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Abstract

The growth and development of the ovarian follicle is a long and complex

process. Throughout this process the oocyte maintains close contact with the

surrounding somatic cells and through bi-directional communication acquires the

developmental programs necessary for fertilisation and embryonic development.

During the latter phase of follicular development the signals between oocyte and the

somatic cells are dependent on stimulation by the gonadotrophin hormones, FSH and

LH. The precise and individual role that FSH and LH play in this tightly co-ordinated

process has yet to be determined. Despite this, exogenous administration of

gonadotrophin preparations is used extensively in clinical and agricultural settings as

a means of obtaining a large number of oocytes for use in ART. However, the basic

question as to what affects gonadotrophins have on oocyte development within the

follicle prior to ovulation remains to be answered. The main aim of this thesis was to

use an animal model, the mouse, to begin to address this question.

In an attempt to distinguish between intra follicular and inter follicular/extra

ovarian effects, experiments were performed using both in vitro and in vivo models.

The results obtained using the hypogonadal mouse as an in vivo model were limited.

However they did show that stimulation by both gonadotrophins might be necessary

to induce sufficient ovarian oestrogen production to prime the reproductive tract

prior to pregnancy. After optimising the in vitro system, which gave interesting

insights into the nutritional aspects of follicular development, the results obtained

indicated that elevation of LH during the follicular growth phase affected the ability

of the oocyte to complete pre-implantation development.
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Manipulation of gonadotrophins resulted in alterations in the production of

the sex steroids. Both androgens and oestrogens are potential mediators of

gonadotrophin action. Using a different experimental paradigm this was investigated

directly by elevating androgens, oestrogens or both steroids in vitro. It was found that

the fertilisation rates of the oocytes was adversely affected by elevating oestrogens

but positively correlated in the presence of elevated androgens.

Whether oestrogen plays an obligatory role within the ovary is controversial.

The finding that two receptors exist for this steroid has complicated the issue.

Investigations using the ERKO transgenic mouse and in vitro techniques have gone

some way towards clarifying this situation. Lack of the ERa receptor does not impair

follicular development or developmental competence of the oocyte. Observations

made during these experiments and those using the hypogonadal mouse suggest that

oestrogen may facilitate the ovulatory process.

In conclusion the findings presented in this thesis have demonstrated that

androgens, independently of oestrogens, are a necessary component of the signalling

system in follicular development and subsequent oocyte maturation. Additionally,

alterations in the pattern of intra-follicular steroid production either directly, or as a

result ofmanipulating gonadotrophin levels such as occurs during ovulation

induction, can influence the viability and developmental potential of the oocyte.
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Chapter One

General Introduction
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1.1 Overview ofFollicular Development

By birth, or shortly after, the mammalian ovary is endowed with its lifetime

supply of oocytes. Oocytes are maintained within follicles that form the basic unit

that sustains the oocyte before its release at ovulation. In the human between 1-2 x

106 follicles are present in the ovary at birth (Baker, 1972) ofwhich approximately

only 400 will sequentially mature and ovulate (Gosden et al., 1993). The remaining

99.9% begin development but never complete it and default to atresia (Gosden et al.,

1993).

Follicles are maintained in a primordial pool from which a few leave each

day and begin their growth phase (Gosden, 1995; Snow and Monk, 1983). After

initiation into growth, the follicles enlarge becoming multi-laminar before forming a

fluid filled cavity in preparation for ovulation. Of the cohort of follicles, which begin

their growth phase simultaneously, only a species-specific number will release their

oocytes for fertilisation (Gougeon, 1996).

Follicles can leave the primordial pool and begin growth at any time from

their formation (Gosden, 1995). During pre-pubertal life follicles cannot complete

their development and only reach the earliest stage of antral development. In order to

mature fully, follicles during the latter part of their development are dependent on

adequate gonadotrophin stimulation (Hillier, 1994). It is not until puberty that the

gonadotrophins, follicle stimulating hormone (FSH) and luteinising hormone (LFI),

are released from the anterior pituitary gland in sufficient amounts to ensure full

follicular development (Peters et al., 1981). During the final phase of follicular

development the ovary secretes the steroid oestrogen and the glycoprotein inhibin

into the circulating bloodstream. Although both gonadotrophins act in concert to
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promote oestrogen synthesis (Armstrong and Dorrington, 1977), FSH and LH play

different roles in the life cycle of the ovarian follicle. FSH is the primary hormone

responsible for the latter stages of follicular development, a function that LH alone is

unable to fulfil (Spears et al., 1998). The rising concentration in systemic oestrogen

and inhibin acts on the hypothalamic -pituitary axis that, through negative feedback,

down regulates FSH release (Clarke IJ, 1996). Only those follicles destined to

ovulate can overcome this fall in FSH. Following the fall in FSH, LH release

increases in both frequency and amplitude resulting in the LH 'surge' (Ling et al.,

1986; Zeleznik and Hillier, 1994). This surge in LH concentration results in

ovulation and mature oocytes are released from the follicle for fertilisation. The

follicle then forms a corpus luteum the function ofwhich is the production of

progesterone (Yong et al., 1994), the hormone responsible for the maintenance of

any subsequent pregnancy (Rothchild, 1983). Although LH is the primary

gonadotrophin released just prior to ovulation there is also a small surge in FSH.

However, it has yet to be established precisely what function this rise in FSH

performs (Galway et al., 1990). Thus the fall and rise of gonadotrophins govern the

cyclic nature of oocyte release. On release the oocyte is picked up from the surface

of the ovary and transferred to the fallopian tube where it awaits fertilisation. After

this event the developing zygote travels towards the uterus undergoing a programme

of cleavage and differentiation in order to establish the cell populations that give rise

to a new organism and the tissues necessary to support it.

It is the oocyte that is responsible for much of the programming that results in

a new organism being formed (Gosden, 2002; Gandolfi and Gandolfi, 2001). Only

oocytes that have grown and matured successfully within the ovarian follicle have

3



the ability to become fertilised and support the earliest stages of development. The

male gamete contributes its genome and mitotic machinery but very little

cytoplasmic material (Schatten et al., 1986). Therefore, the oocyte must provide all

the necessary cellular components to support the earliest cleavage stages before the

new genome becomes active. The follicular oocyte growth phase is therefore of

crucial importance if reproduction is to be successful. Endocrine regulation of

ovarian function has been extensively studied and there is an increasing body of

literature that focuses on aspects of follicular growth and development such as

steroidogenesis, follicle selection and oocyte control of somatic cell function. Far

less is understood about how the follicular environment affects the quality of the

oocyte.

Due to the limitations of obtaining and working with human material, much

of our knowledge on the processes that govern ovarian development and function has

been obtained from rodent models. These species are readily available and have the

advantage of being easily manipulated, with comparatively short ovarian cycles. It is

also comparatively easy to alter gene function in the mouse. A number of models

have been created to investigate the role of glycoproteins, steroids and hormones in

ovarian function, some of which are detailed in Table 1.1. While the results obtained

from these models may not be directly extrapolated to the human, they nonetheless

offer a means of exploring some of the basic unanswered questions that intrigue

reproductive biologists. The focus ofmuch ofmy work, and the subject of this thesis,

has been to examine, using the mouse as a model, how the factors that the oocyte is

exposed to while within the follicle affect its ability to be fertilised and support

subsequent embryonic development.
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Mutant Gene Fertility Ovarian Phenotype Reference
Activin/Inhibin

(3B subunit
Sub-fertile Vassalli et al,

(1994)
Connexin 37 Infertile Defects in Follicular

development and oocyte
meiosis

Simon et al, (1997)

Cyclin D2 Infertile Defects in granulosa cell
proliferation

Sicinski et al, (1996)

Cyp 19
(Aromatase)

Infertile Block in Follicular

development. Ovulation
defects

Fisher et al, (1998)

ERa receptor Infertile Ovary develops
haemorrahagic cysts

Lubahn et al, (1993)

ER(3 receptor Sub-fertile Ovulation defects Krege et al, (1998)

ERa + (3 receptor Infertile Ovary develops
haemorrahagic cysts

Dupont et al, (2000)

FSH (3 sub-unit Infertile Block in follicular

development
Kumar et al, (1997)

FSH receptor Infertile Block in follicular

development
Dierich et al, (1998)

GDF9 Infertile Block in follicular

development
Dong et al, (1996)

GnRH (hpg) Infertile Immature ovaries Halpin (1986)

LH receptor Infertile Block in follicular

development
Zhang et al, (2001)

Table 1.1. Mouse models generated to investigate aspects of ovarian function.
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1.2 Oogenesis and Folliculogenesis

During foetal development primordial germ cells (the precursors of the

oocytes -PGCs) are first recognisable in the posterior yolk sac. From here they

migrate in an ameboid fashion through the connective tissue of the hindgut into the

gut mesentery before finally congregating in the gonadal ridges which represent the

developing gonads. When first recognised (at embryonic day 7 in the mouse and 1

month in the human) the PGCs are low in number. They multiply rapidly both during

migration and when they reach the developing gonad (Besmer et al., 1993; Byskov,

1978). The germ cells, now termed oogonia, reach a peak of around 7 million by the

5th month of pregnancy in humans, and in mice this number reaches 1 million by

embryonic day 17. Numbers then fall equally dramatically so that by birth

approximately 1million remains in the human ovary and 5,000 in the mouse ovary

(Figure 1.1). This loss of cells is due to apoptosis, migration from the gonad and

possibly an inability to associate with supporting somatic cells (Austin, 1995; Baker

andNeal 1973; Baker 1963).

Shortly before mitosis of oogonia ceases, oogonia leave the mitotic cycle and

enter meiosis to become arrested at the diplotene stage of the first prophase of

meiotic division. The mechanisms that halt meiotic progression are not yet fully

understood. These oogonia are now referred to as primary oocytes. Oocytes are held

in meiotic arrest throughout the growth phase, of the resulting follicles, until shortly

before ovulation.
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1.3 Initiation ofPrimordial Follicles into the Growth Phase

In order to form follicles, the primary oocytes need to associate with somatic

cells (Gondas, 1970). The gonadal ridge is initially composed of undifferentiated

mesenchymal cells. In the mouse the first differentiated cells appear at 12 days post

coitum. The three main types of differentiated cells in the gonads are the gamete-

associated supporting cells, the steroidogenic cells and connective tissue cells. In

females the supporting cells lack the Sry (testes determining) gene and become

granulosa cells (Albrecht and Eicher, 2001). At around the time ofbirth the somatic

cells invade clusters of germ cells so that a layer of flattened granulosa cells surround

each surviving oocyte forming primordial follicles. By birth, or shortly after, the

ovary is endowed with a lifetime supply of gametes, contained within primordial

follicles, where they remain until initiated into growth.

Depletion of the primordial pool is either through atresia or entry into the

growth phase (Gougeon, 1996). Some primordial follicles begin growth shortly after

formation while others, depending on species, may wait almost 50 years before

beginning growth. The mechanisms and control systems that propel the quiescent

primordial follicle into the active growth phase are poorly understood. It has yet to be

detennined whether follicles grow due to the removal of inhibitory factors or due to

their response to stimulatory factors. In vitro experiments using pieces of new-born

ovary, containing mostly primordial follicles, have indicated that systemic factors

may prevent initiation (Wandji et al., 1996) while similar experiments using whole

ovaries indicate that intra-ovarian factors may be involved in promoting initiation

into the growth phase (Eppig and O'Brien, 1996). In addition, oocyte-derived factors

may be involved (Gougeon 1996; Parrot and Skinner, 1999; Vendola et al., 1999). It
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seems most likely that a combination of factors controls initiation of follicle growth.

Mathematical modelling has suggested that the rate of initiation into the growth

phase is dependent on the number left within the pool, with the numbers leaving the

quiescent state accelerating with age (Faddy and Gosden, 1995). The first signs of

growth are an increase in oocyte volume and proliferation of the surrounding

granulosa cells (Lintem-Moore and Moore, 1979). Once follicles have started to

grow follicular development can be considered as a two-phase process; a slow

growing phase with no absolute requirement for gonadotrophin stimulation and a

faster growing phase where responsiveness to FSH, and subsequently LH, is

obligatory if the follicle is to proceed to the ovulatory stage. The transition between

these two phases is characterised by the formation of a fluid-filled antral cavity and

the production of steroid hormones.

Primordial follicles that are initiated into the growth phase at the same time

can be considered as a growing cohort. Pre-antral follicular growth proceeds slowly

taking weeks in rodents and many months in larger species. As this process requires

no systematic pattern of gonadotrophin stimulation, this phase of development is

often deemed gonadotrophin independent. In animals naturally or surgically rendered

incapable of producing pituitary gonadotrophins follicles are capable of reaching the

early stages of antral development (Halpin et al., 1986). Although the actions of

gonadotrophins that are associated with later stages of follicular development do not

appear to be obligatory during the early growth phase, they may affect pre-antral

follicles. It is possible that they may act as survival factors (McGee et al., 1997) or

be involved with the acquisition of the steroid producing cells associated with

subsequent follicular development (Wu et al., 2000).
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1.4 Pre-antral Follicular Development

By the early pre-antral phase stage the follicle has a distinct multi-laminar

avascular granulosa cell layer and has also acquired vascularised and distinct thecal

cell layers. It has been suggested that thecal precursors may be present at the outset

of follicular growth (Hirshfield, 1991) and more recently, growth differentiation

factor -9 has been implicated in this process (Soloveva et al., 2000). As the follicle

grows, two layers of thecal cell associate with the basement membrane; the theca

interna and externa. These cells are derived from the surrounding interstitial tissue.

The mechanisms that initiate their differentiation and organisation are as yet

unknown although kit-ligand, produced by the granulosa cells, has been implicated

(Parrot and Skinner, 1999). Likewise it has been suggested that thecal cells

contribute to the development of the granulosa cell layers during early follicular

development (Nilsson and Skinner, 2001; Parrott and Skinner, 1998). During the

latter faster growing phase of follicle development they are necessary for

steroidogenesis (Hillier et al., 1994; Hedineta/., 1987).

In all mammalian species studied so far, most follicles that simultaneously

begin growth reach the late pre-antral stage of development and few are lost to

atresia (Richards, 1994). This may be because granulosa cells are pre-programmed to

replicate a set number of times before reaching the end of their natural life span

(Hirshfield, 1991). In order to further proliferate and differentiate the cells must be

capable of responding to the cyclic rising levels of FSH. Only a proportion of

follicles within the growing cohort, are at a stage of development capable of
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responding and most of them will die at the early antral stage of development. In

humans, approximately 20 follicles from the growing cohort continue through to the

pre-ovulatory stages of development (Gougeon, 1996; Hillier, 1994). The growth rate

of the selected follicles must now accelerate as it is from this population that some

will attain dominance and release their oocytes for fertilisation, a process that takes

-4 days in the rodent and -28 days in the human.

1.5 Antral Formation and Gonadotrophs Dependence

While follicles are not dependent on gonadotrophin stimulation to

form small antral cavities, those selected to develop further now become increasingly

dependent upon stimulation by the gonadotrophins if they are to form large antral

cavities and reach the pre-ovulatory stage (Kumar et al., 1997; Halpin et ah, 1986).

Antrum formation occurs when 2-3,000 granulosa cells are present regardless of

species and the final size of the follicle (Gosden et al., 1988). Fluid begins to

accumulate within the small spaces between the granulosa cell layers. These

eventually coalesce to form a large antral cavity. Follicular fluid is filtered from the

blood supply that penetrates the thecal layers of the follicle. Proteins ofhigh

molecular weight are excluded and the concentrations of glucose, lipids and amino

acids differ to those found in plasma. During later stages of development fluid is

accumulated rapidly, accounting largely for the marked expansion in follicular size

(Hirshfield, 1991). A variety ofmolecules including steroids, growth hormone

binding proteins and proteoglycans accumulate within the fluid (Driancourt et al

2001; Driancourt and Theul, 1998). While the precise purpose of antral fluid has yet

to be elucidated, it may act as a 'sink', diluting or concentrating metabolites from
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different cell types of the follicle. For example, the actions of oocyte derived factors

may only be allowed to exert an influence over their immediate surrounding cells

before being 'diluted out' within the follicular fluid, hence limiting their action on

cells furthest from them.

During this period of differentiation and antral formation, follicles become

increasingly dependent upon stimulation by the gonadotrophins. In response to FSH

granulosa cells start to rapidly proliferate and differentiate into two populations, the

mural granulosa cells which are adjacent to the basement membrane and the cumulus

cells which surround the oocyte (Amsterdam et al., 1975). The antral cavity rapidly

enlarges separating the two cell types and eventually the oocyte, surrounded by the

cumulus cells, becomes embedded within the follicular fluid connected by a stalk of

cells. During the latter stages of follicular growth the mural granulosa cells cease

proliferating, however the cumulus cells continue to do so until ovulation. It has been

proposed that the granulosa cell complement may be a marker of an ovulatory

follicle as mice deficient in the cell cycle activator, cyclin D2, are anovulatory

(Richards, 2001, Robker and Richards, 1998; Sicinski et al., 1996).

FSH receptors are found exclusively within the granulosa cells of follicles

and first appear when 2-3 layers of granulosa cells are present (O'Shaughnessy et al.,

1996). The function of FSH receptors during the early growth stages is unclear, and

as growth until follicles are selected for further development is subject to many

cyclic fluctuations in FSH concentration, presumably these receptors are not capable

of inducing the intracellular pathways associated with later follicular development.

LH receptors are initially confined to the thecal layers and appear from the time of

thecal cell differentiation (Camp et al., 1991). FSH receptors up-regulate the second
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messenger cyclic AMP and protein kinase pathways (Simoni et al., 1997). These are

responsible for activating certain genes crucial to growth and steroid production

Yong et al., 1992; Langan, 1968). The acquisition ofFSH receptors may be crucial

for follicles if they are to undergo antral development, as only those able to respond

to the cyclic rise in circulating FSH carry on down the developmental pathway. It has

been postulated that each follicle has an individual FSH threshold, beyond which it

must be stimulated if it is to continue to develop. Failure to respond to FSH pushes

the follicle down the atretic pathway (Hillier, 1994; Brown, 1987).

During the latter stage of growth, follicles acquire LH receptors within the

mural granulosa cell layers (Camp et al., 1991). These LH receptors act in synergy

with FSH to augment steroid production by the follicles (Hillier et al., 1994). It has

been proposed that developing follicles have a finite requirement for stimulation by

LH, with each follicle having an upper limit which if exceeded, becomes detrimental

to follicular and perhaps oocyte development (Loumaye et al., 2003; Hillier, 1994).

LH, like FSH, exerts its actions via stimulation of the cyclic adenylase pathway,

elevating cyclic adenosine monophosphate (cAMP), which sustains the follicle

during the pre-ovulatory drop in systemic FSH concentrations (Yong et al., 1994;

Zeleznik anmd Hillier, 1984). Therefore, only follicles with FSH induced granulosa

cell LH receptors (Whitelaw et al., 1992; Amsterdam et al., 1975) are mature enough

to reach the ovulatory stage

While responses to the endocrine environment can explain many aspects of

how follicles are selected for antral development and which of those ultimately reach

ovulation, it is likely that interactions between the follicles themselves also play a

role in modulating the responses to gonadotrophins (Spears et al., 2002; Baker et al.,
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2001; Baker and Spears, 1999). The whole process of follicular development from the

primordial stage through to ovulation is depicted in Figure 1.2.
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1.6 Steroidogenesis

During the antral growth phase, follicles also acquire the ability to synthesise

steroid hormones. It has long been recognised that oestrogen biosynthesis requires

the co-ordinated actions of both FSH and LH acting on the two somatic cell types

(Armstrong and Dorrington, 1977) as shown in Figure 1.3. The key to

steroidogenesis is the induction of specific enzymes within each of these two cell

types that permit steroid production from circulating cholesterol. Cholesterol is

imported into the thecal cells where it is mobilised to the inner mitochondrial

membranes mediated by steroid acute regulatory protein (Clark et al., 1995). Once

internalised within the mitochondria, the first step in steroidogenesis is the

conversion of cholesterol to pregnenolone by the enzyme cytochrome P450

cholesterol side chain cleavage (P450scc). Both the intemalisation of cholesterol

within the mitochondria by StAR and conversion to pregnenolone by P450scc can be

considered rate-limiting steps in steroidogenesis (Clark et al., 1995; Lambeth and

Stevens, 1985). Thecal cells express cytochrome P450cl7, the enzyme responsible

for the conversion of pregnenolone to androgen (Smyth et al., 1993/ Binding of LH

to its receptors on thecal cells activates the cAMP and protein kinase pathways,

which enhances these steroidogenic pathways (Gelety and Magoffin, 1997).

Androgens diffuse through the follicular basement membrane where they are

available to the granulosa cells for aromatisation to oestrogens. In order for

aromatisation to occur, FSH, via the cAMP/kinase A pathway induces cytochrome

p450 aromatase (encoded by the CYP19 gene) in the granulosa cells (Yong et al.,

1994). This enzyme is responsible for the formation of oestrogens from substrate
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androgen. The principal androgen produced is androstenedione while oestradiol is

the major oestrogen produced (Hillier et al., 1994).
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The steroids themselves have been reported to exert paracrine effects within

the ovary. High follicular androgen concentration has been reported to have

atretogenic effects (Billig et al., 1993). In contrast in vitro experiments have shown

that androgens have direct stimulatory roles on follicle development (Murray et al.,

1998) and that they may increase cAMP signalling with the net result that

aromatisation is augmented (Tesuka and Hillier, 1997). Similarly there is conflicting

evidence as to the role of oestrogens on the ovary. Some studies have shown that

oestrogens have stimulatory effects on follicular development (Hsueh, 1986;

Richards, 1980; Williams, 1940), while others have cast doubt on the role of this

steroid as a paracrine mediator (Spears et al., 1998; Zelenski-Wooten et al., 1994).

Transgenic animals have been generated in order to try and elucidate the role of

oestrogen (Krege et al., 1998; Fisher et al., 1998; Lubahn et al., 1993). These

animals have deletions in genes that code for oestrogen receptors or the aromatase

enzyme. The phenotypes of these animals all indicate ovarian imbalances. However,

it is unclear if these effects are due to intraovarian effects or the result of

disturbances in the circulating gonadotrophin levels.
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1.7 Activins, Inhibins and Follistatin

The inhibins and activins were first isolated from follicular fluid. They were

so named as they were found to inhibit (inhibin) or stimulate (activin) FSH release

from pituitary cells in vitro (Knight, 1996; Muttukrishna et al., 1991; Ling et al

1986). These glycoproteins share structural homology with, and are members of, the

transforming growth factor (TGF) p super-family of growth factors (Vale et al.,

1986). The inhibins are composed of a common a sub-unit that form heterodimers

with one of two p subunits (Pa and PP), producing either inhibin A or inhibin B.

Activin is a homodimeric form of inhibin P subunits. Different genes encode the

three sub-units (Esch et al., 1987; Mason et al., 1986)

Two receptors for activin have been identified in all compartments of the

ovarian follicle and these may be differentially expressed, each having its own

function in reproduction (Wu et al., 1994). A specific inhibin receptor has yet to be

found in the ovary although there is some evidence that a putative membrane bound

receptor exists in the testis (Robertson et al., 2000). It has been found that inhibins

can bind to the type II activin receptor by binding with elements of the TGF

P receptor. The opposing actions of inhibin on activin activity may, therefore, be

through competition with activin for its receptor (Lewis et al., 2000).

Follistatin is an activin binding protein that has also been isolated from

follicular fluid. Flowever, it is structurally unrelated to inhibin and activin and is

encoded by a separate gene (Sugino et al., 1994; Robertson et al., 1987). It shares

some similarity with inhibins in that it inhibits FSH release, but with less potency

(Ueno et al., 1987). In vitro studies of granulosa cells from rats and non-human
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primates have shown that production of inhibins and activin is developmentally

regulated throughout the ovarian cycle (Miro and Hillier, 1996; Matzuk et al., 1992;

Rabinovici et al., 1990). The inhibin p sub-unit is produced more abundantly in early

antral follicles, leading to activin being primarily formed (Schwall et al., 1990). As

follicles approach the pre-ovulatory stage more inhibin a sub-unit is produced

leading to increased inhibin concentration (Knight and Glister, 2001; Magoffin and

Jakimuk, 1998; Hillier, 1991). Further to this it has been demonstrated that in

hypogonadal mice production of the inhibin a sub-unit is gonadotrophs independent

while inhibin P production is reliant on gonadotrophin responsiveness of the

granulosa cells (O'Shaughnessy and Gray, 1995). Concomitant with the switch

between activin and inhibin production, follistatin concentration also rises with

follicular development (Nokatani et al., 1991). Thus, not only is inhibin formed

preferentially (due to the availability of a sub-unit), but activin action is further

dampened by the increase in its binding protein, follistatin. This rise in bioactive

inhibin production mirrors the pattern of oestrogen production and both ovarian

inhibins and activin have been identified as modulators ofpituitary gonadotrophin

release (Knight 1996; Rivier and Vale, 1991).

There is also in vitro evidence to suggest that the inhibins and activins exert

autocrine/paracrine effects within the ovary, modulating follicular growth and

steroidogenesis. Activin is associated with proliferation and differentiation of the

granulosa cells and in promoting FSH receptor expression (Matzuk et al., 1992; Xiao

et al., 1992). It has been hypothesised that activin production by a follicle may confer

a developmental advantage at the crucial stage where responsiveness to

gonadotrophins becomes obligatory for further development (Knight and Glister,
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2001; Miro and Hillier, 1992). Activin also has an effect on steroidogenesis,

promoting cytochrome P450 aromatase activity and suppressing progesterone

production within the granulosa cells (Miro and Hillier, 1991; Hutchison et al.,

1987). Paradoxically, activin has been found to inhibit androgen production through

paracrine action on the thecal cells (Smyth et al., 1993). This action of inhibin could

be an important regulatory mechanism that ensures pre-ovulatory follicles have an

adequate supply of androgen to support increasing oestrogen synthesis. It has been

hypothesised that, throughout development, the activin and inhibin 'tone' of the

follicle shifts from predominant activin production in the early growth phases to high

inhibin concentrations during pre-ovulatory development ensuring that follicles

destined to ovulate have an adequate supply of substrate to support oestrogen

synthesis, the role of follistatin being to attenuate activin activity (Hillier et al, 1991).

Further evidence supporting this theory has come from measurements of these

glycoproteins in the follicular fluid of normally cycling women (Magoffin and

Jakimuk, 1998).

1.8. Oocyte Growth and Maturation

Oocyte growth is commensurate with follicular growth. Primordial follicles

that are entering their growth phase can be characterised by morphological changes

to the somatic cells and an increase in oocyte size. In the mouse the oocytes in

primordial follicles grow from 15 pm to 80 pm over a few weeks while in the human

the oocyte grows from 35 pm to 120 pm in a few months. This represents an -300

fold increase in volume (Gougeon, 1996; Gosden and Bownes, 1995). Mammalian

oocytes are generally thought to have completed their growth phase by the early
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antral stage of follicle growth (Gosden et al., 1997). There are marked changes in the

ultra structure of the oocyte, cell organelles become far more abundant and disperse

throughout the cytoplasm. One exception is the centrioles, which disappear and are

inherited paternally after fertilisation except in the mouse (Schatten et al., 1986;

1985). Lipid, proteins and glycogen granules accumulate to a greater or lesser extent

dependent on species. From the outset of growth, the oocyte secretes the extra¬

cellular matrix components that form the zona pellucida and there is the appearance

of some novel organelles such as the cortical granules (Wassarman, 1988). Both

these features have an important role to play in the fertilisation process. Another

characteristic of growth is the rapid rates of transcription and translation. In rodent

oocytes, 0.5ng RNA and 25ng of protein have accumulated by the time the oocyte

has reached maturity (Gosden, 2002; Pico and Clegg, 1982). While RNA and

proteins are normally subject to rapid turnover, the oocyte has the capacity to

package and store these molecules until they are required at points further along the

developmental pathway (Gandolfi and Gandolfi, 2000).

At all stages of follicular development bi-directional communication exists

between the oocyte and the surrounding somatic cells, facilitated by long processes

which penetrate the zona pellucida. The oocyte and somatic cells each contribute half

the connexin channel made up of connexon proteins. Each half of the channel can be

either the same protein or can be different. It is known that the connexin within the

oocyte is connexin 37 but the granulosa cell connexin has yet to be identified

(Nicholson and Bruzzone, 1997). The importance of this two-way communication

system is illustrated in mice lacking connexin 37. These animals are infertile, have

no pre-ovulatory follicles and develop premature corpora lutea (Simon et al., 1997).
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Intercommunication between the oocyte and somatic cells has been the subject of

much research and, as shown in Figure 1.4, both contribute to the function of the

other. Many aspects of follicular development are controlled by factors secreted by

the oocyte. The oocyte specific factor GDF9 is an absolute requirement for pre-antral

follicle development and alters the expression of granulosa cell genes in the pre¬

ovulatory follicle (Elvin et al., 2000). It has also been found that during the later

phase of follicular growth, oocyte produced factors control the phenotype of the

granulosa cells (Eppig et al., 1997), steroid synthesis (Vanderhyden and MacDonald,

1998), prevent premature luteinisation (El-Fouly et al., 1970) and stimulate cumulus

cell expansion prior to ovulation (Salustri et al., 1990).

Follicle formation
▲

Prolifer: Differentiation

Steroidogenesis Cumulus expansion
Ovulation

Figure 1.4. Bi-directional communication between the oocyte and the
somatic cells showing the influences of the granulosa cells on the oocyte
and processes in the granulosa cells controlled by oocytes.
tfirlriritpst frnm Fnnia lt)()l \
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Likewise factors produced by the somatic cells are responsible for many aspects of

oocyte development such as nutritional support and transport ofmetabolites. Another

important function of the somatic cells is to prevent oocytes from prematurely

resuming meiosis. It is currently thought that high levels of cAMP, produced by the

granulosa cells under the influence of gonadotrophin stimulation, are transported into

the oocyte via gap junctions. Other mechanisms presumably exist to prevent meiotic

resumption during the early gonadotrophin insensitive phase of follicular

development (Eppig and Downs, 1988; Downs and Eppig, 1987). Ovulatory events

disrupt the transfer of cAMP thus allowing the meiotic mechanisms to activate, but

levels of cAMP must rise again ensuring that the oocyte is held in the second meiotic

arrest phase, where it remains until fertilisation.

Throughout the follicle-enclosed growth period, the oocyte is maturing in

preparation for fertilisation and embryonic development. By the time of release from

the follicle, the oocyte will have achieved both nuclear maturation (resumption of

meiosis until the first meiotic division and production of the first polar body) and

cytoplasmic maturation (the mechanisms that promote monospermic fertilisation and

sustain the earliest stages of embryogenesis). The relationship between the follicular

stage of development and oocyte competence is highly co-related with the

progression ofboth nuclear and cytoplasmic maturation (Eppig, 1997; 1994).

Oocytes from large antral follicles can undergo germinal vesicle breakdown (GVB)

and proceed to the second meiotic arrest (Mil) whereas oocytes from pre-antral

follicles cannot. An intermediate stage exists between the two stages whereby

oocytes can undergo GVB but arrest before the first meiotic division is complete

(Sorenson and Wasserman, 1976). Similarly, aspects of cytoplasmic maturation are
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acquired sequentially, oocytes gradually gaining the ability to firstly cleave to two

cells (where they may arrest if not fully mature), and subsequently gain the ability to

support pre-implantation development (Eppig and Schroeder, 1989). Although it has

been shown that the developmental programmes within oocytes controlling nuclear

and cytoplasmic maturation can proceed independently of one another, under normal

circumstances these two aspects ofmaturation are highly co-ordinated. Indeed some

aspects of final maturation require mixing of the germinal vesicle contents with those

of the cytoplasm (Eppig et al., 1994; Borsuk, 1991).

There is an expanding body of literature from in vitro experiments that

implicate a wide range of growth factors in the process of oocyte maturation. Some

of these have direct effects on the oocyte while others probably exert their actions via

the surrounding somatic cells. These include insulin growth factor (IGF) (Adashi,

1998), activin and inhibins (Findlay et al., 2001), epidermal growth factor (EGF) and

TGF(3 (Driancourt and Theul, 1998). A number of receptors have been found within

the oocyte including, oestrogen receptor (ER), IGF receptor, EGF receptor and

activin receptors, but very little is known about their regulation (Wu et al., 1993; Hill

et al., 1999; Kezele et al., 2002). These data have been obtained from a number of

species and it has yet to be investigated whether there are species-specific actions of

some of these growth factors.

Another aspect ofmaturation that needs to be considered is the epigenetic

phenomenon of genomic imprinting. Nuclear transplantation studies performed

during the 1980s revealed that uniparental embryos that contain two haploid sets of

either the maternal or paternal genome are unable to develop beyond the early

implantation stage (Surani, 1984). These experiments revealed that the expression of
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some genes is differentially controlled and is dependent upon which parent the allele

was inherited from. To date, several dozen genes have been found to be imprinted

(Reik et al., 2001). Of these it has been found that several play roles in embryo

development, tumorigenesis and genetic diseases. The exact nature of the marks that

imprint genes has yet to be discovered but a likely candidate is methylation ofDNA.

Transcription can be silenced either directly by hypermethylation of an allele or

through interaction with factors that either promote or suppress transcription

(Bartolomei and Tilghman, 1997).

During the formation of the gametes there is a global demethylation of the

genome and loss of allele specific imprints. This is the only time that the two

gametes have equivalent epigenetic status, therefore, during spermatogenesis and

oocyte growth, new sex-specific imprints must be established before fertilisation.

Studies using constructed oocytes containing two sets ofmaternal haploid genomes

from non-growing and fully-grown oocytes have shown that maternal epigenetic

modifications are introduced during the oocyte growth period (Kono, 1998).

Evidence that methylation has a role in either establishing and/or maintaining these

marks has come from methyltransferase deficient mice, which die during gestation

due to abnormalities in the growth patterns associated with imprinted genes (Li et al.,

1992). The nature of the signals that mark certain genes for imprinting either via

methylation or by other means has yet to be established.
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1.9. Ovulation

The ovulatory surge of gonadotrophins (mainly LH and to a lesser extent

FSH) is triggered by the high circulating levels of oestrogen and inhibins produced

by the pre-ovulatory follicles. This surge initiates a series of complex cascades that

culminates in follicle rupture and the release of a mature fertilisable oocyte or

oocytes depending on species (Clarke, 1996).

Within a few hours the ovary becomes red and swollen and there is an

increase in angiogenesis and blood volume resulting in the expansion of the thecal

capillaries. Ovulation shares many characteristics with that of an inflammatory

response. Cells associated with inflammation, such as leukocytes and macrophages

invade the tissues and there is an increase in biochemical markers associated with

inflammation. These include cytokines, histamine and platelet activating factor.

There is also activation ofphospholipases and subsequent synthesis of prostaglandins

(PG) E and F whose concentrations reach a peak during follicular rupture (Espey,

1994). Recently there has been much interest in the role of 13(3

hydroxydehydrogenase, the enzyme that controls glucocorticoid synthesis.

Commensurate with the rise in prostaglandin synthesis there is a shift in the balance

between hydrocortisol and cortisone that promotes wound healing (Hillier and

Tesuka, 1999). This whole process of rapture and repair must be completed within a

few days in species such as rodents that ovulate on a 4-5 day cycle.

A number of changes occur within the follicle in response to the

gonadotrophin surge. The high level of LH inhibits cell cycle regulators resulting in

the cessation of granulosa cell proliferation (Robker and Richards, 1998). Lipid

droplets accumulate within the cells and there is a change in steroidogenic activity.
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An increase in P450side chain cleavage enzyme activity results in increased

progesterone and a decrease in oestrogen production. The oocyte is now only

attached to the mural granulosa cells by a thin 'stalk' and lies within the follicular

fluid surrounded by cumulus cells, which undergo expansion and mucification. 2-3

hours after the elevation in gonadotrophin concentration the cumulus cells begin to

excrete hyaluron and extract fluid from the spaces between them. The oocyte itself

orchestrates this event but the factors governing the process are as of yet unknown

but appear to be mediated by FSH (Buccione et al., 1990). Concurrent with cumulus

cell expansion, gap junction communication between the oocyte and its surrounding

cells is broken resulting in the oocyte resuming meiosis and reaching the second

meiotic block and the production of the first polar body.

Ovulation occurs at the opposite point or apex to the stalk attachment. Within

the thecal layers of the apical region the fibroblast cells elongate and the epithelial

cells become necrotic (Espey, 1998). The tissue surrounding the apex bulges and the

cumulus cells begin to protrude, forming the so-called stigma. Different protease

systems are implicated in the breakdown of the follicular basement membrane. The

metalloproteinases (MMPs), the serine kinase (tissue plasminogen activator) and the

urokinase plasminogen activators all have increased activity around the time of

ovulation (Smith et al., 1999; Hagglund et al., 1999; Liu and Hsueh, 1987). However,

blocking these proteolytic enzymes does not prevent ovulation and, therefore, their

actions alone cannot bring about the complete degradation necessary to allow the

oocyte to free itself from the follicle. Targeted disruption of the progesterone

receptor (PR) gene in mice impairs ovulation suggesting that the actions of this

steroid are obligatory for ovulation. Two genes encoding the cathepsin and
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ADAMTs protease pathways have been identified as being induced by LH and PR

(Robker et al., 2000).

Rupture of the follicular wall results in the extrusion of the oocyte-cumulus

complex and antral fluid to the ovary surface. The remaining follicle cells undergo

terminal differentiation, the mural granulosa cells luteinise and thecal capillaries and

fibroblasts rapidly penetrate the structure to form the corpus luteum. The main

function of this gland is to produce progesterone that supports endometrial function.

In the absence ofpregnancy the corpus luteum undergoes spontaneous regression

leaving an avascular scar referred to as the corpus albicans (Adashi, 1994).

1.10. Fertilisation

The ovulated oocyte is picked up from the ovarian surface by fimbria and

swept along the fallopian tube until it reaches the ampulla region where it waits to be

fertilised. This process is inhibited if the oocyte is denuded of the cumulus cells.

Fertilisation has to take place within a short window of time as both male and female

gametes have short life spans. Oocytes survive for 6-24 hours in the human, 6-12 hrs

in mouse, while the life span of sperm is 24-48 hrs in human and 6-15 hrs in the

mouse.

The oocyte-cumulus mass produces chemo-attractants (Eisenbach and Tur-

Kaspa, 1999) which have the effect of directing the motility of the sperm, thereby

ensuring that some sperm reach the ampulla region. The oviduct undergoes specific

changes induced by the hormones released throughout the follicular phase which

ensures a favourable environment that optimises the fertilisation process (Leese et

al., 2001; Boatman, 1997). In addition components of seminal fluid have been found
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to promote the fertilisation process (Fraser, 1999). While ~107 sperm are released by

the male only about ~100-150 of these will reach the oocyte cumulus mass

(Wassarman, 1999). Deposited sperm undergo capacitation within the female tract

that allows them to bind to the oocyte and undergo the acrosome reaction. Only

capacitated acrosome-intact sperm are capable of fertilisation.

Sperm penetrate the cumulus mass surrounding the oocyte and bind to

receptors within the zona pellucida (ZP). The ZP is laid down throughout oocyte

growth and the process ceases shortly before ovulation. This extra-cellular matrix,

~7pm thick in the mouse, is made up of three glycoproteins ZP1, ZP2 and ZP3,

which are closely related in many mammals (Wasserman, 1988). The zona proteins

contain receptors for sperm binding. Binding between sperm and the zona protein

receptors hold the key to the prevention of inter-species cross fertilisation. In closely

related species or when the zona is removed it is possible to produce hybrids.

Much research has concentrated on sperm-binding interactions and it has

been found that, in the mouse, ZP3 is essential to sperm binding and initiation of the

acrosome reaction (Rankin et al., 1999). Some attention has also been paid to

elucidating whether sperm have reciprocal oocyte binding proteins and over two

dozen sperm proteins and glycoproteins have been identified in aiding binding

(Wasserman, 2001). Once bound to a binding site on the receptor, capacitated sperm

interact with other regions of the ZP3 receptor inducing the acrosome reaction. The

acrosome is a large secretory vesicle that lies in the apical region of the sperm head.

It contains lytic enzymes which, when released, change the structure of the ZP,

digesting away any local ZP3 receptors and so preventing further sperm binding to

the oocyte. While ZP3 has been identified as the prime activator of acrosome action,
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recently progesterone has been implicated in facilitating the reaction by making the

acrosome leaky and allowing hyaluronidase to be released (Calogero et al., 20001,

which in turn digests the cumulus matrix from around the oocyte. This allows direct

contact between the sperm and oocyte plasma membranes. Once activated, ZP2

receptors bind to the sperm and aid the passage of the sperm to the oocyte plasma

membrane where the two plasma membranes fuse (Rankin et al., 2001). Fusion of

the membranes occurs at the microvillus surface of the ooplasma but not in the

region of the second metaphase plate and first polar body, presumably to prevent

aneuploidy. Fusion of the two membranes results in the sperm moving into the

cytoplasm of the oocyte and hence contributing the paternal genome and the

centrosome (not present in the oocytes ofmost species, the mouse being the

exception) which directs microtubule assembly (Mandahar et al., 1998). This leads to

the union of the two nuclei and the signal to initiate the metabolic activation of the

oocyte.

Binding of the spermatozoa induces changes within the oocyte known as

oocyte activation. In all species studied, sperm binding activates the development of

the oocyte by increasing intracellular calcium levels. The exact mechanism by which

sperm achieve this has yet to be elucidated. It is unlikely that sperm introduce

calcium into the oocyte cytoplasm but, it is thought, they activate the release of

oocyte calcium stores through introduction of a soluble sperm factor (Swann, 1996).

Further evidence that the oocyte contains all the calcium required for activation

comes from experiments that demonstrate that calcium accumulation and

mechanisms of free calcium release are acquired throughout oocyte growth and

maturation (Carroll et al., 1996). On sperm binding, calcium is released in waves
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across the oocyte. In hamsters, the initial wave crosses the oocyte in 6 seconds from

the point of sperm-egg fusion (Miyazaki et al., 1986). Subsequent waves also cross

the oocyte but originate at a point away from the sperm-egg binding site (Swann,

1996). Release of calcium is responsible for triggering the exocytosis of cortical

granules from the oocyte and completion ofmeiosis and entry into the first

embryonic division. Cortical granules accumulate throughout oocyte growth and are

found around the periphery of the cytoplasm. The rise in free calcium initiates the

release of these granules, which then fuse with the plasma membrane and release

their contents into the perivitelline space resulting in a modification of the zona

pellucida (Yanagimachi, 1978). Thus polyploidy is prevented by the initial events

that occur locally at the sperm-oocyte binding site and with an overall modification

to the zona pellucida after cortical granule release.

While the sperm genome is truly haploid the oocyte must still undergo the

second meiotic division if it is to contribute only one set of chromosomes to the new

organism. In the oocyte, meiotic arrest is dependent upon the activity ofmaturation

promoting factor (MPF) that consists of cdkl and cyclin B complex stabilised by

cytostatic factor (CSF) (Zernicka-Goetz et al., 1995; Eppig et al., 1994). The

intracellular rise in calcium associated with fertilisation destroys this complex and

therefore, MPF levels drop and the oocyte exits metaphase (Dubicella et al., 2002).

This results in the oocyte cleaving, generating a second polar body containing one set

of chromosomes and a much larger zygote. Therefore, oocytes can be considered as

never truly being haploid.

On entry into the oocyte cytoplasm the sperm nuclear membrane breaks down

and the chromatin decondenses, a process induced by oocyte cytoplasmic factors. In
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addition the sperm genome needs to be stripped of sperm chromatin packaging

proteins i.e. protamines and repackaged with histones (Latham and Schultz, 2001).

Approximately 4-7 hours after fusion the two sets of haploid chromosomes are each

surrounded by a membrane forming two pro-nuclei. These then move together into a

central position each haploid pronucleus synthesising DNA in preparation for the

first mitotic division. When they are aligned, the pro nuclear membranes break down

and the mitotic metaphase spindle forms along which the chromosomes align

Schatten et al 1985). The final phase of fertilisation is achieved with the coming

together or syngamy, of the gametic chromosomes. Immediately after the first

mitotic anaphase and telophase the one cell zygote cleaves becoming a two-cell

embryo (Gilbert GS, 2000)

1.11. Pre-Implantation Development

Pre-implantation development is the term given to the 2-cell transition to the

blastocyst stage. Throughout this period the conceptus moves down the fallopian

tube until it reaches the uterus ready for implantation undergoing many cellular

divisions at a rate characteristic to each species. Formation of the blastocyst takes 3-4

days in the mouse (Hogan et al, 1994) and 4-5days in the human (Rankin et al.,

2000). In all mammalian species cell doubling occurs synchronously until the 8-cell

stage followed by an asynchronous stage resulting in a blastocyst with differentiated

cell populations. Until the 8-cell stage the cells are called blastomeres and after

differentiation the blastocyst consists of an inner cell mass (ICM) eccentrically

placed within a fluid filled cavity and the whole being surrounded by the

trophectoderm (TE) cells (McLaren, 1982). Throughout the pre-implantation period
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the developing blastocyst remains enclosed within the ZP (Bronson and McLaren,

1970). The purpose of this is probably to hold the blastomeres together and it may

also prevent chimaeras from forming. Shortly before implantation the blastocyst

hatches from the zona.

Stimulation to grow is provided by a number of growth factors, some of

which are endogenously produced while others are provided by the oviductal

environment. However, it is possible to grow blastocysts in vitro, as exploited in

assisted reproduction, and much of our information on growth and development has

been obtained from in vitro produced material. Comparisons between in vitro and in

vivo derived embryos have shown that the rate of growth and development is delayed

in vitro, indicating that both endogenous and oviductal factors co-ordinate in the

development of the blastocyst. Growth factors implicated in the 2-cell to blastocyst

transition include insulin and insulin-like growth factors, the TGF family, leukaemia

inhibitory factor and gondotropin-releasing hormone factor (Boatman 1997; Kaye

1997; Devreker and Englert 2000; Casan et al., 2000). Receptors for these have been

found within the developing blastocyst. Some receptors, such as those for oestrogen

receptor alpha and beta (ERa and ERp), are differentially regulated (Hiroi, 1999),

but as of yet their function is unknown. In addition, information on nutritional

requirements and energy substrates has been obtained in the same way (Brison and

Leese, 1994). It has been found that amino acids improve the rate of the developing

blastocyst in vitro (Ho et al., 1995) and that energy requirements change throughout

blastocyst development (Devreker and Engelhert, 2000).

After fertilisation cell division proceeds under maternal control, the RNA

molecules and proteins synthesised in the oocyte cytoplasm sustaining the earliest
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stages of development (Latham and Schultz 2001; Schultz, 1993). There is some

evidence to suggest that the position of the second polar body and the point of sperm

entry determine the first plane of cleavage (Plusa et al., 2002). These markers may

pre-determine the two axes of symmetry of the blastocyst, delineating the position of

the boundary between the ICM and the TE cells furthest from it (Tarn et al., 2001).

Other evidence supports the idea that the cell's lineage, either ICM or TE, is

determined by very early events and may be under maternal control (Gardner, 2002).

The proteins STAT3 and leptin are present in oocyte cytoplasm and may be

differentially allocated to daughter cells at the second cleavage. Cells with high

levels of these proteins may give rise to the TE lineage where they are implicated in

interaction with the uterine wall during implantation (Edwards, 2000; Antzczak M

and van Blerkom J, 1997). Therefore, the axis and cellular polarity that the blastocyst

exhibits may be programmed during oocyte maturation. Studies in the mouse have

also revealed that oocyte factors govern the demethylation of the paternal genome

and modify its genome function, which may be relevant to genomic imprinting in the

developing organism (Latham and Sapenza, 1998; Oswald et al., 2000). DNA

methylation is maintained during the first three cell divisions by maternally inherited

methylase enzyme after which activity decreases markedly (Monk et al., 1990).

During the second cleavage division in the mouse and between the second

and third division in the human, the embryonic genome becomes activated. In the

mouse a small amount of newly synthesised RNA is detected at the late 1-cell stage

followed by protein synthesis before the maternal to embryonic transition. Activation

of the genome is acquired in a step-wise manner and has been identified as having

four major periods a) the one cell stage, b) early two cell c) late two cell and d) eight
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cell stage. This progression has been confirmed in other species including humans.

These stages are accompanied by changes in histone protein and chromatin structure,

which regulate the availability of the genome for transcription. Many of the

transcripts at the two cell stage accumulate as development progresses while others

are necessary for cell proliferation and the morphological changes that now occur in

the developing embryo (Latham and Schultz, 2001).

At the 8-16 cell stage the embryo begins to display morphological changes

and undergoes compaction, a feature common to all eutherian mammals (Hardy et

al., 1996; Lopata et al., 1983). The blastomeres flatten and form close junctional

contacts with each other until it is no longer possible to distinguish individual cells

and the bundle of cells are now known as a morula. Associated with compaction is

the appearance of tight focal junctions which eventually divide the plasma

membranes of the outer blastomeres into apical and basolateral membrane domains.

This results in asymmetrical cell contact with the outer cells becoming polarised,

which is essential to the fonnation of the blastocyst (Ziomek and Johnson, 1980).

Two cell lineages become distinct i.e the ICM and the polarised outer cells, the TE.

The ICM remains apolar and highly adhesive to one another while the TE acquire the

characteristics of epithelial cells, becoming flattened and joined together by tight

junctional complexes (Schultz, 1999; Hardy et al., 1996)

The developing blastocyst now undergoes cavitation. The TE cells acquire

the mechanisms that facilitate the transport and retention of fluid. This is achieved by

an active transport mechanism involving a sodium gradient and the upregulation of

the aquaporins (Watson and Barcroft, 2001). They then begin to pump fluid into the

intracellular spaces forming a fluid fdled cavity which expands resulting in a polar
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(diametrically opposed to the ICM) and mural region of the TE with the ICM lying

eccentrically within the cavity. The different stages of pre-implantation development

are shown pictorially in Figure 1.6.

In normally developing embryos very little cell death is seen until the

compaction stage however apoptotic cell death has been observed in both in vitro and

in vivo derived blastocysts. It is thought that the role of apoptosis is to eliminate cells

with abnormal chromosomes or prevent ICM cells differentiating into TE cells,

reducing the risk of inappropriate ectopic trophectoderm expression (Hardy, 1999). It

has also been suggested that critical threshold of cells, within the ICM, are required

if normal post implantation development is to occur (Brison and Schultz, 1997).

38



First division

after fertilisation

4-cell stage Morula Compacted morula

Cavitation Blastocyst

Figure 1.5. Stages of development from fertilisation until the blastocyst stage
adaptedfrom The Mouse Atlas (littp://genex.hgu.mrc.ac.uk)
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1.12 Clinical Perspectives

Normal ovarian function requires both FSH and LH. The co-ordinated action

of these gonadotrophins brings about follicular development and steroid production,

which results in the release of a developmentally competent oocyte and priming of

the reproductive tract.

As described earlier, only a species-specific number of follicles are selected

to release their oocytes for fertilisation (Gougeon, 1996). While many factors play a

role in the selection process (Baker et al., 2001; Spears et al., 2002) the over-riding

factor is availability and responsiveness to FSH at the critical developmental time

point (Hillier, 1994; Brown, 1987). Exogenous administration of gonadotrophins

bypasses the normal selection processes and permits high numbers of follicles to

reach the pre-ovulatory stage (Oelsner et al., 1978; Fowler and Edwards, 1957).

Within the clinical and agricultural situations, many assisted reproductive

technologies (ART) use exogenous gonadotrophin administration routinely as a

means of harvesting large numbers of oocytes (Zafeirous et al., 2000). Until recently

the preparations used contained both FSH and LH in variable proportions. Original

compounds contained equal bioactivities but newer generations ofpreparations have

a much-reduced LH content. Recombinant forms of gonadotrophins have also been

used in clinical practice. From the literature there are a number of conflicting reports

as to the efficiency of these exogenous gonadotrophin preparations in producing

oocytes capable of undergoing development and giving rise to live offspring and

there is some concern that oocytes collected in this may be over or under mature

(Warne et al., 2000; Fleming et al., 2000). Although clinical in vitro fertilisation

(IVF) has been practised for over 20 years live birth rates per cycle are still

40



comparatively low, i.e. -20%, suggesting that the obtained oocytes give rise to poor

quality embryos.

Some attention has been paid to what role LH plays in follicularmaturation

and subsequent oocyte viability. A transgenic mouse (LuRKO) has been generated

that lacks the LH receptor (Zhang et al., 2001). Examination of the ovaries in this

mouse has revealed that follicular development arrests at the early antral stage and no

preovulatory follicles or corpora lutea are formed. While this may point to a role for

LH in the latter stages of follicular development, it is likely that the endocrine system

is also disrupted in these animals which may be responsible for the ovarian

phenotype. A transgenic mouse has also been created that over-expresses the LHP

subunit (Risma et al., 1995). These animals enter puberty precociously, develop

ovarian cysts and granulosa cell tumours resulting in infertility (Risma et al., 1997).

Studies in these mice have pointed to a detrimental effect of elevated LH levels.

There have also been suggestions from clinical reports that have suggested that high

levels of this gonadotrophin (i.e. above systemic basal levels) during ovulation

induction may have a detrimental effect on achieving a successful pregnancy

(Shoham et al., 1993). Some reports have suggested that high levels of LH

administered during the follicular growth phase lead to poor oocyte quality and

subsequently poor fertilisation and development rates (Regan et al., 1990; Danforth

1995). However, there are conflicting reports that fail to confirm any correlation

between elevated LH levels and pregnancy rate (Thomas 1989; Kovacs et al., 1990).

In contrast to the findings in the LuRKO mouse described above, recent studies in

rodents and primates have shown that follicles are capable of reaching pre-ovulatory

stages in the presence of very low levels or absence of LH (Sills et al., 1999; Spears
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et al., 1998; Bergh 1997; Balasch et al., 1995; Zelinski-Wooten 1994; Schoot et al.,

1994). In human studies it has also been suggested that the use of recombinant FSH

alone results in higher number of oocytes retrieved and improved pregnancy rates

(Howies, 2000) but studies in non-human primates have indicated exposure to LH

may improve embryo viability and rate of development (Weston et al., 1996).

A main function of gonadotrophs action within the ovary is to stimulate

oestrogen production. Apart from being a major steroid in controlling the

reproductive cycle via the hypothalmic-pituitary-ovarian axis, the effect of oestrogen

in priming the reproductive tract in preparation for pregnancy has also been well

documented. Evidence from the LuRKO and hypogonadal mouse models has clearly

demonstrated the effects of oestradiol on uterine weight (Zhang et al., 2001; Halpin

et al., 1986). Although oestradiol does not seem to effect follicular maturation

(Zelinski-Wooten 1994; Spears et al., 1998), McNatty et al (1979) demonstrated that

the intra-follicular concentration ratio of androgen to oestrogen is highly correlated

to oocyte status. The presence of oestrogen receptors (Hiroi et al., 1999; Wu et al.,

1992; 1993) suggests that this and other steroids may be necessary for optimal

viability. Other studies have shown that lack of oestrogen may result in poor

fertilisation rates and compromised early embryonic development (Zelinski- Wooten

et al., 1994; Wang and Greenwald 1993; Paesi, 1952). Presumably gonadotrophin

administration in ovulation induction can alter both intra-follicular steroid

concentrations as well as systemic levels. Therefore, the actions of inappropriate

stimulation may alter either, or both, oocyte developmental competence and the

synchronisation of events within the reproductive tract that lead to implantation and

successful maintenance ofpregnancy.
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1.13 Research Aims

The development of the follicle and the maturation of the oocyte is a long

process involving a highly complex set of regulatory factors. The communication

that exists between the oocyte and the somatic cells must be correctly programmed if

it is to acquire full developmental potential. Many aspects of oocyte maturation occur

during the antral growth phase when the follicle has become increasingly dependent

on gonadotrophin action, but until recently it has been difficult to elucidate the

precise individual roles that FSH and LH play in this process. From the literature

there are a number of conflicting reports on the effects of exogenous gonadotrophin

stimulation, in particular how LFI affects follicular development and oocyte viability.

With recombinant forms ofFSH and LH both now available it should become

possible to design more efficient therapies for assisted reproductive technologies.

However, the basic question remains as to what effect gonadotrophins have on

oocyte development within the follicle prior to ovulation and how do these effect the

quality of the embryo after fertilisation? The aim of this thesis was to begin to

address this question.

Specifically my aims were to:

1 Optimise a follicular culture system that would yield a high number of

follicles able to grow in vitro to the antral stage and yield fertilisable

oocytes

2 Use this culture system to investigate the effects of gonadotrophins on

both follicular development and oocyte viability.

3 Use an in vivo model, the hypogonadal mouse, to investigate whether

any in vitro effects are affected by inter-follicular and extra ovarian
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factors.

Investigate whether any effects noted, by manipulating

gonadotrophins, are a result of aberrant steroid synthesis.

Investigate the role of the a oestrogen receptor on follicular

development oocyte developmental competence.



Chapter Two

General Materials and Methods
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2.1. Follicle Isolation

2.1.1 Dissection medium

Liebovitz L-15 medium (Invitrogen) was used for all bench top

manipulations of ovarian material. Each 100ml bottle was adjusted to 285-293

mOsm/kg H20 with sterile water (Phoenix Pharmaceuticals) using an osmometer

(Roebling). Each bottle ofmedia was kept for a period of 5 days before being

discarded. Aliquots of the medium were supplemented with 0.3% Bovine serum

albumin (BSA ; Fraction V, tissue culture grade, Sigma) and filter sterilised before

use (syringes: Becton Dickinson; 0.22pm cellulose acetate filters:Iwaki). Medium

was made 1 day in advance of the culture day and kept at 4°C. Prior to use the

medium was transferred to embryo dishes (1ml aliquots) and warmed to 37°C

2.1.2. Gross Dissection

Three-week old female mice were killed by cervical dislocation, the ovaries

removed and transferred to dishes containing dissection media. Under magnification

and using insulin needles (Sherwood), the ovaries were dissected free of non-ovarian

tissue, such as oviduct and fat. Each ovary was bisected and each piece placed into a

fresh dish of dissection media. From the initial dissection and throughout all the

following procedures the material was handled within a laminar flow hood (Astecair)

to ensure sterility. Once the ovaries had been removed from the animals, all

subsequent manipulations were performed on a heated stage (Lincam).
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2.1.3 Micro-dissection.

Follicles were dissected from each piece of ovary using an inverted dissecting

microscope (Zeiss or Nikon) fitted with an ocular micrometer and heated stage. Each

piece of ovary was teased apart with insulin needles (Sherwood) and acupuncture

needles (Acumedic) mounted into steel holders. Individual follicles of appropriate

sizes were released. Once dissected, follicles were transferred to a fresh dish of

dissection media before being transferred to culture dishes. Tissue was worked on for

a maximum time of 30 minutes post mortem, with isolated follicles being placed in

culture within a 45minute period.

2.2. Standard Follicle Culture

2.2.1 Standard culture media.

Bottles of a-Minimum Essential Media (a-MEM; Invitrogen) were checked

and adjusted for osmolarity in the same way as the dissection media (see 2.1.1). Each

bottle ofmedia was used for a period of 5 days. Supplements (see below) were added

to aliquots ofmedia prior to filter sterilisation (see 2.1.1).

On the day prior to dissection, 30 pi of culture media was placed into the 'U'

wells of 96 well non tissue culture treated plates. Two rows of media were prepared

in advance. Each well of media was overlaid with 75 pi of filter sterilised silicon

fluid (0.45mm filters:Iwaki, silcon fluid: Merck) to prevent evaporation. The plates

were placed into a 37°C, 5% CO2, humidified incubator (Forma Scientific) and

allowed to equilibrate. Fresh media was prepared every second day.
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Media Supplements

Recombinant gonadotrophins.

During the development of the follicle culture system, recombinant human

FSH (rhFSH) was not available and a pituitary source of FSH was used. Using this

preparation it was found that follicles could grow from ~180pm in diameter to over

400pm in a period of 5 days. When rhFSH became available to the laboratory we

found that this preparation could stimulate follicle growth and give similar growth

profiles to the pituitary preparation (Spears et al., 1998). However we have found

that after reconstituting vials of rhFSH with the same 1U content, different batches

did not induce the same degree of growth when used in the follicle culture system.

For each section ofwork described in this thesis it was necessary to utilise different

batches of rhFSH. Therefore each batch was titrated to ensure that follicles reached

sizes of> 400 pm over a 5-6 day period. The IU ml"1 concentrations stated in each

experimental chapter can be considered arbitrary.

Serum

Media was supplemented with 5% serum. The type of serum used is detailed

within each experimental chapter. Where mouse serum was used this was prepared

by withdrawing blood from anaesthetised animals via cardiac puncture. The blood

from each animal was collected into an eppendorf tube and allowed to clot for at

least 10 minutes before centrifugation (Eppendorf centrifuge/ 13,000rpm/10

minutes). The resulting serum was pooled, aliquoted and stored at -70°C.

Ascorbic acid

While initially experiments were carried out in media supplemented with

gonadotrophins and serum alone, during the course of this research project it was
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found that the addition of ascorbic acid was beneficial when added to the culture

media. This formed the subject of a separate study detailed in Chapter 3.

2.2.2. Follicle incubation.

Following isolation, healthy follicles were transferred into the wells of the

equilibrated culture plates. Care was taken to choose follicles with a centrally placed

oocyte, some thecal cells attached and with no gaps in the granulosa cell layer. Using

finely drawn pasteur pipettes that had been coated with BSA to prevent follicles

adhering to the glass, the isolated follicles were allocated randomly between

experimental groups. Once the follicles were allocated to the wells, the trays were

returned to the incubator. Care was taken to minimise the length of time that the trays

were out of the incubator.

2.2.3. Media changes and assessment of follicular growth and morphology.,

Follicles were moved into a new well ofmedia daily by transferring them

with glass pipettes. The length of the culture period is described in each experimental

chapter. Each day follicles were measured using the calibrated eyepiece graticule

fitted in the dissecting microscope. Antral development was noted and classified.

Follicles that lost their 3D morphology within the first 48 hours of culture were

excluded, as these were most likely damaged during dissection. Any follicles that

showed signs of atresia or oocyte damage were also excluded.

The culture system is outlined schematically in Figure 2.1

49



o

cP

o

0

o,

0

Ovaries obtained from pre-pubertal
F1 (CBA x C57/B1) mice

\
Pre-antral Follicle

• f-H

cd

<D
>
O

CO

_0>
"3

o
Ph

OIL
a MEM, serum, FSH (±
Ascorbic Acid, ± LH)

Figure 2.1 Schematic representation of the follicle culture system
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2.3. In vitro fertilisation (IVF)

2.3.1. Preparation of T6 (fertilisation medium).

Pre-prepared aliquots of each of the four components required to make T6

media (Quinn et al., 1982) were stored in the -70°C freezer. The composition of the

media is detailed in Appendix B. The aliquots were defrosted and mixed before

being added to 7.8ml sterile water (Phoenix). The total volume ofmedia prepared

was 10ml. The osmolarity of the medium was checked to 287 +/- 5 mmOsm/kg H2O

and then supplemented with lOmg.mf BSA (Fraction V, TC grade, Sigma). The

medium was then filter sterilised using a 0.22pm cellulose acetate syringe filter

(syringes-Becton Dickinson, filters-Iwaki). 0.5ml aliquot drops were placed gently

onto the bottom of 6 well tissue culture plates (Iwaki) and completely covered by

silicon fluid (Merck). Enough drops were prepared for sperm collection and oocyte

fertilisation. Additional drops were set up as washes. The plates were placed into a

37°C, 5% CO2 humidified incubator on the day prior to the IVF being carried out to

ensure that they were fully equilibrated.

2.3.2 Preparation of KSOM (embryo development medium).

Medium for the development of resultant fertilised oocytes was prepared in a

similar manner to the fertilisation medium. Aliquots of each of the four components

of the KSOM media (Devreker and Flardy, 1997) were stored frozen in a -70°C

freezer and defrosted as required. The components are detailed in Appendix B. The

four components were added to 7.8ml of sterile water and the osmolarity checked to

254 ± 5mOsm/kg H20. The final volume of 10ml was supplemented with lmg.ml"1
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BSA (Fraction V, fatty acid free TC grade-Sigma). 100 pi drops were carefully laid

onto the bottom of 6 well plates (Iwaki) and completely covered by silicone fluid

(Merck). Enough drops were prepared for washing and holding fertilised oocytes

from each experimental group overnight. All plates were prepared one day prior to

the day of IVF and equilibrated in an incubator (conditions as 2.3.1). The prepared

KSOM and silicon fluid were also placed in to an incubator and allowed to

equilibrate so that fresh drops ofmedia could be prepared for two-cell embryos

(detailed below).

2.3.3 Preparation of in vitro maturation medium for oocytes recovered from

cultured follicles.

lml of a-MEM media (which had been adjusted to 285 mOsm/kg H20) was

supplemented with 5% serum (as used in the medium for follicle culture) and lOng.

ml"1 Epidermal Growth Factor (EGF-Boehringer or Sigma) was added. The medium

was filter sterilised as above. 100 pi drops were carefully laid onto the base of 6 well

culture plates and covered with silicon fluid. Sufficient drops were prepared for each

experimental group plus wash drops. The plates were placed into the incubator one-

day prior to use.

2.3.4. In vitro maturation of oocytes collected from cultured follicles.

24 hours prior to fertilisation, cultured follicles were transferred into embryo

dishes containing lml aliquots ofwamied dissection media. The follicles were teased

apart using insulin needles (Sherwood) to release the oocyte and the surrounding

cumulus cell complexes (OCCs). These complexes were then transferred through two
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wash drops of pre-equilibrated IVM medium (2.3.2) using fine drawn, BSA coated

pipettes before being placed into a final drop medium. The complexes were placed

into the incubator for 24 hours before fertilisation. After 24 hours the OCCs were

washed through two drops of fertilisation media before being placed into a final drop

prior to fertilisation.

2.3.5 Sperm Preparation

F1 (CBA male x C57B1 female) males between 6-10 weeks of age were used

for sperm collection. Two males were used on each occasion. The animals were

killed by cervical dislocation. All dissections were carried out within a laminar flow

hood (Astecair). After incision and exposing the reproductive organs, the testis and

vas deferens were removed to dishes containing dissection media (2.1.1 .above).

From each animal one testis and vas deferens was placed into an embryo dish with

one testes and vas deferens of the other animal. Further dissection was conducted

under an inverted dissecting microscope fitted with a heated stage (Nikon/Zeiss:

Linkam). Each testis was removed and discarded leaving the vas deferens and caudis

epididemis. These were carefully cleaned up, using irridectomy scissors and

watchmaker forceps, removing adherent fat and blood vessels. After cleaning, both

vas deferens and caudis were placed into a 0.5ml pre-equilibrated drop of fertilisation

media (see 2.3.1). Under the microscope the caudis was teased apart and the contents

of the vas deferens squeezed out releasing the sperm into the media. The tissue was

then removed and discarded. Each dish contained sperm from both animals. The

sperm preparation was placed into the incubator (Forma Scientific) and left for 2

hours before use.
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2.3.6 Superovulation of female animals

For each run of IVF, oocytes were collected from superovulated adult F1

animals and used as a control for the IVF system. 68 hours before the day of IVF at

least two adult females between the ages of 6-8 weeks were injected into the

peritoneum with 5IU Pregnant Mare Serum Gonadotrophin (PMSG) contained wthin

lOOpl of phosphate buffered saline (PBS) (Intervet). Followed by 5IU Human

Chorionic Gonadotrophin (hCG) /lOOpl PBS (Intervet) 54 hours later.

2.3.7 Collection of super ovulated oocytes

The animals were killed by cervical dislocation and transferred to a laminar

flow hood where the ovaries and oviducts were removed to embryo dishes containing

lml warm dissection media (2.1.1). Under an inverted dissecting microscope

(Nikon/Zeiss) and using a heated stage (Linkam), the oocyte-cumulus complexes

(OCCs) were released from the ampulla region of the oviduct using insulin needles

(Sherwood). Using fine drawn, BSA coated glass pipettes, the OCCs were

transferred through two wash drops of pre-equilibrated T6 fertilisation media (2.3.1)

before being placed into a final drop ofmedia to await fertilisation.

2.3.8 Assessment of sperm

20 pi of the sperm preparation was added to an equal volume of 4%

paraformaldehyde and mixed. 10 pi of fixed sperm was counted using a

haemocytometer chamber and the total number of sperm per ml calculated.
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2.3.9 Fertilisation of oocytes

All the oocytes, both control and experimental, had sperm added to them at

the same time. Based on the assessment of the sperm preparation (above), sperm was

added to the 0.5ml fertilisation drops at an approximate concentration of 1-2 xlO6 per

ml. The plates were then placed back into the incubator and left undisturbed for 4-

5hours.

2.3.10. Embryo development

At the end of the fertilisation period, the oocytes were transferred by glass

pipette to the pre-equilibrated drops ofKSOM (2.3.2). The oocytes were washed

twice before being placed into final drops ofmedium. Counts were made of the total

number of oocytes within each group. The plates were returned to the incubator and

left undisturbed for 17 hours. After this period, fertilised oocytes that had cleaved to

two-cells were counted.

2.3.11 Development to blastocyst stage

Using the pre-equilibrated media and silicon fluid from the incubator, fresh

drops ofKSOM media were made. The sizes of the droplets were calculated based

on the number of two-cell embryos counted with 10 embryos being placed into 20 pi

droplets. A strict 1 embryo to 2 pi ofmedium ratio was adhered to. For example if 17

embryos were counted two drops of medium (1x20 pi and 1x14 pi) were made. This

was to insure that the effects of any endogenous products, produced by the embryos,

were present at the same concentration throughout the culture period. The droplets of

medium were covered by the silicone fluid and returned to the incubator for 2-3
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hours. The two-cell embryos were transferred into the fresh droplets ofKSOM, 24-

26 hours after the beginning of the fertilisation period. The plates were returned to

the incubator where they remained until the end of the culture period. Figure 2.2 is a

flow diagram outlining the IVF procedure.

2.3.12 Assessment of developing blastocysts.

The embryos were examined on a daily basis using an inverted microscope

(Nikon) fitted with a heated stage (Linkam). Within each treatment group the number

of embryos were examined and a note of their developmental stage made. Practically

this was at the 4-cell, morula and blastocyst stage of development as many

intermediate stages progressed overnight.
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Figure 2.2 Flow diagram illustrating the IVF procedure
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2.4. Detection ofapoptosis by TUNEL labelling

2.4.1 TUNEL Staining of cultured follicles.

All steps were carried out in the wells of 96 well plates as in 2.4.1. Follicles

were washed in PBS at 37°C for lOminutes before being transferred into 0.5% Triton

X-100 and 0.25% paraformaldehyde in PBS (37°C, 40 minutes). They were then

fixed in 4% paraformaldehyde (30 minutes) and washed twice in PBS (2x10

minutes). At this point follicles could be stored in PBS with 0.02 % sodium azide at

4°C. After removal from storage, follicles were washed in PBS (10 minutes);

transferred into 17.1 rng ml"1 Proteinase K at 37°C (30 minutes); washed in PBS with

0.01% Triton X-100 (10 minutes); fixed in 3% paraformaldehyde (30 minutes), then

washed twice in PBS (2 x 20 minutes). Each follicle was placed in a commercially

available TUNEL reaction mixture (Roche) for 2.5 hours. Follicles were then washed

in PBS (10 minutes) and moved into Rnase buffer (as 2.4.1) containing 2.5 mg ml of

propidium iodide for 1 hour. They were then washed in PBS containing 0.01% Triton

X-100 (20 minutes) followed by two washes in PBS (2 x 20 minutes). As before, to

preserve fluorescence the follicles were equilibrated in 50% Vectashield (Vector).

They were then stored overnight at 4°C at this stage or transferred into 100%

Vectashield on a concave microscope slide (TAAB) cover-slipped and sealed with

nail polish for microscopic analysis.

2.4.2 Confocal Analysis

Follicles were analysed by confocal microscopy (Leica) using the 63x water

corrected PL APO lens. Follicles were examined by taking a single scan through the
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centre of each follicle as determined by central positioning of the propidium iodide

stained germinal vesicle in the oocyte. Propidium iodide staining was red in colour

while TUNEL labelled cells were detected as green therefore simultaneous scans at

488 nm and 568 nm were taken to produce an amalgamated true colour RGB image.

Each channel could also be viewed separately.

2.5 Hormone assays

Hormone assays were performed on the spent media from follicle cultures.

All the culture plates were stored frozen at -20°C until the assays could be

performed.

2.5.1 Oestradiol

Media from the follicle cultures were analysed for oestradiol

immunoenzymatically using an ELISA method supplied as a kit (Biostat). Samples

were prepared as per the kit instructions and analysed colourmetrically using a

Serozyme I analyser (Intersept). Oestradiol was measured from individual follicles.

The inter-and intra assay coefficients of variation were < 5% and the sensitivity was

< 0.48nmol f1

2.5.2 Androstenedione

Media from the follicle cultures were analysed for androstenedione by

radioimmunoassay, which has been validated for this purpose (Hillier et al., 1991/
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2.6. Genotyping ofmutant animals.

2.6.1 Collection of material

In order to obtain DNA for analysis, either a piece of tail tip or an ear

clipping was used. The animal house staff collected the material when the animals

were between 2-3weeks of age. The clippings were placed into an eppendorf tube

and stored at -20°C until extraction.

2.6.2. Extraction of DNA

Tail Tip Lysis buffer (TTLB see Appendix C) was supplemented with

proteinase K (Boehringer) at a ratio of 2.5 pi per 0.5 ml. 0.5ml of this was added to

each eppendorf containing either a tail tip or ear clipping. This was digested

overnight at 55°C in a shaking water bath. The digested material was then vortexed

(Rotamixer) and centrifuged at 14K (Eppendorf centrifuge) for 15 mins. While the

material was being spun down, fresh eppendorfs containing 500 pi isopropanol were

prepared. The supernatant obtained was mixed with the isopropanol. The tube was

then mixed by gently inverting until a 'cotton-wool' like precipitate was seen. The

tubes were then centrifuged at 14K for 15minutes and the supernatant discarded. 1ml

of 70% ethanol was added to the pellet and the tubes spun down (30 seconds @14K).

The supernatant was discarded and the tubes re-spun to ensure that all the ethanol

was removed. The pellet was dried in a 37°C oven for 30 minutes. 300 pi double

distilled water (ddH^O) was added the tubes vortexed and then placed in a 55°C

shaking water bath for lhour. In a fume hood (Astecair) 300 pi of PCIA (Sigma) was

added to the tubes, mixed and allowed to stand for 5 minutes before spinning at 14K
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for lOmins. 200pl of the aqueous layer was transferred to fresh eppendorf tubes to

which 20 pi sodium acetate (pH5.5) and 400ml 100% ethanol was added to

precipitate DNA. The mixture was mixed by inverting the tube and then centrifuged

at 14K for 5mins. The pellet was washed twice in 1ml 100% ethanol before being

dried in a 37°C oven for 30mins.The DNA was re-constituted in ddH20 (200 pi for

tail tips and 50 pi for ear clippings) and stored frozen.

2.6.3. Polymerase Chain Reaction

The DNA obtained as above was subjected the polymerase chain reaction

(PCR) before identification of the genotyping of the animals was determined, lpl of

the DNA extracted was added to 24pl of a bulk mix containing PCR buffer, primers

and polymerase enzyme. The details used for each protocol used are given in

Appendix C. All reactions were set up in 0.5ml thin wall PCR tubes and the reaction

was performed using a thermal cycler (MJ Research). The PCR programme used was

dependent on the genotype being analysed (see Appendix C).

2.6.4 Agarose gel analysis of PCR products.

5 pi of loading buffer (see Appendix C) was added to each of the PCR tubes

after they had been reacted. Agarose gels were prepared by adding 1.6 grams of

agarose (Flowgen) to 40 ml of Tris borate buffer (TBE -see Appendix C). The

agarose was dissolved by heating the mix in a microwave oven on medium power for

2 minutes. The gel was cooled and lpl of ethidium bromide solution (see Appendix

C) was added to it. The gel was then poured into the chamber of a mini-gel tank

(BioRad), a well comb inserted and allowed to set for 30 minutes. The comb was
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then removed and 60ml TBE added to the chamber. The PCR samples were then

carefully pipetted into the wells and the gel was connected to a power pack (BioRad)

at 40 volts for 1 and half-hours. A 100 base pair molecular weight marker was also

run along with the samples (Boehringer)

2.6.5. Detection of DNA products.

The gel was visualised using a UV transilluminator (BioRad) linked to Alpha

Imaging Software. The PCR products were compared with the molecular weight

markers to confirm the genotypes of the animals.

2.7 Histology

2.7.1.1 Fixation of ovaries

Whole ovaries were placed into Bouins fixative for a period of 24 hours.

Ovaries were then transferred to 70% ethanol for storage until processing. The

ovaries were dehydrated by passing them through a series of increasing strength

alcohol solutions (70%, 90%, 100%x2) for 1 hour in each. The ovaries were then

placed into toluene for ~2 hours for clearing before being placed into plastic moulds

filled with molten paraffin wax. The tissue was allowed to impregnate with wax for

3-5 hours before being orientated and the wax allowed to solidify.
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2.7.1.2 Sectioning and mounting.

The wax blocks were removed from the plastic moulds and set onto the top of

metal chucks. The blocks were then positioned onto a microtome (Reichart-Jung)

and 6pi sections cut. The sections were floated out in a water bath at 50°C, picked up

and transferred to gelatin coated slides. The slides were then placed into a 37 °C oven

overnight.

2.7.1.3. Staining

The dried sections were dewaxed in xylene, re-hydrated through descending

alcohol concentrations to water before staining in haemotoxylin for 5 minutes.

Sections were then acidified in acid alcohol, rinsed under running tap water then

placed into Scotch Tap Water Substitute (STWS) for 2 minutes. After another wash

in tap water the slides were placed into eosin for 2 minutes, fixed with potassium

alum before washing and dehydrating through ascending alcohol concentrations. The

slides were placed into xylene before coverslips were applied using DPX mountant

(BDH).

2.7.2 Processing of cultured follicles.

2.7.2.1 Fixation.

In vitro grown follicles were fixed at the end of the culture period by placing

them into 4% paraformaldehyde for 24 hours at 4°C after which they were

transferred to 70% ethanol.
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2.7.2.2 Processing of samples.

Follicles were then dehydrated through a series of alcohols (70%; 90%; 95%;

100%; 100%, 30 minutes each). They were then embedded into LR White resin

(Taab,) contained within gelatin capsules and incubated overnight at 60°C. The

gelatin capsule was dissolved in running hot water ~4 hours and the resin block

mounted onto a wooden chuck.

2.7.2.3 Sectioning and mounting

2pm sections were cut using a plastic-section microtome (Rechert-Jung),

floated out onto a 50°C water bath and transferred to gelatin coated slides. Sections

were then dried on a hotplate overnight at 60°C.

2.7.2.4 Staining

The dried sections were stained as described in 2.7.1.3.above.
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Chapter Three

Improvement of the Follicle Culture System:

The Role ofAscorbic Acid.
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3.1 General Introduction

Over the last decade a number of investigators have developed in-vitro

culture systems that support the growth and development of follicular units from pre-

antral through to pre-ovulatory stages. The oocytes obtained from these follicles are

viable and live young have been produced (Eppig and Schroeder 1989, Spears et al.,

1994). Essentially two types of system have evolved for the culture of pre-antral

follicles; those that maintain the follicle as a 3-D unit and those that consist mainly of

the oocyte surrounded by granulosa cells. In the latter system some of the basement

membrane may be present but the follicle does not maintain its structure. There are

advantages and disadvantages to both systems. The follicular culture system

described in Chapter 2 was developed in the laboratory here. Follicles, of

approximately the same developmental stage, are isolated as intact units and grown

individually. Growth and development mirrors that of follicle in vivo to a remarkable

degree i.e. the system is highly physiological. As the follicles can be grown in

defined conditions any extra-ovarian or even extra follicular effects are negated. As

one of the principle aims of this thesis was to investigate how factors arising during

the follicular growth phase may affect oocyte developmental competence, many of

my studies have employed this in vitro follicular culture system.

While the culture system has been used successfully for a number of years,

periodically we have found that over the years there have been phases where the

follicles would 'burst' and lose their basement membrane integrity. Initially the

follicles would start to grow normally but after 72 hours in culture they would

assume a disorganised appearance making it difficult to gain information on growth

and antral formation.
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During follicular development the granulosa cells are separated from the

surrounding stromal tissue by a basal lamina. This membrane has to expand rapidly

as the granulosa cells proliferate and also during antral formation. In bovine follicles

it has been calculated that the surface area doubles nineteen times during follicular

development implying that the basal lamina has to undergo constant re-modelling.

Studies in ovine and bovine follicles have shown that the basal lamina influences

granulosa cell function and morphology while the granulosa cells themselves may

produce components necessary for the synthesis of the basal lamina (Rodgers et al.,

1999; Huet et al., 2001). The basal lamina probably serves a number of functions; it

may regulate the transfer ofmolecules between the stroma and the somatic

compartments during the latter phase in follicular development and serve as a store

of growth factors and regulate fluid uptake during antral formation.

As the aim of some of the work was to investigate growth and

development, experiments were devised and carried out to improve the number of

follicles able to maintain their basement membrane throughout the culture period.

Initially experiments investigated the effects of insulin, selenium and ascorbic acid,

which are common additions to culture media. From these experiments we found that

ascorbic acid alone was responsible for increasing the number of follicles able to

maintain their 3 D morphology. This chapter describes a more detailed study of the

effects of this vitamin on follicular development.
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3.2 Ascorbic acid and the ovary

The actions of ascorbic acid (Vitamin C) are amongst the best understood of

all the vitamins. It is a dietary requirement for primates, and a few other mammals,

which lack the necessary hepatic enzymes for synthesis. It has been associated with

conditions such as ageing, the common cold and cancer and the recommended daily

requirement has been the subject ofmany debates.

The ovary, and other endocrine tissues, accumulates high levels of ascorbic

acid. Within the ovary, concentrations accumulate in the granulosa, thecal and luteal

cells (Deane, 1952) and it has long been associated with fertility (Luck et al., 1995).

Ascorbic acid has been used to treat infertility in cows (Phillips et al., 1941) and has

been shown to enhance the effect of clomiphene on ovulation induction in women

(Igarashi, 1977). Conversely high dosages have been implicated in spontaneous

abortion in both women and rats (Samborskaia and Ferdman, 1966). The ovarian

content of ascorbic acid changes throughout the oestrus cycle. In response to the pre¬

ovulatory surge of LH, ascorbic uptake by the ovary is blocked and the tissue

concentration depleted, a phenomenon that formed the basis of an early bioassay

(Parlow, 1958). In response to LH the ovary produces increasing concentrations of

progesterone. Studies on luteinizing granulosa cells have shown that ascorbic acid

stimulates progesterone production (Byrd et al., 1993) and that rising progesterone

concentrations block the uptake of ascorbic acid (Stansfield and Flint, 1967).

Therefore the action of LH may indirectly control the fluctuations in ascorbic acid

concentration throughout the ovarian cycle. In addition ascorbic acid acts as a co-

factor in the amidation of some proteins and has been implicated in the regulation of

oxytocin secretion by the ovary (Luck and Junglas, 1987).
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The role of ascorbic acid in promoting collagen biosynthesis has been

extensively studied (Pinnell, 1985). During follicular growth, ovulation and corpus

luteum formation, basement membranes and the extra cellular matrix are undergoing

constant remodelling and will therefore have a high requirement for collagen. Early

studies have implicated ascorbic acid in the regulation of the Graafian follicular

basement membrane, lack of the vitamin causing degeneration of the follicle

membrane and high doses inhibiting collagenolytic activity in the mature follicle

(Kramer et al., 1933; Espey and Coons 1976).

The matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors

ofmetalloproteinases (TIMPS), are members of an enzyme family associated with

the re-modelling of extra-cellular matrix within the ovary (Smith et al., 1999). Many

studies of the actions ofMMPs and TIMPs within the ovary have concentrated on

their functions during the peri-ovulatory period (Elagglund et al., 1999), but little is

known about their expression and control throughout follicular development.

Vitamin C deficiency has been associated with the premature rupture of placental

membranes. Addition of ascorbic acid to cultured human amnion cells resulted in a

decrease in matrix metalloproteinase activity (Pfeffer et al., 1998), suggesting that

ascorbic acid may play a role in the control of these enzymes.

While there is much information on the role of ascorbic acid during corpus

luteum formation, little is known about its role during follicular growth and

development. The aim of this study was to investigate the role of this vitamin during

follicular growth.
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3.3 Materials and Methods

3.3.1 Animals

Three-week hybrid F1 female mice were used for these experiments. They

were housed as described in Chapter Two.

3.3.2 Experiment 1: Effect of Ascorbic acid on basement membrane integrity,

follicular growth, morphology and steroidogenesis.

Follicles were isolated and placed into culture as outlined in the protocols

described in Chapter two. Culture media was supplemented with rhFSFI at 1 IU ml"1

and 5% mouse serum obtained from adult F1 mice. This was the control media.

Ascorbic acid was added to the media as described below. Media was freshly

prepared every second day. The a MEM media was supplied as IX liquid. The

formulation includes ascorbic acid at a concentration of 50mg L" , however, liquid

media is batch prepared and supplied with a minimum 3 months shelf life. As

ascorbic acid rapidly oxidises in solution, it is therefore likely that the ascorbic acid

component would have decayed in the media used. As no measurements of ascorbic

acid in the media were made it could not be determined to what degree this had

occurred.

Follicles were cultured in control media (as above) or with the addition of

either 5pg ml"1 or 50pg ml"1 L-Ascorbic acid, sodium salt, (Sigma) to the culture

media (28pM and 280pM respectively). Ascorbic acid stock solution (5mg ml"1) was

prepared in a MEM and aliquots were stored at -70°C for a period of one month.

Follicles were examined daily, the basement membrane was defined as intact where
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follicles maintained their 3D morphology. Follicular diameter was measured using a

pre-calibrated ocular micrometer. Data on follicular growth was obtained from

follicles that remained intact on the final day of culture. During the first two days of

culture, all follicles were moved to fresh wells ofmedia. Follicles that had lost

basement membrane integrity within the first two days of the culture period were

discarded from the experiment (as this may have been caused by damage during

dissection). Between Days 3 and 6 of culture, intact follicles were moved daily, as

before. Ruptured follicles were not moved, but instead 15 pi of fresh media was

exchanged for 15 pi of spent media each day. In each run of the experiment 36

follicles were allocated to each treatment group. The experiment was repeated twice,

giving a total of 72 follicles per treatment.

At the end of culture, representative follicles from all treatments were fixed,

embedded and sections cut for histological examination as described in Chapter 2.

Hormone Assays

Spent culture media from days 4 and 5 of the culture period were analysed for

oestradiol and progesterone. Both hormones were analysed using commercially

available kits (Biorad) and the Serozyme I spectrophotometer as detailed for

oestradiol in Chapter 2. Oestradiol was analysed from the media of individual

follicles while progesterone was analysed from the combined media of days 4 and 5

of culture.
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3.3.3 Experiment 2: Detection of metalloproteinase and tissue inhibitor of

metalloproteinases.

Gelatin zymography and reverse zymographic analyses were conducted for

detection ofMMP and tissue inhibitor ofmetalloproteinase TIMP activity in cultured

mouse follicles respectively. Freshly isolated follicles, corresponding to the

diameters of follicles on each day of culture, were also analysed. These results

indicated that MMP activity was detectable in follicles of a similar size to those

cultured for a two-day period. On the basis of these initial experiments follicles were

cultured for 2 days in the same concentrations of ascorbic acid as Experiment 1

(3.3.1) after which they were analysed for MMP and TIMP activity.

Gelatin Zymographic and Reverse Zymographic Analyses

Gelatin zymography was conducted with 7.5% SDS-polyacrylamide (SDS-

PAGE) gels containing 1 mg mf1 gelatin (Sigma), under non-reducing conditions as

described previously (Hibbs et al., 1985; Morodomi et al., 1992). To avoid the

possible loss ofMMP and TIMP activity associated with tissue extraction from small

samples, follicles (10 follicles per sample) were dissolved directly in 20 pi of SDS-

PAGE loading buffer (Laemmlli, 1970) without a reducing agent. The samples were

then subjected to electrophoresis at room temperature (10 pi per lane). Following

electrophoresis, SDS was eluted from gels in four changes of buffer containing

50mM Tris-CL (pH 7.5), 5mM CaCl2, 5pM Zn Cl2, 0.02%NaN3 and 2.5% Triton X-

100 (Sigma) for a total of 60-90 minutes at room temperature. Gels were then

incubated in the same buffer without Triton-X at 37°C for 20 hours, stained with

Coomassie brilliant blue R250 and destained in 30% methanol and 1% formic acid.
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Areas ofMMP activity were identified as clear bands of digested gelatin. Molecular

weight markers (Invitrogen) and purified human pro-matrix metalloproteinase 2

(MMP 2, a generous gift from Dr. Hideaki Nagase, University of Kansas) were used

to determine molecular size of pro- and active forms of gelatinases. Intensity of

bands was determined by use of a Chemilmager 4000 Low Light Imaging System

(Alpha Innotech Corp.). All gelatinase activity was inhibited by including lOmM

EDTA or 10 mM phenanthroline in the incubation buffer.

Reverse gelatin zymography was conducted with 12% SDS-PAGE gels

containing gelatin (lmg ml"1) under non-reducing conditions (Reverse Zymography

Kit, University Technologies International Inc.). The same samples as described

above (10 pi per lane) were subjected to electrophoretic analysis at room

temperature. Following electrophoresis, SDS was eluted from the gels and incubated

at 37°C for 30 hours as described above. Gels were stained with GelCode® Blue

Stain Reagent (Pierce) and washed in water. Metalloproteinase inhibitor activity was

identified as dark bands of undigested gelatin. Molecular weight markers and

purified recombinant ovine tissue inhibitor ofmetalloproteinase 1 (Mclntush and

Smith, unpublished data) were used to detennine molecular sizes of TIMPs. Intensity

of bands was determined as described above.

In each run of the experiment, 10 follicles were analysed per treatment group. The

experiment was repeated 3 times giving a total of 30 follicles per treatment.
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3.3.4 Experiment 3: Effect of Ascorbic acid on apoptosis.

In order to test whether ascorbic acid has an effect on preventing apoptosis,

follicles were isolated as in Chapter 2 and randomly assigned into three groups. Each

group was cultured in 5% CO2 at 37 °C for 24 hours in the following media:

1). a-MEM supplemented with 1 IU ml"1 rhFSH. This was the control group.

2). a-MEM supplemented 1 IU ml"1 rhFSH plus 280pM ml"1 ascorbic acid. This

was the experimental group.

3). a-MEM supplemented with 5% serum, 280pM ml"1 ascorbic acid, 0.5ng ml"1

sodium selenite (Sigma), and 1 IU ml"1 rhFSH. This group was included as a positive

control, since the inclusion of serum in culture media inhibits follicular degeneration

through apoptosis.

DNA extraction and labelling

Genomic DNA was extracted from the follicles using a commercial kit and

according to the manufacturers' instructions (QIAmp Tissue Kit, Quiagen). Extracted

DNA was eluted in a final volume of 150 pi (to maximise yield) then ethanol

precipitated (45 pi 8M Potassium acetate, 400 pi Ethanol) and re-suspended in 20 pi

ddH20. Extracted DNA fragments were 3' end labelled with digoxigenin using a 3'

end labelling oligonucleotide kit (Boehringer Mannheim) prior to being separated by

electrophoresis on a 2% agarose gel. Gels were Southern blotted overnight onto

positively charged nylon membranes (Boehringer Mannheim), baked at 120 °C for

30 minutes and labelled fragments detected colourmetrically using the DIG detection

kit (Boehringer Mannheim) according to manufacturers' instructions. Developed

membranes were scanned using an Imaging Densitometer (Bio-Rad, Model GS-670,)
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and analysed with the Molecular Analyst program (Bio-Rad). Density readings were

recorded for bands corresponding to -185, 370 and 555 base pairs on each lane run

and an average calculated.

In each run of the experiment, 8 follicles were analysed in each treatment

group. The experiment was repeated 3 times giving a total of 24 follicles / treatment.

3.3.5 Statistical Analysis.

The number of follicles remaining intact throughout the culture period in each

treatment was compared using chi-square analysis. Oestradiol values, degree of

apoptosis and concentrations ofMMPs and TIMP were compared by analysis of

variance. Where appropriate comparison was made using Student's t test.
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3.4 Results

3.4.1 Experiment 1: Effect of Ascorbic Acid on basement membrane integrity,

follicular growth, morphology and steroidogenesis.

In the absence of ascorbic acid, 33% of follicles maintained integrity of the

basement membrane throughout the 6-day culture period. Follicles cultured in 28pM

ascorbic acid exhibited a non-significant increase in the percentage remaining intact

(47%). However when follicles were cultured in 280pM ascorbic acid there was a

highly significant increase in the percentage of follicles remaining intact (88%;

p<0.001) when compared to controls (Fig 3.1).

Follicular growth rate was unaffected by ascorbic acid concentration.

Follicles that remained intact in the control and ascorbic acid treated groups, reached

similar sizes by day 6 of culture (Fig 3.2). Histological examination of follicles at the

end of the culture period showed that intact follicles were of similar size and had

large antral cavities regardless of treatment (Fig 3.3).

Oestradiol analysis was performed on media collected on days 4 and 5 of the

culture period. Media was collected from both intact follicles and from those that had

lost their basement membrane integrity. The results show that oestradiol production

increased between day 4 and day 5 in all treatments. Ascorbic acid addition to the

media reduced the production of oestradiol regardless ofwhether follicles had

maintained basement membrane integrity or not. The decrease was, however, not

significant (Fig 3.4). Progesterone production was not detected in any group.
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3.4.3 Experiment 2: Detection of metalloproteinase and tissue inhibitor of

metalloproteinase

The primary gelatinolytic bands (Mr 62,000 and 72,000) corresponded to the

pro- and active forms ofmatrix metalloproteinase-2 (MMP-2 gelatinase A) and co-

migrated with the pro- and active forms of recombinant human matrix

metalloproteinase-2. The larger gelatinolytic band (pro-MMP-2) was the

predominant form present within murine follicles. Addition of ascorbic acid at the

higher but not the lower concentration resulted in a small but significant increase

(p<0.01) in TIMP-1 activity. MMP2 activity increased at the higher concentration

but the increase here was below the level of significance (p<0.08) (Fig 3.5).

3.4.4 Experiment 3: Effect of Ascorbic acid on apoptosis.

Control follicles grown in the absence of serum showed a high level of

apoptosis (measured as the degree of nuclear DNA laddering). Addition of ascorbic

acid to the serum-free media (experimental group) significantly reduced the

incidence ofDNA fragmentation (p<0.05) to nearer the values of the positive control

group, which also contained serum and selenium (Fig 3.6).
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Figure 3.1 Percentage of follicles remaining intact at the
end of the culture period. Follicles were cultured in either
control media or in media supplemented with 28 or 280pmol
ascorbic acid. *** = p<0.001compared to the control.
Values are mean ± SEM (n=72)
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Figure 3.2 Growth rate of follicles grown in control media
or with 28 or 280|am ascorbic acid. Values are mean ± SEM
(n=72)
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Figure 3.3 Haematoxylin and eosin stained plastic sections of follicles
grown in Opm (A), 28pm (B)and 280pm (C) Ascorbic acid for 6 days in vitro.
Scale Bar = 80pm
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Figure 3.4 Production of oestradiol by follicles on days 4 and 5
of culture. Follicles were cultured in control media or containing 28|jm and
280|j.m ascorbic acid I"1. Data are mean ± SEM (n > 25)
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Figure 3.5. Effect of ascorbic acid concentration on (a) pro-matrix
metalloproteinase 2 (MMP-2), (b) activated MMP-2 and (c) tissue inhibitor
of metalloproteinase 1 activities in mouse follicles. Values were assigned
arbitary densitrometric units.
Values are mean ± SEM (n = 30). ** = p < 0.01 compared to control.
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Figure 3.6 A
Representative gel of mouse follicles showing 'laddering' of nuclear DNA
into ~185 base pair multiples. Lane 1 shows the positive control group (cultured
with serum, 5 pg selenium ml~1and 280pm ascorbic acid I"1). Lane 2 is the
control group (cultured without serum). Lane 3 is the experimental group
(cultured in the absence of serum but with with 280pm ascorbic acid I"1).
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Figure 3.6 B.
Relative densities of apoptotic bands between culture groups
calculated relative to the control group containing serum which
was assigned an arbitrary value of 1.
Values are mean ± SEM (n=24)* P<0.05 when compared to the control group.
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3.5 Discussion

In common with other endocrine tissues, the ovary is a site of ascorbic acid

accumulation, which fluctuates in response to stimuli such as luteinising hormone,

cyclic AMP and prostaglandins. Most studies have concentrated on the well-known

effects of ascorbic acid on steroidogenesis in response to these factors (Sanyal and

Datta, 1979). However it has been suggested that the high concentrations of ascorbic

acid measured within ovarian tissue are in excess of those required solely for

steroidogenesis. As the ovary is a site of intensive tissue re-modelling, ascorbic acid

is probably required as a co-factor in collagen production (Luck et al., 1995).

Recently much attention has been paid to the ability of ascorbic acid to act as an anti¬

oxidant (Padh, 1991): as both tissue re-modelling and steroidogenesis are processes

that produce reactive oxygen species, it would seem likely that ascorbic acid serves

this function within the ovary.

Ascorbic acid is an unstable vitamin and is easily oxidised to its reduced form

dehydroascorbic acid by heat, oxygen, pH and temperature. Dehydroascorbic acid

also has physiological activity however, it is even more readily degraded to

diketoglutonic acid which has no activity (Padh, 1985). The formula of the culture

media used in these experiments contains ascorbic acid that may have confounded

the results obtained. However, it is likely that much of the vitamin would have

degraded in the media. In order to assess to what degree this had occurred, the media

would have needed to be titrated for ascorbic acid activity. Nonetheless, the study

presented here indicates that high levels of ascorbic acid are needed to contribute to

the multi-functional activities of this vitamin in follicular development.
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The hormonal influences that affect follicular growth and development have

been well documented but little is known about the physical processes that occur

throughout the growth phase. During follicular growth and expansion there is a rapid

production of the basal lamina that separates the thecal and granulosa compartments.

In the mouse this has been estimated as a 30 x 103 fold increase (Gosden et al.,

1993). In the in-vitro system described here, murine follicles grew from ~200pm to

—415pm over a culture period of 6 days resulting in a 4.3 fold increase in follicular

surface area. While ascorbic acid had no effect on the growth rate or morphology of

the follicles, there was a marked increase in the percentage of follicles able to

maintain basement membrane integrity. Without ascorbic acid only 33% of the

follicles had retained an intact membrane after 6 days in culture compared with 88%

when media was supplemented with 280pM ascorbic acid. Although this is a higher

level than commonly found in human serum, it correlates reasonably well with the

high levels of ascorbic acid found in human follicular fluid (Luck et al., 1995). These

results are in good agreement with a recent report by Rose et al. (1999). In that study,

the addition of selenium and ascorbic acid also increased the percentage of follicles

able to maintain their spherical morphology when cultured in vitro. In the culture

system used here, no selenium was added to the media and therefore the effect seen

can be attributed solely to the addition of ascorbic acid. A very early study with

scorbutic guinea pigs noted that these animals were anovulatory and exhibited a

marked degeneration of the follicular wall (Kramer et al., 1933). A major component

of the follicular basal lamina is collagen IV, which both granulosa and theca cells can

produce in vitro (Rodgers et al., 1995; Zhao and Luck, 1995). Ascorbic acid has a

well-known role in promoting collagen synthesis, both at the level of the gene, and as
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a co-factor in the secretion and stabilisation of the protein (Pinnell, 1985). Therefore

it could be assumed that the growing follicle would have a high requirement for

ascorbic acid if it is to produce sufficient basal lamina components to maintain

expansion of this membrane during development. The results presented here support

this idea. We also have unpublished data (Srsen and Spears) showing that follicles

grown in the presence of ascorbic acid require a more stringent permeabilisation

treatment before fixation, providing further evidence for a role of this vitamin in

basal lamina formation and stabilisation. Rodgers et al., (1998) have recently

reported that in bovine follicles the distribution of the collagen IV chains within the

basal lamina change composition during follicular development. As ascorbic acid

was present in the media throughout the culture period, it was not possible to

determine whether it was required at all stages of development or, for example, only

during pre- or post-antrum formation.

Extra cellular matrix components are constantly remodelled by the action of

extra cellular proteases, mainly MMPs and their inhibitors TIMPs. As such, MMPs

and TIMPs are obvious candidates for modulating the ovarian follicle basement

membrane. The collagenous component of the ovarian stroma includes interstitial

collagen type I and III whereas collagen type IV is the collagenous component of the

basement membrane. Collagens can be degraded by MMP2, which is activated

during structural luteolysis, concurrent with a marked depletion in ascorbic acid

(Endo et al., 1993). In humans, a vitamin C deficiency has been associated with

increased rupture of placental membranes and addition of ascorbic acid to cultured

human amnion cells decreased MMP-2 expression and activity (Pfeffer et al., 1998).

These previous reports suggest that ascorbic acid influence the actions of the
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metalloproteinases. In the present study the pro- and active forms ofMMP2

(gelatinase A) were detected within cultured murine follicles collected on day 2, just

prior to the period during which most cultured follicles frequently began to rupture.

While similar levels ofMMP2 and TIMP1 were present in control follicles and in

those cultured with the lower concentration of ascorbic acid, a significant increase in

TIMP1 (p<0.01) was observed at the higher concentration of ascorbic acid used: this

is the same treatment in which a significantly higher percentage of follicles have the

ability to maintain basement membrane integrity. TIMPs and MMPs frequently

increase simultaneously (Murphy et al., 1985); in this instance there was a

concomitant increase in the active form ofMMP2 although this was below the level

of significance (p<0.08). While our result adds further evidence for a role of ascorbic

acid in mediating metalloproteinase activity within the growing follicle, it seems

most likely to be acting through a mechanism which allows both formation and

expansion of the basement membrane, and hence requires both MMPs and TIMPs.

Absence of serum from the culture media induced apoptosis in the pre-antral

follicles within a short period of time (24 hours of culture), as detected by DNA

laddering. As shown here, addition of ascorbic acid to the serum-free media reduces

the degree of apoptosis within these follicles. Tilly and Tilly (1998) have described a

similar effect of anti-oxidants (including ascorbic acid) in short term cultures of rat

antral follicles. From their experiments they concluded that oxidative stress could

play a role in follicular atresia through inducing an apoptotic mechanism. Ascorbic

acid accumulation has been described within follicles at all stages of development; in

the small follicles of the buffalo (Meur et al., 1999), Graafian follicles of humans

(Paszkowski and Clarke, 1999) and from the current study, by late pre-antral follicles
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of the mouse. Granulosa cells, under the influence ofFSH, actively uptake ascorbic

acid (Berhman et al., 1996) and while this is consistent with the idea of ascorbic acid

being required as a co-factor in collagen synthesis and hence basal lamina expansion,

it is likely that ascorbic acid also functions as an anti-oxidant preventing cell death.

At the late pre-antral stage of development follicles acquire responsiveness to

gonadotrophins and develop rapidly, therefore it is feasible that an ability to

accumulate ascorbic acid confers an advantage to the follicle and promotes survival.

No effect of ascorbic acid was found on oestradiol production. This is in

contrast with other systems, where it has been suggested that the addition of ascorbic

acid in vitro adversely affects aromatase activity through alteration ofpH (Milewich

et al., 1981). Increasing levels of ascorbic acid are inhibitory to cholesterol side

chain cleavage (Pintauro and Bergan, 1982) which subsequently affects androgen

production and decreases aromatase activity directly (Sanyal and Datta, 1979, Tsuji

et al., 1989). As progesterone was not measurable in any media, no effect of ascorbic

acid on this steroid could be determined. However the lack of progesterone

production shows that the granulosa cells in follicles unable to maintain their

basement membrane had not undergone premature luteinisation. The relationship

between ascorbic acid and oestradiol appears to be complex. In woman using oral

contraceptives circulating ascorbic acid levels are low, perhaps through an inhibitory

effect of oestradiol on ascorbic acid uptake by the intestine (Kuo and Lin, 1998).

When high doses of ascorbic acid were administered exogenously to pregnant

women, oestradiol production increased, resulting in abortion (Samborskaia and

Ferdman, 1966). However, the Graafian follicle, which has high levels of oestradiol

in the follicular fluid, is the site of ascorbic acid accumulation (Paszkowski and
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Clarke, 1999). High concentrations of oestradiol are required to inhibit the oxidation

of low-density lipoproteins (LDL) in vitro. However, in the presence of ascorbic

acid, concentrations of oestradiol close to physiological levels can also protect LDL

from oxidation (Huang et al., 1999). While the effect of ascorbic acid on oestradiol

may be tissue specific, further investigations are needed on the effect of ascorbic acid

on oestradiol production within the follicle.

The conclusions of this study show that ascorbic acid greatly

increased the percentage of follicles able to maintain their basement membrane in

vitro with affect growth rate. Ascorbic acid also increased the production ofMMP2

and TIMP1 by the cultured follicles, which implicates this vitamin in modulating

matrixmetalloproteinase re-modelling of the basement membrane. Ascorbic acid

reduced the degree of apoptosis within the follicles when subjected to oxidative

stress (serum-free cultures) suggesting that accumulation of this vitamin would be

advantageous for survival. Any effect of ascorbic acid on oestradiol production

requires further investigation.
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Chapter Four

The Effects ofDifferent Gonadotrophin Regimes on

Ovarian Function
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4.1 Introduction

The gonadotrophin hormones FSH and LH were first isolated over 50 years

ago (Greep et al., 1942) and since then their roles in the female reproductive cycle

have been intensively studied. It is now well established that the cycle of ovarian

follicular development and ovulation are dependent upon the actions of these

gonadotrophin hormones. In common with the other members of the gonadotrophin

family, both hormones share a common a subunit non-covalently joined to a P

subunit to form the biologically active hormone. The hormones bind to specific

receptors through their p sub-unit and it is this unit that confers hormone specificity

(Huhtaniemi and Aittomaki 1998; Layman and McDonough, 2000).

Within the ovarian follicle, FSH receptors are only found in granulosa cells.

LH receptors are initially confined to the thecal layers but are also found in granulosa

cells as the follicle proceeds towards pre-ovulatory development. Both FSH and LH

receptors belong to the G protein coupled family which, when activated, results in

the generation of cAMP. Downstream events result in the production of protein

kinase A which mediates intracellular signalling events including gene transcription

(Catt, 1996).

Follicles are capable of reaching the earliest stages of antral formation in the

absence of gonadotrophin stimulation (Kumar et al., 1997; Halpin et al., 1986).

However, during the transition between the slow growing pre-antral phase and the

faster pre-ovulatory stage, follicles become increasingly sensitive to and are finally

dependent on gonadotrophin stimulation. The classic 'two cell-two gonadotrophin'

theory advocates that both FSH and LH are necessary for follicular maturation and

production of steroids (Armstrong and Dorrington, 1977). FSH has been attributed
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with stimulating granulosa cell proliferation and aromatase expression and antral

formation (Yong et al., 1992, Gosden et al., 1988). Stimulation of the thecal cells by

LH provides androgen substrate for subsequent oestrogen production within the

granulosa cells (Hillier et al., 1994). FSH also promotes functional LH receptors

within the granulosa cells during pre-ovulatory follicular development which act in

synergy with FSH to augment steroidogenesis by paracrine signalling (Whitelaw et

al, 1992; Hillier, 2001) as well as preparing the follicle for the ovulatory surge of

gonadotrophins (Toledo et al., 1996; Chappel and Howies, 1991).

The ability of a follicle to respond to the available levels of gonadotrophins at

a particular developmental time-point will ultimately decide its fate. Of a growing

cohort of follicles, only those that can take advantage of the rising mid-cycle rise in

systemic FSH concentration proceed through to the pre-ovulatory stage of

development (Zeleznik and Hillier 1996). From this growing cohort only those

follicles that have matured to the point of having functional LH receptors can survive

the decline in FSH brought about as a result of oestrogen and inhibin feedback on the

hypothalamic-pituitary axis (Zeleznik and Hillier 1996). While this process is the

result of a complex set of factors (Spears et al., 2002;Baker and Spears, 1999) the

administration of exogenous gonadotrophins can over-ride the selection processes

resulting in the superovulation of a larger than normal number of oocytes (Fowler

and Edwards, 1957). This technique has been widely used in animal experimentation

and also in agricultural and clinical settings (Oelsner et al., 1978).

The roles that FSH and LH play in follicular development have been

extensively studied for many years. Until recently it has been difficult to ascribe an

observed response to either one or other of the gonadotrophins, as preparations of
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one devoid of the other had not been available. However, recent advances in

recombinant DNA technology has made available recombinant forms of FSH and LH

(Recombinant Human FSH Product Development Group 1998) making it possible to

define more exactly their individual roles. From the growing number of reports that

have utilised these recombinant fomis of gonadotrophins it is now becoming clear

that FSH alone is capable of promoting follicular growth and development. This has

been demonstrated in mice (Spears et al., 1998), rats (Mannaerts et al., 1994, van

Cappellen et al., 1995), primates (Weston et al., 1996) and humans (Balasch et al.,

1995). Although LH augments steroidogenesis and may play a critical role in the

ovulatory process (Zhang et al., 2001; Chappel and Howies, 1991), follicular growth

and development are not dependent on its actions.

Controlled hyper-stimulation of the ovaries has been used in assisted

reproductive practice for many years as a means of obtaining a large number of

oocytes for techniques such as in vitro fertilisation (Oelsner et al., 1978).

Historically, the preparations used were derived either from pituitary or urinary

sources which contain both gonadotrophins. Originally, compounds contained equal

bioactivities of FSH and LH, but over recent years newer generations of these

preparations have evolved with a much- reduced LH content.

A number of studies have utilised recombinant forms of gonadotrophins to

investigate their separate effects. Recombinant FSH alone has been used to treat

women with Kallmans syndrome and those with hypogonadotrophic disorders (Levy

et al., 2000). In these studies, stimulation produced multiple pre-ovulatory follicles

but resulted in inadequate oestrogen synthesis resulting in poor quality oocytes and

lack of endometrial development (Shoham et al., 1994; Balasch et al., 1995). This
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would suggest that some LH stimulation may be necessary to optimise the follicular

and reproductive environments. However, the concentration of LH required to

optimise stimulation protocols has been the subject ofmany debates. Reports from

clinical studies have suggested that elevation of LH levels (i.e. above basal rates)

during ovarian stimulation protocols may adversely affect the achievement of

pregnancy but the nature of the defect caused in the reproductive process is unclear.

There is some evidence to suggest that excess administration of LH impacts directly

on oocyte quality, giving rise to poor rates of fertilisation and development (Regan et

al., 1990; Danforth 1995). Other reports have indicated that high levels of exogenous

LH affects endometrial function leading to increased incidences ofmiscarriage

(Balen et al., 1993; Shoham et al., 1993). However, other data have failed to confirm

any correlation between elevated LH levels and pregnancy rates (Thomas et al.,

1989; Kovacs et al., 1990). From these conflicting reports it is still unclear what

effect LH has on oocyte development within the follicle prior to ovulation and how

this affects the quality of the embryo after fertilisation.

In order to begin to investigate the influence that gonadotrophin stimulation

has on oocyte quality in humans, the setting up of a large multi-centre trial would be

required. Such a study would be difficult to achieve for a number of reasons. The

protocols used to induce ovarian stimulation vary widely between clinics and there

may be a reluctance to change these protocols as any alteration may jeopardise the

pregnancy rates that are already achieved. As infertility can occur as a result ofmany

medical conditions and the responsiveness to treatment varies widely between

patients, some difficulties could be encountered in comparing results. Another

consideration would be the cost of such a study, which in many instances is borne by
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the patient, recombinant drugs being more expensive than those derived from other

sources. Rodent models have been used extensively to further our knowledge of

many reproductive processes and offer certain advantages. Manipulation of the ovary

is relatively easy in these animals and there is less variation between individuals so

that the starting material for experimentation is more homologous. The use of an

animal model would, therefore, seem an appropriate way in which to begin to

investigate the effects of exogenous gonadotrophin stimulation on oocyte quality.

This study aimed to do this using the mouse as a model.

Specifically the aims of this research were to:

1. Determine if optimally viable oocytes can develop in follicles matured in the

absence of LH.

2. Determine if there is an optimal ratio of FSH: LH (should LH be a

requirement).

3. Determine whether administration of high levels of LH is detrimental to the

oocyte.

4. Determine the effects of LH on potential mediators of follicle development.

In order to achieve these aims, experiments were designed that utilised both

an in vitro and in vivo model. By comparing the results of the two models it should

be possible to differentiate between the direct and indirect effects that FSH and LH

have on follicular development and subsequent embryonic development.
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In Vivo Model

Mutant hypogonadal mice are infertile and have no measurable circulating

gonadotrophins. Ovarian function can be induced by administration of exogenous

gonadotrophins (Halpin et al., 1988) and mating and pregnancy can occur (Gibson et

al., 1994). By administering recombinant forms of FSH and LH to these animals I

aimed to examine their effects on follicular growth and oocyte viability in the

presence of other in vivo mediators. Any effects found could be due to either intra

and/or extra ovarian effects of the gonadotrophins.

In Vitro Model

In order to investigate the precise effects of LH and FSH on follicular growth

and oocyte viability directly, without any extra-ovarian or inter-follicular effects, a

follicular culture system was employed. This culture system has been used

extensively within our laboratory.

Comparison of the two models

In vitro, the follicles (and their oocytes) are exposed only to the

gonadotrophin regimes administered and are isolated from any other gonadotrophin

influences and mediators that may arise as a result of any follicular interaction within

the ovary as well as any extra-ovarian effects. The results obtained from these

experiments will demonstrate only direct effects of gonadotrophin administration. In

vivo, the results may not only indicate these direct effects but also will indicate how

gonadotrophin actions influence other aspects of reproductive function. By
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comparison of these results it should be possible to decipher more precisely how LH

and FSH act during follicular development.
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4.2 Materials andMethods

4.2.1 The effects of differing gonadotrophin stimulation regimes in vivo.

Animals

The colony of hypogonadal mice was housed under the same conditions as

described in Chapter Two. Mating heterozygote parents produced hypogonadal

mutants (hpg

Identification of hps mutants

Analysing DNA extracted from a tail tip by PCR as described in Chapter Two

identified female mice homozyous for the hpg mutation

Vaginal smears

Vaginal smears, for determination of cycle stage, were performed by

inserting the tip of a plastic pipette into the vaginal opening of the animals and

flushing distilled water into the vagina. The resultant mixture was then smeared onto

a glass slide and allowed to dry. The slides were fixed in 96% alcohol before being

briefly dipped into 0.5% toluidine blue stain (w/v H2O). The slides were then washed

in distilled water and allowed to dry before being examined under the microscope. A

note was made of the prevalent cell type present in each smear (as described by

Bloom and Fawcett in A Textbook ofHistology)

4.2.1.1 Experiment 1: Optimisation of the superovulatory regime

Previous trials suggested that hpg'1' females did not respond to the standard

doses of superovulatory gonadotrophins (5IU PMSG; 5IU hCG) used routinely in the

laboratory. To optimise the superovulatory regimes required to induce a response in
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mutant animals, different gonadotropin preparations were used to superovulate both

wild type (WT) and mutant animals. The protocols used were as follows;

Nine WT animals were used and allocated to one of three groups and injected with

Group 1 5IU PMSG

Group 2 10IUPMSG

Group 3 lOIUrhFSH

Twelve hpg" animals were split into two groups and administered either

Group 1 10IUPMSG

Group 2 lOrhFSH

All animals were subsequently injected with 5IU hCG 54 hours after the

initial stimulatory injection. Animals were sacrificed 13-15 hours after hCG

administration and their ovaries and oviducts removed to warm L-15 media (see

Chapter Two). At the time of sacrifice, a piece of tail tip was taken to confirm

genotype. DNA extraction and the PCR protocol are described in Chapter Two.

On re-checking the genotypes it was found that three of the animals were not

mutants. These were then excluded from the experiment and data was collected from

3 animals administered 10IU PMSG rather than 6 animals.

In vitro fertilisation

Oocytes obtained from the superovulated animals were transferred to drops of

T6 media and IVF was carried out. As a control for the IVF system two F1 animals

were superovulated at the same time. The protocols used are described in Chapter

Two.
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4.2.1.2 Experiment 2: The effect of gonadotrophin stimulation on ovarian

function.

Based on the results from Experiment One and from the previous trials

carried out, this experiment set out to examine the effects of administering differing

gonadotrophin regimes on ovarian function.

Gonadotrophin administration

Sixteen female mutant mice between the ages of 6-20 weeks were allocated

into one of four groups. Each group of animals was administered different treatments

via intra-peritoneal injection. Recombinant gonadotrophins were reconstituted in

0.9% saline and administered twice daily. As a control, one group of animals was

administered with the same volume of 0.9% saline. The treatment groups were as

follows and represent the total daily dosage given;

Group 1 1 IU rhFSH (rhFSH only)

Group 2 1 IU rhFSH + 0.01IU rhLH (low rhLH)

Group 3 1 IU rhFSH + 0.5IUrhLH (high rhLH)

These treatments were administered daily for a period of 12 days excluding

day 11 when 10IU rhFSH was given as a single bolus. On the 13th day after the start

of treatment 5IU hCG was administered as a single bolus. During the course of the

experiment one animal from the low LH group (group 2) died, therefore, data was

collected from only 3 animals for this treatment.
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Vaginal Smears

Throughout the period of gonadotropin administration animals were

examined daily for vaginal opening. Once the vagina was open, smears were taken

using the method described in 4.2.1 above.

In vitro fertilisation

After the final bolus injections of rhFSH and hCG, the animals were

sacrificed and the reproductive tracts removed into warm dissection medium (as

described in Chapter Two). The oviducts were examined and any oocytes present

were removed for IVF. The protocol used was exactly as described in Chapter Two.

Uterine Weight.

In order to determine whether the ovaries had been stimulated sufficiently to

induce a systemic rise in oestrogen, the uteri from the treated hpg animals were

weighed. The uteri were trimmed free of adherent tissue and blotted dry before

weighing.

Histology.

The ovaries from the animals were processed for histological examination as

described in Chapter Two.

4.2.2 The effects of differing gonadotrophin stimulation regimes on follicular

development and oocyte competence in vitro.

Animals

21-25 day old F1 hybrid female mice were used for these experiments. The

animals were bred and maintained as described in Chapter Two.
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Follicle isolation

Ovaries were removed from the animals, cleaned and pre-antral follicles

isolated as described in Chapter Two.

Follicle Culture

a- MEM media was prepared and the cultures maintained as described in

Chapter Two. To minimise any effects of gonadotrophin contamination introduced in

serum, the serum used in these experiments was obtained from both male and female

hpg"7" animals. Isolated follicles (175 ± 10 pm) were randomly allocated to one of

three treatment groups. A further group of follicles were allocated to media without

the addition of any gonadotrophins. These follicles were the controls. The treatment

groups were as follows;

Group 1 5 IU ml"1 rhFSH (rhFSH only)

Group 2 5 IU ml"1 rhFSH + 0.01 IU rhLH ml"1 (Low rhLH group)

Group 3 5 IU ml"1 rhFSH + 0.05 IU rhLH ml"1 (High rhLH group)

4.2.2.1 Experiment 1: The effect of gonadotrophins on follicular growth,

morphology and hormone production.

In order to obtain information on growth, morphology and hormone

production, follicles were allocated to the treatment and control groups described

above and cultured for a period of six days. As described in Chapter Two any

damaged follicles were discarded within the first two days of the culture period.

Follicles were examined daily and measured using an ocular micrometer.
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At the end of the culture period representative follicles were fixed for histology. The

remaining follicles were discarded from the trays. The culture trays, containing the

spent media, were then frozen at -20°C so that the media could be analysed for

hormones.

Histology.

Follicles were fixed in 4% paraformaldehyde, embedded in LR White resin

and 3 pm sections were cut. The sections were stained with haemotoxylin and eosin.

These methods are given in Chapter Two.

Hormone assays.

Media from throughout the culture period was analysed for androstendione,

oestradiol and inhibins A and B. Androstenedione measurements were made by

radioimmunoassay as described in Chapter Two. Data was obtained for days 4 and 5

of culture. Oestradiol measurements were made using the technique given in Chapter

Two. Data was obtained from days 4,5 and 6 of culture. Inhibin A and B were

measured using by enzyme immunoassays described in Muttukrishna et al., 1997.

The minimum detection limit of the assay for human recombinant inhibin A was 1

pg./ml and the minimum detection limit of the assay for human recombinant inhibin

B was 15pg/ml. Data was obtained for days 4,5, and 6 of culture.

4,2.2.2 Experiment 2: Assessment of oocyte meiotic competence.

To assess whether exposure to different gonadotrophin regimes during the

follicular growth period affected the oocytes' ability to undergo germinal breakdown

and resume meiosis, follicles were cultured in the treatment groups (1,2 + 3) as

outlined above. After four days in culture the follicles were teased apart and the
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oocyte-cumulus complexes were removed to droplets of pre-warmed maturation

media (as described in Chapter Two). The cumulus cells were removed from the

oocytes by gently pipetting the complexes up and down through fine-bore glass

pipettes. To compare the timing ofmaturation in vitro with the timing ofmaturation

in vivo relative to hormone exposure, oocytes were released from follicles at 4pm.

This corresponds to the same time as PMSG was administered to animals as part of

the superovulatory regimes used. The oocytes were then transferred to fresh droplets

ofmaturation media and examined every two hours. Within each group a note was

made of the number of oocytes with a polar body at each time point.

4.2.2.3 Experiment 3: The effect of gonadotrophins on fertilisation and

subsequent embryo development.

To examine the effects of the different gonadotrophin regimes on fertilisation

and subsequent embryo development, follicle cultures were set up under control

conditions and in the presence of the different gonadotrophin regimes (groups 1,2

and 3) as outlined above. In these experiments the cultures were maintained for a

period of 4 days before the oocyte-cumulus complexes were released from the

follicles.

Oocyte maturation.

At the end of the culture period, the follicles were teased apart to release the

oocyte-cumulus complexes. These were then transferred into pre-warmed maturation

media (prepared as described in Chapter Two) and placed into the incubator

overnight. On the following morning the complexes were transferred into pre-

warmed droplets of T6 media before fertilisation.
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In vitro fertilisation

The IVF procedure was carried out exactly as described in Chapter Two. Two

F1 animals were superovulated prior to the day of IVF. The oocytes obtained from

these animals were a control for the IVF system.

4.2.2.4 Experiment 4: TUNEL labelling of cultured follicles

In light of the results obtained from Experiment 3, TUNEL labelling was

performed on follicles exposed to the different gonadotrophin regimes. Follicles were

cultured as described in Experiment 3. Typical follicles from each treatment group

and the gonadotrophin free control group were TUNEL labelled to detect apoptotic

cells. The method used to carry out the staining is given in Chapter Two.

4.2.3 Statistical Analysis

Uterine weights and hormones assays were determined by ANOVA. Where

appropriate, comparisons were made by students t test or by Tukeys Multiple

comparison. The results from the IVF experiments were analysed by chi-square.
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4.3 Results

4.3.1 The effects of differing gonadotrophin stimulation regimes in vivo

4.3.1.1 Experiment One: Optimisation of the superovulatory regime.

Groups ofwild type and hpg -/- animals were administered with PMSG or

rhFSH followed by hCG in an attempt to optimise a superovulatory regime that could

be subsequently used in experiments using the mutant animals. The results of these

treatments and the number of oocytes obtained from each treatment group are given

in Tables 4.1 A. and 4.IB.

It was found that while wild type animals responded to the standard PMSG

preparation routinely used in the laboratory, the mutant animals did not. However, a

high dose (10IU) of rhFSH did induce a response in the mutants and this preparation

was then used in Experiment Two.

4.3.1.2 Experiment Two: The effect of gonadotrophin stimulation on ovarian

function.

A further set of hpg mutant females was administered with different

gonadotrophin regimes for 10 days prior to superovulation. Superovulation was

induced using 10IU rhFSH followed by 5IU hCG.

Throughout the period of gonadotrophin administration vaginal smears were

taken. By examining the predominant cell types in these smears it was possible to

obtain an indication if any of the treatments had induced oestrus cycles. In all

treatment groups vaginal opening occurred by day 5 of treatment in all the animals.

In the group of animals administered with rhFSH only, the prevalent cell types seen
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in these smears were leukocytes and epithelial cells, with the latter becoming the

dominant type during the last 3 days of treatment. This would suggest that these

animals had rapidly growing follicles and were in pro-oestrus. No cornified cells

(associated with oestrus) were easily distinguishable. However in both the groups

treated with rhFSH and rhLH comified cells were found in the smears. In the group

treated with the rhFSH and low rhLH these cell types did not appear until days 9 and

10 of treatment while in the group that had received the higher rhLH dose cornified

cells appeared between days 7 and 8. This would suggest that oestrogen production

had been initiated at an earlier stage in the latter group. In both instances the smears

taken prior to these days consisted of epithelial cells. From these results it would

seem that only animals that had been treated with both gonadotrophins exhibited any

sign of approaching oestrus.

After the final superovulatory doses of gonadotrophins the animals were

sacrificed and the reproductive tracts examined. In the first instance the oviducts

were removed and checked for any ovulated oocytes. It was found that three animals

from the rhFSH and high rhLH group had done so, each having ovulated once so

three oocyte-cumulus complexes were collected in total.

The uterine weights of all the animals were taken and the results are given in

Figure 4.1. Although the sample sizes were low, analysis of the data showed that

only animals treated with rhLH has significantly greater uterine weights than the

other groups (low rhLH = p<0.5 and high rhLH = p<0.001 compared to the saline

and rhFSH only groups). The high rhLH treated group had also significantly higher

uterine weights that the low rhLH group (p<0.05).
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Ovaries from treatment and control group of animals were examined

histologically. Figure 4.2 shows photographs of representative sections. Pre¬

ovulatory follicles can bee seen in each of the groups. Closer examination of the

sections showed that in all the groups follicles had matured sufficiently to the

ovulatory stage with the oocytes surrounded by expanded cumulus cells. In each

group oocytes had resumed meiosis with polar bodies being visible (Figure 4.2e). No

differences were noted between the groups. As the saline treated animals responded

in the same way as the treatment groups it was concluded that superovulatory regime

alone was sufficient to mature the follicles to the ovulatory stage. No conclusion

could be reached regarding the prior treatment with gonadotrophins.

In vitro fertilisation

IVF was carried out on the oocytes obtained from both Experiment One and

Experiment Two described above. In both cases little fertilisation took place and any

resulting two-cells fragmented at the 4-cell stage.

4.3.2 The effects of differing gonadotropin stimulation regimes on follicular

development and oocyte competence in vitro.

4.3.2.1 Experiment 1: The effect of gonadotrophins on follicular growth,

morphology and hormone production.

The growth rates of the follicles grown in different gonadotrophin regimes

are shown in Figure 4.3. The result shows that FSH alone was capable of inducing

follicular growth and development and that the addition LH had no effect on the
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development of the follicles. There were no significant differences between the

growth rates of the gonadotrophin treated groups. In the absence of gonadotrophin

stimulation follicles initially began to grow, however, growth was significantly

restricted by day three of culture when compared to the groups treated with

gonadotrophins (p<0.001). Furthermore these follicles began to regress from day 4

onwards.

At the end of the 6 day culture period follicles representative of those in each

treatment group were fixed and processed for histological examination as shown in

Figures 4.4 The photographs show that there was little morphological difference

between the treatment groups. All were similar in size and had developed large antral

cavities. Follicles that had been placed in a gonadotrophin free environment did not

develop antral cavities and appeared atretic (Figure 4.4).

Media from these cultures were analysed for androstendione, oestradiol and

inhibins A and B. While all the groups of follicles were tested, analysis of the media

from the gonadotrophin free group was below the assay detection limits for each

substance tested. Results for days 4, 5 and 6 of culture were obtained for oestradiol

and the inhibins while data on androstendione production was collected from days 4

and 5. The results for these assays are shown in Figures 4.5, 4.6 and 4.7.

In general, hormone production rose significantly in all the treatment groups

between days 4 and 5. On day 4 of the culture period, both groups of follicles treated

with rhLH were producing androstendione, whereas none was detected in the media

from follicles treated with rhFSH alone (Figure 4.5). This was reflected in the

oestradiol results, as both groups of rhLH supplemented follicles produced

significantly higher concentrations of oestradiol compared to the rhFSH only group
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(p<0.001, Figure 4.6). Androstendione production increased dramatically by day 5 in

the low rhLH group (Figure 4.5), however this had little effect on oestradiol

production as all groups of follicles produced similar levels of this hormone (Figure

4.6). With time treatment with rhLH reduced oestradiol production which was

maintained at a high level by follicles treated with rhFSH alone (Figure 4.6).

While supplementation with rhLH increased androstendione and oestradiol

production earlier in the culture period, this was not the case for inhibin A. The

results show that significantly higher amounts of this hormone were produced in

follicles treated with rhFSH alone compared to the rhLH supplemented groups

(p<0.05, Figure 4.7A). This difference was maintained until day 6 when all follicles

were producing similar concentrations of inhibin A regardless of treatment (Figure

4.7A). Inhibin B was produced by all groups on each day tested. There was no

difference between treatments on any day of culture however, only those follicles

supplemented with LH showed an increase with time. Both LH groups had produced

significantly more inhibin B on day 5 when compared to day 4 (p<0.05) but there

was no further increase on day 6 (Figure 4.7B).

4.3.2.2 Experiment 2: Assessment of oocyte meiotic competence.

Oocytes from each group of follicles were examined for their ability to

resume meiosis and a note made of the time that this event occurred. Oocytes

obtained from the gonadotrophin free group of follicles are not included in the graph.

It was found that 50% (6/12) of these had already undergone GVB before they were

released from the follicle. The majority of these did not complete meiosis and did not

have a polar body. Of the remaining oocytes only 2 had a polar body at the end of the
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experimental period. The percentage of oocytes in each treatment group with a

visible polar body is given in Figure 4.8. In all treatment groups the majority of the

oocytes had a polar body visible approximately 9 hours after removal from the

follicle. At the end of the experiment it was noted that 25% (3/12) of the oocytes

obtained from the group exposed to the higher LH concentration had fragmented.

4.3.2.3 Experiment 3: The effect of gonadotropins on fertilisation and

subsequent embryo development.

Figures 4.9A and 4.9B show the results of the in vitro fertilisation

experiments. The figures give the combined data from four separate experiments

used. The total numbers of oocytes fertilised and reaching blastocyst in each group

are presented in Table 4.2. Figure 4.9A represents the percentage of the total oocytes

in each group that underwent fertilisation and shows that there was little difference in

fertilisation rate regardless of treatment. In all groups 50% (or less) of the oocytes

obtained from the cultured follicles fertilised and cleaved to the 2-cell stage. Figure

4.9B shows the percentage of two-cell embryos that reached the blastocyst stage of

development. Over 20% of the two-cell embryos obtained from the gonadotrophin

free group were able to develop to the blastocyst stage. There was little difference

between the groups that had been exposed to FSH only and FSH + 0.01 IU LH (50%

and 44.5% of the two-cell embryos reaching blastocyst respectively). However only

20% of the two-cell embryos derived form follicles exposed to the higher LH group

developed into blastocysts. In both figures (4.9A and B) the results from the

superovulated F1 mice are given for comparison. The data from these experiments
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was analysed using chi-square analysis but it was found that no statistical difference

existed between the experimental groups.

4.3.2.4 Experiment 4: TUNEL labelling of cultured follicles

Figure 4.10 shows a representative section of each follicle labelled with

TUNEL and propidium iodide. With the exception of the gonadotrophin free follicle,

which had a high level of apoptotic cells, very similar levels ofTUNEL labelling

were observed in all gonadotrophin treated follicles. In these follicles, TUNEL

labelled cells were invariably seen around the antral cavity, as described in Baker et

al., 2001. This is likely to be an indication of a healthy antral follicle, as the antral

cavity enlarges due to cells lining the cavity becoming apoptotic and their contents

then being released into the antral fluid.
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TREAMENT (no. of mice) TOTAL NUMBER OF OOCYTES

OVULATED

51U PMSG (3) 16

10IU PMSG (3) 17

101U rhFSH (3) 22

Table 4.1A. Number of oocytes obtained from Wild Type mice treated
with different superovulatory regimes

TREAMENT (no. of mice) TOTAL NUMBER OF OOCYTES

OVULATED

10IU PMSG (3) 0

10 1U rhFSH (6) 34

Table 4.1 B. Number of oocytes obtained from hpgr/~ mice treated with
different superovulatory regimes
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Total

number of

oocytes

2-Cells (%) Blastocyst
(%)

Gonadotrophin
free

114 42 (36) 8 (19)

rhFSH only 123 51 (41.5) 17(33)

+ 0.01IU rhLH 128 68 (51) 21 (31)

+ 0.05IU rhLH 98 41 (42) 7 (17)

F1 Controls 184 141 (76) 106 (87)

Table 4.2 Total number of oocytes for IVF taken from follicles grown
in different gonadotrophin treatments. The figures given are the totals
from 4 experiments. Percentages are given in brackets



■ saline
□ rhFSH
□ rhFSH + O.OIU rhLH
□ rhFSH + 0.05IU rhLH

Figure 4.1 Effect of gonadotrophin treatment on uterine
weight. Values are mean ± SEM (n > 3).
Different letters indicate significant differences. Both low and
high rhLH treated groups had increased uterine weights
compared to the saline and rhFSH only group (b compared with
a = p<0.05, c compared to a = p<0.05) High rhLH was
significantly higher than low rhLH (c compared to b = p<0.05)
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Figure 4.2 Haematoxylin + eosin stained
representative sections of hpg ovaries after
administration of rhFSH (A), rhFSH+low rhLH
(B), rhFSH +high rhLH (C) and saline (D).
Large ovulatory follicles were seen in all
groups. Oocytes in all groups had undergone
resumption of meiosis. The arrow points to the
polar body (E). Scale Bar = 80pm

a¥ %\

■Vak • *

115



500 1

Figure 4.3. Follicular growth rates of follicles exposed to different gonadotrophin
environments. Values are Mean ± SEM (n >16)
By day three of culture follicles cultured in gonadotrophin free conditions
had grown significantly less than the treatment groups (* = p<0.001).
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Figure 4.4 Photomicrographs of plastic sections stained with
haematoxylin + eosin. Follicles were cultured in gonadotrophin
free conditions (A), rhFSH only (B), rhFSH + low rhLH (C) and
rhFSH + high rhLH (D). The scale bar = 80pm.
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Figure 4.5 Concentration of androstenedione produced by follicles
treated with different gonadotrophin regimes on days 4 and 5 of culture.
Values are mean ± SEM (n > 9). Different superscripts indicate significant
differences. a,b refer to comparisons between treatments on the same day
of culture and x,y refer to comparisons between days within the same treatment.
p<0.05

500 -i

□ rhFSH

H rhFSH + 0.01IU rhLH

□ rhFSH + 0.05IU rhLH

Day of Culture

Figure 4.6 Concentration of oestradiol produced by follicles
treated with different gonadotrophin regimes on days 4, 5 and 6
of culture. Values are mean ± SEM (n > 16). Different superscripts
indicate significant differences. a,b refer to comparisons between
treatments on the same day of culture and x,y refer to comparisons
between days within the same treatment. p<0.05
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Figure 4.7A Concentration of Inhibin A produced by follicles treated with
different gonadotrophin regimes on days 4,5 and 6 of culture. Values are
mean ± SEM (n > 16). Different superscripts indicate significant differences.
a,b refer to comparisons between treatments on the same day
of culture and x,y refer to comparisons between days within the same treatment.
p<0.05
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Figure 4.7B Concentration of Inhibin B produced by follicles treated with
different gonadotrophin regimes on days 4,5 and 6 of culture. Values are
mean ± SEM (n > 16). Different superscripts indicate significant
differences. a,b refer to comparisons between treatments on the same day
of culture and x,y refer to comparisons between days within the same treatment.
p<0.05

119



>. 100
o
m

W
O
Q.

75 -

■t; 50

(/>

2
>*
o
o
O

25 -

□ rhFSH

□ rhFSH + 0.01 III rhLH

□ rhFSH + 0.05IU rhLH

3 5 7 9 11 14.5

Time from Follicle Rupture (hours)

Figure 4.8 Percentage of oocytes with a visible polar body. Oocytes from
follicles grown in different gonadotrophin regimes were released and examined
every two hours for polar body production (n =12).
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Figure 4.9A. Percentage of oocytes fertilising from in vitro
grown follicles subjected to different gonadotrophin regimes.
There were no significant differences between groups. F1 controls
are shown for comparison.
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Figure 4.9B. Percentage of 2-cell embryos developing to the
blastocyst stage. There were no significant differences between groups.
F1 controls are shown for comparison.
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Figure 4.10 Confocal micrographs after labelling with TUNEL and propidium iodide.
The green cells indicate apoptosis.

A representative follicle from the gonadotrophin free group
B from the rhFSH only group, C from the rhFSH + low rhLH group and
D from the rhFSH + high rhLH group.
There is little difference in TUNEL staining between the treatment follicles.
The follicle grown in gonadotrophin free media (A) shows a high degree of
TUNEL labelling
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4.4 Discussion

The main aim of this study was to examine how altering

gonadotropin stimulation during the follicular growth phase affects oocyte

developmental competence. Specifically, the experiments were designed to

investigate what effects LH may exert. To distinguish between any extra-ovarian and

direct effects seen, experiments were conducted using an in vivo and in vitro model

both ofwhich utilised hypogonadal mutant mice.

The results of these investigations were only partially successful in achieving

these aims. The results from the in vivo work were disappointing due to the

difficulties in inducing hpg~'~ mice to ovulate and little information was gained on

follicular development and oocyte viability. Therefore, no comparisons on this aspect

of the study could be drawn between the two models. However, some information

was gained on the in vivo production of steroids. Examination of vaginal cytology

and uterine weight indicated that the inclusion of rhLH was necessary to induce

oestrogenic responses in the reproductive tract. Although uterine weights increased

three fold in the highest rhLH group this was still well below the normal weight of a

uterus from a superovulated F1 animal (~30mgs compared to ~80 mgs) and such a

uterus may be insufficiently developed to support pregnancy.

Ultrastructural examination of the hypogonadal ovary has shown that these

animals have poorly developed interstitial tissue (Halpin et al., 1986) from which the

androgen producing thecal layers of the follicle arise. Follicles within the

hypogonadal ovary may not have a normal attachment of thecal cells and may

therefore have a limited capacity to produce oestrogen.
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One of the main problems encountered in this particular part of the study was

the lack ofmutant mice available for experimentation. The available colony was not

large, with only l/8th of animals being mutant females. Ifmore hpg'~ animals had

been available it would have been interesting to perform further studies with rhFSH

at higher concentrations and examine whether it is possible to induce oestrogenic

responses.

The in vitro studies proved more successful. Results were obtained on how

follicular growth, development, steroid and hormone production were affected in

response to different gonadotrophin regimes. Since recombinant forms of the

gonadotrophins have become available a number of studies in different species have

established that rhFSH alone can drive follicular development to the pre-ovulatory

stage and that LH is not necessary for growth. Similar results were found here with

no differences in growth rates being seen in any of the gonadotrophin treatment

groups. However, some reports have suggested that the inclusion of rhLH in culture

media accelerates the formation of the antral cavity (Liu et al., 2002, Cortvrindt et

al., 1998). No differences in antral formation between groups were observed under

the conditions used in these experiments. These contrasting observations are possibly

the result of the different culture systems used to support follicular development.

Analysis of the culture media showed the pattern of steroid production by the

follicles was dependent on the gonadotrophin regime they had been exposed to. The

inclusion of rhLH in the culture media augmented androstendione and oestradiol

production at an earlier time point in follicular development. This was perhaps not

surprising as the effects of LH on follicular steroidogenesis are well documented.

However, the results show that the increased oestradiol production could not be
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sustained as, with time, both rhLH groups showed a marked reduction in output.

Although initially slower to initiate oestradiol synthesis, follicles grown in rhFSH

alone were able to maintain production of this steroid throughout the culture period.

A possible explanation for these results may lie in the production of inhibin A, as

levels of this hormone were also altered dependent on gonadotrophin exposure.

Inhibin A production is a function ofFSH granulosa stimulation and a marker of

follicular development, increasing in concentration as the follicles approach the

ovulatory stage of development (Ohshima et al., 2002). The slowing down of

oestrogen production and decreased levels of inhibin A in response to rhLH suggest

that granulosa cell function could have been altered in the rhLH treated groups. It

may be that prolonged exposure to LH results in the premature luteinisation of the

granulosa cells when steroid synthesis switches to progesterone production. Further

analysis of the media in future experiments would be needed to investigate this

possibility.

The ability to produce high levels of oestrogen in response to rhFSH alone in

vitro is in contrast to the findings of the in vivo experiments. Similar in vivo studies

in humans and primates (Balasch et al., 1995; Zelinski-Wooten et al., 1994) have

also reported low oestrogen levels in the absence of LH stimulation. The

concentration of rhFSH used in the culture system may well be far in excess than

those of the circulating levels found in vivo. It is possible that this high level

promoted a greater steroidogenic capacity within the follicles.

The in vitro model was also used to investigate how different follicular

gonadotrophin environments affected subsequent oocyte developmental competence

by performing IVF at the end of the culture period. Although many attempts were
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made to perform these experiments, there was a great deal of variability in oocyte

quality between cultures, in some instances no fertilisation took place while in others

the two-cell embryos arrested with no further development. Throughout these

experiments serum was used from hypogonadal mutant mice to minimise any

extraneous source of gonadotrophins and while this serum source supported

follicular development it was not optimal in supporting the oocyte. Because of this, it

was only possible to obtain consistent data from four separate experiments that

yielded fertilisable oocytes for each treatment group. Statistical analysis showed that

there were no significant differences between groups. Analysis of a larger sample

size may have well given a different result as the figures did give an indication that

gonadotrophins may affect oocyte developmental competence.

Surprisingly, it was found that -20% of the oocytes obtained from the

follicles exposed to gonadotrophin free conditions could fertilise and complete pre-

implantation. These follicles ceased growth by day three, did not form antral cavities

and exhibited quite a high degree of cell death in the granulosa cell layers. In the

gonadotrophin- treated groups no evidence of increased cell death was seen in

relation to any given treatment. The acquisition of competence has been extensively

studied in the mouse and occurs in a step-wise manner with oocytes from pre-antral

follicles capable of undergoing GVB but not completing meiosis to theMil stage

(Eppig 1997; Sorenson and Wassarman 1976). The ability of the oocyte to complete

resumption of meiosis is influenced by non-specific paracrine factors produced by

many cell types (Eppig, 1996; Canapari et al., 1994). Furthermore, once oocytes

have become competent they may no longer be sensitive to atresia (Mermillod,

1999). Therefore, oocytes cultured under gonadotrophin free conditions could have
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acquired competence from growth factors in the serum and have been unaffected by

the health of the somatic cells. Whether these blastocysts are capable of supporting

full term development is unknown. Further studies using embryo transfer techniques

are needed to determine this.

Two of the aims of this study were to investigate whether LH is necessary for

optimal oocyte maturation and whether the effects ofhigh LH exposure affect oocyte

competence. From the data obtained it would seem that the addition of rhLH to the

culture media did not confer any advantage to the oocyte, as similar fertilisation

results were seen in all the treatment groups. However, the follicles that had been

exposed to the high rhLH concentration yielded fewer oocytes capable of developing

into blastocysts. Previous reports have indicated that high intra-follicular LH permits

the premature resumption ofmeiosis resulting in 'aged' oocytes (Regan et al., 1990,

Homburg et al., 1988). At the concentrations rhLH used in these experiments, it was

found that the majority of oocytes, irrespective of treatment, had completed the

second meiotic division within 10 hours of release from the follicle, a time consistent

with oocytes ovulated in vivo after hCG administration. Although the number of

oocytes examined in this experiment was small (and a larger study would be needed

to confirm the data) there was no evidence to suggest that high rhLH administration

induced premature meiosis. However it was noted that some of these oocytes had

begun to fragment after 14.5 hours in culture media. While it is possible that these

oocytes were damaged during the procedure, it could be that they were beginning to

undergo apoptosis (Liu et al., 2002, Reynaud and Driancourt 2000).

The effects of gonadotrophins on follicular function are complex, interacting

with growth factors and cytokines in the control of cellular proliferation,
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development and steroidogenesis. Both FSH and LH exert their effects by elevating

intracellular cAMP, although it has been shown that LH generates a much higher

level of the second messenger compared to FSH resulting in differential regulation of

the genes responsible for certain steroidogenic pathways (Yong et al., 1994). It was

found here that altered gonadotrophin regimes altered the pattern of steroid

production and that may have affected oocyte developmental competence. Altered

ratios of the steroids in follicular fluid have been implicated in affecting oocyte

quality (Moor et al., 1998). In order to investigate more precisely whether alteration

in steroid levels influences follicular and oocyte development, a more direct

experimental approach was required and formed the basis of the work detailed in

Chapter Five. Recently, mRNA transcripts for both FSH and LH receptors have been

found in murine oocytes (Patsoula et al., 2001) and a direct role for gonadotrophins

in oocyte maturation cannot be ruled out.

The most disappointing aspect of this study was the inability to gain data

from the hypogonadal in vivo mouse model. Hypogonadalmice have a specific

deletion in the gene for gonadotrophin releasing hormone (GnRH) and the majority

of studies conducted in these mutants have concentrated on the restoration of GnRH

function (Gibson et al., 1997). Fewer studies have investigated the restoration of

fertility by gonadotrophin administration. To the best ofmy knowledge only one

report has shown that superovulation can be achieved in hypogonadal mice

(Hashizume et al., 1995). However approximately 50% of the mice showed little or

no response to exogenous gonadotrophin stimulation raising interesting questions

about the capability of the ovary to respond. FSH and LH receptors are present in the

ovaries of hypogonadal mice (O'Shaughnessy et al., 1997) but presumably they
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remain inactive. Little is known about gonadotrophin action at the earliest stage of

follicular development but it has been proposed that gonadotrophins act as survival

factors (Hsueh et al., 2000) and induce the capacity for subsequent growth critical to

ovulatory development (Wu et al., 2000). It is possible that the ovaries of

hypogonadal mice are less sensitive to FSH stimulation as they have never been

exposed to normal levels of circulating gonadotrophins.

Oocytes obtained from superovulated hpg~'~ mice have successfully undergone

IVF and live births have been reported, although the rates of fertilisation and

blastocyst development were much reduced in the mutants when compared with WT

mice (Hasizume et al., 1995). IVF was attempted on all the oocytes obtained from

the superovulated hypogonadal mice in this study but, although fertilisation took

place, none developed to the blastocyst stage. Together these findings suggest that

the ovulatory protocols necessary to induce ovulation are, by themselves, detrimental

to oocyte quality. It was interesting to note that ovulation was only found in the

groups of animals where significant levels of oestrogen were produced. Oestrogen

has also been implicated in ovulation and lack of this steroid may limit the ovulatory

process. This aspect of oestrogen action is discussed further in Chapter Six.

A transgenic mouse has been engineered to over-express the LH(3 sub-unit

(Risma et al., 1995). The female mouse has enlarged cystic ovaries, elevated

circulating oestrogen to testosterone ratios and is anovulatory. These animals can be

induced to ovulate and oocyte quality has been investigated. Experiments have been

conducted where fertilised oocytes from transgenic mice have been transplanted to

normal animals giving rise to viable offspring (Maim et al., 1999). We found here

that the effect of high LH administration did not abolish the ability of oocytes able to
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complete pre-implantation development but did reduce the percentage able to

achieve it. It would be interesting to see if that was also the case in the transgenic

model.
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Chapter Five

The Effect ofAltering Steroid Levels during

Follicular Growth in vitro.
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5.1 Introduction

As detailed in the Chapter One and elsewhere in this thesis, ovarian follicles

produce steroid hormones in response to gonadotrophin stimulation. Both androgens

and oestrogens have been proposed as intra-ovarian regulators of follicular growth

and factors that influence oocyte growth and maturation.

The exact mechanism as to how steroids exert their effects on oocytes has yet

to be elucidated. Oocytes could be affected either indirectly, as a consequence of

steroid-mediated actions on the somatic cells within the follicle, or by direct

activation of oocyte receptors. Expression of oestrogen receptor transcripts has been

found in both human and mouse oocytes (Wu et al., 1992, 1993). Studies in human

oocytes undergoing in vitro maturation have supported the notion that activation of

these receptors contributes to oocyte maturation. The addition of oestrogen to these

oocytes directly influenced calcium release, which seemed to be mediated by a non-

genomic membrane-bound receptor (Tesarik and Mendoza, 1995). Whether

androgens also directly influence the oocyte has yet to be shown as, to date, no

androgen receptor has been reported in the oocyte ofmammals.

Apart from serving as substrates for oestrogen synthesis, androgens may act

as paracrine/autocrine regulators of follicular development. Excess levels of

androgen have been associated with promoting follicular atresia (Billig et al., 1993)

and are implicated in abnormal follicular development in some conditions such as

polycystic ovarian syndrome (Mason, 2000). However, they may also act as growth

factors during the earlier stages of growth (Vendola et al., 1999), influence FSH

receptor expression (Weil, 1999) and enhance FSH stimulated follicular

differentiation (Tetsuka and Hillier, 1997). Studies from our laboratory have shown
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that androgens can directly stimulate antral follicle growth in vitro (Murray et al.,

1998).

The role of oestrogen within the follicle is also controversial. Some reports

have indicated that this steroid promotes follicular development (Drummond and

Findlay, 1999) and prevents granulosa cell atresia (Billig et al., 1993) while other

studies, including ours, have found that this steroid has no effect in promoting

ovulatory follicular development (Zelinski-Wooten et al., 1994; Spears and Murray

et al., 1998,). However, oocytes obtained from oestrogen deficient follicles failed to

undergo fertilisation (Zelinski-Wooten et al., 1994), consistent with a direct role for

this steroid in oocyte maturation. It is now known that two oestrogen receptors exist

within the mammalian ovary thus complicating the potential role of this steroid in

follicular development and oocyte maturation. A potential role for one of these

receptors formed the basis of a separate study the results ofwhich are given in

Chapter Six.

It has been proposed that the oocyte needs to be exposed to the correct

sequence and pattern of steroid secretion in order to acquire the molecular

programming required for fertilisation and further development (Osborn and Moor

1983, Moor et al., 1998). Furthermore, the balance of steroids present within the

follicle may also influence oocyte quality, as high androgen to oestrogen ratios in

follicular fluid have been co-related with poor fertilisation and development rates

(McNatty 1979; Andriesz and Trounson 1995; Xia and Younglai 2000).

In the previous chapter, evidence was obtained to indicate that over¬

stimulation with LH during the follicular growth phase gave rise to poorer quality

oocytes. As discussed, one possible explanation for this result could have been that
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the follicle and oocyte were exposed to altered steroid levels. Follicles in that study

would have been exposed to higher than usual levels of androgens and oestrogens.

As mentioned above, lack of an oestrogen stimulus may adversely affect oocyte

viability but very little is known about whether there is a point at which over¬

stimulation is also detrimental. This study aimed to investigate the effects of

elevating these steroids individually and in combination, on follicular growth, health

and subsequent oocyte competence.

In order to achieve this experiments were designed to manipulate the steroidal

environment of in vitro grown follicles directly. The oestrogen agonist

diethylstilboestrol (DES) was added to the culture media to elevate oestrogen. DES

has been widely used experimentally to obtain oestrogen pre-treated granulosa cells

to study cellular differentiation (Erickson, 1983; Liu et al., 1999; Picazo et al., 2000).

Elevation of androgens was achieved by addition of the aromatase inhibitor

Arimidex (Zeneca ZD 1033). This compound selectively blocks P450aromatase

activity without inhibiting other enzymes responsible for steroid biosynthesis or by

itself having steroidal actions (Lonning et al., 1998). By blocking aromatase activity

with Arimidex, follicles will be unable to synthesis oestrogen but still be able to

produce androgens. This will result in a high androgen, low oestrogen steroidal

environment.

The experiments carried out in Chapter Four were all conducted using serum

obtained from hypogonadal mutant mice. The main advantage in using this source of

serum was that it contained negligible quantities of gonadotrophins or steroids.

Although this serum was able to support follicular growth and development it was

found that, in the majority of cases, the oocytes from the cultured follicles failed to
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fertilise or arrested at the two-cell stage. As one of the main objectives of these

experiments was to fertilise oocytes and examine their ability to reach the blastocyst

stage, an alternative source of serum was sought. Foetal bovine serum (FBS) is

available commercially and can be obtained in large quantities making it an attractive

alternative to mouse serum which can only be obtained in small quantities. The main

problem with using FBS for these experiments was that it contains high levels of

conjugated steroids that may be released as free steroids by the enzymatic activities

of the cultured follicles. This would then make it difficult to precisely control the

level of steroids that the follicles and oocytes were exposed too, which subsequently

could have influenced the results. It is possible to strip steroids from FBS using

activated charcoal (Reynolds et al., 1982; Huot and Shain 1988) and this technique

was employed for these experiments. Initial experiments found that the follicles

grown in the presence of charcoal-stripped serum (CSS) were not as successful at

maintaining the integrity of their basement membrane. To obtain data on any effects

altered steroid levels may have had on follicular growth and morphology

experiments were also carried out using serum from hpg~ mice.
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5.2 Materials andMethods.

5.2.1 Animals

21-25 day old hybrid F1 female mice were used in these experiments. The

strains used to generate these mice and the conditions under which they were kept

are as described in Chapter Two.

5.2.2 Follicle culture

Follicles (180pm ± 15pm) were isolated as described in Chapter Two. After

isolation they were randomly assigned to one of three treatment groups. A further

group of follicles were placed into control media.

The basic media contained 2IU ml"1 rhFSH, 140pm ascorbic acid and 5%

serum. This media was used in the control group. Treatment groups were

supplemented with DES or Arimidex. These compounds were solubilised in ethanol.

To minimise any loss of these compounds when the media was passed through

sterilisation filters, the media was 'spiked' with steroids just prior to use. The volume

of ethanol added to the culture media was adjusted so that each group, including the

controls, was exposed to the same concentration. The treatment groups were as

follows;

1. 4nmol. DES High OE

2. 0.1pm Arimidex High A

3. 4nmol. DES + 0.1pm Arimidex High OE + A
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5.2.3 Experiment 1: Follicular growth

In order to obtain data on growth, morphology and steroids follicles were

isolated and allocated to the treatment groups above (5.2.2). In this experiment the

serum used in the culture media was obtained from hpg" animals. Cultures were

maintained and the follicles examined as described in Chapter Two. To obtain data

on growth and development follicles were cultured for a period of six days. This

experiment was performed twice giving a total of 48 follicles in each group. After

removing the follicles from the culture trays containing the spent media were frozen

at -20°C and kept until they could be assayed for hormones. At the end of one run of

the culture, representative follicles were removed for TUNEL labelling.

TUNEL Labelling

Follicles were washed in PBS before being permeabilised and fixed. They

were then processed for TUNEL labelling. The method is described in Chapter Two.

Hormone assays

In order to check that the treatments had successfully altered the level of

steroids that the follicles were exposed to, media from cultures was analysed for

androstenedione and oestradiol by the methods given in Chapter Two.

5.2.4 Experiment 2: Oocyte competence

Follicles were isolated and assigned to control or treatment groups as for

Experiment One. In these experiments the serum used was FBS which had been

charcoal stripped. 0.5 grams of activated charcoal was added to 50mls of FBS and

stirred for 1 hour at 4°C. After this time the serum was centrifuged firstly at l,700g
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for 20 minutes then for 1 hour at 30,000g. Both centrifugation steps were carried out

at 4°C. This removed the bulk of the charcoal. Fine charcoal particles were removed

by filtering the serum through a 0.45pm cellulose acetate syringe filters. The CSS

was then aliquoted and stored at -70oC.

As the majority of follicle could not maintain their basement membrane in

this serum, the culture system was adapted. For the first two days of culture follicles

were transferred into fresh wells ofmedia and damaged or atretic follicles discarded.

On day 3 they were then transferred into 60pl ofmedia overlaid with 75pi of silicon

fluid. The follicles were left in this media until day 5 after which the oocytes were

removed for IVF. The experiment was repeated twice. In total 72 follicles were

allocated to each group.

Oocyte maturation and IVF

Oocyte-cumulus complexes were obtained from the follicles at the end of the

culture period. These were placed into maturation media overnight before

undergoing IVF. The procedures used were as described in Chapter Two. Two F1

animals were superovulated prior to the day of IVF. The oocytes obtained from these

animals were a control for the IVF system.

Hormone assays

To check that charcoal stripping of the FBS had successfully removed any

steroids present, an aliquot of the freshly prepared control media was frozen. This

was assayed for oestradiol as described in Chapter Two.
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5.2.5 Statistical analysis

Hormone assays were analysed by ANOVA followed by Tukey-Kramers

multiple comparison tests where appropriate. IVF results were analysed by chi-

square.

140



5.3 Results

5.3.1 Experiment 1. Follicular growth

Figure 5.1 shows the growth rates of control and treated follicles. There was

no effect of any treatment and all follicles had reached similar sizes by day 6 of

culture. At the end of the culture period some follicle from each group were TUNEL

labelled for apoptotic cells. Figure 5.2 shows photomicrographs of a representative

follicle from each group. It was found that very little apoptosis was seen in any

group.

In order to check that the treatments had successfully altered the level of

steroids that the follicles were exposed to, media from day 6 of culture was analysed

for androstendione and oestradiol. The results of the analysis are shown in Figure 5.3

Comparison of the levels of androstenedione (Figure 5.3A.) in the media

showed that the concentration ofArimidex used, successfully inhibited aromatase

activity. In both the High A and High OE +A groups (where Arimidex was included)

androstenedione levels were significantly raised when compared to the control group

(pO.Ol).

The oestrogen assay that was used is highly specific for 17-|3-oestradiol and

does not cross react with any other oestrogen. Therefore, the results shown in Figure

5.3B represent the oestradiol production by the follicles and do not account for the

DES addition. The dotted lines on the bars represent the expected level of oestrogens

within the culture media. As was expected where Arimidex was included in the

treatment (High A and High OE + A), significantly less oestradiol was produced

when compared to the control groups (p<0.001).

141



5.3.2 Experiment 2:Oocyte competence

As shown in shown in Figure 5.4A, treatment had an effect on the fertilisation

rates of the oocytes obtained. The total numbers of oocytes that fertilised and the

numbers of these reaching the blastocyst stage are given in Table 5.1. Compared to

the control group, elevating the androgen levels during the follicle culture period had

a positive effect on fertilisation (63% compared with 47%). In contrast, when

follicles were exposed to High OE fewer oocytes were capable of fertilisation as

were those from the High OE + A group (27% and 31% respectively). Statistical

analysis by chi-square showed that fertilisation rates differed significantly (p<0.001)

between groups. There were no statistical differences between the numbers of two-

cell embryos able to complete development to the blastocyst stage (Figure 5.4B).

A sample of the freshly prepared control medium was analysed for oestradiol.

As no oestradiol was detected in the medium this indicated that the charcoal stripping

procedure had successful removed steroids from the FBS.
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Total

number of

oocytes

2-Cells

(%)
Blastocysts
(%)

Control 57 27 (47) 19 (70)

High OE 51 14 (27.5) 11 (78.5)

High A 49 31 (63) 22 (71)

High OE +
A

51 16 (31.5) 13 (81)

F1 Control 50 40 (80) 33 (82.5)

Table 5.1. Total number of oocytes taken for IVF and reaching the
2-cell and blastocyst stages of development. Percentages are given in brackets.
Oocytes were obtained from follicles grown in vitro under different steroid
environments and with charcoal stripped serum.
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Day of Culture

Figure 5.1. Growth rates of follicles grown in control media, elevated
oestrogen (High OE), elevated androgen (High A) and both elevated
oestrogen and androgen (High OE + A). Values are mean ± SEM
(n=30).



Figure 5.2. Confocal micrographs after labelling with TUNEL and propidium iodide.
The green cells indicate apoptosis.
Representative follicle from the control (A), elevated oestrogen (B),elevated androgen
(C) and elevated oestrogen and androgen (D) groups.
Treatment had no effect on the degree of apoptosis within the follicles.
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Figure 5.3A. Concentration of androstenedione produced by follicles
grown in different steroid environments. Media was analysed on day 6
of culture. Values are mean ± SEM (n > 9). Androstenedione was
significantly higher in both Arimidex treated groups (* = p<0.01) when
compared to the control group.

300

Control HighOE High A HighOE + A

Figure 5.3B. Concentration of oestradiol produced by follicles
grown in different steroid environments. Media was analysed from
day 6 of culture. Values are mean ± SEM (n > 9). Oestradiol was
significantly lower in both Arimedex treated groups (* = p<0.001)
when compared to the control group.
The dotted lines indicate the expected values for oestrogens.
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Figure 5.4A. Percentage of oocytes fertilising from follicles grown
in different gonadotrophin environments. Fertilisation rates differed
significantly (p<0.001) between groups.
F1 controls are shown for comparison.
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Figure 5.4B. Percentage of 2-cell embryos reaching blastocyst.
There were no significant differences between groups. F1 controls
are shown for comparison
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5.4 Discussion

As indicated by the results in Chapter Four, gonadotropin manipulation

during the follicular growth phase gives rise to oocytes that are not optimally viable.

The experimental evidence suggested that a possible reason for this may have been

the altered levels and patterns of steroid secretion that arose as result of

gonadotrophin manipulation. The aims of this study were to investigate more directly

what effect elevation of androgens and oestrogens, both individually and together,

have on follicular growth and subsequent oocyte competence in vitro.

As outlined in the introduction, two experimental conditions were employed

to achieve these aims. Serum is a necessary component of the culture media, as

follicles cannot develop in its absence. Although hypogonadal serum supports

follicular growth and development, it had proved to be sub-optimal in supporting

oocyte maturation. Charcoal stripped serum on the other hand, while more successful

in supporting the oocyte, proved to be lacking factors necessary for maintenance of

the basement membrane. To obtain data on follicular growth and the degree of

apoptosis within treated follicles the culture media was supplemented with

hypogonadal serum. Effects on oocyte development were assessed using CSS. The

results of these experiments show that, although elevation of steroids did not affect

the rate of growth or the health of the follicles, they did have an effect on the quality

of the oocyte.

Paracrine and/or autocrine effects of steroids have been described in both in

vivo and in vitro experimental situations but there is no clear consensus from these

studies as to the role of either androgens or oestrogens on follicular growth and

development. Some studies have reported that androgens inhibit follicular
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development both in vitro (Jia et al., 1985) and in vivo (Farookhi el al., 1985) and

increase atresia in pre-antral and early antral follicles (Billig et ah, 1993). Other

studies have shown that the action of androgens promote follicular growth and

development (Murray et al., 1998; Weil et ah, 1999). Likewise there are conflicting

reports regarding the effects of oestrogens of follicular development. On the one

hand these steroids have been implicated in promoting follicular growth (Findlay and

Drummond, 1999) and preventing granulosa cell death (Billig et al., 1993), while on

the other exogenous administration of oestrogens has also been implicated in

inhibiting follicular function by increasing granulosa cell atresia (Dierschke et al.,

1994). Under the conditions used for this study no evidence was found to support the

hypothesis that either steroid inhibited follicular growth. In all treatment groups

follicles grew at the same rate and there was no evidence that any treatment

increased the level of apoptosis in the granulosa cell layers. The aforementioned

previous studies all employed the rat as a model, which may exhibit species-specific

responses to ovarian stimulation by steroids (Hutz, 1989). In these current studies

however, the follicles were exposed to a continuos high level of FSH which is a

potent survival factor and may have overridden any negative effects of altered steroid

levels. Additionally, as described in Chapter Three, the inclusion of ascorbic acid in

the culture media may have had a similar effect. Very little apoptosis was seen in any

of the follicles irrespective of treatment. While the high level ofFSH and inclusion

of ascorbic acid may have prevented follicular atresia, it is also possible that the very

low numbers of apoptotic cells seen was due to the incomplete labelling by the

TUNEL reagents. The inclusion of a positive control for the TUNEL assay would

have detennined if this were the case.
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Although there were no obvious differences in the growth, morphology or

degree of atresia between the follicles grown in different steroidal environments,

oocyte developmental competence was affected. The results of the experiments

(where CSS was used) clearly show that a greater number of oocytes were capable of

fertilisation when they had been exposed to high levels of androgens. The opposite

effect was seen when oocytes were exposed to high levels of oestrogen with fewer of

these oocytes fertilising. No further effects of treatment were seen, as the numbers of

2-cell embryos developing into blastocysts were similar in all groups.

Serum contains a number ofproteins and growth factors that potentially can

influence oocyte maturation. As charcoal stripping of serum resulted in the removal

of some factors affecting maintenance of the basement membrane it was possible that

other components that affect the oocyte could also have been removed. The main

difference between the two serum experiments was that disruption of the basement

membrane occurred in the follicles grown with CSS. The role of the basement

membrane is complex, acting as a barrier to the flow ofmolecules passing from the

thecal-interstitial compartment to the granulosa cells within the follicle (Rodgers et

al., 1999). It is possible that the differences in fertilisation rates arose as a result of

disruption to the follicular structure.

The nature of how steroids influence oocyte maturation has yet to be

elucidated. Androgen and oestrogen receptors are found in the granulosa cells of

growing follicles and their pattern of expression is developmentally regulated

(Tesuka and Hillier 1997; Rosenfeld et al., 2001). This changing pattern of receptor

activity could influence the oocyte indirectly by altering the synthesis and transfer of

molecules necessary to oocyte growth and maturation. Steroids could also have
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direct effects on the oocyte. Oestrogen receptors have been described in mouse and

human oocytes (Wu et al., 1993, 1994). In maturing human oocytes Tesarik and

Mendoza (1995) have postulated that a membrane bound oestrogen receptor

facilitates the calcium response of the oocyte necessary to the fertilisation process.

Androgens also have been implicated in directly influencing the oocyte. Androgens

have been shown to influence oocyte activation in the primordial follicles of rhesus

monkeys (Vendola et al., 1999) however no androgen receptor has yet been

described in the mammalian oocyte. Related steroids could act through the same

receptor either by acting as antagonists, attenuating responses or inducing discrete

downstream events. In Xenopus laevis, androgens acting through oestrogen receptors

have been found to be the primary steroid in promoting oocyte maturation (Lutz et

al., 2001). There is some evidence that this may occur in mammalian oocytes as the

calcium response reported by Tesarik and Mendoza (1995) can be directly

counteracted by androgens (Tesarik and Mendoza 1997).

The expression patterns of oestrogens and androgens in follicular fluid

changes rapidly during the final phase of follicular development in response to

gonadotrophin stimulation. Pre-ovulatory follicles have relatively high levels of both

steroids in follicular fluid, which change rapidly in response to the LH surge (Osborn

and Moor, 1983). Inhibition of follicular steroid synthesis results in an abnormal

pattern of proteins synthesised in sheep oocytes (Osborn and Moor 1983). These

findings have led to the hypothesis that the oestrogen: androgen ratio is the major

determinant in oocyte maturation rather than absolute steroid concentrations. In the

experiments described here steroid levels were elevated throughout the culture

period. The conclusions drawn from these studies were that elevating androgens
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positively influenced oocyte maturation while exposure to high levels of oestrogen

had detrimental effects. Recently, a study by Yu et al (2002) reported that Arimidex

treatment enhanced the percentage ofmouse oocyte completing meiosis and

concluded that elevation of androgen promoted these aspects of oocyte maturation.

Other studies have implicated that prolonged periods of oestrogen exposure in vivo,

reduces the viability of human oocytes (Russell et al., 1997). Taken together, these

findings would indicate that oocyte maturation is influenced by a developmentally

regulated pattern of exposure to both androgen and oestrogen. Further studies are

currently underway within our laboratory to examine which steroid at which

developmental time-point is critical to optimal oocyte maturation.
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Chapter Six

The Effect of Oestrogen Receptor alpha Deletion on

Ovarian Function
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6.1 Introduction

Oestrogens are steroid hormones that have a wide range of physiological

effects. In women the main site of oestrogen production during pre-menopausal life

is the ovary although other tissues, such as adipose and adrenal, can produce them.

The production of oestrogens by the ovary is cyclical with basal circulating

concentrations between 70-220 pmol/L in humans. This concentration rises to greater

than 740 pmol/L at the time of ovulation. The rise and fall in circulating oestrogens

regulates ovarian cyclicity through its action at the hypothalmic-pituitary axis that

controls the release of the gonadotrophins. The effects of oestrogen on the

reproductive organs have been well documented. Oestrogen has an effect on

oviductal transfer of the zygote, uterine receptivity prior to implantation, on breast

tissue, cervical and vaginal activity and, in some species, sexual behaviour. It is also

now known that oestrogen exerts effects on non-reproductive tissues such as the

brain, heart and bones.

It has also been proposed that oestrogens exert direct intraovarian effects.

Studies utilising in vivo and in vitro models have been employed in an attempt to

elucidate an exact role for oestrogen in the ovary. Some of these studies have shown

that oestrogen facilitates the proliferation of granulosa cells, the actions of FSH and

LH (Richards, 1980, Bley et al., 1997), gap junction formation (Merck, 1972) and

steroidogenesis (Roberts and Skinner, 1990). Conversely, there are a number of

reports demonstrating that any paracrine effects of oestrogen within the ovary are not

obligatory and that ovarian function can proceed when the actions of this steroid are

blocked (Zelinski-Wooten et al., 1994; Spears and Murray et al., 1998). In

hypogonadotrophic women it has been shown that pre-ovulatory follicle
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development can occur despite very low oestrogen synthesis (Fauser, 1997; Balasch

et al., 1995). As discussed in Chapter Five, many of the studies showing stimulatory

effects of oestrogen used the rat as a model and it may be that oestrogen does play an

obligatory role in follicle development in this species while it is not mandatory in

others (Hutz, 1989). It is known that mRNA for oestrogen receptors exist in the

oocyte (Hiroi et al., 1999; Wu et al., 1992; 1993) but as yet a direct role for oestrogen

in promoting oocyte maturation has yet to be determined. The results obtained from

the previous chapter in this thesis would suggest that overexposure to oestrogen is

detrimental to oocyte competence.

Oestrogens exert their actions through binding to high affinity receptors. These

receptors belong to the nuclear receptor super family of transcription factors that

includes glucocorticoids, mineralcorticoids and progesterone (Evans, 1988). Once

oestrogen binds to its receptor triggers conformational changes leading to changes in

the transcription of oestrogen related genes. These events include receptor

dimerization, receptor-DNA interaction and recruitment and interaction with co-

regulators (Shibata et al., 1997; Beekman et al., 1993; Beato, 1989). Ultimately, the

resulting cascade of events influences the metabolic processes of the cell (Rosselli et

al., 2000). While this may be the primary mode of action of activated oestrogen

receptors, it is now known that they can modulate gene expression indirectly by

physical interaction with other transcription factors (Nillson et al., 2001) or exert so

called non-genomic effects via membrane receptors (Levin, 2001). They can also act

by ligand independent mechanisms (Ignar-Trowbridge, 1992)

Until recently it was thought that only one oestrogen receptor existed. In 1986

this was cloned and sequenced (Greene et al., 1986) and subsequently mice were
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generated with a targeted disruption of the oestrogen receptor gene (Lubahn et al.,

1993). However, some tissues in these animals remained oestrogen responsive

suggesting the existence of another oestrogen receptor. This second receptor was

cloned in 1996 by Kuiper et al, and named oestrogen receptor p (ERP) while the first

identified receptor was subsequently referred to as oestrogen receptor a (ERa). Both

of these receptors have been identified in many mammalian and non-mammalian

species across a variety of tissues and are the products of separate genes. A third

oestrogen receptor (ERy) has been identified in fish (Hawkin et al., 2000) but no

mammalian homologue has yet been found. It has also been found that there are

many alternatively spliced forms of both receptors although variants ofERa have

been found mainly in human breast cancers (Rosenfeld et al., 2001).

Oestrogen receptors belong to the nuclear receptor super family. In common

with all nuclear steroid receptors the oestrogen receptors consist of three independent

but interacting functional domains: the NH2 -terminal or A/B domain, the DNA-

binding domain and the COOH-terminal ligand-binding domain. (Nilsson et al.,

2001). The NH2 -terminal domain encodes a ligand-independent activation function

(AF-1) involved in protein-protein interactions and transcriptional activation of

target-gene expression (Onate et al., 1998; Tora et al., 1989). The DNA binding

domain contains a two zinc finger structure important in receptor dimerization and

binding to specific DNA sequences. While the COOH-terminal contains the ligand

binding pocket as well as a second activation factor (AF-2) which is critical to the

ligand dependent activity of the receptor and is involved in the recruitment of

coregulator proteins (Nilsson et al., 2001; Henttu et al., 1997; Daniellian et

al., 1992). ERa and ER(3 are highly homologous in the DNA binding domain, share
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-60% homology in their ligand binding domains but only share 18% homology at the

A/B domain (Enmark et al., 1997). Both receptors have high affinity binding for

oestradiol (Rosselli et al., 2000) but differences in the ligand binding domains and

activation function domains of each receptor mediate their responses to oestrogen

agonists and antagonists (Katzenellenbogen et al., 2001)

Transgenic mice have been generated with deletions in ERa, ERp and a

combination of both. These have now been termed as ERKO, PERKO and aPERKO

respectively. In addition mice lacking the aromatase gene (ArKO) have also been

generated. These animals cannot synthesise oestrogen although they can still respond

to it (Fisher et al., 1998). Each of these exhibits different phenotypes and have

opened up new avenues of research that allow the dissection of the role oestrogens in

a wide variety of tissues.

There has been much interest in the role of oestrogen in the reproductive

systems in both males and females. In males it has been demonstrated that absence of

oestrogen action is detrimental to spermatogenesis, sperm function and mating

performance. However, ERp males are fertile while ERa are not (Krege et al., 1998;

Lubahn et al., 1993). Therefore it would seem that the two receptors have differing

roles to play in male reproductive physiology. In light of the finding that sperm

counts in males have been declining in the last 50years, perhaps in response to

environmental oestrogen exposure during foetal development, there has been much

interest in investigating the effects of oestrogens on each receptor type (Lombardi et

al., 2001). Interestingly the ArKO male mouse is also fertile (Fisher et al., 1998).

Studies of the three ER 'knock-out' mice and the ArKO mouse have revealed

differing roles for each of the oestrogen receptors and oestrogen in the female
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reproductive system. The table below illustrates the main phenotypic differences

between the ArKO mouse and the three ER knockout mice after puberty. The

information was drawn from Fisher et al, (1998); Couse and Korach (1999), Dupont

et al, (2000).

TISSUE aERKO PERKO apERKO ArKO

Ovary Develop
haemorraghic
cysts

Infertile

Fewer follicles
reach ovulatory
stages

Sub-fertile

Develop
haemorraghic
cysts

Infertile

No corpora lutea

Uterus Hyperplasia Exaggerated
responses

Hyperplasia Underdeveloped

Oviduct No gross
phenotypes

No gross
phenotypes

No gross

phenotypes
?

STEROID
PROFILES
Serum

Oestradiol

Elevated Normal ? negligible

Serum LH Elevated Normal ? Elevated

Serum FSFI Normal ? ? ?

Serum

Androgen

Elevated ? ? Elevated

In light of the different phenotypes exhibited by these different mice,

localisation and relative abundance of each type of oestrogen receptor has been

examined in a number of different species. These studies have indicated that ERa is

predominant in eliciting hypothalmic -pituitary response to rising oestrogen levels

during the oestrus cycle and in priming of the uterus prior to ovulation (Lubahn et

al., 1993; Couse et al., 1997; Krege et al., 1998).
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The expression pattern of each ER has been examined in the ovaries of a

number of species. Both ERs have been identified in the ovaries of rodents (Couse et

al., 1997; Drummond et al., 1999; Sar and Welch 1999; Yang et al., 2002), domestic

species (Schams and Berisha, 2002), humans and marmosets (Saunders et al., 2000).

In the mouse, ERa has been localised exclusively to the interstitial tissues of the

ovary (Schomberg et al., 1999) and ERp to the granulosa cells of growing follicles

(Cheng et al., 2002). Whereas ERp expression increases with follicular growth and

development (Drummond et al., 1999) and is down regulated in response to LH/hCG

regulation (Byers et al., 1997), ERa levels remain at a constant low level and are

unresponsive to FSH, testosterone or forskolin stimulation (Sharma et al., 1999).

From these studies there is a general consensus that ERP is the predominant receptor

type within the ovary with ERa being expressed at lower levels.

Immunocytochemistry studies in primates and humans have suggested that there may

be species differences in the expression patterns of the two ER receptors. In baboons,

rhesus monkeys, marmosets and in humans ERa has been detected in the granulosa

cells of larger follicles (Saunders et al., 2000; Hutz et al., 1993; Billiar et al., 1992).

Although ERp has been found to be the most predominant receptor type within

rodent ovarian follicles, animals carrying deletions in this gene are still fertile while

the ERa females are infertile and develop a more severe ovarian phenotype. ERKO

females are anovulatory and develop haemorraghic cysts shortly after reaching

puberty (Lubahn et al., 1993). Prior to the work described in this chapter, it had been

reported that the ovaries of these animals could not be induced to ovulate when

administered with exogenous gonadotrophins. The neo-natal and pre-pubertal mice

in this knock-out do not exhibit any gross differences from wild-type mice
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(Shomberg et al., 1999) and appear to have similar numbers ofprimordial, primary

follicles and secondary follicles. Another characteristic of the ERKO phenotype is

the perturbations in the circulating steroids and gonadotrophins that may influence

ovarian function indirectly. It is possible that the ovarian dysfunction seen in the

adult ovary may not be a direct consequence of disruption to the ERa signalling

pathway but as a consequence of the endocrine disruption. The aims of this study

were to examine more directly the effects of ERKO in ovarian function using pre-

pupertal mice as a model. Initially experiments using these mice were carried out at

the Animal Science Center, University ofMissouri, Columbia, Missouri. From the

work carried out there it was found that juvenile animals could respond to exogenous

gonadotrophin stimulation and oocytes could be collected. This study specifically set

out to investigate ovulation rates in these animals, to examine follicular development

and to determine whether lack ofERa is detrimental to the oocytes' ability to

fertilise and complete pre-implantation development.
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6.2 Material andMethods

6.2.1. Animals

ERKO and wild-type (WT) female mice were obtained by breeding

heterozygous parents (C57BL/6J/12SV). The colony was housed under the same

conditions as described in Chapter Two. At approximately 14 days of age the

animals were ear punched as a means of identification and the pieces of tissue frozen.

6.2.2 Genotyping

DNA was extracted from the ear punch tissue and subjected to the PCR

reaction as outlined in Chapter 2. Wild type and mutant animals could then be

identified before experimental use.

6.2.3 Histological examination of ovaries

Ovaries were obtained from adult and pre-pupertal animals. After gross

dissection the ovaries were fixed in Bouins solution, embedded in paraffin wax

before being sectioned at 6pm intervals. The sections were stained with

haematoxylin and eosin. The methods are detailed in Chapter 2.

6.2.4 Experiment 1: Ovulation rate and oocyte developmental competence in

ERKO mice.

In order to ascertain whether the ERKO mice were capable of ovulating at the

same rate as WT mice, animals between 21-28days of age were administered with

superovulatory doses of gonadotrophins (5IU PMSG followed by 5IU hCG; 48-54
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hours later). 12-15 hours post hCG the animals were sacrificed and the ovaries and

oviducts removed to warm Liebovitz media. The oviducts were examined carefully

for oocyte-cumulus complexes. The number ofWT and ERKO mice that ovulated

was noted. The ovulated oocytes were released from the oviduct and were then

transferred to T6 media for IVF.

IVF of superovulated oocytes

The protocol used to perform IVF was exactly as described in Chapter 2.

The sperm used for fertilisation was obtained from F1 (C57BL x CBA) males aged

6-10 weeks. The developing embryos were examined daily and the number of

oocytes fertilising and reaching the blastocyst stage of development from the WT

and ERKO mice noted.

Li shit Microscopy of Blastocysts.

Photographs were taken using a Nikon F70 camera and Ektachrome 64T

Colour reversal film. The blastocysts were viewed under a Nikon inverted

microscope fitted with Hoffman modulation contrast optics and a heated stage

(Lincam).

TUNEL staining of blastocysts.

Under the dissecting microscope (Nikon) cavitating blastocysts were initially

transferred from the KSOM droplets into the wells of 96 well plates (Iwaki)

containing 100 pi PBS supplemented with 3mg ml"1 Polyvinyl Pyrrolidone (PVP;

Sigma). Subsequent steps were carried out by transferring the blastocysts through the

wells of the 96 well plate using fine-drawn BSA coated pipettes. The blastocysts

were washed three times in PBS/PVP before being fixed in 100 pi 3.7%

162



paraformaldehyde/PBS. Permeabilisation was carried out by transferring the

blastocysts to 100 pi of 0.5% Triton/PBS/PVP for 1 hr at room temperature. Cell

death detection was performed using a commercially available kit (Roche). The

blastocysts were pre-incubated in 15 pi dUTP-FITC labelling mix for 10 min at room

temperature before incubation in 15 pi of the TUNEL preparation for one hour at

37°C. They were then washed twice in 100 pi PBS/PVP. Counterstaining, using

propidium iodide (PI), was performed by incubation in 20 pi ofPI solution (3pi PI in

lml PBS containing lOOmg bovine pancreatic Rnase [Sigma]) for 2 hours at 37°C.

Blastocysts were then washed six times in PBS/PVP before being mounted in a drop

ofPBS/PVP placed on a Coverwell gasket (Molecular Probes). A cover slip was then

placed over the gasket. Throughout the TUNEL staining procedure all incubations

were carried out in the dark and transfers were carried out as quickly as possible to

ensure no loss of fluorescence.

Confocal Analysis

Analysis was performed using a Leica TCS NT confocal microscope using the

x63 water corrected PL APO lens. Blastocysts were analysed by scanning sections

every 5 pm. TUNEL labelled cells were detected as green and propidium iodide

staining was red in colour therefore simultaneous scans at 488 nm and 568 nm were

taken. Each could be viewed separately. Images were saved and later analysed on the

computer using UTHSCA Image Tool software. Apoptotic and non-apoptotic cells

were counted. The combined cell counts gave a total cell number.
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6.2.5 Experiment 2: Follicular growth and development in vitro.

21-25 dayWT and ERKO female mice were sacrificed and the ovaries

collected into warm Liebovitz medium. A small piece of tail tissue was collected and

the genotypes of the animals confirmed by PCR as described in Chapter Two.

Ovaries were removed and pre-antral follicles were dissected as previously

described (Chapter 2). The follicles were cultured in a-MEM media supplemented 1

IU ml"1 rhFSH, 140 pm ascorbic acid and 5% serum collected from C57BL mice.

The follicles were measured and moved to fresh wells ofmedia daily. The culture

period was for 6 days. Three WT and three ERKO animals were used in each run of

the experiment. The experiment was performed twice. At the end of one run of the

experiment representative follicles were fixed and processed for histological

examination as described in Chapter Two

6.2.6 Statistical analysis.

The number of ERKO and WT mice ovulating in response to gonadotrophs

was compared using chi-square. The number of oocytes obtained from each genotype

was calculated as ± SEM and compared by t test. The total cell and apoptotic cells

per blastocyst was compared by ANOVA and Bonferroni post test. Follicular growth

between the WT and ERKO was compared on each day of culture by a t test.
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6.3 Results

6.3.1 Histology.

Histological examination of adult ovaries confirmed the presence of

haemorrhagic cysts in the ovaries of the adult ERKO females. A representative

photograph is shown in Figure 6.1 A. In contrast, there is little difference between the

ovaries of the pre-pubertal WT and ERKO mice (Figure 6. IB and C).

6.3.2 Experiment 1: Ovulation rate and oocyte developmental competence in

ERKO mice.

The number ofERKO mice responding to the superovulatory doses of

gonadotrophins was compared with WT mice of similar ages. No differences were

found in the number ofWT and ERKO ovulating (11/14; 78.5% versus 9/16; 56%

respectively). However as shown in Figure 6.2 the number of oocytes collected from

the animals did differ significantly dependent on genotype (WT; 14.36 ± 3.73

ERKO; 5.417 ± 1.574; p<0.05). Oocytes were taken and IVF performed to examine

whether the effect ofERa deletion had any effect on oocyte developmental

competence. In total 98 WT oocytes and 88 ERKO oocytes were collected for IVF.

The results of this experiment are shown in Figure 6.3. The percentage ofWT

oocytes achieving cleavage to the 2-cell stage was 84% (83/98) and ERKO oocytes

86% (76/88). 75% of the WT (63/83) and 59% (45/76) of the ERKO 2-cell embryos

developed to the blastocyst stage. There were no significant differences in the rate of

fertilisation and blastocyst development between the two groups. Blastocysts from
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both groups formed cavities and appeared morphologically identical. A typical

blastocyst is depicted in Figure 6.4A.

To determine if any differences existed between the WT and ERKO

blastocysts, they were analysed using the confocal microscope after TUNEL

labelling for apoptosis and counterstaining with propidium iodide. A typical stained

blastocyst is shown in Figure 6.4B. From the images total cell counts and the

numbers of apoptotic cells in each blastocyst were made. There were no significant

differences between the two groups. The mean number of total cells for the WT

blastocysts was 43.5 ± 2.82 and 41.35 ± 2.69 for ERKO blastocysts (see Figure

6.5A). The mean number of apoptotic cells in WT blastocysts was 15.45 ± 1.57

(35.5%of the total cells) while ERKO derived blastocysts had a mean number of

15.3 ± 1.25 (37% of the total cells) as shown in Figure 6.5B.

6.3.3 Experiment 2: Follicular growth and development in vitro

Follicles isolated from both WT and ERKO mice grew at the same rate and

reached the same diameter at the end of the culture period as shown in Figure 6.6.

Representative follicles from each group were fixed and processed for histolological

examination at the end of the 6 day culture period. As can be seen in Figure 6.7

follicles from the WT type and ERKO mice had antral cavities and there was little

morphological difference between them.
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Figure 6.1. Photomicrographs of haematoxylin and eosin stained sections of
ERKO and WT ovaries. The adult ovary has large haemorraghic cysts (A).
There is little morphological difference between the ovaries of ERKO (B)
and WT(C) mice at 3 weeks of age. Scale bar 200 pm
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Figure 6.2. Number of oocytes ovulated in WT and ERKO mice
in response to exogenous gonadotrophin treatment. Values are Mean ± SEM
(n > 11). Significantly fewer oocytes were retrieved from the ERKO mice.
*
= p<0.05
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Figure 6.3A. Fertilisation rate of oocytes obtained from
WT and ERKO mice. There were no differences between
the groups.

100 -|

WT ERKO

Figure 6.3B. Rate of 2-cell embryos reaching blastocyst
WT and ERKO mice. There were no differences between
the groups.



Figure 6.4A. Photograph of a typical blastocyst.
Morphologically there was no difference between
WT blastocysts and those derived from ERKO
animals

Figure 6.4B. Confocal image of a TUNEL stained
blastocyst. Apoptotic cells are green. Blastocysts were
counterstained with PI
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WT ERKO

Figure 6.5A Total number of cells in WT and ERKO blastocysts.
Values are Mean ± SEM(n > 20). There were no statistical differences
between the two groups

WT ERKO

Figure 6.5B Total number of TUNEL labelled cells in WT and ERKO
blastocysts. Values are Mean ± SEM(n > 20). There were no statistical
differences between the two groups
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Day Of Culture

Figure 6.6 Growth rates of follicles from WT and ERKO
mice. Values are Mean ± SEM (n > 33). Follicles from both
groups grew at very similar rates.
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Figure 6.7. Haematoxylin and eosin stained plastic sections
of follicles after 6 days in culture. Panel A is representative of a
WT follicle and panel B an ERKO follicle. Scale Bar 80pm
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6.4 Discussion

A role for oestrogen within the ovary remains controversial. There is much

evidence to suggest that oestrogen acts through autocrine and/or paracrine

mechanisms to enhance follicular development (Drummond and Findlay, 1999).

However, there are a number of reports that show that oestrogen may not be

obligatory for ovarian development. (Coney et al., 1987; Weston et ah, 1996; Fauser

1997; Spears and Murray et al., 1998). As oestrogen originates in the ovary and is

found at high concentrations there, hypothetically its cognate receptors could be

continually activated and result in continual activation of downstream targets. While

co-activators and co-repressors of oestrogen act at the receptor level, the finding that

two oestrogen receptors exist in mammals adds another layer of complexity to the

dissection of the oestrogen response within the ovary. The examination of transgenic

mice carrying deletions that knock-out one or both of these receptors are now

beginning to reveal that each receptor type plays different roles in the mammalian

reproductive cycle.

The distribution of oestrogen receptors within the ovary has yet to be clearly

defined. In rodents there are conflicting reports as to the distribution ofboth types of

receptor. Drummond et al 1999 have reported detection ofmRNA for both ERa and

(3 in the granulosa cells of the follicles while others have failed to detect ERa within

these cells (Saunders et al., 1997; Sar and Welch 1999; Schomberg et al., 1999,

Pelletier et al., 2000). Apart from differences in localisation, it would also seem that

both ERa and (3 are differentially regulated. Studies in rodents have shown that ERp

increases as follicles grow from the primary to pre-antral stages (Drummond et al.,

1999) and that expression is down regulated in response to LH/hCG stimulation
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(Byers et al., 1997). In rodents the level ofERa remains at a constant low level

(Drummond et al., 1999) showing no response to FSH, testosterone or forskolin

stimulation (Sharma et al., 1999). In human and marmoset ovaries ERp receptor

protein has been detected in both pre-antral and antral follicles whereas ERa protein

was confined to antral follicles (Saunders et al., 2000) which would suggest there

may be species differences in receptor patterns.

The adult female ERKO mouse develops abnormal ovaries shortly after puberty

resulting in infertility. Although some antral follicles are present the ovaries contain

large haemorrahgic cysts with no corpora lutea being formed. In these animals, high

circulating levels of oestradiol, androgen and LH persist, probably as a result of

disruption of the feedback mechanisms that regulate ovarian function via the

hypothalmic-pituitary axis. Thus the ERKO ovarian phenotype could arise either as a

direct lack ofERa action within the ovary and/or as a consequence of altered

steroidal and gonadotrophin levels. In order to address whether follicular

development is directly affected by the lack ofERa this study examined the in vitro

growth of follicles obtained from pre-pubertal mice as well as the effects of

superovulation. Prior to puberty, the ovaries of the ERKO mice are morphologically

very similar to those ofwild-type mice with no evidence of reduced follicular

development (Couse et al., 2000). The use of a culture system that permits follicular

development from the pre-antral through to the antral stages ensured that

development was isolated from any potentially altered steroidal and gonadotrophic

milieu in the animals. The results of these experiments showed that there were very

few morphological differences between the growth of follicles ofWT and ERKO

animals. The follicles developed at similar rates and reached similar stages of
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development by the end of the culture period. These results indicate that follicular

development is not dependent on ERa receptor activity. It has been suggested that

the ovarian phenotype of the adult animal is most probably due to the elevated

circulating steroid and LH levels. A transgenic mouse that has been engineered to

hypersecrete LH also develops cystic, annovulatory ovaries (Mann et al., 1999).

Further evidence supporting the hypothesis that the ERKO ovarian phenotype arises

through an indirect mechanism comes from a report by Couse et al, (1999): in this

study the authors demonstrated that prolonged treatment with a GnRH antagonist

reduced serum LH levels and prevented the cystic ovarian phenotype.

Given that rodent studies have demonstrated that ERa levels are either not

detectable or low in the ovary it is perhaps not surprising that follicles obtained from

ERKO animals grew and developed at the same rate as theirWT counterparts.

However, in the experiments described here morphological characteristics were used

to examine the follicles and it is possible that differences between the ERKO and

WT exist at a cellular molecular level. Additionally these results need to be

interpreted with some caution as oestrogen receptors preferentially form

heterodimers (ERa/ERp) rather than homodimers when both are co-expressed.

Therefore it is possible that in follicles lacking ERa, ERp homodimers form and can

exert similar actions. It is also possible that other, yet to be identified, oestrogen

receptors exist.

The experiments described here have shown that juvenile ERKO animals do

respond to gonadotrophin stimulation by ovulating. Initial experiments carried out at

the University ofMissouri suggested that fewer of the knock-out animals were able

to respond to exogenous gonadotrophins than their WT counterparts (Rosenfeld et
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al., 2000). In the series of experiments described here, it was found that there was no

difference in the number of animals able to ovulate. As the two sets of experiments

were conducted in different laboratories and each used different gonadotrophin

preparations it most likely that this accounts for the disparate results, although

perhaps this warrants further study. In both experiments it was found that

significantly fewer oocytes were ovulated by the ERKO mice. Couse et al, (1999)

also reported very similar results. From these results it would seem that ERa while

not essential to the ovulatory process (since some oocytes can be ovulated), may

have an auxiliary role that facilitates either ovulation or the number of follicles

available to ovulate. While similar numbers of follicles would seem to be present in

the juvenile ovaries of both WT and ERKO animals, to the best ofmy knowledge, no

study has compared the numbers of follicles present at each stage of development.

Therefore it is still unknown whether ERa has a role in determining initiation of

follicular growth or selection to the antral stage. Research published by Couse et al,

(1999) indicated that while fewer ovulations occurred, a large number of follicles had

reached the pre-ovulatory stage and these follicles exhibited similar markers of

maturity compared to their WT counterparts. The mice used were of an age that

approaches sexual maturity and it is possible that although the gross phenotype of the

ovary was not apparent, the follicles within them had already been exposed to altered

steroidal and hormonal profdes. It is likely that some differences exist as immature

ERKO animals have significantly elevated levels of LH receptor mRNA (Couse et

al., 1999).

Another possibility for the reduced ovulatory capability could be that

ERa directly influences ovulatory events such as extra-cellular matrix re-modelling.
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One interesting observation that came from dissection of the knock-out animals was

the fragile nature of the interstitial tissue. Far more care was needed to ensure the

isolation of intact follicles (personal observation). Two reports have localised ERa

exclusively to the interstitial tissues in rodents (Schomberg et al., 1999; Pelletier et

al., 2000). Oestrogen has been implicated in the remodelling of extra-cellular matrix,

basement membrane (Gianelli et al 1999; Keck et al., 2002) and vasculature (Zhang

et al., 2000) by exerting effects on the expression ofmatrix-metalloproteinases which

are a necessary component to the ovulatory process (Mclntush and Smith, 1998).

Therefore it could be speculated that rather than having a role within the follicle,

ERa action is necessary to the re-modelling of extra-follicular tissue. While elevated

LH levels have been associated with the cystic phenotype of the knock-out animals,

increased permeability of the basement membrane may also contribute to the

formation of the haemorrahgic cysts.

The final aim of this study was to examine whether oocytes obtained from

ERKO females were capable of fertilisation and further development. Previous

reports have suggested a direct role for oestrogen receptors in oocyte function (Wu et

al., 1992; 1993) and during pre-implantation development (Hiroi et al., 1999). The

results presented here show that fertilisation rate and development to blastocyst stage

was similar for both ERKO and WT derived oocytes. Couse et al, (1999) also

reported very similar rates of fertilization. In order to further examine whether

development was compromised, total cell numbers and the incidence of cell death

within the blastocyts was compared. Mouse blastocysts undergo cell death in the

inner cell mass as a normal feature of development perhaps as a mechanism to

eliminate defective cells and regulate total cell number which may be critical for later
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development (Brison and Shultz, 1997). We found no differences either in the total

cell number or in the numbers of apoptotic cells between the groups, suggesting that

the loss ofERa mediated action during oocyte growth and maturation is not essential

at least until the implantation stage of development. Although pre-implantation

development is unaffected by the lack ofERa, as measured by the parameters used

in this study, an effect could become obvious at a later stage of development. It is

becoming increasingly clear that many aspects of oocyte development, such as

genomic imprinting (which occur during the growth and maturation phase of the

follicle) may not become apparent until post-implantation of the embryo. In order to

absolutely examine whether ERa defficiency during oocyte growth and maturation

produces no long-term effects, blastocyst transfers need to be performed in order to

obtain viable offspring.

In conclusion, the results of this study, and published work from others, is

helping determine whether oestrogen is necessary to follicular development and

oocyte viability. The results discussed here have demonstrated that follicles are

capable of growth and development and that oocytes can fertilise and undergo pre-

implantation development in the absence ofERa mediated actions. Further studies

are needed to investigate the role ofERa within the thecal interstitial layers of the

follicle, especially in relation to tissue re-modelling. To rule out an oocyte effect,

embryo transplantation studies need to be carried out.

Although the actions ofERa do not seem to play an obligatory role in ovarian

function it cannot be discounted altogether. Oestrogen receptors preferentially form

hetrodimers (a and P) on ligand binding but in the absence of one homodimers form.

It is possible therefore that ERa may play a role in normal follicular development but
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that in its absence ERp can substitute and normal events occur. Also the presence of

other oestrogen receptors cannot be discounted.

In order to study the effects of oestrogen, mice have been generated carrying

deletions in both the a and P oestrogen receptors and also in the aromatase gene

(Fisher et al., 1998). These latter animals are incapable of producing ovarian

oestrogen. Although examination of the ovaries of these animals has suggested that

oestrogen is likely to facilitate some aspects of ovarian function, the data obtained

needs to be interpreted with caution. All of these knock-out genotypes have altered

steroidal and/or hormonal profiles which arise as secondary effects of the deletion

making it difficult to attribute any abnormal phenotype to the gene deletion. The

involvement of oestrogen within the ovary needs to examined perhaps in more

sophisticated ways either by generating tissue targeted gene deletion or through the

use selective agonists and antagonists. Finally it is worth noting that while the

laboratory mouse can reveal much, the data obtained may not be relevant to all

species.
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Chapter Seven

General Discussion
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7.1 The aim of this thesis

The growth and development of the ovarian follicle is a long and complex

process that takes many weeks in lower mammals and months in primates.

Throughout this process the oocyte maintains close contact with the surrounding

somatic cells and through bi-directional communication acquires the developmental

programs necessary for fertilisation and embryonic development. After the onset of

puberty, the cyclic rise and fall of the circulating gonadotrophins is the primary

control of follicular development and of the species-specific number of oocytes

released within in each ovulatory cycle. The exogenous administration of

gonadotrophin preparations can over-ride this control system, allowing a larger than

normal number of follicles to mature to the ovulatory stage. This technique has been

widely used in both agricultural and clinical settings as a means of obtaining large

numbers of oocytes for use in assisted reproductive technologies such as IVF. Until

recently most preparations of gonadotrophins used for ovulation induction contained

both FSH and LH and little was known about the individual roles that these play in

the development of the follicle and maturation of the oocyte. With the availability of

recombinant forms ofboth FSF1 and LH it is now possible to determine more

precisely what effects each of these have on both the follicle and oocyte. To that end,

the main aim of this thesis was to address the basic question what effects

gonadotrophins have on oocyte development within the follicle prior to ovulation and

how does this effect the quality of the embryo after fertilisation?
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7.2 Summary of results.

The work presented in this thesis relied heavily on the use of an in vitro

system that supports the development ofmurine follicles from the late pre-antral

stage through to the pre-ovulatory stage of development. Since its development, this

culture system would undergo periods in our laboratory during which it would not be

possible to sustain the growth of intact follicles. After two days in culture the three-

dimensional structure of the follicle would be lost due to rupture of the basement

membrane. Apart from making it difficult to assess follicular growth rates, the

contribution of the extra-cellular matrices (including the antral fluid) may be

lessened which could have had an impact on the maturation of the oocyte. A primary

objective therefore, was to optimise the in vitro system thereby increasing the

numbers of follicles reaching the antral stage by the end of the culture period. It was

found that inclusion of ascorbic acid in the culture media greatly increased the

percentages of follicles that could maintain an intact basement membrane in vitro, in

part at least, by modulating matrix metalloproteinase activity. Apart from promoting

collagen synthesis, ascorbic acid acts as an anti-oxidant. It was found that under

conditions that induced oxidative stress within follicles, the addition of ascorbic acid

reduced the degree of apoptotic cell death. Granulosa cells of growing follicles

sequester ascorbic acid and the ability to uptake this vitamin may confer a

developmental advantage to follicles at the time of selection into the antral phase.

Little is known about the nutritional requirements of growing follicles and the results

of these studies contribute to that knowledge

Having established a culture system that yielded high numbers of intact

follicles made it possible to investigate the individual roles that FSH and LH have on
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follicular development and what effects that varying gonadotrophin exposure had on

the viability of the enclosed oocytes. These experiments were successful in

establishing that the supplementation of FSH with LH has no effect on follicular

growth and morphology in vitro. The second aim, investigating the viability of the

oocytes obtained from follicles, proved more problematic to determine. The results

obtained varied enormously from culture to culture, under the conditions used,

making it difficult to statistically determine the effect of the different treatments.

Nonetheless there was an indication that the addition of low concentrations of LH did

not augment oocyte quality whereas high concentrations resulted in fewer oocytes

capable of completing pre-implantation development.

It had been hoped to use an in vivo model, the hypogonadal mouse, to

investigate any indirect effects of gonadotrophins that may have arisen as a result of

inter-follicular and/or extra-ovarian effects. Using a similar experimental regime to

that used in the in vitro experiments, different gonadotrophin regimes were

administered to hypogonadal mutant mice prior to inducing ovulation. Histological

examination of the ovaries, including the saline controls, indicated that large-pre-

ovulatory follicles were present in all the groups and there were no notable effects of

any gonadotrophin treatment on follicular development. This indicated that the doses

of gonadotrophins used for superovulation were sufficient to induce an ovarian

response but the ovulatory mechanism was deficient in some animals. It was

interesting to note however, that only ovaries exposed to FSH and the higher

concentration of LH responded and released oocytes. Furthermore there was an

indication that only with this treatment regime was sufficient oestrogen produced to

increase uterine weight.
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In addition to gaining information on the function of the ovary, it had been

hoped that any effects on the oocytes obtained from the different treatments could

have been examined using IVF. This proved difficult to accomplish for a number of

reasons. It was found that high doses of superovulatory gonadotrophins were

required to induce a response in these animals. Even then these regimes did not

consistently induce ovulation in all of the animals with some mice responding while

others did not. As a result few oocytes were available for IVF. Oocytes that were

obtained either by superovulation alone or after prior stimulation with

gonadotrophins fertilised but arrested before reaching the blastocyst stage. This

indicated that the high doses of superovulatory gonadotrophins that were required to

induce ovulation were detrimental to oocytes. No conclusions could be drawn as to

how FSFI and LH individually or in combination affected oocyte quality.

Although the results of these in vivo experiments were disappointing, they did

raise some interesting questions. It is unknown what effects FSH and LF1 have on

follicular development prior to the so-called 'gonadotrophin responsive' stage.

Firstly, do follicles need to be exposed to gonadotrophins prior to this stage in order

to become sensitive to gonadotrophin action later in development? Secondly, what

effects do gonadotrophins or their mediators have on oocyte maturation during the

earlier growth stages? Finally, did the increased production of oestrogen induced by

the higher concentration of LH administration facilitate the ovulatory process?

Further studies using this animal model may answer some of these questions.

A consequence of follicular gonadotrophin stimulation is the production of

the sex steroids and the inhibin family of glycoproteins, all ofwhich have the

potential to act as mediators of gonadotrophin action. As part of the investigation
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into the effects of FSH and LH, it was found that alteration to the gonadotrophin

stimulation regime resulted in alterations in the profile of steroids produced by the

follicles. Where LH was included in the treatment, follicles began to synthesise

appreciably higher levels of both androstenedione and oestradiol at an earlier stage of

development. Therefore, it seemed a logical next step to begin to investigate the

effects of directly altering the follicular steroid environment. These experiments

clearly showed that elevation of oestrogens during follicular development adversely

affected the fertilisation rate of the oocytes while elevating androgens enhanced

fertilisation rate.

Both oestrogen and androgen receptors are found in the granulosa cells of

follicles and their expression patterns appear to be developmentally regulated. To

date, there is no evidence that the oocyte has an androgen receptor whereas oestrogen

receptors have been described and implicated in directly promoting some aspects of

oocyte maturation. It has yet to be determined if androgens can directly act on the

oocyte but they can indirectly affect the oocyte as a result of paracrine signalling via

the granulosa cells. Previous studies from our laboratory have shown that androgens

can directly promote growth and antral formation ofmurine follicles in vitro and the

finding that elevation of androgens promotes fertilisation, confirms that this steroid,

independently of oestrogen, is a necessary component of the signalling system in

follicular and oocyte development.

There are a number of reports in both rodents and primates that suggest that

oestrogen does not play an obligatory role in follicular development. Determining a

role for this steroid has become more complex as it is now known that more than one

oestrogen receptor (ERa and ERP) exist in the mammalian ovary. Transgenic mice

186



carrying deletions for each of these receptors have been generated and each has a

different phenotype. The PERKO mouse is fertile (although litter sizes are reduced)

while the ERKO mouse is not. The cause of infertility in the ERKO mouse may be as

a direct result of the lack of an active ovarian receptor or as consequence of the

perturbations to the endocrine system that occurs in these animals. Using the ERKO

mouse model, studies presented in this thesis have clarified this situation and shown

that lack of the ERa receptor does not prevent follicular development or adversely

affect the ability of the oocyte to fertilise and undergo further development at least

until the pre-implantation stage. The embryos generated in these studies were

heterozygous for ERa as the sperm used to fertilise the oocytes was obtained from

F1 mice: ERKO males are infertile. Therefore, it is unknown whether any effect of

this receptor is necessary in the development of the embryo. Given that the absence

of either of the oestrogen receptors is not detrimental to the fertilisation and

development of the oocyte questions whether exposure to oestrogen is necessary in

promoting oocyte maturation. Similar experiments to those described here using the

double knock-out mouse would resolve this question.

Two of the studies presented here have indicated that oestrogen may facilitate

the ovulatory process. Using the hypogonadal mouse as model, it was found that only

those animals that produced higher concentrations of oestrogen in response to LH

stimulation ovulated, and mice lacking the ERa receptor produced fewer oocytes

when administered with superovulatory doses of gonadotrophins. Further evidence

supporting this theory comes from the BERKO mouse, which although fertile, has

reduced litter sizes.
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7.3 Conclusions

The gonadotrophins are vital to the latter stages of follicular growth and

development. It is generally acknowledged that FSH is the primary gonadotrophin

that drives follicular development whereas both FSH and LH contribute to follicular

steroidogenesis. Whether LH contributes factors that affect the maturation of the

oocyte has been the subject of some debate. The relationship between gonadotrophin

stimulation, follicular development and steroid production is likely to be tightly

controlled in vivo resulting in the ovulation of optimally viable oocytes. Little is

known about how intervention resulting in changes to the follicular environment

affects the developmental competence of the oocyte. The studies presented within

this thesis have gone part way towards redressing this.

The main findings from these investigations are that FSH alone is capable of

inducing follicular growth and producing viable oocytes and that LH has little effect

on the rate of follicular growth and development. However, inclusion of LH in the

stimulatory protocols induced changes in the production of the sex steroids. Under

the influence ofLH, follicles began to produce androgens and oestrogens at an

earlier time-point in their development. Although follicular development and

oestrogen production can proceed in the absence of LH stimulation in vitro it is

likely that in vivo some LH is necessary to promote sufficient oestrogen to ensure

that the reproductive tract is primed for an ensuing pregnancy.

Steroids have been implicated in determining follicular growth, development

and fate. The conclusions drawn from the research presented here do not support this

view, as alteration in the steroidal environment had little effect on follicles. However,
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the steroidal environment of the follicle does impact upon the oocyte contained

within it. In a previous study we have shown that androgens directly influence the

growth and development of murine follicles. The work presented here has extended

this knowledge and shown that the activities of androgens are also important for the

development of the oocyte. The ratios of androgen and oestrogen production shifts

towards increased oestrogen production as the follicle approaches the ovulatory

stage. Inappropriate stimulation by oestrogen before this stage can affect oocyte

viability. Whether the actions of oestrogen, either directly or indirectly, play any role

in oocyte maturation remains to be elucidated.

In conclusion, manipulating the ovary (such as through the administration of

exogenous gonadotrophins), while inducing multiple follicles to reach the ovulatory

stage, can alter the steroidal environment within those follicles and subsequently

affects oocyte maturation. While the idea that steroids influence oocyte competence

is not new, the information gained from these present studies indicates that the

oocyte needs to be exposed to the correct pattern of steroid exposure in order to

mature correctly.
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7.4 Experimental models

Many aspects of reproduction have been examined in animals (commonly

mice) that have natural occurring mutations, such as the hypogonadal mouse, or have

been transgenically altered to either over-express or carry a deletion for certain

genes. These include 'knockouts' for the FSH receptor, oocyte specific growth

factors such as GDF9, steroidogenic enzymes and the steroid receptors. Mice have

also been engineered to over-express the LHP sub-unit and follistatin. Most of these

models have perturbed ovarian function for example, the LHP over-expressing

mouse develops ovarian tumours and the ERKO mousedevelops an ovarian

pathology that leads to infertility. The resulting ovarian pathologies could arise as

either as a direct result of gene deletion/over-expression or as a result of the altered

endocrine environment. While these models have been useful in determining what

the effects of deletion (or over-expression) have on the reproductive process, whether

or not these manipulations directly impact upon intra-ovarian function has been more

difficult to determine.

The technologies that support follicular and oocyte development in vitro have

developed tremendously over recent years. Culture systems have been developed in

many species including rodents, primates and domestic animals. However, the vast

majority of these in vitro systems have been devised using the mouse as a model.

The ability to isolate ovarian components (tissue fragments, intact follicles or oocyte-

granulosa complexes) and manipulate the in vitro environment, has led to a better

understanding ofwhat effects factors, such as the gonadotrophins and steroids, have

on follicular growth and development directly.
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The value ofutilising both in vitro and in vivo models to address specific

questions in reproduction has, I believe, been demonstrated by the work contained

within this thesis. Using both models made it possible to evaluate more precisely

what effects ERa deletion had on reproductive function. Similarly while in vitro

experiments indicated that follicular development did not require LH stimulation, the

in vivo model indicated that, in the case of hypogonadism, ovarian stimulation with

this gonadotrophin might be a requirement for adequate steroidogenesis.
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7.5 Future Work

Bi-directional communication between the oocyte and somatic cells ensures

certain aspects of follicular and oocyte growth proceeds in a co-ordinated manner.

There has been much research on oocyte control of somatic cell function but far less

is known about the signalling that the oocyte receives from the somatic cells. The

findings of this current work point to a role for the steroids in this signalling pathway

and that the oocyte needs to be exposed to the correct pattern of androgens and

oestrogens in order to mature optimally.

7.5.1 What is the correct steroid pattern?

In the experiments described in Chapter Five, follicles were exposed to

altered steroidal environments. The results of those experiments led to the conclusion

that these alterations had an impact on oocyte viability and that, in order to mature

correctly, the oocyte needs to be exposed to the correct pattern of steroids. However,

in those experiments steroid levels were raised throughout the culture period that

encompassed follicular growth from the pre-antral to antral stage of development.

From the current results it cannot be established at what point in follicular

development androgens and oestrogens exert their effects. Future studies are needed

to address this in order to establish this.

7.5.2 Where do steroids act?

Androgen and oestrogen receptors have been described in the somatic

compartments of the follicle in a number of species and the expression of these

receptors appears to be developmentally regulated in vivo. One possible consequence
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of altering the follicular steroidal environment could be that the receptor pattern is

also altered. This could result in the inappropriate differentiation and/or function of

the somatic cells. Apart from acting through the somatic cells, steroids could also act

directly on the oocyte. mRNA for oestrogen receptors has been reported in the

oocytes ofmice and of humans but no androgen receptor in the oocyte has yet been

described. It is possible that the expression of oocyte receptors is tightly controlled

and is transient limiting the actions of steroids to particular developmental stages.

Further studies are needed to investigate the expression patterns of steroid receptors

in both the somatic cells and the oocyte. Experiments such as those described in

Chapter Five could be used to elucidate how alteration to the steroid environment

alters these expression patterns.

Two of the studies described within this thesis suggested that oestrogen might

have a role in ovarian function at the time of ovulation. Only hypogonadal mutant

mice that had produced higher levels of oestrogen ovulated. I also found that the

ERKO mouse did not ovulate at the same rate as their wild type counterparts. This

would implicate a role for oestrogen, acting through the Era receptor, in facilitating

either the number of follicles reaching the ovulatory stage or in the ovulatory process

itself. This aspect of oestrogen action would be worth further investigation.

7.5.3 What initiates the mechanism of genomic imprinting?

One of the most important aspects of oocyte maturation is the epigenetic

modification of the genome. Genomic imprinting is an epigentic form of gene

regulation that results in the differential expression of the two parental alleles in a

gene pair. Whether an allele is silenced or active is dependent upon parental origin.
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Imprinted genes participate in a number of developmental processes including

regulation of embryonic development, placental function and foetal growth. They

have also been implicated in tumour suppression, genetic and behavioural disorders.

In the oocyte, maternal imprinting is established during the growth phase

(Kono, 1998). Analysis of eight known imprinted genes in growing oocytes has

shown, that the imprinting signals for each of these genes were not imposed together,

but occurred at specific times (Hata et al., 2002). The exact nature of the marks that

imprint genes has yet to be discovered but the mechanism that enforces it is likely to

be DNA methylation. The great majority of imprinted genes studied so far show

differences in methylation patterns between the parental alleles. Methylation is

carried out by DNA methyltransferases (Dnmts) which introduce methyl groups in to

unmethylated DNA. Three members of this family, Dnmtl, 3a and 3b have been

implicated in methylating germ cell DNA. Knocking -out the methylase genes in

mice results in embryo lethality or developmental defects. It is thought that Dnmtl is

responsible for the maintenance ofmethylation whereas Dnmt 3 a and 3b may be

responsible for de novo methylation (Reik et al., 2001). An oocyte specific form of

Dnmtl (Dnmtlo) has been described whose expression increases commensurate with

oocyte growth, when imprints are established but little is known whether this can

initiate new methylation patterns. Little is known about the expression ofDnmt 3a

and 3b in oocytes however, Dnmt 3av" and Dnmt 3b+/" mice fail to establish maternal

methylation patterns (Hata et al., 2002).

Given that the imprints are imposed at different time-points during oocyte

growth it would seem logical to assume that the expression patterns of the Dmnts are

also regulated in a timed manner. While there is some information on the expression
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ofDnmtlo very little is known about the expression patterns ofDnmt 3a and 3b. It is

not yet clear which of these enzymes are responsible for de novo methylation in the

oocyte. Potentially the steroids could play a role in this process and aberrations in

imprinting could arise as a result of inappropriate steroid stimulation either directly

or as a result of gonadotrophin manipulation. I believe that this is an important aspect

of oocyte maturation and my current work is focussing on establishing the expression

patterns ofDnmt expression throughout oocyte growth and what effect alteration in

steroid environment has upon these.

7.5.4 Beyond blastocysts

The end point for many of the investigations contained within this thesis was

to examine oocyte developmental competence up to the point of pre-implantation

development. Based on that criteria conclusions were drawn, for example, regarding

the role of the ERa receptor in oocyte viability. It is now known that the effects of

some aspects of oocyte maturation, such as genomic imprinting, do not become

apparent until later in development. It may well be that any aberrant effects in oocyte

maturation do not become apparent until the implantation stage or beyond.

Ultimately, in order to truly test whether oocytes were affected or not by different

follicular environments, embryo transfers will need to be done.
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7.6 Implications for ART

ART is widely used in both clinical and agricultural situations and the

number of techniques being developed is rapidly expanding. As well as being used to

treat infertility, preserve endangered and valuable species, these techniques now

include the cloning of domestic species and the production of embryonic stem cells.

Although some of these techniques, such as IVF, have been used for many years,

none have particularly high success rates. The majority of these techniques rely upon

a supply of large numbers of optimally mature oocytes. In order to gain these, it is

common practice to stimulate the ovary with high concentrations of gonadotrophins

and yet we still know remarkably little about how FSH and LH influence the

developmental competence of the oocyte. I believe that the studies contained within

this thesis have contributed to this knowledge and that they suggest areas worthy of

future investigations.
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Appendix A. Suppliers Addresses

All chemicals used during this thesis investigation from Sigma-Aldrich, Merck Ltd

or Boehringer Mannheim Lewes, U.K.

Accumedic Ltd London, UK.

Astecair Weston- Super-Mare, UK.

Alpha Innotech Corp. San Leando, CA. U.S.A

Becton Dickinson and Co. New Jersey USA.

BDH Supplies see Merck Ltd.

Bibby Sterilin Ltd Aberbargoed, UK

Bio-Rad Hemel Hempstead, UK

Boehringer Mannheim see Roche

Fisher Scientific UK Loughborough, UK

Flowgen Stafford, UK

Forma Scientific Marietta, OH, USA

Intervet Milton Keynes, UK

Invitrogen Renfrew, UK

Iwaki see Bibby Sterilin Ltd

Leica UK Ltd. Milton Keynes, UK

Linkam Tadworth, UK

Merck Lutterworth, UK

MJ Research Mass, USA

Molecular Probes Ltd. Eugene, OR, USA
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Nikon Tokyo, Japan

Oswel Southampton, UK

Pierce Rockford, IL. U.S.A

Phoenix Pharmaceuticals Ltd Gloucester, UK

Promega Southampton, UK

Quiagen Crawley, UK

Reichart-Jung see Leica UK Ltd.

Roche Lewes, UK

Roebling Berlin, Germany

Sigma-Aldrich Company Ltd. Poole, UK

Sigma St. Louis. MO. U.S.A

Sherwood-Davis Gosport, UK

TAAB Laboratories Ltd. Aldermaston, UK

University Technologies International Inc Calgary, Alberta, Canada

Vector Laboratories Burlingame, CA, USA

Zeiss (Carl Zeiss Ltd) Hertfordshire, UK
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Appendix B. IVF media

T6 Stock Solutions

Stock A (100ml)

Sodium Chloride 5.719g

Pottasium Chloride 0.106g

Magnesium Chloride hexahydrate 0.096g

diSodium Hydrogen Phosphate 0.129g

Sodium Lactate (60% syrup) 4.652g

Glucose l.Og

Stock B (100ml)

Sodium Hydrogen Carbonate 2. lOlg

Phenol Red 0.01 g

Stock C (10ml)

Sodium Pyruvate 0.055g

Stock D (10ml)

Calcium Chloride dihydrate 0.262g
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KSOM Stock solutions

Stock A (100ml)

Sodium Chloride 5.55g

Potassium Chloride 0.186g

Potassium diHydrogen Phosphate 0.048g

Magnesium Sulphate heptahydrate 0.049g

Sodium Lactate (60% syrup) 1.869g

Glucose 0.036g

EDTA 0.004g

Stock B (100ml)

Sodium Hydrogen Carbonate 2.101g

Phenol red 0.01 g

Stock C (10ml)

Sodium Pyruvate 0.022g

Stock D (10ml)

Calcium Chloride dihydrate 0.146g
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Appendix C. PCR Protocols

Tail Tip Lysis Buffer TBE Buffer pH 8.3

Tris pH 8
Sodium Chloride
EDTA pH 8
SDS

lOOmM
20mM
5mM

0.2%

Tris
Boric Acid
EDTA
ddH20

10.9g
5.5g
0.93g
1000ml

PCR Screening for ERa gene

PCR Reaction mixture

ddPBO (MilliQ-autoclaved) 10.875 pi
lOx PCR buffer (Invitrogen) 2.5 pi
25mM MgCh (Sigma) 1.5 pi
DMSO (Sigma) 2.5 pi
5M Betaine (Sigma) 5.0 pi
dNTPs (Promega, 1:1:1:1) 0.25 pi
lOOmM Spermidine (Sigma) 0.25 pi
Platinum Taq (Invitrogen) 0.125 pi
Primer Mix (Oswel) 1 pi
DNA sample 1 pi

Primer Sequences

5' CTACGGCCAGTCGGGCAT (WT)
5' AGACCTGTAGAAGGCGGGAG (WT)
5' TGAATGAACTGCAGGACGAG (ERKO)
5' AATATCACGGGTAGCCAACG (ERKO)

The individual primers (100pm) were mixed at a ratio of 1:1:1:1 and stored frozen at

-20°C.

PCR Parameters

1.Preheat @ 94°C for 1 minute,
2. Melt @ 94°C for 40 sec
3. Anneal @ 60°C for 40sec
4. Extend @ 72°C for 1.5 min.
5. Steps 2-4 34 more times
6. Extend 72°C for 5 min.
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PCR screening for hpg mutation

PCR reaction mixture

ddhEO (MilliQ-autoclaved) 12.2 pi
lOx PCR buffer (Invitrogen) 2.5 pi
50mM MgCl2 (Sigma) 1.5 pi
dNTPs (Promega, 1:1:1:1) 0.2 pi
Platinum Taq (Invitrogen) 0.1 pi
Primer Mix (Oswel) 1.0 pi
DNA sample 7.5 pi

Primer Sequences

5' CACATCTGTAGCCACAGTCC (WT)
5' AGCTGGGAGGCTGCTGTCACTGG {hpg deletion)
5' GCTTGGAGAGCTGTAAGGTC (WT)

The individual primers (100pm) were mixed at a ratio of 2:1:2 and stored frozen at

-20°C.

PCR parameters

1 .Preheat @ 92°C for 4min 45sec
2. Melt @ 94°C for 15 sec
3. Anneal @ 60°C for 15 sec
4. Extend @ 72°C for 1 min.
5. Steps 2-4 19 more times

Gel Loading Buffer Ethidium Bromide (Gel Visualisation)

Glycerol (Sigma) 5ml Ethidium Bromide (Sigma) 5mg/ml
0.5M EDTA (Sigma) 40pl
Orange G Dye (BDH) few grains
ddH20 10ml
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The effect of elevated androgens and oestrogens on follicular development and
oocyte competence in vitro.
A. A. Murray, R. Smith, V. Srsen, S.G. Hillier1 and N. Spears. Dept. of Biomed. Sc.,
1
Dept. Repro. and Dev., University of Edinburgh, George Square, Edinburgh. EE18
9XD

During late stages of follicular development the co-ordinated actions ofFSH and LH
produce androgen and oestrogen. The precise effects of these steroids on follicular
development and subsequent oocyte maturity have still to be established. Exogenous
administration of gonadotrophins e.g. in assisted reproductive technologies, may lead
to intra-follicular steroid concentrations being perturbed resulting in poor oocyte
quality. We have been investigating the effects of androgen and oestrogen on
follicular growth and oocyte competence using the mouse as a model. Individual pre-
antral follicles were dissected from the ovaries of pre-pubertal mice and placed in 96
U-well plates. Media was supplemented with serum (from hypogonadal mice) and
recombinant FSH. In further treatments the level of intrafollicular androgen,
oestrogen or both was elevated by supplementing media with an aromatase inhibitor
(Arimidex: to increase androgen), diethyly stilbestrol (DES: to increase oestrogen),
or in combination (increasing androgen and oestrogen). At the end of the culture
period, oocytes underwent IVF. Follicular growth was unaffected in any group and
TUNEL staining indicated there was no increase in follicular apoptosis across
treatments. Fertilisation rates were similar in oocytes obtained from follicles grown
in control media (69%), or when oestrogen or androgen was elevated (65% and 67%
respectively). However fertilisation rate was reduced in oocytes obtained from
follicles exposed to both elevated androgen and oestrogen (44%). Furthermore within
the latter group no fertilised oocytes completed development to the blastocyst stage,
whereas blastocyts were observed in all other groups. We conclude that oocytes
require exposure to a specific pattern of androgens and oestrogens to undergo
optimal maturation.



The Effect ofAlpha Oestrogen Receptor Deletion on Ovarian Function

A. A. Murray, D. Edwards, R. E. Smith, C.S. Rosenfeld, D.B. Lubahn, S.G. Hillier
and N. Spears

An intraovarian role for oestrogen remains controversial. Some studies have
demonstrated that oestrogen positively effects follicular development and prevents
atresia. Others have concluded that any autocrine/paracrine effects are not obligatory
and that the ovary can function when the actions of this steroid are blocked.

Until recently it was thought that oestrogen exerted its effects via a single
receptor (now termed ERa). However, a second receptor (ERP) has now been
discovered. Both ER isoforms are expressed within mammalian ovaries although
their distribution patterns appear to be different. Transgenic mice have now been
generated which carry deletions in either one or both of these receptor types (ERKO,
BERKO and a|3ERKO respectively), providing a unique opportunity to distinguish
their intraovarian functions.

The ERKO mouse has a distinct ovarian phenotype. Adult ovaries
develop haemorrhagic cysts resulting in anovulation and infertility. While this may
suggest a direct role for this receptor in ovarian function, one consequence of
ERDdeletion is perturbed steroidal and gonadotrophin secretory profiles and it is
possible that these alterations give rise to the ovarian phenotype indirectly.

The aim of this study was to examine more directly the effects of ERKO on
ovarian function in pre-pupertal mice. We specifically set out to investigate follicular
development, ovulatory capability and determine whether resultant oocytes could
complete pre-implantation development.

Using an in vitro culture system that permits the development of follicles
from the pre antral to antral stages, we found that, when compared to their wild type
counterparts, follicles isolated from ERKO mice grew to similar sizes and reached
similar stages of development. Treatment with gonadotrophins in vivo induced
ERKO prepubertal animals to ovulate but with less success than wild type mice.
When superovulated oocytes were fertilised in vitro and cultured to the blastocyst
stage, there were no significant differences between wild type and ERKO oocytes
with respect to rates of either fertilisation or blastocyct development. Scrutiny of the
blastocysts for apoptosis using TUNEL labelling and confocal microscopy revealed
no differences in either the total cell numbers or the proportion of apoptotic cells.

From these results we conclude that follicles can grow in the absence of ERa
and that the actions of this receptor are not essential to the ovulatory process.
However as fewer oocytes were obtained from ERKO mice, it may have an auxiliary
secondary role in promoting ovulation or the number of follicles available to ovulate.
Finally absence ofERa mediated action during oocyte growth and appears to be
inconsequential at least until the implantation stage of development.



ASCORBIC ACID PROMOTES FOLLICLE INTEGRITY AND SURVIVAL
IN INTACT MURINE OVARIAN FOLLICLES IN VITRO

Alison A Murray, MD Molinek, SJ Baker, SG Hillier & N Spears

Ascorbic acid (Vitamin C) is a dietary requirement for primates, guinea pigs and a
few other species. A range of body tissues accumulate ascorbic acid with high
concentrations being observed in the gonads. Within the ovary, ascorbic acid has
been localised to the theca interna, granulosa cells and the corpus luteum with
changes of concentration observed throughout the oestrus cycle. There appear to be
three main roles for this vitamin within the ovary: prevention of free radical damage
regulating biosynthesis of steroid hormones, and stimulating biosynthesis of
collagen. While there is much information on the role of ascorbic acid during corpus
luteum formation, little is known about its role during follicular growth and
development. We have been investigating this using an isolated follicle culture
system. The culture system allows the growth of pre-antral follicles through to
Graafian stages and the oocytes obtained can be fertilised and live young produced
(Spears et al,1994). It closely mimics growth in vivo and is therefore a highly
physiological model. Individual pre-antral follicles were isolated from 3-week old
mice and cultured in 96 well plates, a -MEM media was supplemented with 5%
serum and 1 IU/ml rh FSH. A further two groups of follicles were cultured in the
same media but with the addition of 5 or 50 pg/ml ascorbic acid. Follicles were
examined for integrity, measured and moved to fresh media daily, for 5 days. Spent
culture media were analysed for oestradiol. In a second experiment, follicles were
isolated and cultured as before, but in the absence of serum, with or without ascorbic
acid. At the end of a 24-hr culture period, genomic DNA was extracted from the
follicles, DIG labelled and analysed for laddering using agarose electrophoresis and
Southern blotting. Our results show that addition of ascorbic acid to culture media
increased the percentage of follicles maintaining their integrity throughout the
culture period in a dose dependent manner. However the growth rate of intact
follicles was unaffected by the presence or absence of ascorbic acid. Oestradiol
production was decreased by the addition of ascorbic acid to the media. Analysis of
DNA laddering (as an indication of apoptosis) showed that ascorbic acid markedly
decreased fragmentation and therefore promotes the survival of cultured ovarian
follicles.



PRODUCTION OF INHIBIN A, INHIBIN B AND ACTIVIN A BY MOUSE
FOLLICLES IN CULTURE
Shanthi Muttukrishna, AA Murray, J Asselin, M Molinek, WL Ledger, NP Groome
& Norah Spears

Inhibin and activin are ovarian glycoprotein hormones that modulate pituitary FSH
production, whilst pituitary gonadotrophins control the production of these hormones
by the ovary. We have used whole mouse follicle cultures as a model to study factors
controlling follicular inhibin and activin production, as these cultures mimic follicle
development in vivo. This study investigated the effects of FSH and LH on the
production of inhibins and activin A by cultured mouse follicles. Preantral follicles
were dissected from the ovaries of 3 week old mice and cultured over a 6-day period.
The follicles were cultured in 96 well plates in alpha MEM medium and 5% serum.
Serum was obtained from mutant hypogonadal (mhpg) mice, which have no
measurable circulating gonadotrophins. Individual follicles were cultured in
gonadotrophin free media or in the presence of 1 IU rFSH/ml. This latter group was
further subdivided and LH was added to some of the cultures at O.OlIU/ml or
0.05IU/ml. On day 2 of culture the follicles were placed in fresh media and 50% of
the media was exchanged on days 4 and 6. Spent media was pooled and stored frozen
until assayed. This data shows that inhibin A, inhibin B and activin A are detectable
in growing mouse follicle culture media and levels of hormones rise as follicles
mature in vitro. Levels of inhibins and activin A were undetectable in control media.
Concentrations of inhibins and activin A increased with time in the gonadotrophin
free culture medium although levels remained low. Addition of FSH stimulated
secretion of both inhibin A and B. The addition of LH to the media with FSH did not

elevate production of either inhibin A or B further. Activin A was detectable in all
experimental groups. However, the addition of gonadotrophins had little effect on the
concentrations of activin A. Our preliminary results suggests that while inhibins are
under the control of FSH action, activin secretion is gonadotrophin independent.



EFFECT OF GONADOTROPHINS DURING FOLLICULAR
GROWTH ON OOCYTE VIABILITY AND SUBSEQUENT

DEVELOPMENT
Alison A. Murray, Michael Molinek, S.G. Hillier and Norah Spears.

Many assisted reproductive technologies (such as in vitro fertilisation, or
IVF) require the administration of exogenous gonadotrophins (FSH and LH) as a
means of collecting multiple oocytes. Clinical reports have suggested that
inappropriate LH stimulation may be detrimental to pregnancy rates, although how
this effect is mediated is unclear. We have been investigating the effects of
gonadotrophin stimulation on follicular growth and oocyte viability, using the mouse
as a model.

Individual pre-antral follicles were dissected from ovaries of pre-pubertal
mice. Follicles were placed into individual wells of 96 U-well plates. Media were
supplemented with recombinant FSH and mouse serum: serum was obtained from
hypogonadal animals which have no measurable circulating gonadotrophins. In two
further treatments, media were also supplemented with either low or high j
concentrations LH. Follicles were measured and moved daily. At the end of the
culture period, oocytes were matured and IVF was carried out. Oocytes from
superovulated animals were used as IVF controls. Follicles can grow to pre¬
ovulatory sizes in the presence of FSH alone (Spears et al. 1998). We show here that
follicular development was unaffected by either low or high LH concentration.
Oocytes obtained from follicles grown in FSH alone or with a low concentration of
LH fertilised and developed to blastocyst at similar rates. However fewer oocytes
obtained from follicles grown in the presence of high LH fertilised and subsequent
development to the blastocyst stage was also retarded.
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ogen receptor-a (ERa) knockout (ERaKO) female mice
ertile. Initially, they exhibit normal follicular develop-
)ut by 4-5 wk of age, they begin to develop hemorrhagic
l cysts. Follicles in adult ERaKO female mice progress to
afian stage, but there are no corpora lutea (CL). To test
;r ERa is required for ovarian folliculogenesis, ovulation,
formation, eCG and hCC were used to ovulate 3- to 5-
ERaKO and wild-type (WT) sibling mice. Gonadotropin
6tration resulted in ovulation in both ERaKO and WT

jonadotropin-treated ERaKO females that ovulated pro-
7.09 ± 0.77 oocytes per mouse, whereas gonadotropin-
WT female mice had 16.17 ± 0.84 oocytes. Surprisingly,
;d ERaKO ovarian follicles developed into CL that had
morphology. Gonadotropin-treated ERaKO mice had 3-

gher concentrations of serum progesterone than did con-
aKO mice that had been administered saline rather than
^tropins. Thus, the CL in gonadotropin-treated ERaKO
ppeared to be steroidogenically functional. On the basis
e findings, ovarian folliculogenesis, ovulation, and CL for-
can occur in the absence of ERa, although to a lesser

■than in WT mice.

ODUCTION

nulosa cells synthesize estrogen, which regulates hy-
amic and pituitary function, but whether estrogen act-
i one or both of its known receptors has any direct
within the ovary remains unsettled. Some reports

ndicated that estrogen is locally required for normal
n folliculogenesis [1-4], while others suggested no
1,6].
dence supporting a direct intraovarian effect of estro-
rough its cognate receptors has been based on hy-
sectomy studies [7], ovarian follicle cultures [1,2, 4],
■Iministration of either estrogen receptor (ER) antag-
[8, 9] or antiaromatase compounds [10, 11], Estrogen
en reported to modulate granulosa cell gap junction
ion [7], steroidogenesis [12-15], FSH and LH recep-
iression [16, 17], and ovarian follicular development
t also inhibits granulosa cell apoptosis [19]. In rats
id rabbits [21, 22], estrogen seems required for main-
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tenance and function of corpora lutea (CL), even in the
absence of gonadotropins.

In contrast, other groups have shown that estrogen does
not locally affect ovarian folliculogenesis [5, 6], For ex¬
ample, addition of the antiestrogenic compound ICI
182,780 and/or antiestrogen antibodies to ovarian follicular
cultures of late primary mouse ovarian follicles did not af¬
fect the growth and development of the follicles to the pre¬
ovulatory stage [6].

Estrogen needs to bind to its cognate receptor to exert
its effects. Currently, two estrogen receptors, ERa [23] and
ER|3 [24, 25], have been characterized. Estrogen receptor-
a knockout (ERaKO) female mice are infertile, as a result
of pubertal hemorrhagic ovarian cyst formation [3]. Women
who have mutations of the aromatase gene [26] and mice
that have targeted disruption of the aromatase gene, cypl9,
are infertile, and no CL are present in cypl9-deleted mice
[27, 28]. On the basis of naturally occurring human aro¬
matase deficiency cases [26] and targeted gene-disrupted
mice [3, 27, 28], it may be postulated that estrogen/ER is
required for normal ovarian function. However, disruption
of these genes may cause other systemic effects such as
elevated serum concentrations of LH [27, 29] that hinder
interpretation of the direct effects of estrogen within the
ovary. To examine the ovarian function of ERaKO female
mice, gonadotropins were used to ovulate prepubescent
ERaKO and WT female mice.

ERaKO and wild-type (WT) female mice of a mixed
C57BL/6J/129 background were used according to institu¬
tional animal care protocols. They were housed at the Uni¬
versity of Missouri Animal Sciences Research Center lab¬
oratory animal facility and maintained ad libitum on mouse
chow formulation 5001 (Purina, St. Louis. MO) and water.
They were on a 12D:12L cycle. The genotypes of the mice
were determined on the basis of ERa polymerase chain
reaction (PCR) analysis [3],

Examination of Ovaries from Adult ERaKO and WT
Female Mice

Ovaries from nontreated 6- to 8-wk-old ERaKO (n =
25) and WT (n = 25) mice were fixed in Bouin's fixative
(Sigma Chemical Co., St. Louis, MO) and histologically
examined, as described below.

Gonadotropin Treatment of Young ERaKO and WT
Female Mice

Three- to 5-wk-old ERaKO and WT female mice were

given either 5 (Intervet, Cambridge, UK) or 10 IU of eCG

MATERIALS AND METHODS

Animals and Genotyping
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Histological examination of adult WT and ERaKO ovaries. A) Histological examination of normal adult WT ovaries revealed many CL (stars),
ation bar = 500 urn. B) Ovaries from ERaKO female mice contained many hemorrhagic ovarian cysts (asterisks). However, occasional graafian
ollicles (arrow) were present. Magnification bar = 500 (j-m. C) Higher magnification of graafian ovarian follicle from adult ERaKO ovary
in B reveals that there was differentiation of granulosa cells with cumulus cells surrounding the ovary and follicular antral fluid in the central
)f the ovarian follicle. However, there was abnormal stratification of granulosa cells, with a portion of the follicle lined by a single layer of
icketed area). Magnification bar = 200 (cm.

Chemical Co.) i.p., followed 48-54 h later by 5 1U
i (Sigma Chemical Co.). Age-matched control WT
•IcxKO female mice received 0.9% saline (Sigma
;al Co.). Mice were anesthetized with C02 and killed
vical dislocation. In order to recover ovulated oo-

jvaries and oviducts from gonadotropin-treated WT
.6) and ERaKO (n = 24) female mice 12 h post-
ere placed in potassium simplex optimized medium
4; Specialty Media, Phillipsburg, NJ) or M2 medium
Chemical Co.) in the presence of 300 p-g/ml of

midase (Sigma Chemical Co.). The ampullary region
oviduct was examined under a Nikon SMZ stereo-

cope (Nikon, Melville, NY), and the ovulated oo-
/ere counted. To further examine CL formation and

progesterone concentrations in gonadotropin-treated
D and WT mice, sera and ovaries from gonadotropin-
line-treated WT and ERaKO female mice were col-
48 h post-hCG.

>gy
ries and oviducts from gonadotropin- and saline-
WT and ERaKO female mice were fixed in either

s fixative (Sigma Chemical Co.) or 4% paraformal-
: (w:v; Electron Microscopic Sciences, Fort Wash-
, PA) and embedded in paraffin or glycomethacrylate
ciences. Inc., Warrington, PA), respectively. Two- to
thick sections were cut and stained with Gill's he-
/lin (Fisher Scientific, St. Louis, MO) and eosin
■ Scientific). Ovaries and oviducts were photographed
t Spot 2 digital camera (Diagnostic Instruments, Inc.,
g Heights, MI), and images were printed with a Fuji
raphy 3000 printer (Fuji. Tokyo, Japan).

terone RIA

icentrations of progesterone in serum were deter-
with a Coat-a-Count progesterone kit (Diagnostics
:ts Corp., Los Angeles, CA), as previously described
To validate the progesterone RIA for mice, serum
>variectomized WT and ERaKO mice were used as

ve controls. Since progesterone has previously been
to peak in mice at about Day 6 of pregnancy [31],
from WT 6-day post-coitus mice were used as pos-
ontrols. Serum from 3- to 5-wk:old WT and ERaKO
: mice three days after either hCG or 0.9% saline

were assayed for serum progesterone concentrations. Un¬
diluted and serial dilutions of 1:1, 1:2, and 1:4 of serum
were used to determine parallelism. Radioactivity was mea¬
sured by an LKB Wallac beta counter (Wallac Inc., Gaith-
ersburg, MD).

The number of ERaKO and WT female mice that ovu¬
lated in response to gonadotropins was analyzed by chi-
square analysis. The numbers of oocytes ovulated in WT
and ERaKO mice and serum progesterone concentrations
were calculated as the mean ± SEM. The following com¬
parisons were analyzed by Student's r-test: gonadotropin-
treated WT (n = 4) versus gonadotropin-treated ERaKO (n
= 9) female mice, gonadotropin-treated ERaKO (n = 9)
versus saline-treated ERaKO female mice (n = 9) and go¬
nadotropin-treated WT (n = 4) versus saline-treated WT
female mice (n = 10).

Histological analysis confirmed previous results [3] that
the ovaries of ERaKO mice were dominated by hemor¬
rhagic cysts (Fig. 1, B and C). These structures were absent
in normal adult WT female ovaries (Fig. 1A). However, in
contrast to previous results [32], ERaKO female mice de¬
veloped graafian ovarian follicles (Fig. 1, B and C). al¬
though they were abnormal. There was abnormal stratifi¬
cation of granulosa cells, with some areas of the follicle
surrounded by multiple layers of cells but other regions
having a single layer of squamous-appearing cells (Fig. 1,
B and C). As noted earlier [3,32], CL did not form in the
ovaries of adult ERaKO female mice (compare Fig. 1, B
and C, with Fig. 1A).

Gonadotropin Treatment of Young ERaKO and WT
Female Mice

Gonadotropin treatment of young 3 to 5-wk-old WT
(Fig. 2, A and B; Fig. 3, A and B) and ERaKO (Fig. 2, C
and D; Fig. 3, C and D) mice resulted in ovulation of oo¬
cytes with expanded cumulus cells into the ampulla of the
oviduct. Fewer gonadotropin-treated ERaKO female mice
ovulated than gonadotropin-treated WT mice (11 of 24 ver-

Statistical Analysis

RESULTS

Adult ERaKO and WT Female Mice



2. Subgross examination of ovaries from gonadotropin-treatecJ young WT and ERaKO mice. A) Subgross examination of ovary and oviduct from
nadotropin-treatec! WT female mouse revealed that the oviduct was dilated (white arrow) with ovulated oocytes in the lumen of the oviduct. Corpora
orrhagica were present in the ovary (stars). Magnification bar •= 500 prn. B) Ovulated oocytes with expanded cumulus cells (arrows) from the same
idotropin-treated WT female mouse as depicted in A. Total oocytes ovulated from this gonadotropin-treated WT female mouse was nine. Magnifi-
>n bar = 250 pan. C) Ovary and oviduct from a gonadotropin-treated ERaKO female mouse had mild dilatation of the oviduct with ovulated oocytes
le lumen (white arrow). Within the ovary, there were multiple hemorrhagic ovarian follicular cysts (asterisks). The hemorrhagic ovarian follicular
. were larger than the corpora hemorrhagica observed in the ovary of the gonadotropin-treated WT mouse depicted in A. Magnification bar = 500
D) Expulsion of ovulated oocytes from the oviduct of this gonadotropin-treated ERaKO female mouse represented in C revealed that the oocytes

> surrounded by expanded cumulus cells. Four oocytes were ovulated in this gonadotropin-treated ERaKO female mouse. Magnification bar = 250
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histology of ovaries and oviduct from young gonadotropin-treated WT and ERaKO female mice. A) Ovary and oviduct from a 5-wk-old
pin-treated WT female mouse 12 h post-hCG revealed that ovulated oocytes (arrows) were present in the ampullary region of the oviduct,
ion bar = 500 p.m. B) WT ovulated oocytes (arrows) in the oviduct as depicted in A were surrounded by expanded cumulus cells. Magni-
ir = 50 p.m. C) Ovary and oviduct from a 5-wk-old gonadotropin-treated ERaKO female mouse 12 h post-hCC illustrated that gonadotropin-
aKO female mice were able to ovulate oocytes (arrows) into the oviduct, even though hemorrhagic ovarian cysts were beginning to develop
Magnification bar = 500 p.m. D) Higher magnification of ERaKO ovulated oocytes (arrows) in the oviduct demonstrated that they were
:l by many expanded cumulus cells. Magnification bar = 50 p.m. E) Gonadotropin-treated 5-wk-old ERaKO female ovary 12 h post-hCG has
Zl formation (stars). Similar to C, hemorrhagic ovarian cysts are beginning to form (asterisk). Magnification bar = 500 pm. F) Higher
ion of upper CL from ovary of gonadotropin-treated ERaKO mouse depicted in E. The CL was composed of various cell types, including
containing lipid droplets (small arrows). Magnification bar = 200 p.m.
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LE 1. Serum progesterone concentrations of gonadotropin- and sa-
-treated ER«KO and VVT female mice. Serum from ovariectomized
six-day-post-coitus pregnant mice were used as negative and positive
trols, respectively.

Serum progesterone-' (ng/ml)
iale mice WT ERaKO

ilt ovariectomized 0.41 ± 0.09 (n == 5) 1.56 ± 0.60 (n s-■ 5)
ne-treated 1.28 I 0.261' (n = 10) 1.98 ± 0.59c (n == 9)
ladotropin-treated 1 7.68 ± 2.511' (n == 4) 6.41 ± 1.50' (n == 9)
>nant 24.13 ± 1.19 (n == 4) —

ean ± SEM.
loth gonadotropin-treated WT1' and ERaKO' female mice had a statis-
lly significant elevation in serum progesterone concentrations com-
sd to those of their respective genotype controls that received only
ne (P < 0.01); however, gonadotropin-treated ERaKO females had
er serum progesterone concentrations than did gonadotropin-treated
female mice (P < 0.01).

; 23 of 26; P < 0.01). In addition, ERaKO mice ovulated
ver oocytes than gonadotropin-treated WT mice (7.09 ±
7 versus 16.17 ± 0.84; P < 0.01). As shown in Figures
and 3C, the ERaKO female mice were only just begin-
tg to develop hemorrhagic ovarian follicular cysts at this
j. The hemorrhagic ovarian cysts could be distinguished
m corpora hemorrhagica (Fig. 2A) by their larger size
J the presence of nonluteinized granulosa cells surround-
; them. CL were present in gonadotropin-treated ERaKO
ce (Fig. 3, E and F). Multiple cell types were evident
thin the CL and some cells contained lipid droplets (Fig.
) suggesting that they were steroidogenically functional.

jgesterone Results
Serum concentrations of progesterone were low in both
T (0.41 ± 0.09 ng/ml) (n = 4) and ERaKO (1.56 ±
>0) (n = 4) female mice that had been previously ovari-
omized (Table 1). Serum concentrations of progesterone
6-day post-coitus WT mice were, as expected, elevated
1.13 ± 1.19 ng/ml; n = 4), and corresponded to the peak
culating concentrations of progesterone noted previously
pregnant mice [31]. Together, these negative and posi-

e controls support the validity of the assay. Three days
er gonadotropin treatments, ERaKO females had statis-
ally significant lower serum progesterone concentrations
< 0.01) than WT mice (6.41 ± 1.5 ng/ml versus 17.68
2.51 ng/ml). However, gonadotropin-treated ERaKO fe-
iles had 3-fold higher concentrations (P < 0.01) of serum
rgesterone than ERaKO age-matched female mice that
d received only saline (6.41 ± 1.5 ng/ml versus 1.98 ±
>9 ng/ml). This rise in progesterone correlates with the
pearance of CL in gonadotropin-treated ERaKO females,
expected, gonadotropin-treated WT mice also had high-
progesterone concentrations (P < 0.01) than control WT
ce (17.68 ± 2.51 ng/ml versus 1.28 ± 0.26 ng/ml). The
•vated progesterone concentrations in gonadotropin-treat-
WT versus ERaKO female mice is consistent with the
Teased number of CL present in WT compared to ERaKO
nale mice.

■SCUSSION

On the basis of these studies, ovarian folliculogenesis,
ulation, and CL formation can occur in the absence of
la, although to a lesser extent than in WT mice.
As there was a decrease in the percentage of gonadotro-
l-treated ERaKO female mice that ovulated as well as in
; number of oocytes ovulated per mouse, ERa could have

an auxiliary ovarian role. Ovarian ERa might, for example,
facilitate ovarian follicular development and maturation, so
that there are fewer antral follicles induced to undergo ovu¬
lation in ERaKO mice. Estrogen is known to promote FSH-
induced ovarian follicular growth in other species [1,4],
although it is unclear which ER(s) mediates the effect. Pos¬
sibly, ERp rather than ERa is involved.

ERp mRNA and its protein have been detected in gran¬
ulosa cells at various stages of ovarian follicular develop¬
ment in the rat [24,33-39], human [40], and cow [41].
Multiple alternative spliced variants of ERp have been
identified within the ovary [42]. Therefore, to determine
whether estrogen has a direct role within the ovary, all of
the currently described ER and splice variants need to be
considered. Furthermore, other novel estrogen receptors
may exist in the ovary [43-45] and the uterus [46]. Pres¬
ently, ERp appears to be the predominant ER in the ovary.

Unlike the ERaKO mouse, the ERpKO female mouse
is fertile, although there are fewer ovarian follicles and sub¬
sequently fewer ovulations [47], Consequently, there are
fewer CL and smaller litter sizes than in WT mice [47].
Gonadotropin-treated ERpKO [47], like ERaKO female
mice, also respond subnormally to gonadotropins. In both
instances, fewer oocytes are released than in WT counter¬
parts. Therefore, neither known ER is essential, but each
may be needed to provide full ovarian function.

One difference between the two mutant mouse strains is
that adult ERaKO mice cannot be induced to ovulate [32].
Possibly, the young ERaKO mice can be induced to ovulate
because they have not been exposed to prolonged and el¬
evated levels of LH and subsequently have not developed
hemorrhagic ovarian cysts. If the LH induction of these
cysts could be blocked, adult ERaKO females might be
capable of undergoing normal ovulation and CL formation.
There seems little doubt that such cysts arise in response
to elevated levels of LH [48, 49], but the basis of the pa¬
thology is unclear. There may be weakening of the follic¬
ular basement membrane, which ruptures before ovulation,
allowing entry of blood into the follicle.

Mice that are unable to synthesize estrogen because of
targeted disruption of the P450 aromatase gene are able to
progress up through the antral stage of ovarian follicular
development, but they do not form CL [27, 28], This phe-
notype is consistent with the hypothesis that estrogen is not
necessary for ovarian folliculogenesis but that it might be
required for ovulation and CL formation. However, deletion
of the P450 aromatase gene results in other systemic ef¬
fects. Testosterone, FSH, and LH are all elevated in these
mutant female mice [27] and could thus underlie the failure
of these mice to ovulate.

In conclusion, we have shown that contrary to previous
data [32] and implied expectations [20-22], a proportion of
ERaKO mice can be induced to ovulate and develop what
appear to be functionally normal CL. To further understand
the differences in response to gonadotropin treatment with¬
in ERaKO female mice, studies are underway to quantitate
endogenous gonadotropins in these mice. Additionally, fu¬
ture studies include quantitating the number of ovarian fol¬
licles and CL in gonadotropin-treated ERaKO mice. It re¬
mains to be determined whether ovulated ERaKO oocytes
can be fertilized and undergo normal development if trans¬
ferred to recipient WT female mice. The data presented in
this paper combined with the ER(3KO studies [47] suggest
both ERa and ERp are needed for full ovarian function or
that alternative mechanisms exist, such as a novel estrogen
receptor.
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ic acid has three known functions: it is necessary
lagen synthesis, promotes steroidogenesis and acts
antioxidant. Within the ovary, most studies have
itrated on the role of ascorbic acid in luteal forma-
d regression and little is known about the function
vitamin in follicular growth and development,

lar growth and development were investigated in
idy using an individual follicle culture system that
the growth of follicles from the late preantral stage
afian morphology. Follicles were isolated from
ertal mice and cultured for 6 days. Control media
led serum and human recombinant FSH. Further
of follicles were cultured in the same media but
le addition of ascorbic acid at concentrations of
!8 or 280 pmol H. Addition of ascorbic acid at the
concentration significantly increased the percent¬

age of follicles that maintained basement membrane
integrity throughout culture (P< 0.001). Ascorbic acid
had no effect on the growth of the follicles or on oestra-
diol production. Metalloproteinase 2 activity tended to
increase at the higher concentration of ascorbic acid
and there was a significant concomitant increase in the
activity of tissue inhibitor of metalloproteinase 1
(P<0.01). Follicles cultured without the addition of
serum but with FSH and selenium in the culture media
underwent apoptosis. Addition of ascorbic acid to follicles
cultured under serum-free conditions significantly reduced
apoptosis (P< 0.05). From these data it is concluded that
ascorbic acid is necessary for remodelling the basement
membrane during follicular growth and that the ability of
follicles to uptake ascorbic acid confers an advantage in
terms of granulosa cell survival.

Introduction

:tions of ascorbic acid (vitamin C) are among
t understood of all the vitamins. Ascorbic acid is a

requirement for primates, and a few other mammals,
ack the necessary hepatic enzymes for its synthesis,
amin has been associated with conditions such as

the common cold and cancer, and the recom-
f daily requirement has been the subject of many

ovaries, and other endocrine tissues, accumulate
mounts of ascorbic acid. Within the ovaries, ascor-
j accumulates in the granulosa, thecal and luteal
eane, 1952) and it has long been associated with
(Luck et ai, 1995). Ascorbic acid has been used to

ertility in cows (Phillips el ai, 1941) and enhances
:ct of clomiphene on induction of ovulation in
(Igarashi, 1977). Conversely, high dosages have

ondence
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been implicated in spontaneous abortion in both women
and rats (Samborskaia and Ferdman, 1966). The ovarian
content of ascorbic acid changes throughout the oestrous
cycle. In response to the LH preovulatory surge, ascorbic
acid uptake by the ovaries is blocked and tissue content
is depleted: an action that formed the basis of an early
bioassay (Parlow, 1958). Ovaries produce increasing
concentrations of progesterone in response to LH. Studies
on luteinizing granulosa cells have shown that ascorbic
acid stimulates production of progesterone (Byrd et at.,
1993) and that increasing progesterone concentrations
block the uptake of ascorbic acid (Stansfield and Flint,
1967). Therefore, the action of LH may indirectly control
the fluctuations in ascorbic acid concentration observed

throughout the ovarian cycle. In addition, ascorbic acid
acts as a co-factor in the amidation of some proteins and
has been implicated in the regulation of oxytocin secretion
by ovaries (Luck and Junglas, 1987).

The role of ascorbic acid in promoting collagen biosyn¬
thesis has been studied extensively (Pinnell, 1985). During
follicular growth, ovulation and formation of corpora
lutea, basement membranes and the extracellular matrix
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are undergoing constant remodelling and, therefore, have
high requirements for collagen. Early studies implicated
ascorbic acid in the regulation of the Graafian follicular
oasement membrane; lack of ascorbic acid causes degen¬
eration of follicle membranes and high doses inhibit
collagenolytic activity in mature follicles (Kramer ef al.,
1933; Espey and Coons, 1976).
The matrix metalloproteinases (MMPs) and their in¬

hibitors, tissue inhibitors of metalloproteinases (TIMPS),
are members of an enzyme family associated with the
remodelling of extracellular matrix within ovaries (Smith
ef al., 1999). Many studies of the actions of MMPs and
TIMPs within ovaries have concentrated on their functions

during the periovulatory period (Hagglund ef al., 1999),
but little is known about their expression and control
throughout follicular development. Vitamin C deficiency
has been associated with premature rupture of placental
membranes. Addition of ascorbic acid to cultured human
amnion cells resulted in a decrease in MMP activity
(Pfeffer ef al., 1998), which indicates that ascorbic acid
may play a role in the control of these enzymes.
Although there is much information on the role of

ascorbic acid during formation of corpora lutea, little is
known about its role during follicular growth and develop¬
ment. In the present study the role of ascorbic acid during
follicular growth and development was studied using an
isolated follicle culture system. The culture system used
allows the growth of preantral follicles through to Graafian
stages and the oocytes obtained can be fertilized and live
^oung produced (Spears ef al., 1994). The culture system
closely mimics growth in vivo and is therefore a highly
ahysiological model.

Materials and Methods

Animals

C57BI/6 x CBA/Ca F1 female mice aged 21-25 days
were housed in an environmentally controlled room on a
14 h light: 10 h dark photoperoid. Food and water were
available ad libitum.

Follicle isolation and culture

The mice were killed by cervical dislocation and their
ovaries were removed and placed on watch glasses
containing Leibovitz L-15 medium (Gibco-BRL, Renfrew)
supplemented with 3 mg BSA ml-1 (Fraction V; Sigma
Chemical Co, Poole). Individual preantral follicles (approxi¬
mately 200 ± 20 gm in diameter) were dissected manually
using fine needles and allocated randomly to the 'U'
shaped wells of microtitre plates (Iwaki, Tokyo) containing
30 pi a-minimal essential medium (a-MEM; Gibco-BRL)
overlaid with 75 pi silicone fluid (Gibco-BRL). The culture
media was supplemented with 1 iu recombinant human
FSH (hrFSH; Serono-Ares, Geneva) ml"1, 5% mouse serum
and ascorbic acid as described below. Media were pre-
aared freshly at 2 day intervals. The a-MEM was supplied

as 1 x liquid. The formulation includes ascorbic acid at a
concentration of 50 mg H; however, liquid media is
prepared in batches and supplied with a minimum 3
months shelf life. Therefore, it is likely that the ascorbic
acid component would have decayed in the media used.

Experiment 1: effects ofascorbic acid on basement
membrane integrity, follicular growth and morphology

Follicles were cultured in control media (as above) or
with the addition of either 5 or 50 pg L-ascorbic acid ml"1
sodium salt (Sigma) to the culture media (28 and 280 pmol
I"1, respectively). Ascorbic acid stock solution (5 mg ml ')
was prepared in a-MEM and aliquots were stored at -70°C
for 1 month only. Follicles were examined once a day; the
basement membrane was defined as intact where follicles
maintained their three-dimensional morphology. Follicular
diameter was measured using a precalibrated ocular
micrometer. Data presented on follicular growth were
obtained from follicles that remained intact on the final

day of culture. During the first 2 days of culture, all folli¬
cles were moved to fresh wells of media. Follicles that had
lost basement membrane integrity within the first 2 days of
culture were discarded from the experiment (as this may
have been caused by damage during dissection). Intact
follicles were moved into fresh media once a day between
days 3 and 6 of culture. Ruptured follicles were not
moved, but instead 15 pi fresh media was exchanged
for 15 pi spent media each day. Thirty-six follicles were
allocated to each treatment group in each run of the
experiment. The experiment was repeated twice, giving a
total of 72 follicles per treatment.

At the end of culture, follicles from all treatments were
fixed in 4% (w/v) paraformaldehyde (Sigma, Poole) and
embedded in LR White resin (Taab Laboratories, Alderton).
Sections (3 pm thickness) were cut and stained with
haematoxylin-eosin.

Experiment 2: effects of ascorbic acid on production of
oestradiol and progesterone

Spent culture media from days 4 and 5 of culture (see
Expt 1) were analysed for oestradiol and progesterone using
ELISA (Biostat, Cambridge). Oestradiol was analysed in the
media separately each day, whereas progesterone was
analysed from the combined media of days 4 and 5. For
oestradiol, the inter- and intra-assay coefficients of variation
were both « 5% and the assay sensitivity was s 18 pmol
I"1. For progesterone, the inter- and intra-assay coefficients
of variation were both 5% and the assay sensitivity was
=s 0.48 nmol H. The data presented are from «= 25 indi¬
vidual measurements from each treatment group.

Experiment 3: detection ofmetalloproteinase and tissue
inhibitor ofmetalloproteinases

Gelatin zymography and reverse zymographic analyses
were conducted for detection of MMP and TIMP activities,
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pectively, in cultured mouse follicles. Freshly isolated
licles, corresponding to the diameters of follicles on
:h day of culture, were also analysed. These results
it shown) indicated that MMP activity was detectable in
icles of a similar size to those cultured for 2 days. On
basis of these initial experiments, follicles were

tured for 2 days in the same concentrations of ascorbic
d as in Expt I, after which they were analysed for MMP
:l TIMP activity.

1latin zymographic and reverse zymographic analyses
Gelatin zymography was conducted with 7.5% (w/v)
S-PAGE gels containing 1 mg gelatin ml"1 (Sigma, St
tis, MO), under non-reducing conditions as described by
)bs etal. (1985) and Morodomi eta/. (1992). Follicles (ten
icles per sample) were dissolved directly in 20 jj.1
S-PAGE loading buffer (Laemmlli, 1970) without a reduc-
agent to avoid the possible loss of MMP and TIMP activ-
associated with tissue extraction from small samples. The
iples were subjected to electrophoresis at room tempera-
^ (10 pi per lane). After electrophoresis, SDS was eluted
m gels in four changes of buffer containing 50 mmol
i-HCI H (pH 7.5), 5 mmol CaCI2 I ', 5 gmol ZnCI2 I"1,
2% (w/v) NaN3 and 2.5% (v/v) Triton X-100 (Sigma) for
-90 min at room temperature. The gels were then incu-
ed in the same buffer without Triton X-100 at 37°C for
h, stained with Coomassie brilliant blue R250 and
.tained in 30% (v/v) methanol and 1% (v/v) formic acid.
:as of MMP activity were identified as clear bands of di-
ted gelatin. Molecular weight markers (Gibco-BRL) and
ified human pro-matrix metalloproteinase 2 (MMP-2; a
from H. Nagase, University of Kansas) were used to de-
nine the molecular sizes of pro- and active forms of
atinases. The intensity of bands was determined by use of
Ehemiimager 4000 Low Light Imaging System (Alpha
otech Corp, San Leando, CA). All gelatinase activity was
ibited by including 10 mmol EDTA H or 10 mmol
rnanthroline H in the incubation buffer (data not shown).
Reverse gelatin zymography was conducted with 12%
v) SDS-PAGE gels containing gelatin (1 mg ml-1) under
l-reducing conditions (Reverse Zymography Kit;
iversity Technologies International Inc, Calgary). The
le samples as described above (10 pi per lane) were
ijected to electrophoresis at room temperature. After
ctrophoresis, SDS was eluted from the gels and the gels
re incubated at 37°C for 30 h as described above. Gels
re stained with GelCode® Blue Stain Reagent (Pierce,
tkford, IL) and washed in water. TIMP activity was
ntified as dark bands of undigested gelatin. Molecular
ight markers and purified recombinant ovine tissue
ibitor of metalloproteinase 1 (E. W. Mclntush and M. F.
ith, unpublished) were used to determine the molecular
?s of TIMPs. Intensity of bands was determined as
cribed above.
n each run of the experiment, ten follicles were analysed
treatment group. The experiment was repeated three

times, giving a total of 30 follicles per treatment.

Experiment 4: effects of ascorbic acid on apoptosis
Follicles were dissected as described above and assigned

randomly to three groups to determine whether ascorbic
acid can prevent apoptosis. Each group was cultured in 5%
C02 at 37°C for 24 h in one of the following media: (i) a-
MEM supplemented with 1 iu hrFSH ml"1 (control group); (ii)
a-MEM supplemented with 1 iu hrFSH ml-1 and 280 pmol
ascorbic acid H (experimental group); and (iii) a-MEM sup¬
plemented with 5% serum, 280 pmol ascorbic acid ml"1,
0.5 ng sodium selenite ml"1 (Sigma) and 1 iu hrFSH ml"1
(positive control group, as inclusion of serum in culture
media inhibits follicular degeneration through apoptosis).

DNA extraction and labelling
Genomic DNA was extracted from an average of eight

follicles per culture tray using a commercial kit, according
to the manufacturers' instructions (QIAmp Tissue Kit;
Qiagen Ltd, Crawley). Extracted DNA was eluted in a final
volume of 150 pi (to maximize yield) and ethanol precipi¬
tated (45 pi potassium acetate (8 mol I"1), 400 pi ethanol)
and resuspended in 20 pi ddH20. Extracted DNA fragments
were 3' end-labelled with digoxigenin using a 3' end la¬
belling oligonucleotide kit (Boehringer Mannheim, Lewes)
before separation by electrophoresis on a 2% (w/v) agarose
gel. The gels were Southern blotted overnight onto positively
charged nylon membranes (Boehringer Mannheim), baked at
120°C for 30 min and the labelled fragments were detected
using the DIG detection kit (Boehringer Mannheim) accord¬
ing to the manufacturers' instructions. Developed mem¬
branes were scanned using an Imaging Densitometer (Model
GS-670; Bio-Rad, Hemel Hempstead) and analysed with the
Molecular Analyst program (Bio-Rad). Density readings were
recorded for bands corresponding to approximately 185, 370
and 555 base pairs on each lane run and mean densities
were calculated. Density was calculated relative to the posi¬
tive control group (iii), supplemented with serum, which was
assigned an arbitrary value of 1.

In each run of the experiment, eight follicles were
analysed in each treatment group. The experiment was re¬
peated three times, giving a total of 24 follicles per treatment.

Statistical analysis
Probability values were determined by ANOVA. Paired

comparisons were made using Student's t test where
appropriate.

Results

Experiment 7; effects of ascorbic acid on basement
membrane integrity, follicular growth and morphology

In the absence of ascorbic acid, 33% of follicles main¬
tained integrity of the basement membrane throughout the



2 A. A. Murray el al.

100 (a)

0 28 280

Ascorbic acid (^mol l~1)

30

c 20

10

Day 5

Day 4

h h

28 28 280

450

400-

350-

300

250

200

150

Day of culture

ig. 1. (a) Percentage of mouse follicles with an intact basement
tembrane at the end of 6 day culture. Follicles were cultured in
ontrol media or in media supplemented with either 28 or
80 gmol ascorbic acid H. Values are mean ± sem (n = 72).
Significantly different from control value (P< 0.001). (b) Growth
ites of mouse follicles cultured in control media (♦) and in
tedia supplemented with either 28 (□) or 280 (a) pmol ascorbic
cid i"'. Values are mean ± sem (n = 72).

days of culture. A non-significant increase in the per-
entage of follicles remaining intact (47%) was observed
a follicles cultured in 28 pmol ascorbic acid I-1. Ffowever,
vhen follicles were cultured in 280 pmol ascorbic acid l_l
aere was a significant increase in the percentage of
allicles remaining intact (88%; P< 0.001) compared with
ontrols (Fig. 1a).
Follicular growth rate was unaffected by ascorbic acid

oncentration. Follicles that remained intact in the control
nd ascorbic acid-treated groups had reached similar sizes
iy day 6 of culture (Fig. 1b). Histological examination of

280 0

Ascorbic acid (gmol I"1)
Fig. 2. Production of oestradiol by mouse follicles on days 4 and
5 of culture. Mouse follicles were cultured in media containing 0,
28 or 280 gmol ascorbic acid I"1. Data are mean ± sem (n > 25).

follicles at the end of culture showed that intact follicles
were of similar size and had large antral cavities regardless
of treatment (data not shown).

Experiment 2: effects ofascorbic acid on oestradiol and
progesterone production

Oestradiol analysis was performed on media collected
on days 4 and 5 of culture. Media were collected from
both intact follicles and those that had lost their basement
membrane integrity. The results indicate that oestradiol
production increased between day 4 and day 5 in all treat¬
ments. Addition of ascorbic acid to the media reduced the

production of oestradiol whether or not follicles had main¬
tained basement membrane integrity, although this de¬
crease was not significant (Fig. 2). Progesterone production
was not detected in any group.

Experiment 3: detection of metalloproteinase and tissue
inhibitor ofmetalloproteinase
The primary gelatinolytic bands (Mr 62 000 and 72 000)

corresponded to the pro- and active forms of MMP-2
(gelatinase A) and comigrated with the pro- and active
forms of recombinant human MMP-2. The larger gelati¬
nolytic band (pro-MMP-2) was the predominant form
present within mouse follicles. Addition of ascorbic acid at
280 pmol H resulted in a small but significant increase
(P< 0.01) in TIMP-1 activity, whereas 28 pmol ascorbic
acid h1 did not. MMP-2 activity increased at the higher
concentration but the increase was not significant (Fig. 3).

Experiment 4: effects of ascorbic acid on apoptosis
Control follicles grown in the absence of serum showed

high levels of apoptosis (measured as the degree of nuclear
DNA laddering). Addition of ascorbic acid to the serum-
free media (experimental group) significantly reduced the
incidence of DNA fragmentation (P< 0.05) to nearer the
values of the positive control group, which also contained
serum and selenium (Fig. 4).
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160-, (a) Pro MMP-2

0 28 280

Ascorbic acid (jimol I"1)
3. Effect of ascorbic acid concentration on (a) gelatinolytic
■matrix metalloproteinase 2 (MMP-2), (b) activated MMP-2
(c) tissue inhibitor of metalloproteinase 1 activities in mouse
cles. Values were assigned arbitrary densitrometric units,
ues are mean ± sem (n = 30). 'Value is significantly different
n control (P < 0.01).

Discussion

common with other endocrine tissues, the ovaries
sites of ascorbic acid accumulation, which fluctuates
response to stimuli such as LH, cyclic AMP and
staglandins. Most studies have concentrated on the
l-known effects of ascorbic acid on steroidogenesis in
aonse to these factors (Sanyal and Datta, 1979).
wever, it has been suggested that the high ascorbic acid
itent measured within ovarian tissue is in excess of that
uired solely for steroidogenesis. As the ovaries are sites
ntensive tissue remodelling, ascorbic acid is probably
uired as a co-factor in collagen production (Luck et al.,
)5). Much attention has been paid to the ability of
orbic acid to act as an antioxidant (Padh, 1991); as
h tissue remodelling and steroidogenesis are processes
t produce reactive oxygen species, it is likely that ascor-
acid serves this function within the ovaries. The results
he present study indicate that the multi-functional activ-
; of ascorbic acid contribute to follicular development,
rhe hormonal influences that affect follicular growth
'

development have been well documented but little is

known about the physical processes that occur throughout
the growth phase. During follicular growth and expansion
there is rapid production of the basal lamina that separates
the thecal and granulosa compartments. This has been
estimated as a 3 X 104 times increase in mice (Cosden et

al., 1993). In the in vitro system described in the present
study, murine follicles grew from approximately 200 pm to
approximately 415 pm in diameter during culture for 6
days, resulting in a 4.3 times increase in follicular surface
area. Although ascorbic acid had no effect on the growth
rate or morphology of the follicles, there was a marked in¬
crease in the percentage of follicles able to maintain base¬
ment membrane integrity. Without ascorbic acid, only
33% of the follicles had retained an intact membrane after
6 days in culture compared with 88% when the medium
was supplemented with 280 pmol ascorbic acid H.
Although this is a higher concentration than that found
commonly in human serum, it correlates reasonably well
with the high concentrations of ascorbic acid found in
human follicular fluid (Luck et al., 1995). These results are
in good agreement with a recent report by Rose et al.
(1999), in which addition of selenium and ascorbic acid
also increased the percentage of follicles able to maintain
their spherical morphology when cultured in vitro. In the
culture system used in the present study, no selenium was
added to the media and therefore the effect seen can be
attributed solely to the addition of ascorbic acid. A very
early study with scorbutic guinea pigs noted that these
animals were anovulatory and a marked degeneration of
the follicular wall was observed (Kramer et al., 1933). A
major component of the follicular basal lamina is collagen
IV, which both granulosa and theca cells can produce
in vitro (Rodgers et al., 1995; Zhao and Luck, 1995).
Ascorbic acid is known to promote collagen synthesis,
both at the level of the gene, and as a co-factor in the
secretion and stabilization of the protein (Pinnell, 1985).
Therefore, it could be assumed that the growing follicle
would have a high requirement for ascorbic acid if it is to
produce sufficient basal lamina components to maintain
expansion of this membrane during development. The
results presented here support this idea. There are also
unpublished data (V. Srsen and N. Spears, unpublished)
which show that follicles grown in the presence of ascor¬
bic acid require a more stringent permeabilization treat¬
ment before fixation, providing further evidence for a role
of ascorbic acid in basal lamina formation and stabiliza¬
tion. Rodgers et al. (1998) reported that in bovine follicles
the distribution of the collagen IV chains within the basal
lamina changes composition during follicular develop¬
ment. As ascorbic acid was present in the media through¬
out the culture period, it was not possible to determine
whether it was required at all stages of development or, for
example, only during pre- or post-antrum formation.

Extracellular matrix components are constantly remod¬
elled by the action of extracellular proteases, mainly
MMPs and TIMPs. As such, MMPs and TIMPs are obvious
candidates for modulating the ovarian follicle basement
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(a)

Control Experi- Positive
mental control

Fig. 4. (a) Representative gel of mouse follicles showing laddering of DNA into approxi¬
mately 185 bp multiples. Lane 1: control group (cultured in the absence of serum). Lane 2:
experimental group (cultured in the absence of serum but with the addition of 280 pmol
ascorbic acid H). Lane 3: positive control group (cultured in the presence of serum,
280 pmol ascorbic acid I-1 and 5 pg selenium ml"'), (b) Densities of apoptotic bands in
control and experimental groups, calculated relative to the positive control group, which
was assigned an arbitrary value of 1. Values are mean ± sem (n = 24). 'Value is signifi¬
cantly different from control (P< 0.05).

membrane. The collagenous component of the ovarian
stroma includes interstitial collagen types I and III,
whereas collagen type IV is the collagenous component of
the basement membrane. Collagens can be degraded by
V1MP-2, which is activated during structural luteolysis,
concurrent with a marked depletion in ascorbic acid (Endo
et al., 1993). In humans, vitamin C deficiency has been as¬
sociated with increased rupture of placental membranes
and addition of ascorbic acid to cultured human amnion
cells decreased MMP-2 expression and activity (Pfeffer et
al., 1998). These reports indicate that ascorbic acid influ¬
ences the actions of MMPs. In the present study, the pro-
and active forms of MMP-2 (gelatinase A) were detected
within cultured mouse follicles collected on day 2, just
aefore the period during which most cultured follicles
aegan to rupture. Although similar MMP-2 and TIMP-1
activities were present in control follicles and in those
cultured with the lower concentration of ascorbic acid, a

significant increase in TIMP-1 was observed at the higher
concentration of ascorbic acid used; this is the same treat¬
ment in which a significantly higher percentage of follicles
had the ability to maintain basement membrane integrity.
PIMP and MMP activities frequently increase simultane¬
ously (Murphy et al., 1985): in this instance there was
a concomitant increase in the active form of MMP-2,
although this increase was not significant. Although the
esults of the present study add further evidence for a role
at' ascorbic acid in mediating MMP activity within growing
ollicles, it seems most likely to be acting through a mecha-
lism that allows both formation and expansion of the base¬
ment membrane, and hence requires both MMPs and TIMPs.
Absence of serum from the culture media induced

apoptosis in the preantral follicles within a short period
(24 h of culture), as detected by DNA laddering. Addition
of ascorbic acid to the serum-free media reduced the

degree of apoptosis within these follicles. Tilly and Tilly
(1995) described a similar effect of antioxidants (including
ascorbic acid) in short term cultures of rat antral follicles.
These authors concluded that oxidative stress could play a
role in follicular atresia by inducing an apoptotic mecha¬
nism. Ascorbic acid accumulation has been described
within follicles at all stages of development; in the small
follicles of buffalo (Meur et al., 1999), Graafian follicles of
humans (Paszkowski and Clarke, 1999) and, in the present
study, in late preantral follicles of mice. Granulosa cells,
under the influence of FSH, take up ascorbic acid actively
(Berhman eta/., 1996) and although this is consistent with
the idea of ascorbic acid being required as a co-factor in
collagen synthesis and hence basal lamina expansion, it is
likely that ascorbic acid also functions as an antioxidant
preventing cell death. At the late preantral stage of devel¬
opment, follicles acquire responsiveness to gonado-
trophins and develop rapidly; therefore it is feasible that an
ability to accumulate ascorbic acid confers an advantage
to a follicle and promotes survival.

In the present study ascorbic acid did not affect
production of oestradiol. This finding is in contrast to other
systems, in which addition of ascorbic acid in vitro
adversely affected aromatase activity through alteration of
pH (Milewich et al., 1981). High concentrations of ascor¬
bic acid are inhibitory to cholesterol side chain cleavage
(Pintauro and Bergan', 1982), which subsequently affects
androgen production and directly decreases aromatase
activity (Sanyal and Datta, 1979; Tsuji et al., 1989). The
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■ct of ascorbic acid on progesterone could not be deter-
ted, as progesterone concentrations were not measur-
e in any media in the present study. However, the lack
progesterone production shows that the granulosa cells

:olIicles unable to maintain their basement membrane
I not undergone premature luteinization. The relation-
d between ascorbic acid and oestradiol appears com-
x. Circulating ascorbic acid concentrations are low in
man using oral contraceptives, perhaps through an
ibitory effect of oestradiol on ascorbic acid uptake by
intestine (Kuo and Lin, 1998). When high doses of
orbic acid were administered exogenously to pregnant
men, oestradiol production increased, resulting in
>rtion (Samborskaia and Ferdman, 1966). However,
lafian follicles, which have high concentrations of
tradiol in the follicular fluid, are the sites of ascorbic
i accumulation (Paszkowski and Clarke, 1999). High
icentrations of oestradiol are required to inhibit the
elation of low-density lipoproteins (LDL) in vitro.
wever, in the presence of ascorbic acid, concentrations
oestradiol close to physiological concentrations can
p protect LDLs from oxidation (Huang et a!., 1999).
pough the effects of ascorbic acid on oestradiol may be
ue specific, further investigations are needed to deter-
le the effects of ascorbic acid on oestradiol production
hin follicles.
n conclusion, ascorbic acid greatly increased the
centage of follicles able to maintain their basement
mbrane in vitro but did not affect growth rate. Ascorbic
d also increased the production of MMP-2 and TIMP-1
the cultured follicles, which implicates this vitamin in
dulating MMP remodelling of the basement membrane.
:orbic acid reduced the degree of apoptosis within
icles subjected to oxidative stress (serum-free cultures)
icating that accumulation of ascorbic acid would be
'antageous for survival. The effects of ascorbic acid on
tradiol production require further investigation.
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Alison Murray, M.I.Biol, and Norah Spears, D.Phil.

abstract—There has been tremendous interest in recent years in the culture of oocytes
and follicles. Although much of the research using follicle culture aims to increase under¬
standing of the regulation offollicle development, an important goal has been to develop a
method that will eventually allow maturation of human oocytes from the primordial follicle
to the mature Graafian stage. We are still some way from this at present, although it has
now been achieved in the mouse. In this article, we consider various methods offollicle cul¬
ture for primordial, preantral, and antral follicles. In vitro development of primordial folli¬
cles has used primarily whole ovaries or ovarian fragments as a source offollicles. Culture
of later stages of follicle development uses mainly isolated follicular units, either whole
(with an intact basement membrane and, in some cases, attached thecal cells) or nonintact
(oocyte-somatic cell complexes, which may or may not have remnants of basement mem¬
branes and/or thecal cells attached).

keywords: Follicle, oocyte, culture

A human female fetus produces around 6 to 7
nillion germ cells during ovarian development: by
Tirth, the vast majority of these have been lost, with
he ovary typically containing around 1 million
oocytes surrounded by granulosa cells in primor¬
dial follicles.1 Because only around 400 of these
jocytes are ever likely to reach maturity and be
rvulated, there is clearly a large pool of primordial
ollicles potentially available for in vitro matura-
ion. Although much of the research using follicle
:ulture aims to increase understanding of the regu-
ation of follicle development, an important techni-
:al goal throughout has been to develop a method
hat will allow maturation of human oocytes from
he primordial follicle to the mature Graafian stage,
ilthough we are far from achieving this at present.
In this article, we outline follicle culture tech-

liques currently available, concentrating on the
nouse (the only species to date in which mature,
'iable oocytes have been obtained from primordial

follicles) and humans and other primates (with
clinical end points in mind). We consider only tech¬
niques culturing oocytes taken at a fairly early
stage of maturation; techniques involving the final
maturation of oocytes will be addressed in a later
article. We have not managed to cover all aspects of
follicle culture in this short review (there has been
extensive work in this area of late). Neither have
we always been able to cite all references, but we
have given appropriate examples.

OVERVIEW OF FOLLICLE DEVELOPMENT
IN VIVO

The process of folliculogenesis within the ovary
begins during prenatal life with the formation of
primordial follicles, each primordial follicle con¬
sisting of an oocyte (held in meiotic arrest) sur-
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rounded by a few flattened pregranulosa cells and
enclosed by a basement membrane. Throughout
follicle growth, the oocyte and somatic cells are in¬
terdependent: the development of each regulates
and is regulated by the other.2
Primordial follicles are quiescent but they leave

the resting pool at a steady rate to begin their growth
phase, some beginning development shortly after
formation whereas others may lie dormant until
near the end of reproductive life. However, it is not
until after the onset of puberty that these growing
follicles, in response to rising levels of gonado¬
tropins, can mature fully and ovulate. Although
large numbers of follicles can leave the primordial
pool and begin to grow, very few will be selected to
release their oocytes for fertilization. The "default"
pathway for the vast majority of follicles is to un¬
dergo atresia and die unless they can respond to
the correct stimuli at the appropriate developmen¬
tal stage.
After the initial loss of oocytes prior to puberty,

the main subsequent loss of primordial follicles
from the resting pool is due to entry into the
growth phase. The mechanisms that regulate initia¬
tion of follicular growth from the primordial pool
are poorly understood and it has yet to be deter¬
mined whether follicles are released from growth
inhibition or directly stimulated to develop, al¬
though there is some evidence that oocyte-derived
factors may be involved.3'' Once follicles have
started to grow, follicular development can be con¬
sidered as a two-phase process: a slow growth
phase that is not directly influenced by the go¬
nadotropins and a faster growth phase in which re¬
sponsiveness to follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) is obligatory if the
follicle is to proceed to the preovulatory stage. The
transition between these two stages can be charac¬
terized by the formation of a fluid-filled antral cav¬
ity and the production of steroid hormones. The
stages and sizes of human and mouse follicles are
shown diagrammatically in Figure 1.
On leaving the primordial pool, the first signs of

growth are an increase in oocyte size and prolifer¬
ation of the surrounding granulosa cells. Until
the early antral stage, follicular growth proceeds
slowly, taking many weeks in rodents and months
in larger animals. As this process traverses many
cyclic changes in circulating levels of gonadotropins
and as it can proceed in animal models that are nat¬
urally or surgically rendered incapable of produc¬
ing pituitary gonadotropins, development through
to this early antral stage has been deemed "gonado¬
tropin independent." However, gonadotropins may
indirectly influence initiation of growth as a conse¬
quence of gonadotropin-stimulated factors pro¬
duced by larger follicles.4

Size of human

(mouse) follicles
Small oocyte
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°r

Graafian follicle

Figure 1. Diagrammatic illustration of stages and sizes
of developing follicles in the human and mouse. (Adapted
from Gosden et al.8)

By the early antral stage, the follicle has a multi-
laminar granulosa cell layer and has also acquired
vascularized and distinct layers of thecal cells that
are separated from the granulosa cells by the base¬
ment membrane. Thecal cells are derived from the

surrounding interstitial cells, although the mecha¬
nisms that initiate their differentiation and organi¬
zation are as yet unknown and it has been sug¬
gested that their precursors may be present at the
outset of follicular growth.5 By this stage of follicu¬
lar development the oocyte has grown to, or near
to, its full size (80 pm in rodents and 120 pm in hu¬
mans) and has increased in volume —300-fold.
During the late preantral to early antral period,
oocytes synthesize molecules necessary for the re¬
sumption of meiosis and have become competent
to resume meiosis and undergo fertilization, al¬
though subsequent embryonic development is ar¬
rested.6 In all species studied so far, most follicles
that simultaneously begin growth reach the late
preantral stage of development, with few lost to
atresia.7 However, from this cohort only those folli¬
cles that have acquired the ability to respond to the
cyclic rise in circulating gonadotropins are capable
of proceeding on through the antral stages.
Antrum formation occurs when 2000 to 3000

granulosa cells are present, regardless of species
and of the final size of the follicle.8 Fluid begins to

S>

9
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accumulate within the small spaces between gran¬
ulosa cell layers. These eventually coalesce to form
a large antral cavity. Follicular fluid is filtered from
the blood supply that penetrates the thecal layers
of the follicle. Proteins of high molecular weight are
excluded, and the concentrations of glucose, lipids,
and amino acids differ from those found in plasma.
During later stages of development fluid is accu¬
mulated rapidly, accounting in large part for the
marked expansion in follicular size,9 and contains a
variety of molecules including steroids, growth
hormone binding proteins, and proteoglycans. It
may also act as a "sink," diluting or concentrating
metabolites from different cell types of the follicle:
the actions of oocyte-derived factors may, for exam¬
ple, be allowed to exert an influence only over their
immediate surrounding cells before being "diluted
out" within the follicular fluid, hence limiting their
action on the granulosa cells positioned farthest
from the oocyte. From the growing cohort of antral
follicles, only a proportion of follicles are able to re¬
spond to the rising levels of FSH and consequently
a large number of them die at the early antral stage
of development. In humans, approximately 20 folli¬
cles are selected and continue through to the pre¬
ovulatory stages of development.10 The growth rate
of the selected follicles must now accelerate, as

from this population some (usually one in humans)
will attain dominance and must be ready to release
their oocytes for fertilization 4 days later in the ro¬
dent and about 28 days in the human. In that later
growth phase, granulosa cells rapidly proliferate
and differentiate into two populations, the mural
granulosa cells, which are adjacent to the basement
membrane, and the cumulus cells, which surround
the oocyte. The oocycte, surrounded by the cumu¬
lus cells, becomes embedded within the follicular
fluid connected by a stalk of cells to the mural cells.
The follicles also acquire the ability to synthesize
steroid hormones. Androgen substrate (mainly an-
drostenedione) is synthesized by the thecal cells
under the influence of LF1 and then converted to es¬

trogen (principally estradiol) in response to FSH
within the granulosa cells.11
Although the gonadotropins are necessary for

follicle development, there are many other growth
factors and cytokines that modulate their actions
(for references see refs. 12-14), but these are not
covered in this article.

CULTURE OF WHOLE OVARIES
AND TISSUE FRAGMENTS

Techniques for the in vitro culture of whole
ovaries have been described for almost 70 years15
and have been used to investigate gonadotropin in¬

fluence and ovulatory processes.16-20 Although this
type of culture preserves normal tissue interac¬
tions, it is severely limited in that long-term main¬
tenance of organ explants is difficult. It is possible
to maintain the cortical regions of the ovary to
some extent, but the inner medulla region is subject
to anoxia, depletion of nutrients, and accumulation
of metabolites leading to necrosis. Because of these
limitations and the time required for full follicular
development (especially in larger species), the cul¬
ture of adult ovaries is of limited use and perhaps
best confined to the study of particular ovarian
events such as the effects of blood flow and ovula¬
tion.21 Ovarian fragments or tissue slices can also
be used to overcome some of the problems associ¬
ated with mass (see Fig. 3). In addition, a number of
methods such as suspending or floating organ or
tissue slices in culture have been developed, thus
maximizing gas and nutrient diffusion and reduc¬
ing necrosis. Although follicles can grow under
these culture conditions, at least until the antral
stage,18 it is difficult to follow their individual
progress.
Another point to consider in the culture of whole

ovaries or ovarian fragments is the interaction be¬
tween follicles. Tissue culture may be one way to
study these interactions; conversely, interactions
between follicles add another layer of complexity
when considering the development of any one fol¬
licle from within the tissue.

Initiation and Growth of Primordial Follicles

The reserves of primordial follicles within the
ovary represent a vast store of gametes that could
be available for in vitro development. It has been
estimated that each square millimeter of ovarian
cortex in a young woman contains hundreds of fol¬
licles at the primordial and preantral stages. Re¬
moval of small pieces of the cortex is unlikely to
alter reproductive capability and should it be possi¬
ble to mature the oocytes within these pieces, it
might be feasible to greatly increase the number of
gametes available for infertility treatment.
Whereas recent cultures representing later stages

of follicle development have tended to use isolated
follicles, whole organ and tissue fragments have
been used to maximal advantage in primordial fol¬
licle cultures (isolated follicles tend to do poorly at
this stage22-23).
One of the most intriguing questions in the de¬

velopment of ovarian follicles is what governs the
release or initiation of primordial follicles into the
growth phase. To begin to answer this question and
to investigate the viability of using primordial folli-
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cles as a source of gametes, a number of investiga¬
tors have turned their attention to the growth of
primordial follicles in vitro. Much of this work has
been carried out in domestic species (see ref. 24 for
review)—here we cover culture of rodent and pri¬
mate primordial follicles only.

Location ofGrowing Follicles
The ovaries from pre- and neonatal rodents con¬

tain mostly primordial follicles, and whole ovaries
from mice, rats, and hamsters have been placed di¬
rectly in culture25"27 or used as fragments.28 Human
fetal tissue has been utilized, but this is not a com¬

mon source of material.29 In primates, the majority
of primordial follicles are found in the cortex of the
ovary and tissue pieces from this region have been
used,30"32 although there is great variation in the
number of primordial follicles obtained.33
In all species studied so far, high percentages of

primordial follicles spontaneously begin to grow
when placed in culture, but there appear to be dif¬
ferences in the location of the growing follicles
when comparisons are made between whole
ovaries and tissue pieces. Wandji et al,31 examining
baboon cortical pieces, observed that 76% of pri¬
mordial follicles had begun to grow throughout the
fragments after 4 days in serum-free cultures. By
contrast, Eppig and O'Brien25 noted that in whole
fetal mouse ovaries, only some primordial follicles
had begun their growth phase and these growing
follicles were confined to the medullary region of
the ovary, with those in the cortical region remain¬
ing quiescent. These results could reflect species
differences or be due to variations in culture tech¬

niques, fragments having more access to nutrients
and air than the innermost portion of the whole
ovary. Growth of primordial follicles is character¬
ized by an enlargement of the oocyte surrounded
by a layer of rounded granulosa cells as shown in
Figure 2.

Factors Regulating Growth Initiation
Potential regulatory factors that may affect pri¬

mordial follicle entry into the growth phase have
been investigated in vitro. A study using juvenile
rat ovaries has implicated kit ligand (KL) in pri¬
mordial follicle development: spontaneous primor¬
dial follicle development was blocked by using an
antibody to c-kit (the KL receptor), and after treat¬
ment with KL a higher proportion of the primordial
follicles had undergone development.27 Inclusion
of FSH in the culture media may increase the per¬
centage of follicles able to grow to the preantral

Figure 2. Tissue fragment of a newborn mouse ovary
after 7 days in culture. Growing follicles are seen in the tis¬
sue, which contained only primordial follicles at the start
of culture. Bar represents 20 p,m. (From Molinek M, Spears
N, and Telfer E, unpublished data.)

stages, perhaps by acting as a survival factor and
preventing atresia.32 In the absence of serum, in¬
sulin has also been implicated in the transition of
primordial to growing follicles.26

Development ofOocytes
from Primordial Follicles

To date, the only species for which an oocyte ob¬
tained from a primordial follicle has been matured,
fertilized and resulted in the birth of live young
has been the mouse, and a combination of first or¬
gan and later isolated oocyte-somatic cell cultures
was used.25 Although the success rate using this
system was low, it has clearly demonstrated that
complete maturation of oocytes is possible in vitro
and offers the hope that this may soon be possible
in other species. In a more recent study, Liu et al34
used a different approach to generate mature
oocytes from primordial follicles. Newborn ovaries
were grafted into adult animals and removed after
14 days. It was found that preantral follicles had
formed in the grafts and could subsequently be iso¬
lated and placed into culture. At the end of the cul¬
ture period, oocytes were able to resume meiosis,
but it remains to be seen whether live young can be
produced.
Hovatta et al35 initially cultured human cortical

slices for a period of 7 to 9 days, after which the
growing follicles were isolated either mechanically
or enzymatically. The isolated follicles were then
cultured for a further 2 weeks. During that time fol¬
licular structures started to degenerate; this degra-
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dation occurred sooner when follicles were isolated
enzymatically.
Some attention has been paid to the effects of

cryopreservation prior to culture as this may have
particular relevance in the clinical situation where
storage of material may be desirable, for example,
in restoration of fertility to patients undergoing
cancer treatments. The evidence suggests that
freezing and storage are detrimental neither to the
numbers nor to the potential of follicles that are ac¬
tivated subsequent to cryopreservation.30'33'36

CULTURE OF ISOLATED FOLLICULAR UNITS

Short-term cultures of antral follicles and their

oocytes have been successfully used to investigate
the final stages of follicular growth and oocyte mat¬
uration.37-38 However, over the past decade a num¬
ber of in vitro systems have evolved that support
the growth and development of follicular units
from preantral through to preovulatory stages.
Some of these culture systems have produced
mature oocytes capable of fertilization and live
young have been born, albeit with limited success
rates.39-40 The vast majority of these in vitro culture
systems have been devised using rodents as mod¬
els. The ovaries of rodents are readily available and
lack the fibrous tissue associated with the ovaries
of larger species. Many studies have utilized folli¬
cles obtained from juvenile mice and rats; these
ovaries have few antral follicles, lack corpora lutea,
and contain large numbers of follicles at similar
stages of preantral development. In addition, the
time course of complete follicular development is
relatively short in these species, making it possible
to grow follicles in a manner that closely resembles
the in vivo situation. Although rodents have been
used extensively in developing culture systems,
some progress has been made in domestic species
(not covered in this review; see ref. 41) and hu¬
mans.42 Human material is difficult to obtain, and
few studies of the in vitro growth of follicles have
been reported. In tissue samples obtained from
women undergoing surgery, the number of follicles
at the preantral stage of development is negatively
correlated with age and hence few follicles may be
available for study.42 The growth rate and antral de¬
velopment of follicles have been shown to be de¬
pendent on the initial starting size of the follicles
and the age of the animals from which they are ob¬
tained. Attempts to culture isolated follicles from
mice of less than 6-8 days of age have not been suc¬
cessful; when placed in culture, the oocytes become
detached from their surrounding granulosa cells
and fail to mature.25'43

Methods of Isolation

Follicular units can be isolated either mechani¬
cally or by enzymatic digestion. Enyzmatic diges¬
tion using collagenase and deoxyribonuclease
(DNase) has been successfully used to isolate fol¬
licles from mice,39-44 rats,45-46 hamsters,47 and hu¬
mans.42 Small pieces of tissue are incubated with
the enzymatic mixture, and by mechanically agitat¬
ing the pieces through progressively smaller
pipette tips, individual follicles are released. The
degree of damage to the follicular units is depen¬
dent on the stringency of the treatment and on the
type of tissue being used. Digestion of ovary sam¬
ples from hamsters and humans results in follicles
with an intact basement membrane but with no at¬
tached thecal cells, compared with mice and rats
that lose both thecal cells and basement membrane
integrity. Effectively, in the latter species, the "folli¬
cles" collected are oocyte-somatic cell complexes.
Although these complexes appear devoid of a base¬
ment membrane and attached thecal cells, it is
likely that some of these components are trans¬
ferred into the culture to a greater or lesser degree
depending on the methods used.
Mechanical isolation of follicles is a more labor-

intensive method of isolating follicles but ensures
that the basement membrane of the follicle remains
intact and preserves follicular architecture. Small
pieces of tissue are teased apart and follicles dis¬
sected from these using fine needles. The main cri¬
teria used in selection of follicles by this method
are size, a centrally placed oocyte surrounded by
tightly packed granulosa cell layers, and some at¬
tached thecal or stromal cells. The methods of isola¬
tion and examples of the different culture tech¬
niques used are illustrated in Figure 3.

Culture Conditions

To a certain extent, the method of isolation deter¬
mines the conditions of the culture into which folli¬
cles are placed. Follicle units that have been iso¬
lated by enzymatic means and lack a basement
membrane need to be cultured under conditions
that prevent the dissociation of the granulosa cell
from the oocytes, as contact between the two cell
types is necessary if the oocyte is to grow and ma¬
ture. This has been achieved by placing these iso¬
lated complexes on collagen-impregnated mem¬
branes, by embedding them in collagen gels,2544 or
by allowing them to plate down onto substrate ad¬
hesive surfaces.4546 Follicles with the basement
membrane intact (isolated either mechanically or
enzymatically) have been cultured by embedding
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Methods Of Follicle Culture
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Figure 3. Diagram illustrating the
methods of isolation and types of cul¬
ture systems used. Example references
are given for each method.

them in agar or collagen gels42-48'49 or by placing
follicles on various surfaces bathed in culture
medium. With the latter culture techniques, folli¬
cles can be maintained as intact units if cultured
under conditions that prevent adhesion to culture
dishes.40-50"55 Where follicles are placed on surfaces
allowing adhesion, follicles tend to rupture during
culture, but all cell types remain present in the
culture.45-56
Each type of culture system has advantages and

disadvantages, and selection of one over the other
is very dependent both on the experimental end
point and on the type of information desired. The
culture of intact follicles ensures that each cell type
(theca, granulosa, and oocyte) is present and allows
the investigation of how each of these contributes
to both follicular development and growth and
maturation of the oocyte. However, this type of cul¬

ture may not support development of antral folli¬
cles from larger species, where diffusion of nutri¬
ents and oxygen diffusion may be problematic.
These problems could be overcome, and larger
numbers of oocytes maintained in vitro, by using a
culture system such as that developed foryoocyte-
somatic cells that are "open" to the culture media
although the contribution of the extracellular ma
trices (including antral fluid) is then excluded. Cul
ture systems in which all elements of the follicula
unit are included but the three-dimensional struc
ture is lost may address some of these questions, al
though here growth may be impeded and base
ment membrane or thecal cell components may no
differentiate in a manner that resembles the in vivc
situation.49 Imbedding follicles in a matrix may be
preferable for gaining information on growth ki
netics but is not so suitable a method for examining
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Follicle cultures have already revealed much
about how gonadotropins regulate follicle develop¬
ment and how the oocyte controls granulosa cell
function. Use of ovarian material from transgenic
mice has, in particular, proved a powerful tool.89'1'5
Similarly, cultures should prove useful in examina¬
tion of other aspects of follicle development that
are currently little understood, such as the initia¬
tion of primordial follicle growth or signals the
oocyte receives from somatic cells.
Other processes, too, have yet to be elucidated.

During oocyte growth, specific epigenetic modifi¬
cations occur resulting in genetic imprinting, a
process that ensures the expression of only one
parental allele. Incorrect imprinting can affect em¬
bryo and fetal development and even cause health
problems in later life. The mouse born from devel¬
opment from the primordial stage in vitro suffered
from some late-onset health problems perhaps be¬
cause imprinting was perturbed.62 Again, culture
techniques can help us to address this issue and an¬
imal models of this are a necessary tool before clini¬
cal application can proceed.
It is envisaged that future use of in vitro systems

will begin to unravel some of these mechanisms.
Knowledge of how oocytes become fully compe¬
tent will be of particular use if this technology is to
be practical in clinical settings. The process of
oocyte maturation in the human is very long and
the technical difficulties that need to be overcome

are many. The hope is that, with the knowledge
gained from other models, it may be possible to ac¬
celerate this process in humans.
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