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Abstract 

When an object is grasped by a set of fingers, it is important to know the best 

positions to place them. An immobilizing set is a set of points on the object at 

which a firm grasp of the object is achieved, that is, where the object cannot be 

moved within the grasp. In this thesis a study of immobilizing sets of points for 

planar figures and tetrahedra is undertaken. 

A new proof of Czyzowicz, Stojmenovic and Urrutia's theorem giving necessary 

and sufficient geometric conditions for immobilizing a triangle is obtained. The 

same method of proof is employed to obtain proofs of statements on immobilizing 

sets of polygonal planar objects. 

In three dimensions, a detailed study of immobilizing sets of a tetrahedron is 

carried out. A 3 x 3 matrix A is defined for each quadruple of points, one from 

the interior of each face of the tetrahedron using a good choice of outward normal 

vectors to the faces of the tetrahedron. A necessary and sufficient condition on 

the quadruple of points to immobilize the tetrahedron is that the matrix A is 

symmetric. An analysis of the eigenvalues of symmetric matrix A leads to a new 

proof of Bracho, Mayer, Fetter and Montejano's theorem. This proof is adapted 

to give another treatment of necessary and sufficient conditions characterizing 

immobilizing sets of a triangle. 

The set of centroids, set of circumcenters and set of orthocenters of the faces of 

a tetrahedron are shown to immobilize it in appropriate cases. It is shown that a 

set of four immobilizing points one in each face of the tetrahedron has five degrees 

of freedom and immobilizing sets of a tetrahedron having two fixed points have 

one degree of freedom. An analysis of the orientation of the tetrahedron whose 

vertices are the points in an immobilizing set of a given tetrahedron reveals the 

existence of immobilizing sets of a regular tetrahedron which are co-planar. In 

higher dimensions, a method of generating sets of points for which the matrix A 

is symmetric from another such set is presented and some geometrical properties 

arising from the symmetry of A are analysed. 
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Chapter 1 

Introduction 

1.1 Background 

The design of robots relies on geometric techniques because of the need to analyse 

motion. Various interesting geometric problems arise but rather few of them have 

been subjected to serious mathematical study. Nevertheless, it is important to 

have a firm understanding of the theoretical principles before proceeding to the 

more practical, algorithmic aspects of the problems. This research project is 

devoted to making a thorough analysis of one of the geometric issues that arise 

in robotics, namely the problem of the 'grasping hand'. 

Grasping emerged as field in its own in the early eighties with the introduction 

of dextrous multi-finger robot grippers. It is concerned with characterizing and 

achieving conditions that will ensure that a robot gripper holds an object securely, 

preventing, for example, any motion due external forces. Different authors have 

given different types of grasping depending on the conditions a grasp is required 

to satisfy. The two most common types are force closed and form closed grasps, 

although, unfortunately, there is no agreement on terminology in the grasping 

literature. In [D], [MK2] and [RE] the term form closed grasp was used to mean 

a grasp with the property that any external wrench to the object can be balanced 

by forces and moments applied at the grasp points, yet in [MI], [MU] and [SE] 

force closed grasp was used for a grasp satisfying the same criteria. In [SE] a 

form closed grasp was defined by first considering paths (parametrized by time) 

an object could take in SE(3), the configuration space of the object. Then a point 

contact of a finger on an object was assumed to stop the object from moving along 

the contact normal towards the finger. Then a body was said to be in a form 

closed grasp if the space of all feasible velocities it can acquire is null, that is 

consists of the zero velocity only. 

In this thesis we study the problem of immobilization of objects, an important 
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aspect of grasping. We assume a finger is a point where the finger touches the 

object. The fingers of a human or robot hand are able to get a steady hold on 

a body if they touch the body at a good set of points. The number of fingers 

(or points on the body) required for this purpose depends on the shape of the 

body. The set of points of contact on the body at which the fingers hold on the 

body in such a way that the body cannot slip from or wriggle in the grasp is 

called an immobilizing set of the body. Since a set obtained by adding points to 

an immobilizing set is also an immobilizing set, it is enough to consider minimal 

such sets. Immobilization problems were introduced by Kuperberg [KU] and 

were motivated by grasping problems in robotics, [MK1] and [MK2]. Their only 

interest is in the geometric aspects only and no account of force, torque, moment, 

etc. are considered. 

1.2 Thesis outline 

The last section of this chapter introduces general preliminary material that will 

be needed later in the thesis. It consists of standard definitions and theorems in 

mathematics. 

In Chapter 2 a study of immobilization of planar objects is undertaken. A key 

observation in this chapter is the idea that an orthogonal line to an edge of a 

polygonal object divides the plane into two half planes each of whose points have 

different properties. This is given in the form of Lemma 2.4 and is used to obtain 

different proofs of results by Czyzowicz, Stojmenovic and Urrutia [Cl]. 

Chapter 3 studies the assignment of Plucker coordinates to lines in space. The 

two types of planes that lie on a Klein quadric are analysed and the geometrical 

configurations of four lines having linearly dependent Plucker coordinates are 

obtained. 

In Chapter 4 we undertake the problem of finding the criteria that immobilizing 

sets of a tetrahedron fulfil. For each set of four points, one in the interior of 

each face of a tetrahedron, one defines a 3 x 3 matrix A. It is found out that 

the four points immobilize the tetrahedron if and only if A is symmetric and has 

a property we call almost positive definite. The symmetry of A is referred to 

as the symmetry condition. The positions of the four points in the faces of the 

tetrahedron can be encoded using a 4 x 4 stochastic matrix. It turns out that if the 

points are interior to their faces the matrix A is almost positive definite whenever 

it is symmetric. The approach given here is different from that of Bracho, Fetter, 

Mayer and Montejano [BR] and generalizes to other dimensions. An example of 
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this is an explicit algebraic condition on a set of three points to immobilize a 

triangle. 

Chapter 5 uses the criteria developed in Chapter 4 to find immobilizing points of 

the tetrahedron, the most natural of these being the set of centroids of the faces of 

the tetrahedron. It is seen that any given tetrahedron has many immobilizing sets. 

It is also shown that if two of the points in the faces of a tetrahedron are fixed, 

the remaining two points that complete an immobilizing set are linearly related 

and, for each face, lie on a line whose direction is independent of the choice of 

fixed points. Vector algebra is employed to obtain the five dimensional space of 

solutions of the symmetry condition and a method of classifying immobilizing 

sets is proposed. 

In the last chapter generalizations to higher dimensions are made of some of the 

results in chapters 4 and 5. In particular, it is shown that the set of centroids of 

an n simplex, n > 2, immobilizes the simplex and a method of obtaining other 

solutions of the symmetry condition from one solution is presented. The situation 

in higher dimensions is different because the symmetry of A does not imply that 

A is almost positive definite, an explicit example is given in dimension 4. 

1.3 Preliminaries 

1.3.1 Euclidean and projective spaces 

The objects we seek to immobilize will be assumed to be subsets of a Euclidean 

space. To define coordinates of a line it will be assumed that the line lies in a 

real Projective space. 

Definition 1.1 A Euclidean vector space E is a finite dimensional vector space 

over ], together with a positive definite symmetric and bilinear form 0 (i.e. 

E x E - TR is symmetric and bilinear, and çb(x, x) > 0 for all x E E, 

x 54 0). We write q(x, y) = (x, y) and call this number the scalar product of x 

and y. 

The standard example of a Euclidean vector space is E = R, with 

,x), (yi,... ,y)) = 	Xjj. 



Definition 1.2 Let E be a vector space over the field K. The projective space 

derived from E, denoted P(E), is the quotient of E\O by the equivalence relation 

y if and only if y = A x for some non-zero A E K'. A projective space is 

called real if K = R. If E = R' and K = R, then the projective space derived 

from E is called the real projective space of dimension n or the real projective 

n-space, and is denoted IP' 

P will be considered as the projective extension of IRE. A point in IP'is denoted 

by an ordered set of n + 1 real numbers called the homogeneous coordinates of 

the point. Let x E IP' be given by (x0 ,... , x,). If x0 	0 then x represents the 

point ( 1 ,..., 	IR ) e 	and if x0  = 0 then x represents the point at infinity in 

the direction of the line spanned by the non-zero vector (x 1 ,. . . , 

1.3.2 Rigid body motion 

Since a body is said to be immobilized if it cannot execute any rigid motions, the 

concept of immobilization of an object is intimately related to the rigid motions 

the object is capable of. For this reason we briefly review the theory of rigid body 

motion. 

The motion of a rigid body is more complicated than that of a particle. The 

motion of a particle can be described by giving the location of the particle at 

each instant of time relative to an inertial Cartesian coordinate frame. However 

a rigid body motion is a displacement of all particles (making up the object) such 

that the distance between any two particles remains fixed and the orientation 

of any set of particles is preserved at all times. Thus a mapping g : - 1R' 

describes a rigid body motion/transformation if it satisfies the properties: 

P1: g(X) - g(Y)II = lix - YD for all points X, Y E R'. 

. P2: Orientation is preserved. 

Translations and rotations are good examples of rigid body transformations. The 

set of all translations R -* Rn is a Lie group which will be denoted by T, it 

is isomorphic to the additive group TR. Let x' = (xi,. . . , X' ) be the effect of a 

rotation g (about the origin) on the vector x = (x 1 ,... , x,) and (g2,) the matrix 

of g. Then x = >1k gikxk. Since a rotation does not alter lengths or angles it 

leaves the scalar product of any two vectors invariant. Thus if y' = 

X 	= 	XkYk X' Y = 	ii: 9ikXk . 

	

= 	gjkgi1xky1 

i,k,1 
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Equating coefficients of XkYI  we obtain Ei gikgil = ökl, i.e. [9tgJ1 = 6k1 hence 

g is an orthogonal matrix. Rotations preserve orientation therefore the matrix 

(9ik) has positive determinant. The set of all rigid motions RTh - RL fixing the 

origin is a Lie group denoted 80(n) and called the rotation group of IR'. It can 

be identified with the group of matrices: 

S0(n) = {R E GL(n,R) : R R T  I,detR = + i}. 

Theorem 1.3 Let R E S0(n). There exists a real skew symmetric matrix S 

such that 
R = I + S+IS2 +iS3 +...+Sn+... 

2! 	3! 	n! 
where In  is the identity n x n matrix. 

Proof See [PR]. 

Remarks 

The set of all rigid body motions R'2  -* R' is a Lie group called the proper 

Euclidean group or group of proper Euclidean motions, and is denoted SE(n). 

Let g e SE(n), then the action of g can be expressed as g(X) = R(X) + t where 

R e 80(n) and t is a vector in R'2 . The product of two such transformations 

= (R 1 , t 1 ) and 92 = (R2, t2) where 

gi (X) = R 1 (X) + ti, 92 (X) = R2(X)+t2 

is 

92 (R1 (X)+ti) = R2 (R 1 (X)+t 1 )+t2 

= R2 R 1 (X) + R 2 (t 1 ) + t2  

i.e. 	(R 2 ,t 2 )(R 1 ,t 1 ) = ( R2 R 1 ,R2 (t 1 ) + t2 ). 	Therefore one can write 

SE(n) = 80(n) x TR'. The group SE(n) can be identified with the space of 

n + 1 by n + 1 matrices of the form 

R  
0 1 

Theorem 1.4 The dimension of SE(n) is 2  (n + 1). 

Theorem 1.5 (Chasles) Every rigid motion in three dimensions, with the ex-

ception of pure translations, can be realized by a rotation about an axis combined 

with a translation parallel to that axis. 

Proof See [SE] 
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1.3.3 Divergence theorem 

Corollaries of the following Theorem will be needed in Chapters 4 and 5. 

Theorem 1.6 (Divergence Theorem) Let V be the volume bounded by a closed 

surface S and A be a vector function of position with continuous derivatives, then 

f RV V - AdV = ffs A - ndS = f I A - dS 

where n is the positive (outward) normal to S. 

Proof See [SF1]. 

Corollary 1.7 ffndS = 0 for any closed surface S. 

Proof 
Let A = 1C where C is a constant vector. Then by the Divergence Theorem 

IRV V (1C)dV = ffs 1C 

that is 	
C fff V1dV = C ff lndS. 

Since Vi = 0 and C is an arbitrary constant vector, 

0 = A n dS. 

Corollary 1.8 Let S be a closed surface and r the position vector of an arbitrary 

point in S, then ffsr x ndS = 0. 

Proof 
Let A = r x C where C is a constant vector. Then by the Divergence Theorem 

fffv V. (r x C)dV = f I (r x C) . 

that is 	 C.fff V x rdV= C.ff nx rdS. 

Since V x r = 0 and C is an arbitrary constant vector, 

o=ffnxrdS. 



1.3.4 Hodge star operator 

The aim of this section is to give a brief introduction of the Hodge star operator 

* : AP R n -p RTh. This will be needed in Sections 4.4 and 6.2. Most of the 

material in this section comes from [F] and [KO]. 

Definition 1.9 The space of p-vectors on R, denoted 	is the space con- 

sisting of all sums E a(x i  A ... Ax2 ), where ai  are scalars and xij E R, subject 

to the following constraints: 

For each i x1  A ... (Ax2  + )3y) A 	A ... A x, 

= A(x i  A••• A x i  A x 1  A ... A x) + fl(xi A ... A yi  A x 1  A ... A xv ), 

i.e. x 1  A 	A x is linear in each variable, 

x 1  A••• A x = 0 if for some pair of indices i j, x 2  = 

x 1 	A x changes sign if any two x 2  are interchanged. 

One calls x 1  A 	A x the exterior product of the vectors x 1 ,... , x. If e 1 ,. . . , e7  

denotes the standard unit basis of R  then the set 

{eA 1 A ... AeA:1Al<<AP <n} 

is a basis of A W. Thus the dimension of A W 1  is (). 

Lemma 1.10 An inner product ( , ) on R' defines an inner product ( ) on 

APR' as follows: 

(X 1 AAXP IY i AAYP ) = det((x,y)), 

where x 1  A ... A x, Yi  A ... A y, EAP R. 

Proof See [ML]. 

Remarks 

Suppose an inner product is defined on AP Rn then the length of vectors in AP  T1 

is defined. The magnitude Dxi A- . . A x 11 of the p-vector x 1  A ... A x is the volume 

of the 'parallelepiped' spanned by x 1 ,.. . , x. If e r ,. .. , en denotes the standard 

orthonormal basis of Rn then the set 

{eA 1 A ... AeA :1<A 1 < ... < A<n} 

is an orthonormal basis of A W1. 



Definition 1.11 The volume elements of R' are the non-zero elements of the 

1-dimensional space A n R. Two volume elements w 1  and w2  are said to be equiv-

alent if there exists a c> 0 such that w1  = cw2 . An equivalence class [w] of volume 

elements on Rn is called an orientation on R. 

Suppose Rn is given the standard inner product, a fixed orientation and e 1 ,... , en 

is an orthonormal basis of WL.  Then an orthonormal basis e 1  A A e n  of K R 

is determined. Fix z E AP W. The map -p K RTh given by x z A x 

is a linear transformation into R. This can be expressed as 

zAx=f(x) e 1 A ... Ae 

where f is a linear functional on 	R. Therefore there exists a unique vector 

*z E 	such that 

(*zx)e 1 A ... Ae=zAx. 

Thus there exists a linear map * 	-+ 	called the Hodge star 

operator defined by * : z 	*z. 

Theorem 1.12 The operator* is an isomorphism. 

Proof 
Since * is a linear map, is onto (and dim 	= () = () = dim 
* is an isomorphism of vector spaces. 

10 



Chapter 2 

Immobilization in a plane 

2.1 Introduction 

In this chapter the problem of immobilizing objects in the plane is studied, focus-

ing on polygons with particular emphasis on triangles. Czyzowicz, Stojmenovic 

and Urrutia [Cl] found that three non-vertex points immobilize a triangle if the 

points lie in different edges of the triangle and the normal lines at them are con-

current. The proof given by these authors, in part, analyses the small distances 

and small angles corresponding to small rigid motions. The proof also considers 

the case when the normal lines meet inside the triangle separately from when 

they meet outside the triangle. In this chapter a different proof is given which 

appeals to two simple lemmas and does away with the need to locate the posi-

tion of the point of concurrency of the normal lines. Hence a simpler proof of 

the theorem explaining the nature of immobilizing points of a convex polygon 

has been obtained. At the end of the chapter triples of points that immobilize 

general polygonal objects are described. 

Definition 2.1 A rigid motion g E SE(n) is said to be a small rigid motion if 

it lies in a small neighbourhood of the identity in SE(m). 

Definition 2.2 Let P be a polygon, not necessarily convex. A set of points S in 

the boundary of P, is said to immobilize P if any small rigid motion of P in the 

plane of P forces at least one point of S to penetrate the interior of P. 

Alternatively, a set S immobilizes P if there exists a neighbourhood U of the 

identity in SE(2) such that for every g E U different from the identity, g(S) 

intersects the interior of P (or equivalently g'(P) intersects 5). We use this 

latter notion of immobilization in Lemma 2.4 and following. 

Clearly, the circular disk does not have any immobilizing sets since holding the 

disk at any number of points on its boundary leaves the disk still free to rotate 
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about its centre. From the definition of an immobilizing set, one's focus should 

be on isometries of the plane close to the identity, that is, small translations and 

small rotations. It is observed that a set of points S immobilizes P if and only if, 

when P is held by point fingers at S, no translation or rotation of P is possible. 

2.2 The case of a triangle 

Lemma 2.3 Let T be a triangle, T is immobilized with respect to translations by 

three points in its edges if and only if the points lie in different edges. 

The proof of the lemma is obvious. 

+ ++ 
+ 	

+ 
+ 

NXe + + + 	 N 

- 	- 	- 	- I , 

Figure 2.1: The half-planes defined by orthogonal line Nx at point X in the interior of 

an edge of a polygon. 

Lemma 2.4 Let AB represent a line segment on the boundary of a polygon P 

(see Figure 2. 1). Let X be any point in the interior of AB and let Ux C P be a 

closed neighbourhood within P of the point X, sufficiently small that the interior 

of Ux  lies entirely to one side of the line containing the segment AB. This is 

illustrated by the shaded region above. Let Nx  denote the line orthogonal to AB 

at X. Then N X  divides the plane into two open half-planes. For each point Q in 

the region marked + (-), all sufficiently small anti-clockwise (clockwise) rotations 

g of P about Q are such that g(Ox ) does not meet AB. 

Proof The statement of the lemma is easy to verify. 

Note: Let N 1  (N,,) be the semi-infinite part of Nx  starting at X and pointing 

into (away from) Ux.  Then if Q X is a point of Nxi  (Nx6 ), any (no) sufficiently 

small rotation g of P about Q is such that g(X) penetrates the interior of Ux C P. 

Theorem 2.5 Three non-vertex points X, Y and Z immobilize a triangle T if 

and only if the orthogonal lines to the edges of T at X, Y and Z are concurrent. 
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Proof 

Suppose X, Y and Z immobilize T. Then no translation of T is possible when 

T is held at X, Y and Z, so by Lemma 2.3, X, Y and Z lie in different edges 

of T. Suppose the orthogonal lines N, N, N z  do not meet at a single point. 

Then N, Ny  and Nz  partition the plane into seven distinct regions and for each 

of the two half-planes on each side of lines N, Ny  and Nz, a + or - sign can 

be attached depending on which side of the line contains points Q about which 

T may be rotated through some small anti-clockwise (+) or clockwise (-) angle 

without the given points X, Y and Z penetrating the edge of T containing the 

point. If this is done in order for N, N, N, a triple of signs (+ and/or -) is 

then attached to each of the seven regions (see Figure 2.2). It can be seen that 

Figure 2.2: The seven regions of the plane defined by three non-concurrent lines at X, Y 

and Z. 

the region at the centre, i. e. the triangle C determined by these orthogonal lines 

is marked +++ (in this case, but it could have been - - -), which means that for 

any point Q in G, there is a small anti-clockwise rotation about Q through which 

the triangle T may be rotated without any of X, Y or Z penetrating the interior 

of the triangle T. 

Conversely, suppose the orthogonal lines N, Ny  and NZ  intersect at a point 0. 

X, Y and Z must lie in different edges of T for this to happen. The lines N, 

Ny  and NZ  define six distinct regions of the plane. Applying Lemma 2.4 to each 

of the half-planes defined by the lines N, Ny  and NZ  in that order, we see that 

none of the six regions is labelled with a - - - or +++. Hence no rotation of T in 

the plane is possible without one of X, Y and Z penetrating one of the edges of 

T. In addition, by Lemma 2.3, the points X, Y and Z immobilize T with respect 

to translations. Therefore X, Y and Z immobilize T. 

Corollary 2.6 Let P be a plane convex figure whose boundary oP is a smooth 

curve. Suppose points X, Y and Z in OP immobilize P, then the tangents to OP 
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at X, Y and Z form a triangle which contains P and the normals to 0P at X, 

Y and Z are concurrent. 

It is worth pointing out that the following statement [a corollary from [C2] page 

186], 

Given two points X and Y on two different sides of a triangle T, it 

might not be possible to find a third point Z on the remaining side of T 

such that X, Y and Z immobilize T. This happens only for obtuse T. 

is correct if the last sentence is omitted. Figure 2.3 shows a right angled triangle 

where point Z cannot be found such that the points X, Y and Z immobilize the 

triangle. 

X 	
Nx 

INy  

Figure 2.3: Two points of a right angled triangle that are not a subset of any immobilizing 

set of the triangle having three points. 

2.3 The case of a polygon 

Although some figures like the square require at least four points, many planar 

figures can be immobilized using three points. This section studies how to im-

mobilize a polygonal object using three non-vertex points. In the triangle case 

immobilization with respect to translations was achieved by the requirement that 

no two of the three points should lie in one edge. Clearly this does not suffice 

where more than three edges are involved. To ensure that no translation is possi-

ble in the case of a polygon, in addition to the above requirement, no two points 

should lie in parallel edges. In the convex case we have the following theorem. 

Theorem 2.7 A convex polygon P can be immobilized by three non-vertex points 

X, Y and Z if and only if each of the points X, Y and Z belongs to a different 

edge of the polygon, the three lines containing the edges of P that contain the 

points X, Y and Z determine a triangle T that encloses P and the orthogonal 

lines N, Ny  and NZ  at X, Y and Z to the respective edges of P meet in a 

common point. 
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Proof 

If X, Y and Z do not belong to different edges of P, then they belong to one or 

two edges of P. Either way, P can be translated along one or both of these edges. 

See Figure 2.4(a). Now suppose P is convex and X, Y and Z are in different 

Figure 2.4: Three points of a polygon whose extended edges do not form a triangle that 

encloses the polygon. 

edges u, v and w of P and the triangle determined by extended u, v and w does 

not enclose P. Then, because P is convex, that triangle is completely outside P, 

see Figure 2.4(b). P can then be translated along the two outer edges. If, on the 

other hand, X, Y and Z belong to different edges of P, the edges containing X, 

Y and Z when extended determine a triangle T that contains P, and the lines 

Nx, N y  and Nz  do not meet in a common point, then, by Theorem 2.5, X, Y 

and Z do not immobilize T, hence do not immobilize P. 

Conversely, suppose each of X, Y and Z belongs to a different edge of P, the three 

lines containing the edges of P that contain X, Y and Z determine a triangle T, 

P is enclosed in T and the orthogonal lines Nx, N, Nz meet in a common point. 

Then focusing on the triangle T, the conditions of Theorem 2.5 are satisfied, hence 

X, Y and Z immobilize T, and hence immobilize P. 

Corollary 2.8 Let X, Y and Z be three non-vertex points of a polygon P, not 

necessarily convex, and N, N y  and Nz  orthogonal lines at X, Y and Z to the 

edges of P that contain X, Y and Z respectively. Then if N, Ny  and NZ  do 

not meet in a common point, X, Y and Z do not immobilize P. 

Next, the situation where three non-vertex points immobilize a non-convex poly-

gon is considered. From Corollary 2.8, the concurrency of the orthogonal lines is 

still necessary but the lines containing the edges containing the three points need 

not define a triangle, and even when they do, that triangle need not enclose the 

polygon for the points to immobilize the polygon. 
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Theorem 2.9 Let P be a polygon and X, Y and Z be three non-vertex points 

of P belonging to different edges of P, no two of which are parallel. Let E, E 

and Ez  be the lines that contain the edges of P that contain points X, Y and Z 

respectively. Suppose that the orthogonal lines N, N y  and Nz  to the lines E, 

Ey  and Ez at points X, Y and Z respectively are concurrent. Then: 

there exist ten ways in which lines E, E y  and Ez  define a triangle; for 

three of these, the points X, Y and Z immobilize P. 

there exist six ways in which lines E, E y  and Ez are concurrent; for two 

of these, the points X, Y and Z immobilize P. 

Proof 

Suppose the orthogonal lines N, Ny and NZ  are concurrent. The lines E, E 

and Ez either define a triangle or are concurrent. 

(a) Suppose the lines Ex,  E, Ez define a triangle. Let orthogonal line NQ at 

point Q and point Q be represented by a line with a marked point. Consider the 

constellation of three concurrent lines, each line with a marked point different 

from the point of concurrency. The constellation represents the three concurrent 

diagonal lines N, Ny  and N. There are only two essentially different cases as 

shown in Figure 2.5. Now consider a segment of Ex  at X. The points of P in 

Figure 2.5: The constellations representing three concurrent lines each having a marked 

point different from the point of concurrency. 

the immediate neighbourhood of X lie on one side of this segment (or on one 

side of Fix ). Using a shading to represent the side of Ex  that contains points 

of P in the immediate neighbourhood of X, six figures are obtained for each 

of the constellations in Figure 2.5. However two pairs of these are the same 

configuration, resulting in ten configurations presented in Figure 2.6(a) to (j). In 

Figure 2.6 triples of signs have been attached to each of the six regions defined by 

the orthogonal lines according to the principle of Lemma 2.4. It is observed that 

Figures 2.6(d), 2.6(g) and 2.6(j) have no subregion marked - - - nor +++. This 

means that with these configurations there is no region in the plane at which a 

rotation of P can be effected without any of X, Y or Z penetrating P through 

their edges. So these immobilize P with respect to rotations. In Figure 2.6(a) 
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(a) 	 (b) 	 (c) 

(d) 	 (e) 	 CD 

 

7 

FA 

(g) 
(h) 	 (i) 

(j) 

Figure 2.6: The signed regions of the ten different configurations that represent the case 

when the lines E, Ey  and Ez define a triangle. 

none of the six regions is marked with - - - or +++ but any rotation about the 

point of concurrency of lines Nx, Ny  and NZ  does not lead to any of the points 

X, Y, Z penetrating their respective edges. 

It remains to show that the points X, Y, Z of Figure 2.6(d), 2.6(g) and 2.6(j) 

immobilize P with respect to translations. For each figure first consider the line 

Ex  containing the edge containing point X. Shade out the open half-plane with 

boundary Ex  that does not contain interior points in the immediate neighbour- 
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hood of X. The shading represents all the planar translations of the polygon P 

that would cause point X to penetrate P through the edge in E. The unshaded 

half-plane represents the directions in which P can be translated without point 

X penetrating P through the edge. Doing this for each of the three lines E, E 

and Ez  in each figure, it is seen that the entire plane is shaded in the Figures 

2.6(g) and 2.6(j). In Figure 2.6(d) the triangle defined by E, Ey  and Ez is left 

unshaded but encloses a part of the polygon P. Just like in the convex case, this 

part, and hence the whole polygon, is immobilized with respect to translations 

by the points X, Y and Z. This means that the points X, Y and Z of Figures 

2.6(d), 2.6(g) and 2.6(j), in addition to immobilizing P with respect to rotations, 

immobilize P with respect to translations. Therefore P is immobilized by the 

points X, Y and Z in these configurations. 

(b) Suppose that the lines E, Ey  and Ez  are concurrent. The concurrent or- 

thogonal lines N, Ny  and NZ  and concurrent E, Ey  and Ez  are represented 

by the constellation in Figure 2.7. Consider a segment of Ex  at X. The points 

Figure 2.7: A constellation representing three concurrent lines having concurrent orthog-

onal lines. 

of P in the immediate neighbourhood of X lie on one side of this segment. Us-

ing a shading to represent the side of this segment that contains points of P 

in the immediate neighbourhood of X six different configurations are obtained 

(see Figure 2.8 (a) to (f)). Attach triples of signs to each subregion in each of 

the figures as was done earlier. It is seen that the points X, Y and Z of Figures 

2.8(c) and 2.8(e) immobilize P with respect to rotations. 

As was done in part (a) of the proof, for each of the Figures 2.8(c) and 2.8(e), 

shade out, for each point, the half-planes that represent planar translations of P 

that would cause the point to penetrate the polygon. It is seen that the entire 

plane is shaded in the configuration of both figures. Therefore the points X, Y 

and Z of Figures 2.8(c) and 2.8(e) immobilize P. 
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(e) (IJ 

Figure 2.8: The signed regions of the six different configurations that represent the case 

when Ex, Ey and Ez are concurrent. 

2.4 Conclusion 

Let P be a general polygon, not necessarily convex and X, Y and Z three non-

vertex points of P belonging to different edges, no two of which are parallel. Let 

E, Ey  and Ez  be the lines containing the edges containing the points X, Y and 

Z, N, N y  and Nz  be the orthogonal lines to E, Ey  and EZ  at X, Y and Z 

respectively and C be the set of configurations of Ex,  Ey  and Ez for concurrent 

N, Ny  and Nz  in Figures 2.6(d), 2.6(g), 2.6(j), 2.8(c) and 2.8(e). Then the 

points X, Y and Z immobilize a polygon if and only if the configuration of the 

lines Ex, Ey  and Ez  containing their edges and the orthogonal lines N, N 

and Nz  at them is one of the configurations in C. 

In [C2] to each edge ex of P containing point X was assigned the halfplane 
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containing points from the interior of P in the immediate neighbourhood of X 

and whose boundary contains the edge ex. The edges ex, e y  and ez were then 

said to form a triangular triple of P if the intersection of the three halfplanes 

assigned to them is a triangle. It was then claimed in Theorem 3 on page 187 of 

[C2] that 

A polygon P can be immobilized by three points X, Y and Z different 

from the vertices of P if and only if 

. the orthogonals at the points X, Y and Z to its respective edges 

ex, e y  and ez meet at a common point, and 

• ex, e y  and ez form a triangular triple of P. 

From Theorem 2.9 this is clearly wrong, as the configuration in Figure 2.6(g), for 

example, shows. 
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Chapter 3 

Line geometry 

3.1 Introduction 

In Chapter 2 it was shown that a necessary and sufficient condition for a set 

of three points in the edges of a triangle to immobilize the triangle is that the 

normal lines to the edges at these points should be concurrent. This means that 

the search for a set of immobilizing points of a triangle can be construed as a search 

for three concurrent lines orthogonal to the edges of a triangle. Similarly, it is to 

be expected that the normal lines at the immobilizing points of a 3-dimensional 

simplex will form a special type of configuration. It is therefore necessary to 

study the relevant geometry of lines in space. The first problem encountered is 

assigning coordinates to lines in space. The discovery of these coordinates was 

attributed to Cayley in [BA] (see pg 56) and to Plucker in [GR] (see pg 461). 

We begin with the simple task of assigning coordinates to lines in P 2 . 

3.2 Line coordinates in J)2 

Every linear homogeneous equation u0X 0  + u1 X 1  + u2 X2 = 0 in 1P2 , where 

u0 , u1 , u2  are not all zero, represents a line in 1P 2 , and conversely. The ho-

mogeneous line coordinates of a line having equation u0X 0  + u1X 1  + u2X 2  = 0 

are (uo ,ui ,u2 ). A point X = (X0 ,X1 ,X2 ) in P2  lies on the line u = (u0 ,u1 ,u2 ) if 

and only if u 0X 0  + u1 X 1  + u2X 2  = 0. 

3.3 Plucker coordinates of a line in TP 3  

In P3  every linear homogeneous equation u0X 0  + u1 X 1  + u2X 2  + u3X 3  = 0, where 

u0 , u1 , u2 , u3  are not all zero, represents a plane, and conversely. The homo- 

geneous coordinates of a plane having equation u0X 0  + u1 X 1  + u2X 2  + u3X 3  = 0 
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are (u0 , U1, U2, u3 ). A point X = (X0 , X1 , X2 , X3 ) in 1P3  lies on the plane 

('uo, u1 , U2, u3 ) if and only if u0X 0  + u1 X 1  + u2X 2  + u3X 3  = 0. 

The equation of a straight line going through the points X = (X 0 , Xi , X2 , X3 ) 

and Y = (Y0 , Y1 , Y2 , Y3 ) in 1P3  is given by 

x3 U0  - U3x0  - x3 U1  - U3x1  - x3 U2  - U3x2  
x3y0 —Y 3x0  - x3y1—Y3x1 - x3Y2 —y3x2 ' 

where U0 , ... , U3  are the coordinates of an arbitrary point on the line. Clearly 

the coordinates of such a line cannot be simply read off its equation like that of a 

line in 1P2 . The coordinates of a line in TP 3  are obtained by introducing redundant 

coordinates which are related by a quadratic relation. These are called Plucker 

coordinates and are defined from two equivalent points of view. The two dual 

sets of coordinates obtained were called Plucker ray coordinates and Plucker axis 

coordinates in [GR]. 

3.3.1 Plucker ray coordinates 

Let X = (Xo , . . . , X3 ), Y = (Yo ,.. . , Y) be any two distinct points on the line 

in 1P3 . Consider the set of coordinates defined by 

pij 	0i4j3. 

Not all Pij  can be zero since X Y but Pij = —pji for all i, j. The six numbers 

Poi, P02, P03, P23, P31, P12 constitute a set of homogeneous coordinates for £. 

Replacing X and Y with U = A 11 X + A l2Y and V = A21X + A 22Y where U V 

are two new points on £, the coordinates of £ are replaced by 

U V - U Vi  = (A 11 A22  - 

where A 11 A22 —) 12 ) 21  0 since U V. So the homogeneous coordinates {p 3 } are 

unchanged. The numbers Poi, P02, P03, P12, P13, P23 are the Pl'äcker ray coordinates 

of the line. 

3.3.2 Plucker axis coordinates 

A line in 1P3  is also uniquely determined by two intersecting planes. If (uo,.. . , u3 ) 

and (wo ,. . . , w 3 ) are the coordinates of different planes x and b that meet in the 

line £, not all the numbers 

q 3 =uw3 —u 3w, 0<ij3, 

are zero and qij = —q32 . The six numbers q01 , q02, q03, q3,  q3 , q12 are the Plucker 

axis coordinates of £. Any two distinct planes through £ determine coordinates 

proportional to qjj . 
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Proposition 3.1 The Pl'ücker ray coordinates and the Plucker axis coordinates 

of a line are connected by the equations 

Poi : P02 P03 : P23 : P31 : P12 = q23 : q3 1  : q12 : qoi : q0 : q03. 	(3.1) 

Proof 

Two points that determine a line £ lie on any plane that contains £. Therefore 

if X = (Xo , . . . , X3), Y = (Y0 ,. .. , Y3 ) are two points that determine £ and 

U = (uo ,. .. , u3 ), w = (WO) . , w3 ) are two planes that meet in £, then 

u0X 0  + u1 X 1  + u2X 2  + u3X 3  = 0 (3.2) 

u0Y0  + u 1 Y1  + u2 Y2  + u3 Y3  = 0 (3.3) 

w0X0  + w 1X1  + w2X2  + w3X3  = 0 (3.4) 

w0Y0  + w1 Y1  + w2 Y2  + w3Y3  = 0 (3.5) 

On multiplying Equations (3.2) and (3.4) by w0  and u0  respectively and subtract- 

ing the two outcomes we obtain 

q01X 1  + q02X 2  + q03X 3  = 0. 	 (3.6) 

Doing the same thing with Equations (3.3) and (3.5) we obtain 

q01 Y1  + q02Y2  + q03Y3  = 0. 	 (3.7) 

Now solve for the ratio of the q's in Equations (3.6) and (3.7) to obtain 

q02: q03 = X2Y3  - X3Y2  X3Y1  - X1 Y3  : X1Y2  - X2Y1  

= P23 P31 : P12W 

To get the remaining part of (3.1), multiply (3.2) and (3.3) by Y0  and X0  respec- 

tively and subtract the two outcomes to obtain 

P01 u 1  +po2u2 +7303tt3 = 0. 	 (3.8) 

Do the same thing with Equations (3.4) and (3.5) to obtain 

7301W1 + J02W2 + p03w3  = 0. 	 (3.9) 

Solving for the ratio of the p's in Equations (3.8) and (3.9) we obtain 

Poi : P02 : P03 = u2 w3  - u3 w2  : u3w1  - u1 w3  : uw2  - u2w 1  

: q31  q1 2. 

For the rest of this thesis Plucker coordinates of a line will mean Plucker ray 

coordinates. 
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Lemma 3.2 The Plucker coordinates of a line £ in R 3  going through the point 

P with direction vector n are (n, P x n). 

Proof 

Let P = (Pr , Ps,,, P) and n = (ni , n, ni). As an element of 1P3 , the line £ 

goes through the points X = (1, P,, Pt,, P)  and Y = (0, fix, ni,,, ni ). Therefore its 

Plucker coordinates are 

(rt,n )  nz , Py fiz - Pz fi y , Pzfix - Px flz, Pxfly - Pn) = (n, P x n). 

3.4 The Klein quadric 

Proposition 3.3 There is a one to one correspondence between the lines of 1P 3  

and the points of the quadric eO3 + e1e4 + 665 = 0 in IF5 . 

Proof 
First, we show that the Plucker coordinates of any line satisfy the relation 

P01P23 + P02P31 + P03P12 = 0. 

Suppose X = (X0 ,... , X3 ) and Y = (1's ,. .. , 1"3 ) are two distinct points on the 

line. Then the determinant E of the matrix 

x0 x 1 x2 x3  
Y0 Y1 Y2 Y3  
x0 x 1 x2 x3  
y0 Y1 Y2 Y3  

is zero. Expanding using 2 x 2 minors yields 

(XY - X1Y0)(X2Y3 - X3Y2) - (X 0Y2  - X 2 Y0 ) (X 1 Y3  - X 3 Y1 ) 

+ (X0Y3 - X3Y0)(X1Y2 - X 2Y1 ) + (X 1 Y2  - X 2Y1 ) (X 0Y3  - X3 Y0 ) 

- (X 1 Y3  - X3Y1)(X0Y2 - X 2Y0) + (X2Y3 - X3Y2)(X0Y1 - X1 Y0 ) 

= 2 (Po1P23  + P02P31 + P03P12). 

Conversely, if = ( co, ,. . . , 	
E IF5  with 	4 0 satisfies 63 + e14 + e25 = 0, 

set X = (, 0, 	and Y = (0, 6, i, 2). The Plucker coordinates of the 

line going through the points X and Y are 

(oo eoi, eOe2, 	25 - ele4, Oe4, oe5) 

= (oo eoi, Oe2, 	eO4, eoe5) 

= 	(,... 	5). 
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For the following cases the given points X and Y define the appropriate line: 

j = 0, i 	0; X = (0,0, —el, — e2), Y 	(1 	0 —a". 
1i  

	

, 	, 
 

eo=0,e20; X=(0,0,—e1,-2),Y(1 -. 	 0' 

eO = l = 2 = o,e3 0 ; x=(o, —e4,e3,0),Y=(0, — , 0 , 1 ) 

eo=1=e2= 0,4o; X=(0,—e4 ,e3 ,0),Y=(0,0—fl / 

(v)eo=el=2=0,e5O; X=(010—'Y=(0,0,e5,—e4) 5 j 

Hence each satisfying O3 + e14 + e25 = 0 corresponds to a line in 1P 3  whose 

Plucker coordinates poi,••• ,P12 are ,. .. , ~5. This correspondence is one-to-one. 

The equation 63 + e1e4 + 6e5 = 0 determines a quadric Q in 1P5  whose matrix 

of coefficients is 
000100 
000010 
000001 
100000 
010000 
001000 

Since this matrix has determinant —1 quadric Q is nonsingular. This quadric is 

known as the Klein quadric. 

Corollary 3.4 The geometry in which the line is the fundamental element is four 

dimensional. 

Definition 3.5 Two points = (eo,. .. , s) and 97 = (no,. .. , 775) of p5  are said 

to be conjugate with respect to the Klein quadric if 

6773+e1 774+e2775+3770+4771 +5772 = 0. 

Proposition 3.6 The line £ with Plucker coordinates poi, . . , P12 and line £' hav-

ing Plicker coordinates Pi'•• ., P'12 intersect if and only if 

(e, £') := P01P3 + P02P1 + P03P2 + P23P'01 + P31]02 + P12P3 = 0. 

Proof 

Suppose X, Y are points that determine the line £ and X', Y' are points that 

determine the line £'. The lines £ and £' intersect if and only if the four points 

X, Y, X' and Y' lie in one plane. That is, if and only if 

x0 x1 x2 x3  
YO Y1 Y2 Y3 — 0 
XX XX!3 - 

yyyy3,  

but this determinant equals (, £'). 

Therefore two lines in p3  intersect if and only if their corresponding points on Q 

are conjugate. 
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Proposition 3.7 The Klein quadric Q contains two families of 2-planes. 

The proof comes from [SE] but corrections have been made to it. 

Proof 

Let the coordinates of a point = (co,. .. , 	
e IP be given by = (u, v) where 

u = (, , ) and v = (, 	On performing the change of coordinates: 

e0=x0+x3 

1 =x1 +x4 	4 =x1 —x4  

= X2  + X5 	= X2  - X5  

the equation of Q becomes 

xo2+x+x2— P2_X24 _ 
' Ar52 

2 	'3  

Let M be a 3 x 3 real matrix. Consider the points in TP 5  satisfying the three 

homogeneous linear equations X = MX' where 

fXo \ 	fx3  
X = ( X1 	and X' = ( X4 

\X 2 J 	\X5  

The points satisfying these equations lie in a 2-plane, the graph' of the matrix 

M. If the matrix M is orthogonal then the points also lie on the Klein quadric, 

since X = MX' implies 

XX = MX ,  •MX ,  

= XtMtMX/ 

= XFtX/ 

= 

and X . X = X' . X' is the new equation for the Klein quadric after undergoing 

the above change of coordinates. Suppose 

/ m 11  m 12  

M = ( 
 

M21 m 22  m 23  
M31 m32  7fl33 

and X = MX' is a plane on Q. Then 

m 11X 3  + m12X 4  + m13X 5  = X o , 

m 21 X 3  + rn22X 4  + m23X 5  = 

m 31 X 3  + m32X 4  + m33X 5  = X 2 , 
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which on substituting in the equation of Q yields: 

M il  + m 1  + m 1  = M2 12 + m 2  + ?T132  = m13 +M2 23  + m 3  = 1 

and 

m 12m 13  + m 2 m 2  + m3 m 33  = 0, i, j = 1,2,3, i 

hence M is an orthogonal matrix, thus X = MX' represents a 2-plane on Q if 

and only if M is orthogonal. 

Since u = X + X', v = X - X', the equation MX' = X of a plane in 1P 5  can be 

written as 

(13  M)u + (13  + M)v = 0. 

Case 1. MtM = 13 , det(M) = +1 

Suppose also that (M + 13 ) is nonsingular (which is the general case when 

detM = +1), then one can write 

V = (M + 13 ) 1 (M - 13 )u. 

However, the matrix M+ = (M + 13 )_i (M - 13 ) is skew-symmetric because 

M = (Mt - 13) (M' + 13 ) 

(Mt - I)MM t (Mt  + 13 ) 

= (I - M)M_l(Mt + 13 ) 

= (I - M)[(Mt  + 13)M]' 

= —(M - 13)(M + 13)_i 

=—M 

since M - 13  and M + 13  commute. Let 

/ 0 —'y  /3 
M+ =( -y  0 —a 

a 0 

and m+ the vector (a, 0, 'y) associated to M+. Then v = 	x u. Recall that if 

(u, v) represents the Plucker coordinates of a line £ in 1P 3 , the vector u denotes 

the direction of £ and v is given by P x u for any point P on the line. Thus when 

det(M) = +1 and M + 13  is nonsingular the points of the plane with equation 

(13  - M)u + (13  + M)v = 0 lie on Q and represent lines going through the point 

having position vector m+. 

In the degenerate case suppose det(M) = 1 and M + 13  is singular. Since 

M e SO(3), let a be the non-zero unit vector for which Ma = a. Choose an 
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orthonormal basis {a, b, c} for 1R3  such that Ma = a and in the plane Span{ b, c}, 
('\ M is a rotation A 9  = cosG — sinO . Then, in the chosen basis, 
\, sin 	cosO j 

(2 	0 	 0 
M+13= ( 0 cosO+1 	— sinO 

\O 	sin 	cos9+1 

and det(M + 13 ) = 2 [(cosO + 1)2  + 2 01sin  0], = cos9 = —1, so 0 = ir. Therefore 
(1 0 0 \ 

M = ( 0 —1 0 ) , so if u and v have coordinates (U" ui,, u) t  and (vi , v ,,, v) t  
\0 0 —1) 

with respect to basis {a, b, c} respectively, then the original equation becomes 

(0 0 o\ (u\ (2 0 o\ (v\ (0\ 
0 2 0 	

) ( 	u, 1+1 0 0 0 	)( v,  =( 	0 
0 2) \u) \0 0 0) \vJ \0J 

giving solution u = ua, v = vb + vc, where u, v, v are arbitrary, but not all 

vanishing together. The case 	0 describes all lines parallel to a. 

Case 2. MtM = 13 , det(M) = —1 

Then (M - 13 ) is generally nonsingular hence u = (M - 13 )'(M + 13 )v where 

= (M - 13 ) 1 (M + 13 ) is skew symmetric. Therefore, like we argued in the 

first case, u = m x v for the vector m_ associated to the matrix M_. Since 

m_ - u = (m_ x v) = 0, the lines, having Plucker coordinates (u, v), 

associated to the orthogonal matrix are all perpendicular to vector m_. If v = 

q x u, where q is an arbitrary point on a line, then 

U = m_xv 

= mx(qxu) 

= (m_ . u)q - (m_ - q)u 

= —m_ . qu 

= m - q = —1 

Hence the lines associated to M when det(M) = —1 and M - 13  is nonsingular 

are the lines lying in a 2-plane in R. 

In the degenerate case suppose det(M) = —1 and M - 13  is singular. Then there 

exists a unit vector a such that Ma = a. In the complimentary subspace {a}', 

M defines a reflection in some line through the origin. An orthonormal basis 

1b, c} for this plane may now be chosen with axes along and perpendicular to the 

line of reflection. Then with respect to the orthonormal basis {a, b, c}, M has 



/10 o\ 
matrix ( 0 1 	0 ). Proceeding as above, in this basis, the original equation 

\o 0 -iJ 
becomes 

	

(0 0 0 \ /u\ /2 0 o\ /v\ 	/0\ 
(0o0J(uJ+(020)(v)=(0J, 

	

\0 0 —2) \uJ \0 0 0) \v) 	\0J 

with solution u = ua + ub, v = vc, where u, ui,,, v are arbitrary, but not all 

vanishing together. The case (u, u) (0, 0) describes all lines lying in the plane 

Span{a, b}. 

Remarks 

A 2-plane on Q whose corresponding orthogonal matrix has positive determi-

nant is called an a-plane of Q, and one whose orthogonal matrix has negative 

determinant is called a /3-plane of Q. If (u, v) is used to represent the Plucker 

coordinates of a line in R 3 , v = 0 means that the line passes through the origin 

and u = 0 means that the line lies in the plane at infinity. Two distinct a-planes 

intersect in one point, this point representing the single line common to the two 

bundles (a bundle is the collection of all lines going through a point in R 3). A 

particular a-plane does not in general intersect a particular /3-plane. This reflects 

the fact that in 1P 3  a generally chosen point does not lie on a generally chosen 

plane, hence no line lying on a plane is expected to pass through the point. How-

ever if an a-plane and a,3-plane intersect, they do so in a line, which corresponds 

to the set of lines in a plane passing through a point. Such a configuration is 

called a plane pencil of lines. 

Lemma 3.8 The Klein quadric does not contain a 3-space. 

Proof 

Let Q be the nonsingular matrix given at the end of Proposition 3.3. Then Q can 

be written as 	= 0. Suppose S is a 1P 3  c 1P5  containing independent points 

,. Then S = Span(E t) and if S C Q, 

t4) 
t 

Q (E ti&) = 0 V t 

.@ 	= 0 V i,j. 

Since Q is nonsingular this implies { Q } are four linearly independent vectors 

in ll6,  each of which is perpendicular to j,... , 
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Proposition 3.9 Four lines, no three having linearly dependent Pl'ücker coordi-

nates, have linearly dependent Plucker coordinates if and only if every line which 

meets three of the lines intersects the fourth. Then the four lines: 

belong to a bundle (assemblage of all lines in space through a point) or a 

plane of lines, or 

intersect in pairs so that the pencils determined by the two pairs have a line 

in common but lie in different planes and have different vertices, or 

belong to one ruling of a quadric surface. 

Proof 

Suppose the lines £, £2, £, £4 no three having linearly dependent Plucker 

coordinates, have linearly dependent Plucker coordinates l, 12, 13  14  where 
li = (p,. .. 

, 
p). Then there exists non-zero constants k 1 , k2 , k3  such that 

14  = ki ll  + k2 12  + k3 13  
(4) 	(4) 	 (1) 	k 	(2) 	(3) 	(1) i.e. (Poi 	. ,Pi) = (k1p01  + 2Poi  + k3p01  ,.. . , k 1p2  + k2p + k3p)) 

Now if the line £ with Plucker coordinates 1 = (poi,. .. ,P21) meets the lines 

L, £2, £3, then 

(,e4) = 	+PO2P3i +P03p42 +P23J$1  +31 	+P127$3 

= k1 (, 1 ) + k2 (,4) + k3 (e,e3 ) 

=0. 

Hence £ meets £4 as well. 

Conversely, suppose L, £2, £3 and £4 are four lines no three of which have linearly 

dependent Plucker coordinates. Let i, and 64  be the points on Q corre-

sponding (see Proposition 3.3) to the lines £, £2, £3 and £4 respectively. Then 

no three of , .. . , are collinear. Suppose £ is another line in TP 3  whose corre-

sponding point on Q is 6 and £ meets the lines £, £2, £3. Let W be the IF'2  defined 

by 61, e2,  63 and q = (qo,.. . ,q5) be any point on the line in IF' 5  joining 6 to 6i  for 
i = 1, 2, 3. Then there exists a t E 11 such that 

q = (1—t)l+tl 

(( 1 	=- t) Poi  +tp01(i)
,. . . , ( 1— t)p 12  +tp). 



Therefore 

q0q3 + qlq4 + q2 q5 	= 	[(1 - t)poi  + tp] [(1 - t)p23  + tp] 

+ 	[(1 - t)p02  + tp] [(1 - t)p31  + tP3(i?] 

+ 	[(1 - t)p03  + tp] [(1 - t)p12  + tp] 

1 (1  - t) 2 (, £) + 	£) + t(1 - t)&, = 
Hence q belongs to Q, so the lines Tb in F5  joining 6 to 6i  belong to Q. If 6 V W 

the collection 6, j, 6  and  63  define a 1P3  C Q, which cannot happen according to 

Lemma 3.8. Therefore e  E W. By hypothesis 6 is conjugate to e4,  so the line 774 

joining 6 to e4  lies in Q. Since  Q cannot contain a P 3  (Lemma 3.8), the point 64 

lies in the same 1P2  as 6, that is 64  E W. Hence the lines £, £2, £3, £4 have linearly 

dependent Plucker coordinates. 

Now suppose four lines L, . . . , £, no three having linear dependent Plucker co-

ordinates, have linearly dependent Plucker coordinates. Then the 4 by 6 matrix 

M of their Plucker coordinates has rank three. Then M has three linearly inde-

pendent rows which define three linearly independent points of V. Three such 

points of IP define a jp2  in F5 , let W be this F2 . 

Case 1. When W lies completely in Q, we have either an a-plane or a /13-plane of 

Q (see Proposition 3.7 and remarks at the end of its proof). If W is an a-plane 

then its points represent concurrent lines in TP 3  and so the four lines belong to a 

bundle. If W is a /13-plane then the lines it represents in 1P 3  are coplanar and then 

the four lines belong to a plane field of lines. 

Case 2. Suppose W meets Q in a degenerate conic, that is a line pair within 

Q having lines m 1  and m 2 . Then two of the four points on Q corresponding to 

the lines £,... , £4 lie on m 1  and the other two on m 2  (since no three of these 

four points are linearly dependent). A pair of points on m, i = 1, 2 is conjugate 

and two points, one on m 1  and another on m 2 , are not conjugate. Therefore the 

four lines intersect in pairs and the pencils they generate have a line in common, 

represented in Q by the common point to the lines. 

Case 3. When W meets Q transversally in a non-degenerate conic C, then no 

two points of C are conjugate, otherwise each line joining conjugate points would 

be part of C, making it degenerate. So the lines of P 3  represented by the conic C 

form a 1-dimensional family of lines which is such that any two lines are skew to 

each other. The four lines belong to one ruling of a quadric surface S generated 

by any three lines represented by points on C. 
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Note The subspace W defines another 1P 2 , called the polar of W, comprising all 

points in IP conjugate to every point of W, see [SOl]. If this 1P2  is denoted W', 

then W' intersects Q transversally in a non-degenerate conic C. Every point of 

C is conjugate to every point of C' and vice versa. The conic C' represents lines 

that belong to the other ruling of the quadric surface S. 

The first three cases do occur. 

Case 4. If W were to touch Q along a 'double' line, the four points on Q 
corresponding to the four lines would have to be on this double line, implying 

that any three of these points are linearly dependent. This would contradict the 

given hypothesis. 

Note Four lines satisfying the conditions of Proposition 3.9 were called semi-

concurrent in [BR] and linearly dependent in [GR]. We, however, will continue 

to say that such lines have linearly dependent Plucker coordinates. An example 

of such a set of lines is any four lines in one ruling of a non-degenerate quadric 

surface. 
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Chapter 4 

Immobilization in space 

4.1 Introduction 

In this chapter, the problem of immobilizing a tetrahedron is studied. Let T be a 

tetrahedron having vertices 11,. . . , V4 , faces F, where F2  is the face of T opposite 

vertex V, and n2  is an outward normal vector to face F2 . The immobilizing 

points of a tetrahedron were first studied by Bracho, Fetter, Mayer and Montejano 

[BR](1995) where, for fixed points P1 ,. . . , P4 , with P2  intF2 , an energy function 

• on SE(3) was defined. For an element g of SE(3) near the identity the function 

• measures the 'total amount of penetration' caused by g at the four points. They 

showed that four given points immobilize the tetrahedron if the energy function 

defined at these points has an isolated maximum at the identity in SE(3). This is 

one of the two main results in [BR] and was used to prove the second main result: 

interior points P1 , .. . , P4  immobilize a tetrahedron if and only if P2  x n = 0, 

where the n 2  are chosen so that Ei=1  ni  = 0. In this thesis, a different proof of 

the main proposition in [BR] is given leading to a new proof of the main theorem 

in [BR]. This proof lays the grounds for generalizations to other dimensions. The 

vectors in this chapter will be column vectors. 

4.2 Orientation on a tetrahedron 

Four distinct points in RI having coordinates l/,... ,V4  describe a tetrahedron if 

no r (2 <r < 4) of them lie in the same r - 2 dimensional affine subspace of ]R 3 . 

Definition 4.1 A tetrahedron will be said to be positively oriented if the deter-

minant 

det L 	::: 
is positive and negatively oriented if it is negative. 
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This definition is motivated by the definition of an oriented affine n-simplex in 

[RUI and is clearly dependent on the ordering given to the vertices. In this thesis 

tetrahedra will be assumed to be positively oriented. One of the effects of choosing 

an orientation on the tetrahedron is to fix the outwards and inward directions of 

normal vectors to the faces of the tetrahedron. For example, if a tetrahedron is 

not oriented the vector (V3  - V4 ) x (V2  - V4 ) is orthogonal to the face having 

vertices V2 , V3  and V4  and could be inward or outward pointing. However if T is 

positively oriented, then 

det[ V1 V2 V3 = det[(Vi — V4) (V2 —V4) (V3 —V4)] 

(VI —V 4 ).(V2 --V4)x(V3 —V4 ) 

= (V4 —V1 ).(V3 —V4)x(V2 —V4 ) 

Since V1  is the vertex opposite face having vertices V2 , 1/3 and V4 , vector 

V3  - V4  x V2  - 174  is outward pointing. Therefore if this face is held horizon-

tally, with vertex V4  behind V3 , and 1/2 on the right of edge V3 V4  as shown in 

Figure 4.1, vertex V1  lies below this face (see direction of arrow in Figure 4.1). 

By changing the face of the tetrahedron lying in the horizontal plane the chosen 

Figure 4.1: Plane containing vertices V2, V3 and V4. The arrow indicates that vertex Vi 
lies below this plane. 

orientation can be represented by different figures. All the positive orientations 

can be represented geometrically by the generic 3d picture in Figure 4.2. This can 

be shown by considering the vertex V4  in Figure 4.2 to be 'at the back' and vertex 

V3  to be 'at the top'. By fixing V4  and having V1  then V2 , then V3  successively 

at the top, 3 distinct positive orientations are obtained. Then the corresponding 

3 orientations with T turned to bring each of V, 1/2, V3 , V4  to the back gives a 

total of 12 distinct positive orientations, corresponding to the 12 positive permu-

tations of {V1 , V2 , 1/3 , V4 }, all of which can be brought to the generic disposition 

in Figure 4.2 simply by rotating T. 
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V3  

VI  

V4  

V2  

Figure 4.2: A positively oriented tetrahedron. 

Lemma 4.2 There exists a set of outward normal vectors n1 , ..., n4  with the 

property that Ei=1  ni  = 0. 

Proof 

Define 

ni  = (V3  — V4 ) x (V2  — V4 ) = (V3 xV2)+(V2 xV4)+(V4 xV3 ) 

= (V4 —V3)x (VI  —V 3 ) = (V4 xV1 )+(V1 xV3)+(V3 xV4 ) 

fl3 = (VI —V 2)x(V 4 —V2 ) = (V1 xV4 )+(V4 xV2)+(V2 xV 1 ) 

fl4 = ( V2 —V 1 )x(V 3 —V I ) = (V2 xV3 )+(V3 x VI) + (VI xV2 ). 

For a positively oriented tetrahedron each vector ni  points outward and they 

satisfy E4 1  ni  = 0. This set of normal vectors will be referred to as the stan-

dard outward normals of the tetrahedron. Any other set of outward normals m 

satisfying E4 1  mi  = 0 is simply a scalar multiple of the n. For if m2  = ki  n, 

then 

o = kin1 +k2n2+k3n3+k4n4 

= ki (—n2 —n3 —n4)+k2n2 +k3 n3 +k4n4 

= (k2—ki)n2-i-(k3—ki)n3-i-(k4—ki)n4. 

However any three of the n2  are linearly independent, hence k1  = k2  =k3 = k4 . 

Observe that ini l = 2A j  where A i  is the area of face F. The condition that 

> 4 
i.1 n 2  = 0 can also be viewed as resulting from the Divergence Theorem of 

Vector Calculus. Indeed if fij  is the outward unit normal vector to face F of 

tetrahedron T, ñ the outward unit normal vector to T, then 

ni  = 	2An 2  
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= 2fFidSni 
i=1  

= 2>fFindS i=1  

= 
2 
L 

 fidS 

by Corollary 1.7. 

With this choice of orientation the volume V of T is given by 

11 
V=(V4_V3.n3)=det[ V1V2V3V4 

1 	1 	1 	1] 

Lemma 4.3 Let n 1 ,..., n4  be the standard outward normals of a tetrahedron hav-

ing vertices V1 ,. . . , V4  and V its volume, then (V - Vk) n, = 6V for all  k. 

Proof 

Since the magnitude of n k is twice the area of face Fk and V3 Vk, is an edge of the 

tetrahedron not in Fk, then (V - nk = ± 6V. The angle between V - Vk 

and nk is acute. 

Lemma 4.4 Let 7ri  be the plane of F, then P2  ni  is independent of the choice 

Pi  E 	1<i4. 

Indeed 

P1 .nl  = 	V4 .(V3 xV2 ), 

P2 n2 = 

P3  n3  = 	V2 .(V1 xV4 ), 

P4  n4  = 	V1 .(V2 xV3 ). 

4.3 Immobilizing the tetrahedron 

Definition 4.5 Let X, Y c JR.3 . The SE(3)-motions of X in Y is the set 

SE(3)(X,Y) = {g E SE(3) : g(X) C Y} 

considered as a subset of SE(3). 
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Definition 4.6 Let K C 1R 3  be a compact convex body, int(K) its interior (which 

is assumed to be non-empty) and OK its outside, i.e. OK = - int(K). A set 

of points P c 5K C OK is said to immobilize K if the identity map 13  e SE(3) 

is an isolated point of SE(3)(P, OK). 

Let K be a three dimensional sphere. Since any rotation of K about its centre 

belongs to SE(3)((9K, 5K), a sphere does not have an immobilizing set. 

Definition 4.7 Let P1 , . . . , P4  be fixed interior points in the faces F1 , . . . , F4 , 

respectively, of a tetrahedron T and ni  the standard outward normals of T. The 

extended energy function E: SE(3) -* R is the function defined as: 

E(g) = 	[g(P) - P].n 

The extended energy function can be defined for a general convex body having 

points P1 ,.. , P4  in its boundary. 

Lemma 4.8 The extended energy function is invariant under translations. 

Proof 

For any t E 	let T be the translation Tt(x) = x + t, then 

E(Tog) = 

= 

Let g E SE(3) and g E SE(3)/T3  = SO(3) be the coset g = gT3 . Then following 

Lemma 4.8 we can define the energy function E : SO(3) -p R by 

E() = 	[h(P) - P4. n 

where h e SE(3) is any element of the coset p. 

The fact that it is enough to consider the energy function E defined on SO (3) only, 

and not SE(3), corresponds to the fact that to immobilize T using four points 

chosen from different faces of T one only needs to immobilize T with respect to 

rotations. 

From here onwards P will denote the set of points {P1 , P2 , P3 , P4 }. 
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Lemma 4.9 For g e SE(3), g close to 13 , g e SE(3)(P,OT) if and only if 

[g(P)—P].n2 >O for i=1,2,3,4. 

Proof 

Suppose g e SE(3)(P, CT) and g is close to 13 . Then g(P2 ) E CT for all i 

and g(P) is near P2  for all i. Since n2  is an outer normal to the plane 7r i  at P2 , 

[g(P2 )—P2]•n2 >O for all i. 

Conversely, suppose [g(P2 ) - P2 ] n2  :~: 0 for i = 1, 2, 3, 4. Since n2  is an outer 

normal to F, g(P2 ) lies in plane 7ri  or in the outer half-space determined by 7r. 

This means g(P2 ) 0 mtT and also that g(P2 ) is close to P2  for every i. Hence 

g E SE(3)(P, CT) and g is close to the identity 1 3 . 

Hence if g e SE(3)(P, CT) and is close to the identity E(g) > 0. 

Lemma 4.10 

For any small neighbourhood N of the identity 13 , NflT3 flSE(3)(P,QT) = {13 }. 

Proof 

Let g T3 , then g(x) = t + x for some t e TR 3 , for all x E R3 . By Lemma 4.9, 

g e N fl SE(3)(P, CT) if and only if [g(P2 ) - P2 ] . n2  > 0 V i, therefore if 

g E NflT3 flSE(3)(P,OT),t-n 2  > Oforalli. Butt•n 1  = —t•n2 —t•n3 —t•n4  

0 = t. n 1  = 0. Similarly t n2  = 0 V i = t = 0 as n 1 , 2  and n3  are linearly 

independent. 

Proposition 4.11 The points P1 , ..., P4  immobilize T if and only if the energy 

function E: 80(3) -* R has an isolated local maximum at 13  E S0(3). 

Proof 

From Lemma 4.8, E is well-defined on SE(3)/T3 , let ff : SE(3) -* SE(3)/T3  be 

the natural quotient map. Denote the coset of g by g and let 13  be the identity 

element in SE(3). Then E(13 ) = E(13 ) = 0. For g E SE(3) consider the three 

equations 

[g(P)— Pi] .ri2  = —u.n2 , i= 1, 2,3, 

where u = 	 If n2  = 	 k2  = [P2  - g(P2 )] n2 , then the 

equations can be written as 

u•ri2 =k2 , i =1,2,3 



or as Afut  = k where 

/ nix  n1  n / k 1  

= ( 	1 2x fl2y 2z 	J , 	k=  ( 	k2 
) . 

13x fl3y  n3z J \ k3 

Since the matrix .Af is nonsingular the system A/ut = k has a unique solution. 

Let this be denoted u 9 . Define = T19  o g. Now suppose E does not have an 

isolated local maximum at 13 . Then for every neighbourhood V of 13  in SE(3)/T3 , 

there exists a g close to the identity, 	13  such that E() > 0 and so for each 

neighbourhood 7r'(17) of 13  in SE(3), there exists a g, close to 13 , 
 9 	13 ,  such 

that E(g) > 0. Take the corresponding to this g, then 

	

E() 
= 	

- Pu  . ni  

	

= 	[g(Pj)+ug —Pj].nj  

	

= 	([g(Pj )—Pj].nj +ug .nj ) 

= [g(P4)P4].n4 +ug .n4  

= [g(P4 )+u9 —P4].n4  

= E(g) 

>0. 

Thus [g(P) + u9  - P2 ] n ~! 0 for i = 1, 2, 3, 4. Hence, by Lemma 4.9, 

= T 9  o g E SE(3)(P, OT), implying that P does not immobilize T. 

Conversely, suppose E has an isolated local maximum at 13  E SE(3)/T3 . Then 

there exists a neighbourhood V of 73  in SE(3)/T3  such that E() < 0 for all 

13 , g e V. Then E() = E(g) < 0 for all g E 7r- '(V) \ 7r'(13 ). Moreover 

13  e ir'(V). Using Lemma 4.9 and considering g 'near' 1 3 , it is seen that 

g SE(3)(P, OT). Since 7r'(13 ) = T3 , Lemma 4.10 implies 13  is an isolated 

point of SE(3)(P, (9T). Hence P immobilizes T. 

Proposition 4.12 For each choice of Pi  E Fu, i = 1,... , 4 define a 3 x 3 matrix 
Aby 

A = 

where Pt  denotes the transpose of P2 . Then E(R) = tr(RtA) —6V for R E SO(3). 
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Proof 

E(R) 

= 	tr([RP - P]tn) 

= 	tr(FtRt nj ) - E tr(tIj )  1  

= 	tr(ntRt) - 

= 1trtfit) - 

= tr(RtA)-6V 

since, by Lemma 4.4, 

= V4 .(V3 xV2 )+V3 .(V4 xV1 )+V2 • (Vi  xV4)+Vi •(V2 xV3 ) 

= (V2  - V1 ). [(V4  - V2 ) x (V3  - V2 )] 

= (V2 —Vi).n1  

=6V. 

Definition 4.13 Let M be an n x n real symmetric matrix, M is said to be 

almost positive definite if the sum of any two of its eigenvalues is positive. 

This condition is equivalent to the condition that only one eigenvalue of M may 

be negative and if A is such an eigenvalue, the magnitude of A is less than the 

magnitude of any other eigenvalue of M. 

Proposition 4.14 Let A be a fixed 3 x 3 matrix and g: S0(3) -* R the function 

defined by g(R) = tr(RtA) for R E S0(3). The function g has a strict local 

maximum at R = 13  e 80(3) if and only if A is symmetric and almost positive 

definite. 

Proof 

Let R E SO(3), then by Theorem 1.3, 

82  S3  
R=exp(S)=I3 +S+-+-+... 
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for a unique skew 3 x 3 matrix S. Therefore 

g(R) = tr(RtA) 

= tr (At  R) 

= tr(At+Ats+ At S2 + At S3 - 

= tr(At) + tr(A t S) + 
tr(AtS2) 

 + 

Thus g has a critical point at R = 13  if and only if 

tr(AtS 3 ) 

3! 

tr(AtS 2 ) 	tr(AtS 3 ) tr(AtS) + 	2! 	+ 	
3! 	

+ 

has a critical point at S = 0. However the latter happens if and only if tr(AtS) = 0 

( 0 a —b'\ 
for every skew S. Let S = ( —a 0 c 	, then 

b —c 0 J 

tr(A t S) 

= > 
 

A i  1  S + AS + A O  SO 

= a(A l2  - A 21 ) + b(A13  - A 31 ) + c(A 23  - A 32 ). 

Therefore g has a critical point at R = 13  if and only if A is symmetric. 

Now the critical point at R = 13  is a strict local maximum if tr(At52) < 0 

for every skew matrix S 	0, i.e. if tr(AtS2) = tr(AS 2 ) < 0. We show that 

tr(AS 2 ) < 0 for every skew S 	0 if and only if A is almost positive definite. 

Now tr(A5 2 ) < 0 if and only if tr(SAS) <0 if and only if tr(StAS) > 0 for skew 

S 0. Since A is a real symmetric matrix, there exists an orthogonal matrix P 
such that ptAp = D, where D is a diagonal matrix. Then 

ptStASp = ptStpptApptSp = SDS 1 , 

where S = PtSP. Hence  StAS  is similar to SDS 1 . Thus tr(StAS) = tr(SDS i ) 
and tr(StAS) > 0 for skew S 0 if and only if tr(SDS i ) > 0 for skew Si  0, 

since Si is skew if and only if S is skew. Now suppose tr(SDS 1 ) > 0 for skew 

0. Let 

/0 a —b\ /A00 
—a 0 c 	), 	D=( 0 i 0 

—c 0) 

where A, ,u, v are the eigenvalues of A. Then 
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tr(SD5i) = (tL 
 

So tr(SDS 1 ) > 0 for every skew S 1  0 if and only if A is almost positive definite. 

Lastly, suppose the critical point at R = 13  is a strict local maximum. Then 
tr (At  S 2 ) < 0 for every small skew matrix S. We show that the hypothesis in 
fact implies that tr(AtS2) < 0 for every small skew S 0. Let R be written as 
R = exp(kS) where k E JR and S is the skew symmetric matrix associated to R. 
Then 

g(R) = tr(Atexp(kS)) = 	tr(ASh). 	 (4.1) 

By hypothesis tr(AtS) = 0 for all skew 5, therefore tr(AtS) = 0 for all odd 
h since S skew implies 5h  is skew when h is odd. Thus we only consider even 
powers of h in Equation 4.1. Let S = ptp and D = ptAp be the matrices 
defined above. Then Equation 4.1 can be written as 

g(R)= >jjtr(AtSh) 

h 
k' 

= L -i tr(PDPtSF) 
h 

= 
h 

which becomes g(R)= >1h=1 (2h)! tr(DS?')  when we leave out the zeros for odd 
h. From the hypothesis tr(At5 2) 0 for every small skew matrix S, which by 

an argument similar to the one above is equivalent to A + p > 0 for each pair 

of eigenvalues A, u of A, suppose two eigenvalues of A sum up to zero. Let the 
eigenvalues of A be —A, A, p where 0 < A < ,u, then with the choices 

(A oo\ / 	oio\ 
0 —A 0 ), =I —1 0 0 	), 

\o OiiJ \\ 	000) 

tr(DS) = 0 for every integer h. Thus a neighbourhood N of the identity exists 
on which g(R) = 0 for all R E N, so g does not have a strict local maximum at 
R = 13 , contradicting the hypotheses. Hence A is symmetric and almost positive 
definite. 

The following lemma will be needed in the proof of Theorem 4.16. 

Lemma 4.15 Let p(A) := A 3  - c1 A 2  + c2 A - c3  be the characteristic polynomial 

of a 3 x 3 matrix M having real eigenvalues. The matrix M is positive definite if 

and only if c1 , c2  and c3  are positive. 
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Proof 

If p(A) has positive roots A,, A 2 , A 3  then 

P(A) = (A—A 1 )(A—A2 )(A—A3 ) 

= A3  - (A, +A2  +A3)A 2  +(A,A2+A2A3 +A3A,)A— A,A2 A 3 . 

Conversely, if C,, c2 , c3  are all positive, then writing A = -ii we have 

p(A) = p(—v) = —v 3  - c u )2  - c2 v - c3  

= —(v3  + c1 '2  + c2 zi + c) 

< 0 for all u>0, 

i.e. p(A) <0 for all A <0. By hypothesis M has real roots thus the roots of p(A) 

are all positive. 

The first proof of the next theorem is essentially that in [BR]. We follow it with 

an alternative proof that avoids some of the complicated algebra used in [BR]. 

Theorem 4.16 (Bracho, Fetter, Mayer and Montejano) Let T be a tetra-

hedron and n, i = 1,. .. , 4 be the standard outward normals of T. Interior points 

P,, ..., P4  of faces F,, ..., F immobilize T if and only if P x ni  = 0. 

The statement > 	P x n2  = 0 will be referred to as the symmetry condition - 

being equivalent to the symmetry of the matrix A = E4 
I njP1t 

Proof 1 

Taking Propositions 4.11, 4.12 and 4.14 into consideration, it is enough to prove 

that if P1 ,.. . , P4  are interior points such that the matrix A = E i=1 ni Pt is 

symmetric then A is almost positive definite. The matrix A can be written as 

A = NtP where N is the 3 x 3 matrix whose rows are n, n, n and P is a 3 x 3 

matrix with rows (P1 - p4)t, (P2 - p4)t, (P3 - P4)t. Since any three ni  are linearly 

independent, the matrix N is nonsingular. Therefore A is similar to the matrix 

U = PNt. The matrix U = (u 3 ) has nice properties: u 3  = P - P4  n3  and 

• Ui: uji  

uij  <ujj  for 1 i,j 3 and i j 

uij  > 0 for each 1 <i < 3. 

These properties can be deduced from the assumption that the points P2  are 

interior to their faces, i.e. the 12 inequalities (P2  - P3 ) . n2  > 0 for 1 < i j < 4 

hold, so 
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. uji  = P - P4  n > 0, 

ujj —u ij =P,—P4 .nj —Pi —P4 .nj =Pj —Pi.nj>0, 

. 

uij = Pi —P4 .ni +Pi —P4 .n2 +Pi —P4 .n3  1   

= Pi—P4.nl+n2+n3 

= Pi —P4 .—n 4  

= P4 —Pi -n4 >0. 

The matrices A and U have the same characteristic polynomial (since A = NtP 

and U = PNt), therefore U has real eigenvalues. Let the characteristic polynomial 

of U be p(A) A - a1 A 2  + a2   - a3 . Then a3  = det(U) = det(P) det(N) and 

a1  = tr(U). Let B = (au  - U), where I is the identity matrix, then 

	

A is an eigenvalue of B 	(ai  - A) is an eigenvalue of U, 

	

(ai - i) is an eigenvalue of B 	p is an eigenvalue of U. 

Let p l , / i2, /13 be the eigenvalues of U, then U is almost positive definite if and 

only if 

	

/12 + /23 > 0 ) 	tr(U) - 	> 0 
/23+/Il > 0 	tr(U)-1i2  > 0 

	

Al + /22 > 0 J 	( tr(U) - L3 > 0 

It therefore remains to prove that B = tr(U)I - U is positive definite. Let p(r) 

- c 1 2  + c2r - c3  be the characteristic polynomial of B, then by Lemma 4.15 

it is enough to show that the constants c 1 , c2  and c3  in p(-r) are all positive. 

Expanding det(rI - B) yields 

c1  = 2(uii +u22 +u33 ) 

C2 = b 1 b3  + b 2 b3  + b 1 b2  - 	- 	- U23'U32 

C3 = bb2 b3  - u13u31 b2  - u12u21 b3  - u23u32 b 1  - u32u21u13  - u23u31u12  

where bi  = 	 Uii From property U  of the matrix U, the constant 

c 1  is obviously positive. It is left to prove that c2  and c3  are positive. 

Now —b 1  = —( u22  + u33 ) < —( u22  + u23 ) < u21  <u11  by application of U2, U3 and 

again U2 in that order. Likewise —b 2  = —( uii  +u33) < —(u1i +u1 3) <u12  <u22 . 

Since b 1 b2  = (u22  + u33 )(u ii  + u33 ) > u11 u22  by Ui and b 1 b2  > 0, bj b2  > u12 u21 . 

Similarly, b 1 b3  > u13u31  and b3 b2  > u32'u23 . Therefore c 2  is positive. Lastly, from 

[BR], c3  can be written as: 



- u12)(u21  + u22  + u23 ) + (u33  - u13 )(u31  + u32  + u33 )]u 11  

• [(u33  - u23 )(u31  + U32 + u33 ) + (u11  - u2i)(uii + u12  + u13 )]u22  

• [(uii  - u3i )(uii  + u12  + u13) + (u22  - u32 ) (u21  + u22  + u23 )]u33  

• ('u22  - u12 )(u33  - - u31 ) + (u33  - u13 )(uii  - - u32 ) 

which is a sum of positive terms and hence c3  is positive. Therefore B is positive 

definite, hence U and A = E4 1  ni pt are almost positive definite. 

Proof 2 

It is enough to show that A = 	ni ]Jt  is symmetric implies A is almost positive 

definite. 

The matrix A can be written as NtP  where P and N are the 3 x 3 matrices given 

in the first proof. Let V be the 3 x 3 matrix whose rows are (V1 - V4 )t, (V2 - V4 )t 

and (V3 - V4 )t, then V Nt = —6 V1 3 , where V is the volume of T and 13  the 3 x 3 

identity matrix. To preserve symmetry, the tetrahedron is cast into R 4  having 

coordinates (x, y, z, w), such that T lies in the hyper-plane w = 1 of this space. 

Let V be the 4 x 4 matrix having rows, (V1t,  1), ..., (Vi, 1), a 4 x 4 matrix N' is 

sought, where N' is a kind of extension of N, such that V' Nit = —6V 1 4 . Suppose 

N' has rows (ni, q1), . . ., (n, q4), then 

rV1.n1+qi 

Vi Nit= I V2  n • 1 +q1 
I V3 .n1 +q 

L V4 •n1 +q1  

V1 •n2 +q2 V1 •n3 +q3  
V2 n2 +q2 V2 •n3 +q3 
V3 •n2 +q2  V3 •n3 +q3  
V4 •n2 +q2  V4•n3+q3 

V1 •n4 +q4 
V2 •n4 +q4 
V3 •n4+q4 
V4 •n4 +q4  

The choice 

q1  = 

q2 = 

q3 = — V4 -n3 , 

q4 = — VI  n4  

satisfies the requirement V' Nit = —6V1 4 . 

I P1t ,i 1 
'Pt ' ' 

and 	'=I 	2' 	I 
i11,11• 
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Let N' 

= n, —V3  . "2 
I n,—V4 n3  I 
[nVi .n4 ] 

Then 

A = P't N' 
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n, —V2  n1  
- n,—V3 •n2  

n,—V4 •n3 

fl, —Vi  114 

ni  Pit 

i=lni -6V 

( 

 A 

0 -6V). 

- 	 : 

= 

where the *s represent numbers that we do not need to calculate. Therefore the 

eigenvalues of A are —6V and the eigenvalues of A. It now remains to determine 

the eigenvalues of A. 

The points P2  in F2  are interior to their faces, so we can express them as convex 

linear combination of the vertices as: 

P1  = a8 V2 +ai V3 +(1—ai—a8)V4 

P2  = a3V1 +(1—a3—a6)V3+a6V4 

P3  = a5 V1 +(1—a5 —a4)V2+a4V4 

P4  = (1—a2—a7)Vi.+a2V2+a7V3 

where 0< a2  < i for l < i < 8 and 0 < a+a8 <1,0< a3 +a6 <1, 

0 < a4  + a5  < 1 and 0 < a2  + a7  < 1. Then 	= V/tA where A is the special 

stochastic matrix 

0 a3  a5  1—a2 —a7  
a8  0 1—a4 —a5  a2  
a 1  1—a3 —a6  0 a7  

1—a 1 —a8  a6  a4  0 

that encodes the positions of the P2 . 

The characteristic polynomial of A is 

det(A — AI) = det(P/tN/_AI) 

= det(N't P'—AI) 

= det(P'N't —AI) 

= det (A t  V'N' t  - A I) 

= det(A t [-6V]—Al) 

= 64V4det(A+pJ), 



where A = 6Vi. Since the sum of each column of A is 1, the sum of each column 

of A - 14  is zero, i.e. the sum of the rows of A - 14  is 0. Thus (1, 1, 1, 1) is 

a left eigenvector of A with eigenvalue - IL = 1 corresponding to the eigenvalue 

A = —6V of A. Now suppose A is symmetric, then A has all its eigenvalues real. 

Let these be —6V, a', b' and c'. Then A is almost positive definite if a'+ b', a' + c' 

and b'+ c' are positive. This is equivalent to saying that if A has eigenvalues 1, a, 

b and c, then a + b, a + c and b + c are negative because for A an eigenvalue of A, 
A = 6Vp, where -bt  is an eigenvalue of A. The proof of the theorem concludes 

with the following two lemmas. 

Lemma 4.17 Let B = (b23 ) be an n x n matrix such that >tb < 1 for each 

i, then every eigenvalue of B lies in the unit disc. 

Proof 

Let z E C and 	= 	 The jth  entry of Bz is >' 	and so 

(Bz) 	 OzO 

Hence IJBzJJ 	If z is an eigenvector with eigenvalue A then 

IBzD = AzV = AzI. 

But IjBzJJ < JJzJJ. Therefore JAI < 1. 

Lemma 4.18 Let (b 3 ) be a real n x n matrix such that 

bij  = 0 for all i, 

b 3  > 0 for all i j, 

 

and z 1 , ..., zn  complex numbers such that 

Jzj 	r for all j, 

JEj bij zj l = r for alli, 

then z 1 =• =z. 



Proof 

Let K be the convex hull of z 1 ,... , z. Then K C D, the disc of radius r in 
the complex plane. Since b23  > 0 for all i j, for each i, the convex linear 
combination Ej  b23 z3  lies strictly in K. Suppose the zi  are not all equal, let Zk 
differ from all z i  with i k. Then K cannot be a point set and since IzI :5 r V i, 
the interior of K lies in the interior of D. Now consider E b 3 z3  with i k, 
Ej  bz3  = bkZk + Ijk,i  b 3 z lies strictly in intK since Zk 5A z3  for j 4  k and all 
the weights are positive. This implies Ej  b23 z3  lies strictly inside D, contradicting 

= 7'. 

Conclusion of Proof 2 of Theorem 4.16 

From Lemma 4.17 it is deduced that the eigenvalues 1, a, b, c of A each has magni-

tude not exceeding one. And from Lemma 4.18 it is deduced that the eigenspace 

corresponding to any eigenvalue of magnitude equal to one has only one span-

fling eigenvector (1, 1, 1, 1), which corresponds to the eigenvalue of 1. Hence the 

eigenvalues a, b and c all have magnitude strictly less than one. Since the trace 
of A is zero, 1 + a + b + c = 0. Therefore 

a + b = —1 - c < 0, 

a + c = —1 - b < 0, 

b+c= —1—a<0, 

so A is almost positive definite. 

Corollary 4.19 Let K be a convex body and n1 ,. .. , n4  normal outward vectors 
at boundary points P1 ,. .. , P4  respectively, where 	ni  = 0. If P1 ,.. . , P4  im- 
mobilize K, then 	P x ni  = 0. 

In the conclusions of [C1](1991) and [C2](1999) it was speculated that d + 1 

points immobilize a convex polytope if and only if the (d - 1)-dimensional hyper-
planes tangent to P at the points enclose P, and the lines orthogonal to the 

hyperplanes at the points of immobilization are concurrent. This is not quite 

correct as Corollary 4.20 shows. 

Corollary 4.20 Four points in the interior of faces of a tetrahedron T immobilize 
T if and only if the normal lines at these points either 

1. are concurrent, or 



intersect in pairs, or 

belong to one ruling of a quadric surface. 

Proof 

From Theorem 4.16 the points P1 ,. .. , P4  immobilize the tetrahedron if and only 

if P2  x n2 	0. Since 	n2  = 0, P1 ,... , P immobilize the tetrahedron 

if and only if 1 (n, P2  x n2 ) = 0, which happens if and only if the lines hav-

ing Plucker coordinates (n 1 , P1  x ii), ..., (n4 , P4  x n4 ) have linearly dependent 

Plucker coordinates. Applying Proposition 3.9 we get the result. 

Remarks If the normals lines at the immobilizing points belong to one ruling of 

a quadric surface the equation of this surface can be computed as described on 

page 69 of [SPA]. 

Corollary 4.21 Let P2 , i = 1, ..., 4 be points in the interior of faces F, 

i = 1, ..., 4 of tetrahedron T such that the set P = {P1 ,. .. , P4 1 immobilizes 

T and let 1, be the normal line at P2 . Let l be the translate of l i  by a fixed vector t 

and P the point of intersection of l with 7r,  the plane of F2 . Then if P e F2  V i, 

the set {P1', P, P3', P} immobilizes T. 

Proof 

The new position P = P2  +t + k2  ni  for some scalar k2  (see Figure 4.3). Therefore 

Figure 4.3: Point P2  is translated to point Ps'. 

Pil x ni = p + + 1   

= pi  x n+t x ni  + T  ki  ni  x ni  

0. 



4.4 The triangle case revisited 

In the final section of this chapter, the meaning of the symmetry of A in the two 

dimensional case is investigated and compared to the results of Chapter 2. It is 

found out that an analogue to Theorem 4.16 holds; namely that the triangle is 

immobilized provided the corresponding 2 x 2 matrix A is symmetric and almost 

positive definite. In this section T will denote a triangle in R 2  having vertices V1 , 

V2 , V3 . Let ek be the edge of T opposite vertex Vk and nk be an outward normal 

vector to edge ek (k = 1, 2, 3) chosen so that E3 
 =1 nk = 0. If P1 , P2 , P3  are 

interior points in e 1 , e2 , e3  respectively we study the 2 x 2 matrix A = k P. 

First, an orientation on T is fixed. Suppose edge e3  is lying horizontally in the 

plane of T and vertex V1  is on the left of vertex V2  as shown in Figure 4.4. Let 

 

V3  

 

Vi  V2  

Figure 4.4: Chosen orientation on triangle 

be the rotation matrix 
o i\ 

—1 0).Define 

= cl(V3 —V2 ) 

= 1l (VI  —V3 ) 

fl3 = cl(v2 —v 1 ). 

Then nk is normal to edge ek and E3  =1  flj = 0. Let Pk = (Pk, Pky )t be an 

arbitrary point in ek; then the matrix A = 	n, P is given by 

A(1, 1) = 	(V3  - V2)P1 + (V1  - V3)P2 + (V2  - V1)P3 

2) = 	(1/3 - V2)P1  + (V1  - V3)P2  + (V2  - V1 )P3  

1) = (V2  - V3)P1 + (V3  - V1)P2 + (V1  - V2)P3 

A(2, 2) = (V2  - V3)P1 + (V3  - V1)P2 + (V1  - V2)P3. 

A is symmetric if and only if 

P1 .(V2 —V3)+P2 .(V3 —V1 )+P3 .(V1 —V2 )=O, 
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if and only if the rows of 
((V3 —V2) (V3 —V2 ) y  P1 .V3 —V2  

M= ( (V1 —V3) (v1 —V3 ) P2 .V1 —V3  
\(V2 —V 1 ) (V2 —V 1 ) P3 •V2 —V 1  

are linearly dependent. But this is equivalent to the three lines with line coordi-

nates 

([V3 — V2],[V3 — V21, — P1 •(V3 —V2 )), 

([V1 - V31, [V1  - V31,,, —P2 . (V1  - V3 )), 

([V2 — V1],[V2 — V1], — P3 . (V2 — V1)) 

being concurrent. 

Now the equations of lines 11, 12 and 13  in Figure 4.5 are 

[(x, y) - Pi ] 	(V3  - = 0, 

[(x, y) - P2 1 	(V1  - = 0, 

[(XI Y) - P3 1 . (V2  - V1 ) = 0 

respectively, hence their line coordinates are 

([V3 - V21, [1/3 - V21, —P1  . (V3  - V2 )), 

([1/1 - V31, [V1  - V31, —P2  (V1  - 1/3 )), 

([V2 — V1],[V2 — V1], — P3 . (V2 — V1)) 

respectively. Hence the symmetry of A is equivalent to the concurrency of the 

V3 

V2  

13 

Figure 4.5: The orthogonal lines at their respective points in the edges of a triangle. 

three lines at P1 , P2 , P3 . 

Does A symmetric imply that A is almost positive definite? There are at least 

two ways this question can be answered. First, consider the stochastic matrix A 



that was introduced in the second proof of Theorem 4.16. In the two dimensional 

case, 

0 al  
1-a1 

A= 1-a2 	0 	a2  
03 	1—a3 	0 

for some numbers a 1 , a2  and a3 , 0 < a2  < 1 for 1 < i < 3. The two eigenvalues 

of A that are not equal to 1 add up to —1, since trace(A) = 0. Therefore A is 

almost positive definite. 

Alternatively, let p(A) = A 2  - trace(A) A + det(A) be the characteristic 

polynomial of A. Then 

tr(A)=*[P1A(V3—V2)+P2A(Vi—V3)-i-P3A(V2—V 1 )]. 

where X A Y is the exterior product of vectors X and Y and * is the Hodge star 

map given in Subsection 1.3.4. Now 

P1 A(V3 —V2 ) = [ai V2 +(1—ai )V3]A(V3 —V2 ) 

= a1 V2AV 3 +(1—a1 )V3 A(—V 2 ) 

= ai (V2 AV3)+(1—ai )(V2 AV3 ) 

= V2 AV3 . 

Therefore 

tr(A) = *(V2 AV3  + V3 AV 1  + V1 AV2 ) 

= 

= 2(Area of T). 

Let AT be the area of T, then 

det(A) = [2AT  P2,, - 2A T  P3 ] Pi + [2AT  P3 - 2A T Ply]  P2  

+ [2AT  Ply - 2A T  P2k ] P3  

= 2A T  [P2P1 - P3 ,,P1  + P3P2 - Pi P2  + P1,,P3 - P2P31 

= 2A T  [P2P1 - P1P2 + - P3P2 + P1,,P3 - P3,,P11 

= 2A T * (Pi  AP2+P2AP3+P3AP1) 

= 2ATAP 1 P2 P3 , 

where A 123  is the area of the triangle with vertices P1 , P2 , P3 . This triangle 

has the same orientation as T. Hence both the trace and determinant of A are 

positive thus when A is symmetric both its eigenvalues are positive showing that, 

provided each P2  is an interior point of e, the matrix A is positive definite, not 

merely almost positive definite. 
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The chapter is concluded by a theorem that unifies immobilization in 2 and 3 

dimensions, thus providing an algebraic version of Theorem 2.5. 

Theorem 4.22 Let r = 2,3 and K be an r-simplex in W having vertices 

V1,... , 	Suppose Fk denotes the face of K opposite vertex Vk and nk an 
r+1 outward normal vector to Fk chosen so that >1k=1 k = 0. Points P1 ,. . . , 

in the interior of faces F1 ,.. . , Fr+i respectively, immobilize K if and only if the 

matrix 	nkP is symmetric. 
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Chapter 5 

Immobilizing sets of a 
tetrahedron 

5.1 Introduction 

Although the criteria for an immobilizing set of a tetrahedron was first given 

in [BR], no attempt was made to find concrete sets of points that fulfilled the 

criteria. This chapter fills this gap. In Section 5.2 the centroids, the orthocenters 

and the circumcenters of faces are shown to make the matrix A symmetric. These 

face centers immobilize the tetrahedron if they lie in the interior of their faces, in 

particular, the centroids of a tetrahedron immobilize the tetrahedron. Section 5.3 

investigates the situation of two fixed points being part of an immobilizing set. It 

is shown that if one pair of points in the faces of a tetrahedron is fixed then pairs 

of points exist in other faces which solve the symmetry condition. In Section 5.4 

the full five dimensional solution of the symmetry condition on A is found and in 

the last section an analysis of the nature of immobilizing sets is undertaken. 

5.2 Face centers 

5.2.1 Centroids 

Proposition 5.1 Let G 2  be the centroid of face F2  of a tetrahedron and V its 

volume. Then E4 
1  n2 G = 2V1 3 . 

Proof 

Let s = (V1  + V2  + V3  + V4 ). Then C2  = s - 	Consider 

E Gint= 	j—C4 1   
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= 

= —(V—V 4)n. 

Then if N and V are the 3 x 3 matrices given on Page 45 in the second proof of 

Theorem 4.16, 

LGint= 	- V4 )nt 	
3

VtN .  

However, NVt = —6V1 3  and V is nonsingular, so N —6V1 3  Vt,  hence 

G i nt = 

= _Vt . _6VI 3 Vt 

= 2V13 . 

Remarks 
The equation Ei=1  n2  Gf = 2 V13  may also be obtained via the Divergence Theo- 

rem of Calculus. Indeed, if ñ = ( ni, ny,,, n)  is the outward unit normal vector to 

= 	2AnG 

= 2ñi ff rtdS 

= 2>ffñj rt dS 

= 2 A9  ñrtdS 

AT
flxX xY nz\

2( fl,X fly Y flyZ ) dS  
fizY fiz z) 

13 11  fi B 12 ñ B13 fl 
= 2 

	

	( B21 ft B22  ft  B23  n 	dS, 
AT B31 ft  B32  •ñ B33 .ñ) 

where 

B 11  = (x,O,O), B12 = (y,O,O), B 13  = (z,O,O), B21  = (O,x,O), B22  = (O,y,O), 

B23  = (O,z,O), B31  = (O,O,x), B32 = ( O,O,y), B33  = (O,O,z). By the Divergence 

Theorem (1.6), 

AT  B
ij  - fi dS = JffT V - Bij  dV = fffT 
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and for i 

f 

Hence E4 1  n2  = 2 V 13 . 

Corollary 5.2 The set of centroids of faces of a tetrahedron immobilizes the 

tetrahedron. 

Remarks 

Since the symmetry of > 	n2 G is equivalent to > 	C2  x n2  = 0, the equation 

C2  x n2  = 0 can be shown directly via the Divergence Theorem of Vector 

Calculus. If ñ2  is the outward unit normal vector to face F, ñ the outward unit 

normal vector to T and A 2  the area of F2 , then 

ci x ni =
_ ff 

r dS x 2A 2  ñ 2  
i=1 Ai 

= 2ffrxñ i dS 

= RaT 

by Corollary 1.8. 

5.2.2 Orthocenters 

Proposition 5.3 Let n1 , ..., n4  be the standard outward normals of a tetrahe-

dron and H2  the orthocenter of face F, i = 1, ..., 4, then E4 1  H2  x n2  = 0. 

Proof 

Consider face F1 . See Figure 5.1. 

The orthocenter H1  satisfies the equations: 

	

(H1  - V3 ) . (V4  - V2 ) = 0, 	 (5.1) 

	

(H1  - 174 ) . (V3  - V2 ) = 0, 	 (5.2) 

	

(H1  - V2 ). [(173 - V2 ) x (1/4 - V2 )] = 0. 	 (5.3) 

Equations 5.1 and 5.2 can be rearranged to 

H1 .(V4 —V2 ) = V3 .(V4 —V2 ) 	 ( 5.4) 

H1 .(V3 —V2) = V4 .(V3 —V2 ) 	 ( 5.5) 
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V3  

V2 
	 V4 

Figure 5.1: The orthocenter H1  of face F1 . 

respectively. Multiplying Equation 5.4 by (V3  - V2 ) and 5.5 by (V4  - V2 ) and 

subtracting the two results produces an equation whose left hand side 

= [H1 .(V4 —V2 )](V3 —V2 )—[H 1 .(V3 —V2 )](V4 —V2 ) 

= H1  x [(V3  — V2 ) x (V4  — V2 )] 

= H1  x —n 1 , 

and right hand side 

= [V3 .(V4 —V2 )](V3 —V2 )—[V4 .(V3 —V2 )](V4 —V2 ) 

= [V3.(V4—V2)]V3+[V4.(V2—V3)]V4+[V2.(V3—V4)]V2. 

Therefore 

H1xni=[V2 . (V4 — V3)]V2+[V3 . (V2 — V4)]V3+[V4•(V3 — V2)]V4. 

By comparing the orientation of the vertices V2, 1/3, V4  in face F1  with the orien-

tation of the vertices in the other faces, it is deduced that: 

H2 xn 2 	= 	[V3(V4—V1)]V3+[V4(V1—V3)]V4+[V1(V3—V4)]V1, 

H3 xn3  = 

H4 xn4 	= 	[V1.(V2—V3)]V1+[V2.(V3—V1)]V2+[V3.(V1—V2)]V3. 

Therefore E4 Hi  x n2  = 0. 

Corollary 5.4 Let T be a tetrahedron and H1 , H2 , H3 , H4  orthocenters of its 

faces. If (H - H3 ) . n3  < 0 for i j then the set {H 1 ,.. . , H} immobilizes T. 

The conditions of Corollary 5.4 merely ensure that each H2  E F2 . 
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5.2.3 Circumcenters 

Proposition 5.5 Let n l ,...,n4 be the standard outward normals of a tetrahe-

dron and Oi  the circumcenter of face F2 , i = 1,... , 4, then E4 1  Oi  x n2  = 0. 

Proof Consider face F1 . See Figure 5.2. The circumcenter H1  satisfies the equa- 

V3  

V2 
	 V4  

Figure 5.2: The circumcenter Oi of face F1 . 

tions: 

/ 	V2 +  V3 \ 
- 	2 ) 

(V3  - V2 ) 	0, 	 (5.6) 

'\ 

	

(01 - 
V2 

2  

+V4 

) 
(V4 - 1/2) = 0, 	 (5.7) 

	

(O - V2 ) n1  = 0. 	 (5.8) 

Equations 5.6 and 5.7 can be rearranged to 

Oi . (V3  - V2 ) = 	( V3  + V2 ). (V3  - V2 ) 	 ( 5.9) 

01 .(V4 —V2 ) = 	( V4 +V2 ).(V4 —V2 ) 	 ( 5.10) 

respectively. Multiplying Equation 5.9 by (V4 - 1/2) and 5.10 by (V3  - V2 ) and 

subtracting the two results produces an equation whose left hand side 

= [01 .(V4 V2 )](V3 V2)[01 .(V3 V2 )](V4 V2 ) 

= 01 x [(V3  - V2 ) x (V4 - V2)] 

= 01 x —n 1 , 

and right hand side 

= 	1 
{(V12 - I V2 )(V3  - V2) - (1V312 - V2I2)(V4 - V2 )} 

= 	{(IV
3 

IV 
4 1 2 )V2  + (1V412 - IV 212) 

	+ (1V212 - 1V312)V4} 



Therefore 

01 X fli = {( IV 
4l2 

- IV 
3 1 2 )V2  + ( IV 

2l2 
- IV 41 2 )V3 + ( IV 3l2 - 1V212)V4}. 

By comparing the orientations of vertices V2 , V3 , V4  in F1  with the orientation of 

the vertices in other faces it is deduced that: 

02 x n2  = 1- (( 1v412 2 

03  x n3  = 1- (( 1v212 2 

04 xn4  = 
1
-((1v21 2  2 

Thus Ei
4
= 1 0i  x n2  = 0. 

lvi l 2 )v3  + ( IV iI 2  

lvi  1)v4  + (1V41 2  

1V3 1 2 )V1  + ( IV 
3l 2  

IV  
3 1 2 )V4  + (1V312 - lV4l2)V1), 

IV2 l 2 )V1  + ( IV 
il2 

- IV 1 2 )v) 

lvi  1 2 )1/2 + ( lvi 2 - 
IV 

2l 2 )V3) 

Corollary 5.6 Let T be a tetrahedron and 01, 02, 03 , 04  circumcenters of its 

faces. If (O - 0 3 ) n3  < 0 for i j, then the set 10, .. . , 0} immobilizes T. 

The conditions of Corollary 5.6 merely ensure that each Oi  E F2 . 

Corollary 5.7 Let Z 2  = cEO, + 13Gi  + -yHj  where cE, /3, y are scalars satisfying 

cE+13+ -y= 1. If Z,eF2  for l <i<4, then {Z1 ,..., Z4 } immobilizes T. 

Proposition 5.8 Let T be a tetrahedron and Q any point in space. Suppose 

11, ..., 14  are lines going through Q with direction vectors n1 , ..., n4  respectively, 

and these lines intersect the faces F1 , . .., F4  of T orthogonally in P1 , . .., P4  
respectively, then {P 1 , P2 , P3 , P4 1 immobilize T. 

Proof 

Since E4 I  P2  x n2  is translation invariant it can be assumed that the origin is at 

Q. Then P2  = A 2  n2  for scalars A, i = 1, ..., 4, thus Ej=j  P2  x n2  = 0. 

An example of such a point Q is the centroid C = (V1  + V2  + V3  + 1/4) of 

the tetrahedron. The point C lies inside the tetrahedron and the normal line 

li  = C + An2  through C meets face F2  in an interior point of the face. To prove 

this, it is enough to show that (1/i  - C) . n2  > 0 for all vertices Vj  in face F2  of 

the tetrahedron. If, for example, i = 1 and j = 4, then 

(V4 -C).ni  = [v4_ 1  (v1+v2+v3)] (V3  x V2 +V2  x V4 +V4  x v3 ) 

- V1 • ni+ V2  (V4  x V3 ) 
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1 	1 
= —V 1 •n 1 +V2•n1 

= 	(V2 —V 1 ).n1  

=  - v>o. 

Similarly, all other inner products are positive, hence the result. 

There are other interesting quartets of points that satisfy the symmetry condition. 

If P2  is the foot of the altitude from 17  dropped onto face F2 , then P2  = 
for some positive scaler a 2 . Hence 

ni  Pit 
	

T/t + 	an2n. 

The second matrix is clearly symmetric, while, from the proof of Proposition 5.1 

on Page 55, 

	

V i 	 i int  = 	- 

=Vt N 

= V. - 6VI3Vt' 

= —6V1 3 . 

The point P2  need not be interior to F2 . 

If A 2  is the area of the face F2  and a point Q is given by 

' 
Ei=1 Ai 

then Q is the centre of the inscribed sphere within T. This sphere touches the 

face F2  at the point P2  = Q + rni  where 

6V 

The points P2  are always interior to F2  and satisfy the conditions of Proposi-

tion 5.8, so they immobilize T. 

5.3 The case of two points being fixed 

When the fingers of a hand grasp an object it is usual for some of the fingers to 

touch the object before others. For a good grasp, the placement of the fingers 

that touch the object last is dependent on the positions of the fingers that touch 

the object first. In this section we investigate whether or not we can find an 

immobilizing set of a tetrahedron that contains two given finger positions. 



Proposition 5.9 Let P1  e F1 , P2  E F2  be given. There are lines 13  in 7t3 and 

14  in 7t4 from which points Q3 E 13 , Q4 E 14  can be chosen so that the points 

P1 , P2 , Q, Q4 satisfy the symmetry condition. Each point Q3 on 13  corresponds to 

a unique point Q4 on 14  for which the set {P1 , P2 , Q, Qi} satisfies the symmetry 

condition and vice versa. 

Proof 

It is desired to solve 

Pi xn 1 +P2 xn 2 +Q3 xn 3 +Q4xn4 = 0, 	 (5.11) 

	

Q . fl3 = V2 - ( V1  x V4 ), 	(5.12) 

	

and Q4.n4 = V1  . (V2  x V3 ) 	( 5.13) 

for Q, Q, where Equations 5.12 and 5.13 are the conditions that Q3 E 73 and 

E 74 respectively. Writing (x 1 , x2 , x 3 ) for Q3 and (yl, Y2, y3) for Q4 yields the 

system MX = B where 

o 	-n3Z n3 	0 	4z 	n4  

n3z 	0 - n3X 	n4z 	0 	- n4X 
M = —n 3 	n3x 0 	fl4y 	n4x 	0 

n3X 	n3  n3Z 	0 	0 	0 
o 	o 0 	n4x 	n4 	n4Z 

X 1  

fn 1 xP1 +n2 xP2  
X= and B=I 	V4 •V2 xV 1  

Yi V1•V2xV3 
Y2 
Y3 

The matrix M has rank 5, since three of the six 5 x 5 submatrices have determi- 

nants —n 3 2  [n4  x (114 X n3)]x, 1n31 2  [n4  x (n4  x n3)], 	n32 [n4 x (n4 x fl3)]z  and 

both 113 and n4  x (n 4  x n 3 ) = (n4  . n3)n4 - 1n412113 are non-zero. Therefore the 

system MX = B has a one parameter family of solutions. 

Reducing the augmented matrix of the system to echelon form, the solution of 

the system is obtained as 

X1 

X2 
X3 	=c1 —y 3 c2 , 

y1 

Y2 

where y3 is arbitrary, c 1  and c2  are 5 by 1 column vectors and c2  is dependent on 

113 and 114 only. The first three terms of c2  simplify to the entries of the vector 

n4 2  [113 X (114 X 113)] 

I32 [n4  x (n4  X 113)]z' 
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and the last two are 

—[n4  x (n4  x fl3)]x 	—[n4  x (n4  x n3 )] 

[n4  x (n4  X fl3)}z 
	[n4  x (n4  X 113)]z 

Therefore the solution of the system is pairs of points Q3 E 13  and Q4 E 14  where 

ly  
Q = P3  + 1n312 [113 X (114 X 113)], Q = 	+ 	2  [n4  x (n3  x n4 )], 

I4I 

where 'y is a scalar and P3  and P4  are any points in 73 and 74 respectively such 

that the set {P1 , P2 ,153 , P4 } satisfies the symmetry condition. 

Observations 
The direction vectors N3  = [n3  x (n4  x n3 )] and N4  = [114 x (n3  x n4)] of 

the lines 13  and 14  respectively are independent of the choice of the fixed points 

P1  and P2 . 
The lines 13  and 14  meet the line going through edge V1 V2  at right angles, since 

n3  x n4  lies along the line through V1 V2  and the direction vectors 113 x (n4  x n3 ) 

and 114 x (n3  x n4 ) are both perpendicular to n3  x n4 . 

If N3  is the unit vector in direction N3  and N4  is the unit vector in direction 

N4 , to get a set { P1 , P2 , Q, Q41 that satisfies the symmetry condition from an-

other such set, a displacement of 0N4 /1n4 1 along 14  should be accompanied by a 

displacement of 0N3 /1n3 1 along 13. This is because 

- 113 X (114 X n3)I - 

N41 - In4 x (113 X n4)l - 11141' 

and a displacement 0N4 /1n4 1 along 14  corresponds to a value of 'y given by 

0;4 = 	
'' N4JI4 

I4l 	11412 

/31114 1 = 
N41 

Hence the corresponding displacement on 1 3  is 

011141 lN3 1r 3  = . 1n3j .  I4l N3  
N41 	111312 	1n41 1n3 12 

f4  3 

1n31 
The point P3  on 13  and its corresponding point P4  on 14  such that 

P1  X 111+ P2  X fl2 + P3  X fl3 + P4  X 114 = 0 

will be referred to as related points. 



4. Let P3  on 13  and P4  on 14 be related points. Consider the problem of solving 

the symmetry condition with P3  and P4  fixed. Since {P1 , P2 , P3 , P4 } satisfy the 

symmetry condition, the lines 1 1  on F1  and 12 on F2  that contain points that solve 

the problem go through P1  and P2  respectively. Moreover, their direction vectors 

are n1  x (n2  x n1 ) and n2  x (n 1  x n2 ) respectively. Therefore 

11 = {x: x = Pi  + A(n i  x (n2  x n i )}, 12 = {x : x = P2  + 8(n2  x (n i  x n2 )}. 

For related points on these lines 81112 1 2  = A 111 i 1 2 . Hence when P1  and P2  are 

fixed, lines 13 , 14 , 1 1  and 12 are automatically fixed. We will refer to such four lines 

as related lines. 

Corollary 5.10 Let T be a tetrahedron and C2  the centroid of face F2 . There 

exist small neighbourhoods I and J of 0 such that for any A e I, 8 e J, the points 

P, = 	i + 
A 

2 (ni x (112  x n1)), 
Inil 

P2  = G2  + A 2 (n2 x (n1 X 112)), 
11121 

P3  = G3 + 8 2 (n3 x(n4 xn3 )) 
k' 31 

and P4  = C4  + 8 2 (n4 x (n3 x n4)) 
11141 

immobilize T. 

Alternatively, for s E I', t E J', I', J' small neighbourhoods of 0, the points 

Pi 	= 	(1 
- i n, 12 	+ IniI2) 

V3  + ((i - 
t 

1n i 1 2)  + 
V4  

Inhl2 	) 

+ 
(1— 	

t 
In'

)v 

P2  = 	((i— 
In2 1 2)  111212) 3+ 

 (
(1 

3 —  
t 

V4  
) 1112 1 2  111212 

+ t)v 
112 12 

P3  = 	(1 
- 

___ 

+ In3 I 2)  In3I2) 
V1 + ((i 

5 

+ 1113  1 2)  

s(1—k3 )\ 
V2  

) - 111312 

+ 
( 	- 	

5 

11131) 

P4 	
1 (  

- 	( 

5 - ____ + sk4 \ 
v1  + ((i 

S ___ 
+ 1114  1 2)  
 V2  

111412 	) In4 I 2  1n412 - 

+ (' 	
5 

—
1 n41 

3,  
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where 

k1= 
V3—V4•V3+V2-2V4 

3 lV3—V4l 2  
V3 —V4 .V3 +V1 -2V4  

3 1V3 — V41 2  

k3 = 
V1 —V2 •V1 +V4 --2V2  

3 1V1 — V2l 2  
V1 —V2 .V1 +V3 -2V2  

3 1V1 — V21 2  

immobilize T. 

Proof 
Fix P1  = C 1  and P2  = C2  and solve the symmetry condition for Q3 and  Q. The 

related lines 11, 12, 13  14  arising out this setup are 

11 	= 	{x: x = G1 + 
A 

nil2 
[n i x (n2  x 

{ 	= G2 12 	= 	x 	+ x : A 

I 2 12 
[n2x (n i  x 

= 	x:x=G3 + 13 	I 6 

1n31 
2 [n3 x(n4 xn3 )]} 

= 	x:x=G4 + 14 	{ 
1n41 

2 [n4 x(n3 xn4 )]} 

for scalars A and J. Let x i  be an arbitrary member of line i,, solving the six 

inequalities : 	- 	n2  >0, X3 - X1  n3  >0, X4 - XI  n4  > 0, x i  - x2  n1  >0, 

- n3  > 0 and x4  - x2  n4  > 0 for A, a range of values of A for which points 

in both 1 1  and 12  are on their faces is obtained, i. e. the neighbourhood I of zero is 

determined. Likewise, solving the six inequalities: x 2  - n2  > 0, x 1  - x3  n1  > 0, 

x4—x3•n4>O,x i —x4•n 1 >0,x3 —x4 •n3 >Oandx2 —x4 .n2 >Ofor8,the 

neighbourhood J of zero is determined. A choice of A E I and a choice of 8 E J 

is a choice of related points on lines 1 1 , 12  and lines 13 , 14  respectively, hence an 

immobilizing set of T. 

Another way of thinking about this is to write the arbitrary point x i  on line 

1i  as a convex linear combination of the vertices of face F. The lines 11, 12 

are perpendicular to edge V3 V4  and lines 1 3 , 14  are perpendicular to edge V1 V2 . 

Consider line 1 1  for example and suppose 1 1  meets the line through edge 1/31/4  in 

point Z 1 , then Z1  = k 1  V3  + ( 1 - k 1 ) V4 , for some scalar k 1 , and satisfies 

o = G1 —z 1 .v3 —v4  

= (V2 +V3 +V4 )—k 1 V3 —(1—k 1 )V4 .V3 —V4  

= k 1 (V4 —V3 )•(V3 —V4)±(V2 +V3 +V4 )—V4 .V3 —V4 . 
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Hence 

k 
- 2V4 —V3 —V2 .V3 —V4  

1 - 3(V4 —V3 .V3 —V4 ) 
- V3 —V4 •V3 +V2 -2V4  

- 	31V3-V412 

Since ii goes through C 1  and Z1 , an arbitrary point x 1  on 11 can be written as 

(1—t)G 1 +tZ1 , i.e. 

= (l—t)(V 2 +V3 +V4)+t(k1 V3 +(l—k 1 )V4 ) 

= ((1_t)+tki) 3+ 
(

— (l—t)+t(l—k i )) V4+ - (l—t)  V2  

for t in some neighbourhood of zero. Similarly, solve for k2 , k3  and k4  and obtain 

expressions for arbitrary points x 2 , x3  and x4  on lines 12, 13  and 14  respectively 

as has been done above, taking care to give arbitrary points x 1  and x2  the same 

moving parameter t and arbitrary points x 3  and x4  moving parameter S. For 

related points on these line pairs the moving parameter of each line is divided by 

the corresponding Ini 2 as was seen in the 'Observations' after Proposition 5.9. 

In particular, if T is a regular tetrahedron then k 1  = k2  = k3  = k4  = 1/2 and the 

set 

P1 	= 	(1 — 2t) V2  + tV3  + tV4 , (5.14) 

P2 	= 	(1-2t)V1 +tV3 +tV4, (5.15) 

P3 	= 	(1 - 2s) V4  + sl/1  + sV2 , (5.16) 

P4 	= 	(1— 2s) V3  + sV1  + sV2  (5.17) 

immobilizes T for any choice of s and t lying between 0 and 1/2. 

Corollary 5.10 assures us that every tetrahedron has many immobilizing sets. 

The fact that the centroids of a tetrahedron are the most natural immobilizing 

set of the tetrahedron gives the impression that immobilizing points are centrally 

located on their faces. The following corollary dispels this impression. 

Corollary 5.11 If T is a regular tetrahedron the immobilizing points of T can 

be chosen as close to the vertices of T as desired. 

Proof 

The points P1 ,. . . , P4  given by Equations 5.14, ..., 5.17 immobilize a regular 

tetrahedron for any choice of s and t in (0, 1/2). As s and t tend towards 0, 

Pi —*V2 ,P2 —*V1 ,P3 ---*V4  and P4 ---*V3 . 
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Proposition 5.12 Let P1 , P2  in F1 , F2  be fixed. The normal line w 1  = {x x = 
P1  + Ani} at P1  meets the normal line w 2  = {x : x = P2  + An2 } at P2  if and 
only if the line 1 = Ix: x = P1  + A(ni  x (n2  x n i )} meets the line 12 = {x : x = 
P2  + A(n2  x (n i  x n2 )} if and only if line 13  = {x : x = P3  + A(n3  x (n4  x n3 )} 
meets line 1 4  = {x : x = P4  + A(n4  x (n3  x n4 )} if and only if the normal line 

= {x x = P3  + A n3 } at P3  meets the normal line w 4  = {x x = P4  + A n4 } 
at P4  for a related pair of points P3 , P4 . 

Proof 

Let P1  E F1  and P2  E F2  be fixed and P3  and P4  be related points in 73 and 7V4 

respectively. Suppose w are the Plucker coordinates of line w, i = 1, ..., 4 and 
l are the Plucker coordinates of line I, i = 1, ..., 4 defined in the statement of 

the proposition. Then w = (n2 , P x n) and 

l = ((n 1  x (n2  x ni ), P1  x [n i  x (n2  x ni )]) 

= (77xn i , Pi x(17xni )) 

= (I7xn i , (Pi  . n 1 )17— (Pi  . 17)n 1 ), 

= ((n2  x (n 1  x n2 ), P2  x [n2  x (ii  x n2 )1) 
= (n2  x 'q, P2 x (n2  x 

= (n2  x 'q, (P2  . 17) fl2 - (P2  n2 ) 17) 

where 17 = n 1  x n2 . 

l =((ne  x (n4  x n3 ), P3  x [n3  x (114 X n3 )1) 
= (w x n3, P3 x (w x n3)) 

= (w x n3 , (P3 . fl3)W - (P3 . w)n 3 ), 

l =((n4  x (n3  x n4), P4 x [n4  x (n3  x n4 )1) 
= (114 x w, P4  x (n4  x w)) 

= (n4 xw,(P4 .w)n4 —(P4 .n4 )w) 

where w = 113 X 114. 

Then 

(1 1 ,12 ) = (17xn i ).[(P2 .17)n2 —(P2 .n2 )17]+(n2 x17).[(P1 .n1 )17—(P1 .17)n 1 ] 

= 

= (P2.17-P1.17)j1112 

= (P2—Pl).171ui12. 
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Yet 

(wi , w2 ) = n i  P2  X fl2 + n2  P1  x n1  

= P2.(-7)+P1 .77 = (P1 —P2 ).7. 

Likewise, (13, 14)  (P4  - P3 ) w JW12  and (w 3 , w4 ) = (P3  - P4 ) W. 

Since (P2  - P1 ) .ui  1111 2  = 0 if and only if (P2  - P1 ) = 0 and (P4  - P3) w I w2 = 0 
if and only if (P4  - P3) w = 0, w 1  meets w 2  if and only if 11 meets 12, and w3  
meets w4  if and only if 13  meets 14 . 

Finally, it suffices to show that 1 1  meets 12 implies 13  meets 14  i.e. (l i , 12) = 0 = 
E4 	 E4 (l3 ,l4 )=0. 

1'1  = (ni , P x n2 ). Recall that (ii , l) = 0 since each li  is a line, then taking the 
'products' (li , Ii + 12 + 13  + 14 ) for i = 1, 2, 3, 4 respectively gives 

(1 1 , 12) + (11, 13) + (11,14) 	= 	0 (5.18) 

(1 1 , 12 ) + (12,13) + (12,14) 	= 	0 (5.19) 

(l i , 13 ) + (12,13) + (13,14) 	= 	0 (5.20) 

(l 1 ,14 ) + (12 ,14 ) + (13, 14) 	= 	0. (5.21) 

Now 5.18 + 5.19— 5.20 - 5.21 gives (l i , 12) = (13,14). Hence 1 1  meets 12 if and only 
if 13  meets 14 . 

Corollary 5.13 

Let (P1 , F2 ) = ( G1 , C2 ) where Gi  is the centroid of face F. Then the lines 

13  and 14  that contain points Q3 and Q4 that solve the symmetry condition go 

through the points G3  and C4  respectively-  

Let (P1 , P2 ) = ( H1 , H2 ) where Hi  is the orthocenter of face F. Then the 

lines 13  and 14  that contain points Q3 and Q4 that solve the symmetry condition 

go through H3  and H4  respectively. 

S. Let (P1 , F2 ) = (01 , 02)  where Oi  is the circumcenter of face F. Then the 

lines 13  and 14  that contain points Q3 and Q4 that solve the symmetry condition 

go through 03  and 04  respectively. 

To conclude this section we recount that for any two given points P1  E F1  and 
P2  E F2  there are pairs of points Q3 and Q4 in the planes of faces F3  and F4  that 
solve the symmetry condition. The full set {P1 , F2 , Q, Q} is an immobilizing set 
of the tetrahedron if Q3 E int(F3 ) and Q4 e int(F4 ), that is, if the six inequalities: 
(P1 - Q) n 1  > 0, (P2 - Q) . n2  > 0, (Q - Q) n4  > 0, (P1 - Q) . 1 > 0, 
(P2 - Q) . n2 > 0 and (Q - Qi) n3  > 0 hold. With reference to Corollary 4.20, 

67 



a regular tetrahedron realises all the three types of immobilizing points. The 

centroids of faces belong to the first type. 

Secondly, the set of solutions of the symmetry condition with fixed points P1  = G1 , 

P2  = C2  contains {G1 , C2 , C3 , C4 }, for which the normals are concurrent, but 

any other solution {C 1 , C2, P3 , P4 } is such that the normals at P3  and P4  are 

concurrent (see Proposition 5.12), hence are immobilizing points of the second 

type. 

Lastly, let P1 ,.. . , P4  be an immobilizing set of a regular tetrahedron obtained by 

fixing s = and t = t0  in Equations 5.14, ..., 5.17. Then the normal 

line at P1  meets the normal line at P2  and the normal line at P3  meets the normal 

line at P4 . These two are the only intersections between these four normal lines. 

Now fix P1  and P3  and solve the symmetry condition for points Q2 E F2  and 

Q4 E F4 . The normals lines at a solution set {P1 , Q2,  P3,  Q} where  Q2  P2  and 

P4  do not intersect each other. Hence {P1 , Q2,  P3,  Q} is an immobilizing 

set of the third type. 

5.4 General immobilizing set of a tetrahedron 

In this section the dimensionality of the solution space of the symmetry condition 

is computed by a 'brute-force' method, however a more general method will pre-

sented in Chapter 6. Let T be a given tetrahedron. Since the normal vectors n 

in E4 1  P x n = 0 are known, the equations P2  x n2  = 0 are linear and can 

be solved for the three relations between the eight parameters that characterize 

four points in different faces of a tetrahedron. The result is simply a solution 

ofE4  
j=1 P2  x n2  = 0 and is not sufficient to ensure that each P2  E F, therefore 

appropriate bounds have to be imposed on the parameters to obtain immobilizing 

sets of the tetrahedron. 

An arbitrary point P2  in F2  can be expressed in more than one way. The following 

choice of expression is made because it is considered to be more symmetrical than 

the rest. Let 

P1  = 

P2  =(+a2 )Vi +(+32 )V4 +(c2m@2 )V3  

P3  = 

P4  = (+a4)V3+(+/34)V2+(—a4—/34)V1 



where a, Oi  are scalars that are required to lie in the interval ( - i ,  ) if the points 

F1 ,. . . , P4  are to be in the interior of their faces. For each i, P2  x n2  is computed 

individually to obtain 

P1 xn 1 	= 	[PI  .V2 —V4JV3 +[Pi  

P2 xn 2 	= 	[P2.V1—V31 V4+[P2 

P3 xn3 	= 	[P3.V4—V21 V1+[P3 

P4 xn4 	= 	[P4 .V3 — VII V2+[P4 

V4 —V3}V2 + [PI . V3 — V2]V4, 

V3 — V41V1+[P2 . V4 — V11 V3, 

V2 — V11 V4+[P3 . V1 — V41 V2, 

V1 — V21V3+[P4 . V2 — V31 V1, 

where the P2  on the right hand side of the expressions are written in the above 

given form as convex linear combinations of their faces, but for shortage of space 

we have not used that form. Thus the right hand side of the expressions P2  x n 

contain the parameters a2  and /'3. Arrange the three equations Ej=j  P2  x n2  = 0 

into system M X = 0 where M is a 3 by 8 matrix and X is the column vector 

(a1)  /31, cr2, 02, a3  03 a4, 34)t.  Then M is the matrix whose columns are the 

eight vectors 

a = 	[V2—V4.V4—V3]V2+[V2—V4.V3—V2]V4+[V2—V4.V2—V4]V3 

b1  = 	[V3—V4.V4—V3]V2+[V3—V4.V3—V2]V4+[V3—V4.V2—V4]V3 

a2 = 	[V1—V3.V4—V1]V3+[V1--V3.V1—V3]V4+[V1—V3.V3—V4]V1 

b2  = 	[V4—V3.V4—V11 V3+[V4—V3•V1—V31 V4+[V4—V3.V3—V41 V1 

a3  = 	[V4—V2.V2—V1]V4+[V4—V2.V1—V4]V2+[V4—V2.V4—V2]V1 

b3  = 	[V1—V2.V2—V1]V4+[V1—V2.V1—V4]V2+[V1—V2.V4—V2]V1 

a4  = 	[v3—v1.v2—V3]V1+[v3—V1.V3—v1]V2+[V3—V1.V1—V2]V3 

b4  = [V2 — V1 . V2 — V3]V1+[V2 — V1 . V3 —  VII V2+[V2 — V1 . V1 — V2]V3. 

This system of equations has a solution if a non-zero triple product can be found 

from the eight vectors a1 , . . . , b4 . First, the eight vectors a1 , . .. , b4  are transla-

tion invariant because the coefficients in each vector have sum zero. Then consider 

the crossproduct a1  x b 1 . For simplicity write 

a1  = r2 V2  + r4 V4  + r3 V3  

b 1  = s2V2+84V4+s3V3, 

then 

a1  x b 1  = (r2 s4  - r4 s2 ) V2  x V4  + (r4 8 3  - r3 s4 ) V4  x V3  + (r3 s2  - r2 83 ) V3  x V2 . 

Let V2  — V4  = u and V3  — V4  = w, then V2  — V3  = (u — w), hence 

(r284 — r4s2) = [V2 —V4 .V4 —V3}[V3 —V4 .V3 —V2 ] 
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- [V2 —V4 .V3 —V2][v3 —v4 .v4 —v3 ] 

= (u.—w)(w.w—u) - (u.w — u)(w.—w) 

= (—u w) (1w12 - u w) + (u. w - 1u1 2 ) 1w1 2  
= (u.w)2—IuI2wI2 

= —IuI 2 Iw 2 sin 28 , 

(7'4 s3 —r 3 84 ) = [V2 —V4 .V3  - V2][V3 —V4 .V2 —V4 ] 

- [V2 —V4 .V2 —V4][V3 —V4 .V3 —V2 ] 

= (u.w—u)(w.u) - (u.u)(w.w—u) 

= (u.w_uI 2 )(u.w) 	- 	u1 2 (1w1 2 _u.w) 

= _IuI 2 Iw 2  + (U. W )2 

= —Iu 2  Iw 2  sin 2  8, 

(r3 82 —r 2 s3 ) = [V2 —V4 .V2 —V4][V3 —V4 .V4 —V3 ] 

- [V2 —V4 .V4 —V3][V3 —V4 .V2 —V4 ] 

= (u. u) (w. —w) - (u. —w) (w. u) 

= _u 2 Iw 2 +(u.w)(u.w) 

= _2 Iw 2  sin2  8 

where 8 is the non-zero angle between u = V2  - V4  and w = V3  - V4 . 

Hence 

a 1  x b1 = ( 1u1 2  Iw 2  sin 8) [V2  x V3  + V3  x V4  + V4  x V2 ] 

= V -2— 	2 G(V2V4I JV3V4 	2V4x V3Vsin 	 4)  

= _ I V 
2 —V4 2 IV3 —V4 2 sin2 8ni . 

Similarly, similar expressions can be written down for the vectors a 2  x b2 , a3  x b3  

and a4  x b4 . 

Now consider the dot product a3 a x b 1 . Set V1  to (0,0,0) in a3 , then 

a3•a1xb1 = k4V4+k2V 2 .(Iu 2 Iw 2 sin2 8[V2 xV3 +V3 xV4 +V4 xV2]) 

= ul 2 wI 2 sin 2 O(k2 --k4 ) V2  V3  x V4  

where k2 =[V4 —V2 .Vi —V4] and lc4 =[%/4 —V2 .V2 -1/1 ]. 

Hence 

a3a1xb1 = IuI2w2sin2O[V4—V2.V2—V4]V2.V3xV4 

= —u4IwI2sin28V2.V3xV4 

0. 
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Therefore the system M X = 0 has a solution, namely 

w a3  X b 1  
a 1  = 

a1  b1  x a3  

w • a1  x a3  
/31 = b 1  a3  x al l  

w b 1  x a1  
a3  = 

a3  a 1  x b 1  

where w = a2 a2  + /32 b2  + 03  b3  + a4 a4  +,34 b4 . Therefore a general solution 

for the symmetry condition is 

1 1b,
wa1xa3l

1 = +Lb]V2 ++ 	 . a3xal i )V3  

1 1w . a3x(ai_bi) 1  
+ (+L 	 j 

a3•a1xb1 	
)V4 3   

1 	 1 	 1 
= (+a2)Vi+(.+/32)V4+(.—a2—/32)V3, 

1 	rw.b 1  xa 1  
P3 = (+ L 	X b])V4 +(3 3)V1 +( 	 3) v 3 	

1w.bixail 
L a3 a1  x bi] - 	

2 

1 	 1 	 1 
P4  = (+a4)V3+(+/34)V2+(.—a4—/34)V1 , 

where the scalar a, 0, i = 1,. . . , 4 should lie in the interval (-i, ) for the points 
P1 ,. . . , P4  to be an immobilizing set of the tetrahedron. 

Corollary 5.14 The solution set of the symmetry condition is 5-dimensional. 

5.5 Orientation of an immobilizing set 

The following question naturally arises: How different is one immobilizing set of 

a tetrahedron from another? This question is partly answered by Corollary 4.20 

where it is seen that immobilizing sets of a tetrahedron can be classified geometri-

cally into three types. In this section, the same question is handled algebraically 

and three different classes are found. 

Definition 5.15 Let T be an n-simplex having vertices V 1 ,. . . , V, 1  and P1 ,.., 
P i  points in the interior of faces Fl ,..., F, 1  respectively. We will say that 
the set {P1 ,. . . , P 1 } has the same orientation as T if the n-simplex 'r having 
vertices F1 ,. .. P' has the same orientation as T, i.e., if 
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det [ ' ::: 	has the same sign as det 
[ 	::: 

Vn+i] 

In two dimensions any choice of points P1 , F2 , P3  has the same orientation as the 

triangle, since, if V1 , V2 , V3  are the vertices of the triangle and P e int(F) for 
i = 1, 2,3, then 

P1 	= aV2+(1—a)V3  

P2 	= 	i3V3 +(i-13)V1  

P3  = 7V1+(1-7)V2 

for 0 < c,3,'y < 1. Thus if : A2(R2) - 

r 

01-0 
i- 

det[P1 

P2 
31 	det([V1 V2  v1 I 

11 	 a 	0 	1—y 
a 	0 j) 

V1  V2  V3  1 

and [(1—a)(1—/3)(1-7)+a,@-y] >0. 

However, a regular tetrahedron does have immobilizing points of both orienta-

tions. The set of centroids has a different orientation to that of the tetrahedron 

since, if s= (V1+V2+V3+V4), 

det 
[ 

G 	•.. 	G4 

] 
= det 

[ 

(s - 	V1 ) 	... (s - 	V4) 

] 1 	1 

det[ 1  :::1V4 ] 

= —1/27det I 	::: ]. 
For an immobilizing set having the same orientation as the tetrahedron, recall, 

from the proof of Corollary 5.10, that the points 

P1  = (1 — 2t)V2  + tV3  + tV4  

P2  = (1 -2t)V1 -f-tV3 +tV4  

P3  = (1 -2s)V4 --sV1 -i-sV2  

P1  = (1-2s)V3+sVi +sV2  

where 0 <s, t < 1/2, immobilize the tetrahedron. As both s and t tend towards 
0, the points P1—*V2,P2--*V 1 ,P3 --V4 ,P4 --V3 . Thus 

P2 	P3 	P41 V1 	V4 	V3 1 det[V2 
detI P' 	11 1111] 

- 	
det[v1v2v3v41 - 1 	1 	1 	ij• 
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Therefore a regular tetrahedron has immobilizing points of both orientations. For 

any tetrahedron, the transition from the centroids to a set of immobilizing points 

having the same orientation as T, if one exists, goes through a set which does not 

have any of the two orientations. This is when 

det[
P1 

P2  P3  P4 ] =0,  
1111 

i. e. when the immobilizing points lie in a plane. It can be concluded therefore 

that 

a regular tetrahedron has an immobilizing set which lies in a plane (see 

example below), 

depending on orientation, three types of immobilizing sets of a tetrahedron 

exist. 

Example. 

Let V1  = (-3,-3,-3), V2  = (5, —1,—i), V3  = (- 1,5,—i) and V4  = (- 1,-1,5). 
The vertices V1 ,. .. , V4  describe a regular tetrahedron having edges of length 2V'. 

The points P1  = ( 1, 1, 1), P2  = ( 5 1 , 1) , P3  = ' 1 - 4 , 
 8' / and P4  = 1 8 , - 4 

3 3

are interior to the faces of the tetrahedron and the matrix 

4 	/128 32 	32 \ 
32 152 —136 

i=1 	 \32 —136 152 ) 

moreover P1 ,... , P4  lie in the plane x - 	- 2z + 3 = 0. 

Observe that the orientation of the set {P1 ,. .. , P4 } is related to the sign of the 
term a3  in the characteristic polynomial p(A) = - a 1 A2 + a2 A - a3  of the 
associated symmetric matrix A. For 

a3 	= 	det(A) 

= det(PNt ) 

- 	
detEPl - 	1 

P2  
i 

P3 
1 

P4 
1 	j 

- 	
det[P1 - 	1 

P2  
1 

P3  
1 

p4 1 
1 ] 

n1.6V(V4—V1) 

- 36V2det I Pi  P2  P3 	P4 1 
- 1 1 1 	ij• 
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Chapter 6 

Higher dimensional results 

6.1 Introduction 

In Chapter 4 a matrix A was defined of each quadruple of points one in the plane of 

each face of the tetrahedron. It was seen that necessary and sufficient conditions 

of immobilization on a quadruple of points in the faces of the tetrahedron was that 

A should be symmetric. In the current chapter immobilization of an ri-simplex, 

n > 2, is defined and a necessary and sufficient condition for immobilization is 

obtained. The set of centroids of faces is shown to immobilize the simplex and a 

method of obtaining other solutions of the symmetry condition from one solution 

is presented. The chapter begins with finding a way of defining good normal 

vectors to the faces of an n-simplex. 

6.2 Normals to an n-simplex 

Let ii > 2, n + 1 distinct points in IRY1  having coordinates V1 ,. .. , V 1  describe 

an n-simplex if no r (2 < r < n + 1) of them lie in the same (r - 2)—dimensional 

affine subspace of R'. Let T be an n-simplex having vertices V1 ,... , V. Label 

the vertices V1 ,. . . , V 1  to be positively oriented. Then if e 1 ,.. . , en  denotes the 

standard unit basis of R', 

(V1 —V 1 ) A ... A (V—V1) = det[V1 •.. 
1.. 

= n!Ve 1 A ... Ae 

where V is the 'n-volume' of T. Let F2  denote the ith  face of T, i.e. the (n - 1)-
simplex of T opposite vertex V. and n2  an outward normal vector to F2 . For 
i = i,... , n define n2  by 

(-1)1*[(V1 - V 1 ) A ... A (V 1  - V 1 ) A (V 1  - V 1 ) A ... A (V - V +1)], 
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and 

= (—i)* [(V1  —V)A ... A(V 1 —V)]. 

Then for i = I,— , n, (14 - V+i,n1) is equal to 

(-1)'((14 - V1),*[(V1 - V 1 ) 	A (14 1  - V 1 ) A (14k'  - V 1 ) 

A...A(V—V 1 )]) 

* [(Vi  - V 1 ) A (V1  - V 1 ) A ... A (14-i - V 1 ) A (14 - V 1 ) 

= 

=n!V 

and 

- V, n) = (—i)((V 1  - V),* [(V1  - V) A ... A (V 1  - 

= 
= (_1)1* [(V1  - 1/a ) A 	A (V1 - j7) A (V 1  - Va)] 

= n!V 

Lemma 6.1 
n+ 1 

ni = 0. 

Proof 

Expand the wedge products and add, remember * is a linear map. 

The normal vectors defined above will be called the standard outward normals 

of the simplex. From here onwards we will assume that the vectors n 1 ,.. . , 

are the standard outward normal vectors to the simplex. One has the following 

results as in the case n = 3. 

Lemma 6.2 

nl = (n - 1)! A, where A 2  in the 'n-area' of face F2  of the simplex. 

Lemma 6.3 

For i 4  j (V2  - V) n 3  = n! V, where V is the 'n-volume' of the simplex. 
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6.3 Immobilizing the n-simplex 

In this section we propose a generalization of Bracho, Fetter, Mayer and Monte-

jano's Theorem (4.16). 

Definition 6.4 Let P1 ,. . . P i  be a set of points in W. The energy function 

(associated to P1 ,... , P, +,) is the map E : S0(n) - 1R' defined by 

n+1 

E(g) = 	[g(P) - P] . n, 

for g E S0(n). 

If each of the points P1 , . . . , P+i belongs to the boundary of a convex body K 

and has a unique normal vector at them, then the energy function E measure 

the 'total amount of penetration' into K a small rotation g causes at the points 

P1,.. 
. 

Definition 6.5 The points P1 ,.. . P+i in the interior of faces F1 ,... ,F +1  re-

spectively immobilize the simplex if the energy function (associated to P1 ,... , P, 1 ) 

has an isolated maximum at I e S0(n). 

This definition is suggested by Proposition 4.11 

Proposition 6.6 Let E be the energy function on S0(n) and A the n x n matrix 

defined by 
n+1 

A = >njFt 

where {P1 ,. . . , P} is the set associated to E. Then for R E S0(n), 

E(R)= tr(RtA)_ n!V.  

Proof 

The proof is similar to that of Proposition 4.12. 

Proposition 6.7 Let A be a fixed n x n matrix and g : 80(n) -* TI the function 

defined by g(R) = t r(RtA) for R E S0(n). The function g has a strict local 

maximum at R = I E S0(n) if and only if A is symmetric and almost positive 

definite. 

Proof 

The proof is similar to that of Proposition 4.14 
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Definition 6.8 A set of points Pi , . . . P i  in ]R will be said to satisfy the sym-

metry condition (with respect to a particular n-simplex) if the matrix I' niPit  

is symmetric. 

Theorem 6.9 Let T be an n-simplex and n1,... , n+i its standard outward nor- 

mals. Interior points P1 ,. . . , PH1 of faces Fl ,..., 	immobilize T if and only 

if the matrix A = 	t1' n2P.  is both symmetric and almost positive definite. 

Proof 

Definition 6.5 and Proposition 6.7 

It will be recalled that in the 3-dimensional case, provided that each P2  E F, 

the symmetry of the matrix A implies that A is almost positive definite. This 

is not the case in higher dimensions. The difficulty one encounters when trying 

to generalize the second proof of Theorem 4.16 is that the bound of 1 on the 

magnitude of the eigenvalues of the higher dimensional stochastic matrix A (see 

Page 46) does not infer anything on sums of pairs of its eigenvalues. For example 

when n = 4, we would have eigenvalues 1, a, b, c and d of A satisfying 1 + a + 
b + c + d = 0. Then, for example, a + c = —1 - (c + d) which is not useful. 

The following example in 4-dimensions demonstrates that A can be symmetric 

without being almost positive definite. I must thank Tony Gilbert for providing 

this example. 

Example 

Consider the 4-simplex having vertices V1 = (, — 1,0, —3), V2  = '-- ' 0 '  0' 1  1' 36  
V3  = ( 1, 1, 0, —3), V4 = ( L5 , 0 —1,1) and V5 = (- 0 '  1' / 1' The standard out- 18  

ward normal vectors of the simplex are n 1  = (0, 34, 0,E), n = (16 " 0 -119\ 
,--, ' —Ia— )' 

n3  = (0, —34,0,), n4  = (- 8 	.1 7 ) and n5  = (-8, , 34, 	7).  The ' 
17
3' 	' 36 36 

points 

	

P1  = 3 
	2 	3 	3 

	

10 	5 	20 	20 

P2  = 

	

10 	10 	5 	5 

P3  = 
5 	5 	10 	10 

	

P4  = 1 
	7 	1 	1 

	

10 	10 	10 	10 

	

P5  = 1 
	7 	1 	1 

	

10 	10 	10 	10 
are interior to their faces and satisfy the symmetry condition since 

	

p235 	0 	0 1 
5 	 15 

	

136 0 	0 I 

	

ni1t=I j 	0 34 	0 
i=1 	 I 

	

L0 	0 0 -68 
5J 
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However, a pair of eigenvalues of this matrix has a negative sum. 

6.4 Immobilizing sets of an ri-simplex 

For a given ri-simplex, it is desired to find the points P1 ,. .. , P i  that immobilize 

the simplex, that is points P E int(F), i = 1,.. . , n + 1, such that the matrix 

n+1 

A = 	. pt 

is both symmetric and almost positive definite. Clearly, one has to first, find the 

points P1 ,.. . P +i that satisfy the symmetry condition and second, check which 

of those points make matrix A almost positive definite. This section will deal with 

the first problem. Observe that A can be expressed as NtP  where N is the n + 1 

by n matrix whose jth  row is the vector n 2  and P is the n + 1 by n matrix whose 
jth row is P. We begin by showing that the set of centroids of faces immobilizes 

the simplex. 

Proposition 6.10 Let G i  be the centroid of face F of ri-simplex T, then the set 

G = {G 1 ,.. . , G +1 } immobilizes T. 

Proof 

	

It is enough to show that the matrix 	nG is a positive multiple of the 

identity matrix I. Let fij  be the outward unit normal vector to face F, ñ be 

outward unit normal vector to T and A i  be the 'n-area' of face F, then 

n+1 	 n+1 

n2 G = 	(n - 1)! A 2 n, G 

n+1 

= 	(n—i)! 

= 	(n_i)! 
n+1 

fi j 	rtdS 

= 	(n_i)!f ñjrtdS 
i=1 	F1 

= (n - 1)! 
faT 

ñrtdS. 

Let ñ = (ni ... , n) and r = r1 e 1  + - . + rnen  where e 1 ,... , en  is the usual basis 

in 	then the ij1h  entry of matrix fir' is [ñrt]jj = n2 r3 . Let f2ij  be the (n - 1) 

W. 



form Q jj  = n2 r3 dS, then, by Stokes' Theorem, 

I 1l3=fTd1={V 
 2 	J 

Thus ihus j_ nG = (n— 1)!VI n . 

Note. Let s = (V1  + + V 1 ), then 

detL
Gl G11 
1•• 1] 

= det [ 
(s —V i ) 

-il/i... 
= det 

= (_Vd et1 V1  

(s -V i ) 
1 

—Vfl1  
1 

vn+1  
1 

Thus the centroids have the same orientation as the simplex when n is even but 

a different one when n is odd. 

6.4.1 The case of some points being fixed 

In Section 5.3 it was shown that for any pair of points in different faces of a 

tetrahedron there exists pairs of points in the planes of the remaining faces that 

solve the symmetry condition. This is so because the number of parameters 

that characterize four arbitrary points in different faces of a tetrahedron is eight, 

the number of conditions satisfied by two fixed points in two faces is four and 

the symmetry condition involved three equations. Thus solving the symmetry 

condition in that case meant solving three equations for four unknowns. In the 

n-dimensional case, the number of parameters that characterize n + 1 points in 

different faces of an n simplex is (n + 1) (n - 1), the number of conditions satisfied 

by k fixed points in k different faces is k(n - 1) and the number of equations 

involved in the symmetry of the n x n matrix A is n(n - 1)/2. Therefore the 

(n + 1 - k) points that solve the symmetry of A exist, in general, if 

n 
.(n-1) < (n+1—k)(n-1) 

k 
	Ti 

i. e. a maximum of 	points can be fixed for an n-simplex. Thus when n = 3 

a maximum of 2 points could be fixed. However, more than 	points can be 

fixed if the points are known to be members of a set that satisfies the symmetry 

condition. This is explained in the following proposition where the number of 

fixed points r, 1 < r < n + 1, will be assumed, without loss of generality, to be 

in the faces F1 ,... ,Fr . 
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Proposition 6.11 Let P1  E F1 ,.. . , P i  E F 1  be points of a set that satisfies 

the symmetry condition. Suppose points P 1  .. . , Pr , 1 <r <n + 1, are held fixed, 

5 = nr+i + + n+i and 

(n2 , s - n2 ) 
N2 =s—n2 — 	 n i  forr+1<in+1, 

(ni , n2 ) 

then 

the points Q2 = P + -yjNj  lie in 'ir, the n - 1-dimensional subspace of R 

containing F, for r + 1 < i < n + 1 and for any scalar 'yj, 

if 7r = 	= 'Yn+l, the set {P1 ,. . . , Pr , Qr+i, . . Q+i} satisfies the sym- 

metry condition. 

Proof 

For the first statement, it is enough to show that the vector Ni is parallel to ir 

for r + 1 <i <n + 1. The calculation is: 

/ 	 (n,s—n) 
(ne , N) = c n, S - fl - 	ni  

\ 	 (n2 , n) 
= (ni , s - n) - (n2 , s - n2 ) 

=0. 

For the second statement, let 'Yr+i = ... = 	= y, then the matrix A can now 

be written as: 

r 

A 	= 	>flpt+flQt 

n+1 

i=1 i=r+1 
n+1 n+1 

= 	>flpt+y>flNt 
i=1 i=r+1 
n+1 

= 	i 
n+1 

+ 	ni 	- n - 
(n s - n2 ) 2, 	I t 

ni (ni , n) 
i=1 i=r+1 

n+1 

= nF 
n+1 

+ 	- 
n+1 n+1 

- 	
(ni , s - 

n)nini 
i=1 i=r+1 i=r+1 i=r+1 

n+1 

= 	i nF? 
n+1 

+ YSS - 7 

n+1 	(n2,s—n) 
nin - 7 	 i , r1> i=1 i=r+1 i=,+1 

which is a sum of symmetric matrices, hence A is symmetric. 

We can therefore get solutions of the symmetry condition starting from any given 

solution. 



6.4.2 The case of n - 1 points being fixed 

Now suppose the points P1  e F1 , .. . P+' E F+i satisfy the symmetry condition 

and all but two of the P are fixed. In addition, suppose the remaining two points 

lie in faces Fh and Fk, where h < k. By Proposition 6.11 the points 

Pl,...,Ph_l,Ph -I- 'y(nk -  
(nh, flk) 

flh),Ph+1,. 
(flh, flh) 

Pk-1, Pk + y(nh - (r'k, nih) flk),Pk+1,... ,Pfl+l 
(flk, flk) 

satisfy the symmetry condition for any scalar 'y. Considering all the possible 

combinations there are (1)  such sets of solutions of the symmetry condition 

These solutions are special in the sense that their displacements from the set 

{ 
P1,... , P+i} span the set of all possible displacements from a solution of the 

symmetry condition to another (- this is shown later). Suppose P11 .. ...  P+i  is 

another set of points such that P F for 1 < i < n + 1. If P = P2  + d2 , then 

d 2  must satisfy (d2 , n2 ) = 0 in order that the displacement P2' - P2  lies in the face 

F. Additionally the symmetry requirement reduces to >t 1' nd is symmetric. 

For 1 < h< k < n + 1 the vectors 

(flh,nk) (flk,nh) 
h and h - 

(flh,flh) 	 (ilk, flk) 
k 

will be denoted by d and d hk  respectively. Clearly d = d and d = d kh 

and (d r, flh) = 0 and (dr, flk) = 0. The matrix nd can be expressed as 
NtD where N is the n + 1 by n matrix whose i1h  row is the vector n2  and D is 

the n + 1 by n matrix whose i1h  row d2  satisfies (d 2 , n 2 ) = 0. Then the problem of 

finding displacements d 1 ,... , d that transforms one solution of the symmetry 

condition into another is equivalent to the problem of finding a matrix D with 

the property that NtD  is symmetric. 

Proposition 6.12 Let Dhk  for 1 < h < k < n+ 1 be the n+ 1 by n matrix whose 
jth row d 2  = 0, i h, i k and dh = d, dk = d. Then the matrix NtD hk  is 

symmetric. 

Proof 

Let nh = (nhl,.. . , flhn), 11k = (flkl,... flkfl), then 

n+1 

	

[NtDhk].. = 	flini[Dhk]mj 
M=1 

TIM ( 
	(flh,flk ) 	'\ 	

( 	

- (flh,flk) 	'\ 

	

= 	flkj - 	flh3) + ki 	
' 	

k3 J 
(flh,flh> 	 (flk, ilk) 	j 

RN 



n+1 

[Nt Dhk] 3  = 	flmj[Dhk]rni 

M=1 

h3 ( 
	

\ 	
(flh = n 	ki - (flh,flk) flhi) + flkj 	

- (flh,flk)

(fl, flk) flki) (flh, flh) 

= [NtDhk ] 

Let S = { D : D is an n + 1 by n matrix whose ith  row d2  satisfies (di , n) = 0 

for 1 < i < n + 1 and NtD  is symmetric }. S is a linear space. Each matrix 

Dhk, 1 <h < k <n+ 1 is a member of S. An element of S will be referred to as a 

symmetric displacement and Dhk  will be called a special symmetric displacement. 

Lemma 6.13 The matrices Dhk where 1 < h < k < n+ 1 are linearly dependent. 

Proof 

Rearrange the entries of each Dhk  into a row 'Whk having n(n + 1) entries, n(n - 1) 
1)  by n(n + 1) matrix W whose rows are the of which are zeros. Form the (  

Whk, 1 < h < k < n + 1 defined above. The row Whk  comprises the displacements 

of all points P2  E 7r (hyperplane of F2 ) under the special symmetric displacement 

Dhk The sum of all the columns of W is zero. To see this, consider the columns 

of W in groups of size n. There are n + 1 such groups. Let c3  be the j1h  group of 

columns of W. The sum of the columns in c3  is 

= 

i0i iJ 	3 	 ij 	 3' 3) 

n+1 

ni  

=T' 

EM 



Example When n = 3 the matrix W is given by 

I 112 - 	"l fl1 
(nl,n2) 	 (n2,nl) "2 	0 
(ni,ni) 	 (n2,n2) 

(fli ,fl3) 

- (ni,nl) 
l 

(fli ,fl4) ni - (fll,fll) 

0 

0 

L 	 - 	- 	"4 i 

where 0 = (0, 0, 0). It is easy to see that each of the four columns in the matrix 

W has sum 0. 

Lemma 6.14 The relation 

EDhk = 0 
h<k 

is the only dependence among Dhk, 1 <h < k < n + 1. 

Proof 

Consider the matrix W introduced in the proof of Lemma 6.13. It is enough 
n±1) - 1 rows of W are linearly independent. Let W be the to show that any (  

matrix obtained from W by deleting row Whk.  Consider groups of columns of 

W of size n. Column group Cr now has n - 1 non-zero sub-rows spanned by 

fl1,. . . n4, k+1, ... n+i. Likewise column group Ck has n - 1 non-zero sub-

rows spanned by n 1 , . . . , h+1,• . , n+i. Suppose the linear combination 

:ii: a
ij

wij is zero. 
ijrk 

Since the sub-rows of column group Ch and ck are spanned by n linearly inde-

pendent vectors, ahi = 0 for j k and cEu!c = 0 for i h. Let c3  be any 

other column group j h, j k. c3  has n non-zero sub-rows and one of these 

sub-rows has got a coefficient in >jjhk  C"jwij which has already been deduced 

to be zero. Hence c3  is also spanned by n linearly independent vectors. Therefore 

each 0 = 0 if >ijrk aijWij is zero. 

Proposition 6.15 The special symmetric displacements Dhk, 1 < h < k < n+ 1 

span the space S = {D : D is an n + 1 by n matrix whose rows d i  satisfy 

(di , n2 ) = 0 for 1 <i < n + 1 and NtD  is symmetric }. 

0 	ni - (n,ni) 

	

(n3,fl3) 	
3 

0 	 0 

(n2,n3) n3 — 	n2 n2  2 - 
(fl3,fl2) 
(n3,n3) 

0 

0 

(n4,nl) ni — 	n4  
(n4 ,n4) 

0 

- (n,ni) 
'2 	0 	n2 - (n,n) 

(n2,n2) 	 (fl4,fl4) 	
4 



Proof 

Let V be the linear span of all the Dhk, 1 < h < k < n + 1. It is desired to 

show that V = S. From Proposition 6.12 we have V C S. To show the opposite 

inclusion suppose X is a symmetric displacement that is not in V. Then, because 

X is an element of a linear space, it can be assumed that X is orthogonal to all 

Dhk, where the inner product between two matrices A and B is given by tr(AtB) .  

Now if 

Wh= 
(flh,flk) and Wk 	

(flk,flh) 
= 

(flh,flh) 	 (flk,nk) 
then 

n n+1 

tr(DkX) = : i: 
i=1 j=1 

= 	(nki - Wh nhi)Xhi + (nh - Wk nk)Xki 

= j fliX + flhXk — Wh E flhXh - Wk j flkXk 

= 	
ThkjXhj + flhXk 

= [NXt ] kh  + [NX t] hk . 

Therefore the assumption that X is a symmetric displacement that does not 

belong to V implies that NtX  is symmetric and NXt  is skew symmetric. The 

following two Lemmas complete the proof. 

Lemma 6.16 Every linear map X : 	--4 R n+1  such that NtX  is symmetric 

may be expressed in the form X = SN where S is self-adjoint. 

Proof 

Regard the matrices N, X as defining linear maps W 	n+1  The matrix Nt 

defines a linear map 	—, R whose kernel is the subspace {1} spanned by the 

vector 1 whose components are all equal to 1. Let Im(N) = V, then V = {1} 1 . 

Let N, be the restriction of Nt  to V and N : R1  -* V. The maps N and 
NV  are adjoints and both are isomorphisms. Now suppose NtX  is self-adjoint. 

Consider the diagram 

ro 
Rn 	 Rn+l Nt 

NVJ 	

t 
Ii 

R' 3 V 



Since Nv  and N, are isomorphisms, there exists a self-adjoint map Sx such that 

NtX = N,S x Nv  = NtiSx Nv , 

where i is the inclusion map V ,' n+1  Let S be the extension of iSx  to 

S : 	- R' which is zero on kerNt.  Then 

NtX = NtSNv = NtSN 

and S is self-adjoint. Hence X = SN. 

Lemma 6.17 Let NNtS  be skew symmetric where S is a symmetric matrix hav-

ing a zero in its (1,1) entry. Then S = 0. 

Proof 

First, the specified zero in the (1,1) position of S corresponds to the subspace 
kerNt on which the map S obtained in Lemma 6.16 is zero. The matrix NNt 

is positive on ker(Nt)J = V, so one can change coordinates orthogonally. Let P 
be the orthogonal matrix such that PNNtPt = D, where D is a diagonal matrix 

with a zero in its (1,1) position and all other entries positive. Let U be the 

symmetric matrix PSPt.  On checking individual entries of DU using skewness, 

it is established that U = 0, hence S = 0. 

Corollary 6.18 The dimension of S is (n±1) - 1 

This corollary is in agreement with the number obtained from the following ap-

proach: The number of parameters that characterize n + 1 points, each of which 

is in a different face of an n-simplex T is (n + 1)(n - 1) and the number of con-

ditions involved in the symmetry of n x n matrix A is n(n - 1)/2. Therefore the 

dimension of the solution to: 

n+1 

PEF for 1<i<n+1 and 	fl]Jt is symmetric 

is 	
(n+1)(n_1)_(n_1)=(1)_1. 

EM 



6.4.3 Geometrical property of immobilizing sets 

Theorem 2.5 and Corollary 4.20 give the geometrical property of the normal lines 

at points of an immobilizing set of a 2-simplex and a 3-simplex respectively. 

The aim of this subsection is to find a generalization of these results in higher 

dimensions. First, we obtain a method of assigning coordinates to lines in 1P, 

n > 4. This is a generalization of the work in Chapter 3 and can be found in 

both [HO] and [SO2]. 

A k-dimensional subspace of TPTh (k < n) is determined by k + 1 independent 

points, i.e. by k + 1 points no r (r < k + 1) of which lie in an (r - 2)-dimensional 

subspace. Let Sk be the subspace determined by the points X o ,.. . , Xjç  with 

coordinates 
xoo , xoi , 	, xon  
x10 , xii , . . . , x1  

Xko, Xkl, 	. 

The Plucker coordinates of Sk are the (j)  k + 1 by k + 1 determinants of the 

matrix 
xoo  xoi  ... xon  
x10  xii ... Xln 

Xko Xkl ... Xk 

given in a specified order. We will denote the coordinate obtained by choosing 

the i1h ,  th, ktz, . . . columns, 1 < i < j < k < •.. n, by Pijk..  As was the case 

for lines in IF3 , there is a dual set of Plucker coordinates on Sk•  This is obtained 

by considering 8k  as the intersection of n - k hyperspaces ((n - 1)-dimensional 

subspaces) of P. 

Lemma 6.19 The Plucker coordinates of a line £ in Rn going through the point 

P = (P,,... , P,) with direction vector n = (n i ,.. . , n) are (n, (P A n)), where 

is the function A2 TW --+ R() that assigns to a 2-vector its coefficients. 

Proof 

As an element of Jfl  the line £ goes through the points X = (1, P1 ,. . . , P,) and 

Y = (0, n 1 ,. . . , rt,). Its Plucker coordinates are the 2 x 2 determinants of the 

matrix 
[1 P1  P2 •.. Pn 

LU ni 	 Tin ]' 

that is 

(rii ,...,n,Pin2  —P2n 1 ,P1 n3 	P3fll,...,Pn_lThn  —Pnnn_ i ). 

me 



Theorem 6.20 If the points Pi ,. .. P+i immobilize an n-simplex then the nor-

mal lines to the simplex at these points have linearly dependent Plucker coordi-

nates. 

Proof 

Suppose the set of points {P 1  . . . , Pi} immobilizes an n-simplex. Then the 

matrix A = >1 n±1  n Pt is symmetric, that is 

n+1 

nkPk - nkj Pki = 0 for all i j. 

However, according to Lemma 6.19 nkPk3 - nkjPki are the last ( n ) entries of the 

Plucker coordinates of the line in Rn going through the point Pk = (Pkl,.. . , P) 

with direction vector nk = (nkl, . . ., nk). Since m+11  ni = 0 (see Lemma 6.1) 

the symmetry of A implies 

n+1 

• , n, Pklnk2 - Pk2nkl,. .. , Pk(_1)nk - Pknk(1)) = 0, 

that is A is symmetric if and only if the Plucker coordinates of the normal lines 

at Pk,  1 <k <n + 1, are linearly dependent. 
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