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Abstract i 

ABSTRACT 

Over the last decade, the use of multi-component seismic reflection data 

to study shear-wave splitting has become increasingly common within the 

hydrocarbon industry to determine the crack geometry of oil reservoirs. Thus, 

it is important to investigate the characteristics of, develop processing 

techniques for, and carry out case studies of shear-wave splitting in reflection 

surveys. 

I have examined the effects of anisotropic symmetry, particularly 

orthorhombic symmetry, on velocity variations and moveouts of split 

shear-waves in vertical off-symmetry planes. -  I have also examined the effects 

of crack orientation changing with depth on reflection and transmission 

coefficients of split shear-waves. These theoretical developments in 

understanding shear-wave splitting in reflection surveys are described in 

Chapters 2 and 3. 

Complex component analysis was developed as an alternative to 

polarization analysis for displaying and identifying shear-wave splitting in large 

seismic datasets. This complex component analysis allows the calculation of 

instantaneous amplitudes and instantaneous polarizations for two-component 

seismic data and of shear-wave splitting sections and polarization logs for 

four-component data. Four field seismic datasets, including a two- and a 

four-component VSPs, a reflection shot data matrix and a two-component 

crosshole survey, have been used to verify and illustrate the technique, as 

described in Chapters 4 and 5. 

A linear-transform technique was developed as an alternative to rotation 

analysis for quantifying and processing shear-wave splitting in seismic data. 

This linear-transform technique allows various attributes to be measured, 

including the polarizations and time delays of split shear-waves and downhole 
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geophone orientation. It also allows time series of the split shear-waves to be 

separated deterministically and such separation can be made before stacking in 

reflection surveys. Three field datasets including a zero-offset VSP, an offset 

VSP and a reflection shot data matrix, have been used to verify and illustrate 

the technique, as described in Chapter 6. 

Chapter 7 presented three integrated case studies of shear-wave splitting in 

reflection surveys. The datasets were acquired by Amoco Production Company 

in Dimmit, La Salle, and Frio Counties in South Texas and include three 

reflection lines with different azimuths in areas of varying oil production. I 

showed that the use of complex component analysis and linear transform 

techniques can simplify the processing sequence for shear-wave data in the 

presence of anisotropy and allows the generations of both stacked amplitude and 

stacked polarization sections of split shear-waves. The stacked polarization 

section can be used not only for identifying lateral variation of polarizations, 

but also for better imaging the subsurface structures. I also showed that the 

variation of anisotropy in the areas where the three lines were shot can be 

broadly correlated with oil production in the corresponding areas. 
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Introduction 	1 

CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND INFORMATION 

The study of seismic waves propagating through the Earth has greatly 

improved our understanding of the Earth's interior, and has developed into one 

of the most important subjects in earth sciences. Using seismic waves, 

seismologists have been able to understand the mechanism of earthquakes and 

begin to monitor them, while exploration geophysicists have been able to 

characterize many complex geological structures and hydrocarbon reservoirs. 

However, most theory has been developed around the propagation of P-wave in 

isotropic solids, and for a long time this dominated the study of seismic waves 

(Aki and Richards 1980; Crampin 1981). 

Just over 10 years ago, Keith and Crampin (1977), and Crampin (1978, 

1981) established the theoretical and computational aspects of shear-waves 

propagating through anisotropic solids. They identified the potential importance 

of shear-wave splitting in both earthquake and exploration seismology. Their 

work was based on earlier identification and numerical calculation of surface 

waves in an anisotropic upper mantle (Crampin 1966, 1970, and a number of 

associated papers). Some years later, Crampin et al. (1980, 1985), Booth el 

al. (1985) and Buchbinder (1985) for the first time positively observed 

shear-wave splitting above small earthquakes. During 1986, Crampin el al. 

(1986) first reported shear-wave splitting in hydrocarbon reservoirs in a VSP in 

the Paris Basin, and Alford (1986b), Lynn and Thomsen (1986), and Willis et 

al. (1986) reported shear-wave splitting in reflection surveys. 
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Since then, the phenomenon of shear-wave splitting has attracted 

considerable interest in earthquake seismology (Peacock et a! 1988; Crampin 

et al. 1990; Shih and Meyer 1990; and many others), and in exploration 

seismology (Martin and Davis 1987; Squires, Kim and Kim 1989; Winterstein 

and Meadows 1990; Li and Crampin 1991a; and many others). Recently, the 

degree of shear-wave splitting in reflection surveys and VSPs has been 

correlated with oil production (Brodov et al. 1990; Davis and Lewis 1990; 

Lewis et al. 1991), and the relative amplitudes of the faster and slower split 

shear-waves have been used to determine the lateral variations of crack density 

in cracked reservoirs (Mueller 1991). Since most hydrocarbon reservoirs 

contain inclusions and display some form of shear-wave splitting (Willis et al. 
1986), these studies may have wide implications for hydrocarbon exploration 

and production (Crampin 1987; Crampin and Lovell 1991). 

The study of seismic wave propagation in anisotropic media can be traced 

back to more than ninety years ago. Love (1903) described transverse 

isotropy, a special case of anisotropy with hexagonal symmetry. Cholet and 

Richards (1954) and Richards (1960) introduced elliptical anisotropy, a special 

case of transverse isotropy assuming the wavefronts to be ellipsoids of 

revolution. Note that such elliptical anisotropy has not been confirmed by 

observations. Postma (1955) and Backus (1962) showed that periodic 

sequences of thin layers, each of which is isotropic, are effectively transversely 

isotropic with a vertical symmetry axis for long wave lengths. Since then there 

have been many publications on seismic wave propagation in transversely 

isotropic media in the literature (Berryman 1979; Levin, 1978, 1979; Daley 

and Hron, 1979; Helbig 1983). As the effects of anisotropy are small and 

difficult to detect in one-component P-wave seismic data (Krey and Helbig 

1956; Crampin and Radovich 1982; Winterstein 1990), the relevance of 

anisotropy to hydrocarbon exploration and development was not widely 

recognized. 
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The use and study of shear-waves has also been reported throughout the 

history of the development of seismology. In 1943, Horton (1943) described 

the use of seismic shear-waves in exploration applications. Ricker and Lynn 

(1950) reported the use of mode converted shear-waves from the near-surface. 

Jolly (1956) and White et al. (1956) carried out extensive experiments in the 

use of SH-waves in exploration applications. However, the conclusion of these 

studies was largely negative because of limitations in instrumentation. The 

most positive result was the increased understanding of shear-wave propagation. 

As digital recordings and large vibroseis sources became available during 

the late 1970's. interest in shear-wave exploration was revived. Several large 

experiments in shear-wave exploration were carried out during the late 1970's 

and earlier 1980's by a group of oil companies (McCormack and Tatham 

1991), and some results were published in the literature (Tatham 1982; Ensley 

1984; Winterstein and Hanten 1985; etc.). However, most of these studies 

were either restricted to special structure mapping, or limited to the use and 

the correlation of Vp/Vs ratios with variation in lithology. 

The new insight into the behaviour of shear-waves in anisotropy media 

and the observations of shear-wave splitting in the Earth's crust made by 

Crampin and his co-authors opened new aspects in shear-wave exploration. 

During the late 1980's, multi-component reflection data have been acquired in 

a number of different areas for studying shear-wave anisotropy (Alford 1986b; 

Winterstein 1986; Squires et al. 1989; Murtha 1989; Muller 1991). 

Three-dimensional multi-component reflection data were also acquired for 

characterizing fractured reservoirs (Lewis 1989; Davis and Lewis 1990; 

Kramer 1991; Kramer and Davis 1991; Lewis et al. 1991), and the 

three-dimensional image of reservoir heterogeneity was obtained through the 

study of shear-wave splitting. Thus, studying the characteristics of shear-wave 

splitting in reflection surveys and developing techniques for processing and 

interpreting shear-wave splitting correctly, are certainly of great importance for 

shear-wave exploration. 
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1.2 AIMS AND OVERVIEW OF THIS THESIS 

The aims of this thesis are: 1) to investigate the behaviour of split 

shear-waves propagating in anisotropic media with hexagonal and orthorhombic 

symmetry and in media where crack orientations may change with depth; 2) to 

investigate the use of colour displays of shear-wave attributes such as 

instantaneous polarization and instantaneous amplitude for displaying and 

interpreting shear-wave splitting in seismic sections; 3) to refine techniques for 

processing multi-component shear-wave seismic data in the presence of 

anisotropy in order to obtain the best stacked sections while preserving the 

characteristics of shear-wave splitting; and 4) to carry out case studies to verify 

the techniques and examine the role of shear-wave splitting in characterizing 

fractured reservoir. 

Backus (1965) and Crampin (1977) used analytical equations for 

determining approximate phase-velocity variations in symmetry planes of a 

weakly anisotropic solid. Recent observations (Bush and Crampin 1987, 1991; 

Kramer 1991; Kramer and Davis 1991) showed that sedimentary thin-layer 

anisotropy is often combined with crack anisotropy forming orthorhombic 

anisotropy. In such media if a survey line is at an intermediate angle to the 

crack orientation, the vertical acquisition plane is not a symmetry plane. In 

Chapter 2, Backus's (1965) and Crampin's (1977) results are extended into the 

off-symmetry plane of a weakly anisotropic solid with orthorhombic symmetry. 

Thomsen (1988) described the reflection coefficients of split shear-waves 

at an interface separating a thin layer anisotropic medium and an anisotropic 

medium containing a single set of vertical cracks, and identified the importance 

of studying the differential amplitudes of the faster and slower split 

shear-waves. However, the crack orientation in the near surface may differ 

from those at depth (Douma el al. 1989; Kerner et al. 1989, Squires et al. 

1989; Crampin 1990; Winterstein and Meadow 1990, 1991a, 1991b). Chapter 

3 examines effects on reflection coefficients in media where crack strike 
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changes with depth in order to interpret the variation of amplitudes in reflected 

shear-waves correctly. 

Crampin and Radovich (1982), Evans (1984) and Booth and Crampin 

(1985) investigated some basic characteristics of shear-wave splitting in surface 

recordings. Split shear-waves recorded at the surface are significantly different 

from those recorded in the subsurface. The split shear-waves may interact with 

converted waves at the free surface (Evans 1984; Booth and Crampin 1985) 

and at internal interfaces (Liu and Crainpin 1990). These effects are more 

severe in surface reflection surveys than in VSPs (Yardley and Crampin 1991). 

Stacking traces without allowing for these effects may degrade shear-wave 

polarizations (Li and Crampin 1989). Thus processing techniques which are 

capable of handling these problems need to be developed. 

In the past, analysis of shear-wave splitting has relied principally on the 

detailed visual examination of individual polarization diagrams (polarization 

analysis; Crampin 1985b; Crampin and Booth 1985) and on the rotation of 

horizontal recording axes (rotation analysis; Alford 1986b; Thomsen 1988). 

These techniques are both time-consuming when attempting to analyze 

shear-wave splitting in large seismic data sets, and rotation analysis is not 

suitable for identifying abnormal polarization variations caused by surface or 

internal shear-wave windows, or other forms of noise. To overcome the 

problem, I developed two alternative techniques: complex component analysis 

(Li and Crampin 1991c, 1991d) and a linear-transform technique (Li and 

Crampin 1991b, 1992a). 

Complex component analysis calculates instantaneous amplitudes and 

polarizations for two-component seismic data, and shear-wave splitting sections 

(SWS-sections) and polarization logs for four-component data, and displays 

them in traditional time-versus-offset colour sections, in which any polarization 

anomalies can be continuously followed both vertically and laterally (Li and 

Crampin 1990b, 1990d, 1991c, 1991d). Chapter 4 describes the principles of 
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complex component analysis and verifies the technique with full-wave synthetic 

seismic data. Chapter 5 illustrates the application of the technique using field 

datasets including a two- and four-component VSP, a reflection shot data 

matrix, and a crosshole dataset. 

The linear transform technique transforms the seismic data by four linear 

transforms so that the complicated shear-wave motions are linearized in a wide 

variety of circumstances. The technique is very flexible, and can be used to 

analyze non-orthogonal split shear-waves and datasets where downhole 

geophone orientations are not known. In reflection surveys, the time series of 

split shear-waves can be separated before stacking which simplifies the 

sequence for processing reflection data in the presence of anisotropy. The 

linear-transform technique can also be extended to media where crack 

orientation changes with depth (Li and Crampin 1991b, 1992a). Note that 

because recorded polarizations of split shear-waves are determined by the 

anisotropy in the structure within a wavelength or two of the recording site 

(Cranipin and Lovell 1991), the polarizations of shear-waves seen on the 

surface recordings may not be the polarization at depth in the zones of interest, 

if the crack orientation changes with depth. Chapter 6 describes the theory of 

the linear transform technique and illustrates it with several field datasets. 

To further verify the use of complex component analysis and the 

linear-transform technique and to investigate the use of shear-wave splitting in 

characterizing fracture reservoirs, three case studies of shear-wave splitting in 

reflection surveys are described in Chapter 7. The datasets were acquired by 

Amoco Production Company in Dimmit, La Salle, and Frio Counties in South 

Texas in 1986, and included three reflection lines with different azimuths in 

areas of varying oil production. These studies confirm that the processing 

sequence for shear-wave reflection data in the presence of anisotropy can be 

simplified by the use of complex component analysis and the linear transform 

technique. Both stacked amplitude and stacked polarization sections of split 

shear-waves can be generated. Shear-wave events in the amplitude sections 



Introduction 7 

obtained by linear transform technique are of better quality than those obtained 

by conventional rotation technique. The stacked polarization section can be 

used, not only for identifying lateral variation of polarizations which are often 

associated with lateral variation of crack geometry, but also for better imaging 

subsurface structures. These studies also show that the variation of anisotropy 

in the areas where the three lines were shot can be broadly correlated with oil 

production in the immediate neighbourhood. 
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CHAPTER TWO 

APPROXIMATIONS TO SHEAR-WAVE VELOCITY 

AND MOVEOUT EQUATIONS IN ANISOTROPIC MEDIA 

ABSTRACT 

Backus and Crampin used approximate analytical equations for estimating 

velocity variations in symmetry planes in weakly anisotropic media. I examine 

the extension of these equations into off-symmetry planes in weakly anisotropic 

solids including orthorhombic symmetry. These modified equations are good 

approximations up to 10% anisotropy for propagation in symmetry planes for 

all three body waves (qP-, qSH-, and qSV-waves), but are only valid up to 6% 

anisotropy in off-symmetry planes. 

I also obtain analytical moveout equations for the reflection of qP, qSH, 

and qSV waves from a single interface in both symmetry and off-symmetry 

planes. The moveout equation consists of two terms: a hyperbolic moveout and 

a residual moveout, where the residual moveout is proportional to the amount 

of anisotropy and the spread length of acquisition geometry. Numerical 

moveout curves are computed for a range of anisotropic materials to verify the 

analytical moveout equations. 

2.1 INTRODUCTION 

Velocity variations in symmetry planes in hexagonal anisotropic media 

with either a vertical (PTL-anisotropy) or a horizontal (EDA-anisotropy) 

symmetry axis have been well studied (Backus 1965; Crampin 1977; Levin 
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1978, 1979; Thomsen 1988; Sena 1991; Berge 1991; and many others). 

Recent observations (Bush and Crampin 1991; Kramer 1991; Kramer and 

Davis, 1991) suggest that the anisotropy in most sedimentary basins is a 

combination of PTL-anisotropy and EDA-anisotropy yielding orthorhombic 

symmetry (called CLA-anisotropy), and most multi-component shear-wave 

datasets (Alford 1986b; Squires et al. 1989; Mueller 1991; and many others) 

were acquired in vertical off-symmetry planes. This chapter examines the 

effects of such CLA-anisotropy and plane symmetry on the estimation of 

velocity variations and moveouts of split shear-waves. 

Backus (1965) determined approximate equations for the variations of qP 

velocity over a plane in a weakly anisotropic solid in terms of linear 

combinations of the elastic constants. Crampin (1977) derived similar 

expressions for shear-waves propagating in planes of a weakly anisotropic solid. 

Crampin (1982) showed that these equations are only valid for propagation in 

planes of mirror symmetry. Levin (1978, 1979) and Helbig (1983) discussed 

qP-wave velocity variations and travel time equations in a transversely isotropic 

medium with a vertical symmetry axis (which is referred to as PTL-anisotropy, 

see Crampin 1989). They particularly studied the problem in PTL medium 

with elliptical velocity dependence and with horizontal layering; Uren et al. 

(1990) extended Levin and Helbig's results into an elliptical anisotropic media 

with dipping layering. Byun et al. (1989) obtained a general and skewed 

hyperbolic moveout relation for qP wave in weakly PTL-anisotropy. Thomsen 

(1986, 1988) discussed shear-wave moveouts in a crack-induced anisotropic 

medium (which is referred to EDA-anisotropy, also see Crampin 1989); Li and 

Crampin (1990a, 1990c) studied the dynamic and kinematic features of 

shear-waves in a horizontally stratified Earth with EDA-anisotropy; Sena (1991) 

extended these results into multilayered media. 

However, most of these results are only strictly valid in symmetry planes 

of weakly anisotropic solids. This restriction may not cause severe problems in 

PTL-anisotropy in which all vertical planes are symmetry planes, but may 
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cause problems in media with EDA- or CLA-anisotropy. If a survey line runs 

at an oblique angle to the crack strike in a survey area with EDA- or 

CLA-anisotropy, the acquisition plane in a multi-component reflection survey is 

an off-symmetry plane. 

Here, I extend the results of Backus (1965) and Crampin (1977) into 

off-symmetry plane of a weakly anisotropic solid. I then examine their 

accuracy over a range of anisotropic materials with PTL-, EDA-, and 

CLA-anisotropy. Based on the analytical velocity equations, I then derive 

analytical moveout equations in symmetry and off-symmetry planes for 

reflections of qP, qSH and qSV from a single interface, and verify the equations 

by numerical results. Some of the results in this Chapter were presented in 

the Fourteenth United Kindom Geophysical Assembly (UKGA-14) in Plymouth 

(Li and Crampin 1990a); and the Fourth International Workshop on Seismic 

Anisotropy in Edinburgh (Li and Crampin 1990c). 

2.2 ANALYTICAL VELOCITY EQUATIONS 

Consider a weakly anisotropic solid with three mutually-orthogonal 

symmetry planes (note that any two orthogonal symmetry planes necessarily 

imply a third mutually-orthogonal symmetry plane, Crampin 1984a). In a 

medium with a combination of PTL- and EDA-anisotropy (CLA-anisotropy), 

planes parallel and perpendicular to the crack strike and the 

mutually-orthogonal plane are symmetry planes. Suppose the ray geometry of 

a source-receiver configuration in a reflection survey is as shown in Figure 

2. 1, where it is assumed that there is PTL-, EDA-, or CLA-anisotropy and that 

the horizontal plane is a symmetry plane. The survey line is at an angle a to 

the crack strike, where $ is the ray angle measured from vertical, and v(4) is 

the group velocity (ray velocity) of an arbitrary wave. I study the variation of 

v(4) and the travel time from 0 to G reflected at R. The travel time equation 

is also referred to as moveout equation. Note that in an anisotropic medium, 

directions of phase- and group-velocity may be not colinear, so that except in 
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Figure 2.1. Diagram showing the acquisition geometry and coordinate system. A survey 

line on the surface is at a angle to the crack strike. Vh  is the horizontal velocity travelling 

along the survey line, and v is the vertical velocity travelling at vertical incidence. v(4) is 

the ray velocity and $ is the incidence angle. Note that these variables can be considered 

as for an arbitrary qP-, qSH-, or qSV-wave. 
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particular symmetry directions, seismic rays may deviate from the direction of 

phase propagation. However, for weakly anisotropic media, this ray deviation 

is small (Crampin 1981; Shearer and Orcutt 1985). Thus the ray geometry in 

Figure 2.1 is still a good approximation. 

2.2.1 Basic theory 

In an anisotropic medium, there are three body waves in each direction of 

phase propagation. For weakly anisotropic media, the three body waves are a 

quasi-compressional wave, and two quasi-shear waves (qP, qSI and qS2). [We 

shall also use the notation qSH and qSV to include waves which have nearly 

SH- and SV-wave particle motion.] The phase velocities of these three waves are 

solutions of the Kelvin-Christoffel equations (Musgrave 1970; Auld 1973; 

Crampin 1981). These solutions are rational functions of the elastic constants 

and direction cosines, and are sufficiently complicated to have little analytical 

application except in computer programs. However, in a symmetry plane of a 

weakly anisotropic medium, the phase velocities of the three body waves can be 

written as (Backus 1965; Crampin 1977, 1981): 

P1'2 qp  = A + Bcos28  + Bsin28 + Ccos4e  + Csin4e; 

= D + Ecos4e  + Esin4e; and 

P1ZqsH = F + Gcos28  + Gsin28; 	 (2-1) 

where 

A = [3(c3333 +c1111) + 2(c1133 +2c1313)]/8; 

B = (c3333  - c1111)12; 

BS = (c1333  + c3111); 

C = [c3333 +c1111  - 2(c1133 +2c1313)]/8; 

C = (c1333  - c3111 )12; 

D = [ c3333 +c1111  - 2(c1133-2c1313)]/8; 
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E= - C; 

F = (C2323  + c1212)12; 

G = ( C2323  - c1212)12; 

Gs 	c12; 

where p is the density; Vqp  is the phase velocity of the qP wave, VH  and Vqsv 

are the phase velocities of the quasi shear-waves with polarizations parallel 

(qSff) and perpendicular (qSV) to the plane of variation, and 8 is the incidence 

angle of phase propagation measured from the vertical axis. Note that here I 

examine velocity variation in a vertical plane as in Crampin and Radovich 

(1982), while Crampin (1977) considered variation over a horizontal plane. If 

8=0 0  is also a plane of mirror symmetry, the sine terms in equations (1) 

vanish, giving rise to the reduced equations (Crampin 1981). 

However, what is usually observed in both field and laboratory 

experiments is the ray or group velocity of energy propagation, which is 

generally in a direction different from the direction of phase propagation. 4, is 

used to represent the incidence angle of energy propagation (Figure 2.1), and 

8 to represent the incidence angle of phase propagation. At 

anisotropic/anisotropic interfaces, it is the ray behaviour that determines the 

point where the reflection or transmission occurs, but it is Snell's law applied 

to the phase velocity that determines the angle of reflection or transmission. In 

a symmetry plane, the relations between 4, and 8, group velocity v(4,) and 

phase velocity v(8) are simple (Postma 1955; Krey and Helbig 1956): 

V2(0) = v2 (8) + [v'(8)] 2 ; 
and 

tan4, = [v(8)sine + v'(8)cos8]/[v(8)cos8 - v'(8)sin8]; 	 (2-2) 

where v'(8) =dv(e)Ide is the derivative of v(8). 
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2.2.2 Approximate equation for v() 

The expression for v(4) can be obtained by substituting equation (2-1) 

into equation (2-2). However, as demonstrated by Crampin and Kirkwood 

(1981), Thomsen (1986), and others, in a symmetry plane of a weakly 

anisotropic medium, v($) and bear a similar relation to the energy 

propagation as v(8) and e do to the phase propagation. Hence: 

pv2() = a + b cos24 + c sin24 + d cos44 + e sin4$ 	 (2-3) 

for any body waves; where a, b, c, d, and e are constants which can be 

expressed as linear combinations of elastic constants, if the anisotropy is weak 

(Crampin and Radovich 1982). Again, if • =0 0  is normal to a symmetry 

plane, the sine terms in equation (2-3) vanish. Dividing equation (2-3) by p 

gives: 

v2() = a' + b'cos2q + c'sin2q + d'cos44 + e'sin44; 	 (2-4) 

where a', b', c', d', and e' are constants. Note that equation (2-4) is a 

general expression for all three body waves. 

For studying moveout, the variation of v 2 (4)) is always used. Noting that 

ratios b'Ia', c'Ia', d'Ia', and e'Ia' are less than p1100, where p is the 

maximum percentage of velocity anisotropy (Crampin and Radovich 1982), 

v 2() can be represented by a Taylor expansion of these ratios. Taking the 

first two terms (the zero order and the first order) and making some suitable 

manipulations give: 

v 2() = a0  + a1 cos4 + a2cos2 4 + a3cos3  0 + a4cos44; 	 (2-5) 

where a. (i=0,1 ,2,3,4) are constants. If c' and e' in equation (2-4) are zero, 

a1  and a3  in equation (2-5) will also be zero. 
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2.2.3 Validility 

The above equations are strictly valid only for symmetry planes as pointed 

out by Crampin (1977, 1982). In off-symmetry planes, they are often poor 

representations of the velocity variations (Crampin and Kirkwood 1981). There 

are only three symmetry planes in Figure 2.1, corresponding to a = 00, a=90*  

and z=0. Thus, equations (2-3), (2-4) and (2-5) are only strictly valid in the 

vertical acquisition planes a = 0° and 90°. 

In most cases, as demonstrated below, the violation of the above equations 

in off-symmetry planes is due to the fact that the coefficients in the above 

equations can no longer be expressed as the linear combinations of elastic 

constants. Thus, in off-symmetry planes, the above equations may still be used 

to model the variation of phase and group velocities in an optimum sense, 

when the coefficients are determined numerically by least square fitting, thus 

sacrificing the physical significance of the coefficients as a linear combination 

of the elastic constants. 

2.3 VERIFICATION OF ANALYTICAL EQUATIONS 

Equation (2-5) is directly related to travel time equations. Given an 

anisotropic material, the velocity variations of v 2(4) of the three body waves 

can be calculated numerically. To demonstrate that equation (2-5) can be used 

in off-symmetry planes corresponding to a*0° and 90°, and that to what 

amount of anisotropy equation (2-5) is valid, a least square fitting techniques is 

used to determine the goodness of fit. Fitting equation (2-5) to the numerical 

results by least square fitting, I can determine the coefficients of a1  

(i=0, 1,2,3,4), and examine the average relative error between the analytical 

velocity and the numerical velocity. For this purpose, I introduce: 
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6 = (v 1 -v2)1v 1 ; 

e = (1/N) EIV() -v()I/V(4); 

C = e16. 	 (2-6) 

6 is defined as the amount of differential shear-wave anisotropy of a material; 

where v 1  and v2  are the velocities of the faster and slower split shear-waves at 

vertical incidence for EDA- and CLA-materials and at horizontal incidence for 

PTL-materials; e is the average error of analytical velocity v() given by 

equation (2-5) relative to the numerical velocity V(), N is the number of 

incidence angles over the range 00 - 900; C is the ratio of average relative 

error to the amount of differential anisotropy. 

The accuracy of equation (2-5) is judged in two ways. The first way is 

plotting out the analytical and numerical velocities against incidence angles, and 

directly comparing them to examine the overall fitness. The second way is by 

c-criteria. If £ < <0.1, that is the error introduced by equation (2-5) is much 

less than a tenth of the amount of anisotropy (6), then equation (2-5) is a good 

representation, and the error introduced by equation (2-5) to the velocities can 

be neglected; otherwise, if c ~ 0. 1, that is, the error introduced by equation 

(2-5) is comparable with the amount of anisotropy, then equation (2-5) is a 

poor representation. 

Equation (2-5) is examined over a range of anisotropic materials including 

pure PTL-anisotropy, pure EDA-anisotropy and a combination of PTL- and 

EDA- anisotropy leading to CIA-symmetry. Tables 2.1, 2.2 and 2.3 

summarize the parameters of these materials, the materials in Table 2.3 being 

obtained by cracking the corresponding materials in Table 2.1 with the crack 

density used in Table 2.2. Note that the materials are selected to give a range 

of percentage of anisotropy, and that the P-wave velocity of the isotropic matrix 

varies from 2.0 km/s to 4.0 km/s and covers the range from sandstone to 

granite. More details of the behaviour of such materials are given by Wild 
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TABLE 2.1: Elastic constants of PTL-anisotropy (in 10 9  Pa), where ijkl  for i, j, k, I = 1, 

2, 3, are elements of the elastic tensor (Crampin 1981), and density is 2.6g/cm 3 . The 

bracketed constants (c1 ) are the alternative two-suffix notation for the elastic constants. 

Note that the materials are selected to represent typical rocks in sedimentary basin, and that 

the P-wave velocity of the isotropic matrix varies from 4.0 km/s to 2.5 km/s. covering the 

range from granite to sandstone. 

Material Percentage 	c1111 	c3333 	c3311 C2323 	c1212 

name 	anisotropy 	(c11 ) 	 ( c33) 	(c13) 	(c) 	(ca) 

Al 2% 41.378 39.690 15.186 12.418 12.785 

A2 4% 38.904 36.097 13.819 11.353 12.051 

A3 6% 36.556 32.400 12.400 10.251 11.375 

A4 9% 34.342 28.632 10.954 9.116 10.754 

AS 12% 32.272 24.835 9.509 7.949 10.182 

A6 17% 30.345 21.060 8.060 6.784 9.669 

A7 22% 28.576 17.369 6.644 5.631 9.210 

A8 28% 26.977 13.833 5.297 4.505 8.802 

A9 26% 25.553 10.530 4.030 3.450 8.450 
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TABLE 2.2: Elastic constants of EDA-anisotropy (in 10 9  Pa), and density is 2.6 g/cm 3 . 

Similar to Table 2.1, the materials are selected to represent typical rocks in sedimentary 

basin, and the P-wave velocity of the isotropic matrix varies from 2.0 km/s to 4.0 km/s, 

covering the range from sandstone to granite. Notation as in Table 2.1. 

Material Crack 	c1111 	c3333 	c3311 C2323 	c1212 

name 	density 	(c11 ) 	 ( c33) 	(c13) 	(c) 	(c) 

coi 0.01 13.159 13.162 4.387 4.387 4.288 

CO2 0.02 16.240 16.249 5.419 5.414 5.172 

C05 0.05 19.627 19.659 6.538 6.557 5.849 

C07 0.07 27.365 27.452 9.129 9.150 7.801 

C09 0.09 27.338 27.449 9.120 9.150 7.457 

CIO 0.10 27.324 27.447 9.125 9.150 7.293 

C15 0.15 31.571 31.819 10.518 10.620 7.589 

C20 0.20 43.593 50.959 18.835 14.951 24.878 
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TABLE 2.3: Elastic constants (in 10 9  Pa) of orthorhombic CIA-anisotropy formed from 

cracking the PTL-materials in Table 2.1 with the crack density used in Table 2.2, and 

density is 2.6 g/cm 3 . Notation as in Table 2.1. 



TABLE 2.3: 

Material Percentage c1111 	c1122 	c1133 	c2222 	c2233 	c3333 	c 23 	c3131 	c1212  

Name 	Anisotropy (c11 ) 	 (c12) 	 (c33) 	 (c22) 	 (c23) 	 (c33) 	 (cu) 	(c55) 	(ca) 

AICO! 2% 41.347 15.796 15.174 41.374 15.181 39.686 12.418 12.144 12.503 

A2CO2 3% 38.849 14.782 13.801 38.895 13.813 36.092 11.353 10.857 11.525 

A3C05 6% 36.436 13.761 12.363 36.536 12.390 32.396 10.251 9.173 10.177 

A4C07 8% 34.191 12.782 10.923 34.311 10.954 28.651 9.116 7.811 9.205 

A5C09 11% 32.090 11.858 9.509 32.222 9.542 24.917 7.952 6.536 8.341 

A6CIO 14% 30.136 10.988 8.146 30.260 8.176 21.288 6.791 5.482 7.743 

A605 16% 30.063 10.959 8.122 30.249 8.167 21.281 6.791 4.960 6.938 

A7C!O 17% 28.315 10.209 6.909 28.418 6.932 17.897 5.648 4.582 7.348 

A705 18% 28.253 10.184 6.890 28.408 6.925 17.892 5.648 4.163 6.591 

A8CJO 19% 26.592 9.571 5.901 26.677 5.919 14.933 4.544 3.717 6.942 

A7C20 21% 28.192 10.160 6.872 28.399 6.918 17.888 5.648 3.822 5.911 

A8C20 24% 26.491 9.530 5.873 26.661 5.909 14.929 4.544 3.150 5.602 

A9C20 28% 24.853 9.092 5.220 24.989 5.246 12.648 3.533 2.549 5.258 I 
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and Crampin (1991). The three different types of anisotropy are discussed 

separately in following sections. 

2.3.1 PTh-anisotropy 

There is no azimuthal variation in PTL-anisotropy with vertical axis of 

symmetry. All vertical planes are symmetry planes, and the behaviour is 

independent of angle a. Thus theoretical speaking, equation (2-5) is expected 

to be a good representation for all three body waves in all vertical planes. 

Table 2.1 shows the differential shear anisotropy and the elastic constants 

of 9 pure PTL-anisotropy. The degree of anisotropy varies from 2% to 36%. 

Figure 2.2 shows the comparison of numerical velocities V() and analytical 

velocity v($) given by equation (2-5) against incidence angle for materials A5 

(Figure 2.2a) and A8 (Figure 2.2b). AS corresponds to 12% PTL-anisotropy, 

and A8 corresponds to 28%. As shown in Figures 2.2a and 2.2b, the 

numerical velocities of the qP-wave are plotted out as dots, those of the 

qSV-wave as crosses, and those of the qSH-wave as diamonds; the solid lines 

through the corresponding marks represent the corresponding analytical 

velocities given by equation (2-5). Hereafter, these marks and notations will be 

applied to all the figures of the paper. Figure 2.2a shows that for 12% 

PTL-anisotropy, the analytical results match the numerical results very well for 

all the three body waves, and equation (2-5) is a good representation for 12% 

PTL-anisotropy. But Figure 2.2b, shows that for 28% PTL-anisotropy, 

equation (2-5) is not a very good representation for qP- and qSV-waves, but it 

is still good for qSH-waves. In general, the overall quality of the match is 
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Figure 2.2. Comparison of numerical and analytical velocities for materials with 

PTL-anisotropy, where properties are independent of the azimuth . The black dots are 

the numerical velocity of qP-waves, crosses are those of qSV-waves, and diamonds of 

qSH-waves. The solid lines through the corresponding marks are the analytical velocities. 

a) Material AS with 12% PTL anisotropy; (b) material A8 with 28% anisotropy. 
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decreasing as anisotropy increases. 

Next I examine the £-criteria. I apply equation (2-5) to all the materials 

shown in Table 2.1, and calculate and plot the error ratio c against the degree 

of anisotropy 6 in Figure 2.3. Figure 2.3 shows that the error ratio increases 

as the amount of anisotropy increases. Although up to 36% PTL-anisotropy, 

the error ratio is still below the 0.1 for qP- and qSH-waves, it is not suggested 

that equation (2-5) is a good representation for qP- and qSH-waves up to 36% 

PTL-anisotropy. Take the error ratio of qSH-wave at 28% PTL anisotropy as a 

threshold. [Because equation (2-5) is only good for qSH-wave up to 28% PTL 

anisotropy, as shown in Figure 2.2b.] The error ratio close to this threshold is 

at 22% anisotropy for qP-wave, and at 9% anisotropy for qSV-waves (Figure 

2.3). Note that at 12% anisotropy, the error ratio of qSV-wave is also very 

close to the threshold. Thus, to sum up, equation (2-5) is a good 

representation for velocity variations up to 22% PTL anisotropy for qP-wave, 

28% anisotropy for qSH-wave, and 10% for qSV-wave, or up to at least 10% 

PTL-anisotropy for all three body waves. These results agree with Levin 

(1978, 1979) in his earlier study of seismic velocities in PTL-anisotropic 

media. 

2.3.2 EDA-anisotropy 

Table 2.2 shows the differential shear anisotropy and the elastic constants 

of seven pure EDA-materials. The amount of anisotropy varies from 1% to 

20%, (crack density from 0.01 to 0.20). There are azimuthal variations in 
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EDA-anisotropy, that is, the velocity varies with a, the line azimuth angle 

measured from the crack strike. To examine the accuracy of equation (2-5) for 

representing the velocity variations of the three body waves in vertical 

acquisition planes, I consider two cases. Firstly, I choose plane a = 300 and 

vary the amount of EDA-anisotropy, then I choose material C15 and vary the 

line azimuth angle a. 

Following a similar sequence as in the previous discussion for 

PTL-anisotropy, I first examine the overall fit of the analytical to the numerical 

velocities. Figure 2.4 shows the comparison of the analytical approximate 

velocity v($) given by equation (2-5) with the numerical velocity V(4) against 

incidence angle for materials CIO (Figure 2.4a) and C15 (Figure 2.4b) in 

off-symmetric plane a=30 0 .  ClO corresponds to crack density 0.10, about 

10% shear-wave anisotropy; and C15 corresponds to density 0.15, about 15% 

shear-wave anisotropy. From Figure 2.4, it can be seen that the fit of the 

analytical to the numerical velocities is very good for both materials of CIO and 

C15 for qP-wave, is good for both materials for qSH-wave except near the point 

sigularity at about 70° incidence angle, and is not very good for both materials 

for qSV-wave. 

The poor fit shown in Figure 2.4 for shear-waves is caused by the fact 

that the vertical plane in which the velocity variation is examined is an 

off-symmetry plane. In such off-symmetry planes, the rays are deviated and 

the polarizations of shear-waves are no longer strictly parallel or perpendicular 

to the plane of variation (Crampin 1981), particularly near the singularities. 
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Figure 2.4. Same as Figure 2.2 but for materials with EDA-anisotropy. Line azimuth 

angle a equals 300.  (a) Material CIO with crack density 0.10, and about 10% shear-wave 

anisotropy; (b) material C15 with crack density 0.15 and approximately 15% anisotropy. 
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As a result, the shear-waves cannot be classified as qSH or qSV type. As 

shown in Figure 2.4, such classification will cause a sharp discontinuity at 

incidence angle about 700.  The misfit caused by the singularity at about 70° 

spreads over more than 20° in both Figures 2.4a and 2.4b for qSV-wave, and 

over more than 20° in Figure 2.4b but less than 10° in Figure 2.4a for 

qSH-wave. Thus, it can be said that equation (2-5) is a very good 

representation for up to 15% EDA anisotropy for qP-wave, is a good 

representation for up to 10% EDA-anisotropy for qSH-wave ( although there 

some distortions at the singularities, these are small and may be neglected), 

and is not a good representation for qSV-wave at more than 10% 

EDA-anisotropy. 

Next I examine the c-criteria. Figure 2.5a shows the error ratio against 

the amount of EDA-anisotropy in off-symmetry plane a=30*.  Comparing 

Figure 2.5a with Figure 2.3 shows that the error ratios of qP-wave in Figure 

2.5a are similar to those in Figure 2.3, but the error ratios of shear-waves in 

Figure 2.5a are slightly higher than those in Figure 2.3, which is caused by 

the distortions at the singularities as shown in Figure 2.4. Figure 2.5a shows 

that error ratios are all below the 0.1 line up to 15% EDA anisotropy for 

qP-and qSH-waves, but only up to 7% for qSV-wave. Similar to the case of 

PTL-anisotropy, take the error ratio of qSH-wave at 10% EDA-anisotropy as a 

threshold. For up to 15% EDA-anisotropy, the error ratios of qP-wave are 

below the threshold, and at about 5% and 7% anisotropy, the error ratios of 

qSV-wave are close to the threshold (Figure 2. 5a). Thus, it can be said that at 

line azimuth 30°, equation (2-5) is good up to 15% EDA-anisotropy for 
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qP-wave, up to 10% anisotropy for qSH-wave, and 6% for qSV-wave. This is 

also true for other line azimuths as demonstrated in Figure 2.5b. 

Figure 2.5b shows the error ratio against line azimuth for material C15. 

As the azimuth increases from 0° to 90°, the error ratio increases until 

a=30*,  then decreases. Line azimuth a=30*  appears to have the largest 

error ratio over all the azimuths for material C15. Similar features can be 

expected for other EDA-materials because they have the same symmetry and 

can be described in similar ways using Hudson's theory (Hudson 1981, 1982). 

2.3.3 Orthorhombic CLA-anisotropy 

Table 2.3 shows the 13 orthorhombic materials used in this study. 

Figures 2.6 and 2.7 are same as Figures 2.4 and 2.5, but for CIA-materials. 

As shown Figure 2.6, both for materials A3C05 (6%) and A5C09 (11%), the 

curves of the analytical results match the numerical results very well for qP-

and qSH-waves, although there are some distortions at the singularities of the 

shear-waves; the match for qSV-waves is good for material A3C05 in Figure 

2.6a, but is not good for A5C09 in Figure 2.6b. Take the error ratio of 

qSH-wave at 6% CLA-anisotropy (A3C05) in Figure 2.7a as a threshold. The 

error ratios are close to the threshold up to 18% CIA-anisotropy for qP-wave 

(dots), 14% anisotropy for qSH-wave ( diamonds), and 6% for qSV-wave 

(crosses). Note that comparing with variation of error ratio c in PTL- and 

EDA-anisotropy (Figures 2.3 and 2.5a), the variation in CLA-anisotropy 

(Figure 2.7a) is more scattered and does not increase monotonically as the 



Velocity and moveout in anisoiropic media 20a 

(a) 

a, 
E 

> 
U 
0 

> 
0. 

0 
1 

CD 

(b) 

0, 

E 

>. 

U 
0 
0 
> 
0. 

0 
I- 

CD 

0 	20 	40 	60 	80 
	

0 	20 	40 	60 	80 
Incidence Angle ç  (00) 

	
Incidence Angle ço (0) 
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crack density 0.09, giving rise to about 11 % orthorhombic anisotropy. 
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anisotropy increases, because a higher class of symmetry (orthorhombic 

symmetry) is involved. 

Figure 2.7b shows the error ratio against line azimuth for materials 

A5C09 (about 11% anisotropy). The error ratios never exceed 0.1 for all 

three body waves and for all line azimuth angles, but the variations are also 

more complicated compared with Figure 2.5b. For qP- and qSV-waves, 

variation of c is small as line azimuth varies; but for qSH-wave, the variation 

appears significant from about 0.05 at 90 0  to about 0.1 at 500.  As the 

anisotropy exceeds 11%, the largest error ratio for qSH-wave may exceed 0.1. 

Thus, to sum up, it can be said that equation (2-5) is good up to 18% 

CLA-anisotropy for qP-wave, 11% anisotropy for qSH-wave, and 6% for 

qSV-wave. 

2.4 MOVEOUT EQUATION 

Now I derive the moveout equation. As shown in Figure 2. 1, x is the 

source-receiver distance 0G, and z is the depth of the reflector OD. The 

travel time t from 0 to G reflected at R can be written as: 

12 = 4z2/(v()cos4) 2 . 

	 (2-7) 

As demonstrated in Appendix A, substituting equation (2-5) into (2-7), the 

moveout equation can be written as: 



r 	2 + j2 
h  r  

[ = - 
h r 

if 	>v• nmo h 

if v 0<v; (2-8) 
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where 

t2  = h 	
;2 + X21 V2 

nmo' 

120 = 4z2/v2; 

12 
r = x21 v2 nmo 

6 2  Sjfl2  4: and a 

52 =a 	nmo h 1v2 	/v2 -'I- 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

Equation (2-8) shows that the travel time i from 0 to G via R in an 

anisotropic medium as shown in Figure 2.1 can be separated into two terms 

and tr'  where th  is a hyperbolic moveout as shown in equation (2-9), and tris 

a residual moveout. Equation (2-11) shows that is the product of three 

terms. Term X/Vnmo  is a conventional moveout term; 6a  in equation (2-12) is 

a measure of the apparent velocity anisotropy in the medium; sin4> is a 

measure of the spread factor of the geometry. If the incidence angle is small 

(or x is small), then sin is small, and t r will be small. Also if the anisotropy 

is small, then tr  will be small. To sum up, tr  is a residual moveout related to 

the amount of anisotropy of the medium and the spread factor of the geometry. 

To evaluate these equations, I compute synthetic moveout curves using the 

numerical velocities shown in the previous section. I assume a single 1000m 

thick anisotropic bed having a horizontal lower interface and calculate reflection 

arrival times for surface receiver with offsets from Om to 2350m (the largest 
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incidence angle is about 50°) from a source also on the surface. I plot 12 

against x 2 , then fit equation (2-9) (the hyperbolic moveout) to the 12-x2  data as 

a first order approximation, and fit equation (2-8) (hyperbolic moveouts plus 

residues) as a second order approach. The moveout velocity is the square root 

of the reciprocal of the absolute value of the initial slope of a 12-x2  curve 

(Thomsen 1988). 

Figures 2.8, 2.9, and 2.10 show i2-x 2  plots for velocities of the materials 

in Figures 2.2, 2.4 and 2.6, respectively. The numerical t2-x2  curves of 

qP-waves wave are plotted as black dots, those of qSV-waves as crosses, and 

those of qSH-waves as diamonds. The first order 12hX2  curves of qP- and 

qSH-waves are both plotted as dash lines, and the second order (12 h ± 12 )-X2  

curves of the three body waves are all plotted as solid lines. Note that the first 

order curve of qSV-waves is not plotted, because the moveout of the 

qSV-wave decreases as offset increases at small offsets in Figures 2.8, 2.9 and 

2.10,, resulting in a negative initial slope at the corresponding 12-x2  curves in 

Figures 2.8, 2.9 and 2.10. Then it is obvious that in these cases the 12-x2  of 

qSV-waves cannot be modelled by the first order 12hX2  curves, even for small 

offset. The results of three different types of anisotropy will be discussed 

separately. 

2.4.1 PTL-anisotropy 

Firstly, I examine qP-waves. As shown in Figure 2.8, for small offset 

range, the first order curve of qP is a good match to the black dots of the 12  - 
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X2 curve, but this range decreases as anisotropy increases. For material AS 

(12% anisotropy, Figure 2.8a), the range extends to about 1.5km 2  (offset 

1.2km; about 31° of incidence angle +). But for material A8 (28% 

anisotropy, Figure 2.8b), the range reduces to about 0.5km 2  (offset 0.7km; 

about 19° of incidence angle). In contrast, the second order curve (solid 

lines) almost exactly follows the black dots over the whole offset range in 

Figure 2.8a for material AS, and is only slightly deviated in Figure 2.8b for 

material A8. 

Secondly, I examine qSH-waves. As in Figure 2.8a of material AS 

demonstrated, the first order curves are good matches for small offsets 

(x2 = 1.2km 2 ; x= 1.1km; =29*). But as in Figure 2.8b of material A8 has 

shown, the first order curve does not match the corresponding numerical 

results (the diamonds), because the moveout at small offset decreases with 

offset and leads to a negative initial slope. For material AS (Figure 2.8a), the 

second order curve of the qSH-wave also follows the corresponding diamonds 

very closely over the whole offset range; for material A8 (Figure 2.8b), the 

match is slightly degraded but is still acceptable. 

Thirdly, I examine the qSV-wave. For qSV-wave, however, the changes 

in the 12-X2  curves are quite dramatic. Both in Figures 2.8a and 2.8b, the 

moveout decreases with offset at near vertical incidence, hence, leads to a 

negative initial slope similar as the first order curve of qSH-wave ( dash line) in 

Figure 2.8b of material A8. As a result, the first order curves do not match 

the numerical results at all, and the moveouts can no longer be represented by 
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a hyperbola even at small offset. The second order curve of qSV is a good 

match only for material AS (Figure 2.8a). 

2.4.2 EDA-anisotropy 

Figure 2.9 shows the corresponding results for EDA-anisotropy. For the 

qP-wave, the first order and second order curves match the black dots for the 

whole offset range for both materials ClO (10% anisotropy) and C15 (15% 

anisotropy). This confirms that qP-wave is not sensitive to crack anisotropy. 

For the qSH-wave, the first order curves are a good match at small offsets both 

for ClO and C15 with offset ranges (x 2 =3.2km2 ; x=1.8km; $=42°) and 

(x2  =2.2km2 ; x= 1.5km; 4 =36*),  respectively, and the second order curves 

are a good match over the whole offset range for both materials Cl 0 and Cl 5. 

For qSV-waves, Figure 2.9 shows similar features as those of Figure 2.8. 

Firstly, the moveouts decrease with offset at small offsets, and the 12-x 2  curves 

can no longer be modelled by the first order 12hX2  curves for both materials 

ClO and C15 (Figures 2.9a and 2.9b). Secondly, the second order curve is a 

good match to the numerical results only for material CIO (Figure 9a); for 

material C15, the matches are not very good at small offsets. 

Note that distortions to the analytical results in Figure 2.4a appear at 

incidence angles large than 55°, and the spread shown Figure 2.9a has 

incidence angles less than 500.  Thus the distortions in Figure 2.4a have only 

a small effect on the second order curves in Figure 2.8a for both qSH- and 
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qSV-waves. 

2.4.3 Orthorhombic CLA-anisotropy 

Figure 2.10 shows the corresponding results for orthorhombic anisotropy. 

The overall features in Figure 2.10 are similar to those in Figures 2.8 and 

2.9. For qP-waves, the first order curves in both Figures 2.10a and 2.10b are 

a good match to the black dots at small offsets - offsets less than about 2.7km 2  

(offset 1.6km; about 390  of incidence angle 4)) for material A3C05, and about 

1.7km2  (offset 1.3km; about 330  of 4)) for material A5C09. The second order 

curves match to the black dots very well over the whole range of offsets and 

for both materials A3C05 and C5C09 (Figures 2.10a and 2.10b). 

For qSH-waves, again, the first order curves match the diamonds at small 

offsets with a range of (x 2 =3.Okm2 ; x= 1.7km; 4)=41 * ) for A3C05, and of 

(x2 =0.8km2 ; x=0.9km; 4)=24*) for A5C09, and the second order curves 

match to the diamonds over the whole offset range for both materials. For 

qSV-waves, the moveouts also decrease with offset at small offsets, thus the 

t2-x 2  curves cannot be modelled by first order t2hx2  curves for both materials 

A3C05 and C5C09, and the second order curve shows good matches to the 

crosses only for material A3C05 (Figure 2.10a). 

2.5 DISCUSSION 

Approximately analytical equations can be used to estimate the velocity 
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variation in off-symmetry planes in weakly anisotropic solids including 

orthorhombic symmetry. The equations have forms shown as equations (2-3), 

(2-4) and (2-5). Results of the accuracy of the analytical equations related to 

the amount of anisotropy can be summarized as follows: 

2.5.1 Accuracy of approximations for velocity variations 

For qSH-waves, the approximate equations are good representations for up 

to 28% PTL-anisotropy, 10% EDA-anisotropy, and 11% CLA-anisotropy. 

For qP-waves, the approximate equations are also good representations for 

up to 22% PTL-anisotropy, 15% EDA-anisotropy, and 18% CLA-anisotropy. 

For qSV-waves, the approximate equations are good representations for up 

to 10% PTL-anisotropy, 6% EDA-anisotropy, and 6% CLA-anisotropy. 

Within the above anisotropy limits, the approximate equations yield good 

representations of velocities in all vertical planes including off-symmetry 

directions. 

2.5.2 Accuracy of approximations for moveouts 

The analytical moveout equations for P- and shear-waves travelling in a 

weakly anisotropic medium can be obtained from the analytical velocity 

equations. The moveouts can be separated as hyperbolic moveouts and 
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residues. Analysis of numerical results shows the following: 

For up to 28% PTL-anisotropy, 15% EDA-anisotropy (crack density 0.15), 

and 11% orthorhombic CLA-anisotropy, the moveout curve of qP-wave can 

approximately be modelled by a hyperbola (a straight line in t 2-x2  plots) for 

incidence angle up to 20 0 . A modified moveout equation with an anisotropy 

residue term can model the moveout curve for the whole range of offsets up to 

50° of incidence angle. 

For at least 12% PTL-anisotropy, and for up to 15% EDA-anisotropy 

(crack density 0.15), and 11% CLA-anisotropy, the moveout curve of 

qSH-wave is still a hyperbola for incidence angle up to 20°. Again a modified 

moveout equation is valid for the whole range of offsets up to 50° of incidence 

angle and up to 28% FFL-anisotropy. 

At 12% PTL-anisotropy, 10% EDA-anisotropy (crack density 0.10), and 

6% CLA-anisotropy, the moveout of qSV wave can not be modelled by a 

hyperbolic curve. The moveout initially decreases when offset increases until 

about 15° of incidence angle. This decrease of moveout is caused by the 

increase of velocity as offset increases. But the modified moveout equation 

provides a good estimation of moveouts up to 12% PTL-anisotropy, 10% 

EDA-anisotropy (crack density 0.10), and 6% CLA-anisotropy for incidence 

angles up to 50°. 

The decrease of moveout of qSV-waves is a good indicator of anisotropy in 
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horizontally layered media. The modified moveout equation can improve the 

estimation of velocities, and hence improve the results of stacking. Only if the 

velocity variation of different type of waves can be properly estimated, can 

identification of singularities, amplitude studies, and other interpretations of 

shear-wave anisotropy be carried Out successfully in reflection surveys. 

2.5.3 Limitations 

The limitations of these approximations are severe: 

The model for studying the moveout relation consists of only a single 

planar interface. This is clearly a poor representation of a realistic subsurface 

(Levin 1979), although the critical ideas revealed in this simple case may be 

also applicable to more complicated situations. 

It should 	also be pointed out that 	before multilayering and dipping 

interfaces can be addressed, the different effects on shear-waves in reflection 

surveys 	caused by anisotropy and 	by 	structural 	variation 	must 	also 	be 

addressed. 	In some aspects, the effects of anisotropic variation and those of 

structural variation are very similar, particularly where residual moveouts are 

concerned. 

Many other studies (Levin 1979; Uren et al. 1991; and others) 

investigating transverse isotropy with azimuthal isotropy (Crampin 1989) also 

have the above two restrictions. Note that all the vertical planes are symmetry 
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planes in azimuthal isotropic media, and in attempting to treat azimuthal 

anisotropy further limitations are introduced. 

It must also be remembered that the notation qSH- and qSV-waves refers to 

waves which have closest to conventional SH- and S V-wave particle motion. In 

anisotropy, particle motion may deviate significantly from conventional motion 

(Crampin 1981), particularly in off-symmetry plane. 

Finally, the resolution of the two split shear-waves into two separate entities 

the qSH- and the qSV-wave is a severe approximation. The places where the 

two split shear-waves appear to intersect, in Figures 2.2, 2.4, and 2.6, for 

example, are directions near point singularites, where split shear-waves may 

exchange energy and particle motions and are likely to have very disturbed 

propagation (Crampin 1991). 

Sena (1991) investigated approximate travel time equations in azimuthal 

anisotropic media with hexagonal symmetry, while this study was being carried 

out. The above two limitations also exist in Sena's study (Sena 1991), 

although he did not point this out. Senas results (Sena 1991) are only valid 

in symmetry planes. In the case of an off-symmetry plane and orthorhombic 

anisotropy, these approximations are certainly severe, as we demonstrated in 

this study. Although with all the limitations, these approximations can still be 

useful for providing guidelines for processing multi-component shear-wave data 

in the presence of anisotropy, they need to be verified by case studies. 
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2.6 CONCLUSIONS 

Approximate velocity equations in symmetry planes of weakly anisotropic 

solids including orthorhombic symmetry are extended to off-symmetry planes to 

meet the needs of real data. The modified equations are good representations 

of velocity variations up to a significant amount of PTL-, EDA-, and 

orthorhombic CLA-anisotropy. However, waves in off-symmetry planes suffer 

more distortions in polarizations and phase and group velocities than waves in 

symmetry planes; and waves in anisotropic media with orthorhombic symmetry 

also suffer more distortions than waves in media with hexagonal symmetry. 

The moveout of a qP-wave, or a qSV wave, or a qSH wave in a CMP 

gather, or a shot record, from a single interface of weak anisotropy can be 

separated into a hyperbolic moveout and a residual moveout. The residual 

moveout is proportional to the amount of anisotropy in the medium concerned, 

and to the spread length of the acquisition geometry. These equations can aid 

the processing and interpretation of multi-component shear-wave VSP and 

reflection data in the presence of anisotropy. 
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CHAPTER THREE 

VARIATION OF REFLECTION AND TRANSMISSION 

COEFFICIENTS WITH CRACK STRIKE AND 

CRACK DENSITY IN ANISOTROPIC MEDIA 

ABSTRACT 

The variation of amplitude with crack geometry when the crack strike 

changes with depth has not been reported previously. In this chapter, I derive 

expressions for reflection and transmission coefficients of plane split 

shear-waves at vertical incidence at an interface separating two cracked media 

with different crack strikes. I examine the effects on these coefficients as crack 

strike and crack density vary. For interfaces with large velocity-contrasts 

(relative velocity change more than 50%), the effects of crack strike varying 

with depth on reflected waves are negligible. However, for interfaces with 

small velocity-contrasts (relative change less than 20%) , the effects cannot be 

neglected. In such cases, both the differential amplitude of the reflected faster 

and slower split shear-waves, and the amplitude ratio of the two off-diagonal 

elements in the reflected data matrix after separation of split shear-waves, 

contain information about the variation of crack strike and density. In contrast, 

effects of crack strike changing with depth on transmitted waves are more 

sensitive regardless of the velocity-contrast and the degree of anisotropy. 

3.1 INTRODUCTION 

The previous chapter studied the velocity variations and moveouts of split 
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shear-waves in anisotropic media. This chapter examines the effects of crack 

orientation changing with depth on reflection and transmission coefficients of 

split shear-waves (see also Li and Crampin 1992c). 

Recent observations show that the differential amplitudes between the 

faster and slower split shear-waves in reflection surveys contain information 

about lateral variations of crack density in cracked reservoirs. (Mueller 1991). 

However, the variation of amplitude with crack geometry when the crack strike 

changes with depth has not been investigated previously. 

Recently, observations of changing shear-wave polarizations with depth, 

which have been interpreted as indicating changes in crack strike in the 

subsurface, have been reported in the literature (Squires el al. 1989; 

Winterstein and Meadows 1991b). Other evidence also suggests that crack 

orientations in near surface structures may differ from those at depth (Douma, 

Den Rooijen and Schoking 1989; Kerner, Dyer and Worthington 1989; 

Crampin 1990). Thus, it is necessary to understand the variation of 

shear-wave amplitude and crack geometry in media where crack strike changes 

with depth in order to interpret the variation of amplitudes in reflected 

shear-waves correctly. 

Variations of shear-wave amplitudes are frequently associated with 

variations of shear-wave reflection and transmission coefficients. Keith and 

Crampin (1977) gave a general numerical approach to the reflection and 

transmission of plane waves at the planar boundary between two anisotropic 

media. Daley and Hron (1979) obtained analytical solutions to the problem in 

elliptically anisotropic media, although in practice elliptical anisotropy rarely 

exists. Thomsen (1988) studied the problem at an interface separating a 

transversely isotropic medium with vertical axis of symmetry (which I shall 

refer to as PTL-anisotropy, see Crampin 1989), and a medium with a 

horizontal axis of symmetry (such as the EDA-anisotropy of stress-aligned 

vertical cracks, Cranipin 1989). Spencer and Chi (1991) discussed the 
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implications of Thomsen's equations for measuring the degree of shear-wave 

anisotropy from the ratio of reflectivities of the faster and slower split 

shear-waves. Here, I calculate the reflection and transmission coefficients of 

plane shear-waves at a planar interface separating two cracked (anisotropic) 

media with different crack strikes (see also Li and Crampin 1992c). 

It is difficult to interpret the variation of shear-wave amplitudes with offset 

in terms of anisotropy, because of inherent difficulties such as the shear-wave 

window at the surface (Booth and Crampin 1985) and the variation of 

polarization angles (Liu, Crampin and Yardley 1990). Much of the basic 

information about anisotropy in the reservoir layer is held in reflections at 

near-vertical incidence (Yardley, Graham and Crampin 1991). Similarly, 

observations of shear-wave amplitude variations with crack strike and crack 

density are also frequently restricted to near-vertical incidence (Mueller 1991). 

For these reasons, I only consider the case of vertical incidence. I derive the 

expressions of reflection and transmission coefficients, present a range of 

reflection and transmission coefficients, and discuss their behaviour as 

velocity-contrast, crack strike, and crack density vary. 

Note that vertical incidence allows us to use plane wave approximations. 

This is important as plane-wave modelling of offset data can lead to serious 

inconsistencies with curved wavefronts from point sources (Liu and Crampin 

1990). Although the effects of crack variations on curved wavefronts are 

important, it is much more complicated, and is beyond the scope of this 

present preliminary examination. 

3.2 NOTATION 

The terminology for anisotropy is that given by Crampin (1989). As 

shown in Figure 3.1, I assume a planar interface separating two media with 

vertical cracks and different crack strikes. When a plane shear-wave is 

incident perpendicular to an interface, the shear-wave splits typically into two 
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Figure 3.1. Diagram showing shear-wave reflection and transmission for a qSI-wave at 

vertical incidence at a single planar anisotropic/anisotropic interface. Notation as specified 

in text. 
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component phases, and faster and slower split shear-waves are both reflected 

and transmitted. I introduce the following notation, as illustrated in Figure 

3.1. 

qSI: 	faster split shear-wave, polarized parallel to the crack strike for 

nearly vertical propagation; 

qS2: slower split shear-wave, polarized perpendicular to the crack strike 

for nearly vertical propagation: 

A 0 : 	amplitude of incident shear-wave, qSI or qS2; 

A l : 	amplitude of reflected qSI; 

amplitude of reflected qS2; 

amplitude of transmitted qSI; 

amplitude of transmitted qS2; 

reflection coefficient from qSI to qSl; 

reflection coefficient from qSI to qS2; 

reflection coefficient from qS2 to qSI; 

r22 : 

	

	reflection coefficient from qS2 to qS2; 

transmission coefficient from qSl to qSI; 

112: 	transmission coefficient from qSI to qS2; 

121: 	transmission coefficient from qS2 to qSI; 

transmission coefficient from qS2 to qS2; 

V1 . I'2: shear-wave velocities of isotropic matrix of Medium 1 and 2, 

respectively; 

V21 : velocity of qSl and qS2, respectively, in Medium 1; 

V22 : velocity of qSI and qS2, respectively, in Medium 2; 

a, a2 . crack strike of Medium 1 and 2, respectively; 

6 9  62:  percentage of differential shear-wave anisotropy in Medium 1 and 

2, respectively; 

=a2-a1 . difference in crack strike between Medium 1 and Medium 2: 

P2: density of Medium 1 and 2, respectively. 
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3.3 BASIC EQUATIONS 

In vertical parallel cracks, the velocity of the faster split shear-wave, qSl, 

in the vertical direction equals the velocity of the uncracked formation 

(Crampin 1978, 1984b; Schoenberg and Douma 1988). I have: 

V1 i = V 1 ; 

V21  = (1-61 1100)V 1 ; 

12 = V2 ; and 

V22  = (1-62/100)V2' 
	 (3-1) 

The percentage of differential shear-wave anisotropy, for thin cracks, is 

approximately equal to the crack density multiplied by 100 (Wild and Crampin 

1991). With this approximation, I need not separate the concepts of crack 

density and degree of shear-wave anisotropy. 

3.3.1 qSl at vertical incidence 

The four coefficients to be determined are r11 , r12 , 1, and t12  defined 

as: 

= A 1 /A 0 ; 

r12  = A 21A 0 ; 

= A 3/A; and 

112 = 	1A 12  (3-2) 

where A 0  is the amplitude of the incident faster split shear-wave. As shown in 

Appendix B, these coefficients can be written as: 

1 1(p 1 V11 -p2 V12 ) 	 (p 1 V11 -p2 V22 ) 	1 
I 	 cos 2 Aa + 	 sin2 Aaf; 

R 1  l(p 1  V21  + p2  V 12 ) 	 (p 1  V21  + p2  V22 ) 	J (3-3) 
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1 	p 1 V11  p2 (V 12 '22 ) 

r 12 	- - 	 sin2Act; 
R1  (p1 V21 + p2 V12 )(p 1  V21+ P2 V22) 	 (3-4) 

1 	2p 1  V11  

cos 
R1  (p 1 V21 + p2V12) 	

ct; and 
 (35) 

1 	2p 1 V11  

12 = - 	 sinAa; 
R 1  (p 1 V21 + p2 V22 ) 	 (3-6) 

where 

(p 1 V11 +p2 V12 ) 	 (p 1 V11 +p2 V22 ) 

R 1  = 	 Cos 2 Aa + 	 Sjfl 2 Aa. 
(p 1 V21 +p2 V12 ) 	 (p 1 V21 +p2 V22 ) 	 (3-7) 

3.3.2 qS2 at vertical incidence 

In this case, the four coefficients to be determined are r21 , r22, t21  and 

22' defined as: 

r21  = A1 /A 0 ; 

r22  = A2/A 0 ; 

121 = A 31A 0 ; and 

122 = A41A 0 ; 
	 (3-8) 

where A 0  is the amplitude of the incident slower split shear-waves. Again, as 

shown in Appendix B, these coefficients can be written as: 

1 1(p 1 V21 -p2 V22 ) 	 ( p 1 V21 -p2 V12 ) 	1 
r 22 	 COSa + 	 Sifl 2 aI 

R2  Lp1 V11 +p2 V22 ) 	 (p 1 V11 +p2 V12 ) 	i(3-9) 
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1 	p 1 V21  p2 ('12  I'22) 

r 21 - 	 sin2Acx; 
R2  (p 1 V11 + p2 V22 )(p 1  V11 + p2 V12 ) 	 (3-10) 

1 	2p 1  V21  
siitha; and 121 	

R2 (p 1 V11 +p2 V12 ) 	 (3-11) 

1 	2p 1  V21  

122 	
R(p 1 V11 +p2 V22 ) 	 (3-12) 

where 

(p 1 V21 + p 2 V22 ) 	 (p 1 V21 + p 2 V12 ) 

R2  = 	 cos 2 & + 	 Sjfl2 AcL 
(p 1 V11 +p2 V22 ) 	 ( p 1 V11 +p2 V12 ) 	 (3-13) 

3.3.3 tici = 0° and Aa = 90° 

ct =00  and CL =90° are two special cases that correspond to constant 

crack strike and an orthogonal change of crack strike with depth. In these two 

cases, the above equations can be simplified. 

If Aa=0°, I have: 

r11  = (p1 V11 -p 2 V12)I(p 1 V11 +p2 V12); 

r 12= r21  = 0; 

r22  = (p1 V21 -p 2 V22)/(p 1 V21 +p 2 V22); 

111 = 2p 1 V11 1(p 1 V11 +p2 V12); 

112 = 121 = 0; and 

122 = 2p 1 V21 /(p 1 V21 +p2 V22). 	 (3-14) 

These equations show that in a reflection survey, when a shear-wave 
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source is parallel or perpendicular to the crack strike in media with no change 

of crack orientation, the off-diagonal elements in the data matrix of a 

four-component survey (two orthogonally-polarized sources recorded by two 

orthogonally-polarized receivers) will be zero. This forms the basis of the 

technique of the Afford rotation (Alford 1986b) for processing shear-wave 

reflection data in the presence of anisotropy, where the sources and receivers 

are synchronously rotated to maximize the diagonal elements (r11  and r22), or 

minimize the off-diagonal elements (r12  and r21) in the data matrix. These 

equations also show that r11  and til are only dependent on the velocities of the 

faster shear-waves, and r22  and 122  are only dependent on the velocities of the 

slower shear-waves. Thus, the variation of percentage shear-wave anisotropy 

(or crack density) will only affect the variation of r22  and t221  or the amplitudes 

of the slower split shear-waves. 

If Aa=90°, I have: 

r11  = (p 1 V11-p 2V)/(p 1 V11 +p 2 V22); 

r12  = r21  = 0; 

r22  = (p 1 V21-p 2 V12)/(p 1 V21 + p 2 V12); 

11 = 22 = 0; 

= - 2p 1 V11 /(p 1 V11 +p 2 V22); and 

= 2p 1 V21/(p 1 V21 +p 2 V12). 	 (3-15) 

This implies that after transmission, the incident faster or slower wave becomes 

the slower or faster wave in the lower medium. Thus, there will be a trend of 

decreasing time delay between the faster and slower shear-waves after 

transmission. This can be thought of as a negative time delay. Based on these 

assumptions, several authors (Squires et al. 1989; Davis and Lewis 1990) 

have interpreted negative time delays of split shear-waves as implying an 

orthogonal change in crack orientation. However, orthogonal changes of crack 

strike are not the only cause of negative time delays between split shear-waves; 

split shear-waves propagating either side of a shear-wave singularity may also 
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result in negative time delays (Crampin 1991). Since Wild and Crampin 

(1991) have suggested that singularities are common features of sedimentary 

basins, singularities may well be a common cause of orthogonal changes in 

shear-wave polarities. The expression for 112  shows that there is a 1800  phase 

shift in the transmitted waves, whenever there is a 90° change of crack strike 

in the subsurface. Note also that: 

(p 1 V11 -p 2V22)/(p 1 V11 +p 2 V22) > (p 1 V11 -p 2V12)I(p 1 V11 +p 2 V12); and 

(p 1 V21 -p 2 '12)/(p 1 V21 +p 2 '12) < (p 1 V21 -p 2 V22)/(p 1 V21 +p 2V22); 	 (3-16) 

which imply that there will be larger differences in amplitudes between the 

reflected faster and slower split shear-waves for 90 0  changes of crack strike 

than for no change. Thus, observations of negative time delays together with 

larger differential amplitudes between faster and slower split shear-waves would 

confirm the interpretation of 90° change of crack strike in the subsurface. The 

r12  and r21  still remain zero, and the conditions required by the Alford rotation 

(Alford 1986b) are still satisfied. 

3.4 BEHAVIOUR OF REFLECTION COEFFICIENTS 

In the general case, where &*0 0  and i490°, I plot the amplitude 

coefficients against angle Aa (the difference in crack strike). These coefficients 

are also dependent on the density, the velocity, and the degree of shear-wave 

anisotropy, or crack density in the media concerned. To simplify the results, 

while still retaining generality, I consider models with the following 

parameters. 

For convenience, I only consider the case where a shear-wave is incident 

from a low-velocity medium onto a high-velocity medium (low/high incidence 

case). In addition, since the percentage variation of rock density with depth is 

usually small, I assume that the density of Medium 1 is the same as the 

density of Medium 2. 
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Under these conditions I examine three cases. Firstly. I vary V1  and V2 , 

and fix 6  1 and 62  as shown in Figures 3.2a and 3.2b. In Figure 3.2a, V1  

varies from 1.5km/s to 3.Okm/s, and V2  = 5.0km/s, so that the 

velocity-contrast decreases as V1  increases. In Figure 3.2b, V1  = 1.5km/s. 

and V2  varies from 2.0km/s to 5.0km/s, so that the velocity-contrast increases 

as V2  increases. In both Figures 3.2a and 3.2b, 6 = 2%, and 62 = 10%. 

Secondly, I vary 61  and fix 62  but use two different velocity-contrasts, as 

shown in Figures 3.3a and 3.3b. Figure 3.3a shows the effects of a small 

velocity-contrast where V1  = 1.5km/s and V2  = 1.8km/s [relative velocity 

change: AV = 1V1 -V2 1/V2  < 20%1, whereas Figure 3.3b has a large 

velocity-contrast where V1  = 1.5km/s and V2  = 3.0km/s (relative velocity 

change: AV = 50%). In both Figures 3.3a and 3.3b, 62 = 10%. 

In the third case, I vary 62  and fix 61  and use the same velocities as 

those in Figures 3.3a and 3.3b. Figure 3.4a shows the effects of a small 

velocity-contrast (AV<20%), and Figure 3.4b shows a large velocity-contrast 

(V=50%). 6 1  is fixed as 2% in both Figures 3.4a and 3.4b. In all three 

figures, crack strike difference Aa varies from 0° to 90°. The features in 

these figures can be summarized as follows. 

3.4. 1 Velocity-contrast 

As shown in Figure 3.2, the variation in velocity-contrast affects r11  and 

r22  more than it does r12  and r21 . In Figure 3.2a, as V1  varies from 1.5km/s 

to 3.0km/s (V from 70% to 40%), values of r11  at a =00  decrease from 

0.54 to 0.25, and those of r22  decrease from 0.51 to 0.22. Similar variations 

of r11  and r22  with velocity-contrast can be seen in Figure 3.2b. In contrast, 

both in Figures 3.2a and 3.2b, the four curves of r12  and r21 , corresponding to 

four different velocity-contrasts, are close to each other, and variation with 

velocity-contrast is small. r11  and r22  are an order of magnitude larger than 
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Figure 3.2. 	Reflection coefficients plotted against the difference in crack strike, M, for 

different velocity-contrasts. 	(a) Variation for different values of V1 . where 6, 6, and V2  

are fixed; (b) variation for different values of V2 , where &, 6, and V1  are fixed. 
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Figure 3.3. Reflection coefficients plotted against difference in crack strike, M, as the 

degree of anisotropy in Medium 1, 6,  varies, where the degree of anisotropy in Medium 

2, 6 2 , is fixed. (a) Small velocity-contrast: V1 =1.5km/s, V2 =1.8km/s; (b) large 
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r 12  and r21 , particularly when the velocity-contrast is greater than 30%. The 

maximum value of r12  and r21  is only about 0.02 in Figures 3.2a and 3.2b, 

while the minimum value of r11  and r22  is about 0.2 in Figure 3.2a. The 

difference between r11  and r22  for a given Aa does not change very much as 

velocity-contrast changes. 

3.4.2 Degree of differential shear-wave anisotropy 

For a given velocity-contrast, r11  is independent of the degree of 

differential shear-wave anisotropy in medium 1 (6 1), as shown Figure 3.3. 

The four curves of r11  in Figure 3.3, corresponding to four different values of 

6 , overlap each other. But r22  increases as 6 1  increases. In general, this 

will reduce the difference between r11  and r22  at &a =O * , but will increase the 

difference at Aa = 900, as shown Figure 3.3. The change in 6 1  has negligible 

affect on r12  and r21 . 

All the curves will be affected by change of anisotropy in medium 2, 6 2 ,  

as shown Figure 3.4. In general, as 62  increases, r11  and r22  decrease, and 

r12  and r21  increase. Thus differences between r11  and r12 , between r22  and 

r21  decrease, whereas the difference between r11  and r22  generally increases. 

3.4.3 Difference in crack strike 

As the difference between the crack strikes, Aa, changes, all variations 

will be affected. Figures 3.2, 3.3, and 3.4 show that as Aa changes from 00 

to 900  r11  decreases, but r22  increases, and that the differential amplitude 

between r11  and r22  has different patterns of behaviour according to the values 

of 8 1  and 62.  If 6 1 = 6 2'   the difference between r11  and r22  is zero at 

= 00, and monotonically increases as Act increases, as shown by the curves 

for r11  and r22  corresponding to 6 1 =10% in Figure 3.3, and by curves 

corresponding to 62=2%  in Figure 3.4. If 61>62,  the difference of r11  and 

r22  monotonically increases as Act increases, as shown by curves corresponding 
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to 61=15%  in Figure 3.3. If 46 1  < 6 2, the difference first decreases as &a 

increases until a critical angle at which r11  = r22 , then the difference increases 

as Act passes the critical angle. If the velocity-contrast is large (AV>50%) and 

6 2 is small (less than 5%), as shown in Figure 3.3, the variations of the 

coefficients with angle Act are relatively small. Thus, the variation of crack 

strike with depth can be ignored in such cases. 

As Act changes, r12  and r first increase until Act =45°, then decrease as 

Act exceeds 450• Generally, r12 * r21 , if Act*0° and 090°; the difference 

between r12  and r21  for a given velocity-contrast and given anisotropic 

parameters is small, as shown in Figures 3.2, 3.3 and 3.4, but not zero. 

From equations (3-4) and (3-10), I obtain: 

r.1 Ir  12 = V21 1 V = 1 - 6, if Act*0 and 090°; 	 (3-17) 

where the ratio of r21  to r12  is related to the degree of differential shear-wave 

anisotropy in the upper medium of an interface. 

In a four component shear-wave survey, r11  and r22  can be considered as 

the diagonal elements, and r12  and r21  as the off-diagonal elements in the data 

matrix after split shear-waves have been separated. [The separation is often 

made by rotating the intrumental axes into the natural coordinate system of the 

upper medium.] In the studies of anisotropy in reflection surveys reported so 

far (Alford 1986b; Thomsen 1988; Squires et al. 1989), such off-diagonal 

elements were ignored and treated as random noise. But equation (3-17) 

shows that, when crack strike changes with depth, it is possible to detect 

anisotropy by analyzing amplitudes of the off-diagonal elements after separation 

of split shear-waves. 
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3.5 BEHAVIOUR OF TRANSMISSION COEFFICIENTS 

Similar discussions to those for reflection coefficients also apply to 

transmission coefficients. Figures 3.5, 3.6 and 3.7 show the corresponding 

results for the transmission coefficients to Figures 3.2, 3.3 and 3.4. The 

features can be summarized as follows. 

3.5.1 Velocity-contrast 

Figure 3.5 shows the variation of transmission coefficients with 

velocity-contrast; Figure 3.5a shows the variation with V1 . where 6 1 ,  6., and 

V2  are fixed as 2%, 10% and 5.0km/s, respectively, and V1  is chosen as 1.5, 

2.0 and 3.Okm/s; Figure 3.5b shows the variation with V2 . where 61,  6 and 

V1  are fixed as 2%, 10% and 1.5km/s. and V2  is chosen as 2.0, 3.0 and 

5.0km/s. In Figure 3.5a, as V1  varies from 1.5 to 3.0km/s, the 

velocity-contrast decreases, hence, the transmission coefficient at a given Am 

increases; in Figure 3.5b, as V2  varies from 2.0 to 5.Okm/s, the 

velocity-contrast increases, and the transmission coefficient at a given Aa 

decreases. 

3.5.2 Degree of shear-wave anisotropy 

Figures 3.6 and 3.7 show the variation of transmission coefficients with 

percentage differential shear-wave anisotropy in the media. Figure 3.6 shows 

the variation with 61,  where  62  is fixed as 15%, and V1  and V2  are 1.5 and 

3.0km/s in 3.6a (high velocity-contrast: AV=50%) and are 1.5 and 5.0km/s in 

3.6b (very large velocity-contrast: V=70%). Figure 3.7 shows the variation 

with 62,  where 6 is fixed as 2%, and V1  and V2  are the same as Figure 3.6. 

It can be seen that the value of t, I  (solid lines) is independent of both 61  and 

6 2 (Figures 3.6 and 3.7). This is because the faster shear-wave is only 

slightly affected by the cracks. Also Figure 3.6 shows that t 12 (broken lines) is 

independent of 6, and Figure 3.7 shows that t (dotted-broken lines) is 
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independent of 62.  Both 122  (dotted lines) and 121  (dotted-broken lines) 

decrease as 6 increases (Figure 3.6), but increase as 62  increases (Figure 

3.7). 

3.5.3 Crack strike difference 

Figures 3.5, 3.6 and 3.7 show that as Act varies from 00  to 90 0 , ti , and 

122 decrease from their maximum values to zero, but 112  and 121  increase from 

zero to their maximum values. There is also an amplitude difference between 

the transmitted faster and slower shear-waves. At Act =00,  til and t., have 

maximum difference, and this difference gradually decreases as Act increases. 

Compared with values of t 	and 122  themselves, this difference is relatively 

small, even when the velocity-contrast is very large (A V> 70%) as in Figures 

3.6b and 3.7b. 	For 	this 	reason, the 	differential 	amplitude between the 

transmitted faster and slower shear-waves is difficult to observe. 

Figures 3.5, 3.6 and 3.7 also show that the transmission coefficients are 

more sensitive to the variation of the difference in crack strike than the 

reflection coefficients. If the crack strike difference Act exceeds 20°, there will 

be significant energy in components 112  and 121  whose presence is diagnostic of 

the variation of crack strike with depth. Thus, analyzing amplitudes of 

transmitted split shear-waves in VSPs or crosshole surveys is likely to be a 

more reliable way for detecting variation of crack strike with depth than 

analyzing amplitudes of reflected shear-waves. 

3.6 DISCUSSION AND CONCLUSIONS 

I have shown that in addition to the polarization and time delay of split 

shear-waves, there are two other features which contain information about the 

variation of crack strike and crack density in shear-wave reflections when the 

velocity increases with depth. These are the differential amplitude between the 

faster and slower split shear-waves, and the presence of off-diagonal energy of 
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and r12  in the data matrix after separation of split shear-waves. However, 

if the velocity-contrast of an interface is large (relative velocity change AV > 

50%), the two features will not be very significant, compared with the diagonal 

energy in the data matrix after rotation, and may be considered as negligible. 

This suggests that if the velocity-contrast is large (more than 50%), the 

variation of crack strike with depth, and the difference between the faster and 

slower principal time series can be neglected. This is important for processing 

shear-wave data in the presence of anisotropy, because these two assumptions 

are used by most of the techniques for analyzing shear-wave splitting in 

multi-component shear-wave data (MacBeth and Crampin 1990). 

However, if the velocity-contrast is small (relative change AV < 20%), 

these two features are significant and can be observed. In such cases, the 

current rotation techniques for studying anisotropy in multi-component 

shear-wave data may not be valid because their assumptions cannot be justified. 

Without taking into account the difference between r11  and r22  and the presence 

of r12  and r21 , rotation techniques will yield false results about anisotropy as 

demonstrated by MacBeth and Yardley (1991), although proper techniques can 

be developed based on these reflection coefficients (MacBeth, Li, Cranipin and 

Mueller, 1992). Also I have shown that in such cases the ratio of r12  and r21  

may give a good estimation of anisotropy in the upper layer of a reflection 

interface. 

In contrast, the transmission coefficients are more sensitive to variations 

of crack strike regardless of the velocity-contrast. If the difference in crack 

strike between the upper and lower medium of an interface exceeds 20°, 

considerable energy will be converted to off-diagonal elements 112 and 121. 

This suggests that variation of crack strike with depth can be more easily 

detected in transmitted shear-waves recorded in VSP5 or crosshole surveys than 

in reflection surveys. 

Moreover, transmission coefficients are generally larger than reflection 
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coefficients for a given configuration of layer parameters. In other words, 

most energy will transmit through interfaces except when the velocity-contrast is 

very large (more than 70%). This is similar to wave propagation in layered 

isotropic media. As a result, the difference between t11  and t is a relatively 

small percentage of their value, and the differential amplitude between the 

transmitted faster and slower split shear-waves is difficult to detect. 

In summary, in order to evaluate shear-wave amplitude variations with 

crack strike and crack density, I have derived expressions for calculating plane 

shear-wave reflection and transmission coefficients at vertical incidence at an 

interface separating two cracked (anisotropic) media with different crack strikes. 

For an interface with high velocity-contrast (more than 50%), the 

crack-geometry information contained in the variation of reflection amplitude 

can barely be detected, and the effects of crack strike varying with depth can be 

neglected in processing shear-wave data in the presence of anisotropy. But for 

an interface with low velocity-contrast (less than 20%), such effects cannot be 

neglected in data processing. In such cases, analyzing the amplitude of the 

off-diagonal elements in the data matrix, after instrumental axes have been 

rotated to the natural coordinate system of the medium concerned, may be 

useful for extracting anisoiropic information. In contrast, effects of crack strike 

changing with depth on transmitted waves are more sensitive, regardless of the 

velocity-contrast and the degree of anisotropy. 
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CHAPTER FOUR 

COMPLEX COMPONENT ANALYSIS 

OF SHEAR-WAVE SPLITTING: THEORY 

ABSTRACT 

This chapter investigates the use of colour displays of seismic attributes 

for analyzing shear-wave splitting in multi-component seismic data. The 

horizontal components of a multi-component seismic survey can be directly 

taken as the real and imaginary parts of a complex component. This 

transforms multi-component data from conventional Cartesian coordinates to 

polar coordinates, and allows the calculation of instantaneous amplitude and 

instantaneous polarization. The technique is called complex component 

analysis. Wave motion can be represented by instantaneous attributes which 

show distinct features characteristic of the type of wave motion. Examination 

of monochrome and colour displays of these attributes can provide important 

quantitative information about the polarization and time delay of split 

shear-waves in multi-component VSPs and reflection surveys. 

4.1 INTRODUCTION 

In the past, analysis of shear-wave splitting has relied principally on the 

detailed visual examination of individual polarization diagrams (hodograms). 

Although it is reliable and straightforward for identifying shear-wave splitting in 

multi-component earthquake and VSP data, polarization analysis is less useful 

when attempting to analyse shear-wave splitting in large datasets from 

multi-component reflection surveys. In this chapter, I present a technique (Li 
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and Crampin 1990b, 1990d, 1991c, 1991d), which is called complex component 

analysis, to analyze shear-wave splitting in multi-component reflection and VSP 

surveys. 

René et al. (1986) extended complex trace analysis (Taner and Sheriff 

1977; Taner et al. 1979) to multi-component data. They defined the complex 

multi-component trace with real orthogonal components and imaginary 

(quadrature) components derived by application of the Hubert transform to the 

corresponding real components. They then defined several polarization 

attributes including phase difference, reciprocal ellipticity and tilt angle. They 

applied the technique to multi-component walkaway seismic data to characterize 

ambient noise and source-generated waves. 

Here, I directly define the two horizontal components of multi-component 

reflection and VSP surveys as the real and imaginary parts of a complex 

component. This transforms multi-component data from conventional Cartesian 

coordinates to polar coordinates, and allows the calculation of instantaneous 

amplitude and instantaneous polarization. These quantities, referred to as 

seismic attributes (following Taner et al. 1979), can be presented in 

conventional seismic time-versus-offset displays in which colour is used to 

quantify the polarizations of the shear-waves. 

Three major applications of such complex component analysis can be 

envisaged: 

Anisotropic interpretation. Attributes can assist in the rapid recognition and 

identification of shear-wave splitting in seismic sections, and in extracting 

shear-wave polarizations and delays from seismic data for interpretation in 

terms of the crack- and stress-geometry throughout the reservoir. 

Stratigraphic interpretation. Seismic attributes provide further information 

about the location and analysis of faults, discontinuities, unconformities, and 
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other geological features, as demonstrated by Taner et al. (1979). 

3) Hydrocarbon determination. Attributes can assist in identifying lateral 

variations of shear-wave polarizations, which may often be associated with 

lateral variations of fracture orientation and intensity, and preferential 

permeability. These features are directly associated with hydrocarbon 

accumulations in oriented cracks and fractures. 

This chapter presents the theory of complex component analysis of 

shear-wave splitting, and demonstrates the significance of instantaneous 

attributes in identifying and evaluating shear-wave splitting. The application of 

the technique to field data is presented in Chapter Five. 

4.2 CALCULATION AND SIGNIFICANCE OF A COMPLEX COMPONENT 

4.2.1 Definitions 

I assume a multi-component shear-wave dataset with the horizontal inline 

x(t) and crossline y(t) recording geometry shown in Figure 4.1. The 

horizontal displacement of a shear-wave (or, any seismic wave), with vector 

displacement Pt, amplitude A(t) and angle to the inline direction 8(1), can be 

written as: 

x(t) = A(:) cos8(t); and 	 (4-1) 

y(i) = A(t) sin8(t). 	 (4-2) 

Thus, x(t) and y(t) can be considered as the real and imaginary parts of a 

complex signal z(t) = x(t) + iy(t), where I is the square root of -1. In this 

way, the method of complex trace analysis of single component data (Taner and 

Sheriff 1977; Taner et al. 1979) can be extended to multi-component data 

without using the Hubert transforms (René et al. 1986). Solving for A and 8 

for any x and y gives: 
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Figure 4.1. Diagram showing the coordinate system for complex component analysis. Pt 

is the horizontal displacement of a shear-wave at time t with amplitude A(t) and angle G(t) 

to the inline direction, and x(t) and y(:) are the coordinates of the two horizontal 

components in a Cartesian coordinate system. 

1 
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A(i) = [x2 ( 1) + y2 ( t)] 	I z(t) I; and 
	

(4-3) 

8(1) = arctan[y(i)/x(l)] ,  defined for ± 1800; 
	

(4-4) 

where A(t) is the instantaneous amplitude; and 8(1) is the instantaneous 

polarization. 

4.2.2 Physical significance 

In addition to the attributes described above, the wavetrain also contains 

information about instantaneous frequency, apparent polarity, energy 

distribution, and waveform, which can also be extracted from complex 

components (Taner et al. 1979; Huang 1989). Each piece of information has 

a particular significance and application in exploration seismology, and in 

reservoir characterization and development. Here, I shall only discuss 

instantaneous amplitude and instantaneous polarization. 

Instantaneous amplitude.—The instantaneous amplitude in equation (4-3) is a 

measure of the distance between the moving particle and its equilibrium 

position. Instantaneous amplitude may have its maximum at points other than 

at peaks or troughs of the two individual horizontal components. Local 

maxima of instantaneous amplitude indicate the largest distance of the particle 

from its equilibrium position, and may help in identifying the onset of the 

shear-wave signal. 

Instantaneous polarization.—The instantaneous polarization in equation (4-4) 

is a measure of the polarization direction of the moving particle relative to the 

polarization direction of the source. Since the polarization is independent of 

amplitude, it may give clear particle motion directions even for weak arrivals as 

long as they are coherent signals. 
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The variation of the instantaneous polarization of recorded split 

shear-waves represents the variation of the direction of the particle motion of 

the split shear-waves. The first arrival of the split shear-waves is polarized in 

a direction fixed by the raypath through the anisotropic rock (Crampin 1981), 

so that the instantaneous polarization tends to remain constant until the arrival 

of the slower split shear-wave. Thus the polarization display, and associated 

amplitude display, can help to identify and quantify shear-wave splitting in both 

seismic reflection and VSP datasets. 

4.2.3 Represention of wave motion 

Figures 4.2(a) and 4.2(b) show the seismograms and instantaneous 

amplitude and polarization attributes of eight typical wave motions: linear, 

elliptical, and shear-wave splitting with six different time delays. Figure 4.3 

shows corresponding polarization diagrams (hodograms) of the particle motion. 

Since any shear-wave motion in the horizontal plane can be considered as 

either linearly, or elliptically polarized (or some combination thereof in 

shear-wave splitting), I first discuss these two characteristic types of wave 

motion. 

Linear wave motion.— WM1 in Figures 4.2 and 4.3 show typical linear 

motion, that can be written as: 

y(t) = x(t) tan a; 
	 (4-5) 

where x(t) and y(i) are the displacements in the x and y directions, respectively; 

a is the angle the polarization makes with the inline direction. In Figure 4.2, 

a is chosen as 1600  measured from the initial polarization direction to the 

inline direction: 
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(a) 	 (b) 
Figure 4.2. Seismograms and instantaneous attributes of eight typical wave motions, WM1 

is linear motion, WM2 is elliptical, and WM3 to WM8 show shear-wave splitting with time 

delays increasing from 8 ms (WM3) to 48 ms (WM8) for a 40 Hz signal. (a) Horizontal 

component seismograms, X in-line and Y cross-line; (b) displays of instantaneous amplitude 

(A) and polarization (P). Arrows on WM2 mark the position of the effective polarization 

angle, and arrows on WM3 to WM8 mark the points where the polarization changes 

direction at the onset of the second split shear-wave arrival. 
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Figure 4.3. Polarization diagrams of the eight typical wave motions in Figure 4.2. The 

small arrows mark the direction of motion, and the large arrows mark the initial 

polarization directions. 
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a = 160°, 	 x(t) < 0; 

e(r) = 	0, 	 x(t) = 0; 

a - 11 = 160° - 180 ° = 200, 	x(t) > 0. 	 (4-6) 

It can be seen that the instantaneous polarization of linear motion is a 

series of rectangular shapes. The important features to note are: 

The height or depth of the initial rectangle from the base line is the 

polarization angle of the linear motion at that point, and the height or depth of 

the next rectangle is the polarization angle less 180°. Note that there is only 

one rectangle unless the signal is more than half a cycle long. 

The width of the rectangle is the half period of the wave motion, 

independent of the number of cycles in the waveform (as long as the signal 

contains at least half a cycle). Thus, the angle of polarization given by the 

instantaneous polarization in Figure 4.2(b) is 160°, and the instantaneous 

amplitude has two local maxima. The final narrower rectangle in WM1, 

Figure 4.2(b), is a result of the low-amplitude tail of the wavelet used in 

Figure 4.2(a). 

Elliptical motion.—The elliptical motion WM2 in Figures 4.2(a) and 4.3 can 

be represented by: 

y(t) = a sinwr; and x(i) = b cos(wt+) 
	

(4-7) 

where a and b are the peak amplitudes in x- and y-components (WM2, Figure 

4.2a), respectively; w is the angular frequency, here taken to be 2n x 40, say, 

for a 40 Hz signal, and 0 is a phase shift, here taken to be 20°. 

The elliptical motion in Figure 4.2(b) gives a varying instantaneous 

polarization of repeated characteristic shapes, which is called "semi-triangular". 

The polarization angle of the ellipse (the direction of semi-major axis, also 



Complex component analysis: theory 54 

called the effective polarization angle) can be determined by combining the 

instantaneous polarization and amplitude displays. The maximum amplitude 

occurs when the particle displacement is at the long axis of the ellipse. Thus, 

the angle at the time where the amplitude has a local maximun is an effective 

polarization angle. (Note, however, that this is not usually coincident with the 

polarization directions of either of the split shear-waves.) There is also another 

feature which can be used to determine the polarization angle of the ellipse. 

When the particle motion is at the maximum, the polarization has a smooth 

variation which forms a step in the instantaneous polarization [marked with 

arrowhead in WM2, Figure 4.2(b)]. The polarization angle can be estimated 

from the amplitude of this step. 

The features discussed above can be used to determine the type of wave 

motion. Wholly rectangular shapes indicate linear motion (or well separated 

split shear-waves), and semi-triangular shapes indicate some form of elliptical 

motion. Note that if black and white plots of instantaneous polarization, as in 

Figure 4.2(b), were to be routinely used to determine polarization angles, the 

polarization would need to be plotted at a larger scale so that the values of the 

polarization would be easily read. More effective displays will be discussed 

below. 

4.3 SHEAR-WAVE SPLITTING 

The most characteristic features of shear-waves in anisotropic structures 

are the polarization anomalies in the three-dimensional waveforms resulting 

from shear-wave splitting into phases which propagate with different 

polarizations and different velocities (Crampin 1978, 1981; Crampin and Booth 

1985). The polarization patterns of shear-wave splitting can be represented by 

the interference of two linear motions with (typically) similar waveforms but 

different polarization directions and separated by a time delay. The 

interference of these signals results in a combination of linear and elliptical 

waveforms, or two linear waveforms if the time delay between the two split 
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shear-waves is large enough to separate the signals. The patterns of particle 

motion vary with the delay and particle-motion polarizations of the two split 

shear-waves. 

I examine a variety of characteristic wavetypes. Without loss of 

generality, It is assumed that the two split shear-wave polarizations are 

polarized orthogonally. 

4.3.1 Polarization patterns 

The six polarization patterns, WM3 to WM8 in Figure 4.3, are 

characteristic of shear-wave splitting with a range of delays: from WM3 to 

WM8, the delay linearly increases from 8 ms to 48 ms on a 40 Hz signal 

(phase delays from 72° to 432°, respectively). At the onset of the faster split 

shear-waves, the polarizations are linear. At the onset of the slower 

shear-waves, the polarizations either change smoothly to elliptical motion or 

change abruptly to further linear motion in different directions, if the delays 

between the two split shear-waves are sufficiently large. When the delays 

between the split shear-waves are less than half a cycle [as in WM3 and 

WM4, Figure 4.3],  the polarizations change smoothly with elliptical patterns of 

polarization, and the underlying characteristic cruciform patterns are barely 

discernible. As the delays increase beyond half a period (WM5 and WM6), 

the polarizations change more sharply, and the cruciform patterns become 

clearer. When the delays are equal to the period of the wave (WM7), or 

greater (WM8), the polarizations change abruptly, and the patterns are wholly 

cruciform. 

4.3.2 Instantaneous attributes 

Figure 4.2(b) shows corresponding instantaneous attributes of amplitude 

(A) and polarization (P) of the seismograms in Figure 4.2(a) and polarization 

diagrams in Figure 4.3: 



Complex component analysis: theory 56 

WM3 and WM4.—The amplitude has three local maxima, and the polarization 

starts with a step equal to the polarization angle of the first arrival. The 

polarization then remains constant until the slower wave arrives, when it 

changes smoothly. If the change can be identified [marked by arrowheads in 

WM3 and WM4, Figure 4.2(b)], the arrival time and polarization direction of 

the slower split shear-wave and the delay between the two split shear-waves can 

also be determined. The overall feature of the instantaneous polarization of 

shear-wave splitting is a combination of rectangular and semi-triangular shapes. 

WMS and WM6.—The amplitude has four local maxima, and the polarization 

is again a combination of rectangular and semi-triangular shapes. The 

polarization change on arrival of the slower shear-wave has been marked by 

arrows in Figure 4.2(b), but is subtle and difficult to identify reliably. 

WM7 and WM8.— The amplitude has four clear local maxima, and the 

polarization has wholly rectangular shapes. The polarization directions and the 

delay can be determined easily. 

To summarize: as the delay increases, the number of local maxima of 

instantaneous amplitude increases, and the shape of instantaneous polarization 

changes from a combination of rectangular and semi-triangular shapes to a 

combination of purely rectangular shapes. Thus, shear-wave splitting can be 

identified from displays of instantaneous amplitude and polarization, and the 

polarization direction can be easily and accurately determined when the delays 

are sufficiently large. The delays are easy to determine when the delays are 

large, but may be difficult to determine when the delays are less than a cycle. 

The next section shows how, in this case, the use of colour displays of the 

attributes can be more informative. 
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4.4 COLOUR DISPLAYS 

The use of colour in displaying seismic data has been shown to improve 

the perceptibility of subsurface features (Taner et al. 1979). Figure 4.4 

shows the colour codes used for displays of instantaneous polarization in this 

paper. Code (a) contains a series of contrasting colours, useful for identifying 

the exact value of the polarization; and (b) a series of continuous colours, 

useful for recognizing shear-wave splitting in a larger scale. Note that the 

colours repeat every 1800.  Thus, if the polarization values have a difference of 

±1800, they will be coded with the same colour, allowing for the ±1800 

difference between the positive and negative values of the polarization of linear 

motion. 

Figure 4.5 is the colour display of Figure 4.2(b), showing the 

colour-coded polarization angle in the contrasting colours of code (a) 

superimposed on a wiggle trace of instantaneous amplitude. This type of 

display aids estimation of the parameters of shear-wave splitting: 

The colour-coded polarization quantifies the polarization direction by 

reference to the colour key. For example WM1 is a wholly red colour, which 

represents 1620±30  (or 180±30),  where I use the angle (colour) D to 

represent the range D-3° < to ~ D + 3*.  From the shape of the polarization 

curve the angle can be determined as 162°±3°. 

The onset of the slower arrival can be easily identified by the change of the 

uniform (red) to the varying colours of elliptical motion in WM3 to WM7, or 

the uniform (black) colour representing perpendicular motion (72 0 ±3 0  or 

-108° ± 30)• 

The difference between the linear motion, WM1 and the shear-wave splitting 

with a delay of more than a cycle, WM8, is clearly demonstrated by the 

colour. WM1 has a single colour which implies no change of polarization (or 
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Figure 4.4. Colour codes for polarization displays: (a) contrasting colour-code; (b) 

continuous colour-code. 
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Figure 4.5. The colour-coded display of Figure 4.2(b), where a wiggle line of 

instantaneous amplitude is superimposed on the colour-coded instantaneous polarization. 
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a change of ±180°); whereas WM8 has two different colours (separated by 

approximately 90°), which implies two approximately orthogonal linear 

motions. 

In applying these techniques to seismograms with incoherent or 

signal-generated noise, the use of the continuous colour code is recommended 

for identifying shear-wave splitting, although the contrasting colour code may 

be required for estimating values of polarization. In the following examples, 

the polarization is coded by the continuous code (b). Two examples are used 

to demonstrate the significance and application of instantaneous attributes to 

anisotropic interpretations. 

4.5 APPLICATIONS 

4.5.1 AMC model and data 

The data used are a synthetic VSP and a CMP gather from the response 

of the Edinburgh Anisotropy Project (Wild 1990) to the Anisotropic Modelling 

Collaboration of Thomsen et al. (1989). A number of research groups are 

contributing to the Anisotropic Modelling Collaboration (AMC) to calculate full 

wave synthetic seismograms in specified VSPs and CMPs in a given anisotropic 

multilayered model (Thomsen et al. 1989). Figure 4.6(a), adapted from Wild 

(1990), shows a schematic diagram of Model 1 (AMC1) used in this study 

(note that only every second three-component geophone is marked in the 

figure). The crack strike is east-west in each anisotropic layer. The model 

features a strongly anisotropic layer from 1500 m to 2000 m depth, simulating 

highly fractured reservoir rocks. 

The collaboration calculated a full nine-component (inline, crossline, and 

vertical sources recorded by inline, crossline, and vertical receivers) offset 

VSP, and a variety of nine-component reflection lines, as indicated in Figure 

4.6(a). Only one source component, the inline component, of both the VSP, 
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Figure 4.6. 

The structure and geometry of the AMC model. The dots along survey lines represent 

every second geophone of 50 m geophone spacing. 

The two horizontal components of the VSP data for the inline source orientation. The 

offset is 500 m at an azimuth of N45°E. Note noise on the first five inline-source 

components. Some selected polarization diagrams are shown. Number on top-right corner 

of the polarization diagrams is the geophone number at the time interval marked below. 

Arrows drawn on particle motions are in the same notation as Figure 4.3. RI to R4 are 

reflected shear waves from Layers Li to L4, respectively. MI to M4 are the multiples of 

the primary downward propagating shear-wave. The four particle motions on the left are 

selected from the primary downgoing shear-waves, and on the right from the reflected 

shear-waves. 

The two horizontal components of the reflection line at an azimuth of N45°E for the 

inline source orientation with some selected polarization diagrams. Symbols drawn on the 

diagrams have the same notation as (b). Those on the left are selected from the reflected 

shear-waves RI, R2, R3 and R4 at geophone i (near offset), and on the right from the 

same event-arrivals but at geophones at larger offsets where the polarizations have changed. 
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at an offset of 500 m and an azimuth of N45°E, and the 2400 m reflection 

line data, again at an azimuth of N45°E, are analyzed here. Figure 4.6(b) 

shows the two horizontal components of the VSP excited by the inline source 

located at S,, in Figure 4.6(a). Cruciform patterns of particle motion in the 

polarization diagrams from primary downgoing propagating shear-waves 

(polarization diagrams c and d) are observed within and below the simulated 

fractured reservoir (Layer LA); the delays between the downgoing shear-waves 

gradually increase with increasing geophone depth. Figure 4.6(c) shows the 

two horizontal components of the CMP gather excited by the inline source 

located at SR  in Figure 4.6(a). Polarization diagrams of the shear-wave 

reflection from the bottom of the reservoir (event R4; polarization diagrams d 

and g) have cruciform polarizations and show strong shear-wave splitting. 

4.5.2 Analysis of the VSP 

Figure 4.7 shows the colour-coded display for the instantaneous 

polarization of the VSP data in Figure 4.6(b), with a superimposed wiggle trace 

of instantaneous amplitude. The display contains a large amount of relatively 

easily interpretable information. A few major items in the interpretation of the 

display are summarized as follows: 

Event A corresponds to the P-wave arrival in Figure 4.6(b). The whole 

waveform of the instantaneous amplitude is covered by a single green colour, 

implying linear motion with a polarization angle of 0°±3° (or ± 180° ± 3°). 

Event B is the direct shear-wave. Shear-wave splitting can be clearly 

identified by the shape of polarization curve containing two rectangles of blue 

(132° ±30  or -48° ±3°) and orange (42° ±3° or -138° ±30)  representing 

orthogonal or nearly-orthogonal motion. The polarization direction of the 

faster shear-wave is represented by the blue rectangle (-48° ±30 or 132° ±3°), 

and magnitude of the delay can be estimated from the duration of the blue 

rectangle. Below geophone 30, at the top of layer L4, the duration of the blue 
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rectangle gradually increases, showing the delay between the split shear-waves 

increasing with depth in the strongly anisotropic reservoir. 

Event C corresponds to R2, a reflection from the bottom of U. Shear-wave 

splitting can also be identified by the change of colours from blue to orange. 

Because the delay is small, this change is subtle and can only be clearly seen 

at geophones 9, 10, 11, and 12, where there is a narrow band of blue. 

Event D corresponds to R3, a reflection from the bottom of W. The blue 

rectangle covering the waveform indicates linear motion with a polarization 

angle of 132°±3° (or -48°±3°). 

Event E corresponds to R4, a reflection from the bottom of L4. The 

waveforms of instantaneous amplitude are dominated, by two rectangles of blue 

and orange, and the shear-wave splitting can be identified and parameters 

estimated as for the direct shear-wave. 

Events F and G correspond to Ml and M2, respectively, multiples of the 

primary down shear-wave. The shape of the polarization curve and the 

variation of colour show the same features as those of the direct shear-wave. 

4.5.3 Analysis of the CMP gathers 

Figure 4.8 shows the instantaneous attributes of Figure 4.6(c) displaying 

colour-coded polarization data superimposed by wiggle lines of instantaneous 

amplitudes. The instantaneous attributes of CMP gathers have two 

applications. 

Firstly, as discussed in the VSP data, the attributes of the CMP gathers 

can be used to identify the type of shear-wave motion in reflected waves, as 

follows: 
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Events A and F, describing the P-wave reflections from the bottom of layers 

Li and L3, respectively, show linear motion as they are both dominated by a 

single light green (00 ±30 or ± 180° ±3°) and dark green (174° ±30  or 

-6° ± 3°) colours, respectively. 

Events C and G (corresponding to Ri and R3, shear-wave reflections from 

the bottom of layers Li and L3, respectively) are also linear motions at near 

offset and are dominated by one major colour: event C by the background 

green (0°±3° or ±180°±3°), and G by blue (132°±3° or -48°±3°). 

Events E and H, corresponding to R2 and R4, are shear-wave reflections 

from the bottom of U and L4, respectively, and at near offsets both show 

shear-wave splitting which can be recognized by the shape of the polarization 

curve and the variation of colour from blue to orange. The polarization and 

delay can be determined in the same way as discussed for the VSP data. The 

delay of event E is small as indicated by the narrow blue rectangle, but the 

delay of event H is large as it traverses the strongly anisotropic IA on both 

downgoing and upgoing rays. 

Secondly, the attributes of CMP gathers contain information about the 

effective shear-wave window at the free surface (Booth and Crampin 1985) for 

each shear-wave reflection: 

1) The polarization of shear-wave changes with offset, as demonstrated by the 

variation of colour. For example, event B (a P-S conversion from the bottom 

of layer Li) starts with background green colour at near offset, then changes to 

a light green at middle offset, and becomes yellow at far offset, indicating an 

approximate 30° change in polarization as the angle of incidence on the 

reflecting interface varies (Liu and Crampin 1990). In contrast, the 

polarization of the P-wave is relatively unaffected by the variation of offsets as 

shown by events A and F. 
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2) "Critical angles" at internal interfaces can also be identified, where one of 

the shear-waves has zero reflection amplitude as the offset increases (Liu and 

Crampin 1990). For incidence angles on the reflecting interface smaller than 

this angle, the colour of the instantaneous polarization remains constant (or 

only shows gradual change), but at the critical angle the colour indicates a 90 0  

polarization (phase) change. For example, the change due to the critical angle 

for reflection from Layer 1 for event C is at geophone 12 (the colour suddenly 

changes from green to red, indicating a 900  change), and the critical angle for 

reflection from Layer 2 for event E is at geophone 22. Similarly, there are 

critical angles for event 0 at geophone 28, and elsewhere. 

Effects of the shear-wave window are difficult to observe because of the 

interference of multiply reflected and converted waves. Note that effects of the 

first "critical angle" at internal reflections typically cause a comparatively 

simple change in polarization direction, and hence a change in the 

instantaneous polarization (Liu and Crampin 1990), whereas the shear-wave 

window at the surface usually causes much more complicated effects (Crampin 

and Booth 1985). 

Identifying the offset at which the polarization of each shear-wave arrival 

changes polarity is important for stacking the CMP gather. Conventional 

stacking of split shear-waves, where the polarizations and delays change 

markedly with offset, will tend to distort and degrade the characteristics of the 

split shear-waves unless appropriate techniques are used (Li and Crampin 

1989). Such changes of polarity occur both at critical reflections at internal 

interfaces (Liu and Crampin 1990), and at the surface shear-wave window 

(Booth and Crampin 1985). 

4.6 DISCUSSION AND CONCLUSIONS 

A technique has been proposed for the complex component analysis of 

shear-wave data by transforming the displacements from Cartesian to polar 
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coordinate systems. The large amount of information contained in the shear 

wavetrain (Crainpin 1985b) can then be displayed in a form which is similar to 

many conventional time-versus-offset displays, and which could easily be 

assimilated into conventional stratigraphic analysis. 

The VSP example shows how the technique can help in analyzing and 

estimating shear-wave splitting continuously as it varies with depth. The results 

of pre-stack reflection data show how shear-wave splitting can be traced along 

both time and offset directions, and reveals the potential for applying these 

techniques to field data, so that much of the stratigraphic and anisotropic 

interpretation can be made on a single display of complex attributes. Although, 

the instantaneous attributes were defined for vertical propagation, at wider 

angles they can be used to identify the various critical angles at the surface and 

at internal interfaces, which are critical for any stacking of shear-wave data in 

anisotropic structures (Li and Crampin 1989). 

In conclusion, the treatment of the two horizontal components in 

multi-component shear-wave data as a complex variable allows convenient 

displays of instantaneous amplitude and polarization. The colour display of 

these attributes allows the identification of shear-wave splitting and permits 

estimates of shear-wave polarizations and delays in seismic sections. The 

examples in this chapter aim to demonstrate the concept of the complex 

component analysis of shear-wave splitting and the potential application of 

colour displays of instantaneous attributes. It is suggested that these colour 

displays provide a flexible format for recognising and parameterizing 

shear-wave splitting. Further developments and case studies are presented in 

Chapter Five (Li and Crampin 1990d, 1991d). 
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CHAPTER FIVE 

COMPLEX COMPONENT ANALYSIS 

OF SHEAR-WAVE SPLITTING: CASE STUDIES 

ABSTRACT 

This chapter verifies the use of complex component analysis for analyzing 

shear-wave splitting by examining four case studies: a four-component 

single-offset VSP in the Lost Hills, Kern County; a multi-offset single-source 

two-component VSP in the Paris Basin; a four-component reflection-line in the 

Lost Hills; and an in-seam crosshole survey at German Creek Mine, Australia. 

In all cases, the polarization of the faster split shear-wave (or channel-wave) 

can be assessed from the colour coded record sections of the seismic attributes. 

In particular, the source-independent coherent polarization on me coiour 

sections of the complex components of inline and crossline sources allows the 

shear-wave polarization angle to be determined without need for rotation of the 

instrument and source axes. In conclusion, complex component analysis can 

aid identification and estimation of shear-wave splitting from seismic sections, 

help stratigraphic interpretation, and simplify the processing sequence of 

multi-component reflection data in the presence of anisotropy. 

5.1 INTRODUCTION 

This chapter applies the complex component analysis techniques developed 

in Chapter Four (Li and Crampin 1990b, 1991c) to four field data sets: a 

four-component vertical seismic profile (VSP) in Lost Hills, Kern County, a 

two-component VSP in the Paris Basin, a four-component reflection profile in 



Complex component analysis: case studies 65 

Lost Hills, and a three-component in-seam (crosshole) seismic survey from the 

German Creek Mine, Australia. [Note that nine-component were recorded at 

the Lost Hills, however only four-components will be analyzed here.] 

Seismic sections, displaying seismograms in time-versus-offset plots, 

accentuate the relative arrival times of the various phases, and analysis of such 

arrival times is the principal technique for stratigraphic interpretation. 

Polarization diagrams (hodograms), displaying the data in the displacement 

plane over an appropriate time window, stress the variation of the particle 

motions, and analysis of such particle motions is the principal technique for 

characterizing wave motion and analyzing shear-wave splitting. 

Transformation of seismic data from one domain to another (time domain, 

frequency domain. FK-space, etc.) is common in seismic data processing. 

Complex component analysis transforms multi-component data from 

conventional Cartesian coordinates to polar coordinates in the horizontal plane 

(it can be extended to other planes). Such transformations retain the local 

significance of both the variation of waveforms and the variation of particle 

motion by calculating the instantaneous amplitude and instantaneous 

polarization. Such complex component analysis can be used to evaluate the 

effects of anisotropy in terms of the polarization of the leading split shear-wave 

and the delay between the two split shear-waves, and allows these parameters to 

be displayed in a similar form to conventional record sections. 

Application of complex component analysis to field data confirms the 

theoretical promise in Chapter Four (Li and Crampin 1990b, 1991c), and 

reveals new insights into the technique. Here, I outline the calculation of 

complex components of four-component seismic data, discuss necessary 

pre-processing procedures, and present the four case studies. 
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5.2 CALCULATION OF COMPLEX COMPONENTS 

The technique of complex component analysis of shear-wave splitting is 

presented in Chapter Four (Li and Crampin 1990b, 1991c), where the ideas 

were illustrated with two-component synthetic shear-wave data. However to 

study shear-wave splitting, multi-component receivers, and multi-component 

sources have been used to generate four-component (Alford 1986b; Thomsen 

1988) and nine-component data sets (Squires el al. 1989). 

Chapter Four (Li and Crampin 1990b, 1991c) defined complex 

component analysis for two-component shear-wave data. Here I apply these 

techniques to further multi-component data in three ways: 

5.2.1 Comparison of X- and Y-sources 

Calculate and display the complex components of inline- and 

crossline-sources separately by equations (4-1) to (4-4) in Chapter Four (Li 

and Crampin 1990b, 1991c). (Hereafter, inline, and crossline will be referred 

to as IL, and XL, respectively). Features which are diagnostic of shear-wave 

splitting or stratigraphic variation typically display systematic behaviour, so that 

data sets from orthogonally polarized source components are expected to display 

consistent features, which will enhance and confirm interpretations. 

5.2.2 Shear-wave splitting section 

Calculate and display the shear-wave splitting section (SWS-section). Let 

8(1) and e(t) be the instantaneous polarizations of the IL-, (x), and XL-, (y), 

source, respectively. The absolute differential polarization angle d(t) between 

Ox  and 0 can be calculated as: 

d(t) = 19 X(t)  - E) Y(1) I . 	 (5-1) 
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A filter operator J(t) can be defined as: 

1 	if d(t) ~d0 ; 
f(t) =1 	 (5-2) 

t,, 	0 	if d(t)d0 ; 

where d0  is a threshold value. The combined polarization e(t) can be written 

as: 

e(t) = [e(t) + e(t)] f(t)/2. 	 (5-3) 

Equations (5-1), (5-2), and (5-3) show that e(t) will specify any common 

polarization which appears on both IL- and XL-sections. The existence of a 

common polarization at the onset of the shear-wave arrival among different 

source orientations suggests shear-wave splitting, where the common 

polarization is the alignment of leading split shear-wave. Thus, e(t) is called 

the instantaneous polarization of shear-wave splitting; and the corresponding 

display is called the shear-wave splitting section (SWS-section). 

5.2.3 Polarization logs 

3. Calculate and display the transformed complex component of IL- and 

XL-sources. For near vertical propagation through vertical parallel cracks with 

no crack orientation changes with depth, the four components can be written as 

(Thomsen 1988): 

= qSl(t) cos2  8 + qS2(t) sin2  8; (5-4) 

= qSl (1) sin2  8 + qS2(:) cos2  8; and (5-5) 

= s21 (t) = [qSl(t) - qS2(t)} sin8cos8; (5-6) 

where qSI(t) and qS2(z) are the faster and slower split shear-wave signals, qSI, 

and qS2, respectively. s are the recorded seismograms, where i is the
ii 

receiver component, and j is the source component; subscript 1 is the 
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IL-component, and 2 the XL-component; and 8 is the crack strike measured 

from the IL-direction. Linear transforms of: 

= 	- s22(t); and 	 (5-7) 

fl(l) = s12(t) + 521(1); 	 (5-8) 

can be used to transform four-component data to two-component data. 

Equations (5-4), (5-5) and (5-6) give: 

tan28 = 
	 (5-9) 

showing that the instantaneous polarization of the two component data E(t) and 

fl (1) is a measure of polarization of the leading split shear-wave, which is called 

the polarization log. In the absence of lithology- or layer-induced anisotropy, 

this instantaneous polarization is the strike of the cracks (or fractures) in the 

rockmass (Crampin 1981). Equation (5-9) can also be derived from the tan4e 

expression of rotation angle based on the minimization of the sum of squares of 

the off-diagonal terms over a time window in the data matrix (Murtha 1988). 

5.3 DATA PROCESSING 

The aim of data processing is to improve data quality while preserving the 

characteristics of shear-wave splitting. Processing data prior to complex 

component analysis often involves: 

1. Use of band-pass filtering to improve signal-noise ratio. If the passband is 

properly selected, by simple spectral analysis, for example, the characteristics 

of shear-wave splitting will not be affected (Campden 1990). Figure 5.1 shows 

the PDs of the down-going shear-wave in the Lost Hills VSP before [Figure 

5.1(a)] and after [Figure 5.1(b)] a 2-25 Hz band-pass filtering, showing that 

the polarization is preserved. 
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(a) 	 (b) 

Figure 5.1. Polarization diagrams: (a) before and (b) after a 2-25 Hz bandpass filter. 

Data are from the Lost Hills VSP. 



Complex component analysis: case studies 69 

Use of FK-filtering to separate the up-going and down-going wave fields. 

The FK-filter is preferred for separating seismic wave fields without the 

degradation resulting from median-filters, or other separation methods 

(Campden 1990). Figure 5.2(a) shows PDs before FK- and median-filtering of 

the Paris Basin VSP data; Figure 5.2(b) shows PDs after FK-filtering, and 

Figure 5.2(c) after median-filtering. The PDs show almost no difference after 

FK-filtering, but have significant differences after median-filtering. 

Use of polarization filtering to improve the image of colour-sections of 

complex components by muting-out noise with intermediate polarizations. 

Figure 5.3 shows the definition of polarization filter. Like a fan filter, it 

passes the principal- and orthogonal-polarizations, in order to preserve the 

characteristics of shear-wave splitting. The passband should be as wide as 

possible, around the principal- and orthogonal-polarizations. Selected PDs can 

be used to determine the passband. A front mute is often applied in 

conjunction with the polarization filter. Note that zero is a meaningful 

polarization value, and to implement the polarization filter, when e(i) is outside 

the passband, I set e(i) to a specific value which represents the backgound 

colour of display media. Also note that the improved colour image accentuates 

the principal polarizations, whether they are shear-waves, converted waves, or 

P-waves. 

Figure 5.4(a) shows colour overlays of instantaneous amplitudes and 

polarizations from the Lost Hills VSP before applying polarization filters, where 

although polarization variations can be followed, the rainbow of colours may be 

misleading. From the PDs in Figure 5.4(b), it can be seen that the initial 

polarization is about N54° E ± 30, and that an effective polarization (main 

ellipse) is about N42 °W ± 3°. Thus a passband from N 150  E to N75° E is 

appropriate. After applying the designed filter, the section accentuates the 

principal shear-wave polarizations [Figure 5.4(d)], from which the variation of 

polarization can be more easily followed. 
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(a) 	 (b) 	 (c) 

Figure 5.2. Comparison of FK-filter and median-filter: (a) PDs before FK- and 

median-filter; (b) PDs after FK-filter; and (C) PDs after median-filter. Data are from the 

Paris Basin VSP. 
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Figure 5.3. Geometry of polarization filter for north-south or east-west polarized 

shear-waves, where the polarizations within the shading areas are muted. 
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5.4 CASE STUDIES 

Four field datasets are used to illustrate the application of complex 

component analysis in a variety of different recording situations. 

5.4.1 Lost Hills four-component VSP 

This example aims to illustrate the use of complex component analysis for 

analyzing shear-wave splitting for four-component VSP data. The Kim-Tech 

Lost Hills VSP is a total wavefield nine-component data set of high quality 

(Squires et al. 1989), but in this analysis only the four horizontal components 

will be used. Preliminary results from the shear-wave modelling of this data 

have been given by Yardley and Crampin (1990), and a full discussion of the 

data, geology and full-wave modelling is given by Yardley (1992). The two 

horizontal sources are oriented approximately north and east (N17°W and 

N73°E, Yardley 1992). The source offset is 500 ft (150 m) approximately 

west (N253°E, Yardley 1992) of the well and there are 42 geophones with 100 

ft (30 m) spacing. The first geophone is located at a depth of 3600 ft (1100 

m). Consequently, the incidence angle is comparatively small and most of the 

shear-wave energy is in the horizontal plane. The initial linear-motion can be 

observed in PDs of the primary shear-waves at most geophone depths [Figure 

5.4(b)]. Note that terms such as north-south (NS-) source, and east-west 

(EW-) source are used for VSPs of small offset, where the IL- and XL- terms 

of the reflection survey are less relevant. 

Figure 5.4(b) shows some selected colour PDs in which the particle 

motions are superimposed on colour pies which represent the colour scale used 

in this study. The initial polarization direction indicated by arrowheads is 

corresponding to a red-orange colour, indicating N54°E±3°. 

Figures 5.4(c) and 5.4(d) show the attribute displays of the north-south 

and east-west sources, marked as NS- and EW-sections, respectively. At the 
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Figure 5.4. Processing the Kim-Tech Lost Hills VSP. (a) Colour section of the complex 

components of EW-source: instantaneous polarization superimposed on wiggle-lines of 

instantaneous amplitude of the north-south source of Lost Hill VSP before polarization 

filter. (b) Selected PDs of north-south source component in the horizontal plane with 

geographical coordinates, where the colour pie shows the colour scale used in this study. 

(c) Colour section of the instantaneous amplitude and polarization of NS-source; (d) Colour 

section of the instantaneous amplitude and polarization of EW-source; (e) SWS-section, 

which combines the common polarizations in the EW-section (c) and NS-section (d); (f) 

orientation logs of the EW- and NS-sections the of Lost Hill VSP. 
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onset of the shear-wave, indicated by arrowheads, almost the same red-orange 

colour band appears on all geophones on both NS- and EW-sections. There 

are minor colour changes of about 6° in these first arrivals, which are believed 

to be due to the interference of split shear-waves (Yardley and Crampin 1990). 

[Note that errors in estimating tool orientation can also introduce such changes. 

For example, tool orientations from P-wave polarizations have errors of 50  to 

10° (Kramer 1991). However, here the tool orientation is determined from 

gyroscope which has an error less than 1° (Yardley 1992).] 

The existence of a similar colour band means the polarization of the onset 

shear-wave is fixed in space, independent of the source orientations, and is 

diagnostic of shear-wave splitting. Thus, the polarization of the faster split 

shear-wave is represented by the red-orange band, and the time delay between 

the split shear-waves by the duration of the band. This band is about 50 ms 

wide at the shallowest depths, and as depth increases, the duration of the band 

slightly decreases, indicating a decrease in the time delays. As mentioned 

above, the red-orange colour indicates N54° E ± 3°, which agrees with the 

results of Yardley and Crampin (1990). 

A similar decrease in delays in a multi-offset VSP at a neighbouring site 

in the Lost Hills Field has been interpreted by Winterstein & Meadows (1990) 

as indicating a change in crack orientation with depth. Similarly, Squires et 

al. (1989) have interpreted a negative delay in a nine-component reflection 

survey through the Lost Hills site I am analyzing as a 90° change in crack 

orientation. However, shear-wave point singularities are believed to be 

commonly situated near vertical raypaths in sedimentary basins (Crampin 1991; 

Wild and Crampin 1991), as a result of combinations of matrix and crack 

anisoiropies. Thus, an alternative explanation for the decrease in delays may 

be that the directions of the raypaths through a uniform crack orientation vary 

with depth so that they cross a point singularity. The raypaths in the upper 

layers have angles of incidence on one side of a point singularity and build up 

a delay, whereas the raypaths in the lower layers have angles of incidence on 
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the other side, with a nearly 900  change in effective polarization (Crampin 

1991), and the delay would be reduced [for further details, see Yardley 

(1992)]. 

At the shear-wave onset in both Figures 5.4(c) and 5.4(d), the 

instantaneous polarization shows a constant band of colour, where the 

instantaneous polarizations have rectangular shapes. After this band, the 

instantaneous polarizations show a smooth change of colour, with 

semi-triangular shapes. These characteristic combinations of rectangular and 

semi-triangular shapes are diagnostic shear-wave splitting and confirm the 

theoretical results in Chapter Four (Li and Crampin 1990b, 1991c). 

Figure 5.4(e) shows SWS-sections calculated from the NS-section [Figure 

5.4(c)] and the EW-section [Figure 5.4(d)] using equations (5-1), (5-2) and 

(5-3), where only arrivals which have similar polarizations on both source 

sections are displayed. Following the onset of shear-waves, Figure 5.4e shows 

a red-orange colour band. The colour of the band represents the polarization 

of the faster split shear-wave, and the duration of the band represents the delay 

between the two split shear-waves. 

Figure 5.4(f) shows the polarization logs from equations (5-7), (5-8) and 

(5-9). As with the SWS-sections, the red-orange colour at the onset of the 

shear-waves indicates the polarization of the faster split shear-waves, and the 

duration of the band indicates the delay, however, with this display, the 

interference of split shear-waves is separated. Figure 5.4(f) shows two simple 

polarizations: a red-orange polarization, the polarization of faster split 

shear-wave, and a blue polarization, the polarization of slower split shear-wave. 

I have demonstrated three types of display for processing shear-wave 

splitting in four-component VSP data by complex component analysis: (1) 

colour sections of complex component attributes from different source 

orientations to examine the coherency and duration of instantaneous 
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polarizations; (2) SWS-sections; and (3) polarization logs. 

5.4.2 Paris Basin two-component VSP 

This Paris Basin VSP was a multi-offset single source VSP recorded on 

two horizontal geophones (Bush and Crampin 1987, 1991). Here, only the Si 

offset at 272m will be processed. This case history is presented to demonstrate 

the application of complex component analysis to two-component seismic data. 

In addition to showing how complex component analysis can be used to 

interpret shear-wave splitting, I also show how it can aid stratigraphic 

interpretation. Preliminary processing included: applying a band pass filter of 

5-50 Hz; an FK-filter to separate the down-going and up-going wave fields; 

and prior to display, applying a polarization filter of N15°E - N75°E. 

Enlargements of the PDs in Figure 5.5(a) show a very small initial 

orientation of a blue colour, indicating N42°W± 3°. This is less obvious than 

the first arrival in the Lost Hills VSP [Figure 5.4(b)] because of the smaller 

time delays in the Paris Basin data. The effective polarization (polarization of 

the main ellipse) changes from red (N78°E± 3°) to orange yellow 

(N42 -E±3 - ). 

Figure 5.5(b) shows the instantaneous amplitude and polarization of the 

down-going wavefield. At the onset of the shear-wave, the polarization starts 

with a band of blue colour, indicated by arrowheads, which has a rectangular 

shape. The polarization colour smoothly changes following the constant blue 

band, and has semi-triangular shapes. These characteristic shapes suggest 

shear-wave splitting. This blue band and the following colour pattern changes 

appear at all geophone depths, showing consistency and coherency, which 

enhances the interpretation. The time delay and polarization can be interpreted 

from the blue band, which is about 20 ms wide and increases with depth. 

This example of two-component data analysis also confirms the theoretical 

promise in Chapter Four (Li and Crampin 1990b, 1991c). 
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Figure 5.5. Results of the Paris Basin VSP: (a) selected PDs in the horizontal plane with 

notation of Figure 5.4(b); (b) colour section of the instantaneous amplitude and polarization 

of down-going shear waves; (c) colour section of the instantaneous amplitude and 

polarization of up-going shear waves; and (d) VSP corridor stack (or VSP log) obtained by 

shifting up-going waves to two-way time and stacking. 
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Figures 5.5(c) and 5.5(d) demonstrate the application of complex 

component analysis in stratigraphic interpretation. Figure 5.5(c) shows the 

colour section of the instantaneous amplitude and polarization of the up-going 

wave field. Reflections from the same interface tend to have coherent 

polarizations at adjacent geophones when there is shear-wave splitting. 

[Reflections of shear-waves at isotropic/isotropic interfaces at wider offsets 

display systematic changes of polarization with incidence angle due to 

differences in the reflection coefficients of SH- and SV-wave components (Liu a 

al. 1990).] This coherency of polarization can help identify reflection events. 

As shown in Figure 5.5(c), the events can be easily identified and traced back 

to the reflectors following the variation of polarization colours. A variation of 

polarization from red (N78 °E ±30)  to yellow orange (N42 °E ± 30) can be 

observed from shallow reflections to deep reflections; Bush and Crampin 

(1987, 1991) modeled this as the effects of combination of thin-layer and crack 

anisotropy. 

Processing the up-going wave field further, I shift to two-way time, and 

apply a corridor stack, to obtain the VSP log in Figure 5.5(d). Figure 5.5(d) 

shows instantaneous polarization superimposed on wiggle-lines of instantaneous 

amplitude. Colour displays of instantaneous polarization appear to display 

better continuity of shear-wave reflections than amplitude displays. In addition, 

the polarization offers additional criteria in correlating VSPs with stacked 

sections. 

Thus, the characteristic shape and coherency of polarizations between 

adjacent geophones are the major criteria for interpreting shear-wave splitting 

in two-component VSP data. The coherency of polarizations also improves the 

continuity of reflection events and hence the image of subsurface structure. 
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5.4.3 Los: Hills reflection profile 

Complex component analysis was applied to four-component relection 

profiles in the Kim-Tech Lost Hills dataset to analyze shear-wave splitting and 

aid stratigraphic interpretation. I examined the pre-stack common shot records. 

This avoids possible data degradation introduced by inappropriate data 

processing, such as stacking of varying shear-wave polarizations (Li and 

Crainpin 1989). It also avoids possible source inconsistences in CMP gathers, 

such as unequal source strengths and different configurations of source arrays 

subject to acquisition conditions (Lewis 1989; Lewis et al. 1991). Prior to 

display I have applied a band pass filter and a fan polarization filter as in the 

Lost Hills VSP discussed above. The effects of these processing procedures on 

the charateristics of shear-wave splitting can be neglected if the choice of 

parameters is optimal. 

Figure 5.6(a) shows the data matrix of a selected shot. XX stands for 

horizontal X-source (first X) and horizontal X-receiver (second X) component; 

XY stands for X-source and Y-receiver component; etc. A major reflection 

event can be identified at 1.60 seconds on the middle trace (trace 60), marked 

with A. Figure 5.6(b) shows some selected PDs, where shear-wave splitting 

can barely be identified from the PDs because of the interference of shear-wave 

and existence of noise. Figure 5.6(c) shows the colour section of the 

instantaneous amplitude and polarization calculated from XX and XY, which is 

called the X-section; Figure 5.6(d) shows the section from YX and YY (the 

Y-section). Figure 5.6(e) shows the polarization log. The features and 

interpretations of these sections are summarized below: 

1. The shapes of polarization in Figures 5.6(c) and 5.6(d) are difficult to 

interpret. As a result, shear-wave splitting in reflection data cannot be 

analyzed in the same way as in VSP data. Similarly, PDs show few diagnostic 

features of shear-wave splitting. 
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Figure 5.6. Results of Lost Hill reflection survey: (a) data matrix of a selected record 

(record 137), and X stands for inline, and Y for cross-line; XX stands for X-source (first X) 

and X-receiver (second X), and XY for X-source and Y-receiver, etc. (b) selected PDs of 

XX and XY components; (c) X-section, the colour section of the instantaneous amplitude and 

polarization of XX and XY; (d) Y-section, that of YX and YY; (e) orientation logs. 
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Variations of polarization with incidence angle are also difficult to interpret. 

In noise-free data, as incidence angle reaches the internal shear-wave window 

of an interface (Liu and Crampin 1990), polarizations show sudden changes, 

which can be identified on the colour section of the complex component (Li 

and Crampin 1990b, 1991c), as described in Chapter Four. Sudden changes 

of individual polarization can easily be identified in real data, such as event A 

on the Y-section [Figure 5.6(d)] at trace 67, and trace 83. However, these 

changes are most likely to be caused by interference with ambient noise caused 

by air wave, groundroll, random noise, etc., but might also be caused by the 

effects of an internal shear-wave window (Liu and Crampin 1990). Since most 

of reflective interfaces are well below the surface, it is reasonable to assume 

that the angle of incidence is sufficiently small that all reflections are within 

internal shear-wave windows. 

Although polarization variations of individual traces are difficult to 

interpret, Figures 5.6(c) and 5.6(d) show that polarizations of the same 

reflection events appear to be coherent, as is observed in VSPs. For example, 

event A of X-section [Figure 5.6(c)] has a coherent blue polarization on higher 

traces than 60 where the source is located. Because the interfaces are dipping 

(Squires et al. 1989), the arrivals for event A at lower traces than 60 are 

contaminated with the direct arrival. Coherent polarizations appear also on 

other events such as the event at 2.6 seconds and trace 35 at X-section [Figure 

5.6(c)], etc. This coherency of polarizations helps to indentify shear-wave 

events, and Figures 5.6(c) and 5.6(d) show better continuity of reflection than 

Figure 5.6(a). 

Figures 5.6(c) and 5.6(d) also show that there are coherent polarizations 

independent of source orientations on the two colour sections, as observed in 

VSPs. For examples, event A in the Y-section [Figure 5.6(d)] has the same 

coherent blue colour as in the X-section [Figure 5.6(c)]. There are several 

similar events. The same coherent colour (polarization) on different events, 

independent of source orientations, can most directly be interpreted as 
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indicating shear-wave splitting, and can be used to identify shear-wave splitting. 

The coherent colour represents the polarization angle of the leading 

shear-wave. In this case, the coherent colour is blue, indicating N42°W±3 0 . 

This observation can be used to determine the pre-stack rotation angles before 

synchronous rotation in processing multi-component reflection shear-wave data 

in the presence of anisotropy. Thus the processing of shear-wave data in the 

presence of anisotropy can be simplified by dropping post-stack rotation analysis 

which is now a conventional procedure for determining the rotation angle. 

5. Figure 5.6(e) shows that polarization logs of the reflection data improve the 

continuity of reflection events and separate the interference of the split 

shear-waves. The variations of polarization in Figure 5.6(e) can be more 

easily followed than in Figures 5.6(c) and 5.6(d). The blue colour of the 

polarization of leading split shear-wave arrivals appears on all events, and the 

polarization of the slower split shear-wave can also be identified as a 

red-orange colour. Note there is a lateral change of anisotropy in the Lost 

Hills line; the polarizations of the leading split shear-wave at this shot position 

has a different orientation from those at location of VSPs, as was also found by 

Squires et al. (1989). The SWS-section of the reflection data is less 

informative than that of the VSPs, because of noise and shear-wave 

interference, and is not shown here. 

To summarize, the attribute sections of reflection data have a more 

complex nature than those of VSPs. Characteristic rectangular shapes of 

polarizations are difficult to determine with confidence, hence analyzing 

shear-wave splitting in reflection data cannot be carried Out in the same way as 

in VSPs. I am able to indentify shear-wave splitting and determine the 

polarization of leading split shear-waves, by examining the coherency of 

polarization between geophones and different source orientations. This makes 

it possible to determine polarization angles for pre-stack data without a 

post-stack rotation analysis. Polarization logs improve the continuity of 

reflection events and separate the interference of split shear-waves, allowing the 
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optimum rotation angle to be more easily determined. SWS-sections of 

reflection data are less informative than those of VSP data. 

5.4.4 German Creek crosshole data 

The example is given to demonstrate how complex component analysis 

can help examine polarization variation in crosshole surveys. This is an 

in-seam seismic dataset acquired from German Creek Mine in Australia. 

Figure 5.7(a) shows the acquistion geometry on the horizontal plane (Greg 

Turner, private communication). There are 33 source points, and two fixed 

3-component geophones, marked as 01 and G2. The polarizations of wave 

modes received at the geophone are expected to be different at different source 

positions. By examining such variation of polarizations it is possible to locate 

the cleats and determine cleat directions in coal seams (Liu et al. 1989). To 

identify the type of wavemodes and to recognize the polarization variations, one 

often plots out seismograms and PDs of the horizontal components. In 

practice, this is time-consuming and difficult to keep objective. Complex 

component analysis can help overcome these difficulties. 

Figure 5.7(b) shows the colour section of instantaneous polarizations 

superimposed on wiggle traces of instantaneous amplitude received at 01. Two 

modes can be identified with different characteristic colours. A is a P-wave 

mode, which has a constant green polarization (NO°E±3 0 ) at all source 

positions. B is a shear-wave mode with a red polarization (N78 °E ±30)  at 

lower source numbers, but gradually changes to red-orange (N54°E±3 0 ) at 

higher source numbers. Figure 5.7(c) shows the colour displays of waves 

received at 02. Wave mode A has yellow green polarizations (N 180  E ± 30) at 

lower source numbers, then changes to pure green polarization (NO °E ± 30)• 

Thus, mode A is P-wave mode, and the change of polarization is due to the 

change of angle of azimuth of the travel path. This crosshole dataset 

demonstrates that complex component analysis offers an easy way to examine 

polarization variations in many configurations. 
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Figure 5.7. Results of German Creek Mine data: (a) plan of acquisition geometry; (b) 

colour section of the instantaneous amplitude and polarization of the two horizontal 

components at geophone 01; (c) colour section of the instantaneous amplitude and 

polarization of the two horizontal components at geophone 02. Letters mark the significant 

events explained in the text. 
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5.5 DISCUSSION 

The above case studies show the following phenomena: 

The VSPs confirm that the instantaneous polarization of shear-wave splitting 

shows characteristic combinations of rectangular and semi-triangular shapes as 

predicted in Chapter Four (Li and Crampin 1990b, 1991c), which can be used 

to analyze shear-wave splitting in colour sections of complex components. 

Complex component analysis is further developed for application to 

four-component seismic data. The Lost Hills VSP shows that calculating and 

displaying SWS-sections and polarization logs provides direct information about 

shear-wave splitting. In SWS-sections, shear-wave arrivals showing shear-wave 

splitting are characterized by a coherent colour band in which the colour 

represents the polarization of the leading shear-wave and the width of the band 

represents the delay between the split shear-waves. In polarization logs, the 

polarization of a split shear-wave is coded by colour plots, and the colour band 

of the leading split shear-wave represents the delay between the split 

shear-waves. 

It is observed that the polarizations of split shear-waves are remarkably 

coherent. Consequently, complex component analysis is comparatively robust 

in the presence of noise. 

The polarizations of the leading direct shear-wave in VSP5 tend to be 

consistent, and coherent among adjacent geophones. In isotropic examples, the 

polarization is source dependent, whereas in anisotropy, it is fixed in the 

symmetry direction and independent of source orientatations. 

The polarizations of reflected shear-waves are more complicated than 

VSPs, and are dependent on source and incidence angle. Outside the 
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shear-wave window, the polarizations are not coherent among adjacent traces 

regardless of source orientation and presence or absence of anisotropy. Within 

the shear-wave window at the free surface, in an isotropic rockmass, the 

polarizations are also varied and shear-wave polarizations are not usually 

orientated parallel to source axes (Liu et al. 1990); but in anisotropy, the 

polarizations are fixed and independent of source orientations. If the receiver 

axes are orientated parallel to source orientations, coherency of polarization 

among traces received within the shear-wave window can aid in identifying 

reflection events. 

Techniques that take advantage of the coherency of signals are frequently 

robust in the presence of noise. A reasonable amount of noise could modify 

the polarization shape of individual geophone or trace, but barely disturb the 

coherent polarization variation as a whole. Thus, the behaviour of shear-waves 

as indicated by complex component analysis will be preserved in the presence 

of noise as demonstrated by the Lost Hills reflection data. 

4. Complex component analysis of pre-stack data can be used to determine the 

rotation angle for source-geophone rotation for multi-component reflection data. 

Source-geophone rotation has now become a conventional processing procedure 

for multi-component reflection data, as demonstrated by Alford (1986b), 

Murtha (1989), Squires et al. (1989), and others. To apply source-geophone 

rotation, a post-stack rotation analysis (Alford 1986b; Squires et al. 1989) is 

often required to determine the optimum rotation angle. If post-stack rotation 

analysis is used, often the data have to be processed twice in order to get 

satisfactory results (Mike Mueller, Amoco, private communication). The data 

are first stacked without rotation to apply post-stack rotation analysis, then 

stacked again with pre-stack rotation using the angle determined from rotation 

analysis. Murtha (1988) derived an analytic tan4e expression of rotation angle 

for reflection data without the rotation scanning procedure. This can also be 

achieved by complex component analysis. 
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The purpose of rotation analysis is to determine the optimum rotation 

angle which best separates the energy of the two shear-wave arrivals. The 

process depends on the coherency of the polarization. This optimum angle is 

the source-independent coherent polarization in the colour sections of complex 

components. Thus, instead of using post-stack rotation analysis, one can use 

complex component analysis of pre-stack data to determine the optimum 

rotation angle. It is only necessary to calculate the complex components and 

display colour sections, and to look for the coherent polarization that is 

independent of source orientation and that appears on all major reflection 

events. This procedure is much simpler than rotation analysis. 

By calculating polarization logs, the interference of split shear-waves is 

resolved, and the determination of optimum angles for source-geophone rotation 

becomes more reliable, as demonstrated by the Lost Hills reflection data. 

There are two dominant coherent polarizations orthogonal to each other in logs. 

Thus, pre-stack rotation can be easily and efficiently implemented, and lateral 

variation of rotation angle along the survey line can be examined as one 

changes the location of polarization logs. 

The German Creek crosshole data confirms that both variation of 

waveforms and variation of polarizations can be followed continuously either 

along time direction, or along offset direction as predicted in Chapter Four (Li 

and Crampin 1990b, 1991c), and complex component analysis provides a 

useful tool for cases where identification of wave types and recognition of 

polarization variations are essential. 

In summary, complex component analysis is a simple, robust, and effective 

technique for analyzing shear-wave anisotropy in VSPs and reflection surveys. 

In the past, two methods have been used to examine shear-wave anisotropy in 

VSPs and reflection surveys: polarization analysis, and rotation analysis. 

Polarization analysis (analysis of polarization diagrams) relies principally on the 

shape of individual polarization pattern and is a straightforward technique; 
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while rotation analysis is mainly based on the coherency of whole polarizations 

and is relatively robust in the presence of noise. Both techniques are 

time-consuming. In contrast, complex component analysis allows both for the 

shape of individual polarization and the coherency of whole polarizations. 

Thus, complex component analysis retains the advantages of both techniques, 

but has fewer disadvantages. It is suggested that complex component analysis 

could well become a routine procedure in analyzing shear-wave anisotropy for 

VSPs and reflection surveys. 

5.6 CONCLUSIONS 

The field data confirm that instantaneous polarizations of shear-wave 

splitting have diagnostic shapes which are combinations of rectangular and 

semi-triangular shapes as described in Chapter Four (Li and Crampin 1990b, 

1991c). The technique is developed for multi-source component seismic data. 

Four-component data can be used to calculate shear-wave splitting sections 

(SWS-sections) or transformed to calculate polarization logs. Complex 

component analysis of four-component shear-wave reflection data allows the 

optimum rotation angle between adjacent geophones and different sources to be 

determined before stacking without source-geophone rotation. Finally, 

polarizations of split shear-waves tend to be remarkably coherent. This 

coherency helps us to identify and estimate shear-wave splitting, and aids the 

stratigraphic interpretation of reflection events in VSPs and reflection surveys. 

In conclusion, the theoretical promise in Chapter Four (Li and Crainpin 

1990b, 1991c) is confirmed by case studies, and complex component analysis 

can be further developed into four-component VSPs and reflection surveys. 

This technique of complex component analysis can aid identification and 

estimation of shear-wave splitting in VSPs and reflection surveys, help 

stratigraphic interpretation, and simplify the processing procedures for 

analyzing four-component reflection shear-wave data in the presence of 

anisotropy. 
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CHAPTER SIX 

LINEAR-TRANSFORM TECHNIQUES 

FOR PROCESSING SHEAR-WAVE SPLITTING 

IN FOUR-COMPONENT SEISMIC DATA 

ABSTRACT 

Most published techniques for analyzing shear-wave splitting tend to be 

computing intensive, and make assumptions, such as the orthogonality of the 

two split shear-waves, which are not necessarily correct. This chapter presents 

a fast linear-transform technique for analyzing shear-wave splitting in 

four-component (two sources/two receivers) seismic data, which is flexible and 

widely applicable. 

The four-component data are transformed by simple linear transforms so 

that complicated shear-wave motions are linearized in a wide variety of 

circumstances. This allows various attributes to be measured, including the 

polarizations of faster split shear-wave, and the time delays between faster and 

slower split shear-waves, as well as allowing the time series of the faster and 

slower split shear-waves to be separated deterministically. In addition, with 

minimal assumptions, the geophone orientations can be estimated for zero-offset 

VSPs, and the polarizations of the slower split shear-waves can be measured 

for offset VSPs. The time series of the split shear-waves can be separated 

before stack for reflection surveys. The technique has been successfully 

applied to a number of field VSPs and reflection data sets. Applications to a 

zero-offset VSP, an offset VSP, and a reflection dataset will be presented to 
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illustrate the technique. 

6.1 INTRODUCTION 

In the previous two chapters, I described complex component analysis for 

analyzing shear-wave splitting in seismic sections, where the polarizations and 

time delays of split shear-waves can be be interpreted visually from colour 

displays of instantaneous attributes. Here, I describe another technique for 

processing shear-wave splitting in seismic data, where large a amount of 

information about shear-wave splitting can be determined analytically. 

The earliest techniques for processing shear-wave splitting were various 

types of rotation scanning. Alford (1986b) and Thomsen (1988) rotated the 

source and instrument axes of four-component data simultaneously (synchronous 

source-geophone rotation) to minimize the off-diagonal energy in the data 

matrix. Naville (1986) and Nicoletis et al. (1988) adopted a similar rotation 

procedure, but minimized off-diagonal elements in the propagation matrix. 

MacBeth and Crampin (1991a) minimized the spectral interference of two split 

shear-waves in the frequency domain. MacBeth and Crampin (1991b) adapted 

the independent source-geophone rotation technique of Igel and Crampin (1990) 

to an exploration context. 

Most of these techniques tend to be computing intensive because of the 

rotation scanning procedure. In searching for more efficient techniques, 

Murtha (1989) developed an analytical expression for rotation angle in a 

specified time-window based on the technique of Alford (1986b) and Thomsen 

(1988). Guich (1989) further developed Murtha's technique into a statistical 

rotation procedure for three-dimentional multi-component shear-wave data. Li 

and Crampin (1990b, 1990d, 1991c, 1991d; also see Chapters 4 and 5) 

developed complex component analysis of shear-wave splitting. 

All the above techniques (except complex component analysis) also make 
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assumptions, such as the orthogonality of the two split shear-waves, and that 

the crack strike in the rockmass is constant with depth, which are not 

necessarily correct. In searching for techniques which can deal with crack 

strike changing with depth, Winterstein and Meadows (1990, 1991a, 1991b) 

adapted the technique of Alford (1986b) and Thomsen (1988) into a 

layer-stripping procedure. However, the procedure still involves rotation 

scanning and is computing-intensive. [Note that more recently, analytical 

techniques for layer stripping and for monitoring acquisition system have been 

developed for zero-offset VSPs, where the orthogonality of split shear-waves can 

be assumed (Lefeuvre a al. 1991; Zeng and MacBeth 1992).] 

Here, I present a new fast analytical technique, which is called the 

linear-trans fonn technique, for analyzing shear-wave splitting in four-component 

seismic data (also see Li and Crampin 1991b; 1992a). I assume an acquisition 

geometry for four-component seismic data of two-horizontal sources and two 

horizontal receivers. The data are then transformed by simple linear 

transforms so that the complicated shear-wave motion is linearized in a wide 

variety of circumstances. The technique allows non-orthogonal split 

shear-waves for offset VSPs and reflection data, where the geophone orientation 

is known, and allows unknown downhole geophone orientation for zero-offset 

VSPs, where the orthogonality of the two split shear-waves can be assumed. 

The technique can be also extended into media where crack strikes change with 

depth. 

A number of parameters can be determined by the linear-transform 

technique, including the polarizations of faster split shear-waves, the time 

delays between faster and slower split shear-waves, and the principal time 

series of faster and slower split shear-waves. In addition, the time series of 

split shear-waves can be separated before stack in reflection surveys. The 

technique has successfully applied to a number of field VSPs and reflection 

surveys, and will be illustrated with a zero-offset VSP, an offset VSP, and a 

reflection survey. 
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6.2 ASSUMPTIONS AND DEFINITIONS 

6.2.1 Acquisition Geometry 

Figure 6.1 shows the coordinate system with origin at the surface. 

Figure 6.1a shows the source geometry, where X and Y are two orthogonal 

source orientations, and el and e2 are two unit vectors representing the 

directions of faster and slower split shear-waves, respectively, for a given 

raypath, which are not necessarily orthogonal. el, and e2 are at angles of a' 

and ', respectively, from X-direction. Figure 6.1b shows the surface 

projection of the geophone geometry, where x and y are two orthogonal 

geophones, and ci and e2 are same unit vectors as in Figure 6.1a, but are at 

angles a and 13 from the x-direction, respectively. All angles are measured 

clockwise from the X- and x-directions. Note that the geophone orientation in 

Figure 6.1b is different from the source orientation in 6.1a, and the medium 

between the source and the first geophone, and between successive geophones, 

is homogeneous with uniform distribution of cracks. Thus, any change in 

shear-wave polarization is assumed to occur at the levels of the geophones. 

Figures 6.1a and 6.1b can be considered as typical VSP geometry. The 

geometry of reflection surveys can be considered as a special case of VSP 

geometry, where the source and geophone are all on surface and are orientated 

in the same direction. Hereafter, the geometry of VSPs and reflection surveys 

will not be treated separately, unless otherwise specified. 

I further assume that the angle between the faster and slower split 

shear-waves is preserved throughout the homogeneous material. Consequently, 

overlaying Figures 6.1a and 6.1b, as shown 6.1c, gives: 

(64) 
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Figure 6.1. Diagrams showing the acquisition geometry and coordinate system in the 

horizontal plane. (a) Source geometry, where X and Y are two orthogonal sources with 

signature F(t), el and e2 are the directions of faster and slower split shear-waves received 

at the geophone position, and Fl and F2 are two decompositions of the source vector F. 

(b) Geophone geometry, where x and y are two orthogonal geophones possibly in a 

different orientation from the sources, and el and e2 are same as (a). (c) Overlay of (a) 

and (b) for homogeneous medium where the effective shear-wave polarization does not 

change in the medium between the source and geophone. 
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6.2.2 Basic Assumptions 

Anisotropy of the Earth.—It is assumed that anisotropy in the Earth is caused 

by stress-aligned fluid-filled inclusions (EDA-cracks), and the inclusions are 

uniformly distributed between the source and geophone. If this is satisfied the 

medium between the source and geophone is referred to as homogeneous. If 

the polarizations of the shear-waves change with depth, or angle of incidence, 

as reported by Winterstein and Meadows (1990, 1991a, 1991b) [and 

interpreted by them as implying changing crack orientations], the medium is 

called inhomogeneous. In such inhomogeneous anisotropy, it is possible to 

extrapolate the source downwards, as demonstrated by Winterstein and 

Meadows (1991b). 

Source signature.—F(l) is used to represent the signature of the source, which 

is assumed to be the same for both X- and 1-source orientations. This is an 

assumption in field acquisition, which many of the reported multi-component 

datasets appear to satisfy, at least approximately (Alford 1986b; Squires et al. 

1989; Winterstein and Meadows 1990, 1991a, 1991b). 

Geophone orientations.— The geophone orientation may change between 

different locations, particularly at different levels in VSPs, but for a given 

location the orientation is fixed for both X- and 1-sources. This requirement is 

again usually satisfied in field acquisition. 

Polarizations 	of the 	split shear-waves.— The 	polarizations 	of the 	split 

shear-waves are fixed for a given raypath direction. 	This implies that the 

angles a', 	', a and P are invariant over a time window which covers a 

specific shear-wave arrival, but may change for different arrivals as different 

raypaths are involved. 	These conditions are believed to be generally satisfied 

in most anisotropic materials. 
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Principle of superposition.— It is assumed that a source vector F with 

signature F(t) can be decomposed into two subsources Fl and F2 along ci and 

e2 with signatures Fl (1) and F2(t), respectively (Figure 6.1a), and that the 

wave field excited by source vector F in the medium is equivalent to the wave 

field excited simultaneously by subsources Fl and F2. This assumption is 

called the principle of superposition. 

With the above assumptions, where a' and ' in Figure 6.1 are the 

angles of the faster and slower split shear-waves from X-direction, it gives (see 

Appendix C): 

Fl(t) = - F(t) cosB'/sin(' -a'); and 

F2(t) = F(t) cosa'Isin('-a'). 	 (6-2) 

The principal time series qSl (i) of the faster split shear-wave is defined as 

the time series received at a receiver when the receiver and a source vector F 

with signature F(t) are both polarized along el. Similarly, the principal time 

series qS2(t) of the slower split shear-waves is defined as the time series 

received when the receiver and the source vector F are both polarized along 

e2. The concept of the principal time series was introduced by Alford (1986b) 

and Thomsen (1988). Here I give an alternative geometrical definition. 

I introduce two transformed time series Vl(:) and V2(t) as the sum and 

difference, respectively, of the principal time series qSl(:) and qS2(t): 

VI (t) = qSl(:) + qS2(t); 

V2(i) = qSl(t) - qS2(i). 	 (6-3) 
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6.3 THE LINFAR-TRANSFORM TECHNIQUE 

6.3.1 Equations of four-component data 

With the acquisition geometry in homogeneous anisotropic medium shown 

in Figure 6.1, and the principle of superposition, the X-source can be 

decomposed into subsources as shown Figure 6.1a. The amplitudes of the 

faster and slower split shear-waves excited by X-source can be written as (see 

Appendix C): 

qSI(t) sin'/sin('-a'); and 

-qS2(t) sina'/sin('-a'); 	respectively; 
	 (6-4) 

where qSl(t), and qS2(t) are the principal time series of faster, and slower split 

shear-waves, respectively; and c' and ' are the angles in Figure 6.1a and 

6.lc. 

The four-component time series s1 (t) is defined as the signal recorded 

from X- and Y-sources (i = 1, 2) on x- and y-geophones (i = 1, 2). The two 

geophone components s11 (:) and 521(1)  from the X-source can be written as: 

S 11 (t) 	= [qSI(t) sin'cosa - qS2(:) sina'cos] /sin ('-a');  and 

S21(t) 	= [qSI(t) sin'sinct - qS2(t) sina'sin] /sin ('-cx'). 	 (6-5) 

Similarly, the amplitudes of the faster and slower split shear-waves excited by 

Y-source are (see Appendix C): 

-qSI(t) cos'/sin('-a'); and 

qS2(t) cosa'/sin('-a'); 	 (6-6) 

and the two components of s12  (t) and s22(:) can be written as: 
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S12(t) 	= [-qS](i) cos'cosa + qS2(t) cosa'cos]/sin(' -a'); and 

= [-qSl(t) cos'sina + qS2(:) cosa'sin]/sin('-a'). 	 (6-7) 

These are basic relations between the recorded components and the principal 

time series of split shear-waves. The equations could be solved by 

computer-intensive rotation scanning techniques, as suggested by Alford 

(1986b) and Thomsen (1988). Here, I apply linear transforms to the 

four-component datasets: 

= s(1) - s22(t); 	 (6-8) 

fl  (t) = S21 (t)+ s12(t); 	 (6-9) 

(t) = s 11 (i) + 	and 	 (6-10) 

x(t) = s12(t) - s21(t). 	 (6-11) 

Combining these various equations gives: 

= 	[qSl(t) sin(a+') - qS2(t) sin(a'+)]Isin('-a'); 

fl  (t) = - [qSl(t) cos(ct+') - qS2(1) cos(ct'+)]Isin('-a'); 

(t) = 	[qSI(t) sin('-a) + qS2(:) sin( -a')]/sin(' -a'); and 

x(t) = - [qSI(t) cos('-a) - qS2(t) cos(-a')]/sin('-a'). 	 (6-12) 

[Linear transforms (6-8) and (6-9) were first used by Li and Crampin (1990b, 

1990d; also see Chapter 5) to calculate polarization logs in reflection surveys, 

when the components of geophone and source were assumed to be orientated in 

the same direction, either in the acquisition geometry, or by subsequent 

rotation.] 

There are six unknowns in five equations in equations (6-1) and (6-12); 

and there will be no exact solutions unless further constraints are introduced. 

I discuss two cases. 	The first is the case with orthogonally polarized shear- 

waves, as in zero-offset VSPs (or, stack sections), where the linear transform 

technique allows the orientations of downhole geophones to be determined. 



Linear-transform technique 91 

The second is the case with non-orthogonally polarized shear-waves, as in 

offset VSPs, where the orientation of downhole geophones are known, from the 

polarization of P-arrival, for example, and the angle of separation of the split 

shear-waves can be determined, and the orthogonality of the split shear-waves 

can then be tested. A reflection survey can be considered as a special case of 

an offset VSP. 

6.3.2 Orthogonal split shear-waves 

I assume that the two split shear-waves in a crack-induced anisotropic 

medium are orthogonal to each other at vertical incidence, as in zero-offset 

VSPs, or the stacked sections in a reflection survey. [The orientation of the 

faster split shear-wave is often associated with the crack strike.] Noting that 13 

= n12 + a and ' = it/2 + a', equations (6-12) can be rewritten as: 

= [qSi(t) - qS2(i)1 cos(a'+a) 

fl(t) = [qSI(t) - qS2(t)] sin(a'+a) 	 (6-13) 

and 

(i) = [qSl(t) + qS2(t)] cos(a'-a) 

X(t) = [qSi(t) + qS2(t)] sin(a'-a) 	 (6-14) 

Equation (6-13) shows that the time series V2(t) = qSI - qS2 represents 

linear motion in coordinate system (, ti) with angle a' +a to the axis , and 

equation (6-14) shows that time series VI(r) = qSi + qS2 represents linear 

motion in coordinate system (, x) with angle a'-a to the axis. From the 

properties of linear motion in Appendix D, Vi and V2, and a' + a and a' -a 

can be uniquely determined. Thus, qSi = (Vi + V2)12 and qS2 = (VI - 

V2)12, and a and a' can be determined, and the orientation of the geophone 

can be estimated from a-a'. 
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6.3.3 Non-orthogonal split shear-waves 

In off-vertical incidence, the polarizations of the faster and slower split 

shear-waves in the horizontal plane may not be orthogonal. Such cases include 

offset-VSPs, and pre-stack data in reflection surveys, but non-orthogonally 

polarized shear-waves may also be present in zero-offset VSPs if the structure 

is not horizontal. [Note that there are two principal reasons for the 

non-orthogonality of shear-waves. The polarizations of split shear-waves along 

raypaths in directions without axial symmetry are not usually orthogonal 

(Crampin 1981), except in media with transverse isotropy, and in any case the 

orientations of non-vertically propagating shear-waves will be further distorted 

in the horizontal plane.] 

In all cases of non-orthogonality, it is reasonable to assume that the 

orientation of geophone is the same as the source. This is usually true in 

reflection surveys. In offset VSPs, even without gyro data, the orientations of 

geophones can usually be determined from the polarization of P-waves, so that 

the horizontal recordings can be digitally rotated so that the axes of source and 

geophone do effectively coincide. If the orientation of the geophone is the 

same as the source, that is, a = a', and 13 = ', equations (6-12) can be 

re-written as: 

= 	[qSl(i) - qS2(i)] sin(a+)/sin(-(x); and 

fl(t) = - [qSI(t) - qS2(t)] cos(a+)Isin(-a); 	 (6-15) 

and 

= 	qSl (1) + qS2(t); and 

X(j) = - [qSl(t) - qS2(t)] cos(-a)/sin(-a). 	 (6-16) 

Thus, time series VI = qSl + qS2 = (i) is directly given by equation 

(6-16), and V2 = qSI - qS2 can be determined as follows. i now introduce a 
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time series U(t), satisfying: 

U(t) = [qSl(t) - qS2(t)]/sin(-a); 

so that equations (6-15), (6-16), and (6-17) can be written as: 

(1) = U(t) sin((x + 	); 

fl(:) = - U(t) cos ((x+); and 

X(t) = - U(t) cos(-a). 

(6-17) 

(6-18) 

Similarly, equations (6-17) and (6-18) show that U(t) is also linear in 

coordinate system (, -fl). Consequently, VI = qSI + qS2, V2 = qSI - qS2, 

and angles a-P and a+P can also be estimated from linear transforms. Thus, 

the faster split shear-wave qSl and polarization angle a, and the slower split 

shear-wave, qS2 and angle P can be directly determined. Angle -a is the 

angle between the faster and slower split shear-wave and is a measure of the 

orthogonality of the split shear-waves. 

In summary, instead of solving for qSI and qS2 directly in zero-offset or 

wider-offset VSPs, after linear transforms, the time series of the split 

shear-waves, qSl = (VI + V2)12 and qS2 = (VI - V2)12, can be separated 

directly, and their various polarizations measured, regardless of the 

orthogonality of split shear-waves. 

6.4 VERIFYING THE LINEAR-TRANSFORM TECHNIQUE 

To verify this technique, I demonstrate the linearity of the transformed time 

series in field VSPs, and apply the technique to a synthetic VSP, where the 

polarizations and amplitudes of the split shear-waves are known. 
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6.4.1 Linearity of Vi and V2 

Equations (6-13) and (6-14) show that VI and V2 are expected to have 

linear-motion in the transformed coordinate system for zero-offset VSPs. This 

is tested with field data in Figure 6.2, which shows polarization diagrams 

(PDs, or hodograins) in the horizontal plane of a zero-offset VSP from BP's 

test site at Devine, Texas. Figure 6.2a shows PDs of the in-line (X-) source 

(the particle motion of s il and s2d, and Figure 6.2b shows PDs of the 

cross-line (Y) source (particle motion of s12  and at the same geophones. 

Shear-wave splitting is difficult to identify because the small delay between the 

two split shear-waves makes the motion elliptical. Figure 6.2c shows PDs of 

the transformed motions, V2(r) (particle motion of =s11 -s and ri =s12 +s21 ); 

and Figure 6.2d shows PDs of the transformed motions , V1(t) (particle motion 

of =s11  +s22  and x =s12-s21). Almost all of the patterns of the transformed 

motions in the PDs of Figures 6.2c and 6.2d are essentially linear as expected, 

despite the ellipticity of the original particle motion. 

Note that if the anisotropy is small, similar to the case of an isotropic 

medium, the orientations of PDs (the polarization direction of the main ellipse) 

of recorded shear-wave components at near vertical incidence will often 

preserve the orientations of the sources. Thus the orientations of PDs in 

Figures 6.2a and 6.2b are expected to be orthogonal for a given geophone level 

because PDs in 6.2a and 6.2b correspond to two orthogonal sources and time 

delay between the two split shear-waves, hence the anisotropy, are small. 

However, the orientations of transformed PDs in 6.2c and 6.2d are dependent 

on angles a' +a and a'-a, respectively, as shown in equations (6-13) and 

(6-14). If geophone x direction happens to be close to el in Figure 6.1b, 

angle a will be small and angles a' +a and a'-a will be close. Thus the 

orientations of the transformed PDs in this case will be almost parallel as 

shown in geophone 32, 39, and etc. in (C) and (d) of Figure 2. As a' 

(source X-direction) is fixed and a (geophone x-direction) varies with depth, the 

orientation of PDs of the transformed components in Figure 6.2c and 6.2d will 
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Figure 6.2. Polarization diagrams (PDs) of a zero-offset VSP from BP's test site at 

Devine, Texas, showing the linearity of the transformed motions: (a) in-line source 

(X-source), s11 (t) and 521(0;  (b) cross-line source (Y-source), S12 (t) and s22 (t); (c) 

transformed components, E(0=s11(:)-s22(t) and fl(:)=s12(t)+s21 (t); and (d) transformed 

components (t) = s(t) + 522(t)  and x(:) = s12(0-s21(t). 
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vary with depth. 

Figure 6.3 shows similar PDs in the horizontal plane of an offset-VSP, 

also from Devine, Texas. Figures 6.3a and 6.3b show the polarizations of 

in-line and cross-line (X- and Y-) sources received at horizontal geophones, as 

in Figure 6.2. Again the recorded shear-motion is elliptical. Figure 6.3c 

shows PDs of the transformed motion of V2(t) in coordinate system (E,, fl) 

from equations (6-15). Again the motion in Figure 6.3c is essentially linear. 

Note that the essentially linear motion of motion VI (t) is already determined by 

equation (6-25), it is not shown here. Also note that in Figure 6.3, the 

geophones are rotated so that all the geophones are effectively orientated in the 

same direction as the sources, thus the orientations of the PDs in Figure 6.3 

do not change with depth. 

In summary, although the particle motion of shear-waves as recorded are 

frequently elliptical, the linear transforms of the sum and difference of the split 

shear-waves, VI and V2, respectively, are linear. Consequently, the time series 

of the split shear-waves can be directly separated by recombining VI and V2. 

6.4.2 Testing with synthetic data 

I test the technique for measuring the polarization, time-delay, geophone 

orientation, and orthogonality with synthetic data. The data are taken from the 

response of the Edinburgh Anisotropy Project to the Anisotropy Modelling 

Collaboration, VSP Model 1 (Thomsen et al. 1989). The VSP has a 500m 

offset, to a maximum depth of 2500m, but for the purposes of this analysis it 

is treated as a zero-offset, that is, the polarizations of the two split shear-waves 

in the horizontal plane are assumed to be orthogonal. 

Figure 6.4a shows the comparison of measured and expected time delay 

between the split shear-waves; Figure 6.4b shows the comparison of measured 

and expected polarizations (where the top layer of the model is isotropic); 
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Figure 6.3. PDs of an offset VSP [offset 600 ft (190 m)],  also from Devine, Texas, 

showing the linearity of the transformed motions: (a) in-line source, s1 	and 
S21 

 (t); (b) 

cross-line source, s12(:) and s22(O; and (c) transformed components (:) =s11 (t)-s22(t) and 

11(1) = s12(:) +s21('). 
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Figure 6.4. Test with synthetic AMC VSP data showing comparison of measured attributes 

(solid line) with expected values (dotted line): (a) time delay between the faster and slower 

split shear-waves; (b) polarization of the faster split shear-wave measured from the source 

X-direction. (c) orthogonality, angle between the faster and slower split shear waves; and 

(d) geophone orientation (x-direction) measured from X-source direction, where the 

expected values have been disturbed. 
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Figure 6.4c shows the measured and expected anige of separation of the split 

shear-waves (orthogonality); and Figure 6.4d shows the comparison of the 

geophone orientation measured and known orientation, which has been 

deliberately modified for the purposes of the test. The match of measured to 

expected results for time delays (Figure 6.4a) is good, except for the top two 

geophones which are too close to the source and are noisy. The match for 

polarizations (Figure 6.4b) is good for all geophones. The match for 

orthogonalities is good, except for geophones 5 to 7 which are located at, or 

close to the isotropic/anisotropic interface where the time delay starts to build 

up as shown Figure 6.4a, and some interferences of split shear-waves exist. 

The match for geophone orientations is good for all geophones (Figure 6.4d), 

but for the top 15 geophones there are 10150  differences between the 

measured and expected results, which is possibly due to the small time delays 

between the two split shear-waves for the top 15 geophones as shown in Figure 

6.4a, and it is likely that there are some interferences of split shear-waves. 

Despite this, the overall match is good. 

6.5 APPLICATIONS TO FIELD DATA 

I now apply the technique to field datasets, zero-offset and wide offset 

VSPs from BP's test site at Devine, Texas, and a shot gather from the 

Kim-Tech Lost Hills reflection line. A full discussion of the Devine VSP, 

geology and interpretation is given by Raikes (1991) and Yardley (1992); and 

of the Lost Hills reflection data was given by Squires et al. (1989). 

6.5.1 Zero-offset VSP 

The technique has been applied with satisfactory results to a number of 

zero-offset VSPs, without gyro data so that geophone orientations are unknown. 

I choose a VSP from Devine as an example. 

Figure 6.5a shows four-component seismic data matrix from a Devine 
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Figure 6.5. Results from the zero-offset VSP from Devine in Figure 6.2. (a) 

Four-component seismic data matrix showing four record sections s (t), s21  (t), s12(t), and 

s22(:); note that the gain applied to s 2l  and S12 is  four times larger than the gain applied to 

s11  and s22  (b) record section of faster and slower split shear-waves, qSI (r) and qS2(t), 

measured from data matrix (a); the same constant gain as used for components s11  and s 22 

was applied to components qSI and qS2; (c) measured time delay against depth; (d) 

measured polarization direction of faster split shear waves; and (e) comparison of geophone 

orientations (x-direction) estimated by the linear transform technique (solid line) and by 

visual examination of polarization diagrams, PDs (dotted line), where both attributes are 

measured from the source X-direction. 
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VSP, and Figure 6.5b shows the faster and slower split shear-waves separated 

by the linear transform technique. Note that in displaying Figure 6.5a, the 

gain applied to components s., and s12  is four times larger than the gain 

applied to components s11  and s22  in order to show the variation of waveforms 

in component s21  and s12  clearly. Comparison of Figures 6.5a and 6.5b shows 

that the overall signal-to-noise ratio is slightly improved by the separation, with 

the direct shear arrivals being more consistent between geophone levels. 

Detailed comparison of the separated split shear-waves shows almost identical 

waveforms with a very small time delay. 

Figure 6.5c shows the measured time delays. The trend of variation of 

the time delay agrees with a preliminary analysis based on PDs by Gareth 

Yardley (Yardley 1992). Figure 6.5d shows the polarization of leading split 

shear-wave, which is consistent between geophones with a gradually linear 

change of polarization angle with depth. This linear change of polarization 

angle with depth may represent some kind of crack orientation changing with 

depth, but may also represent the differential attenuations of faster and slower 

split shear-waves. The slower split shear-wave tends to be affected and 

attenuated more than the faster split shear-wave (Thomsen 1988; Mueller 

1991). As depth increases, such attenuation of slower split shear-waves will 

increase, which results in a gradual change of polarization angle with depth. 

There are also other factors, such as, irregularities in field acquisition, which 

may cause polarization change. It is possible to separate these factors by 

full-wave forward modelling (Gareth Yardley, personal communication). 

Figure 6.5e shows geophone orientations (x-direction measured from the 

X-source direction) determined by the linear transform technique (solid line) 

compared with those estimated from PDs (dotted line). There are 10_200 

differences between the two kinds of measurements, for which there are two 

possible reasons. 	On one hand, when the time delay is small, measurements 

of geophone orientation by linear transform technique may yield 	10150 

differences, as shown in the synthetic results of Figure 6.4d. On the other 
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hand, visual examination of polarization diagrams may easily introduce an error 

of 5_100.  Despite all these, the trend of the variation of the two kinds of 

measurements matches very well, and the results are generally acceptable. 

6.5.2 Offset VSP 

The technique has been applied to several offset VSPs from Devine BP, 

and elsewhere, where the geophone orientation is determined from the 

polarizations of P-waves. One example from Devine is presented. Figure 6.6a 

shows the seismic data matrix, and Figure 6.6b shows the separated split 

shear-waves. Same gains as used in Figure 6.5a and 6.5b were applied to 

display Figure 6.6a and 6.6b. Again the signal-to-noise ratio is improved, and 

the two split shear-waves are consistent in the separated data. Figure 6.6c 

compares the delay between the split shear-waves from assuming orthogonal 

measurements from equations (6-13) and (6-14), and the delay from allowing 

non-orthogonal shear-waves polarizations from equations (6-15) and (6-16). 

The time delays from assuming orthogonal and non-orthogonal polarizations are 

almost identical, presumably because the polarizations are nearly orthogonal. 

As in the zero-offset in Figure 6.5, the delays increase gradually with depth. 

Figure 6.6d shows the polarizations of the shear-waves and the estimated angle 

of separation. The measured polarizations are similar to those of the zero 

offset VSP (Figure 6.5d). The angle of separation of the two split shear-waves 

are about the 900  line, as expected from the comparison of the delays in 

Figure 6.6c. 

6.5.3 Reflection survey 

Again the technique has been applied to several reflection data sets, where 

the geophone orientation is same as the source orientation. A shot gather from 

the Kim-Tech Lost Hills reflection line is presented as an illustration. 

Figure 6.7a shows the seismic data matrix, and Figure 6.7b shows the 
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Figure 6.6. Results from the offset VSP from Devine shown in Figure 6.3. The offset is 

750 ft (190m). (a) and (b) have same notations as in Figures 6.5a, and 6.5b; the gain is 

also the same as in Figure 6.5a and 6.5b; (c) shows comparison of time delay measured 

using the orthogonal algorithm [equations (6-13) and (6-14)] (solid line); and using the 

non-orthogonal algorithm [equations (6-15) and (6-16)] (dotted line); and (d) shows the 

measured orthogonality, angle between the two split shear-waves (dotted line), and 

polarization angles of the faster split shear-waves (solid line), where both attributes are 

measured from source X-direction. 
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Figure 6.7. Results from Lost Hills reflection data. (a) Four-component data matrix of a 

shot record from the Lost Hills dataset showing four record sections, s(:), s21 (t), s12(t), 

and s22(:); a constant gain was applied to all four components; (b) measured amplitude 

section of faster and slower shear-waves, qSI (r) and qS2(t); the same constant gain as (a) 

was used here; and (c) colour plot of polarization variations of split shear-waves. 
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separated split shear-waves. The continuity of events is improved in the 

separated data, and comparison of the faster and slower section shows a clear 

separation at the major reflection arrivals. A constant gain was applied to 

display Figure 6.7a and 6.7b. 

Figure 6.7c shows a colour display of polarizations, using the complex 

component analysis described in Chapters 4 and 5 (also see Li and Crampin 

1990b, 1990d, 1991c, 1991d). First, the variation of colour represents the 

variation of polarization. Two major colour events, blue and red-orange, can 

be identified in Figure 6.7c, which represent the polarizations of the faster and 

slower split shear-wave, respectively. The polarization angles of the faster and 

slower split shear-waves can be approximately estimated as 135° (blue) and 45° 

(red-orange). Second, the variation of polarization, represented by the colour, 

delineates reflection events clearly, and the continuity of wave events in Figure 

6.7c is better than in the amplitude displays (Figure 6.7a and 6.7b). 

6.6 DISCUSSION AND CONCLUSIONS 

The above examples show that the polarizations and amplitudes of the 

faster and slower split shear-waves in VSP5 and reflection surveys can be 

estimated by linear-transform techniques. 1 have only discussed the situation of 

a homogeneous anisotropic medium, that is, where the polarizations of the split 

shear-waves do not vary with depth. The technique can be extended to media 

where the effective polarizations changes with depth, and in this case one can 

either extrapolate the sources downwards into the lower layers, so that the 

medium between the extrapolated sources and the geophones is homogeneous, 

as demonstrated by Winterstein and Meadows (1991b), or one can deconvolve 

the lower geophone with upper geophone to remove the effects of the upper 

layer, as demonstrated by Zeng and Macbeth (1992), then perform linear 

transforms in the frequency domain. 

This technique recognizes the linearity of the transformed shear-wave 
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motion in the transformed coordinate system. These (four) linear transforms 

are deterministic and can be efficiently implemented. It is suggested that two 

features of the linear-transform technique should be noted: (1) the speed and 

directness of the calculations; and (2) the remarkable consistency of the 

measurements of the attributes in the field datasets, as shown in Figures 6.5c, 

6.5d, 6.5e, 6.6c, and 6.6d. Conventional methods employ a rotation scanning 

procedure (Alford 1986b) and tend to be computing intensive. 

In conclusion, the linear-transform technique separates the faster and 

slower split shear-waves efficiently, and measures the parameters of shear-wave 

splitting with satisfactory accuracy in four-component seismic data. It is 

flexible and can be used in a variety of ways to treat both orthogonally and 

non-orthogonally polarized split shear-waves. The technique estimates the 

orientation of downhole geophones in zero-offset VSPs where the split 

shear-waves can be assumed, and measures the angle of separation of the two 

split shear-waves in offset-VSPs where the orientation of the geophones can be 

estimated by other techniques. In reflection survey, the faster and slower split 

shear-wave can be deterministically separated before stack, which simplifies the 

processing procedure of multi-component reflection data in the presence of 

anisotropy. Further complete case studies about the use of complex component 

analysis and the linear-transform technique in processing multi-component 

shear-wave reflection data are described in Chapter 7. 
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CHAPTER SEVEN 

CORRELATION OF ANISOTROPY WITH OIL 

PRODUCTION: SHEAR-WAVE SPLITTING 

IN REFLECTION SURVEYS IN SOUTH TEXAS 

ABSTRACT 

In 1986, Amoco Production Company acquired multi-component 

shear-wave reflection data in South Texas to investigate the use of shear-wave 

splitting for characterizing fractured reservoirs. In this chapter, three lines of 

shear-wave data are processed and analyzed to further verify the use of complex 

component analysis and linear-transform techniques in processing shear-wave 

reflection data, and to demonstrate the correlation of variations in amplitudes 

and time delays of split shear-waves with fracture density and oil production in 

the survey area. 

The three lines, 1 and 2 in Dimmit County, and 3 in Frio and La Salle 

Counties, were, respectively, parallel, perpendicular, and at about 390  to the 

regional fracture strike. The time delays of the split shear-waves measured 

from the stacked sections of the faster (SI) and slower (S2) split shear-waves of 

Line 1 are small, and events in both Si and S2 sections have strong amplitudes 

and show good continuity. These features correlate with the absence of 

commercial production nearby. A trend of increasing time delays between split 

shear-waves measured from the Si and S2 stacked sections of both Line 2 and 

Line 3 is observed. The events in the SI sections of both lines clearly show 

better continuity than the corresponding events in the 52 sections. These 
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features correlate with the fact that Line 2 is close to and Line 3 is within 

major production fields. The trend of time delay variation along Line 3 also 

correlates with the distribution of producing oil wells along that line. 

The use of the complex component analysis and the linear transform 

technique simplifies the processing sequence for shear-wave reflection data in 

the presence of anisotropy. It allows the generation of both stacked amplitude 

and stacked polarization sections of split shear-waves. Split shear-waves in the 

amplitude sections obtained by the linear transform technique are optimized in 

comparison with those obtained by conventional rotation techniques. The 

stacked polarization section can be used not only for identifying lateral variation 

of polarizations, which are often associated with lateral variation of crack 

geometry, but also for better imaging the subsurface structure, as demonstrated 

by Line 3. 

7.1 INTRODUCTION 

This chapter interprets shear-wave reflection data acquired in South Texas 

by Amoco Production Company (see also Li, Crampin and Mueller 1992). 

The study area includes Dimmit, Zavala, Frio, and La Salle Counties (Figure 

7.1). The subsurface structures are essentially horizontal layers with structures 

parallel to those in the large Pearsall anticline in central Frio County (Layden 

1976). Primary oil and gas plays in the area are in Cretaceous rocks including 

the Olmos Sandstone, San Miguel Sandstone, and Austin Chalk (Ames 1990). 

In the southwest of the area, oil and gas are produced from the Olmos 

Sandstone on trend with productions in North Webb County (Snedden and 

Kersey 1982). In the northeast, oil and gas are produced from the San Miguel 

Sandstones and the Austin Chalk on trend with productions in Zavala and Frio 

Counties (Layden 1976; Stapp 1977). 

Of these major oil producing formations, the Austin Chalk has attracted 

continuous interest since the initial discovery of oil in the Chalk in the 1920's 
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Figure 7.1. (a) Distribution of producing oil wells in the Austin Chalk, adapted from Scott 

(1977) and Mueller (1991). (b) Locations of the three reflection lines and oil wells 

(courtesy of Amoco Production Company). 
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(Stapp 1977). In the late 1970's, the interests in the Chalk were renewed by 

the sharp increase in the price of oil. Scott (1977) gave a good description of 

oil development in the Austin Chalk in that period. About 10 years later, 

interests in the Austin Chalk were re-kindled with the advent of horizontal 

drilling technology. 83% of all horizontal completions in the U.S. have taken 

place in the Austin Chalk trend in South and Central Texas (Mueller 1991). 

Kuich (1989) and Ames (1990) reviewed these activities. 

The Austin Chalk is porous but impermeable. Consequently, reservoir 

development is almost wholly accessing fractures, and the success of drilling 

depends completely on identifying and penetrating highly fractured chalk (Kuich 

1989; Mueller 1991). Since the hydrocarbon accumulation in the Austin 

Chalk is not in conventional anticlinal or fault traps, methods normally used 

for prospect definition can not be applied (Scott 1977). In 1986, in order to 

verify the use of shear-wave splitting as an exploration tool for defining fracture 

systems in sedimentary basins, Amoco Production Company acquired several 

lines of multi-component shear-wave reflection data in Dimmit, Frio, and La 

Salle Counties in South Texas. The Austin Chalk trend offers a natural 

laboratory for this kind of experiment. 

Over the last few years, observations and applications of shear-wave 

splitting have become well-documented and established both in sedimentary 

basins (Crampin 1985a, 1985b; Crampin et al. 1986; Alford 1986b; Thomsen 

1988; etc.) and in many other areas of the crust (Crampin a al. 1985). 

Crampin and Lovell (1991) review these developments. Brodov et al. (1990) 

and Cliet et al. (1991) correlated shear-wave splitting with oil production rates 

in a multi-offset three-component VSP survey in the Romashkino Field, Russia, 

and Mueller (1991) identified lateral fracture concentrations from the 

differential amplitudes of split shear-waves in the Giddings Field of Central 

Texas. Davis and Lewis (1990) and Lewis et al. (1991) also correlated the 

degree of shear-wave splitting with oil production in a three-dimensional and 

three-component reflection survey in Silo Field, Wyoming. Here, I present 
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another example demonstrating how the degree of shear-wave splitting can be 

correlated with oil production in the Austin Chalk in South Texas. 

The Chapter compares the characteristics of shear-waves on three survey 

lines including the variations of amplitude and velocity and of polarization and 

time delay; discusses the processing sequences for different situations; and 

examines the effects of different processing techniques on evaluating shear-wave 

splitting. I will first summarize the geological history of the Austin Chalk in 

South Texas, then discuss the data acquisition system, data characteristics, and 

processing procedures. 

7.2 GEOLOGY AND FRACTURES IN AUSTIN CHALK 

Regional geology and sedimentology of the Austin Chalk has been 

reviewed by Weeks (1945), Seewald (1967), and Dravis (1979). The 

producing wells along the trend of the Austin Chalk are shown in Figure 7.1a. 

The chalk outcrops in the north-west edge of the map in Figure 7.1a, and dips 

into the subsurface towards the south-east. In Dimmit, Zavala, Frio and La 

Salle counties, the chalk is located at 8,000-10,000 ft depth below surface with 

a thickness of 700-1000 ft (Scott 1977; Stapp 1977). Structures in the chalk 

strike north-east, parallel with others in the Gulf Coast subsiding basin. 

The Austin Chalk was formed from a fine-grained carbonate mud 

containing skeletal remains of algae (Corbett et al. 1987; Stapp 1977). The 

skeletal remains of the algae (coccospheres), and their disarticulated 

pear-shaped skeletal plates (coccoliths) were desposited in great thicknesses 

under quiet water conditions (Stapp 1977). Chalks deposited in deep water 

show fewer fluctuations in rock physics and have widespread uniform fades, 

while chalks deposited in shallow water suffer fluctuations and rapid changes. 

The outcrops of Austin Chalk are believed to have been deposited in shallow 

water, whereas the chalk in the subsurface, as found in Dimmit, Zavala, Frio, 

and La Salle counties, is believed to have been deposited in deep water 
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environments (Stapp 1977) and uniform facies are expected. 

The porosity in the Austin Chalk trend varies both along strike and dip. 

In outcrops, the porosity may be as high as 30%, but in the subsurface, the 

porosity may be as low as 6% (Corbett et al. 1987). With such low-porosity 

in the subsurface, the rocks can neither take up nor give up fluid of any kind 

without fracturing (Scott 1977). Chalks usually have high porosity following 

deposition, but this gradually decreases with depth of burial. As the chalk 

loses porosity and packs down to a brittle rock, it easily fractures in response 

to tension. According to Scott (1977), the Austin Chalk was deposited on a 

relatively flat surface which, in response to subsequent deposition of great 

thicknesses of Tertiary sands and shales, became downwarped. It is this 

downwarping that stretched the Austin Chalk and created one set of fractures, 

known as textural fractures (Stapp 1977). They are not directly related to 

faulting. Since the stretching was uniform and along the dip direction of the 

structure, the strike of these textural fractures are usually vertical cracks 

parallel to the strike of the structure (Scott 1977). 

The other major fracture system in the Upper Cretaceous Austin Chalk is 

fault related (Stapp 1977; Reaser and Collins 1988). The structural setting and 

the trend were determined by the Gulf Coast subsiding basin, and modified by 

the Balcones, Luling, Mexia, and Talco fault zones (Reaser and Collins 1988). 

Faulting through the Austin Chalk trend is characterized by normal faults. As 

all large subsurface faults in the Cretaceous strata have similar displacement 

and there is no evidence of a difference in age between the fault zones (Corbett 

et al. 1987), all movements are assumed to be contemporaneous and the 

regional stress field is assumed to be uniform. Consequently, the fault-related 

fractures strike parallel to the structural strike and are expected to be uniformly 

distributed. 

Although, as suggested above, the strike of fractures in the chalk is 

expected to be uniform, the fracture intensity in dipmeter logs and field 
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mapping is not uniform. This is probably due to minor differences in the local 

stress and variations of the content of skeletal algae remains, so that fracturing 

is marginally easier in some areas than in others (Scott 1977; Stapp 1977; 

Corbett et cii. 1987). Thus, fractures form clusters and swarms in the Chalk. 

These swarms of fractures are major exploration targets for horizontal drilling 

(Kuich 1989; Mueller 1991). 

Figure 7. lb shows the locations of the survey lines and well distributions. 

Line 1, striking N39°E, is parallel to the strike of the subsurface faults and 

subsurface fractures. As shown in Figure 7. lb. there were no significant 

exploration wells drilled in this area of south-west Dimmit. Line 2, striking 

N50°W, is approximately perpendicular to the fracture strike; Line 3, striking 

approximately north-south, is at about 390  to the fault and fracture strike. 

These two lines are located near the intersection of Dimmit, Zavala, Frio and 

La Salle Counties, where the area had been very heavily drilled (Figure 7. ib). 

Significant oil fields operated near the intersection area are the Pearsall Field 

in Frio County (Champion 1936) and the Big Well Field in Dimmit and Zavala 

Counties (Layden 1976). Recent horizontal drilling in the Austin Chalk was 

also mainly carried out in this area (Kuich 1989, Ames 1990, Mueller 1991). 

7.3 ACQUISITION SYSTEM AND DATA CHARACTERISTICS 

7.3.1 Field data acquisition 

The data were acquired in early 1986 with 242-channel recording (121 

inline channels and 121 crossline channels) for two horizontal sources (one 

inline source and one crossline source), referred to as a four-component 

shear-wave survey (Alford 1986a). Tests for the four-component survey were 

performed along Line 1 (Figure 7.1b) to determine optimum field acquisition 

parameters. Group spacing was chosen as 110 ft initially, and was changed to 

165 ft after observing enormous ground roll in the test records acquired with 

110 ft spacing. The group array contained 24 geophones, and geophone 
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spacing within the group was also changed from 9.5 ft to 14 ft after testing. 

The split spread was designed with the source centred at the spread. The 

inline source array contained six horizontal vibrators with 82.5 ft spacing; the 

crossline source array contained three horizontal vibrators with 165 ft spacing. 

The sweep frequency was 8-32 Hz and the sweep length was 22s, and 12 

sweeps per vibrator point were taken. The vibrators were orientated into the 

inline and crossline direction alternately, but spread layout, directions and 

locations of geophones were fixed for each source direction. Table 7.1 

summarizes all the acquisition parameters. 

7.3.2 Shot data matrix 

Figure 7.2 shows one shot record from each survey line illustrating the 

changes in field data for different line azimuths. Each shot record has 

four-components, which are displayed in a data matrix with common source 

component as rows and common receiver component as columns, where inline 

components are marked X and crossline Y. Figure 7.2 shows such shot data 

matrices for each of the three lines. The shot data matrices of both Line 1 

and Line 2 (Figures 7.2a and 7.2b) show strong coherent shear-wave events in 

the diagonal elements but almost no coherent signal in the off-diagonal 

elements. In contrast, in the data matrix of Line 3 (Figure 7.2c), there are 

strong coherent shear-wave events with approximately equal energy in both 

diagonal and off-diagonal elements. This illustrates the effects of shear-wave 

splitting in a structure having azimuthal anisotropy with uniform symmmetry 

directions, specifically, orthorhombic symmetry with vertical and horizontal 

planes of symmetry. Lines 1 and 2 are parallel to the vertical planes of 

symmetry, so that inline source excites inline receiver, and crossline source 

excites crossline receiver, and there is no cross-coupling. Line 3, in an 

intermediate direction, causes the shear-wave source excitations to split and 

there is strong cross-coupling. 
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TABLE 7.1: Acquisition parameters. 

RECEIVER GROUP: 

Group spacing: 165 ft; 

Group length: 330 ft; 

Phones/group: 24; 

Geophone groups centred on the station; 

Inline and cross-line receiver groups co-located. 

SPREAD: 

Split spread shooting with 121 geophone groups; 

Spread length: 19800 ft; 

Far offset: 9900 ft; 

60 geophone groups to each side. 

SOURCE: 

Inline source array: 6 vibrators with 82.5 ft spacing; 

Crossline source array: 3 vibrators with 165 ft spacing; 

Source array centred on the station; 

Sweep frequency: 8-32 Hz; 

Sweep length: 22 seconds; 

Number of sweeps per vibrator point: 12. 

RECORDING: 

Recording length: 30 seconds; 

Sampling interval: 2 ms; 

No notch filter; 

Shot every second station; 

Maximum CDP fold: 31. 
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7.3.3 Instantaneous polarizations 

Chapters 4 and 5 (Li and Crainpin 1990b, 1990d, 1991c, 1991d) 

presented the complex-component analysis of shear-wave splitting, in which I 

calculated instantaneous polarizations and used colour-coded displays to 

interpret the variations of polarization. Here, I examine the characteristics of 

instantaneous polarizations in survey lines with different azimuths. Figures 

7.3a and 7.3b show the instantaneous polarizations of X- and Y-sources from 

the data matrix of Line 1 (Figure 7.2a) and the data matrix of Line 3 (Figure 

7.2c). The instantaneous polarizations of Line 2 show similar features to Line 

1, and are not shown, here. 

Figure 7.3a shows the instantaneous polarizations of the X-source 

calculated from the AX and XY components of the shot data matrix of Line 1 

(Figure 7.2a) showing dominant green events and indicating inline polarizations 

of about 0°. The corresponding polarizations of the Y-source in Figure 7.3b, 

calculated from the YX and YY components of Line 1 (Figure 7.2a), show 

dominant red events, indicating crossline polarizations of about 90°. The 

polarizations appear source-dependent, there are no common polarizations from 

different source orientations and there is no shear-wave splitting. In contrast, 

the instantaneous polarizations of the X- and Y-sources of Line 3 in Figures 

7.3c and 7.3d, respectively, calculated from the data matrix in Figure 7.2c, 

show coherent common blue events indicating polarizations of about -51°, and 

also show some indications of weak red-orange events indicating polarizations 

of about 39°. In this case, the polarizations are source-independent and fixed 

in the space giving approximately the same spatial polarizations as Lines 1 and 

2. Note that the radial direction is north-south. This is a typical example of 

shear-wave splitting with a line orientated intermediate to the symmetry planes 

of azimuthal anisotropic media. 
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Figure 7.3. Instantaneous polarizations calculated by the complex component analysis from 

(a) the XX- and XY-components in Figure 7.2a, Line 1; (b) the YX- and YY-components in 

Figure 7.2a, Line 1; (c) the XX- and XY-components in Figure 7.2c, Line 3; (d) the YX-

and YY-components in Figure 7.2c, Line 3. Positive angles in the scale indicate the 

polarizations measured clockwise from the radial direction, and negative ones indicate the 

polarizations measured anticlockwise. 



• LINE 1: Y—SOURCE 

TRACE NUMBER 
16 	60 - 	- 90 10 11 	i:)1) 

torn 

1 

0 
00 

LINE 3: Y—SOURCE 

177 
171 (a) 
165 

 159 
153 
147 
141 
135 

(I) 
LI) 

! 	1 

69 : 

b3 
57 
51 

iio 
0 	

FA 

45 
Rfl 

p f , 

TFIACF NIJMRFR (b) IHACL  

* 	 *... 

: 

3 H 

ç9) 
- 
- 

I Ot 
1Il 

-123 

	

- 1 17 
	

.5 

129 

- I 

	

471 	 ft 

14 
-153 

171 

Figure 7.3 

4 

LINE 1: X- SOURCE 

TRACE NUMBER 	 (d) 
1 	 HI 

t 	I 

4. t1 
D-, 

: 	

i: 

LL 

014 

•! 4. 	•4..4L4t,,; . 

* 

LINE 3: X—SOURCE 

!  44 

4,i 
aj +44 

4 	 i.. 	e •I S..  
# -+ 

!a,'! 



Correlation of anisotropy with oil production 109 

7.4 PROCESSING LINES 1 AND 2 

Lines 1 and 2 are, respectively, parallel and perpendicular to the 

presumed crack strike. Figures 7.2a, 7.2b, and 7.3a show that the two split 

shear-waves are separated, so that the components can be processed separately 

using conventional techniques (Lynn and Thomsen 1990; Li and Crampin 

1991a; Mueller 1991). As the off-diagonal elements contain very little signal 

energy (Figures 7.2a and 7.2b), they can be omitted at an early processing 

stage. Table 7.2 summarizes the conventional processing sequence used for 

processing Lines 1 and 2. In case of shear-wave splitting, once the split 

shear-waves are separated, the separated components can also be processed 

using the conventional processing sequences (Lewis et al. 1991) 

Note that it is not strictly correct that conventional processing techniques 

are appropriate for separated shear-waves in anisotropic media, since even 

when the polarizations are separated, the velocities of the two shear-waves will 

be different and will vary with offset. This means that stacking CDP gathers at 

constant moveout velocities are not strictly appropriate (Li and Crampin 1990a, 

1990c, 1992b; see also Chapter 2), although the effects in many circumstances 

may be negligible. Chapter 2 (Li and Crampin 1990a, 1990c, 1992b) 

suggested velocity and moveout equations for CDP gathers in anisotropic media. 

Also note that the effect of varying moveout velocities are thought to be 

negligible in Lines 1, and 2, and conventional processing has been used. 

7.4.1 Robust average scaling (RAS) 

Amplitude balancing is usually necessary in processing vibrator data. 

Traces at small offsets typically have large amplitudes which decrease sharply 

with increasing offset, and a trace-by-trace amplitude scaling to balance 

amplitudes is often needed. Such simple trace-by-trace amplitude scaling tends 

to alter the relative amplitudes between different components. However, 

relative amplitudes must be preserved for extracting polarization angles, or 
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TABLE 7.2. Conventional processing sequences. 

DATA EDITING: 

Geometry input; 

Trace editing; 

Data statics using velocity 3000 ft/s. 

VELOCITY AND RESIDUAL STATICS: 

CDP sort; 

Velocity analysis; 

NMO correction; 

Four-component scaling: balancing trace by off-diagonal elements; 

Stacking: form pilot traces for statics estimation; 

Residual statics picking; 

Solve for surface consistent residual statics; 

Iterate above sequence. 

FINAL STACKING: 

CDP sort; 

NMO correction; 

Robust average scaling (RAS); 

Residual statics application; 

Stack; 

Display. 
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investigating the amplitude variation between the faster and slower split 

shear-waves. A four-component scaling can maintain the relative amplitudes 

among the components, but cannot properly balance the amplitudes between 

traces from the same component within the same shot record or CDP gather. 

To overcome this problem, an optimum amplitude-balancing technique, called 

robust average scaling (RAS) has been used (see Table 7.2). 

The conventional algorithm for amplitude balancing scales the maximum 

or average amplitude of every trace to a given reference level within a shot 

record, or CDP gather. Since this reference level is irrelevant to the true 

amplitude level of a trace, the relative amplitudes among different components 

can be freely changed by applying such scaling. If the reference level is the 

true amplitude level of the stacked trace of a CDP gather and every un-stacked 

trace in the gather is scaled to this reference level, the amplitudes between 

traces within the CDP gather are balanced, and the relative amplitudes among 

different components are also preserved. 

This can be realized with one iteration. I first correct for normal 

moveout, and stack the unbalanced CDP gather, and calculate the average 

amplitude of this stacked trace. Secondly, I take this average amplitude as an 

optimum estimation of the true amplitude level of the CDP gather, and use it 

as the reference level to balance the NMO-corrected CDP gather. After it is 

balanced, the CDP gather is stacked again. This sequence is called robust 

average scaling or RAS. Figure 7.4 shows a comparison of CDP stacking 

results with and without applying robust average scaling. The data are selected 

from the XX component in Line 1. Comparing Figure 7.4a with 7.4b shows 

that the continuity of events and the signal to noise ratio are both improved 

after applying RAS. 

7.4.2 Statics and velocity analysis 

In addition to amplitude scaling, reflection surveys also require 
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corrections for statics. In order to measure time delays correctly, we need to 

maintain the relative time shifts between different components. To simplify the 

problem, it is often assumed that the faster and slower split shear-waves have 

the same field statics and the same residual statics, although, since shear-wave 

splitting is due to the polarizations reacting differently to the anisotropic 

structure, this assumption can only be a first-order estimate. Assuming equal 

statics, the problem is to ensure that the same statics are applied to all 

components. Here a constant velocity of 3000ftIs was used for field data 

statics, and residual statics was derived from the YY components. The velocity 

and statics sequence was iterated once to refine the pilot traces for picking the 

residual statics (see Table 7.2). 

Velocity analysis is also a common problem in reflection data processing. 

The faster and slower split shear-waves have different stacking velocities 

(Thomsen 1988; Li and Crampin 1990a, 1990c; 1992b; see also Chapter 2), 

and it may be necessary to carry out two separate passes of velocity analysis for 

SI and S2, as we did here. Figure 7.5 shows the average differences of SI 

and S2 stacking velocities for the three lines. As shown in Figure 7.5, the 

differences in the stacking velocities of Line 1 are generally small, and it is not 

necessary to use two separate velocity-sets for SI and 52 in processing Line 1. 

However, the differential stacking velocities in Line 2 are large, particularly 

after 1.5 seconds, and two separate velocity-sets are necessary in processing 

Line 2. 

7.4.3 Final stacked results 

After obtaining satisfactory stacking velocities and residual statics, we can 

follow the final stacking sequence in Table 7.2. For Line 1, which is parallel 

to the assumed strike, the XX component contains the faster split shear-wave 

(SI), and the YY component contains the slower split shear-wave (52). 

Carrying out the final stacking sequence separately for XX- and YY-components, 

we can obtain the final stacked Sl and 52 sections for Line 1, as shown in 
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Figure 7.5. Comparison of average differential stacking velocities between the faster and 

slower split shear-waves along the three reflection lines: Line 1 - broken line; Line 2 - 

dotted line; and Line 3 - solid line. 
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Figures 7.6a and 7.6b, respectively. For Line 2, which is perpendicular to the 

crack strike, the XX component is the 52 component, and YY component is the 

SI component. Similar to Line 1, the final stacked Si and S2 sections can be 

obtained by two separate passes of the final stacking sequence in Table 7.2. 

The results are shown in Figures 7.6c and 7.6d. Comparison of Lines 1 and 

2 in Figure 7.6 shows that the overall data quality of Line 2 is not as good as 

that of Line 1. 

7.5 PROCESSING LINE 3 

Line 3 shows pronounced shear-wave splitting. Separating split 

shear-waves provides an extra challenge in addition to the problems discussed 

above. The conventional technique for separating shear-wave splitting in 

reflection surveys is numerical rotation of the horizontal components of the 

record section to minimize the energy in the cross diagonal elements of the 

data matrix (Alford 1986b), and similar results can be obtained by rotating 

analytically (Murtha 1988, 1989). Li and Crampin (1991b, 1992a; see also 

Chapter 6) suggest a flexible linear-transform technique as an alternative to the 

conventional rotation techniques. Here, both the rotation technique and the 

linear transform method are used in processing Line 3 in order to evaluate 

their merits and to establish an optimum sequence for processing shear-wave 

reflection data in the presence of anisotropy. 

7.5.1 Rotation analysis 

The process of rotation analysis can be summarized as follows. Firstly, 

the data editing sequence in Table 7.2 is applied to all the four components. 

Secondly, the velocity and statics sequence in Table 7.2 is applied to the } 

component (crossline source and inline receiver), or XY component (inline 

source and crossline receiver), to determine the stacking velocities and residual 

statics. Note that the XY and YX components should be approximately equal in 

noise-free azimuthal anisotropic media containing uniform symmetry (same 
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orientation of cracks) throughout the depth range (Figure 7.2c). Thus, only a 

single pass of the velocity and statics sequence is needed to choose off-diagonal 

elements for preparing stacked data matrices for rotation. Thirdly, the rotation 

sequence in Table 7.3 is applied to all four components separately. At this 

stage, the stacked data matrix can be used to determine the rotation angle, and 

this angle is used to rotate the shot data matrix to separate the four-component 

data into two-component SI and 52 data sets. Finally, the velocity and statics 

sequence and the final stacking sequence in Table 7.2 are applied to the SI and 

52 components separately, and the final stacked SI and S2 sections are then 

obtained. 

Figure 7.7 shows a portion of the stacked data matrix for Line 3 after the 

third stage of processing. The split shear-waves are mixed together and mistie 

of events may not be observed in the data matrix. For example, events appear 

at 2.0 seconds in components XX and XY, events appear at 3.0 seconds in 

components YX and YY. Figure 7.8 shows the polarization angles measured 

from the stacked data matrix using the linear transform technique (Note that in 

conventional rotation analysis, polarization angle is determined by rotation 

scanning). The dotted line shows the measurements from the data window 

over the Austin Chalk, and solid line shows those from the whole data. The 

two measurements are generally consistent. Before station #600, the rotation 

angles are consistent and have an average of about around 39°; after #600, the 

measurements are more scattered because of poor data quality. Thus the 

rotation angle can be choosen as 390  for separating the four-component data 

into SI and S2 datasets. The final stacked SI and S2 sections are shown in 

Figure 7.9. Overall comparison of Figure 7.7 with Figure 7.9 shows that the 

continuity of events in the SI and 52 sections is improved, and mistie of events 

is observed, as events at 2.0 and 3.0 seconds show. 
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TABLE 7.3. Processing sequences for separating split shear-waves: 

comparison of rotation technique with linear-transform technique. 

ROTATION SEQUENCE: 

CDP sort; 

NMO correction; 

Robust average scaling; 

Residual statics application; 

Stack; 

Rotation angle estimation: rotation analysis, or other technique; 

Apply rotation angle to shot data; 

Separate data into Si and 52 data sets. 

LINEAR-TRANSFORM TECHNIQUE: 

Apply linear-transform to shot data; 

Separate data into Si and 52 polarization data sets. 
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Figure 7.7. Stacked data matrix from Line 3 using the processing sequence in Table 7.3. 
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7.5.2 Linear-transform technique (Lii) 

The process involving LTT is straightforward. Firstly, as before, the data 

editing sequence is applied to all four components. Secondly, the L'VF 

sequence in Table 7.3 is applied to the shot data matrix to transform the four 

components into the three LTT components: Si; S2; and the component of 

polarization logs (see Chapter 5; also Li and Crampin 1990d; 1991d). 

Thirdly, the velocity and statics sequence and the final stacking sequence in 

Table 7.2 are applied separately to the Si, S2 and polarization components to 

give the final stacked SI, S2, and polarization sections. 

Figure 7.10a shows the SI and S2 shot records after applying LTI' to the 

data matrix in Figure 7.2c. For comparison, the results of the rotation process 

are shown in Figure 7.10b. Comparison of Figure 7.10a with 7.10b shows 

that SI and S2 records obtained by LTT are as good as those obtained by the 

rotation technique. Figure 7.11 shows the comparison of the residual energy 

after LTT with the energy after rotation, where S3 represents the sum of the 

off-diagonal elements in the shot data matrix after applying LTr or rotation. 

Overall comparison of Figure 7.11a with Figure 7.11b shows that the residual 

energy after LTT (Figure 7.11a) is smaller than the residual energy after 

rotation (Figure 7.11b). This indicates that the split shear-waves are better 

optimized by LTT than by rotation. 

Figure 7.12 shows final stacked Si and S2 sections of the LTF. 

Comparison of Figure 7.12 with the stacked sections using the rotation 

technique in Figure 7.9 shows that overall quality of the final stacked sections 

using LTT is slightly better than those using the rotation process: for example 

compare the events between 3.5 to 4.0 seconds at stations between #399 and 

#499. 
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Figure 7.10. Comparison of SI and 52 components of the split shear-waves calculated 

from the shot data matrix of Figure 7.2c using: (a) the linear-transform technique; and (b) 

the rotation technique with 390 rotation angle. 
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matrix of Line 3 after split shear-waves are optimized: (a) after applying linear transform 
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shot data matrix in Figure 7.2c. 
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7.5.3 Stacked polarization section 

After applying LTF to separate the SI- and 52-waves, we can also obtain 

the component of polarization logs (Li and Crampin 1990d, 1991d; see also 

Chapter 5). Applying polarization filters (Li and Crampin 1991d; see also 

Chapter 5) and following the velocity and statics sequence and the final stacking 

sequence in Table 7.2, I can obtain the stacked polarization section or 

polarization logs. Such polarization logs with colour coded displays can be 

used to interpret lateral and vertical variations of polarization and subsurface 

structure. 

Figures 7.13a and 7.13b compare polarization logs of shots from Lines 1 

and 3. The polarization log of Line 1 (Figure 7.13a) shows two events, green 

(a radial polarization of 00)  and red (a transverse-horizontal polarization of 

900 ) indicating that SV and SH polarizations from the source are preserved. 

This implies either a plane-layered isotropic structure or, as here, an 

anisotropic structure where the reflection lines are along directions of vertical 

symmetry planes. The polarization log of Line 3 in Figure 7.13b shows blue 

and orange events with polarizations of 390  and 510  from the radial direction. 

In reflection data, the polarizations may change with offset, as shown in 

Figure 7.13b. Such changes may be due to the variations expected for 

different directions of propagation through an anisotropic symmetry system. 

However, in most cases the polarization change is caused by random noise, or 

coherent noise such as interaction with converted P-waves from the effects of 

the shear-wave window (Evans 1984; Booth and Crampin 1985). In such 

cases, particularly if the noise falls into the same frequency band as the signal 

it may be very difficult to eliminate, and directly stacking CDP gathers may 

degrade the polarizations, as demonstrated by Li and Crampin (1989). 

Processing the data with polarization logs resolves this problem. 

Since the polarization of noise almost always differs from the polarization 
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of the signal, the noise polarization can be easily eliminated by applying 

polarization filters before stacking. The polarization filter may be designed as 

an orthogonal fan filter as shown in Chapter 5 (Li and Crampin 1991d) in 

order to enhance orthogonal shear-wave motions. Here in processing the 

polarization component of Line 3, a polarization filter of 50  to 850  is applied to 

all the shot polarization records. The final stacked polarization log of Line 3 is 

shown in Figure 7.14 corresponding to the sections in Figure 7.9 and Figure 

7.12. Note that a backgound green polarization (0°) appears in Figure 7.14. 

This is because after stacking, the polarization angles of non-coherent events 

are attenuated towards 0°, and the polarization colours are hence shifted 

towards green. Polarization logs of Lines 1 and 2 are not shown here because 

there is no shear-wave splitting in these two lines. 

Both structural and anisotropic information can be obtained from 

polarization logs as suggested by Li and Crampin (1990b, 1990d, 1991c, 

1991d; see also Chapters 4 and 5). Firstly, polarization logs of shear-waves 

can be used to image the subsurface structure, like the amplitude and phase of 

seismic waves. This is because shear-wave reflections from the same interface 

at adjacent stations tend to show similar polarizations, as shown in Figures 

7.13 and 7.14. Comparing Figure 7.14 with Figures 7.9 and 7.12 shows that 

overall features of the subsurface structure in the polarization logs are similar 

to those in the amplitude sections, and most events in polarization logs have 

better continuity than those in the amplitude sections. 

Secondly, lateral and vertical variation of polarizations can be determined 

from the polarization logs. As shown in Figure 7.14, from right to left and 

from top to bottom, dominant blue and weak red-orange colours appear on 

almost all major polarization events; and there are almost no polarization 

changes in Figure 7.14, which agrees with the geological and geophysical 

evidence about the crack strike in the area, as reviewed previously. The 

polarizations can be estimated from the blue and red-orange events, which 

represent two approximately orthogonal motions -51° degrees and 39° degrees 
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from the radial direction (north-sourth): N51 °W and N39°E, repectively. 

7.6 VARIATION OF SHEAR-WAVE ATTRIBUTES 

Several shear-wave attributes have been used to characterize shear-wave 

anisotropy. These include differential stacking velocity, polarization variation, 

amplitude variation, mistie of events in SI and S2 sections, and cumulative time 

delay. Among these, polarization, event mistie and cumulative time delay are 

the most reliable and commonly used attributes. Other attributes can aid the 

interpretation, but are often more subtle and more complicated to interpret. 

The polarization variation in the three reflection lines and its applications have 

been discussed above. Here, I examine the variations of the other attributes in 

the three reflection lines. 

7.6.1 Differential stacking velocity 

Figure 7.5 shows the comparison of average differential stacking velocities 

of the faster and slower shear-waves in the three lines. The differential 

stacking velocities increase with depth. Before 1.0 seconds, velocity differences 

in the three lines are all small and negligible. After 1.0 seconds, the 

difference in Line 1 (the broken line) remains small, while the difference in 

Line 2 (dotted line) sharply increases until 1.5 seconds, and the difference in 

Line 3 gradually increases after 1.5 seconds. Note that the turning points on 

the curves of the differential velocity correspond to strong coherent events in 

the stacked sections as seen in Figures 7.6, and 7.12. In summary, Line 1 

shows the least variation in differential stacking velocity, whereas Line 2 shows 

the most, and Line 3 is intermediate between the other two. 

7.6.2 Mistie of events 

Figure 7.15 shows a comparison of stacked SI and S2 sections for the 

three lines to display the mistie of events. The events in the SI and S2 
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sections of Line 1 (Figure 7.1 5a) tie very well and almost no mistie can be 

observed. Mistie of events in the stacked Si and 52 sections can be observed 

in Lines 2 and 3 in Figures 7.15b and 7.15c, respectively. The reflection 

events in Line 2 corresponding to the Olmos Sandstone have a mistie of about 

10-15 ms by visual examination, while reflection events at the Georgetown 

formation have a mistie of 20-40 ms. Larger misties can also be observed in 

Line 3. 

7.6.3 Amplitude variation 

Overall amplitude variations in the three lines can be compared in the 

stacked sections in Figures 7.6, and 7.12. The shallow events above 1.6 

seconds in the 52 section of Line 1 (Figure 7.6b) show slightly better 

continuity than those in the Si section (Figure 7.6a). For deeper events at 2.0 

seconds and below, events in both Si and 52 sections in Figures 7.6a and 7.6b 

show similar amplitudes and similar continuity. Events in both shallow and 

deeper parts of the SI section of Line 2 in Figure 7.6c show stronger 

amplitudes and better continuity than those in the 52 section in Figure 7.6d. 

In Line 3, no obvious variations of differential amplitudes in Si and 52 

sections (Figure 7.12) can be observed, and the overall features of Si and 52 

sections are similar in Figures 7.9 and 7.12. 

To examine the differential amplitude variations in more detail, we 

window the SI and 52 sections over the Austin Chalk and Georgetown in 

Figure 7.16. The windowed Si and S2 sections for Line 1 are shown in 

Figure 7.16a; for Line 2 in Figure 7.16b; and for Line 3 in Figure 7.16c. 

The windowed SI and S2 sections of Line I show similar amplitude features to 

those in Figures 7.6a and 7.6b. The windowed Si and S2 sections ot Line 2 

show significant difference between Si and S2 both in magnitude of amplitudes 

and in continuity of events. The windowed Si and S2 sections of Line 3 show 

subtle changes in magnitude and continuity of events for SI and S2 arrivals, 

which are not shown in the sections in Figures 7.9 and 7.12. As in Figure 







- 	

0 .4 	.i44Id4 	 11 	1A4a.4 44 .iiiIA 



Correlation of anisotropy with oil production 119 

7.16c, the events corresponding to the Austin Chalk in SI section show slightly 

larger amplitude and better continuity than those in the S2 section. There are 

also some subtle changes in events at 2.7 seconds. Comparing Figures 7.16b 

and 7.16c shows that the variation in amplitude in Line 3 is not as significant 

and obvious as in Line 2. 

7.6.4 Time delay variation 

The mistie of events shown in Figure 7.15 demonstrates the variation of 

time delays in the three lines. To quantify the time delays, Figure 7.17 shows 

the cross-correlation of the SI and S2 sections from the Georgetown formation 

immediately underneath the Austin Chalk and are the cumulative time delays 

from the surface. Time delays above the Austin Chalk are difficult to measure 

principally due to lack of quality events. The three lines represent the delays 

in the three survey lines 1, 2, and 3 with increasing average delays of about 

10 and 25 ms for Lines 1 and 2, and for Line 3, 50 ms for stations from #1 

to #400, decreasing to about 35 ms at station #1000. 

We take the ratio of the time delay to the travel time of the raypath to 

estimate the percentage shear-wave anisotropy. The Georgetown formation 

appears at about 2.5 seconds as shown in Figures 7.6, and 7.12. Thus the 

shear-wave anisotropy is less than 0.5% for Line 1, and about 1.5% for Line 

2, and varies from 2.5% to 1.5% from north to south along Line 3. 

7.7 INTERPRETATION AND CORRELATION 

7.7.! Variation of shear-wave anisotropy 

As indicated by the mistie of events (Figure 7.15) and measured from the 

time delays (Figure 7.17), the average anisotropy in Line 1 is small, less than 

a half percent. This is consistent with variations in other attributes such as the 

small differential stacking velocities in Figure 7.5 and the small differential 
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amplitude variations in Figure and 7.16a. There is an increasing trend of 

anisotropy for Lines 2 and 3. The average anisotropy is 1.5% in Line 2 and 

varies from 1.5 to 2.5% along Line 3. This is also consistent with variations 

in differential stacking velocity and differential amplitude in Figures 7.5, and 

7.16b and 7.16c. 

There are, however, two exceptions to the trend of variation of attributes 

described above. The first is that the reflection events in the shallow part of 

the 52 section of Line 1 show slightly stronger amplitudes and better continuity 

than the corresponding events in SI section (see Figures 7.6a, 7.6b and 

7.16a). The second is that Line 2 shows a slightly larger differential velocity 

(Figure 7.5) and differential amplitude (Figure 7.16b) than Line 3 (Figure 

7.16c). These appear to contradict the increasing mistie of events in Figure 

7.15 and time delays in Figure 7.17. 

Both exceptions are probably caused by the presence of coherent noise in 

the XX element of the data matrix, particularly in the shallow part. The 

shallow part of the XX element contains more coherent noise, particularly 

converted waves and surface waves, than the shallow part of the YY element as 

shown in Figure 7.2. Note that converted waves have higher stacking velocity 

than primary shear-wave reflections. Thus the presence of these converted 

waves in the shallow part of the component will distort the stacking velocity and 

amplitude variation depending on the quality of the primary shear-wave 

reflections. Also note that as the line azimuth changes, such noise may shift 

from one component to the other. 

For the cause of the first exception, we should note that since Line 1 is 

parallel to the crack strike, the XX element is the SI component. The faster 

split shear-wave, and appearance of events in the shallow part of Si section and 

the stacking velocity of the Si component are thus affected by the presence of 

converted waves and surface waves. These distortions are small, because the 

overall data quality of Line 1 is good. For the second exception, because Line 
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2 is perpendicular to the crack strike, the S2 component is the XX component. 

The presence of converted waves and other noise in the shallow part of the S2 

section has two effects. The stacking velocity of the S2 component will shift 

towards the stacking velocity of the converted waves, if the data quality is not 

good enough to separate them, so that the differential stacking velocity will be 

further increased. [Note that the differential stacking velocity is a measurement 

of apparent anisotropy. The slower split shear-wave tends to have a larger 

stacking velocity than the faster split shear-wave (Thomsen 1988; Li and 

Crampin 1990a).] The other effect is that noise will degrade the stacking 

results of the slower split shear-wave and increase the differential amplitude 

between the faster and slower split shear-waves. 

7.7.2 Correlation with oil production 

Variation of anisotropy in the three lines can be approximately correlated 

with oil production. Figure 7. lb shows the well locations in the study area. 

Few wells have been drilled near Line 1, and the line is over tens of miles 

away from neighbouring production fields, but Line 2 is at the edge of the 

Pearsall and Big Wells field operating in Frio and Northern Dimmit and 

Southern Zavala and there are some ten wells within a mile of the line. Line 

3 is through the centre of the Pearsall Field, and many tens of producing wells 

have been drilled along, or near the line. Comparing Figure 7.1b with Figure 

7.17 shows that the overall oil production along or near the three reflection 

lines approximately correlates with the anisotropy (time delays) observed along 

the three lines, where Line 1 with smallest time delays has little production 

nearby; Line 2 with intermediate time delays shows intermediate production; 

and Line 3 with largest time delays has largest production nearby. 

Variation of anisotropy along Line 3 can also be correlated to oil 

production along or near the line. Figure 7.18 shows the well distribution 

within 1 mile either side of the line. Most wells are distributed in the 

northern part of the line with station numbers below #700. There are only two 
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wells at the northern end (station numbers less than #100), and only one well 

at the southern end of the line (numbers greater than #800). The variation of 

time delays along Line 3 in Figure 7.17 shows similar variation. In the 

northern part (numbers less than #100), the delay rapidly builds up up to 55 

ms, remains at about the same level until #400, and then uniformly decreases 

to about 35 ms at #1000 towards the south. Thus the trend of variation of 

time delays broadly correlates with the overall trend of well distribution along 

the northern part of the line. 

The overall trend of the variation in the polarization log of Line 3 in 

Figure 7.14 may also be correlated with the oil production along the line. 

Corresponding to a high production area from #399 to #449, the polarizations 

are more scattered with white background in the lateral variations, and 

corresponding to major oil plays in the Austin Chalk, the polarization events 

are less continuous and often broken in vertical variations. Following Mueller 

(1991), this indicates areas of fractured chalk where good production may be 

expected. We should point out that such variations are subtle and complicated, 

and only when the nature of such variations of polarization are better 

understood, from more case studies, can such interpretation be confidently 

made. 

In summary, shear-waves in the three reflection lines show typical 

features of shear-wave splitting. The variation of anisotropy in the three lines 

can be correlated to the commercial oil production in the study area. Variation 

of anisotropy along Line 3 can be also correlated with oil production along the 

line. High production areas and major oil plays are found to be associated 

with scattered polarizations and broken polarization events in the stacked 

polarization logs. 

7.8 DISCUSSION 

Detailed correlations of the amount of shear-wave splitting with oil 
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production in individual wells (Brodov et al. 1990; Cliet et al. 1991; Mueller 

1991) and individual areas (Lewis et al. 1991) have been published elsewhere. 

This paper demonstrates that the overall degree of anisotropy, as quantified by 

the percentage of differential shear-wave velocity along reflection surveys that 

are tens of miles in length, can be broadly correlated with the overall amount 

of oil production nearby. When such correlations refer to the Austin Chalk 

(this study and Mueller 1991), where production is dominated by wells 

penetrating fractures in this porous but low permeability formation, the 

correlations again confirm the close association of shear-wave anisotropy with 

subsurface cracks and fractures. 

Although it is difficult to quantify because of noise and poor quality 

arrivals, the increasing trend of anisotropy from Lines 1 to 2 and 3 appears to 

be present throughout the whole rockmass not just in the neighbourhood of the 

productive Austin Chalk. The same trend of anisotropy is certainly present in 

the Olmos Sandstone above the chalk, and may be present below the Austin 

Chalk and the Georgetown formation, but the arrivals are of lower quality. 

Certainly the anisotropy of the Austin Chalk is associated with large fractures, 

but the apparent pervasive anisotropy throughout the rockmass is probably 

caused by extensive-dilatancy anisotropy or EDA, rather than widespread 

distributions of large fractures. EDA is the distribution of stress-aligned 

fluid-filled cracks, microcracks, and preferentially oriented pore-space present 

in most types of rock, which causes shear-wave splitting in a wide variety of 

geological formations (Crampin and Lovell 1991). 

The correlation of the trend of anisotropy throughout the rockmass with 

oil production and fractures in the Austin Chalk suggests that the geological 

conditions creating fractures in the chalk also align cracks and microcracks 

throughout the rockmass. Note that EDA-cracks are strain- and stress-induced 

alignments of existing fluid-filled inclusions that are present in most rocks, 

especially sedimentary formations. Such re-alignments of existing fluid-filled 

inclusions can take place at much lower levels of stress and strain deformation 
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than the high stresses required to open new fractures, and can be caused by a 

variety of mechanisms, not just elastic deformation (Crampin and Lovell 1991). 

7.9 CONCLUSIONS 

The shear-waves in the three reflection lines show typical characteristics 

of shear-wave splitting in both shot data matrix and colour displays of 

instantaneous polarization logs. The overall fracture orientation is N39°E in 

the study area, agreeing with other geological and geophysical results. In areas 

in which commercial oil production is absent, the average time delay of the 

split shear-waves is less than 10 ms, corresponding to about 0.5% anisotropy 

or less. In areas close to major production fields, the average delay is about 

30-40 ms, corresponding to about 1.5% shear-wave anisotropy. In major 

production areas, the delay is up to 50 to 60 ms, corresponding to about 2.5% 

anisotropy. Other features in the three survey lines, such as differential 

amplitudes of the faster and slower split shear-waves, and differential stacking 

velocities, show similar trends of variations as the anisotropy and oil production 

vary, but these variations are more subtle, complicated and sometimes difficult 

to interpret compared with variations of time delays of split shear-waves. 

The use of the complex component analysis and the linear transform 

technique simplifies the processing sequence of shear-wave reflection data in 

the presence of anisotropy. It allows the generation of both stacked amplitude 

and stacked polarization sections of split shear-waves. Not only can lateral 

variation of polarizations, which are often associated with lateral variation of 

crack geometry, be identified from the polarization section, but subsurface 

structures can also be better imaged by shear-wave polarizations compared with 

conventional amplitude images. High production areas and major oil plays are 

found to be associated with scattered polarizations and broken polarization 

events in the stacked polarization section. 
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CHAPTER EIGHT 

SUMMARY OF ACHIEVEMENTS AND FINDINGS 

AND FUTURE WORK 

8.1 SUT4MARY 

The results of this thesis can be classified into three groups: theoretical 

development, processing techniques, and case studies. The achievements and 

findings can be summarized as follows. 

8.1.1 Theoretical development 

Approximate velocity equations in symmetry planes of weakly anisotropic 

solids have been extended to off-symmetry planes to meet the needs of real 

data. The modified equations are good approximations up to approximately 

10% anisotropy in symmetry planes and 6% in off-symmetry planes. 

The moveouts of faster and slower split shear-waves in CMP gathers, or 

shot records, from a single interface of weak anisotropy can be separated into 

hyperbolic moveouts and residual moveouts. The residual moveout is 

proportional to the amount of anisotropy in the medium concerned and to the 

spread length of the acquisition geometry. 

Expressions have been derived for calculating plane shear-wave reflection 

and transmission coefficients at vertical incidence at an interface separating two 

cracked (anisotropic) media with different crack strikes. These expressions can 

be used to examine the effects that changing crack strike and crack density has 
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on shear-wave amplitudes. 

4. For an interface with high velocity-contrasts, the effects of crack strike 

varying with depth can be neglected in processing shear-wave splitting. For an 

interface with low velocity-contrasts, the amplitude ratio of the off-diagonal 

elements in the data matrix after separation of split shear-waves can be used to 

extract anisotropic information. 

8.1.2 Processing techniques 

S. Complex component analysis has been developed for displaying and 

identifying shear-wave splitting in multi-component seismic data. The 

technique allows calculation of shear-wave attributes such as instantaneous 

polarizations and instantaneous amplitudes for two-component seismic data, and 

shear-wave splitting sections (SWS-sections), and polarization logs for 

four-component data. 

These shear-wave attributes can be displayed as colour-coded 

time-versus-offset seismic sections, so that any polarization anomaly can be 

continuously followed both vertical and laterally. This can aid the identification 

and interpretation of shear-wave splitting and the stratigraphic interpretation of 

reflection events in seismic sections. 

A linear-transform technique has been developed for quantifying shear-wave 

splitting in four-component seismic data. The technique transforms the 

four-component data by four linear transforms so that the complicated 

shear-wave motion is linearized in a wide variety of circumstances. 

The linear-transform technique allows various attributes to be measured, 

including the polarizations and time delays of split shear-waves, as well as 

downhole geophone orientations. It also allows the time series of the faster 

and slower split shear-waves to be separated deterministically, and such 
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separation can be implemented before stacking in reflection surveys. 

8.1.3 Case studies 

The data were acquired by Amoco Production Company in Dimmit, La 

Salle, and Frio Counties in South Texas. These included three reflection lines 

with different azimuths in areas of varying oil production. The purpose of the 

survey was to verify the use of shear-wave splitting in characterizing fractured 

reservoirs. 

The case studies confirm that the use of complex component analysis and 

the linear transform technique can simplify the processing sequence of 

shear-wave reflection data in the presence of anisotropy, and allows the 

generation of both stacked amplitude and stacked polarization sections 

(polarization logs) of split shear-waves. 

Polarizations of split shear-waves tend to be remarkably coherent in 

polarization sections. The polarization section images both vertical and lateral 

variations of polarizations, and also images subsurface structures better than 

conventional amplitude sections. 

High oil production area and fracture zones of reservoirs are found to be 

associated with scattered polarizations and broken polarization events in the 

stacked polarization sections. Thus, it is possible to use polarization sections to 

identify fracture zones associated with fractured hydrocarbon reservoirs. 

The degree of anisotropy can be broadly correlated with the oil production 

in the survey area. Other features in the survey lines, such as differential 

amplitudes of the faster and slower split shear-waves, and differential stacking 

velocities, show similar trends of variations as the anisotropy and oil production 

vary. 
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8.2 FUTURE WORK 

During 1990 and 1991, major progress has been made in understanding, 

interpreting and processing shear-wave splitting, with direct applications to 

hydrocarbon production, and a possible application to monitoring stress changes 

before earthquakes, about which Crampin and Lovell (1991) provided a 

comprehensive review. Crampin and Lovell (1991) also identified major areas 

of application of shear-wave splitting and major future developments. Here, I 

summarize necessary future work with respect to shear-wave splitting in 

reflection surveys, as a continuation of the work described in this thesis. 

8.2.1 3-D polarization image of subsurface structures 

Three-dimensional (3-D) and three-component (3-C) reflection data have 

been acquired to study anisotropy for reservoir characterization (Lewis et al. 

1991; Kramer 1991). Research can be carried out to further develop complex 

component analysis to investigate the 3-D polarization image in characterizing 

structural and anisotropic variations. 

8.2.2 Anisotropic velocity analysis and residual moveouts 

In addition to the work in Chapter 2, several other studies have been 

published recently about velocity and travel time equations in anisotropic media 

with hexagonal symmetry (Sena 1991; Berge 1991). Case studies can be 

undertaken to estimate shear-wave residual moveouts and vertical and horizontal 

velocities in anisotropic media, and to investigate their application to improving 

CDP stacking results and interpreting anisotropic information. Ideal datasets 

would be 3-D or 2-D multi-component data with horizontal interfaces. 

8.2.3 Effects of anisotropy and heterogeneity 

To aid the processing and interpretation of shear-wave splitting in areas 
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with complex geological structures, it is necessary to develop a practical 

algorithm for calculating synthetic seismograms for models containing dipping 

and curved interfaces, so that structure-induced effects on shear-wave splitting 

can be compared with effects of anisotropy in order to identify and separate 

these kinds of effects. 

8.2.4 Near-surface effects 

Shear-wave polarizations observed at the surface may differ from those at 

depth if the crack orientation changes with depth. The reflection coefficients in 

Chapter 3 and the linear-transform technique in Chapter 6 can help to estimate 

and eliminate the effects of the near-surface (Macbeth, Li, Crampin, and 

Mueller 1992). Refining algorithms need be developed and case studies should 

be made to verify these techniques. 

8.2.5 Multi-component deconvolution 

Deconvolution is one of the most efficient techniques for enhancing 

seismic data quality in conventional seismic data processing (Yilmaz 1987). 

However, it is not recommended in processing shear-wave splitting, because 

possible phase distortions are likely to be introduced during deconvolution. 

Kramer (1991) proposed a three-component deconvolution for processing VSP 

data which can improve the data quality while preserving shear-wave splitting. 

Four-component deconvolution can be designed for reflection data, which fulfil 

the same purose (Li and Macbeth, personal communication). 

8.2.6 Integrated studies 

Recently, there has been an increase in using crosshole surveys. Guided 

waves have a dominant energy in most crosshole seismic data (Lou and 

Crampin 1991b). Lou and Crampin (1991a, 1991b, 1992) studied the effects 

of anisotropy on guided waves and investigated their applications to monitoring 
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enhanced oil recovery operations. An integrated study of reflection surveys, 

VSPs, and crosshole surveys will be of importance for reservoir 

characterization and development. 

In conclusion, understanding shear-wave propagation and observations of 

shear-wave splitting in the Earth's crust are fundamental advances for 

seismology. In this thesis, I developed suitable techniques for processing 

shear-wave splitting in controlled source seismology, and I have shown that the 

degree of shear-wave splitting can be correlated with oil production. I have 

also demonstrated that areas of high oil production and high fractured zones 

are associated with scattered polarizations and broken polarization events in 

polarization sections. These features are directly related to hydrocarbon 

determination. However, one is clearly only just beginning to understand and 

use the phenomenon of shear-wave splitting. As shear-wave technology 

together with study of shear-wave splitting further develops, it will bring an 

interesting future for shear-wave exploration in the search for hydrocarbon 

resources. 
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APPENDIX A 

DERIVATION OF MOVEOUT EQUATION (2-8) 

Letting 0=0 *  and 90 0  in equation (2-5) gives: 

l/v2 ,, = a0  + a1  + a2  + a3  + a4 ; and 	 (A-i) 

i/V2h = a0; 	 (A-2) 

where v, ,, and Vh  are the vertical and horizontal velocities, respectively, for any 

type of body waves, in Figure 2.1. 

Substituting equation (2-5) into equation (2-7) gives: 

= 4z2  [a0  + a1cos4) + a2cos2  4) + a3cos34) + a4cos44)]/coS2 4); 

= 4z2(a0lcos2 4) + a2  + a4cos 2 4)) + 4z 2(a1  + a3cos2 4))/cos4). 	(A-3) 

Note that 

2ztan4) =x;and 

1/COs4) = 1/(1. sin2,)½ 

= 1 + (sin2  4))/2 + (3sin4$)/8 + (15sin64))/48 + R; 	(A-4) 

where Rn
is the residual error term and, for incidence angles less than 30 0 ,  R 

is less than 0.0014, and can be neglected. (High order terms may be 

introduced for higher incidence angles.) Note also that sin4) is the ratio of 

spread length of acquisition geometry to the length of the ray path and may be 

called the spread factor. Substituting (A-4) into equation (A-3), omitting the 

error term R and making some suitable manipulations, gives: 



AppendxA 	132 

12  = 4z2(a0 +a1 +a2 +a3 +a4) + x2(a0 +a112a312a4) + 

• x2(a1I2+a3I2+a4)Sin2 	+ x 2(3a1 -a3)I8sin2  + 

• x2(- a 1  + a3)/ 16sin4  - x2 (5 a1 / 16 + a3/4)sin6  + 

• x2(5a3/16)sin8+. 	 (A-5) 

Equation (A-5) is a general moveout equation for weak anisotropy which 

is accurate to the second order in the amount of anisotropy and third order in 

the spread factor sin4. It can be further manipulated. First the normal 

moveout velocity can be calculated as: 

1/v2 nmo = lim(di2 /d* 2 ) = a0  + a1 12 - a3/2 - a4 . 	 (A-6) 

Substituting equations (A-i), (A-2) and (A-6) into (A-5), and omitting the 

higher order terms of sin 4 , sin  and sin  gives: 

12 = 4Z2/ V2 + X21 V2nmo + X2 (i/V2 h l/v2 nm)5Ifl 2 $ + x2(3a1 _a3)/8sin 2 $ 

= 12 
0 	nmo + X21 V2 	+ X2 (1/V2 h_1/V2 nm)Sifl2 4 + :2 sin2 ; 	(A-7) 

where 

12 = 4 z 2/v2 ; and 

12 
off = x2(3a1  - a3)/8. 	 (A-8) 

Note that coefficients a 1  and a3  are associated with velocity variations in 

off-symmetric planes. As discussed previously, if angle a =0 0  in equation 

(2-5) is also in a plane of vertical symmetry, coefficients a 1  and a3  will be 

zero. Thus 3a1 -a3  must be small compared to other terms in equation (A-7). 

Omitting term ,2 0fisin2  in equation (A-7) gives equation (2-8). 
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APPENDIX B 

DERIVATION OF REFLECTION 

AND TRANSMISSION COEFFICIENTS 

B.1 STRESS-STRAIN RELATIONSHIP 

Figure B. 1 shows schematically an anisotropic material with orthorhombic 

symmetry formed from a combination of PTL and EDA anisotropy. A 

shear-wave entering such a material necessarily splits into two phases with 

different speeds and different polarizations (Crampin 1981). For near-vertical 

propagation, the faster split shear-wave is polarized parallel to the crack strike 

and the slower split shear-wave perpendicular to the crack strike. A 

right-handed coordinate system is assumed as shown in Figure B.1, where 

is parallel to the crack normal, x2  is parallel to the crack strike, and x 3 is 

vertical downwards. This system may be called the natural coordinate system 

of a cracked material. The stress-strain relation can be written as (Crampin 

1981): 

where a and C. (ij= 1, 2, 3) are stress and strain tensors, respectively; and
ii 

C (ij= 1,2,... ,6) are elastic constants. Using u 1 , u2  and u3
to represent the 
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Figure B. 1. A schematic illustration showing shear-wave propagation in an anisotropic 

medium with orthorhombic symmetry formed from a combination of PTL and EDA 

anisotropy, with the coordinate system used in the study. 
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displacements along the corresponding axes gives: 

E = 	+ au/ax1 , if i0j; andij 
= au1Iax; 	if ij. 	 (B-2) 

B.2 ELASTIC CONSTANTS 

Take x 1 , x2  and x3  as the local natural coordinate system of Medium 1, 

and x' 1 , x' 2  and x' 3  as the local natural coordinate system of Medium 2. In 

Medium 1, one has (Crampin 1981): 

C44 = P1 11 

C55  = P1 
V2 

21; 

032 = c44 c 32 ; and 

031 = C55 C31* 	
(B-3) 

Similarly, in Medium 2, one has: 

C'44 = 
P2 12 ;  

C'55  = P2 22 ;  

0'32 = c' 44 c'32 ; and 

= c'55c'31; 	 (B-4) 

where the primed variables are parameters of Medium 2 in its local natural 

coordinate system. 

B.3 BOUNDARY CONDITIONS 

I take the local coordinate system of Medium 1 as the global coordinate 

system, and plane x3 =  0 as the interface. The boundary conditions can be 

written as: 
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U2 1 1 	- 	2 
x30 - 

2  x30' 
1 	- 	2 
x30 - 

3  x30' 
1 	- 	2 	and 031 x3=O - 031 x30' 

- 	2 
012 1 x=o - 012 x3 =0; 

(B-5) 

where Ii denotes parameters referring to Medium 1, and 1 2  denotes parameters 

referring to Medium 2, and all measurements are under the global coordinate 

system. 

BA COORDINATE TRANSFORM 

As the global coordinate system is that of Medium 1, one needs to apply 

a coordinate transform to the parameters of Medium 2. The transform is a 

horizontal rotation from system (x' 1 , x' 2) to (x 1 , x2), as shown Figure B.2, 

where Act is the crack strike difference between Medium 1 and 2. Act is 

positive if it is measured anticlockwise from the x 2  direction (crack strike of 

Medium 1), and negative if measured clockwise. Thus, it has: 

x3  = x 3  

= u' 1cosAa + u 2sinAa 

U2  = u'cosAct - u' 1 sinAa; 

031 = 0
9 31cosAct + 0'32sinAa; and 

032 = 0 '32cosAct - o' 31sinAa; 	 (B-6) 

where the un-primed variables are measurements in the global coordinate 

system (x 1 , x2 , x3), and the primed variables are measurements in the local 

natural coordinate system (x' 1 , x' 2 , x' 3). 

B.5 qSl AT NORMAL INCIDENCE 

In this case, the displacements in Medium 1 under the global coordinate 
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Figure B.2. Coordinate transform from a local natural coordinate system (x' 1 , x' 2) to the 

global coordinate system (x1 , x2) for a horizontal rotation of ta. 
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system can be written as: 

= A 2  exp[iw(t + x3/V21)]; 

U2 = A 0  exp[iw(1 - x3IV11)] + A 1  exp[iw(t + x31V11)]; and 

U
3 
 = 0; 	 (B-7) 

where w is the angular frequency; and i is the square root of -1. Substituting 

(B-7) into equations (B-2) and (B-3) gives the stresses 031 and 032  in Medium 

1 under the global coordinate system as: 

031 = p 1V21A2(icü)exp[iw(1 + x3/V21)]; and 

032 = p1V11(iw){-A0exp[iC*)(t - x31V11)] + A 1exp[iu(t + x3/V11)]}. 	 (B-8) 

Similarly, the displacements u' 1 , u' 2  and u'3  in Medium 2 under its local 

natural coordinate system can be written as: 

u' 1  = A 4  exp[iw(1 - x' 31V22)J; 

u'2  = A 3  exp[iw(t - x' 3/V12)]; and 
	 (B-9) 

U' 3  = 0. 

Substituting (B-9) into equations (B-2) and (B-4) gives the stresses 0 '31 and 

32 in Medium 2 under 
its local natural coordinate system as: 

O'31 = p2VA4(-iw)exp[iw(t - x' 3/V22)]; and 

0'32 = p2V12A3(-io)exp[iw(t - x' 31V12)]. 	 (B-10) 

Substituting (B-9) and (B-b) into equation (B-6), the displacements u 1  and 

and stresses 031 and °32  in Medium 2 under the global coordinate system can 

be written as: 

u 1  = A4exp[iw(1-x3IV22)]COSa + 

+ A3exp[iw(1-x3/V12)]sincL; and 
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= A3exp[iw(t-x3IV12)]c0si&cL - 

- A 4exp[iw(t-x 3/V)]sinAa; 	 (B- 11) 

031 = p 2VA 4(-i(*)exp[iw(t-x 3/V22)]COSAa + 

+ P2V j2A3(-iw)exp[ (1-x 3/ V12)]sinAct, and 

032 = p2V12A3(-iw)exp[iw(1-x3/V12)]CoSAa - 

- 	2V24(-i(D)exp[iw (t-x 3/ V22)]sinAa. 	 (B-12) 

Substituting equations (B-7), (B-8), (B-il) and (B-12) into equation 

(B-5), noting that x3=O at the interface, and making some suitable 

manipulations, gives: 

A 2  = A4cosa + A3sinAa; 

A 0  + A 1  = A3cosAa - A4sin&; 

p 1 V21A 2  = -p 2 V22A 4cosAa - p 2 V12A 3sinAa; and 

- A 0) = p 2 V22A4sinAcx - p 2 V12A3cosAcx. 	 (B-13) 

Dividing equation (B-13) by A 01  then noting equation (3-2), gives: 

r12 = t 10a + i11 sinácL; 

1 + r = :11cosAa - : 12sina;11  
p 1 V21r12  = -p 2 V22t12cosa - p 2 V12r11 sinAa; and 

- 1) = p2 V22112sina - p 2 V12t11cosa. 	 (B-14) 

Thus, expressions for r11, r121til , and  t12 can be obtained from equation 

(B-14) as shown in equations (3-3), (3-4), (3-5), and (3-6). 

B.6 qS2 AT NORMAL INCIDENCE 

In this case, again the displacements u and stresses 031 and 032  in 

Medium 1 can be written as: 
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= A0  exp[iw(1 
- X3/V21)] + A 2  exp[iw(: + x3/V21)]; 

= A 1  exp[iw(1 + x3IV11)]; and 

= 0; 
	 (B-15) 

031 = p1V21 (iw){-A 0exp[iw(t - X3/V21)] + 

+ A 2exp[iw(t + X3/VI)]);  and 

032 = p 1V11A 1 (iw)exp[iw(1 + x31V11)]. 
	 (B-16) 

Note that the displacements and the stresses in Medium 2 for this case 

are the same as in the previous case. Substituting (B-11), (B-12), (B-15) and 

(B-16) into equation (B-5) and letting x3 =  0 gives: 

A 0  + A2  = A4cosAa + A3sinAa; 

A 1  = A 3cosAct - A 4sinM; 

p 1 V21 (A2  - A 1) = -p 2 V22A 4cOstla - p 2 V12A3sinAa; and 

p 1 V11A 1  = p2V22A 4sinAa - p 2 V12A3cosAa. 	 (B- 17) 

Dividing (B-17) by A 0  and using equation (3-8) gives: 

1 + r22  = tcosAa + :21sin; 

= t2 cosAa - tsinAa; 

PlV21(r22 - 1) = - p 2V1cosAa - p 2 V12t21sinAa; and 

p 1 V11r21  = p2 V22t22s 	- p 2 V12t21cosa. 	 (B-18) 

Thus, expressions for r22 , r21, 22  and t2l  can be obtained from equation 

(B-18), following equations (3-9), (3-10), (3-11), and (3-12). 
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APPENDIX C 

DERIVATIONS OF EQUATIONS (6-2), (64) AND (6-6) 

C.1 DERIVATION OF EQUATION (6-2) 

As shown in Figure C. la, a source vector F with signature F(i) is 

decomposed into two subsources Fl and F2 with signatures Fl(t) and F2(t), 

respectively. Given F(r) and angles y 1  and y2 , F1(1) and F2(;) can be uniquely 

determined. In the upper triangle of Figure C. la, according to the sine rule of 

the triangle geometry, and noting y =1800 + y 2), one has: 

F(t)Isin[l 80°-(y 1  + y2)] = Fl (t)/siny 2; or 

F(t)/sin(y 1  +y2) = Fl(r)/siny2 . 	
(C- 1) 

Similarly, in the lower triangle of Figure C. la, one has: 

F(O/sin(y1+y2) = F2(1)lsiny1. 	 (C-2) 

Solving (C-i) and (C-2) gives: 

Fl(t) = F(r)siny2lsin(y 1 +y2); and 

F2(i) = F(:)siny 1 lsin(y 1  + y2). 	 (C-3) 

If source F is decomposed as shown Figure 6.Ia, in terms of angles a' 

and ', angles y 1  and Y2 in Figure C.la can be expressed as: 

= 90°a' 

= '-900; and 
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Figure C. 	Geometrical decomposition: (a) decomposition of a source vector F; (b) 

decomposition of inline X-source. 
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y 1 +y 2  = 
	 (C-4) 

Substituting (C-4) into (C-3) and making some suitable manipulations give 

equation (6-2). 

C.2 DERIVATION OF EQUATION (64) 

Before equation (6-4) can be derived, I first introduce expressions for 

qSl(t) and qS2(1), then discuss the decomposition of inline X-source. 

C.2.1 &pressions of qSI (1) and qS20) 

By definition, qSl(t) and qS2(t) are the amplitudes of the faster and 

slower split shear-waves, respectively, at a geophone position when source F is 

polarized along el and e2 directions, respectively. Thus following Thomsen 

(1988), qSI(t) and qS2(t) can be written as: 

qSl(t) = p1(t)F(t); and 

qS2(t) = p2(t)*F(t); 	 (C-5) 

where p1(1) and p2(t) are the medium response of faster and slower split 

shear-waves, respectively, which embodies geometric spreading, attenuation, 

reflectivity, etc. Equation (C-5) is also referred to as the deconvolution model 

of a seismic trace (Yilmaz, 1987). 

C.2.2 Inline source decomposition 

If source F is polarized along inline X direction, F can be decomposed as 

shown Figure C. lb. Similar to the derivation of equation (6-2), the two 

subsources in Figure C. lb can be written as: 

F1(t) = F(t)sin'/sin('-a'); and 
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F2(t) = - F(:)sina'/sin('-a'); 
	 (C-6) 

respectively, where the minus sign in F2(:) represents the fact that F2 in 

Figure C. lb is polarized along the opposite direction of e2. 

C.2.3 Equation (6-4) 

If one decomposes the X-source as shown Figure C. lb. according to the 

principle of superposition, the amplitudes of the faster and slower split 

shear-waves excited by X-source are equivalent to the amplitudes of faster and 

slower split shear-waves excited by subsources Fl and F2. Note that in a 

homogeneous medium as shown Figure 6.1, a source polarized along el 

direction will only excite faster split shear-waves, and a source polarization 

along e2 direction will only excite slower split shear-waves (Crampin, 1981; 

Thomsen 1988). Thus the amplitudes of the faster and slower split 

shear-waves excited by subsources Fl and F2 can be written as: 

pl(r)*F1 (1) = [p1(t)*F(r)]sin'/sin('_a'); and 

p2(t)*F2(I) = - [p2(t)*F(t)]sina' /sin('-a'); 	 (C-7) 

respectively. Substituting equation (C-5) into (C-7) gives equation (6-4). 

C.3 DERIVATION OF EQUATION (6-6) 

Equation (6-6) can be derived similarly. Figure 6.1a shows the 

decomposition of the Y-source with signature F(t), and equation (6-2) shows the 

two subsources. Thus, the amplitudes of the faster and slower split shear-wave 

excited by Y-source can be written as 

pl(t)*Fl(t) = - [p1(r)*F(t)]cos'Isin('_a'), and 

p2(:)*F2(t) = [p2(1)*F(t)]cosa' /sin(6 '-a'), 	 (C-8) 
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respectively. Substituting equation (C-5) into (C-8) gives equation (6-6). 
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APPENDIX D 

/ 	ANALYSIS OF LINEAR MOTION 

A shear-wave is said to be linearly polarized if the trajectory of the 

particle motion is a straight line. Such linear motion has simple mathematical 

properties which make it easy to measure polarization attributes from a linear 

motion. 

Figure D. 1 shows a linear motion in the horizontal plane. The arrow 

marks the initial direction of the particle motion; A(t) is the displacement at 

time r; x(t) and y(1) are the projections of A(t) on to the two horizontal axes; 

and a is the angle that the initial motion makes with the x-axis. I define A(r) 

as positive when particle displacement on the side of the origin towards 

direction a, and negative when particle displacement is on the other side of the 

origin; a is defined over the range -it to it, positive when it is measured 

clockwise from the x-direction, and negative when it is measured 

anti-clockwise. It gives: 

x(t) = A(:)cosa; and 

y(t) = A(t)sina; or 	 (D-1) 

tana = y(i)Ix(t); 	 (D-2) 

where it is assumed that a is time invariant. Note that A(t) can be positive, or 

negative. This is different from the conventional usage where A(1) is usually 

positive and a is a function of time. Also note that if a is a function of time 

and A(t) is constant, equation (D-1) will represent a circular motion. 

Under the above definitions, the purpose of analysis of a linear motion is 
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Figure D. 1. Geometry of a linear motion. 
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to determine angle a and time series A(s), given time series x(t) and y(r). 

Before approaching this problem, I first discuss some mathematical properties 

of a linear motion. 

D.1 MATHEMATICAL PROPERTIES 

Some useful properties can be immediately derived from equation (D-1) 

and Figure D. 1. [Note that if a shear-wave motion has a displacement A(s), it 

will be referred as "motion A(s)".] 

D. 1.1 Zero crossing 

If motion A(s) is a linear motion, x(t), y(r), and A(s) have zero crossings 

at the same time. 

D. 1.2 Sign functions and polarities 

If motion A(s) is a linear motion, sign functions s,, . s,, s: 

sx  = x(t)/Ix(t)I, if x(i) * 0.0; 

s = y(O/Iy(t)I, if y(s) * 0.0; and 

	

= A(t)/A(t)I, if A(s) * 0.0; 
	 (D-3) 

have the following relations: 

= s1 , 	if it/2>a>-n/2; 

= 
- 	

if -n12>a~-n,  or, Jt>a >n12; and 	 (D-4) 

SA = 
5,,, 	if 	n>.cx>0; 

= 
- 

 

s 	0> a>-n. 	 (D-5) 

In other words, time series A(s) either has the same, or reverse polarity as x(:), 

or y(s). If one allows a polarity difference, SA  can be uniquely determined 
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from x(O,  or y(1) without knowing angle a. Note that equations (D-4) and 

(D-5) are valid for all time samples of a linear motion. 

D. 1.3 Eigenvalues and eigenvectors 

Form covariance matrix C 

	

c = 
	Var[x] 	Cov[x,y] 	

(D-6) 
Cov[x,y] 	Var[y] 

where Var[x] and Var[y] are respectively the variances of x(:) and y(t), and 

Cov[x,y] is the covariances of x(i) and y(:) over a specified time window. 

Suppose that x(t) and y(:) have N samples over a specified time window. Thus 

Var[x], Var[y] and Cov[x,y] can be written as [ see equation 19.3-2 in 

Kanasewich (1981)]: 

	

Var[x} = (1/JV) 
	

E 

	

Var[y] = (1IIV) 
	

E (yp)2; and 

	

Cov[x,y] = (111V) 	E (x1-fl)(Y1-P); 	 (D-7) 
I 

where 

Aix = (11N) Ex 1 ; and 

= (11N) 	y1 ; 

	

1 	 (D-8) 

and are, respectively, the mean values of time series x(t) and y(:) over the 

specified time window. 
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If motion A(:) is a linear motion, the smaller eigenvalue of matrix C is 

zero (Kanasewich, 1981). Let X be the non-zero, or the larger eigenvalue of 

C, and N = (x0, )T  be the corresponding normalized eigenvector, where 

superscript T represents transpose. It then gives: 

tancL = y0/x0 . 

	 (D-9) 

D.2 ESTIMATING ANGLE a 

For VSP data, processing shear-wave splitting often involves the direct 

shear-arrival. From equation (D-2), a quick estimation of polarization angle a 

can be made as the average angle over the time window of direct arrival, or the 

angle corresponding to the maximum value of A(t) over the specific time 

window. But a more accurate and robust estimation of angle a is given by 

equation (D-9) by estimating eigenvalues and eigenvectors of the covariance 

matrix C. Because only a second order matrix is involved, the computing is 

still very fast. 

For reflection data, processing shear-wave splitting often involves different 

shear-wave arrivals (events). Because it is often difficult to define time 

windows of all shear-arrivals accurately, a different approach is suggested here. 

First, angle a is calculated sample-by-sample (instantaneously) using equation 

(D-2) over the entire trace, then the instantaneous values are displayed in 

colour as Figure 6.7c. From colour sections, one not only can estimate angle 
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a, but also can identify shear-wave events as demonstrated by Figure 6.7c. 

Thus with an interactive interpretation tool (such as, interactive workstations), a 

good initial estimation of angle a can be made, and time windows of all 

shear-wave arrivals can also be defined, then more detailed estimations can be 

achieved using equation (D-9). 

D.3 DETERMINING TIME SERIES A(t) 

It is possible to find out a time invariant a by applying equations (D-6) 

and (D-9) over a whole trace, or a specific time window, then to determine 

A(t) from: 

A(t) = x(t)cosa + y(t)sina. 	 (D-10) 

But one can use the mathematic properties of a linear motion to simplify the 

determination of A(z) by allowing a polarity difference. Clearly the absolute 

values of A(:) can be estimated as the square root of (x 2  + y2) from equation 

(D-1), and the only problem is to estimate the polarity of A(:), or the sign 

function sA(t). From equations (D-4) and (D-5), there are only two solutions 

of sA(1) with a polarity difference. If one ignores the polarity difference, say, 

choosing a positive solution from (D-4), one has: 

A(:) 	= s [x2(1)+y2(1)] 	 if x*0.0; and 

= 0. 0, 	 if x0.0. 	 (D-11) 
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[Note that, if one wishes, the polarity can be determined from angle a by 

applying equation (D-6) and (D-9) over a whole trace.] 

In this way A(:) can be determined sample by sample without knowing a. 

This involves only simple arithmetic, which can be easily implemented for 

processing trace-ordered seismic data. Note that the results of (D-11) may 

have a polarity difference to the exact solution. But if the polarities of all 

traces of x(1) and y(t) are consistent, the polarity differences are also consistent, 

or systematic for all traces. Thus, this polarity difference will not cause severe 

problems in further processing of time series A(t). The real significance relies 

on that measurement of polarizations, such as angle a can often be allowed a 

1800 difference. 

In most cases one can obtain satisfactory results using equation (D-11), 

as shown in Figure 6.5b, 6.6b and 6.7b, which are all determined in this way. 

Because of the speed and directness, this approach is particularly useful for 

determining the principal time series of pre-stack data for processing 

multi-component reflection data in the presence of anisotropy, as demonstrated 

by Figure 6.7b. 
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Conclusions 

Recorded shear-wave motion can be linearized in a variety 
of conditions by four linear transforms. This simplifies the 
processing of four-compoent shear-wave VSPs or reflection 
surveys in the presence of anistropy, and allows various 
attributes measured, regardless of the orthogonality of the 
split shear-waves. Comparing with conventional techniques, 
this linear transform technique is computing fast, flexible, 
and widely applicable. 
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FIG. 1. Diagrams showing the acquisition geometry and 
coordinate system in the horizontal plane. (a) Source 
geometry, where x and Y are two orthogonal sources with 
signature F(t), and Fl and F2 are two decompositions of the 
source vector F. (b) Geophone geometry, where x and y are 
two orthogonal geophones possibly in a different orientation 
from the source signals. 
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source (Y-source), s 12(t) and s (i); (C) transformed 
components, E.(t)=: 11(:)-s(i) and ns12( 1)+s21(:): and (d) 
transformed components r.(:) =s11 (t)+s22 (:) and 
x(t) =sI2(t')-s21(r). 
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as in a zero-offset VSP. When the orientation of the 
downwell geophones is unknown, we can write 0 = n12 + a 
and ' = n/2 + a', and the transformed components can be 
written as: 

i) = [qSI(t) - qS2(t)] cos(a+a'); 

= [qSI(:) - qS2(t)J sin(a+a'); 	 (7) 

(z) = [qSI(:) + qS2(O] cos(a-a'); and 
X (r) = - [qSI(r) + qS2(:)] sin(a-a'). 	 (8) 

Equations (7) and (8) show time series VI(:) = qSI + q52 and 
V2(t) = qSl - qS2 are separated in the transformed 
components as linear motion, so we can easily estimate vi 
and V2, and a +a' and cc-a' from the transformed 
components. Hence, qSI = (VI + V2)/2 and qS2 = (VI - 

V2)12, and a and a' can be determined, and the orientation 
of the geophone can be estimated from a-a'. 

NON-ORTHOGONAL SPLIT SHEAR-WAVES: In 
off-vertical incidence, the polarizations of the faster and 
slower split shear-wave in the horizontal plane may not be 
orthogonal. Such cases include offset-VSPs, and pre-stack 
data in reflection surveys. In all cases of non-orthogonallity, 
it is reasonable to assume that the orientation of geophone is 
same as the source, that is, a = a', and 13 = 8', the results 
of the transformed components can be written as: 

1) = [qSI(:) - qS2(:)] sin(a+8)/sin(B-a); 
= - [qSl(:) - qS2(t)] cos(a+8)/sin(8-a); 	 (9) 

(t) = qSI (:) + qv(t) and 

x(:) = - [qSI(:) - qS2(z)] cos(8-a)/sin( -a). 	 (10) 

Again time series VI = qSI + qS2 and V2 = qSI - qS2 are 
separated: vi is directly given by component (:), and v2 is a 
linear motion as in equation (9). Thus, the faster split 
shear-wave qSI and polarization angle a, and the slower split 
shear-wave, qS2 and angle p can also be determined for 
non-orthogonal split shear-waves. Angle 8-a is the angle 
between the faster and slower split shear-wave and is a 
measure of the orthogonality of the split shear-waves. 

Verification of the technique 

To verify this technique, we demonstrate the linearity of the 
transformed time series in field VSPs. Figure 2 shows 
polarization diagrams (Pl)s, or hodograms) in the horizontal 
plane of a zero-offset VSP. PDs of the in-line (x-) source 
(the particle motion of s and s.21 , 2a), and PDs of the 
cross-line (Y-) source (particle motion of s and s, 2b) are 
very elliptical and shear-wave splitting is difficult to identify. 
But almost all PDs of the transformed motions, v2(,) (particle 
motion of & = s11 -s and fl=s12 +:211  2c) and PDs of VI(t)

(particle motion of C=s11 +: and x=s11-s2, 2d) are 
essentially linear as expected, despite the ellipticity of the 
original particle motion. 

We also examined similar PDs in the horizontal plane of 
offset-VSPs, which showed similar features. In summary,  

although the particle motion of shear waves as recorded are 
frequently elliptical, the linear transforms of the sum and 
difference of the split shear-waves, VI and v2, respectively, 
are linear. Consequently, the time series of the split 
shear-waves can be directly separated by recombining VI and 
V2, regardless of the orthogonauity of split shear-waves. 

Results 

ZERO-OFFSET VSP: Results of a zero-offset VSP are 
presented. The results include principal time series of split 
shear-waves, polarizations and time delays of split 
shear-waves, and down well geophone orientations. Figure 3 
shows some of the results: time delays, polarizations and 
geophone orientations. The results agree with analysis based 
on PDs by Yardley (private communication). 

OFFSET VSP: Results of an offset VSP are presented, where 
the geophone orientation is determined from the 
polarizations of P-waves. Figure 4 shows some of the 
results: time delays, polarizations and orthogonalities. The 
time delays from assuming orthogonal polarizations (solid 
line, 4a) and non-orthogonal polarizations (dotted line, 4a) 
are almost identical, presumably because the polarizations 
are nearly orthogonal. The measured polarizations (solid 
line, Figure 4b) are similar to those of the zero offset VSP 
(Figure 3b). The orthogonallity (dotted line, Figure 4b) of 
the two split shear-waves are about the 900  line, as expected 
from the comparison of the delays in Figure 4a. 

REFLECTION SURVEY: Results of the Lost Hills reflection 
data (Squires et al., 1989) will be presented. The results 
inculde separation into principal time series of the split 
shear-waves, measured from shot records, colour 
polarizations of split shear-waves, and final stacking section 
of principal time series. The colour polarization section can 
be used to identify laterall varation of anistropy and the 
stacking section is optimized. 

Discussion 

This technique recognizes the essential linearity of the 
shear-wave motion in the transformed coordinate system. 
These (four) linear transforms are deterministic and can be 
efficiently implemented. The technique allows unknown 
downwell geophone orientations to be used, where 
conventional rotation technique often fails (Figure 3). The 
technique also allows large offset data, where the split 
shear-waves may not be orthogonal in the horizontal plane 
(Figure 4). In reflection data, shear-wave polarization and 
amplitudes can be more easily measured from the 
transformed components. The technique can be extended to 
media where the effective polarizations changes with depth, 
and in this case, we can extrapolate the sources downwards 
into the lower layers, so that the medium between the 
extrapolated sources and the geophones is homogeous, as 
was demonstrated by Winterstein and Meadows (1990). 
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Summary 

Most techniques for analyzing shear-wave splitting employ 
rotation procedures and tend to be computing intensive. 
Here, we present a fast linear-transform technique for 
analyzing shear-wave splitting in four-component seismic 
data (two source orientations recorded by two receivers). 
We transform the data by four linear transforms so that the 
shear-wave motion is linearized in a wide variety of 
conditions. Many properties of shear-waves can be easily 
estimated from the transformed components. 

The technique allows various attributes to be measured, 
including the polarizations of faster split shear-wave, and the 
time delays between faster and slower split shear-waves, as 
well as allowing the time series of the faster and slower split 
shear-waves to be separated deterministically. In addition, 
with minimum assumptions, the geophone orientations can 
be estimated for zero-offset VSPs, and the polarizations of 
the slower split shear-waves can be estimated for offset 
VSPs. The time series of the split shear-waves can be 
separated before stack for reflection surveys. The technique 
has been successfully applied to a number of field VSPs and 
reflection data sets. Applications to a zero-offset VSP, an 
offset VSP, and a reflection dataset are presented to illustrate 
the technique. 

Introduction 

In a homogeous crack-induced anisotropic medium, 
caused, say, by a single set of parallel vertical cracks in an 
isotropic matrix rock, the recorded four-components can be 
expressed in terms of the properties of the uncracked matrix 
and the properties of the faster and slower split shear-waves. 
Thus, in principle, the properties of the matrix and the faster 
and slower split shear-waves can be determined from the 
recorded components. 

Among the earliest studies of techniques for solving this 
inversion problem was the use of rotation analysis by Alford 
(1986) and Thomsen (1988). A number of similar rotation 
procedures have been developed by Nicoletis et al. (1988), 
Murtha (1989), Macbeth and Crampin (1991), and others. 
Most of these techniques employ rotation scanning 
procedures and tend to be computing intensive. 

In an attempt to overcome some of these problems, we 
first developed complex component analysis (U and 
Crampin, 1990) and now we prepose a new fast technique, 
which we call the linear-transform technique, for analyzing 
shear-wave splitting in four-component seismic data. 

Basic definitions 

directions of faster and slower split shear-waves. The 
medium between the source and the first geophone, and 
between successive geophones, is assumed to be homogeous 
with a uniform distribution of cracks. 

We define the principal time series qSl(t) and gS2(t) of the 
faster and slower split shear-waves, respectively, as the time 
series received at a geophone position when a source vector 
F is polarized along el and e2, respectively, with signature 
F(t). The concept of the principal time series was introduced 
by Alford (1986) and Thomsen (1988). Here, we give an 
alternative geometrical definition. We introduce two 
transformed time series VI(:) and v2(t) as the sum and 
difference, respectively, of the principal time series qS!(s) and 
qS2(t): 

VI(:) = qSI(s) + qS2(1); 

V2(:) = qSI(t) - qS2(:). 	 (1) 

We define the four-component time series as s(t) recorded 
from x- and Y-sources (i = 1, 2) on x- and y-geophones (j = 
1, 2). Following a similar approach to Afford (1986) and 
Thomsen (1988), The four components, s(:) can be written 
as: 

= [qSI(r) sinB'cosa - qS2(:) sina'cos)/sin(B'-a'); 
= [qSI(i) sin'sina - qS2(i) sina'sin]/sin(' -a'); 

5120) = [-qSI(i) cos'cosa + qS2(t) cosa'cos]/sin(B'-a'): 
S22(r) = [-qSl(:) cos3'sina + qS2(i) cosa'sin6]/sin(' -a'), (2) 

where a, p , a' and ' are the angles in Figure la and lb. 
In cases where geophones and sources are orientated in the 
same direction (a=ct'; =B') and the two shear-waves are 
orthogonal to each other ('-a' =n/2), these equations will 
reduced to Thomsen's equations (7), (8) and (9) (Thomsen, 
1988). 

Linear transform techniques 

The four linear transforms are: 

= s(t) - 22(')' 	
(3) 

= 210) + 12(') 	
(4) 

= s(t) + s(:); and 	 (5) 

X(l) = 512(' - 521(1). 	 (6) 

[Linear transforms (3) and (4) were first used by U and 
Crampin (1990) to calculate orientation logs in reflection 
surveys.] The results of the transformed components for 
orthogonal and non-orthogonal split shear-waves are 
discussed separately. 

	

Figure la shows the source geometry, and Figure lb 	ORTHOGONAL SPLIT SHEAR-WAVES: The two split 

	

shows the surface projection of the geophone geometry, 	shear-waves in disributions of parallel vertical cracks can be 

	

where al and e2 are two unit vectors representing the 	assumed to be orthogonal to each other at vertical incidence, 
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Complex Component Analysis 

PARIS BASIN VSP - S offset (Bush et 01 1987): 
The quality of this data is not as good as the 
previous one, but shear-Wave splitting can be 
recognized from two orthogonal elliptical motions 
on the polarization diagrams. On the colour 

section of complex component, two orthogonal effective polarization angles (the phase angle at 
the time when instantaneous amplitude has C local 
maximum) can be clearly identified from the 
changing of colour. This first effective angle 
is not the polarization angle of the leading 
shear-wave. The difficulty, in this case, is that 
the signals are elliptical and are difficult to 
evaluate except by fullvave synthetic modelling 
(Bush ci al. 1987) 

LOST HILLS REFLECTION SURVEY: Two colour 
sections of a CM? gather are presented. These 
displays can be used, not only to identify 
shear-vave splitting at near-offset traces, but 
also to examine the variation of angle of 
polarization along the hyperbola. The shear-wave 
window at the surface for each hyperbola can also 
be determined. This is important for stacking 
CMP gathers, because stacking traces, which do 
not show similar polarizations will distort the 
characteristics of the shear-wave splitting. 
Orientation logs are also presented. 

DISCUSSION 

The attributes calculated from the complex 
component are values associated with time at a 
point. Thus both variation of vaveforms and 
variation of polarizations can be followed 
continuously either along time direction, or 
along offset direction (Pigs. 2(a, b)). The use 
of colour improves the identification and 
quantification of such variations, and makes it 
possible to carry out stratigraphic and 
anisotropic interpretation on displays of complex 
attributes(Pig. 3). Orientation log offers 
another way to determine polarization angle of 
the leading shear-wave. 

ccicwsioNs 

We conclude from our study that the 
treatment of the two horizontal components in 
multi-component shear-wave data as a complex 
component allows the calculation of instantaneous 
attributes of amplitude, phase, and frequency. 
Four-component data can be transformed to two-
couponent data using linear transforms, which 
allows the calculation of orientation logs. This 
technique of complex component analysis can aid 
stratigraphic interpretation and identification 
and estimation of shear-wave splitting from 
seismic sections, and may aid hydrocarbon 
determination. 

This work was suppor tad by the Edinburgh 
Anisotropy Project and the Natural Enviroaent 

Research Council and is published with the 
approval of the Director of the British 
Geological Survey (NERC). 
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SU)OIA3T 

In multi-component reflection and VSP 
surveys, the two horizontal components can be 
taken as the real and imaginary parts of a 
complex component. This transforms multi-
component data from conventional Cartesian 
coordinates to polar coordinates, and allows the 
calculation of instantaneous amplitude, 
instantaneous phase, and instantaneous frequency. 
we call this technique complex component 
analysis. 

These instantaneous attributes convey 
information about both the variation of waveforms 
and the variation of polarizations. Thus complex 
component analysis can help to evaluate the 
effects of anisotropy in in situ rocks in terms 
of the polarization of fast split shear-wave and 
the delay between two split shear-waves. 
Furthermore, complex component analysis of shear-
waves is a natural extension of complex trace 
analysis of P-wave data sets, when only the real 
part of the complex trace is recorded. By this 
extension, complex component analysis can aid 
stratigraphic interpretation. 

After giving the basic definitions of a 
complex component, we present three examples of 
field data to demonstrate the use of the 
technique in stratigraphic interpretation and 
anisotropic interpretation. The results are 
colour-coded diagrams, which will be shown at the 
meeting but are not included in the abstract. 

INTRODUCTION  

variation of particle motion by calculating the 
instantaneous amplitude, instantaneous phase, and 
instantaneous frequency. These quantities, 
referred to as seismic attributes (following 
Taner ci al. 1979, although they have quite 
different physical meanings), can be presented in 
conventional seismic time-versus-offset displays 
coded by colour. 

Thus complex component analysis can be 
used to evaluate the effects of anisotropy in 
terms of the polarization of leading shear-wave 
and the delay between the two split shear-waves. 
Furthermore, complex component analysis of 
shear-waves is an extension of complex trace 
analysis of P-waves and can assist in 
stratigraphic interpretation and possibly in 
hydrocarbon determination. 

We assume a multi-component shear-wave 
data set with the inline, x( t), and crossline, 
y( t), recording geometry shown in Fig. 1. The 
horizontal displacement of a shear-wave, Pt, has 
amplitude A( 1), and angle e( i) to the inline 
direction, so that: 

x(:) - A(t) cose(:); and 	 (1) 

y( i) - A( t)  sin8( t). 	 (2) 

We take x(:) and y(:) as the real and imaginary 
parts of a complex signal: 

t) - i(s) + i y(t); 
	

(3) 
Over the last decade, the use of multi-

component seismic data to evaluate the effects of 
anisotropy has become comparatively common within 
the industry. Alford (1986), Vinterstein (1986), 
Justice et al. (1987), and Thomsen (1988) 
evaluate anisotropy from seismic sections. 
Craspin (1981, 1985b, and 1987) and co-authors 
determine crack orientation and crack density in 
the in situ rockaaas from analysis of 
polarization diagrams. 

Seismic sections, displaying three 
components separately in time-versus-offset 
Plots, accentuate the variation of waveforms, and 
analysis of such sections is the principal 
technique for stratigraphic interpretation. 
Polarization diagrams, displaying the data in the 
displacement plane over a time window, stress the 
variation of particle motion, and are principally 
used to analyze shear-wave splitting. 

Transformation of seismic data from one 
form to another is common in seismic data 
processing. Complex component analysis 
transforms multi-component data from conventional 
Cartesian coordinates to polar coordinates in the 
horizontal plan. (it can be easily extended to 
other planes). Such transform retains the local 
significance of both variation of waveforms and 

and solve for A and 8 for any £ and y, giving: 

A(s) - [x 3 ( t) + y( ,)J¼ - fz( t) ; and 	(4) 

e(t) - arctan(y(r)/x(s)J, defined for jl8O; (5) 

where A(s) is the instantaneous amplitude; G(t) 
is the instantaneous phase, following Tamer it 
al. (1979). 

The rate of change of the time-dependent 
phase gives a time-dependent frequency: 

#(t) - de( s)/dt; 	 (6) 

where (,) is the instantaneous frequency. 

PHYSICAL SIQU7IC& 

INSTANTANEOUS AMPLITUDE: The instantaneous 
amplitude in equation (4) is a measure of the 
distance between the moving particle and its 
equilibrium position. Local maxima of 
instantaneous amplitude indicate the largest 
distance of the particle from its equilibrium 
position, and may help in identifying the onset 
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of the shear-wave signal and the interference of 
split shear-waves. 

INSTANTANEOUS PHASE: The instantaneous phase in 
equation (5) is a measure of the deviation of the 
moving particle from the inline direction. The 
variation of the phase represents the variation 
of the polarization direction of the split shear-
waves. The first arrival is polarized in a 
direction fixed by the path through the 
anisotropy, so that the instantaneous phase tends 
to remain constant until the arrival of the 
slower split shear-wave. The shape of the phase 
signal is a combination of rectangular and 'semi-
triangular' shapes, which corresponds to the 
combination of linear and elliptical motion in 
polarization diagrams when shear-wave splitting 
occurs. Thus phase display can help to identify 
and quantify shear-wave splitting in both seismic 
reflection and VSP data sets. 

INSTANTANEOUS FREQUENCY: The instantaneous 
frequency in equation (6) is a measure of the 
rate of change of instantaneous phase. If the 
instantaneous phase is constant, the 
instantaneous frequency will be zero. Thus at 
the time of the shear-wave splitting, the 
frequency display is expected to show a low 
frequency shadow. This, if observed, may be a 
good indicator for a cracked oil reservoir, or 
gas accumulation. Since most hydrocarbon 
reservoirs contain inclusions and show some form 
of shear-wave splitting (Willis et al., 1986), 
the frequency display may be of special 
significance for hydrocarbon determination. 

SHEAR-WAVE SPLITTIM 

Shear-wave splitting is almost universally 
observed in the Earth's crust (Crampin 1985a; 
Crampin and Atkinson 1985, etc.). To study this 
phenomenon, not only multi-component receivers 
but also multi-component sources have been used 
to generate four-component (Alford, 1986; and 
Thomsen, 1988) and nine-component data sets 
(Squires ci al. 1989). 

Equations (1) to (6) are defined for 
two-component shear-wave data. We use two 
techniques to apply complex component analysis to 
four-component data: 

Calculating the complex components of SM- and 
SI/-sources separately. Features which diagnose 
shear-wave splitting or stratigraphic variation 
usually occur in some consistent, systematic way. 
Thus the two data sets are expected to give 
similar featurce, which will enhance 
interpretation. 

Calculating the transformed complex cooponant 
of SH- and SV-sources. Following Thomson (1988), 
the four components can be written as: 

:) 	: 1 )co130 + $( t 2 )sinG; 	 (7)  

'22 
r) 	s( r )sin8 + s( t 2 )cos 2 9; and 	(8) 

S , 
2 
 ( t) 	s 21 (t) 	I 	t) + 	' 2 )lsin$cose; 	(9) 

where s( :) and 	
2 

are, respectively the 

fast and slower split shear-wave signals, and 8 
is the crack strike measured from the inline 
direction. Linear transforms of: 

i) 	
- 22 	

and 	 (12)11  
:) 	s( r) + 	0; 	 (13) 

can be used to transform four-component data to 
two-component data. Equations (7), (8) and (9) 
give: 

tan28 	fl(  i)/E.(  :); 	 (14) 

which implies the instantaneous phase of the two 
component data E( r) and 11(t) is a measure of the 
crack (or fracture) strike in the media. Thus we 
call it an orientation log. 

COLOUR DISPLAY 

The use of colour in displaying seismic 
data is extremely effective in improving the 
perceptibility of subsurface features, as 
demonstrated by Taner ci al. (1979). Colour 
codes used for complex component analysis need to 
be different from those used for complex trace 
analysis. The basic scheme for display in 
complex component analysis superimposes a 
wiggle-trace of amplitude on the colour-coded 
phase, where the colours repeat every 180 0 . 

Thus, phase values with a difference of 180° or 
-180° will be coded with the same colour, since 
the linear notion is independent of the 
orientation of the anisotropy. 

LOST HILLS VSP: The Lost Bills VSP is a total 
wavefield nine-component data set of high quality 
(Squires ci al. 1989). The initial linear-
motion can be observed in polarization diagrams 
of the primary shear-waves at most geophone 
depths, and the shape of the phase is a 
combination of rectangular shapes and semi-
triangular shapes (Fig. 2b). The colour-section 
of two horizontal components of SV and SH sources 
are both presented. The sections are colour-
coded phases superimposed by wiggle-traces of 
amplitude (Pig. 3 with grey shading for 
correspondence). Corresponding to the onset of 
the shear-waves, there is a rectangle of constant 
colour fron which the polarization of the leading 
shear-wave can be determined, and delay can be 
determined from the duration of this rectangle. 
The two source orientations show consistent 
results. The orientation logs will be also 
presented. 
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SUMMARY 
The use of complex arithmetic is a natural way to treat vectorially polarized data, 
where the real and imaginary components can be taken as two perpendicular axes. 
This transforms multicomponent data from conventional Cartesian coordinates to 
polar coordinates, and allows the calculation of instantaneous amplitude and 
instantaneous polarization. We call this technique complex component analysis. 
Wave motion can be represented by instantaneous attributes which show distinct 
features characteristic of the type of wave motion. It is particularly informative to 
examine shear-wave splitting by instantaneous attributes. The instantaneous ampli-
tude of shear-wave splitting has a number of local maxima, and the instantaneous 
polarization has a combination of rectangular and semitriangular shapes. Shear-
wave splitting can be identified from displays of instantaneous amplitude and 
polarization, where the polarization of the faster split shear wave and the delay 
between the two split shear waves can be quantified fom colour-coded displays. The 
instantaneous attributes can be displayed as wiggle-lines of amplitude superimposed 
on a colour-coded polarization, where the use of colour improves the indentification 
and quantification of shear-wave splitting. 

Key words: complex components, instantaneous amplitude, instantaneous polariza-
tion, shear-wave splitting. 

1 INTRODUCTION 

Shear-wave splitting occurs along almost all ray paths in the 
uppermost 10 to 20 km of the Earth's crust (Crampin 1985a, 
1987; Crampin & Atkinson 1985), including most sedimen-
tary basins (Alford 1986; Willis, Rethford & Bielanski 
1986). We present a technique (Li & Crampin 1990a, 
1990b), which we shall call complex component analysis, to 
analyse shear-wave splitting in multicomponent reflection 
and VSP surveys. 

Rend et al. (1986) extended complex trace analysis 
(Taner & Sheriff 1977; Taner, Koehler & Sheriff 1979) to 
multicomponent data. They defined the complex multicom-
ponent trace with real orthogonal components and 
imaginary (quadrature) components derived by application 
of the Hilbert transform to the corresponding real 
components. They then defined several polarization 
attributes including phase difference, reciprocal ellipticity 
and tilt angle. They applied the technique to multicom-
ponent walkaway seismic data to characterize ambient noise 
and source-generated waves. 

Here, we directly define the two horizontal components of 
multicomponent reflection and VSP surveys as the real and 
imaginary parts of a complex component. This transforms  

multicomponent data from conventional Cartesian coordin-
ates to polar coordinates, and allows the calculation of 
instantaneous amplitude and instantaneous polarization. 
These quantities, referred to as seismic attributes (following 
Taner et al. 1979), can be presented in conventional seismic 
time-versus-offset displays in which colour is used to 
quantify the polarizations of the shear waves. 

Three major applications of such complex component 
analysis can be envisaged as follows. 

Anisotropic interpretation. Attributes can assist in the 
rapid recognition and identification of shear-wave splitting 
in seismic sections, and in extracting shear-wave polariza-
tions and delays from seismic data for interpretation in 
terms of the crack- and stress-geometry throughout the 
reservoir. 

Stratigraphic interpretation. Seismic attributes pro-
vide further information about the location and analysis of 
faults, discontinuities, unconformities, and other geological 
features, as demonstrated by Tatter el al. (1979). 

Hydrocarbon determination. Attributes can assist in 
recognizing and interpreting bright spots, with particular 
application to the relative brightness of differential 
shear-wave amplitude. Such bright spots are likely to be 
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associated with hydrocarbon accumulations in oriented 
cracks and fractures. Attributes can also help in interpreting 
fracture zones, and identifying lateral variation of fracture 
intensity, which may be related to preferential permeability. 

This paper presents the theory of complex component 
analysis of shear-wave splitting. The paper suggests 
techniques for estimating the behaviour of shear waves, and 
demonstrates the significance of instantaneous attributes in 
identifying and evaluating shear-wave splitting. 

2 SUGNIIIFIICANCIE OF THE COMPLEX 
COMPONENT 

2.11 Definitions 

We assume a multicomponent shear-wave data set with the 
horizontal in-line x(t) and cross-line y(t) recording geometry 
shown in Fig. 1. We may write the horizontal displacement 
of a shear wave (or any seismic wave), with vector 
displacement P, amplitude A(t) and angle to the inline 
direction 0(t), as 

x(t) = A(t) cos 0(t) 	 (1) 

and 

y(t) = A(t) sin 0(t). 	 (2) 

Thus, x(t) and y(t) can be considered as the real and 
imaginary parts of a complex signal z(t) = x(t) + iy(t), 
where i is the square root of —1. In this way, the method of 
complex trace analysis of single component data (Taner & 
Sheriff 1977; Taner et al. 1979) can be extended to 
multicomponent data without using the Hilbert transforms 
(René et al. 1986). Solving for A and 0 for any x and y, we 
have 

A(t) = [x 2(t) + y2(t)I11 = Iz(t)I, 	 (3) 

0(t) = arctan [y(t)/x(t)], 	 (4) 

defined for ±180'; where A(t) is the instantaneous 
amplitude; and 0(t) is the instantaneous polarization. 

2.2 Physical significance 

In addition to the attributes described above, the wavetrain 
also contains information about instantaneous frequency, 
apparent polarity, energy distribution, and waveform, which 

FN 
NLINE 	p 

t 

CROSS 

Figure 1. Diagram showing the coordinate system for complex 
component analysis. P, is the horizontal displacement of a shear 
wave at time t with amplitude A(t) and angle 6(t) to the inline 
direction, and x(t) and y(t) are the coordinates of the two 
horizontal components in a Cartesian coordinate system. 

can also be extracted from complex components (Taner et 
al. 1979; Huang 1989). Each piece of information has a 
particular significance and application in exploration 
seismology, and in reservoir characterization and develop-
ment. Here, we shall only discuss instantaneous amplitude 
and instantaneous polarization. 

Instantaneous amplitude 

The instantaneous amplitude in equation (3) is a measure of 
the distance between the moving particle and its equilibrium 
position. Instantaneous amplitude may have its maximum at 
points other than at peaks or troughs of the two individual 
horizontal components. Local maxima of instantaneous 
amplitude indicate the largest distance of the particle from 
its equilibrium position, and may help in identifying the 
onset of the shear-wave signal and the interference of split 
shear waves without rotating seismogram axes. 

Instantaneous polarization 

The instantaneous polarization in equation (4) is a measure 
of the polarization direction of the moving particle relative 
to the polarization direction of the source. Since the 
polarization is independent of amplitude, it may give clear 
particle motion directions even for weak arrivals as long as 
they are coherent signals. Thus, instantaneous polarization 
may be a good indicator of discontinuities, faults, pinchouts, 
and angularities, as demonstrated in similar circumstances 
by Tatter et al. (1979). 

The variation of the instantaneous polarization of 
recorded split shear waves represents the variation of the 
direction of the particle motion of the split shear waves. The 
first arrival of the split shear waves is polarized in a direction 
fixed by the ray path through the anisotropic rock (Crampin 
1981), so that the instantaneous polarization tends to remain 
constant until the arrival of the slower split shear wave. 
Thus the polarization display, and associated amplitude 
display, can help to identify and quantify shear-wave 
splitting in both seismic reflection and VSP data sets. 

2.3 lEepresention of wave motion 

Figures 2(a) and (b) show the seismograms and instan-
taneous amplitude and polarization attributes of eight 
typical wave motions: linear, elliptical, and shear-wave 
splitting with six different time delays. Fig. 3 shows 
corresponding polarization diagrams (hodograms) of the 
particle motion. Since any shear-wave motion in the 
horizontal plane can be considered as either linearly, or 
elliptically polarized (or some combination thereof in 
shear-wave splitting), we first discuss these two characteris-
tic types of wave motion. 

Linear wave motion 

WM1 in Figs 2 and 3 show typical linear motion, that can be 
written as 

y(t) = x(t) tan a, 	 (5) 

where x(t) and y(t) are the displacements in the x and y 
directions, respectively; a is the angle the polarization 
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Figure 2. Seismograms and instantaneous attributes of eight typical 
wave motions. WM1 is linear motion, WM2 is elliptical, and WM3 
to WM8 show shear-wave splitting with time delays increasing from 
8 ms (WM3) to 48 ms (WM8) for a 40 Hz signal. (a) Horizontal 
component seismograms, X inline and Y crossline; (b) displays of 
instantaneous amplitude (A) and polarization (P). Arrows on WM2 
mark the position of the effective polarization angle, and arrows on 
WM3 to WM8 mark the points where the polarization changes 
direction at the onset of the second split shear-wave arrival. 

DELAYS 

WM1 F 
WM2 	yo 

WM3 F 	21t(1/5) 

WM4 F 	2n(2/5) 

WM5 F 	2rt(3/5) 

WM6 	 2n(4/5) 

WM7 F 
WM8 	 2n(i + 1/5) 

0.00 	0.15 

Figure 3. Polarization diagrams of the eight typical wave motions in 
Fig. 2. The small arrows mark the direction of motion, and the large 
arrows mark the initial polarization directions. 

makes with the inline direction. In Fig. 2, a is chosen as 
160° measured from the instantaneous polarization direction 
to the inline direction: 

cv=160°, 	 x(t)<O, 

0(t) 	0, 	 x(t)=0, 	(6) 

I a - = 160° - 180° = —20°, 	x(t) >0. 

We see that the instantaneous polarization of linear 
motion is a series of rectangular shapes. The important 
features to note are as follows. 

The height or depth of the initial rectangle from the 
base line is the polarization angle of the linear motion at 
that point, and the height or depth of the next rectangle is 
the polarization angle less 180°. Note that there is only one 
rectangle unless the signal is more than half a cycle long. 

The width of the rectangle is the half period of the 
wave motion, independent of the number of cycles in the 
waveform (as long as the signal contains at least half a 
cycle). Thus, the angle of polarization given by the 
instantaneous polarization in Fig. 2(b) is 160°, and the 
instantaneous amplitude has two local maxima. The final 
narrower rectangle in WM1, Fig. 2(b), is a result of the 
low-amplitude tail of the wavelet used in Fig. 2(a). 

Elliptical motion 

The elliptical motion WM2 in Figs 2(a) and 3 can be 
represented by 

y(t) = a sin cot, 	x(t) = b cos (cot + 4)), 	 (7) 

where a and b are the peak amplitudes in y and x 
components (WM2, Fig. 2a), respectively; co is the angular 
frequency, here taken to be 2r x 40, say, for a 40 Hz signal, 
and 4) is a phase shift, here taken to be 20°. 

The elliptical motion in Fig. 2(b) gives a varying 
instantaneous polarization of repeated characteristic shapes, 
which we call 'semitriangular'. The polarization angle of the 
ellipse (the direction of semimajor axis, also called the 
effective polarization angle) can be determined by 
combining the instantaneous amplitude displays. The 
maximum amplitude occurs when the particle displacement 
is at the long axis of the ellipse. Thus, the angle at the time 
where the amplitude has a local maximum is an effective 
polarization angle. (Note, however, that this is not usually 
coincident with the polarization directions of either of the 
split shear waves.) There is also another feature which can 
be used to determine the polarization angle of the ellipse. 
When the particle motion is at the maximum, the 
polarization has a smooth variation which forms a step in 
the instantaneous polarization [marked with arrowhead in 
WM2, Fig. 2(b)]. The polarization angle can be estimated 
from the amplitude of this step. 

The features discussed above can be used to determine 
the type of wave motion. Wholly rectangular shapes indicate 
linear motion (or well-separated split shear waves), and 
semitriangular shapes indicate some form of elliptical 
motion. Note that if black and white plots of instantaneous 
polarization, as in Fig. 2(b), were to be routinely used to 
determine polarization angles, the polarization would need 
to be plotted at a larger scale so that the values of the 
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polarization would be easily read. More effective displays 
will be discussed below. 

3 SIHIIEAR-WAVE S111'LIITTIING 

The most characteristic features of shear waves in 
anisotropic structures are the polarization anomalies in the 
3-D waveforms resulting from shear waves splitting into 
phases which propagate with different polarizations and 
different velocities (Crampin 1978, 1981; Crampin & Booth 
1985). The polarization patterns of shear-wave splitting can 
be represented by the interference of two linear motions 
with (typically) similar waveforms but different polarization 
directions and separated by a time delay. The interference 
of these signals results in a combination of linear and 
elliptical waveforms, or two linear waveforms if the time 
delay between the two split shear waves is large enough to 
separate the signals. The patterns of particle motion vary 
with the delay and particle-motion polarizations of the two 
split shear waves. 

We examine a variety of characteristic wavetypes. 
Without loss of generality, we assume in this paper that the 
two split shear-wave polarizations are polarized 
orthogonally. 

3.1 Polarization putileims 

The six polarization patterns, WM3 to WM8 in Fig. 3, are 
characteristic of shear-wave splitting with a range of delays: 
from WM3 to WM8, the delay linearly increases from 8 to 
48 on a 40 Hz signal (phase delays from 72° to 432°, 
respectively). At the onset of the faster split shear waves, 
the polarizations are linear. At the onset of the slower shear 
waves, the polarizations either change smoothly to elliptical 
motion or change abruptly to further linear motion in 
different directions, if the delays between the two split shear 
waves are sufficiently large. When the delays between the 
split shear waves are less than half a cycle (as in WM3 and 
WM4, Fig. 3), the polarizations change smoothly with 
elliptical patterns of polarization, and the underlying 
characteristic cruciform patterns are barely discernible. As 
the delays increase beyond half a period (WM5 and WM6), 
the polarizations change more sharply, and the cruciform 
patterns become clearer. When -the delays are equal to the 
period of the wave (WM7), or greater (WM8), the 
polarizations change abruptly, and the patterns are wholly 
cruciform. 

3.2 Ilusstsrnstnneoiins attributes 

Figure 2(b) shows corresponding instantaneous attributes of 
amplitude (A) and polarization (P) of the seismograms in 
Fig. 2(a) and polarization diagrams in Fig. 3. 

WM3 and WM4 

The amplitude has three local maxima, and the polarization 
starts with a step equal to the polarization angle of the first 
arrival. The polarization then remains constant until the 
slower wave arrives, when it changes smoothly. If the 
change can be identified [marked by arrowheads in WM3 
and WM4. Fig. 2(b)], the arrival time and polarization 

direction of the slower split shear wave and the delay 
between the two split shear waves can also be determined. 
The overall feature of the instantaneous polarization of 
shear-wave splitting is a combination of rectangular and 
semitriangular shapes. 

WM5and WM6 

The amplitude has four local maxima, and the polarization 
is again a combination of rectangular and semitriangular 
shapes. The polarization change on arrival of the slower 
shear wave has been marked by arrows in Fig. 2(b), but is 
subtle and difficult to identify reliably. 

WM7and WM8 

The amplitude has four clear local maxima, and the 
polarization has wholly rectangular shapes. The polarization 
directions and the delay can be determined easily. 

To summarize: as the delay increases, the number of local 
maxima of instantaneous amplitude increases, and the shape 
of instantaneous polarization changes from a combination of 
rectangular and semitriangular shapes to a combination of 
purely rectangular shapes. Thus, shear-wave splitting can be 
identified from displays of instantaneous amplitude and 
polarization, and the polarization direction can be easily and 
accurately determined when the delays are sufficiently large. 
The delays are easy to determine when the delays are large, 
but may be difficult to determine when the delays are less 
than a cycle. We shall see that colour displays of the 
attributes are more informative. 

4 COLOUR IIMSIIDLAYS 

The use of colour in displaying seismic data has been shown 
to improve the perceptibility of subsurface features (Taner 
et al. 1979). Fig. 4 shows the colour codes used for displays 
of instantaneous polarization in this paper. Code (a) 
contains a series of contrasting colours, useful for identifying 
the exact value of the polarization; and (b) a series of 
continuous colours, useful for recognizing shear-wave 
splitting on a larger scale. Note that the colours repeat every 
180°. Thus, if the polarization values have a difference of 
±180*, they will be coded with the same colour, allowing for 
the ±180' difference between the positive and negative 
values of the polarization of linear motion. 

Figure 5 is the colour display of Fig. 2(b), showing the 
colour-coded polarization angle in the contrasting colours of 
code (a) superimposed on a wiggle trace of instantaneous 
amplitude. This type of display aids estimation of the 
parameters of shear-wave splitting: 

The colour-coded polarization quantifies the polariza-
tion direction by reference to the colour key. For example 
WM1 is a wholly red colour, which represents 162° ± 3° (or 
—18°±3°), where we use the angle (colour) D to represent 
the range D 3°< to D + Y. From the shape of the 
polarization curve we know the angle is 162° ± Y. 

The onset of the slower arrival can be easily identified 
by the change of the uniform (red) to the varying colours of 
elliptical motion in WM3 to WM7, or the uniform (black) 
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colour representing perpendicular motion (72° ± 3° or 
—108° ± 3°). 

(3) The difference between the linear motion. WM1 and 
the shear-wave splitting with a delay of more than a cycle, 
WM8, is clearly demonstrated by the colour. WM1 has a 
single colour which implies no change of polarization (or a 
change of ±180*); whereas WM8 has two different colours 
(separated by approximately 90°), which implies two 
approximately orthogonal linear motions. 

In applying these techniques to seismograms with 
incoherent or signal-generated noise, the use of the 
continuous colour code is recommended for identifying 
shear-wave splitting, although the contrasting colour code 
may be required for estimating values of polarization. In the 
following examples, the polarization is coded by the 
continuous code (b). Two examples are used to demonstrate 
the significance and application of instantaneous attributes 
to anisotropic interpretations. 

5 APPLICATIONS 

5.1 AMC model and data 

The data used are a synthetic VSP and a CMP gather from 
the response of the Edinburgh Anisotropy Project (Wild 
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1990) to the Anisotropic Modelling Collaboration of 
Thomsen et al. (1989). A number of research groups are 
contributing to the Anisotropic Modelling Collaboration 
(AMC) to calculate full wave synthetic seismograms in 
specified VSPs and CMPs in a given anisotropic 
multilayered model (Thomsen et al. 1989). Fig. 6(a), 
adapted from Wild (1990), shows a schematic diagram of 
Model 1 (AMC1) used in this study (note that only every 
second three-component geophone is marked in the figure). 
The crack strike is east—west in each anisotropic layer. The 
model features a strongly anisotropic layer from 1500 to 
2000 in depth, simulating highly fractured reservoir rocks. 

The collaboration calculated a full nine-component 
(inline, crossline, and vertical sources recorded by inline, 
crossline, and vertical receivers) offset VSP, and a variety 
of nine-component reflection lines, as indicated in Fig. 6(a). 
Only one source component, the inline component, of both 
the VSP, at an offset of 500 m and an azimuth of N45°E, and 
the 2400 in reflection line data, again at an azimuth of 
N45°E, are analysed here. Fig. 6(b) shows the two 
horizontal components of the VSP excited by the inline 
source located at S, in Fig. 6(a). Cruciform patterns of 
particle motion in the polarization diagrams from primary 
downward propagating shear waves (polarization diagrams c 
and d) are observed within and below the simulated 

AMC MODEL 
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1 000 

(a) 
Figure 6. (a) The structure and geometry of the AMC model. The dots along survey lines represent every second geophone of 50 in geophone 
spacing. (b) The two horizontal components of the VSP data for the inline source orientation. The offset is 500 in at an azimuth of N45°E. Note 
noise on the first five in-line source components. Some selected polarization diagrams are shown. Number on top right corner of the 
polarization diagrams is the geophone number at the time interval marked below. Arrows drawn on particle motions are in the same notation 
as Fig. 3. Ri to R4 are reflected shear waves from Layers LI to L4, respectively. Mi to M4 are the multiples of the primary downward 
propagating shear wave. The four particle motions on the left are selected from the primary downgoing shear waves, and on the right from the 
reflected shear waves. (c) The two horizontal components of the reflection line at an azimuth of N45°E for the inline source orientation with 
some selected polarization diagrams. Symbols drawn on the diagrams have the same notation as (b). Those on the left are selected from the 
reflected shear waves RI, R2, R3 and R4 at geophone I (near offset), and on the right from the same event-arrivals but at geophones at larger 
offsets where the polarizations have changed. 
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Figure 6. (continued) 

fractured reservoir (Layer L4); the delays between the 
downward shear waves gradually increase with increasing 
geophone depth. Fig. 6(c) shows the two horizontal 
components of the CM? gather excited by the inline source 
located at S R  in Fig. 6(a). Polarization diagrams of the 
shear-wave reflection from the bottom of the reservoir 
(event R4; polarization diagrams d and h) have cruciform 
polarizations and show strong shear-wave splitting. 

5.2 Analysis of the VSIF' 

Figure 7 shows the colour-coded display for the instan-
taneous polarization of the VSP data in Fig. 6(b), with a 
superimposed wiggle trace of instantaneous amplitude. The 
display contains a large amount of relatively easily 
interpretable information. A few major items in the 
interpretation of the display are summarized as follows. 

Event A corresponds to the P-wave arrival in Fig. 
6(b). The whole waveform of the instantaneous amplitude is 
covered by a single green colour, implying linear motion 
with a polarization angle of 00 ± 3° (or ±180 ± 30). 

Event B is the direct shear wave. Shear-wave splitting 
can be clearly identified by the shape of polarization curve 
containing two rectangles of blue (132° ± 3° or -48 ± 3°) and 
orange (42° ± 3° or - 138° ± 3°) representing orthogonal or 
nearly orthogonal motion. The polarization direction of the 
faster shear wave is represented by the blue rectangle 
(-48°  ± 3° or 132° ± 3°), and the magnitude of the delay can 
be estimated from the duration of the blue rectangle. Below 
geophone 30, at the top of layer L4, the duration of the blue 
rectangle gradually increases, showing the delay between 
the split shear waves increasing with depth in the strongly 
anisotropic reservoir. 

Event C corresponds to R2, a reflection from the 
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bottom of L2. Shear-wave splitting can also be identified by 
the change of colours from blue to orange. Because the 
delay is small, this change is subtle and can only be clearly 
seen at geophones 9, 10, 11, and 12, where there is a narrow 
band of blue. 

Event D corresponds to R3, a reflection from the 
bottom of L3. The blue rectangle covering the waveform 
indicates linear motion with a polarization angle of 132° ± 3° 
(or —48±3°). 

Event E corresponds to R4, a reflection from the 
bottom of L4. The waveforms of instantaneous amplitude 
are dominated by two rectangles of blue and orange, and 
the shear-wave splitting can be identified and parameters 
estimated as for the direct shear wave. 

Events F and G correspond to Ml and M2, 
respectively, multiples of the primary down shear wave. The 
shape of the polarization curve and the variation of colour 
show the same features as those of the direct shear wave. 

5.3 Analysis of the CMP gathers 
Figure 8 shows the instantaneous attributes of Fig. 6(c) 
displaying colour-coded polarization data superimposed by 
wiggle lines of instantaneous amplitudes. The instantaneous 
attributes of CMP gathers have two applications. 

First, as discussed in the VSP data, the attributes of the 
CMP gathers can be used to identify the type of shear-wave 
motion in reflected waves, as follows. 

Events A and F, describing the P-wave reflections 
from the bottom of layers Li and L3, respectively, show 
linear motion as they are both dominated by a single light 
green (0°±3° or ±180°±3°) and dark green (174°±3° or 
—6° ± 3°) colours, respectively. 

Events C and G (corresponding to Ri and R3, 
shear-wave reflections from the bottom of layers Li and L3, 
respectively) are also linear motions at near offset and are 
dominated by one major colour: event C by the background 
green (0'±3* or ± 180° ± 3°), and G by blue (132° ± 3° or 
—48°±3°). 

Events E and H, corresponding to R2 and R4, are 
shear-wave reflections from the bottom of L2 and LA, 
respectively, and at near offsets both show shear-wave 
splitting which can be recognized by the shape of the 
polarization curve and the variation of colour from blue to 
orange. The polarization and delay can be determined in the 
same way as discussed for the VSP data. The delay of event 
E is small as indicated by the narrow blue rectangle, but the 
delay of event H is large as it traverses the strongly 
anisotropic L4 on both downgoing and upgoing rays. 

Secondly, the attributes of CMP gathers contain 
information about the effective shear-wave window at the 
free surface (Booth & Crampin 1985) for each shear-wave 
reflection: 

(1) The polarization of the shear wave changes with 
offset, as demonstrated by the variation of colour. For 
example, event B (a P—S conversion from the bottom of 
layer Li) starts with background green colour at near offset, 
then changes to a light green at middle offset, and becomes 
yellow at far offset, indicating an approximate 30° change in 
polarization as the angle of incidence on the reflecting 
interface varies (Liu & Crampin 1990). In contrast, the  

polarization of the P-wave is relatively unaffected by the 
variation of offsets as shown by events A and F. 

(2) 'Critical angles' at internal interfaces can also be 
identified, where one of the shear waves has zero reflection 
amplitude as the offset increases (Liu & Crampin 1990). For 
incidence on the reflecting interface smaller than this angle, 
the colour of the instantaneous polarization remains 
constant (or only shows gradual change), but at the critical 
angle the colour indicates a 90° polarization (phase) change. 
For example, the change due to the critical angle for 
reflection from Layer 1 for event C is at geophone 12 (the 
colour suddenly changes from green to red, indicating a 90° 
change), and the critical angle for reflection from Layer 2 
for event E is at geophone 22. Similarly, there are critical 
angles for event G at geophone 28, and elsewhere. 

Effects of the shear-wave window are difficult to observe 
because of the interference of multiply reflected and 
converted waves. Note that effects of the first 'critical angle' 
at internal reflections typically cause a comparatively simple 
change in polarization direction, and hence a change in the 
instantaneous polarization (Liu & Crampin 1990), whereas 
the shear-wave window at the surface usually causes much 
more complicated effects (Crampin & Booth 1985). 

Identifying the offset at which the polarization of each 
shear-wave arrival changes polarity is important for stacking 
the CMP gather. Conventional stacking of split shear waves, 
where the polarizations and delays change markedly with 
offset, will tend to distort and degrade the characteristics of 
the split shear waves unless appropriate techniques are used 
(Li & Crampin 1989). Such changes of polarity occur both at 
critical reflections at internal interfaces (Liu & Crampin 
1990), and at the surface shear-wave window (Booth & 
Crampin 1985). 

6 DISCUSSION AND CONCLUSIONS 

We have suggested a technique for the complex component 
analysis of shear-wave data by transforming the displace-
ments from Cartesian to polar coordinate systems. The use 
of colour provides a technique for displaying the large 
amount of information contained in the shear wavetrain 
(Crampin 1985b) in a form which is similar to many 
conventional time-versus-offset displays, and which could 
easily be assimilated into conventional stratigraphic analysis. 

The VSP example shows how the technique can help in 
analysing and estimating shear-wave splitting continuously 
as it varies with depth. The results of pre-stack reflection 
data show how shear-wave splitting canbe traced along both 
time and offset directions, and reveals the potential for 
applying these techniques to post-stack data, so that much 
of the stratigraphic and anisotropic interpretation can be 
made on a single display of complex attributes. Although 
the instantaneous attributes were defined for vertical 
propagation, at wider angles they can be used to identify the 
various critical angles at the surface and at internal 
interfaces, which are critical for any stacking of shear-wave 
data in anisotropic structures (Li & Crampin 1989). 

We conclude that the treatment of the two horizontal 
components in multicomponent shear-wave data as a 
complex variable allows convenient displays of instan-
taneous amplitude and polarization. The colour display of 
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these attributes allows the identification of shear-wave 
splitting and permits estimates of shear-wave polarizations 
and delays in seismic sections. The examples in this paper 
aim to demonstrate the concept of the complex component 
analysis of shear-wave splitting and the potential application 
of colour displays of instantaneous attributes. We suggest 
these colour displays provide a flexible format for 
recognising and parametrizing shear-wave splitting. Further 
developments and case studies are presented by Li & 
Crampin (1990b, 1991). 
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SUMMARY 
Complex component analysis has been applied to four shear-wave data sets: a 
four-component single-offset VSP in the Lost Hills, Kern County; a multi-offset 
single-source two-component VSP in the Pans Basin; a four-component reflection 
line in the Lost Hills; and an in-seam crosshole survey at German Creek Mine, 
Australia. In all cases, the polarization of the faster split shear wave (or channel 
wave) can be assessed from the colour-coded record sections of the seismic 
attributes. In particular, the source-independent coherent polarization on the colour 
sections of the complex components of in-line and cross-line sources allows the 
shear-wave polarization angle to be determined without need for rotation of the 
instrument and source axes. We conclude that complex component analysis can aid 
identification and estimation of shear-wave splitting from seismic sections, help 
stratigraphic interpretation, and simplify the processing sequence of multicom-
ponent reflection data in the presence of anisotropy. 

Key words: case studies, complex component analysis, shear-wave splitting. 

1 INTRODUCTION 

Over the last decade, the use of multicomponent shear-wave 
data to evaluate the effects of anisotropy has become 
comparatively common within the hydrocarbon industry. 
Alford (1986), Justice, McCormick & Lee (1987), Thomsen 
(1988), and Winterstein & Meadows (1990) evaluate 
anisotropy from seismic sections of reflection surveys and 
vertical seismic profiles by rotating source and geophone 
axes synchronously. Crampin et al. (1986) and Bush & 
Crampin (1987) and co-authors determine crack orientation 
and crack density in the in situ rockmass from analysis of 
polarization diagrams (PDs), or hodograms. Recently, some 
important applications have been recognized: Mueller 
(1990) identified fracture zones in the Austin Chalk from 
variations of shear-wave splitting, and Brodov et al. (1990) 
correlated production rates with the degree of anisotropy in 
shear-wave VSPs at different wells in an oil field with 
variable production rates between wells. 

Seismic sections, displaying seismograms in time-versus-
offset plots, accentuate the relative arrival times of the 
various phases, and analysis of such arrival times is the 
principal technique for stratigraphic interpretation. Up to 
now, one of the commonest techniques for estimating 
shear-wave splitting from nine-component, or four-
component, record sections is by synchronous rotation of 
horizontal source and geophone axes, in order to separate 
and identify the polarizations of the shear-wave splitting 

(Alford 1986). (Nine-component sections are three separate 
source components recorded by three-component geoph-
ones, and four-component sections are two horizontal 
source components recorded by two horizontal geophones.) 
The principal alternative technique for analysing shear-wave 
splitting is by analysing PDs (polarization diagrams), which 
display the data in the displacement plane over an 
appropriate time window, and display directly the variation 
of the waveforms and polarizations of the particle motion 
(Crampin 1978). 

Transformation of seismic data from one configuration to 
another (time domain, frequency domain, FK-space, etc.) is 
common in seismic data processing. Complex component 
analysis transforms multicomponent data from conventional 
Cartesian coordinates to polar coordinates in the horizontal 
plane (it can be extended to other planes). Such 
transformations retain the local significance of both 
variation of waveforms and variation of particle motion by 
calculating the instantaneous amplitude and instantaneous 
polarization. Such complex component analysis can be used 
to evaluate the effect of anisotropy in terms of the 
polarization of the leading split shear wave and the delay 
between the two split shear waves, and allows these 
parameters to be displayed similar to conventional record 
sections. 

This paper applies the complex component analysis 
techniques of Li & Crampin (1990a, b, 1991) to four field 
data sets: a four-component vertical seismic profile (VSP) in 

off IR, 
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Lost Hills, Kern County, a two-component VSP in the Paris 
Basin, a four-component reflection profile in Lost Hills, and 
a three-component in-seam (crosshole) seismic survey from 
the German Creek Mine, Australia. (Note that the Lost 
Hills recordings were nine-component data sets, although 
only four components will be analysed here.) Application of 
complex component analysis to field data confirms the 
theoretical promise of Li & Crampin (1991), and reveals 
new insights into the technique. 

We outline the calculation of complex components of 
four-component seismic data, discuss necessary pre-
processing procedures, and present the four case studies. 

2 CALCULATION OF COMPLEX 
COMPONENTS 

The technique of complex component analysis of shear-wave 
splitting is presented by Li & Crampin (1991), who 
illustrated the ideas with two-component synthetic shear-
wave data. However to study shear-wave splitting, 
multicomponent receivers and multicomponent sources have 
been used to generate four-component (Alford 1986; 
Thomsen 1988) and nine-component data sets (Squires, Kim 
& Kim 1989). 

Li & Crampin (1991) defined complex component analysis 
for two-component shear-wave data. We apply these 
techniques to further multicomponent data in the following 
three ways. 

Calculate and display the complex components of 
in-line and cross-line sources separately by equations (1) to 
(4) of Li & Crampin (1991). (Hereafter, in-line, and 
cross-line will be referred to as IL, and XL, respectively.) 
Features which diagnose shear-wave splitting or strat-
igraphic variation typically display systematic behaviour, so 
that data sets from orthogonally polarized source com-
ponents are expected to display consistent features, which 
will enhance and confirm interpretations. 

Calculate and display the shear-wave splitting section 
(SWS section). Let O(t) and O(t) be the instantaneous 
polarizations of the IL, (x), and XL, (y), source, 
respectively. The absolute differential polarization angle 
d(t) between 6 and O can be calculated as 

d(t) = I0(t) - O(t)I. 	 (1) 

A filter operator f(t) can be defined as 

f(t) - f 1, if d(t) d, 	
(2) 

- O, if d(t)>d0 , 

where d0  is a threshold value. The combined polarization 
0(t) can be written as 

8(t) = [O(t) + 0(t)]f(t)/2. 	 (3) 

Equations (1), (2), and (3) show that e(t) will specify any 
common polarization which appears on both IL and XL 
sections. The existence of a common polarization at the 
onset of the shear-wave arrival among different source 
orientations suggests shear-wave splitting, where the 
common polarization is the alignment of the leading split 
shear wave. Thus, we call 0(t) the instantaneous 
polarization of shear-wave splitting; and the corresponding  

display is called the shear-wave splitting section (SWS 
section). 

Calculate and display the transformed complex 
component of IL and XL sources. Following Thomsen 
(1988), the four components can be written as 

s 11 (t) = s qSl (t) cos' 0 + s qS2 (t) sin 2  0, 	 (4) 

S22(t) = s qSl (1) sin  0 + s qS2 (t) cos 2  0, 	 (5) 

S12(t) = s21 (f) = [s qSl (t) - s qS2 (t)] sin 0 cos 0, 	(6) 

where s qSl (t) and s qS2 (t) are the fast and slow split 
shear-wave signals, qSl, and qS2, respectively. sq  are the 
recorded seismograms, where i is the receiver component, 
and j is the source component; subscript 1 is the IL 
component, and 2 the XL component; and 0 is the crack 
strike measured from the IL direction. Linear transforms of 

(t) =s11(t) — s22(t), 	 (7) 

77(t) = s12(t) + s21(t), 	 (8) 

can be used to transform four-component data to 
two-component data. Equations (4), (5) and (6) give 

tan 20 = ?(t)/(t), 	 (9) 

showing that the instantaneous polarization of the two-
component data (t) and j(z) is a measure of polarization of 
the leading split shear-wave, which we call the orientation 
log. In the absence of lithology- or layer-induced anisotropy, 
this instantaneous polarization is the strike of the cracks (or 
fractures) in the rockmass (Crampin 1981). Equation (9) can 
also be derived from the tan 40 expression of rotation angle 
based on the minimization of the sum of squares of the 
off-diagonal terms over a time window in the data matrix 
(Murtha 1988). 

3 DATA PROCESSING 

The aim of data processing is to improve data quality while 
preserving the characteristics of shear-wave splitting. 
Processing data prior to complex component analysis often 
involves the following. 

Use of band-pass filtering to improve the signal—noise 
ratio. If the passband is properly selected, by simple spectral 
analysis, for example, the characteristics of shear-wave 
splitting will not be affected (Campden 1990). Fig. 1 shows 
the PDs of the downgoing shear wave in the Lost Hills VSP 
before (Fig. la) and after (Fig. ib) a 2-25 Hz band-pass 
filter, showing that the polarization is preserved. 

Use of FK-filtering to separate the upgoing and 
downgoing wavefields. The FK-filter is preferred for 
separating seismic wave fields without the degradation 
resulting from median-filters, or other separation methods 
(Campden 1990). Fig. 2(a) shows PDs before FK- and 
median-filtering of the Paris Basin VSP data; Fig. 2(b) 
shows PDs after FK-filters, and Fig. 2(c) after median-
filters. The PDs show almost no difference after FK-filters, 
but have significant differences after median-filters. 

Use of polarization filtering to improve the image of 
colour sections of complex components by muting out noise 
with intermediate polarizations. Fig. 3 shows the definition 
of polarization filter. Like a fan filter, it passes the principal 
and orthogonal polarizations, in order to preserve the 
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(a) 	(b) 

Figure 1. Polarization diagrams: (a) before and (b) after a 2-25 Hz 
bandpass filter. Data are from Lost Hills VSP. 

(a) 	(b) 	(c) 

Figure 2. Comparison of FK-filter and median-filter: (a) PDs before 
FK- and median-filter; (b) PDs after FK-filter; and (c) PDs after 
median-filter. Data are from Paris Basin VSP. 

'EVA MA 
Figure 3. Geometry of polarization filter for north—south or 
east—west polarized shear-waves, where the polarizations within the 
shading areas are muted. 

characteristics of shear-wave splitting. The passband should 
be as wide as possible, around the principal and orthogonal 
polarizations. Selected PDs can be used to determine the 
passband. A front mute is often applied in conjunction with 
the polarization filter. Note that zero is a meaningful 
polarization value, and to implement the polarization filter, 
when 0(t) is outside the passband, we set 0(t) to a specific 
value which represents the background colour of display 
media. Also note that the improved colour image 
accentuates the principal polarizations, whether they are 
shear waves, converted waves, or P-waves. 

Figure 4(a) shows colour overlays of instantaneous 
amplitudes and polarizations from the Lost Hills VSP before 
applying polarization filters, where although polarization 
variations can be followed, the rainbow of colours may be 
misleading. From the PDs in Fig. 4(b), we can identify an 
initial polarization about N54°E ± 3° and effective polariza-
tion (main ellipse) is about N42°W ± 3°. Thus a passband 
from N15°E to N75°E is appropriate. After applying the 
designed filter, the section accentuates the principal 
shear-wave polarizations (Fig. 4d), from which the variation 
of polarization can be more easily followed. 

4 CASE STUDIES 

We use four field data sets to illustrate the application of 
complex component analysis in a variety of different 
recording situations. 

4.1 Lost Hills nine-component VSP 

This example aims to illustrate the use of complex 
component analysis for analysing shear-wave splitting for 
four-component VSP data. The Kim-Tech Lost Hills VSP is 
a total wavefield nine-component data set of high quality 
(Squires et al. 1989), but in this analysis we shall use only 
the four horizontal components. The two horizontal sources 
are oriented north and east. The source offset is 500 ft 
(150 m) west of the well and there are 42 geophones with 
100 ft (30 m) spacing. The first geophone is located at depth 
3600 ft (ilOOm). Consequently, the incidence angle is 
comparatively small and most of the shear-wave energy is in 
the horizontal plane. The initial linear motion can be 
observed in PDs of the primary shear waves at most 
geophone depths (Fig. 4b). Note that we use terms such as 
north—south (NS) source, and east—west (EW) source for 
VSPs of small offset, where the IL and XL terms of the 
reflection survey are less relevant. 

Figure 4(b) shows some selected colour PDs in which the 
particle motions are superimposed on colour pies which 
represent the colour scale used in this study. The initial 
polarization direction indicated by arrowheads is cor-
responding to a red—orange colour, indicating N54°E ± 3°. 

Figures 4(c) and (d) show the attribute displays of the 
north—south and east—west sources, marked as NS and EW 
sections, respectively. At the onset of the shear wave, 
indicated by arrowheads, almost the same red—orange 
colour band appears on all geophones on both NS and EW 
sections. [Note that there are minor colour changes of about 
6° in these first arrivals, which are believed to be due to the 
interference of split shear waves (Yardley & Crampin 
1990).] The existence of a similar colour band means the 
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polarization of the onset shear wave is fixed in space, 
independent of the source orientations, and is diagnostic of 
shear-wave splitting. Thus, the polarization of the faster 
split shear wave is represented by the red—orange band, and 
the time delay between the split shear waves by the duration 
of the band. This band is about 50 ms wide at the shallowest 
depths, and as depth increases, the duration of the band 
slightly decreases, indicating a decrease in the time delays. 
As mentioned above, the red—orange colour indicates 
54°E ± 3°, which agrees with the results of Yardley & 
Crampin (1990). 

A similar decrease in delays in a multi-offset VSP at a 
neighbouring site in the Lost Hills Field has been 
interpreted by Winterstein & Meadows (1990) as indicating 
a change in crack orientation with depth. Similarly, Squires 
et al. (1989) have interpreted a negative delay in a 
nine-component reflection survey through the Lost Hills site 
we are analysing as a 90° change in crack orientation. 
However, shear-wave point singularities are believed to be 
commonly situated near vertical ray paths in sedimentary 
basins (Crampin 1991; Wild & Crampin 1991), as a result of 
combinations of matrix and crack anisotropies. Thus, an 
alternative explanation for the decrease in delays may be 
that the directions of the ray paths through a uniform crack 
orientation vary with depth so that they cross a point 
singularity. The upper ray paths on one side of a point 
singularity would build up a delay, whereas the lower ray 
paths on the other side, with a nearly 90° change in effective 
polarization (Crampin 1991), would reduce the delay. 

At the shear-wave onset on both Figs 4(c) and (d), the 
instantaneous polarization shows a constant band of colour, 
where the instantaneous polarizations have rectangular 
shapes. After this band, the instantaneous polarizations 
show a smooth change of colour, with semitriangular 
shapes. These characteristic combinations of rectangular and 
semitriangular shapes are diagnostic of shear-wave splitting 
and confirm the theoretical results of Li & Crampin (1991). 

Figure 4(e) shows SWS sections calculated from the NS 
section (Fig. 4c) and the EW section (Fig. 4d) using 
equations (1), (2) and (3), where only arrivals which have 
similar polarizations on both source sections are displayed. 
Following the onset of shear waves, Fig. 4(e) shows a 
red—orange colour band. The colour of the band represents 
the polarization of the faster split shear wave, and the 
duration of the band represents the dealy between the two 
split shear waves. 

Figure 4(f) shows the orientation logs from equations 
(7),(8) and (9). As with the SWS sections, the red—orange 
colour at the onset of the shear waves indicates the 
polarization of the faster split shear waves, and the duration 
of the band indicates the delay; however, with this display, 
the interference of split shear waves is separated. Fig. 4(f) 
shows two simple polarizations: a red—orange polarization, 
the polarization of the faster split shear wave, and a blue 
polarization, the polarization of the slower split shear wave. 

We have demonstrated three types of display for 
processing shear-wave splitting in four-component VSP data 
by complex component analysis: (1) colour sections of 
complex component attributes from different source 
orientations to examine the coherency and duration of 
instantaneous polarizations; (2) SWS sections; and (3) 
orientation logs.  

4.2 Paris Basin VS? 

This Paris Basin VSP was a multi-offset single source VSP 
recorded on two horizontal geophones (Bush & Crampin 
1987). We shall process only the Si offset at 272 m. This 
case history is presented to demonstrate the application of 
complex component analysis to two-component seismic 
data. In addition to showing how complex component 
analysis can be used to interpret shear-wave splitting, we 
also show how it can aid stratigraphic interpretation. 
Preliminary processing included: applying a band pass filter 
of 5-50 Hz; and FK-filter to separate the downgoing and 
upgoing wavefields; and prior to display, applying a 
polarization filter of N15°E—N75°E. 

Enlargements of the PDs in Fig. 5(a) show a very small 
initial orientation of a blue colour, indicating N42°W ± 3°. 
This is less obvious than the first arrival in the Lost Hills 
VSP (Fig. 4b) because of the smaller time delays in the Paris 
Basin data. The effective polarization (polarization of the 
main ellipse) changes from red (N78°E ± 3°) to orange 
yellow (N42°E ± 3°). 

Figure 5(b) shows the instantaneous amplitude and 
polarization of the downgoing wavefield. On the onset of 
the shearwave, the polarization starts with a band of blue 
colour, indicated by arrowheads, which has a rectangular 
shape. The polarization colour smoothly changes following 
the constant blue band, and has semitriangular shapes. 
These characteristic shapes suggest shear-wave splitting. 
This blue band and the following colour pattern changes 
appear at all geophone depths, showing consistency and 
coherency, which enhances the interpretation. The time 
delay and polarization can be interpreted from the blue 
band, which is about 20 ms wide and increases with depth. 
This example of two-component data analysis also confirms 
the theoretical promise of Li & Crampin (1991). 

Figures 5(c) and (d) demonstrate the application of 
complex component analysis in stratigraphic interpretation. 
Fig. 5(c) shows the colour section of the instantaneous 
amplitude and polarization of the upgoing wavefield. 
Reflections from the same interface tend to have coherent 
polarizations at adjacent geophones when there is 
shear-wave splitting. [Reflections of shear waves at 
isotropic/isotropic interfaces at wider offsets display 
systematic changes of polarization with incidence angle due 
to differences in the reflection coefficients of SH- and 
SV-wave components (Liu, Crampin & Yardley 1990).] This 
coherency of polarization can help identify reflection events. 
As shown on Fig. 5(c), the events can be easily identified 
and traced back to the reflectors following the variation of 
polarization colours. A variation of polarization from red 
(N78°E ± 3°) to yellow orange (N42°E ± 3°) can be observed 
from shallow reflections to deep reflections; Bush & 
Crampin (1987) model this as the effects of combination of 
thin-layer and crack anisotropy. 

Processing the upgoing wavefield further, we shift to 
two-way time, and apply a corridor stack, to obtain the VSP 
log in Fig. 5(d). Fig. 5(d) shows instantaneous polarization 
superimposed on wiggle-lines of instantaneous amplitude. 
Colour displays of instantaneous polarization appear to 
display better continuity of shear-wave reflections than 
amplitude displays. In addition, the polarization offers 
additional criteria in correlating VSPs with stacked sections. 







Thus, the characteristic shape and coherency of 
polarizations between adjacent geophones are the major 
criteria for interpreting shear-wave splitting in two-
component VSP data. The coherency of polarizations also 
improves the continuity of reflection events and hence the 
image of subsurface structure. 

4.3 Lost Hills reflection profile 

We apply complex component analysis to four-component 
reflection profiles in the Kim-Tech Lost Hills data set to 
analyse shear-wave splitting and aid stratigraphic inter-
pretation. We examine the pre-stack common shot records. 
This avoids possible data degradation introduced by 
inappropriate data processing, such as stacking of varying 
shear-wave polarizations (Li & Crampin 1989). It also 
avoids possible source inconsistences in CMP gathers, such 
as unequal source strengths and different configurations of 
source arrays subject to acquisition conditions (Lewis 1989). 
Prior to display we have applied a band pass filter and a fan 
polarization filter as in the Lost Hills VSP discussed above. 
The effects of these processing procedures on the 
characteristics of shear-wave splitting can be neglected if the 
choice of parameters is optimal. 

Figure 6(a) shows the data matrix of a selected shot. XX 
stands for horizontal X source (first X) and horizontal X 
receiver (second X) component; XY stands for X source 
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and Y receiver component; etc. We can identify a major 
reflection event at 1.60 s at the middle trace (trace 60), 
marked with A. Fig. 6(b) shows some selected PDs, where 
shear-wave splitting can barely be identified from the PDs 
because of the interference of shear waves and existence of 
noise. Fig. (6c) shows the colour section of the 
instantaneous amplitude and polarization calculated from 
XX and XY, which we call the X section; Fig. 6(d) shows 
the section from YX and YY (the Y section). Fig. 6(e) shows 
the orientation log. The features and interpretations of these 
sections are summarized below. 

The shapes of polarization in Figs 6(c) and (d) are 
difficult to interpret. As a result, we cannot analyse 
shear-wave splitting in reflection data in the same way as in 
VSP data. Similarly, PDs show few diagnostic features of 
shear-wave splitting. 

Variations of polarization with incidence angle are 
also difficult to interpret. In noise-free data, as the incidence 
angle reaches the internal shear-wave window of an 
interface (Liu & Crampin 1990), polarizations show sudden 
changes, which can be identified on the colour section of the 
complex component (Li & Crampin 1990a, 1991). Sudden 
changes of individual polarization can easily be identified in 
real data, such as event A on the Y section (Fig. 6d) at trace 
67, and trace 83. However, these changes are most likely to 
be caused by interference with ambient noise caused by air 
wave, groundroll, random noise, etc., but might also be 
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Figure 6. Results of Lost Hill reflection survey: (a) data matrix of a selected record (record 137). and X stands for in-line, and V for cross-line; 
XX stands for X source (first X) and X receiver (second X), and KY for X source and Y receiver, etc.; (b) selected PDs of XX and KY 
components; (c) X section, the colour section of the instantaneous amplitude and polarization of XX and KY; (d) V section, that of YX and 
YY; (e) orientation logs. 
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caused by the effects of an internal shear-wave window (Liu 
& Crampin 1990). Since most of reflective interfaces are 
well below the surface, it is reasonable to assume that the 
angle of incidence is sufficiently small that all reflections are 
within internal shear-wave windows. 

Although polarization variations of individual traces 
are difficult to interpret. Figs 6(c) and (d) show that 
polarizations of the same reflection events appear to be 
coherent, as is observed in VSPs. For example. event A of 
the X section (Fig. 6c) has a coherent blue polarization on 
higher traces than 60 where the source is located. Because 
the interfaces are dipping (Squires et al. 1989), the arrivals 
for event A at lower traces than 60 are contaminated with 
the direct arrival. Coherent polarizations appear also on 
other events such as the event at 2.6 s and trace 35 at the X 
section (Fig. 6c), etc. This coherency of polarizations helps 
to indentify shear-wave events, and Figs 6(c) and (d) show 
better continuity of reflection than Fig. 6(a). 

Figures 6(c) and (d) also show that there are coherent 
polarizations independent of source orientations on the two 
colour sections, as observed in VSPs. For examples, event A 
in the Y section (Fig. 6d) has a same coherent blue colour as 
in the X section (Fig. 6c). There are several similar events. 
The same coherent colour (polarization) on different events, 
independent of source orientations, can most directly he 
interpreted as indicating shear-wave splitting, and can be 
used to identify shear-wave splitting. The coherent colour 
represents the polarization angle of the leading shear wave. 
In this case, the coherent colour is blue, indicating 
N42°W ± 3°. This observation can be used to determine the 
pre-stack rotation angles before synchronous rotation in 
processing multicomponent reflection shear-wave data in the 
presence of anisotropy. Thus the processing of shear-wave 
data in the presence of anisotropy can be simplified by 
omitting post-stack rotation analysis which is now a 
conventional procedure for determining the rotation angle. 

Figure 6(e) shows that orientation logs of the 
reflection data improves the continuity of reflection events 
and separates the interference of the split shear waves. The 
variations of polarization in Fig. 6(e) can be more easily 
followed than in Figs 6(c) and (d). The blue colour of the 
polarization of leading split shear-wave arrivals appears on 
all events, and the polarization of the slower split shear 
wave can also be identified as a red—orange colour. Note 
there is a lateral change of anisotropy in the Lost Hills line; 
the polarizations of the leading split shear wave at this shot 
position have a different orientation from those at location of 
VSPs, as was also found by Squires el al. (1989). The SWS 
section of the reflection data is less informative than that of 
the VSPs, because of noise and shear-wave interference, 
and is not shown here. 

To summarize, the attribute sections of reflection data 
have a more complex nature than those of VSPs. 
Characteristic rectangular shapes of polarizations are 
difficult to determine with confidence, hence analysing 
shear-wave splitting in reflection data cannot be carried out 
in the same way as in VSPs. We are able to indentify 
shear-wave splitting and determine the polarization of 
leading split shear waves, by examining the coherency of 
polarization between geophones and different source 
orientations. This makes it possible to determine polariza- 

tion angles for pre-stack data without a post-stack rotation 
analysis. Orientation logs improve the continuity of 
reflection events and separate the interference of split shear 
waves, allowing the optimum rotation angle to be more 
easily determined. SWS sections of reflection data are less 
informative than those of VSP data. 

4.4 German Creek crosshole data 

The example is given to demonstrate how complex 
component analysis can help examine polarization variation 
in crosshole surveys. This is an in-seam seismic data set 
acquired from German Creek Mine in Australia. Fig. 7(a) 
shows the acquistion geometry on the horizontal plane (G. 
S. Turner, private communication). There are 33 source 
points, and two fixed three-component geophones, marked 
as GI and G2. The polarizations of wave modes received at 
the geophone are expected to be different at different source 
positions. By examining such variation of polarizations it is 
possible to locate the cleats and determine cleat directions in 
coal seams (Liu, Crampin & Roth 1989). To identify the 
type of wavemodes and to recognize the polarization 
variations, we plot out seismograms and PDs of the 
horizontal components. In practice, this is time-consuming 
and difficult to keep objective. Complex component analysis 
can help overcome these difficulties. 
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Figure 7. Results of German Creek Mine data: (a) plan of 
acquisition geometry: (b) colour section of the instantaneous 
amplitude and polarization of the two horizontal components at 
geophone GI; (c) colour section of the instantaneous amplitude and 
polarization of the two horizontal components at geophone G2. 
Letters mark the significant events. 
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Figure 7(b) shows the colour section of instantaneous 
polarizations superimposed on wiggle traces of instan-
taneous amplitude received at GI. Two modes can be 
identified with different characteristic colours. A is a P-wave 
mode, which has a constant green polarization (N0°E ± 3°) 
at all source positions. B is a shear-wave mode with a red 
polarization (N78°E ± 3°) at lower source numbers, but 
gradually changes to red—orange (N54°E ± 3°) at higher 
source numbers. Fig. 7(c) shows the colour displays of 
waves received at G2. Wave mode A has yellow green 
polarizations (N18°E ± 3°) at lower source numbers, then 
changes to pure green polarization (N0°E ± 3°). Thus, mode 
A is P-wave mode, and the change of polarization is due to 
the change of angle of azimuth of the travel path. This 
crosshole data set demonstrates that complex component 
analysis offers an easy way to examine polarization 
variations in many configurations. 

S DISCUSSION 

The above case studies show the following phenomena 

The VSPs confirm that the instantaneous polarization 
of shear-wave splitting shows characteristic combinations of 
rectangular and semitriangular shapes (Li & Crampin 1990a, 
1991), which can be used to analyse shear-wave splitting in 
colour sections of complex components. 

Complex component analysis is further developed 
in four-component seismic data. The Lost Hills VSP 
shows that calculating and displaying SWS sections and 
orientation logs provides direct information about shear-
wave splitting. In SWS sections, shear-wave arrivals showing 
shear-wave splitting are characterized by a coherent colour 
band in which the colour represents the polarization of the 
leading shear wave and the width of the band represents the 
delay between the split shear waves. In orientation logs, the 
polarization of a split shear wave is coded by colour plots, 
and the colour band of the leading split shear wave 
represents the delay between the split shear waves. 

It is observed that the polarizations of split shear 
waves are remarkably coherent. Consequently, complex 
component analysis is comparatively robust in the presence 
of noise. 

The polarizations of the leading direct shear wave in VSPs 
tend to be consistent, and coherent among adjacent 
geophones. In isotropic examples, the polarization is source 
dependent, whereas in anisotropy, it is fixed in the 
symmetry direction and independent of source orientations. 

The polarizations of reflected shear waves are more 
complicated than VSPs, and are dependent on source and 
incidence angle. Outside the shear-wave window, the 
polarizations are not coherent among adjacent traces 
regardless of source orientation and presence or absence of 
anisotropy. Within the shear-wave window at the free 
surface, in an isotropic rockmass, the polarizations are also 
varied and shear-wave polarizations are not usually 
orientated parallel to source axes (Liu et al. 1990); but in 
anisotropy, the polarizations are fixed and independent of 
source orientations. If the receiver axes are orientated 
parallel to source orientations, coherency of polarization 
among traces received within the shear-wave window can 
aid in identifying reflection events. 

Techniques that take advantage of the coherency of 
signals are frequently robust in the presence of noise. A 
reasonable amount of noise could modify the polarization 
shape of individual geophone or trace, but barely disturb the 
coherent polarization variation as a whole. Thus, the 
behaviour of shear waves as indicated by complex 
component analysis will be preserved in the presence of 
noise as demonstrated by the Lost Hills reflection data. 

Complex component analysis of pre-stack data can be 
used to determine the rotation angle for source—geophone 
rotation for multicomponent reflection data. Source-
geophone rotation has now become a conventional 
processing procedure for multicomponent reflection data, as 
demonstrated by Alford (1986). Murtha (1989), Squires et 
al. (1989), and others. To apply source—geophone rotation, 
a post-stack rotation analysis (Alford 1986; Squires el al. 
1989) is often required to determine the optimum rotation 
angle. If post-stack rotation analysis is used, often the data 
have to be processed twice in order to get satisfactory results 
(M. C. Mueller, Amoco, private communication). The data 
are first stacked without rotation to apply post-stack rotation 
analysis, then stacked again with pre-stack rotation using the 
angle determined from rotation analysis. Murtha (1988) 
derived an analytic tan 46 expression of rotation angle for 
reflection data without the rotation scanning procedure. 
This can also be achieved by complex component analysis. 

The purpose of rotation analysis is to determine the 
optimum rotation angle which best separates the energy of 
the two shear-wave arrivals. The process depends on the 
coherency of the polarization. This optimum angle is the 
source-independent coherent polarization in the colour 
sections of complex components. Thus, instead of using 
post-stack rotation analysis, we can use complex component 
analysis of pre-stack data to determine the optimum rotation 
angle. We only need to calculate the complex components 
and display colour sections, and to find the coherent 
polarization that is independent of source orientation and 
appears on all major reflection events. This procedure is 
much simpler than rotation analysis. 

By calculating orientation logs, the interference of split 
shear waves is resolved, and the determination of optimum 
angles for source—geophone rotation becomes more reliable, 
as demonstrated by the Lost Hills reflection data. There are 
two dominant coherent polarizations orthogonal to each 
other in logs. Thus, pre-stack rotation can be easily and 
efficiently implemented, and lateral variation of rotation 
angle along the survey line can be examined as we change 
the location of orientation logs. 

The German Creek crosshole data confirm that both 
variation of waveforms and variation of polarizations can be 
followed continuously either along time direction, or along 
offset direction (Li & Crampin 1990a, 1991), and complex 
component analysis provides a useful tool for cases where 
identification of wave types and recognition of polarization 
variations are essential. 

In summary, complex component analysis is a simple, 
robust, and effective technique for analysing shear-wave 
anisotropy in VSPs and reflection surveys. In the past, two 
methods have been used to examine shear-wave anisotropy 
in VSPs and reflection surveys: polarization analysis, and 
rotation analysis. Polarization analysis (analysis of polariza-
tion diagrams) relies principally on the shape of individual 
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polarization pattern and is a straightforward technique; 
while rotation analysis is mainly based on the coherency of 
whole polarizations and is relatively robust in the presence 
of noise, but would be difficult to apply if the crack 
orientations change with depth. Both techniques are 
time-consuming. In contrast, complex component analysis 
allows both for the shape of individual polarization and the 
coherency of whole polarizations. Thus, complex com-
ponent analysis retains the advantages of both techniques, 
but has fewer disadvantages, it can also be applied to cases 
where crack orientations change with depth. We suggest 
that complex component analysis could well become a 
routine procedure in analysing shear-wave anisotropy for 
VSPs and reflection surveys. 

6 CONCLUSIONS 

The field data confirms that instantaneous polarizations of 
shear-wave splitting have diagnostic shapes which are 
combinations of rectangular and semitriangular shapes (Li & 
Crampin 1991). The technique is developed for multisource 
component seismic data. Four-component data can be used 
to calculate shear-wave splitting sections (SWS sections) or 
transformed to calculate orientation logs. Complex com-
ponent analysis of four-component shear-wave reflection 
data allows the optimum rotation angle between adjacent 
geophones and different sources to be determined before 
stacking without source-geophone rotation. Finally, polari-
zations of split shear waves tend to be remarkably coherent. 
This coherency helps us to identify and estimate shear-wave 
splitting, and aids the stratigraphic interpretation of 
reflection events in VSPs and reflection surveys. 

We conclude from our study that the theoretical promise 
of Li & Crampin (1990a, 1991) is confirmed by case studies, 
and complex component analysis can be further developed 
into four-component VSPs and reflection surveys. This 
technique of complex component analysis can aid 
identification and estimation of shear-wave splitting in VSPs 
and reflection surveys, help stratigraphic interpretation, and 
simplify the processing procedures for analysing four-
component reflection shear-wave data in the presence of 
anisotropy. 
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NOTE ADDED IN PROOF 

Since this paper was submitted further papers have been 

included in this issue. This means that more appropriate 

references for Brodov et at. (1990), Bush & Crampin (1987). 

and Mueller (1990) in the text are now Brodov etal. (1991), 

Bush & Crampin (1991), and Mueller (1991), given below. 
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