

called two-step strategy flattening + theorem proving is formalized as a particular

sequence of applications of some specification transformations.

Firstly, it is shown how sound and M-complete inference rules give rise to

specification entailments.

According to the basic proof rule presented in theorem 3.5.1, sound inference

rules are to be used for pulling theorems out of the antecedent, therefore the

following theorem is as expected.

Theorem 7.2.1 For any sound inference rule 	SP I- .t(c°) 	and any specifi-
SP F g()

cation SP,

A{ f (,)}SP = A{ 0(,)}A{ f(,)} SP

Proof By definition of A D we know that A{J(,)}SP = f() and by definition of

soundness, we conclude that A{ f (,) } SP = g(). By definition of A again,

MOd[A{ g (ç)}&A{ J(ço)}SP} = MOd {A { f (co) }SP]

According to the basic proof rule presented in theorem 3.5.1, M-complete in-

ference rules are to be used for pulling axioms out of the consequent, therefore the

following theorem is as expected.

Chapter 7. Structure and Proofs 	 245

Theorem 7.2.2 For any M-complete inference rule 	SP F- f(77) 	
and any

SP F g()

specification SP, provided distributes over U,

A{ 9 (0)}SP = eA1sP

Proof By the definition of A and U, and the distributivity of we know that:

Mod[A{ f () } SP] = Mod {(SP U A{f()}es 9 [sp])] = Mod[(eSP) U(eA{J(co)} €5ig[SP])]

The theory Cl({f(w)}) is M-complete (in fact exact) w.r.t. A{ f(,)} es19[sp] , then

by definition of an M-complete inference rule, Cl({g()}) is also an M-complete

theory for A{ f (,) } €Sig[SP], i.e. Mod [A{ g (,)}es* g [e5p]] 9 MOd [A{ f (ç,)j C Sig[SP]]. Hence,

by monotonicity of U,

A{ g (cp)}SP = (SP) U(A{ g (co)}E sjg [sp]) 	(SP) U(A{f(co))fSjg[sp]) =

70

We recall from their definitions that most SBO's in ASL distribute over U (see

proposition 2.2.6).

These results are valid for all sound and M-complete rules regardless of the

nature of the axioms. In particular, axioms can be reachability constraints so that

from sound and M-complete inference rules as above w.r.t. constraints, we obtain

the corresponding entailments for pulling constraints:

= 4{f(< , L>)}SP

= A{ 9 (<>)} A {f(<>)} SP

for all specifications SP.

Chapter 7. Structure and Proofs 	 246

A two-step strategy for proving correctness, as sketched at the beginning of

this chapter, uses some reduction rules plus the inference rules for theorems and

constraints. This strategy can be formalized as follows:

Definition 7.2.3 Given an institution I, the inference system 1F for specification

entailment in k+ASL(I) is composed of the following rules:

Basic proof rule:
2 I- 	1

A,2SPFFA,l Sig[SPJ

Pulling sentences (axioms) out of the consequent:

A(SP1 U SP2)FF(ASP1) U SP2 	A)T U SPFFTaA $ SP

A(SP1 U SP2)} -FSP1 U (ASP2) 	A$IAI2SPFFA 2 A l SP

8. Pulling sentences (theorems) out of the antecedent:

SP1 U (A,SP2)F FA,(SP1 U (A,SP2)) TrASPHFA a()TaASP

(ASP1) U SP2} -FA((A$SP1) U SP2)

(P,A)ASPFFA{ ç ,)(P,A)SP provided 	E A

(. Permuting D (equality -F means logical derivability 1F in both directions):

AD9SP=FDA)SP

SP1 UDUSP2=FDcT(TcTSP1 USP2)

DSP1 U SP2 = F D(SP1 U TU SP2)

TUDqISP =F DUI STSP provided a,crl,o' and al' form

a pushout diagram as in proposition $.2.1

5. Absorbing laws:

F E 1,
	

CE U Er =F CE

A1A2SP =F Al2SP DU DC SP F D1SP

Chapter 7. Structure and Proofs 	 247

6. Cut rule:
SP:3HSP2 SP2l-SPl

SP3l-SPl

Since all the rules of the system correspond to trivial equivalences or already

proven theorems, soundness is immediate.

Fact 7.2.4 FF is sound w.r.t. specification entailment.

Note that the SBO M(,) has been omitted since, without loss of generality,

we can consider constraints to be a particular kind of sentences in .

In the case of an institution ALG with algebras as models, injective morphisms

and reachability constraints as a form of sentences, the basic rule becomes

(C2,2) ALG(Cll)

A C2A2SPFF A ci A1 Sig[SP]

as in section 6.3.2. If EQ is considered we can add some rules for the FRQ

constructors corresponding to the sound inference rules presented in sections 3.4

(for equations) and 6.4.1 (for reachability constraints).

By the nature of 'F typical correctness proofs of SP2 = SP1 rely on the

systematic application of the rules for pulling axioms out of the consequent and

permutation laws for Da on SP1 until it is reduced - once simplified by the

absorbing laws - to a flat specification of the form DA l fE,

D.,,AlCEHF ... FFSP1

If D is trivial the consequent is just AleE. On the side of the antecedent, we

can pull out theorems

SP2H F ... I- FA 2 SP2

as required until correctness is immediately proven by, at most, one application of

the basic rule. That is, we prove that

A2SP2F- FA l e

Chapter 7. Structure and Proofs 	 248

by proving that

42 F-' 41

in the corresponding institution.

This inference system is the simplest we are going to consider and it produces

correctness proofs according to a two-step procedure: flattening + theorem proving

- from there comes the name, F for flattening.

Assuming a complete inference system F-t for the underlying institution, the F-F

system, although quite modest, it is complete for DATU = ATU.

In the case of institutions where constraints are not considered as sentences,

solving entailments in DATU = ATU is not enough. In order to solve entail-

ments in ASL = MATU, the institution needs to be extended to an institution

with constraints and the corresponding inference system needs to be extended

appropriately to handle constraints; e.g. H_ALG extends F-ALG. This results in

an inference system F-F which is satisfactory for ASL = MATU, already stronger

that other strategies using an independent approach as suggested in [Bre 89] and

[Far 89].

In order to handle D in the consequent, the inference system F-F can be imme-

diately improved by adding the following rule:

[Bias]
SP2F-FSP1

DaSP2F-pDu SP1

This rule together with the cut rule allows the application of the 2-strategy. We

shall call such an enhanced system F - vii and, as shown in chapter 4, it is complete

for DATU = DATUS and satisfactory for DATU = DATU and for ASL = ASL

if we use an institution with constraints as discussed above.

Chapter 7. Structure and Proofs 	 249

Nevertheless, none of these systems makes use of the possible common structure

between antecedent and consequent. In the following section F F is enriched to

handle shared subspecifications.

7.3 Shared subspecifications

Specifications in ASL can be seen as structured collections of requirements. We

can use requirements of two kinds, sentences and constraints, i.e. A, and M(q , t),

whereas the rest of the operations group these requirements using T and U and

sometimes relax them by means of abstraction/hiding D.

According to this division of requirements, we are already provided with an

inference system for sentencs j.I and an inference system for constraints, U in the

case of reachability constraints of the form < C, F, S>>, and an inference system

for their combination - see chapter 6.

In this section we treat whole subspecifications as single constraints, and in

this sense U is considered as a third operation for introducing requirements. For

example we can say that the following specification

M(U , L)A,e U (TSSP)

consists of three requirements: the axioms , the constraint 	t>> and the

subspeciflcation SSP.

Note that considering U as an operation which structures requirements or an

operation which introduces a new requirement is a choice left to the prover and

this choice may lead to very different proofs. Moreover, any argument of the U

or both can he treated as single requirements.

Consider for instance an implementation of sets of natural numbers by lists of

natural numbers. Sets of natural numbers are specified by:

Chapter 7. Structure and Proofs 	 250

SetNat = 	Reachable on {set} using {ø, insert) from {nat}

Enrich NatBoolby

sorts set

operations

0: set

insert: nat, set -> set

E: nat, set -> bool

axioms

V n:nat. nE 0 = false

V n:nat; S:set. nEinsert(n,S) = true

V nl,n2:nat; S:set. nl ~4n2 =

nlEinsert(n2,S) = n1ES

V nl,n2:nat; S:set.

insert(nl, insert(n2, S)) = insert(n2, insert(nl, S))

V n:nat; S:set. insert(n, insert(n, S)) = insert(n, S)

end

where NatBool is a specification of standard natural numbers as shown below:

NatBool = Reachable on {nat} using {O, suc} from 0

Reachable on {bool) using {true, false) from 0
sorts nat, bool

operations

0: nat

suc: nat -> nat

+: nat, nat -> nat

true, false: bool

or: bool, bool -> bool

>: nat, nat -> bool

axioms

V x:nat. x+0 = x

V x,y:nat. x+suc(y) = suc(x+y)

Chapter 7. Structure and Proofs 	 251

0>0 = false

V n:nat. suc(n)>0 = true

V x,y:nat. suc(x)>suc(y) = x>y

end

Consider now, a implementation of SetNat by lists of natural numbers

ListNat = Reachable on {list} using {[],_::_} from {nat}

Enrich NatBoolby

sorts list

operations

[]: list

:_: flat, list -> list

count: list, nat -> nat

axioms

V n:nat. count([],n) = 0

V n:nat; L:list. count(n::L, n) = suc(count(L, n))

V nl,n2:nat; L:list. n1n2 =

count(nl::L, n2) = count(L, n2)

end

and a constructor k such that k(ListNat) J= SetNat.

An entailment proof may consist of a proof that the axioms over set in SetNat

hold in /c(List Nat), that the sort set is constrained in k(ListNat) and that NatBool

is also a subspecification of k(ListNat). For the first two proofs we use theorem

and reachability constraint proving rules respectively whereas for the third some

new rules for inferring subs pecifications must be developed.

If no inference system for subspeciuications is provided the entailment proof

could not consider NatBool as a single requirement. Then. the axioms in NatBool

and its reachability constraint would be mixed up with those of Set, and only

when the whole consequent is reduced to a single set of axioms and constraints

could the real proof start, that is, as in the two-step strategy.

Chapter 7. Structure and Proofs 	 252

If we have an inference system for subspecifications, we can consider NatBool

to be a single requirement and prove that it holds in ListNat. But we can also

not consider it as a single requirement, or even try to consider Set as a single

requirement. It is up to the prover to discover which is the good choice.

7.3.1 Inferring subsp ecificat ions

In this section we develop an inference system for specifications analogous to that

for sentences and for reachability constraints.

In these systems there are two components, an underlying inference system

such as I_I or H-, for sentences and reachability constraints respectively, plus a

collection of M-complete and sound inference rules for the different SBO's.

With respect to the underlying inference system we choose a trivial one: the

identity. In other words, a subspecification can only be inferred from itself. That is

why we can only deal, at this stage, with subspecifications shared by the antecedent

and the consequent. We can take account of this by changing the basic proof rule

in 1F to
2 I- 01

A 2 SP U SSPFFA l C SIØ [SP) U SSP

so that our "reduced" consequent contains some axioms 41 and a shared specifi-

cation SSP. If we do not want to change the basic proof rule in F- F we can deal

with shared subspecifications by adding the following rule to HF:

[Shared]
SP2HSP1

SP2 U SSPI-FSP1 U SSP

Using this rule we can deal first with shared subspecification and then use Ip to

perform an entailment proof as before.

This rule opens the topic of the next section: modular proofs for modular

implementations. For the moment, we shall stick to the problem of shared sub-

specifications.

Chapter 7. Structure and Proofs 	 253

With respect to M-complete and sound rules for subspecifications, we bypass

these concepts and directly give pulling rules analogous to those given in the

last section. This simplifies previous considerations showing how sound and M-

complete rules can be used to pull requirements out of the consequent and the

antecedent.

Pulling subspecifications out of the consequent

We expect to reduce the consequent to a collection of requirements by pulling all

of them out to the top level. Therefore we are after axioms of the following form:

SP U SSP I- (SP U SSP')

for specifications SP, SSP and SSP', and SBO .

Proving a pulling-subspecification axiom for each SBO can be shortened by

giving the following technical lemma. Recall from chapter 2 the definition of

invariance (see page 32) and that {...} is an SBO such that for all E-models A the

specification {A} has signature E and models {A}.

Lemma 7.3.1 If is invariant w.r.t. SP and (t, a), then

SP U Ta SSP 1 (SP U TL SSP)

provided distributes over the union of model classes.

Proof Let B be a model of SP U Ta SSP. Since Sig[SP] 	Sig [SP]

B E Mod[eSP], by distributivity of w.r.t. the union of 	
\t101

model classes, there exists a model A e Mod[SP] such 	Sig[SSP]
that B E Mod [{A}] and, by invariance of , Al, = BIG.

Since B is also a model of TC SSP, Bl E Mod[SSP}. Therefore, by definition of

T, A must be a model of T,SSP as well. In conclusion. A E Mod[SP U T,SSP]

and B E Mod [(SP U T,SSP)].

Chapter 7. Structure and Proofs 	 254

Now the actual rules are given and proven correct using the lemma.

Theorem 7.3.2 The following axioms are sound w.r.t. specification entailment:

ASP U SSP F A(SP U SSP)

M("') SP U SSP F M(" ') (SP U SSP)

(SP1 U SP2) U SSP F SP1 U (SP2 U SSP)

(SP1 U SP2) U SSP F (SP1 U SSP) U SP2

Ta SP U T. SSP F Ta (SP U SSP)

DL SP U SSP F D(SP U TSSP)

for all specifications SP, SP1, SP2 and SSP.

Proof All selectors L are invariant w.r.t. any specification SP and (idsig[sp] , ?4Sig [SP]),

since by definition,

Mod[LSP] c Mod[SP]

for all specifications SP. In other words, L{A} can only be {A} or empty. Hence,

the first four axioms referring to selectors A, M() and U are sound.

Ta is invariant w.r.t. any specification SP and (id5 151 , a) since by definition

for any model A E Mod[SP] all models B E Mod[Ta {A}] have reduct BIa = A.

In the last case, D, is invariant w.r.t. a specification SP and (i, id59151) since

for any model A e Mod[SP] and all B E Mod[Q{A}] it holds that B = Ale.

Finally, we recall from their definitions that all SBO's in ASL distribute over

the union of model classes (see proposition 2.2.5).

0

Chapter 7. Structure and Proofs 	 255

Pulling subspecifications out of the antecedent

We expect to prove that a subspecification SSP of the consequent holds in the

antecedent by inheriting SSP to the top of the antecedent, i.e. we are after rules

of the following form:

(SP U SSP') I- (SP U SSP') U SSP

Similarly to the previous case, pulling subspecifications out of the aiitecedent

is immediate for invariant SBO's.

Lemma 7.3.3 If is invariant w.r.t. T, SSP and (t, o), then

(SP U TSSP) 1= (SP U TSSP) U TCSSP

provided distributes over the union of model classes.

Proof Let B be a model of ffSSP. By distributivity of e over the union of

model classes, there exists A E Mod[TSSP] such that B E Mod[{ A}] and, by

invariance of , B,, = Al,. Since Al, E Mod [SSP], B E Mod[TSSP] and so, in

general,

eTL SSP = TTSSP

By monotonicity of , it follows that I(SP U TL SSP) = TSSP and therefore

(SP U TLSSP) J= (SP U T L SSP) U TCSSP

701

As a consequence of this lemma, pulling subspecification rules for A, M(a,), U, T

and Dc, in the antecedent are sound since these SBO's are invariant and distribute

over the union of model classes - see proof of theorem 7.3.2.

Chapter 7. Structure and Proofs 	 256

Corollary 7.3.4 The following axioms are sound w.r.t. specification entailment:

A(SP U SSP) F A(SP U SSP) U SSP

M(" ') (SP U SSP) F M(" ') (SP U SSP) U SSP

SP1 U (SP2 U SSP) I- (SP1 U (SP2 U SSP)) U SSP

(SP1 U SSP) U SP2 F ((SF1 U SSP) U SP2) U SSP)

T, (SP U SSP) I- T (SP U SSP) U T. SSP

D, (SPU TL SSP) F D, (SP U TLSSP) U SSP

for all specifications SF, SP1, SP2 and SSP.

There are other pulling subspecification rules for the antecedent corresponding

to the constructors. In the following, we consider FRQ-constructors in EQ. Later,

some comments are added for the case of generic constructors.

Proposition 7.3.5 Given a signature morphism t: (S, Il) -+ (S', fl'),

R{}(SP U T 4 SSP) F R{ 3}(SP U TSSP) U T L SSP

is sound w.r.t. specification entailment, provided s E (Q'\ t(1l)) or Mod[SSP} is

closed under subalgebras.

Proof As in the previous lemma, it is enough to prove that R{ 3 } TSSP = TSSP.

In the case where s E IZ' \ t(1l), since R{ 3 } only changes the carrier of s, we

have that for all SF, QR{ S)SP = DLSP. In the particular case of SP being TSSP

we obtain

D, R{ 5 } T SSP = D, T, SSP

and applying TL to both sides and simplifying, we conclude that

R{ 3} T. SSP = T, D R{ } T, SSP = T, D, T SSP = T, SSP

Chapter 7. Structure and Proofs 	 257

In the case where Mod[SSP] is closed under subalgebras, we recall that for every

algebra A E Mod[T 4 SSP], the application of R{,} delivers a subalgebra Reach{ 5 }(A)

of A. Since reduct functors preserve subalgebra.s, Reach{5}(A)I, is a subalgebra

of Al,. Since Al E Mod[SSP] and Mod[SSP] is closed under subalgebras, it

holds that Reach{S}(A)IL E Mod[SSP]. Hence, Reach{,}(A) E Mod[T L SSP] and, in

general, we conclude that

R{ 8}TSSP = TLSSP

FW

Define a signature morphism a as forgetting a set of equations eq if

Dor Qeq SP = DU SP for all specifications SP 1, 2 •

Proposition 7.3.6

Qeg (SP U TL SSP) F (SP U T, SSP) U T SSP

is sound w.r.t. specification entailment, provided t forgets eq or Mod[SSP] is closed

under quotients.

Proof By definition, if t forgets eq, DL (Qeg TL SSP) = D4 TL SSP. Applying T to

both sides and simplifying,

Qeq TtSSP H TL DL QLg TL SSP = T4 DL TL SSP = TLSSP

'An alternative definition can be given in terms of the congruence ''eq induced by

the set of equations eq: a forgets eq if every sort with a pair of different elements

(el, e2) E is not the image of any sort in Ia.

2 1n order to prove this property we can check that all the sorts mentioned in the

equations eq are forgotten in a plus those sorts which although not directly mentioned

depend on the ones mentioned (see [KM 87] for a definition of dependency).

Chapter 7. Structure and Proofs 	 258

hence the entailment is correct as in the proof of lemma 7.3.3.

In the case where Mod[SSP} is closed under quotients we can prove the same

result. For all algebras A E Mod[TSSP], there is a homomorphism k : A -p

(Al—,,,). Applying the reduct functor -L we obtain kl : Al, -+ (A/" q), and

(A/' eq)i, is the quotient of Al, w.r.t. the kernel of ki,, (AL)/Ker(kL).

1k 	IL;,
(A/' eq)l,

Finally, since Al, E Mod[SSPJ its quotient will also be in Mod[SSP], AI,/Ker(kl,) e
Mod[SSP], hence (A/",,), E Mod[SSP] and in general

D,(Qeq T,SSP) SSP

Applying T, to both sides and simplifying we again obtain that Q,, T,SSP =

T,SSP. 0

Proposition 7.3.7

F:(Sp U SSP) I- F:(Sp U SSP) U TSSP

is sound w.r.t. specification entailment, provided (Free47cA), = A for all A E

Mod[SSP] 3 .

Proof Since all constructors distribute over the union of model classes, it is

enough to show that F, is invariant w.r.t. SSP and (idSjg [sSp], a) under the con-

dition given.

31 this case sufficient completeness and consistency of F,SSP is not enough. This

new requirement is usually called strong persistency, see [EM 85].

Chapter 7. Structure and Proofs
	

259

For every algebra A E Mod[SSP], F{A} has a unique model FrceA such

that

(Free A) l = A or

Hence, F,,e9 is invariant w.r.t. SSP and (idsj ,155p1 ,o). El

The implementation of sets of natural numbers by lists of natural numbers

k(ListNat) = SetNat as described at the beginning of the section can be proven

correct using the above rules.

Let us consider the whole subspecification NatBool to be a single requirement.

Then, it must be proven that NatBool can be pulled out of SetNat using the rules

for consequents, and out of k(ListNat) using the rules for antecedents.

In first place we shall rewrite specifications SetNat and ListNat in a more

concise form with NatBool as a distinguished subspecification, i.e.

SetNat = MCSCAAZSC T,,, (Er, U NatBool)

ListNat = MC1SAAXLS T,(eE U NatBool)

where Mc,, j stands for the reachability constraint on set and AAXSCi T 3 stands

for the enrichment adding sets, Mcli., j stands for the reachability constraint on

list, AA.Li,i T 1 stands for the enrichment adding lists and E is the signature of

NatBool.

Since SetNat only contains Ta and selectors, and all these have pulling subspec-

ifications rules for the consequent, we can easily apply the rules in theorem 7.3.2

and conclude that,

(MCse AA rS et Tt Ec') U (T 5 VcztBool) F J'1C seL ((AA x5 eg TL ,) U (T 5 NatBool))

A!C se tAA xS e g((T 3 fE) U (TL 3 NatBool))

F 1ICseiAA xS e g T 3 (fE U NatBool) = SetNat

Chapter 7. Structure and Proofs 	 260

Similarly in the antecedent we can apply the rules in corollary 7.3.4 and con-

clude that

k(ListNat) = kMC11 S LAA X L S i T,,(-EE U NatBool)

I- kMc,I St AA X Lj, t ((TL ,(EE U NatBool)) U (T,NatBoo1))

I- kMcIj $ l((AA XLj S I((TL ,(EE U NatBool)) U (T,NatBoo1))) U (T,NatB001))

F- k((Mclj sj ((AALj, g ((Tj1 (E U NatBool)) U (T 41 NatBoo1))) U (T,NatBool))) U (T,NatBoo1))

Imagine the constructor is composed of the following SBO's:

A free extension F 2 defining the membership operation E for lists, e.g. a2

is a inclusion morphism which adds the membership operation E, and

eq2 =de f {V n: nat, L: list. count(L,n) >0 = ii E L}

defines E on lists.

A derive D 1 forgetting count and renaming list to set, [] to 0 and - :: -

to insert.

A quotient Qeqi identifying those lists which have different numbers of oc-

currences of the same elements or different ordering, e.g.

eqi =def { V n:nat; S:set. insert(n, insert(n, S)) = insert(n, S),

V nl,n2:nat; S:set.

insert(nl, insert(n2, S))insert(n2, insert(nl, S))}

Summing up, the constructor is defined as

k = def QeqiDciF e2q2

The subspecification NatBool can be pulled along this constructor using the

rules presented above as follows:

Chapter 7. Structure and Proofs 	 261

Since Free 2 is strongly persistent we can pull the subspecification and ob-

tain

Qeqi Dci ((F 2 ((Mciisi ...))) U (T, ;cy2 NatBoo1))

Morphism cr1 adds count and renames other symbols in the signature Tt, so

that we can write t1; cr2 as t 3 ; cr1, therefore the rule for D, 1 in corollary 7.3.4

can pull the subspecification T71 T, NatBool and obtain

Qeg i((Dai((Fj 2 ...))) U (T43 NatBool))

Finally, equations eql do not affect nat, i.e. t 3 forgets eql, hence

(Qci(Dai ...)) U (T 3 NatBool)

At this point the [Shared] rule can be applied to match the subspecifications

T 5 NatBool of the consequent and the antecedent, reducing the entailment to

Qegi((Dai((F2 ...))) U (TL$NatBool)) 	MCSCtAAZSeLTt3€E

which can be proven if FF is extended with the rules corresponding to the sound

inference rules for FRQ given in sections 3.4 and 6.4.1, as discussed above.

Note that rules pulling sentences and subspecification out of the antecedent en-

large the antecedent specifications, most of the time unnecessarily. This behaviour

can be thought like that of a theorem prover which adds all inferred theorems from

a presentation as axioms to the original presentation. In all the cases which have

been considered, the rules for pulling sentences and suhspecifications can be turned

into equalities (bi-directional rules) in order to solve that problem.

Analogously to the inference rules for constructors in chapter 3, pulling sub-

specifications along constructors is difficult. Most of the axioms given above have

Chapter 7. Structure and Proofs 	 262

strong side conditions restricting their use to the simplest cases and some of the

side conditions are model-theoretical. Sufficient syntactic conditions can be given

in most of the cases, but like theorem proving for FQR- constructors in chapter 3,

the model-theoretical nature of the FQR-constructors prevents better results.

Generic constructors (P, A) are useless for anything except theorem proving or,

at most, mixed theorem proving dpending on the nature of A. If we would like to

treat sub specifications as single constraints, generic constructors must be enriched

with some information about the symbols which are modified and those which are

not. This can be achieved by changing the notation for constructors to record

explicitly over which subspecifications they are invariant.

Definition 7.3.8 A well-formed S-constructor is a triple (P,A,(t,a)), where

(P, A) is a generic constructor with

IIPII= (1',Ia,fp)

for some function fp : IMod(1 t)I - lMod(I a)I, and for every specification SP

over It the (P,A) is invariant w.r.t. SP and (t,a).

Trivially generic constructors are a particular case of S-constructors where

t =1 a is the empty signature.

Since constructors distribute over the union of model classes, we can use

lemma 7.3.3 to conclude that all subsp ecificat ions SSP over I a = j. t can be

pulled out through (P, A, (t, a)), i.e.

(P. A, (t,a))(SP U T, SSP) H ((P,A,(t,a))(SP U T, SSP)) U T, SSP

Adding the rules for pulling subspecifications and the [Shared] rule to 'F we

obtain HAS, that is, an inference system combining a basic rule for axioms (the

basic rule in HF) and a basic rule for subspeciflcations (the [Shared] rule).

Chapter 7. Structure and Proofs 	 263

Taking into consideration that sentences in A <p can also be constraints, we have,

in practice, a two step inference system flattening + requirement proving with three

kinds of requirements: ordinary sentences, constraints and subspecifications.

Formal systems which include a treatment of subspecifications are a great deal

better that previous ones; however, there is not a clear characterization of them

unless we restrict attention to modular entailments, as discussed below.

7.4 Modular entailments

In the introduction to this chapter we stressed that proofs of SP2 = SP1 should

be able to take advantage of the similarities between the antecedent and the con-

sequent, in particular, their structural similarities.

The work on shared subspecifications should be complemented with a structure-

matching mechanism, so that we do not need to pull out subspecifications in cases

where antecedent and consequent specifications differ only in a small bit, deep in

the structure. The obvious solution is a simplification rule

SP2 F SP1
[Simpi]

SP2 I- SP1

whose soundness follows from the monotonicity of all SBO's (see proposition 2.2.4).

Although [Simpi] seems rather simple, it is an extremely powerful rule. For

instance, adding [Simpi] to Hp' permits to derive rules such as [Bias] (page 248)

and [Shared] (page 252). In fact. the combination of F-F with [Simpi] plus the

rules for pulling subspecification form FM, the most powerful inference system we

are going to consider.

In order to characterize FM, we restrict to the study of modular entailments,

that is, those specification entailments where the antecedent respects the struc-

ture of the consequent. For example, let ListNat and NatBool be specifications

Chapter 7. Structure and Proofs 	 264

like those considered above, and SetNat', ListNat' and NatBoo' be specifications

analogous to SetNat, ListNat and NatBool but without any reachability constraint

on nat, then k(ListNat) = SetNat' can he proven correct by proving, roughly, that

i\TatBool = iVatBool'

k(ListNat') = SetNat'

since applying the simplification rule to the first entailment and combining the

two entailments (cut rule) we obtain:

NatBool FM NatBool'

k(ListNat) FM k(ListNat')
k(ListNat') FM SetNat'

Ic(ListNat) FM SetNat'

Then, the entailment NatBool = NatBool' is proven using F- F and k(ListNat') =

SetNat' is proven using the rules for pulling subspecifications and sentences in FM.

In the case of parameterized specifications in [SW 83, ST 88b], a modular

entailment P2(SP2) P1(SP1) can be proven correct by proving that

P2l=P1 	SP2F=SP1

where P2 = P1 means that P2(SP) J= P1(SP) for any specification SP of the

right signature.

There is a clear analogy between the proofs of P2(SP2) = P1(SP1) and of

k(ListNat) = SetNat'. Taking specifications SP2 and SP1 to be the subspecifica-

tions NatBool and NatBool', and P2 and P1 to be

P2 = \ X : E . kMcl 13 A4L g T" ('Er U X)

P1 = A X : NEJ . MC.,etA4rSeiTi(EE U X)

our proof in FM becomes

P2(SP2) FM P1(SP2) 	SP2 F.f SP1

Chapter 7. Structure and Proofs 	 265

Although P2 J= P1 is a stronger requirement than P2(SP2) = P1(SP2), often

the derivation P2(SP2) FM P1(SP2) treats SP2 as a shared subspecification and

uses rules for pulling subspecifications which do not rely on the models of SF2.

In this case, the same proof schema can be used for any E-specification SP taking

the place of SP2; in other words, we have a proof of P2 = P1.

In some specification languages requiring parameterized specifications to de-

note persistent free extensions F (e.g. [EM 85]), parameterized specifications

are always invariant w.r.t. any specification of the right signature and(id,,a).

Therefore, the part of the proof handling shared parameters (subspecifications) is

trivial. Other languages with a more general parameterization mechanism, such

as A-abstraction in A +ASL, cannot use these shortcuts in general and rules for

pulling subspecifications are needed.

In this section we are mainly concerned with the use of the simplification rule

and the cases where its application is safe, i.e. its application in goal-oriented

(backwards) proofs cannot take us from a correct entailment to an entailment

which cannot be proven correct. In this sense, we shall see how modular imple-

mentations lead to modular proofs of correctness.

7.4.1 Specifications as arrows

A clean notation for dealing with structure is to consider the category of signatures

and their products as objects, and ASL specifications, either ground or parame-

terized, as arrows, analogously to the concrete free theories used by Lawvere (see

section 2.3).

For practical reasons we shall not consider arrows to be single specifications

but sets of equivalent specifications, i.e. specifications with the same signature

Chapter 7. Structure and Proofs 	 266

and class of models and, in the parameterized case, parameterized specifications

with the same signature pair and function between classes of models.

Fact 7.4.1 Given an institution with category of signatures SIC (closed under

finite products) and model functor Mod then an ordered category Spec(SIG) is

defined as follows:

• Objects: Objects in SIC.

• Morphisms: Triples (El, F, E2) : El -p E2 where El and E2 are signa-

tures in SIG and F is a function from model classes over El to model classes

over E2, i.e. F P(IMod(El)f) - P(Mod(E2)I).

• Composition is as expected: (El, Fl, E2); (E2, F2, E3) = (El, Fl; F2, E3).

• Homsets are ordered as follows: (Eli, Fl, E12) < (E21,F2,E22) if Eli =

E21, E12 = E22 and \/M C IMod(Ell)I. Fl(M) ç F2(M).

Ordered categories can generally be viewed as 2-categories. Then, composition

as it has been defined above is called horizontal composition and the ordering

induces another kind of composition known as vertical composition (following the

terminology in [GB 80]).

Moreover, order preservation by composition in Spec(SIG) is equivalent to the

compatibility of horizontal and vertical composition for refinement, discussed in

general in [GB 80] and proved for refinement relations in [ST 88b].

Note that all SBO's such as T, A, (AX : E.SP1) and (P, A) correspond to

arrows in Spec(SIG). In particular, specifications SP in A +k+ASL correspond

to arrows from the empty signature to Sig[SP]. For example, the specification

NatBool with E = Sig[NatBool] corresponds to an arrow

E 	
NatBool

	

Chapter 7. Structure and Proofs 	 267

and ListNat = PList(NatBool) with PList =). X : E. MC1 8 i((AA XL1 S T,eE) U(T 1 X))

can be represented by a compound arrow

	

Sig[ListNat] • PList
	E • NatBool
	 0

or, if the finer structure is considered, we obtain

________ Sig[ListNat] 	Sig[ListNat]

Tty/ \NatBool
Sig[ListNat]

Sig[ListNat]

A AxLisi T
E

Note that the existence of finite products of signatures is needed to represent

SBO's or parameterized specifications with several parameters, e.g. _U_.

Following [ST 88b], refinements can be replaced by constructor implementations

in order to capture the fact that some constructor (piece of code) can reduce our

original specification (task) to a simpler one. The composition of constructor

implementations and its compatibility with horizontal composition is rephrased

as follows according to our new terminology.

Given a generic constructor (P, A) with JIIPII = (El, Z2, M, there is a morphism

(El, F, E2) in Spec(SIG) associated to that constructor where F is defined as

F(M) = {fp(A) I A E M} for all M C JMod(E1)I. Morphisms in Spec(SIC)

whose function F is defined by lifting a function between single models form a

subcategory Func(SIG) of Spec(SIG), i.e. such morphisms include the identities

in Spec(SIG) and are closed under composition.

Generic constructors are defined by programs P in a language L, therefore F

should be a recursive function and P a procedure to compute it. Nevertheless, we

shall proceed ignoring this aspect of the nature of constructors. Constructors can

Chapter 7. Structure and Proofs 	 268

be either FQRD-constructors, generic constructors, S-constructors or anything

else with semantics in terms of functions between models but, for the time being,

they are just treated as morphisms in a subcategory of Spec(SIG).

Definition 7.4.2 A specification SPJ is implemented by an specification SP2 via

a constructor k if the following diagram commutes in Spec(SIG).

spi

\k f,,- ~SP 2

Note: In a ordered category, such a diagram commutes if SP2; k < SP1, i.e. if

k(SP2) J= SP1.

Since constructors are closed under composition, constructor implementations

compose as expected. For instance in a situation such as the following diagram,

it holds that SP3; k2; ki <SP1.

sP1

	

k1\ 	 p2/

k \2 —

Compatibility of horizontal and vertical composition also follows immediately from

the composability of constructors and the fact of working in an ordered cate-

gory. For instance in a situation such as the following diagram, it holds that

SP2; k2; P2; ki <SP1; P1.

	

P1 	 SPl

k \1 	 k \2

Chapter 7. Structure and Proofs

7.4.2 Modular programming

Modular programming amounts to the independent implementation of the differ-

ent pieces of the specification. This simple idea is the clue for simplifying the

verification and providing reusable implementations.

Some approaches distinguish between structured and modular specifications,

where only the second kind of structure needs to be respected in the implementa-

tion (e.g. ACT ONE). Others prefer to see modular decomposition as an imple-

mentation decision which therefore is not reflected in the specification language

(e.g. CLEAR and ASL). Many specification languages, despite using just one

structuring mechanism, provide key words such as protected or use which allow

modular implementation (programming) to be required by the specifier.

For us, all these differences are just different diagrams relating the antecedent

to the consequent of a specification entailment. Imagine a consequent Set(Elem)

specifying sets of elements

Set 	 Elem

where the source signature of Elem is the empty signature or, more generally, the

signature of the basic data types of our favorite programming language.

Consider an entailment k1(Set2(k2(Nat))) = Set(Elem) such that the follow-

ing diagram commutes (i.e. Set2; ki < Set and Nat; k2 < Elem):

Set 	 Elem

k \1

In this case, we say that the entailment is modular since k2(Nat) = Elem and

kl(Set2(SP)) = Set(SP) for all specification SP of the right signature.

Chapter 7. Structure and Proofs
	

270

Other antecedents relying on the fact that the elements are natural numbers,

or simply that they are ordered, give rise to the following diagrams:

	

Set 	 Elem

 CPO

0 SeN
\ /Nat

NSet

where Nat; NSet; k" < Elem; Set and Gpo; OSet; k' < Elem; Set and therefore

	

Ic"(NSet(Nat)) I= Set(Elem) 	 k'(OSet(Cpo)) = Set(Elem)

However, OSet is only a correct implementation of Set provided there is an order

relation among the elements, and NSet is only a correct implementation of Set if

the elements are natural numbers. Then, we say that these entailments are not

modular.

Definition 7.4.3 An entailment P2(5P2) = P1(SP1) is modular if P2 < P1

and SP2 < SP1.

In the example above, k1(Set2(k2(Nat))) = Set(Elem) is modular whereas

k'(OSet(Cpo)) = Set(Elem) and k"(NSet(Nat)) = Set(Elem)

are not modular.

In terms of entailment between parameterized specifications, as in [ST 88b],

we can say that kl(Set2) 1= Set since for all specification SP of the right signature

kl(Set2(SP)) 1= Set(SP). On the other hand, k'(Oset(SP)) = Set(k3(SP)) does

not necessarily hold unless SP 1= Gpo and k3(Cpo) = Elem.

Chapter 7. Structure and Proofs 	 271

In programming languages we can find the same idea of module referring to

the compilation of programs, instead of referring to specification entailment. For

example, if a program k2; ki is compiled to an object o2; ol using separate

compilation, the linker can still reuse object ol when the code in o2 is changed.

In specification languages, modular or separate entailment (opposed to sepa-

rate compilation for programming languages) is very common but explicit seman-

tics are rarely given. Remarkable exceptions are the stratified semantics of PLUSS

[Bid 88] and ASL with II-abstraction as in [SST 90].

fl-abstraction, contrary to standard A-abstraction in A +ASL, forces correct

entailments to be modular. This is a very reasonable restriction to a general syn-

tactic mechanism based on substitution such as A- parameterization. Similarly,

classic parameterization mechanisms in algebraic specifications, as in [EM 851,

consider also a syntactic construction, in this case the pushout of specifications

(equational presentations). In turn, this pushout construction is required to agree

with a functor interpretation of parameterized specifications. The existence of a

functor interpretation is less demanding and, probably, more elegant than impos-

ing modular entailment or stratified semantics; however, the latter caters to the

urgent need of easing verification while the former does not.

The fact of a entailment being modular has immediate consequences in terms

of verification techniques:

Fact 7.4.4 For arbitrary specifications SP2 and SP1, and an arbitrary SBO ,

(SP2) H (SP1) 	
provided e(SP2) 	(SP1) is modular

SP2 I- SP1

is sound w.r.t. specification entailment.

Proof Immediate from the definition of modular entailment.

This fact guarantees that the tactic associated with the simplification rule

(backwards application) is not just sound but safe for modular entailment, in

Chapter 7. Structure and Proofs 	 272

the sense that its application in proof search cannot reduce a valid purported

entailment to a wrong one.

This is of great significance since it means that we do not need to carry the

whole antecedent around in our proofs, but just the module of the antecedent

corresponding to the module of the consequent we want to verify. In the large,

a modular entailment can be proven correct in a module-by-module proof, i.e. a

modular proof.

7.4.3 Modular programming and constructors

Hitherto constructors have been viewed as arrows in Spec(SIG) and therefore

as particular specification building operations. However there is a fundamental

difference between a constructor and a specification from the software development

point of view: Once we have got a constructor we do not expect to implement it

any further. At most, constructors may be refined by other constructors (program

transformation) but here we are not concerned with this problem.

This principle of software development is reinforced by a proof-theoretic fact:

Constructors lack M-complete inference rules. For this reason, neither generic

constructors nor FQRD-constructors in EQ can be flattened to a set of axioms and

constraints. In an inference system such as FM, this means that entailments with

constructors in the consequent can only be proven correct if the same constructors

are also used in the antecedent and they can eventually be simplified using [Simpl].

This is particularly obvious for S-constructors, since we explicitly ignore in

FM what an S-constructor (P, A, (t, o)) does except for what A, i. and o can tell

us. Hence, SP2 = (P, A, (t, o))SP1 cannot be proven correct unless (P, A, (t, a))

is also present in SF2. Moreover, no requirement in the consequent - neither

axiom, reachability constraint nor subspecification - can be pulled through an

S-constructor (generic constructor), hence entailment proofs must treat the re-

Chapter 7. Structure and Proofs 	 273

quirements in a consequent with a S-constructor as two separated blocks, those

requirements preceding the S-constructor and those requirements following it.

If FQRD- constructorsare considered the result is similar. Inference rules for

F, Q,q and R{.,} are sound but not M-complete, hence no rules for pulling sen-

tences (or constraints) out of the consequent appear in FM.

We can conclude that for derivable specification entailments in FM, intermixing

constructors with specifications encourages modular programming. In fact, we can

expect common entailments to be K-modular.

Definition 7.4.5 Given a subcategory of constructors K in Spec(SIG), a entail -

ment SP2 = SP1 is K-modular if for all constructors k E 11(1 and decomposition

P1(k(SP1')) of SP1, there exists a decomposition P2(k(SP2')) of SP2 such that

P2<P1 	SP2'<SP1'

Immediately from this definition and the simplification rule, it follows that:

Fact 7.4.6 Given a specification language Lang, a language of constructors K and

a complete inference system FL for entailments in K+Lang = Lang, then FL with

the simplification rule is complete w.r.t. K-modular entailments in K + Lang J=

K + Lang.

Restricting to K-modular entailments allows constructors, which do not have

M-complete inference rules, to be used in the consequent. However, for S-constructors

(generic constructors) and FQRD-constructors, not even complete inference rules

are available. The lack of complete rules prevents having a complete inference

system for K + ASL H ASL.

In order to obtain completeness, we should restrict to constructors with com-

plete inference rules like D. Nevertheless, if the inference rules for the constructors

Chapter 7. Structure and Proofs 	 274

are considered satisfactory, as is the case for S-constructors, we have a satisfactory

inference system for K + ASL ASL and, therefore, we also have a satisfactory

inference systems for K-modular entailments in K + ASL k K + ASL.

Our specification language lacks, however, an explicit way of forcing modular

entailments during the development of software. Restricting to K-modular en-

tailments, we can intermix some constructors with our specification in order to

implicitly impose modular development and programming. Nevertheles, explicit

use of fl-abstraction as proposed in [SST 90] would make specifications clearer.

7.5 Structure and theorem proving

Theorem proving has already been treated in chapter 3; however, some aspects

related to structured specifications and, in particular, to specifications with a

modular implementation must be added.

In chapter 3, proving theorems from structured specifications was considered

a more complicated task than proving theorems from presentations or flat speci-

fications. On the other hand, as it has been shown in [SB 83], structure far from

complicating can ease theorem proving over specifications.

Taking advantage of the locality of the symbols used in a purported theorem,

a smart theorem prover can find a small subspecification where the theorem can

actually be proven. Of course, in the worst case no advantage is gained from

the structure but in many cases a lot of effort can be saved, particularly if the

underlying inference system is hard to use.

Similar considerations apply to proving reachability constraints and whole sub-

specifications. In these two cases, however, locality is guaranteed.

Chapter 7. Structure and Proofs 	 275

But perhaps the most striking result relating structure to theorem proving is

that of O.Schoett about proving theorems from abstracted specifications which

are implemented in a modular fashion.

7.5.1 Modular programming and data abstraction

In chapter 5 we studied in detail how to prove entailment w.r.t. behaviourally

abstracted specifications, or in general, abstracted specifications.

SP2 = TO DO SP1

Difficulties arise because the proof rule for D is not M-complete and also be-

cause the number of observations is usually infinite. The first problem, although

more fundamental, disappears when considering well-behaved observational ab-

stractions, while the second one results harder to tackle.

Sound rules for the different SBO's in ASL never posed a problem. In particular

for Di,, and T we have sound and complete rules which imply we also have a sound

and complete rule for abstraction

SP HW

TQ DO SP (p (p
e Obs 0

and therefore we feel confident when proving theorems such as (T0 DOSP) J=

or proving correctness of entailments such as (TO DO SP) j= SP1. Nevertheless,

the fact that only observations Obsj0 can be inferred by the rule and that there

are infinitely many such observations, make such proofs very tedious.

Consider for example an abstracted specification of stacks within a bigger

specification, e.g. the specification of a compiler Comp(cStack). Every time

we want to prove a simple property of the compiler involving the use of stacks we

have to write the whole proof using directly the observable properties of stacks. In

some cases a single proof can require the use of all the observations and therefore

drive us to the use of induction.

Chapter 7. Structure and Proofs 	 276

On the other hand, in a modular implementation of Comp(c 11 Stack) a pro-

gram (constructor) implementing Comp will use stacks but in the course of its

execution it may never discriminate between two stacks which are behaviourally

indistinguishable. Considering an execution of a program to be a theorem relat-

ing the input to the output, executions of the compiler can be seen as observable

theorems w over the signature of Comp(crStack), hence we may expect

Comp(a=Stack) 1= W if Comp(Stack) j= cp

In consequence the abstraction on stacks can be ignored when proving theorems

about the compiler.

In [Sch 871 an elegant formulation of this phenomenon is presented and a notion

of stability is defined over programming languages characterizing when behavioural

abstraction can be ignored in the course of proving properties of modular spec-

ifications. Now, the problem and its solution are revisited in our language of

arrows.

Let us first define a stable constructor w.r.t. an abstracted specification as a

constructor which cancels the effect of the abstraction.

Definition 7.5.1 A constructor k is stable w.r.t. a specification SP and an

abstraction operation TD,, if the following diagram commutes, i.e. k(SP) =

k(T O DO SP).

kk

	

JTODOSP

. SP

If k is stable w.r.t. SP and TD, we guarantee that for all sentences

k(SP) =(, if k(T 0 D0 SP) =

ILA 	tTLS KoLok 	StA tt I is 5LOVIO_ [SC-L '' 3

	

eJct 	cove 	5Loft 	kLti
. toc

Chapter 7. Structure and Proofs 	 277

Moreover, for any modular entailment k(k2) = P(TO DO SP) it follows that:

k(k2)= k(T O DO SP) 	by definition of modular entailment

J= k(SP) 	 by definition of stable constructor

1= P(SP) 	 by definition of modular entailment

hence, for all sentences sp

P(SP) = ço =' k(k2) = p

As in the case of a compiler using stacks, stability of k allows us to replace

TO DO SP by SF when proving theorems from k(T O DO SP). In other words, we can

assume that the implementation of stacks satisfies its specification when, in fact,

it is only behavioural equivalent to an algebra satisfying it.

The main problem with this definition of stability is to determine when a con-

structor is stable.

In general, constructors are not stable. Consider for instance the case where

k is the identity; requiring k(SP) = k(T O DO SP) means that abstraction does not

abstract at all, SP = TO DO SP. Although a characterization of stable constructor

does not seem easy to obtain, a sufficient condition is available.

Fact 7.5.2 Constructors of the form D 0 ; k are stable w.r.t. any specification SP

and abstraction operation TD..

Proof By definition of D and T, it is clear that for all morphisms a,

DUTa DU SP = DcrSP

hence IC(D O TO DO SP) = k(D0 SP). EJ

Chapter 7. Structure and Proofs 	 278

Constructors of this form require k to "work" on the abstracted signature, but

this change may be too demanding for the language of constructors. So, the main

question is: Do constructors know how to work on abstracted signatures?

In a case such as Beh(EQ) and FQRD-constructors, the answer is no. Equa-

tions have only been defined for standard algebraic signatures, and sentences over

an abstracted signature are only the observable sentences. Therefore, if k defines

a 2-pop operation on D0 Stack, an axiom like

V s:stack. 2-pop(s)=pop(pop(s))

is not allowed.

Changing the institution Beh(EQ), by extending the set of sentences over

an abstracted signature to include equalities between non-visible terms and a

notion of satisfaction for them, might solve this problem. However, in a more

realistic example where the constructors are programs, we are not concerned with

equalities. What we expect is to be able to use the original functions such as

pop and to ensure, by an encapsulation mechanism, that the constructor cannot

gain access to any information about the nature of the non-observable values.

For example, stable constructors should be able to use pop, store non-observable

values and make copies of them, but it should not be able to check equality between

non-observable values.

Technically this can be interpreted as follows: The encapsulation mechanism

is a constructor implementing D 0 , for an abstraction morphism o : H -p E. In-

structions in a constructor k on top of D0 when executed amount to sentences in

Sen(IIT), that is, observations in Sen(E).

Work in [Sch 87] looks at the problem and results from a different point of view

since abstraction is, there, an atomic SBO.

Chapter 7. Structure and Proofs 	 279

Stable constructor do not need to have the form Do ; k. Intuitively, the hiding

step D0 can be delayed in the implementation, e.g. a stable constructor can have

the form ki; D0 '; k2 where D0 is intended to hide the same things as D0 . The

hiding step can be shifted along the whole constructor to give a stable constructor

k3;

The condition for such delaying to be sound is that k3 (or ki in the first case)

preserves behavioural equivalence; i.e. for every two models A and B such that

Al,, = B10, it holds that k3(A)1 0 11 = k3(B)1 0 u, which is essentially the definition

of stability in [Sch 87].

Theorem 7.5.3 Consider a constructor k' defined by a function fks : IMod(E)I —'

IMod(E')l and abstraction morphisms 0: 11 -+ and o' : H' -+

H'.
D0

1k'

H'
I
E

If for all E-models A and B, Al,, = BJ 0 = fks(A)lo' = fk'(B)Io' then k'; D1 is

stable w.r.t. any E-specification and TD,,.

Proof Let k be a constructor defined by a function fk : lMod(H)l —* lMod(H')I

such that for all A E Mod(E)

fk(AIo) =fkl(A)lo'

Since every model over H is the o-reduct of some model over E , fk is totally defined

over Mod(H). And since fk'; -10' delivers the same result for equivalent models,

f,,

is well-defined.

By definition of k the diagram commutes.
D0

Fll

k 	 k'

H 	° 	
E

Chapter 7. Structure and Proofs 	 ME

By fact 7.5.2, D0 ; k is stable w.r.t. any specification SP and abstraction operation

T0 D0 , hence

D01(k'(SP)) = k(D0 (SP)) = k(D0 (T0 D0 SP) = D0 (k'(T 0 D0 SP)

Using constructors of the form k'; D0 ' has two benefits. First, constructors

and specifications only need to talk about sentences and signatures in the original

institution, and that may be necessary if we do not have a syntax for sentnces and

signatures in the abstracted institution, e.g. infinitary signatures for behaviours

in [MG 85]. In second place, D0 should be implemented by an encapsulation

mechanism, but since it is at the "top" of the implementation, we can just ignore

it.

Moreover, if abstraction is an atomic operation, as in [Sch 87], only the second

presentation makes sense. But, if we have notions such as abstracted signatures,

the first presentation considering D0 to be an encapsulation mechanism in the

language of constructors is more concise.

Chapter 8

Conclusions

8.1 Main conclusions

"This thesis seeks a formal system for proving imple-

mentation steps to be correct in ASL and related lan-

guages ..." (page 11 of the introduction)

The main conclusion is the feasibility of proving specification entailments in

ASL(I) for a given institution I.

The results in this thesis can be summarized by a classification of specifica-

tion entailments depending on whether they enjoy a complete inference system, a

satisfactory inference system or just a sound inference system.

Assuming that we work in an institution whose consequence relation comes

with a sound and complete inference system I_I, entailment between specifications

has a complete inference system in the case of

DATU J= ATU

and also

DATU = DATU

as discussed in chapter 4, where specifications in DATU' are those in DATU using

D only in the context of persistent and independent hidden enrichments.

281

Chapter 8. Conclusions 	 MON

Since abstraction a is introduced in chapter 5 as a particular case of

we can also say that a + DATU DATUS enjoys a complete inference system.

Moreover, if we restrict the use of abstraction to an observational and well-behaved

institution, a + DATU J= a + DATU* also has a complete inference system.

Finally, if our institution I treats constraints as ordinary sentences and the

inference system F 1 is still sound and complete, we conclude that a + DMATU =

a + DMA TU* (written a + ASL = a + ASL*) has a complete inference system.

A satisfactory inference system is an informal notion intended to capture in-

complete inference systems which appear to be good enough in the great majority

of the cases. In practice, such inference systems can be considered satisfactory for

formal software development.

In an institution with reachability constraints such as EQ we have that:

- Considering structural induction as a satisfactory solution for inferring the

inductive consequences of a presentation, DMATU 1= DATU has a satis-

factory inference system.

- Considering set theory to be satisfactory for reasoning about sets and some

additional assumptions, ASL = ASL* also has a satisfactory inference sys-

tem.

Therefore, restricting the use of abstraction to an observational and well-

behaved abstracted institution w.r.t. EQ, a + ASL J= a + ASL* has a satis-

factory inference system as well.

- Considering we have satisfactory means for checking consistency, the

strategy provides a satisfactory inference system for DATU = DATU. And,

in conjunction with the previous considerations, there are satisfactory infer-

ence systems for ASL = DATU, ASL = ASL and a + ASL = a + ASL.

Chapter 8. Conclusions 	 283

If S-constructors (P, A, (, a)) are considered, we can consider A and the pair

(i, a) to give a satisfactory account of the properties of the program P. Then, we

have a satisfactory inference system for k+ASL = ASL. Moreover, if specification

entailments are restricted to K-modular entailments then

k+ASL = k+ASL

also has a satisfactory inference system.

These results can be summarized in the following global conclusion: In order

to make verification acceptable we must choose an institution with a good infer-

ence system (including inference of constraints if they are to be used) specify with

care the hidden parts of specification so that they are persistent and independent,

choose an abstraction notion related to an observational and well-behaved institu-

tion, produce S-constructors with an appropriate set of properties and use modu-

lar entailments. Moreover, the prover must be prepared to complete some of the

specifications during the proof of entailment so that problems caused by a lack of

independence, or even a lack of persistency, can be solved.

8.2 Problems and solutions

"In the process, we use ASL as a tool to investigate the

verification of implementations in general ..."

Although the main goal of the thesis has been solving specification entailments

in ASL, the structure of the thesis and most of the work is dedicated to specific

verification problems which arise in ASL but also in most other specification lan-

guages. In the following a short summary is given.

1. The main verification problems arise in consequent specifications with hidden

parts, behaviourally abstracted specifications, specifications with reachability

Chapter 8. Conclusions
	

284

constraints and partially implemented specifications (specifications with con-

structors).

This is the conclusion of section 3.5 stemming from the characterization,

in theorem 3.3.12, of the inference rules available for each SBO. From a

technical point of view, all these verification problems arise because the

inference rule for D, is not M-complete (see counterexample in figure 3-

2) and the rules for and (P, A) are not complete (see sections 3.3.2

and 3.4).

There is a complete inference system for reachability constraints of the form

<<G,F,S>>.

Although reachability and other kinds of constraints have been used in al-

gebraic specification for a long time, no attempt has been made to infer

reachability constraints from other constraints or from specifications. In

chapter 6 inference systems for single constraints (Definition 6.3.4), sets of

constraints (Definition 6.3.10) and mixed sets of equations and constraints

(in section 6.3.2) are presented; the first (Theorem 6.3.5) and the second

under some restrictions (Theorem 6.3.12) are complete.

"Proving all observable theorems to hold" is a sound strategy for proving

correctness w.r.t. abstracted specifications, if we use an observational and

well-behaved notion of abstraction (Theorem 5.3.3).

This conclusion is a solid argument for preferring certain notions of abstrac-

tion rather than others. Previous work on behavioural abstraction led to a

multiplicity of "slightly different" definitions which can now be classified.

More striking is the fact that context induction [Hen 89] and many ad hoc

proofs happen to be sound with respect to the standard notion of behaviour

because they restrict the models of a specification to be reachable algebras,

Chapter 8. Conclusions 	 285

hence restricting to the domain of an observational and well-behaved insti-

tution BehR(EQ) (Theorems 5.3.11 amd 5.3.13).

If the hidden parts of a specification are specified as persistent and indepen-

dent enrichments, correctness proofs become very much simpler.

This conclusion follows from theorems 4.4.1, 4.4.3, 4.5.1 and 4.5.3 in chap-

ter 4 where persistency and independence are proven sufficient and necessary

for the soundness and completeness of the inheriting strategy.

In the case of hiding auxiliary functions, persistency and independence of the

hidden enrichments are indeed very sensible and surely improve the clarity

of structured specifications.

Treating behavioural abstraction as the hiding of equality and/or generators

for non-observable sorts is a sound strategy but is not always applicable.

Since abstraction can be understood as TD in the appropriate institution,

abstraction can be treated as the hiding of the equality symbols and/or gen-

erator functions. This strategy, if successful, requires the prover to define

the "abstract" equality and/or the generators in the implementation (an-

tecedent specification) before completing the proof, similarly as is generally

done in verification w.r.t. abstract model specifications using an abstraction

function (see example in 6.4.3).

In order to treat subspecifications as single requirements some rules are

needed for pulling whole subspecifications out of antecedent and consequent

specifications.

Most of the times common suhspecification, e.g. actual parameters, are re-

peated in the antecedent and the consequent of a purported entailment.

However, a subspecification in the consequent cannot be proven to follow

Chapter 8. Conclusions 	 Wt

from the same subspecification in the antecedent unless both subspecifica-

tions can be pulled to the top and are in the same form on both sides of the

entailment (see section 7.3.1).

This conclusion generalizes common requirements in specification languages

saying that parameters must be preserved/protected.

If we take a common approach to algebraic specification such as the initial

approach, we can find that all these problems/solutions also apply. In the initial

approach parameterized specifications are required to denote persistent functors,

which means that subspecifications can be trivially pulled out of parameterized

specification (if they are parameter specifications) and hidden enrichments are triv-

ially persistent and independent (if they are parameterized specifications). Functor

persistency also guarantees consistency and sufficient completeness of parameter

specifications w.r.t. to their actual parameters, hence redundancy of certain func-

tions and sorts can be explicitly stated. Moreover, initial semantics guarantees

models to be reachable algebras and therefore observationality and well-behaviour

follow for the standard notion of behavioural abstraction.

In general, we have to study each of the verification problems mentioned above

in the context of any specification language we use. Hopefully, some potential

problems do not arise due to the particular definition of the specification language

and/or the institution used.

Chapter 8. Conclusions 	 287

8.3 Negative results and trade-offs

we shall ... exhibit trade-offs between sensible verifi-

cation methods and the expressive power of specifications

and the flexibility of implementations".

There are a number of negative results and trade-offs between flexibility and

satisfactory verification. In the following we enumerate the most significant results.

An inference system for constraints has to be developed for each institution.

Due to the definition of institution and ASL, there is no relation between

morphisms in the category of models and the satisfaction relation. This

results in a SBO M() without any sensible institution-independent verifi-

cation treatment. Hence, the user proposing the use of an institution should

develop an inference system for constraints in that institution.

Persistency of an enrichment is undecidable.

Although persistency of hidden enrichments plays a key role in most of this

thesis, there is no effective procedure for checking persistency of enrichments

w.r.t. basic specifications. This is also a well-known problem in the ini-

tial approach where some proof theoretical conditions have been established

[Gan 83, Pad 80, Pad 85].

Lack of independence usually requires prover intervention.

Almost always the lack of independence of a hidden enrichment requires the

prover to complete the specification with some extra axioms. This prevents

proofs from being automatic when the generators of a visible sort are hidden

or abstraction is treated as hiding.

Chapter 8. Conclusions 	 288

There is no known observational and well-behaved institution for standard

behavioural abstraction.

Non-reachable values in observable sorts prevent most institutions from be-

ing observational. The only available observational institution "modeling"

standard behavioural abstraction, BehO(EQ), is not well-behaved.

No inference system is available for inferring reachability constraints from

sets of reachability constraints and equations.

Despite the satisfactory performance of H- (Definition 6.3.10), we have no

complete inference system for inferring a reachability constraint from a fi-

nite set of reachability constraints. Moreover, if reachability constraints are

intermixed with other kind of sentences the satisfactory performance of H-

(integrating H- and I_EQ) depends on a long list of assumptions.

Although o + DATU = ATU has a complete inference system, proofs may

be very hard.

In this case, despite the availability of a complete inference system for prov-

ing theorems from specifications in DATU, such proofs may be terribly te-

dious in practice since only observable premises are allowed.

Work in [Sch 871 (see section 7.5.1) solves this problem in the case of modular

entailments, however, in general the problem persists.

Chapter 8. Conclusions 	 289

8.4 Future developments

The results of this thesis cover the verification of specification entailments in the

whole of ASL including mechanisms for abstraction and parameterization. Future

developments should address the application of these results to real specification

languages and every day verification.

In particular, the semantics of a specification language can be designed so

that hiding is only used in the context of persistent and independent hidden en-

richments, explicit means for enforcing modular development are made available,

etc.

At the institution level, some common institutions can be fixed and an inference

system for their constraints developed, like the inference system for reachability

constraints in chapter 6.

The actual inference rules in FM and in the appropriate F 1 can be incorporated

into a software development environment so that specification entailment proofs

are electronically supported. In this context, attention can be drawn to the support

of some verification strategies such as the inheriting strategy.

In specification languages such as Extended ML [ST 86, ST 89], this environ-

ment can be used for proving the correctness of development steps and also for

producing well-formed specifications. In particular, interface matching SP2: SP1

between structures and signatures in Extended ML amounts to specification en-

tailment SP2 J= SP1 as discussed in this thesis.

On a more theoretical side, results in this thesis can be used for analyzing other

specification languages from the proof-theoretic point of view. Analogously to

ASL which has been used for analyzing the semantics of other specification lan-

guages, e.g. by distinguishing the institutional from the institution-independent

Chapter 8. Conclusions 	 290

aspects, we can use our collection of verification problems, inference systems and

specification properties in order to classify different approaches to formal specifi-

cation.

In the end, users will become aware of the trade-off between flexibility and yen-

fication techniques and, eventually, they should be able to identify which approach

to formal program development is best suited for them.

Consequent in ATU

ATU = 	ATU 	... 3.2, 7.5

ASL = 	ATU 	.. 3.3.2, 7.5

k+ASL=ATU 	... 3.4

a + ASL 1= ATU 	.. 3.5, 7.5.1

Consequent in DATU

ATU 	= 	DATU 	.. 4.2

DATU = 	DATU 	.. 4.2

ATU = DATU* 4.4, 4.5

k+ASL 	= DATU 	.. 4.6, 4.7.1 7 4.7.2

k+ASL = DATU* 4.6.1, 4.6.2 7 4.6.3

a+ASLJ=DATU* 7.5.1

Consequent in MATU

MI=M 	... 6.3.1

MA = 	MA 	... 6.3.2, 3.3.2

ASL=MATU 	.. 6.4.1

k+ASL 	= MATU 	.. 6.4.1

Consequent in ASL (DMATU)

ASLJ= 	ASL 	... 6.4.2

k+ASL 	= 	ASL 	... 7.3.1,6.4.2

Consequent in a+ ASL

ASL 	J= 	a + 	ASL 	... 5.3, 5.4

Consequent in k+ASL

k+ASL 	= k+ASL 	.. 7.3.1, 7.4.3

291

List of examples

Setsof elements ..56

Non-standard natural numbers ...69

Lists with a mre (most repeated element) function85

Lists with a mre function, version 2 ...87

Lists with a mre function, version 3 ...94

Lists with a mre function, version 4 ...95

Lists with a max function ...97

Specification of a scheduler ..122

Stacks of elements ...177

Automaton recognizing aa*b, version 1181

Automaton recognizing aa*b , version 2182

Sets with hidden generators ...229

Sets represented by lists ...230

Tables represented by lists of pairs ...235

Tables represented by B-trees of pairs ..236

Sets of natural numbers ...249

Natural numbers and booleans ..250

Lists of natural numbers ..251

292

The inference system FM

Basic proof rule:
2 I- i 1

A, 2 SP FM A 1 f 50[5p]

Pulling sentences (axioms) out of the consequent:

A,(SP1 USP2)I-M(A,SP1) USP2 	Aa()T,SPFM TTA$SP

A,(SP1 U SP2) FM SP1 U (A,SP2) 	A, 1 A 02 SP FM A 02 A, 1 SP

Pulling subspecifications out of the consequent:

A, SP U SSP M A, (SP U SSP)

M()SP U SSP FM M(,)(SP U SSP)

(SP1 U SF2) U SSP FM SP1 U (SP2 U SSP)

(SP1 U SP2) U SSP FM (SP1 U SSP) U SP2

T SP U T, SSP FM Tr (SP U SSP)

D, SPU SSP FM D(SP U T, SSP)

Pulling sentences (theorems) out of the antecedent:

SP1 U (A,SP2) FA! A,(SP1 U (A(V SP2)) T0 A,SP FAq A o)Ta ASP

(A(V SP1) U SP2 FAI A,((A,SP1) U SP2) D4,SP FM A a I()D.7 ASP

(P, A, (, u))A,SP F 1 .1 A { , } (P, A, (t, o,)) SP provided 	E A

293

The inference system FM 	 294

Pulling subspecifications out of the antecedent:

A(SP U SSP) FM A(SP U SSP) U SSP

M(,)(SP U SSP) FM M(a,)(SP U SSP) U SSP

SP1 U (SP2 U SSP) FM (SP1 U (SP2 U SSP)) U SSP

(SP1 U SSP) U SP2 FM ((SP1 U SSP) U SP2) U SSP)

T, (SP U SSP) FM T, (SPU SSP) U TTSSP

DL(SP U TL SSP) FM DL (SP U TL SSP) U SSP

(P,A,(t,a))(SP U TSSP)F M ((P,A,(t,a))(SP U T, SSP)) U T T $SP

Permuting D (equality =M means logical derivability FM in both directions):

AD O SP =m DQ A)SP

SP1 UDSP2=MD(TSP1 USP2)

DSP1 U SP2 =m D(SP1 U TU SP2)

TOrDC1 SP =M D1 TSP provided o, al, o' and al' form

a pushout diagram as in proposition 4.2.1

Absorbing laws:

T9 	M C17 	 IEE U CE =M €E 	 AocE =M cE

A1A2SP M Al2SP Da D0r'SP M

Cut rule:
SP3FMSP2 SP2FM SP1

SP3 FM SP1

Simplification rule:
SP2 FM SP1
SP2 FM SP1

The inference system FM 	 295

In first order logic.

1. Structural induction

M(G,F,S)A{(, Q}SP FM A{ 1,01} M(G,F,S) A{}SP

where is

A A V 7 : S, 	G. 	Q, (op (Ty--)))
BEG opEFs

ço' is A, E GVY : s.Q3 (y), Q is a G-indexed set of predicates, T a S.-sorted

sequence of variables, y a C-sorted sequence of variables,ij is the concate-

nation of 7 and , F3 those operations in F delivering a value of sort s,

and Q the conjunction of the appropriate predicates in Q applied to a given

G-sorted sequence of variables.

In EQ.

Pulling sentences through FQR-constructors:

Qcq SP FM A eq Qeq SP

Qeq ASP FM AQ eq ASP

RCASP FM ARGASP

FSP FM A eq FSP

F7eASP FM A)FA$SP

e q provided FSP is sufficiently complete and consistent.

Pulling reachability constraints through FQR-constructors:

Qeq M(G,F,$)SP FM M(G,F,S) Qeq M(c,p,$)SP

RGSP FM M(G , ç , S\G) R G SP 	 provided Sig[SP] = (S.)

RGIM(G,F,S)SP FM M(G,F,S)RGIM(G,FS)SP 	 provided C' fl S = 0

and <<C',Il',S'\ C'>> for (S'.. W) = Sig[SP] is 0-free

The inference system FM 	 296

FM(G,F,S)SP FM M((c),cz',s')FM(a,p,$)SP 	provided Ia =
peqp FM M(G,OI,C(S))F:SP 	provided a: (S,11) - (a(S) W G, Q')

3. Pulling subspecifications through FQR-constructors: Given a signature mor-

phism t: (S, Q) -

R{ 3}(SP U TSSP) FM R{ 8}(SP U T L SSP) U T L SSP

provided s E (fl' \ t(1)) or Mod[SSP] is closed under subalgebras

(SP U T SSP) FM Qeq (SP U T SSP) U T SSP

provided t forgets eq or Mod[SSP] is closed under quotients

Fg (SP U SSP) FM F (SP U SSP) U T, SSP

provided (Free47cA)0, = A for all A E Mod[SSP]

Bibliography

[Bar 77] 	J. Barwise (ed.). Handbook of Mathematical Logic. North flolland

(1977).

[Ber 87] 	C. Bernot: Good functors ... are those preserving philosophy.

Proc. Summer Conf. on Category Theory and Computer Science,

Edinburgh. Springer LNCS 283, 182-195 (1987).

[Bid 88] 	M. Bidoit: The stratified loose approach: a generalization of ini-

tial and loose semantics. Recent Trends in Data Type Specifica-

tion, Selected Papers from the 5th Workshop on Specification of

Abstract Data Types, Gullane, Scotland. Springer LNCS 332, 1-22

(1988).

[Bid 891 	M. Bidoit: PLUSS, un langage pour le développement de

specifications algébriques modulaires. These d'Etat, Université

Paris-Sud, Orsay (1989).

[Bre 89] 	R. Breu: A normal form for structured algebraic specifications.

Report MIP-8917, Universitãt Passau (1989).

[Bur 691 	R. M. Burstall: Proving properties of programs by structural in-

duction. Computer Journal 12, 41-48 (1969).

297

Bibliography 	 298

[Bur 87] 	R. M. Burstall: Inductively defined functions in functional pro-

gramming languages. Report CSR-230-87, Dept. of Computer Sci-

ence, Univ. of Edinburgh (1987).

[BBC 86] 	C. Bernot, M. Bidoit, C. Choppy: Abstract implementations

and correctness proofs. Proc. 3rd Symp. on Theoretical Aspects

of Computer Science. Springer LNCS 210, 236-251 (1986):

[BBTW 81] 	J.A. Bergstra, M. Broy, J.V. Tucker, M. Wirsing: On thq power

of algebraic specifications. Proc. 1981 Symp. on Mathematical

Foundations of Computer Science. Springer LNCS 118, 193-204

(1981).

[BG 77] 	R.M. Burstall, J.A. Coguen: Putting theories together to make

specifications. Proc. 5th Intl. Joint Conf. on Artificial Intelli-

gence, Cambridge, Massachusetts, 1045-1058 (1977).

[BG 801 	R.M. Burstall, J.A. Coguen: The semantics of CLEAR, a spec-

ification language. Proc. Advanced Course on Abstract Software

Specifications, Copenhagen. Springer LNCS 86, 292-332 (1980).

[BCM 89] 	M. Bidoit, M.-C. Caudel, A. Mauboussin: How to make alge-

braic specifications more understandable? An experiment with

the PLUSS specification language. Science of Computer Program-

ming 12, 1-38 (1989).

[BHK 861 	J.A. Bergstra, J. Heering, R. Klint: Module algebra. Report

CS:R8617, Centre voor Wiskunde en Informatica, Amsterdam

(1986).

[BHK 891 	J.A. Bergstra, J. Heering, R. Klint (eds.): Algebraic Specification.

Addison-Wesley (1989).

Bibliography 	 299

[BHK 90] 	J.A. Bergstra, J. Heering, R. Klint: Module algebra. Journal of

the Assoc. for Computing Machinery 37(2), 335-372 (1990).

[BJ 801 	G. Boolos, R. Jeffrey: Computability and Logic. Cambridge Uni-

versity Press, second edition (1980).

[BM 79] 	R.S. Boyer, J.S. Moore: A Computational Logic. Academic Press

(1979).

[BM 88] 	R.S. Boyer, J.S. Moore: A Computational Logic Handbook. Aca-

demic Press (1988).

[BP 90] 	P. Byers, D. Pitt: Conservative extensions: A cautionary note.

EATCS Bulletin 41, 196-201 (1990).

[BT 83] 	J.A. Bergstra, J.V. Tucker: Initial and final algebra seman-

tics: two characterization theorems. SIAM Journal on Computing

12(2), 366-387 (1983).

[BT 87] 	J.A. Bergstra, J.V. Tucker: Algebraic specifications of com-

putable and semicomputable data types. Theoretical Computer

Science 50, 137-181 (1987).

[Cohn 66] 	P. Cohn. Universal Algebra. Harper & Row, New York (1966).

[DOS 91] 	R. Diaconescu, J.A. Coguen, P. Stefaneas: Logical support for

modularization. Draft report, Programming Research Group, Ox-

ford University (1991).

[Ehr 81] 	H.-D. Ehrich: On realization and implementation. Proc. 10th

Symp. on Mathematical Foundations of Computer Science.

Springer LNCS 118, 271-280 (1981).

Bibliography 	 300

[EKMP 821 	H. Ehrig, H.-J. Kreowski, B. Mahr, P. Padawitz: Algebraic imple-

mentation of abstract data types. Theoretical Computer Science

20, 209-263 (1982).

[EKTWW 841 H. Ehrig, H.-J. Kreowski, J. Thatcher, E. Wagner, J. Wright: Pa-

rameter passing in algebraic specification languages. Theoretical

Computer Science 28, 45-81 (1984).

[EM 85] 	H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 1.

Equations and Initial Semantics. EATCS Monographs on Theo-

retical Computer Science, Vol. 6. Springer (1985).

[EM 90] 	H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 2.

Module Specifications and Constraints. EATCS Monographs on

Theoretical Computer Science, Vol. 21. Springer (1990).

[EWT 83] 	H. Ehrig, E.G. Wagner, J.W. Thatcher: Algebraic specifica-

tions with generating constraints. Proc. 10th Intl. Colloq. on Au-

tomata, Languages and Programming. Springer LNCS 154, 188-

202 (1983).

[Far 89] 	J. Farrés-Casals: Proving correctness of constructor implementa-

tions. Proc. 1989 Symp. on Mathematical Foundations of Com-

puter Science. Springer LNCS 379, 225-235 (1989).

[Far 901 	J. Farrés-Casals: Proving correctness w.r.t. specifications with

hidden parts. Proc. 1990 Second International Con!. of Algebraic

and Logic Programming. Springer LNCS 463, 25-39 (1990).

[FGJM 85] 	K. Futatsugi, J.A. Coguen. J.-P. Jouannaud, J. Meseguer: Prin-

ciples of OBJ2. Proc. 12th ACM Symp. on Principles of Program-

ming Languages, New Orleans, 52-66 (1985).

Bibliography 	 301

[Gan 831 	H. Ganzinger: Parameterized specifications: parameter passing

and implementation with respect to observability. ACM Trans.

on Programming Languages and Systems 5(3), 318-354 (1983).

[Gau 78] 	M.-C. Gaudel. Specifications incomplètes mais suffisantes de la

representation des types abstraits. Laboria Report 320 (1978).

[Gau 841 	M.-C. Gaudel: A first introduction to PLUSS. Technical Report,

LRI, Université de Paris-Sud, Orsay (1984).

[Gog 901 	J.A. Goguen: Types as theories. Unpublished draft (1990).

[Gut 75] 	J.V. Cuttag: The Specification and Application to Programming

of Abstract Data Types. Ph.D. thesis, Univ. of Toronto (1975).

[GB 801 	J.A. Goguen, R.M. Burstall: CAT, a system for the structured

elaboration of correct programs from structured specifications.

Technical report CSL-118, Computer Science Laboratory, SRI In-

ternational (1980).

[GB 84] 	J.A. Goguen, R.M. Burstall: Introducing institutions. Proc. Log-

ics of Programming Workshop, Carnegie-Mellon. Springer LNCS

164, 221-256 (1984).

[GB 86] 	J.A. Goguen, R.M. Burstall: A study in the foundations of pro-

gramming methodology: specifications, institutions, charters and

parchments. Proc. Workshop on Category Theory and Computer

Programming, Guildford. Springer LNCS 240, 313-333 (1986).

[GB 90] 	J.A. Goguen, R.M. Burstall: Institutions: abstract model theory

for specifications and programming. Report ECS-LFCS-90- 106,

University of Edinburgh (1990).

Bibliography 	 302

[CC 88] 	S.J. Garland, J.V. Cuttag: Inductive methods for reasoning

about abstract data types. in Proc. 5th ACM-SIGPLAN, San

Diego, 219-228 (1988).

[0GM 76] 	V. Giarratana, F. Gimona, U. Montanan: Observability concepts

in abstract data type specification. Proc. 1976 Symp. on Math-

ematical Foundations of Computer Science, Gdansk. Springer

LNCS 45, 567-578 (1976).

[GH 781 	J.V. Guttag, J.J. Horning: The algebraic specification of abstract

data types. Acta Informatica 10, 27-52 (1978).

[CII 861 	J.V. Cuttag, J.J. Horning: Report on the Larch shared language.

Science of Computer Programming 6(2), 103-134 (1986).

[GHW 85] 	J. V. Guttag, J.J. Horning, J.M. Wing: Larch in five easy pieces.

Digital Systems Research Centre, Palo Alto (1985).

[GM 81] 	J.A. Goguen, J. Meseguer: Completeness of many-sorted equa-

tional logic. SIGPLAN Notices 16(7) 24-32 (1981).

[CM 82] 	J.A. Goguen, J. Meseguer: Universal realization, persistent in-

terconnection and implementation of abstract modules. Proc. 9th

Intl. Colloq. on Automata, Languages and Programming, Aarhus.

Springer LNCS 140, 265-281 (1982).

[GTW 76] 	J.A. Goguen, J.W. Thatcher, E.G. Wagner: An initial algebra

approach to the specification, correctness and implementation of

abstract data types. Report RC-6487, IBM T.J. Watson Research

Center, Yorktown Heights (1976). Also in: Current Trends in

Programming Methodology, Vol. j: Data Structuring (R.T. Yeh,

ed.). Prentice-Hall, 80-149 (1978).

Bibliography 	 303

[GTWW 75] 	J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright: An in-

troduction to Categories, Algebraic Theories and Algebras. Re-

port RC-5369, IBM T.J. Watson Research Center, Yorktown

Heights (1975).

[Hen 881 	R. Hennicker: Beobachtungsorientierte Spezifikationen. Ph.D.

thesis, Universitãt Passau (1988).

[Hen 891 	R. Hennicker: Observational implementations. Proc. 6th .Symp.

on Theoretical Aspects of Computer Science, Paderborn. Springer

LNCS 349 (1989).

[Hoa 72] 	C.A.R. Hoare: Proofs of correctness of data representations. Acta

Informatica 1, 271-281 (1972).

[HST 89a] 	R. Harper, D. Sannella, A. Tarlecki: Structure and representation

in LF. Proc. 2nd IEEE Symp. on Logic in Computer Science,

Asilomar, 226-237 (1989).

[HST 89b] 	R. Harper, D. Sannella, A. Tarlecki: Logic representation. Proc.

3rd Summer Conf. on Category Theory and Computer Science,

Manchester. Springer LNCS 389, 250-272 (1989).

[Jon 80] 	C. Jones. Software Development: A Rigorous Approach. Prentice-

Hall (1980).

[Jon 86] 	C. Jones. Systematic Software Development Using VDM.

Prentice-Hall (1986).

[Kam 83] 	S. Kamin: Final data types and their specification. ACM Trans-

actions on Programming Languages and Systems, 5(1), 97-123

(1983).

Bibliography 	 304

[Kei 77] 	H. J. Keisler: Fundamentals of model theory. Handbook of Math-

ematical Logic. North Holland (1977).

[KK 671 	G. Kreisel, J.L. Krivine. Elements of Mathematical Logic (Model

Theory). North Holland (1967).

[KM 871 	D. Kapur, D.R. Musser: Proof by consistency. Artificial Intelli-

gence 31(2), 125-157 (1987).

[Law 631 	F. Lawvere: Functorial semantics of algebraic theories. Prbc. Na-

tional Academy of Science 50, 869-872 (1963).

[Lin 87] 	Lin Huimin. Relative completeness in algebraic specifications. Re-

port ECS-LFCS-87-43, University of Edinburgh (1987).

[Mac 71] 	S. MacLane. Categories for the Working Mathematician.

Springer-Verlag (1971).

[Mai 77] 	M.E. Majster: Limits of the algebraic specifications of abstract

data types. ACM-SIGPLAN Notices 12, 37-42 (1977).

[Men 71] 	E. Mendelson. Introduction to Mathematical Logic. Van Nos-

trand (1971). References to 3rd edition, by Wadsworth & Brooks

(1987).

[Mes 891 	J. Meseguer: General logics. Proc. Logic Colloquium '87,

Granada. North Holland (1989).

[Mos 89] 	P. Mosses: Unified algebras and modules. Proc. 16th ACM Symp.

on Principles of Programming Languages, 329-343 (1989).

[MG 851 	J. Meseguer, J.A. Goguen: Initiality, induction and computabil-

ity. In: Algebraic Methods in Semantics (M. Nivat and J.

Reynolds, eds.). Cambridge Univ. Press, 459-540 (1985).

Bibliography 	 305

[MM 841 	B. Mahr, J. Makowsky: Characterizing specification languages

which admit initial semantics. Theoretical Computer Science 31,

49-59 (1984).

[MS 85] 	D.B. MacQueen, D.T. Sannella: Completeness of proof systems

for equational specifications. IEEE Trans. on Software Engineer-

ing SE-11(5), 454-461 (1985).

[Nip 86] 	T. Nipkow: Non-deterministic data types: models and implemen-

tations. Acta Informatica 22, 629-661 (1986).

[Niv 87] 	P. Nivela. Semantica de comportamiento para especificaciones a!-

gebraicas. Ph.D. Thesis, Universitat Politècnica de Catalunya,

Barcelona (1987).

[NO 88] 	P. Nivela, F. Orejas: Initial behaviour semantics for algebraic

specifications. Recent Trends in Data Type Specification, Selected

Papers from the 5th Workshop on Specification of Abstract Data

Types, Gullane, Scotland. Springer LNCS 332, 184-207 (1988).

[Ore 83] 	F. Orejas: Characterizing composability of abstract implemen-

tations. Proc. 1983 Intl. Conf. on Foundations of Computation

Theory, Borgholm, Sweden. Springer LNCS 158 (1983).

[Ore 87] 	F. Orejas: A characterization of passing compatibility for param-

eterized specifications. Theoretical Computer Science 51, 205-214

(1987).

[OSC 89] 	F. Orejas, V. Sacristan, S. Clérici: Development of algebraic spec-

ifications with constraints. Proc Workshop on Categorical Meth-

ods in Computer Science with Aspects from Topology. Springer

LNCS 393, 102-123 (1989).

Bibliography 	 306

[Pad 80] 	P. Padawitz: New results on completeness and consistency of

abstract data types. Proc. 9th Symp. on Mathematical Founda-

tions of Computer Science, Rydzyna. Springer LNCS 88, 460-473

(1980).

[Pad 851 	P. Padawitz: Parameter preserving data type specifications. Proc.

Joint Conf. on Theory and Practice of Software Development,

Berlin. Springer LNCS 186, 323-341 (1985).

[Poi 86] 	A. Poigné: Algebra categorically. Proc. Intl. Workshop on

Category Theory and Computer Programming, Guildford 1985.

Springer LNCS 240, 76-102 (1986).

[Poi 891 	A. Poigné. Foundations are rich institutions, but institutions

are poor foundations. Proc Workshop on Categorical Methods in

Computer Science with Aspects from Topology. Springer LNCS

393, (1989).

[Rei 811 	H. Reichel: Behavioural equivalence - a unifying concept for ini-

tial and final specification methods. Proc. 3rd. Hungarian Comp.

Sci. Conference, 27-39 (1981).

[Rei 871 	H. Reichel: Initial Computability, Algebraic Specifications, and

Partial Algebras. Oxford Univ. Press (1987).

[San 86] 	D.T. Sannella: Formal specification of ML programs. Report

ECS-LFCS-86-15, University of Edinburgh (1986).

[Sch 87] 	0. Schoett: Data Abstraction and the Correctness of Modular

Programming. Ph.D. thesis; Report CST-42-87, Dept. of Com-

puter Science, Univ. of Edinburgh (1987).

Bibliography 	 307

[Sch 901 	0. Schoett: Behavioural correctness of data representations. Sci-

ence of Computer Programming 14, 43-57 (1990).

[Sch 91] 	0. Schoett: An observational subset of first-order logic cannot

specify the behaviour of a counter. Proc. 8th Symp. on Theoretical

Aspects of Computer Science, Springer LNCS, 499-510 (1991).

[Sco 66] 	D.S. Scott: Logic with denumerably long formulas and finite

strings of quantifiers. Theory of models. North-Holland, 329-341

(1966).

[Spi 851 	M.Spivey: Understanding Z. Ph.D. thesis. University of Oxford

(1985).

[SB 83] 	D.T. Sannella, R.M. Burstall: Structured theories in LCF. Proc.

1983 Colloq. on Trees in Algebra and Programming, L'Aquila.

Springer LNCS 159, 377-391 (1983).

[SST 901 	D.T. Sannella, S. Sokolowski, A. Tarlecki: Toward formal devel-

opment of programs from algebraic specifications: parameterisa-

tion revisited. Report 6/90, Universitãt Bremen (1990).

[ST 84] 	D.T. Sannella, A. Tarlecki: Building specifications in an arbitrary

institution. Proc. of the Intl. Symp. on Semantics of Data Types,

Sophia- Anti polis. Springer LNCS 173, 337-356 (1984).

[ST 85] 	D.T. Sannella, A. Tarlecki: Program specification and develop-

ment in Standard ML. Proc. 12th ACM Symp. on Principles of

Programming Languages, New Orleans, 67-77 (1985).

[ST 86] 	D.T. Sannella, A. Tarlecki: Extended ML: an institution-

independent framework for formal program development. Proc.

Bibliography 	 308

Workshop on Category Theory and Computer Programming,

Guildford. Springer LNCS 240, 364-389 (1986).

[ST 87] 	D.T. Sannella, A. Tarlecki: On observational equivalence and al-

gebraic specification. Journal of Computer and System Sciences

34 1 150-178 (1987).

[ST 88a] 	D.T. Sannella, A. Tarlecki: Specifications in an arbitrary institu-

tion. Information and Computation 76, 165-210 (1988).

[ST 88b] 	D.T. Sannella, A. Tarlecki: Toward formal development of pro-

grams from algebraic specifications: implementations revisited.

Extended abstract in: Proc. Joint Conf. on Theory and Prac-

tice of Software Development, Pisa. Springer LNCS 249, 96-110

(1987); full version in Acta Informatica 25, 233-281 (1988).

[ST 891 	D.T. Sannella, A. Tarlecki: Toward formal development of

ML programs: foundations and methodology. Proc. Joint Conf.

on Theory and Practice of Software Development, Barcelona.

Springer LNCS 352, 375-389 (1989).

[ST 92] 	D.T. Sannella, A. Tarlecki: Foundations of Algebraic Specification

and Formal Program Development. Cambridge Univ. Press, to

appear.

[SW 83] 	D.T. Sannella, M. Wirsing: A kernel language for algebraic spec-

ification and implementation. Proc. 1983 Intl. Conf. on Founda-

tions of Computation Theory, Borgholm, Sweden. Springer LNCS

158, 413-427 (1983).

Bibliography 	 309

[Tar 86a] 	A. Tarlecki: Bits and pieces of the theory of institutions. Proc.

Workshop on Category Theory and Computer Programming,

Guildford. Springer LNCS 240, 334-363 (1986).

[Tar 86b] 	A. Tarlecki: On the existence of free models in abstract algebraic

institutions. Theoretical Computer Science 37, 269-304 (1986).

[TWW 78] 	J.W. Thatcher, E.G. Wagner, J.B. Wright: Data type specifica-

tion: parameterization and the power of specification techniques.

SIGACT 10th Annual Symp. on the Theory of Computing, San

Diego (1978). Also in: ACM Trans. on Programming Languages

and Systems 4, 711-773 (1982).

[Wan 79] 	M. Wand: Final algebra semantics and data type extensions.

Journal of Computer and System Sciences 19, 27-44 (1979).

[Wan 82] 	M. Wand: Specifications, models and implementations of data

abstraction. Theoretical Computer Science 20, 2-32 (1982).

[Wir 861 	M. Wirsing: Structured algebraic specifications: a kernel lan-

guage. Theoretical Computer Science 42, 123-249 (1986).

[Wir 91] 	M. Wirsing: Proofs in structured specifications. Technical Report

MIP-9008, Universitit Passau (1991).

[WB 891 	M. Wirsing, M. Broy: A modular framework for specification

and implementation. Proc. Joint Conf. on Theory and Practice

of Software Development, Barcelona. Springer LNCS 351, 42-73

(1989).

IN
	

Universal algebra

where

fB: lBl shape x JBI suit 4 IBl suit
is defined by the following table: 	

lB 112 13
El 233

A 132

Let i: IAI —* IBI be the S-sorted function such that

shape =def {D i—* A, A i_+[J} and isuit =def 14 I.' 1, C) _4 2, 	31.

This defines a J-homomorphism i: A —* B which is a -isomorphism, so A B. 	0

Exercise 1.3.10
Show that a homomorphism is an isomorphism if it is bijective. 	 El

Exercise 1.3.11
Show that there is an injective homomorphism h: A B if A is isomorphic to a subalgebra

of B. 	 0

Example 1.3.12
Let E = (S, Il) be the signature

sorts s
opns a:s

s — S

and define F,-algebras A and B by

I Al3 =def Nat (the natural numbers), aA =def 0 E Al3,

fA: Al3 	lAI3 =def In i—* n + 11 n e Nat},

1B18 =def {n E Nat I the Turing machine with Gödel number n halts on all inputs},

aB =def the smallest n E Nat such that the TM with Gödel number n halts on all inputs,

and

fB: lBl 3 —p lBl 8 is defined by fB() = the smallest m > n such that the TM with Gödel numi

Let i: JAI — IBI be the S-sorted function such that

i3(n) =def the (n + 1)st smallest element of lBl 3

for all n e JAI,. The function i 8 is well-defined since 1B1 3 is infinite. This defines a
homomorphism i: A —* B which is an isomorphism.

Although A 	B, the E-algebras A and B are not "the same" from the point of view
of computability: everything in A is computable, in contrast to B (1B13 is not recursively
enumerable and fB is not computable). Isomorphisms capture structural similarity, ignoring
what the values in the carriers are and what the functions actually compute. This example
shows that, for some purposes, properties stronger than structural similarity are important.

DRAFT: 8th April 1992

