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Abstract

Diffusion processes provide a natural way of modelling a variety of physical and eco-

nomic phenomena. It is often the case that one is unable to observe a diffusion process

directly, and must instead rely on noisy observations that are discretely spaced in time.

Given these discrete, noisy observations, one is faced with the task of inferring prop-

erties of the underlying diffusion process. For example, one might be interested in

inferring the current state of the process given observations up to the present time (this

is known as the filtering problem). Alternatively, one might wish to infer parameters

governing the time evolution the diffusion process.

In general, one cannot apply Bayes’ theorem directly, since the transition density

of a general nonlinear diffusion is not computationally tractable. In this thesis, we

investigate a novel method of simplifying the problem. The stochastic differential

equation that describes the diffusion process is replaced with a simpler ordinary differ-

ential equation, which has a random driving noise that approximates Brownian motion.

We show how one can exploit this approximation to improve on standard methods for

inferring properties of nonlinear diffusion processes.
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Chapter 1

Introduction

1.1 Motivation

Mathematical models based on ordinary differential equations (ODEs) have had an

enormous effect on the development of modern science. Such models provide a means

of quantifying the behaviour of physical systems, and thus making predictions about

them. However, not all systems can be described adequately by ODEs. Small-scale

systems are often subject to random effects that are difficult to model deterministi-

cally. This failure to capture noisy behaviour motivated the development of a stochas-

tic counterpart to the ODE – the stochastic differential equation (SDE). An ODE gives

a recipe for constructing a function by specifying how the function evolves over time.

A stochastic differential equation does the same thing, but adds some form of noise to

the evolution. Informally, we can write

dXt

dt
= a(Xt)+ ‘noise’. (1.1)

.

Figure 1.1 shows recorded Canadian lynx and snowshoe hare populations from

1845-1935 [1], alongside an ODE model and an SDE model of the predator-prey sys-

tem. The ODE model captures the oscillatory behaviour of the population cycles, but

the output is too regular to seem plausible. By adding some noise to the ODE model,

we observe behaviour that is closer to the behaviour of the original system.

One sensible way to model the noise in (1.1) is to use Gaussian white noise. SDE

models that use Gaussian white noise are flexible enough that they can capture a

wide range of phenomena while still retaining a number of properties that make them

tractable. Heuristically, Gaussian white noise induces random, normally-distributed

3
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Figure 1.1: Predator-prey system showing populations of Canadian lynx (blue) and

snowshoe hare (red). (left) Population data recorded from 1835 to 1937. (center) ODE

model of the system. (right) SDE model of the system. We argue that the SDE model

looks more ‘natural’ than the ODE model.

perturbations into the dynamics of a system. Over a short time ∆t, these perturbations

are comparable in size to
√

∆t. In other words, they are large compared to the timescale

on which the system changes. However, the perturbations are also independent. This

means that the perturbation over a short time interval tk− tk−1 will often cancel with

the perturbation over tk+1− tk. The net result is that the perturbations cancel in just

such a way that the solution to the SDE is a continuous, but nowhere-differentiable

random function. At first glance, this seems almost miraculous, but we will see that

there are good reasons explaining why it should be the case. SDEs that are driven by

Gaussian white noise are usually referred to as diffusion processes.

Diffusion processes have been used to model prices of financial instruments [2],

chemical reactions [3], firing patterns of individual neurons [4], weather patterns [5]

and fMRI data [6], [7] among many other phenomena.

The analysis of diffusions dates back to Feller and Kolmogorov, who studied them

as the scaling limits of certain Markov processes (see [8]). The theory of diffusion

processes was revolutionised by Ito, who interpreted a diffusion process as the solution

to a stochastic differential equation [9] [10].

1.2 Bayesian inference

It is often the case that one cannot observe a diffusion process X directly. For example,

one might model the trajectory of an aircraft that is being buffeted by the wind as

a diffusion. Observations of the aircraft’s trajectory might come from a radar dish

that rotates periodically. In such a setting, observations of the position of the aircraft
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would arrive discretely in time, and may be subject to measurement error from the

radar dish. Note that such a measurement system would record the position, but not

the velocity of the aircraft. It is natural to report radar measurements in spherical polar

coordinates. On the other hand, it is arguably more natural to develop a model of

the aircraft dynamics based on rectangular Cartesian coordinates. For this reason, one

should be prepared to model observations of the aircraft as discrete-time, noisy and

possibly arising as a nonlinear function of some or all of the state variables.

The aim of this thesis is to explore how one can infer properties of a system based

on incomplete, noisy, discrete-time observations in a way that is computationally ef-

ficient. In this thesis, we adopt the Bayesian formulation of statistical inference. We

argue that the Bayesian framework is appropriate in the context of mathematical mod-

elling using SDEs. One can ‘build in’ domain-specific knowledge while incorporating

uncertainty over parameters that govern the dynamics of the system.

Our ultimate goal is to infer the posterior distribution of some statistic ζ of the sys-

tem, based on prior knowledge of ζ and a sequence of observations {Ytk}1≤k≤n. We

might aim to infer the position of the signal at some time t, so that ζ = Xt . Alterna-

tively, we might aim to learn about some parameters ζ = θ that govern the dynamics of

the system: for example, one might be able to write down a diffusion model of a chem-

ical reaction [3] without knowing exactly what the reaction rates are. In any event, we

wish to compute the posterior distribution p(ζ | Yt1, . . .Ytn).

When ζ = Xt , it is sometimes the case that we have access to the observations

up to time t only. That is, tn ≤ t. In this scenario, one is typically working in real

time, with the aim of estimating p(Xt |Yt1, . . . ,Ytn). However, as time progresses, new

observations will arrive, and we need to update our posterior distribution of the state

of X. This is known as the continuous-discrete filtering problem. On the other hand,

one might have access to an entire sequence of observations, so that t1 ≤ t ≤ tn. The

problem of post-hoc estimation of the state of Xt given a batch of observations is

known as the continuous-discrete smoothing problem.





Chapter 2

Brownian motion and SDEs

We will begin this Chapter by introducing Brownian motion - a stochastic process of

fundamental importance in probability theory. We describe how Brownian motion is

used a s a ‘driving noise’ in a stochastic differential equation, and give a short overview

of stochastic integration and stochastic differential equations.

We then discuss the fundamental results in the theory of SDEs. In Section 2.2.3 we

review Ito’s lemma, which tells us how a SDE behaves under smooth transformations.

We then derive the Fokker-Planck equation, which describes the time evolution of the

transition density of a SDE. A basic method of discretisation and simulation of SDEs is

reviewed in Section 2.2.5. We show how the dynamics of a diffusion processes behave

under certain types of conditioning in Section 2.2.6. Finally, in Section 2.2.7, we give

an overview of Girsanov’s theorem, which can be thought of as a form of importance

sampling for diffusion processes.

2.1 Brownian motion

We begin our discussion by introducing a stochastic process known as Brownian mo-

tion, which is of fundamental importance in probability theory. Brownian motion is

named after Robert Brown, who studied the tiny and apparently random motion of

pollen grains suspended on the surface of water. The phenomenon had been observed

by many others before Brown, but Brown’s contribution was to provide concrete evi-

dence that the motion was not biological in nature [11].

The first mathematical characterisation of Brownian motion is due to Einstein [12].

At the time, Einstein’s aim was to find evidence for the existence of atoms: in theory,

a small particle that collides with many individual atoms or molecules should undergo

7
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Brownian motion. Einstein attempted to deduce the mass of water molecules from

observable quantities such as the temperature and viscosity of the water. Einstein’s

work was theoretical, and it was only later that he discovered the experimental work of

Robert Brown. Einstein used some ad-hoc justifications for his analysis: the first rig-

orous construction of Brownian motion is credited to Norbert Wiener. For this reason

it is sometimes known as the Wiener process.

There are many equivalent ways of characterising Brownian motion. Perhaps the

most accessible definition is that Brownian motion on a time interval [0,T ] is a Gaus-

sian process with mean 0 and covariance function k(s, t) = Min(s, t) (here, s and t are

times in the interval [0,T ]).

For our purposes, a Gaussian process is a probability distribution over functions

f : [0,T ]→ R, though this can be generalised to include other domains and ranges. In

order to define a Gaussian process, we must specify a mean function m : [0,T ]→ R
and a covariance function k : [0,T ]× [0,T ]→ R. These are the analogues of the mean

and covariance of a Gaussian distribution.

Suppose g is a draw from a Gaussian process with mean m and covariance k. Let

(t1, . . . , tN) be any collection of times in [0,T ]. We can evaluate the random function

g at each of these times, creating a vector G = (g(t1), . . . ,g(tN)). The defining feature

of a Gaussian process is that G is distributed according to a multivariate Gaussian

distribution with mean (m(t1), . . . ,m(tn)) and covariance matrix (k(ti, t j))1≤i, j≤N .

One consequence of Brownian motion having covariance function Min(s, t) is that

its increments are independent. Let s < t be two times in [0,T ]. We will use the symbol

W to refer to a sample path of Brownian motion, and Wt to refer to the value of W at

time t. The covariance between Ws and the increment Wt−Ws is

E[Ws(Wt−Ws)] = min(s, t)−min(s,s) = 0. (2.1)

Any collection of random variables that are jointly Gaussian and uncorrelated are also

independent. Strictly speaking, we should show that any collection of increments is

independent, but the analysis above demonstrates the general strategy for proving such

a result.

From the definition, we can also see that the variance of a given increment satisfies

E[(Wt−Ws)
2] = min(t, t)+min(s,s)−2min(s, t) = t− s. (2.2)

Brownian motion is ubiquitous throughout nature. It can be seen in the motion

of dust particles, the hunting patterns of sharks [13], and the movement of the super-
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massive black hole at the center of the galaxy [14]. This ubiquity is a consequence

of Donsker’s invariance principle [15], a generalisation of the central limit theorem.

Roughly speaking, one can construct a random walk, defined at times {∆t,2∆t, . . .} by

Xn∆t = X(n−1)∆t +ξn, X0 = 0, (2.3)
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Figure 2.1: Random walk converging to Brownian motion

and at other times by linear interpolation. If the random variables ξi are i.i.d with

finite variance, one can rescale the process so that it has variance 1 at time 1. In the

limit as ∆t → 0, Donsker’s invariance principle tells us that the rescaled random walk

converges to Brownian motion. Thus, random walk-type behaviour that occurs on a

suitable scale can often be approximated by Brownian motion.

It is worth emphasising that we are considering two subtly different processes here.

Firstly, there is physical Brownian motion. That is, the random motion exhibited by,

say, pollen grains suspended in water. Secondly, there is mathematical Brownian mo-

tion, which is an elegant model of the former process. It turns out that a particle with

positive mass that is undergoing ‘mathematical’ Brownian motion would have infinite

kinetic energy. This is related to the fact that, with probability 1, sample paths of

Brownian motion are nowhere differentiable. Thus, the mathematical model is only

applicable on a suitable timescale, and should not be taken literally.

2.1.1 L2 spaces

We now aim to develop some basic tools that are useful for the study of Brownian

motion. We will do so by analogy with concepts from linear algebra. One sensible

way of learning linear algebra is to begin with the intuitive concepts of lines, planes,

and volumes as model examples of vector spaces. More abstract vector spaces are then

introduced, building on spatial intuition from the one-, two-, and three-dimensional

cases.
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The branch of mathematics known as functional analysis takes this abstraction one

step further. The notion of ‘point in a space’ is now expanded to include functions,

which are seen as ‘points’ in a ‘function space’. One occasionally encounters the

intuitive idea that ‘functions are just infinitely long vectors’. Functional analysis pro-

vides a way of formalising this sentiment. We will limit our exposition to functions

f : [0,T ]→ RN with T > 0, though it is possible to work far more generally than this.

We begin by observing that the familiar concepts from linear algebra can all be

expressed in terms of functions. One can think of an N-dimensional vector v with real

entries as a function v : {1,2, . . . ,N}→ R. The first entry of v corresponds to v(1), the

second entry to v(2), and so on.

Our aim is to build a ‘propotypical’ function space that shares as many properties as

possible with Euclidean space. Arguably the simplest property that one can associate

to a vector is some notion of length. A norm formalises the notion of length in a vector

space. The standard Euclidean norm in N-dimensional space is given by

‖v‖=

(
N

∑
i=1

v(i)2

)1/2

. (2.4)

If we try to replicate this definition with a function f , summing over all points in the

domain [0,T ], we immediately see that the sum diverges. However, when we replace

the sum by an integral, the result is ‘well-behaved’. For this reason, we define a new

norm by

‖ f‖=
(∫ T

0
f 2(u)du

)1/2

. (2.5)

We refer to the set of all real-valued functions on [0,T ] that satisfy ‖ f‖<∞ as L2([0,T ];R),
or L2(R) when there is no risk of ambiguity.

When T =N, and f is a piecewise constant function that jumps at t = 1,2, . . . ,N−1

we can regard f as an N-dimensional vector. In this case, the two norms give the same

result regardless of whether we interpret f as a function or a vector. This suggests that

the approach we have taken is, in some sense, the ‘correct’ one.

There are, however, some technicalities that one encounters when working with

L2(R). In order to see this, we first define the indicator function

I{A}(x) = 1 if x ∈ A

= 0 otherwise. (2.6)

Intuitively, one would think of f = I{[0,1]}(·) and g = I{(0,1)}(·) (i.e. the indicator func-

tion over closed and open intervals respectively) as distinct functions. Here, we have
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used the notation f (·) to emphasize that we are thinking of f as a function. Contrast

this to the notation f (x), which represents ‘ f evaluated at x’ and is a real number).

However, according to (2.5), ‖ f −g‖ = 0, so that f and g are in fact ‘the same’ func-

tion. The conclusion is that the L2 norm cannot ‘see’ the behaviour of functions at

individual points. The issue disappears if we are prepared only to consider the average

behaviour of a function on a small interval [t− ε, t + ε].

Building on the function/vector analogy, we consider the usual Euclidean inner

product

〈u,v〉=
N

∑
i=1

u(i)v(i) (2.7)

and generalise it to functions as before:

〈 f ,g〉=
∫ T

0
f (u)g(u)du. (2.8)

Vector spaces that have an inner product defined on them (and that also possess a

technical property called completeness) are known as Hilbert spaces. The term is

often reserved for infinite-dimensional vector spaces.

The inner product in L2(R) gives us a notion of orthogonality of functions. Recall

that two vectors are defined to be orthogonal when their inner product is equal to 0.

We use this same definition for functions. Any two functions that have disjoint support

(that is, {x : f (x) 6= 0} and {x : g(x) 6= 0} have no elements in common) are orthogonal.

A less obvious example is that sin(x) and sin(2x) are orthogonal on [0,2π].

In RN , we can find a collection of vectors {ei}i≤N such that ‖ei‖ = 1, 〈ei,e j〉 = 0

for i 6= j, and span({ei}) = RN . This is known as an orthonormal basis. Any vector v

in RN can be expressed in terms of a given orthonormal basis as follows:

v =
N

∑
i=1
〈v,ei〉ei. (2.9)

As one might expect, one can also find orthonormal bases of L2([0,T ];R). One impor-

tant example is set of Fourier sine functions

φ1(t) =
1√
T

(2.10)

φk(t) =

√
2
T

sin
(
(k−1)πt

T

)
, k > 1. (2.11)

As before, when f ∈ L2(R), we can write it in terms of our basis as

f =
∞

∑
i=1
〈 f ,φi〉φi. (2.12)
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We call this the generalised Fourier series expansion of f . We have added the term

‘generalised’ because we are using an arbitrary orthonormal basis. The standard Fourier

series expansion uses a basis of Sine and Cosine functions.

The theory of linear transforms is central to linear algebra. Recall that a function

T : RN → RM is a linear transform if, for all scalars α and β, and all vectors u and v,

T (αu+βv) = αT (u)+βT (v). (2.13)

If we fix a basis, we can represent T using a matrix A with entries (ai j). Just as we did

with a vector, we can think of a matrix as a function A : {1, . . . ,N}×{1, . . . ,M}→ R.

Setting u = T (v), we have

u(i) =
N

∑
j=1

A(i, j)v( j). (2.14)

In an infinite-dimensional setting, one usually refers to a linear transform as a linear

operator. The theory of linear operators on an infinite-dimensional space is consider-

ably more complicated than in the finite-dimensional setting (Kreyszig [16] provides

a friendly introduction to the subject. The classic reference is Dunford and Schwartz

[17]).

In the majority of cases that are encountered in machine learning, linear opera-

tors behave as we would expect them to based on our intuition from RN . Just as we

represented a linear operator in Euclidean space with a matrix, we represent a linear

operator on a Hilbert space using a kernel function. We can think of a kernel as a

function k : [0,T ]× [0,T ]→ R (though the true definition is slightly more technical,

including Dirac delta functions and related operators).

A kernel acts on a function f in much the same way as a matrix acts on a vector v.

If g = T ( f ), then

g(s) =
∫ T

0
k(s, t) f (t)dt. (2.15)

If we extend our definition of ‘kernel function’ to include generalised functions such

as the Dirac delta function, then the Schwarz kernel theorem [17] says that all linear

operators admit a representation as a kernel function (it is counterintuitive, but even

the derivative operator can be written as an integral operator).

The eigenvectors of a matrix A are those non-zero vectors that satisfy
N

∑
j=1

A(i, j)v( j) = λv(i). (2.16)

for some scalar λ. Similarly, the eigenfunctions φ of a kernel satisfy∫ T

0
k(s, t)φ(t)dt = λφ(s). (2.17)



2.1. Brownian motion 13

We say that a kernel is positive definite if all its eigenvalues are positive. We say

a kernel is symmetric if k(s, t) = k(t,s). Symmetric kernels have real eigenvalues.

Symmetric positive definite matrices are of special interest to machine learning because

they arise as covariance matrices of random vectors. Similarly, symmetric positive-

definite kernels arise as covariance functions of stochastic processes.

Recall that real symmetric matrices are diagonalisable. That is, if A is a real sym-

metric matrix, there exists an orthogonal transform P such that P−1AP is a diagonal

matrix. The columns of P are the eigenvectors of A, which form an orthonormal basis

of RN .

Another way of stating this fact is as follows. If {ei} are the eigenvectors of A and

{λi} are the corresponding eigenvalues, then

A =
N

∑
i=1

λieie>i (2.18)

Observe that the right-hand side of (2.18) involves the outer product of two vectors.

The outer product ‘combines’ two vectors to make a (rank one) matrix. The outer

product in L2([0,T ] : R) combines two functions to construct a kernel in a similar

manner. Given functions f and g, we can form a kernel by defining k(s, t) = f (s)g(t).

Mercer’s theorem states that a continuous symmetric positive-definite kernel func-

tion k(·, ·) can be ‘diagonalised’, in much the same way as we diagonalise a symmetric

matrix. In order for Mercer’s theorem to be applicable, the domain of the function

space must be compact. Compactness is a generalisation of the intuitive notion of ‘fi-

nite in extent’. For Euclidean space, it is equivalent to the assumption that the domain

is closed and bounded.

Let {φi} and {λi} be the eigenfunctions and eigenvalues of k. Then k can be repre-

sented in terms of its eigenfunctions as follows:

k(s, t) =
∞

∑
i=1

λiφi(s)φi(t). (2.19)

Mercer’s theorem is a special case of one of a large number of results about the eigen-

values of linear operators, collectively known as spectral theorems. The term ‘spec-

trum’ is used for historical reasons: many of these results were developed by physicists

in order to understand the emission spectrum of the hydrogen atom.

To conclude this section, we will present an informal derivation of the basis func-

tion expansion of the Dirac delta function. Recall that the Dirac delta function is the

‘kernel’ defined by ∫ T

0
δ(s, t) f (t)dt = f (s) (2.20)
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for all functions f ∈ L2. In a sense, every function is an eigenfunction of the delta

function, just as every vector is an ‘eigenvector’ of the identity matrix.

As we have mentioned before, it is not strictly permissible to evaluate an element

of L2(R) at a given point, and that such functions should instead be evaluated over a

small neighbourhood [x− ε,x+ ε]. In that sense, what follows is correct ‘to within an

epsilon’.

We begin by fixing s and viewing the delta function as a function of its second

argument only. We choose an orthonormal basis {φi} and expand δ(s, ·) as in (2.12).

We have

δ(s, t) =
∞

∑
i=1
〈δ(s, ·),φi〉φi(t)

=
∞

∑
i=1

(∫ T

0
δ(s,u)φi(u)du

)
φi(t)

=
∞

∑
i=1

φi(s)φi(t). (2.21)

This is sometimes known as the ‘completeness’ property of the basis {φi}. In the next

section, this representation will be instrumental for our understanding of white noise,

and hence Brownian motion.

2.1.2 Construction of Brownian motion and series expansions

The random walk interpretation of Brownian motion is not the only useful represen-

tation of the process. In later chapters, we will make heavy use of the Fourier series

construction of Brownian motion. We will demonstrate that Brownian motion has a

very simple expression in terms of a generalised Fourier series. To see this, we will

first note that there is a relationship between the Dirac delta function and the Brownian

covariance function min(s, t). We first consider the integral of the delta function with

respect to its first argument. We have∫ t

0
δ(u,v)du = I{[0,t]}(v). (2.22)

To see this, observe that the delta function is identically zero unless v is in the interval

[0, t]. When v is in this interval, the delta function ‘evaluates’ the constant function

f (u) = 1 (which is not written explicitly in the integral on the left). Thus, we conclude

that the integral of the delta function is the indicator function on the right.

Integrating both sides of (2.22) with respect to v, we have
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∫ s

0

∫ t

0
δ(u,v)dudv =

∫ s

0
I{[0,t]}(v)dv

= min(s, t). (2.23)

We substitute the basis function expansion (2.21) of the delta function into equation

(2.23). This gives

min(s, t) =
∫ s

0

∫ t

0

∞

∑
i=1

φi(u)φi(v)dudv

=
∞

∑
i=1

(∫ s

0
φi(v)dv

)(∫ t

0
φi(u)du

)
. (2.24)

We now draw an infinite sequence of i.i.d standard normal random variables {Zi}, and

form the sum

Wt =
∞

∑
i=1

Zi

∫ t

0
φi(u)du. (2.25)
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Figure 2.2: Approximate Brownian sample path formed by truncating the series in (2.25)

after N terms. We set N = 10 (left), N = 40 (centre), and N = 200 (right). We used the

Fourier Sine series (2.10) as an orthonormal basis.

W is a linear combination of (very simple) Gaussian processes, and is therefore a

Gaussian process itself. From (2.24), W has covariance function

E[WsWt ] = E

[(
∞

∑
i=1

Zi

∫ s

0
φi(u)du

)(
∞

∑
j=1

Z j

∫ t

0
φi(u)du

)]

=
∞

∑
i=1

∞

∑
j=1

E[ZiZ j]

(∫ s

0
φi(u)du

)(∫ t

0
φ j(u)du

)
(2.26)

=
∞

∑
i=1

(∫ s

0
φi(u)du

)(∫ t

0
φi(u)du

)
= min(s, t). (2.27)
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so that it is indeed a Brownian motion. Equation (2.25) generalises the well-known

Karhunen-Lòeve expansion of Brownian motion, in which a Brownian sample path is

expanded in terms of the eigenfunctions of min(s, t).

Equation (2.25) suggests a method for drawing approximate Brownian sample

paths. The infinite sum on the right-hand side is truncated after N terms. Figure 2.2

shows how the number of terms in the series affects the approximation. We make use

of this approximation in [18], [19] and in Part II of this thesis.

2.2 General theory of nonlinear SDEs

2.2.1 Stochastic differential equations

It is quite difficult to formulate a mathematically consistent continuous-time model

of noise that perturbs a dynamical system. In the discrete-time setting, one might

introduce a Gaussian white noise – that is, at each time point, the process could be

perturbed by an independent draw from a Gaussian distribution. The continuous-time

analogue of such a system would satisfy

dxt

dt
= a(xt)+b(xt)ẇt , (2.28)

where ẇ is continuous-time white noise. We allow the amplitude of the noise to

depend on the state of the system via a function b(x).

The idea of perturbing the dynamics of a system with white noise does not carry

over nicely to the continuous-time setting. This is because P(|ẇt | = ∞) = 1 at each

time t, so it is not clear how to interpret the dynamics of (2.28).

We can overcome this issue by recasting the problem as an integral equation. Just

as a first-order ordinary differential equation can be written in the form

Xt = X0 +
∫ t

0
a(Xu)du, (2.29)

equation (2.28) can be written in integral form, using a so-called ‘Ito integral’ as a

model of noise. We will explain the precise meaning of the Ito integral term in the next

section, but for now it suffices to say that it matches nicely with the naive intuition

behind equation (2.28). That is, the system is perturbed by i.i.d noise at every point in

time. The integral form of (2.28) is

Xt = X0 +
∫ t

0
a(Xu)du+

∫ t

0
b(Xu)dWu. (2.30)
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Technically speaking, the term ‘stochastic differential equation’ is a misnomer, and one

should refer to stochastic integral equations instead. However, the following shorthand

for (2.30) is commonplace, and serves to sharpen intuition:

dXt = a(Xt)dt +b(Xt)dWt . (2.31)

This can roughly be interpreted as saying ‘over a short time ∆t, the change in Xt

is given by a(Xt)∆t, perturbed by an independent draw from a Gaussian with mean 0

and variance b(Xt)
2∆t. Processes of the form (2.31) are referred to as diffusions. The

Ito model of noise has several appealing properties. Most notably, since the driving

Brownian motion W is a Markov process, the diffusion X inherits this property.

2.2.2 Stochastic integration

Central to the theory of diffusion processes is the notion of a stochastic integral. Before

introducing this idea, we will review some concepts from classical analysis.

Definition 2.2.1. Given two smooth functions f and g on [0,T ] we partition the interval

into subintervals of size ∆t and form the limit

∫ T

0
f (u)dg(u) := lim

∆t→0

T/∆t−1

∑
n=1

f (n∆t)(g((n+1)∆t)−g(n∆t))

=
∫ T

0
f (u)g′(u)du. (2.32)

We refer to this limit as the Stieltjes integral of f with respect to g.

Note that when g(t) = t, we recover the usual Riemann integral.

Stieltjes integrals occur naturally in probability theory. If C(x) = P(X ≤ x) is the

cumulative distribution function of a random variable X , then

E[ f (X)] =
∫

f (x)dC(x). (2.33)

This relationship holds even when C has a finite number of jump discontinuitues, for

example as in the case of the CDF of the geometric distribution. For CDFs of discrete

random variables, we must interpret the derivative of a jump discontinuity as a Dirac

delta function. Thus, the theory of Stieltjes integration allows us to unify our treatment

of discrete and continuous random variables.

Ideally, we would like to define a Stieltjes integral in which g = W , a Brownian

motion. However, sample paths of W are nowhere differentiable with probability 1.
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This makes the meaning of dW/dt difficult to interpret. The solution is to re-interpret

the limit in Definition 2.2.1 as a limit in mean square. We say a sequence of random

variables {Xn} converges to X in mean square if

lim
n→∞

E
[
(X−Xn)

2]= 0. (2.34)

To simplify notation, we set N = T/∆t−1, leaving dependence on ∆t implicit. We

can now introduce the Ito integral of a process with respect to Brownian motion.

Definition 2.2.2. The Ito integral of a process X from 0 to T with respect to a Brownian

motion W is defined as

∫ T

0
XudWu := l. i.m

∆t→0

N

∑
n=0

Xn∆t
(
W(n+1)∆t−Wn∆t

)
, (2.35)

where l. i.m denotes ‘limit in mean square’.

A few remarks about this definition are in order. If we want to make sure that the

right-hand side of (2.35) converges, we need to be sure that

lim
∆t→0

E

( N

∑
n=0

Xn∆t
(
W(n+1)∆t−Wn∆t

))2
< ∞. (2.36)

Expanding the square, we can see that

E

( N

∑
n=0

Xn∆t
(
W(n+1)∆t−Wn∆t

))2


=
N

∑
n=0

N

∑
m=0

E
[
Xn∆tXm∆t

(
W(n+1)∆t−Wn∆t

)(
W(m+1)∆t−Wm∆t

)]
. (2.37)

If we require that Xt1 is independent of the Brownian increment Wt2 −Wt1 whenever

t2 > t1, then assuming m > n, it follows that

E
[
Xn∆tXm∆t

(
W(n+1)∆t−Wn∆t

)(
W(m+1)∆t−Wm∆t

)]
= E

[
Xn∆tXm∆t

(
W(n+1)∆t−Wn∆t

)]
E
[(

W(m+1)∆t−Wm∆t
)]

= 0, (2.38)

and similarly when m < n. Equation (2.38) tells us that most terms in the double sum

in (2.37) are 0. We can exploit the independence property to simplify the expression
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further:

N

∑
n=0

N

∑
m=0

E
[
Xn∆tXm∆t

(
W(n+1)∆t−Wn∆t

)(
W(m+1)∆t−Wm∆t

)]
=

N

∑
n=0

E
[
X2

n∆t
(
W(n+1)∆t−Wn∆t

)2
]

=
N

∑
n=0

E
[
X2

n∆t
]
E
[(

W(n+1)∆t−Wn∆t
)2
]

=
N

∑
n=0

E[X2
n∆t ]∆t. (2.39)

Exchanging the order of expectation and limit, we arrive at

lim
∆t→0

N

∑
n=0

E[X2
n∆t ]∆t = E

[
lim

∆t→0

N

∑
n=0

X2
n∆t∆t

]
= E

[∫ T

0
X2

u du
]
. (2.40)

In other words, in order for the limit (2.35) to make sense, our integrand X must be a

(possibly random) element of L2[0,T ] with the property that Xt1 is always independent

of Wt2−Wt1 when t2 > t1. If these conditions hold, we say that X is a square integrable,

non-anticipative process. It is possible to show that Ito integrals are continuous with

probability 1 when viewed as functions of T .

The non-anticipative property of the integrand guarantees that the expectation of

an Ito integral is 0. For every choice of ∆t,

E

[
N

∑
n=0

Xn∆t
(
W(n+1)∆t−Wn∆t

)]
=

N

∑
n=0

E[Xn∆t ]E
[(

W(n+1)∆t−Wn∆t
)]

= 0. (2.41)

We have not yet said anything about what happens when the independence as-

sumption used in (2.38) fails. It is possible to relax this assumption, though the theory

of stochastic integration becomes vastly more complicated as a result. Anticipative

stochastic integrals can be studied by methods such as the so-called Malliavin calculus

[20], which will not be discussed here.

2.2.3 Ito’s lemma

If we recall that the variance of a Brownian increment ∆Wt = Wt+∆t −Wt satisfies

Var[∆Wt ] = ∆t, we can observe that its standard deviation is
√

∆t. Therefore, the ‘typ-

ical size’ of a Brownian increment should be of this order. This innocuous-seeming
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fact gives stochastic calculus a very different flavour to classical analysis. Suppose we

have a smooth function f and a diffusion process X . From Taylor’s theorem,

f (Xt+∆t) = f (Xt)+ f ′(Xt)∆Xt +
1
2

f ′′(Xt)∆X2
t + . . . , (2.42)

where ∆Xt = Xt+∆t−Xt . If X were a smooth function, we could discard all but the first

two terms on the right hand side, and still expect to have a good estimate of f (Xt+∆t)

for small values of ∆t. However, since ∆Wt is of order
√

∆t, we have

∆X2
t = (Xt+∆t−Xt)

2

=

(∫ t+∆t

t
a(Xu)du+

∫ t+∆t

t
b(Xu)dWu

)2

≈ (a(Xt)∆t +b(Xt)∆Wt)
2

= a(Xt)
2
∆t2 +2a(Xt)b(Xt)∆t∆Wt +b2(Xt)∆W 2

t , (2.43)

and the last term on the right is of order ∆t. In fact,

E[∆W 2
t ] = ∆t (2.44)

and

Var[∆W 2
t ] = 2∆t2, (2.45)

so that the variance of ∆W 2
t is very low for small values of ∆t. This suggests that as

∆t→ 0, values taken by ∆W 2
t cluster around ∆t with high probability. We can use this

heuristic to produce a new estimate of f (Xt+∆t):

f (Xt+∆t)≈ f (Xt)+ f ′(Xt)∆Xt +
1
2

f ′′(Xt)b2(Xt)∆W 2
t

≈ f (Xt)+ f ′(Xt)(a(Xt)∆t +b(Xt)∆Wt)+
1
2

f ′′(Xt)b2(Xt)∆t. (2.46)

What we have done here is discard all terms of order greater than ∆t in (2.42). If we

re-arrange the remaining terms and take a limit as ∆t→ 0, we find that

d f (Xt) =

(
f ′(Xt)a(Xt)+

1
2

f ′′(Xt)b2(Xt)

)
dt + f ′(Xt)b(Xt)dWt , (2.47)

or in integral form,

f (Xt) = f (X0)+
∫ t

0

(
f ′(Xu)a(Xu)+

1
2

f ′′(Xu)b2(Xu)

)
du+

∫ t

0
f ′(Xu)b(Xu)dWu.

(2.48)

This is a famous result known as Ito’s lemma. One consequence of Ito’s lemma is

that a smooth function of a diffusion is itself a diffusion, as we can see from (2.47).
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An analgous result holds for vector-valued diffusions, i.e. when Xt ∈ Rd , Wt ∈ Rd ,

a : Rd → Rd and b : Rd → Rd×d .

There is a time-dependent version of Ito’s lemma, which we will need in section

2.2.6. If f = f (x, t), then

f (Xt , t) = f (X0,0)+
∫ t

0

(
ḟ (Xu,u)+ f ′(Xu,u)a(Xu)+

1
2

f ′′(Xu,u)b2(Xu)

)
du

+
∫ t

0
f ′(Xu,u)b(Xu)dWu, (2.49)

where ḟ denotes the partial derivative of f with respect to t, and f ′ denotes differenti-

ation with respect to x.

2.2.4 The Fokker-Planck equation

We can use Ito’s lemma to derive an expression for the transition density of a diffu-

sion. This is an important quantity, defined as the function p(x, t|y,s) that satisfies the

relation

P(Xt ∈ A|Xs = y) =
∫

A
p(x, t|y,s)dx. (2.50)

We will often use the shorthand p(Xt |Xs) to denote the transition density.

If X and Y are n-dimensional Euclidean vectors, one way to show X =Y is to prove

that 〈X ,Z〉= 〈Y,Z〉 for all vectors Z. We will now use an infinite-dimensional equiva-

lent of this argument to derive a relationship between the time and space derivatives of

the transition density. This relationship is known as the Fokker-Planck equation. The

following argument is adapted from [21], Section 4.3.

Suppose we have an arbitrary smooth function f . Recalling that Ito integrals have

mean 0, it follows from (2.48) that

E[ f (Xt)] = E
[

f (X0)+
∫ t

0

(
f ′(Xu)a(Xu)+

1
2

f ′′(Xu)b2(Xu)

)
du
]
. (2.51)

If we assume f is sufficiently well-behaved, we can exchange differentiation and ex-

pectation. Differentiating (2.51) with respect to time, we find that

d
dt
E[ f (Xt)] = E

[
f ′(Xt)a(Xt)+

1
2

f ′′(Xt)b2(Xt)

]
. (2.52)

Now, setting X0 = x0, we can use the definition of E[ · ] to rewrite (2.52) as∫
f (x)

∂

∂t
p(x, t|x0,0)dx =

∫ (
f ′(x)a(x)+

1
2

f ′′(x)b2(x)
)

p(x, t|x0,0)dx, (2.53)
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where the integral is over all nonzero values of p(x, t|x0,0). If we impose some natural

decay assumptions on p(x, t|x0,0) (so that, for instance, p(x, t|x0,0)→ 0 as x→ ∞) ,

we can integrate the right-hand side by parts:∫
f (x)

∂

∂t
p(x, t|x0,0)dx

=
∫

f (x)
(
− ∂

∂x
(a(x)p(x, t|x0,0))+

1
2

∂2

∂x2

(
b2(x)p(x, t|x0,0)

))
dx. (2.54)

Since this expression holds for all smooth f , we can conclude 1 that the transition

density satisfies

∂

∂t
p(x, t|x0,0) =−

∂

∂x
(a(x)p(x, t|x0,0))+

1
2

∂2

∂x2

(
b2(x)p(x, t|x0,0)

)
. (2.55)

The argument can be adapted to work for a multidimensional diffusion process Xt

satisfying the SDE

dXt = a(Xt)dt +B(Xt)dWt . (2.56)

The transition density p(x, t|y,s) of X satisfies the multidimensional Fokker-Planck

equation

∂

∂t
p(x, t|y,s) =−

d

∑
i=1

∂

∂xi
(a(x)p(x, t|y,s))+ 1

2

d

∑
i=1

d

∑
j=1

∂2

∂xi∂x j
(B(x)Bᵀ(x)p(x, t|y,s)) .

(2.57)

If a process starts at x0 at time 0 and we want to know its probability density at

time t, we must solve this PDE. The solution can be computed in closed form only in

a few very special cases, such as when a and b are linear. In general, one must resort

to numerical methods to find a solution. In fact, when d > 3, the situation is typically

reversed. If one has a PDE of the form (2.57), it is often the case that the only practical

way to solve it is via a Monte-Carlo method based on diffusion processes.

We will finish this section with a short digression on the intuitive interpretation of

Equation (2.55). Given the dynamics of an ODE

dyt

dt
= f (yt), (2.58)

one can often hope to understand some properties of the dynamics intuitively, ‘by

inspection’. The intuition behind equation (2.58) is roughly as follows: starting from

time t, the change in y over a short time ∆t is f (yt)∆t.

1The reason we can draw this conclusion is that the linear span of smooth functions with compact
support is dense in L2(Rd). The argument is analogous to proving X = Y by showing ∀Z,〈X ,Z〉= 〈Y,Z〉.
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Suppose we take the simplest case of (2.55), setting the drift function a to 0 and

the diffusion coefficient to b(x) = 1 (and ignoring the initial conditions), so that

∂

∂t
p(x, t) =

1
2

∂2

∂x2 p(x, t). (2.59)

It is not immediately clear that one can find the same kind of intuition as in (2.58).

However, things become clearer if we ‘take a step back’ from the limit in the definition

of the second derivative on the right-hand side. Instead of (2.59), fix a location x0 in

space and consider p(x0, t) as a function of time only. We have

∂

∂t
p(x0, t)≈

1
2

p(x0 + ε, t)+ p(x0− ε, t)−2p(x0, t)
ε2 , (2.60)

which is equal to (2.59) in the limit as ε→ 0. We are now almost in a position to apply

the same intuition to (2.60) as we did to (2.58). However, the dynamics of p(x0, t) are

now given in terms of two new unknown functions, p(x0+ε, t) and p(x0−ε, t). These,

too, depend only on time. We can repeat the analysis above with x0± ε in place of

x0. The conclusion is that the functions {p(x0, t), p(x0± ε, t), p(x0± 2ε, t), . . .} form

an infinite system of ordinary differential equations.

For an ODE, given the state of the system at some initial time t0, we can determine

the behaviour of the system at any time t. However, for a PDE we need some extra

information. In order to solve the system of ODEs, we need to know the behaviour

of the system on some boundary. In the one-dimensional case, this means we need to

know two functions: p(b+, t) and p(b−, t), with b− < x < b+. We can then determine

the behaviour of {p(b+−ε, t), p(b+−2ε, t), . . .} and {p(b−+ε, t), p(b−+2ε, t), . . .}.
Reasoning such as this is the basis behind the simplest family of numerical methods

for PDEs. These methods are known as finite difference methods.

2.2.5 The Euler-Maruyama approximation

Diffusion processes are infinite-dimensional objects. As such, some form of discreti-

sation is necessary if one wants to simulate a diffusion sample path on a computer. We

will now discuss the simplest form of discretisation scheme – the Euler-Maruyama

approximation [22].

The scheme is derived by observing that

X(k+1)∆t−Xk∆t =
∫ (k+1)∆t

k∆t
a(Xu)du+

∫ (k+1)∆t

k∆t
b(Xu)dWu, (2.61)
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and making the approximations∫ (k+1)∆t

k∆t
a(Xu)du≈ a(Xk∆t)∆t, (2.62)

and ∫ (k+1)∆t

k∆t
b(Xu)dWu ≈ b(Xk∆t)

∫ t+∆t

k∆t
dWu

= b(Xk∆t)
(
W(k+1)∆t−Wk∆t

)
. (2.63)

The interval [0,T ] is divided into N timesteps of length ∆t, and the diffusion is

approximated using the following recursive construction:

X(k+1)∆t = Xk∆t +a(Xk∆t)∆t +b(Xk∆t)
√

∆tZk, (2.64)

where {Zi} are a set of independent standard d-dimensional Gaussians. Values of

the diffusion at other times t are computed by linear interpolation. This approximation

makes it clear that over small timescales the transition density p( · ,(k+1)∆t|Xk∆t ,k∆t)

behaves like a Gaussian density with mean a(Xk∆t)∆t and variance bbᵀ(Xk∆t)∆t (we

have used a centered dot to emphasize that we are thinking of p as a function of its first

argument only).

2.2.6 Conditioned diffusions

The Euler-Maruyama approximation gives us a means of generating sample paths of a

diffusion process. However, this may not be sufficient for our purposes. If our process

has the initial value x0 at time 0 and we observe that it takes the value xT at time T , we

might want to simulate sample paths that are consistent with this observation. To this

end, we would like to know the dynamics of the conditioned process X |{X0 = x0, XT =

xT}, which we refer to as a diffusion bridge. It turns out that diffusion bridges are also

diffusions so that, somewhat counterintuitively, they have the Markov property.

Perhaps the simplest example of a diffusion bridge is the process obtained by con-

ditioning a Brownian motion to satisfy W1 = 0. The resulting process is known as the

Brownian bridge. The brownian bridge is a Gaussian process with mean 0 and covari-

ance k(s, t) = min(s, t)− st, s, t ∈ [0,1]. As we wil see, the dynamics of the Brownian

bridge can be written in the form of a SDE, with dynamics

dXt =−
Xt

1− t
+dWt . (2.65)
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It is surprisingly difficult to find a general treatment of diffusion bridges in the

literature. A terse and rather abstract account can be found in [15] as a special case of

the more general Doob h-transform. We now present a derivation of the dynamics of a

diffusion bridge. The derivation is adapted from [23].

We will modify the argument used in section 2.2.4 to derive a Fokker-Planck equa-

tion for a one-dimensional diffusion bridge. The extension to multiple dimensions is

similar. Define the conditional density p(x, t|x0,0,y,T ) as the function that satisfies

P(Xt ∈ A|X0 = x0, XT = y) =
∫

A
p(x, t|x0,0,y,T )dx. (2.66)

It follows from the Markov property that one can rewrite this density as

p(x, t|x0,0,y,T ) =
p(y,T |x, t)p(x, t|x0,0)

p(y,T |x0,0)
, (2.67)

where the terms on the right are unconditional transition densities. Thus, if f is a

well-behaved function, it follows that

E [ f (Xt)|X0 = x0,XT = y] =
∫

f (x)p(x, t|x0,0,y,T )dx

=
∫

f (x)
p(y,T |x, t)p(x, t|x0,0)

p(y,T |x0,0)
dx

=
E[ f (Xt)p(y,T |Xt , t)|X0 = x0]

p(y,T |x0,0)
. (2.68)

The expectation on the right-hand side is not conditioned on a future time, so we

can apply the time-dependent version of Ito’s lemma (2.49) to g(x, t) = f (x)p(y,T |x, t)
as usual. We can re-write the numerator of the right-hand side as

E[g(Xt , t)|X0 = x0]

= E
[∫ t

0

(
a

∂

∂x
g(Xs,s)+

1
2

b2 ∂2

∂x2 g(Xs,s)+
∂

∂t
g(Xs,s)

)
ds | X0 = x0

]
. (2.69)

Now, since p(y,T |x, t) is the density of a diffusion process, one can show that it

satisfies the backward Kolmogorov equation2 (which we do not derive here):

a(x)
∂

∂x
p+

1
2

b2(x)
∂2

∂x2 p+
∂

∂t
p = 0. (2.70)

2The spatial differential operator that appears in the backward Kolmogov equation is the formal
adjoint on L2(R) of the spatial differential operator that appears in the Fokker-Planck equation. The
PDEs are closely related.
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If we expand (2.69), and apply the backward Kolmogorov equation to cancel terms,

we are left with

E[ f (Xt)p(y,T |Xt , t)|X0 = x0]

= E
[∫ t

0

(
ap

∂

∂x
f +

1
2

b2 p
∂2

∂x2 f +b2 ∂

∂x
p

∂

∂x
f
)

ds | X0 = x0

]
. (2.71)

Note that we supressed the function arguments in this expression for brevity. We can

re-arrange the expression and substitute it into equation (2.68), which shows that

E[ f (Xt)|X0 = x0, XT = y]

=
1

p(y,T |x0,0)
E
[∫ t

0

((
ap+b2 ∂

∂x
p
)

∂

∂x
f +

1
2

b2 p
∂2

∂x2 f
)
| X0 = x0

]
.

Differentiating both sides with respect to t and converting the right-hand side back

to a conditional probability using (2.67) (dividing above and below by p(y,T |x, t)
where necessary), we have

∂

∂t
E[ f (Xt)|X0 = x0, XT = y]

= E
[(

a+
b2

p
∂

∂x
p
)

∂

∂x
f +

1
2

b2 ∂2

∂x2 f | X0 = x0,XT = y
]

= E
[(

a+b2 ∂

∂x
log(p)

)
∂

∂x
f +

1
2

b2 ∂2

∂x2 f | X0 = x0,XT = y
]
. (2.72)

If we set â = a+ b2∂ log(p)/∂x, we can use integration by parts as in section 2.2.4

to deduce the Fokker-Planck equation. We see that the diffusion bridge satisfies the

following SDE:

dXt =

(
a(Xt)+b2(Xt)

∂

∂x
log(p(y,T |Xt , t))

)
dt +b(Xt)dWt . (2.73)

In other words, we can condition the diffusion to hit y at time T by modifying the

drift function. However, this is typically difficult to do in practice, since one must first

calculate the transition density p(y,T |x, t) for all values of x and t.

2.2.7 Girsanov’s theorm in practice

In this section we will briefly review the concepts undelying importance sampling, and

show how they can be applied to Brownian motion and related processes. The main

result that we describe in this section is known as Girsanov’s theorem. The rigorous

statement of Girsanov’s theorem involves technical measure-theoretic concepts such as



2.2. General theory of nonlinear SDEs 27

absolute continuity of measures and the Radon-Nikodym derivative. A full account of

the result can be found in any good textbook on stochastic analysis - see, for example,

[9] [10]. Rather than reproduce an already well-known result, the aim of this section is

to describe Girsanov’s theorem in a way that is as accessible as possible. To this end,

we first review the ideas behind importance sampling, and show how they generalise

to diffusion processes.

Suppose we have a random variable X with density pX . By definition, the expecta-

tion of f (X) is

E[ f (X)] =
∫

f (x)pX(x)dx. (2.74)

Now suppose we have some other random variable Y with density pY . If the support

of pX is contained in the support of pY so that pY (x) = 0 =⇒ pX(x) = 0, we can re-

write the expectation in terms of Y as follows:

∫
f (x)pX(x)dx =

∫
f (x)

(
pX(x)
pY (x)

)
pY (x)dx

= E
[

f (Y )
(

pX(Y )
pY (Y )

)]
. (2.75)

One can now estimate E[ f (X)] by drawing samples from pY and computing a

weighted average. If Y (i) is a sample from pY , we define the corresponding impor-

tance weight to be

w(i) =
pX

(
Y (i)
)

pY
(
Y (i)
) . (2.76)

Our estimate of E[ f (X)] is then

E[ f (X)]≈ 1
N

N

∑
i=1

f
(

Y (i)
)

w(i). (2.77)

This trick is useful in when we do not know how to sample from X directly but can

evaluate its density. It can also be exploited to reduce the variance of a Monte-Carlo

estimate of E[ f (X)]. For example, if X is a standard normal random variable and we

attempt to compute P(X > 5), we will typically need to draw over a million samples

to obtain a single sample satisfying X (i) > 5. One could use importance sampling to

draw samples from a normal distribution with mean 5 instead.

Girsanov’s theorem says that an infinite-dimensional version of importance sam-

pling can be applied to a diffusion process. Suppose that we wish to calculate E[ f (XT )]

for a given function f .
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One could draw a large number of sample paths X (i), and compute the mean value:

E[ f (XT )]≈
1
N

N

∑
i=1

f
(

X (i)
T

)
. (2.78)

One way of drawing sample paths is to use the Euler-Maruyama approximation.

The interval [0,T ] is divided up into n = T/∆t timesteps, and X is approximated via

the recursion

X(k+1)∆t = Xk∆t +a(Xk∆t)∆t +b(Xk∆t)Zk
√

∆t, (2.79)

where {Zi} are i.i.d standard normal random variables. In this sense, we can write

XT = g(X0,Z1, . . . ,Zn). (2.80)

That is, XT is completely determined by X0 and the values of the random variables {Zi}
that appear in (2.79). Here, g is defined implicitly in the Euler-Maruyama recursion.

Instead of drawing i.i.d standard normal random variables {Zi}, we can draw im-

portance variates from a normal distribution with an altered mean, which possibly

depends on the state of Xk∆t . We set

Vk = Zk +u(Xk∆t)
√

∆t. (2.81)

We use the random variables {Vi} in place of {Zi} in (2.79), which gives a new

process X̄ defined by

X̄(k+1)∆t = X̄k∆t +a(X̄k∆t)∆t +b(X̄k∆t)Vk
√

∆t,

= X̄k∆t +(a(X̄k∆t)+u(X̄k∆t)b(X̄k∆t))∆t +b(X̄k∆t)Zk
√

∆t. (2.82)

By modifying the mean of the variates {Zi}, we have changed the drift of the process

X . We can generate sample paths from X̄ to estimate the expectation in (2.78), but we

must compensate for the fact that we sampled from {Vi} rather than {Zi} (note that we

now modify the distribution of V dependent on the state of X̄ rather than the state of X

as in equation (2.81)). The importance ratio is given by

pZ(V1:n)

pV (V1:n)
= exp

(
−

n

∑
i=1

V 2
i
2

)
/exp

− n

∑
i=1

(
Vi−u(X̄i∆t)

√
∆t
)2

2


= exp

− n

∑
i=1

(
Zi +u(X̄i∆t)

√
∆t
)2

2

/exp

(
−

n

∑
i=1

Z2
i

2

)

= exp

(
n

∑
i=1

u(X̄i∆t)Zi
√

∆t− 1
2

n

∑
i=1

u2(X̄i∆t)∆t

)
. (2.83)
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Observe that for small values of ∆t, the first term in the exponential approximates

a stochastic integral and the second term approximates a classical integral. As ∆t→ 0,

the importance ratio converges to

w = exp
(∫ T

0
u(X̄s)dWs−

1
2

∫ T

0
u2(X̄s)ds

)
, (2.84)

and the process X̄ converges to the diffusion

dX̄t = (a(X̄t)+u(X̄t)b(X̄t))dt +b(X̄t)dWt . (2.85)

Thus, in order to estimate (2.78), we can draw samples from (2.85) and weight them

by (2.84):

E[ f (XT )]≈
1
N

N

∑
i=1

f
(

X̄ (i)
T

)
exp
(∫ T

0
u
(

X̄ (i)
s

)
dW (i)

s −
1
2

∫ T

0
u2
(

X̄ (i)
s

)
ds
)
. (2.86)

Unless each term in (2.86) can be computed analytically, one must sample approximate

paths using (2.82) and approximate importance weights using (2.83).

The density ratio (2.84) has applications beyond importance sampling. For ex-

ample, one can take the expectation of the log of this quantity to define a notion of

Kullback-Liebler divergence between two diffusions. This approach was used to good

effect in [24].

Note that we cannot modify the variance of {Zi} in the same way that we modified

the mean. If we attempt to modify the variance of the random variables {Zi} en masse,

then the terms involving Z2
i in (2.83) will not cancel, and the ratio will tend to either 0

or infinity as ∆t→ 0. On the other hand, if we change the distribution of one variable

from the set {Zi}, the contribution from that random variable tends to 0 in the limit.

In Chapter 8, we suggest an alternative parametrisation of the Brownian motion

driving the SDE. We apply importance sampling to the Fourier series coefficients of

the Brownian motion (See Section 2.1.2), which also happen to be standard normal

variates. This parametrisation allows us to modify the distribution of a small number

of variates without the modification disappearing in the limit as ∆t→ 0. As a result, we

have more scope to construct interesting importance distributions. It is possible that

the Fourier series methodology is mathematically equivalent to Girsanov’s theorem

(though we have neither proved nor disproved this assertion). However, we argue that

the Fourier series approach provides insights that are not obvious using the traditional

Girsanov drift-modification approach.





Chapter 3

The filtering problem

In this chapter, we will review the ‘filtering problem’. That is, given a sequence of

noisy observations of a stochastic process, how can one ‘filter’ out the noise while

observing the process in real time? We begin with a review of the Kalman filter, which

is the de-facto standard method of solving filtering problems. Having introduced the

Kalman filter and its nonlinear counterpart (the ‘extended’ Kalman filter), we will

expand our discussion by reviewing some more efficient filters. In Section 3.1.2 we

introduce the ‘unscented’ filter, and in Section 3.3 we describe the particle filter.

3.1 The Kalman filter

The Kalman filter was developed as an extension of least-squares estimation to linear

dynamical systems. The aim of the filter is to compute the distribution of a signal X at

a sequence of times {t1, . . . tn} based on a series of noisy observations {Yti} up to and

including those times.

Prior to Kalman’s paper [25], the Wiener-Kolmogorov filter was the standard tool

for linear time series estimation problems. The idea behind the Wiener-Kolmogorov

filter is to examine the time series of interest in the frequency domain, and remove the

high-frequency components (i.e. noise) in a principled manner. However, the method

required advanced knowledge of Fourier analysis, and was not easily digestible by en-

gineering undergraduates. The Kalman filter simplified this methodology considerably,

shifting the emphasis from a ‘function space’ interpretation of the filtering problem to a

‘state space’ interpretation. It is worth noting that the Kalman and Wiener-Kolmogorov

filters make identical predictions in finite-dimensional linear filtering problems [26].

An alternative formulation of the Kalman filter was developed by Swerling [27], and

31
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was published the year before Kalman’s paper.

The success of the Kalman filter is also attributable to the fact that it is computa-

tionally efficient and recursive, which means it is easily implementable on a computer.

Both Kalman’s and Swerling’s papers were coincident with the rise of large-scale sci-

entific computing. One can make the case that the success of the Kalman filter is

attributable to the rise of the computer.

There is a vast literature that builds on Kalman’s paper [25], and the filter has had

many high-profile applications. Perhaps most notably, it was used as part of the navi-

gation system in the Apollo program [28]. Beyond applications in target tracking and

navigation, the Kalman filter has found applications in such diverse fields as econo-

metrics, geostatistics, and robotics. We now present a short, informal derivation of the

linear filter before discussing its extension to nonlinear system models.

The system is assumed to be linear Gaussian, so that Xt0 ∈ Rn follows a Gaussian

distribution, and the dynamics satisfy

Xtk = AXtk−1 +Ztk−1 + c. (3.1)

Here, {Zti} represents n-dimensional discrete-time Gaussian noise noise with covari-

ance Q, A ∈ Rn×n, and c ∈ Rn.

We assume that observations {Yti} are made in the form

Ytk = HXtk +Vtk , (3.2)

where Ytk ∈ Rs, H ∈ Rs×n, and {Vti} are i.i.d Gaussian with covariance R.

The state transition equation (3.1) and the observation equation (3.2) are linear.

This ensures that {Xt1,Yt1,Xt2, . . .} are jointly Gaussian. The multivariate Gaussian

distribution is closed under conditioning, so that the filtering distribution p(Xtk |Yt1:k)

is also Gaussian.

The filter is divided into two steps. Starting at time tk−1, we first apply the pre-

diction step, where the known dynamics of the system are used to compute the dis-

tribution of the state at time tk. That is, we aim to compute the mean and covariance

of p(Xtk |Yt1:k−1). In the update step, we make a new observation, and incorporate that

information into our estimate to arrive at the time-tk filtering distribution p(Xtk |Yt1:k).

Let mtk−1 and Ptk−1 represent the mean and covariance of the filtering distribution at

time tk−1, and suppose X̄tk−1 ∼ N (mtk−1,Ptk−1). That is, X̄tk−1 represents some ‘plau-

sible’ realisation of the location of the signal, given our current knowledge about its

location.
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In the prediction step, we compute the effect of applying the transition equation

(3.1) to X̄tk−1 . We find that the instant before the observation Ytk arrives, the filtering

mean and covariance satisfy

m−tk := E
[
AX̄tk−1 +Ztk−1 + c

]
= Amtk−1 + c, (3.3)

and

P−tk := Cov
(
AX̄tk−1 +Ztk−1

)
= APtk−1A>+Q. (3.4)

For the update step, we must incorporate the information from the observation Ytk .

We first compute the predicted values of the observation. Suppose X−tk ∼N (m−tk ,P
−
tk ).

We have

µtk := E
[
HX−tk +Vtk

]
= Hm−tk , (3.5)

Stk := Cov
(
HX−tk +Vtk

)
= HP−tk H>+R (3.6)

Ctk := Cov
(
HX−tk +Vtk ,X

−
tk

)
= HP−tk (3.7)

We can now form the joint distribution of the predicted state and observation, con-

cluding that

E[Xtk ,Ytk |Yt1:k−1] = (m−tk ,µtk) (3.8)

and

Cov(Xtk ,Ytk |Yt1:k−1) =

(
P−tk C>tk
Ctk Stk

)
. (3.9)

Standard results about the multivariate Gaussian distribution allow us to conclude that

the posterior mean and covariance satisfy

E[Xtk |Yt1:k−1,Ytk ] = m−tk +CtkS−1
tk (Ytk−µtk) (3.10)

and

Cov(Xtk |Yt1:k−1,Ytk) = P−tk −CtkS−1
tk C>tk . (3.11)

Note that the assumption of Gaussian errors is not strictly necessary, though it makes

the derivation more straightforward. There are non-Bayesian derivations of the Kalman

filter (such as Kalman’s original derivation) that show that among all linear filters, the

Kalman filter minimises the error in the mean square sense, regardless of the nature of

the observation and process noise.

The quantity Ktk = CtkS−1
tk is known as the Kalman gain, and equations (3.10) and

(3.11) can be written as

E[Xtk |Yt1:k−1,Ytk ] = m−tk +Ktk(Ytk−µtk) (3.12)
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and

Cov(Xtk |Yt1:k−1 ,Ytk) = P−tk −KtkStkK>tk (3.13)

When attempting to construct a filter, one has two sources of information: prior knowl-

edge of the system dynamics, and noisy observations. One must therefore look for

a method of combining these sources of information. The Kalman gain can be un-

derstood as a kind of coefficient that tells us how to combine information from the

observations with our prior knowledge of the dynamics. From (3.7) and (3.6), we have

Ktk = HP−tk
(

HP−tk H>+R
)−1

, (3.14)

The intuition behind the Kalman gain is perhaps best explained in one dimension,

so that R, H and P−tk are real numbers. When R is large compared to H and P−tk ,

we have K ≈ 0. Equations (3.12) and (3.13) then tell us that we make essentially no

modification to our posterior mean and covariance. But R is large exactly when our

observations are imprecise. Thus, when our observations are noisy, we rely primarily

on our knowledge of the signal dynamics.

On the other hand, when R is small, we make very precise observations. In this

case,

Ktk ≈ 1/H (3.15)

and

Ytk ≈HXtk . (3.16)

It follows from the definition (3.5) of µtk that

Ktkµtk = KtkHm−tk ≈m−tk . (3.17)

Thus, the posterior mean (3.12) satisfies

mtk = m−tk +Ktk(Ytk−µtk)

≈
(
m−tk −Ktkµtk

)
+KtkHXtk

≈ Xtk . (3.18)

For the posterior covariance, we use the approximation (3.15) along with the defi-

nition (3.6) of Stk to see that

Ptk = P−tk −KtkStkKtk

= P−tk −Ktk
(
HP−tk H+R

)−1 Ktk

≈ P−tk −Ktk
(
HP−tk H

)
Ktk

≈ 0. (3.19)
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so that the posterior variance (i.e. the uncertainty about the position of Xtk) is low.

A similar analysis can be carried out in several dimensions. However, it is compli-

cated by the fact that one must first choose a suitable matrix norm to be able to quantify

a statement like ‘R is small’. Furthermore, some components of the state may not be

observable (i.e. H is low-rank). When this is the case, one must rely on knowledge of

the correlation structure of X to deduce information about its hidden states.

We will now relate the preceding discussion to the so-called ‘continuous-discrete

filtering problem’, in which a continuous process is observed at discrete time intervals.

The so-called Ornstein-Uhlenbeck SDE satisfies

dXt = a(θ−Xt)dt +bdWt . (3.20)

The Ornstein-Uhlenbeck process is the stochastic counterpart of a standard linear

ODE. Here, Xt ∈ Rn. When the matrix a ∈ Rn×n is negative-definite, the parameter

θ ∈ Rn plays the role of a ‘long-run mean’ about which the process oscillates.

The Solution of the Ornstein-Uhlenbeck process is

Xtk = e−a(tk−tk−1)Xtk−1 +
∫ tk

tk−1

ea(u−tk)aθdu+
∫ tk

tk−1

ea(u−tk)bdWu. (3.21)

When X is multidimensional, the exponentials on the left-hand side should be inter-

preted as matrix exponentials. The solution can be written in the form of equation (3.1)

by setting

A = e−a(tk−tk−1), (3.22)

c =
∫ tk

tk−1

ea(u−tk)aθdu, (3.23)

Ztk−1 =
∫ tk

tk−1

ea(u−tk)bdWu. (3.24)

Thus, the continuous-discrete filtering problem for an Ornstein-Uhlenbeck process can

be formulated in terms of the standard discrete-time Kalman filter, provided that one

is only interested in the state of the system at observation times {ti}.

3.1.1 The Extended Kalman filter

The preceding discussion focused on linear models. However, many systems of inter-

est do not have linear dynamics. We now discuss how it is possible to salvage some of

the insight developed from the linear Kalman filter. Under certain circumstances, non-

linear dynamical systems can be approximated with linear systems without inducing
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much error. Indeed, the tracking and dynamics equations used in the Apollo program

were nonlinear, whereas a linear approximation to those equations was implemented

in practice.

To build intuition for when it might be appropriate to approximate a nonlinear SDE

with a linear SDE, we consider the generic system

dXt = a(Xt)dt +b(Xt)dWt . (3.25)

In the general case, X is clearly nonlinear and non-Gaussian. In order for the

Kalman filter to be applicable, we can attempt to construct a process X̃ that captures

some of the properties of X. The dynamics of the linear approximation take the form

dX̃t = AX̃tdt + cdt +BdWt (3.26)

Perhaps the simplest way of choosing A, c, and B is to hold b constant at some

point p, and to Taylor expand a(·) about that point. That is,

a(p+h)≈ a(p)+Jph, (3.27)

where J is the Jacobian matrix of a at p.

One then has

A = Jp, (3.28)

c = a(p), (3.29)

B = b(p), (3.30)

so that

dX̃t = JpX̃tdt +a(p)dt +b(p)dWt . (3.31)

When the Kalman filter is applied to a nonlinear stochastic process in conjunction with

the linear approximation (3.31), the algorithm is known as the extended Kalman filter.

One natural question to ask is ‘under what circumstances is this a good approx-

imation?’. It is clear that the error is induced by holding b(·) constant and Taylor

expanding a(·). If b is ‘almost constant’ in the sense that its variation is low, and a
is ‘almost linear’ in the sense that the variation of its Jacobian is low, then X behaves

‘almost’ like a linear process. It is rather complicated to make precise what is meant

by ‘almost’ here, but see [29, Ch. 8.1] for a rigorous example.

The other possibility is that the process X is constrained to stay in an area where

the approximation (3.27) is valid. One very common way of enforcing this constraint
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is to ensure that the observations are precise and close together. If the observations are

precise, then the filtering distribution will be highly peaked around its mean, and we

can be confident that the signal is nearby. For this reason, we take the Taylor expansion

about the mean of the filtering distribution at time Tk−1. By continuity of the process

X, it follows that Xtk is close to Xtk−1 when tk− tk−1 is small. Thus the process does

not have time to diffuse into a region where the approximation is poor before the next

observation is made.

If neither of these conditions hold, so that X is highly nonlinear and the observa-

tions are noisy or spaced far apart in time, the extended Kalman filter can fail catas-

trophically. For this reason, many improvements on the EKF have been proposed in

the literature. We now review one such improvement: the unscented Kalman filter

(UKF). To this end, we first discuss a method for constructing Gaussian approxima-

tions to certain non-Gaussian random variables. The method is known as the unscented

transform.

3.1.2 The unscented transform

Given a Gaussian random variable Z and a function f , the random variable f (Z) is

non-Gaussian in general. In order to find a Gaussian approximation to f (Z), one has

two options: modify some property of f , or modify some property of Z. The extended

Kalman filter relies on the first of these options: f (x) is replaced with f (a) + (x−
a) f ′(a). Another possibility is to approximate Z with a number of point masses that

capture its distribution. For example, one might use the Monte-Carlo approximation

pZ(x)≈
1
N

N

∑
i=1

δZi(x), (3.32)

E[ f (Z)]≈ 1
N

N

∑
i=1

f (Zi), (3.33)

Var( f (Z))≈ 1
N

N

∑
i=1

f (Zi) f (Zi)>−

(
1
N

N

∑
i=1

f (Zi)

)(
1
N

N

∑
i=1

f (Zi)

)>
, (3.34)

where {Zi} are i.i.d samples from Z. The critical insight here is that, in some sense, it

is easier to approximate Z than it is to approximate f .

In time-critical applications, or in situations where limited computational power is

available, the Monte-Carlo approach may be prohibitively expensive. This is especially

true if f is expensive to evaluate. One can lower N, the number of samples, but this
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increases the variance of the estimates (3.33) and (3.34). One solution, put forward by

S.J Julier in his Ph.D thesis [30] is to use a weighted collection of deterministically-

chosen points to approximate the distribution of Z. These so-called ‘sigma points’

are chosen to capture as faithfully as possible the statistics of Z while minimising the

computational cost of doing so. In the so-called unscented transform, one uses 2n+1

points, where n is the dimension of Z.

We will restrict our exposition to the case where Z has an n-dimensional multivari-

ate normal distribution, and we wish to fit a multivariate normal distribution to f (Z).
Suppose Z has mean m and covariance P. The sigma points for the unscented trans-

form are constructed as follows. One chooses two tuning parameters α and κ, then sets

λ = α2(n+κ)−n. The sigma points are then defined by the following expressions:

σ
0 = m, (3.35)

σ
i = m+(

√
(n+λ)P)∗i, 1≤ i≤ n, (3.36)

σ
n+i = m− (

√
(n+λ)P)∗i, 1≤ i≤ n. (3.37)

Here (
√

P)∗i is the i-th column of a choice of the matrix square root of P defined

via P =
√

P
√

P>. The sigma points are determined once one chooses an appropriate

matrix square root.

The mean and covariance of f (Z) are approximated by a weighted average of the

sigma-point images. Define Yi = f (σi), and set

E[ f (Z)]' µ =
2n

∑
i=0

w(m)
i Yi. (3.38)

We can then make the approximations

Cov[ f (Z)]' S =
2n

∑
i=0

w(c)
i (Yi−µ)(Yi−µ)> , (3.39)

Cov[Z, f (Z)]' C =
2n

∑
i=0

w(c)
i
(
σ

i−m
)
(Yi−µ)> . (3.40)

The weights depend on a third tuning parameter β, and are given by

w(m)
0 =

λ

n+λ
,

w(c)
0 =

λ

n+λ
+(1−α

2 +β),

w(m)
i =

1
2(n+λ)

i = 1, . . . ,2n,

w(c)
i =

1
2(n+λ)

i = 1, . . . ,2n. (3.41)
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It is well known that the unscented transform matches the mean of f (Z) exactly when

f is a polynomial of degree three or less. In general, errors in the estimate of the mean

are introduced only by the fourth and higher terms in the Taylor expansion of f [31].

3.2 Sigma point Kalman filters for diffusion processes

The unscented Kalman filter (UKF) and the extended Kalman filter are both exam-

ples of Gaussian filters, where the filtering distribution at time t is approximated by a

Gaussian distribution. The filtering problem is thus reduced to approximation of the

conditional mean and covariance of the filtering distribution:

mt = E [Xt | {Ytk : tk ≤ t}] (3.42)

and

Pt = Cov [Xt | {Ytk : tk ≤ t}] . (3.43)

It is usually necessary to approximate the conditional mean and covariance: for a

general nonlinear diffusion, the moments are only known in terms of the solution of

the Fokker-Planck equation, described in Section 2.2.4 [32, 10]. In dimensions higher

than three, the Fokker-Planck equation is typically numerically intractable.

The simplest application of the UKF to a diffusion relies on discretisation of the

process. Suppose that at time tk−1 we have an estimate of mtk−1 and Ptk−1 . In the

prediction step, our aim is to compute an estimate of mt and Pt at time t = t−k , the

instant before the next observation arrives.

We divide the time interval [tk−1, tk] into a number of sub-intervals of length ∆t (for

clarity, we will discuss the interval [0, t1] here). We then approximate the SDE (3.25)

on the grid {X∆t ,X2∆t , . . .} via the relation

X( j+1)∆t = f(X j∆t ,Z j), (3.44)

where Z0,Z1, . . . is a suitable sequence of Gaussian random variables. Here, f is

a transition function that depends on the method of discretisation, and Zk is typically

draw from a spherical Gaussian distribution of dimension d. For example, in the Euler-

Maruyama scheme [22],

f(X j∆t ,Z j) = X j∆t +a(X j∆t)∆t +b(X j∆t)
√

∆tZ j, (3.45)

where Z j ∼N (0,Id).
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In this sense, X( j+1)∆t is the image of (X j∆t ,Z j) under a nonlinear transform f.
Given a Gaussian approximation to X j∆t , one can apply the unscented transform to f to

find a Gaussian approximation of X( j+1)∆t . One proceeds iteratively until tk, at which

point the prediction phase ends and we proceed to the update phase. Instead of the

Euler–Maruyama method, one can in some circumstances use higher order Itô–Taylor

expansions, stochastic Runge–Kutta methods or various other methods [22].

Alternatively, one can take a limit as ∆t→ 0 instead of iteratively applying the un-

scented transform at the prediction. By doing so, one recovers a system of differential

equations for the predictive mean and covariance (see, e.g., [33, 34]):

dm−t
dt

= E[a(X−t )]

dP−t
dt

= E[a(X−t )(X−t −m−t )
>]

+E[(X−t −m−t )a
>(X−t )]

+E[b(X−t )b>(X−t )], (3.46)

where the expectations are taken with respect to the Gaussian distribution X−t ∼N (m−t ,P−t ).
In chapter 7, we propose a novel method for computing the predictive distribution.

When a new observation is made (at time t = tk, say), we must update our predictive

distribution with the new information that has arrived. Let m−tk and P−tk be the mean

and covariance of the predictive distribution immediately before the new observation

arrives. We form an approximation X̂−tk of the signal, which is Gaussian with the

predictive mean and covariance. The update equations are similar to those of the linear

Kalman filter, but are included here for completeness:

µk = E[h(X̂−tk )]

Sk = E[(h(X̂−tk )−µk)(h(X̂−tk )−µk)
>]+Rk

Ck = E[(X̂−tk −m−tk )(h(X̂
−
tk )−µk)

>]

Kk = CkS−1
k

mtk = m−tk +Kk(Ytk−µk)

Ptk = P−tk −KkSkK>k , (3.47)

The updated distribution has mean mtk and covariance Ptk . When the observation func-

tion h is nonlinear, one can apply the unscented transform to h(X̂−tk ) to compute an

approximation of µk, Sk, and Ck in (3.47). More complex update rules that have been

tuned for numerical stability are also known in the literature [26]. These are also ap-

plicable to the linear Kalman filter.
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3.3 Particle filters

Sequential Monte-Carlo (SMC) methods are a powerful and general family of tech-

niques for generating samples from high-dimensional probability distributions. Among

the best-known applications of SMC is the particle filter. Particle filters offer a promis-

ing means of approximating the optimal solution of the filtering problem. A number of

excellent tutorials and reviews are avaiable: see, for example, [35] [36] [37], and [38]

for a textbook-length collection of important developments up to 2001. In this sec-

tion, we discuss the use of the particle filter when the signal of interest is a nonlinear

multivariate diffusion process.

Roughly speaking, the particle filter works as follows. At time tk−1, we assume

we have a collection of weighted point masses, or ‘particles’ that approximate the

filtering distribution. The particles are propagated forward in time using a suitable

transition density, resulting in a new collection of point masses. These are assigned

a new set of weights by means of importance sampling. The weights are computed

using knowledge of the signal dynamics, the observation at time tk and the importance

transition density.

The bootstrap filter [39] is discussed in detail in Section 3.3.1. It is one simple im-

plementation of a particle filter. In the bootstrap filter, one uses the prior dynamics of

the signal to propagate the particles forward in time. The bootstrap filter can fail when

the conditional distribution p(Xt |Yt ,Xtk−1) is tightly constrained relative to the uncon-

ditional distribution p(Xtk |Xtk−1). This is because most of the particles are assigned a

low weight in the importance sampling step. In the worst case, one approximates the

filtering distribution with what amounts to a single particle. This phenomenon tends

to occur in high-dimensional filtering problems, and when the observations are highly

informative about the state of the system [40].

One way of correcting for the degeneracy issue is to employ better importance

distributions. For example, one can construct a Gaussian approximation to the joint

distribution of the signal and the observations at time tk. One can then use standard

results about the multivariate normal distribution to approximate the distribution of

the signal conditioned on the observation. The conditioned distribution is often an

effective importance distribution for the particle filter.

The Gaussian approximation can be constructed by linearising the signal and obser-

vation functions. Over short timescales, or for processes whose dynamics are ‘almost’

linear, this can be an effective strategy. However, this is not always the case, and per-
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formance can be poor. An alternative is to use the unscented transform [41] [42] [31],

which often produces a more accurate approximation. This is known as the Unscented

particle filter [43].

3.3.1 The bootstrap filter

In this section, we will briefly review the ideas behind sequential importance sampling,

and particle filtering in particular. We will assume that our signal, X, is a diffusion

process satisfying the stochastic differential equation

dXt = a(Xt)dt +b(Xt)dWt , X0 ∼ pX0 . (3.48)

Here, Xt ∈Rn, Wt ∈Rd , a : Rn→Rn, and b : Rn→Rn×d . We assume a and b satisfy

the usual conditions that ensure X has a unique solution (for example, the assumption

that they are globally Lipschitz is strong enough). As usual, we assume that noisy

observations of the process X are made at times t1:k.

Observations are assumed to arrive in the form

Ytk = h(Xtk)+ εtk , (3.49)

where h : Rn→Rm, and Yt ∈Rm. The random variables {εti} are jointly Gaussian and

independent, each with mean 0 and covariance R. We assume a fixed time T = tk−tk−1

between observations for clarity of exposition, though this is easy to generalise.

Diffusion processes possess the Markov property, so that the joint distribution of

state and observations factorises as

p(Xt1:k ,Yt1:k |X0) =
k

∏
i=1

p(Yti|Xti)p(Xti|Xti−1). (3.50)

In order to compute the transition density p(Xtk |Xtk−1) for a general nonlinear diffu-

sion, one must solve a partial differential equation known as the Fokker-Planck equa-

tion. It is only in special cases that this solution is available in closed form, and one

must typically resort to approximations of some sort.

The update step for the filter can be described in terms of the transition density of

X via the integral equation

p(Xtk |Yt1:k−1) =
∫

p(Xtk |Xtk−1)p(Xtk−1|Yt1:k−1)dXtk−1. (3.51)

This is essentially the Chapman-Kolmogorov equation from the theory of Markov pro-

cesses.
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The observation at time tk can be incorporated into the posterior distribution via an

application of Bayes’ theorem as follows:

p(Xtk |Yt1:k−1,Ytk) =
p(Xtk ,Ytk |Yt1:k−1)

p(Ytk |Yt1:k−1)

=
p(Ytk |Xtk)p(Xtk |Yt1:k−1)

p(Ytk |Yt1:k−1)
. (3.52)

The prediction step relies on the intractable transition density p(Xtk |Xtk−1). In addi-

tion, the normalising constant p(Ytk |Yt1:k−1) in the update step is typically difficult to

compute when the state dimension of X is large. In the next section, we will see how

importance sampling can be exploited to overcome both of these issues.

3.3.2 Sequential importance sampling and the bootstrap filter

As we noted earlier, it is usually impractical to evaluate the transition density of a

general diffusion process at a given time. However, it is relatively straightforward to

construct an approximate sample path of a diffusion process. This can be achieved by

means of a numerical scheme such as the Euler-Maruyama method or the Ito-Taylor

scheme. In some cases is is even possible to use a form of rejection sampling to

generate sample paths from a nonlinear diffusion without inducing any discretisation

bias [44] [45].

We will now show how sequential importance sampling (SIS) can be applied to a

diffusion process in order to compute an approximate solution to the filtering problem.

Monte-Carlo methods such as SIS are particularly suited to filtering problems involv-

ing diffusion processes. This is due to the relative ease of generating approximate

sample paths, and the presence of the Markov property.

Suppose at time tk−1, we have a collection of ‘particles’ {Xi
tk−1
} and positive

weights {wi
tk−1
} that sum to unity, such that the filtering distribution p(Xtk−1|Yt1:k−1)

is approximated by

p(Xtk−1 |Yt1:k−1)≈∑
i

wi
tk−1

δXi
tk−1

. (3.53)

A weighted sample such as this can be initialised at time 0 by drawing uniformly-

weighted samples from the prior distribution on X0.

We cannot apply the prediction equation in a straightforward manner, since the

transition density is not generally available in closed form. However, it is usually

straightforward to generate samples from p(Xtk |Xtk−1) (provided that one is prepared

to tolerate some discretisation bias). In the simplest version of the bootstrap filter,
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we ‘move’ each particle δXi
tk−1

in turn by drawing a sample Xi
tk from the distribution

p(Xtk |Xi
tk−1

). This gives a weighted particle approximation for the predictive distribu-

tion:

p(Xtk |Yt1:k−1)≈∑
i

wi
tk−1

δXi
tk
. (3.54)

At time tk, the predictive distribution must be updated with the observation Ytk . We

perform this update by re-weighting the particles in (3.54). Equation (3.52) shows us

that, up to normalisation, the weights should satisfy

w̃i
tk = wi

tk−1
p(Ytk |X

i
tk−1

) (3.55)

The weights are now normalised by setting wi
tk = w̃i

tk/∑ w̃ j
tk , and we arrive at the

new weighted particle approximation

p(Xtk |Yt1:k)≈∑wi
tkδXi

tk
. (3.56)

Repeated application of the weight update equation (3.55) as described above can

be problematic. Typically, one of the weights will grow to dominate the others, with

the result that the filtering distribution is effectively approximated by a single particle.

This issue can be resolved by adding a resampling step. When the weights become

sufficiently imbalanced, we create a new, uniformly weighted collection of particles

by sampling from the discrete distribution in (3.53) with replacement. The prediction

and update steps are then applied as usual. This is known as the bootstrap filter.

Instead of sampling from the prior dynamics of the particles to generate the ap-

proximation to the predictive equation in (3.54), one can in principal draw from an

alternative distribution q(Xtk |Xtk−1 ,Ytk) and apply importance sampling. The predic-

tive approximation is then given by

p(Xtk |Yt1:k−1)≈∑
i

wi
tk−1

p(Xi
tk |X

i
tk−1

)

q(Xi
tk |X

i
tk−1

,Ytk)
δXi

tk
. (3.57)

To update the predictive equation, we apply the relation

w̃i
tk = wi

tk−1
p(Ytk |X

i
tk−1

)
p(Xi

tk |X
i
tk−1

)

q(Xi
tk |X

i
tk−1

,Ytk)
, (3.58)

and normalise the weights as usual.

The possibility of using importance sampling comes with the caveat that the ratio

of densities must be tractable, even if the transition density itself is not. This is a

severe constraint, and few proposals are suitable. We explore one possible proposal

distribution in Chapter 8.
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3.3.3 The unscented particle filter

Doucet, et al. [46] have shown that the optimal importance distribution in (3.57) is

q(Xi
tk |X

i
tk−1

,Ytk) = p(Xi
tk |X

i
tk−1

,Ytk). (3.59)

That is, the optimal importance distribution at time tk is the filtering distribution condi-

tioned on the incoming observation at time tk. The distribution is optimal in the sense

that it minimises variance of the importance weights. It also has the property that the

importance weights at time tk depend only on the state of the particle at time tk−1.

It is often infeasible to sample from this distribution, though one can attempt to

sample from a distribution that approximates it. One method of doing so uses the

unscented transform to approximate the mean and variance of the optimal importance

distribution. A Gaussian distribution with the corresponding mean and variance is used

in place of the optimal distribution. This is known as the unscented particle filter [47].





Chapter 4

Parameter estimation

In this chapter, we review and summarise a number of works related to parameter

estimation of diffusion processes. Some methods aim to compute the full Bayesian

posterior distribution of the data, whereas others aim to maximise the likelihood func-

tion. In the first section, we discuss Bayesian methods, while maximum likelihood

approximations are discussed in Section 4.2. We point the reader to the review paper

of Sorensen [48], who discusses parameter estimation in the univariate stationary set-

ting. Other useful review articles include Singer [49], and the chapter on estimation in

Iacus [50]. Important early work on this topic was undertaken by Florens-Zmirou [51]

[52].

4.1 Bayesian inference

As we mentioned in Section 1.2, one is often interested in estimating some parameter

vector θ that governs the behaviour of a diffusion process X. In when the observations

of X are noisy, one has

p(θ|Yt1:n) ∝ p(θ)p(Yt1:n|θ) (4.1)

= p(θ)
∫

p(Yt1:n,Xt1:n|θ)dXt1:n

= p(θ)
∫ n

∏
k=1

p(Ytk |Xtk)p(Xtk |Xtk−1,θ)dXt1:n. (4.2)

When the observations are exact, the posterior distribution has a particularly simple

47
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form:

p(θ|Xt1:n) ∝ p(θ)p(Xt1:n|θ)

= p(θ)
n

∏
k=1

p(Xtk |Xtk−1 ,θ). (4.3)

This special case is useful for outlining the problems that one can encounter when

attempting to infer the posterior distribution over θ.

It is somewhat counter-intuitive, but the addition of observation noise can often

make it easier to sample from the posterior distribution. The reason for this is that

when observations are noisy, one can use standard numerical methods to generate data

samples that are consistent with the observations. Any sample paths that lie in the

rough neighbourhood of the observations are plausible. On the other hand, when ob-

servations are precise, most sample paths have low likelihood. Thus, unconditioned

sample paths are not suitable for use in inference algorithms in this setting.

For certain diffusions such as the Ornstein-Uhlenbeck process, the transition den-

sity p(Xtk |Xtk−1) can be computed in closed form. Hence it is possible to evaluate the

posterior distribution, at least up to some normalising constant. For example, Stim-

berg et al. [53] formulate a model which follows an Ornstein-Uhlenbeck process, the

parameters of which vary in time and are governed by a latent Markov jump process.

Since the model is linear and Gaussian when conditioned on the value of this Markov

jump process, inference can be conducted exactly.

For a general nonlinear diffusion, this is not the case. The transition density can-

not be evaluated without significant computational expense, rendering (4.2) and (4.3)

intractable. However, nonlinear diffusions do possess useful structure than can be ex-

ploited. The Euler-Maruyama discretisation shows us that, in some sense, diffusion

processes are locally Gaussian. Given a diffusion with drift aθ(x) and diffusion coef-

ficient bθ(x), the Euler-Maruyama approximation tells us that when ∆t = tk− tk−1 is

small,

p(Xtk |Xtk−1)≈N
(

Xtk |Xtk−1 +aθ(Xtk−1)∆t,bθ(Xtk−1)bθ(Xtk−1)
>

∆t
)
. (4.4)

For this reason, it is sensible to augment the data, say (Xtk−1,Xtk), with ‘fictional’

intermediate data points. We suppose there are M additional data points observed times

tk−1 < tk−1,1 < · · · < tk−1,M < tk which are sufficiently close to one another that (4.4)

is a good approximation. The additional data can be integrated out by Monte-Carlo

methods. In summary, between any two observations we work with an augmented data
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set (Xtk−1,Xtk−1,1, . . . ,Xtk−1,M ,Xtk). In the augmented space, each data point is approx-

imately distributed according to a Gaussian distribution conditional on the previous

one, but the augmentation also raises the dimensionality of the inference problem,

which can be undesirable. Perhaps the most common strategy in the literature is to

integrate out the augmented data using Markov chain Monte Carlo methods. However,

Fearnhead [54] discusses a number of other methods (such as sequential Monte Carlo

and importance sampling) that are also applicable.

The data augmentation strategy forms the basis of a number of papers on MCMC

and parameter estimation, which we will now review. Elerian, Chib, and Shepard [55]

consider the case of a univariate process X observed without error. We review this

first paper in some depth since it demonstrates the main ideas in the MCMC inference

paradigm and the problems encountered therein, without adding extra complications

(such as multivariate, partially observed data). Similar methodology was also proposed

by Eraker [56] with application to financial modelling.

We will use the notation X∗tk−1
= (Xtk−1,1, . . . ,Xtk−1,M) to refer to the imputed data

between the observations at time tk−1 and tk. The combination of imputed and observed

data, (Xt1,X∗t1,Xt2,X∗t2, . . .) will be referred to as the augmented data.

Elerian, Chib, and Shepard implement a Gibbs sampler that alternates between up-

dating θ conditional on the augmented data, and updating the imputed data conditional

on θ and the observed data. As a result of the Markov property of X, X∗ti is independent

from X∗t j
conditional on any observation between times ti and t j. That is,

p(X∗t1, . . . ,X
∗
tn|Xt1:n,θ) =

n

∏
i=1

p(X∗ti|Xti,Xti+1,θ). (4.5)

Hence, when updating the augmented data, it is sufficient to be able to sample from

p(X∗ti|Xti,Xti+1,θ) for each i sequentially.

While it is easy to sample from a diffusion process given its initial condition, it

is highly nontrivial to sample from a diffusion given an initial and final condition, as

we saw in Section 2.2.6. A diffusion whose initial and final conditions are specified is

known as a diffusion bridge. One can argue that the ability to generate samples cheaply

from a general diffusion bridge would render most problems in filtering, smoothing,

and parameter estimation of diffusion processes relatively trivial. A diffusion bridge

can itself be described as a stochastic differential equation. Its dynamics coincide

with the dynamics of the unconditioned diffusion, but with a new ‘potential well’ term

appearing in the drift of the process (see Section 2.2.6). The new term is given in terms

of the transition density of the unconditioned process, which is intractable and must
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typically be approximated.

Elerian, Chib and Shepard advocate using Newton-Raphson iteration to find a lo-

cal maximum of log(p(X∗ti|Xti,Xti+1,θ)) (and hence a mode of the distribution). The

iteration is also used to compute the Hessian of the distribution at the local minimum,

which gives an estimate of the distribution’s covariance. These data are used to con-

struct a multivariate Gaussian approximation to the distribution. The approximation is

used as a proposal distribution in a Metropolis-Hastings correction step.

When M is large (i.e. a large number of latent variables are used), the Gaussian

approximation may not be suitable, and the rate of rejection can rise to unacceptable

levels. In the numerical example considered in the paper, performance declines be-

tween m = 20 and m = 30 latent variables. In addition, there is no guarantee that

log(p(X∗ti|Xti,Xti+1,θ)) is unimodal. It is likely that this method of generating propos-

als will perform poorly for SDEs with multi-modal marginal distributions.

It is worth adding that the description above is a slight simplification of the content

of [55]. In fact, the authors suggest that X∗ti be broken into sub-blocks of random

size and then updated. This has the effect of increasing the acceptance rate of the

Metropolis-Hastings step, but it also increases the autocorrelation of the Markov chain.

In order to update θ, the authors use the factorisation

p(θ|Xt1:n,X
∗
t1:n

) ∝ p(Xt1:n,X
∗
t1:n
|θ)p(θ)

=
n

∏
i=1

M

∏
j=0

p(Xti, j+1|Xti, j ,θ) (4.6)

together with the Gaussian approximation (4.4). Here, we use the convention that

Xti,0 = Xti and Xti,M+1 = Xti+1 . Equation (4.6) shows how to evaluate the conditional

distribution for θ up to proportionality, so that a general Metropolis-Hastings update

can be applied. The authors do not recommend a general update method for θ since it

is usually model-dependent.

There is an important point in this paper that the authors have not explicitly con-

sidered, but which is hinted at in the numerical experiments. The problem was first

described in Roberts and Stramer [57]. The issue is that in some cases, the imputed

data can be highly informative about the value of a given parameter. When this is

the case, only a small range of values of θ are consistent with the augmented data.

P(θ|Xt1,X∗t1,Xt2,X∗t2, . . .) is tightly constrained, whereas p(θ|Xt1 ,Xt2 , . . .) need not be.

Proposed new values for θ are only accepted if they are close to current values of theta,

and the Gibbs sampler only explores the space very slowly.
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To see how this can happen in practice, consider the very simple case

dXt = bdWt , (4.7)

with an observation at t = 0 and t = 1. Imputed data points are introduced at times

(1/M,2/M, . . . ,(M−1)/M). We then have

P(b|X0,X1/M, . . . ,X1) ∝ P(X0,X1/M, . . . ,X1|b)P(b) (4.8)

= p(b)
M

∏
i=1

N (Xi/M|X(i−1)/M,b2/M).

Thus, the random variables {(Xi/M−X(i−1)/M)} are i.i.d samples with from a normal

distribution with mean 0 and variance b2/M.

When M is large, the law of large numbers implies that

b2

M
≈ 1

M

M

∑
i=1

(Xi/M−X(i−1)/M)2. (4.9)

Indeed, this is true with probability 1 as M → ∞. This shows us that the sample

path of X completely determines the value of b. We can conclude that the conditional

distribution of b is highly concentrated around the right-hand side of (4.9) when M is

large.

Roberts and Stramer [57] suggest a solution in the one-dimensional setting with

constant diffusion coefficient. The diffusion is transformed via

Ẋt :=
Xt

b
(4.10)

Ẍt := Ẋt +
(ti− t)Ẋti−1 +(t− ti−1)Ẋti

ti− ti−1
, ti−1 ≤ t ≤ ti. (4.11)

The first transformation has the effect of ‘moving the diffusion coefficient into the

drift’, while the second transformation means proposals can be generated using any

tractable ‘bridge’ process that starts and ends at 0. For example, imputed data can be

proposed by sampling from a Brownian bridge between these times.

The thesis of Kalogeropoulos [58] extends these ideas to the multivariate, partially

observed setting where the diffusion coefficient may be dependent on the state. The

transform (4.10) is replaced with

f (x) :=
∫ x

c
b−1(u)du, (4.12)

Ẋt := f (Xt). (4.13)
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where c is an arbitrary constant. This is known as the Lamperti transform. It has

the effect of setting the diffusion coefficient of the transformed diffusion f (X) to the

identity matrix. It is a critical component of a number of inference algorithms (see, for

example, [59], [44]). However, the transform may not always exist (for example, when

b is not invertible). When it does exist, it may be difficult to compute in closed form.

Golightly and Wilkinson [60] suggest a method for working around the problem

of highly informative imputed data without the need to apply the Lamperti transform.

They apply a ‘whitening’ step to the data before running the Gibbs sampler on θ and

the augmented data. The signal is assumed to follow a multivariate, partially observed

diffusion process with state-dependent diffusion coefficient. We will describe the tech-

nique applied to a process observed at times 0 and 1 with M imputed data points. The

Euler discretisation of this process is given by

X(i+1)/M = Xi/M +aθ(Xi/M)
1
M

+

√
1
M

bθ(Xi/M)Zi, (4.14)

where Zi∼N (0,1). Given a set of imputed data and a fixed value of θ, one can deduce

the value of the variables {Zi} by re-arranging (4.14). Under the assumption that b is

invertible,

Zi =
√

M
(
bθ(Xi/M)

)−1
(

X(i+1)/M−Xi/M−aθ(Xi/M)
1
M

)
. (4.15)

The authors suggest using a Gibbs sampler to alternate between sampling {Zi} given

θ, and sampling from θ given {Zi}. When running the Gibbs sampler, it is necessary

to ensure that the simulations are always consistent with the data. This is achieved

by adding a Metropolis-Hastings step, in which proposals are made from a ‘bridge

process’ that satisfies

dX̄t = ā(X̄t)dt +bθ(X̄t)dWt , (4.16)

where

Σ(x) = bθ(x)bθ(x)> (4.17)

ā(x) = aθ(x)+Σ(x)(Σ(x)(1− t)+R)−1 (Y1− x−aθ(x)(1− t)
)
. (4.18)

The acceptance ratio for the proposals is computed by means of Girsanov’s theorem

(see Section 2.2.7). As t approaches 1, the second term on the right in (4.18) dominates,

forcing X̄ towards Y1. This ensures the sample path ends up in the neighbourhood of

the observation. When the covariance R of the observation noise is small and b is

constant, the dynamics of the proposal match those of a Brownian bridge. This may
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be a problem, as the dynamics of the original SDE may be very dissimilar to those of a

Brownian bridge, resulting in a high rejection rate. We explore this possibility further

in Chapter 6.

Perhaps the most sophisticated use of MCMC-based parameter estimation to date

was developed in the series of papers [61, 62, 63, 64], (and applied in a different

context in [44, 45]). The methodology is only applicable to diffusions that have a

‘gradient drift’. That is, there exists a function A : Rn→ R such that the drift a of the

diffusion satisfies a = ∇A. These properties imply that the diffusion is reversible, and

that the dynamics describe a random walk in a potential field. The diffusion coefficient

must also satisfy b(x) = In. When this is not the case, one can sometimes transform

X into the required form via the Lamperti transform. The assumptions are somewhat

restrictive for multivariate diffusions, though one-dimensional diffusions are usually

of the required form.

The authors describe a method that allows them to sample from certain classes

of diffusion process with no discretisation bias. The sampling algorithm used by the

authors is a form of rejection sampling which they call the ‘exact algorithm’. The key

idea behind the exact algorithm is that it is possible to decide whether to accept or

reject a proposed path after inspecting it at a finite (albeit random) number of times.

These times are the arrival times of a certain auxiliary Poisson process, and will be

denoted {ψ1, . . . ,ψk}, where k follows a Poisson distribution.

In order to construct a diffusion path starting at a point x and ending at y after a time

t, the authors consider proposals from a Brownian bridge B starting at x and ending at

y t units of time later. Values of the Brownian bridge {Bψ1, . . . ,Bψk} are sampled at

times {ψ1, . . . ,ψk}. The resulting collection of times and Brownian bridge values is

known as the skeleton. The skeleton is accepted with a certain probability that depends

on x,y, t and the drift function a.

Once the skeleton has been accepted, one can sample from the diffusion X at any

other time s by sampling from a Brownian bridge that is conditioned to hit the skeleton

points at the appropriate times. This is computationally inexpensive as a result of the

Markov property of Brownian bridges.

The authors use a Gibbs sampler to alternate between drawing from the skeleton

process and drawing from the parameters θ that govern the drift function.

Andrieu et al. [65] describe a very general MCMC method for parameter esti-

mation that is based on sequential importance sampling. The methodology, known

as ‘particle MCMC’, builds on ideas that were first developed in [66]. The version
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that is applicable to the estimation problem at hand is known as ‘particle marginal

Metropolis-Hastings’ (PMMH). The idea itself is quite simple – the bulk of the paper

is dedicated to proving correctness of the algorithm, which is not straightforward.

The basic idea is to replace the intractable quantities that one encounters in the pa-

rameter estimation problem with estimates obtained from a particle filter. The sampler

targets the distribution

π(Xt1:n,θ) = p(Xt1:n ,θ|Yt1:n) = p(Xt1:n | θ,Yt1:n)p(θ|Yt1:n)

= p(Xt1:n|θ,Yt1:n)
p(Yt1:n | θ)p(θ)

p(Yt1:n)
(4.19)

Samples from the conditional distribution of X can then be discarded, leaving a point

estimate of p(θ|Yt1:n). The proposal distribution is chosen to be of the form

q
(
(θ,Xt1:n)→ (θ∗,X∗t1:n

)
)
= q(θ∗|θ)p(X∗t1:n

|θ∗,Yt1:n). (4.20)

Here, q(θ∗|θ) is a suitable Metropolis-Hastings proposal. The acceptance ratio is then

a
(
(θ,Xt1:n)→ (θ∗,X∗t1:n

)
)
= 1∧ p(Yt1:n|θ∗)p(θ∗)

p(Yt1:n|θ)p(θ)
q(θ|θ∗)
q(θ∗|θ)

, (4.21)

since the term p(X∗t1:n
|θ∗,Yt1:n) in the proposal cancels with the same term in the target

distribution. The only term in this expression that is difficult to estimate is p(Yt1:n|θ∗).
However, as we saw in Section 3.3.1, it is straightforward to estimate this term us-

ing sequential Monte-Carlo methods. The main drawback to this method is that it is

expensive. One must run a new particle filter for each draw of θ∗.

4.2 Maximum likelihood estimation

In some situations, one may not need to compute the full Bayesian posterior distribu-

tion over parameters θ that govern a diffusion process. It might be sufficient to compute

the maximum likelihood value of θ.

In the case of error-free observations of a process, this is equivalent to finding the

value of θ that maximises

log(p(Xt1:n|θ)) =
n−1

∑
i=1

log
(

p(Xti+1|Xti,θ)
)
. (4.22)

In this simple case, the first problem one encounters is to find an efficient way of esti-

mating log
(

p(Xti+1|Xti,θ)
)
. This is the issue that is addressed in Durham and Gallant
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[67], who study the univariate error-free problem. In the examples considered in the

paper, the parameter vector is low-dimensional, and it appears that the log-likelihood

(4.22) has been evaluated on a grid of discrete values of θ. Clearly, such a method

would not scale beyond a handful of dimensions, but in some contexts it is of interest.

One can make the case that [67] is largely a review paper, though it also makes

some novel contributions. The authors point out that one can use a Brownian bridge

together with an application of Girsanov’s theorem in order to construct an importance

sampler for use in a Monte-Carlo estimate of the transition density. They also show

how to modify the Brownian bridge proposals so that the resulting estimates are more

stable.

Archambeau et al. [68, 24, 69] define a notion of Kullback-Leibler (KL) divergence

between two diffusion processes (or more accurately, two distributions over function

space that are defined by diffusion processes). In order for the KL divergence to be

finite, the diffusion processes must have identical diffusion coefficient, which must be

state-independent. We define these processes as

dXt = a(Xt)dt +bdWt , (4.23)

dX̄t = ā(X̄t)dt +bdWt . (4.24)

Let P be the distribution on X (which is a distribution on the space of continuous

functions) and let Q be the the distribution for X̄, so that for any set S of functions,

p(X ∈ S) =
∫

S
dP(ω), (4.25)

and similarly for Q and X̄. According to Girsanov’s theorem, the ‘density ratio’ (or

more accurately, the Radon-Nikodym derivative) between two diffusion processes is

dP
dQ

= exp

(∫ T

0

(
a(Xu)− ā(Xu)

b

)
dWu−

1
2

∫ T

0

(
a(Xu)− ā(Xu)

b

)2

du

)
, (4.26)

where T is some timescale of interest. See Section 2.2.7 for more details and an infor-

mal derivation. We take the expectation of the logarithm of (4.26) (recalling that Ito

integrals have zero mean) to see that

KL(Q||P) = 1
2

∫ T

0
EQ

[(
a(Xu)− ā(Xu)

b

)2
]

du, (4.27)

where EQ[·] is understood to be ‘expectation with respect to the distribution Q’. Note

that the authors derived (4.27) by discretising the processes and passing to the contin-

uum limit rather than by applying Girsanov’s theorem. However, it is entirely likely
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that the authors are aware of the derivation given here, and indeed the derivation via

discretisation is arguably more suitable for an audience of non-specialists. The deriva-

tion is similar for vector-valued processes, with the KL divergence given by

KL(Q||P) =
∫ T

0
EQ

[
(a(Xu)− ā(Xu))

> (bb>)−1 (a(Xu)− ā(Xu))
]

du (4.28)

The authors formulate the inference problem as a constrained optimisation problem.

The aim is to minimise the vatiational free energy

F (Q,θ) =−EQ

[
log
(

p(X,Yt1:n|θ)
Q(X)

)]
. (4.29)

This is equivalent to minimising the KL divergence. The optimisation problem is used

to find the process with linear, time-dependent drift that minimises the free energy.

Statistics of this new process are tractable, and so inference is performed on the varia-

tional approximation.

Aı̈t-Sahalia [70, 71, 59] estimates the transition density p(Xti|Xti−1,θ) (and hence

the log-likelihood, via (4.22)) by means of an expansion in Hermite polynomials.

These polynomials form an orthonormal basis of the Hilbert space whose inner product

is given by

〈 f ,g〉H =
1√
2π

∫
f (u)g(u)e−u2

du. (4.30)

In fact, the Hermite polynomials are the result of performing the Gram-Schmidt pro-

cedure on {1,x,x2, . . .} with the inner product (4.30).

Aı̈t-Sahalia first transforms the diffusion into the form

dXt = a(Xt)dt +dWt , X0 = 0. (4.31)

This is further rescaled via X̂ti = Xti/
√

(ti− ti−1), so that p(X̂ti|X̂ti−1) resembles a

standard normal distribution as closely as possible.

To illustrate Aı̈t-Sahalia’s approach, we introduce alternative notation for the tran-

sition density:

f (x,y,∆t) = lim
δx→0

P(X̂ti ∈ δx|X̂ti−1 = y)/δx, (4.32)

where ∆t = ti+1− ti. We can expand the left-hand side of (4.32) in terms of Hermite

polynomials in x:

f (x,y,∆t) =
ex2

√
2π

∞

∑
i=1
〈 f (·,y,∆t),Hi〉Hi(x). (4.33)

Note that we use the standard inner product rather than (4.30). The transition density

can be approximated by truncating the sum in (4.33). All that remains is to estimate
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〈 f (·,y,∆t),Hi〉. It turns out this is equivalent to estimating E[H(Xti)|Xti−1]. Aı̈t-Sahalia

does this by truncating a Taylor expansion in ∆t. This ‘Taylor’ expansion is actually

the stochastic analytic counterpart of the ordinary Taylor expansion (making use of the

so-called infinitesimal generator of the process), but the idea is the same. The result

is asymptotically exact as the number of terms in the Taylor series and the number of

terms in the truncation of (4.33) tend to infinity.

One practical drawback of the method is that the formulas are unweildy. For ex-

ample, the third-order Taylor expansion of 〈 f (·,y,∆t),H1〉 contains eight terms, which

involve up to fourth-order derivatives of a. Indeed, multiple pages of [71] are dedicated

to listing formulas for the coefficients in a simple two-dimensional example.

Numerical experiments in [70] and [59] are unfortunately limited. The papers do

not explore performance of the method on a dataset generated by a nonlinear diffusion,

though details are provided for an Ornstein-Uhlenbeck process. As a result of the

limited experiments and difficulty of implementation, it is unclear whether this method

could be effective in practice.

Another intriguing way of proceeding comes from the exact sampling approach of

Beskos et al. [72], which was discussed earlier in Section 4.1. As before, the method

is only applicable to gradient diffusions – i.e., processes with unit diffusion coefficient

and a drift that can be expressed as the gradient of a function. It turns out that the

density of a gradient diffusion satisfies

p(Xt |X0) =N (Xt−X0|0, tIn)exp(A(Xt)−A(X0))

×E
[

exp
(
−
∫ t

0
φ(Bs)ds

)]
, (4.34)

where φ(x) = ‖a(x)‖2 +∇2A(x), and the expectation is over all Brownian bridges B
starting at X0 and ending at Xt . These terms are all tractable aside from the expectation

on the right. However, it is possible to construct an unbiased estimator of this quantity

by sampling from a certain Poisson process and computing statistics of that process.

Moreover, one can use this technique to obtain an estimate of the likelihood function

as a whole, rather than pointwise estimates for specified values of θ.

The ability to construct an unbiased estimate of the transition density has uses be-

yond maximum likelihood estimation. In [44], [45], these ideas were used to construct

a particle filter in which the weights are unbiased estimates of the ‘true’ weights. The

work is discussed further in Section 8.
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Chapter 5

The series expansion approximation

and SDEs

In this chapter, we introduce a ‘series expansion approximation’ to a stochastic differ-

ential equation. The basic insight behing the approximation is that Brownian motion

can be ‘simplified’ in some sense, by throwing away the high-frequency components

of the process. The remaining process can be described using a relatively small num-

ber of covariates. We will use the ‘simplified’ Brownian motion as the driving noise in

an approximation to a stochastic differential equation.

In Section 5.1.1, we introduce the series expansion approximation. Issues sur-

rounding convergence of the approximation to the true process are discussed in Section

5.1.2. In Section 5.1.3, we show that it is possible in some cases to set the approxi-

mation error to 0 at a given time. In Section 5.1.4, we investigate the accuracy of the

approximation with a number of numerical experiments. We show how the approxi-

mation can fail in ‘resonant’ systems in Section 5.1.5.

5.1 Brownian Series expansions

In Section 2.1, we described a construction of Brownian motion in terms of an or-

thonormal basis of L2[0,T ], where T is some timescale of interest. We will now re-visit

that construction. We will show how it can be used to generate approximate sample

paths from a diffusion process. We will briefly discuss how this approximation can

be exploited for inference and parameter estimation. This discussion will be expanded

upon in Chapters 6, 7 and 8.

We will begin with the same set-up as in Section 2.1. That is, we choose an or-

61
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thonormal basis {φi} of L2[0,T ]. We first present an alternate version of the derivation,

which uses Ito calculus. This derivation, adapted from [73], provides more insight into

the role of the random coefficients {Zi} that appear in (2.25).

Suppose W = (W (1), . . . ,W (d)) is a standard d-dimensional Brownian motion, and

let {φi}i≥1 be an orthonormal basis of L2([0,T ],R). We use the notation I{A}(·) to

denote the indicator function. That is, I{[0,t]}(u) = 1 when 0≤ u≤ t, and I{[0,t]}(u) = 0

otherwise. One can construct a series expansion of W in terms of the basis functions

{φi} as follows:

Wt =
∫ T

0
I{[0,t]}(u)dWu

=
∫ T

0

(
∞

∑
i=1
〈I{[0,t]},φi〉φi(u)

)
dWu

=
∞

∑
i=1

(∫ T

0
φi(u)dWu

)
〈I{[0,t]},φi〉

=
∞

∑
i=1

(∫ T

0
φi(u)dWu

)∫ t

0
φi(u)du. (5.1)

We use the standard inner product on L2[0,T ], which is defined as

〈 f ,g〉=
∫ T

0
f (u)g(u)du. (5.2)

For ease of notation, we set

Zi =
∫ T

0
φi(u)dWu. (5.3)

We can see that the stochastic integrals are i.i.d d-dimensional standard normal by

noting that the basis functions are deterministic (so that the integrals follow a normal

distribution). Ito integrals have mean 0, so that

E [Zi] = 0. (5.4)

Finally, by Ito’s isometry,

Cov(Zi,Z j) = E

[(∫ T

0
φi(u)dWu

)(∫ T

0
φ j(u)dWu

)>]

=

(∫ T

0
φi(u)φ j(u)du

)
Id = δi jId. (5.5)

Here, Id is the d×d identity matrix.

We conclude that

Wt =
∞

∑
i=1

Zi

∫ t

0
φi(u)du. (5.6)
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We can obtain an approximation of a Brownian sample path by drawing i.i.d samples

Zi from a standard normal distribution and truncating the sum in (5.6). This allows

us to describe a Brownian sample path approximately in terms of a finite number of

variates.

We will adopt the convention that the basis functions are ordered by the number

of times they change sign on the interval [0,T ]. Thus, when i is small, Zi governs

low-frequency oscillations of the Brownian motion. We will see that in most cases, the

most ‘interesting’ coefficients will be those that govern the low-frequency terms.

5.1.1 Series Expansion Approximation of SDE

The heuristic behind the series expansion approximation is that high-frequency, low-

amplitude oscillations in (5.6) should ‘matter’ less than the low-frequency, high ampli-

tude terms in the Brownian motion when it is used as the driving noise in a diffusion

process. This is because high-frequency terms change sign frequently. A system driven

by a high-frequency signal will be ‘pushed’ in one direction for a short time. When

the driving signal changes sign, this will create a ‘push’ in the opposite direction. This

second force will often mitigate the effect of the first. We do not expect that the heuris-

tic will work in all situations: for example, the reasoning we have outlined here is

obviously not applicable to resonant systems.

We now present a brief description of the series expansion approximation. As

usual, we will assume the dynamics of the diffusion satisfy

dXt = a(Xt)dt +b(Xt)dWt X0 = x0. (5.7)

According to this heuristic, we should be able to truncate (5.6) after, say, N terms

without inducing significant bias in the distribution of X at some time t ≤ T . Of course,

the nature of this bias (and therefore the choice of N) depends on the choice of {φi}
and the dynamics of the SDE.

We can formally differentiate both sides of (5.6), yielding

dWt

dt
=

∞

∑
i=1

Ziφi(t). (5.8)

Note that equation (5.8) is strictly formal: the sum on the right diverges with proba-

bility 1, reflecting the fact that Brownian motion is nowhere differentiable. Truncating

the sum gives the approximation

dWt ≈
N

∑
i=1

Ziφi(t)dt. (5.9)
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We can substitute this approximation for dWt in (5.7). We will refer to this new

approximate process as X̂. Since X̂ is driven by a finite linear combination of basis

functions, the resulting process is differentiable. We can therefore interpret X̂ as the

solution to an ordinary differential equation, which satisfies

dX̂t

dt
= a(X̂t)+b(X̂t)

N

∑
i=1

Ziφi(t). (5.10)

The approximation (5.10) has the advantage of re-casting an infinite dimensional

problem in finite-dimensional terms. Given the value of X̂tk−1 as an initial condition,

we can view the solution of (5.10) as a function

X̂tk = f (T, X̂tk−1,Z1:N), (5.11)

where T = tk − tk−1. Here, f solves the ordinary differential equation (5.10), and

{Zi}1≤i≤N are i.i.d standard d-dimensional Gaussian random variables. In essence,

the time-t distribution of the process X̂ can be interpreted as the image of a Gaussian

distribution under a nonlinear transform.

Of course, one can apply this reasoning to other methods for approximating SDEs.

In the N-step Euler-Maruyama scheme, one sets ∆t = T/N, and

X(n+1)∆t = g(X(n∆t ,Zn) = Xn∆t +a(Xn∆t)∆t +b(Xn∆t)Zn
√

∆t. (5.12)

The equivalent of f in (5.11) is the N-fold application of g to the initial state X0.

However, this approximation puts all random variables {Zi} on an ‘equal footing’, and

loses the interpretation of the coefficients as controllers of the behaviour of the SDE at

varying frequencies.

5.1.2 Convergence of the series expansion method

We now discuss asymptotic convegence of the approximation (5.10) to the solution

of the true SDE. Wong and Zakai [74] showed that in the univariate case, under mild

technical assumptions, the solution of (5.10) converges to the Stratonovich solution of

the SDE that is being approximated.

We use the circle notation to denote Stratonovich integration. Recall that a Stratonovich

SDE

dXt = a(Xt)dt +b(Xt)◦dWt (5.13)

can be converted to an Itô SDE and vice versa using the relationship∫ t

0
b(Xt)◦dWt =

∫ t

0
b(Xt)dWt +

∫ t

0
c(Xt)dt, (5.14)
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where the integral on the left is in the Stratonovich sense, and the i-th component of

the vector c satisfies

ci(x) =−1
2

n

∑
j=1

d

∑
k=1

b j,k(x)
∂bi,k

∂x j
(x). (5.15)

In other words, the Stratonovich solution of an SDE is equivalent to the Itô solution

with a modified drift.

The issue of convergence in the multidimensional setting is more complicated than

in the univariate case, as was observed by McShane [75] (see also [76], [77]). In gen-

eral, if {Wn} is a sequence of piecewise smooth processes converging to a Brownian

motion, one cannot guarantee {Wn} →W implies that the sequence of approximate

differential equations converges to the Stratonovich solution of the SDE. See McShane

[75], Section 10 for a concrete counterexample in two dimensions.

However, if one chooses the Haar wavelets (described in Section 5.1.3 below) as an

orthonormal basis in which to expand the driving Brownian motion, then convergence

is guaranteed. In practical tests, we have not observed failure of the series expansion to

converge to the Stratonovich limit when other orthonormal bases of L2[0,T ] are used.

5.1.3 Exact solutions

It turns out that one can often choose an appropriate set of basis functions so that

the error vanishes at a specific time T . We will elaborate on this point, but first we

introduce an inportant orthonormal basis of L2[0,T ]: the Haar wavelets. The Haar

wavelets are parametrised by two natural numbers: the scale, n ≥ 0, and the shift

0≤ k < 2n. The first wavelet is defined as

ψ0,0(t) =


1 0≤ t < T

2

−1 T
2 < t ≤ T

0 otherwise.

(5.16)

Further wavelets are defined by rescaling ψ0,0 so that it is non-zero only on some sub-

interval of [0,T ] while ensuring that the wavelet still has norm 1. In general,

ψn,k(t) =
2n/2
√

T
ψ0,0 (2nt− kT ) , 0≤ k < 2n. (5.17)

Thus, ψ1,0 is a ‘copy’ of ψ0,0 which has been rescaled and restricted to [0,T/2], and

ψ1,1 is a ‘copy’ restricted to [T/2,T ]. We also add the constant function ψ∗(t) = 1/
√

T

to the set to form a complete basis.
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Figure 5.1: The Haar wavelets ψ0,0, ψ1,0 and ψ1,1.

To be consistent with the notation of Section 5.1.1, we set φ1 = ψ∗, φ2 = ψ0,0,

φ3 = ψ1,0, and so on. Note that, by (5.3), Z1 = WT/
√

T . This is an important property

of any basis function expansion where φ1 is constant.

We can now return to our discussion of the accuracy of the approximation. As a

simple example of how the series expansion can be exact at one particular time, we

will consider geometric Brownian motion, which is defined by the SDE

dXt = aXtdt +bXt ◦dWt , X0 = 1 (5.18)

with a,b≥ 0. Recall that the circle notation means we are interpreting the SDE in the

Stratonovich sense. At time T , the solution to this equation is

XT = exp(aT +bWT ) . (5.19)

This is identical to the time-T solution of the one-term series expansion approxi-

mation using the Haar wavelet basis, which is given by

dXt = aXtdt +bXt (Z1φ1(t))dt X0 = 1

= aXtdt +bXt

(
WT

T

)
dt (5.20)

Similarly, the approximation is exact at times T and T/2 when using the basis functions

φ1 and φ2, and so on. We expect a similar result to hold for any SDE that can be written

in the form

dh−1(Xt) = dWt , (5.21)

for some function h so that Xt = h(Wt). That is, the solution at time t depends only

on the value of W at time t. See [22], Chapter 4 for a large number of examples SDEs

with this property.

A slightly more complicated example of exactness of the series expansion method

at time T comes from considering the Ornstein-Uhlenbeck process

dXt = a(θ−Xt)dt +bdWt , X0 = x0. (5.22)
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The solution to this SDE at time T is

XT = X0e−aT +θ
(
1− e−aT)+∫ T

0
bea(u−T )dWu. (5.23)

A general N-term series expansion approximation (in some as-yet undetermined basis)

of X takes the form

dX̂t = a
(
θ− X̂t

)
dt +

N

∑
i=1

bZiφi(t)dt, X̂0 = x0. (5.24)

The solution of this equation at time T is

X̂T = X̂0e−aT +θ
(
1− e−aT)+ N

∑
i=1

Zib
∫ T

0
ea(u−T )

φi(u)du. (5.25)

Note that each term in the sum on the right can be interpreted as an inner product on

L2[0,T ]. We can choose φ1 arbitrarily, so we set it to

φ1(t) =
ea(t−T )

‖ea(·−T )‖
. (5.26)

From (5.26), ∫ T

0
ea(u−T )

φi(u)du = ‖ea(·−T )‖
∫ T

0
φ1(u)φi(u)du

= ‖ea(·−T )‖〈φ1,φi〉

= 0 ∀i > 1, (5.27)

since the basis functions are orthogonal. Thus, at time T all terms except the first

vanish in the sum in (5.25). Thus, with this choice of φ1, a single term in the series

expansion is sufficient to guarantee exactness of the approximation.

5.1.4 Accuracy of the approximation

In the general nonlinear case, analytic solutions for multi-dimensional ordinary differ-

ential equations are rarely available in closed form. Hence, it is difficult to establish

precise bounds on the error induced by the series expansion approximation. In this

section we aim to investigate properties of the series expansion approximation numer-

ically. We will focus on the error induced at time T rather than error in the entire path,

since the time-T error is more useful when considering inference problems involving

discretely observed diffusions.
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As a first example, we will consider the double-well process

dXt = 4Xt(1−X2
t )dt +dWt , X0 = 1. (5.28)

at times T = 1 and T = 2. This is a bistable distribution that is often used as a test for

numerical methods involving nonlinear SDEs [24, 69, 78, 79]. One could of course

choose values for α,γ and T that would result in poor convergence. Empirically, we

see that we need more terms in the series expansion as T grows large. We can see that

for a fixed number of terms, the samples in Figure 5.2 (time T = 1) are closer to the

true distribution than the samples in Figure 5.3 (time T = 2).

However, any diffusion process on an interval [0,κ] can be rescaled to take values

on the interval [0,1] only, via the transform Vt := Xt/κ. If X has dynamics

dXt = a(Xt)dt +b(Xt)dWt , (5.29)

then the transformed process V has dynamics

dVt = κa(Vt)dt +
√

κb(Vt)dWt . (5.30)

We conclude from Figures 5.2 and 5.3 that the series expansion method is more

accurate for (5.28) than it is for the rescaled process

dXt = 8Xt(1−Xt)dt +
√

2dWt , X0 = 1. (5.31)

This analysis suggests that larger drift and diffusion coefficients may degrade the

performance of the series expansion method. This may be explained by the fact that

the variance at time T of the series expansion approximation is lower than that of the

true process. This is a result of truncating the Brownian series expansion (5.6), which

reduces the variance of the driving noise.

We now test the approximation on a model of an aircraft turning in the (x1,x3)

plane. This model is used to test the algorithms in Sections 7 and 8. We model the

motion of the aircraft using noisy dynamics that account for imperfections in the con-

trol system. The model also accounts for external forces such as wind that might affect

the trajectory of the aircraft. We describe the state of the with a seven-dimensional

vector x1:7. The components (x1,x3,x5) represent the position of the aircraft in rect-

angular Cartesian coordinates, while the components (x2,x4,x6) describe its velocity.

The number x7 describes the rate at which the aircraft is turning in the (x1,x3) plane.
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Figure 5.2: (Histogram of samples from a series expansion approximation of (5.28)

at time T = 1 using the Haar wavelet basis (left) and Fourier Sine series (right). We

used N = 4 terms (black dots), N = 8 terms (red dashes), and N = 16 terms (green

dots and dashes). The blue line represents a very fine Euler-Maruyama discretisation

(∆t = .0001), which we take as ground truth.
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Figure 5.3: (Histogram of samples from a series expansion approximation of (5.28) at

time T = 2 (or equivalently samples from (5.31) at time T = 1) using the Haar wavelet

basis (left) and Fourier Sine series (right). We used N = 4 terms (black dots), N = 8

terms (red dashes), and N = 16 terms (green dots and dashes). The blue line repre-

sents a very fine Euler-Maruyama discretisation (∆t = .0001), which we take as ground

truth.

The dynamics of the system are given by (5.29), with

a(x1:7) =



x2

−x7x4

x4

x7x2

x6

0

0


(5.32)
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b(x1:7) =



0 0 0 0√
1+x2

2
v

√
1+x2

4
vxy

√
(1+x2

2)(1+x2
6)

vvxy
0

0 0 0 0√
1+x2

4
v −

√
1+x2

2
vxy

√
(1+x2

4)(1+x2
6)

vvxy
0

0 0 0 0√
1+x2

6
v 0 −vxy

v 0

0 0 0 1


(5.33)

Here, v =
√

1+ x2
2 + x2

4 + x2
6 and vxy =

√
1+ x2

2 + x2
4. Nonlinearities arise from two

sources in this system. Firstly, the state-dependent covariance matrix causes the sys-

tem to deviate from Gaussianity. Second, the random evolution of the turn rate X7(·)
causes the aircraft to behave erratically. As the variance of X7(·) grows, the system be-

comes more nonlinear and more non-Gaussian. A similar model was studied in [80],

though in that case the diffusion matrix was assumed to be constant. Note that the

state dependent covariance matrix makes Itô-Taylor and Runge-Kutta discretisations

difficult to implement.
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Figure 5.4: (Top) Q-Q plot of 100,000 samples from an Euler-Maruyama discretisation

of X1(T = 8) versus 100,000 samples from the series expansion approximation. Lin-

earity of the plot suggests the distributions are very similar. (Bottom) Density plots of

the samples. Draws from the Euler scheme are plotted using the solid line, and draws

from the series expansion scheme are represented by the broken line. We used the

Fourier sine series as a basis, with N = 10.

In order to test the series expansion approximation, we simulated paths from X
on the interval [0,8]. We set X0 = (1000,0,2650,150,200,0,6), and Cov(Wt) =
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Euler N = 1 N = 4 N = 6 N = 10

E[X1(t)] 626 549 607 612 619

E[X2(t)] -59 -91 -65 -63 -61

E[X3(t)] 3588 3689 3612 3603 3597

E[X4(t)] 53 82 58 56 55

E[X5(t)] 200 200 200 200 200

E[X6(t)] 0 0 0 0 0

E[X7(t)] 6 6 5.9 6 5.9

Table 5.1: Marginal mean values for X1:7(t = 8) as computed by the Euler scheme and

series expansion approximations

Euler N = 1 N = 4 N = 6 N = 10

Std(X1(t)) 359 151 317 333 346

Std(X2(t)) 90 61 86 88 89

Std(X3(t)) 277 128 250 261 268

Std(X4(t)) 93 66 90 91 92

Std(X5(t)) 29 17 27 28 28

Std(X6(t)) 6.4 5.7 6.2 6.3 6.3

Std(X7(t)) 14.1 12.8 13.7 13.9 14.0

Table 5.2: Marginal standard deviations for X1:7(t = 8) as computed by the Euler

scheme and series expansion approximations

Diag(50,50,50,25)t, resulting in a highly nonlinear process. We took 100,000 simu-

lations from the Euler-Maruyama scheme as ground truth, having set ∆t = .005. The

basis functions were defined by

φk(t) =

√
2
T

sin

(
(k− 1

2)πt
T

)
, (5.34)

with T = 8. We simulated 100,000 paths from the series expansion approximation

with N = 1,4,6 and 10. The marginal means and standard deviations are shown in

Tables 1 and 2. Figure 5.4 shows a Q-Q plot of the Euler simulation versus the series

expansion simulation with N = 10, together with a plot of both densities.

When implementing a test such as this, one must consider the discretisation er-
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ror and computational expense of the numerical method that is used. For the Euler-

Maruyama method, these properties are well-known [22]: under standard assumptions

(Lipschitz coefficients with linear growth), the discretisation of the Euler method is of

order ∆t1/2.

The equation (5.10), on the other hand, is an ordinary differential equation. Thus,

one can use any convenient out-of-the-box ODE solver to compute Xt . We used the

standard ODE solver in MATLAB, which is an adaptive fourth-order Runge-Kutta

method. Runge-Kutta methods are known to have a global error of order ∆t4 [81].

Thus, it is likely that the main source of bias in (5.10) comes from truncation of the

Brownian series expansion rather than discretisation error.

For a general stochastic differential equation, the Euler-Maruyama method must

perform three tasks: evaluate the drift coefficient, evaluate the diffusion coefficient,

and generate a draw from a d-dimensional standard normal distribution. The Euler-

Maruyama method uses a linear combination of these three quantities to generate the

next step in the sample path.

One very simple version of the series expansion method would be to solve the ODE

(5.10) using an Euler method. If we truncate the Brownian series expansion after N

terms, the Euler method would proceed as follows: First, one has the intital overhead

of generating N i.i.d standard normal random variates. Then, at each step, one must

evaulate the drift coefficient, the diffusion coefficient, and each of the N basis functions

{φi}i≤N . A linear combination of these quantities gives us the next value of the process

in our solver. We assume the time it takes to generate the linear combination is small

in relation to the amount of time it takes to evaluate the functions.

If one wanted to further improve the efficiency of the series expansion method, one

could evaluate the basis functions in advance and store the values in a table, referring

to them as needed.

We assume the number of steps is large, so that the initial overhead is negligible.

The difference in computational expense between these two methods boils down to

whether it is cheaper to evaluste the N basis functions or to generate a d-dimensional

standard normal variate. This will depend on N, d, and the choice of basis functions

used.
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5.1.5 Resonance and failure of the series expansion method

One interesting setting in which the series expansion method can fail is when the SDE

exhibits resonance at a certain frequency. Resonance causes small periodic oscilla-

tions in a function driving a differential equation to me magnified in the solution of

that equation. The series expansion approximation relies on the heuristic that small

oscillations in the driving Brownian motion are ‘irrelevant’. This is manifestly not the

case in a system that exhibits resonance.

Perhaps the simplest example of a resonant system is the two-dimensional ODE

dX1
t

dt
= X2

t , (5.35)

dX2
t

dt
=−ωX1

t +F cos(ωt). (5.36)

Here, the natural frequency of the system is ω, which matches the frequency of the

driving function F cos(ωt). Resonance in the system causes the amplitude of the solu-

tion to grow linearly with time.

Suppose now that we replace the driving function with one-dimensional white

noise and consider its behaviour on the interval [0,1]. The system becomes a linear

stochastic differential equation

dX1
t = X2

t dt, (5.37)

dX2
t =−ωX1

t dt +dWt . (5.38)

We can expand the white noise in the Fourier cosine series, so that the system

becomes

dX1
t = X2

t dt, (5.39)

dX2
t =−ωX1

t dt +
√

2
∞

∑
i=1

Zi cos
((

i− 1
2

)
πt
)
. (5.40)

When ω = (k−1/2)π for some whole number k, the system will exhibit resonance at

that frequency. If index N at which we truncate the sum is less than k, the system will

fail to resonate and the series expansion will fail catastrophically.

Figure 5.5 demonstrates one way in which the series expansion can fail. We con-

structed an approximate Brownian sample path, and used the Euler-Maruyama scheme

to generate a sample path from the system (5.37). We used the same approximate

Brownian sample path to compute the values of {Zi} in (5.3). We set ω = (9.5)π,
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Figure 5.5: Series expansion approximation of a system truncated above the resonant

frequency (left) and below the resonant frequency (right). The solid blue line represents

the series expansion approximation, while the true process is shown as a broken green

line.

matching the frequency of the basis function φ10. The leftmost image depicts the reso-

nant behaviour of the approximation when we use N = 11 terms in the series expansion,

while the rightmost image shows that the approximation fails to resonate when we use

N = 9 terms.



Chapter 6

MCMC and the series expansion

approximation

In Chapter 4, we gave a brief overview of the difficulties that one encounters when

attempting to estimate the parameters that govern the evolution of a diffusion process.

We mentioned that one major impediment to efficiency in MCMC-based inference

algorithms is that it is often difficult to generate sample paths of a diffusion X that

are consistent with observations Yt1:k of the process. In short, an efficient method of

simulating diffusion bridges translates into an efficient way of estimating parameters

of a diffusion process.

In this chapter, we describe a novel way of approximating a diffusion bridge. We

split the diffusion X into two components. One component (denoted XNL, which stands

for ‘nonlinear component of X’) follows the series expansion approximation of Chap-

ter 5.1. The second component (denoted XL, for ‘linear component of X’) is a linear

process that attempts to correct for the bias introduced by the series expansion approx-

imation. The linearity of this second component allows it to be conditioned to hit a

given target.

The strategy we use below is roughly as follows. We draw samples from XNL
tk

using a Metropolis-Hastings algorithm on the random variables {Zi}i≤N in the series

expansion approximation of Section 5.1.1. We then condition the linear correction

term in such a way that the sum XNL
tk +XL

tk is consistent with the observation Ytk . This

ensures that the simulated data resemble the observed data, and allows our algorithm

to explore the parameter space in an efficient manner.

This chapter is based on material that was published in [18].

75
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6.1 Parametric Diffusion Processes

In this section we develop the basic notation and formalism for the diffusion pro-

cesses used in this work. First, we assume our data are generated by observing a

k-dimensional diffusion process with dynamics

dXt = aθ(Xt)dt +BθdWt , X0 ∼ p(x0), (6.1)

where the initial condition is drawn from some known distribution. Observations are

assumed to occur at times t1, . . . , t f , with tk−tk−1 := Tk. We require that aθ :Rn→Rn is

sufficiently regular to guarantee the existence of a unique strong solution to (6.1), and

we assume Bθ ∈Rn×d . Both terms depend on a set of potentially unknown parameters

θ ∈ Rdθ . We impose a prior distribution p(θ) on the parameters. The driving noise W
is a d-dimensional Brownian motion, and the equation is interpreted in the Itô sense.

Observations are subject to independent Gaussian perturbations centered at the true

value of X. That is,

Ytk = Xtk +Vtk , Vtk ∼N (0,Rk) (6.2)

As usual, we use the notation X to refer to the entire sample path of the diffusion, and

Xt to denote the value of the process at time t.

Many systems can be modelled using the form (6.1). Such systems are particularly

relevant in physics and natural sciences. In situations where this is not explicitly the

case, one can often hope to reduce a diffusion to this form via the Lamperti transform,

as we noted in Section 4.1. One can almost always accomplish this in the univariate

case, but the multivariate setting is more challenging. Aı̈t-Sahalia [59] characterises

the set of multivariate diffusions to which this transform can be applied.

6.2 Related Work

Most approaches to parameter estimation of diffusion processes rely on the Monte-

Carlo approximation. Beskos et al. [72] [63] employ a method based on rejection

sampling to estimate parameters without introducing any discretisation error. Golightly

and Wilkinson [60] extend the work of Chib et al. [82] and Durham and Gallant [67]

to construct a Gibbs sampler that can be applied to the parameter estimation problem.

Roughly speaking, Gibbs samplers that exist in the literature alternate between

drawing samples from some representation of the diffusion process X conditional on
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parameters θ, and samples from θ conditional on the current sample path of X. Note

that draws from X must be consistent with the observations Yt1: f .

The usual approach to the consistency issue is to make a proposal by conditioning a

related diffusion to hit some neighbourhood of the observation Ytk , then to make a cor-

rection via a rejection sampling [62] or a Metropolis-Hastings [82] step. For example,

Golightly and Wilkinson [60] sample from a discretised version of the diffusion

dX̂t = aθ(X̂t)dt +Bθ (Bθ(tk− t)+Rk)
−1 (Ytk− X̂t−a(X̂t)(tk− t)

)
dt +BθdWt .

(6.3)

The second term on the right-hand side guarantees that X̂tk is approximately nor-

mally distributed about Ytk with variance Rk. Note, however, that for small values

of Rk, the proposal acts like a Brownian bridge. Recall that the Brownian bridge has

dynamics

dX̂t =
1

(tk− t)

(
Ytk− X̂t

)
dt +BθdWt t < tk. (6.4)

Thus the behaviour of the sample path of X̂ as a whole may be significantly dif-

ferent from that of X. As the inter-observation time grows, this difference usually gets

more pronounced, and the rate of rejection grows accordingly. Figure 6.1 shows the

disparity between a sample from a nonlinear process and a sample from the proposal

distribution of Durham and Gallant [67], which is essentially a draw from a Brownian

bridge (6.4) with a non-standard discretisation. One can see that the target sample path

is constrained to stay near the mode γ = 2.5, whereas the proposal can move more

freely. One should expect to make many proposals before finding one that ‘behaves’

like a typical draw from the true process.

For low-dimensional inference problems, algorithms that employ sequential Monte-

Carlo (SMC) methods [83] [65] typically yield good results. However, unlike the

Gibbs samplers mentioned above, SMC-based methods often do not scale well with

dimension. The number of particles that one needs to maintain a given accuracy is

known to scale exponentially with the dimension of the problem [40].

Aı̈t-Sahalia [59, 70] uses a deterministic technique based on Edgeworth expansions

to approximate the transition density. Other approaches include variational methods

[68, 24] that can compute continuous time Gaussian process approximations to more

general stochastic differential systems, as well as various non-linear Kalman filtering

and smoothing based approximations [33, 32, 84] .



78 Chapter 6. MCMC and the series expansion approximation

0 1 2 3

−3

−2

−1

0

1

t

X
(t

)

Nonlinear sample path and proposal

0 5 10 15 20
−3

−2

−1

0

1

2

t

X
(t

)

Sample path with noisy observations

(a) (b)

Figure 6.1: (a) Sample path of a double well process (see equation (6.16)) with

α = 2, γ = 2.5, B = 2 (blue line). In a low-noise setting, current Gibbs samplers use

proposals that have very similar behaviour to a standard Brownian bridge (dashed red

line). These proposals inculde a rejection step, which makes it possible to generate

conditioned nonlinear paths. In this case, the behaviour of the proposal is very different

to that of the target, and the rate of rejection is high.

(b) Sample path of a double well process (solid blue line) with noisy observations (red

dots). We use this as an initial dataset on which to test our algorithm. Parameters are

α = 2,γ = 1,B = 1. Observation errors have variance R = .25.

6.3 MCMC and the series expansion method

We now introduce a method of approximating a nonlinear diffusion that allows us to

gain a considerable amount of control over the behaviour of the process. Similar meth-

ods have been used for stratified sampling of diffusion processes [85] and for the study

of stochastic partial differential equations [73]. One of the major challenges of using

MCMC methods for parameter estimation in the present context is that it is typically

very difficult to draw samples from a diffusion process conditional on observed data.

If one only knows the initial condition of a diffusion, then it is straightforward to sim-

ulate a sample path of the process. However, simulating a sample path conditional on

both initial and final conditions is a challenging problem, as we saw in 2.2.6.

Our approximation separates the diffusion process X into the sum of a linear and

nonlinear component. The linear component of the sum allows us to condition the

approximation to fit observed data more easily than in conventional methods. On the

other hand, the nonlinear component captures the ‘gross’ variation of a typical sample

path. In this section, we fix a generic time interval [0,T ], though one can apply the
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same derivation for any given interval [ti−1, ti] given the initial distribution of X at time

ti−1.

The series expansion approximation introduced in Chapter 5.1 gives us an alterna-

tive to the Euler-Maruyama discretisation for sampling approximately from the time-t

marginal distribution of a diffusion process. We draw coefficients Z1:N from a stan-

dard normal distribution, and solve the appropriate vector-valued ordinary differential

equation (5.10). While the Euler discretisation is the de facto standard method for

numerical approximation of SDE, other methods do exist. Kloeden and Platen [22]

discuss higher order methods such as the stochastic Runge-Kutta scheme [86].

In the Euler-Maruyama approximation, one discretises the driving Brownian mo-

tion into increments Wti −Wti−1 . These increments are independent of one another,

and can be thought of as Gaussian ‘input variables’ in their own right. One must typ-

ically employ a fine discretisation (i.e. a large number of input variables) to get a

good approximation to the true diffusion process. Empirically, we find that one needs

far fewer Gaussian inputs Zi for an accurate representation of XT using the series ex-

pansion approximation. In one sense, the series expansion approximation reduces the

dimensionality of the driving Brownian motion. This can be advantageous: for ex-

ample, Corlay and Pages [85] employ related ideas to conduct stratified sampling of a

diffusion process.

The coefficients Zi are also more amenable to interpretation than the Gaussian

increments in the Euler-Maruyama expansion. Suppose we have a one-dimensional

process in which we use the Fourier cosine basis

φk(t) =
√

2/T cos((2k−1)πt/2T ). (6.5)

If we change Z1 while holding the other coefficients fixed, we will typically see a

change in the large-scale behaviour of the path. On the other hand, a change in ZN will

typically result in a change to the small-scale oscillations in the path. The separation

of behaviours across coefficients gives us a means to obtain fine-grained control over

the behaviour of a diffusion process within a Metropolis-Hastings algorithm.

We can improve our approximation by attempting to correct for the fact that we

truncated the sum in equation (5.6). Instead of simply discarding the terms ZiΦi for

i > N, we attempt to account for their effect as follows. We assume the existence of

some ‘correction’ process XC such that X = XNL+XC. We know that the dynamics of

X satisfy
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dXt = aθ

(
XNL

t +XC
t

)
dt +BθdWt . (6.6)

Taylor expanding the drift term around XNL, we see that to first order,

dXt ≈
(

aθ

(
XNL

t
)
+Ja(XNL

t )XC
t

)
dt +BθdWt

=

(
aθ

(
XNL

t
)
+Ja(XNL

t )XC
t

)
dt +Bθ

(
∞

∑
i=1

Ziφi(t)

)
dt

=

(
aθ

(
XNL

t
)
+Bθ

(
N

∑
i=1

Ziφi(t)

))
dt +Ja(XNL

t )XC
t dt +Bθ

(
∞

∑
i=N+1

Ziφi(t)

)
dt

= dXNL
t +Ja(XNL

t )XC
t dt ++Bθ

(
∞

∑
i=N+1

Ziφi(t)

)
dt. (6.7)

Here, Ja(x) is the Jacobian matrix of the function a evaluated at x. This motivates the

use of a linear time-dependent approximation to the correction process. We will refer

to this linear approximation as XL ≈ XC. From (6.7), we see that the dynamics of XL

satisfy

dXL
t = Ja(XNL

t )XL
t dt +Bθ

(
∞

∑
i=N+1

Ziφi(t)

)
dt, XL

0 = 0, (6.8)

where the driving noise is the ‘residual’ term

Rt = Wt−
N

∑
i=1

Zi

∫ t

0
φi(u)du. (6.9)

Conditional on XNL, XL is a linear Gaussian process, and equation (6.8) can be solved

in semi-closed form. First, we compute a numerical approximation to the solution of

the homogenous matrix-valued equation
d
dt

Ψ(t) = Ja(XNL
t )Ψ(t), Ψ(0) = In. (6.10)

One can compute Ψ−1(t) in a similar fashion via the relationship dΨ−1/dt =−Ψ−1(dΨ/dt)Ψ−1.

We then have

XL
t = Ψ(t)

∫ t

0
Ψ(u)−1BdRu

= Ψ(t)
∫ t

0
Ψ(u)−1BdWu−

N

∑
i=1

Ψ(t)
(∫ t

0
Ψ(u)−1Bφi(u)du

)
Zi. (6.11)

It follows that XL has mean 0 and covariance

Σ(s, t) = Ψ(s)
(∫ s∧t

0
Ψ(u)−1BBᵀ

Ψ
ᵀ(u)−1du

)
Ψ

ᵀ(t)

−
N

∑
i=1

Ψ(s)
(∫ s

0
Ψ(u)−1Bφi(u)du

)(∫ t

0
Ψ(u)−1Bφi(u)du

)ᵀ

Ψ
ᵀ(t). (6.12)
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These integrals will rarely be implementable in closed form, and must be approxi-

mated numerically – for example, using the trapeziodal approximation method.

The process XNL is designed to capture the most significant nonlinear features of

the original diffusion X, while the linear process XL corrects for the truncation of the

sum (5.6), and can be understood using tools from the theory of Gaussian processes.

One can think of the linear term as the result of a ‘small-noise’ expansion about the

nonlinear trajectory. Small-noise techniques have been applied to diffusions in the past

[21], but the method described above has the advantage of being inherently nonlinear.

6.4 Parameter Estimation

In this section, we describe a novel modification of the Gibbs sampler that does not

suffer the drawbacks of the linear proposal strategy. In Section 6.5, we demonstrate

that for highly nonlinear problems it will perform significantly better than standard

methods because of the nonlinear component of our approximation. Our algorithm has

the useful property that parameters governing the diffusion coefficient are treated like

any other parameters. For many inference algorithms, one must apply the Lamperti

transform to ‘move’ the diffusion parameters into the drift function. In contrast, our

algorithm can be applied to a diffusion process in its given form.

Suppose for now that we make a single noiseless observation at time t1 = T (for

ease of notation, we will assume that observations are uniformly spaced through time

with ti+1−ti = T , though this is not necessary). Our aim is to sample from the posterior

distribution

p
(
θ,Z1:N | XNL

t1 +XL
t1 = Yt1

)
∝ N (Yt1 | X

NL
t1 ,Σ(t1, t1))N (Z1:N)p(θ). (6.13)

We adopt the convention that N (·| µ, Σ) represents the normal distribution with mean

µ and covariance Σ, whereas N (·) represents the standard normal distribution. Note

that we have left dependence of Σ1 on the path of XNL implicit. The right-hand side of

this expression allows us to evaluate the posterior up to proportionality; hence it can

be targeted with a Metropolis-Hastings sampler.

With multiple observations, the situation is similar. However, we now have a set

of Gaussian inputs Z(k)
1:N for each transition X̂k|X̂k−1. If we attempt to update θ and

{Z(k)
1:N}k≤ f all at once, the rate of rejection will be unacceptably high. For this reason,

we update each Z(k)
1:N in turn, holding θ and the other Gaussian inputs fixed. We draw

Z(k)∗
1:N from the proposal distribution, and compute XNL∗

k with initial condition Ytk−1 .
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We also compute the covariance Σ∗k(tk, tk) of the linear correction given the path of

XNL from time tk−1 to time tk. The acceptance probability for the update is

α = 1∧
N (Ytk | XNL∗

tk ,Σ∗k(tk, tk))N (Z(k)∗
1:N )p(Z(k)∗

1:N → Z(k)
1:N)

N (Ytk | XNL
tk ,Σk(tk, tk))N (Z(k)

1:N)p(Z(k)
1:N → Z(k)∗

1:N )
(6.14)

After updating the Gaussian inputs, we make a global update over all observations

for the θ parameter. The acceptance probability for this move is

α = 1∧
f

∏
k=1

N (Ytk | XNL∗
tk ,Σ∗k(tk, tk))p(θ∗)p(θ∗→ θ)

N (Ytk | XNL
tk ,Σk(tk, tk))p(θ)p(θ→ θ∗)

, (6.15)

where XNL∗
tk and Σ∗k(tk, tk) are computed using the proposed value of θ∗.

We noted earlier that when j is large, Z j governs the small-time oscillations of the

diffusion process. One should not expect to gain much information about the value

of Z j when we have large inter-observation times. We find this to be the case in our

experiments - the posterior distribution of Z j:N approaches a spherical Gaussian distri-

bution when j > 3. For this reason, we employ a Gaussian random walk proposal in

Z1 with stepsize σRW = .45, and proposals for Z2:N are drawn independently from the

standard normal distribution.

In the presence of observation noise, we proceed roughly as before. Recall that we

make observations Ytk = Xtk +Vtk . We draw proposals Z(k)∗
1:N and V∗k . The initial condi-

tion for XNL
k is now Ytk−1−Vtk−1 . However, one must make an important modification

to the algorithm. Suppose we propose an update of X̂tk and it is accepted. If we sub-

sequently propose an update for X̂tk+1 and it is rejected, then the initial condition for

X̂tk+1 will be inconsistent with the current state of the chain (it will be Ytk−Vtk instead

of Ytk−V∗tk). For this reason, we must propose joint updates for (X̂tk ,Vtk , X̂tk+1). If the

variance of the observation noise is high, it may be more efficient to target the joint

posterior distribution p
(
θ,{Zk

1:N ,X
L
tk} | Y1: f

)
.

6.5 Numerical Experiments

The double-well diffusion is a widely-used benchmark for nonlinear inference prob-

lems [24, 69, 78, 79]. It has been used to model systems that exhibit switching be-

haviour or bistability [21, 87]. It possesses nonlinear features that are sufficient to

demonstrate the shortcomings of some existing inference methods, and how our ap-

proach overcomes these issues. The dynamics of the process are given by

dXt = αXt
(
γ

2−X2
t
)

dt +BdWt . (6.16)
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The process X has a bimodal stationary distribution, with modes at x = ±γ. The

parameter α governs the rate at which sample trajectories are ’pushed’ toward either

mode. If B is small in comparison to α, mode-switching occurs relatively rarely.

Figure 6.1(b) shows a trajectory of a double-well diffusion over 20 units of time,

with observations at times {1,2, . . . ,20} . We used the parameters α = 2, γ = 1, B = 1.

The variance of the observation noise was set to R = .25.

As we mentioned earlier, particle MCMC performs well in low-dimensional infer-

ence problems. For this reason, the results of a particle MCMC inference algorithm

(with N = 1,000) particles are used as ’ground truth’. Our algorithm used N = 3

Gaussian inputs with a linear correction. We used the Fourier cosine series (6.5) as an

orthonormal basis. We compare our Gibbs sampler to that of Golightly and Wilkinson

[60], for which we use an Euler discretisation with stepsize ∆t = .05. Each algorithm

drew 70,000 samples from the posterior distribution, moving through the parameter

space in a Gaussian random walk. We used exponential priors for γ,α and B. The

exponential density function is proportional to exp(−λ). We set λ = 1 for α and B,

and λ = 4 for the parameter γ.

For this particular choice of parameters, both Gibbs samplers give a good approx-

imation to the true posterior. Figure 6.2 shows empirical density plots of the marginal

posterior distributions of (α,γ,B) for each algorithm.
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Figure 6.2: Marginal posterior distributions for (α,γ,B) conditional on observed data.

The solid black line is the output of a particle MCMC method, taken as ground truth.

The broken red line is the output of the linear proposal method, and the broken and

dotted blue line is the density estimate from the coloured noise expansion method. We

see that both methods give a good approximation to the ground truth.

Gibbs samplers that have been used in the past rely on making proposals by condi-

tioning a linear diffusion to hit a target, and subsequently accepting or rejecting those

proposals. Over short timescales, or for problems that are not highly nonlinear, this can
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be an effective strategy. However, as the timescale increases, the proposal and target

become quite dissimilar (see Figure 6.1(a)).

To investigate how the difficulty of inference increases as the inter-observation time

grows, we simulate a double well process with (α,γ,B) = (2,2.5,2). We make noisy

observations with tk−tk−1 = 3 and R= .1. The algorithms target the posterior distribu-

tion over γ, with α and B fixed at their true values. From our previous discussion, one

might expect the linear proposal strategy to perform poorly in this more nonlinear set-

ting. This is indeed the case. As in the previous experiment, we used a linear proposal

Gibbs sampler with Euler stepsize dt = 0.05. In the ‘path update’ stage, fewer than

.01% of proposals were accepted. On the other hand, the series expansion method used

N = 7 Gaussian inputs with a linear correction and was able to approximate the pos-

terior distribution accurately. Figure 6.3 shows empirical density plots of the results.

Note the different vertical scaling of the rightmost plot.
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Figure 6.3: p(γ|Y1:10,B,α) after ten observations with a relatively large inter-

observation time (T = 3). We drew data from a double well process with (α,γ,B) =

(2,2.5,2). The series expansion method matches the ground truth, whereas the linear

proposal method is inconsistent with the data.

The series expansion method has the drawback that, in some sense, one is using

the ‘wrong’ model for inference. By expanding the white noise driving the process

and truncating it, one introduces a bias that is difficult to quantify. Of course, one

could make the same argument for any method of descritising a diffusion process. The

crucial difference is that asymptotic results are available for standard methods.

On the other hand, one can use powerful ODE solvers (e.g. high order adaptive

Runge-Kutta schemes) for the ’smoothed’ process driven by the truncated white noise.

These solvers are not usually available for general diffusion processes, and one must

often rely on stochastic analogues of the Euler scheme.
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It is difficult to provide a general analysis of the runtime of the algorithms since

there are many variables that must be accounted for. Among them are the number

of particles and effective sample size of the particle MCMC algorithm, the rejection

rate of the Metropolis step in the MCMC algorithms, and cost of generating a single

diffusion sample path (which varies according to the discretisation used, or to the order

of the series expansion approximation).

In any case, we expect the series expansion approximation to run more slowly than

Golightly and Wilkinson’s MCMC scheme. The reason for this is that one must solve

the ODE (6.10) for each sample path generated in the MCMC sampler. This is an ODE

in n×n dimensions, and may be costly to solve in high-dimensional problems.

As a further demonstration of the series expansion MCMC algorithm, we consider

the stochastic Hopf bifurcation. This is a two-dimensional diffusion whose dynamics

satisfy

dX1,t =

(
aX1,t−X2,t

)
dt−X1,t

(
X2

1,t +X2
2,t

)
dt +bdW1,t (6.17)

dX2,t =

(
aX2,t +X1,t

)
dt−X2,t

(
X2

1,t +X2
2,t

)
dt +bdW2,t (6.18)
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Figure 6.4: Sample path of the stochastic Hopf bifurcation with a = 1, b = .5 (blue),

together with ten observations (broken red line).

Here, a ∈ R, b > 0, and W1,t and W2,t are independent Brownian motions. For

positive values of a, sample paths of this process rotate around the circle X2
1,t +X2

2,t =
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√
a. The stochastic Hopf bifurcation is a simple example of an oscillatory system.

It has been used in climate modelling [5] and simple models of cardiac rhythm [88]

among other applications.

We truncated the series expansion method at N = 2 terms for both Brownian mo-

tions. This may seem like a crude approximation, but along with the correction term,

it is sufficient for our purposes. Figure 6.5 shows scatter plots of an Euler-Maruyama

approximation and a series expansion approximation with correction. We used a = 4,

b = .5 and T = 1. Empirically, one can see that the distributions are close to one

another. For the parameters used in the parameter estimation experiment below, the

approximation is also effective. However, the ’banana’ shape observed with a = 4

gives a striking demonstration of the effectiveness of the correction term.
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Figure 6.5: Scatter plot of 2,000 draws from the stochastic Hopf bifurcation at time

T = 1. The Euler method is shown on the left. The series expansion method (truncated

at N = 2) with correction is shown on in the center. The series expansion method

(N = 2) with no correction is shown on the right. The first two distributions coincide

closely, whereas the series expansion method with no correction is very different. This

shows the effectiveness of the correction term.
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For our parameter estimation experiment, we set a = 1 and b = .5, and generated

a sample path from the stochastic Hopf bifurcation. We made ten exact observations

spaced T = 1 unit of time apart (see Figure 6.4). In one sense, the ‘exact observa-

tions’ inference problem is more difficult than the ‘noisy oservations problem’. This

is because of the difficulty of simulating sample paths that are consistent with the data

(see Section 2.2.6 for a discussion on conditioned diffusion processes). The standard

bootstrap filter, for example, is not applicable in this setting.

We used a random walk proposal in a,b and Z1, and sampled Z2 from the prior.

Figure 6.6 shows 100,000 samples from the posterior distribution as computed by the

series expansion MCMC method. We see that the distributions are centered around the

true values of the data.
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Figure 6.6: Empirical density plots of 100,000 samples from the marginal posterior

distributions for parameters a and b in the Hopf bifurcation experiment.

6.6 Discussion and Future Work

We have seen that the standard linear proposal/correction strategy can fail for highly

nonlinear problems. Our inference method avoids the linear correction step, instead

targeting the posterior over input variables directly. With regard to computational effi-

ciency, it is difficult to give an authoritative analysis because both our method and the

linear proposal method are complex, with several parameters to tune. In our experi-

ments, the algorithms terminated in a roughly similar length of time (though no serious

attempt was made to optimise the runtime of either method).

With regard to our method, several questions remain open. The accuracy of our
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algorithm depends on the choice of basis functions {φi}. At present, it is not clear how

to make this choice optimally in the general setting. In the linear case, it is possible to

show that one can achieve the accuracy of the Karhunen-Loeve decomposition, which

is theoretically optimal. As we saw in Chapter 5.1, one can also set the error at a single

time t to zero with a judicious choice of a single basis function in the univariate case.

We used a Taylor expansion to compute the covariance of the correction term.

However, it may be fruitful to use more sophisticated ideas, collectively known as

statistical linearisation methods. In this chapter, we restricted our attention to processes

with a state-independent diffusion coefficient so that the covariance of the correction

term could be computed. We may be able to extend this methodology to process with

state-dependent noise - certainly one could achieve this by taking a 0-th order Taylor

expansion about XNL. Whether it is possible to improve upon this idea is a matter for

further investigation.



Chapter 7

The series expansion unscented

Kalman filter

In Chapter 3, we discussed the filtering problem, in which one makes noisy observa-

tions {Ytk ∈Rs}k≥1 of a process and is faced with the task of computing the expectation

E[φ(Xt)|Yt1, . . . ,Yt f ] for a given function φ when t > t f .

In mathematical terms, the model for measurements of this type can often be writ-

ten as

Ytk = h(Xtk)+Vtk , (7.1)

for some known ‘observation function’ h with Gaussian measurement noise Vtk ∼
N (0,Rk).

For simplicity, we assume that the distribution of Xt conditional on the observa-

tions has a density with respect to Lebesgue measure. For filtering problems where

this is not the case, such as when part of the system is observed without error, much

of our analysis can be applied with only minor modifications. The estimation prob-

lem can be solved for arbitrary φ provided that we can compute the filtering density

pXt (x |{Ytk : tk ≤ t}) for all t.

It is only in a small number of special cases that the filtering density can be de-

scribed using a finite number of parameters. When the SDE is linear and the function

h in the measurement model is linear, then the Kalman filter can be used to compute

the exact solution [25]. Certain other filtering problems also admit closed-form solu-

tions (see, for example, the Benes̆ filter [29]). However, closed-form filters are rare,

and in most cases one must approximate the filtering distribution in some manner. For

example, one can discretise the signal and employ a particle filter [89, 44, 90, 91],

which uses Monte Carlo samples to approximate the filtering distribution. Other ap-

89
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proaches include variational filtering [92], homotopy filtering [93], and path integral

filtering [94].

Another general technique is to take a parametric set of tractable densities (for

example a set of densities within the exponential family) and find the density within

that set that most closely matches the filtering density. This approach, introduced in

[95], is known as assumed density filtering.

In this chapter, we will attempt to compute statistics of the Gaussian distribution

that most closely matches the filtering distribution. This particular special case of as-

sumed density filtering is known as Gaussian filtering [96]. There are a number of

ways to approach the problem. The extended Kalman filter (EKF) [32] uses a Taylor

series approximation to the nonlinearities in SDE and measurement model (see Sec-

tion 3.1.2). The unscented Kalman filter (UKF) described in Section 3.1.1 uses a set of

sigma-points for computing the mean and covariance of the Gaussian approximation

[41, 97, 33]. Quadrature and cubature based filters [96, 98, 80, 34] use Gaussian nu-

merical integration for computing the mean and covariance. The Gaussian assumption

is a natural one when the filtering distribution is known to be unimodal. However, it

may lead to significant errors for certain multimodal distributions. It is not advisable

to apply a Gaussian filter blindly, without considering the possibility of encountering

a multimodal filtering distribution.

The commonly used approaches to filtering in continuous-discrete systems can be

divided into two categories: one possibility is that the SDE is first discretised using

methods such as Itô–Taylor series or a stochastic Runge–Kutta discretisation [22], [90].

Discrete-time filtering algorithms are then applied to the discretised process. The al-

ternative is that an approximate filter is formed that operates in continuous time, and

that filter is discretised. The relative merits of these approaches were recently studied

in [99].

In this chapter, we describe a different approach. The series expansion approxi-

mation of Chapter 5.1 has the advantage of approximating the transition map of the

diffusion X in finite-dimensional terms. We can view the solution of (5.10) as a func-

tion

X̂t = f(t,X0,Z1, . . . ,ZN). (7.2)

In essence, the time-t distribution of the process X̂ can be interpreted as the image of

a d×N-dimensional Gaussian distribution under a nonlinear transform. We can apply

sigma point methods to f to estimate the mean and variance of Xt . The image of each

sigma point under the transform f(·) is computed by solving (5.10).
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Our method requires one application of the unscented transform per observation

(though this is generalised in Section 7.2.2). This is in contrast to the standard UKF,

which discretises the system first, then iteratively applies the unscented transform at

each timestep.

Gaussian filters that currently exist in the literature typically rely on discretisation

of the signal. The time-t distribution of the discretised signal is repeatedly projected

onto the set of Gaussian distributions, for example through moment matching or by

minimising some form of generalised metric as in [24]. Our methodology avoids re-

peated projection onto the space of Gaussian random variables during the prediction

phase. For this reason we expect our new prediction step to outperform the prediction

steps of existing methods when the inference problem is sufficiently nonlinear.

The chapter is structured as follows. In Section 7.1, we describe our method of ap-

proximating the time-t marginal distribution of a diffusion process, and we show how

the approximation can be exploited to construct a novel Gaussian filter. The accuracy

of this approximation is investigated in Section 7.2, and we show that our filter per-

forms well on a high-dimensional nonlinear problem. In Section 7.3, we review our

work and discuss some questions that arise as a result of the study.

This chapter is based on material that was published in [19].

7.1 The series expansion filter

Our algorithm proceeds as follows. We assume we have a Gaussian approximation

N (mtk−1,Ptk−1) to the filtering distribution at time tk−1. We wish to compute the filter-

ing distribution at time t. If t < tk, we compute the predictive distribution. If t = tk,

we must also update the predictive distribution with the information gained from our

observation Ytk .

We choose a set {σ j} of sigma points to represent the joint distribution of the state

and the random coefficients {Zi} in (5.10). Each sigma point can be thought of as a

vector of dimension n+d×N,

σ
j = (σ j

x,σ
j
z). (7.3)

Here, the first n elements σ
j
x of the vector σ j are the sigma points for the initial

condition for the ODE (5.10), that is, the sigma points that represent N (mtk−1,Ptk−1).

The remaining d×N elements σ
j
z are the sigma points corresponding to an N-term

expansion of a d-dimensional Brownian motion. Together, these data determine an

initial value problem. For each sigma point σ j, we solve the ordinary differential



92 Chapter 7. The series expansion unscented Kalman filter

equation (5.10). The initial condition is X̂tk−1 = σ
j
x and the coefficients representing

{Zi}i≤N are formed from the appropriate subvectors of σ
j
z (each one having length d).

At time T , the solution is an n-dimensional vector

X̂ j
T = X̂(T,σ j

x,σ
j
z). (7.4)

We treat the solution at time T of the initial value problem as the image of the sigma

point σ j. The set of vectors {X̂ j
t } can be thought of as a discrete approximation to the

predictive distribution. We can use these vectors to compute an estimate of mt and Pt ,

though the specific computation depends on the choice of sigma-point method. This

methodology is in marked contrast to the sigma point Kalman filters of Section 3.2.

These rely on discretisation of the signal dynamics and sigma point approximation

of the Brownian increment Wt+∆t −Wt at each timestep, or a limiting case of this

discretisation as ∆t→ 0.

We summarise our algorithm in pseudocode as follows:

for k = 1 : m do
Set mσ = (mtk−1 ,01×(Nd))

Set Pσ =

(
Ptk−1 0n×(Nd)

0(Nd)×n I(Nd)×(Nd)

)
Generate 2(n+Nd)+1 sigma points, with weighted mean mσ and weighted co-

variance Pσ

for Each sigma point σ( j) do
Set x0 = σ

( j)
1:n.

Set Z1:N = σ
( j)
n+1:n+(Nd) (reshaping the right-hand side into a d×N matrix if

appropriate).

Solve numerically Equation (5.10). Let X( j)
T be the value of the solution after

T units of time.

Set Y j = h(X( j)
T ).

end for
Predict the mean and variance of the incoming observation using (3.38) and (3.39).

Upon arrival of the observation Ytk , update the mean mtk and variance Ptk of the

filtering distribution using (3.47).

end for
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7.2 Numerical experiments

A general analysis of the error induced by the series expansion approximation is diffi-

cult. One cannot easily exploit the usual tools from the theory of stochastic processes.

In general, the truncated driving noise does not possess the Markov property, nor is

it a martingale. The truncated driving noise is, however, a Gaussian process, and this

structure is exploited in [100] to demonstrate convergence to the true SDE. In the first

part of this section we present a numerical investigation into the approximation error.

We then compare the series expansion UKF with the cubature Kalman filter, which

was found to be the most accurate and numerically stable amongst standard unscented

transform-based filters in this context. There is already a considerable amount of the-

oretical and empirical evidence in the literature that sigma point methods outperform

the extended Kalman filter, especially in tracking models such as the one described

below (see, for example, [97] [80] [31]). In addition, one must compute the gradient

of the drift function in order to implement the EKF. For some processes, this can be

cumbersome. In contrast, our algorithm can be used as a ‘black box’ filter. We com-

pare our results with the UKF rather than the EKF to provide the most informative

experiments. In these experiments, we use a Stratonovich-to-Itô correction term to

modify the dynamics of our approximation, so that the solution coincides with the Itô

dynamics [22].

7.2.1 Filtering Experiments

We will test our filtering algorithm on on a model of an aircraft turning in the (x1,x3)

plane, first seen in Section 5.1.4. Recall that dynamics of the seven-dimensional system

are given by

dXt = a(Xt)dt +b(Xt)dWt , (7.5)

with

a(x1:7) =



x2

−x7x4

x4

x7x2

x6

0

0


(7.6)
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b(x1:7) =



0 0 0 0√
1+x2

2
v

√
1+x2

4
vxy

√
(1+x2

2)(1+x2
6)

vvxy
0

0 0 0 0√
1+x2

4
v −

√
1+x2

2
vxy

√
(1+x2

4)(1+x2
6)

vvxy
0

0 0 0 0√
1+x2

6
v 0 −vxy

v 0

0 0 0 1


(7.7)

The coordinates x1,x3,andx5 are understood to represent the x,y, and z coordinates

of the aircraft in Km. The coordinates x2,x4,andx6 represent velocity in Km/sec, and

the coordinate x7 represents the turn rate of the aircraft in degrees per second.

As the nonlinearity of the system increases, the speed at which the filtering distribu-

tion deviates from Gaussianity should also increase. Intuitively, this means the amount

of information that the conventional UKF ‘throws away’ at each timestep grows with

nonlinearity of the system. The series expansion method avoids this issue by targeting

the predictive density at a given time directly without any intermediate projection onto

the space of Gaussian distributions. As a result, we should expect the series expansion

filter to outperform the conventional UKF in systems that are more highly nonlinear.

To test this hypothesis, we set the covariance of the four-dimensional Brownian

motion driving the aircraft model to Cov(W)(t) = Diag(10,0.2,0.2,Q2
W )t. The quan-

tity QW determines the variance of the turn rate of the aircraft. We use it as a proxy

for the degree of nonlinearity of the system. We chose a number of values for QW ,

ranging between QW = 0.1 and QW = 1.1. For each value of the variance, we sim-

ulated 1000 trajectories for the aircraft, running both filters on each trajectory. For

each trajectory, the initial condition was drawn from a Gaussian distribution with mean

m0 = (1000,0,2650,150,200,0,6). The standard deviation of each component was set

to 100, with the exception of the standard deviation of X7(0) (recall that this notation

denotes the seventh component of the vector at time 0, rather than the value at time 7).

This was set to 0.1. All components were assumed to be uncorrelated initially.

For each trajectory, we simulated nobs = 20 observations, spaced T = 8 units of

time apart. The observation function h models radar signals arriving at a dish. For this
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reason, we assume observations arrive in spherical coordinates, so that h is given by

h(x1:7) =


√

x2
1 + x2

3 + x2
5

tan−1(x3/x1)

tan−1(x5/
√

x2
1 + x2

3).

 (7.8)

The covariance matrix of the observation noise was set to R = diag(50,0.1,0.1).

For the standard unscented Kalman filter, an Itô-Taylor scheme such as the one

proposed in [80] is impractical to implement as a result of the state-dependent noise.

This is due to the presence of iterated stochastic integrals in which the integrand is a

function of Xt (see [22]). Even the simplified order 2.0 Itô-Taylor scheme proposed in

[22] is cumbersome to implement. For an n-dimensional process, we need to compute

n2 +2n+1 terms involving derivatives of the coefficient functions (in our case, n = 7

so this means 64 terms). The simplified scheme also involves a number of Bernoulli

random variables, and it is not immediately clear how one would incorporate these into

an unscented filter.

We chose to use the limiting scheme first proposed in [33]. The system of ODEs

(3.46) was solved by a fourth order Runge-Kutta scheme. The number of Runge-Kutta

steps used did not appear to affect the error appreciably. However, with a large step

size the predicted covariance can fail to be positive definite, which causes the filter

to diverge. We found that a good compromise between computational cost and the

divergence issue was to choose a smaller step-size for more highly nonlinear parameter

settings. For this reason, we used 200QW steps per unit time.

The system of ordinary differential equations (5.10) defining the series expansion

method was solved numerically using the Dormand-Prince Runge-Kutta method. This

is the default ODE solver implemented in MATLAB. It is an adaptive algorithm, and

the number of timesteps used depends on the integrand.

Run-time of either algorithm depends on a number of factors. The main factors

that determine computation time are the numerical method used (and the number of

timesteps in that method), and the number N of series expansion terms. In our setup,

we found that the series expansion method could run anywhere from four times as fast

to three times slower than the standard unscented filter. We stress, however, that no

effort was made to push either method to the limit of efficiency.

For the standard unscented filter, we set α = 1, κ = 0 and β = 0: see Section

3.1.2 for the definition of these parameters in the context of the unscented transform.

This choice of tuning parameters is also known as the cubature Kalman filter [98, 80].
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Various other parameter settings produced similar results, though these settings were

most stable and most accurate.

For the series expansion method, we used the orthonormal basis (5.34) with T = 8,

and used N = 8 basis functions for each component of the Brownian motion.

The series expansion filter takes one large step instead of many small ones. As

such, one can expect that the target distribution is less like a Gaussian distribution. We

found that ‘tweaking’ the standard parameters slightly improved performance, though

not dramatically. We set α = 1,κ =−32,β = 0 so that λ = 7. Our motivation for this

choice is given in Section 7.3.

For any given sample path, we compute the root mean squared error for the posi-

tion, velocity and turn rate:

εc =

√√√√ 1
nobsl

nobs

∑
k=1

(Xc(tk)−mc(tk))
> (Xc(tk)−mc(tk)), (7.9)

This results in a collection {ε(i)}i≤nobs of vectors recording the errors for each sample

path. Here, mc(tk) is the mean of the filtering distribution at time tk. The value of c

depends on the error component. For position errors, c = (1,3,5). For velocity errors,

c = (2,4,6), and for turn rate errors, c = 7. We set l = 3 for the position and velocity

errors and l = 1 for the turn rate error. Mean filter errors and divergences are reported in

Table 7.2. A filter was deemed to have diverged if the RMSE position error was greater

than 1 km. When this occurred, the corresponding value of ε(i) was not included in the

average.

Both the series expansion filter and unscented filter can diverge and lose track of the

signal, in which case the error becomes very large. Even if divergences are discarded,

a few large errors can still dominate the average. For this reason, we report the median

over all runs of the absolute error for each component in Figure 7.1.

We report quartiles of the empirical distribution of ε
(i)
UKF− ε

(i)
SE in Figure 7.2. The

third interquartile corresponding to QW = 1.1 is excluded because the plot could not

be scaled appropriately. For the position, the value is 77m . For the velocity, 67m/s,

and for the turn rate, 7.8 degrees/s.

Choice of basis functions made minimal difference in this experiment. We re-

ran the experiment using N = 8 Haar wavelet functions instead of sinusoidal basis

functions. Results for the most nonlinear setting QW = 1.1 are shown in Table 7.3.

Filtering errors for both sets of basis functions were close to one another. This is

because the Gaussian approximation and tuning parameters of the unscented transform
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QW .1 .3 .5

RMSE UKF (divs) 49.9 m (1) 49.7 m (3) 55.0 m (12)

RMSE SE-UKF (divs) 49.9 m (1) 49.8 m (4) 56.4 m (7)

QW .7 .9 1.1

RMSE UKF (divs) 66.9 m (28) 92.2 m (75) 136.7 m (107)

RMSE SE-UKF (divs) 63.4 m (17) 71.5 m (20) 83.5 m (50)

Table 7.1: Mean position errors and divergences for 1000 runs of the filter. Larger

values of QW result in more erratic trajectories. The filter was deemed to have diverged

if the position error was greater than 1km, or if the filter failed due to the appearance

of a non-positive definite covariance matrix. Divergent runs were not included in the

average. The number of divergences is reported in parentheses

QW .1 .3 .5

Runtime UKF 9s 26s 43s

Runtime SE-UKF 26s 29s 27s

QW .7 .9 1.1

Runtime UKF 61s 80s 96s

Runtime SE-UKF 26s 27s 26s

Table 7.2: Runtimes for the filtering algorithms under varying degrees of nonlinearity.

The principal determinant of runtime for the standard filter is the number of steps in

the discretisation. We find this must increase as nonlinearity increases in order to keep

the algorithm stable. The SE-UPF uses an out-of-the-box adaptive runge-kutta solver

which appears to be stable under all settings.

have a larger effect on the filter than specifics of the series expansion approximation.

Surprisingly, we found that choosing the symmetric square root of Pt (that is, the

matrix that satisfies S2 = Pt , implemented in MATLAB as sqrtm()) instead of the

Cholesky decomposition improved the accuracy of our algorithm considerably (though

this choice did not improve performance of the standard UKF). The choice of matrix

square root is known to affect fourth-order and higher terms in the Taylor expansion
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Basis Pos. Error Vel. Error Turn Error

Sine 53.4 m 20.8 m/s 0.300 deg/s

Haar 53.6 m 20.9 m/s 0.301 deg/s

Table 7.3: Error induced by using a Haar wavelet basis versus error from a sinusoidal

basis. Median error from 1000 runs of the filter. We used the most highly nonlinear

setting, QW = 1.1.
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Figure 7.1: The x-axis shows the diffusion coefficient QW of the Brownian motion driving

X7(t). We use this as a measure of the nonlinearity of the system. For a range of

values of QW , we simulated 1000 trajectories of the signal, observed with noise. We

plot median values of the error for the unscented Kalman filter (dotted line) and series

expansion filter (solid line).
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Figure 7.2: The x-axis shows the diffusion coefficient QW of the Brownian motion driving

X7(t). We use this as a measure of the nonlinearity of the system. For a range of

values of QW , we simulated 1000 trajectories of the signal, observed with noise. We

plot median values of the difference in error between the unscented Kalman filter and

series expansion Kalman filter (solid line), together with the first and third quartiles

(dashed lines). Errors were computed seperately for position, velocity and turn rate of

the aircraft. The last point in the upper range is omitted because its inclusion would

skew the scaling in the image. Values for these points can be found in Section 7.2.1.
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of the transition function f [31]. This is in agreement with our intuition: the transition

function in the UKF is locally linear, and hence can be approximated with a low-order

Taylor series. On the other hand, the series expansion filter uses a more nonlinear

transition function and one must consider higher order terms.

7.2.2 Series expansion step size

In the prediction step of the standard unscented filter, one discretises the process X,

and iteratively applies the unscented transform at each timestep. The aim is to estimate

the mean and covariance of Xt at some time t, given an appropriate initial condition.

Repeated applications of the unscented transform at each timestep induce error in this

estimate. We will refer to error of this nature as ‘projection error’.

On the other hand, the error in the SE-UKF comes from the error induced by the

series expansion approximation, coupled with the error induced by a single application

of the unscented transform. Error also accrues from numerical solution of the ODE, but

in our experiment, this is negligible compared to other sources of error. Empirically, we

observe that the accuracy of the series expansion approach improves with the number N

of basis functions that we use, and deteriorates with the time T between observations.

We will refer to error induced by the series expansion as ‘approximation error’.

In one sense, these two approaches represent two extremes of a more general frame-

work. For example, we might use the series expansion approximation to estimate the

mean and variance of XT/2. We could then form a Gaussian approximation of its

distribution, and use this as the initial condition (starting at time T/2) for a second

application of the series expansion trick to estimate the mean and covariance of XT . In

effect, we reduce the approximation error at the cost of increasing the projection error.

In order to investigate the effect of trading approximation error for projection error,

we ran the filtering experiment of Section 7.2.1 using the most nonlinear setting, QW =

1.1. Recall that the time interval between observations was T = 8 seconds. We divided

this interval into K subintervals of length T/K. At the end of each subinterval, we

re-initialised the series expansion approximation, using as initial condition the mean

and variance computed at the previous sub-interval.

Table 7.4 shows that one can reduce the error slightly by repeatedly employing the

series expansion approximation over a shorter timescale, thus trading approximation

error for projection error. As the number K of projections becomes large, the error

grows to match that of the standard UKF.
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K Pos. Error Vel. Error Turn Error

1 54.0 m 21.1 m/s 0.293 deg/s

2 51.6 m 20.2 m/s 0.291 deg/s

4 51.6 m 20.6 m/s 0.290 deg/s

8 55.5 m 21.6 m/s 0.294 deg/s

16 61.7 m 22.8 m/s 0.304 deg/s

32 69.3 m 24.2 m/s 0.322 deg/s

Table 7.4: The effect of trading approximation error for projection error. Median errors

over 1000 runs of the filter. Rows are indexed by number K of projections per obser-

vation. We used the most challenging parametrisation QW = 1.1 to generate the data.

Observe that results for K = 32 correspond closely to the errors for the standard UKF

in Figure 7.1.

7.3 Discussion and conclusions

In this chapter, we have presented a Gaussian filter based on the series expansion ap-

proximation. The novel contributions of this paper focus on improving the predictive

distribution, so it is straightforward to construct a smoother using similar methods: for

example one can use the unscented smoother [89] or Gaussian smoother [101] directly.

Two questions follow naturally from this work. Firstly, how does one choose pa-

rameters for the unscented transform in a sensible way? Secondly, what basis functions

should one use in the series expansion? In most cases the optimal solution for either

question is likely to be very difficult to compute.

All filters based around the unscented transform must somehow deal with the first

issue. Various heuristics can be found in the literature on how one might choose the

tuning parameters: see, for example [102], [103]. In some cases, a poor choice of

tuning parameters can cause the covariance matrix in the prediction step to fail to be

positive definite. This causes the filter to diverge.

When using a common set of tuning parameters (α = 1,κ = 3−n,β = 2, where n

is the dimensionality of the system [104]), we found the matrix degeneracy problem to

occur in both the series expansion filter (about 1% of runs) and the standard unscented

filter (about 10% of runs). This is a known issue when using these settings in a high-

dimensional context [104]. We found that increasing κ slightly to κ= 5−n in the series

expansion filter removed the divergence issue without affecting performance. On the
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other hand, the cubature Kalman filter settings (α = 1,κ = 0,β = 0) performed poorly

for the series expansion filter. This is because the higher dimensionality of the system

causes the sigma points to be spread far out from the mode (that is, λ = α2(n+κ)−n

is large).

We also compared our algorithm to the third-order Gauss-Hermite Kalman filter

(GHKF). This algorithm also exhibited numerical instability, with the predicted co-

variance matrix often failing to be positive definite. When we discarded test runs on

which the GHKF diverged, we found that our algorithm performed comparably to the

GHKF. This is despite the fact that the cost of the GHKF scales exponentially with di-

mension. In the present setting, the GHKF used 37 = 2187 sigma points, and required

several days of computation time to perform a comparison for a single value of QW .

We now address the issue of the choice of orthonormal basis. We performed the

same filtering experiments using a sinusoidal basis, and a basis of Haar wavelets. Re-

sults were similar in both cases. Our explanation for this is that we already induce

significant error by assuming the filtering distribution is Gaussian. This error is sig-

nificantly larger than the error induced by the series expansion approximation, so the

latter error is difficult to detect.

As we showed in Chapter 5.1, it is possible to set the series expansion approxima-

tion error to 0 in certain linear inference problems. One plausible heuristic for choosing

a set of basis functions in the nonlinear setting is to construct a linear approximation

to the problem. One then computes the optimal basis functions for the linearized dy-

namics as in Chapter 5.1. However, in our numerical tests we found that these basis

functions were prone to numerical instability, and furthermore they do not come with

a guarantee of uniform convergence. We note that this may be a useful strategy in

filtering problems that are ‘almost’ linear.





Chapter 8

The series expansion unscented

Particle filter

As we saw in Chapter 3, the particle filter is a promising candidate for solving low- and

medium-dimensional nonlinear filtering problems. In this chapter, we discuss a novel

way of applying the series expansion approximation to construct better importance

distributions for use in a particle filter.

Recall that the bootstrap filter uses the prior dynamics of the signal to propagate a

collection of particles that approximate the filtering distribution forward in time. One

can often hope to improve upon the bootstrap filter by using better proposal distribu-

tions. However, when the underlying signal is a diffusion process, it is often impossible

to compute the density p(Xtk |Xtk−1). For this reason, the importance distributions that

one can employ are rather restricted, since in most cases one must rely on some sort of

cancellation from the importance distribution.

In this chapter, we use the series expansion approximation to interpret the diffusion

process at time tk as the image of a Gaussian distribution under a certain nonlinear

transform f . That is, Xtk ≈ f (Xtk−1,Z). We use the unscented transform to construct

an importance variate V such that f (Xtk−1,V) sidesteps the particle degeneracy issue

while still producing tractable importance weights.

A number of other methods have been applied to the problem. Fearnhead et al. [44]

[45] use a form of rejection sampling to construct an unbiased estimator of the impor-

tance weights. This obviates the need for some term in the importance distribution

to cancel with p(Xtk |Xtk−1), allowing the authors to employ more general importance

distributions. However, the algorithm is only applicable to certain classes of diffusion

process, and it only performs well when the variance of the estimator is sufficiently

103
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low.

Rimmer et al. [83] discuss the use of a particle filter for maximum likelihood

estimation of some parameter governing the dynamics of the diffusion process. Use of

the unscented transform within a discrete approximation to the diffusion is discussed.

Our use of the unscented transform is different, and considerably cheaper in toerms of

computational cost.

Murray and Storkey [90] use a high-order numerical integration scheme to aproxi-

mate both filtering and smoothing densities by means of a forward-backward recursion.

Practical applications of the particle filter to fMRI data are discussed in [6].

Other approaches typically use the Girsanov theorem to construct importance pro-

cesses that have a tractable density with respect to the law of the signal X. Maroulas

and Stinis [105] use ‘drift homotopy’ (a method related to simulated annealing) to find

‘good’ importance processes. Särkkä and Sottinen [89] suggest linearising the SDE to

construct an importance process with the appropriate mean and covariance.

The rest of the chapter is structured as follows. In Section 8.1 we show how to

combine importance sampling with the series expansion approximation. Section 8.2

provides some numerical experiments, and we discuss our findings and some possibil-

ities for future work in Section 8.3.

8.1 The series expansion unscented particle filter

In Chapter 5.1, we saw that the value of Xtk can be approximated as the image of a

collection of i.i.d. Gaussian random variables (along with a possibly random initial

condition) under a nonlinear transform. That is,

X̂t = f(t,X0,Z1, . . . ,ZN). (8.1)

For the purposes of describing the SE-UPF, we assume the initial condition is fixed,

though this can easily be generalised.

One is often interested in computing expectations of the form

E[g(Xtk)]≈ E[g(X̂tk)] = E
[
g
(

f (T,Xtk−1 ,Z1:N)
)]
, (8.2)

where f is the solution of the ODE (5.10) described in Section 5.1.1.

In cases where the expectation cannot be computed exactly, one natural way to

proceed is to draw a number of i.i.d samples {X̂i
tk}i≤n from X̂tk and approximate the
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expectation via the Monte-Carlo estimate

E[g(X̂tk)]≈
1
n

n

∑
i=1

g(X̂i
tk)

=
1
n

n

∑
i=1

g
(

f (T,Xtk−1,Z
i
1:N)
)

(8.3)

The right-hand side of (8.3) is an unbiased estimator of E[g(X̂tk)]. However, its

variance may be unacceptably high. Consider, for example, a function g that takes a

large value somewhere in the tails of the distribution of X̂tk .

To work around this issue, one can attempt to construct a more suitable collection

of ’importance’ random variables Z1:N ∼ q(·). We can perform importance sampling

by drawing i.i.d samples {Zi
1:N} from q(·) and weighting the Monte-Carlo estimate

appropriately:

E[g(X̂tk)]≈
1
n

n

∑
i=1

g
(

f (t,Xtk−1,Z
i
1:N)
)N (Zi

1:N |0,INd×Nd)

q(Zi
1:N)

. (8.4)

If the distribution q is chosen appropriately, one can achieve a reduction in the variance

of the estimator. We will use this methodology to ’guide’ particles in the SE-UPF

toward regions of high likelihood.

We will now describe one way of applying these ideas in the context of particle

filtering. For a general nonlinear diffusion, it is not feasible to compute the transition

density p(Xtk |Xtk−1). Instead of working directly with the density of Xtk , we opt in-

stead to use importance sampling to modify the driving noise. In terms of the SDE

approximation derived in Section 5.1.1, the expression for the unnormalised weight

update (3.55) is

w̃i
tk = wi

tk−1

p(Ytk | f (t,Xi
tk−1

,Zi
1:N))N (Zi

1:N |0,INd×Nd)

q(Zi
1:N |Xi

tk−1
,Ytk)

, (8.5)

Here, q is playing the role of the importance distribution in (3.55), though we have

modfied the driving noise of X instead of modifying the distribution of Xtk directly.

As we will see in the next section, the unscented transform provides a computation-

ally inexpensive means of constructing useful importance distributions for the driving

noise.

8.1.1 Choice of importance distribution

There are several ways in which one could form an appropriate importance distribution.

One possible way to proceed is to construct a Gaussian approximation of the joint
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distribution p(Ytk ,Z1:N |Xtk−1). Given such an approximation, standard results about

the multivariate normal distribution allow us to compute a Gaussian approximation to

p(Z1:N |Ytk ,Xtk−1), which we will use as our importance distribution q(·).
In what follows, we will use the unscented transform to construct a Gaussian ap-

proximation of the joint distribution of Ytk and Z1:N . The random variable Z1:N is

N× d-dimensional standard normal. We select 2Nd + 1 sigma points {σi} to capture

the mean and covariance of Z1:N .

For a suitable initial condition Xic (e.g. the ensemble mean, or the location of a

given particle Xi
tk−1

), we set

Y j = h( f (Xic,σ j)), 1≤ j ≤ 2Nd +1. (8.6)

We can apply equations (3.38), (3.39) and (3.40) with the appropriate weighting

to find µ, S and C (recall that these quantities approximate the mean of Y, the co-

variance of Y neglecting observation noise, and the cross-covariance of Z1:N and Y
respectively). When we account for the additional variance R added by the observa-

tion noise, we obtain

Cov[(Ytk ,Z1:n) | Xic]≈

(
S+R C>

C IN

)
. (8.7)

The approximate mean and variance of Z1:N conditional on Ytk is then

E[Z1:N |Ytk ,X
ic]' µZ|Y = C(S+R)−1(Ytk−µ), (8.8)

Cov[Z1:N |Ytk ,X
ic]' ΣZ|Y = IN−C(S+R)−1C>. (8.9)

We can use these quantities as a basis for constructing an importance distribution q.

The simplest method is simply to set q = N (µZ|Y ,ΣZ|Y ). However, theoretical analysis

of importance sampling shows that one should employ a distribution with heavier tails

than the target distribution. One possibility is to set the diagonal entries of ΣZ|Y to 1.

In order to compute µZ|Y and ΣZ|Y , we must solve 2Nd + 1 differential equations:

one for each sigma point. This can be done for the ensemble of particles as a whole,

or for each unique particle individually. That is, µZ|Y and ΣZ|Y may be computed

‘globally’ using some summary statistic of the ensemble, or ‘locally’, depending on

each individual particle. For the ‘global’ approach, we use the ensemble mean as an

initial condition in (8.6). This represents an increase in cost over the bootstrap filter
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that is independent of the number of particles. For the local approach, we use the

location of each of the n particles as the initial condition in (8.6).

The ‘local’ method requires that (8.6) be solved for each individual particle. Naively,

one might think that this entails solving the ODE with n distinct initial conditions.

However, after resampling, many of the particles share the same location. In practice,

we need to solve significantly fewer than n systems of ODEs. The increase in perfor-

mance cost of the ‘local’ method is smallest in situations that standard particle filters

struggle to cope with due to low effective sample size.

In practice, we find that the posterior mean and covariance tend only to change

for the first few coefficients Z1:M, with the distribution of the remainder being similar

to the prior (i.e. standard normal). Intuitively speaking, this is sensible. The ’high

frequency’ basis functions control the behaviour of the SDE at small length-scales. In

the typical case, one should not expect to be able to deduce small-scale behaviour from

observations spaced far apart in time.

Since observations tend not to be informative about higher-frequency components,

we can perform importance sampling guided by the unscented transform on a small

number of coefficients Z1:M, and draw the remaining coefficients ZM+1:N from the

prior. The value of M depends on the nature of the model, but in the high-dimensional

experiment below, we saw good results with M = 2, N = 4.

8.2 Numerical experiments

8.2.1 Sinusoidal diffusion

For our first test, we reproduced the setup from one of the experiments in [44]. A

sample path was drawn from the one-dimensional diffusion

dXt = sin(Xt)dt +dWt ,X0 = 0. (8.10)

We made 50 noisy observations of the process, spaced T = 1 units of time apart. The

variance of the observation noise was set to R = .5. The performance of the SE-UPF

was compared against that of the bootstrap filter (using an Euler-Maruyama discretisa-

tion) and the random-weight particle filter from [44]. The importance distribution for

the RWPF used the ensemble mean (i.e. the same distribution was used for each parti-

cle). We assess the performance of the filters by measuring the variance their estimate

of the filter mean over several independent runs, having fixed a sample path and a set

of observations. We assume that filters with a lower variance are performing better.
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It is not straightforward to devise a simple and fair way of comparing these fil-

ters. The random weight filter makes an unbiased estimate of the importance sampling

weights, whereas both the SE-UPF and Euler-Maruyama bootstrap filter are subject to

approximation bias. Computational cost per particle is not necessarily an ideal metric.

One can choose a large timestep in an Euler scheme or when solving (5.10) to prop-

agate particles forward in time cheaply. Provided that one is prepared to tolerate this

bias, these methods will dominate the RWPF. In addition, one or other algorithm could

be heavily optimised to boost its performance.

Another possibility is to use a set number of particles and compare the perfor-

mance across algorithms without regard to computational cost. Again, this is not ideal

since any useful improvement to a particle filter should be expected to outperform the

baseline method of simply adding more particles to the bootstrap filter up to a compu-

tational cost equivalent to that of the improvement.

For sufficiently low observation noise (roughly R < .3), the RWPF outperformed

the SE-UPF and Euler-Maruyama bootstrap filters for a fixed number of particles (n =

500). However, the RWPF was more computationally expensive. For R > .3, the

SE-UPF outperformed the RWPF and bootstrap filters on a per-particle basis. It was

cheaper than the RWPF, and the bootstrap filter. It is surprising that the SE-UPF would

be cheaper than the bootstrap filter. This is because the standard Euler-Maruyama

scheme needs to generate draws from a standard normal distribution for each timestep,

whereas the SE-UPF needs fewer such draws. The relative variance of the estimates of

the filter mean are shown in Figure 8.1.

RMSE R = .5 R = .25

Series expansion .387 .28

Bootstrap .387 .278

Exact .3869 .274

Table 8.1: Root mean squared errors for the filters. The figure for the exact filter is

lowest: this is not surprising since the sampling mechanism is unbiased.

8.2.2 Coordinated turn model

For our next experiment, we simulated a number of sample paths from a model of an

aircraft performing a ’coordinated turn’ as in Chapter 5.1 and Chapter 7.
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Time average of variance R = .5 R = .25

Series expansion .00039 .0002

Bootstrap .0006 .0033

Exact .00047 .00016

Table 8.2: Summary of Figure 8.1. Average over the variance of the filter estimates

at each point in time. In the high-noise regime, the series expansion filter outperforms

the others, while in the low-noise regime the exact sampling algorithm outperforms the

others.

Approximate runtime (seconds)

Series expansion 4

Bootstrap 7

Exact 12

Table 8.3: Representative runtimes for each algorithm for 50 observations over one

iteration of the filter.

The settings used in the SE-UKF algorithm of Chapter 7 assumed that the obser-

vations of the azimuthal and attitudinal angle were very precise. Particle filters cannot

usually cope with high process noise and low observation noise simultaneously. In

such a case, all particles but one are typically assigned very low weights, with the

result that the filtering distribution is approximated by a delta function.

Both the series expansion filter and the bootstrap filter diverged almost immedi-

ately under the settings of Chapter 7. For this reason, we use the alternative set-

tings Xt0 = (1000,100,1000,100,1000,100,600), Q = diag(100,100,100,1000). The

inter-observation time was set to T = 1. As before, we modelled observations as

arriving through a ground-based radar dish that can determine range, azimuthal an-

gle, and attitudinal angle. The observation error was assumed to have covariance

R = diag([1, .005, .005]). In this case, the observation noise is considerably larger

than in Chapter 7. Due to the reduced inter-observation time, the signal dynamics are

less variable. This new system is much more amenable to particle filtering than that

the parameterisations discussed in Chapter 7.

We tested the SE-UPF against the bootstrap filter. The RWPF is not applicable in

this situation since the diffusion matrix is not of full rank. To be as fair as possible, we
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Figure 8.1: Variance of the SE-UPF estimate of the filter mean divided by the variance

of the RWPF estimate (broken line) and the variance of the bootstrap filter estimate

(solid line).

used the same code for the bootstrap filter as for the SE-UPF. The bootstrap filter code

was modified to draw Z1:N from the prior distribution instead of using an importance

distribution.

Both tests used approximately the same amount of processor time: for the standard

particle filter, we used n = 450 particles. For the series expansion filter, we used n =

200 particles. We drew a sample path from X and ran both filters 500 times. for each

filter, we computed Var(m̂t), the variance in the estimate of the filtering mean at time

t. A large variance between runs of a filter indicates that it is a poor approximation of

the optimal filter.

We computed Var(m̂SE
t ) and Var(m̂B

t ), respectively the sample variance in the se-

ries expansion filter and bootstrap filter estimate of E[Xt |Y1:t ]. In Figure 8.3, we plot

Var(m̂SE
t )/Var(m̂B

t ) as a function of time. We found that the variances were compara-

ble initially, but as time progressed the variance of the bootstrap filter estimate grew

markedly in comparison to the variance of the series expansion filter.

In Figure 8.4, we show normalised histograms that display the root mean squared

error from each run of both filters. The error in the position and velocity of the SE-UPF

estimate is noticeably lower than that of the bootstrap filter.
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Figure 8.2: Plot of the position components from a sample path of the coordinated turn

model, with the mean position as estimated by the SE-UPF (black dots).
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(a) Relative variance of the filter mean for X1
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(b) Relative variance of the filter mean for X2
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(c) Relative variance of the filter mean for X3
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(d) Relative variance of the filter mean for X4

Figure 8.3: Relative performance of bootstrap and series expansion filters for the coor-

dinated turn model experiment
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Figure 8.4: RMSE for position, velocity, and turn rate estimates from both filters. The

SE-UPF error (broken line) tends to be smaller than the bootstrap error (solid line).

8.3 Discussion

Our experiments suggest that the SE-UPF is more robust than the bootstrap filter. In

some scenarios it also outperforms the random weight particle filter, while being more

generally applicable. The methodology of section 5.1 suggests some interesting pos-

sibilities. It may be possible to use heavy-tailed importance distributions in order to

provide theoretical guarantees on the variance of the importance weights.

Given the improvement of the SE-UPF over the bootstrap filter, it would be interest-

ing to investigate the application of series expansion importance sampling to particle

Markov chain Monte-Carlo (PMCMC) methods. The estimation of parameters of a

diffusion process is a difficult task in general, but PMCMC methods are a a promising

tool for this problem. However, the bootstrap filter can struggle to cope within PM-

CMC. The filter will be run repeatedly, and the particles will often use dynamics that

are very different from the dynamics that generated the observations. As a result, most

observations will behave like outliers, and the effective sample size of the filter will be

lower.

The SE-UPF can direct particles to ‘interesting’ areas, and has been shown to have

a lower variance than the bootstrap filter. For this reason, we expect that it will improve

the performance of a PMCMC algorithm.
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Conclusion

In this work, we have investigated some of the possibilities offered by incorporating

a ‘Fourier series perspective’ on Brownian motion into the theory of stochastic dif-

ferential equations. The idea applying Fourier analysis to the theory of SDEs via a

decomposition of Brownian motion is not new. Series expansion approximations have

previously been used to approximate solutions of stochastic partial differential equa-

tions (see [73], [106]).

However, the Fourier series perspective is not commonplace in the physics or

stochastic analysis literature. Most standard textbooks on the theory of diffusion pro-

cesses (e.g. [21], [9], [10]) do not mention the Fourier series perspective of Brownian

motion (though the Karhunen-Lóeve expansion is described in [22] without reference

to its application in the approximation of SDEs).

The contribution of this thesis was to explore some novel applications of the Fourier

series perspective of stochastic differential equations. In Chapter 6 we showed that the

Fourier coefficients of a white-noise expansion can be exploited to gain fine -grained

control over the behaviour of a Brownian sample path. This increased level of control

was used to good effect in a Metropolis-hastings algorithm, where we were able to

generate proposals that behaved like our sample data.

In Chapter 7 we described a novel interpretation of the time-t value of a SDE as

the ‘image’ of an N-dimensional gaussian under a nonlinear transform. The compo-

nents of the Gaussian distribution were given by the Fourier coefficients of the driving

Brownian motion. We found that one needs a relatively small number of components

in order to get a good approximation to the true distribution of the SDE at time t - in

effect, providing a dimensionality reduction. The reduction in the number of covariates

allowed us to apply the unscented transform to construct a Gaussian approximation of

113
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the target distribution in an efficient manner.

In Chapter 8, we showed that one can conduct importance sampling on the Fourier

coefficients of a Brownian motion. We used this technique to ‘guide’ a set of particles

in a particle filter towards a region of high likelihood, as determined by a Gaussian

approximation. We showed that the resultant filter can outpeform existing filters.

A number of technical questions on the subject remain open. For example, it would

be useful to obtain quantitative bounds on the error induced by the series expansion

approximation under weak assumptions on the basis functions {φi}. This would be

useful for practical applications. However, it would also preclude the possibility of

encountering numerical issues that are sometimes encountered in Fourier analysis. For

example, the Gibbs phenomenon occurs when one attempts to decompose a square

wave as a series of sine waves. There are certain points on the sinusoidal approximation

that do not converge to points on the square wave, no matter how many terms are

used. The point here is that L2 convergence does not necessarily imply pointwise

convergence. In this work, we have concentrated on the value of a diffusion process X
at a specific time t. In other words, we rely on pointwise convergence.

We expect that rigorous analysis of the series expansion approximation will be dif-

ficult. The issue of convergence was studied in some depth and generality by Wong and

Zakai [74], McShane [75] and others with no decisive resolution: sufficient conditions

can be found in [107] though these are restrictive.

We do not claim that our methods are the last word on the subject, or that we have

exhausted all possibilities for exploiting the series expansion approximation. Indeed,

we argue that the most important contribution of this thesis is not the specific details

of the methods we have described. Rather, it is that there is something here that may

have been overlooked, and that it may be important.



‘Take it from me, there’s nothing like a job well done.

Except the quiet enveloping darkness at the bottom of a bottle of Jim Beam after a job

done any way at all.’

– Hunter S. Thompson
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126 Bibliography
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