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Abstract

Background

Multiple sclerosis (MS) is a highly variable disease of the central nervous system

with inflammatory and neurodegenerative components, associated with both

physical and cognitive disability. Abnormalities are visible on routine magnetic

resonance imaging (MRI) of the brain, with ‘white matter hyperintensities’

(WMHs) representing sites of previous inflammation. Techniques for measuring

WMHs have not been standardised, although manual outlining is conventionally

taken to be the reference standard, despite its subjective element.

WMHs have been found to only partly explain the degree of cognitive impairment,

forming part of the ‘clinico-radiological paradox’. Research interest has largely

moved to advanced imaging techniques, one such technique being diffusion tensor

imaging (DTI). Through sensitivity to water molecule movement, DTI reflects the

integrity of white matter tracts and thus its measures may be relevant to both

the inflammatory and degenerative disease components.

Aims

The work described in this thesis aims to improve our understanding of the true

relationship between measures of white matter damage and cognitive impairment

in people with MS, to determine the optimum measurement technique(s) for

quantifying WMHs, including developing and testing a novel visual rating scale,

and to assess whether information provided by DTI can strengthen the association

of imaging and clinical findings.

Methods

A systematic review of the literature and meta-analysis relating WMHs to

cognition was conducted, focussing on image analysis technique. Three separate

methods for quantifying WMHs were then investigated. The reproducibility
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of manual outlining was assessed using scans available from 43 people with

secondary progressive MS (SPMS). An automated software method was optimised

for the same cohort, based on the results of the manual outlining. A novel

semi-quantitative visual rating scale was developed, with validation using the

same scans within a larger, more varied cohort. All available information

regarding the participants studied was then used to construct a linear regression

model predicting cognitive outcomes and determining the utility of the various

imaging markers derived from conventional imaging techniques. A non-linear

relationship for WMHs was also considered. White matter DTI metrics in the

same smaller cohort of 43 people were then investigated, primarily considering

tissue outwith WMHs, as well as that within major tracts and the novel diffusion

marker ‘peak width of skeletonised mean diffusivity’. The additional explanatory

power of DTI metrics within the linear models developed previously was then

determined.

Results

High variability was found in the literature regarding imaging marker

measurement and reporting of technique reproducibility. Manual outlining was

found to be associated with considerable measurement error, dependent on

observer and cohort factors. It was possible to optimise the automated software

for a particular cohort, either for volumetric or spatial outputs. Visual rating of

MS imaging features was found to be feasible and measures of WMH burden were

closely related to fully quantitative measures. The overall association of WMHs

to cognitive function was similar to that found in the published literature, with

no additional association following addition of DTI metrics. A trend towards

a greater effect of WMH volume at higher levels was found, consistent with a

non-linear relationship between imaging metrics and cognitive phenotype.

Conclusions

Substantial heterogeneity in the reporting of the reproducibility of WMH

measurement supports a move towards benchmarking against reference datasets.

Poor reliability of the current reference standard, manual segmentation, should

be recognised as a key limitation for the field. Rich information can be captured

quickly using visual rating of imaging features. The close correlation of visual

ratings of WMHs with quantitative measures may represent a practical alternative

in the appropriate circumstances. Combining visual rating features provided

additional explanatory power, supporting a multidimensional substrate for the
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cognitive phenotype. Finally, both automated and visual rating analyses support

a non-linear relationship between disease burden and cognitive performance in

MS.
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Lay Summary

Multiple sclerosis (MS) is a highly variable, progressive, disabling disease

affecting the brain and spinal cord. Many people with MS experience problems

with cognitive function, such as poor memory and slowed processing of new

information. Characteristic signs related to inflammation show up on magnetic

resonance imaging (MRI) scans of the brain and these tend to worsen with time.

Previous research has shown that the changes on scans are partly associated

with cognitive performance but are not enough to accurately predict who will

have these problems. The aim of the work described here is to improve our

understanding of how the changes visible on brain scans are associated with

cognition.

A review was carried out of all the research into the relationship between the

most common changes seen on brain scans, ‘white matter hyperintensities’ or

WMHs, and cognitive function in people with MS. This found that the techniques

for measuring both these were very variable, leading to a recommendation that

researchers work together to establish common standards. In addition the

relationship between imaging and cognitive features may depend on how advanced

the disease is.

Three different approaches to measuring the severity of the WMHs were then

investigated. Drawing round all the abnormal areas by hand is usually considered

to be the best method. However differences in the results were found when

different people performed this and even when the same person repeated the

process. An alternative, fully computerised method, sensitive to subtle differences

around the edge of the abnormalities, was tested and adjusted so as to closely

match the results from hand-drawing. A third method, involving assigning scores

to scans using a set of sample images was also developed and the scores for the

total amount of abnormality were closely related to the volumes measured by the

outlining technique.

Combining information about the WMHs and other characteristics of the people

being tested, it was possible to show that cognitive function could be partly

ix



predicted using the computerised measurements or the scores assigned. Overall

the results were similar to those already published, although there was a

suggestion that the brain might be able to compensate for WMHs up to a certain

level of damage.

An advanced imaging technique called diffusion tensor imaging (DTI) was also

used in the same group of people, looking for microscopic damage not visible on

routine MRI scans. DTI picks up information on water movement in the brain,

giving abnormal results when there has been any disruption to the nerve fibres.

Although it was possible to demonstrate subtle damage using this technique, the

overall ability to predict cognitive function was not improved.

From this work, the advantages and disadvantages of different WMH

measurement techniques are clarified, and a novel method of visual scoring is

suggested. In addition this work suggested that the brain may be able to

compensate for lower levels of disease without substantial impact on cognitive

performance.

x



Acknowledgements (I)

This work was supported by a Rowling Scholars Clinical Academic Fellowship

between 2015 and 2018.

Essential computer programming and processing, necessary for calculation and

comparison of imaging volumes, as well as expert quality control of all diffusion

data was provided by Dr Mark Bastin, Centre for Clinical Brain Sciences,

University of Edinburgh.

Development work necessary for the use of the automated tissue segmentation

software in the MS-SMART cohort was performed by Dr David Dickie, Institute

of Cardiovascular and Medical Sciences, University of Glasgow.

xi



xii



Acknowledgements (II)

I am immensely grateful to all the participants in the three studies considered

here for their time and commitment to MS research, without which no part of

this work would have been possible.

Many individuals have been instrumental in helping me along the way, not least

my supervisors Peter Connick, Siddharthan Chandran and Joanna Wardlaw, who

have all provided inspiration, support and practical assistance. Mark Bastin

deserves a special thank you for huge volumes of technical support and good

sense. Robin Sellar has provided invaluable wisdom and encouragement, often

when much needed.

I am grateful to all my colleagues in the Anne Rowling Regenerative Neurology

Clinic for their excellent work in recruitment and support for clinical research,

particularly Dawn Lyle and Denise Cranley for their work on MS-SMART, Chris

Batchelor for her work on FutureMS and Shuna Colville for all her advice and

support. I am very grateful to Mara Sittampalam for recruitment and testing of

the ‘Cognition in MS’ cohort. The radiographers at the Brain Research Imaging

Centre and Clinical Research Imaging Centre have ensured the ongoing success of

the research and found time to answer my many questions. Many other colleagues

have also provided suggestions and insight, including members of the Chandran

lab group and the CCBS image analysis group.

Joanna Wardlaw, Robin Sellar, Grant Mair, Zoe Morris, Mark Rodrigues and

Lorna Gibson gave up their time to participate in the pilot(s) for the visual

rating work; Grant Mair gave up even more time for manual outlining and general

distraction. Denis Mollison provided statistical advice on all sorts of questions

thrown at him and Francesca Chappell introduced me to ‘bubble’ plots. Charlie

Mollison assisted with emergency laptop dehydration and rebuilding. I’m also

very grateful to the owners of 139 Clachtoll for its use as a writing retreat.

Finally, data analysis was carried out almost exclusively using R and the thesis

was typeset using LATEX; I’m very grateful to all the relevant package developers

and many dedicated contributors to online support forums.

xiii



xiv



Contents

List of Figures xix

List of Tables xxiii

List of Abbreviations xxiv

A note on terminology xxvi

1 Introduction 1

1.1 Multiple sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cognitive impairment in MS . . . . . . . . . . . . . . . . . . . . . 6

1.3 Brain imaging in MS . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The cognitive clinicoradiological paradox . . . . . . . . . . . . . . 15

1.5 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Description of cohorts studied 19

2.1 MS-SMART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Cognition in MS . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 FutureMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Systematic review of literature: relationship between cognitive

performance and total white matter lesion burden 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Assessing the reliability of the reference standard for white

matter hyperintensity quantification 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xv



4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Development of a visual rating scale for MS imaging features 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Results of phase I: Initial development and piloting . . . . . . . . 74

5.4 Results of phase II: Further development and re-evaluation . . . . 79

5.5 Independent validation study . . . . . . . . . . . . . . . . . . . . 87

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Optimisation of an automated method for white matter

hyperintensity quantification 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Determining the relationship of white matter hyperintensity

burden to cognitive performance 113

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Results (I): Construction of a linear model based on automated

white matter hyperintensity volume . . . . . . . . . . . . . . . . . 120

7.4 Results (II): Construction of a linear model based on visual rating

lesion scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 The relationship of quantitative measures of tract microstructure

from diffusion tensor imaging to cognitive performance 143

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9 Discussion 161

A Protocol for systematic review of relationship between cognitive

performance and total white matter lesion burden 177

B Record of search strategy for systematic review of literature 181

xvi



C Quality assessment criteria used in systematic review of

literature 185

D Table of cognitive tests and scoring schemes used in individual

studies reviewed 191

E Data collection form used in initial pilot study of visual rating

scale for MS imaging features 197

F Data collection form used in second pilot study and validation

of visual rating scale for MS imaging features 201

G ‘Bubble’ plots showing inter-rater agreement in second pilot

study of visual rating scale for MS imaging features 205

Bibliography 211

xvii



xviii



List of Figures

2.1 Sample image showing automated WMH segmentation. . . . . . . 23

3.1 Flowchart summarising stages of systematic review process . . . . 35

3.2 Results retrieved by year of publication . . . . . . . . . . . . . . . 36

3.3 Histogram of study sizes . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Histogram of quality scores . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Forest plot of effect sizes from individual studies relating T2w

hyperintense lesion burden to overall cognitive performance . . . . 41

3.6 Forest plot of effect sizes from individual studies relating T1w

hypointense lesion burden to overall cognitive performance. . . . . 42

3.7 Funnel plot of effect sizes . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Forest plot of effect sizes from individual studies using SDMT. . . 46

3.9 Forest plot of effect sizes from individual studies using PASAT. . . 47

3.10 Scatterplot of study effect sizes against cohort mean lesion volume. 48

4.1 Sample image showing manual WMH segmentation. . . . . . . . . 57

4.2 Boxplots of cohort WMH volumes for mask sets 1 to 3. . . . . . . 58

4.3 Bland-Altman plots comparing mask sets 1 to 3. . . . . . . . . . . 60

4.4 Scatterplots of Dice index for mask sets 1 to 3. . . . . . . . . . . . 61

4.5 Boxplot and scatterplot comparing segmentation results from two

observers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Bland-Altman plot, showing ratio of WMH volumes for two

observers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Scatterplot of Dice index against mean WMH volume. . . . . . . 64

5.1 Histogram of item endorsement rates in initial pilot study. . . . . 75

5.2 Scatterplot of WM lesion subscore against semi-automated lesion

volume in initial pilot study. . . . . . . . . . . . . . . . . . . . . . 79

5.3 Histogram of item endorsement rates in second pilot study. . . . . 82

5.4 ‘Bubble’ plots of global white matter scores for each scan. . . . . . 84

xix



5.5 Barplots showing mean dimension subscores for each rater in

second pilot study. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Scatterplots of WM lesion scores against semi-automated lesion

volume in second pilot study. . . . . . . . . . . . . . . . . . . . . 87

5.7 Histogram of item-total correlations in the independent validation

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Sample images from MS-SMART cohort, demonstrating scans with

low, intermediate and high global white matter scores. . . . . . . 92

5.9 Histograms of summed global white matter scores assigned to scans

from two cohorts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 Histograms of summed regional white matter scores assigned to

scans belonging to each cohort. . . . . . . . . . . . . . . . . . . . 94

5.11 Overlapping histograms of total scores for scans from the two

cohorts of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 Scatterplot of total EPVS score against age for participants from

both cohorts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.13 Scatterplots of summed global and regional WM scores against

manual WMH volume. . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Scatterplot of automated and manual WMH volumes at threshold

combination maximising their correlation. . . . . . . . . . . . . . 103

6.2 Contour plot showing the mean absolute percentage difference for

all tested threshold combinations. . . . . . . . . . . . . . . . . . . 104

6.3 Bland-Altman plot showing the ratio of manual to automated

segmentation volumes at the threshold combination minimising the

mean absolute percentage difference. . . . . . . . . . . . . . . . . 105

6.4 Contour plot showing the mean Dice index for all tested threshold

combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Scatterplot of Dice indices against manual WMH volumes for the

optimal threshold combination. . . . . . . . . . . . . . . . . . . . 107

6.6 Contour plots for additional measures of spatial agreement for all

tested thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.7 Sample image from MS-SMART participant contrasting manual

and automated segmentations. . . . . . . . . . . . . . . . . . . . . 109

7.1 Plots of individual non-imaging predictors against SDMT. . . . . 122

7.2 Plots of individual volumetric imaging predictors against SDMT. . 126

7.3 Scatterplot of residuals against fitted values and Q-Q plot. . . . . 127

7.4 Scatterplot of SDMT against WMH volume with superimposed

piecewise and loess fits. . . . . . . . . . . . . . . . . . . . . . . . . 128

xx



7.5 Plots of participant characteristics against SDMT for the combined

MS-SMART and FutureMS cohorts. . . . . . . . . . . . . . . . . . 130

7.6 Plots of individual imaging predictors, from visual rating, against

SDMT (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7 Plots of individual imaging predictors, from visual rating, against

SDMT (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.8 Scatterplot of residuals against fitted values and Q-Q plot. . . . . 137

8.1 Group maps of the segmented fasciculi of interest. . . . . . . . . . 148

8.2 Boxplots of mean diffusivity for segmented brain compartments. . 149

8.3 Boxplots of fractional anisotropy for segmented brain compartments.149

8.4 Histogram showing distribution of PSMD. . . . . . . . . . . . . . 150

8.5 Scatterplot of PSMD against mean white matter MD . . . . . . . 151

8.6 Scatterplot of PSMD against WMH volume. . . . . . . . . . . . . 152

8.7 Boxplot of cohort MD for each of the segmented tracts. . . . . . . 153

8.8 Boxplot of cohort FA for each of the segmented tracts. . . . . . . 154

8.9 Scatterplot of mean tract FA against NAWM compartment FA. . 154

8.10 Plots of FA and MD against SDMT for NAWM and WMH tissue

compartments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.11 Scatterplot of PSMD against SDMT. . . . . . . . . . . . . . . . . 158

8.12 Scatterplots of mean tract FA and MD against SDMT. . . . . . . 159

xxi



xxii



List of Tables

2.1 Sequence details for standard imaging protocol in MS-SMART. . . 21

2.2 Characteristics of participants enrolled in MS-SMART . . . . . . 25

2.3 Characteristics of participants in Cognition in MS study. . . . . . 26

2.4 Sequence details for standard imaging protocol in Cognition in MS

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Characteristics of participants in FutureMS study. . . . . . . . . . 27

2.6 Sequence details for standard imaging protocol in FutureMS. . . . 28

3.1 Percentage of studies gaining each quality assessment score . . . . 40

3.2 Sensitivity analysis comparing study effect sizes by scanner field

strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Sensitivity analysis comparing study effect sizes by lesion

quantification method. . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Study effect sizes grouped by participant phenotype. . . . . . . . 45

4.1 Summary statistics for mask sets 1 to 3. . . . . . . . . . . . . . . 57

4.2 Spearman correlations, ICCs and Dice indices for mask sets 1 to 3. 59

5.1 Descriptive statistics for items in initial pilot study. . . . . . . . . 76

5.2 Intra- and inter-rater ICCs for dimension subscores in initial pilot

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Descriptive statistics for items in second pilot study. . . . . . . . . 81

5.4 Intra- and inter-rater ICCs for dimension subscores in second pilot

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Descriptive statistics for individual items in independent validation

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Intra-rater ICCs for dimension subscores in independent validation

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Intra-rater agreement on presence of cavitation in independent

validation study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xxiii



5.8 Intra-rater agreement on presence of (juxta-)cortical lesions in

independent validation study. . . . . . . . . . . . . . . . . . . . . 91

5.9 Summary of dimension subscores for the two cohorts studied. . . . 93

7.1 Summary statistics for MS-SMART cohort. . . . . . . . . . . . . . 121

7.2 Summary of linear models predicting SDMT using volumetric

imaging markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Summary statistics for the MS-SMART and FutureMS cohorts. . 131

7.4 Summary of linear models predicting SDMT using imaging

markers derived from visual rating. . . . . . . . . . . . . . . . . . 132

7.5 Description of linear model considering FutureMS and MS-SMART

cohorts separately. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1 Clinical and imaging features of participants in the Advanced MRI

substudy of MS-SMART cohort. . . . . . . . . . . . . . . . . . . . 147

8.2 Summary diffusion metrics and Spearman correlations with age

and volumetric imaging markers. . . . . . . . . . . . . . . . . . . 152

8.3 Summary of linear models predicting SDMT using diffusion metrics.157

xxiv



List of Abbreviations

All abbreviations are written out in full at their first use within each chapter. For

convenience, a list of all abbreviations used is provided below.

AD Axial diffusivity

AIC Akaike information criteria

ANTs Advanced Normalisation Tools

BDI Beck depression index

BIC Bayesian information criteria

BICAMS Brief international cognitive assessment for multiple sclerosis

BRB Brief repeatable battery

CI Confidence interval

CIS Clinically-isolated syndrome

CSF Cerebrospinal fluid

CNS Central nervous system

df Degrees of freedom

DTI Diffusion tensor imaging

EDSS Expanded disability status scale

EPVS Enlarged perivascular spaces

FA Fractional anisotropy

FLAIR Fluid attenuated inversion recovery

FMRI Functional magnetic resonance imaging

FMRIB (Oxford Centre for) Functional Magnetic Resonance Imaging of the Brain

FSE Fast spin echo

FSL Functional Magnetic Resonance Imaging of the Brain software library

FSPGR Fast spoiled gradient echo

GM Grey matter

GWAS Genome wide association studies

ICC Intra-class correlation

ICV Intracranial volume

IQR Interquartile range

JC Juxtacortical/cortical

xxv



MACFIMS Minimal assessment of cognitive function in multiple sclerosis

MD Mean diffusivity

ml Millilitre

MPRAGE Magnetisation-prepared rapid gradient echo

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

MS Multiple sclerosis

MSFC Multiple Sclerosis Functional Composite

MS-SMART Multiple Sclerosis Secondary Progressive Multi-Arm Randomisation Trial

MT Magnetisation transfer

NAWM Normal-appearing white matter

NPV Negative predictive value

PACS Picture archiving and communication system

PASAT Paced Auditory Serial Addition Test

PD Proton density

PNT Probabilistic neighbourhood tractography

PPMS Primary progressive multiple sclerosis

PPV Positive predictive value

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PSMD Peak width of skeletonised mean diffusivity

RD Radial diffusivity

RRMS Relapsing-remitting multiple sclerosis

SD Standard deviation

SDMT Symbol Digit Modality Test

SE Spin echo

SPMS Secondary progressive multiple sclerosis

STROBE Strengthening the Reporting of Observational studies in Epidemiology

SVD Small vessel disease

T1w T1-weighted

T2w T2-weighted

TBSS Tract-based spatial statistics

TE Echo time

TI Inversion time

TR Repetition time

TSE Turbo spin echo

WM White matter

WMH White matter hyperintensity

xxvi



A note on terminology
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sequences in the context of multiple sclerosis (MS). In this thesis, the generic

term ‘white matter hyperintensity’ (WMH) is preferred, widely used elsewhere

in imaging research without assumptions about underlying pathology. Reflecting

the widespread use of ‘lesion’ in clinical imaging and MS-specific research, this

term is used in the review of the literature presented in Chapter 3 and the visual

rating work presented in Chapter 5.
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Chapter 1

Introduction

1.1 Multiple sclerosis

1.1.1 Historical perspective

The pathological and clinical features of multiple sclerosis were bound together

as a distinct disease (‘la sclerose en plaques’) in 1868 by the French neurologist

Jean-Martin Charcot [1], launching 150 years of research into its aetiology and

treatment. Charcot was the first to associate clinical observations with the work

of the Scottish pathologist Robert Carswell and his French counterpart Jean

Cruveilhier earlier in the nineteenth century [2], but it is possible that the disease

has existed, unnamed, for considerably longer [3].

Despite significant advances in knowledge since its recognition, multiple sclerosis

(MS) today remains an incurable, disabling disease and is currently estimated to

affect around 2.3 million people worldwide [4]. In an evolving literature,whether

the incidence is currently increasing [5] or decreasing [6] is unclear, confounded

by changes in diagnostic criteria, technology and the advent of disease-modifying

treatments, but its prevalence in the UK, particularly Scotland, is among the

highest in the world [6].

1.1.2 Clinical features

MS is a highly heterogeneous condition, manifestations varying between people

and over time. Clinically, the disease is divided into different phenotypes [7] by its

pattern of attacks and disability accumulation, but these broad categories conceal

high inter-individual variability in terms of neurological deficits, rates of relapse

and progression of disability. The disease is characterised by distributed damage
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to the central nervous system (CNS), with initial symptoms most commonly

relating to sensory, motor or visual disturbances. Problems with cognition,

balance, fatigue, pain, bowel, bladder and sexual function can also occur, although

may be under-recognised.

An initial attack suggestive of the disease is termed ‘clinically-isolated syndrome’

(CIS), with further evidence of disseminated damage needed to firmly establish a

diagnosis of MS. The majority of people with MS are initially diagnosed with

a relapsing-remitting form (RRMS) in which there is full or partial recovery

between attacks. Recovery eventually becomes incomplete, leading to a secondary

progressive (SPMS) phase of the disease, in which relapses are less frequent but

accumulation of disability continues. The median time to progressive disease is

around 21 years [8]. In a minority of people, the disease follows a progressive

course from disease onset, known as primary progressive MS (PPMS).

The diagnosis of MS rests on evidence of disease dissemination in time and space,

following exclusion of alternative diagnoses that may mimic its findings. Formal

diagnostic criteria are regularly updated to reflect available evidence and advances

in diagnostic technology. Since 2001 the diagnostic criteria have included

magnetic resonance imaging (MRI) features, which can partially substitute for

clinical findings [9].

While establishing the diagnosis has become relatively straightforward, predicting

future disease activity and long term outcomes remains difficult, restricting the

ability of patients and clinicians to make informed decisions. Since the advent of

disease-modifying therapies, with their associated risks and costs, this inability

to predict untreated disease outcomes carries still greater significance.

1.1.3 Epidemiology

The variable nature of the disease extends to its geographical profile. Different

populations register very different levels of disease incidence and prevalence, with

the highest rates found in European and North American populations [4]. The

causes of this variation are not clear and may involve a complex interplay of

genetic and environmental risk factors. Differing vitamin D levels have been

suggested to explain an apparent variation with latitude, but no modification of

risk factors has proven beneficial. The estimated incidence in Scotland is 15.3

per 100,000 population, with a prevalence of 255.2 per 100,000, both higher than

the UK average [6].

MS is primarily a disease of working-age adults, with a female predominance. In

this regard the UK follows the usual pattern, with the peak incidence at 40 in
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women and 45 in men and a female-to-male ratio of approximately 2.4. Peak

disease prevalence in the UK is at 56 for women and 59 for men and at all ages is

higher in women than men, in common with many diseases with an autoimmune

component. Mortality rates are more than twice that of the general population

at all ages and overall life expectancy for people with MS is lower, at 71.6 for

women and 65.4 for men, than it is for the general population, where it is 81.8

and 78.3 respectively [6].

1.1.4 Genetics

The complex interactions between genetic and environmental risk factors in

triggering the development of multiple sclerosis remain incompletely understood.

There are clearly inherited factors, with monozygotic twins of affected people

having an approximately 30% risk of developing the disease, and other relatives

carrying an increased risk, related to genetic proximity [10]. A complex polygenic

risk profile underlies this, with no one gene identified as either sufficient or

necessary to cause the disease.

With advances in genomic screening technology, genome wide association studies

(GWAS) have allowed over two hundred genetic susceptibility loci to be identified

[11]. These mostly, but not exclusively, relate to immune system regulation,

particularly polymorphisms in the human leucocyte antigen region [12]. The

high number of susceptibility genes, all conferring modest increases in risk, make

robust studies of their individual effect on phenotype difficult. However there has

been some evidence that certain alleles may influence age of disease onset and

disease activity as measured by MRI [12,13].

1.1.5 Pathology

MS is an inflammatory demyelinating disease leading to chronic

neurodegeneration. The processes by which damage to the CNS occur are

complex and the balance between them alters through the disease course. In

its most common early form, clinical relapses correspond to acute inflammatory

attacks, with neurodegenerative processes predominating in later stages and

associated with progressive disability. Although originally considered a disease

limited to the white matter and its myelinated axons, involvement of the cortical,

deep and spinal grey matter is now also recognised, where demyelination may

occur with relatively little immune infiltrate [14].
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The initial trigger and causal pathway is unknown, but acute inflammatory

attacks are associated with breakdown of the blood-brain barrier, autoreactive

lymphocytes entering the CNS and launching an inflammatory cascade, leading to

activation and accumulation of local immune cells. The sclerotic plaques defining

the disease are the combined result of the inflammatory attacks and subsequent

repair processes, involving acute inflammation, demyelination, remyelination,

astrocytosis, axonal and neuronal loss [10, 15]. Specific targets to the immune

response have not been determined and may differ between individuals, but

the end result is loss of the protective myelin sheaths surrounding nerve axons,

depletion of the oligodendrocytes producing the myelin, and acute axonal loss.

Recruitment of oligodendrocyte precursor cells and capacity for remyelination

show individual variation [16] and exhaustion of these processes may coincide

with the transition to progressive stages of the disease.

In later stages of the disease, axonal and neuronal loss are the predominant

features [14]. The blood-brain barrier appears to remain intact, but ongoing

inflammation continues, confined within the CNS, in the form of diffuse microglial

activation and meningeal B-cell aggregates. The exact relationship between

inflammation and neurodegeneration is unclear [17].

Although valuable insights into MS have come from pathology, these studies will

always be limited by the highly variable, usually chronic nature of the disease in

the specimens studied. Obtaining biopsy specimens carries a substantial risk to

the patient and is usually only undertaken when considerable doubt exists over

the diagnosis, suggesting that these samples may represent atypical examples of

the disease. Autopsy tissue may be more easily available, but is likely to represent

the end stage of a long and complex disease, with limited information regarding

the intervening processes.

1.1.6 Laboratory models

MS is only known to occur in humans and its many complexities cannot be

fully replicated in the laboratory. However animal models of disease, ex vivo slice

cultures, and human stem cell-derived glia and neurons can all mimic components

of the inflammatory or degenerative processes, offering opportunities for exploring

disease mechanisms and testing potential neuroprotective treatments which would

not otherwise be available.

Animal research in particular allows in vivo studies with greater potential for

experimental manipulation and availability of tissue samples. Various systems,

predominantly in rodents, have been developed to mimic aspects of MS [18, 19],
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including viral, autoimmune, genetic and toxin-based models. The mutant

‘shiverer’ mice show hypo- and dysmyelination in the CNS [20], allowing study

of the associated axonopathy; experimental autoimmune encephalomyelitis, with

susceptible mice exposed to CNS proteins/peptides, is used to study autoimmune

demyelination [21]; toxin-induced damage, for example with cuprizone, can be

used to cause apoptosis in metabolically active mature oligodendrocytes and

subsequent demyelination, allowing more controlled study of the remyelination

process [22]. Advantages to use of animal models are clear, but their limitations

in attempting to model a complex disease with an as yet unknown trigger will

always restrict their translational power.

A different approach to gaining access to cell mechanisms involved in CNS

inflammation, axonal injury and repair is the use of in vitro cell cultures [19].

Advances in biotechnology have made it possible to direct the differentiation

of human stem cell-derived glia and neurons and use these to explore disease

mechanisms at cellular and molecular levels. Ex vivo slice cultures from animal

models have been used to promote rapid screening of potential drug therapies

but testing in human stem cell-derived cells is becoming possible and increases

possibilities for translation to trials in humans.

1.1.7 Treatment

A number of drugs are currently licensed for use in the UK as disease-modifying

therapies in RRMS, all acting to reduce the neuroinflammatory disease

component. First line treatments have a variety of mechanisms of

action, including inhibition of lymphocyte proliferation, reduced migration of

inflammatory cells across the blood-brain barrier and increasing the presence

of anti-inflammatory cytokines [23]. In some cases the mechanism of action is

not fully understood. These treatments have been shown to reduce the rate of

relapses, disability progression and accumulation of new inflammatory lesions on

imaging, while for the most part side effects are well-tolerated.

More recently three monoclonal antibody treatments have become available,

acting either to deplete lymphocytes or block their CNS infiltration. These

have shown greater efficacy in reducing relapse rates and disability progression,

but are associated with more serious side effects, including an increased risk of

other autoimmune-mediated conditions, as well as the life-threatening condition

progressive multifocal leucoencephalopathy [10,23].

While their short term efficacy in preventing relapses in RRMS is well-established,

what remains unproven is that any treatment can delay or prevent conversion
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to SPMS, or that a reduction in inflammatory activity prevents longer term

neurodegeneration. This absence of evidence may simply reflect the relatively

recent advent of disease-modifying therapies and the practical time frames

for running fully-blinded randomised control trials, but effective prevention or

treatments for the neurodegenerative component of the disease remains a major

unmet need.

1.2 Cognitive impairment in MS

1.2.1 Prevalence and impact

Cognitive impairment in multiple sclerosis is common. It is estimated to affect

up to 70% of people with the disease [24], although this will depend both

on the particular population and the tests used. While rarely a presenting

symptom, cognitive impairment can be present in the earliest disease stages [25].

The development of cognitive impairment can be in conjunction with physical

disability, or distinct from it, but the prevalence and severity appear to increase

with time since diagnosis [26]. Its onset is unlikely to be as apparent to a

patient or healthcare professional as a physical relapse or other forms of disability,

necessitating good screening tools. As with other aspects of this disease, the risk

factors for development of cognitive impairment have not been resolved.

Cognitive impairment is associated with lower measures of quality of life [27].

It reduces physical independence, competence in daily activities, medication

adherence and rehabilitation potential. It also predicts both under- and

un-employment [28, 29]. As a disease of predominantly working age adults,

this further increases the economic impact of MS. Early recognition of

cognitive features of the disease may allow greater opportunities for suitable

lifestyle adaptations, as well as more relevant measures to assess treatment

outcomes.

Despite its frequency and clinical significance, the pathological substrate that

causes cognitive impairment in MS is not fully understood. This is discussed

in greater detail below (Section 1.4). However, given the context above, it is

clear that a better understanding of the relationship between pathology and

phenotype would be valuable to support targeted therapeutic intervention at the

relevant biological level. From a cognitive neuroscience perspective, there may

also be value in providing novel insights on the relationship between brain tissues

and function. The extent to which white matter pathology in MS can explain

impairments of cognition is therefore the central theme of this thesis.
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1.2.2 The structure of human cognition

Human cognition is a multidimensional construct with distinct cognitive abilities

identified which can vary independently to an extent. Various models have

therefore been proposed to describe how different cognitive domains or specific

cognitive abilities are related. A common finding is that measurements on a

wide variety of cognitive tests all correlate and a general factor of cognitive

ability (‘g’) is used to explain this shared variance [30]. The Cattell-Horn-Carroll

model of human intelligence [31] is one widely-used model, developed through

factor analysis of psychometric data and proposing a three-tiered hierarchy of

cognitive skills with an overall general factor. Reduced processing speed is the

most common deficit identified in MS and deteriorates with time. It has been

suggested this is the core cognitive deficit, corresponding to ‘g’ and mediating

other deficits via disconnection of critical cortical regions [32].

This fundamental complexity of human cognitive structure presents a substantial

challenge to evaluation of the relationship between pathology and phenotype,

raising the question of how best to approach measurement. Options include at

one extreme lengthy multiple domain neuropsychological evaluation to detect

all possible deficits. At the other extreme is single domain evaluation, typically

targeting processing speed as the most responsive feature. Intermediate positions

are also possible and the optimum approach to measurement is discussed further

below.

1.2.3 Measurement approaches and patterns of deficits

Patterns of cognitive deficits vary between individuals with MS [24], with

those most frequently detected affecting information processing speed, executive

function, attention and long-term memory. Different patterns of impairment may

in part relate to the random nature of the sites of inflammatory damage. However

many of the more commonly affected functions, such as information processing

speed, appear unlikely to localise to a single brain region or small group of regions,

with preservation of widespread tissue integrity more relevant.

Recognising that comprehensive testing by an expert neuropsychologist may

not always be feasible, a number of set test ‘batteries’ have been developed,

covering a range of cognitive domains, targeted towards functions found to be

disproportionately affected in people with MS. Most cognitive test outcomes

are known to vary with sex and age and results must be interpreted in relation

to population norms. Commonly used batteries in the research setting are the

Brief Repeatable Battery (BRB) [33] and the Minimal Assessment of Cognitive
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Function in MS (MACFIMS) [34], taking approximately 45 and 90 minutes

respectively to administer. Used correctly, standardised tests should facilitate

the use of cognitive outcomes in research, including longitudinal and multicentre

trials. However Fischer et al [35] found that the criteria used to interpret test

results varied widely, affecting estimates of cognitive impairment prevalence at

different disease stages.

The Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS)

initiative has sought to standardise a shorter test battery more easily fitted

within a typical clinical consultation [36]. Taking tests from both the BRB and

MACFIMS, this has now been validated across several countries [37]. Three short

tests are recommended, with priority given to the Symbol Digit Modality Test

(SDMT), a 90 second test of information processing speed, in which numbers

are matched to arbitrary symbols, found to be highly sensitive to cognitive

impairment in MS [36]. It is to be hoped that a shorter more practical test

procedure will enable more routine testing of asymptomatic people, leading to

an improved understanding of the true prevalence and development of cognitive

dysfunction.

1.2.4 Modifiers of cognitive performance and cognitive reserve

The capacity for any individual to maintain performance on cognitive testing

with a given level of disease appears highly variable. A number of disease

and non-disease factors have been proposed to explain this, some amenable to

intervention, others not.

Theories of brain and cognitive reserve suggest that lifetime maximal brain

volume, estimated by measuring intracranial volume, protects against cognitive

decline, as do premorbid IQ and participation in enriching cognitive leisure

activities [38, 39]. Cognitive scores are also known to vary with age, sex and

education level [40]. Depression is common in MS and associated with poorer

performance on cognitive testing, including processing speed [24] and many

anti-spasticity drugs can also have cognitive side effects [41].

The relative importance of these modifying factors may vary between individuals

and over time, but failure to consider their potential impact may obscure or

confound assessment of any relationship between cognitive function and disease

markers.
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1.2.5 Impact of cognitive assessment approach on detection of

underlying pathology-phenotype relationship

At a fundamental level, the choice of cognitive assessment method may be

critical to detection and characterisation of the underlying pathology-phenotype

relationship. For cognitive abilities that are highly neuroanatomically localised,

the relationship to pathology in relevant regions may be strong, but this

relationship may also go undetected if pathology is evaluated across the

whole brain with the inclusion of additional neuroanatomical regions that are

irrelevant to function. It may be critical to identify the ‘right’ region in

which to measure pathology. The corollary of this neuroanatomical targeting is

that characterisation of pathology in discrete, potentially small, brain regions

inflates the importance of strong psychometric performance for the brain

imaging metrics used to quantify pathology. The feasibility of evaluating

the pathology-phenotype relationship for neuroanatomically localised cognitive

abilities is therefore explored throughout this thesis by evaluating whether the

psychometric performance of quantitative brain imaging of white matter in MS

is adequate.

An alternative approach is to focus on cognitive abilities that are widely

distributed from a functional neuroanatomical perspective, such as information

processing speed, a common and profound deficit in MS [24]. Tests of information

processing speed are known to be associated with widespread brain activation [42].

Although this reduces sensitivity in those patients who have isolated deficits of

neuroanatomically localised cognitive abilities, it also minimises the effects of

psychometric limitations of brain imaging quantification. Investigation of the

relationship between pathology and phenotype for distributed cognitive functions

therefore represents the optimum approach to explore fundamental relationships

between pathology in brain compartments (for example white matter) and

phenotype, although brain imaging metrics must of course be optimised for their

psychometric performance. The focus on neuroanatomically distributed cognitive

abilities is therefore central in this thesis to evaluate the relationship between

white matter pathology and cognitive impairment.

1.3 Brain imaging in MS

The advent of MRI has brought major changes to the diagnosis and monitoring

of MS. Many of the known pathological features are linked to imaging findings,

allowing less invasive research methods. The use of brain imaging techniques

to produce biomarkers of pathology in MS can be described within multiple
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different frameworks. The following introduction to brain imaging metrics in

MS classifies them by the underlying pathology for which they are generally

considered a biomarker, while acknowledging that few of them are considered

specific for a particular feature. This approach is chosen to facilitate attempts

to address the question of pathology-phenotype relationships. The necessity of

using non-specific (imperfect) biomarkers remains a challenging issue for the

field, balancing valid but low biological value descriptions of metric-phenotype

relationships against less valid but high biological value pathology-phenotype

claims.

1.3.1 Focal neuroinflammation

1.3.1.1 T2-weighted white matter hyperintensities

Acute inflammation is the most readily demonstrable of the pathological features

of MS. Characteristic white matter hyperintensities (WMHs) on T2-weighted

(T2w) MRI sequences within the brain and/or spinal cord provide supporting

evidence used in making the diagnosis and are widely accepted as a marker

of the historical burden of focal inflammation. As MRI techniques and

experience have improved, the imaging criteria for diagnosis have changed to

reflect this. The latest criteria [43] highlight abnormalities specifically involving

cortical/juxtacortical brain tissues and optic nerves as suggestive of the diagnosis

- locations which were not previously visible on imaging.

Two major barriers to use of these WMHs as a biomarker, for example in disease

and treatment monitoring, is both attributing them to MS rather than other

comorbidities, as well as their pathological heterogeneity [44] within MS itself.

A developing MS plaque comprising any combination of acute inflammation,

demyelination, remyelination or astrocytosis will appear bright on T2w imaging.

In clinical practice, combinations of features are used as imperfect predictors

of the degree of chronicity. Although non-specific, the number and volume of

enlarged perivascular spaces (EPVS) visible on T2w imaging have been linked to

the presence of acute inflammation [45], although this requires confirmation. In

investigating chronic damage, scant literature exists regarding the frequency of

lesion progression to cavitation, in which severely damaged tissue is replaced by

a fluid-filled cavity, and this is thought to be an uncommon feature in MS [46].

However the concept of ‘T1 black holes’ [47, 48] (see Section 1.3.1.3) is clearly

related as a means to identifying more severely damaged tissue. Furthermore,

a variety of other conditions are also associated with WMHs, including small

vessel disease, other vascular and inflammatory conditions and normal ageing [49].
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While particular patterns and numbers of focal WMHs have a well-established

utility in clinical diagnosis, their use in disease/treatment monitoring is less

clearly evidence-based, which may relate to this pathological non-specificity as

well as the changing role of diffuse pathology.

A further barrier to the use of measures of WMH volume is the existence of ‘dirty’

or diffusely-abnormal white matter, a category of tissue falling between those of

focal abnormalities with distinct borders and a likely inflammatory origin, and

the normal-appearing white matter (NAWM) [50,51]. This intermediate category

of white matter appearances may be extensive, particularly in chronic disease and

presents clear challenges to volumetric approaches to image analysis.

1.3.1.2 Contrast enhancement

Current disease activity can be estimated by gadolinium contrast-enhanced

imaging, with gadolinium taken up into brain tissues where the blood-brain

barrier has been breached. The rate of underlying disease activity, as measured by

contrast-enhanced imaging, is roughly an order of magnitude higher than clinical

evidence of relapses [52–54].

This increased sensitivity of imaging to disease activity and burden, as well as

its perceived objectivity, is exploited by trials where surrogate imaging outcomes

allow for increased sensitivity to the effect of interventions.

1.3.1.3 T1-weighted white matter hypointensities

The relative brightness of white matter on T1-weighted (T1w) imaging relates

to fat signal from myelin. Focal abnormalities appearing hypointense on T1w

sequences are often considered a more specific disease marker than T2w WMHs,

reflecting myelin loss and indicating more severe damage and/or a failure of repair

following acute inflammation [47, 48]. Nevertheless, both T1- and T2-visible

lesions remain non-specific, with the added confounding effect of acute white

matter oedema appearing hypointense on T1w imaging.

1.3.1.4 Cortical lesions

Cortical lesions are only partly visible on current routine imaging, likely related

to lower levels of inflammatory infiltrate, lower myelin density and partial volume

effects from proximity to cerebrospinal fluid (CSF) [17]. Advanced imaging

techniques, such as double inversion recovery and phase-sensitive inversion
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recovery sequences, have been developed to optimise evaluation of cortical

pathology, but do not necessarily increase sensitivity or reliability [55, 56].

Nevertheless it has been suggested that they may be particularly relevant in

determining cognitive status [57].

1.3.1.5 Quantification methods

Counts of new or enlarging T2w WMHs by adequately trained human observers

have been the benchmark outcome measure for phase II trials of disease-modifying

drugs. This provides an ordinal level measurement of WMH burden, but is labour

intensive, user-dependent and limited by the presence of WMH coalescence as well

as a failure to capture information on the size or distribution of abnormalities.

The reference standard for quantitative analysis is manual outlining of all lesions,

but this is user-dependent and time-intensive. For research purposes, the field

has therefore largely moved to use various software analysis packages for a

semi- or fully-automated quantitative assessment of T2w- and/or T1w-visible

abnormality [58]. These have the advantage of providing fully quantitative, ratio

level measurements of the imaging burden of disease. With the increasing use

of such technology-based quantification techniques, it is not clear what their

psychometric performance characteristics are, a key question that is addressed in

this thesis.

A small volume of research has applied visual rating scales to the imaging

features of MS [59–64]. These studies used relatively small cohorts and were

predominantly conducted in the early years of clinical MRI use, predating the

move towards technology-based quantification. No visual rating scale for MS

imaging features has entered common use. However semi-quantitative visual

rating scales are frequently used for research in other conditions, including

those such as small vessel disease (SVD) [65] with a similar range of imaging

features. Visual rating scales may therefore have value in providing an

intermediate approach between ordinal assessment of new or enlarging WMHs

and technology-based volumetric quantification. The development of a novel

visual rating scale is described in this thesis and its performance evaluated.

1.3.2 Neurodegeneration and repair

1.3.2.1 Tissue volume

Brain atrophy is accelerated from the earliest stages of MS and progresses

with the disease [66, 67], marking the known tissue loss. Atrophy is frequently

12



used as an outcome in clinical trials of potentially neuroprotective drugs [66],

using software-based volumetric measurements, either relying on registration

of longitudinally-acquired imaging or segmentation of individual scans [68].

However, as with evidence of focal damage, atrophy is a pathologically

non-specific marker, representing a global sum of rates which may differ by

tissue type and anatomical location. The changes involved are small, require

longitudinal data, preferably at distant time points, and may vary due to drugs

and hydration status [66,69].

1.3.2.2 Quantitative markers of tissue microstructure

Diffusion tensor imaging (DTI) is an advanced MRI technique that is frequently

used in MS research, providing information on tissue microstructure through

measuring the random motion of water molecules at the voxel level [70]. Healthy

white matter is a tightly packed, highly coherent structure containing myelinated

axons, with water movement predominantly constrained to follow the paths of

white matter tracts. Any damage to these tracts is associated with altered DTI

metrics. The DTI parameters fractional anisotropy (FA) and mean diffusivity

(MD) measure the directional coherence and magnitude of water diffusivity

respectively and are sensitive probes of tissue microstructure. Typical patterns

of change seen in MS are reduced FA and increased MD in affected white

matter.

As with measuring focal lesions, there are many ways to analyse DTI data and

the chosen methodology will depend on the research question. Similar to the

use of total WMH volume, DTI-derived measures of total disease burden can be

extracted for use by calculating mean voxel metrics for white matter or other

tissue compartments of interest. Several papers have examined the relationship

of mean DTI metrics within the normal-appearing white matter to cognitive

function [71–74]. All found significant associations, although these were not

consistently stronger than the relationship between cognitive performance and

WMH volume.

Tract-based spatial statistics (TBSS) [75] has become widely used for combining

and comparing data from multiple subjects. This technique involves thinning

and alignment of multiple subject DTI data to a common white matter skeleton,

allowing voxelwise comparisons of diffusion metrics with outcomes of interest.

Many groups have used TBSS to locate voxels with significant associations with

cognitive outcomes [71–74,76–91].
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Baykara et al [92] have recently proposed an alternative summary marker from

DTI data in cerebral SVD - the ‘peak width of skeletonised mean diffusivity’

(PSMD), based on TBSS and histogram analysis of the aligned voxels. PSMD

summarises the spread of values of white matter MD in a single measure,

derived from an automated pipeline. This objective metric may provide a more

biologically relevant marker of total disease burden as it allows for the known

individual variation in mean MD values, instead summarising their spread within

a scan. In their study of its use in cohorts with SVD, Baykara et al showed that it

outperformed conventional imaging markers in explaining variance in processing

speed. They also showed its stability across multiple sets of healthy control data

from studies on SVD and Alzheimer’s disease, but true normative data is not yet

available, nor has any data yet been published on the use of PSMD in studies of

MS.

Separately from TBSS, major tracts can also be tracked and segmented from

DTI data by various methods, most commonly tractography. Probabilistic

neighbourhood tractography (PNT) is one such technique [93], optimising

starting voxels or ‘seed’ points for fibre-tracking based on a comparison with

standard reference tracts. Tractography has the advantage of minimising the

confounding effect of crossing fibres on directionality markers and focussing on

tissues with more readily attributable functional significance.

1.3.2.3 Quantitative markers of tissue composition

More specific markers of neuronal health and tissue integrity have been proposed,

derived from different advanced imaging techniques. Magnetic resonance

spectroscopy (MRS) can be used to non-invasively assess changes in neuroaxonal

metabolites [94, 95], such as N-acetyl-aspartate, within lesional and non-lesional

white matter. While potentially a useful biomarker of neurodegeneration, MRS

is currently limited by its spatial resolution and the high processing demands.

Magnetisation transfer (MT) imaging is based on signal sensitivity to the presence

of tissue macromolecules, such as myelin [96, 97]. While potentially providing

useful biomarkers of myelination status for trials of neuroprotective agents,

metrics derived from MT imaging remain non-specific. As yet, no advanced

imaging technique has been recommended for clinical use.

1.3.2.4 Imaging markers of connectivity

Neuronal plasticity as a response to pathological changes is well-recognised [98],

from local synaptic reorganisation to recruitment of distant cortical sites and
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parallel pathways. Obtaining direct evidence of synaptic changes is beyond the

resolution of current in vivo imaging techniques, but larger scale alterations in

structural and functional connectivity can be inferred using information derived

from tractography as well as functional MRI (fMRI). FMRI measures dynamic

changes in regional blood flow, demonstrating recruitment and synchronicity of

activity in cortical regions either in response to a particular task or in the resting

state. It has been used to show altered connectivity even in the absence of clinical

deficits [99] and increased regional activation correlating with measures of damage

to NAWM [100,101], suggesting that adaptive changes may in part be responsible

for limiting the extent of clinical impairment.

1.4 The cognitive clinicoradiological paradox

The mismatch between radiological and clinical findings in MS is well-recognised

[52]. Although measurable imaging changes are visible on MRI from the earliest

disease stages and progress with the disease, these can so far not be used to

accurately predict accumulated disability. This disconnection has important

implications for the use of imaging in monitoring disease progression and as a

surrogate outcome of treatment success in clinical trials, limiting the efficient

collection of relevant information.

In the case of motor function, the modest correlation between imaging and clinical

outcomes can be attributed to the frequent presence of spinal pathology and

the complex hierarchy of relevant brain regions. Spinal pathology allows a focal

interruption in the system of motor control that will inevitably reduce correlation

to the total burden of pathology. In contrast, tests of distributed cognitive

functions, such as processing speed, can be designed with minimal dependence on

physical function, and the reasons for these not reflecting more closely the brain

imaging burden of disease are less clear. Moreover, MS is primarily a disease of

working age adults; the clinical features usually starting once brain development is

complete and before the onset of age-related cognitive decline. Any impairment of

cognitive function can thus be reasonably hypothesised to reflect the total burden

of brain disease. This prediction has not been borne out by the evidence. The

entire body of published research on the relationship between white matter brain

imaging features on routine MRI and cognitive performance in MS is summarised

and synthesised in Chapter 3 of this thesis.

Various authors have previously sought to summarise the extensive literature

regarding the relationship between cognitive function and WMH burden in MS

[102] without fully investigating the potential reasons for the modest association.
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Two primary considerations are important that might account for the cognitive

clinicoradiological paradox.

1. Attenuation of the observed correlation due to measurement error affecting

metrics for cognition, brain imaging or both. Despite a recommendation

in the original publication by Spearman in 1904 [103] to consider this

possibilty, it has been largely ignored by the field. Defining and optimising

the psychometric performance characteristics of brain imaging metrics is

therefore a key objective of this thesis.

2. Adjustment for known modifiers of cognitive performance (as discussed in

Section 1.2.4) has been attempted by some research groups but is by no

means universal. Adjustment for relevant covariates is therefore performed

in this thesis to support a more accurate evaluation of the underlying

pathology-phenotype relationship.

These considerations are critical to establish the true extent of any residual

mismatch between imaging and cognitive measures and should perhaps be an

obligatory step before attempting to define the further pathological features

that are responsible for any ‘missing explanatory power’. Nevertheless, the

MS imaging research community has largely moved to using advanced imaging

techniques aiming to quantify more subtle features and the volume of published

work on this subject increases yearly. However without addressing the

relative importance of measurement technique and error, cognitive modifiers and

confounders, the explanatory power of advanced imaging techniques may similarly

be limited.

1.5 Overview of thesis

1.5.1 Hypothesis

The overarching hypothesis tested in this work is that optimised measurement

of white matter MRI characteristics will lead to a more accurate determination

of the relationship between the overall imaging burden of disease and cognitive

performance.

Specific tested hypotheses are:

• The reference standard for WMH segmentation is imperfect, with error

substantial enough to obscure relevant relationships.

• Visual rating can be used to accurately capture data on imaging features in

MS relevant to cognitive status.

16



• Routine MR imaging features in MS will contribute significantly to accurate

prediction of cognitive phenotype.

• The addition of DTI-derived measures of microstructural tissue abnormality

in the NAWM to predictive models of cognitive function based on routine

imaging and non-disease factors will increase the overall predictive power.

1.5.2 Aims and thesis structure

The thesis aims and the related work are outlined below.

1. To review the published literature on the relationship between imaging

measures of white matter pathology and cognitive performance in people

with MS, confirming the modest correlations found previously and exploring

methodological issues that may affect this.

A systematic review of the literature and meta-analysis is described in

Chapter 3.

2. To develop tools for reproducible quantification of WMH burden on

structural brain MRI. Differing approaches to evaluation of white matter

imaging features were identified in the literature, and three alternative

methodologies are examined in Chapters 4 to 6. The reference standard,

manual segmentation, is evaluated in Chapter 4, with an investigation of

intra- and inter-observer reproducibility. The development and evaluation

of a novel visual rating scale is described in Chapter 5. Optimisation

and evaluation of an automated segmentation software tool is described

in Chapter 6.

3. To evaluate the relationship between reproducible tools for quantifying

WMH burden on structural brain MRI and cognitive performance in people

with MS.

Using the optimised volumetric and semi-quantitative measures of WMH

burden evaluated previously, their relationship to cognitive performance is

evaluated in Chapter 7, taking into account other relevant imaging and

non-imaging features using linear modelling.

4. To evaluate the potential additional value of DTI techniques in accounting

for the relationship between brain imaging metrics of pathology and

cognitive performance in people with MS.

In Chapter 8, the ability of DTI to demonstrate measurable changes in the

NAWM is first assessed and different DTI-derived metrics are evaluated.
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Using the best predictive model developed in the previous chapter, the

additional value of DTI measures is tested.
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Chapter 2

Description of cohorts studied

Hypotheses in the work described in Chapters 4 to 8 were tested using imaging,

clinical and demographic data available locally from people with multiple sclerosis

(MS) participating in ongoing or recently completed research. Three cohorts were

chosen for study, encompassing a range of clinical phenotypes.

The ‘MS-SMART’ cohort, a group of 93 participants with secondary progressive

MS (SPMS), was used for the work described in Chapters 4, 6 and 8; as well

as the validation work in Chapter 5 and part of the linear modelling work in

Chapter 7. The ‘Cognition in MS’ (n = 60) cohort, a mixed phenotype group

recruited for a previous PhD thesis, was used in the initial development work on

the visual rating scale described in Chapter 5. ‘FutureMS’, a prospective cohort

of 67 people newly diagnosed with relapsing-remitting MS (RRMS), was used in

the validation stage of the visual rating scale work described in Chapter 5 and

the related linear modelling in Chapter 7.

2.1 MS-SMART

2.1.1 Study aims, protocol & recruitment

Multiple Sclerosis Secondary Progressive Multi-Arm Randomisation Trial

(MS-SMART) was an ongoing multicentre, multi-arm, randomised, double

blind, placebo-controlled trial. Participants were randomised to receive either

placebo or one of three potentially neuroprotective drugs (fluoxetine, riluzole and

amiloride) for 96 weeks. The primary outcome was magnetic resonance imaging

(MRI)-derived percentage brain volume change.

Participants were recruited into the trial after referral from their neurologist,

or self-referral following media campaigns. The main eligibility criteria were a
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confirmed diagnosis of SPMS, age between 25 and 65, an Expanded Disability

Status Scale (EDSS) score of 4.0 to 6.5, a Beck Depression Index of < 20 and

neither having taken disease-modifying therapies within the 6 months prior to

recruitment, nor having had oral or intravenous steroids within 3 months.

All participants underwent MRI at three time points. The baseline scans,

performed prior to treatment randomisation, in participants at the University

of Edinburgh site were used for work presented in this thesis and the standard

protocol for these is described below. Participants were also invited to participate

in an ‘advanced’ imaging protocol (see below for further details).

The chief investigator was Dr Jeremy Chataway (University College, London)

and the research was funded through the Efficacy and Mechanism Evaluation

Programme (a partnership between the Medical Research Council and the

National Institute for Health Research) and the MS Society. The trial

was registered with the European Medicines Agency with EudraCT number

2012-005394-31 and with the International Standard Randomised Controlled Trial

Number Registry, number 28440672.

2.1.2 Image acquisition

Baseline imaging for all of the Edinburgh centre participants was carried out

between February 2015 and May 2016 at 3T (Magnetom Verio, Siemens AG,

Healthcare Division GmbH, Erlangen, Germany) at the Clinical Research Imaging

Centre, University of Edinburgh, using a standard 12-channel head coil. Imaging

acquired included a volumetric T1-weighted (T1w) (1mm isotropic voxels)

sequence, as well as proton density (PD), T2-weighted (T2w), T1w and fluid

attenuated inversion recovery (FLAIR) (all 3mm slices) sequences, acquired as

contiguous axial slices, parallel to a line joining the inferior points of the corpus

callosum. See Table 2.1 for sequence details.

A subset of University of Edinburgh participants was also enrolled in the

Advanced MRI substudy, undergoing additional magnetic transfer imaging,

proton magnetic resonance spectroscopy and diffusion tensor imaging (DTI) at

their baseline and 96-week scans. The baseline DTI sequences were used for the

work described in Chapter 8 of this thesis.

The diffusion imaging protocol consisted of 6 T2w sequences (b = 0 s mm−2) and

sets of diffusion-weighted (b = 1000 s mm−2) whole brain single-shot spin-echo

echo-planar imaging volumes acquired with diffusion encoding gradients applied

in 56 non-collinear directions. The acquisition parameters were: field-of-view 240

x 240mm; imaging matrix 96 x 96; 60 contiguous 2.5mm thick axial slices, giving
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2.5mm3 isotropic voxels. Repetition and echo times were 11500ms and 73.6ms

respectively.

Sequence name Field-of-view

(mm)

Slices Voxel size

(mm)

TR/TE/TI

(ms)

Flip

angle

(◦)

PD/T2w dual echo TSE 250 × 250 60 1 × 1 × 3 3050/31/- 150

& /82/-

T2w FLAIR BLADE TSE 250 × 250 60 1 × 1 × 3 9500/124/2400 150

T1w SE 250 × 250 60 1 × 1 × 3 600/8.4/- 70/180

T1w MPRAGE 250 × 250 160 1 × 1 × 1 2400/2.97/1000 8

Table 2.1: Sequence details for standard baseline imaging protocol for MS-SMART

participants. TR: repetition time; TE: echo time; TI: inversion time; TSE: turbo spin

echo; SE: spin echo; MPRAGE: magnetisation-prepared rapid gradient echo.

2.1.3 Image post-processing

Post-processing of MS-SMART imaging was performed locally, using

fully-automated processes unless specified otherwise, supervised by MB.

2.1.3.1 Tissue segmentation

The 3D T1w and 2D FLAIR sequences were co-registered to the T2w sequence

using affine transformations (12 degrees of freedom), using tools freely available

in the Functional Magnetic Resonance Imaging of the Brain (FMRIB) software

library (FSL, https://fsl.fmrib.ox.ac.uk) [104]. Using Advanced Normalisation

Tools (ANTs, http://www.picsl.upenn.edu/ANTs) [105], both the FLAIR and

T1w sequences were corrected for bias field inhomogeneities. Again using

ANTs, voxels in the T1w sequence were segmented into different tissue classes

by assigned voxel probabilities of belonging to cerebrospinal fluid (CSF),

cortical grey matter, white matter, subcortical grey matter, cerebellum and

brainstem based on the MICCAI 2012 Multi-Atlas Challenge Data atlas

(https://my.vanderbilt.edu/masi/ [106]). Volumes for each tissue compartment

were then generated using weighted sums of all voxels multiplied by the relevant

probability. A threshold probability of 0.05 was used for all compartments to

exclude noise.
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2.1.3.2 White matter hyperintensity masks

The white matter hyperintensity (WMH) masks used for the work described

in Chapters 6 to 8 were automatically generated using a method combining

statistical transformation and atlas-based segmentation, developed by DD. This

was based on work completed for a previous PhD thesis [107], with code ran in

Matrix Laboratory (MatLab) on a Linux workstation.

Initial tissue segmentations were as above, using the MICCAI 2012 Multi-Atlas

Challenge Data atlas. A standard deviation map of the FLAIR volume was

created for each individual scan and this was used to update the initial

probabilities of belonging to the white matter tissue class to produce a WMH

probability for each voxel. A probabilistic mask of WMH voxels was created by

identifying any voxel with a standard deviation greater than the user specified

threshold, based on standard deviations above the mean FLAIR intensity. It was

then possible to create hard (binary) masks of WMH by selecting an arbitrary

probability threshold and this was used for the optimisation work described

in Chapter 6, comparing the masks with binary manual segmentations. An

example of a binary WMH mask overlaid on the FLAIR sequence from one of the

MS-SMART participants is shown in Figure 2.1.

Following this optimisation work, two different FLAIR thresholds were used for

the work described in Chapters 7 and 8. First, the FLAIR threshold associated

with the highest correlation between absolute WMH volumes derived from manual

and automated segmentation in the Advanced MRI subgroup was determined.

The resulting mask was then used to generate an absolute WMH volume for all

participants, by summing probabilities voxelwise. Second, the FLAIR threshold

that maximised spatial overlap with the manual masks, as determined by the

Dice index [108], was used. This also retained the probabilistic output and was

used as a template for overlaying the water diffusion imaging parameters.

2.1.3.3 Diffusion post-processing

Diffusion-weighted images were corrected for eddy current-induced distortions

and subject motion with the ‘eddy correct’ tool (FSL). After brain tissue

extraction using the Brain Extraction Tool, diffusion tensors and scalar diffusion

parameters (fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity

(AD) and radial diffusivity (RD)) were calculated using DTIFit (FSL).

For each tissue compartment, mean water diffusion metrics were derived using a

weighted mean; each voxel metric was multiplied by its probability of belonging to
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Figure 2.1: Sample image showing automated WMH segmentation overlaid on FLAIR

sequence from one of the MS-SMART participants.

the compartment of interest and the sum divided by the sum of probabilities. The

probabilistic WMH mask was generated using the FLAIR threshold (see Section

2.1.3.2) that showed the closest spatial agreement with manual segmentation, as

described above.

2.1.3.4 Peak Width of Skeletonised Mean Diffusivity

The novel imaging marker ‘peak width of skeletonised mean diffusivity’

(PSMD), developed for use in small vessel disease, was derived by the

method described by Baykara et al [92] using the shell script provided

at http://www.psmd-marker.com/. DTI data were first skeletonised using

the Tract-Based Spatial Statistics procedure [75], part of FSL, aligning all
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participants’ FA data into common space using nonlinear registration (FNIRT)

and the standard space FMRIB 1mm FA template. Individual subject FA data

was then projected onto the skeleton derived from the standard space template,

thresholded at an FA of 0.2. Subject MD data were then projected onto this, using

the FA-derived parameters. The final MD skeleton was masked at an FA value of

0.3 to avoid CSF contamination. The PSMD parameter was then calculated as

the difference between the 95th and 5th percentiles of the voxel-based MD values

within the white matter skeleton.

2.1.3.5 Probabilistic Neighbourhood Tractography

Twelve tracts of interest were identified from the diffusion MRI data using

probabilistic neighbourhood tractography (PNT) as implemented in the TractoR

package for fibre tracking analysis (http://www.tractor-mri.org.uk). This

technique optimises the choice of seed point for tractography by estimating the

best matching tract to a reference tract derived from a white matter atlas, using a

series of candidate seed points placed in a 7 × 7 × 7 voxel neighbourhood. Tracts

assessed were the genu and splenium of the corpus callosum, and bilaterally the

cingulum (divided into dorsal and ventral portions), corticospinal tracts, arcuate

fasciculi and inferior longitudinal fasciculi. All generated tracts were visually

assessed by an experienced observer (MB) and those that were deemed not to be

anatomically acceptable representations of the fasciculi of interest were discarded

from further analysis.

2.1.4 Clinical and cognitive assessments

Participants underwent a structured baseline assessment by trained assessors

prior to randomisation and within one month of the initial MRI. This included

assessment of the Expanded Disability Status Scale (EDSS), the Multiple

Sclerosis Functional Composite (MSFC) and the Symbol Digit Modality Test

(SDMT). The EDSS is a widely used method for quantifying neurological

disability in MS, covering eight functional systems (pyramidal, cerebellar,

brainstem, sensory, bowel and bladder, visual, cerebral/mental and ‘other’,

http://www.neurostatus.net). The MSFC [109] is a short, three part standardised

test designed for use as an outcome in clinical trials in MS, assessing upper and

lower limb function as well as cognitive function. The SDMT is a ninety second

task to assess processing speed, consisting of matching numbers to arbitrary

symbols using a given code [36]. The SDMT was assessed by three raters
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(DM, DL, DC), all trained locally and observing each other during the training

period.

2.1.5 Cohort characteristics

At the University of Edinburgh, 111 people with MS were screened for trial

eligibility. Fourteen did not meet eligibility criteria, and four withdrew before

baseline assessment; 93 participants were successfully enrolled. Of these, 43

people consented to participate in the Advanced MRI substudy and the remainder

were enrolled in the standard protocol study. Further details of the study

participants are given in Table 2.2.

Standard Advanced Overall

No. of participants 50 43 93

Female : Male 39:11 30:13 69:24

Mean age (years) ± SD 54.9 ± 6.6 55.5 ± 8.3 55.2 ± 7.4

Age range (years) 41.4 − 65.9 34.4 − 65.6 34.4 − 65.9

Mean disease duration (years) ± SD 21.0 ± 10.8 23.1 ± 10.2 22.0 ± 10.6

Table 2.2: Characteristics of participants enrolled in MS-SMART at the University of

Edinburgh, also presented separately for those having the standard imaging protocol,

and those participating in the Advanced MRI substudy. SD: standard deviation.

2.2 Cognition in MS

2.2.1 Study aims, protocol & recruitment

A cross-sectional cohort of 108 people with MS were recruited to the ‘Cognition in

MS’ study as part of a PhD research project at the University of Edinburgh Centre

for Clinical Brain Sciences. The aim of that study was to explore the prevalence

of cognitive impairment in people with MS. Participants were recruited from

secondary care in the Lothian area of Scotland, referred by local neurologists and

specialist nurses between August 2010 and August 2012. Potential participants

were screened against the following eligibility criteria: a diagnosis of MS according

to the revised (2010) McDonald criteria [110], age 18 to 65 years inclusive and

absence of psychiatric or physical comorbidity (including major affective disorder,

significant dementia or other significant comorbidities). Subjects showing any
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ophthalmological condition not related to MS that might interfere with testing

were also excluded. For this purpose subjects having a Snellen acuity worse than

20/70 were excluded.

Of 972 patients screened, 108 patients fulfilled the eligibility criteria and agreed

to participate. It was projected to accomplish a sample with the ratio of RRMS,

SPMS and primary progressive MS (PPMS) similar to their natural proportions

in the population. A subset of sixty participants agreed to undergo MRI. Data

from this subgroup were used for the work described in Chapter 5 of this thesis,

with details of the participants given in Table 2.3.

Female : Male 32:28

Disease course (RRMS : SPMS : PPMS) 27:18:15

Mean age (years) ± SD 46.4 ± 8.2

Age range 28 - 61

Mean disease duration (years) ± SD 9.7 ± 6.2

Table 2.3: Characteristics of participants enrolled in the Cognition in MS study. PPMS:

primary progressive MS; RRMS: relapsing-remitting MS; SD: standard deviation;

SPMS: secondary progressive MS.

2.2.2 Imaging protocol

All MRI data were acquired in the Brain Research Imaging Centre, University

of Edinburgh, using a GE Signa Horizon HDx 1.5T clinical scanner (General

Electric, Milwaukee, WI) equipped with a self-shielding gradient set (33

mT/m maximum gradient strength) and manufacturer supplied eight-channel

phased-array head coil, between May 2011 and July 2012. Details of the basic

sequence parameters are shown in Table 2.4. A subset of participants had an

additional T2 CUBE volume sequence.

2.3 FutureMS

2.3.1 Study aims, protocol & recruitment

FutureMS was an ongoing multicentre observational cohort study, using baseline

clinical, laboratory and genomic data to predict neuroinflammatory disease

activity over a 12 month period. The main inclusion criteria were: age over
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Sequence

name

Acquisition

method

Field-of-view

(mm)

Matrix Slices Voxel (mm) TR/TE/TI (ms)

T2w FSE 256 × 256 256 × 256 80 1 × 1 × 2 11320/102

T2∗w Gradient

echo

256 × 256 256 × 192 80 1 × 1 × 2 940/15

FLAIR FSE 256 × 256 256 × 192 40 1 × 1 × 4 9000/140/2200

T1w 3D IR-Prep

FSPGR

256 × 256 192 × 192 160 1 × 1 × 1.3 10/4/500

Table 2.4: Sequence details for standard imaging protocol for Cognition in MS

participants. FSE: fast spin echo; TR: repetition time; TE: echo time; TI: inversion

time; FSPGR: fast spoiled gradient echo.

18 years, having been diagnosed with relapsing-onset MS within the preceding

6 months and not having been started on any disease-modifying therapy.

Participants underwent brain imaging at baseline and after 12 months, with

detailed clinical assessment including the MSFC performed by trained assessors

at the same timepoints.

At the time of the visual rating work reported in Chapter 5, sixty-seven

participants had been recruited and scanned at the University of Edinburgh.

Details of these participants are given in Table 2.5.

Female : Male 49:18

Mean age (years) ± SD 39.3 ± 9.6

Age range 21.5 - 58.6

Table 2.5: Characteristics of participants enrolled in the FutureMS study. SD: standard

deviation

2.3.2 Imaging protocol

All scans were performed at 3T (Magnetom Verio, Siemens AG, Healthcare

Division GmbH, Erlangen, Germany) at the Clinical Research Imaging Centre,

University of Edinburgh, using a standard 12-channel head coil.

These 67 participants included those imaged during the scan protocol

development phase. All protocols included a volumetric T1w sequence (1mm

isotropic voxels), with FLAIR and T2w sequences either as 3D or axial 2D

acqusitions. After the initial 23 participants, all scans included both 2D and 3D

FLAIR sequences; after the initial 25 participants, all scans included a 2D T2w
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sequence, replacing a 3D T2w sequence. 3D sequences were acquired sagittally

and 2D sequences were acquired axially, parallel to a line joining the inferior

points of the corpus callosum. The axial T2w sequence had a slice gap of 30%.

Details of the final scan protocol are given in Table 2.6.

Sequence name Field-of-view

(mm)

Slices Voxel size (mm) TR/TE/TI (ms) Flip

angle (◦)

T1w MPRAGE 256 × 256 176 1 × 1 × 1 5300/3.37/1100 7

T2w 220 × 220 33 0.7 × 0.7 × 4 6000/96/- 150

T2 FLAIR BLADE 250 x 250 60 1 × 1 × 3 9500/124/2400 150

T2 SPACE FLAIR 256 x 256 176 1 × 1 × 1 5000/715/1800 -

Table 2.6: Sequence details for standard imaging protocol for FutureMS participants.

Abbreviations are as for Table 2.1.
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Chapter 3

Systematic review of literature:

relationship between cognitive

performance and total white

matter lesion burden

3.1 Introduction

Moderate correlations have been reported between the imaging quantification of

brain white matter hyperintensities (WMHs) and cognitive performance in people

with multiple sclerosis (MS). This forms part of the ‘clinicoradiological paradox’.

A number of factors may account for this, including aspects of MS pathology that

are neither measured nor closely correlated with WMHs, insensitivity of MRI

techniques resulting in ‘subvisible’ pathology, and methodological limitations

of the current approaches to quantifying WMH burden. A systematic review

and meta-analysis of the published literature describing the relationship between

cognitive function and the total burden of white matter pathology detected by

standard structural brain MRI was therefore performed. The specific aims were

to summarise the cognitive clinicoradiological paradox, confirming the modest

correlations previously described [102], and to define the potential methodological

factors that could have influenced the assessment of this relationship. The design

of the systematic review, meta-analysis and structured report were based on the

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

guidelines [111].
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3.2 Methods

3.2.1 Protocol, information sources and search strategy

The study protocol was documented in advance (see Appendix A). Medline,

Embase, and Web of Science databases were searched for English language papers

on 1st July 2015, with no date restrictions. The search terms were: ‘magnetic

resonance imaging’, ‘multiple sclerosis’, ‘cognitive’, ‘cognition’, related terms,

including relevant medical subject headings (‘MeSH’) and abbreviations of these.

(See Appendix B for details of search strategy.) Review articles were excluded,

with relevant reviews published in the last 10 years being screened for references.

Archives of the journals Neurology, Multiple Sclerosis (Multiple Sclerosis Journal

from 2011) and the American Journal of Neuroradiology were ‘hand-searched’

for relevant articles published in the previous ten years. These journals were

identified as relevant examples of the literature, being widely read by clinicians

and academics with an interest in MS.

3.2.2 Study selection and eligibility criteria

Initial screening of abstracts was performed by a single investigator (DM). Full

articles were then retrieved and eligibility assessment performed in a standardised

manner, with a final decision over study inclusion taken in consensus with a

second investigator (PC).

Eligibility criteria were: English language and peer-reviewed publications

reporting data from adults with clinically-definite MS as primary research

with a primary aim of relating cognition to routine MRI (T1-weighted (T1w),

T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR) or proton

density (PD)) metrics of total brain white matter lesion burden.

Imaging outcomes given as total lesion volumes or areas, lesion counts or scores,

were all accepted as valid measures of whole brain lesion burden. Similarly, any

measure of cognitive function with face validity, taken as any credible test of brain

function, was accepted.

Studies were excluded if reporting exploratory or secondary analysis, or if

lesion burden was only related to longitudinal change in cognitive function.

Where studies examined both cross-sectional and longitudinal outcomes, or

cross-sectional outcomes at more than one time point, the baseline cross-sectional

analyses were used. When overlap of reported cohorts was identified and

clarification from the original investigators was not possible, a conservative
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approach was adopted with inclusion of only the earliest dated relevant

article.

Studies within the systematic review were suitable for meta-analysis if they

reported an overall effect size for the relationship of imaging metrics to a single

measure of cognition defined by either a single cognitive test, or a summary result

from a cognitive battery.

3.2.3 Data collection

Data was extracted by a single investigator (DM) using a standardised form,

which captured:

• Study structure, including design, hypotheses, recruitment pattern and time

between cognitive testing and imaging;

• Characteristics of the participants, including age, sex and disease phenotype;

• Cognitive testing methods including blinding and identity of the tester, tests

and scoring system used;

• Image acquisition methods;

• Image analysis methods including training and blinding of investigators,

software tools used, whether measures of intra- and inter-rater reliability

were provided;

• Statistical analysis methods, including controlling for potential confounding

factors

A study quality assessment tool (see Appendix C) was also developed,

based on STROBE (Strengthening the Reporting of Observational studies

in Epidemiology) guidelines [112] to evaluate the risk of bias in individual

studies.

The authors for one paper [113] were contacted for further information and

numerical data were provided.

3.2.4 Summary measures and synthesis of results

Summary measures were recorded if relating MRI metrics to an overall measure

of cognitive function or to a single cognitive test. Where summary measures

were provided both unadjusted and adjusted for potentially confounding clinical

covariates, adjusted results were used. Correlation coefficients or the difference

in lesion burden between groups defined by cognitive status were accepted as
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summary measures, with preference given to correlations if both were available

[114].

All reported summary measures were converted into effect sizes and inverted

as necessary so that negative values always indicated an association of lower

cognitive scores with higher lesion burdens. Standardised mean differences

were calculated from studies reporting group comparisons, prior to conversion

to equivalent correlations [114]. An approximation to the standard deviation

was estimated as necessary based on available measures of dispersion (e.g.

interquartile range or range) [115]. In studies with two impaired groups defined

by specific cognitive deficits, these groups were combined before calculation of a

standardised difference from a non-impaired group. The Fisher’s z transformation

[114] was used prior to calculation of an aggregate summary effect, with

conversion back to correlations for reporting of overall meta-analysis findings

and confidence intervals.

An aggregate summary effect was calculated using maximum likelihood

estimation [116] taking into account the size of the various studies; this method

allows incorporation of those studies reporting non-significant results without

providing their estimate. Separate analyses were carried out for studies measuring

hyperintense lesion burden on T2w, FLAIR and/or PD sequences, and for the

subgroup of studies evaluating T1w hypointense lesion volume.

Heterogeneity was assessed using Cochran’s Q and the I2 statistic [115]. Tests for

heterogeneity test the null hypothesis that all the included studies are evaluating

the same effect, with the I2 statistic quantifying the effect that any inconsistency

between studies has on the overall estimate.

3.2.5 Risk of bias across studies

The eligibility criteria required a stated primary aim to evaluate the relationship

between cognitive status and brain imaging metrics. This was pre-specified in

order to minimise the influence of reporting bias from post hoc analyses. Within

the included studies, all analyses that were described without results being

provided were recorded. A funnel plot was evaluated visually for asymmetry

and tested formally using Egger’s regression test.

3.2.5.1 Study quality

An alternative aggregate effect size was calculated using quality scores as an

additional scaling factor to study size. This was pre-specified, with the hypothesis
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that the aggregate effect size would differ with the methodological quality of the

study. Study quality was also investigated as a predictor of effect size, using

general linear modelling, with all component quality scores or the overall summary

score as predictors.

3.2.5.2 Sensitivity analyses

Following discovery of considerable heterogeneity in the image analysis

methodology, sensitivity analyses were carried out to investigate the effect

of scanner magnet strength and lesion quantification method. Similarly, to

investigate heterogeneity in cognitive assessment, a further sensitivity analysis

into the effect of using adjusted or unadjusted cognitive scores was carried

out.

To explore the possibility of ‘true heterogeneity’ between study effect sizes, a

sensitivity meta-analysis was carried out using a random effects model.

3.2.6 Subgroup analyses - information processing speed tests

Subgroup analyses of studies using the Paced Auditory Serial Addition Test

(PASAT) and the Symbol Digit Modalities Test (SDMT), two common tests of

information processing speed, were pre-specified to investigate whether focusing

on distributed cognitive function would improve correlations with overall lesion

burden and replicate previous findings [102].

3.2.7 Additional analyses

3.2.7.1 Disease phenotype

Between-study heterogeneity was further investigated by considering the effect of

disease phenotype on effect size. The studies from which an overall effect size

could be estimated were classified as having cohorts with relapsing-remitting,

progressive, ‘benign’ or mixed disease courses and separate effect sizes were

calculated for each group.

3.2.7.2 Effect of lesion volume

The effect of lesion volume on effect size was investigated where enough

information was provided to estimate both a study-specific effect size and a
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mean cohort lesion volume with standard error. Equivalent lesion volumes were

estimated from lesion areas using slice thickness. The effect sizes, on the z-scale

were then entered in a linear model, using lesion volume as the predictor, with

studies weighted by size.

3.3 Results

3.3.1 Study selection

A total of 3882 studies were identified from the initial literature search, 1975

of which were duplicates (see Figure 3.1). Year-on-year increases were seen in

the publication rate identified through the initial search (see Figure 3.2). No

additional studies were included following hand searching of journal archives,

taken to indicate good coverage by the initial search strategy. After review of

abstracts, 139 manuscripts were retrieved. Ninety were subsequently excluded,

most frequently (35/90 = 39%) because the primary study aim was not relevant.

A total of fifty papers met all inclusion criteria [61, 63, 72–74, 83, 113, 117–159],

spanning the period 1987 - 2015.

Thirty studies provided usable summary measures relating hyperintense

T2w/FLAIR/PD lesion burden to cognitive function. Two studies reported

a ‘non-significant’ result and one study was excluded from meta-analysis as

the reported summary measure was internally inconsistent with other reported

results and significance levels. The remaining seventeen studies did not provide

results suitable for use in meta-analysis, reporting only individual results for each

cognitive subtest (n = 12) or multiple regression modelling with simultaneous

assessment of several brain imaging metrics (n = 5). Thirteen studies reported

equivalent summary measures relating cognition to T1w hypointense lesion

burden. One study examined the relationship of lesion burden to longitudinal

change in cognition, as well as providing baseline cross-sectional data.

3.3.2 Participant characteristics

The total number of subjects from all included studies was 2891. Individual study

size ranged from 17 to 327 participants (mean 58, median 45; see Figure 3.3).

Forty-four studies specified the sex ratio, all but one having a female majority.

The range of mean participant age (provided in 47/50 studies) was 31 to 55

years. No study used age of disease onset in its eligibility criteria. Twenty-six

studies included participants with a mixture of disease courses; thirteen studies
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Figure 3.1: Flowchart showing articles retrieved and considered at each stage of the

review process.

recruited exclusively relapsing-remitting disease, six studies progressive disease,

two ‘benign’, and three did not specify the participants’ disease course.

3.3.3 Image acquisition

The majority (29/50 studies) used 1.5T scanners. Ten studies used scanners with

below 1.5T magnets for some or all participants’ imaging, seven used 3T scanners,

one used both 1.5 and 3T scanners and three did not specify the scanner field

strength. Details of the imaging protocol were given in all but seven studies.

3.3.4 Image analysis

The sequence(s) used to measure lesion volume was specified in 43 studies.

Twenty-six specified the number of people involved in the lesion analysis; this

was a single observer in 14 studies. The anatomical boundaries of evaluation

were explicitly defined in two studies and a sample image was provided by five
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Figure 3.2: Number of results retrieved from database search by year of publication.

The point for the year 2015 is an extrapolated value from the 6-month figure.

studies. Only five per cent of studies calculating a lesion volume or area (2/42)

normalised to intracranial volume.

A wide variety of approaches were used for the quantification of lesion burden.

These included lesion counts (two studies) or weighted lesion scores (six

studies), manual lesion outlining either on hard copies (two studies) or within

viewing software (six studies), and the use of semi-automated software methods

(thirty-one studies). Of the six studies using lesion scores, five different

scoring systems were used. One study used both manual and semi-automated

measurements (for different sequences), one used manual lesion outlining and an

absolute lesion count, and in one study the methodology was unclear.
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Figure 3.3: Histogram of study sizes

In the thirty-two studies using semi-automated measurement tools, the software

used was specified or references provided in 25 studies (78%), covering 14

different software packages. In 18 of these studies the named software was

publicly available (11 different softwares). The remaining studies did not specify

their software. A manual editing stage for software-generated lesion masks was

specified in five studies (16%) and the person performing this was described in

two studies. In the ten studies using fully manual lesion outlining, the person

performing this was described in six.

Only two studies provided an indication of inter-observer agreement and one

study intra-observer reproducibility. Seven studies gave previous measures of

reproducibility or results on training data sets.
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3.3.5 Cognitive testing

The cognitive assessor and their training were unclear in 38 studies. Of defined

batteries, the most commonly used was Rao’s Brief Repeatable Battery (12/50),

followed by the Minimal Assessment of Cognitive Function in MS (5/50), used

with modifications or additional tests in eight (67%) and two (40%) studies

respectively. Unique collections of tests were found in 27 studies. The SDMT

or PASAT were used either exclusively or as part of a wider battery in 30

studies.

Substantial variability was seen in how raw cognitive scores were processed

prior to their use in the evaluation of a possible relationship with imaging

metrics. Methods included use of unadjusted scores, standardisation and the

deployment of group classifiers. Standardisation was performed using either

historic (published or unpublished) or contemporary (matched or unmatched for

participant characteristics) control data.

Group classifiers were either based on internal (patient) or external (normative)

reference cohorts. The specific thresholds used to define impairment on individual

tests were also variable, including 1, 1.5, and 2 standard deviations from the

reference mean, and those based on centiles. Moreover, the number of failed

tests used to define overall cognitive impairment was also variable (see Appendix

D).

Consideration of the effect of potential confounders also varied between studies,

both in the recording of relevant data and whether it was adjusted for in the

analysis. Some studies adjusted for age (n = 18), sex (n = 12), education level

(n = 13) and/or affective disorders (n = 15). Drug treatments and premorbid IQ

were both adjusted for in three studies. Cognitive leisure activities were neither

measured nor adjusted for in any study.

3.3.6 Statistical analysis

Summary measures were provided through univariate correlations (n = 37)

and/or group comparisons based on cognitive status (n = 24). Four studies

divided participants into groups dependent on radiological features. Fourteen

studies constructed statistical models predicting cognitive performance based on

imaging and other laboratory, demographic, or clinical markers.
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3.3.7 Reporting quality and risk of bias within studies

A range of study-specific quality scores was seen (mean 42%, SD 11%; Figure 3.4).

Among individual elements of the composite quality score, complete reporting

was provided most frequently for eligibility criteria and outcome measures (Table

3.1). In contrast, no study provided complete reporting of potential confounding

factors, measurement methodology, or a justification of study size.
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Figure 3.4: Histogram of overall quality scores, expressed as a percentage of the

maximum possible score.

3.3.8 Results of individual studies

Studies directly reporting correlation coefficients relating cognitive performance

to T2w hyperintense lesion burden gave correlations ranging from −0.6 to
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Information reported
Studies gaining each mark (%)

0 0.5 1

Eligibility criteria 18 22 60

Individual outcome variables results 8 40 52

Overall outcome results with precision 14 40 46

Quantitative variable handling 10 48 42

Recruitment pattern 60 - 40

Participant characteristics 14 48 38

Statistical methodology 18 50 32

Blinding of assessors 32 50 18

Participant dropout 86 - 14

Objective clearly stated 42 50 8

Cognitive testing & imaging delay 36 58 6

Study design specified 84 10 6

Clearly defined outcomes 8 88 4

Potential confounding factors 36 64 0

Measurement methodology 44 56 0

Study size rationale 100 - 0

Table 3.1: Table showing percentage of studies gaining 0/0.5/1 for each component of

the quality assessment tool.

−0.23. Standardised mean differences ranged from −2.70 to +0.23, equivalent to

correlations of −0.80 to +0.11.

3.3.9 Synthesis of results

3.3.9.1 T2w hyperintense lesion burden

The aggregate effect size relating cognitive performance to T2w hyperintense

lesion burden was r = −0.30 (95% confidence interval (CI): −0.34 to −0.26;

Figure 3.5, n = 32). There was evidence of possible heterogeneity (Q = 43.62, df

= 29, p = 0.04; I2 = 33.5%).
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Figure 3.5: Forest plot of the individual studies using T2w/FLAIR/PD sequences,

showing their effect sizes as correlation coefficients. Box sizes are inversely proportional

to study variance. Aggregate effect size: r = −0.30; 95% confidence interval:

−0.34,−0.26.

3.3.9.2 T1w hypointense lesion burden

The aggregate effect size relating cognitive performance to T1w hypointense lesion

burden was r = −0.26 (95% CI: −0.32,−0.20; Figure 3.6, n = 13). There was

evidence of heterogeneity (Q = 20.4, df = 10, p = 0.025, I2 = 51.0%).
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Figure 3.6: Forest plot of effect sizes from individual studies relating T1w hypointense

lesion burden to overall cognitive performance, with 95% confidence interval (total n

= 1062). Box sizes are inversely proportional to study variance. The overall effect size

was r = −0.26 (95% CI: −0.32,−0.20).

3.3.10 Risk of bias across studies

Funnel plot inspection (Figure 3.7) and Egger’s test of asymmetry (p = 0.05)

gave equivocal results. Possible underlying sources of heterogeneity were therefore

explored [160].

In order to explore the possibility of ‘true heterogeneity’ between study effect

sizes measured using T2w/FLAIR/PD lesion burden, we performed a sensitivity

meta-analysis using a random effects model, giving an overall effect size similar

to that of our primary analysis (r = −0.33; 95% CI −0.38,−0.27, n = 30). This

method did not allow inclusion of the two studies reporting a non-significant

result.
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Figure 3.7: Funnel plot of effect sizes, on Fisher’s z scale, against the inverse of their

standard error (SE, itself inversely related to study size) with asymmetry towards

increased reporting of stronger correlations for smaller study sizes. The vertical dashed

line indicates the summary effect on the same scale (z = −0.32). The unfilled circles

correspond to the two studies reporting non-significant results.

In the case of the T1w hypointense lesion burden, an alternative random effects

meta-analysis gave a summary effect size of r = −0.30 (95% CI: −0.39,−0.20).

A funnel plot (not shown) showed asymmetry, confirmed by Egger’s regression

test (p = 0.032).

Reporting biases could not be adequately evaluated as study protocols were not

published prospectively. Despite methodological heterogeneity apparent from our

quality scoring, a significant correlation was not seen between overall quality score

and effect size, where reported (r = −0.18, p = 0.34, n = 32). General linear

modelling using the individual component scores as predictors of the study effect

size identified no statistically significant results (p = 0.07 to 0.97).

An exploratory meta-analysis using quality scores as an additional weighting

factor returned an effect size similar to that of our primary analysis (r = −0.30;

95% CI: −0.36,−0.24).
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Further sensitivity analyses, comparing scanner field strength and type of lesion

quantification method did not demonstrate a measurable subgroup difference in

heterogeneity from the small number of studies using high (3T) or low (below

1T) field scanners (see Table 3.2), or from those using lesion counts or scores (see

Table 3.3).

Field strength Studies Participants r 95% CI Q df p I2

3T 2 91 -0.43 (-0.59, -0.25) 0.33 1 0.56 0

1/1.5T 21 1478 -0.29 (−0.34,−0.24) 34.43 20 0.02 41.9%

Below 1T 4 188 -0.32 (−0.45,−0.18) 3.56 3 0.32 0

Overall 30 1952 -0.31 (−0.35,−0.26) 43.62 29 0.04 33.5%

Table 3.2: Results of sensitivity analysis, comparing study effect sizes (r) by scanner

field strength. CI: confidence interval.

Method Studies Participants r 95% CI Q df p I2

Manual outlining 6 209 -0.30 (−0.42,−0.16) 6.87 6 0.14 41.7%

Semi-automated 21 1320 -0.33 (−0.38,−0.28) 30.55 20 0.03 41.1%

Scores/counts 4 217 -0.24 (−0.38,−0.10) 0.9 3 0.92 0

Overall 30 1952 -0.31 (−0.35,−0.26) 43.62 29 0.04 33.5%

Table 3.3: Results of sensitivity analysis, comparing study effect sizes (r) by lesion

burden quantification method. CI: confidence interval.

A further post hoc sensitivity analysis was also performed using the same

methodology as the main analysis, incorporating all potentially analysable data

from the 139 studies considered at the full paper review stage. This returned an

aggregate effect size of r = −0.31 (95% CI: −0.34,−0.28; n = 65 studies, total

participant number = 3430).

3.3.11 Subgroup analyses - alternative cognitive endpoints

Exploratory meta-analyses were performed on two widely used measures of

information processing speed, the SDMT and PASAT. The a priori hypothesis

was that total lesion burden would have a stronger correlation with these tests

of distributed cognition function compared to the mixture of distributed and
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localised functions in our primary analysis. The summary effect size for SDMT

was r = −0.37 (95% CI: −0.43,−0.31; n = 13 studies) and for PASAT was r =

−0.28 (95% CI: −0.34,−0.22; n = 15 studies). See Figures 3.8 and 3.9.

A post hoc sensitivity analysis considering the effect of using raw or adjusted

cognitive scores was also performed. Twenty-one of the 32 studies included in our

primary endpoint meta-analysis were identified to have adjusted their cognitive

scores, with an aggregate effect size (between T2w hyperintense lesion volume

and cognitive performance) of r = −0.31(−0.36,−0.26). Eleven studies were

identified not to have adjusted their cognitive scores, with an aggregate effect

size of r = −0.29(−0.37,−0.21).

3.3.12 Additional analyses

3.3.12.1 Effect of disease phenotype

Twenty-nine of the 32 studies in the primary meta-analysis provided information

on the disease course of their participants. Summary effect sizes and tests of

heterogeneity for each group are displayed in Table 3.4. The mixed phenotype

group was the only group to show evidence of heterogeneity, although the sample

sizes may have been insufficient to exclude this in the ‘benign’ and progressive

groups.

Disease

course

Studies Participants r 95% CI Q df p I2

Benign 2 109 −0.23 (−0.41,−0.04) 0.79 1 0.37 0

Relapsing-

remitting

11 946 −0.24 (−0.30,−0.18) 3.98 9 0.91 0

Mixed

phenotypes

11 626 −0.37 (−0.44,−0.30) 23.3 9 0.006 61.4%

Progressive 5 238 −0.41 (−0.51,−0.29) 3.72 4 0.445 0

Table 3.4: Summary effect sizes, with studies grouped by participant phenotype. N.B.

The relapsing-remitting and mixed phenotype groups both included one study reporting

only a non-significant result. This could be used in the calculation of a summary effect

size but not the heterogeneity measures, hence the drop in the degrees of freedom (df).

CI: confidence interval.
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Figure 3.8: Forest plot of effect sizes from individual studies relating T2w hyperintense

lesion burden to SDMT performance, with 95% confidence interval (total n = 885). Box

sizes are inversely proportional to study variance. The overall effect size was r = −0.37

(95% CI: −0.43,−0.31). There was evidence of heterogeneity (Q = 30.7, df = 10, p

= 0.001, I2 = 67.4%). An alternative random effects meta-analysis gave a summary

effect size of r = −0.45 (95% CI: −0.55,−0.33). To investigate the heterogeneity,

a funnel plot was drawn. Egger’s regression test confirmed evidence of funnel plot

asymmetry (p = 0.0001).

3.3.12.2 Effect of total lesion volume on the reported strength of

association

Twenty-one of the 30 studies providing data from which to calculate an effect size

also gave relevant summary statistics for lesion volume. Five studies employed

lesion counts or scores and four studies did not provide summary statistics for

lesion burden.

Individual study effect sizes are plotted against lesion volume in Figure 3.10.

In a linear model predicting effect size, cohort mean lesion volume did not
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Figure 3.9: Forest plot of effect sizes from individual studies relating T2w hyperintense

lesion burden to PASAT performance, with 95% confidence interval (total n = 1103).

Box sizes are inversely proportional to study variance. The summary effect size was r =

−0.28 (95% CI: −0.34,−0.22). There was evidence of heterogeneity (Q = 29.2, df = 13,

p = 0.006, I2 = 55.5%). An alternative random effects meta-analysis gave a summary

effect size of r = −0.35 (95% CI: −0.44,−0.26). To investigate the heterogeneity,

a funnel plot was drawn. Egger’s regression test confirmed evidence of funnel plot

asymmetry (p < 0.0001).

reach significance as a predictor (p = 0.066) but showed a trend towards larger

magnitude effect sizes with increasing mean cohort lesion volumes.
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Figure 3.10: Plot of individual study effect sizes with 95% confidence intervals against

estimated cohort mean lesion volume with 95% confidence interval for estimate, based

on standard error. Regression line from linear model showing relationship between

lesion volume and effect size (p = 0.066).

3.4 Discussion

Synthesis of published findings confirms a modest correlation (r = −0.30)

between MRI measures of total brain white matter lesions and cognitive function

in people with MS. Although variability was observed between studies in the

magnitude of the reported relationship, no large (> 100 participants) single

study demonstrated a strong correlation. Technical and methodological factors

were therefore examined to determine their potential impact on the reported

correlation. These were broadly divisible into three dimensions: variability in

cognitive assessment and scoring; variability in cohorts studied; and variability

in image acquisition and analysis.
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Substantial variability was seen with respect to both the techniques used to

evaluate cognitive function and the adjustment for other variables that might

influence cognition (e.g. education, premorbid IQ and drugs). This may

however represent a largely historic issue [35], as a global movement is emerging

to harmonise evaluation and scoring through the Brief International Cognitive

Assessment for MS (BICAMS) initiative [36]. In contrast, the optimum method

to generate quantifiable measures of lesion burden from brain imaging data lacks

emergent consensus. Recent attempts to harmonise MRI acquisition protocols

[161,162] have been made, however no similar initiative exists for image analysis

techniques.

Considerable heterogeneity was observed in the clinical cohorts studied. The

importance of this lies in the possibility that the fundamental relationship

between white matter lesions and cognition may differ between cohorts depending

on their characteristics. There was some suggestion from the secondary analyses

in support of this. Larger effect sizes were found in cohorts of participants with

greater lesion burdens and later stage/progressive disease courses. If confirmed,

the existence of a dynamic association (dependent on cohort characteristics) raises

questions about the fundamental relationship between white matter lesions and

cognition. Possible reasons for this variation include interactions with other

aspects of MS pathology that emerge independently from disease duration and

progressive lesion burden, progression of lesions with disease course (e.g. greater

pathological homogeneity in chronic lesions), or that the ability to compensate

(functionally) for pathology declines in a non-linear form dependent upon time

and/or total lesion burden.

Semi-automated approaches were the most frequently used for image analysis

(62%) and merit particular consideration. While effective manual editing is

clearly dependent on adequate training of the operator, the automated (software)

component is more challenging to benchmark. Authors should routinely report

the software used. Separately, the field risks delaying progress and reducing the

potential for collaboration due to the many differing software packages used.

Of the 24 studies naming software, ten different publicly available (commercial

or open source) packages were used, and a further three packages that were

developed ‘in house’. As yet no comparative study has been performed on a

common dataset to evaluate agreement between these varied approaches. A new

consensus initiative to support an image analysis framework in MS would enable

benchmarking while also supporting ongoing innovation.

Despite the finding of substantial methodological variability between studies,

formal testing for heterogeneity in the primary meta-analysis returned an
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equivocal result. This indicates that methodological variability between studies

cannot provide a sufficient explanation for the cognitive clinicoradiological

paradox. Nevertheless, measurement errors within all published studies may

have attenuated observed correlations in the face of a higher ‘true’ correlation

[103]. Greater recognition and transparency around measurement error for both

cognitive and lesion burden quantification would therefore be beneficial to the

field.

The findings may have been limited by an overly inclusive approach to both

the evaluation of cognition and white matter lesion burden. With respect

to the former, a higher aggregate correlation was observed between white

matter lesion burden and cognition measured by the SDMT, a measure of

information processing speed, understood to reflect widely distributed brain

connectivity, than was seen for cognition as defined in the primary analysis.

Furthermore, a substantial body of potentially relevant data was excluded from

this review as the primary aim of the study was unclear or reported findings

were secondary/exploratory analyses. Notably, relatively few studies used >1.5T

field strength scanners, in part reflecting the recent shift away from exploring the

relationship between phenotype and T2w hyperintense lesion burden, focusing

instead on the possible relevance of other MRI metrics. Finally, despite best

efforts to apply a systematic approach, all reviews are conducted by researchers

who bring unconscious bias [163] and the lack of replication of the literature

search and data extraction by a second investigator is a limitation.

In conclusion, a modest correlation (r = −0.30) exists between MRI measures of

total brain white matter lesion burden and cognitive function in people with MS.

This review has highlighted the substantial variability existing in the literature

addressing this question, particularly with respect to cognitive methodologies,

cohort characteristics and imaging methodology. This variability was insufficient

to fully account for the cognitive clinicoradiological paradox and resolving this

will therefore likely require simultaneous evaluation of multiple components of

the complex pathology using optimum measurement techniques for both cognitive

and imaging feature quantification [164]. Nevertheless, measurement errors from

the existing techniques to quantify lesion burden act to attenuate the strength

of the observed relationship, obscuring any current attempt to quantify the

true strength of that relationship. Optimised measurement of lesion burden is

therefore essential. Against that background, the move to harmonise cognitive

assessment in MS is valuable, but no similar move to optimise and harmonise

quantification of lesion burden has emerged in the MRI community. This frames

the central issue that is addressed further throughout this thesis.
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It appears that the strength of association may also vary dependent upon the

population being studied, in particular varying with respect to the total burden

of white matter pathology and the emergence of progressive disease. This raises

questions about the potential mechanism(s) of a dynamic relationship between

white matter pathology and cognitive function. These questions are also explored

in subsequent chapters.
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Chapter 4

Assessing the reliability of the

reference standard for white

matter hyperintensity

quantification

4.1 Introduction

Research studies in people with multiple sclerosis (MS) have to date frequently

used imaging-based outcomes, often involving quantification of white matter

hyperintensity (WMH) volume. This can then be used to investigate imaging

correlates of disability or monitor treatment effects. Spatial templates of WMHs

can be used to interpret advanced imaging markers, such as those derived from

magnetic resonance spectroscopy (MRS), magnetisation transfer (MT) imaging

or diffusion tensor imaging (DTI). Any lack of accuracy in the measurement of

WMHs will attenuate the results derived.

As highlighted in the previous chapter, a wide variety of approaches are used to

quantify white matter disease burden in MS and their comparability is not always

clear. In order to establish the validity of any method, its relationship to a set

of reference standard measurements should be demonstrated. Ideally this should

be within a population with a similar profile to that of its intended use.

A true evaluation of disease burden would require pathological correlation. Such

studies are valuable [165] but for practical and ethical reasons are not possible

in large numbers. They can also only ever represent a limited sample of the

varied disease courses seen in people with MS, most often those with early
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atypical inflammatory disease undergoing biopsies or from autopsy material

showing endstage disease. In the absence of pathological confirmation, the

reference standard for imaging research in practice is usually taken to be manual

segmentation by a user experienced in interpreting imaging changes. This is

frequently a neuroradiologist or another user supervised by a radiologist. However

very little data on the reliability of this reference standard has been published

and the systematic review reported in the previous chapter found poor reporting

of any reproducibility measures.

In this chapter, the accepted practice used elsewhere is followed, establishing the

reference standard in a relevant population for later use. This is undertaken

using the Advanced MRI substudy cohort of MS-SMART (see Chapter 2,

Section 2.1). Inherent to this process, but often omitted or not reported in the

literature, is an assessment of its reliability, both in providing a unidimensional

quantification of the WMH burden and a spatial template (‘mask’ or ‘map’)

of these changes. Factors affecting the reliability and stability of the reference

standard are considered. As an experienced neuroradiologist is generally accepted

as an optimal observer for providing the reference quantification, the reliability

seen between two neuroradiologists is investigated.

4.2 Methods

4.2.1 Participants and Imaging

This work was performed using the routine structural imaging sequences

performed at the baseline assessment of all participants (n = 43) recruited in

Edinburgh to the Advanced MRI substudy of MS-SMART. See Chapter 2, Section

2.1 for further details of the cohort, image acquisition and post-processing.

4.2.2 Segmentation protocol

A single observer (DM, neuroradiologist with 4 years’ experience), blinded

to all clinical and demographic information, outlined all WMHs using

freehand drawing tools available in the Mango image analysis software

(http://ric.uthscsa.edu/mango/). This segmentation was performed on

the registered fluid attenuated inversion recovery (FLAIR) sequences with

T1-weighted (T1w) and T2-weighted (T2w) sequences available for reference.

Segmentation was completed for the entire cohort over a period of seven months,

partly covering their recruitment stage, in sessions lasting up to 3 hours.
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The segmentation process was performed primarily in the axial plane, with

adjustments as necessary, using reformatted coronal and sagittal projections.

An inferior boundary for WMH segmentation was set at the foramen magnum.

Where possible, WMH boundaries were chosen to enclose areas of abnormal signal

on both T2w and FLAIR sequences. Viewing windows were optimised on an

individual subject basis to make WMHs as clearly distinct from surrounding

tissue as possible. No minimum size for WMH segmentation was set. Enlarged

perivascular spaces were not marked, unless they appeared inseparable from focal

or diffuse WMHs.

Completed masks were saved as binary files in the NIfTI (Neuroimaging

Informatics Technology Initiative) format. Absolute volumes for each WMH mask

were calculated using tools available in the FSLstats software package (FMRIB

software library (FSL) [104]).

4.2.2.1 Intra-observer reliability

Following completion of the initial WMH masks, the manual segmentation process

was repeated for the whole cohort on two further occasions, with random

reordering of the scans for each set of masks. The time interval between

segmentations of the same scan was at least six weeks.

4.2.2.2 Inter-observer reliability

A subset of 12 scans were pseudo-randomly selected to ensure even coverage of

all quartiles by WMH volume, based on the initial mask of the first observer.

The manual segmentations were repeated by a second observer (neuroradiologist

[GM] with 4 years’ experience), using the same protocol, blind to all clinical and

demographic information and the results of the initial segmentation. These were

used for investigation of unidimensional reliability and spatial agreement, using

comparisons to the third (final) manual segmentation by the first observer.

4.2.3 Statistical analysis

4.2.3.1 Unidimensional reliability

Reliability of absolute WMH volumes were compared for the initial, repeat and

second observer segmentations using intraclass correlations (ICCs; Class 2, a

random effects, two-way model based on single observations), reflecting absolute

agreement, and assessed visually using Bland-Altman plots [166] of volume ratios.
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Spearman correlation coefficients were calculated for each combination of two

mask sets.

The effect of WMH volume on reliability measures was explored graphically, using

the Bland-Altman ratio plots, and by calculating ICCs separately for the 21 scans

with the highest and lowest mean WMH volumes.

The ‘psych’ package in R software was used for calculation of ICCs.

4.2.3.2 Spatial agreement

Spatial agreement between masks was assessed using the Dice similarity coefficient

[108] generated using script written in Matlab (provided by MB). This measures

the voxel overlap between the two masks and is defined as twice the ratio of the

number of overlapping voxels to the sum of the voxels in each segmentation.

Visual evaluation of discrepancies was carried out in FSL viewing software

following completion of successive mask sets.

4.3 Results

4.3.1 Intra-observer reliability

4.3.1.1 Participant characteristics

The baseline imaging from all 43 participants in the Advanced MRI substudy of

MS-SMART was used. There were 30 female and thirteen male participants with

a median age of 55.5 years (interquartile range (IQR): 49.9, 62.0). All participants

had a diagnosis of secondary progressive MS (SPMS) with a median total disease

duration of 23.4 years (IQR: 15.6, 27.3).

4.3.1.2 Summary statistics

Manual WMH segmentation by the initial observer was completed over a period

of 7, 2 and 4 months respectively for mask sets 1 to 3, with a delay of at least six

weeks between sets 1 & 2 and sets 2 & 3. The mean time (± standard deviation)

taken for each mask was 44± 29, 50± 26 and 38± 21 minutes for mask sets 1 to

3 respectively.

Overall cohort WMH volumes were highest for the second set of masks, with mask

set 3 intermediate between the first two. All three volume sets were positively
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skewed. Cohort WMH volumes for each of the three sets of masks are represented

in boxplots shown in Figure 4.2 and summarised in Table 4.1.

An example of a manual WMH segmentation overlaid on the FLAIR sequence is

shown in Figure 4.1.

Figure 4.1: Sample image showing manual WMH segmentation overlaid on FLAIR

sequence from one of the MS-SMART participants.

Mask Mean ± SD Median (IQR)

1 19.7 ± 20.8 12.9 (6.1, 22.6)

2 26.7 ± 23.0 21.2 (12.5, 34.7)

3 22.9 ± 22.0 16.9 (7.6, 30.1)

Table 4.1: Summary statistics for mask sets 1 to 3, given as volumes (ml). IQR:

interquartile range; SD: standard deviation.

4.3.1.3 Unidimensional reproducibility

Sets of WMH volumes for the different segmentations showed (Spearman)

correlations of r = 0.92 to 0.94, and ICCs of 0.91 to 0.96 for each possible two-way
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Figure 4.2: Boxplots of cohort WMH volumes for mask sets 1 to 3.

.

comparison. The overall ICC for all three mask sets was 0.94. Full results are

given in Table 4.2.

Table 4.2 also shows the comparison of ICCs for the 21 scans with the lowest and

highest mean WMH volume. Although the confidence intervals are overlapping,

higher ICCs are associated with higher WMH volumes. The Bland-Altman plots

of the volume ratios between masks from different sets are shown in Figure 4.3 and

suggest a similar finding. Greater relative discrepancies between segmentations

are seen at lower WMH volumes, with a trend towards convergence on more

similar values at higher volumes.

The improvement in agreement with successive mask sets is also apparent from

the Bland-Altman plots. The largest range of relative discrepancies and widest

confidence interval for the mean ratio is seen for the comparison between the first

two mask sets, and the range and confidence interval are smallest for the final

comparison (mask sets 2 & 3). The final comparison mean ratio below 1 (= 0.81)

reflects the overall larger WMH volumes generated in mask set 2.
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Masks r ICC (95% CI) Mean Dice

1 v. 2 0.92 0.91 (0.42,0.97) 0.68

1 v. 3 0.94 0.96 (0.88,0.98) 0.74

2 v. 3 0.93 0.96 (0.85,0.98) 0.73

Overall - 0.94 (0.83,0.98) 0.71

Lowest 21 - 0.67 (0.31,0.86) 0.65

Highest 21 - 0.92 (0.74,0.97) 0.78

Table 4.2: Spearman correlations (r), intra-class correlations (ICCs, Class 2) with 95%

confidence interval (CI), and mean Dice indices for each two-way mask comparison and

overall for the three mask sets where possible. The overall comparison is also divided

into upper and lower groups by mean lesion volume, with these examined separately.

4.3.1.4 Spatial agreement

The overall grand mean of the Dice indices for spatial overlap was 0.71, covering

all mask comparisons. Mean values for each two-way comparison are given in

Table 4.2. As with the unidimensional measures of reliability, the highest mean

values for the Dice index are seen for comparisons with the final mask set (3),

suggesting convergence on a stable segmentation.

Similar trends in spatial agreement within the cohort were seen to unidimensional

measures, with increasing Dice indices at higher WMH volumes. This trend is

shown graphically in the scatterplots of Figure 4.4. This is a recognised limitation

of the Dice index, which measures only agreement in the regions considered of

interest, where larger regions are clearly more likely to overlap, disregarding

agreement on tissue outwith these regions.
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Figure 4.3: Bland-Altman plots, showing ratio of WMH volumes for each scan (n = 43) compared between different mask sets (1 to 3). In

each case the ratio is that of the later to the earlier mask. The solid line shows the mean ratio for the mask comparison and the dashed lines

are 95% confidence intervals for the mean.
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Figure 4.4: Scatterplots of Dice index of intra-observer spatial agreement against mean

WMH volume for each two-way comparison between mask sets 1 to 3. The lower right

plot shows the mean of the Dice index for all comparisons against the mean WMH

volume for each scan.

4.3.1.5 Sources of discrepancy

The review of WMH masks with the largest discrepancies revealed that the main

source was large regions of ‘dirty’ white matter. This was white matter with

signal characteristics intermediate between that of the overlapping segmented

regions and those voxels designated ‘normal-appearing’ white matter in both
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segmentations. For many subjects, this intermediate signal tissue represented a

major portion of the white matter. Using the Mango software to adjust viewing

windows in some cases highlighted apparent edges to the abnormal white matter,

but this was not universal.

In several scans, high signal was seen to extend along the corticospinal tracts,

on one or both sides, suggestive of Wallerian-like degeneration triggered by focal

damage within the tract. This was a further contributor to the volume of white

matter with signal intermediate between that of focal inflammatory WMHs and

apparently unaffected white matter.

The FLAIR sequence had a slice thickness of 3mm and ‘partial volume’ effects

were apparent, leading to uncertainty in delineating WMHs. This was particularly

noticeable at the ventricular surface and cortical boundary, both frequent sites for

MS-related WMHs. The lateral ventricles were the relatively larger contributor

to this effect, although segmentation using primarily the FLAIR sequence had

been chosen in order to minimise this.

While failure to recognise small focal WMHs did occur, this will have only had a

significant effect on agreement metrics for the scans with the very lowest WMH

volumes.

4.3.2 Inter-observer reliability

4.3.2.1 Participant characteristics

The 12 scans used were the baseline imaging from a subset of the forty-three

participants in the Advanced MRI substudy of MS-SMART described earlier.

There were nine female and three male participants with a median age of 57.6

years (IQR: 45.7, 61.0) and a median disease duration of 21.9 years (IQR: 14.9,

29.5).

As quantified in the third mask set by the initial observer, the median WMH

volume of these participants was 19.5ml (IQR: 12.4, 32.8).

4.3.2.2 Summary statistics

Manual segmentation by the second observer was completed over a period of two

weeks. The median WMH volume from the manual segmentations of the second

observer were all higher than those for the initial observer, with a median volume

of 44.8ml (IQR: 26.4, 61.7). A boxplot comparing the two observers is shown in

Figure 4.5.
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Figure 4.5: Left - Boxplot of cohort WMH volumes for segmentations of twelve scans

by two observers. Right - Scatterplot of mask volumes by the two different observers.

The Spearman correlation was r = 0.78.

4.3.2.3 Unidimensional reproducibility

The (Spearman) correlation between WMH volumes was r = 0.78 and the

intra-class correlation was 0.66 (95% CI: -0.09, 0.91). However, the high

correlation between WMH volumes concealed a large discrepancy between the

two raters for two cases, in both of which one rater had identified low or very

low (< 1ml) volumes of visible disease. A Bland-Altman ratio plot is shown in

Figure 4.6, with the most extreme outlier removed (mean WMH volume = 14ml,

ratio between observer volumes = 147).

Similar to the findings for intra-observer agreement (see Figure 4.3), the potential

for large discrepancies between segmentations appeared greatest at lower WMH

volumes.

4.3.2.4 Spatial agreement

The mean of the Dice indices for spatial overlap between different observers’

segmentations was 0.54. A plot of Dice indices against mean WMH volume is

shown in Figure 4.7. As with the volume ratios, improved agreement, as measured

by the Dice index, was seen at larger WMH volumes.
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Figure 4.6: Bland-Altman plot, showing ratio of WMH volumes for each scan comparing

that of the second observer to that of the first (n = 11). One extreme outlier with a

volume ratio of 147 has been omitted. The dashed line indicates a ratio of 1 and all

ratios were above this.
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Figure 4.7: Scatterplot of Dice index of inter-observer spatial agreement against mean

WMH volume (n = 12). The overall mean Dice index was 0.54
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4.3.2.5 Sources of discrepancy

As for intra-observer agreement, segmentation discrepancies again occurred at

sites where both partial volume effects and WMHs were frequent, particularly

around the lateral ventricles and involving the corpus callosum.

A second source of discrepancy related to a bias in individual observer ‘thresholds’

for considering white matter abnormal. For the majority of scans this resulted

in the second observer outlining similar regions to the first observer but with

wider boundaries, contributing to the overall marked difference in summary WMH

volumes. In two cases there was marked disagreement on whether there was

widespread diffuse involvement of the white matter. In both these cases the

initial segmentations only covered a small volume of more clearly demarcated

focal WMHs.

4.4 Discussion

Before the validity of other methods for disease quantification can be tested,

the reliability of the reference data they will be compared with should itself be

established. With only rare availability of pathological samples, expert opinion on

imaging appearances, in the form of manual segmentation, has become accepted

as the reference standard. However the reliability of this reference standard is

often ignored.

The results presented here demonstrate that the reference standard is imperfect,

and its reliability is not constant, depending on both observer and cohort factors.

There is an effect of observer experience and unconscious bias, with the potential

for substantial error. Small differences in the subjective threshold used can make

large differences to the overall output, particularly in decisions on how much

intermediate signal white matter to include within segmentations of abnormal

tissue.

An overall shift towards including more of the intermediate signal white matter

in the tissue segmentation was apparent in the second mask set. Following

completion of the initial masks, work had begun on optimising a software method

for WMH segmentation using the same cohort, which tended to include more

diffuse white matter changes. It is assumed that awareness of this influenced

subsequent manual segmentation. This highlights the significant effect of observer

biases, even when blinding is apparently complete. Practice effects would also

likely have affected the work of the second observer, although time and resources

did not provide the opportunity to confirm this.
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The comparison between two observers with similar experience following the same

protocol further highlights the difficulty of drawing sharp boundaries on images

of diffuse disease processes. For the majority of scans, small local differences in

marking edges added up to large total differences in WMH volumes. For a small

number of cases, inter-observer disagreement on whether to mark diffuse regions of

mildly raised signal led to very marked discrepancies in WMH volume. Even with

these discrepancies in determining the absolute WMH volume, the reasonable

inter-observer correlation (r = 0.78) indicates that agreement in distinguishing

between different levels of disease was less affected.

The reliability of a method applies only to the particular population in which it

has been tested, although this can clearly be used to make assumptions about its

performance in similar situations. How far all populations of people with MS can

be considered similar is debatable and even in this clinically relatively homogenous

sample of people the reliability of the segmentation was clearly dependent on

disease burden.

That the Dice index increases with WMH volume is a recognised limitation.

Although widely used in the imaging community, the Dice index was originally

developed for an entirely separate and not obviously relevant purpose, measuring

ecological associations between species [108]. Numerous alternatives to the Dice

have been developed (see Chapter 6).

Acknowledging the disadvantages of reliance on any one metric of reproducibility,

the principle that reproducibility should be tested and reported remains highly

important for standardisation of imaging research practice. Gains from research

studies will be maximised only when the optimal methods for that population

are used and their limitations understood.

It may be that the optimal method for WMH segmentation varies dependent on

the research question. Subtle and diffuse abnormality in the white matter may

be highly relevant for understanding the role of global white matter integrity in

clinical outcomes. However its inclusion in disease measures when investigating

the effect of treatments targeting acute inflammation pathways may be less

relevant. When investigating differences in advanced imaging markers, such as

those from DTI and MRS, between lesional and normal-appearing white matter,

how these tissues are delineated will clearly alter what is found.

The reference standard quantification method is imperfect and this should be

taken into account in presenting work reliant on it, including both validation of

alternative imaging tools to quantify WMH burden and research exploring the

relationship to cognitive performance. Errors associated with measurement tools

will attenuate correlations derived using their outcomes [103]. Accepting this,
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the evidence here is interpreted to show experience resulted in a more stable

definition of normal and abnormal tissue, and as such the final set of masks was

chosen for later use in comparison with other methods.
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Chapter 5

Development of a visual rating

scale for MS imaging features

5.1 Introduction

The integration of several different and complementary sequences is universal

in clinical and research imaging protocols and is particularly useful in diseases

with complex and variable appearances. However, the measured outcomes in

multiple sclerosis (MS) are often reduced to simple binary or scalar measures,

such as stable or progressive disease, lesion or tissue volume, and information is

lost.

Advanced imaging techniques partly address this issue, providing quantitative

markers related to tissue damage, or focussing on anatomical structures of

interest, such as the involvement of cortical grey matter. These can offer useful

and objective measurement tools, but require standardisation and validation and

may not be widely or routinely available. Even simple volumetric measures from

routine imaging sequences, such as white matter hyperintensity (WMH) volume

are not yet widely available or standardised (see Chapters 3 and 4). In other

conditions, visual rating systems are commonly used to assess disease status,

offering robust markers which can more easily be translated between scanners

and centres and also to clinical practice, without the need for additional software.

With the evolution of MS treatments, there is an unmet need for scalable and

practical tools for quantification of MS imaging features that complement existing

radiology reporting systems.

Imaging appearances reflect a complex interaction of disease and host, as

well as potentially treatments; visible pathology may not accumulate in a

straightforward or predictable manner. The pathological non-specificity of WMHs
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is well-recognised [44], encompassing acute inflammatory lesions and partly or

fully remyelinated lesions, as well as permanent tissue damage, so limiting the

utility of any single measurement. The balance between inflammation, repair

and neurodegeneration is not necessarily the same in all people or at all disease

stages.

In this chapter a novel semi-quantitative visual rating scale is developed for

application to routine structural brain imaging in people with MS, the aim being

to maximise efficient capture of information regarding different aspects of visible

pathology, the degree of damage and structures involved. A series of imaging

features of potential relevance to cognitive function are considered and three

stages in the development of a rating system to assess these are described.

At each stage of the rating system development the frequency of feature presence

is recorded, both to aid interpretation of reliability measures and to better

characterise the range of disease appearances. The homogeneity of rated items is

assessed for evidence of different dimensions within the data and potential item

redundancy. Critical to its use as a research and imaging tool, measures of the

reliability of individual items and summary scores are presented. Finally, the

relationship of visual rating assessments of lesion volume to volumetric measures

is considered.

5.2 Methods

5.2.1 Initial development and pilot study

5.2.1.1 Development process - design and item selection

Brain imaging features of potential relevance to disease severity and cognitive

impairment were considered in consensus discussion by three consultant

neuroradiologists (DM, RS, JW) with academic interests in white matter

disease imaging. Existing disease-specific scales, identified in the systematic

review reported in Chapter 3, were considered for relevance, responsiveness and

practicality. Scales already in use for particular imaging features of interest were

also considered and illustrative images were assessed. Outcomes of this process

are reported in Section 5.3.1.
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5.2.1.2 Initial pilot study

The first ten consecutive scans were selected from the ‘Cognition in MS’ study

(see Chapter 2, Section 2.2 for further details). Three neuroradiologists completed

a structured rating proforma, reviewing all scans using PACS (picture archiving

and communication system) viewing software (Carestream manufacturer). One

radiologist (DM) repeated all the ratings following a four week interval, with their

initial set of ratings being taken as the reference set. All raters were blinded to

the other assessments and all clinical information.

5.2.1.3 Statistical analysis

Item endorsement rates, indicating the frequency of feature presence, were

calculated as the proportion of non-zero ratings assigned for each item.

Overall scale homogeneity was evaluated using item-(partial-)total correlations,

split-half reliabilities and Cronbach’s α, using data from the reference rater.

Reliability for individual items was assessed using intra-class correlations (ICCs;

Class 2), equivalent to a weighted kappa [167], comparing the three independent

raters, with separate examination of the single rater repeat data. Six possible

dimensions within the scale - white matter lesions, the presence of juxtacortical

and cortical lesions, lesion cavitation, atrophy and enlarged perivascular spaces

(EPVS) - were used to create subscores by summing all individual item scores

within them. Intra- and inter-rater reliability for these subscores was assessed

using ICCs.

A volumetric measure of lesion volume was also available, having been previously

generated for the original study using a semi-automated software [168]. Spearman

correlations were used for an exploratory comparison between this data and

the mean white matter lesion dimension subscore averaged across the three

raters.

Homogeneity statistics were calculated using the R software ‘psychometric’ and

‘multicon’ packages; ICCs were calculated using the R ‘psych’ package.

71



5.2.2 Further development and re-evaluation

5.2.2.1 Item refinement

The results of the initial pilot study were reviewed by the same three consultant

neuroradiologists, considering item endorsement rates and reliability, rater

agreement and overall practicality for data collection and analysis.

5.2.2.2 Further pilot

Twelve scans were pseudo-randomly selected from the ‘Cognition in MS’ study,

to ensure an equal spread across quartiles of lesion volume (as determined by

the available software measurement) and reasonable ratios of sex and clinical

phenotype. Seven neuroradiologists (five consultants (DM, RS, JW, GM,

ZM) and two senior trainees (MR, LG), post-fellowship examination) were

recruited, with individual training prior to reviewing and rating all scans using

the Carestream viewing software. One radiologist (DM) repeated all ratings,

following an interval of four weeks, with their initial set of ratings being taken

as the reference set. All raters were blind to other assessments and all clinical

information.

5.2.2.3 Statistical analysis

Analysis of results was carried out as for the initial pilot. The initial ratings

of the one radiologist with repeat data were designated the reference standard

where necessary for comparison. The hierarchical arrangement of the items in

the revised scale allowed the creation of an additional summary subscore for

global (‘Fazekas-style’) white matter ratings [169] and the replacement of separate

juxtacortical and cortical lesion subscores, with a combined score. Both cavitation

and juxtacortical/cortical lesions were considered both as binary (present/absent)

features for each region and also by their total number. Systematic between-rater

biases were explored using the dimension subscores and agreement on definitions

of cavitated lesions and juxtacortical/cortical lesions were examined using

correlations of counts of the total numbers identified with those of the reference

rater.

As in the initial pilot study, a volumetric measure of lesion volume was available

and the relationship to this of the global ratings and the summed regional lesion

score was assessed graphically and through correlations.
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5.2.3 External validation study

5.2.3.1 Power calculation

Following review of the results from the pilot studies, testing of the scale in

a larger study and its relationship to cognitive status was planned. With the

assumption that a correlation of r = −0.35 with cognitive performance would be

of interest (see Chapter 3, for a review of relevant literature), a power calculation

was performed, using the G*Power software (version 3.1), indicating 61 subjects

would be needed for a 0.8 probability of finding a significant result at a significance

level of p < 0.05.

5.2.3.2 Study design and participants

Use of the visual rating scale was assessed in two separate cohorts of people

with MS, predicted to have different imaging features. Sample sizes for each

were chosen to meet or exceed the number suggested by the power calculation

described above.

Sixty-seven baseline scans from participants with early stage relapsing-remitting

MS (RRMS) in the FutureMS study (see Chapter 2, Section 2.3) were available

at the time of this work, representing people with early stage disease. Baseline

imaging for the University of Edinburgh MS-SMART participants with secondary

progressive MS (SPMS, n = 93, see Chapter 2, Section 2.1) was complete,

representing participants with more advanced disease.

The scans from these two cohorts were reviewed separately, using Mango image

viewing software (http://ric.uthscsa.edu/mango/), by a single rater (DM) blind

to all clinical and demographic information, other than study participation. All

ratings were repeated following an interval of at least four weeks.

5.2.3.3 Statistical analysis

Separate analyses were carried out for the two different cohorts. Assessment of

item endorsement rates, scale homogeneity and subscore reliability was performed

as for the previous pilot studies.

Manual lesion segmentation (see Chapter 4) was also available for a subset

of the MS-SMART cohort. Its relationship to the global white matter

ratings and summed regional lesion scores was assessed graphically and through

correlations.
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5.3 Results of phase I: Initial development and

piloting

5.3.1 Item selection

In the process of consensus development of an initial visual rating system, initial

discussion and review of the literature identified white matter lesions and atrophy

as the aspects of MS-related imaging changes of most interest to the academic

and clinical imaging communities [9, 170]. No suitable pre-existing MS-specific

imaging rating scale was identified. However analogous scales existed for other

conditions, such as the ‘Fazekas scale’ [169] for age-related white matter changes,

which is well-established and has been extensively tested.

Spatial localisation of white matter lesions, including laterality, was agreed to be

valuable data to collect, of potential relevance to cognitive impairment. Structural

brain subdivisions were agreed, with consideration to familiarity and practicality.

The potential for disagreement over lobar divisions was discussed and brief

guidance considered useful to ameliorate this.

Visible markers of the degree of damage, such as lesion cavitation, were identified

to be an aspect of imaging appearances where visual assessment could add

information to software-generated quantitative measures.

Current research interest in cortical and juxtacortical lesions was identified,

confirmed by their use in the most recently published diagnostic guidelines [9].

It was recognised that routine imaging sequences may not always demonstrate

these features, but felt that where visible they should be recorded.

Enlarged perivascular spaces, with their relationship to atrophy and potential

relevance to cognition [171] and inflammation [45], were identified as a feature

of interest. The existence of a validated rating scale [172] was recognised, albeit

developed in a vascular disease context, with no adaptations felt necessary.

Where possible, having all items rated on the same scale, 0 to 3, with uniform

directionality, was considered advantageous. Sample images being available at

the time of rating was also identified to be beneficial, where possible without

making the rating form unwieldy.

Incorporating the features described above, a data collection form was drafted,

sample images reviewed and agreed. See Appendix E for a copy of the structured

data collection form used in the initial pilot study.
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5.3.2 Participant characteristics

The ten scans rated were from six female and four male subjects, with mean

age 44.5 ± 5.3 years. The disease phenotype was RRMS in two subjects, SPMS

in two and primary progressive MS (PPMS) in six. A semi-automated lesion

segmentation software tool had previously been used in this cohort, and from this

the median lesion volume was 8.5ml (interquartile range (IQR): 6.5, 17.9).

5.3.3 Item endorsement rates

The rating scale included 68 individual items, eleven of which were not endorsed

(i.e. given a non-zero rating) in any rater-scan trial. These were one region for

WMHs, nine cavitation regions and one cortical lesion region. A histogram of

endorsement rates for all items is shown in Figure 5.1, showing that the majority

of items were endorsed in fewer than 40% of cases. Full summary statistics for all

items, including individual item endorsement rates, are shown in Table 5.1.
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Figure 5.1: Histogram of item endorsement rates in initial pilot study, where

endorsement indicates any non-zero rating. The total number of items rated was 68.
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Item Endorsement
rate

Mean SD Item-total
correlation

Inter-rater
ICC

Intra-rater
ICC

Regional
WMH

Frontal (R) 0.90 1.40 0.81 0.71 0.52 0.68
Frontal (L) 0.97 1.43 0.73 0.64 0.40 0.64

Parietal (R) 0.63 0.90 0.92 0.53 0.29 0.84
Parietal (L) 0.77 1.00 0.79 0.47 0.27 0.72

Temporal (R) 0.30 0.37 0.67 0.55 0.57 0.74
Temporal (L) 0.40 0.47 0.68 0.51 0.52 0.31
Occipital (R) 0.53 0.70 0.84 0.37 0.00 0.45
Occipital (L) 0.50 0.73 0.91 0.13 0.27 0.79

Insular (R) 0.07 0.10 0.40 - 0.40 0.00
Insular (L) 0.00 0.00 0.00 - - 0.00

Periventricular (R) 1.00 1.63 0.89 0.45 0.47 0.21
Periventricular (L) 0.97 1.63 0.93 0.45 0.51 0.35

Corpus callosum 0.87 1.33 0.80 0.38 0.16 0.54
Basal ganglia (R) 0.30 0.33 0.55 0.16 0.23 0.80
Basal ganglia (L) 0.03 0.07 0.37 - 0.00 0.00

Brainstem 0.37 0.50 0.78 0.46 0.30 0.05
Cerebellar peduncles (R) 0.13 0.20 0.61 - 0.21 0.00
Cerebellar peduncles (L) 0.33 0.40 0.67 0.33 0.65 0.70

Cerebellar hemispheres (R) 0.10 0.13 0.43 - 0.13 0.00
Cerebellar hemispheres (L) 0.13 0.17 0.46 -0.16 0.39 0.64

Cavitation

Frontal (R) 0.27 0.40 0.77 -0.03 0.16 0.64
Frontal (L) 0.20 0.30 0.70 - 0.15 0.00

Parietal (R) 0.10 0.10 0.31 -0.03 -0.08 0.64
Parietal (L) 0.10 0.13 0.43 - 0.00 0.00

Temporal (R) 0.03 0.03 0.18 - 0.00 -
Temporal (L) 0.00 0.00 0.00 - - -
Occipital (R) 0.07 0.07 0.25 - 0.00 -
Occipital (L) 0.03 0.03 0.18 - 0.00 0.00

Insular (R) 0.00 0.00 0.00 - - -
Insular (L) 0.00 0.00 0.00 - - -

Periventricular (R) 0.17 0.20 0.48 0.10 0.30 -0.17
Periventricular (L) 0.10 0.10 0.31 0.10 -0.13 0.00

Corpus callosum 0.03 0.03 0.18 - 0.00 -
Basal ganglia (R) 0.00 0.00 0.00 - - -
Basal ganglia (L) 0.00 0.00 0.00 - - -

Brainstem 0.07 0.07 0.25 - 0.00 -
Cerebellar peduncles (R) 0.00 0.00 0.00 - - -
Cerebellar peduncles (L) 0.00 0.00 0.00 - - -

Cerebellar hemispheres (R) 0.00 0.00 0.00 - - -
Cerebellar hemispheres (L) 0.00 0.00 0.00 - - -

Juxta-cortical
lesions

Frontal (R) 0.73 1.37 1.10 0.63 0.69 0.77
Frontal (L) 0.80 1.17 0.95 0.78 0.51 0.87

Parietal (R) 0.27 0.40 0.81 0.80 0.61 0.85
Parietal (L) 0.37 0.53 0.86 0.87 0.62 0.89

Temporal (R) 0.33 0.40 0.67 0.30 0.29 0.57
Temporal (L) 0.20 0.27 0.64 0.45 0.29 0.84
Occipital (R) 0.13 0.17 0.46 - 0.24 -
Occipital (L) 0.20 0.23 0.50 0.82 0.52 0.64

Insular (R) 0.27 0.30 0.53 0.34 0.12 0.37
Insular (L) 0.07 0.10 0.40 0.82 0.40 1.00

Cortical lesions

Frontal (R) 0.33 0.43 0.68 -0.14 0.38 -0.17
Frontal (L) 0.17 0.20 0.48 - 0.33 -

Parietal (R) 0.10 0.13 0.43 - -0.06 -
Parietal (L) 0.13 0.17 0.46 -0.16 0.05 0.00

Temporal (R) 0.03 0.03 0.18 - 0.00 -
Temporal (L) 0.03 0.03 0.18 - 0.00 -
Occipital (R) 0.10 0.10 0.31 - 0.00 -
Occipital (L) 0.00 0.00 0.00 - - -

Insular (R) 0.03 0.03 0.18 - 0.00 -
Insular (L) 0.03 0.03 0.18 - 0.00 -

Atrophy

Deep 0.70 1.03 0.96 0.86 0.76 0.83
Superficial 0.73 1.13 0.94 0.89 0.67 0.79

Corpus callosum 0.60 0.87 0.82 0.70 0.62 0.77
Posterior fossa 0.40 0.57 0.77 0.50 0.08 0.00

Enlarged
perivascular
spaces

Basal ganglia (R) 0.97 1.20 0.48 - 0.18 0.00
Basal ganglia (L) 0.97 1.23 0.50 - 0.11 0.00

Centrum semiovale (R) 0.80 1.57 1.17 -0.21 0.29 0.70
Centrum semiovale (L) 0.83 1.57 1.14 -0.16 0.34 0.65

Table 5.1: Descriptive statistics for each individual item in visual rating scale (initial
pilot study). Endorsement rate: proportion of non-zero ratings; SD: Standard
deviation.



5.3.4 Scale homogeneity

Cronbach’s α was 0.88 (0.74, 0.96), with a split-half reliability of 0.92±0.29. This

indicates a high degree of homogeneity in the items rated, but is also related to

the large number of individual items assessed. Certain items could be considered

redundant if their sole value was in contributing to an overall score.

It was not possible to calculate item-(partial-)total correlations for 32 items in

this sample due to either no non-zero ratings (n = 30), or no variance in the

ratings (n = 2). Where available, these correlations ranged from −0.21 to 0.89,

with a mean of 0.40. This does not provide any evidence of items with variation

in an opposing direction to that of the full scale.

Eleven items had item-total correlations of < 0.2. These were three regions for

white matter lesions, 4 cavitation regions, two cortical lesion regions and two

EPVS regions. This could be partly explained by infrequent endorsement, as five

of these items had endorsement rates < 0.2.

Item-total correlations for all individual items, where available, are shown in

Table 5.1.

5.3.5 Reproducibility

5.3.5.1 Individual items

Intra-class correlations for all individual items are included in Table 5.1. The

intra-rater ICCs for individual items ranged from −0.17 to 1, with mean 0.76

and median 0.43. In comparison, the inter-rater ICCs ranged from −0.13 to 0.76,

with mean 0.26 and median 0.27. All cases of negative inter-rater ICCs were

related to items with very low endorsement rates (< 0.2). Similarly the two

items with negative intra-rater ICCs both had endorsement rates of 0.15 for the

reference rater.

5.3.5.2 Dimension subscores

Intra-class correlations for dimension subscores, created by summing all ratings

in each of six classes, are shown in Table 5.2. These dimension subscores focus on

the rater reliability in identifying and scoring certain imaging features, removing

any effect from disagreement over anatomical boundaries and lessening the effect

of low endorsement rates for individual regional items.
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Although likely still influenced by endorsement rates, Table 5.2 does suggest that

inter-rater and intra-rater reliability varies for assessment of different imaging

features, with reliability being higher for assessment of white matter lesions,

juxtacortical lesions and atrophy, compared with cavitation, cortical lesions and

EPVS.

The statistical significance of the association between subscores for different

raters, as indicated by the p-value, confirms that the negative ICC for intra-rater

cortical lesion rating is a non-significant result, again related to low endorsement

rates. There was an overall endorsement rate of 0.02 for cortical lesions ratings

by the reference rater.

Inter-rater ICC (p) Intra-rater ICC (p)

White matter lesions 0.53 (< 0.01) 0.83 (< 0.01)

Cavitation 0.12 (0.18) 0.56 (0.03)

Juxta-cortical lesions 0.69 (< 0.01) 0.94 (< 0.01)

Cortical lesions 0.17 (0.17) -0.20 (0.72)

Atrophy 0.69 (< 0.01) 0.91 (< 0.01)

EPVS 0.33 (0.01) 0.46 (0.02)

Table 5.2: Showing reliability, assessed with intra-class correlations (ICCs), of summary

scores for each of six subtotals within the scale.

5.3.6 Validation with pre-existing semi-automated lesion volume

From previous work using a semi-automated lesion segmentation software, white

matter lesion volumes for the scans were available. The Spearman correlation

between the mean of the white matter lesion dimension subscore for the three

raters and the volumetric measurement was r = 0.69; a scatterplot of results

is shown in Figure 5.2. Excluding the single highest value, this correlation was

r = 0.57. The relationship appeared plausibly linear when considering the full

range, but with most subjects grouped at the lower end of lesion volumes/scores

and not clearly separated out by different scores.
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Figure 5.2: Scatterplot showing the mean of the white matter (WM) lesion dimension

subscore in the initial pilot study, against the semi-automated lesion volume, annotated

with a line of best fit. The Spearman correlation was r = 0.69.

5.4 Results of phase II: Further development and

re-evaluation

5.4.1 Item refinement

Following review of the results of the initial pilot, modifications to the rating

scale were agreed in consensus. Consideration was given to improving the clarity

of item definitions, potential item redundancy and overall practicality. Improved

descriptions of some items was felt to be of benefit, with more images available

for guidance, particularly for assessing lesion cavitation.

The sample of scans selected for the initial pilot study was not thought to be an

optimal representation of the range of imaging appearances seen in MS. A high

proportion of the scans were from people with primary progressive MS, which

may be associated with lower brain lesion loads [173] and this may in part have

led to the frequently low item endorsement rates. Accepting this, endorsement
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rates were not felt to be a rigid guide to item inclusion, as this was a small sample

and uncommon features may remain relevant. Non-endorsed items were not felt

to add significantly to the time taken for rating completion.

In relation to the overall intention of the rating scale for use in routine

MRI sequences, without advanced cortical imaging, it was agreed that reliable

cortical lesion identification was not a priority. Not differentiating cortical

and juxtacortical lesions initially would be more practical, while retaining the

option to more accurately anatomically localise any cortical/juxtacortical lesion

if identified.

The lack of a global white matter rating was considered a limitation and an overall

deep white matter rating, modified from the ‘Fazekas’ scale [169] was introduced.

Overall a more hierarchical structure was thought to be optimal for both rating

and analysis and the form was redrafted to facilitate this.

See Appendix F for a copy of the structured data collection form used in the

second pilot study.

5.4.2 Participant characteristics

The twelve scans rated were from six female and six male subjects, with mean

age 47.7 ± 8.0 years. The disease phenotype was relapsing-remitting MS in five

subjects, secondary progressive MS in four and primary progressive MS in three.

One subject overlapped with those studied in the initial pilot. Using the available

semi-automated lesion volumes, as before, the median lesion volume for the scans

used in the second pilot study was 20.3ml (IQR: 10.9, 34.8). This was higher

than in the first pilot, with a greater spread of values.

5.4.3 Item endorsement rates

There were 60 items available for rating in the second pilot study. Of these, two

items (cavitation in the basal ganglia bilaterally) had zero endorsements in any

rater-scan trial. A histogram of endorsement rates for all items is shown in Figure

5.3, suggesting a trimodal distribution, with items being endorsed in nearly all,

nearly none, or around 40% of rater-scan trials. A greater dynamic range in terms

of endorsement rates was achieved than in the initial pilot.

Summary statistics, including individual item endorsement rates are shown in

Table 5.3.
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Item Endorsement
rate

Item-total
correlation

Mean SD Inter-rater
ICC

Intra-rater
ICC

Global WM

Deep WM (R) 0.98 0.70 1.35 0.61 0.66 0.69
Deep WM (L) 0.98 0.87 1.43 0.68 0.77 1.00

Periventricular WM (R) 1.00 0.75 2.10 0.74 0.58 0.83
Periventricular WM (L) 1.00 0.58 2.13 0.74 0.61 0.92

Regional WM

Frontal (R) 0.96 0.61 1.30 0.58 0.59 0.77
Frontal (L) 0.98 0.64 1.32 0.60 0.65 0.59

Parietal (R) 0.79 0.51 1.07 0.77 0.48 0.81
Parietal (L) 0.77 0.72 1.07 0.80 0.55 0.52

Temporal (R) 0.65 0.75 0.88 0.81 0.47 0.83
Temporal (L) 0.58 0.54 0.79 0.82 0.40 0.70
Occipital (R) 0.46 0.60 0.68 0.85 0.48 0.74
Occipital (L) 0.48 0.62 0.71 0.87 0.31 0.34

Insular (R) 0.48 0.61 0.58 0.73 0.28 0.29
Insular (L) 0.33 0.66 0.48 0.78 0.59 0.80

Corpus callosum 0.86 0.65 1.23 0.73 0.27 0.77
Basal ganglia (R) 0.35 -0.23 0.38 0.56 0.49 0.52
Basal ganglia (L) 0.27 0.00 0.35 0.61 0.45 0.09

Brainstem 0.56 0.15 0.70 0.72 0.63 0.72
Cerebellar peduncles (R) 0.43 0.25 0.44 0.52 0.25 0.75
Cerebellar peduncles (L) 0.57 0.18 0.60 0.54 0.51 0.69

Cerebellar hemispheres (R) 0.44 0.13 0.44 0.50 0.54 1.00
Cerebellar hemispheres (L) 0.46 0.63 0.48 0.53 0.60 0.42

Cavitation

Periventricular WM (R) 0.37 0.48 0.68 1.09 0.45 0.33
Periventricular WM (L) 0.42 0.75 0.95 1.40 0.51 0.52

Frontal (R) 0.24 0.27 0.32 0.75 0.38 0.77
Frontal (L) 0.30 0.86 0.50 0.90 0.55 0.81

Parietal (R) 0.14 0.38 0.19 0.50 0.09 0.65
Parietal (L) 0.12 -0.36 0.15 0.45 -0.04 0.00

Temporal (R) 0.05 - 0.05 0.21 0.00 -
Temporal (L) 0.04 - 0.04 0.19 0.10 -
Occipital (R) 0.07 0.32 0.11 0.41 0.14 0.00
Occipital (L) 0.06 - 0.07 0.30 -0.04 -

Insular (R) 0.04 - 0.04 0.19 0.00 -
Insular (L) 0.07 - 0.07 0.26 0.31 0.00

Corpus callosum 0.06 - 0.08 0.35 -0.04 -
Basal ganglia (R) 0.00 - 0.00 0.00 - -
Basal ganglia (L) 0.00 - 0.00 0.00 - -

Brainstem 0.05 - 0.10 0.51 0.00 -
Cerebellar peduncles (R) 0.06 - 0.06 0.24 0.10 -
Cerebellar peduncles (L) 0.06 - 0.07 0.30 0.03 -

Cerebellar hemispheres (R) 0.04 - 0.04 0.19 -0.02 -
Cerebellar hemispheres (L) 0.04 - 0.06 0.36 -0.02 -

(Juxta-)
cortical lesions

Frontal (R) 0.85 0.42 3.10 3.69 0.54 0.33
Frontal (L) 0.80 0.54 3.64 4.50 0.40 0.46

Parietal (R) 0.51 0.64 1.01 1.44 0.32 0.84
Parietal (L) 0.54 0.58 1.23 1.56 0.55 1.00

Temporal (R) 0.50 0.79 0.77 1.01 0.31 0.66
Temporal (L) 0.39 0.81 0.70 1.08 0.38 0.68
Occipital (R) 0.31 0.59 0.45 0.77 0.35 0.45
Occipital (L) 0.36 0.70 0.49 0.74 0.29 0.42

Insular (R) 0.35 0.34 0.44 0.68 0.15 0.18
Insular (L) 0.26 0.20 0.36 0.67 0.40 -0.22

Atrophy

Deep 0.94 0.55 1.67 0.83 0.59 0.88
Superficial 0.89 -0.02 1.67 0.81 0.32 0.21

Corpus callosum 0.86 0.52 1.44 0.88 0.54 0.77
Posterior fossa 0.39 0.67 0.54 0.75 0.09 0.47

Enlarged
perivascular
spaces

Basal ganglia (R) 0.98 -0.39 1.15 0.48 0.07 -0.14
Basal ganglia (L) 0.96 -0.35 1.18 0.56 0.18 0.30

Centrum semiovale (R) 0.86 0.44 1.27 0.77 0.31 0.27
Centrum semiovale (L) 0.86 0.13 1.32 0.87 0.31 0.75

Table 5.3: Descriptive statistics for each individual item in visual rating scale (second
pilot study). Global and regional white matter (WM) ratings and atrophy were scored
0 − 3. Cavitation and juxtacortical/cortical scores were counts. Enlarged perivascular
spaces were rated 0−4. Endorsement rate: proportion of non-zero ratings; SD: standard
deviation. Dashed lines indicate undefined metric values due to no non-zero ratings.
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Figure 5.3: Histogram of item endorsement rates in second pilot study. The total

number of items rated was 60.

5.4.4 Scale homogeneity

Cronbach’s α was 0.92 (0.84, 0.97), with a split-half reliability of 0.94 ± 0.24. As

in the initial pilot study, this indicates a high degree of item homogeneity, but

also reflects the large number of items rated.

It was not possible to calculate item-(partial-)total correlations for 13 items, all

lesion cavitation regions, due to no non-zero ratings by the reference rater for

these regions. Where available, item-total correlations ranged from −0.39 to 0.87,

with a mean of 0.44. Six items had correlations with the full scale of between

-0.2 and 0.2: four regional WMH items (1 for basal ganglia and three in the

posterior fossa), 1 atrophy item and one EPVS item. Four items had correlations

r < −0.2, raising the possibility of variation in an opposing direction to that of

the full scale. These were one regional WMH item (basal ganglia), 1 cavitation

item and two EPVS items. Item-total correlations for all individual items, where

available, are shown in Table 5.3.
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5.4.5 Reproducibility

5.4.5.1 Individual items

Intra-class correlations for all individual items are included in Table 5.3. The

intra-rater ICCs for individual items ranged from −0.22 to 1, with mean 0.54

and median 0.65. Inter-rater ICCs ranged from −0.03 to 0.77, with mean 0.34

and median 0.37.

Very low inter-rater ICCs were found for all cavitation items, with the exception

of the largest regions - periventricular white matter and the frontal lobes. There

were very low overall endorsement rates for these items, which likely explains the

five cavitation items with negative inter-rater ICCs (all with low absolute values).

Intra-rater ICCs were undefined for many of these items due to no non-zero ratings

by the reference rater.

Two items in other categories had negative intra-rater ICCs. In one case (a

juxtacortical lesion item) this was related to a low endorsement rate by the

reference rater, but in the other this was not (EPVS in the basal ganglia). All

four EPVS items had high endorsement rates, but were mostly associated with

low intra-rater and inter-rater ICCs.

Using the ICC as a measure of reliability combines assessment of two concepts -

whether raters have the same understanding of a feature being present, e.g. lesion

cavitation, and how they interpret the categories to assign different scores to the

imaging appearances. Similarity of understanding of different features is assessed

in Section 5.4.5.2 through the dimension subscores, as is rater bias towards using

higher or lower scores.

Agreement on individual item scores was examined graphically using ‘bubble’

plots, providing a visual indication of how many raters agreed with the reference

rating and each other. Bubble plots for the global white matter (‘Fazekas-style’)

ratings for each scan are shown in Figure 5.4 and for the remaining scored items

in Appendix G.

The ratings for deep white matter shown in the top row of Figure 5.4 demonstrate

closer agreement, with perfect or near perfect agreement in most cases. There

was greater variation in the scores assigned to the periventricular white matter,

although the majority of raters were in agreement with the reference rater for all

but 3/24 (= 13%) of ratings.

In the case of deep white matter ratings, Figure 5.4 highlights the narrow range

of scores used. Scans rated are plotted in order of increasing lesion volume, but
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the first eight (= 67%) were all assigned scores of 1 bilaterally by the majority of

raters. Although available, a score of zero was rarely (for deep white matter) or

never (for periventricular white matter) used, thus further narrowing the range.

The range of scores used will affect agreement, and an indication of this is also

given by the standard deviation for each item, provided in Table 5.3.
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Figure 5.4: ‘Bubble’ plots of deep and periventricular white matter (WM) scores for

each scan. The radius of each point is proportional to the number of raters assigning

that score. Blue indicates agreement with the reference standard. The scans are plotted

in order of increasing lesion volume.
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5.4.5.2 Dimension subscores and imaging features of interest

The ICCs for dimension subscores, similar to those of the initial pilot study,

are shown in Table 5.4. One rater had not provided counts of cavitated

and juxtacortical lesions and was excluded from analysis related to these two

subscores. Unlike the initial pilot study, all p-values are low enough to reject the

null hypothesis of no association between rater scores.

Inter-rater ICC (p) Intra-rater ICC (p)

Global summary WM lesions 0.80 (< 0.001) 0.98 (< 0.001)

Regional WM lesions 0.64 (< 0.001) 0.91 (< 0.001)

Cavitation (regions) 0.29 (< 0.001) 0.69 (< 0.001)

Cavitation (counts) 0.17 (0.002) 0.62 (0.004)

(Juxta-)cortical lesions (regions) 0.53 (< 0.001) 0.87 (< 0.001)

(Juxta-)cortical lesions (counts) 0.51 (< 0.001) 0.93 (< 0.001)

Atrophy 0.55 (< 0.001) 0.72 (0.002)

EPVS 0.35 (< 0.001) 0.66 (0.002)

Table 5.4: Showing reliability, assessed with intra-class correlations (ICCs), of summary

scores for each of eight subtotals within the scale. Cavitation and (juxta-)cortical lesion

subscores were calculated both for the number of regions identified as affected as well

as the total lesion count.

As in the initial pilot study, the dimension subscore ICCs suggest that reliability

varies with the imaging feature of interest, again being lower for identifying

cavitated lesions and rating EPVS. Poor reliability may relate to rater differences

in defining the feature of interest as well as rater biases in using higher or lower

scores.

Univariate correlations of the numbers of cavitated lesions identified by raters

compared with the reference standard were examined to investigate similarity

of underlying rater definitions. One rater had not provided counts of cavitated

lesions and was excluded from this analysis. Of the remaining 5 raters, four

showed total counts for each scan which strongly correlated with the reference

standard (r = 0.68, 0.89, 0.89, 0.94) and one which only weakly correlated (r =

0.26, rater D), suggesting this rater may have used different imaging appearances

to define cavitation. Correlations for counts of fully cavitated lesions were slightly

lower (r = 0.25 to 0.78).
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Similar correlations were examined for the total number of juxtacortical/cortical

lesions identified. One rater had not provided counts of juxtacortical/cortical

lesions and was excluded from more detailed analysis. Of the remaining 5

raters, all showed total lesion counts which correlated strongly with the reference

standard (r = 0.88 to 0.95). Only two raters identified purely cortical lesions in

any scan, so more detailed analysis of this was not performed.

Systematic biases between different raters were explored using barplots of the

mean dimension subscore for each rater, shown in Figure 5.5. In the case

of identifying cavitated lesions it is apparent that there is one outlying rater

(rater D), who tended to identify much larger numbers. Excluding this rater

in calculating the ICC for the cavitation (count) subscores, resulted in an

increase to 0.64 (p < 0.001). Although less marked, the same rater also

showed a tendency to identify more (juxta-)cortical lesions and excluding them

in calculating the (juxta-)cortical (count) subscore ICC resulted in an increase to

0.61 (p < 0.001).
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Figure 5.5: Barplots showing mean dimension subscores for each rater A - G (A2

is repeat rating by rater A). Cavitation and cortical/juxtacortical lesions are treated

as binary features for each region (i.e. present or absent), so the mean represents

the mean number of regions considered affected. Rater G did not provide counts of

cavitated lesions or juxtacortical lesions for all scans.
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5.4.6 Validation with pre-existing semi-automated lesion volume

Two visual markers of overall lesion burden were calculated: (1) the sum of

bilateral deep and periventricular global white matter ratings and (2) the sum of

all lesion scores for individually rated brain regions. Figure 5.6 shows the mean

value from the seven raters for these two markers plotted against the available

volumetric measure of lesion burden. The visual markers both correlated strongly

with the volumetric measure and the relationship appeared plausibly linear across

the whole range.
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Figure 5.6: Scatterplots showing relationship of visual rating scores for white matter

(WM) to semi-automated lesion (white matter hyperintensity - WMH) volume,

annotated with lines of best fit and Spearman correlation coefficients. All scores plotted

represent the mean value of seven raters for the sum of right and left hemisphere scores.

Left: Summed deep and periventricular WM lesion scores; Right: Summed lesion scores

for individual regions

5.5 Independent validation study

5.5.1 Participant characteristics

5.5.1.1 MS-SMART

One subject in the MS-SMART cohort was excluded, as a T2-weighted (T2w)

imaging sequence was not available. Scans from the remaining 92 participants

were included. These scans were from 68 female and 24 male participants, with
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a mean age of 55± 7.5 years. The mean disease duration, taken as the time since

initial symptom, was 20 ± 10 years, median 20.5 years.

5.5.1.2 FutureMS

Sixty-seven participants had been recruited locally by the time of this work

and their imaging was included. This covered a period of development of

scan protocols. After the initial 23 participants, all scans included a 2D

fluid attenuated inversion recovery (FLAIR) sequence, and after the initial 25

participants, all scans included a 2D T2w sequence, instead of a 3D T2w sequence.

3D T1-weighted and FLAIR sequences were available for all scans.

This cohort comprised 49 female and 18 male participants, with a mean age of

39 ± 9.6 years. The mean disease duration, taken as time since initial symptom,

was 5.1 ± 5.5 years, median 2.7 years.

5.5.2 Scale homogeneity

Cronbach’s α was 0.92 (0.90, 0.94) with a split-half reliability of 0.94 ± 0.11. As

before this reflects both the high degree of item homogeneity and the large number

of items rated.

It was not possible to calculate item-(partial-)total correlations for 9 lesion

cavitation items, due to no non-zero ratings in the relevant regions. Where

available, item-total correlations ranged from 0.07 to 0.80, with a mean of

0.41±0.21. A histogram of item-total correlations is shown in Figure 5.7. Thirteen

items had correlations < 0.2, including 7 further cavitation items and all four

EPVS items. Although this is likely influenced by the low endorsement rates for

the cavitation items, this suggests that scores for these items may not vary with

the majority of the other ratings.

5.5.3 Summary statistics for individual items

Summary statistics for each individual item, including the mean, standard

deviation and endorsement rate, are given in Table 5.5. These are given both

overall and separately for the two cohorts rated. Endorsement rates varied from

0 to 1, with an overall mean of 0.33. The mean endorsement rate was 0.36 for the

cohort with SPMS (MS-SMART) compared with 0.28 for the cohort with RRMS

(FutureMS).
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FutureMS MS-SMART Overall
End.
rate

Mean SD ICC End.
rate

Mean SD ICC End.
rate

Mean SD ICC

Global
WM

Deep WM (R) 0.75 0.91 0.65 0.73 0.90 1.40 0.76 0.80 0.84 1.19 0.75 0.80
Deep WM (L) 0.82 1.03 0.65 0.72 0.95 1.48 0.72 0.73 0.89 1.29 0.72 0.76

Perivent. WM (R) 0.84 1.36 0.88 0.69 0.91 2.03 0.94 0.85 0.88 1.75 0.97 0.82
Perivent. WM (L) 0.85 1.49 0.88 0.77 0.93 2.05 0.89 0.85 0.90 1.82 0.93 0.84

Regional
WM

Frontal (R) 0.72 0.85 0.66 0.78 0.91 1.37 0.74 0.78 0.83 1.15 0.75 0.81
Frontal (L) 0.72 0.82 0.60 0.73 0.93 1.46 0.72 0.75 0.84 1.19 0.74 0.79

Parietal (R) 0.60 0.81 0.82 0.73 0.70 1.25 1.02 0.53 0.65 1.06 0.97 0.63
Parietal (L) 0.70 1.01 0.84 0.64 0.76 1.39 0.97 0.52 0.74 1.23 0.94 0.59

Temporal (R) 0.36 0.43 0.63 0.80 0.39 0.46 0.64 0.58 0.38 0.45 0.63 0.67
Temporal (L) 0.40 0.54 0.77 0.76 0.36 0.45 0.69 0.51 0.38 0.48 0.72 0.62
Occipital (R) 0.12 0.16 0.48 0.85 0.15 0.22 0.57 0.52 0.14 0.19 0.53 0.61
Occipital (L) 0.13 0.19 0.53 0.74 0.14 0.27 0.73 0.51 0.14 0.24 0.65 0.57

Insular (R) 0.12 0.18 0.55 0.53 0.22 0.37 0.78 0.41 0.18 0.29 0.70 0.45
Insular (L) 0.10 0.19 0.61 0.46 0.24 0.39 0.78 0.49 0.18 0.31 0.72 0.50

Corpus callosum 0.75 0.94 0.69 0.60 0.39 0.42 0.58 0.57 0.54 0.64 0.68 0.62
Basal ganglia (R) 0.37 0.40 0.55 0.29 0.46 0.54 0.65 0.60 0.42 0.48 0.61 0.40
Basal ganglia (L) 0.30 0.30 0.46 0.55 0.51 0.63 0.69 0.61 0.42 0.49 0.63 0.61

Brainstem 0.36 0.45 0.68 0.83 0.50 0.64 0.75 0.79 0.44 0.56 0.73 0.81
Cereb. ped. (R) 0.18 0.22 0.52 0.80 0.24 0.32 0.63 0.80 0.21 0.28 0.58 0.80
Cereb. ped. (L) 0.24 0.30 0.60 0.70 0.36 0.41 0.61 0.67 0.31 0.36 0.61 0.68

Cereb. hemi. (R) 0.22 0.22 0.42 0.69 0.34 0.37 0.55 0.75 0.29 0.31 0.50 0.74
Cereb. hemi.(L) 0.15 0.16 0.41 0.48 0.34 0.37 0.55 0.69 0.26 0.28 0.50 0.64

Cavitation

Perivent. WM (R) 0.10 0.27 0.95 0.59 0.49 1.60 2.82 0.85 0.33 1.04 2.32 0.81
Perivent. WM (L) 0.12 0.28 0.98 0.68 0.49 1.66 2.73 0.77 0.33 1.08 2.27 0.79

Frontal (R) 0.07 0.07 0.26 0.36 0.10 0.18 0.69 0.53 0.09 0.14 0.56 0.48
Frontal (L) 0.01 0.01 0.12 -0.02 0.14 0.17 0.48 0.43 0.09 0.11 0.38 0.39

Parietal (R) 0.04 0.04 0.21 0.31 0.04 0.04 0.21 0.79 0.04 0.04 0.21 0.61
Parietal (L) 0.04 0.06 0.30 0.38 0.07 0.09 0.38 0.35 0.06 0.08 0.35 0.36

Temporal (R) 0.00 0.00 0.00 - 0.01 0.01 0.10 -0.01 0.01 0.01 0.08 -0.01
Temporal (L) 0.00 0.00 0.00 - 0.02 0.02 0.15 0.66 0.01 0.01 0.11 0.66
Occipital (R) 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -
Occipital (L) 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Insular (R) 0.00 0.00 0.00 - 0.01 0.01 0.10 1.00 0.01 0.01 0.08 1.00
Insular (L) 0.00 0.00 0.00 - 0.01 0.01 0.10 1.00 0.01 0.01 0.08 1.00

Corpus callosum 0.00 0.00 0.00 - 0.02 0.02 0.15 0.66 0.01 0.01 0.11 0.67
Basal ganglia (R) 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -
Basal ganglia (L) 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -

Brainstem 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -
Cerebel. ped. (R) 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -
Cerebel. ped. (L) 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -

Cerebel. hemi. (R) 0.00 0.00 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cerebel. hemi. (L) 0.00 0.00 0.00 - 0.00 0.00 0.00 - 0.00 0.00 0.00 -

(Juxta-)
cortical
lesions

Frontal (R) 0.13 0.19 0.58 0.20 0.43 0.83 1.23 0.64 0.31 0.56 1.05 0.53
Frontal (L) 0.18 0.21 0.48 0.60 0.45 0.75 1.23 0.55 0.33 0.52 1.02 0.59

Parietal (R) 0.07 0.12 0.48 0.57 0.08 0.09 0.32 0.45 0.08 0.10 0.39 0.49
Parietal (L) 0.13 0.16 0.45 0.67 0.18 0.21 0.48 0.65 0.16 0.19 0.47 0.66

Temporal (R) 0.07 0.10 0.43 0.45 0.07 0.07 0.25 0.33 0.07 0.08 0.34 0.40
Temporal (L) 0.13 0.21 0.66 0.67 0.17 0.20 0.47 0.35 0.16 0.20 0.56 0.46
Occipital (R) 0.01 0.01 0.12 -0.02 0.04 0.05 0.27 0.58 0.03 0.04 0.22 0.48
Occipital (L) 0.00 0.00 0.00 0.00 0.07 0.07 0.25 0.39 0.04 0.04 0.19 0.37

Insular (R) 0.12 0.16 0.51 0.13 0.13 0.17 0.51 0.55 0.13 0.17 0.51 0.44
Insular (L) 0.09 0.13 0.46 0.31 0.09 0.10 0.33 0.46 0.09 0.11 0.39 0.41

Atrophy

Deep 0.48 0.72 0.88 0.80 0.82 1.49 1.02 0.84 0.67 1.16 1.04 0.85
Superficial 0.82 1.15 0.70 0.70 0.96 1.83 0.76 0.61 0.90 1.54 0.81 0.70

Corpus callosum 0.40 0.58 0.80 0.66 0.73 1.25 1.00 0.78 0.59 0.97 0.98 0.75
Posterior fossa 0.18 0.19 0.43 0.30 0.29 0.37 0.62 0.53 0.25 0.30 0.56 0.46

Enlarged
peri-
vascular
spaces

Basal ganglia (R) 0.91 1.00 0.43 0.39 1.00 1.20 0.43 0.43 0.96 1.11 0.44 0.46
Basal ganglia (L) 0.94 1.04 0.41 0.31 0.97 1.09 0.41 0.42 0.96 1.07 0.41 0.37

Cent. semiovale (R) 0.99 1.76 0.85 0.55 0.99 2.08 0.74 0.40 0.99 1.94 0.81 0.49
Cent. semiovale (L) 0.99 1.70 0.84 0.46 0.99 1.93 0.74 0.55 0.99 1.84 0.79 0.52

Table 5.5: Descriptive statistics for each individual item in visual rating scale (independent
validation study). Global and regional white matter (WM) ratings and atrophy were scored
0 − 3. Cavitation and juxtacortical/cortical scores were counts. Enlarged perivascular spaces
were rated 0 − 4. End. rate: proportion of non-zero ratings; SD: standard deviation; ICC:
(intra-rater) intra-class correlation.
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Figure 5.7: Histogram of item-(partial)-total correlations for the independent validation

study.

5.5.4 Reliability

5.5.4.1 Individual items

Intra-rater ICCs for individual items are shown in Table 5.5. These ICCs had

mean 0.58, median 0.61 and range −0.01 to 1. Table 5.5 shows that the lowest

values and the greatest variability for item ICCs were found for the cavitation

items, which also had the lowest endorsement rates.

5.5.4.2 Dimension subscores and features of interest

The ICCs for the dimension subscores are shown in Table 5.6. All p-values

associated with the ICCs are < 0.00001, indicating that the null hypothesis of no

association between repeat scores can be rejected with a high degree of probability.

The intra-rater reliability appears notably lower for the EPVS ratings, with a

similar value to that seen in the previous pilot study.

Overall agreement on whether lesion cavitation was present or absent on each

scan is summarised in Table 5.7, showing that the initial rating identified at least
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FutureMS MS-SMART Overall

Global WMH 0.90 0.90 0.92

Regional WMH 0.94 0.79 0.86

Cavitation 0.74 0.85 0.86

(Juxta-)cortical lesions 0.83 0.71 0.75

Atrophy 0.78 0.87 0.86

EPVS 0.52 0.55 0.56

Table 5.6: Intra-rater ICCs for dimension subscores. MS-SMART: secondary

progressive MS cohort (n = 92); FutureMS: Relapsing-remitting MS cohort (n = 67).

The data for the cavitation and (juxta-)cortical lesion dimensions relates to the total

counts.

one cavitated lesion on 45% of scans (72/159), with disagreement from the repeat

rating in 9% (14/159) of cases.

Repeat rating

No Yes

Initial
No 78 9

Yes 5 67

Table 5.7: Summary table showing whether cavitation was identified as being present

on the initial and repeat scan ratings.

Overall agreement on whether there was involvement of juxtacortical or cortical

tissue is summarised in Table 5.8, showing that the initial rating identified at

least one (juxta-)cortical lesion on 59% of scans (= 94/159), with disagreement

from the repeat rating in 20% (= 32/159) of cases.

Repeat rating

No Yes

Initial
No 44 21

Yes 11 83

Table 5.8: Summary table showing whether (juxta-)cortical lesions were identified as

being present on the initial and repeat scan ratings.
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5.5.5 Cohort descriptive statistics

Sample images, showing scans from the MS-SMART cohort assigned low,

intermediate and high global lesion scores, are shown in Figure 5.8. Summary

statistics for each item are given broken down by cohort in Table 5.5 and

for dimension subscores in Table 5.9, demonstrating significantly different

distributions between cohorts for each subscore. Histograms comparing the two

cohorts for the two summary WM subscores, equivalent to the first two dimension

subscores, are shown in Figures 5.9 and 5.10. The histograms in Figure 5.11 show

the sums of all items scored for the two cohorts. While there is a clear tendency

for lower scores for scans from participants with earlier stage disease, there is still

considerable overlap and disease stage cannot be distinguished from these scores

alone.

Figure 5.8: Sample images from MS-SMART cohort, demonstrating scans with (from

left to right) low, intermediate and high global white matter scores.
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Figure 5.9: Histograms of summed global white matter scores assigned to scans

belonging to each cohort.

FutureMS MS-SMART Mann-Whitney test

Mean SD Mean SD U p

Global WMH 4.8 2.5 7.0 2.9 4448 < 0.001

Regional WMH 8.2 6.7 11.3 7.0 3978 0.002

Cavitation (count) 0.7 1.9 3.8 5.9 4397 < 0.001

(Juxta-)cortical lesions (count) 1.3 2.8 2.5 3.3 3944 0.002

Atrophy 2.6 2.2 4.9 2.7 4592 < 0.001

EPVS 5.5 1.9 6.3 1.7 3870 0.005

Table 5.9: Summary of dimension subscores for the two cohorts studied. The data

for the cavitation and (juxta-)cortical lesion dimensions relates to the total counts.

SD: Standard deviation; EPVS: Enlarged perivascular spaces; U: Test-statistic from

Mann-Whitney U test, with associated p-value.
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Figure 5.10: Histograms of summed regional white matter scores assigned to scans from

two cohorts.
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Figure 5.11: Overlapping histograms of total scores for scans from the two cohorts of

interest.

5.5.5.1 Enlarged perivascular spaces

Enlarged perivascular spaces are associated with ageing in healthy populations,

although not necessarily in people with MS [45]. A scatterplot of their association

with age in the participants studied here is shown in Figure 5.12. The (Spearman)
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correlation was r = 0.40, and the relationship seemed similar in both cohorts

when examined separately (r = 0.40 and r = 0.26 for FutureMS and MS-SMART

participants respectively). However there was no significant relationship with

cerebral atrophy (r = −0.02), the summed global (r = 0.06) or regional (r = 0.12)

WM lesion scores.
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Figure 5.12: Scatterplot of total EPVS score against age for participants from both

cohorts.

5.5.6 Validation with reference standard

Scatterplots of the two summary white matter scores (the summed global WM

score and the summed regional WM score) are shown plotted against manual

WM lesion volume in Figure 5.13 for the scans from the 43 participants in

the MS-SMART Advanced MRI substudy. For the regional WM scores, the

relationship appeared plausibly linear, but for the global ‘Fazekas-style’ scores

there appeared to be a ceiling effect at high lesion volumes.
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Figure 5.13: Scatterplots of summed global and regional WM scores against manual

white matter hyperintensity (WMH) volume (n = 43), annotated with Spearman

correlation and line of best fit for regional WM plot.

5.6 Discussion

Different forms of assessment will be appropriate to different situations.

Automated methods of image analysis used in research are not currently

applicable or practical on an individual patient basis and bear little resemblance

to assessments used in clinical practice. While offering sensitive and reproducible

measures, computer software may not be able to access and utilise potentially

relevant features, apparent to human assessors. Judgments regarding the

importance of particular imaging features and patterns may be better made by

trained observers. However qualitative assessments are less easily subjected to

statistical analysis and may be less sensitive to small changes, so information may

be lost to research studies.

The failure of unidimensional quantitative imaging markers to fully explain

disability in people with MS is well-established and pursuing greater measurement

accuracy for any single outcome is unlikely to solve this. While the MS imaging

community has largely moved on to investigation of advanced imaging techniques,

there may nevertheless be additional information already available within routine

sequences that is not currently captured. The aim of developing a structured

imaging assessment was to recapture information regarding a broader range

of imaging features for use in research, combining aspects of the descriptive

reports provided in clinical radiology and the quantitative measurement tools

more frequently used in research. The investigation reported in this chapter
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demonstrates that relevant information on white matter lesion burden can be

recorded reliably using visual rating.

The visual rating system described here is entirely novel to MS and was developed

using standard image viewing software, with no additional time needed for image

processing. The overall time taken varied with the level of disease burden, but the

global summary white matter ratings, adapted from the ‘Fazekas’ scale, showed a

close relationship to quantitative markers with very little associated time burden.

The practical advantages of a rating system allowing straightforward translation

between clinical practice and research as well as between centres is clear. However

at present there is no similar system used in MS imaging research.

The relationship of semi-quantitative markers of lesion burden to the reference

standard volumetric measurement showed a high correlation, similar to that found

in the context of vascular disease [174], and was clearly able to distinguish between

different levels of disease. While sensitivity to small increments in lesion volume

may not be achievable from visual assessments, the utility of these is unproven,

and simple stratification based on visual ratings may prove equally useful. Van

Straaten et al [174] compared different vascular disease rating scales and suggested

that those with wider ranges could be more useful to differentiate between clinical

groups but Fazekas scores were more useful to define groups based on imaging

appearances. The flexibility of the rating system developed here for MS imaging

could allow both these uses, dependent on context and time availability, with

a shorter version based only on the adapted Fazekas scores likely to be more

suitable when aiming to maximise subject numbers.

The limited range of responses available for most items was still found to allow

reasonable dispersion of measurements, even within quite different cohorts. It

was also possible to detect clear differences between cohorts at different disease

stages, although the study was not specifically designed to address this.

Understanding the reproducibility of any measurement tool is critical for its use.

Straightforward assessment of rater agreement and reliability was possible and

appeared reasonable for the majority of features of interest. These measures

will be specific to the cohort it is used in, but here it has been tested in two

cohorts with differing imaging appearances and proved robust. The issue of

whether observers need to be experts, such as neuroradiologists, remains open.

There was however evidence at all stages of the development and testing process

that some features could be identified more consistently than others. Global

and regional lesion scores, atrophy scores and identification of (juxta-)cortical

lesions showed consistency both for inter- and intra-rater agreement. This is

perhaps partly attributable to familiarity, reflecting similarities with clinical

practice. Conversely, identification of lesion cavitation and scoring of EPVS
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proved more variable. There was some evidence that individual rater biases may

have influenced this, with stronger intra-rater reliability, and further training and

feedback could be used to address this.

A trade off with practicality may have limited the results of this study.

Standardisation between raters could be improved with the development of

training datasets and time for feedback, group training sessions and access to

more guidance pictures during data collection. These would be valuable areas

for future testing. The number of raters was relatively low, although large

within the context of a reproducibility study. Opportunistic use was made of

available scans, which did not all follow the same protocol, although they were

chosen to provide a range of disease burden. Reflecting this pragmatic cohort,

no sequences were acquired which were highly sensitive to cortical lesions (e.g.

phase-sensitive inversion recovery and double inversion recovery). Despite these

limitations, the system appears robust, demonstrating reasonable reliability and

a clear relationship to reference measurements. The rating system presented here

builds on the extensive experience of using the same or similar markers in other

fields.

Although significant differences were identified between cohorts, as expected, this

was not the purpose of the work. There was no rater blinding as to the study

cohort participants belonged to and the imaging, although performed on the

same scanner, did not follow identical protocols. Further work would be needed

to determine if the rating system described could be used to distinguish between

disease phenotypes.

In pursuit of the thesis aim of extracting the most relevant information on white

matter health from imaging and relating this to cognitive function, the visual

ratings described here are used for this purpose in Chapter 7.
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Chapter 6

Optimisation of an automated

method for white matter

hyperintensity quantification

6.1 Introduction

The practical advantages of using semi- or fully-automated software to generate

image analysis outputs are readily apparent. Software-based segmentation

techniques can be incorporated into image processing pipelines, supporting

the generation of standard outcomes at different times and potentially across

different sites. Manual segmentation as an alternative is a subjective process,

both time-consuming and user-dependent, as shown in Chapter 4. This is

particularly the case when the extent of abnormalities is large, with unclear

margins. There is extensive use of software-based techniques for white matter

hyperintensity (WMH) segmentation [58,175] in multiple sclerosis (MS) imaging

research, although many of these are not publicly available and no one technique

has become standard.

Dichotomised maps of ‘normal’ and ‘abnormal’ white matter can be produced

using signal intensity thresholds or contour-following methods that identify steep

gradients of changing white matter signal. However WMHs do not necessarily

have absolute boundaries resolvable on magnetic resonance imaging (MRI) and

locating the best approximation is likely to become an increasing problem in later

stage MS, when white matter surrounding focal lesions may become progressively

and diffusely abnormal. Pathological-radiological correlation studies are rare,

with small subject numbers, and therefore optimisation of any imaging-based

method of segmentation must be based on a more practical approach. The
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software tested here allows recognition of the uncertainty at the border between

normal and abnormal tissue by assigning probabilities to each voxel of belonging

to each classification.

This chapter presents an investigation into optimising a novel method in MS

imaging for generating both unidimensional WMH volumes and three-dimensional

masks. The optimal software for segmenting WMHs in MS would produce

outputs with the closest match to a reference standard, but the measures used

to determine this optimal fit may depend on the use for which the output is

required. For that reason an in house hyperintensity segmentation software was

used to allow complete flexibility during the optimisation process. First, the

unidimensional output (total quantity of abnormal tissue) is considered, either to

best distinguish between different levels of disease or to best match the reference

data in absolute terms. Secondly the spatial agreement is evaluated, using metrics

that examine specifically the degree of overlap of segmented abnormality, as well

as those also accounting for agreement on excluded, ‘normal’, tissue. The imaging

data used for this work were taken from participants in a chronic progressive

disease stage, in which diffuse and widespread white matter involvement was

considered likely.

6.2 Methods

6.2.1 Participants and Imaging

The scans used for this work formed part of the baseline assessment of the

43 people enrolled at the University of Edinburgh centre for the MS-SMART

Advanced MRI substudy. See Chapter 2, Section 2.1 for further details of the

cohort and their imaging.

6.2.2 Reference standard

All software outputs were compared to manual segmentations performed

on fluid attenuated inversion recovery (FLAIR) axial sequences by a single

neuroradiologist, blinded to all clinical and demographic information. (See

Chapter 4 for further detail of assessment of this reference standard.) To

ensure comparability of segmentation volumes, the reference segmentations were

multiplied by the atlas-derived (cerebral) white matter probability mask before

any comparison. This removed any segmented hyperintensities that involved

posterior fossa structures or extended into subcortical grey matter, which the

software was not designed to assess.

100



6.2.3 Automated segmentation

The white matter segmentation method is described in Chapter 2, Section 2.1.3.1.

Probabilistic maps of WMHs were derived through statistical conversion of the

FLAIR sequence, multiplied by the atlas-based white matter probabilistic mask.

The threshold below which all FLAIR intensities were immediately assigned zero

probability was altered between the range of 0.7 to 1.7 standard deviations

above the mean intensity, based on prior experience. Cumulative distribution

transformation of the standard deviation (SD) maps produced an initial map

of probabilities where each voxel value represented the probability of that voxel

being classified as a WMH based on its intensity. A second, probability-based

threshold could be set, above which all voxels were considered WMHs, creating

a binary segmentation. Probability thresholds (Pt) from 0.05 to 0.9 were tested,

i.e., all voxels with probability greater than or equal to Pt were given a binary

classification as 1 (WMH) and those less than Pt were given a binary classification

as 0 (not WMH). Probabilities below 0.05 were excluded at all thresholds to

remove noise.

Masks were examined in FSL viewing software [104] to identify sources of

discrepancy between automated and manual segmentations, but no manual

adjustments were made to the automatically generated masks.

6.2.4 Statistical analysis

6.2.4.1 Unidimensional agreement

Agreement on the total WMH volume between manual and automated

segmentations were assessed using Spearman correlations and percentage

differences between output volumes. The threshold combinations which optimised

these parameters were identified. Agreement was also examined visually using

Bland-Altman plots of the volume ratio between the two segmentations.

6.2.4.2 Spatial agreement

All voxels within the white matter mask were classified as to whether they

were identified as WMH on the manual segmentation only, the automated

segmentation only, both or neither. Sums of these voxel categories were used to

generate spatial agreement metrics, including Dice indices for each comparison.

As described previously (Chapter 4, Section 4.2.3.2), this measures the voxel

overlap between the two masks and is defined as twice the ratio of the number of

overlapping voxels to the sum of the voxels in each segmented mask. Concerns
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that the Dice index increases with the size of the regions of interest, not taking into

account the size of regions excluded by both segmentations, were addressed by

additionally calculating sensitivities, specificities, negative and positive predictive

values based on all voxels, as well as Youden’s Index (defined as Sensitivity +

Specificity −1).

6.3 Results

6.3.1 Participant characteristics

The scans used were the baseline imaging from participants in the Advanced MRI

substudy of MS-SMART. Automated tissue segmentation failed for one scan,

which had been acquired with atypical imaging parameters, and data from this

participant was excluded. The remaining 42 scans were successfully segmented.

This represented data from 29 female and thirteen male participants, with a

mean age of 55.5 ± 8.4 years. All participants had a diagnosis of secondary

progressive MS (SPMS) with median disease duration of 22.1 years (interquartile

range (IQR): 15.5, 27.0). The reference standard WMH volumes (as described in

Chapter 4) had median 17.1ml (IQR: 7.3, 30.6).

6.3.2 Unidimensional reproducibility

6.3.2.1 Reliability

Correlations (Spearman) with the manual lesion volume were high (> 0.9) for

80% of the threshold combinations examined, only falling below this when both

low FLAIR SD and probability thresholds were used. This demonstrated that the

software method reliably distinguished between participants with different levels

of disease. The maximum correlation found was r = 0.96 (thresholds: FLAIR

SD = 1.0, probability = 0.7). A scatterplot of volumes derived at this threshold

combination against the reference manual segmentation is shown in Figure 6.1.

As expected from the correlation, this showed a tight correspondence between

the variables. However the software-derived volume tended to be lower than the

manual volume, with the line of best fit having a gradient of 0.73.

6.3.2.2 Absolute agreement

The mean absolute percentage difference in WMH volumes between the manual

and automated segmentations was minimised at 26.2% with thresholds FLAIR
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Figure 6.1: Scatterplot showing automated and manual WMH volumes (n = 42) at the

threshold combination (FLAIR SD = 1.0, probability = 0.7) chosen to maximise their

correlation (Spearman r = 0.96), with line of best fit.

SD = 1.1 and probability = 0.6. The effect of varying these thresholds on the

cohort mean percentage difference is shown in the ‘contour’ plot in Figure 6.2

and a Bland-Altman plot of the ratios between volumes produced using the two

methods for the optimal threshold combination is shown in Figure 6.3. Although

the majority of points lie within the 95% confidence intervals, the Bland-Altman

plot shows a trend towards improving agreement at higher WMH volumes. This

would be expected when a larger proportion of the white matter is involved. There

also appears to be a tendency for the automated segmentation to produce smaller

WMH volumes at higher levels, compared with the manual segmentation. This

may relate to the assignment of probabilities below the tested threshold by the

software in regions with unclear WMH margins, compared with the binary manual

segmentation. Alternatively it may reflect the method through which individual

thresholds are chosen. Specifically, individual thresholds for lesion identification

were based on SD multiples from the individual mean of whole brain FLAIR
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signal. For those individuals with a greater of pathology, the threshold may be

substantially higher.
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Figure 6.2: Contour plot showing the mean absolute percentage difference for all tested

combinations of FLAIR SD and probability thresholds. Values along contours indicate

approximate levels of mean absolute percentage differences along them. An asterisk

marks the threshold combination at which this is minimised.

By considering two measures of unidimensional reproducibility, either seeking to

maximise the correlation or minimise the (percentage) volume difference between

masks, two different, although close, threshold combinations were found to be

optimal.
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Figure 6.3: Bland-Altman plot showing the ratio of the reference standard (manual)

WMH volumes to that of the automated segmentation volumes (n = 42) at the threshold

combination minimising the mean absolute percentage difference (thresholds: FLAIR

SD = 1.1, probability = 0.6). The solid horizontal line indicates the mean volume ratio

(= 1.01) with dashed lines indicating the 95% confidence limits.

6.3.3 Spatial agreement

6.3.3.1 Dice index

The mean Dice index for spatial overlap was assessed at all tested threshold

combinations and the effect of this is shown in the contour plot in Figure 6.4.

The 0.6 boundary encloses a range of threshold combinations which led to a mean

cohort Dice of 0.6 or greater. This was maximal, at a value of 0.62, for thresholds

FLAIR SD = 1.3, probability = 0.4.

A scatterplot of the Dice index against manual WMH volume at the optimal

threshold combination is shown in Figure 6.5. At this optimal threshold, the
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Figure 6.4: Contour plot showing the cohort mean Dice index for all tested combinations

of FLAIR and probability thresholds. Values along contours indicate approximate levels

of the mean Dice along them. An asterisk marks the threshold combination at which

the mean Dice is maximal.

individual scan Dice indices still showed wide variation; they increased with

increasing WMH volume, a recognised feature of the Dice index, which does

not adjust for agreement by chance alone.

6.3.3.2 Youden’s index

The classification of each white matter voxel was determined by its status on

manual and automated segmentations; summing these allowed the calculation of

sensitivities, specificities, positive (PPV) and negative predictive values (NPV)
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Figure 6.5: Scatterplot of individual scan Dice indices (n = 42) against manual WMH

volume for the optimal threshold combination (FLAIR = 1.3, probability = 0.4). The

mean cohort Dice was 0.62.

for each scan. Contour plots showing the effect of varying thresholds on these

measures are shown in Figure 6.6.

Youden’s Index combines information from the sensitivity and specificity, thus

taking into account the number of white matter voxels not assigned to the WMH

mask by either the automated or manual segmentation (ignored by the Dice

index). This was maximised at 0.87 for a threshold combination of FLAIR

SD = 1.3, probability = 0.0 (the lowest probability threshold, only excluding

probabilities designated noise). This gave a sensitivity of 0.95 and a specificity

of 0.92, a ‘perfect’ NPV (1.00) but a very low PPV (0.23), highlighting the fact
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Figure 6.6: Contour plots for additional measures of spatial agreement for all tested

FLAIR SD and probability thresholds. The blank square for threshold combination

1.7/0.9 in the PPV plot is due to one scan being assigned a WMH volume of 0ml

by the software, leading to an undefined PPV. PPV: positive predictive value; NPV:

negative predictive value.

that a high sensitivity and specificity may not necessarily produce a close match

to the reference segmentation.

6.3.4 Sources of discrepancy

A major source of discrepancy contributing to large volume differences was in

assigning boundaries to diffusely abnormal white matter, where signal varied

gradually towards an unclear edge. Thresholds could be altered to maximise

agreement on these scans but this was not necessarily optimal for scans showing

much lower volumes of disease, with sharper edges to WMHs. Additionally both
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manual and automated segmentations were based primarily on the axial FLAIR

sequence which had a 3mm slice thickness and partial volume effects between

slices led to further blurring of WMH boundaries.

The corpus callosum was a recurrent source of spatial discrepancy, caused in part

by partial volume effects from its proximity to CSF and exacerbated by frequent

atrophy. For manual segmentation it would normally be best reviewed in the

sagittal plane but the 3mm slice thickness had made this difficult.

An example image is shown in Figure 6.7 highlighting some of the causes of

discrepancy.

Figure 6.7: Sample image from MS-SMART participant showing manual WMH

segmentation in turquoise, automated WMH segmentation in blue and overlapping

regions in white. There is agreement on the majority of the tissue, although the

automated segmentation boundary tends to be extend further. Only the automated

segmentation has identified abnormal tissue in the corpus callosum. Conversely,

only the manual segmentation has identified smaller focal WMHs distant from the

ventricular surface.
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6.4 Discussion

Multiple sclerosis is a diffuse disease of the central nervous system and hard

lines drawn around visible regions of diseased brain are unlikely to represent

true anatomical or pathological boundaries. This creates a persistent problem

for quantification of MS pathology by brain imaging and cannot currently be

addressed by defining a ‘ground truth’ (reference standard) with external validity.

One approach to handling this problem is to incorporate a metric of uncertainty

into the automated segmentation process, allowing the user to determine group

classifications using a threshold of their choice. The novel method described here

respects the gradient of abnormality, reflecting this in the voxelwise probabilistic

output, which distinguishes it from most other currently used segmentation

softwares.

The ‘correct’ statistical method used to optimise agreement remains an open

question and even simple measures are often not reported (see Chapter 3 for

a review of relevant literature). Taha & Hanbury [176] summarise the many

different metrics used in the imaging literature. Whether the background (‘true

negative’) rate is included, or not, as in the commonly used Dice index, affects

assessment of good and bad segmentations. Several different desirable factors

have been considered in this chapter, but others are possible with varying degrees

of practicality. The mean Dice index found here (0.62), as well as the sensitivity

and specificity, are comparable to that found in other validation studies [58],

which mostly tested their software in smaller cohorts. The work described here

demonstrates that this software can be optimised for particular cohorts and using

the statistical measure of choice.

The probabilistic output can be used in different forms without repeating the

segmentation process. For the purposes of linear modelling (see Chapter 7), the

threshold producing an absolute WMH volume with the highest correlation (a

measure of linear association) to manual segmentation, was selected. However

for overlaying the diffusion maps (see Chapter 8), the probabilistic output was

retained, with each voxel diffusion parameter multiplied by its probability of

belonging to the tissue compartment of interest.

In most people with advanced multiple sclerosis, the majority of their brain WMH

burden will be in supratentorial white matter, which was the case for this cohort.

The results presented show that the automated software could accurately identify

these. However lesions in the posterior fossa were not assessed, as appears to

be the case with most segmentation softwares, although this information is not

readily available in the public domain. While this cohort had low posterior fossa

lesion volumes, as assessed with manual segmentation, this will not necessarily
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be the case in others. Lesions in the corpus callosum, a characteristic feature

of MS, could not be assessed reliably, likely related to the 3mm slice thickness

and associated partial volume effects with adjacent cerebrospinal fluid (CSF).

This made confident manual segmentation of corpus callosum lesions difficult,

and a conservative approach was adopted. Notable mismatches were observed

here with the software classifying large proportions of the corpus callosum as

abnormal in most subjects. This issue could be addressed by manual adjustment

after software segmentation; not doing so here was chosen in order to separately

assess the manual and automated methods.

Further validation of this software in independent datasets with different disease

appearances is needed for it to be used more widely. Its performance here was

tested using two-dimensional FLAIR sequences, but as there is a shift to greater

use of volumetric three-dimensional acquisitions this will need re-evaluation. A

limitation of this work is the lack of direct comparison with existing approaches to

WMH segmentation, which in the majority of cases was due to the algorithms not

being publicly available at the time. In the future it would be useful to compare

the software tested here with that available in the Lesion Segmentation Toolbox

(http://www.applied-statistics.de/lst.html) for use in the Statistical Parametric

Mapping (SPM) software (http://www.fil.ion.ucl.ac.uk/spm/) as well as the

BIANCA software [177], part of FSL, which has recently become available.

The method developed in this chapter was implemented in a fully-automated

fashion to produce both binary and probabilistic maps of WMHs; the specific

advantages are twofold. Thresholds both for the relative FLAIR signal intensity

and the probability level can be adjusted for particular scans, subjects or

larger studies, in order to optimise outputs for particular criteria of interest,

generating binary masks and WMH volumes as required. Additionally, when

an absolute boundary to WMHs is not required, the underlying probabilities

assigned can be retained in the output, generating WMH volumes by summing

these voxelwise and used in an analogous fashion with co-registered masks derived

from advanced imaging techniques. Both WMH volumes and probabilistic masks

generated by this method are used in the following two chapters in order to

assess the relationship of brain imaging measures of disease burden to cognitive

performance.
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Chapter 7

Determining the relationship of

white matter hyperintensity

burden to cognitive

performance

7.1 Introduction

This chapter describes work using the tools developed in Chapters 5 (a

visual rating scale for the imaging features of multiple sclerosis (MS)) and 6

(automated quantification of white matter hyperintensities (WMHs)) to evaluate

the relationship between the burden of WMHs and cognitive performance in

people with MS.

Linear regression models were developed to evaluate a first hypothesis of a linear

relationship between the WMH burden and cognitive performance in people with

MS. A hierarchical approach was used for model construction, first addressing the

relationship between cognitive performance and non-disease related covariates of

relevance (see Chapter 1). The potential contribution of disease-related imaging

metrics was then tested through addition to this ‘core’ model.

The second hypothesis tested was of a non-linear relationship between the burden

of WMHs and cognitive performance in people with MS. This possibility was

identified through evidence from previously published studies (see Chapter 3) that

the pathology-phenotype relationship may be stronger at higher levels of disease

burden. The question of a potentially dynamic relationship between pathology

and phenotype was therefore addressed by exploring non-linear relationships

and interactions between variables. If confirmed, this finding would raise the
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possibility that redundancy and neuroplasticity are able to compensate for

pathology at low levels, with diminishing capacity as the disease progresses.

7.2 Methods

7.2.1 Construction of a linear model based on hyperintense white

matter hyperintensity volume

7.2.1.1 Cohort and available data

Data from the baseline assessments of participants in MS-SMART, a cohort of

subjects with secondary-progressive MS (SPMS), were used for construction of a

predictive model of cognitive performance. (See Chapter 2, Section 2.1 for further

details of the cohort.) Scores for the Symbol Digit Modality test (SDMT) were

available from their baseline assessment and were taken as a measure of cognitive

ability for use as the dependent variable in all statistical models.

7.2.1.2 Participant characteristics

Information was available on all participants with regards to sex, age and

disease duration. Where possible, data from other known modifiers of cognitive

performance were also considered for inclusion in the predictive model.

Due to inconsistencies in recording of education status, either as full-time

equivalent years in education or as the highest level of educational attainment,

a decision was made to dichotomise education data. Participants were classified

by the presence or absence of educational exposure beyond compulsory schooling

(i.e. entry to higher education), with a cut-off of twelve full-time equivalent years

of education used where this was unclear.

Certain licensed drugs are known to be potential modifiers of cognitive

performance. For each participant, all prescribed drugs were recorded at baseline,

and these were classified into three groups according to whether they were likely

to be associated with better or worse cognitive performance, or if there was no

reason to expect any effect on cognition. On this basis, participants were split

into three groups.

Participants’ scores on the Beck Depression Index (BDI) were recorded during

screening for study entry (up to one month prior to baseline assessment) as part

of the study eligibility criteria.
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7.2.1.3 Imaging data

The following volumetric data were available from the standard study baseline

imaging protocol and subsequent automated tissue segmentation: intracranial

volume (ICV), total brain volume and white matter (WM) volume.

After the investigations described in Chapter 4, the automated software was

used to generate WMH volumes for all MS-SMART participants, using the

threshold that maximised correlation with the (third) manual segmentation in

the Advanced MRI substudy cohort. This was run on the entire MS-SMART

cohort for consistency.

7.2.1.4 Univariate relationships

Scatterplots of individual predictors against SDMT scores were examined for

outliers and evidence of non-linear relationships. Spearman correlations between

all individual numerical predictors and SDMT scores were calculated. For

binary predictors, t-tests were used to test for significant differences between

groups.

7.2.1.5 Model construction

Generalised linear modelling was used, with an assumption of normally

distributed errors. A strong prior literature exists regarding the influence of

age, sex and educational status on SDMT performance [40]. The side effects

of the drugs classified as having a potentially detrimental effect on SDMT

are also well-established. A hierarchical approach to model construction was

adopted, with an initial model based on age, sex, drugs and education status

only. Education status and being prescribed drugs with a potentially detrimental

effect on cognition were both modelled as binary predictors.

Initial model:

SDMT = β0 + β1age + β2sex + β3education + β4cognitive inhibiting drugs

Intracranial volume reflects peak adult brain volume and represents a

fundamental non-disease metric, with a known relationship to cognition and

cognitive decline [38,39]. In a second model using both imaging and non-imaging

metrics, ICV was therefore included as the sole imaging metric, to produce the

optimal predictive model without markers of disease burden.
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Second phase model:

SDMT = β0 + β1age + β2sex + β3education + β4cognitive inhibiting drugs

+ β5intracranial volume

The initial disease marker considered was WMH volume, modelling the impact

of focal inflammatory disease. This was added to the prior model containing

non-disease-related variables to form the third phase linear model.

Third phase model:

SDMT = β0 + β1age + β2sex + β3education + β4cognitive inhibiting drugs

+ β5intracranial volume

+ β6WMH volume

In the final (fourth) linear model, WM volume was added in an attempt to model

the impact of neuroaxonal loss. White matter volume was chosen in preference

to total brain volume as possibly the more relevant to a distributed function such

as processing speed and the effect of WMH burden.

Fourth phase model:

SDMT = β0 + β1age + β2sex + β3education + β4cognitive inhibiting drugs

+ β5intracranial volume

+ β6WMH volume

+ β7WM volume

7.2.1.6 Assumption checking

Individual predictor scatterplots were examined for outliers. Correlations between

all individual predictors were calculated. For all models constructed, histograms

of the residuals, Q-Q plots and plots of residuals against predicted values were

assessed.

7.2.1.7 Investigation of non-linear relationships

The possibility of a non-linear relationship between WMH volume and SDMT

being a better fit for the data was initially explored graphically using a loess

fit [178], a locally-weighted smoothing function.
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Two breakpoints were suggested by the smoothed plot, splitting the cohort

into thirds. A piecewise linear regression model was therefore constructed with

optimal breakpoints (one or two) sought iteratively. These piecewise linear

regression models were constructed to evaluate both the univariate relationship

between SDMT and WMH volume and this relationship within the context of

other relevant covariates.

7.2.1.8 Sensitivity analyses

Disease duration was omitted as an independent variable in construction of the

primary model, with a view to assessing the accumulated disease burden through

imaging variables alone. In order to assess whether this could be an important

predictor in itself, or provide greater explanatory power than imaging-derived

predictors, sensitivity analyses were performed with the addition of disease

duration to both the full model and that using only non-imaging variables, with

assessment of model fit.

Related to disease duration, the possibility that age could act as a surrogate

variable for pathological changes occurring over time was also considered. The

age range of the cohort was not one at which substantial effects of cognitive

ageing would be expected and this could have the unwanted effect of attenuating

power to detect an effect of accumulated pathology due to its covariance with age.

Correlations between age and imaging markers of brain pathology (WM volume

and WMH volume) were considered. The effect on the goodness of fit parameters

of models containing imaging markers was considered when age was omitted, with

or without the addition of WM volume as an alternative variable.

The effect of adding total brain volume rather than WM volume as an additional

imaging marker, following ICV and WMH volume was also considered.

7.2.1.9 Model comparisons and fit

Parameters of goodness of fit were compared for all models, including values for

adjusted R2, Akaike information criteria (AIC) and Bayesian information criteria

(BIC), with the Wald test used to quantify the statistical significance of additional

model predictors.
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7.2.2 Construction of a linear model based on visual rating lesion

scores

7.2.2.1 Cohort and available data

Data from the visual assessments of imaging from the baseline assessments of

participants in FutureMS, a cohort of subjects with early relapsing-remitting MS

(RRMS), and MS-SMART were used for construction of a predictive model of

cognitive performance. (See Chapter 2 for further details of the cohorts and

Chapter 5 for details of the visual assessments of their imaging.) Scores for

the SDMT were available from the baseline assessment for each study and were

taken as a measure of cognitive ability. There was no prior hypothesis that any

imaging feature under consideration would have a different relevance for groups

with early and later stage disease and the two cohorts were modelled together as

one group.

7.2.2.2 Participant characteristics

Information was available on all participants with regards to age, sex and

disease duration. Where possible, data from other known modifiers of cognitive

performance were considered for inclusion in the predictive model. Participants

were again classified according to whether they were prescribed drugs that could

have a detrimental or beneficial effect on cognition. Data on education status

and BDI were not available for the FutureMS cohort.

7.2.2.3 Imaging data

The complete initial set of rater scores from the independent validation study

reported in Chapter 5 were available. Each of the dimension subscores

constructed, representing summed scores for particular features of interest, were

considered as predictors. Binary predictors, based on presence or absence of

juxtacortical/cortical (JC) lesions and cavitated lesions, were also considered.

Relevant to the focus on diffuse cerebral white matter disease, the atrophy score

used was the mean of the deep and superficial cerebral atrophy scores, i.e. not

incorporating the posterior fossa and corpus callosum ratings.

7.2.2.4 Univariate relationships

Plots of individual predictors against SDMT scores were examined for outliers and

evidence of non-linear relationships. Spearman correlations between all individual
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predictors and SDMT scores were calculated. For binary predictors, t-tests were

used to test for significant differences between groups.

7.2.2.5 Model construction

Generalised linear modelling was used, with an assumption of normally

distributed errors. A hierarchical approach to model construction was adopted

as previously, with an initial model based on age, sex and prescribed drugs.

Two summary white matter lesion/hyperintensity (WMH) scores (the global

summary ‘Fazekas-style’ score and the summed regional white matter score) were

available. The global summary score was chosen as a predictor for construction

of a second model, as it was considered to be more representative of the total

burden of cerebral white matter disease, given the summed regional score’s

over-representation of smaller regions and inclusion of grey matter and posterior

fossa structures. Finally, further dimension subscores and binary predictors based

on these were considered in turn as additional predictors.

7.2.2.6 Assumption checking

Individual predictor scatterplots were examined for outliers, with consideration

of appropriate handling where necessary. Correlations between all individual

predictors were calculated. For all models constructed, histograms of the

residuals, Q-Q plots and plots of residuals against predicted values were

assessed.

7.2.2.7 Linear modelling for separate cohorts

The univariate relationships between the independent variables in the main

model and SDMT performance were considered separately for the two smaller

cohorts, in order to explore whether predictor variables had different effects at

different disease stages. The overall model was constructed separately for the two

cohorts to examine the effect of the individual predictors within a multivariate

context.

7.2.2.8 Sensitivity analyses

As for the modelling based on volumetric imaging markers, disease duration was

not initially included with the aim of assessing the accumulated disease burden

using imaging markers. The effect of its inclusion on model fit was tested both as
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an additional predictor in the full model and within a smaller model based only

on non-imaging predictors. The potential for age and being prescribed drugs with

a detrimental effect on cognitive performance to be acting as surrogate markers

of disease stage was also considered. This was addressed both in the separate

modelling for the two cohorts described above and investigating the effect of

removing age from these smaller models.

7.2.2.9 Model comparisons and fit

Parameters of goodness of fit were compared for all models, including values for

adjusted R2, AIC and BIC, with the Wald test used to quantify the statistical

significance of additional model predictors.

7.3 Results (I): Construction of a linear model based on

automated white matter hyperintensity volume

7.3.1 Data completeness and participant characteristics

Scores for the SDMT were available from their baseline assessment for 91 of

the 93 participants in MS-SMART. For the two instances of missing data, one

participant was unable to complete either the Paced Auditory Serial Addition

Test or SDMT due to cognitive limitations and for the other participant confusion

during test completion invalidated the result. A histogram of SDMT scores

showed no evidence of substantial deviation from a normal distribution.

Data on premorbid IQ and cognitive leisure activities were not available in

this cohort. Data on educational status were unavailable for 17 participants.

Four prescribed drugs (diazepam, clonazepam, baclofen and amitriptyline) were

identified as potentially having a detrimental effect on cognitive performance and

36 participants were taking at least one of these. Two participants were prescribed

modafinil, with a potentially beneficial effect on cognitive performance.

In two participants, volumetric imaging predictors were unavailable, in one case

due to a T2-weighted sequence not being available and in one case due to failure

of software segmentation.

Descriptive statistics for this cohort are presented in Table 7.1, including

participant characteristics and volumetric imaging markers.
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n Summary figures

Age (years) 93 57.2 (49.0, 61.0)

Sex (F/M) 93 69/24

Disease duration (years) 93 20.4 (14.0, 28.7)

BDI 93 6 (4, 11)

Drugs (Beneficial/Detrimental/Neither) 93 2/37/54

Education ≤ 12/> 12 years 76 31/45

SDMT (mean ± SD) 91 43.2 ± 11.7

ICV (ml) 91 1308 (1243, 1395)

Brain volume (ml) 91 1136 (1063, 1209)

WM volume (ml) 91 425.4 (403.3, 453.0)

WMH volume (ml) 91 32.0 (23.4, 45.5)

Table 7.1: Summary statistics for MS-SMART cohort, used in predictive modelling. All

continuous/numerical variables are given as median (interquartile range) other than for

SDMT. The second column (‘n’) indicates the number of subjects for whom that data

was available. BDI: Beck Depression Index; ICV: intracranial volume; WM: white

matter; WMH: white matter hyperintensity.

7.3.2 Participant characteristics as predictors of cognitive

performance

7.3.2.1 Univariate relationships

The relationships of the non-imaging characteristics presented in Table 7.1 to

SDMT performance were examined. Only two participants were prescribed

medication with a potentially beneficial effect on cognitive performance

(modafinil), and their SDMT scores were the lowest and second highest in the

cohort. This raised concerns over the timing of taking medication on the day of

testing and it was not possible to ascertain this information.

Plots of individual non-imaging predictors against SDMT score are presented

in Figure 7.1 for the MS-SMART cohort (n = 91). Numerical predictors gave

Spearman correlations with SDMT of r = 0.01 for age, r = −0.04 for disease

duration and r = −0.10 for depression score. There was no evidence of a

non-linear relationship from the scatterplots and none of the correlations were

significantly different from zero at the 5% level. For the binary predictors (sex

(p = 0.63), educational status (p = 0.19) and being prescribed drugs with a

potentially detrimental effect (p = 0.08)), t-tests did not show any significant

differences between groups. Group differences both for those taking potentially
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detrimental drugs and those having a higher level of education were nevertheless

in the expected direction.
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Figure 7.1: Plots of individual non-imaging predictors against SDMT (n = 91, for all

except Education status (n = 74).) The bottom left plot shows participant SDMT

scores grouped by whether they were prescribed at least one drug with either a

potentially detrimental or beneficial effect on cognition or neither, no participant being

prescribed both.
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7.3.2.2 Construction of multiple linear regression model

Due to the uncertainties over the use and timing of medication with a potentially

beneficial effect on cognition, the two participants prescribed modafinil were

excluded from all predictive models using medication information.

Although pseudo-dementia due to depression is recognised, people with scores

on the BDI thought high enough for this to have an influence on cognitive

performance were not eligible for MS-SMART. No obvious relationship was found

in the range of the MS-SMART cohort so BDI scores were also not included in

the model.

Disease duration showed a significant correlation with age (r = 0.45) and was

not used as an additional independent predictor, in preference of assessing

accumulated disease burden through imaging markers.

7.3.2.3 Multiple linear regression model summary

A description of the model containing age, sex, education status and use of drugs

with potentially detrimental effects as independent variables is presented in the

first column of Table 7.2. In comparison with a model based on the intercept

alone (the mean SDMT score), there was no definite evidence (p = 0.17) that the

model based on four non-imaging predictors was a better fit to the data. With

respect to individual predictors, there was some support for a possible influence

of educational status (p = 0.12) and detrimental drugs (p = 0.08) on SDMT

scores.

7.3.2.4 Interactions between variables

In the model described in column 1 of Table 7.2, each independent variable

was added separately, without interaction terms, allowing more straightforward

interpretation of coefficients. An alternative model, using the same non-imaging

predictors but allowing interactions between them, did not improve model fit

given the number of parameters (AIC 561.1, BIC 599.8) although there was

a suggestion that education may interact with age (p = 0.08) and sex (p

= 0.11).
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Dependent variable:

SDMT

1 2 3 4

Constant 50.51 3.85 14.69 21.51

p < 0.0001∗∗∗ p = 0.85 p = 0.40 p = 0.25

Age −0.14 −0.22 −0.13 −0.16

p = 0.43 p = 0.21 p = 0.38 p = 0.29

Sex −0.83 −7.71 −8.89 −7.74

p = 0.78 p = 0.04∗∗ p = 0.01∗∗∗ p = 0.03∗∗

Education (over 12 years) 4.32 4.44 4.40 4.64

p = 0.12 p = 0.10∗ p = 0.06∗ p = 0.05∗∗

Detrimental drugs −4.87 −6.00 −3.36 −3.28

p = 0.08∗ p = 0.03∗∗ p = 0.15 p = 0.16

ICV (ml) 0.04 0.04 −0.002

p = 0.01∗∗∗ p = 0.01∗∗∗ p = 0.96

WMHV (ml) −0.29 −0.29

p = 0.0001∗∗∗ p = 0.0001∗∗∗

WMV (ml) 0.10

p = 0.35

AIC 557.1 534.6 516.5 518.9

BIC 570.8 550.3 534.5 539.1

Observations 72 70 70 70

R2 0.09 0.21 0.41 0.42

Adjusted R2 0.04 0.15 0.35 0.35

Residual Std. Error 11.05 10.42 9.10 9.11

(df = 67) (df = 64) (df = 63) (df = 62)

F Statistic 1.68 3.49∗∗∗ 7.29∗∗∗ 6.36∗∗∗

(df = 4; 67) (df = 5; 64) (df = 6; 63) (df = 7; 62)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.2: Summary of linear models with SDMT as dependent variable and participant

characteristics and imaging markers derived from routine sequences as independent

variables. Numbers shown in the main table are model coefficients followed by

associated p values. Predictor abbreviations are as in Table 7.1.
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7.3.3 Imaging markers as predictors

7.3.3.1 Univariate relationships

Imaging-derived variables summarised in Table 7.1 were considered initially as

univariate predictors of SDMT performance. These gave Spearman correlations

with SDMT of r = 0.28 for ICV, r = 0.33 for brain volume, r = 0.29 for WM

volume and r = −0.48 for WMH volume. All correlations were significantly

different from zero at the 1% level. For comparison with published literature

(see Chapter 3), the Pearson correlation between SDMT and WMH volume was

r = −0.45, with 95% confidence interval (−0.61,−0.27). When adjusted for ICV,

the correlations with SDMT were r = 0.33 for brain volume, r = 0.15 for WM

volume and r = −0.49 for WMH volume.

Plots of individual imaging predictors against SDMT score are presented in Figure

7.2 for the MS-SMART cohort (n = 89). The scatterplots were open to multiple

interpretations, but there was no strong evidence of a non-linear relationship for

any of the variables, with the possible exception of WMH volume.

7.3.3.2 Construction of multiple linear regression model

Intracranial volume, brain volume and WM volume were all highly correlated (r

= 0.93 to 0.96). Brain volume and WMH volume were significantly negatively

correlated (r = −0.26, p = 0.01).

7.3.3.3 Multiple linear regression model summary

The model with the addition of just ICV was a significantly better fit to the

data (p = 0.005) than the model based on non-imaging participant characteristics

alone. The addition of WMH volume as a predictor produced a further significant

improvement in model fit (p < 0.00001). The further addition of WM volume did

not improve model fit (p = 0.35), an unsurprising result given the high covariance

of WM volume and ICV (r = 0.95). Descriptions of these models are presented

in columns 2 to 4 of Table 7.2.

7.3.3.4 Interactions between variables

A limited model using only the imaging predictors did not improve model fit when

allowed interaction terms, given the number of parameters (increased AIC and

BIC), although there was a suggestion that WM volume interacted with WMH

volume (p = 0.09).
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Figure 7.2: Plots of individual imaging predictors against SDMT (n = 89).

7.3.4 Model assumption checking

For the model described in column 3 of Table 7.2, a scatterplot of residuals against

fitted values and a Q-Q plot are shown in Figure 7.3, with some suggestion that

the fitted residuals deviate from normality at the tails of the distribution. This has

implications for the use of a model predicting phenotype outside the mid-range

and also raises the possibility of an underlying non-linear relationship.

There was a high correlation between ICV and WM volume (r = 0.95), consistent

with the lack of improvement in model fit with the introduction of WM volume

as a predictor.
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Figure 7.3: Left - plot of residuals against fitted values for linear model including

participant characteristics, ICV, WM volume and WMH volume (column 3 of Table

7.2). Right - Q-Q plot of residuals for the same model.

7.3.5 Potential non-linearity in the relationship between WMH

volume and SDMT

A scatterplot of SDMT against WMH volume is shown in Figure 7.4 with the

added loess fit, suggesting three phases to the relationship. The fitted results

of a piecewise regression produced by splitting the WMH data into thirds, also

shown superimposed, were able to closely match the loess fit. Compared with a

simple univariate model allowing only one slope, the model obtained by fitting the

data piecewise in thirds showed a non-significant improvement in fit (p = 0.11;

AIC 675.9, BIC 683.4 for simple model, compared with AIC 675.3, BIC 687.8 for

non-linear model). Within the multivariate model, equivalent to that summarised

in column 3 of Table 7.2, allowing three slope parameters for WMH volume also

resulted in a non-significant improvement in model fit (p = 0.18; AIC 515.9, BIC

538.4).

7.3.6 Sensitivity analyses

Disease duration did not improve model fit when considered as an additional

variable in models containing either only non-imaging or both non-imaging and

imaging variables.
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Figure 7.4: Scatterplot of SDMT against WMH volume. Superimposed lines show the

piecewise regression fit produced by dividing the cohort into thirds by WMH volume

and the loess fit.

A trend towards significance was seen in the (Spearman) correlation between age

and WM volume (r = 0.20, p = 0.06), but not with WMH volume (r = 0.09, p

= 0.38). However omitting age from the models described in columns 3 and 4 of

Table 7.2 did not result in significant changes in model fit (p = 0.38 and p = 0.28

respectively) and the result of adding WM volume as a predictor to the smaller

model remained a non-significant improvement in model fit (p = 0.47).

Adding total brain volume rather than WM volume as an additional imaging

marker was associated with a non-significant improvement in model fit compared

to the model described in column 3 of Table 7.2 (p = 0.11, AIC 515.7, BIC 537.7).

WMH volume remained the only significant imaging-derived predictor, although

brain volume showed a trend towards significance (p = 0.12).
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7.4 Results (II): Construction of a linear model based on

visual rating lesion scores

7.4.1 Data completeness and participant characteristics

A score for the SDMT was available for 91 of 93 MS-SMART participants (as

described in section 7.3.1) and all FutureMS participants. A histogram of SDMT

scores showed no strong evidence of deviation from a normal distribution.

Descriptive statistics for the combined FutureMS (n = 67) and MS-SMART (n

= 93) cohorts are shown in Table 7.3, including participant characteristics and

visual rating markers. Seven participants in FutureMS were prescribed at least

one of the previously-identified drugs with a potentially detrimental effect on

cognition. The participants from MS-SMART were the same as those described

in the previous section, with the addition of one participant for whom automated

scan segmentation had failed. Education status and depression scores were not

available for the FutureMS cohort, so were not considered as predictors. Data

on pre-morbid IQ and cognitive leisure activities were not available for either

cohort.

7.4.2 Participant characteristics as predictors

7.4.2.1 Univariate relationships

The relationships of the non-imaging characteristics presented in Table 7.3 to

SDMT performance were examined. Plots of individual non-imaging predictors

against SDMT score are presented in Figure 7.5 for the combined cohort. As

described in section 7.3.2.1, two participants in MS-SMART were prescribed

medication with a potentially beneficial effect on cognition, with widely different

SDMT scores. Again, to avoid misinterpretation of this predictor, these

two participants were excluded from all predictive models using medication

information.

Numerical predictors gave Spearman correlations with SDMT of r = −0.53 for

age and r = −0.51 for disease duration (both with associated p < 0.0001).

There was no evidence of a non-linear relationship from the scatterplots. There

was no significant difference in SDMT performance between sexes (p = 0.74).

Participants prescribed drugs with a potentially detrimental effect on cognition

performed less well than participants not prescribed any drugs with potential

effects on cognition (p < 0.0001).

129



Age (years)

SD
M
T

20 30 40 50 60 70

20

30

40

50

60

70

80

90

Age

SD
M
T

Female Male

20

30

40

50

60

70

80

90

Sex

Disease duration (years)

SD
M
T

0 10 20 30 40 50

20

30

40

50

60

70

80

90

Disease duration

FutureMS
MS-SMART

SD
M
T

Detrimental 
(n = 43)

Neither 
(n = 113)

Beneficial 
(n = 2)

20

30

40

50

60

70

80

90

Drugs

Figure 7.5: Plots of participant characteristics against SDMT for the combined

MS-SMART and FutureMS cohorts (n = 158, for all except disease duration where

n = 157).
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Combined cohort FutureMS MS-SMART

n Summary n Summary n Summary

Age (years) 160 49.1 (41.4, 58.2) 67 40.1 (32.4, 45.9) 93 57.2 (49.0, 61.0)

Sex (F/M) 160 118/42 67 49/18 93 69/24

Disease duration (years) 159 13.5 (3.5, 46.2) 66 2.7 (1.0, 7.0) 93 20.4 (14.0, 28.7)

Drugs (B/D/N) 160 2/44/114 67 0/7/60 93 2/37/54

SDMT 158 51.1 ± 14.7 67 61.7 ± 11.2 91 43.2 ± 11.7

Global WMHs 159 6 (4, 8) 67 5 (3,6) 92 7 (5,10)

Regional WMHs 159 9 (5, 14) 67 7 (3,11) 92 10 (6,16)

Atrophy 159 1.5 (0.5, 2) 67 1 (0.5,1.5) 92 1.5 (1,2)

Cavitation (Y/N) 159 71/86 67 16/51 92 56/36

Cavitation (count) 159 0 (0, 3) 67 0 (0,0) 92 1.5 (0,6)

JC lesions (Y/N) 159 93/64 67 30/37 92 64/28

JC lesions (count) 159 1 (0, 2) 67 0 (0,2) 92 1 (0,3)

EPVS 159 6(5, 7) 67 5 (4,7) 92 6 (5,7)

Table 7.3: Summary statistics for the MS-SMART and FutureMS cohorts, used in

predictive modelling based on visual ratings. All continuous/numerical variables

are given as median (interquartile range), other than SDMT, given as mean ± SD.

The columns headed ‘n’ indicate the number of subjects for whom that data was

available. Medication is classified by whether participants were prescribed drugs with

potentially beneficial (B) or detrimental (D) effects on cognition, or neither (N). JC

lesions: juxtacortical/cortical lesions; EPVS: enlarged perivascular spaces; WMHs:

white matter hyperintensities.

7.4.2.2 Construction of multiple linear regression model

As in Section 7.3.2.2, age, sex and being prescribed drugs with a potentially

detrimental effect were considered important predictors of cognitive performance.

Age and disease duration were significantly correlated (r = 0.70) and,

as previously, disease duration was not used as an additional independent

predictor.

7.4.2.3 Multiple linear regression model summary

A generalised linear model to predict SDMT score was constructed using the

available non-imaging participant characteristics. A description of the model is

presented in the first column of Table 7.4, which gave an adjusted R2 of 0.34.

This provided a significant improvement in fit to a model based on the intercept

alone (p < 0.0001).
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Dependent variable:

SDMT

1 2 3 4 5

Constant 83.90 87.59 86.90 84.75 87.60

p < 0.01∗∗∗ p < 0.01∗∗∗ p < 0.01∗∗∗ p < 0.01∗∗∗ p < 0.01∗∗∗

Age −0.63 −0.51 −0.48 −0.48 −0.51

p < 0.01∗∗∗ p < 0.01∗∗∗ p < 0.0001∗∗∗ p < 0.01∗∗∗ p < 0.01∗∗∗

Sex −1.80 −2.17 −2.08 −1.54 −2.16

p = 0.40 p = 0.28 p = 0.30 p = 0.43 p = 0.29

Detrimental −6.97 −5.69 −5.67 −4.57 −5.67

drugs p = 0.002∗∗∗ p = 0.01∗∗∗ p = 0.01∗∗∗ p = 0.03∗∗ p = 0.01∗∗∗

Global −1.56 −1.31 −0.80 −1.51

WMHs p < 0.0001∗∗∗ p = 0.001∗∗∗ p = 0.04∗∗ p = 0.0001∗∗∗

Atrophy −1.71

p = 0.22

Cavitation −8.06

p = 0.0003∗∗∗

JC lesions −0.61

p = 0.77

AIC 1207 1186 1187 1174 1188

BIC 1223 1204 1208 1196 1209

Observations 155 155 155 155 155

R2 0.36 0.45 0.45 0.49 0.45

Adjusted R2 0.34 0.43 0.43 0.48 0.43

Residual

Std. Error

11.66

(df = 151)

10.86

(df = 150)

10.84

(df = 149)

10.42

(df = 149)

10.89

(df = 149)

F Statistic 27.99∗∗∗

(df = 3; 151)

30.27∗∗∗

(df = 4; 150)

24.61∗∗∗

(df = 5; 149)

29.09∗∗∗

(df = 5; 149)

24.09∗∗∗

(df = 5; 149)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.4: Summary of linear models with SDMT as dependent variable and participant

characteristics and imaging markers derived from visual rating as independent variables.

Numbers shown in main table are model coefficients followed by associated p values.

Cavitation and (juxta-)cortical (JC) lesions are binary predictors.
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7.4.2.4 Interactions between variables

An alternative model to that described in Table 7.4 , column 1, using the same

non-imaging predictors but allowing interactions between them, did not improve

model fit given the number of parameters (AIC 1210.6, BIC 1238.0).

7.4.3 Imaging markers

7.4.3.1 Univariate relationships

Imaging-derived variables summarised in Table 7.3 were considered initially as

univariate predictors of SDMT performance. These gave Spearman correlations

with SDMT of r = −0.47 for global WMHs, r = −0.39 for regional WMHs, r

= −0.43 for atrophy, r = −0.58 for the number of cavitated lesions, r = −0.37 for

the number of JC lesions and r = −0.13 for enlarged perivascular spaces (EPVS).

All of these except EPVS (p = 0.10) were significantly different from zero at

the 1% level. For the binary variables, presence of cavitation (p < 0.0001) and

JC lesions (p < 0.001), t-tests showed a significant difference in SDMT between

groups.

Plots of individual imaging predictors against SDMT score are presented in

Figures 7.6 and 7.7 for the combined cohort (n = 157). Cavitation and JC

lesions are considered both by number and as binary features in Figure 7.7. The

scatterplots in Figure 7.6 were open to multiple interpretations, but there was no

strong evidence against the assumption of a linear relationship with SDMT. There

appeared to be a more complex relationship between SDMT and the number of

cavitated and JC lesions, as shown in Figure 7.7. There may be an excess of people

with no or few cavitated/JC lesions, suggesting a more appropriate analysis would

use binary classification.

7.4.3.2 Construction of multiple linear regression model

The global summary (‘Fazekas-style’) and summed regional WMH scores were

significantly correlated (r = 0.8) and, as described previously, the global summary

score was considered the more relevant and was used as an additional predictor

to non-imaging characteristics to form a second model.

Enlarged perivascular spaces were not found to be directly related to cognitive

scores in this cohort, so were not considered as part of a multiple regression model.

All other imaging features of disease, including additional lesion characteristics,

were assessed as independent predictors in addition to the global WMH score. The

JC lesion score was significantly correlated with the global WMH score (Spearman

133



Global WMH score

SD
M
T

0 2 4 6 8 10 12

20

30

40

50

60

70

80

90

Global WMH

Regional WMH  score

SD
M
T

0 5 10 15 20 25 30 35

20

30

40

50

60

70

80

90 FutureMS
MS-SMART

Regional WMH

Cerebral atrophy score

SD
M
T

0 0.5 1 1.5 2 2.5 3

20

30

40

50

60

70

80

90

Atrophy

EPVS score

SD
M
T

0 2 4 6 8 10

20

30

40

50

60

70

80

90

EPVS

Figure 7.6: Plots of individual imaging predictors against SDMT (n = 157).
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Figure 7.7: Plots of individual imaging predictors against SDMT (n = 157). JC lesions

and cavitation are given both by count and as binary predictors.
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r = 0.55). In order to avoid inflating a measure of white matter lesion burden, the

involvement of (juxta-)cortical tissue was considered only as a binary predictor

variable. In view of the possibly non-linear relationship between lesion cavitation

and SDMT, this was also considered only as a binary predictor. The atrophy

score was significantly correlated with the global WMH score (r = 0.58).

7.4.3.3 Multiple linear regression model summary

The addition of global summary WMH scores to a model based only on

non-imaging characteristics resulted in a significant improvement in model fit

(p < 0.0001).

Models with further imaging variables considered in turn as additions to the

model are summarised in Table 7.4, columns 2 to 5. Introducing cerebral

atrophy as a predictor resulted in a non-significant improvement in model fit (p

= 0.22). Presence of lesion cavitation as a binary predictor produced a significant

improvement (p = 0.0002) in model fit. The presence of JC lesions (p = 0.77) as

a binary predictor did not improve model fit.

7.4.3.4 Interactions between variables

Considering a simple model with only the two imaging predictors found to

be significant predictors in larger models (global WMH score and presence of

cavitation), there was no improvement in model fit (increased AIC and BIC)

when allowed an interaction term.

7.4.4 Model assumption checking

For the model described in column 4 of Table 7.4, a scatterplot of residuals against

fitted values and a Q-Q plot are shown in Figure 7.8, with a minor suggestion that

the fitted residuals deviate from normality at the tails of the distribution.

7.4.5 Linear modelling for separate cohorts

A significant correlation remained between global WMH score and SDMT when

considered for each of the cohorts individually. This was stronger in the later

stage cohort (r = −0.39) than the early stage cohort (r = −0.24) although this

difference was not significant (p = 0.30).
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Figure 7.8: Left - plot of residuals against fitted values for linear model including

participant characteristics, global WMH score and presence of cavitation as a binary

predictor (column 4 of Table 7.4). Right - Q-Q plot of residuals for the same model.

The model structure described in column 4 of Table 7.4, was repeated separately

for the two cohorts, to explore whether the predictor variables had different effects

at different disease stages. The results are reported in Table 7.5.

In these smaller models the independent variable coefficients and their associated

significance differed from the single cohort analysis. Age was a significant

predictor of SDMT score in the younger, early stage disease cohort, but not in the

older, later stage cohort. Medication was no longer significant for either cohort.

For the imaging variables, the global WMH score only showed a trend towards

being a significant predictor in the later stage group, whereas lesion cavitation

remained the more significant predictor.

7.4.6 Sensitivity analyses

The addition of disease duration as a predictor variable, expressed either as a

proportion of age or unadjusted, resulted in a significant improvement in model

fit (p < 0.01) to a model based on non-imaging predictors alone. As an additional

variable in a full model containing non-imaging and imaging predictors, disease

duration showed a trend towards significance (p = 0.07) only when used in

adjusted form.
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Dependent variable:

SDMT

FutureMS MS-SMART

Constant 83.19 55.77

p = 0.00∗∗∗ p = 0.00∗∗∗

Age −0.44 −0.02

p = 0.002∗∗∗ p = 0.92

Sex −1.44 −2.13

p = 0.62 p = 0.39

Detrimental drugs −3.35 −2.01

p = 0.42 p = 0.37

Global WMHs −0.43 −0.78

p = 0.47 p = 0.09∗

Cavitation −5.57 −7.87

p = 0.11 p = 0.004∗∗∗

Observations 67 88

R2 0.27 0.27

Adjusted R2 0.22 0.22

Residual Std. Error 9.94 (df = 61) 9.81 (df = 82)

F Statistic 4.62∗∗∗ (df = 5; 61) 5.94∗∗∗ (df = 5; 82)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.5: Description of linear model from column 4, Table 7.4, recalculated for

FutureMS and MS-SMART cohorts separately.
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SDMT performance correlated with age only in the younger cohort, suggesting

disease effects were involved rather than cognitive changes expected with ageing.

Additionally, being prescribed drugs with a potentially detrimental effect on

SDMT performance showed significant differences between the two cohorts (37/93

= 40% of MS-SMART; 7/67 = 10% of FutureMS) and may also have acted as

a surrogate marker of disease duration and severity. To address these issues,

the smaller models for the separate cohorts, as in Table 7.5, were repeated

without including age as a predictor. In the FutureMS model, this resulted in

a significantly worse overall fit (p < 0.001; adjusted R2 = 0.08), but made little

difference to overall fit of the MS-SMART model (p = 0.91; adjusted R2 = 0.23).

The significance levels for the remaining individual predictors in each model did

not change substantially from those in the models containing age as a variable

(as in Table 7.5).

7.5 Discussion

The results here confirm the relevance of white matter hyperintensities as

a disease marker in multiple sclerosis. Routine imaging features contribute

significantly to accurate prediction of cognitive status in people with MS, with

convergent results achieved using two very different image analysis approaches.

The relationship found here between cognitive outcome and both WMH volume

and the semi-quantitative visual rating marker of WMH burden is stronger than in

most published studies, but within the wider reported range of those using SDMT

(see Chapter 3, Figure 3.8). In the model using quantitative imaging markers,

WMH volume remained the most significant predictor of cognitive performance

after controlling for other disease and non-disease-related variables.

There is a suggestion that this relationship is not the same at all levels of disease

burden. The quantitative data shows little effect of WMH volume on cognitive

performance at low levels. Similarly for the semi-quantitative data, a stronger

correlation between WMH score and SDMT performance was found for the later

stage participants, with greater disease burden, than those in the early disease

stages. Although this was not a statistically significant finding, it is nevertheless

in keeping with the reported literature (see Chapter 3, section 3.3.12.2) in which

stronger effect sizes were found in cohorts with higher mean WMH volumes.

Such observations are consistent with an interpretation that below a certain

level of disease burden, neuronal adaptation, repair or redundancy may be able

to compensate for the level of damage, with reducing capacity as the disease

progresses.
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The cohort in which volumetric markers were tested comprised people with later

stage disease in whom accelerated atrophy was clearly present. Total brain

volume, rather than WM volume, showed a trend towards significance as an

additional predictor, suggesting the importance of grey matter or posterior fossa

pathology. However, neither white matter nor total brain volume proved to

be significant predictors in models containing other imaging-derived variables.

This may reflect the dominant effect of WMHs, becoming clearer in larger

cohorts, but both these measures of tissue volume may also be poor markers

of neurodegeneration given their high covariance with ICV (r = 0.95/0.96). This

allows the potential for more direct markers of widespread tissue integrity to

contribute to measurement of the overall disease burden instead and is explored

more in the following chapter. However the work here provides no strong evidence

that pathology accumulation and its impact on SDMT is anything other than

unidimensional.

The semi-quantitative visual rating markers provided an alternative source of

information regarding the extent and degree of pathology. A simple binary marker

of whether lesion cavitation was apparent proved to be a significant predictor of

cognitive outcome and this remained significant when considered separately in

both the individual cohorts. This could be interpreted as identifying people

with more aggressive disease or those who are no longer able to adequately

repair inflammatory damage. While related to the more widely used measure of

T1-weighted (T1w) hypointense lesion volume, this assessment is not only simple

and more selective, but also removes the confounding factor of acute inflammatory

lesions also appearing hypointense on T1w imaging.

The results using the visual rating assessments must be interpreted with caution

given their use of two different cohorts. The reasoning behind doing so was

to use the largest possible group in which to test the assessment outcomes,

however blinding as to cohort was not possible and the imaging sequences were not

identical. Examining the cohorts separately suggests that different features may

have greater relevance at different disease stages. In the cohort with RRMS, age

was the sole significant predictor of cognitive outcome, again consistent with the

proposal that initial compensation for accumulated brain pathology is possible.

In the later stage group, non-imaging variables were less important than imaging

ones, with presence of cavitation proving the only significant predictor at the 5%

level. Although the global WMH score was a significant predictor in the larger,

combined, cohort, this was not the case for the individual smaller cohorts. This

may reflect a lack of sensitivity to smaller increments in disease burden related

to the limited range of possible scores.
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The relationship of atrophy to cognition in people with MS is established [102],

although not using visual ratings, and here the atrophy scores were significantly

correlated with SDMT performance. However they were not significant predictors

in the multiple regression model, again possibly related to a dominant effect

of WMHs and their high covariance. Although cortical lesions may be more

important than white matter lesions in determining cognitive status [179], these

two measures are also likely closely associated [113]. It was not possible to reliably

separate purely cortical lesions on the routine sequences available for the visual

rating study, and the presence of juxtacortical/cortical lesions was not found to be

a significant independent predictor in the regression model of cognition. Enlarged

perivascular spaces, although related in other populations [171], were not found

to be directly related to cognitive scores in this cohort.

Limitations to the work here are acknowledged, not least the absence of more

extensive information regarding both co-morbidities and non-disease factors

which could influence cognition. The impact of a disease cannot be fully

understood only in terms of the accumulated pathology, without consideration

of wider factors relating to the person with the disease. This work was an

opportunistic use of available data and it remains possible that imaging factors

may be of lesser importance after controlling for other possible modifiers of

the relationship between pathology and phenotype. This highlights a recurrent

problem in the literature (see Chapter 3) with lack of consensus in recognising and

recording factors that may be important and inconsistencies in data collection

even for those that are accepted. No relationship between depression scores

and SDMT performance was found for the cohort in which it could be tested,

but this may have been influenced by the cut-off used in the study entrance

criteria. Modafinil is used to treat fatigue in people with MS and has previously

been associated with an improvement in SDMT performance [180]. Although

only prescribed to two participants in the cohorts studied here, the results

were ambiguous, possibly relating to timing of medication, which was not

recorded.

As previously mentioned, a desire to use the largest possible dataset influenced the

decision to test the visual assessments in a composite cohort. While recruitment

strategy should not have influenced the findings from either group, the use of two

cohorts with very different characteristics may have exaggerated the importance

of any differences in imaging features. Relevant to the consideration of whether

there exists a non-linear ‘threshold’ effect of WMHs, the use of a group with very

little evidence of accumulated disease may have partly obscured identification of

any threshold. Replication as well as further testing in groups at all stages of the

disease is certainly required.
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WMH burden, representing a history of focal neuroinflammatory damage, is

clearly a useful marker of disease in people with MS, with these results suggesting

that its importance may vary at different stages of the disease. Relevant to

their known lack of pathological specificity, the visual rating results indicate that

further simple information regarding the degree of damage represented by WMHs

contributes usefully to an overall estimate of disease burden. Nevertheless, there

remains unaccounted for variance in cognitive performance, which may require

improved assessment of the neurodegenerative component of the disease. Tissue

volume measures did not prove useful here as independent predictors, possibly

related to the relatively small changes involved and their high covariance with

intracranial volume. Quantitative markers related to tissue integrity in the

normal-appearing white matter, such as those derived from diffusion imaging,

may be more sensitive and these are explored in the following chapter.
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Chapter 8

The relationship of quantitative

measures of tract microstructure

from diffusion tensor imaging to

cognitive performance

8.1 Introduction

Variation in cognitive performance in people with multiple sclerosis (MS) is not

fully accounted for by current measures of the white matter disease burden that

are visible on routine structural imaging, as shown in previous chapters. This

remains the case even after optimisation of white matter hyperintensity (WMH)

quantification and adjustment for participant characteristics and modifiers of

cognitive performance. It is however also recognised that diffuse pathological

changes in white matter may not be associated with measurable changes on

routine imaging sequences and that alternative techniques may be more sensitive

to these processes. Diffusion tensor imaging (DTI) is an example of a quantitative

magnetic resonance imaging (MRI) technique that has been shown to be sensitive

to changes in the so-called ‘normal-appearing’ white matter (NAWM), leading

to the testable hypothesis that DTI-derived biomarkers may result in stronger

associations between imaging and clinical measures.

The work presented in this chapter addresses the question of how far any

DTI-derived white matter metric can explain variance in cognitive performance

and whether this is separate from information already available from routine

structural imaging sequences. The NAWM and WMH compartments within the

white matter are examined separately, with the prediction that any additional
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explanatory power will come from diffuse changes in the NAWM, since focal

inflammatory disease burden is accounted for in WMH volume. However the

possibility of DTI metrics providing additional information about the degree of

tissue damage within the WMHs is also considered.

In this chapter the validity of different potential markers of tract health is first

established, ensuring that they capture a range of values with the potential to be

used in predictive models. Their covariance with disease and non-disease factors

is then explored and the relationship of DTI-derived markers to a measure of

processing speed, the Symbol Digit Modality Test (SDMT), is examined. Finally

they are entered into predictive models, developed in the previous chapter, to

determine whether they contribute additional information to markers already

available.

Three specific hypotheses are tested: (1) that DTI metrics are a valid marker

for distinguishing between WMHs and NAWM; (2) that DTI metrics provide

stronger correlations with cognitive performance than volumetric measures from

routine structural imaging; and (3) that in predicting cognitive performance from

imaging and non-imaging features, DTI metrics increase explanatory power based

on improved measurement of the neurodegenerative disease component.

8.2 Methods

8.2.1 Participants and imaging

Baseline scans from participants in the MS-SMART Advanced MRI substudy

(described in Chapter 2, Section 2.1) were used in this work. The imaging and

post-processing of diffusion data are described in Chapter 2, Sections 2.1.2 and

2.1.3. Averaged (mean) fractional anisotropy (FA) and mean diffusivity (MD) for

the software-segmented WMH and NAWM tissue compartments, the peak width

of skeletonised mean diffusivity (PSMD) and the tract-averaged FA and MD from

the twelve automatically segmented major fasciculi of interest were all considered

as potential predictors of cognitive status.

8.2.2 Validity of DTI-derived metrics

Plots of all potential DTI-derived predictors were considered for their validity

in distinguishing between different tissues, including mean diffusion parameters

derived from segmented tissue compartments and from each of the tracts

extracted. Differences between DTI metrics for the segmented compartments
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were examined using Mann-Whitney U tests. The relationship of the novel marker

PSMD to the average (mean) overall white matter MD was considered.

8.2.3 The univariate relationships between quantitative

DTI measures of tract microstructure and cognitive

performance

Spearman correlations between all individual predictors and SDMT scores were

calculated. Plots of individual predictors against SDMT scores were examined for

outliers and evidence of non-linear relationships. The participant characteristics

of influential observations (individual participants) were investigated, as to

whether they exhibited extreme values of other SDMT predictors.

8.2.4 Additional value of DTI-derived metrics to WMH burden in

predictive models

8.2.4.1 Model construction

General linear modelling was used as in the previous chapter, with an assumption

of normally distributed errors. The initial models developed in Chapter 7, based

on non-imaging and routine structural imaging-derived volumetric predictors,

were recalculated for the MS-SMART Advanced MRI substudy cohort only. Each

DTI-derived predictor was then considered in turn as an additional independent

variable in the model.

8.2.4.2 Assumption checking

Covariance of DTI metrics with age, sex and routine structural imaging-derived

parameters, particularly WMH volume, was considered, in order to exclude

collinearity. Correlations between all individual predictors were calculated.

Cook’s distances were examined for highly influential data points, with

consideration of appropriate handling where necessary. For all models

constructed, histograms of the residuals, Q-Q plots and plots of residuals against

predicted values were assessed in order to check model assumptions and fit.

8.2.4.3 Model comparisons and fit

Parameters of goodness of fit were compared for each model, including values for

adjusted R2, Akaike information criteria (AIC) and Bayesian information criteria
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(BIC). The Wald test was used to quantify statistical significance of additional

model predictors.

8.3 Results

8.3.1 Participant data

Forty-three participants were recruited to the Advanced MRI substudy of

MS-SMART and their baseline imaging data were used (see Chapter 2).

A score for the SDMT, taken as a marker of information processing speed,

was available for all participants. Data on premorbid IQ and cognitive leisure

activities were not available for this cohort. Data on educational status

were unavailable for eight participants. Only one participant was prescribed

medication with a potentially beneficial effect on cognitive performance

(modafinil) and due to concerns over the timing of taking medication on the

day of testing, as described in Chapter 7, this participant was excluded from

analysis.

Tissue segmentation failed for one scan, due to issues with image registration.

This participant was excluded from any further analysis based on tissue

compartment metrics. Tract segmentation and skeletonisation using Tract-Based

Spatial Statistics (TBSS, [75]) to derive PSMD were unaffected.

Following visual assessment of the tracts generated by probabilistic

neighbourhood tractography (PNT; (http://www.tractor-mri.org.uk)) for quality

control [MB], it was determined that anatomically acceptable representations of

all tracts of interest were present in 34 subjects. Of the remaining nine scans,

one tract in each could not be accurately extracted. Affected tracts were the

splenium (n = 2), the left arcuate fasciculus (n = 2), the left (n = 4) and right (n

= 1) corticospinal tracts. For these participants, their mean tract metrics were

calculated using the remaining eleven tracts. The participants with missing tract

data showed trends towards higher WMH volumes, higher tract MD and lower

FA (p = 0.06 to 0.11), all suggesting a higher level of disease burden. Group

maps of all tracts extracted are presented in Figure 8.1.

Descriptive statistics for this cohort are presented in Table 8.1, including

participant characteristics and volumetric imaging markers acquired from both

routine structural sequences and DTI.
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n Summary figures

Age (years) 43 58.0 (49.9, 62.0)

Sex (F/M) 43 30/13

Disease duration (years) 43 23.4 (15.6, 27.3)

BDI 43 6 (5, 11.5)

Drugs (Beneficial/Detrimental/Neither) 43 1/14/28

Education ≤ 12/> 12 years 35 13/22

SDMT (mean ± SD) 43 43.5 ± 12.1

ICV (ml) 42 1309 (1265, 1395)

Brain volume (ml) 42 1154 (1066, 1205)

WM volume (ml) 42 429.3 (403.4, 451.4)

WMH volume (ml) 42 31.1 (23.7, 44.4)

Mean WMH MD (µm2s−1) 42 1122 (1055, 1191)

Mean WMH FA 42 0.309 (0.296, 0.325)

Mean NAWM MD (µm2s−1) 42 768.8 (753.3, 802.8)

Mean NAWM FA 42 0.340 (0.308, 0.351)

Mean tract MD (µm2s−1) 43 861.6 (833.0, 930.0)

Mean tract FA 43 0.442 (0.415, 0.464)

PSMD (µm2s−1) 43 351.8 (309.8, 398.7)

Table 8.1: Clinical and imaging features of participants in the Advanced MRI substudy

of MS-SMART cohort. All continuous/numerical variables are given as median

(interquartile range) other than for SDMT. The second column ‘n’ indicates the

number of subjects for whom that data was available. BDI: Beck Depression Index;

FA: fractional anisotropy; ICV: intracranial volume; MD: mean diffusivity; PSMD:

peak width of skeletonised mean diffusivity; SDMT: Symbol Digit Modality Test;

NAWM: normal-appearing white matter; WM: white matter; WMH: white matter

hyperintensity.

8.3.2 Validity of acquired diffusion metrics

8.3.2.1 Compartment-averaged diffusion metrics

Distributions of MD and FA for all segmented tissue compartments are shown

in the boxplots of Figures 8.2 and 8.3. All differences in location and spread

of values between compartments were consistent with predictions based on their
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Figure 8.1: Group maps of the segmented fasciculi of interest projected onto Montreal

Neurological Institute standard space T1w volume, showing consistency of tract

segmentation across the cohort. Top row: genu, splenium, arcuate fasciculi (bilateral);

middle row: bilateral dorsal cingulate and corticospinal tracts; bottom row: bilateral

inferior longitudinal fasciculi and ventral cingulate.

known tissue characteristics, for instance cerebrospinal fluid (CSF) showed the

highest water diffusivity and brainstem showed the highest directional coherence,

supporting the validity of the segmentation.

Tissue labelled as abnormal (WMH) by the segmentation was associated with

increased MD and decreased FA (both p = 0.001) values when compared with

the NAWM compartment.

8.3.2.2 Peak width of skeletonised mean diffusivity

Peak width of skeletonised mean diffusivity is derived from skeletonised white

matter and summarises the spread of MD values. The histogram in Figure

8.4 shows the distribution of PSMD in the MS-SMART Advanced MRI cohort,

highlighting that the majority of values lie between 200 and 400 µm2s−1 (n
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Figure 8.2: Mean diffusivity (MD) in segmented brain compartments (n = 42). From

left to right, the tissue compartments are: brainstem, subcortical grey matter (GM),

cerebellum, cortical GM, cerebrospinal fluid (CSF), normal-appearing white matter

(NAWM) and white matter hyperintensities (WMH).
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Figure 8.3: Fractional anisotropy (FA) in segmented brain compartments (n = 42).

Tissue compartments as per Figure 8.2.
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= 33/43, 77%). Although true normative data does not yet exist for PSMD,

these values correspond approximately to the ranges found by Baykara et al [92]

in healthy older populations.
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Figure 8.4: Distribution of PSMD (n = 43).

Figure 8.5 shows PSMD plotted against the mean MD for the entire white

matter compartment (encompassing both WMHs and NAWM). Higher values for

white matter mean MD are clearly associated with a higher PSMD (Spearman

correlation: r = 0.77), i.e. a greater range of voxel MD values. The scatterplot

suggests a possible non-linear relationship, with a clearly positive gradient only

at higher levels, indicating that the two metrics are not supplying duplicate

information.

A similar relationship is shown in Figure 8.6 where PSMD is plotted against

WMH volume, with a positive, approximately linear relationship above a WMH

volume threshold of around 30ml. This supports an interpretation that an

increased inflammatory disease burden is associated with diffuse white matter

abnormality.

8.3.2.3 Within tract diffusion metrics

Boxplots summarising the mean MD and FA in all tracts extracted are presented

in Figures 8.7 and 8.8. The spread of values for each tract is partly due to

its size, as is apparent with the relatively small ventral cingulate; due to its
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Figure 8.5: Scatterplot of PSMD against mean white matter MD (n = 42). The

Spearman correlation was r = 0.77.

shape this tract has to be extracted separately from the rest of the much larger

cingulate. The large spread and generally higher MD values for the splenium are

related to higher inter-subject variation in anatomy and contamination from CSF

proximity.

Mean tract FA was higher for each participant than the mean FA for the

NAWM compartment, as shown in Figure 8.9, despite segmented tracts including

tissue from both WMH and NAWM compartments. This confirmed that the

most directionally coherent tissue had been extracted using the tractography

approach.

8.3.3 Covariance of diffusion metrics with other variables

8.3.3.1 Age and Sex

A comparison of mean diffusion metrics for male and female participants is given

in Table 8.2. The median age (years) of the female participants was 58.1 (IQR:

48.8, 61.8) and for the male participants 57.7 (53.5, 62.0). Significant (p < 0.05)

sex differences were found for NAWM and tract-averaged MD and FA. Spearman

correlations for diffusion metrics and participant age were all non-significant, with

the exception of WMH FA (r = −0.32, p = 0.04).
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Figure 8.6: Scatterplot of PSMD against WMH volume (n = 42). The Spearman

correlation was r = 0.80.

DTI metric n Median

(female)

Median

(male)

p r

(Age)

r

(ICV)

r

(WMH*)

r

(WM*)

NAWM MD (µm2s−1) 42 786 759 0.02 0.01 -0.33 0.56 −0.08

NAWM FA 42 0.331 0.348 0.03 0.08 0.37 −0.73 0.07

WMH MD (µm2s−1) 42 1144 1084 0.06 0.14 −0.20 0.61 0.11

WMH FA 42 0.304 0.316 0.28 −0.32 0.13 −0.27 −0.32

PSMD (µm2s−1) 43 369 334 0.10 −0.11 −0.29 0.80 −0.13

Mean tract MD (µm2s−1) 43 892 834 0.001 0.09 −0.23 0.64 −0.07

Mean tract FA 43 0.425 0.451 0.009 0.03 0.32 −0.73 0.01

Table 8.2: Median diffusion metrics by sex, with associated p-value from Mann-Whitney

U test; Spearman correlations with age, ICV, white matter (WM) volume and WMH

volume. Asterisks (*) indicate that WM and WMH volumes were adjusted for ICV.

Sex differences and correlations significant at the 5% level are highlighted in bold.

Abbreviations as per Table 8.1.
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Figure 8.7: Boxplot of cohort MD for each of the 12 segmented tracts (total n = 43).

From left to right the tracts are genu, splenium, arcuate fasciculi, dorsal cingulate,

corticospinal tracts, inferior longitudinal fasciculi and ventral cingulate. All tracts are

bilateral other than for the genu and splenium of the corpus callosum.
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Figure 8.8: Boxplot of cohort FA for each of the 12 segmented tracts (total n = 43).

The tracts are the same as those in Figure 8.7
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Figure 8.9: Scatterplot of mean FA for the extracted tracts against the corresponding

NAWM compartment value. The Spearman correlation was r = 0.82.
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8.3.3.2 Covariance with routine structural imaging markers

Intracranial volume also showed a significant correlation with several DTI-derived

markers, particular NAWM MD and FA. This is a recognised feature of DTI

relating to partial volume effects and the use of fixed voxel sizes [181], and

may confound measurement in individuals with smaller ICV. In addition, all

DTI-derived markers relating to white matter microstructure were significantly

(p < 0.001) correlated with WMH volume, with the exception of WMH FA

(p = 0.07). This suggests a possible unidimensional pathological pathway

linking inflammation and neurodegeneration. Spearman correlation coefficients

are presented in Table 8.2 and all correlations significant at the 5% level are

highlighted in bold.

8.3.4 The direct relationship of quantitative measures of tract

microstructure from DTI to cognitive performance

8.3.4.1 Compartment-averaged diffusion metrics

The relationships of the mean FA and MD within the NAWM and WMH tissue

compartments to the SDMT score are shown in the scatterplots of Figure 8.10.

These were all in the expected direction, with higher water diffusivity and

lower diffusion anisotropy being associated with lower test scores, however no

(Spearman) correlation was statistically significant from zero (p > 0.1).

8.3.4.2 Peak width of skeletonised diffusivity

The overall relationship of PSMD and SDMT score was in the expected direction,

with a Spearman correlation of r= −0.34 (p = 0.03). This was similar to that

found for WMH volume and SDMT in this population (r = −0.33; p = 0.03).

However there appeared little relationship with SDMT score at lower values of

PSMD, up to around 400 µm2s−1, suggesting that the overall association may be

driven by the higher values. The participant characteristics of those individuals

with high values of PSMD were examined with no notable differences seen. A

scatterplot of PSMD against SDMT is shown in Figure 8.11.

8.3.4.3 Within tract diffusion metrics

Scatterplots of the mean FA and MD for all tracts against SDMT are shown in

Figure 8.12. The Spearman correlations were r = 0.37 (p = 0.01) for FA and r

= −0.23 (p = 0.14) for MD.
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Figure 8.10: Plots of FA and MD against SDMT for NAWM and WMH tissue

compartments (n = 42), annotated with lines of best fit. No correlation was

significantly different from zero.

8.3.5 Addition of DTI-derived metrics to lesion burden in predictive

models

Following recalculation in this smaller cohort of the linear model developed in

Chapter Seven using participant characteristics and routine imaging markers to

predict SDMT score, WMH volume was found to be the only significant predictor

(p = 0.01) with sex being the next most significant (p = 0.05). This model is

summarised in column 1 of Table 8.3. The addition in turn (columns 2 to 6) of

each diffusion measure listed in Table 8.2, excepting those related to WMHs, did

not lead to any overall improvement in model fit (p > 0.2).
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Dependent variable:

SDMT

1 2 3 4 5 6

Constant −3.44 0.87 13.45 4.15 −11.64 −22.58

p = 0.92 p = 0.99 p = 0.76 p = 0.91 p = 0.82 p = 0.60

Age (years) 0.06 0.06 0.06 0.07 0.06 0.05

p = 0.80 p = 0.80 p = 0.81 p = 0.79 p = 0.81 p = 0.83

Sex −10.42 −10.43 −10.69 −9.93 −10.21 −10.48

p = 0.06∗ p = 0.06∗ p = 0.05∗∗ p = 0.07∗ p = 0.07∗ p = 0.06∗

Educ. (over 1.19 1.20 1.51 1.57 1.09 0.98

12 years) p = 0.78 p = 0.78 p = 0.72 p = 0.71 p = 0.80 p = 0.82

Detrimental −4.79 −4.64 −5.87 −4.67 −5.23 −3.93

drugs p = 0.25 p = 0.33 p = 0.21 p = 0.27 p = 0.27 p = 0.37

ICV (ml) 0.04 0.04 0.05 0.04 0.04 0.04

p = 0.10∗ p = 0.12 p = 0.09∗ p = 0.16 p = 0.10∗ p = 0.15

WMHV (ml) −0.31 −0.30 −0.40 −0.22 −0.33 −0.21

p = 0.02∗∗ p = 0.05∗∗ p = 0.05∗∗ p = 0.29 p = 0.07∗ p = 0.24

NAWM MD −0.01

(µm2s−1) p = 0.95

NAWM FA −71.44

p = 0.55

PSMD −0.01

(µm2s−1) p = 0.59

Mean tract MD 0.01

(µm2s−1) p = 0.84

Mean tract FA 49.99

p = 0.50

AIC 256.0 258.0 257.5 257.6 257.9 257.4

BIC 268.0 271.5 271.0 271.1 271.4 270.9

Observations 33 33 33 33 33 33

R2 0.40 0.40 0.40 0.40 0.40 0.41

Adjusted R2 0.26 0.23 0.24 0.24 0.23 0.24

Residual 10.35 10.55 10.47 10.49 10.54 10.45

Std. Error (df = 26) (df = 25) (df = 25) (df = 25) (df = 25) (df = 25)

F Statistic 2.83∗∗ 2.33∗ 2.42∗∗ 2.41∗∗ 2.34∗ 2.44∗∗

(df = 6; 26) (df = 7; 25) (df = 7; 25) (df = 7; 25) (df = 7; 25) (df = 7; 25)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8.3: Summary of linear models with SDMT as dependent variable and participant

characteristics and imaging markers as independent variables. Numbers shown in

the main table are model coefficients followed by associated p values. Predictor

abbreviations as per Table 8.1.
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Figure 8.11: Scatterplot of PSMD against SDMT (n = 43), annotated with line of best

fit. The Spearman correlation was r = −0.33.

8.4 Discussion

Using diffusion tensor imaging, it has been possible to extract valid markers

of tissue microstructure in the white matter of people with multiple sclerosis.

Differences found between segmented WMH and NAWM compartments were in

the expected direction, supporting the tissue segmentation and the extraction

of more diseased tissue in the WMH compartment. The relationship between

DTI-derived markers and age found in healthy populations [182] was not found

in this population, although the age range (34 to 65) was one in which this would

be expected. Variation in the degree of pathological changes appears to have

overpowered the normal changes from healthy ageing.

The majority of the water diffusion measures examined here were found to relate

to the SDMT, a marker of cognitive ability. However they were all highly
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Figure 8.12: Scatterplots of mean tract FA and MD against SDMT (n = 43) annotated

with lines of best fit.

covariant with WMH volume and it was not possible to demonstrate that DTI

provided any additional predictive value once WMH volume had been accounted

for. While it is tempting to interpret changes measured in normal-appearing

tissue as representing a distinct, neurodegenerative, disease component, it has not

been possible here to separate this from the effect of the inflammatory pathology.

Further work in larger cohorts may be able to clarify this. Based on the results

here, there is no evidence to reject a unidimensional disease model in which

focal inflammatory damage leads to widespread abnormalities in white matter

integrity.

Where the relationship appears more complex is in the suggestion of a threshold

effect seen with PSMD, above which inflammatory disease burden has a

deleterious effect on white matter integrity. Baykara et al [92] found similar

ranges of PSMD in three separate healthy populations and no difference in PSMD

between healthy controls and people with mild cognitive impairment and low

WMH loads. The results in this chapter, implementing PSMD measurement

for the first time in people with MS, appear remarkably similar. At levels seen

in healthy populations, PSMD appeared unrelated to SDMT. Overall this new

marker showed a stronger relationship to SDMT than any other measure derived

from mean diffusivity values. Further work should include testing the relationship

of PSMD to the more widely used marker of mean skeletonised MD and comparing

the strength of their correlation with cognition.
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The strongest overall correlation with SDMT for any diffusion metric tested

was found for mean tract FA. Focussing on the integrity of major tracts and

so minimising the confounding effect of crossing fibres may maximise the chances

of uncovering a true relationship between tract integrity and cognition. One

limitation to this work was using values averaged across all tracts, with equal

weighting to large and small tracts, including those known to have higher

variability. The tracts which could not be extracted occurred in individuals with

a more severe disease burden, potentially attenuating a detectable relationship

to the phenotype. A method of dimension reduction, for instance using principal

component analysis to extract a general factor of tract integrity [183] might help

with this issue, but the number of subjects was prohibitive in this case. While

it would have been possible to select only those tracts thought likely to have

cognitive functions, tractography was used here to provide a marker of global

white matter microstructure and examine its relation to a marker of distributed

cognition, so an inclusive approach seemed reasonable. The tracts extracted

represented a wide range of projections, incorporating commissural and projection

fibres, previously accurately and reproducibly segmented using PNT.

A further limitation to this work is the small study size. Interpretations discussed

here will need confirmation in larger cohorts, where it may be possible to separate

out cognitive effects related to both the WMH and NAWM tissue compartments.

The lack of healthy control data also limits interpretation of some findings,

although regression modelling was used to control for as many non-disease factors

as possible. Bias may also have been introduced during study recruitment, as

participants undergoing the advanced imaging protocol in MS-SMART were a

self-selecting subgroup.

It is often assumed that using advanced imaging markers to quantify pathological

changes in the normal-appearing white matter will provide a more accurate

assessment of the total burden of disease. However these results show that using

DTI in a population with fairly advanced disease has not supplied the missing

link in the cognitive clinicoradiological paradox. In a population in which chronic

neurodegeneration is expected to be the predominant active disease component,

it has not been possible to separate out its effect from already available measures

of the inflammatory disease.
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Chapter 9

Discussion

The clinicoradiological paradox persists. Using optimised imaging measures of

disease burden in multiple sclerosis has demonstrated a stronger relationship

between white matter hyperintensities and cognitive performance than most

reported in the literature, but this can still only partially account for the observed

variation. Clinically relevant tests of brain function and established neuroimaging

techniques cannot be made to agree, suggesting a flaw in our methods or the

questions we ask of them. However it must be remembered that given the many

factors, both known and unknown, affecting any psychological test and thus

attenuating associations with other disease markers, the correlations found here

are within the upper third of those published in psychological research [184].

Before considering the potential causes for the remaining mismatch and future

directions for research, we should consider whether in fact this matters. When

straightforward cognitive tests can be performed in the clinic, why should

prediction of function from imaging be useful?

The great unmet need in multiple sclerosis (MS) is for truly disease-modifying

drugs - those with a proven impact on longterm clinically relevant outcomes. A

need to understand the pathology underlying these outcomes is clear. Currently

available drugs act to reduce the shorter term impact of neuroinflammation,

while carrying the risks associated with manipulation of the immune system.

The development of new drugs, from initial laboratory investigations and animal

studies through to large cohort trials, is time and resource intensive. The

heterogeneity of MS and the difficulty in predicting individual disease outcomes

is well known. For a disease with substantial heterogeneity in disease course

and outcome, large numbers of people must be monitored for long periods to

convincingly demonstrate success and imaging-derived surrogate outcomes are

widely used to make this process more efficient. In clinical practice, with the

aim of minimising delays in starting appropriate and effective treatments and in
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discontinuing non-effective treatments, the availability of sensitive and objective

biomarkers of developing pathology becomes increasingly important.

The majority of new medications are specifically targeted against

pathophysiological processes known to be relevant in MS, such as

neuroinflammation, myelin repair and neurodegeneration. The need for reliable

biomarkers here is twofold; firstly evidence of the effect of any intervention on

these processes, in order to confirm our understanding of its action, and secondly

an understanding of the relationship between developing pathology and the

associated clinical phenotype. The clinicoradiological paradox exposes important

gaps in our understanding of where the relevant pathology lies and without

knowledge of the biological processes through which drugs act, we are restricted

to a passive ‘watch-and-wait’ approach to drug development, waiting for

clinically-measurable long term outcomes in response to treatments, effectively

a ‘black box’ approach to neurology. With an ultimate goal of targeting drugs

against pathology, the need for relevant biomarkers is clear.

With wider relevance, beyond the goal of effective treatments for MS, the gaps

in our knowledge relating measurable pathology to clinical outcomes expose

significant limitations in our understanding of brain function, both in health

and disease, and specifically the anatomical and physiological basis for cognition.

Decades of research in neuropsychology have provided evidence linking specific

functions to their associated brain regions, but the continued limitations in our

ability to predict clinical outcomes from neuroimaging demonstrate how much of

the brain’s complexity yet remains incompletely understood or beyond the reach

of current investigative tools. Studying failure of a function can tell us much

about the brain in health.

i

Any approach to tackling the cognitive clinicoradiological paradox involves many

decisions regarding what is both relevant and possible to measure. Both cognition

and radiological assessment of the brain are complex areas and can be studied

at multiple levels. An explicit declaration of assumptions made in addressing

these areas is therefore necessary to understanding the advantages of specific

approaches and potential reasons for discrepancies with other research.

Decades of psychological research have established that cognition is best

considered as a multidimensional construct, composed of a number of distinct

functions with some degree of shared variance. Although certain patterns

of deficits are recognised as characteristic of MS, significant inter-individual
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variation exists, increasing the numbers needed to demonstrate the relationship

of cognitive performance to any biomarker or the effect of any intervention.

Impaired information processing speed is the most frequently detected deficit

in MS and has been proposed as the ‘core’ cognitive deficit [28], mediating

others through disruption to connections between critical cortical regions. A

biological interpretation to this model is clear in the context of a disease known

for its primary attack on the myelin sheathing of white matter axons. The most

common approaches to assessing cognition in MS, either single tests incorporating

processing speed or mixed ‘batteries’ of different tests allowing calculation

of an overall cognitive index, implicitly recognise this idea of separate but

linked cognitive functions. The recently proposed Brief International Cognitive

Assessment for Multiple Sclerosis (BICAMS) monitoring tool [36] is consistent

with this, proposing the use of up to three tests of common deficits, with priority

if time is limited given to assessment of processing speed through the Symbol

Digit Modality Test (SDMT).

Different approaches to cognitive assessment are appropriate in addressing

different research questions. Focussed assessment of particular domains will be

suitable in attempting to localise particular functions. Measures of distributed

functions or summary measures from multiple separate functions, more likely to

relate to the global disease burden, will have more relevance in disease monitoring

and development of disease-modifying treatments. The practicalities of cognitive

assessment should also not be ignored; the best evidence will come from tests

that are reliable, acceptable to patients and straightforward to administer.

Developing an imaging framework of disease burden is similarly complex and

can be approached from many angles. Imaging models may focus on anatomical

structures of interest, putative biomarkers of particular pathological processes,

or technique-based approaches may seek to capture only the sum total of

abnormality using a particular imaging modality without explicit interpretation of

the underlying mechanisms involved. Volumetric and semi-quantitative markers

can be extracted from routine imaging sequences and fully quantitative markers

are becoming available from advanced imaging techniques, such as magnetic

resonance spectroscopy and diffusion tensor imaging (DTI). The psychometric

performance and clinical relevance of these newer markers has yet to be

established. Nevertheless at face value an attractive approach may be the use of

multiple features, providing more relevant information than focussing on single

markers.

For the purposes of this thesis, a decision was made to address the relationship

between cognitive function and imaging features using measures relating to

the total burden of brain disease. Cognitive assessments were selected from
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the available datasets at the highest level, using a reliable and established

marker of information processing speed. Radiological assessment of the brain

was primarily from a structural perspective, aiming to capture quantitative and

semi-quantitative information from the largest possible brain region for which

reliable metrics are available, the cerebral white matter, using commonly available

imaging sequences. The potential for additional value in using quantitative

markers derived from DTI to assess microstructural abnormalities beyond the

resolution of routine imaging sequences was also considered.

i

Apparent from the systematic review process reported in Chapter 3 was the

vast volume of already existing literature addressing the issue of the relationship

between cognition and imaging in MS and the variability in the methodology of

its investigation. Variety has its advantages - one method may yield insight where

others fail - but it does not follow that all investigations are equally valid and it

remains the case that individual small studies must be interpreted with caution.

While many approaches may be relevant in addressing specific research aims, the

investigators’ model describing the hypothesised relationship between cognition

and imaging, together with consideration of the appropriate level of analysis,

was rarely explicitly stated. Significant gaps in the literature were identified

regarding the psychometric performance of the assessment methods used and

any consideration of a non-linear relationship between cognition and imaging

features.

In many cases specific cognitive tests were chosen to address particular research

interests. Where summary measures of cognitive performance were sought, there

was some evidence of moves towards the use of common tests and similar or

overlapping test batteries. This was far from the case in their interpretation and

derivation of scores for use in analysis. A lack of control or normative data was

not always acknowledged and even when available its interpretation was often

unclear. The recording of potential modifiers of cognitive performance, such

as medication use and level of education, was also highly variable, as were the

methods for its inclusion, if at all, in analyses. However, acknowledging the

methodological heterogeneity in cognitive assessment in the existing literature,

a gradual move towards harmonisation of testing does appear to be underway,

with the increased use of common tests and continuing validation work on the

BICAMS monitoring tool.
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Moves towards consensus in image analysis methods are less apparent. Scientific

progress relies on replication of key results and dependence on ‘in-house’ software

outputs that cannot be easily accessed by other groups is clearly not optimal,

potentially prohibiting smaller research groups from contributing to the field.

The most frequently found image analysis outputs were derived from software

requiring some degree of observer input and data on reproducibility of these

methods was extremely limited. Previously published data on the psychometric

attributes of particular software may exist but needs to be clearly cited, while

bearing in mind that variation is likely if applied to a new population, or used by

new operators. It is unclear whether the near silence surrounding measurement

error relates to an embarrassment regarding its disclosure, or confusion over the

‘correct’ method for its assessment. Either way it should not be allowed to hinder

progress.

Moves towards greater consensus in the MS image analysis community seem vital

and overdue, with clearer reporting of methodology a prerequisite. Uniformity

of methodology is not necessary as long as different softwares lead to the

same results. Enhanced awareness of the role of measurement error and

greater transparency in reporting of reproducibility metrics is key. With an

inherently highly heterogeneous disease, attenuation of potentially significant

results due to limited understanding of tool performance makes inefficient use

of resources. Wider availability of analysis tools would be beneficial, allowing

easier comparison between methods and accumulation of data regarding their

performance in different populations. This led to the recommendations [185]

that the development of standardised datasets should be prioritised to facilitate

method comparison and benchmarking. The equivalence of all segmentation

softwares remains to be established and comparison of methodologies may

highlight particular advantages. While preference should be given to use of widely

applicable and accessible software methods, restricting practice to a limited set of

analysis tools is not necessarily beneficial. Straightforward techniques should be

favoured, but discouraging innovation would risk missing out on insights arising

from exploration of newer techniques. Some features may still be best assessed

using non-automated methods, such as visual scores.

The overall effect size derived from the meta-analysis of the published literatures

suggested that variance in cognitive performance had not been fully accounted

for by measures of WMH burden. However concerns over methodological

heterogeneity meant this result was interpreted with caution. No study was

found considering a non-linear relationship. Re-evaluation of this relationship

between cognition and imaging measures of disease therefore seemed critical,

with appropriate levels of measurement both for cognition and imaging and using

metrics with clearly defined performance characteristics.
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i

Expert manual segmentation on imaging has become the accepted reference

standard for quantifying disease burden, however this should not be confused

with any claims to represent ‘ground truth’. Pathological specimen examination

may demonstrate certain features more clearly, but these studies will also

carry measurement error, be limited by availability of samples and may not be

applicable to the majority of cases of people living with MS. Other features may be

better demonstrated by in vivo imaging techniques and with robust measurement

will have greater potential for wider use in disease monitoring.

Manual segmentation is an imperfect tool, but remains the standard validation

procedure for new techniques in tissue segmentation. While this may seem a

pragmatic decision in the face of limited availability of pathological samples,

it may also support a misplaced belief in the stability of its outputs. Results

based on one manual segmentation may not match those performed elsewhere,

at different times or in different circumstances. The investigation reported in

Chapter 4 shows that significant shifts in measurements across a cohort can occur

even with a single observer, and large discrepancies can be found between two

observers with similar training.

There are many reasons why two manual segmentations may provide different

estimates of disease burden, both in terms of disease volume and spatial location.

Is the aim of segmentation to identify all areas of white matter that appear

abnormal, all those that are thought to represent a previous acute inflammatory

attack or simply the most hyperintense voxels? If only asked to identify voxels

of a certain brightness, then a computer is clearly going to be the best choice for

generating outputs, but the validity of this information is unclear. Expert human

observers may provide advantages in interpreting more subtle abnormalities and

normal variants and artefacts, as well as adjusting for changing background

intensity. Decisions on the significance of diffusely abnormal (‘dirty’) white

matter may be important in quantifying the totality of disease, but are unlikely to

be straightforward. The inherent subjectivity and resulting discordant measures

is hardly surprising.

Even with the most diligent approach to tackling reproducibility in manual

segmentation, the consistency offered by fully automated methods may make

them more appropriate for use in generating reliable biomarkers, particularly in

large cohort studies, although demonstrating this over time may be more difficult.

Where manual segmentation is used for direct comparison with phenotype

or for benchmarking a new technique, a greater awareness of the associated

measurement error is necessary. Transparency in reporting reproducibility
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measures, development of standard datasets and specification of observer training

should be encouraged.

i

Several of the earliest papers relating cognition to imaging changes identified in

the systematic review reported in Chapter 2 used visual rating scales in some

form, but these appear to have been largely abandoned in the more recent

literature in favour of volumetric outcomes. Visual rating scales have become

widely accepted in other conditions, particularly so for the white matter changes

associated with small vessel disease (SVD) and ageing; the data here suggest

that they may be useful in MS. An opportunity for using visual ratings as an

outcome of interest or a stratification tool is clear and presents many potential

advantages.

A limited number of imaging appearance categories, such as in the widely used

‘Fazekas’ scale for white matter changes in SVD, may seem too restrictive to fully

explore research findings. However given the issues surrounding reproducibility in

volumetric measures, described above, a false reliance on small changes in WMH

volume may be misleading. Visual ratings of white matter disease severity have

been found to show a high correlation with volumetric measures in both SVD [174]

and for MS in the work described in Chapter 5. The measurement tool used

should be fitted to the purpose and a decision on the use of volumetric or visual

rating measures may depend on the incremental change in WMH burden that

is considered relevant. Whether visual ratings are suitable for use as a research

outcome may depend on the sensitivity required, but clearly offer advantages, not

least time efficiency and ease of collaboration across sites.

Additional value from visual assessments may come from their ability to assess

more than one aspect of disease appearances. The heterogeneous manifestations

of MS, in terms of both the disease and the response of the central nervous

system, varying between people and over time, is unlikely to be fully captured in

a unidimensional outcome. There is an apparent disconnection between imaging

interest in the pattern and location of visible abnormalities in the earlier stages,

and the reductive, volumetric approach in established disease. Whether this

reflects a lack of confidence in the ability of any measurement tool to capture the

complexity of disease appearances, or merely a lack of knowledge of alternatives,

is unclear.

In the work described here, using the largest available cohort made up of people

with early and late stage disease, it appeared that a measure of lesion burden
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and an indicator of the presence of cavitation, i.e. more severe damage, were

both significant independent predictors of cognition. This work should however

be interpreted with caution, given its development in two cohorts with different

clinical characteristics as well as different imaging protocols, and will need

testing in further groups. If confirmed, this would suggest all WMHs should

not be considered equal and failure of remyelination may be a critical factor in

determining disability.

A final substantial advantage for visual ratings is their potential for translation:

between research and clinical work, between scanners, between centres and

countries. Although the potential for widespread use of a visual rating scale

in MS clearly exists, a significant obstacle will be standardisation. Individual

observers will always show variation in their assignment of scores to the countless

possible imaging appearances and methods must be found to both minimise and

quantify this variation. More work will be needed in the development of training

datasets for new raters and the effect of making more sample images available

for guidance. Given the limited number of sample images provided in the work

described here, the results are encouraging.

The visual rating work described in Chapter 5 was large for a reproducibility

study, but clearly needs testing in new and varied cohorts, with the involvement

of more observers. Larger studies will also be needed to show if any of the less

common features identified have relevance in their relationship to phenotype.

Additionally, the hierarchical structure for rating features as used here would

allow for alternative shorter assessments, and these may be more appropriate for

particular research purposes. Given the modest correlation consistently found

between imaging appearances and phenotype, a straightforward assessment of

WMH burden with a limited number of categories may prove sufficient for purpose

where this needs to be taken into account.

i

Where volumetric and spatial representations of the disease burden are needed,

the use of automated segmentation methods, such as the one presented here,

clearly offers potential. Consistent output measures may be obtainable in

large cohorts, avoiding the need for time consuming and subjective manual

segmentation. However the validity of any segmentation tool is more difficult

to establish and although consistent, a software output optimised to best

resemble a reference segmentation will be affected by the reliability of that

segmentation.
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Clarity in the literature over the ‘correct’ metric for demonstrating acceptable

reproducibility is not apparent. This may relate to confusion over the strengths

and weaknesses of different metrics or a reflection that different aspects of

reproducibility may be relevant in different situations. High sensitivity or

specificity does not necessarily mean a close fit to the reference segmentation

and the appropriate measurement tool may not necessarily be the most sensitive

one. Work towards a consensus approach in the image analysis community on

reporting metrics of agreement and reliability would be beneficial, remembering

that any of these will depend on the cohort in which the technique is tested. While

it would be impractical to retest all tools before each new use, an awareness of

how far they have been tested and in which cohorts is necessary to understanding

the validity of results gained.

In the absence of a true pathological reference for comparison, the retention of

a probabilistic element to the output may be beneficial in interpreting results

based on a segmentation, such as overlaid quantitative metrics. The process of

manual segmentation forces a binary decision on the normality of each voxel,

which may not be a realistic expectation of any imaging sequence. Without

greater availability of pathological samples for comparison, proving the validity

of either manual or automated segmentations will remains challenging, but the

removal of any subjective element to the process is clearly advantageous.

An alternative approach to establishing validity would be optimising the

segmentation process to maximise the association of its outputs with phenotype,

essentially allowing test scores or clinical findings to aid interpretation of imaging

features. While it may be possible to adjust segmentation parameters to increase

the association between cognitive and imaging findings, this would clearly require

validation in large cohorts and careful interpretation. If successful, this would lead

to a reframing of the clinicoradiological paradox - a higher proportion of variance

in cognitive outcomes may be explained using imaging outputs, but not those

with any easily interpretable pathological significance.

i

The results presented here based on routine imaging sequences, using both

the volumetric and semi-quantitative tools for disease burden analysis, showed

a stronger relationship with cognitive performance than the overall result of

the meta-analysis of the published literature. Many factors will have affected

this, but the measurement tool used and its optimisation appear relevant

considerations.
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Nevertheless, variance in cognitive performance is far from fully explained by

any measure of WMH burden. The difficulties described in defining consistent

edges to WMHs suggest the possibility that changes within the surrounding white

matter may also be relevant, leading to the current interest in using quantitative

imaging techniques to examine them.

i

If consideration of the inflammatory component of the disease burden in MS

cannot fully explain phenotypic changes, then a more detailed examination of

the neurodegenerative component appears a logical next step in appreciating

the total disease burden. If neurodegeneration progresses with at least partial

independence from inflammatory damage, then biomarkers of this process may

contribute additional explanatory power in predicting cognitive performance. The

work described in Chapter 8 used DTI-derived biomarkers of tissue microstructure

to quantify diffuse changes outwith the regions of inflammatory damage visible

on routine imaging.

A variety of metrics have been derived from DTI data and a focus on particular

tissue structures may be appropriate to different research questions. Disruptions

to microscopic tissue architecture are inferred from these markers but the choice

of the ‘correct’ metric to use is not always clear; all remain non-specific and

must be interpreted with caution. For the purposes of this thesis, the focus

was on capturing the diffuse and ill-defined changes within the white matter

that could not be quantified on routine imaging sequences. Straightforward

DTI metrics within the ‘normal-appearing’ white matter compartment, derived

using automated segmentation, were considered first. Tractography was used to

extract the most highly coherent white matter, recognising that tissue complexity,

particularly crossing fibres, may confound measurements elsewhere, and the

major white matter tracts may be highly relevant in influencing processing

speed. A novel metric, peak width of skeletonised mean diffusivity (PSMD),

derived using the Tract-Based Spatial Statistics (TBSS) procedure, was used

as an alternative method of assessing the most coherent tissue within the white

matter skeleton and summarising the spread of mean diffusivity values rather than

any average measure. Where feasible, imaging tools which are as close to fully

automated as possible offer clear advantages and PSMD has been proposed with

a fully automated processing pipeline freely and publicly available for ongoing

evaluation. The results here are thought to be its first use in the context of

MS.
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The DTI-derived metrics tested were found to show a range of values across

the cohort with the majority of these correlating with a marker of cognitive

performance. However, no correlation was stronger than that found for measures

of WMH volume and no additional value was found within models predicting

cognitive performance from imaging and non-imaging data.

Nowhere in this work, with the possible exception of the visual rating assessment,

has it been possible to show that using two measures of white matter disease

severity is ever better than one, in determining cognitive performance. The

high correlations between all markers of disease, including those interpreted to

represent the inflammatory and neurodegenerative components, mean that very

large cohorts would be needed to show any separate effects from each. While

they may have separate effects, it is possible that one pathological component

is of greater importance in determining cognitive function and whichever we

attempt to measure is providing a surrogate marker for it. The work here

provides no evidence to reject a disease model in which inflammatory damage

is the driver for diffuse white matter degeneration and together these lead to a

decline in cognitive performance. In a wider context, reports of exploratory uses

of advanced imaging techniques must ensure a description of their covariance with

more straightforward and established measures of disease burden.

i

White matter pathology, as detectable by current imaging techniques, accounts

for only a small proportion of the variance found in cognitive performance of

people with MS. This prompts a reconsideration of whether the relationship

between pathology and cognition has been addressed within the appropriate

framework and using the optimal tools.

Given that many cognitive functions show regional localisation, the decision

of which outcome to use may be highly relevant. All analysis presented in

this thesis is based on an assumption that information processing speed is a

distributed function, reliant on widespread white matter integrity. The SDMT is

straightforward, quick and unlikely to be affected by physical disability or fatigue.

It has recently been proposed as the single most useful test for the BICAMS.

However an alternative approach could be the use of multiple cognitive tests and a

method of dimension reduction, such as factor analysis, for extracting a marker of

overall performance. This may be advantageous, but is likely to be a more lengthy

and resource intensive procedure, requiring specialised skills and potentially

limiting participation and applicability. As with all tests, the attenuating effect
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of poor reliability on observed correlations with other disease-related variables

must be considered.

Cerebral white matter was selected for study here as the structural unit of interest

relevant to distributed cognitive function and the value in disease markers derived

from structural imaging techniques for this region was considered. This leaves

open the question of how far white matter pathology can be considered to be

fully characterised by these markers and whether it is necessary to consider

other structures, for instance cerebellum, deep nuclei and cortical grey matter, in

searching for pathological correlates of cognitive performance. A trend towards a

significant improvement in model fit was found when adding total brain volume

rather than just white matter volume as a predictor, which would support

this.

The inherently multicontrast nature of magnetic resonance imaging (MRI)

suggests that any unidimensional measure extracted will be limited in the

representation it provides and this seems even more likely when dealing with

a complex and highly variable disease; imaging features are another aspect of MS

to show its characteristic heterogeneity. While summarising all this variability

into practical research outcomes may seem unfeasible, the retreat to only using

unidimensional WMH volume may be too simplistic. The assessment of full and

partial lesion cavitation considered in Chapter 7 acknowledged that WMH volume

alone is a crude marker of pathology, encompassing a range of degrees of tissue

damage. The model fit improved with this addition of cavitation presence as a

predictor, but this result should be interpreted with caution given its reliance on

imaging data from two very different cohorts.

Additional tissue characterisation, such as that derived from advanced techniques

including magnetisation transfer imaging and magnetic resonance spectroscopy,

may be relevant and necessary in determining the total disease burden. Beyond

the resolution of all current in vivo imaging techniques are pathological and

adaptive synaptic changes, with information about these inferred on a much larger

scale by functional MRI techniques. Adaptive changes are known to occur in MS

and this capacity for neural plasticity may vary greatly between individuals and

across the disease course.

A large number of non-disease variables, such as age, education and medication,

are known to affect performance in cognitive tests. As far as possible these have

been taken into account in the analyses described, but the data available was far

from complete and a greater awareness of the need for considering these factors

is clearly necessary. No consensus opinion on a full group of variables affecting

cognitive performance is yet available and a list of variables to consider may grow

as research on this topic develops. It is possible that factors such as fatigue and
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motivation at the time of testing that are very difficult to measure may be highly

influential on cognitive outcomes. Given the incomplete assessment of cognitive

modifiers here, perhaps a correlation of test scores and WMH volume of close to

0.5 is higher than might be expected, and whether this can be improved in more

complete datasets should be investigated.

i

The most straightforward methods for examining the relationship between

two numerical variables are tests of their linear association, but there is no

fundamental reason regarding the neural basis for cognitive performance why this

should be the case. Compensatory neural reorganisation is found in many brain

diseases and there is evidence from functional imaging to support its occurrence

in MS. Repair processes can take place to some extent, possibly up to the point at

which recruitment of new and functional oligodendrocytes is exhausted. Network

redundancy may also be built into the brain, explaining the accumulation of

‘silent’ inflammatory lesions without any recognised clinical event. These factors

make it more plausible that a certain degree of pathology can exist without any

associated deterioration of performance in skills relying on widespread neuronal

integrity. The model of a ‘dose-response’ curve may be more appropriate than a

linear relationship, with a decline in information processing speed only occurring

above a certain level of disease burden.

The model of a non-linear relationship between WMHs and cognitive performance

is supported by the work presented here, although further investigation of this

possibility is clearly required. The varying effect sizes reported in the published

literature (see Chapter 3) appeared partly related to the magnitude of the WMH

burden itself, greater effect sizes being reported in cohorts with overall larger

volumes of disease. In the MS-SMART cohort, a group of individuals with

established disease and a wide range of WMH volumes, this also appeared to be

the case, with a steady decline in cognitive performance associated with WMHs

only at higher levels.

The DTI-derived data also supports the idea of a ‘threshold’ effect of WMHs.

Using the novel marker PSMD to measure the spread of MD values across

the white matter skeleton, there was tentative evidence that this spread is

relatively stable, and similar to published control populations, up to a certain

WMH volume. Beyond this, PSMD increased, suggesting diffuse damage to

the white matter, and these values were associated with declining cognitive

performance.
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If this non-linear effect of disease burden on phenotype is confirmed, the

consequences may be important. It would provide support for aggressive

treatment approaches in the early disease stages, with an aim of preventing the

disease burden reaching a threshold at which compensatory mechanisms and/or

repair processes are no longer adequate to prevent disability accumulation. On a

more prosaic level, a dynamic relationship between disease burden and phenotype

further reinforces the need for published research to provide full descriptions of

cohorts studied, particularly their WMH burden. Results should be interpreted

only with reference to people at similar disease stages.

i

Harmonisation of standardised cognitive assessments in MS has been proposed

and widespread validation studies of these tests are underway. A similar consensus

in the approach to image analysis methodology and its reporting is not yet

apparent. Heterogeneity in research methods for investigating this heterogeneous

disease adds to the confusion in the overwhelming body of published research

and is unlikely to indicate the most efficient use of resources. Encouraging the

reporting of reliability metrics for all measurement tools used is a critical first step

and an understanding of the role of measurement error in attenuating observed

results will guide correct interpretation of future results.

In defining a basic model linking measures of pathology with cognition, further

work on identifying all potential modifiers of cognitive performance, including

those unrelated to disease burden, is necessary. Recording of variables already

known to be relevant should become standard along with their consideration as

part of any analysis. Different factors may be critical at different disease stages

and results should be extrapolated to new cohorts with caution.

In considering where the remainder of the variation in imaging correlates of

cognitive performance lies, optimisation of measurement tools is vital. Synthesis

of markers derived using different imaging techniques, such as multimodal white

and grey matter assessment, may yet prove useful, although the advanced

imaging markers tested here were not shown to carry any additional benefit to

routine imaging markers in terms of predicting cognitive outcomes. A major

breakthrough in understanding cognitive function in MS may await advances in

imaging that can quantify brain architecture at the synaptic level.

Even with optimised measurements, the relationship to cognitive outcomes

is unlikely to be straightforward and system redundancy, capacity for repair

and reorganisation are possibilities requiring further investigation. Sources of
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variation beyond the reach of current in vivo imaging techniques, such as synaptic

and molecular adaptation may be necessary considerations in producing a closer

approximation to the true burden of disease burden. Hidden capacities of the

human nervous system may allow the cognitive clinicoradiological paradox to

remain for the foreseeable future.
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Appendix A

Protocol for systematic review of

relationship between cognitive

performance and total white

matter lesion burden

AIM

To systematically review the published evidence

describing the relationship between standard structural

MRI measures of white matter lesion burden in people

with multiple sclerosis and cognitive status.

DATABASES

SEARCHED

• PubMed

• ISI Web of Knowledge

• Embase

SEARCH TERMS

• ‘multiple sclerosis’ and

• ‘cognitive’ or ‘cognition’ and

• ‘magnetic resonance imaging’ or ‘MRI’ or ‘MR

imaging’

SEARCH FILTERS

• Articles published in the English language

• Research using human subjects

• No date restriction
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SCREENING

OF

ABSTRACTS &

PAPERS:

ELIGIBILITY

CRITERIA

• MS

• Cognition

• MRI

• Primary literature (reviews and data published only

in abstract form excluded)

• Study of adult patients only (age ≥ 18 years)

• Neither including nor restricted to clinically isolated

syndromes

• Not a duplicate publication

• Not presenting previously published data

• Contemporaneous capture of imaging and cognitive

data

• Not subsequently retracted

• Primary aim of the study is to explore the

relationship of MRI metrics for lesions and

cognition

ADDITIONAL

ASCERTAINMENT

• Screening of references from review articles

identified in the initial search.

• Hand search of archives of the journals Neurology,

Multiple Sclerosis and the American Journal of

Neuroradiology for previous ten years

178



EXTRACTED

METRICS

• Study quality assessment (see Appendix C), based

on STROBE guidelines

• Study design, number of participants, interval

between cognition & imaging

• Participant characteristics: age, sex, disease

phenotype

• Cognitive testing methods: tests/batteries used;

blinding, identity and training of tester; use of

normative data; recording of potential confounders

- age, sex, education level, premorbid IQ, cognitive

leisure activities, affective disorders and drug

history

• Image acquisition: magnet field strength, details of

sequences performed

• Image analysis methods: preprocessing steps;

sequence used to measure lesion burden; lesion

quantification technique; softwares used; blinding,

identity and training of analyst; reliability measures

• Statistical analysis methods; controlling for

confounders

• Summary statistics for lesion burden

• Main results: unadjusted and/or adjusted
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Appendix B

Record of search strategy for

systematic review of literature

Medline

Searched via OVID platform, on 01/07/15, with 671 references retrieved. The

search strategy is shown below.

Searches Results

1 multiple sclerosis.mp. or Multiple Sclerosis/ 56333

2 magnetic resonance imaging.mp. or Magnetic Resonance Imaging/ 353245

3 mri.mp. 144054

4 mr imaging.mp. 32694

5 2 or 3 or 4 382327

6 cognitive.mp. or Cognitive Reserve/ or Delirium, Dementia,

Amnestic, Cognitive Disorders/ or Cognitive Science/ or Mild Cognitive

Impairment/

208670

7 Cognition Disorders/ or Cognition/ or cognition.mp. 133903

8 6 or 7 260390

9 1 and 5 and 8 742

10 limit 9 to english language 672

11 limit 10 to retracted publication 1

12 10 not 11 671
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Embase

Searched via OVID platform, on 01/07/15, with 1145 references retrieved. The

search strategy is shown below.

Searches Results

1 multiple sclerosis.mp. or multiple sclerosis/ 94203

3 cognition/ or cogniti*.mp. 426368

4 1 and 2 and 3 1844

5 limit 4 to english language 1755

6 limit 5 to (conference abstract or conference paper or conference

proceeding or ‘conference review’)

610

7 5 not 6 1145

Web of Science

Searched on 01/07/15, with 1250 references retrieved. The search strategy is

shown below.

Searches Results

1 TOPIC: (magnetic resonance imaging) OR TOPIC: (mri) OR TOPIC:

(mr imaging)

343471

2 TOPIC: (cogniti*) 426125

3 TOPIC: (multiple sclerosis) 90559

4 3 AND 2 AND 1 1396

5 3 AND 2 AND 1 Refined by: DOCUMENT TYPES: (ARTICLE OR

EDITORIAL MATERIAL OR REVIEW)

1324

6 3 AND 2 AND 1 Refined by: DOCUMENT TYPES: (ARTICLE

OR EDITORIAL MATERIAL OR REVIEW) AND LANGUAGES:

(ENGLISH)

1250
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PubMed

To ensure recent papers not yet indexed on Medline were also included, the

PubMed database was also searched using the same search terms, with 816

references retrieved. The search strategy is shown below.

((((((magnetic resonance imaging) OR MRI)) OR MR imaging)) AND

((cognition) OR cognitive)) AND multiple sclerosis AND (English[lang])
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Appendix C

Quality assessment criteria used

in systematic review of

literature

The quality assessment criteria described below were modified from the STROBE

(Strengthening the Reporting of Observational studies in Epidemiology) [112]

checklist.

Where all key points are met, 1 point is awarded. Where the study meets most

but not all of the applicable criteria, or only part of the relevant information is

provided, a score of 0.5 is awarded.

Introduction

OBJECTIVE: State specific objectives, including any prespecified

hypotheses.

The study should have a clearly stated objective mentioning white matter lesion

volume as a metric of interest (awarded 0.5).

Full credit will only be given where the objective specifies what imaging

sequence(s) will be used to measured lesion volume and what cognitive measure

is used to examine the relationship between the two outcomes.

[0] [0.5] [1]

Methods

STUDY DESIGN: Present key elements of study design early in the paper.
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The study design should be presented clearly, i.e. retrospective or prospective

recruitment, case-control studies, or a sub-study of part of a larger study.

Prospective recruitment to address the study objective is considered preferable

and a clear statement of this is needed for 1 point. A retrospective study design

will be awarded 0.5.

Where participants are taken from a cohort being used for multiple (sub)studies, a

maximum of 0.5 can be awarded, unless cognition and imaging relationships are

clearly the primary aim of the overall study and cross-sectional baseline data

are being used. Enough detail should be provided to ensure results are not

duplications of other published work.

[0] [0.5] [1]

SETTING: Describe the setting, locations, and relevant dates, including periods

of recruitment, exposure, follow-up, and data collection.

The dates of recruitment and testing should be provided. The delay between

cognitive testing and imaging should be specified and less than 6 months. Both

the above criteria are necessary for 1 point, either alone will be awarded 0.5.

A description of the clinical setting (e.g. tertiary referral centre, multiple

district general hospitals etc) is considered optimal, but is not necessary for full

credit.

[0] [0.5] [1]

PARTICIPANTS: Give the eligibility criteria, and the sources and methods of

selection of participants.

The authors should have clearly stipulated the criteria they used to include (and

if applicable, to exclude) subjects into the study. A positive statement of who

was sought for recruitment (whether any person with MS, or e.g. only people

with a particular clinical phenotype) with relevant exclusion criteria is necessary

for 1 mark.

Participants should not be excluded solely on the basis of higher levels of physical

or cognitive disability, and where recruited subjects were unable to tolerate MRI

this should be recorded.

[0] [0.5] [1]

The recruitment should be either a consecutive or random sample of eligible

participants. Where this is unclear, the study will be awarded 0.

[0] [1]
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VARIABLES: Clearly define all outcomes, exposures, predictors, potential

confounders, and effect modifiers. Give diagnostic criteria, if applicable.

The cognitive tests performed should be specified. Whether results were

interpreted relative to a control population or published norms should be clearly

stated/described.

The definition of total lesion volume should be clearly defined, including

the brain regions covered (whether deep grey matter included or excluded,

whether posterior fossa included and how defined), the MRI sequence used for

measurement and whether the results were adjusted for total (estimated) brain

volume.

Clear definitions as above are required for both imaging and cognitive outcomes

for a score of 1. Where one of these is unclear, a maximum of 0.5 will be

awarded.

[0] [0.5] [1]

Potential confounding factors, including age, sex, education, drugs, pre-morbid

IQ, pre-morbid cognitive leisure activities & affective disorders, should be

measured. A score of 1 will be awarded where all these are identified, and 0.5 if

≥4 of them.

[0] [0.5] [1]

DATA SOURCES/MEASUREMENT: For each variable of interest, give sources

of data and details of methods of assessment (measurement). Describe

comparability of assessment methods if there is more than one group.

The person(s) performing the cognitive testing should be identified, with their

level of training/experience.

Enough data should be provided to replicate the imaging sequences. This should

include at least the type of sequence performed (e.g. spin echo, gradient echo),

slice thickness and inter-slice interval, and preferably the pulse parameters (TE,

TR, flip angle, FOV, matrix size), number of slices and magnet strength.

The method for measuring/estimating lesion volume should be clearly described,

with details of the software package used if applicable. The person(s) performing

the analysis should be identified with their level of training/experience. Measures

of intra-/inter-observer variability should be provided.

All of the above criteria must be met for a score of 1; where ≥50%, but not all,

of the relevant information is presented, the study will be awarded 0.5.

[0] [0.5] [1]
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BIAS: Describe any efforts to address potential sources of bias.

Cognitive testing and image analysis should both be performed by individuals

blind to the results of the other and this should be clearly stated. Where there

is only a statement that the image analysis was performed blind to the cognitive

results, 0.5 will be awarded, otherwise the study will be scored 0.

Ideally the image analysis and cognitive testing should be carried out blind to

(as far as possible in the case of cognitive testing) all data on clinical status and

confounding factors.

[0] [0.5] [1]

STUDY SIZE: Explain how the study size was arrived at.

A calculation of study size should be provided.

[0] [1]

QUANTITATIVE VARIABLES: Explain how quantitative variables were handled

in the analyses. If applicable, describe which groupings were chosen and

why.

Ideally, the full range of cognitive scores and lesion volumes will be used for

the analysis, with or without transformation to Z-scores. This should be clearly

stated and correlations using the full range of values or correlations by rank will

be awarded 1 point.

If participants are categorised into groups by results of cognitive status (or, less

likely, lesion volumes) the justification of the group definitions should be provided

and boundaries pre-specified. A maximum of 0.5 will be awarded where outcomes

are dichotomised (or otherwise grouped) for analysis.

[0] [0.5] [1]

STATISTICAL METHODS: (a) Describe all statistical methods, including those

used to control for confounding. (b) Describe any methods used to examine

subgroups and interactions. (c) Explain how missing data were addressed. (d)

If applicable, describe analytical methods taking account of sampling strategy. (e)

Describe any sensitivity analyses.

Statistical methods should be clearly described, ideally correlations between

scores of cognition and lesion volume.

Unadjusted correlations should be calculated prior to controlling for potential

confounders. If either unadjusted correlations or controlling for confounders is

not included, a maximum of 0.5 can be awarded.

[0] [0.5] [1]
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Results

PARTICIPANTS: (a) Report numbers of individuals at each stage of study,

e.g. numbers potentially eligible, examined for eligibility, confirmed eligible,

included in the study, completing follow-up, and analysed. (b) Give reasons for

non-participation at each stage. (c) Consider use of a flow diagram.

Participants recruited but not completing either cognitive testing or imaging

should be specified. If this is unclear, a score of 0 is awarded.

[0] [1]

DESCRIPTIVE DATA: (a) Give characteristics of study participants (e.g.

demographic, clinical, social) and information on exposures and potential

confounders. (b) Indicate number of participants with missing data for each

variable of interest.

Summary statistics for basic demographic data (age, sex) and MS phenotype

should be provided. If this is not given, a score of 0 will be awarded.

Information on recent steroid use and disease-modifying therapy is considered

necessary for a score of 1, but not full results of all potential confounders. Ideally

these would be provided in supplementary material.

If results of multiple cognitive tests are used for analysis, the number of

participants with incomplete data for each test should be given. If this is unclear,

a maximum of 0.5 can be awarded.

[0] [0.5] [1]

OUTCOME DATA: Report numbers of outcome events or summary

measures.

Summary statistics should be presented for both cognitive outcomes and lesion

volumes. These should include measures of the dispersion as well as central

tendency. Where this is incomplete, e.g. only the numbers of participants

categorised as cognitively impaired versus not impaired are provided, a maximum

score of 0.5 can be awarded.

[0] [0.5] [1]

MAIN RESULTS: (a) Give unadjusted estimates and, if applicable,

confounder-adjusted estimates and their precision (e.g., 95% confidence interval).

Make clear which confounders were adjusted for and why they were included. (b)

Report category boundaries when continuous variables were categorised. (c) If

relevant, consider translating estimates of relative risk into absolute risk for a

meaningful time period.
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Unadjusted outcomes should be presented for cognitive data and, if applicable,

confounder-adjusted outcomes. A measure of their precision should be

provided.

[0] [0.5] [1]
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Appendix D

Table of cognitive tests and

scoring schemes used in

individual studies reviewed

Paper Battery No.

of

tests

SDMT/

PASAT

Controls Normative

data

Definition

of cognitive

impairment

Sacco

2015

BRB-N,

Stroop

test

8 Both

(PASAT

2s &

3s)

Y Y (Italian

population)

≥ 2 SD below

normative mean

on ≥ 2 tests,

including one

memory test

Yildiz

2014

‘MUSIC’ 5 N N N Overall score

< 20/30

Laffon

2014

PASAT 1 PASAT

3s

Y Y (French

population)

≥ 2 SD below

normative mean

Niino

2014

BRB-N 7 Both

(PASAT

2s &

3s)

Y N N/A

Sbardella

2013

PASAT 1 PASAT

2s &3s

Y Y (Published

reference

data)

N/A

Mike

2013

‘Theory

of Mind’

3 N Y N (Direct

comparison

with controls)

N/A

Francis

2013

MACFIMS 7 Both N Y (Published

reference

data)

> 1.5 SD below

normative mean on

≥ 2 tests

Rossi

2012

BRB-N 8 Both N Y (Italian

population)

≥ 2 SD below

normative mean on

≥ 2 subtests
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Paper Battery No.

of

tests

SDMT/

PASAT

Controls Normative

data

Definition

of cognitive

impairment

Mesaros

2012

BRB-N 8 Both N Y (Published

reference

data)

≥ 2 SD below

mean on 1 subtest

& ≥ 1.5 SD

on another; or

≥ 1.5SD below

mean on ≥ 3 tests.

For individual

tests ≥ 1.5 SD

below mean.

Lund

2012

Unnamed 32 N Unclear Y (Controls

unspecified)

N/A

Bomboi

2011

MACFIMS

(without

PASAT)

6 SDMT Y N (Direct

comparison

with matched

controls)

N/A

Mike

2011

MACFIMS 7 Both

(PASAT

2s)

N N N/A

Akbar

2010

BRB-N

(without

SDMT)

4 PASAT N Y (From

published

manual)

≤ 5th percentile on

≥ 2 subtests

Heesen

2010

SDMT

(screening);

then

further

battery

7 Both

(SDMT

for

screening)

N Unclear SDMT: above

mean or ≥ 1.5 SD

below mean

Patti

2009

BRB-N,

Stroop

10 Both

(PASAT

2s &

3s)

N Y(Italian

population)

≥ 1 SD below

mean on ≥ 3

subtests 1

Krause

2009

Facial

expression

tests

(from

Florida

Affect

Battery)

1 N Y Y (Controls) ≥ 2 SD below

control mean

Sanchez

2008

Unnamed > 20 Both Y Y (Controls) Overall cognitive

index ≤5th

percentile of

control data

Rovaris

2008

Unnamed > 10 PASAT

3s

N Y (Italian

population)

Scores of 0 on ≥ 3

subtests

Karlinska

2008

Unnamed 5 N Y N Unclear

1Effect of using other definitions considered, e.g. 5th percentile cut-off

192



Paper Battery No.

of

tests

SDMT/

PASAT

Controls Normative

data

Definition

of cognitive

impairment

Lin 2008 PASAT 1 PASAT

3s

Y Y (Published

reference

data)

≥ 2 SD below

normative mean

Amato

2008

BRB-N,

Stroop

6 Both N Y (Italian

population)

≥ 2 SD below

mean on ≥ 3 tests

Houtchens

2007

MACFIMS 6 Both

(PASAT

2s &

3s)

Y N N/A

Parmenter

2007

Frontal

function

2 N Y N N/A

Lazeron

2006

Computer

tests

‘ANT’

8 N N Y (Normative

data)

N/A

Benedict

2006

Unnamed 4 Both Y Y (Previously

published

control data)

≥ 2 SD below

mean on 1 test

and ≥ 1.5 SD on

another, or ≥ 1.5

SD below mean on

≥ 3 tests.

Lazeron

2005

BRB-N

(+/-

substitution

for SRT)

5 Both

(PASAT

2s &

3s)

N Y (Published

reference

data)

Overall scores ≥ 2

SD below reference

mean

Deloire

2005

BRB-N

+

10 B

(PASAT

2s &

3s)

Y Y (Controls) ≤ 5th percentile of

control data

Archibald

2004

Information

processing

2 N N Y (Previously

published

control data)

N/A

Benedict

2004

MACFIMS

(modified)

8 Both

(PASAT

2s &

3s)

Y N N/A

Christ-

odoulou

2003

BRB-N

(modified)

6 Both

(PASAT

2s &

3s)

N Y (published

data and

previous

study

subjects)

N/A

Bermel

2002

SDMT 1 SDMT N N N/A

Zivadinov

2001

Unnamed 9 PASAT Y Y(Partly

published

cut-offs,

partly control

data)

Abnormal result

on ≥ 2 tests: ≥ 2

SD below control

mean or published

cut-off
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Paper Battery No.

of

tests

SDMT/

PASAT

Controls Normative

data

Definition

of cognitive

impairment

Nocentini

2001

Unnamed 20 SDMT Y N Unclear

Kalkers

2001

PASAT 1 PASAT

3s

N Y (Published

reference

population,

partly

overlapping)

N/A

Snyder

2001

PASAT 1 PASAT

(4

speeds)

N N N/A

Comi

1999

Unnamed

(frontal)

6 N N Y (Italian

population

data or

previous

controls)

Each test:

Published cut-offs

or ≤ 5th/10th

percentile of

controls. Overall

groups: either ≥ 3

abnormal tests, or

all normal

Camp

1999

BRB-N

(modified)

6 Both Y Y (Controls) N/A

Sun 1998 Dementia

screening

scales

2

screening

scales

N N N N/A

Rovaris

1998

Unnamed 10 PASAT

(2s

&3s)

N N Unclear:

Abnormal results

in ≥ 2 tests

Hohol

1997

BRB-N 4 SDMT N N (Published

guidelines)

N/A

Patti

1995

Unnamed 10+ N N N Unclear

Comi

1995

Unnamed 10+ N N Y (Italian

population)

≥ 3 tests ≥ 2 SD

below mean

Moller

1994

‘SIDAM’

dementia

screening

scale

Unclear N N N ≤ 46/55

Swirsky-

Sacchetti

1992

Unnamed 8 N N Y (Partly,

published

normative

data)

N/A

Ron 1991 Unnamed 10+ N Y Y (Controls) N/A

Pozzilli

1991

Unnamed N N Y Y (Controls) ≥ 2 SD below

control mean on ≥
2 tests

Izquierdo

1991

Unnamed 5+ N Unclear N N/A
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Paper Battery No.

of

tests

SDMT/

PASAT

Controls Normative

data

Definition

of cognitive

impairment

Anzola

1990

Unnamed 9 N N Y (Published

norms)

N/A

Franklin

1988

Unnamed 10+ SDMT Y Y (Previous

standardisation

sample)

≤16th percentile of

normative data

Huber

1987

Unnamed 8 N Y N ≥ 1,2 or 3 SD

below control

mean

Summary of approaches to cognitive testing in all included

papers in systematic review (Chapter 3). Y: Yes; N: No; N/A:

Not applicable; BRB-N: Brief Repeatable Battery; MACFIMS:

Minimal Assessment of Cognitive Function in Multiple Sclerosis;

PASAT: Paced Auditory Serial Addition Test; SD: Standard

deviations; SDMT: Symbol Digit Modality Test; SRT: Selective

reminding test
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Appendix E

Data collection form used in

initial pilot study of visual rating

scale for MS imaging features
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 Scan ID:     Reader: 

MS Visual rating  240815 

 
LESION BURDEN 
 
 

T2/FLAIR white matter lesions  

        based on Fazekas scoring  
 
Lobar scores (images on left for guidance) 
0: None 
1: Discrete lesions 
2: Beginning of confluence or  >5 non-
confluent lesions 
3: Confluent lesions  
 
Periventricular scores 
0: None 
1: Caps / pencil-thin lining around ventricles 
2: Smooth halo around ventricles 
3: Irregular periventricular hyperintensities 
extending into deep white matter 
 
Fazekas, F, et al. AJR 1987 149(2): 351-6. 
 

 
Juxtacortical and cortical lesions :  Number of lesions in each lobe which abut or involve cortex. 
 Scoring:  0: None  1: 1-2  2: 3-4  3: ≥5 
 
Cavitated lesions: Number of cavitated lesions. (Defined as lesions which are close to CSF signal on all sequences.) 
 Scoring:  0: None  1: 1-2  2: 3-4  3: ≥5 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 T2 / 
FLAIR 
lesion 
burden 

 Cavit-
ation 

 

 Juxta-
cortical 
lesions  

Cortical 
lesions 

Lobar white 
matter 

       

   Frontal R       
L       

   Parietal R       
L       

   Temporal R       
L       

   Occipital R       
L       

   Insula R       
L       

        
Periventricular 
white matter 

R       
L       

Corpus callosum       
Basal ganglia R       

L       
Brainstem       
Cerebellar 
peduncles 

R       
L       

Cerebellar 
hemispheres 

R       
L       

! ! !

! ! !
2 1 3 

All ratings 0 – 3.  Basal ganglia score to include striatum, globus pallidus, thalamus and internal capsule. 
 

Lobes definitions: 
Frontal: anterior to 
central sulcus 
 
Parietal: anterior to 
parieto-occipital sulcus; 
superior to posterior 
extent of Sylvian fissure 
 
Occipital: Posterior to 
parieto-occipital sulcus 
and temporo-occipital 
incisure 
 
Temporal: lateral to 
Sylvian fissure; anterior 
to temporo-occipital 
incisure. 
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 Scan ID:     Reader: 

MS Visual rating  240815 

 
ATROPHY 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ENLARGED PERIVASCULAR SPACES 
Defined as small, sharply delineated structures of CSF intensity 
measuring up to 3mm and following the course of perforating vessels. 
All relevant slices for the anatomical area should be reviewed on T2 
weighted imaging and the highest number on a slice recorded.  
 
0: none    1: = <10    2: 11-20    3: 21-40    4: >40 
 
  as per Potter, G.M., et al. Int J Stroke, 2015. 10(3): 376-81 
 
Is there focal perivascular space enlargement related to any lesion? YES/NO 
If yes, where?             
 
 
ANY OTHER FINDINGS/COMMENTS  
 

Cerebral! Deep  
Superficial  

Corpus callosum  
Infratentorial  

 Right  Left 
Basal 
ganglia 

  

Centrum 
semiovale 

  

0 1 2 3 

0 1 2 3 

Deep 

Superficial 

Atrophy scoring (0 – 3). This should 
be rated without reference to age. 
Images on right for guidance.  
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Appendix F

Data collection form used in

second pilot study and validation

of visual rating scale for MS

imaging features
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Reader: Subject ID:

T2/FLAIR Lesion burden

Deep white matter (global and lobar scores)

0. Absent
1. Discrete lesions
2. Intermediate appearances
3. Confluent white matter abnormality

Periventricular lesions

0. Absent
1. Caps/thin lining around ventricles
2. Intermediate appearances
3. Irregular hyperintensities extending into deep

white matter.

(Based on Fazekas, F et al. AJR (1987); 149(2):351-6.)

Please score all regions (other than periventricular white matter) with reference to the sample images and descriptions
provided for deep white matter, choosing the category which most closely matches scan appearances.

Lesion Cavitated Number/ (Juxta-)cortical Number/

Region Side score lesions?⇤ type lesions? type

[0 - 3] [Y/N] [F/P] [Y/N] [J/C/both]

Example lobe R 2 Y 2P Y 1J

Global impression

Deep white matter
R

L

Periventricular
white matter

R

L

By region

Frontal lobe
R

L

Parietal lobe
R

L

Temporal lobe
R

L

Occipital lobe
R

L

Insula
R

L

Corpus callosum

Basal ganglia
R

L

Brainstem

Cerebellar
peduncles

R

L

Cerebellar
hemispheres

R

L

⇤Reference pictures for lesion cavitation on page 2.
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Reader: Subject ID:

Cavitation

F: A lesion appears fully cavitated, with its
major part having signal characteristics
similar to CSF on all sequences.

P: A lesion appears partly cavitated. This
may include the internal structure appear-
ing lace-like, or only a small portion (<
50%) returning CSF signal.

Atrophy

Deep

Superficial

Region Score [0 - 3]

Cerebral Deep

hemispheres superficial

Corpus callosum

Posterior fossa

The images on the left are provided for
guidance in rating cerebral atrophy.
The corpus callosum should be rated on the
mid-sagittal image.

Enlarged perivascular spaces

Defined as small, sharply delineated
structures of CSF intensity, up to 3mm
in diameter and following the course of
perforating vessels.
All relevant slices for the anatomical area
should be reviewed on T2w imaging and
the highest number on a slice recorded.

Region Score [0 - 4]

Basal R

ganglia L

Centrum R

semiovale L

0: none 1: < 10 2: 11 - 20 3: 21 - 40 4: > 40.

(Rating as per Potter, G.M., et al. Int. J. Stroke, 2015. 10(3): 376-81)

Is there focal perivascular space enlargement related to any lesion [Y/N] ?

If yes, give location:

Any other findings/comments?

Total assessment time?
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Appendix G

‘Bubble’ plots showing

inter-rater agreement in second

pilot study of visual rating scale

for MS imaging features
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Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Deep WM (R)

Scan ID
Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Deep WM (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Perivent. WM (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Perivent. WM (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Frontal (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Frontal (L)
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Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Parietal (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Parietal (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Temporal (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Temporal (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Occipital (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Occipital (L)
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Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Insular (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Insular (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Corpus callosum

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Brainstem

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Basal ganglia (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Basal ganglia (L)
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Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Cerebellar peduncles (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Cerebellar peduncles (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Cerebellar hemispheres (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Cerebellar hemispheres (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Atrophy (Deep)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Atrophy (Superficial)
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Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Atrophy (Corpus callosum)

Scan ID
Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

Atrophy (Posterior fossa)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

4

EPVS (Basal ganglia) (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

4

EPVS (Basal ganglia) (L)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

4

EPVS (Centrum semiovale) (R)

Scan ID

Sc
or
e

5 1 2 6 7 10 11 3 8 4 9 12

0

1

2

3

4

EPVS (Centrum semiovale) (L)
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