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Abstract 

 

Breeding success in the broiler chicken has been accompanied by gait problems 

which are detrimental to productivity and welfare. Although these gait issues have 

not been reported to the same extent in Pekin ducks, there is concern that such 

problems will manifest if the duck continues on its current selection trajectory. 

In order to understand how changes in morphology due to selection have affected 

gait in both species, divergent lines were objectively assessed for gait using a 

pressure platform (12 birds per line at three, five and seven weeks of age). The 

broiler chicken was compared to the slower growing layer chicken and the Pekin 

duck to its slower growing ancestor, the mallard. Two breeding lines of Pekin duck 

were also assessed. After gait assessment, the leg bones (femur and tibiotarsus) 

were scanned by computed tomography to measure morphological changes which 

have occurred due to selection for high growth and meat yield. Results were 

analysed by ANOVA, accounting for age and sex. 

During walking, heavy lines walked at a slower velocity, displayed a wider stance 

and spent more time supporting their mass on both feet than their lighter 

conspecifics, strategies which are likely to improve balance. The foot angle while 

walking differed between lines; all duck lines rotated their feet internally whereas the 

layer chickens’ feet were aligned with the direction of travel. Conversely the broiler 

chicken rotated its feet externally by seven weeks of age.  

Morphologically, the main differences were between species. Duck lines reached 

adult leg size earlier than chickens, which may be a response to differing adaptive 

environments prior to domestication. This early cessation of bone growth in ducks 

may provide more opportunity for the bones to remodel to handle the loads imposed 
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on them. Lower levels of porosity and a unique cortical architecture observed in 

ducks endow relatively greater bone strength. Bone curvature also differed between 

species; the tibiotarsus curved more laterally in ducks than in chickens and may be 

a swimming adaptation that hinders locomotion on land in the modern production 

bird. 

In order to improve the objectivity of selection for better gait in poultry, the genetic 

parameters of gait components selected on the basis of results in this thesis were 

estimated using a linear mixed model in a population of Pekin ducks of known 

pedigree. As they are a simpler measure, similar or improved heritability estimates 

were estimated for these gait components when compared with the standard 

commercial gait score which is based on a subjective view of walking ability. 

Intense selection for economic traits has altered gait in similar ways in both species. 

To improve gait in poultry, greater breeding success may be achieved by focussing 

on those components of gait which have changed through selection, rather than 

using a subjective overall visual gait score. Furthermore, in both species, 

adaptations for pre-domesticated life may have affected the ability with which the 

selected lines have accommodated their gait to other morphological changes 

associated with increasing body mass. 
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Lay Summary 

 

Poultry raised for meat production have been intensely selected for increased 

growth rates and meat yields over the last six decades. This selection has resulted 

in modern birds with greatly altered morphologies which have been associated with 

welfare problems such as sub-optimal walking ability. While these gait problems 

have not been reported to the same extent in the Pekin duck as in the chicken, 

concern exists that gait problems will manifest in Pekin ducks in the future if they 

continue along their current selection trajectory. The aim of this PhD is to 

understand the changes in morphology and gait which have occurred in chickens 

and ducks as a result of intense selection and to work with the breeding industry to 

develop a more objective method of selecting for better gait which can be used to 

improve the welfare of Pekin ducks worldwide. 

When heavily-selected meat-producing ducks and chickens were compared to 

smaller ‘unselected’ ducks and chickens respectively, the meat producing birds had 

altered their gait in very similar ways, adopting a slower velocity, a wider stance and 

spending less time supporting themselves on a single leg. These are likely 

strategies to compensate for a lack of balance brought about by their large breast 

muscle mass. The architecture of the leg bones differed between ducks and 

chickens. Ducks have curved leg bones, which seem to be an adaptation to a 

swimming lifestyle. This adaptation may hinder walking ability on land and since the 

modern Pekin duck does not normally have access to water, this warrants attention 

from the breeding companies. 
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By using the results of gait analysis studies, a more objective method of selecting 

for better gait was developed by focusing on particular simple gait components 

rather than the current system which uses a subjective overall impression of walking 

ability. This simpler and more objective scoring system allows for more progress to 

be made when selecting for better gait in ducks. 

The results of this thesis demonstrate that intense selection for greater meat 

production in birds has altered their leg architecture and their gait. The use of a 

simpler and more objective scoring system which focusses on components of gait 

rather than on an overall impression of walking ability can bring about greater 

improvements in the gait and welfare of meat-producing birds. 
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Introduction 

 

Gait problems in poultry 

The process of domestication through artificial selection changes an animal’s form 

and function. For example the broiler chicken, often cited as an illustration of the 

successes of intense genetic selection, has increased its growth rate by 300% in the 

last 50 years (Knowles et al. 2008). Some of these changes brought about by 

intensive selection can be detrimental to welfare. Abnormality of gait is one such 

detrimental effect, and has been observed in dairy cattle, pigs, turkeys, broiler 

chickens and ducks (Mercer and Hill 1984, Martrenchar 1999, Jones and Dawkins 

2010, Chapinal et al. 2012, de Koning et al. 2012). ‘Gait’ refers to the manner in 

which an animal walks or runs, the pattern of movements of the limbs that translates 

into overall movement of the body in a certain direction. It is a combination of the 

animal’s conformation, stride pattern, balance and velocity. The gait of any 

particular animal will alter depending on the terrain over which the animal is moving, 

the velocity that the animal is trying to achieve, the functional capacity of its limbs to 

transport the mass of the body and the ability of its nervous system to process and 

respond to specific terrains, velocities and body capabilities. Each species generally 

has a range of gaits it can employ. Sub-optimal gait can be defined as a gait that is 

outside of the normal range of gaits observed in a particular species. An example of 

sub-optimal gait in humans is visible lameness, due to injury of the leg, or a shuffling 

gait, often seen in the elderly due to an inability to control lateral centre of mass 

movements.  

Of the various welfare issues that affect the global livestock industry, poor gait in 

poultry (mainly broiler chickens) tends to be a prominent problem. Poultry are by far 
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the most numerous animals raised for meat worldwide (FAO 2014); therefore, 

welfare problems within the poultry industry affect a vast number of individual 

animals. Each year, over 60 billion chickens and over 2 billion ducks are killed for 

meat globally. A survey of 2,800 birds in 28 broiler chicken flocks in Denmark found 

that 30% of them suffered from poor gait (Sanotra et al. 2001). A similar study using 

over 50,000 birds sampled from 176 flocks reported poor locomotion in 27% of the 

birds (Knowles et al. 2008) with 3% being unable to walk. Kestin et al (Kestin et al. 

1992) also reported a similar prevalence of sub-optimal gait in chickens two 

decades ago. Prevalence rates of gait problems in the domestic duck are not as 

widely reported as in chickens but as these animals are undergoing a similar 

selection process to the broiler, it is reasonable to expect the incidence of sub-

optimal gait in ducks to increase with selection for faster growth rates. In 1999 the 

standing committee of the European Convention for the Protection of Animals kept 

for Farming Purposes reported that “the heavier domestic birds (ducks), in particular 

those selected for meat production, may be unable to fly, have difficulty in walking 

and be subject to leg disorders” (Council of Europe 1999). The scale of gait 

problems in commercial duck populations is also poorly defined. The only study to 

date reporting the prevalence of gait abnormalities in commercial ducks estimated 

that 14% of 23 day old and 21% of 41 day old Pekin ducks show signs of moderate 

to significant walking impairment (when assessed using a three point scale of 

walking ability) (Jones and Dawkins 2010). Furthermore the ability of ducks to walk 

at any age seems to decrease as their weight increases (Robison et al. 2015), 

which implies that gait problems are (directly or indirectly) related to the selection for 

better production characteristics. 

Causes of gait problems in poultry 

Sub-optimal gait cannot be attributed to one particular cause. Both infectious and 

non-infectious leg problems can occur which affect gait. For example environmental 
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factors such as litter quality can lead to conditions such as foot pad dermatitis 

(Mayne et al. 2006); feed quality or metabolic disorders can lead to rickets, and 

femoral head necrosis can be caused by infections (Thorp 1994). However, in meat 

type birds, sub-optimal gait is generally of non-infectious origin, often attributed to 

skeletal, conformational or morphological changes (Mench 2004). The heavily 

selected meat-type bird has undergone immense changes in leg morphology 

(Paxton et al. 2010, Duggan et al. 2015) and centre of mass location (Corr et al. 

2003, Paxton et al. 2013). An increase in breast muscle mass has led to a cranial 

shift in the body’s centre of mass, affecting balance and exerting increased strain on 

the hindlimbs which they are not evolved to deal with (Paxton et al. 2010). Hindlimb 

musculature has increased through selection (Paxton et al. 2014, Duggan et al. 

2015) and, to deal with such large changes in body form, birds have adapted their 

gait by taking shorter strides and widening their stance (Corr et al. 2003, Paxton et 

al. 2013). This adaptation of gait to suit body morphology also occurs in wild avian 

species; slimmer king penguins reduce lateral movements during walking when 

compared to fat penguins (Willener et al. 2016). 

Skeletal defects in the hindlimb can affect gait by altering the forces applied during 

walking. Common defects reported in meat-type poultry are long bone deformities of 

the hindlimb, such as valgus and varus bending and bone torsion (Mench 2004, 

Toscano et al. 2013). These are usually described affecting the tibiotarsus and 

tarsometatarsus but can also be found in the femur (Thorp 1994). The degree of 

bending seems to be associated with deterioration in gait, with severe bending 

associated with complete lameness (Leterrier and Nys 1992). These angular bone 

deformities may be caused by rapid growth which leaves insufficient time for the leg 

bones to remodel or by dietary deficiencies which can disrupt growth plate activity 

(Julian 1998). Some angular deformities, such as the lateral curvature observed in 

duck tibiotarsi (Duggan et al. 2015), may be swimming adaptations which have 
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been retained from a previous adaptive environment and thus, while these are not 

deformities as such (as they occur naturally in most birds of the mallard species) 

they may contribute towards sub-optimal gait on land. Long bone torsion can affect 

gait by altering muscle attachment sites in the leg and thus affecting the forces they 

produce and by changing the orientation of the foot during the stance phase of the 

gait cycle, which can affect the direction in which forces are acting. The causes of 

abnormal bone torsion are unclear; altered load bearing may play a role in broiler 

chickens, bone torsion seems to be associated with increased body mass (Duff and 

Thorp 1985). 

The link between tibial dyschondroplasia (TD) and poor gait is unclear. While birds 

exhibiting TD have been recorded as having poor gait, the issue is confounded by 

other factors associated with TD, such as long bone deformities or increased body 

mass, which are also associated with poor gait. The pathology has been reported in 

chickens, turkeys and ducks (Wise and Nott 1975, Hester and Ferket 1998, Hocking 

et al. 2009). TD results from a disruption of the chondrocyte maturation process 

during bone development at the growth plate and leads to the retention of  cartilage 

at this site (Farquharson and Jefferies 2000). However the exact cause of the 

cellular disruption is unknown and its incidence is associated with many factors 

(Thorp 1994) although there seems to be a genetic component (Kapell et al. 2012). 

There is some evidence that TD is associated with tibiotarsal deformity in broiler 

chickens (Lynch et al. 1992). 

Gait and Leg Health 

While gait can be suboptimal in birds with perfect leg development, skeletal and 

non-skeletal leg health issues are responsible for some incidences of poor gait and 

genetic improvement of these general leg health issues has likely alleviated some of 

the sources of poor gait. Traits such as crooked toes, valgus and varus long bone 
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deformities, hock burn and foot pad dermatitis have all be subject to long term 

selection within breeding companies, with some progress achieved (Kapell et al 

2012,(Kapell et al. 2017)). Contact dermatitis, or hock burn, is a trait that manifests 

when birds spend long periods sitting on hocks in litter that contains ammonia 

(Bradshaw et al. 2002). This is usually due to an inability to stand caused by leg 

weakness. The leg weakness can be skeletal in origin or soft-tissue related (such as 

a slipped tendon). Foot pad dermatitis can be a painful condition that affects gait, 

caused by inflammation of the dermis layer of the foot in wet litter conditions 

(Bradshaw et al. 2002). There is a genetic component to foot pad dermatitis (Kapell 

et al. 2017) and populations can be selected either for an ability to tolerate wet litter 

or for a tendency to produce drier litter (by selecting for water intake). Progress 

made in selecting against these leg health traits will go some way to improving gait 

in a population. However the complete eradication of these negative traits will not 

solve the problem of poor gait in poultry, as birds with perfectly healthy legs can 

also experience sub-optimal gait, for example if a certain body morphology alters 

the position of the body’s centre of mass and thus hinders balance when walking. 

Gait, pain and economics 

The issue of whether sub-optimal gait is painful or not remains unclear. When 

offered a choice between two types of feed, one containing analgesic and the other 

without, birds with poor gait have been shown to self-medicate, consuming 

proportionally more analgesic depending on the severity of their gait problems 

(Danbury et al. 2000). Caplen et al. (2013) observed that birds exhibiting severe gait 

problems improved their gait after treatment with analgesics. However, a study by 

Corr et al. (2007) found that analgesics had no effect on the birds’ velocity or the 

peak vertical forces they exert while walking, suggesting that birds with poor gait 

were not in pain. Indeed, some altered gait may simply be a response to an altered 

morphology, rather than a response to pain (Corr et al. 2007, Paxton et al. 2013). 
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Regardless of the issue of pain, gait problems can still lead to compromised welfare; 

for example, poor gait can cause a failure to reach food and water or an inability to 

perform natural behaviours.  

Sub-optimal gait also has economic consequences. McNamee et al. (1998) reported 

10% of the flocks they observed were culled due to severely compromised gait. At 

the slaughterhouse, some carcasses may be downgraded due to leg problems 

(Kestin et al. 1999). In addition, the general negative publicity of lameness in poultry 

may cause economic losses for the poultry industry. The energy efficiency of poor 

gait may also have economic consequences on the industry. However, these issues 

have not been investigated in depth. On the one hand, birds with poor gait tend to 

be less active (Aydin et al. 2010), therefore one would expect these individuals to 

expend less energy and perhaps have a lower feed conversion ratio (FCR). 

However, if gait problems are severe enough to affect a bird’s ability to access food 

or water, FCR may worsen. Finally, a perfect gait is assumed to be the most energy 

efficient method of transporting the bird’s mass. Intuitively, a sub-optimal gait is 

expected to be less energy efficient (in a hypothetical population in which all birds’ 

feed intake and genotypes are the same, FCR would be higher in those individuals 

with poor gait) (Waters and Mulroy 1999). This hypothesis has yet to be tested in 

birds.  

Gait Assessment 

Gait is usually assessed on farm using a visual gait score, based on the Bristol Gait 

Score system developed by Kestin et al. (1992). A scorer visually assesses walking 

birds over a period of a few seconds and each bird is scored on a six-point scale 

from zero to five, with zero being perfect gait and five being fully lame. Birds are 

also scored ad hoc using a binary scoring system as staff walk through the farm, 

with fully lame birds being culled immediately. The visual gait scoring system is non-
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invasive, requires no equipment, set-up or data manipulation and minimal training 

for scorers. It enables high-throughput collection of data for thousands of birds with 

minimal cost or time investment and therefore it has become the method of choice 

for both on-farm welfare assessments and phenotypic measurement within breeding 

programmes. However, as the score is highly subjective, concerns have been 

raised as to whether it is an appropriate tool to accurately measure gait, particularly 

in breeding programmes where accurate measures for each individual are required 

(during welfare assessments, flock level data may suffice). It has long been 

suggested that the Bristol gait scoring system was too subjective and that a more 

objective system of measuring gait in poultry was needed (Anon 2000). Efforts were 

made to refine the Bristol gait score to improve its objectivity and reliability (Garner 

et al. 2002) (their intra-observer reliability for Kestin’s original gait score was 0.90 

compared to 0.95 for their improved version) but the authors of this work still 

acknowledge that the modified gait scoring system was too subjective (Mench 

2004). A separate study found only moderate (0.63 - 0.78) inter-observer reliability 

for Kestin’s gait score (Webster et al. 2008). A reduced, 3-point score, has recorded 

better reliabilities (Webster et al. 2008, Makagon et al. 2015), but it is difficult to 

foresee a use for this type of system, given the limited number of categories if 

offers. Visual gait scores cannot differentiate poultry with and without limb 

pathologies, and it has been concluded that “if gait scores were to continue to be 

used as a proxy measure of leg health, then there is a need to better understand the 

factors that contribute to gait scores, and how these factors affect leg health and, 

more generally, bird health and welfare” (Sandilands et al. 2011). Future gait 

selection may be informed by modelling morphological changes and their effect on 

gait and by focussing on key gait components, rather than the overall gait of each 

individual. 
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In a research setting, gait can be measured objectively using various techniques. 

There are two main categories: kinematic (measurement of spatial and temporal 

aspects of how the leg moves) and kinetic (measurement of the forces applied 

through the leg). Force plates have been used to investigate how birds convert 

potential energy into kinetic energy during the stance phase of the gait cycle (Muir 

et al. 1996, Usherwood et al. 2008) and to measure ground reaction forces in 

chickens as they walk (Corr et al. 2007). The force plate consists of a platform that 

sits atop a set of strain gauges. The gauges measure any forces applied to the 

platform as the bird walks over it; output from the gauges is integrated in computer 

software to calculate the overall force applied by the bird for each step. This force is 

measured in the vertical direction and also in the fore-aft and medio-lateral 

directions. However, the force plate cannot measure which parts of the foot are 

applying pressure to the platform or distinguish between two feet applying a force at 

the same time.  

Pressure-based systems can record forces applied by individual feet 

simultaneously. A pedobarograph (Fig. 1) has been used to measure pressure 

distribution under the foot in chickens (Corr et al. 1998). Birds were walked over a 

plastic interface (unexposed, processed photographic paper) on a glass plate. The 

emulsion layer of the plastic interface scatters light as it passes through the glass 

plate, to different degrees depending on the pressure it is experiencing, and 

whether that pressure is applied statically or dynamically. The intensity of diffraction 

is proportional to the amount of pressure applied; thus, software can convert 

diffraction intensities (recorded by video camera) into pressure measurements. 

However, the system is unsuitable for analysis of a sequence of steps due to its 

size. An advantage of the pedobarograph system is that it can record kinetic 

measures of gait (pressures and, indirectly, forces applied through the foot) and 
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also spatio-temporal aspects of each walk, although the latter must be calculated 

manually and is not suitable for high-throughput data collection. 

 

 

Fig. 1. Diagrammatic representation of a pedobarograph (from Corr et al., 1998). 

 

The pressure walkway (Fig. 2) employs a similar principal to the pedobaragraph but 

in digital form. The walkway consists of a series of mats each containing a circuit 

board embedded with an array of piezoelectric cells, which produce a varying 

voltage output depending on the pressure applied. As a bird walks over the mat, the 

system records the pressure applied across each foot (using a known calibration to 

convert voltage into pressure) as well as spatial and temporal information from each 

piezoelectric cell. The cells embedded in the mat are robust enough to record 

pressures of any animal’s gait and mats can be joined together in sequence to 

create a long pressure walkway capable of recording data over a series of steps. 

The pressure walkway is the most comprehensive of the kinematic gait 

measurement systems developed to date, as it can record kinetic, temporal and 
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spatial information for each foot placement. Pressure data from each stance can be 

converted into forces (Fig. 3) and while force measurements obtained using the 

pressure walkway system are not considered as accurate as force plate 

measurements, the values are reliable to use for comparison within and between 

individual animals (Lascelles et al. 2006). 

 

 

Fig. 2. A Pekin duck ready to walk over a pressure walkway (which is hidden under 

latex sheeting to provide the bird with grip). Data is recorded on the laptop in the 

background. 
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Fig. 3. Forces calculated using a pressure walkway from a Pekin duck while 

walking. The right foot is in red and the left foot is in green. 

Whereas kinetic gait analysis techniques measure the forces applied through the 

ground during the gait cycle, kinematic techniques record the movement of the 

limbs and body during the gait cycle. The majority of kinematic studies employ the 

use of reflective markers attached to key positions on the limbs and torso of the 

subject and custom software that uses high-speed cameras to track the position of 

each marker throughout the gait cycle and thus record the movement of the limbs 

and other body parts central to gait. Reflective markers attached directly on the 

bodies of broiler and layer chickens have been used with motion capture technology 

to identify differences in the kinematics of gait in birds displaying normal and 

severely sub-optimal gait (Reiter and Bessei 1997). Another method using markers 

attached to a wearable saddle (Fig. 4) has also been used to compare gait in 

broilers with optimal and sub-optimal gait (Caplen et al. 2012). The saddle method 

was used partly to circumvent the issue that feathers can obscure attached markers 

from view, especially those at the hip and knee joints. However, the authors suggest 

that the wearing of the saddle can affect the gait pattern. Provini et al (2012) 

circumvented this problem by using radio-opaque markers (using surgical 

attachment at one site) and X-ray video to measure hindlimb movement in teal 

during walking and swimming. Again, it could be argued that the attachment of the 

markers may have altered gait in these birds, and the invasive nature precludes its 
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use on non-experimental birds, or the study of large populations. Dynamic X-rays 

have also been used to record kinematic parameters of leg movement in lapwing 

(Fig. 5) walking at varying speeds on a treadmill (Nyakatura et al. 2012). The use of 

a treadmill simplifies kinematic analysis somewhat in that the cameras are not 

required to follow the bird as it moves (Reiter and Bessei 1997, Nyakatura et al. 

2012). However, due to the lateral position of the eyes, birds will correct their gait by 

‘head-bobbing’ to retain visual focus during displacement. The area lateral to the 

path of movement will appear blurred due to the relative displacement of the eye. 

Head bobbing allows the bird to hold its head stationary (and thus maintain focus) 

for as long as possible when walking. As relative displacement does not occur on 

the treadmill, the bird may not employ this corrective movement and so birds 

walking on a treadmill may not exhibit natural gait. Kinematic gait analysis systems 

tend to be more expensive to implement than kinetic systems mentioned above and 

require more equipment. Also, as cameras are typically required to constantly track 

the movement of small markers reflecting light, these systems may be hindered by 

dusty and dirty environments on farm, or limited in their ability to track movement of 

the upper leg which is covered by the wing. 

 

Fig. 4. Saddle with reflective markers (from Caplen et al, 2012). 
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Fig 5. Landmarks used for the attachment of radio-dense markers (red dots) to 

obtain kinematic data using X-ray video (from Nyakatura et al, 2012) 

 

Bird-mounted loggers (such as accelerometers) can record the body movement of a 

free-living individual. The gait of the bird can then be deduced from the patterns of 

body movement it exhibits (Willener et al. 2015). A benefit of this system is that it 

can record free movement of birds on farm, without restricting them to walkways (as 

is required with the methods detailed above) and accelerometry can be used to 

calculate the energy expenditure relating to locomotion (Green et al. 2009). The 

technique has even been used on species in their natural habitat (Wilson et al. 

2006, Halsey et al. 2009). However, the amount of information that accelerometers 

record on gait dynamics is relatively limited and the technology may thus be more 

appropriately used as an addition to other gait measurement techniques.  
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Bone quality 

Leg bone fractures can obviously hinder gait. Bone quality is poorer in fast growing 

meat lines compared with traditional lines (Hocking et al. 2009) and the incidence of 

bone fractures on farm, although poorly reported, is likely to be significant (Anon 

2000). A lack of mineralisation has been observed in the long bones of chickens, 

ducks and turkeys (Williams et al. 2000, Williams et al. 2004, Charuta and Cooper 

2012, Charuta et al. 2012, Van Wyhe et al. 2012). While poor mineralisation can be 

alleviated by dietary changes in certain cases, some bone quality issues may be 

due to underlying genetic causes related to accelerated growth. The leg bones of 

fast growing birds may not have the opportunity to remodel to handle the unnaturally 

large loads imposed on them. The strength of a bone can be due to many aspects 

of its morphology and sub-structural composition, such as overall geometry, cortical 

and trabecular proportions, porosity, and chemical properties of the bone itself (for 

example calcium to phosphorous ratios (Ammann and Rizzoli 2003). Bone strength 

is generally measured destructively, by dissecting out and breaking the leg bones in 

a three- or four-point-bending test, where a bone is fixed at both ends and a known 

force is applied in a given direction until failure occurs (Utz et al. 2009) (Fig. 6). 

Some non-invasive methods of bone quality assessment exist, such as the use of 

X-ray; however, this technology is more commonly used to assess the occurrence 

of TD rather than bone mineralisation/quality. However, computed tomography has 

been used to estimate bone strength (Jämsä et al. 1998, MacNeil and Boyd 2008). 

When reporting bone strength, various measures can be used. The maximum load 

that the bone can take before breaking can be measured. This can either be applied 

as a compressive load (parallel to the direction of the bone axis) or as a shear load 

(perpendicular to the direction of the bone axis) (Ammann and Rizzoli 2003). Loads 

can be applied as a singular force or within a repeated cycle of loading and 

unloading to calculate the fatigue point of a loads capability to maintain strength 
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(Kim et al. 2007). These measures of fatigue strength may lack some biological 

relevance, since in living bone, remodelling will constantly occur during long term 

loading to maintain the structural integrity of the bone. Stiffness refers to the ratio of 

stress to strain in a bone under loading and can be approximated by the ratio of 

load to deformation (for example the amount of force required to bend the centre 

point of a long bone by a given distance during loading when both ends of the long 

bone are fixed in place). Young’s modulus of elasticity measures the ability of bone 

to undergo changes in length during compression while still maintaining functional 

integrity. The bending moment of bone refers to how much the midpoint of a long 

bone can deviate during shear loading (when bone ends are fixed) while still 

maintaining functional integrity (Utz et al. 2009). 

 

 

Fig. 6. Three-point bending (from Utz et al, 2009) 
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Breeding for better gait 

To alter a trait such as gait in the general population, breeding companies must 

include this objective in their breeding goals. The breeding goals of a company are 

the traits upon which a high selection pressure is placed during selection of the next 

generation. The poultry industry lends itself well to making rapid and far-reaching 

changes to the global poultry population. For example, the vast majority of individual 

birds produced for meat globally are derived from only a handful of breeding 

companies. The breeding structure for each company is similar; selection is carried 

out on small nucleus flocks that are kept in bio-secure facilities. From these flocks, 

the birds with the most desirable traits are selected to become the parents that will 

contribute to the next generation. This group of selected birds are the great-

grandparents of the production birds which eventually be reared for the table. As 

each great-grandparent female can produce over 200 offspring a year, and each of 

those offspring (the grandparents) can produce the same number of progeny, a vast 

number of parent stock can be produced to supply the chicks that will be reared as 

production birds from relatively few great-grandparents. This system, referred to as 

a ‘breeding pyramid’ (Fig. 7), ensures that trait changes brought about through 

selection in the small nucleus flocks are expressed in the global population of 

production birds a few generations later. 
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Fig. 7. An example of a poultry breeding pyramid (GGP = great grandparent stock). 

©Aviagen 

Trait selection is traditionally achieved by phenotypic measurement of individuals. 

The nucleus flocks are divided into particular lines and generally, a different 

selection pressure is applied to each line. These lines are crossed to produce the 

production birds. For example, lines that are chosen to be the paternal parents or 

grandparents of the production birds may be heavily selected for growth rate or 

breast muscle mass whereas selection in lines that occupy the maternal side of the 

cross may focus more on fertility. Certain traits are selected for in all lines, such as 

resistance to disease and other health traits. The methodology of phenotypic 

measurement varies for each trait. Certain traits, such as feed conversion ratio 

(FCR) are measured over a period of weeks using data recorded daily on feed 

intake and body mass. Other traits, such as breast muscle mass or gait, may only 

be assessed at a single time point in the birds’ life. Although the breeding birds in 

the nucleus flock will survive beyond sexual maturity (in order to reproduce), 

measurement and selection of traits which are desirable in the production birds will 

occur in the first five to seven weeks of life (after which point, production birds are 

generally slaughtered). Certain trait measurements (such as assessment of bone 
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strength) are destructive and so birds cannot contribute their genes to the next 

generation after phenotypic measurement for such traits. In these cases, sib-

selection is carried out, where the close relatives of an individual displaying a 

desirable trait are selected. These siblings are likely to carry some of the genes that 

have led to the expression of the desirable trait; therefore, by selecting the 

individual’s siblings, the genes for the desirable trait can be passed on to the next 

generation. 

As each bird is simultaneously under selection for a variety of traits, a selection 

index is used to weight each trait depending on its economic importance (as well as 

their heritabilities and genetic correlations) (Hocking 2014). The weighting that each 

trait receives when calculating the index depends on current (and predicted future) 

market trends. For example, if particular traits such as breast size or leg health are 

expected to influence consumer choice in a few generations time, then these traits 

will receive a greater weighting when forming the index upon which individuals 

within the nucleus flock are selected to produce the next generation. 

A final consideration when forming a selection index is the heritability of each trait 

and the genetic correlation between traits. Heritability is the proportion of the 

phenotypic variation which can be accounted for by additive genetic variation (or 

simply, the extent to which phenotypes are determined by the genes transmitted 

from the parents) (Falconer and Mackay 1996). The more heritable a trait is, the 

faster a response is observed when selecting for or against that trait. Genetic 

correlations are important when selecting for multiple traits simultaneously. A 

favourable correlation exists when two desirable traits are correlated and can be 

selected together without selection for one of the traits negatively impacting on the 

genetic progress of the other. Unfavourable genetic correlations generally slow 

genetic progress. For example, in chickens, a high body mass and low gait score 

are both desirable traits; however, body mass and gait score are positively 



23 
 

correlated (Kestin et al. 1999), meaning the correlation is unfavourable. Therefore, if 

selection is heavily weighted towards a higher body mass, it will be difficult to make 

any progress selecting for better gait.  

A key factor in the success of this system is the accurate measurement of 

phenotypic traits. Most traits (especially those that are economically important and 

thus receive a strong weighting in the selection index) are measured to a high 

degree of accuracy using bespoke equipment. For example, body mass is assessed 

using digital weighing scales; breast muscle size is assessed using ultrasound; FCR 

is measured in feeding stations which quantify feed intake for each bird using digital 

weighing scales and transponder tagging. However, some traits, such as gait, are 

still assessed subjectively; generally, these traits are not central to consumer choice 

and thus are not weighted strongly in selection indexes. 

Traditionally, traits such as breast muscle mass, body mass, FCR were most 

important economically and so breeding companies have placed a large emphasis 

on these traits when performing selection (Hocking 2014). As animal welfare is a 

growing concern for consumers, breeding companies are now placing more 

emphasis on welfare traits such as gait. In addition to the subjective nature of the 

current best practice (the visual gait score), another problem faced by breeding 

companies in selecting for better gait is that, as suggested by Karcher et al (2013), 

little consensus exists on what the ideal gait should be, thus making it difficult to 

breed towards a certain goal. 

Aims of the thesis 

The main aims of this thesis are firstly, to understand how leg morphology has 

changed in the chicken and duck during the process of intense selection for growth 

rate and body mass; secondly, to understand how gait has changed during this 
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process; and finally, to develop a more objective method of assessing gait in Pekin 

ducks which can bring about greater success in breeding towards an ‘ideal gait’.  

The challenge of describing the ideal gait of either species is outside the scope of 

this thesis as there still exists a lack of complete understanding as to what should 

constitute the ideal gait for both broiler ducks and chickens.  

It was hypothesised that the process of selection for larger body mass and growth 

rate has affected both leg morphology and the leg bone quality. The different 

adapted histories of chickens and ducks prior to domestication will also have 

affected their hindlimb morphology in different ways. These differences in leg 

morphology may affect gait. 
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Chapter One – Bookending section 

 

Context and rational behind the study 

In order to approach the problem of improving gait in the domestic duck, it was first 

necessary to understand how both gait and morphology have changed throughout 

the period of intense selection for higher meat yield in Pekin ducks. It is important to 

consider both morphology and gait, as the two are closely linked.  As gait problems 

were already well documented in broiler chickens, chickens were included in the 

study as a useful benchmark with which to compare with the Pekin duck. In addition, 

the broiler chicken and Pekin duck grow at very similar rates and reach similar body 

weights in their first 7 weeks. An experiment was planned to compare the heavy, 

fast growing Pekin duck and broiler chicken with their ancestral phenotypes. The 

ancestral phenotype of the Pekin is the mallard and differences between the two 

can demonstrate the effect that intense artificial selection has had on morphology 

and gait. The ancestral phenotype of the broiler chicken is the red jungle fowl. 

However, as these birds are expensive and hard to source, the layer chicken was 

used instead, as an example of a lighter, slower growing chicken. Like the mallard, 

this bird has not been subject to same intensity of selection for growth rate and body 

mass as the broiler chicken or Pekin duck. However, a possible limitation to using 

the layer chicken is that some selection for skeletal integrity has occurred along with 

selection for egg production traits. This should be kept in mind when interpreting 

data on bone strength in the layer chicken. 

As the work was funded by a duck breeding company, two breeding lines of Pekin 

duck were also included in this study. Ideally, the six lines would have been raised 

in the same research shed together at the same time. This was not possible due to 

space availability and the study was split into two experiments; in the first 
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experiment the broiler chicken, layer chicken and Pekin duck were raised to seven 

weeks in a converted pig unit and in the second experiment the two breeding lines 

of Pekin duck and the mallard were raised to the same age in the same unit. The 

first experiment ran from early February to the end of March and the second ran 

from early May to the end of June. While the environment was controlled to industry 

standards as much as possible, some minor differences may have existed in light 

and temperature profiles between experiments. In order to allow for mortalities, 2 

extra birds were stocked in each pen. Within each pen, 8 birds were stocked – 2 

were removed for measurement of both gait and morphology at 3 weeks, 2 at 5 

weeks and 2 at 7 weeks and 2 remained as spare birds. In each pen therefore, 8 

birds were stocked and data was collected on 6 of these birds. Because birds were 

removed from each pen during the experiment and not replaced, stocking density 

reduced as time passed, which would not happen in a commercial setting. After 

culling, a brief post mortem was carried out on each bird during their dissection and 

prior to recording morphology. No pathologies or defects were observed in the birds 

used for data collection. 

 

Corrections and Clarifications 

For each of the 6 lines studied in this chapter, morphology was recorded on 36 

birds: 12 at 3 weeks, 12 at 5 weeks and 12 at 7 weeks of age. At each time point 6 

males and 6 females were assessed. A further 12 birds from each line were reared 

as spare birds but no data were collected from these spare birds. 

In the final paragraph of the Introduction, it is suggested that “selection has led to a 

cranial shift in the body’s centre of mass, thus altering the loading forces which act 

on the legs of both lines”. While the principle is likely to also apply to the Pekin duck, 

the citation given in support of this statement only refers to broiler chickens. 
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Birds were weighed (data in Figure 1) on days when staff were available to do so. 

Lines from Experiment 1 (layer chicken, broiler chicken and Pekin hybrid) were 

weighed on days 1, 15, 25, 36 and 50. Lines from Experiment 2 (Pekin male line, 

Pekin female line and mallard) were weighed on days 7, 14, 21, 28, 35, 42 and 49.  

 

A more detailed description of methods described in Chapter One 

Bone morphology measurement by computed tomography 

All bones were evaluated with a computed tomography (CT) scan using a ‘Somatom 

Volume Zoom’ helical 4-slice CT unit (Siemens, Germany). A helical scan of the 

intact femur and tibiotarsus was performed with the following settings: 120kV, 130 

mAs, 1.5s tube rotation time, 1mm slice width, collimator pitch of 0.75, high 

resolution image reconstruction kernel (proprietary name U90u). 

Bone morphology was assessed using a dedicated DICOM viewing software (Osirix, 

Geneva, Switzerland, version 5.8.5-32bit) on a computer workstation (Apple IMac 

27 inch, Apple, USA) with a calibrated monitor. The multiplanar reconstruction 

application of the software was used for angular and other measurements. 

Morphological measurements taken for both femur and tibiotarsus included 

functional length, diameter and cortical cross-sectional area at the mid-diaphysis, 

curvature in both frontal and sagittal planes and torsion.  

Length was measured viewing the medio-lateral plane by drawing a straight line 

between the midpoint of the distal end of the bone to the midpoint at the proximal 

end of the bone. 

The mid-diaphysis was located by halving the length measure above. As the cross 

section (in the transverse plane) of the bone is approximately elliptical in shape, the 

lengths of both the major and minor axes were recorded. Area of the whole cross-
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section of bone at the mid-diaphysis was measured using the ‘area’ tool within the 

software by highlighting the whole cross-sectional area. Internal area was measured 

by highlighting the non-cortical area of the cross-section. This was subtracted from 

the total area to obtain the cortical area of the bone at the mid-diaphysis. 

To measure cranio-caudal curvature, the midpoint of the bone was located by 

halving the distance between the lateral periosteal surfaces of the mid-diaphysis 

when viewing the medio-lateral plane. Two lines were drawn from this midpoint of 

the mid-diaphysis – one to the midpoint of the distal end and another to the midpoint 

of the proximal end. The caudal angle made by these two lines was recorded as the 

cranio-caudal curvature of the bone. The same process was used to measure the 

mediaolateral curvature when viewing the craniocaudal plane, with the medial angle 

measured in this plane. 

Bone torsion was measured by creating a separate DICOM file in the transverse 

plane of the bone, covering its whole length. A slice from the distal end was then 

overlaid on a slice from the proximal end of the bone. A line was drawn between 

selected landmarks chosen for each site. The angle between these two lines (one 

line drawn on the distal slice and one line on the proximal slice) was recorded as the 

relative torsion of the whole bone. Details of which slices were compared and which 

landmarks were used to form each line are given in Table S1. An example of how 

these lines were used to calculate relative torsion is shown in Figure S5.
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Bone  Figure Position along 

proximal-distal axis 

Landmarks 

Proximal femur S1 The slice at which the 

diameter of the femoral 

head is greatest. 

A line joining the 

centre of the femoral 

head to the most 

cranial point of the 

trochanter femoris. 

Distal femur S2 The slice at which both 

the condylus lateralis 

and condylus medialis 

are at their most 

pronounced. 

A line joining the most 

caudal points of the 

condylus lateralis and 

condylus medialis 

Proximal tibiotarsus S3 Approaching from the 

proximal end, the slice 

at which the first sign of 

mineralisation appears 

in the facies articularis 

femoralis.  

A line joining the most 

caudal point of the 

crista cnemialis 

cranialis with the most 

caudal point of the 

facies articularis 

lateralis. 

Distal tibiotarsus S4 The slice at which both 

the condylus lateralis 

and condylus medialis 

are at their most 

pronounced. 

A line joining the most 

caudal points of the 

condylus lateralis and 

condylus medialis 

Table S1. Anatomical landmarks used to calculate bone torsion   

Details of anatomical terms used are from The Anatomical Atlas of Gallus [1]. 
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Fig S1. Proximal femur in cross-section, with the centre of the femoral head (white 

arrow) and trochanter femoris (blue arrow) highlighted. 
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Fig S2. Distal femur in cross-section, with the condylus medialis (white arrow) and 

condyles lateralis (blue arrow) highlighted. 

 

Fig S3. Proximal tibiotarsus in cross-section, with the crista cnemialis cranialis 

(white arrow), the facies articularis lateralis (blue arrow) and the mineralised facies 

articularis femoralis (red arrow) highlighted. 
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Fig S4. Distal tibiotarsus in cross-section, with the condylus medialis (white arrow) 

and condylus lateralis (blue arrow) highlighted. 

 

 

Fig S5. An example of how the angle of relative bone torsion was calculated in the 

tibiotarsus. 
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Bending stress calculations 

 

Fig. S6. Schematic of mid-diaphyseal tibiotarsal cross-section showing 

measurements taken or deduced as below. 

The second area moment of inertia (I) was calculated by assuming the bone to be a 

perfect hollow elliptical cylinder of constant wall thickness and outer semi-major axis 

ao, inner semi-major axis ai, outer semi-minor axis bo and inner semi-minor axis bi 

as: 

𝐼 =  
𝜋

4
(𝑎𝑜𝑏𝑜

3 − 𝑎𝑖𝑏𝑖
3)     …  a > b   [2] 

This formula to calculate the second area moment of inertia (I) requires the 

assumption of a constant wall thickness. Therefore, rather than using 

measurements of ai and bi from CT analysis, it is assumed that 𝑎𝑜: 𝑏𝑜 =  𝑎𝑖: 𝑏𝑖 

Assume 𝑎𝑜: 𝑏𝑜 = 𝑥 
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So if 𝑎𝑜 = 𝑥𝑏𝑜 then 𝑎𝑖 = 𝑥𝑏𝑖 

 

𝐴𝑟𝑒𝑎𝑖 =  𝜋𝑎𝑖𝑏𝑖 

𝐴𝑖 =  𝜋𝑥𝑏𝑖𝑏𝑖 

𝐴𝑖

𝜋𝑥
=  𝑏𝑖

2 

𝑏𝑖 =  √
𝐴𝑖

𝜋𝑥
 

𝑎𝑖 = 𝑥𝑏𝑖 

Both ao and bo were taken from CT measurements. 

The second area moment of inertia (I) is then used to calculate the bending stress 

(B) experienced by the bone, using the formula given in the main text. 

 

Histology protocol for porosity measurement 

Staining and mounting was carried out by the Veterinary Services department at the 

Royal (Dick) School of Veterinary Studies, UK. 

To assess the porosity of each bone, 1 cm samples of the mid-diaphysis of the left 

tibiotarsus from each bird were cut using a bench based bone saw. The tissues 

were placed into 10% buffered formalin for about a week followed by decalcification 

in Decal I solution from Leica until soft enough to cut through easily. They were 

checked every 3 days until soft. The tissue was then washed in running water to 

remove the decal fluid  for 1 hour, then processed over 2 days through graded 

ethanol xylenes and fixed into wax. Sections were cooled on ice and cut at 3 
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microns. Sections were picked up onto electrostatically charged microscope slides. 

The sections were dried overnight at 37°C then heated to 60°C for 30 minutes 

before staining with haematoxylin and eosin. 

 

Porosity was measured on a Leica DMRB fluorescent microscope using a x5 

objective lens. Photographs were taken of north, south, east and west sections of 

cortical bone mounted on slides. Porosity was then calculated for each photograph 

by converting the image to a greyscale 32 bit image and  counting the percentage of 

pixels in each image which were black (the percentage porosity) using the ‘analyse 

particles’ function within ImageJ, a public domain image analysis software (NIH, 

USA, version 1.6.0_20, 64-bit). Porosity results of the north, south, east and west 

sections of each bird were averaged to obtain an overall cortical porosity for each 

bird. 

 

Mineral content analysis protocol 

Bone mineral analysis was carried out by DM Scientific (Thirsk, UK). 

To measure the mineral content of each bone, 2 cm samples of the mid-diaphysis of 

the right tibiotarsus were cut using a bench based bone saw. Bone samples were 

stored at -20°C and defrosted prior to being sent for analysis. 

From this 2cm cut, a 1 cm portion was taken and weighed on a 4 place balance.  

This 1 cm portion was dried in an oven at 103°C, the bone was then cooled and 

weighed to calculate the dry matter. To defat, the sample was wrapped in a filter 

paper and placed in a soxhlet extraction apparatus and extracted for four hours 

under reflux with petroleum ether.  The sample was then air dried overnight and 

placed in an oven at 103°C for four hours to remove any residual solvent. 
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Ash content was calculated by placing the sample into a pre-weighed ash crucible 

and heating overnight in a furnace at 550°C.  Once removed and cooled the sample 

and crucible were weighed to obtain the ash percentage. 

The resulting ash sample was then used for the calcium and phosphorus analysis. 

Sample was placed in a beaker and heated with 50% hydrochloric acid; once cooled 

the solution was placed in a 250 ml volumetric flask and diluted with deionised 

water. 

The sample solution was diluted in a strontium chloride solution and the calcium 

concentration was determined on an atomic absorption spectrometer using a 

standard calibration curve. 

The sample solution was diluted in an ammonium molybdovanadate solution and 

phosphorous content was determined on a visible spectrometer at 430nm using a 

standard calibration curve. 
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Figure 1. Body mass measurements (means and standard errors) from hatch 

to seven weeks of age. 
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Figure 2. Tibiotarsal length (a) and leg muscle mass (b) from three to seven 

weeks of age. 
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Figure 3. Cranio-caudal and medio-lateral curvature of the femur and 

tibiotarsus (in degrees). 
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Figure 6. Tibiotarsal bone quality measurements. 
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Figure B1. Left pectoral muscle mass in each line at 3 weeks, 5 weeks and 7 

weeks of age. 
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Line Length (cm) Cranio-caudal curve (°) Medio-lateral curve (°) Torsion (°) Cortical Area (cm
2
) 

Experiment 1 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 

Broiler chicken 
7.59 

(0.27) 

10.24 

(0.37) 

11.72 

(0.53) 

175.5 

(2.03) 

174.6 

(1.75) 

174.4 

(1.64) 

176.7 

(1.24) 

175.5 

(1.09) 

175.9 

(1.15) 

174.2 

(2.97) 

167.8 

(5.20) 

170.1 

(3.71) 

0.18 

(0.022) 

0.35 

(0.065) 

0.37 

(0.058) 

Layer chicken 
5.49 

(0.17) 

6.82 

(0.26) 

8.69 

(0.40) 

179.1 

(1.31) 

178.7 

(0.75) 

179.5 

(0.86) 

176.9 

(0.65) 

176.8 

(0.76) 

177.2 

(0.51) 

173.6 

(3.50) 

174.2 

(1.78) 

174.6 

(2.53) 

0.06 

(0.005) 

0.10 

(0.012) 

0.13 

(0.018) 

Pekin hybrid 
10.25 

(0.29) 

11.35 

(0.20) 

11.57 

(0.22) 

183.2 

(1.46) 

183.0 

(1.11) 

181.4 

(0.96) 

172.2 

(1.14) 

172.7 

(1.83) 

172.1 

(1.09) 

166.3 

(4.99) 

153.5 

(7.70) 

153.9 

(8.04) 

0.15 

(0.014) 

0.21 

(0.019) 

0.23 

(0.023) 

SED 

0.16 

P<0.001   df=4    [line, age, sex, 

age*sex] 

0.74 

P=0.151   df=4   [line, line*sex] 

0.66 

P=0.285   df=4   [line] 

3.08 

P=0.005   df=4   line, age] 

0.02 

P<0.001   df=4   [line, age, sex, 

line*sex] 

Experiment 2 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7 wks 

Pekin male line 
9.35 

(0.19) 

10.79 

(0.18) 

10.93 

(0.28) 

181.3 

(0.98) 

181.6 

(0.89) 

180.6 

(1.11) 

172.7 

(1.16) 

171.7 

(1.05) 

172.5 

(0.70) 

168.2 

(4.20) 

167.1 

(6.35) 

151.3 

(4.68) 

0.14 

(0.013) 

0.18 

(0.010) 

0.20 

(0.014) 

Pekin female line 
9.22 

(0.27) 

10.81 

(0.25) 

10.84 

(0.20) 

183.0 

(1.19) 

182.5 

(1.35) 

182.0 

(1.12) 

172.2 

(1.37) 

172.3 

(1.41) 

172.5 

(1.44) 

175.0 

(2.33) 

169.6 

(4.66) 

157.5 

(4.97) 

0.12 

(0.009) 

0.15 

(0.006) 

0.17 

(0.009) 

Mallard 
7.54 

(0.21) 

8.43 

(0.15) 

8.73 

(0.24) 

182.4 

(1.45) 

182.9 

(0.98) 

181.9 

(1.60) 

174.6 

(0.78) 

174.3 

(0.71) 

174.4 

(0.97) 

171.9 

(3.39) 

165.4 

(5.34) 

154.2 

(7.27) 

0.08 

(0.005) 

0.09 

(0.006) 

0.10 

(0.009) 

SED 
0.11 

P=0.001   df=4   [line, age, sex] 

0.71 

P=0.887   df=4 

0.65 

P=0.756   df=4   [line] 

2.86 

P=0.712   df=4   [age] 

0.02 

P=0.001   df=4   [line, age, sex] 

Table S2: Tibiotarsal morphology - Least squares means (and standard errors) in all lines at each age. SED = Standard Errors of 

Difference.   P values refer to line*age interactions. Other significant effects are presented in square brackets for each trait. 
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Table S3: Tibiotarsal bone quality - Least squares means (and standard errors) in all lines at each age. SED = Standard Errors of 

Difference. P values refer to line*age interactions. Other significant effects are presented in square brackets for each trait. 

Line Stiffness (N/mm) Maximum load (N) Bending stress (N/cm
2
) BMD (%) Porosity (%) 

Experiment 1 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 

Broiler chicken 
224 

(18.8) 

349 

(39.5) 

415 

(44.6) 

284 

(33.8) 

483 

(59.6) 

627 

(76.1) 

951 

(125) 

652 

(117) 

664 

(219) 

38.0 

(3.01) 

47.0 

(2.97) 

44.1 

(2.32) 

25.8 

(2.94) 

22.2 

(1.51) 

25.6 

(3.63) 

Layer chicken 53 (7.5) 
130 

(18.1) 

189 

(24.0) 

60 

(10.4) 

121 

(14.7) 

177 

(34.6) 

821 

(125) 

717 

(125) 

615 

(160) 

27.6 

(1.96) 

38.9 

(NA) 

44.3 

(2.82) 

20.8 

(1.89) 

19.6 

(2.80) 

20.7 

(3.43) 

Pekin hybrid 
183 

(12.3) 

241 

(26.5) 

336 

(34.9) 

193 

(18.6) 

290 

(19.9) 

435 

(46.8) 
614 (72) 684 (85) 

926 

(166) 

37.2 

(1.53) 

39.2 

(1.93) 

41.6 

(2.56) 

22.7 

(3.53) 

19.7 

(5.46) 

16.1 

(5.46) 

SED 
14.6 

P=0.002   df=4   [line, age, sex] 

19.9 

P<0.001   df=4   [line, age, sex, 

line*sex] 

75.4 

P<0.001   df=4   [line*sex] 

1.4 

P<0.001   df=3   [line, age] 

2.1 

P=0.067   df=4   [line] 

Experiment 2 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 

Pekin male line 
148 

(22.2) 

257 

(62.8) 

333 

(24.5) 

201 

(27.6) 

314 

(52.0) 

410 

(31.5) 
721 (57) 

883 

(367) 
781 (85) 

28.8 

(3.72) 

45.0 

(1.59) 

46.5 

(1.37) 

29.0 

(7.18) 

22.9 

(3.32) 

19.2 

(2.55) 

Pekin female line 
158 

(14.8) 

248 

(35.0) 

360 

(33.1) 

171 

(15.7) 

274 

(30.2) 

382 

(33.0) 
645 (79) 

660 

(109) 

867 

(117) 

32.9 

(1.06) 

44.5 

(3.26) 

45.9 

(1.72) 

28.6 

(2.96) 

19.0 

(2.55) 

15.1 

(2.53) 

Mallard 
168 

(21.7) 

207 

(25.3) 

248 

(47.0) 

108 

(7.16) 

173 

(12.3) 

206 

(30.8) 

827 

(131) 

1020 

(99) 

1103 

(165) 

36.5 

(1.99) 

43.1 

(3.38) 

38.1 

(3.36) 

17.9 

(2.79) 

14.5 

(1.86) 

13.1 

(2.18) 

SED 
16.2 

P<0.001   df=4   [line, age] 

12.1 

P<0.001   df=4   [line, age, sex, 

age*sex] 

80.1 

P=0.019   df=3   [line, age] 

1.4 

P<0.001   df=4   [age] 

1.7 

P=0.012   df=4   [line, age] 
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Line Length (cm) Cranio-caudal curve (°) Medio-lateral curve (°) Torsion (°) Cortical Area (cm
2
) 

Experiment 1 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 

Broiler chicken 
5.70 

(0.11) 

7.21 

(0.24) 

8.17 

(0.28) 

166.6 

(2.81) 

168.5 

(2.54) 

167.2 

(1.90) 

171.3 

(1.60) 

174.8 

(1.81) 

174.8 

(1.25) 

126.2 

(3.21) 

125.9 

(3.98) 

127.7 

(4.85) 

0.23 

(0.028) 

0.40 

(0.059) 

0.42 

(0.065) 

Layer chicken 
4.01 

(0.11) 

5.01 

(0.17) 

6.21 

(0.22) 

167.6 

(1.24) 

167.2 

(1.61) 

166.9 

(1.13) 

172.0 

(1.28) 

173.4 

(1.07) 

173.8 

(0.95) 

134.9 

(4.28) 

135.7 

(2.34) 

133.6 

(1.92) 

0.07 

(0.006) 

0.12 

(0.015) 

0.16 

(0.015) 

Pekin hybrid 
6.27 

(0.17) 

7.18 

(0.18) 

7.38 

(0.16) 

170.5 

(1.61) 

169.3 

(1.63) 

169.4 

(1.75) 

173.3 

(1.50) 

173.7 

(1.14) 

174.2 

(1.53) 

138.2 

(2.87) 

128.9 

(3.60) 

123.9 

(4.39) 

0.19 

(0.021) 

0.24 

(0.017) 

0.22 

(0.029) 

SED 
0.10 

P<0.001   df=4   [line, age, sex] 

1.06 

P=0.428   df=4   [line] 

0.80 

P=0.094   df=4   [age] 

1.86 

P<0.001   df=4   [line, age] 

0.02 

P<0.001   df=4   [line, age, sex, 

line*sex] 

Experiment 2 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 3 wks 5 wks 7wks 

Pekin male line 
5.65 

(0.16) 

6.89 

(0.16) 

7.14 

(0.11) 

171.9 

(1.42) 

173.7 

(2.15) 

174.9 

(1.99) 

170.8 

(1.65) 

173.6 

(1.35) 

174.8 

(0.80) 

137.9 

(2.06) 

130.3 

(4.50) 

124.4 

(4.02) 

0.22 

(0.018) 

0.22 

(0.010) 

0.22 

(0.019) 

Pekin female line 
5.54 

(0.09) 

6.81 

(0.15) 

6.76 

(0.14) 

171.5 

(1.20) 

171.1 

(1.04) 

170.7 

(3.11) 

174.4 

(1.22) 

175.7 

(0.80) 

175.5 

(0.91) 

136.2 

(3.23) 

130.4 

(2.89) 

125.5 

(3.57) 

0.17 

(0.014) 

0.17 

(0.013) 

0.18 

(0.011) 

Mallard 
4.41 

(0.12) 

5.03 

(0.10) 

5.24 

(0.13) 

169.9 

(1.51) 

172.5 

(1.66) 

171.4 

(1.65) 

174.6 

(1.22) 

174.3 

(1.40) 

174.5 

(0.85) 

139.8 

(3.39) 

135.8 

(3.10) 

133.2 

(3.44) 

0.09 

(0.005) 

0.10 

(0.007) 

0.10 

(0.008) 

SED 
0.07 

P<0.001   df=4   [line, age, sex] 

1.07 

P=0.1   df=4   [line] 

0.71 

P<0.001   df=4   [line, age] 

1.9 

P=0.084   df=4 [line, age] 

0.01 

P=0.589   df=4 

Table S4: Femoral morphology - Least squares means (and standard errors) in all lines at each age. SED = Standard Errors of 

Difference. P values refer to line*age interactions. Other significant effects are presented in square brackets for each trait. 
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Fig. S7: Changes in the length of the left femur with age from Experiment 1 (broiler 

chicken, layer chicken, Pekin duck commercial hybrid) and Experiment 2 (male line 

Pekin, female line Pekin and mallard). The upper and lower boxplot whiskers extend 

to within 1.5 times above and below the interquartile range respectively. 
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Fig. S8: Molar ratio of Ca:P in mid-diaphyseal cortical bone of the tibiotarsus in each 

line at each age. The upper and lower boxplot whiskers extend to within 1.5 times 

above and below the interquartile range respectively. 
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Chapter One 

 

Differences in hindlimb morphology of 
ducks and chickens - effects of 
domestication and selection 

 

This chapter was published in Genetics Selection Evolution on November 17th, 

2015:  

Duggan, BM, Hocking, PM, Schwarz, T, Clements, DN (2015). Differences in 

hindlimb morphology of ducks and chickens: effects of domestication and selection. 

Genetics Selection Evolution: GSE 47: 88 

Author contributions: 

Brendan Duggan contributed to all aspects of this work. Paul Hocking and Dylan 

Clements provided supervision support. Tobias Schwarz provided advice on 

recording bone morphology measurements through the use of computed 

tomography. 

Email addresses: 

BMD: Brendan.Duggan@roslin.ed.ac.uk 

PMH: Paul.Hocking@roslin.ed.ac.uk 

TS: Tobias.Schwarz@ed.ac.uk 

DNC: Dylan.Clements@ed.ac.uk 

mailto:Brendan.Duggan@roslin.ed.ac.uk
mailto:Paul.Hocking@roslin.ed.ac.uk
mailto:Tobias.Schwarz@ed.ac.uk
mailto:Dylan.Clements@ed.ac.uk


52 
 

Abstract 

Background 

Poultry account for the most numerous species farmed for meat and have been 

subject to intense selection over approximately 60 generations. To assess 

morphological changes which have occurred in the avian leg due to selection for 

rapid growth and high meat yields, divergent lines of chicken (Gallus gallus) and 

duck (Anas platyrhynchos) were studied between three and seven weeks of age. 

For each line, femoral and tibiotarsal morphology was recorded using computed 

tomography scanning and tibiotarsal bone quality measures (stiffness, bending 

stress and porosity) were assessed. 

Results 

In chicken and duck, divergence in hindlimb morphology has occurred in the 

commercial meat lines compared to their lighter conspecifics. As expected, the 

differences were largest between species. Leg development nears completion much 

earlier in ducks than in chickens. Duck tibiotarsi showed a large degree of lateral 

curvature, which is expected to affect foot position during swimming and walking, 

and thus to influence gait. All lines have adapted their tibiotarsal morphology to suit 

the loading forces they experience; however bone quality was found to be poorer in 

chickens. 

Conclusions 

We demonstrate that intensive selection for growth rate in both chickens and ducks 

has resulted in leg morphology changes, which are likely to influence gait. Ducks 

represent an interesting compromise of adaptation for efficient locomotion in two 

media – on land and in water. Some aspects of bone morphology in the duck, such 

as lateral curvature of the tibiotarsus, may result from adaptation to swimming, 

which potentially imposes limitations on terrestrial locomotion. 
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Introduction 

Poultry are the most numerous animals farmed for meat. The Food and Agriculture 

Organisation of the United Nations reported that over 60 billion chickens and 2 

billion ducks are produced worldwide each year, with this figure increasing annually 

[1]. During approximately 60 generations of selection, the meat type (broiler) bird 

has undergone intensive selection for rapid growth and increased pectoral muscle 

mass [2, 3]. For example, the broiler chicken has experienced a 300% increase in 

body mass over this period [4]. One unwanted side effect of this genetic gain has 

been an increased incidence of locomotion problems (termed “leg weakness”) [5]. 

Various studies have reported figures for the prevalence of leg weakness in broiler 

chickens that range from 15 to 30% [6, 4, 7, 8]. Accurate figures are difficult to 

obtain due to variation between studies in the genotypes and gait scoring systems 

used, the age at which birds are assessed and management factors [9]. While 

recent reliable information on the prevalence of leg weakness in poultry is not 

available, it is likely that this issue causes economic losses to the producer [10]. Leg 

weakness in livestock is also a welfare issue; since it has been associated with pain 

[11-13] and modified behaviour [14, 15]. However, selection strategies over the last 

25 years have addressed some leg weakness issues [16]. Data on the prevalence 

of welfare issues in domestic ducks is scarce [17, 18] but given that, in duck and 

chicken breeding, selection intensities and achieved growth rates and carcass 

weights are similar, it is likely that locomotion problems also exist to some extent in 

the domestic duck. 

The causes of poor gait are varied. In broiler chickens, an increase in pectoral 

muscle mass has shifted the body’s centre of mass cranially which is associated 

with relatively poor stability [19, 20]. Bone deformities may also play a role: valgus, 

varus and torsional deformities are generally seen in the tibiotarsus and have 
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previously been associated with gait abnormalities [21]. Some gait problems can be 

due to bone fractures, which either occur due to trauma or are secondary to other 

bone pathologies [21]. Fracture risk is often linked to bone quality; cortical bone has 

been shown to be less well mineralised and more porous in broiler chickens that are 

selected for rapid growth than in slower growing lines [22, 23]. In Pekin ducks, 

tibiotarsal bone mineral density seems to have remained within a similar range 

during the last two decades, although tibiotarsal length and body mass have 

increased [24]. 

The aim of this study was to assess skeletal changes which have occurred in the 

Pekin duck during its selection for rapid growth and to compare these with different 

lines of chickens. Since such a vast number of fast-growing ducks and chickens are 

reared for meat each year, a better understanding of these birds’ gait may lead to 

welfare improvements on a large scale. The duck leg represents an interesting 

compromise of adaptation for efficient locomotion in two media, i.e. on land and in 

water; it is expected that adaptations which are beneficial to swimming will create a 

leg morphology which differs from that of a strictly cursorial species such as the 

chicken. To represent divergent lines of chicken, broiler chickens were used as an 

example of a line selected for rapid growth, and layers were used to represent a 

growth rate more similar to their ancestral phenotype, the red jungle fowl (Gallus 

gallus). For Pekin ducks, a commercial hybrid and two breeding lines were used as 

examples of high growth rate birds; these were compared to their ancestral 

phenotype, the mallard (Anas platyrhyncos). Selection for high feed efficiency and 

breast muscle yield in both species was anticipated to have led the heavier meat 

lines to diverge from their lighter conspecifics in their skeletal morphology. Both the 

Pekin duck and the broiler chicken have undergone intense selection for breast 

muscle mass over many decades. This selection has led to a cranial shift in the 

body’s centre of mass, thus altering the loading forces which act on the legs of both 
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lines [2]. As well as recording data on leg morphology, allometric scaling patterns of 

various traits were also compared; normally, aspects of hindlimb morphology would 

be expected to scale isometrically (that is, with geometric similarity) to body mass. 

However, due to differences in the natural habitats and locomotor modes of the 

ancestral phenotypes of chickens and ducks, some deviations from isometry were 

expected. 
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Methods 

Animals and husbandry 

A total of 216 birds of different lines were culled at three ages in two separate 

experiments. During the first experiment, 36 broiler chickens (Ross 308s), 36 layer 

chickens (Lohman Brown) and 36 Pekin ducks (Cherry Valley commercial hybrid) 

were raised in walled research pens. The second experiment used the same pens 

to house 36 Pekin ducks of a male line, 36 Pekin ducks of a female line (both 

Cherry Valley breeding stock) and 36 mallards (Hy-Fly Game Hatcheries, Poulton-

le-Fylde, UK). The male Pekin line, which are the eventual male grandparents of the 

commercial hybrid line, are selected primarily for growth and feed efficiency while 

the female Pekin line, which are the female grandparents of the commercial hybrid 

line, were selected for fertility, as well. Both breeding lines contained equal numbers 

of both males and females.  

Birds were raised following industry guidelines as much as possible. All birds were 

initially housed from day of hatch under brooder lamps in a single pen per line to 

regulate temperature. At seven days, birds were randomly allocated in a 

randomised block design to two blocks of nine pens, separated by a 3 m passage. 

Each pen (2.16 m2) contained four males and four females housed in an area of 

0.27 m2 per bird, increasing to 0.36 m2 per bird from 21 days and 0.54 m2 per bird 

from 35 days onward as birds were removed for measurement. The lighting regime 

was 23 hours light: one hour dark at hatch, reducing by one hour light per day for 

the first seven days and remaining at 16 hours light: 8 hours dark thereafter. The 

mean light intensity in each pen was 120 lux. Barn temperature was 25°C at two 

weeks, reducing to 24°C at three weeks, 22°C at four weeks and remained at 20°C 

from five weeks until termination, as per industry guidelines. Experiment 1 used 

wood shavings as a substrate since this is the industry norm for chickens. 

Experiment 2 used straw as a substrate, as is the case on most UK duck farms. All 
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birds were provided with food and water ad libitum. Broilers were given a 

commercial starter feed for the first 10 days, grower feed from days 11 to 35 and 

finisher feed from day 36 onwards. Layers were fed on a commercial starter feed for 

the first 35 days before transferring to grower feed from day 36 onwards. All duck 

lines in both experiments were fed on a starter feed until day 10 and then a grower 

feed thereafter; both duck diets were supplied by the breeding company. 

The use of animals for this study was approved by the University of Edinburgh 

Ethics Committee. 

Data collection 

At three ages (21, 35 and 49 days), two randomly selected birds (one male and one 

female) from each pen (six males and six females per line) were euthanatized by 

intravenous sodium pentobarbital injection (Euthatal, Merial, Toulouse, France) and 

immediately dissected. These ages were chosen to cover the typical lifespan of a 

production bird of both species. Body mass of each bird was recorded two days 

prior to euthanasia. The left pectoral muscle and thigh and shank muscle groups of 

the femur and tibiotarsus were dissected out and weighed. Both tibiotarsi and 

femora were left intact at the stifle joint and stored at -20°C for future measurement. 

At a later date, the bones were thawed and the left tibiotarsus and femur were 

evaluated with a computed tomography scan (CT). A helical 4-slice CT unit 

(Somatom Volume Zoom, Siemens, Germany) was used. For each scan, six legs 

were laid parallel to each other in supine position (cranial aspect facing upward), 

and scanned along their full length using a 1 mm slice width. The tibiotarsus was 

parallel to the table while the femur, still attached to the tibiotarsus, was at an 

approximately 10 degree angle (with the proximal end of the femur closer to the 

table than the distal end). Bone morphology was assessed using a 3D multi-planar 

reconstruction in dedicated DICOM viewing software (OsiriX, Geneva, Switzerland, 

version 5.8.5 – 32bit). Morphological measurements for both femur and tibiotarsus 
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include functional length, diameter and cortical cross-sectional area at the mid-

diaphysis, curvature in both frontal and sagittal planes and torsion. Detailed 

methods are in Appendix II. 

Bone breaking tests were performed using an LRX materials tester running 

‘Nexygen 2.2’ software (Lloyds Instruments, Bognor Regis, UK) to assess stiffness 

and ultimate breaking strength. Stiffness is a measure of the force required to 

displace the mid-diaphysis of a bone by a known distance when the ends are fixed. 

Ultimate breaking strength is the maximum load the bone can withstand before 

breaking. Compress to rupture tests were carried out on the right tibiotarsus using a 

three-point-bending jig – each bone was balanced in supine position on two curved 

rests 10 mm in diameter and 30 mm apart with a downward force (also curved, 10 

mm diameter) centrally applied at the mid-diaphysis at a rate of 30 mm/min until 

rupture. 

A 1.5 cm portion of the mid-diaphysis was cut from the broken (right) tibiotarsus 

using a circular bone saw and sent for mineral content analysis (DM Scientific, 

Thirsk, UK) to determine bone mineral density. A 1 cm section was also cut from the 

mid-diaphysis of the left tibiotarsus for porosity assessment by histology [See 

Appendix II]. 

 

Data analysis 

Bending stress (B) is a measure of the maximum force experienced by the tibiotarsi 

before breaking, corrected for the anatomical shape of the bone. Bending stress 

was calculated using the formula: 

𝐵 =
𝑀𝑦

𝐼
, 



59 
 

where M is the bending moment (the maximum load applied to the bone multiplied 

by the distance over which it is applied), y is the distance from the cross-sectional 

centre of mass in the direction of loading (in this case, the outer semi-minor axis as 

the cross-section is a hollow ellipse) and I is the second area moment of inertia. 

Full details of the calculation are in Appendix II. 

A split-plot statistical model was analysed in Genstat statistical software (version 

16.1.0.10916 (64-bit), VSN International, Ltd.) using ANOVA, with effects for pen 

nested within block and treatment effects of genetic line, age and sex. Because 

some conditions differed between experiments, the six lines were not analysed 

together; separate ANOVA were performed to compare the lines from Experiment 1 

(broiler chicken, layer chicken and Pekin commercial hybrid) and the lines from 

Experiment 2 (male Pekin line, female Pekin line and mallard). 

Scaling relationships through ontogeny were analysed by regressing the log of each 

trait against the log of body mass. Since both body mass and bone/muscle 

measurements were expected to contain some error, reduced major axis (also 

called Model II) regression was performed. The slope (scaling exponent) of the 

resulting regression equation for each trait was compared to the expected scaling 

exponent for that trait. Assuming that traits scale isometrically (that is, they grow 

with geometric similarity to body mass) and considering that the predictive trait 

(body mass) is volumetric, lengths were expected to scale to body mass0.33, 

measurements of area were expected to body mass0.67 and mass measurements 

were expected to scale to body mass1. Non-dimensional measurements (such as 

bone torsion angles) were expected to scale to body mass0; in other words, they 

were not expected to change as body mass increased. See Allen et al. [25] for a 

detailed description of this analysis. 
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Results 

Least squares means and standard errors of the differences for each trait in all lines 

at all ages are in Appendix III. 

Fig. 1 shows changes in body mass for each line over seven weeks. There was a 

significant difference in body mass between lines in both experiments (P < 0.001). 

The broiler chicken and all three Pekin duck lines grew at a faster rate than both the 

layer chicken and the mallard (P < 0.001). 

 

Figure 1. Body mass measurements (means and standard errors) from hatch 

to seven weeks of age. 

Data are combined from Experiment 1 (broiler chicken, layer chicken, Pekin duck 

commercial hybrid) and Experiment 2 (male Pekin line (M. line), female Pekin line 

(F. line) and mallard). 
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Differences in leg bone length mirrored those of body mass; the tibiotarsus (Fig. 2a) 

was significantly shorter in the layer chicken and mallard compared to the broiler 

chicken and Pekin lines (P < 0.001). There was an age effect (P < 0.001) i.e. duck 

lines in each experiment showed a decline in tibiotarsal growth from five weeks of 

age whereas chicken tibiotarsi continued to grow throughout the experiment. When 

analysed allometrically, chicken tibiotarsi grew with positive allometry and the 

tibiotarsi of all four duck lines grew with negative allometry (Table 1). A sex effect (P 

< 0.001 in Experiment 1 and P = 0.002 in Experiment 2) was also observed; males 

of all lines had longer tibiotarsi than females. In Experiment 1 an age by sex 

interaction was observed (P < 0.001) i.e. females (broiler chicken and Pekin hybrid, 

but not layer chicken) had longer tibiotarsi than males at three weeks but not at five 

and seven weeks of age (P < 0.001). 
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Figure 2. Tibiotarsal length and leg muscle mass from three to seven weeks of 

age. 

Leg muscle mass (drumstick and thigh muscles) is presented using a log-scale for 

clarity. The upper and lower boxplot whiskers extend to within 1.5 times above and 

below the interquartile range, respectively. Dots outside this range are marked as 
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outliers. Note the lack of growth in both bone length and muscle mass in all duck 

lines after five weeks of age. 

 

In the cranio-caudal plane, the tibiotarsus of the broiler chicken was significantly 

more curved (cranially) than the tibiotarsus of the layer chicken, which was in turn 

more cranially curved than that of the Pekin hybrid (P < 0.001). In Experiment 2, the 

mallard tibiotarsus displayed significantly more caudal curvature than that of the 

male Pekin line (P = 0.013) but did not differ from that of the female line (Fig. 3b). 

Male birds in Experiment 1 exhibited greater cranio-caudal curvature of their 

tibiotarsi than females. Both species differed in the direction of tibiotarsal curvature 

in this plane, i.e. all four duck lines curved caudally whereas both chicken lines 

curved cranially. In the medio-lateral plane (Fig. 3d), the tibiotarsi of both the broiler 

chicken and Pekin duck displayed greater lateral curvature than their lighter 

conspecifics; however, this difference was statistically significant (P < 0.001) only 

between the mallard and Pekin breeding lines. In this plane, the duck tibiotarsi were 

more laterally curved than those of both chicken lines (P < 0.001). 
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Figure 3. Cranio-caudal and medio-lateral curvature of the femur and 

tibiotarsus (in degrees). 

180° represents a straight bone. A value below 180° represents cranial and lateral 

bending in the craniocaudal and mediolateral planes, respectively. 

 

Tibiotarsal torsion occurred to a similar extent in both chicken lines. The Pekin 

hybrid differed significantly from the chicken lines (P < 0.001). There was a line by 

age interaction, i.e. at three weeks of age, the Pekin and chicken lines displayed a 

similar range of tibiotarsal torsion but by seven weeks of age the distal part of the 

tibiotarsus of the Pekin hybrid had rotated internally in relation to the proximal 

tibiotarsus (P = 0.005) (Fig. 5b). Internal rotation occurs when the cranial aspect of 

the distal part of the tibiotarsus turns to face medially. No difference in tibiotarsal 

torsion was observed between the mallards and Pekin breeding lines in Experiment 

2; however, the distal tibiotarsi of the male Pekin line rotated internally to a greater 
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extent than that of the female Pekin line (P = 0.024). There was an age interaction 

(P < 0.001) with tibiotarsi in all three duck lines of Experiment 2 rotating internally as 

they aged. A line by age interaction also occurred in Experiment 1, i.e. the distal 

tibiotarsi of the Pekin commercial hybrid rotated internally as the bird aged (P = 

0.005) whereas the tibiotarsi of the chicken lines did not. The R2 values from 

regressions of the log of bone torsion on the log of body mass were very low for 

both chicken lines (Table 1), suggesting no relationship. In the duck lines, tibiotarsal 

torsion deviated slightly from isometric growth. 
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Figure 5. Rotation of the distal part of the femur and tibiotarsus in relation to 

the proximal part of the femur and tibiotarsus, respectively. 

Angles at the starting point at three weeks of age are based on the relative position 

of bone landmarks and are not a measure of initial rotation. A decrease in angle 

after 3 weeks represents external femoral rotation and internal tibiotarsal rotation. 
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Tibiotarsal bone quality 

Tibiotarsal stiffness differed significantly within both chickens and ducks (P < 0.001). 

Lines selected for rapid growth had stiffer tibiotarsi than lines with a slow growth 

(Fig 6a). There was an age effect in Experiment 2, i.e. the tibiotarsi of the fast-

growing Pekin lines had the same stiffness as the mallard at three weeks of age but, 

by seven weeks, they were significantly stiffer than those of the mallard (P < 0.001). 

Tibiotarsal stiffness scaled isometrically in all lines except for the layer chicken, 

which displayed very positive allometry (Table 1). Tibiotarsal strength (maximum 

load to rupture) for all lines at all ages was significantly greater in fast-growing lines 

compared to their slow-growing conspecifics (P < 0.001). Tibiotarsal strength scaled 

with positive allometry for all lines except for the male and female Pekin breeding 

lines, which scaled with isometry (Table 1). 

Bending stress (Fig 6b) did not differ significantly between the Pekin hybrid and both 

chicken lines at all ages. However, there was a line by age interaction (P < 0.001), 

i.e. Pekin hybrid tibiotarsi tolerated greater bending stresses as the animals grew 

older whereas the bending stresses tolerated by the tibiotarsi of both chicken lines 

decreased. The mallard tibiotarsi resisted significantly more bending stress than 

those of the heavier male Pekin line and female Pekin line (P < 0.001). There was 

also an age effect, i.e. the tibiotarsi of all three duck lines tolerated more bending 

stress as they aged (P < 0.001). Data for the male Pekin line at five weeks of age 

was not analysed since these bones moved during loading, causing error. 

Data on tibiotarsal ash content for the layer chicken line at five weeks of age is not 

available due to measurement error. The ash content of the bone before drying (Fig. 

6c) was significantly greater in the broiler compared with both the layer chicken and 

Pekin hybrid (P < 0.001). All lines had increased bone mineralisation as they aged 

(P < 0.001), although the broiler chicken reached its 7-week level of ash content 

earlier than the Pekin commercial hybrid (P < 0.001). In Experiment 2, all duck lines 
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had increased bone mineralisation as they grew older (P < 0.001); however, for the 

mallard, bone mineralisation increased until five weeks of age and then decreased 

from seven weeks (P < 0.001). The molar Ca:P ratio across all lines over all ages 

ranged from 1.4 to 1.8 [See Appendix III]. 

Porosity differed significantly between lines in Experiment 1 (P = 0.003), i.e. the 

tibiotarsi of broiler chicken were more porous at the mid-diaphysis than those of 

both the layer chicken and Pekin hybrid (Fig. 6d). In Experiment 2, all three duck 

lines significantly differed in tibiotarsal porosity (P < 0.001) with the male line having 

the highest mid-diaphyseal porosity and the mallard having the lowest. An age 

interaction was also observed in the duck lines with the tibiotarsi becoming less 

porous as the birds aged (P < 0.001). 

 

Figure 6. Tibiotarsal bone quality measurements. 

(a) Stiffness and (b) bending stress were measured on the whole bone. (c) Ash 

content (wet bone) and (d) porosity were taken from a 1 cm section of the mid-
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diaphysis. Ash content data for layer chickens at five weeks of age and bending 

stress values for the male Pekin line at five weeks of age were excluded due to 

measurement error. 

Femoral measurements 

The length of the femur was significantly shorter in the layer chicken and the mallard 

than in the broiler chicken and Pekin male and female lines (P < 0.001). Age effects, 

sex effects and line-by-age interaction effects were observed in both experiments (P 

< 0.001). Femoral length scaled with negative allometry for all duck lines (Table 1). 

The femoral length of the broiler chicken increased isometrically with body mass 

and that of the layer chicken showed slightly positive allometric growth. 

There was no difference in cranio-caudal curvature of the femur between the broiler 

and layer chicken in Experiment 1 (Fig. 3a). However, the femora of the chicken 

lines were more cranially curved than the Pekin hybrid in this plane (P < 0.001). In 

Experiment 2, the femora of the mallard and the female Pekin line displayed more 

cranial curvature than those of the male Pekin line (P = 0.001). In the medio-lateral 

plane, no significant differences in femoral curvature of the broiler chicken, layer 

chicken or Pekin duck hybrid were observed. However, there was an age effect (P < 

0.001), i.e. lateral curvature of the femora of all three lines decreased as the birds 

aged. In Experiment 2, the femora of the male Pekin line were significantly more 

laterally curved than those of the female line and the mallard (P < 0.001). An age 

effect and a line-by-age interaction effect were observed in these lines (P < 0.001); 

the femora of the male line became less curved in this plane as the birds aged 

whereas the female line and mallard maintained the same curvature. By seven 

weeks of age, the femora of all lines were curved to a similar degree in the medio-

lateral plane (Fig. 3c). 
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Femoral torsion differed significantly between chicken lines in Experiment 1 (Fig. 

5a); the distal femur of the broiler was rotated more externally to the proximal end 

when compared to that of the layer at all ages (P < 0.001). There was also a line-by-

age interaction (P < 0.001); at three weeks of age, the distal femur of the Pekin 

commercial hybrid was rotated internally compared to that of both chicken lines. 

However, as the Pekin individuals aged, the distal femur rotated externally, reaching 

a similar degree of femoral torsion as in the broiler chicken by seven weeks of age. 

A similar age interaction occurred in Experiment 2, with the distal femur of all duck 

lines rotating externally in relation to the proximal femur (P < 0.001). The mallard 

femur underwent less rotation as it aged (P = 0.002), reaching a degree or femoral 

torsion similar to that of the layer chicken by seven weeks of age. 

Femoral cortical area grew isometrically in the broiler chicken and with positive 

allometry in the layer chicken. The R2 value for this trait in duck lines was low, 

suggesting a weak relationship with body mass. 

Tibiotarsal length Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0.33 0.40 (+) 0.37 0.44 0.93 

Layer 0.33 0.43 (+) 0.41 0.46 0.98 

Pekin hybrid 0.33 0.17 (-) 0.15 0.20 0.78 

Pekin male line 0.33 0.15 (-) 0.13 0.18 0.84 

Pekin female line 0.33 0.17 (-) 0.15 0.20 0.82 

Mallard 0.33 0.21 (-) 0.18 0.23 0.88 

Femoral length Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0.33 0.33 (=) 0.30 0.35 0.95 

Layer 0.33 0.41 (+) 0.38 0.44 0.97 
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Pekin hybrid 0.33 0.23 (-) 0.20 0.26 0.85 

Pekin male line 0.33 0.22 (-) 0.20 0.24 0.93 

Pekin female line 0.33 0.21 (-) 0.18 0.23 0.88 

Mallard 0.33 0.24 (-) 0.21 0.26 0.91 

Leg muscle mass Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 1 1.15 (+) 1.09 1.21 0.98 

Layer 1 1.41 (+) 1.34 1.48 0.98 

Pekin hybrid 1 0.70 (-) 0.62 0.80 0.86 

Pekin male line 1 0.64 (-) 0.58 0.71 0.91 

Pekin female line 1 0.59 (-) 0.53 0.66 0.90 

Mallard 1 0.59 (-) 0.48 0.72 0.68 

Tibiotarsal torsion Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0 -0.08 -0.11 -0.06 0.10 * 

Layer 0  0.05  0.03  0.07 0.00 * 

Pekin hybrid 0 -0.21 -0.28 -0.15 0.22 

Pekin male line 0 -0.13 -0.17 -0.10 0.35 

Pekin female line 0 -0.12 -0.15 -0.09 0.44 

Mallard 0 -0.19 -0.25 -0.15 0.43 

Femoral torsion Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0  0.09  0.07  0.13 0.01 * 

Layer 0 -0.07 -0.10 -0.05 0.02 * 

Pekin hybrid 0 -0.17 -0.22 -0.13 0.52 

Pekin male line 0 -0.11 -0.14 -0.09 0.59 
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Pekin female line 0 -0.10 -0.13 -0.08 0.47 

Mallard 0 -0.11 -0.15 -0.08 0.24 

Tibiotarsal cortical area Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0.67 0.81 (+) 0.68 0.96 0.75 

Layer 0.67 0.77 (+) 0.67 0.88 0.86 

Pekin hybrid 0.67 0.60 (=) 0.49 0.74 0.66 

Pekin male line 0.67 0.34 (-) 0.29 0.41 0.74 

Pekin female line 0.67 0.31 (-) 0.26 0.37 0.86 

Mallard 0.67 0.48 (-) 0.41 0.55 0.80 

Femoral cortical area Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0.67 0.68 (=) 0.57 0.81 0.75 

Layer 0.67 0.80 (+) 0.71 0.90 0.89 

Pekin hybrid 0.67 0.47 (-) 0.35 0.64 0.24 

Pekin male line 0.67 0.19 (-) 0.14 0.27 0.02 * 

Pekin female line 0.67 0.21 (-) 0.15 0.29 0.07 * 

Mallard 0.67 0.35 (-) 0.28 0.45 0.53 

Tibiotarsal stiffness Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0.67 0.63 (=) 0.54 0.73 0.81 

Layer 0.67 1.28 (+) 1.14 1.43 0.90 

Pekin hybrid 0.67 0.79 (=) 0.66 0.95 0.73 

Pekin male line 0.67 0.78 (=) 0.67 0.90 0.81 

Pekin female line 0.67 0.77 (=) 0.66 0.90 0.81 

Mallard 0.67 0.79 (=) 0.62 1.00 0.52 



73 
 

Tibiotarsal maximum load Expected 

slope 

Slope Lower CI Upper CI R2 

Broiler 0.67 0.78 (+) 0.68 0.89 0.85 

Layer 0.67 1.13 (+) 0.99 1.27 0.88 

Pekin hybrid 0.67 1.01 (+) 0.89 1.15 0.86 

Pekin male line 0.67 0.67 (=) 0.59 0.76 0.87 

Pekin female line 0.67 0.74 (=) 0.65 0.84 0.88 

Mallard 0.67 0.88 (+) 0.79 0.99 0.89 

 

Table 1. Allometric analysis of reduced major axis regressions 

Slopes and R2 values for various bone traits are provided, along with their 95% 

confidence intervals. Regressions presented here were significant (p < 0.01) with 

the exception of those marked *. All length measurements that are regressed 

against body mass have an expected slope of 0.33 and measurements of areas 

have an expected slope of 0.67. Angular measurements such as torsion are 

expected to have a slope of 0. The symbols next to each slope indicate positive 

allometry (+), negative allometry (-) or isometry (=). 
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Discussion 

Both the Pekin duck and broiler chicken have undergone major changes in body 

size and leg morphology since divergence from their ‘unselected’ conspecifics 

occurred through artificial selection. Other studies have reported that these changes 

affect gait [26, 5, 27, 28]. Body mass of both chicken and duck meat lines has also 

considerably increased since divergence from their unselected (or ancestral) 

phenotype. While the layer chicken cannot be regarded as the broiler’s ancestral 

phenotype, it has not been submitted to such intensive selection for increased body 

mass (selection has mainly focused on reproductive traits) and its growth rate is 

similar to that of the mallard. Therefore, it is a useful baseline for comparison with 

the broiler (Fig. 1). 

The length of the tibiotarsus scales differently in both species (Table 1); the leg 

bones of all duck lines undergo a similar rapid early development which is in 

contrast to that of the chicken lines. The duck’s tibiotarsal and femoral growth 

begins to plateau at five weeks of age whereas the chicken’s leg bones continue to 

grow. A similar pattern of growth is seen in leg muscle mass (Fig. 2b). In other 

words, leg growth displays positive allometry in chickens and negative allometry in 

ducks (Table 1). These findings are consistent with a previous study of mallard 

ontogeny, which demonstrated that leg development plateaus to a level close to that 

of the adult at four weeks post-hatch whereas wing development does not really 

begin until three weeks post-hatch [29]. These alternate strategies of leg 

development may be due to differences in the behavioural ecology of the birds’ wild 

ancestors. Predation on chicks represents an intensive selective pressure. The 

standard predator escape mechanism for ducklings is to run to water and swim 

away from the bank [30], whereas for jungle fowl chicks, the predator escape 

mechanism involves periods of immobility and short bursts of flight [31], neither of 

which require intensive or prolonged use of the legs. Therefore, there may have 
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been a higher selective pressure for well-developed legs early in life in the duck 

ancestor, which would explain the patterns of hindlimb growth observed in both the 

mallard and the Pekin lines. 

Tibiotarsal morphology 

Curvature of the tibiotarsus in the cranio-caudal plane differs between both species 

(Fig. 3c). In chickens, the birds selected for rapid growth rate are more cranially 

curved than their slow-growing conspecifics but this is not the case in ducks, for 

which all lines display a similar curvature. Whereas the increased curvature 

observed in the broiler chicken may be a side-effect of the rapid growth rate, it is not 

clear why a similar effect does not occur in the Pekin duck lines. The divergence of 

bone angulation in different directions from 180° (a straight bone) as observed in 

each species may represent an adaptation to specialised leg use in the ancestor 

such as paddling in ducks or cursorial or perching behaviour in chickens (Fig. 4). 
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Figure 4. Curvature of the femur (green) and tibiotarsus (red) in the chicken 

and duck, shown in both frontal and lateral views. 

The tarsometatarsus (blue) is represented by a straight line since curvatures were 

not recorded on this bone. Curvatures are exaggerated for clarity. Note the 

increased lateral curvature of the duck tibiotarsi (and subsequent foot placement) in 

the medio-lateral plane and the differing directions of tibiotarsal curvature in the 

cranio-caudal plane. l = lateral; m = medial; cr = cranial; cd = caudal. 
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In the medio-lateral plane of the tibiotarsus, ducks selected for rapid growth rate 

experience more lateral curvature than their ‘unselected’ conspecifics, the mallards 

(Fig. 3d). This may be a side-effect of rapid growth (although it was not observed in 

broiler chickens), or it may have developed as an adaptation to loading through the 

limb. Lateral bending of the tibiotarsus would increase the angle that the 

tarsometatarsus makes with the sagittal plane of the body, thereby moving the foot 

to a more medial position which would place the foot under the centre of mass 

during stance time and thus, increase stability. Divergence for this trait is also 

observed between species, with the duck lines displaying more curved tibiotarsi. 

This suggests that greater lateral curvature may be beneficial to the duck but not to 

the chicken. Simplistically, the varus deviation of tibiotarsi in ducks would permit the 

feet to be positioned in a more medially aligned position when they paddle, given 

that swimming birds typically paddle with their tibiotarsi positioned in a more 

abducted position than when they walk [32]. The angles of the distal tibiotarsal 

(intertarsal) joint plane have been reported to differ between the ringed teal (a semi-

aquatic species) and the quail (a cursorial species), which supports our findings on 

tibiotarsal bending in the medio-lateral plane [33]. A lateral curvature of the distal 

tibiotarsus (Fig. 4) would lead to a change in the angle of the intertarsal joint plane 

and, thus, affect the position of the tarsometatarsus and move the foot to a more 

medial position. In guinea fowl, during walking the tibiotarsus and tarsometatarsus 

are adducted so that the foot remains underneath the centre of mass during stance 

[34]. Gatesy [35] suggested that the tibiotarsus moves laterally (abducts) to bring 

the protracting foot clear of the stance limb during its swing phase before adducting 

again for ground contact. The lateral curvature observed in the duck may be a 

swimming adaptation which hinders this process during walking. Previous work has 

demonstrated that unperturbed mallards swim at speeds which minimise the 

energetic cost of transport [36]. Mallard ducklings will swim in formation which 

reduces their energy expenditure and it has been suggested that while this is partly 
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due to the drag wake of the leading ducklings, energy may also be ‘recycled’ from 

vortices shed during the power phase of the lead ducking’s paddling stroke [37]. 

The lateral curvature of the duck tibiotarsi may assist in harvesting the energy from 

these shedding vortices to reduce the energetic cost of swimming, but clearly more 

detailed investigation is required to confirm this. Bone curvature was not analysed 

allometrically since this trait does not change with increasing body size (Fig.3). 
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Figure 7. Curvature of the femur (above) and tibiotarsus (below) in the broiler 

chicken (Br), layer chicken (L), Pekin commercial hybrid (P) and the mallard 

(M), in both frontal (a) and lateral (b) views. 

These bones were taken from birds aged 7 weeks. Note the lateral curvature of the 

both the Pekin and mallard tibiotarsi (a) and the extreme cranial curvature of the 

broiler tibiotarsus (b). 
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Rotation of the leg bones can have a major effect on the orientation of some more 

distal elements of the limb and, thus, greatly influence gait dynamics. The tibiotarsi 

of both species show a similar degree of torsion at three weeks of age (Fig. 5b). 

However, as ducks grow older, their tibiotarsi twist with the distal end rotating 

internally. Allometric analysis (Table 1) shows that the scaling exponent of the 

tibiotarsal torsion in duck lines deviates further from the expected value of zero than 

that in chickens (here, a negative scaling exponent indicates an increase in internal 

rotation, rather than negative allometry). The R2 values of the regressions for these 

traits were very close to zero in both chicken lines, which suggests that bone torsion 

does not scale to body mass in this species. This rotation occurs earlier in the Pekin 

commercial hybrid than in the male and female Pekin lines and the mallard, a 

difference which is probably associated with early maturity (Fig. 5b). It is not known 

why the tibiotarsi of the duck lines rotate as the ducks develop, but one effect of this 

rotation would be to position the foot more medially during stance and during 

swimming. In effect, tibiotarsal rotation in this case is complementing the lateral 

curvature discussed previously. However, if this was a swimming adaptation, one 

would expect this rotation to occur earlier when a high selection pressure on 

swimming ability exists in ducklings due to predation (if the same morphological 

constraints on swimming ability exist across ages). Previous studies have reported 

a link between tibiotarsal torsion and rapid growth rate [27] but this explanation is 

contradicted by the observation that duck lines with rapid and slow growths display 

similar ranges of tibiotarsal rotation. Finally, it is also worth noting that these 

measures of torsion are calculated using bone landmarks; changes in the relative 

size/position of these landmarks throughout development may affect the amount of 

torsion recorded and also affect comparisons between lines. 
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Tibiotarsal bone quality 

Selection for production traits was expected to affect aspects of the leg which would 

normally be subjected to a strong level of natural selection. The stiffness of the 

tibiotarsi in all lines scaled with isometry (geometrically similar to body mass) with 

the exception of the layer chicken, which scaled with very positive allometry (Table 

1). This may be a strategy to counteract the comparatively small radius of the layer 

bones. The radius of a bone exponentially affects its strength, so relatively narrow 

bones (such as those of the layer) will be exponentially weaker. Surprisingly, the 

stiffness of the mallard bones does not scale with a similarly positive allometry. In 

chickens, the cortical area of the tibiotarsus increased at a faster rate than the rest 

of the body; in ducks the tibiotarsal cortical area displayed negative allometry (with 

the exception of the Pekin hybrid, which grew isometrically). This is another 

indication that legs reach adult size and slow down their growth earlier in the duck 

lines than in the chicken lines. The tibiotarsi of the broiler, layer, Pekin hybrid and 

mallard became relatively stronger as the bird grew; the maximum load tolerated by 

the tibiotarsi before breaking scaled positively in these lines (the male and female 

Pekin breeding lines scaled isometrically). The range of bending stresses measured 

in the tibiotarsi during breaking were similar for all lines, which suggests that the 

birds, regardless of their size, adapt their bone morphology in a similar way to suit 

the forces subjected on them (Fig. 6b). However, by seven weeks of age, the 

tibiotarsi of the duck lines tolerated more stress than those of the chicken lines, 

which indicates that either the selection pressure on chicken lines for production 

traits has occurred at the expense of the mechanical properties of their bones, or 

that the composition of bone rather than its gross morphology allowed the bones of 

the duck lines to tolerate relatively high forces. The mallard tibiotarsi tolerated 

slightly more bending stress than those of the selected duck lines, which would 

support this theory. Also, as the chicken tibiotarsi are still growing at this 

developmental stage, they may not be as mechanically robust as the duck tibiotarsi, 



82 
 

which have slowed considerably in growth and thus have more opportunity to 

remodel to handle the loads imposed on them. Previous studies on broiler chickens 

suggested that lines selected for rapid growth, while having tibiotarsi of the correct 

dimensions for supporting greater loads, have greater porosity and lower levels of 

cortical bone mineralisation than slower growing lines [23, 22]. 

Differences in bone mineral content did not explain the mechanical changes; all 

lines showed an increase in mineralisation of the mid-diaphyseal tibiotarsus until 

five weeks of age, and thereafter the rate of mineralisation stabilised (Fig 6c). The 

differential mechanical properties of avian bone were consistent with the histological 

measures of porosity. The duck tibiotarsi became less porous (and thus stronger) as 

the birds aged, allowing them to tolerate greater bending stresses, whereas the 

chicken lines maintained the same levels of tibiotarsal porosity throughout the same 

growth period (Fig. 6d). Neither bending stress nor porosity scaled to body mass. 

Bending stress is a metric which has already been corrected for body mass in its 

calculation and it is thus expected to show no relationship with body mass. It is likely 

that porosity is mainly influenced by genotype and environmental factors (such as 

feed) rather than by the size of the bird (although loading forces acting on the bone 

due to body mass will affect porosity through bone remodelling). 

These findings on the divergence of pelvic limb morphology within two species of 

poultry provide useful information, which can be used to lay the foundations for 

further investigations on the link between anatomy and gait in poultry. 
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Conclusions 

It is clear that artificial selection for increased growth rate has resulted in diverging 

hindlimb architectures within species that have been domesticated. Natural 

selection that acted on these species prior to domestication, has also affected leg 

morphology. Since the terrestrial lifestyle of the domestic duck differs from that of its 

semi-aquatic ancestors, it is possible that some hindlimb adaptations for aquatic 

locomotion, such as lateral curvature of the tibiotarsus, may be a hindrance to 

effective terrestrial locomotion in the commercial Pekin duck. Indeed, it is interesting 

that the Pekin duck can ambulate with relative ease compared to the broiler 

chicken, which reaches a similar size in the same growth period. Future 

investigations on the differences in leg morphology between strictly cursorial 

species such as the chicken and swimmers such as ducks may shed some light on 

these adaptations and their possible effects on gait. 
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Chapter One – Bookending section 

 

Discussion 

Allometric analysis allowed the data on bone morphology and strength and its 

relationship with growing body mass to be understood in depth. This technique uses 

body mass to predict each trait within a liner regression. Because body mass is 

used as the predictive variable, other traits are expected to scale to the inverse of 

their relationship with body mass. Therefore, a trait which considers geometric 

length (such as bone length) is expected to scale to body mass0.33. A trait which is 

dependent on area, in other words length2, (such as the stiffness of a bone) is 

expected to scale to body mass0.67. Volumetric measures are expected to scale to 

body mass1 because body mass is also a volumetric measure. Measures which 

have no basic on geometric measurements (such as angles of torsion) are expected 

not expected to scale to body mass, so the resulting slope of these regressions is 

expected to be body mass0. Therefore, for bone stiffness (which is dependent on 

the cross-sectional area of the bone), the slope of the regression line should be 0.67 

if the trait scales isometrically. If the trait scales with positive or negative allometry, 

then the resulting regression line (and its confidence intervals) will be greater than 

or less than 0.67, respectively. Both the slope of the regression line and its 

confidence intervals should be considered when calculating allometry. For example, 

in Table 1, tibiotarsal cortical area scales to .77 in the layer chicken. This is 

considered to scale with positive allometry because the confidence intervals around 

the slope do not overlap the expected value of 0.67. Tibiotarsal stiffness in the 

Pekin Female Line also scales to 0.77. But here the confidence intervals of the 

slope do overlap with the expected value of 0.67 so this trait is considered to scale 

isometrically with body mass. 
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When considering the effect of lateral curvature of the tibiotarsus in balance, it is 

important to bear in mind the dynamic position of the bird’s centre of mass, as well 

as the position of the supporting foot. If a lateral curvature of the tibiotarsus (as seen 

here in duck lines) brings the stance foot to a more medial position, this will increase 

stability, assuming that the centre of mass does not move laterally to a great extent 

(as seems to be the case in the mallard). In this situation, the laterally static centre 

of mass is aligned with and supported by the medially-positioned stance foot. 

Conversely, the Pekin duck, with its large breast muscle mass, seems to exhibit a 

wide ranging lateral centre of mass movement. This is anecdotal evidence from 

observation of the birds’ gait, and not based on empirical data. In the case of the 

Pekin, a medial foot placement could allow the dynamic centre of mass (in its most 

lateral positions) to exist outside of the zone of support provided by the foot. This 

situation, which may be very brief, can cause instability. This highlights an important 

problem with studying gait – because the body is made up of various parts, all 

moving in complex ways relative to one another, in can be difficult to consolidate the 

effects of each individual component. This may be why there is still little consensus 

on what constitutes ideal gait in poultry.  

This study is limited to the morphology of the femur and tibiotarsus, due to time-

availability. A greater understanding of the differences in hindlimb morphology that 

occur both within and between species would be possible if the tarsometatarsus and 

the pelvis had been included in this study. If the study was to be repeated, feed 

restricted birds of the heavier lines could be added to the analysis to gain a better 

understanding of the interactions between genetics and environmental factors, 

although there are ethical issues with feed-restricting birds for this purpose. Gross 

morphological differences were examined between lines; micro-CT scanning or 

further bone histology studies may reveal important differences in bone morphology 

between lines at a sub-structural level. The differences in certain aspect of hindlimb 
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morphology were hypothesised to possibly be swimming-related adaptations. This 

hypothesis could be investigated in greater depth by comparing bone morphology 

on a range of species, spanning both swimming and cursorial specialist.
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Chapter Two – Bookending section 

 

Context and rational behind the study 

Having examined the skeletal leg architecture of the lines studied in Chapter One, 

gait was objectively measured on the same birds to determine if differences in gait 

existed between these lines and also to record how gait changes within a line as 

birds age. Before attempting to improve the visual gait score or to automate it, it was 

first necessary to collect some baseline data on the average gait for each line at 

different ages. One of the main challenges to recording gait objectively is to ensure 

that the bird is walking in a ‘normal fashion’. The ‘normal’ gait of a bird is difficult to 

define, given that any research setting used to record ‘normal’ gait will contain 

differences from the home pen. For example, the gait recording area used in this 

study had a different substrate and contained a walking area with narrow walled-in 

sides. Both factors were necessary in order to successfully record gait; however, 

both factors could also have contributed to altering the ‘normal’ gait of each 

individual. This should be kept in mind when interpreting the results of any study on 

gait. 

 

Corrections and Clarifications  

In the introduction, the sentence ‘An obvious consequence to selection for high 

pectoral muscle mass in broiler chickens has been a cranial shift in the body’s 

centre of mass (COM) which has been hypothesised to lead to gait instability related 

to excess stress on the leg muscles (Corr 03, Hutchinson 14)’ should read ‘An 

obvious consequence of selection for high pectoral muscle mass in broiler chickens 

has been a cranial shift in the body’s centre of mass (COM) which has been 
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hypothesised to lead to gait instability related to excess stress on the leg muscles 

(Corr 03a, Paxton 14)’. 

The pressure walkway used to record gait in this chapter was connected to a Dell 

Latitude E6320 laptop (running Intel Core i5). The walkway was calibrated following 

manufacturer’s guidelines. This involved recording pressures without any weight 

applied and then, when prompted by the calibration software, placing a fixed weight 

of 3kg onto each pressure plate (the walkway is made up of two plates). The 

process was repeated for each plate. The non-slip latex covering on the walkway 

allowed the bird to maintain grip in a normal fashion as it would in its home pen. 

There is a possibility that a covering over the sensor would allow the force applied 

through the foot to be slightly more spread out, thus reducing pressure. However, 

no difference in recorded pressures was observed when the thin latex sheet was 

applied, either with live birds or with fixed weights. 

Some traits (such as step width or stride length) were measured manually, using 

recordings from the walkway software. This step was done manually because the 

software cannot automatically identify avian feet or parts of the avian foot, as it can 

with humans or dogs or make automated measurements of the distances between 

steps. Therefore, footprints and the distances between them were measured 

manually using images of the sequence of footprints recorded by the pressure 

walkway. 

The sentence “The differences in birds’ preferred velocity between lines and the 

variability in velocity within lines was relatively small, suggesting that these values 

are not just an indication of individual motivation (which would create large variation) 

but are more likely a result of morphological differences which confine each line to a 

limited range of ‘comfortable’ walking speeds.” Should read “The differences in 

birds’ preferred velocity between lines was relatively large and the variability in 
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velocity within lines was relatively small, suggesting that these values are not just an 

indication of individual motivation (which would create large variation within lines) 

but are more likely a result of morphological differences which confine each line to a 

limited range of ‘comfortable’ walking speeds.” 

In order to collect data on 12 ‘satisfactory’ walks (as detailed in the methods) more 

than 12 walks were required for some birds. This number varied between 12 and 

20. Birds which were more irregular in their walking ability/motivation, such as 

broiler chickens at 7 weeks could take up to 40 minutes to complete 12 satisfactory 

walks. During this time, birds were allowed to rest between walks in order to avoid 

fatigue. Birds did not receive feed or water while resting outside the pen. Feed and 

water, as well as access to pen mates, was available at the other end of the 

walkway and this acted as a motivation for the birds to walk towards the end. With 

other lines, such as the layer chickens or mallards, motivation to walk was not an 

issue. Rather, the pace of walking was sometimes too fast, and multiple walks were 

required to collect data on 12 walks that were at a subjectively acceptable pace. 

The differences in birds’ preferred velocity between lines was relatively large and 

the variability in velocity within lines was relatively small; coefficients of variation are 

presented here in Table B1. 
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Line Age 

(weeks) 

Sample 

size 

Mean 

(cm/sec) 

sd 

(cm/sec) 

cv 

Broiler 3 12 24.22 6.40 26.41 

M. Line 3 12 57.41 8.95 15.58 

F. Line 3 12 60.29 14.63 24.26 

Layer 3 NA NA NA NA 

Mallard 3 NA NA NA NA 

Pekin 3 12 53.84 14.34 26.63 

Broiler 5 12 28.19 5.80 20.59 

M. Line 5 12 64.33 7.93 12.33 

F. Line 5 12 55.25 7.21 13.05 

Layer 5 NA NA NA NA 

Mallard 5 NA NA NA NA 

Pekin 5 12 46.41 6.56 14.13 

Broiler 7 7 27.32 7.07 25.89 

M. Line 7 12 56.56 7.68 13.58 

F. Line 7 12 57.62 11.13 19.32 

Layer 7 12 36.87 6.53 17.71 

Mallard 7 12 77.55 8.54 11.01 

Pekin 7 12 52.29 8.98 17.17 

Table B1. Means, standard deviations and coefficients of variation for walks 

recorded in each line at each age. M. Line and F. Line refer to male and female 

Pekin breeding lines respectively. Data was not collected on layer chickens or 

mallards at 5 and 7 weeks. 

Figures 2 and 3 respectively have been included below in larger size, for easier 

interpretation. 



94 
 

 



95 
 



96 
 

Table S3: Tibiotarsal morphology - Least squares means (and standard errors) in all lines at each age. SED = Standard Errors of Difference. P values refer to 

line*age interactions. Other significant effects are presented in square brackets for each trait.

Line Velocity (cm/s) Step width (cm) Stride length (cm) Foot angle (°) 
Ratio double to single 

foot support time 

Experiment 1 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 

Broiler chicken 
24.35 

(6.40) 

28.19 

(4.10) 

27.11 

(2.67) 

7.25 

(0.53) 

8.96 

(0.76) 

12.20 

(0.76) 

18.43 

(0.33) 

26.58 

(1.38) 

24.29 

(0.91) 

0.76 

(1.23) 

5.45 

(2.37) 

10.44 

(2.02) 

NA NA 1.44 

(0.103) 

Layer chicken NA NA 
37.00 

(4.62) 
NA 

1.26 

(0.30) 

1.77 

(0.17) 
NA 

26.50 

(1.83) 

29.94 

(0.73) 
NA 

-1.68 

(0.41) 

-2.55 

(1.43) 

NA NA 0.09 

(0.009) 

Pekin hybrid 
53.84 

(10.14) 

46.27 

(4.64) 

52.42 

(8.99) 

8.95 

(0.37) 

10.15 

(0.68) 

11.33 

(0.50) 

34.77 

(2.59) 

33.38 

(1.71) 

36.32 

(0.77) 

-25.86 

(2.30) 

-26.16 

(2.28) 

-22.22 

(2.60) 

NA NA 1.46 

(0.090) 

SED 
3.80 

P<0.001   [line] 

0.74 

P<0.001   [line, age] 

2.05 

P=<0.001   [line] 

2.76 

P<0.001   [line] 

0.13 

P<0.001   [line] 

Experiment 2 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 3 wks 5 wks 7 wks 

Pekin male line 
57.34 

(6.33) 

64.26 

(5.61) 

56.56 

(5.43) 

6.23 

(0.46) 

10.40 

(0.82) 

10.79 

(0.39) 

34.56 

(1.83) 

36.46 

(0.84) 

34.35 

(0.55) 

-30.34 

(2.61) 

-30.81 

(1.51) 

-43.87 

(3.91) 

NA NA 1.28 

(0.182) 

Pekin female line 
60.29 

(10.34) 

55.25 

(5.10) 

57.62 

(7.87) 

8.91 

(0.85) 

10.18 

(0.67) 

12.05 

(0.87) 

32.63 

(2.17) 

34.68 

(1.04) 

32.19 

(1.62) 

-27.47 

(5.52) 

-27.92 

(2.00) 

-21.79 

(1.92) 

NA NA 1.25 

(0.137) 

Mallard NA NA 
77.55 

(6.04) 
NA 

3.65 

(0.49) 

5.97 

(0.29) 
NA 

35.36 

(0.88) 

33.76 

(1.28) 
NA 

-21.14 

(3.90) 

-18.41 

(2.19) 

NA NA 0.15 

(0.063) 

SED 
4.08 

P<0.001   [line] 

0.91 

P<0.001   [line, age] 

1.96 

P=0.255 

4.47 

P<0.001   [line] 

0.09 

P<0.001 
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Abstract 

Genetic selection for increased growth rate and muscle mass in broiler chickens has 

been accompanied by mobility issues and poor gait. There are concerns that the 

Pekin duck, which is on a similar selection trajectory (for production traits) to the 

broiler chicken, may encounter gait problems in the future. In order to understand 

how gait has been altered by selection, the walking ability of divergent lines of high 

and low growth chickens and ducks was objectively measured using a pressure 

platform, which recorded various components of their gait.  

In both species, lines which had been selected for large breast muscle mass moved 

at a slower velocity and with a greater step width than their lighter conspecifics. 

These high-growth lines also spent more time supported by two feet in order to 

improve balance when compared to their lighter, low-growth conspecifics.  

We demonstrate that chicken and duck lines which have been subjected to intense 

selection for high growth rates and meat yields have adapted their gait in similar 

ways. A greater understanding of which components of gait have been altered in 

selected lines with impaired walking ability may lead to more effective breeding 

strategies to improve gait in poultry. 
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Introduction 

Intense selection for production traits in poultry over approximately 60 generations 

has led to considerable genetic gain. During this period the body mass of the meat 

type (broiler) chicken has increased by 300% (Knowles et al. 2008). One unwanted 

side effect of this genetic gain has been an increased incidence of locomotion (gait) 

problems (Paxton et al. 2013). Altered gait in livestock is an important welfare issue, 

causing a reduction in mobility,  that may be associated with pain (Mc Geown et al. 

1999, Danbury et al. 2000, Caplen et al. 2013) and  a reduction in normal 

behaviours (Vestergaard and Sanotra 1999, Weeks et al. 2000). 

Estimates of the prevalence of gait problems in broiler chickens have been reported 

between 15% and 30% (Kestin et al. 1992, Sanotra et al. 2001, Sanotra et al. 2003, 

Knowles et al. 2008). The true prevalence of gait problems is difficult to obtain, 

because of variation between studies in the strains of birds assessed, the gait 

scoring systems used, the age at which birds are assessed and the management 

factors at each site (EFSA Panel on Animal Health and Welfare 2010). Whereas 

recent reliable information on the prevalence of leg weakness in poultry is not 

available, it is widely accepted that the problem causes economic losses for the 

producer (Yogaratnam 1995). The scale of gait problems in commercial duck 

populations is also poorly defined, with the only study (which reported the 

prevalence of gait abnormalities in 46 flocks of commercial ducks) estimating that 

14% of 23 day old and 21% of 41 day old Pekin ducks showed signs of gait 

abnormality (Jones and Dawkins 2010). 

The aetiology of gait problems in poultry is varied and complex. An obvious 

consequence to selection for high pectoral muscle mass in broiler chickens has 

been a cranial shift in the body’s centre of mass (COM) which has been 

hypothesised to lead to gait instability related to excess stress on the leg muscles 
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(Corr 03, Hutchinson 14). Skeletal disorders have also been associated with 

increased body mass and growth rate, some of which negatively affect gait. These 

include tibial dyschondroplasia (TD), valgus/varus deformities, bone torsion and 

bone fractures (Bradshaw et al. 2002). While some of these abnormalities may be 

painful, others may simply alter gait due to conformational changes (Corr et al. 

2003b).  

Since gait problems were first reported in broiler chickens (Farm Animal Welfare 

Council 1992, Kestin et al. 1992), efforts have been made to alleviate gait issues 

across various species through selection, with varying results. For example, 

selection has been shown to reduce the incidence of TD in broilers over the course 

of two decades (Kapell et al. 2012). However, poor gait still remains; perhaps due to 

the difficulty in measuring gait and low heritability leading to relatively little genetic 

gain in the trait (Sandilands et al. 2011). The standard method of gait assessment is 

a visual gait score (Kestin et al. 1992). While this is a rapid and inexpensive method 

of high-throughput phenotyping, the visual gait score has been reported to have 

relatively poor reliability, due to the subjective nature of the score (Kestin et al. 

1992, Anon 2000, Garner et al. 2002). Previous attempts to improve the objectivity 

of the visual gait score in broilers have led to more reliable estimates (Garner et al. 

2002). The development of a better gait score with improved repeatability may lead 

to better estimates of heritability and long-term genetic gain for gait-related traits in 

selection programmes. However, objective gait measurement tools used in 

research, such as kinematic and kinetic systems (Corr et al. 2007, Sandilands et al. 

2011, Caplen et al. 2012, Paxton et al. 2013) are unsuitable for use on breeding 

farms due to costs and time constraints. 

The aim of this study was to objectively identify gait changes which have occurred 

through selection in chicken and duck lines selected for high growth rates and to 

compare these to conspecifics which have either not been selected for high growth 
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rates (the layer chicken) or which have undergone no artificial selection (the 

mallard). We also report how certain gait parameters change within lines during 

growth to slaughter age. Broiler chickens were used as an example of a line 

selected for high growth rate and layers to represent a line with a growth rate more 

similar to their ancestral phenotype, the red junglefowl. In Pekin ducks a commercial 

hybrid and two breeding lines were used as examples of high growth rate birds; 

these were compared with their ancestral phenotype, the mallard (Anas 

platyrhyncos). The layer chicken and the mallard were assumed to possess an 

optimal gait for their respective species. It was expected that heavy lines of both 

species which have undergone selection for increased meat yield would adapt their 

gait in similar ways to compensate for their change in morphology. A greater 

understanding of how gait has changed through selection in these lines may inform 

a more robust gait scoring system based on objective measurement of key gait 

components and identify which aspects of gait are indicative of the ideal walk. 
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Materials and Methods 

Animals and Husbandry 

The gait of 216 birds of different lines was measured objectively using a pressure-

sensitive walkway (Tekscan Animal Walkway, Tekscan, Boston, USA) at three ages 

in two separate experiments; each experiment used different lines of birds. During 

the first experiment 36 broiler chickens (Ross 308), 36 layer chickens (Lohman 

Brown) and 36 Pekin ducks (Cherry Valley commercial hybrid) were raised in walled 

research pens. The second experiment used the same pens to house 36 heavy 

male line Pekin ducks, 36 lighter female line Pekin ducks (both Cherry Valley 

breeding stock) and 36 mallards (Hy-Fly Game Hatcheries, UK). Alongside general 

health and reproductive traits, the male Pekin line is selected with a greater 

emphasis on feed efficiency whereas the female Pekin line is selected with a 

greater emphasis on reproductive traits. These Pekin lines were chosen because 

they are representative of the breeding stock, which is the target group for 

improving gait by genetic selection. Both these duck breeding lines contained equal 

numbers of males and females.  

Birds were raised following industry guidelines as much as possible. All birds were 

initially housed from day of hatch under brooder lamps in a single pen per line to 

regulate temperature. At seven days, birds were randomly allocated in a 

randomised block design to two blocks of nine pens. Each pen (2.16m2) contained 4 

males and 4 females in an area of 0.27 m2 per bird, increasing to 0.36 m2 per bird 

from 21 days and 0.54 m2 per bird from 35 days as birds were removed for 

measurement. The lighting regime was 23 hours light: 1 hour dark at hatch, 

reducing by one hour light per day for the first seven days and remaining at 16 

hours light: 8 hours dark thereafter. The mean light intensity in each pen was 120 

lux. Barn temperature was 25°C at two weeks, reducing to 24°C at three weeks, 
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22°C at four weeks and remained at 20°C from five weeks until termination. 

Experiment 1 used wood shavings as a substrate as this is the industry norm for 

chickens. Experiment 2 used straw as a substrate, as is the case on most UK duck 

farms. All birds were fed ad libitum and water was provided ad libitum in suspended 

bell drinkers. Broilers were given a commercial starter feed for the first 10 days, 

grower from day 11-35 and finisher from day 36 onwards. Layers were fed on a 

commercial starter feed for the first 35 days before transferring to a grower feed 

from day 36 onwards. All duck lines in both experiments were fed on a starter feed 

until day 10 and on a grower feed thereafter: both duck diets were supplied by the 

breeding company. 

The study was approved by the Veterinary Ethical Review Committee at the 

University of Edinburgh. 

Data Collection 

At three ages (21, 35 and 49 days) two randomly selected birds (one male and one 

female) from each pen (six males and six females per line) were walked repeatedly 

over a Tekscan pressure walkway (Tekscan, Boston, MA, USA). The walkway 

consisted of two sensing tiles connected together to form a single low-profile 1 m x 

0.5 m pressure walkway which recorded at a resolution of 1.4 sensing elements per 

cm2. Two ‘Tekscan EH-2 Evolution’ handles were used to connect this system to a 

laptop computer, allowing kinetic data to be analysed using proprietary software 

(Tekscan Walkway, v7.02). The walkway was calibrated as per manufacturer 

guidelines, using pressures which were appropriate for the weight of the birds to be 

recorded. Proprietary equilibration files (10 PSI and 20 PSI) were used when 

gathering data. In order to capture information on the entire walk of each bird, the 

pressure walkway recorded at a frequency of 62.5 Hz. This sampling frequency, 

while lower than usual for studies of this kind, was necessary due to memory 
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restrictions of the software. Birds were motivated to walk in a straight line over the 

pressure walkway by placing 50 cm high plywood boards on each side parallel to 

the walkway. The walkway was covered by a 1 mm thick latex sheet to ensure the 

birds did not slip. Each bird was released at one end of the walkway and allowed to 

walk freely (away from the camera) towards two pen-mates which were held in a 

pen at the other end of the walkway. As a standardisation check, each walk was 

recorded using a video camera (Microsoft LifeCam Studio), which linked 

simultaneously to the pressure data collected by the Tekscan software. At least 12 

‘satisfactory’ walks were recorded for each bird. A walk was deemed satisfactory if 

the bird moved at a steady pace in a straight line without slipping or stumbling. Birds 

were allowed to walk at their own preferred speed. After 12 walks had been 

recorded, each bird was euthanatised and dissected to assess leg morphology 

(Duggan et al. 2015). The data from each walk was analysed using Tekscan 

software. Each walk was checked again for pausing, stumbling and straightness by 

viewing the recorded video clips, which afforded an alternate view (from behind, at 

the level of the birds’ head). Any walks which did not capture four successive steps 

in a straight line on the recording area of the pressure platform, or which showed 

pausing/stumbling on video, were discarded. A custom script (Python) was used for 

the remaining walks of each bird to select the five walks which deviated least in 

velocity. An ‘ideal’ velocity for all birds was not chosen as birds differed in their 

average velocity depending on age, line and behavioural traits such as shyness or 

fear and because forcing animals to walk at a particular speed may lead to 

inconsistent gaits as has been observed in other species (Voss et al. 2010). The 

five walks which deviated least in their velocity were considered to be most 

representative of each bird’s comfortable walking speed. Data from these five walks 

were averaged for each bird to obtain measures of velocity, step width, stride 

length, foot angle (whether the middle, third, toe is internally or externally rotated 

during ground contact), peak vertical force (PVF, the force applied through the 
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ground during stance time), vertical impulse (a product of the vertical force and the 

time over which it is applied), support time (the time spent supported by either a 

single foot or both feet) and duty factor (the proportion of a single gait cycle during 

which one foot is in contact with the ground). Step width is the distance between the 

lines of progression of the left and right feet. The line of progression of each foot 

was determined by drawing a line from the point most posterior to the middle toe of 

the foot for consecutive steps of that foot. Stride length is the distance measured 

parallel to the line of progression of a foot, between the posterior heel points of two 

consecutive footprints of the foot in question. Although 12 birds from each line at 

each age were walked over the pressure walkway, only seven broiler chickens at 

seven weeks of age were capable of displaying ‘normal’ gait. Gait data from the 

remaining five ‘lame’ broilers were not included in the analysis at this age.  

Analysis  

Gait data collected by the pressure platform were analysed by a split-plot statistical 

model using REML, with effects for pen nested within block and treatment effects of 

genetic line, age and sex. The resulting variance components were used to 

ascertain differences between each line by t-test (at a significance level of P<0.01). 

Certain traits (step width, stride length and foot angle were measured manually from 

the trace of foot pressures left on the walkway to avoid measurement errors from 

the proprietary software’s automated measuring system due to its inability to 

correctly identify the foot pressure pattern consistently. As manual measurement of 

these traits is labour intensive, six birds from each line at each age (with the 

exception of 3 week layers and mallards) were selected randomly for measurement. 

Because birds were selected randomly for these measurements, blocking effects 

were not included in the statistical model for analysing these traits. Separate REMLs 

were performed to compare the lines from Experiment 1 (the broiler chicken, the 
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layer chicken and the Pekin commercial hybrid) and the lines from Experiment 2 

(the male Pekin line, the female Pekin line and the mallard).  

Single support time, double support time and the ratio of double to single support 

time were analysed by general ANOVA as these traits were only measured at one 

age (seven weeks) when layer chickens and mallards provided large enough 

pressures for accurate measurement of these traits. Tukey post hoc tests (at a 

significance level of P<0.01) were performed to ascertain differences between lines. 

Certain gait traits were also analysed allometrically by assessing their scaling 

relationships with body mass; the log of each trait was regressed against the log of 

body mass using a reduced major axis regression. The slope of the resulting 

regression equation was compared to the expected scaling component for that trait. 

Length measurements were expected to scale to body mass0.33 and non-

dimensional traits (such as duty factor) were expected to scale to body mass0. 
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Results 

Least squares means and standard errors of treatment difference for gait traits in all 

lines and ages are presented in Appendix IV. 

The divergence in growth rate and body mass between lines selected for carcass 

traits and ‘unselected’ lines is displayed in Figure 1A. Figure 1B shows the 

comfortable velocity ranges of each line, at three, five and seven weeks of age. The 

layer chicken moved at a significantly faster speed than the broiler and the Pekin 

commercial hybrid walked significantly faster than both chicken lines (P<0.005). In 

Experiment 2, the mallard walked significantly faster than the Pekin breeding lines 

(P<0.001). In each species, the lines unselected for high muscle mass (the layer 

chicken and mallard) both walked with a significantly narrower step width than their 

heavier conspecifics (the broiler chicken and Pekin duck respectively) (P<0.001). 

Both body mass and the length of the tibiotarsus (a proxy for leg length) were 

initially included as covariates in the analysis of step width but had no effect. There 

was a line by age interaction in Experiment 1 (P=0.021); step width increased 

substantially after five weeks in both chicken lines whereas no substantial increase 

in step width was observed after five weeks in the Pekin commercial hybrid (Fig 2A). 

The ratio of step width to body mass is presented in Fig 2B. In Experiment 1, the 

stride length differed between lines (P<0.001). Tibiotarsal length and body mass 

were included in an initial statistical model as covariates but had no effect. The layer 

had a longer stride than the Pekin hybrid, which had a longer stride than the broiler 

chicken (P<0.001). There was a line by age interaction (P=0.012); broiler stride 

length decreased after five weeks but the stride lengths of the layer and Pekin 

hybrid increased. In Experiment 2, there was no difference in stride length between 

duck lines (Fig 2C). The ratio of stride length to body mass is presented in Fig 2D. 
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Fig 1. Body mass and comfortable walking velocity. Body mass (A) and 

comfortable walking velocity (B) in the broiler and layer chicken, the Pekin 

commercial hybrid (“Pekin”), the Pekin male breeding line (“M.Line”), the Pekin 

female breeding line (“F. line”) and the mallard. Body mass is presented on a log 

scale for clarity. For velocity, each value represents the mean velocity of five walks 

from a single bird. Velocities of the layer chicken and mallard were not recorded at 

three and five weeks of age due to limited sensitivity of the pressure walkway at 

these body masses. 
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Fig 2. Step width and stride length, presented as raw means (A and C, 

respectively) and as ratios of body mass (B and D, respectively). Data was not 

recorded at three weeks of age in the layer chicken or mallard line due to limited 

sensitivity of the pressure walkway at this body mass. 

The angles at which the feet were placed during walking were significantly different 

between broiler and layer chickens in Experiment 1 (Fig 3A); layers’ feet aligned 

sagittally to the direction of travel whereas those of broilers were externally rotated 

(P<0.001). The feet of the Pekin commercial hybrid were internally rotated 

compared with both chicken lines (P<0.001). In Experiment 2 there was no 

difference in foot angle between the mallard and the female Pekin breeding line 

(which both displayed similar means and variation of foot angle to the Pekin 

commercial cross in Experiment 1); however the foot angle of the male Pekin line 

was more internally rotated (P=0.001) compared with the female line and the 

mallard (Fig 3a). The foot became more internally rotated after 5 weeks of age in 

the male Pekin line whereas the feet of the mallard and female line both became 

less internally rotated after this age, leading to a line by age interaction (P=0.008).  
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In both species, heavy lines spent more time being supported by two legs during 

walking when velocity was accounted for as a covariate (P<0.001) (Fig 3C). The 

ratio of double support time to single support time (with walking velocity accounted 

for as a covariate) was greater in heavier lines of both species compared to their 

lighter conspecifics (P<0.001) (Fig 3D). 

 

Fig 3. Foot angle (A),  single foot support time (B), double foot support time 

(C) and the ratio of double to single foot support time (D) at three five and 

seven weeks. A positive foot angle represents externally rotated feet while a 

negative value indicated internal rotation. Single support time (B) is the proportion of 

the gait cycle during which the bird has only one foot in contact with the ground. 

Double support time (C) is the proportion of the gait cycle during which both feet are 

in contact with the ground. Foot angle data for the layer chicken and mallard at 

three weeks of age and support time data for the same lines at three and five weeks 

of age were ommitted due to limited sensitivity of the pressure walkway at these 

body masses. 
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No differences were found in PVF between the lines in Experiment 1 (Fig 4A). 

However, PVF significantly decreased with age (P<0.001). In Experiment 2 PVF 

was also found to decrease with age (P<0.001). Significant differences were seen 

between lines in Experiment 2; the male and female Pekin lines produced higher 

PVFs than the mallard (P<0.005). Vertical impulse (Fig 4B) was greater in the 

broiler chicken than in both the layer chicken and Pekin commercial hybrid 

(P<0.01). In Experiment 2 both the male and female Pekin lines produced a higher 

vertical impulse than the mallard (P<0.001). In both experiments vertical impulse 

increased with age (P<0.001 in Experiment 1 and P=0.029 in Experiment 2). 
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Fig 4. Mean peak vertical forces (A) and vertical impulse (B) values expressed 

as a percentage of body mass. Data for the layer chicken and mallard at three 

and five weeks of age were ommitted due to limited sensitivity of the pressure 

walkway at these body masses. 

Step width changed with both positive allometry and isometry, depending on line 

(Table 1). No relationship with body mass was observed with stride length, with the 

exception of the broiler chicken; in this line, stride length scaled isometrically. The 

ratio of double to single foot support time scaled with positive allometery in all lines, 
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with the exception of the mallard, in which no relationship with body mass was 

observed for this trait. The allometry of both step width and the ratio of double to 

single foot support time are presented for all lines in Figure 5A and 5B respectively. 

 

Trait Expected slope Slope Lower CI Upper CI R2 

Step width      

Broiler 0.33 0.59 (+) 0.45 0.77 0.72 

Layer 0.33 1.54 0.83 2.87 0.121 

Pekin hybrid 0.33 0.44 (=) 0.30 0.66 0.40 

Pekin male line 0.33 0.57 (+) 0.44 0.74 0.77 

Pekin female line 0.33 0.43 (=) 0.28 0.65 0.31 

Mallard 0.33 1.63 (+) 0.98 2.70 0.43 

Stride length      

Broiler 0.33 0.37 (=) 0.26 0.54 0.49 

Layer 0.33 0.38 0.21 0.67 0.271 

Pekin hybrid 0.33 0.36 0.22 0.60 0.011 

Pekin male line 0.33 0.15 0.09 0.26 0.001 

Pekin female line 0.33 0.24 0.15 0.40 0.001 

Mallard 0.33 0.37 0.20 0.70 0.071 

Support time ratio      

Broiler 0 1.01 (+) 0.78 1.31 0.53 

Layer 0 1.48 (+) 0.87 2.50 0.47 

Pekin hybrid 0 1.66 (+) 1.31 2.11 0.55 

Pekin male line 0 0.74 (+) 0.60 0.90 0.68 

Pekin female line 0 1.07 (+) 0.87 1.32 0.63 

Mallard 0 3.38 1.91 5.97 0.271 
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Duty Factor      

Broiler 0 0.17 (+) 0.13 0.22 0.54 

Layer 0 0.10 (+) 0.06 0.16 0.48 

Pekin hybrid 0 0.27 (+) 0.21 0.34 0.56 

Pekin male line 0 0.12 (+) 0.10 0.15 0.68 

Pekin female line 0 0.17 (+) 0.14 0.21 0.65 

Mallard 0 0.33 0.19 0.60 0.251 

Table 1. Slopes and R2 values for gait traits, along with their 95% confidence 

intervals. 

All regressions presented here are significant (P<0.05) with the exception of those 

marked 1. Length measurements regressed against body mass have an expected 

slope of 0.33 and non-dimensional measurements have an expected slope of 0. The 

symbols next to each slope indicate positive allometry (+) or isometry (=). 
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Fig 5. Step width (A) and the ratio of double foot support time to single foot 

support time (B) regressed against body mass.  All values are logged. Data at all 

ages is included; however data for the layer chicken and mallard at three weeks of 

age were ommitted due to limited sensitivity of the pressure walkway at these body 

masses. 

 

 



116 
 

Discussion 

These results demonstrate that gait variables, both within and between bird species, 

change throughout growth. They also highlight the effects that intense selection for 

rapid growth has had on the gait of modern broiler chickens and ducks. 

Velocity 

The measures of velocity used in this study represent the birds’ comfortable walking 

speeds. The speed recorded from each bird is an average of the five walks that 

were closest to each other in velocity. The ‘preferred’ walking speeds of duck lines 

were greater than those of chickens. Also, within each species, lines selected for 

high growth rate and meat yield were slower than their ‘unselected’ conspecifics 

(Fig. 1B). 

The fact that chickens do not walk as quickly as ducks is not unexpected – ducks 

undergo relatively early leg development, reaching adult leg size by five weeks of 

age, whereas the legs of chickens continue to grow in size after slaughter age at 

seven weeks (Dial and Carrier 2012, Duggan et al. 2015). Therefore it is 

unsurprising that ducks find it easier to achieve higher walking speeds compared 

with chickens. Why layer chickens and mallards, both of which have not been 

selected for high growth rate, reach faster walking speeds than their much larger 

conspecifics is less obvious. The markedly different hindlimb architecture of the 

heavier lines combined with a cranial shift in the body’s COM due to a 

disproportionally large increase in breast muscle may have led to an imbalanced 

gait which requires lower speeds (and higher duty factors) to improve stability. 

These differences in body morphology have been highlighted as a cause for altered 

gait in broiler chickens (Corr et al. 2003b, Paxton et al. 2013). 
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Velocity is not just a measure of an individual’s ability to move at a certain speed but 

also their motivation. We found that each bird had a range of speeds at which it 

could move. The differences in birds’ preferred velocity between lines and the 

variability in velocity within lines was relatively small, suggesting that these values 

are not just an indication of individual motivation (which would create large variation) 

but are more likely a result of morphological differences which confine each line to a 

limited range of ‘comfortable’ walking speeds. 

Step width and stride length 

Step width was greater in heavier lines compared with their lighter conspecifics (Fig. 

2A). It is expected that a wider step width, while providing a good base of support 

during standing, will lead to poor balance during walking. If the stance is wide when 

the swing leg is lifted during walking then the body’s COM will not be aligned with 

the centre of pressure of the supporting foot. The COM will begin to move away 

from the supporting leg until the swing leg is grounded to provide stability once 

again. This process leads to a large lateral movement of the body’s COM during 

walking, which may be energetically expensive and could lead to stumbling. The 

necessity to ground the swing leg quickly to ensure the COM does not fall to the 

ground potentially explains why the heavy broiler chickens have a shorter stride 

than the layers; however the Pekin lines and the mallard have a similar stride length 

(Fig. 2C). The mallard’s step width (when expressed as a ratio of body mass), 

although narrower than the heavier Pekin is relatively wider than other lines (Fig. 

2B), perhaps due to its naturally wide hull-shaped body. This may explain the lower 

than expected stride lengths observed in the ancestral line. A relatively shorter 

stride length (Fig. 2D) may contribute to the lower velocities seen in these heavy 

lines compared with the lighter lines. Conversely, in the layer chicken and mallard 

lines, the step width is narrower and the body’s COM is closer to the vertical axis of 

the supporting foot during walking. This balanced support allows these slow-growth 
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lines to spend less time supported by both feet during walking as their COM is 

relatively stable above a single supporting foot. 

Ratio of double to single foot support 

The ratio of double foot support to single foot support is a temporal measure of limb 

placement which may be an indicator of balanced gait, as suggested by Corr 

(2003b). Theoretically, a bird with an imbalanced gait will spend more time 

supporting its weight across both feet; therefore, a low ratio of double to single foot 

support is indicative of a bird with a well-balanced gait.  The current data show that, 

at seven weeks of age, both layer chickens and mallards have much lower ratios of 

double to single foot support than their heavier conspecifics, suggesting that these 

lines, which are unselected for high muscle mass, have better balanced gaits (Fig. 

3D). This lack of balance in high growth lines may result from an increase in 

pectoral muscle mass which has led to a cranial shift in the COM of broiler chickens 

(Corr et al. 2003a, b, Paxton et al. 2014). While it was not possible to measure 

temporal foot placement in layers and mallards at three and five weeks of age, data 

from the high-growth lines also suggests that younger (lighter) birds, which have 

less pectoral muscle mass, have lower ratios of double to single foot support and 

thus are better balanced when walking. Also, for heavier birds, the greatest period 

of stress on the leg bones occurs when the entire body mass is supported through 

one foot; distributing body mass across both feet by increasing double foot support 

time would reduce the likelihood of bone damage, as suggested by Caplen et al 

(2012). 

Foot angle 

The angle at which the foot is placed during the stance phase of walking can affect 

balance by moving the base of support to a position either more or less medially 

aligned with the body’s COM. In seven week old broilers, the feet are externally 



119 
 

rotated (pointing outwards). This has previously been reported in heavy broiler 

chickens (Corr et al. 2003b). Theoretically, this would allow the middle toe to extend 

laterally away from the body’s COM, thus providing a wider base of support, 

extending the ‘safe zone’ in which the body’s COM can move laterally out of 

alignment with the supporting foot without causing instability. This is important as 

broilers shift their COM laterally while walking to ensure that the COM is medially 

aligned with the supporting foot before lifting the swing foot (Corr et al. 2003b). 

Turkeys employ a similar movement (Abourachid 1991). In contrast, the feet of all 

duck lines were internally rotated (Fig. 3A). In theory, pointing the toes inward would 

partially counteract the wide stance seen in heavy lines, which leads to shorter 

stride lengths and hence lower velocities. An internally rotated foot position would 

align the toe more medially to the body’s COM, improving stability during single foot 

support, but also reducing the safe zone in which the COM can move without 

causing instability during walking. That this internal foot rotation is also seen in the 

mallard suggests that this trait has not developed due to rapid growth or increased 

body mass but rather is an adaptive trait in the wild phenotype. By seven weeks, the 

distal end of the tibiotarsus has rotated internally (Duggan et al. 2015), and this may 

partially explain foot placement in ducks. However, previous studies in broiler 

chickens have found limited evidence for a link between bone torsion and foot 

rotation (Corr et al. 2003b, a). It is not clear why the feet of the male Pekin line are 

rotated internally to a much greater extent than the other duck lines. It is possible 

that torsion of the tarsometatarsus, as has been observed to occur in the broiler 

chicken (Duff and Thorp 1985) may play a role. Subjectively, the male Pekin line did 

not display noticeably worse gait than the other Pekin lines. 

Peak Vertical Force and Impulse 

Mean peak vertical forces and vertical impulses applied through the ground during 

walking are plotted in Fig. 4, where both are expressed as a percentage of body 
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mass. While pressure platform systems are generally known to provide different 

values of forces compared to measurements made by force plates, the values are 

reliable to use for comparisons between individual animals (Lascelles et al. 2006). 

The lighter lines used for this study were of a mass which was close to the limits of 

detection for this pressure walkway and the data from three and five week layer 

chickens and mallards for certain traits were not analysed.  At seven weeks of age, 

layers and broilers did not differ in the peak vertical forces (expressed as a 

percentage of body mass) they applied through the ground when walking (Fig. 4A). 

However, mallards at this age produced lower peak vertical forces (as a percentage 

of body mass) than the heavier Pekin lines. In commercial lines relative peak 

vertical forces decreased as the birds grew. At three weeks, broiler chickens and 

Pekin ducks can subjectively be described as having clumsy gaits. Neural control of 

foot placement and leg muscle function may not be fully developed at this age and it 

is possible that rapid leg acceleration is responsible for these higher ground reaction 

forces in certain younger birds. Birds at this age are growing rapidly and these 

allometric changes may lead to difficulty judging both distances of anatomical points 

in relation to the rest of the body and muscle force output (Carrier 1996). The large 

variation in peak vertical force values observed in the broiler chicken and Pekin 

commercial cross at three weeks suggests that some birds are maturing earlier than 

others; some early maturing birds may have already developed more complete 

neural control of leg movements by this age and so may not display large ground 

reaction forces. Any interpretations of peak vertical force measurements should take 

into account the sampling frequency, which in this study was 62.5Hz. A higher 

frequency allows more accurate determination of peak vertical force events. During 

this study it was not possible to measure at a higher frequency; memory restrictions 

dictated that lower sampling frequency be used in order to capture information on 

each birds entire walk. While this frequency was considered to be adequate for 
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birds walking at this pace, the possibility remains that some peak vertical force 

events may not have been detected. 

Vertical impulse (force, as a percentage of body mass, applied across time) values 

do not change as the birds age (Fig. 4B). Although the peak vertical forces (as a 

percentage of body mass) do not change between five and seven weeks, the actual 

peak force acting on the bones is increasing, because body mass is increasing 

during this time. As the greatest stress on the leg bones occurs during single foot 

support, it is possible that, as birds grow heavier, they increase double foot support 

time to counteract these increases in peak vertical forces and thus a constant 

vertical impulse is maintained. At seven weeks, the smaller layer chicken and 

mallard lines produce lower vertical impulses than their heavier conspecifics, most 

likely due to lower double foot support times in the gait of layers and mallards. The 

relatively large values observed in the layer line are most likely the result of the high 

peak vertical forces produced by these birds (Fig. 4A). 

Allometry 

The ratio of double foot support time to single foot support time and duty factor both 

scaled with positive allometry for all lines except the mallard, for which no 

relationship with body mass was observed. Duty factor is another way of expressing 

the double to single support time ratio and so it is expected that the two scale with a 

similar allometry (although the scaling exponent of each trait differs as one is a 

proportion and the other a ratio). When the entire mass of the bird is supported by 

one leg (during single support) the strain on the leg bones is likely to be at its 

greatest and the heavy lines which have a wide step width are likely to be 

unbalanced. Increasing the double support time alleviates the impact of these 

issues on mobility. As birds become heavier it is possible that they increase their 

double support time above the lower limit that is required to prevent them becoming 
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unbalanced, which in turn leads to positive allometry as observed in these traits. 

Step width scaled either with isometry or with positive allometry in different lines 

whereas stride length did not scale to body mass. 
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Conclusions 

Intense selection for economic traits such as breast muscle mass and growth rate 

have been accompanied by dramatic changes in several components of gait in both 

chickens and ducks. The heavy lines of both species have diverged to a similar 

extent from their ‘unselected’ conspecifics for certain gait traits, suggesting the use 

of similar strategies to deal with instability due to increased growth or breast muscle 

mass. Certain traits, such as foot angle, also differ between ‘unselected’ lines, 

indicating different evolutionary pressures acted on these species prior to 

domestication. These data can be used to improve the objectivity of gait scoring: by 

focusing on certain gait components which are likely to play a key role in balanced 

gait (such as step width or stride length), it may be possible to improve heritability 

estimates for gait traits and increase selection success.  
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Chapter Two – Bookending section 

 

Discussion 

 

Stability in gait is dependent on supporting the mass of the body through the 

supporting limbs, which at certain points in the gait cycle must be lifted off the 

ground and swung forward to move the entire body in a certain direction. Gravity 

acts on the mass of the body through a point called the centre of mass (COM). 

During walking, the force of gravity acts on the mass of the body through the 

supporting foot (assuming only one foot is grounded). This point of pressure (the 

force spread over the area of the foot) is called the centre of pressure. Stability in 

gait is achieved when the centre of pressure (the supporting foot) is located directly 

beneath the COM of the body. This is the case when both feet are grounded, even 

in birds with a wide stance, because the centre of pressure is located at the 

midpoint between the two supporting feet. Thus, the force of gravity is acting in a 

straight line between the COM and the ground. If the COM moved medially or 

laterally relative to the centre of pressure, it would no longer be directly supported 

by the centre of pressure. This could occur if the body position moved to one side of 

the centre of pressure or if the centre of pressure moved to one side (as happens 

when a foot is lifted into swing phase; the remaining supporting foot in stance phase 

becomes the new location for the centre of pressure). In this situation (single foot 

support time), the force of gravity acts on the COM in a straight line between the 

COM (now moved relative to the centre of pressure) and a point on the ground 

located medially or laterally to the (remaining grounded) foot position. Gravity will 

act to pull the COM towards this point on the ground. In lay terms, the body will 

begin to fall over to the side. This falling can be halted if the other foot (at this point 

raised off the ground in the swing phase) is grounded beneath the COM, or in a 
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position that centres the COM between both feet. In this latter scenario (double foot 

support time), the centre of pressure will be located between the two grounded feet, 

directly beneath the COM. This creates stability once more, until the other foot is 

lifted into the swing phase and centre of pressure becomes the supporting foot once 

more. If the foot is not grounded quickly enough, the body will fall over entirely. In 

birds with a wide step width, there are two ways in which the foot can be lifted, 

swung forward and grounded again to avoid falling; to limit the length of the stride or 

move the swinging foot quickly through a long stride. In birds with a narrow step 

width, a short stride length or fast movement of the swinging foot are not needed as 

the COM will remain relatively closely aligned with the centre of pressure when it 

alternate position between times of single and double foot support.  

The maintenance of balance during walking will be influenced by speed. For 

example, assuming other gait parameters remain the same, a bird walking quickly 

can afford to use a wider step width than a bird walking slowly, because the fast 

pace of the fast bird’s feet will mean that although its COM and centre of pressure 

will be relatively misaligned during single support time, the single support time will 

be short, so the body will not deviate very much from upright balance before 

returning to the stability of double support time. The lines studied in this Chapter 

were allowed to walk at their own natural velocity, so their gaits will, to some extent, 

be influenced by this. It is not possible to account for the effect of velocity by 

attempting to restrict each to walk at the same velocity and this will result in an 

unnatural gait. While it is clear that this variation in velocity will affect various 

aspects of gait (It has been demonstrated in quadrupeds that it is feasible to use a 

large variation in speeds without significantly affecting the ground reaction forces 

measured (Hans et al. 2014). A potential solution to any variance in gait parameters 

that may be encountered when different lines walk at a range of velocities is to 
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correct each velocity by height; this technique has been successful in dogs (Volstad 

et al. 2016).   

In Figure 2, step width when presented as a proportion of body mass shows more 

similar values in relation to other lines than when presented as a stand-alone trait. 

When presented as a proportion of body mass, the trait is divided by a different 

value for each line, so the relative relationship between lines will change. Body 

mass was not significant when fitted as a covariate in the analysis of step width. 

Fitting body mass as a covariate would send the regression through the mean 

whereas dividing the trait by body mass would force the regression through zero. 

Clearly the effect of using a ratio (to body mass) highlighted differences between the 

step length of ancestral lines and their conspecifics, rather than their step width. 

Both results support our conclusion that chicken and duck lines selected for high 

growth rates and meat yields have adapted their gait in similar ways when 

compared to their ancestral conspecifics. As step width and length are likely to be 

related to each other (linearly) and to mass (non-linearly), evaluation of the ratio of 

step width to step length may have negated the effects of mass on the different 

species and lines evaluated.  
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Chapter Three 

 

The development of a prototype tool to 

measure tibiotarsal curvature in live ducks
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Abstract 

The gait of a bird is directly linked to its leg morphology. Pekin ducks exhibit a 

characteristic lateral curvature in the distal tibiotarsus that may have an influence on 

the bird’s gait. As gait scores can be subjective and unreliable, the ability to 

objectively measure aspects of the morphology that affect gait, such as leg bone 

curvature, may help to predict which individuals are likely to have sub-optimal gait 

within a breeding programme. The aim of this study was to develop and evaluate 

the use of a tool that can objectively measure the lateral curvature of the distal 

tibiotarsus in Pekin ducks in the accurate and efficient manner necessary for 

implementation within a breeding programme. 

A tool to measure bone curvature was developed by adapting two digital callipers. 

Measurement trials were conducted on batches of approximately 170 Pekin ducks 

(Cherry Valley male breeding line) and three ages (21, 28 and 42 days) and within 

each trial, repeatability tests were conducted on a small sample of approximately 30 

birds. Repeatability was assessed by calculating the Pearson correlation coefficient 

of the 1st and 2nd curvature measurements within each bird.  

Numerous issues were encountered during the trials, both in the design of the tool 

and in the design of the implement used to hold the birds still for measurement. 

Also, morphological features of the Pekin leg made measurement of bone curvature 

extremely difficult. Correlation coefficients for bone curvature measured with this 

tool were low. 

A tool of this design is not suitable for the measurement of tibiotarsal curvature in 

Pekin ducks. Some improvement may be made if the tool was fixed to a pivot to 

avoid movement of the tool position during measurement. However, more success 

in measuring bone curvature is likely with other technologies such as computed 

tomography. 
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Introduction 

Gait and leg architecture are intrinsically linked; the way in which an animal uses its 

legs to move across a terrain will depend on the morphology of those legs and how 

they interact with both the body and the ground through muscles, tendons and 

ligaments. Initial analysis of the leg bone morphology and gait of ducks and 

chickens (Chapter 1 and 2) suggested that tibiotarsal lateral curvature may affect 

gait, specifically the ratio of single support time to double support time. Leg bone 

curvature (such as valgus and varus deformities) have been linked to poor gait 

(Bradshaw et al. 2002). It was hypothesised that the lateral curvature seen in the 

distal tibiotarsus of Pekin lines may adversely affect gait. In these birds, morphology 

was measured using CT analysis. As CT analysis of morphology is an expensive 

and time consuming technique and impossible to perform on a farm setting without 

significant investment in equipment, the aim of this study was to develop a tool 

which may be used to measure bone curvature quickly and easily in the Pekin duck. 

To our knowledge, tools have not been used to objectively measure leg bone 

curvature within poultry breeding companies, although curvature-related deformities, 

such as valgus and varus deformities, are identified subjectively by eye during the 

selection process (Kapell et al. 2012, Kapell et al. 2017). The successful 

development of such a tool would allow any link between bone curvature and gait 

score to be investigated on a much larger scale on farm. If successful, such a tool 

may lend itself well to use as part of commercial breeding programmes, assuming a 

link exists between leg bone curvature and gait. The avian hindlimb is made of three 

main bones – the femur, the tibiotarsus and the tarsometatarsus. As the 

tarsometatarsus was not studied in chapters 1 and 2, it was not considered for 

measurement using this tool. The femur is surrounded by the musculature of the leg 

and so measurement of the curvature of this bone using an external tool is 
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impossible. Since a large portion of the tibiotarsus is not covered by muscle, this 

bone was chosen as the most feasible bone on which to measure curvature. 

As this is a pilot study using a novel technique, a large amount of trial and error was 

involved. Therefore, the methods of data collection did not follow a rigid 

methodology across ages but rather the methodology evolved as the limitations of 

the tool and the technique became apparent. The main aim of this study was to 

develop the use of the tool as a means of data collection and assess whether it 

could be used reliably, rather than to record the relationship between gait and 

hindlimb morphology, which was a secondary aim.  
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Methods and Results  

Tool development 

 It was decided that the most accurate and practical method to measure curvature in 

the live bird was to measure the length perpendicular (in the lateral direction) and 

parallel to the direction of the tibiotarsus and the use Pythagoras theorem to 

calculate the angles of curvature. As straight lines were to be measured, digital 

calipers were used. Two calipers (Duratool D00377 carbon fibre digital caliper) were 

purchased and cut to size. Industrial adhesive tape and nuts and bolts were used to 

fix one of the calipers at a perpendicular angle to the other. This allowed the tool to 

measure the length of the bone as well as the degree to which the bone deviated 

from ‘straightness’ at a given point, which enabled the curvature of the bone to be 

calculated. The point at which lateral displacement of the bone would be measured 

(by the perpendicular caliper) was 33mm from the distal reference point at the distal 

end of the tibiotarsus. This point was chosen as this was the point of greatest lateral 

displacement in the tibiotarsi measured in Chapter 1. The tool was designed to 

measure the lateral curvature of the left tibiotarsus. To do this, a bird would have to 

be held in supine position (on its back) with its legs straight (Fig. 1). As the bone is 

not fully visible at any age due to leg muscle mass and feathering, a bony landmark 

at the proximal tibiotarsus had to be palpated and used as a reference point. An 

initial pilot study was carried out using three adult layer chickens at Easter Bush to 

ascertain which bony landmarks were suitable to use. The easiest and most reliable 

point to palpate was the tibiotarsal tuberosity (cnemial crest) on the cranial side of 

the bone. It was not necessary to palpate for a landmark on the distal end as there 

was no overlying muscle present at this point, and the depressio epicondylaris 

lateralis (DEP) was easily identified as the distal reference point. 
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Fig. 1. The curvature of the tibiotarsus is measured while the bird is laid in supine 

position with its legs held and fixed points. 

The tool (Fig. 2) was designed based on the idea that, rather than using a 

protractor-based design to directly measure curvature, it would be more accurate 

and repeatable to measure both the tibiotarsal length, and how much a certain point 

along the shaft (33mm from the distal end) deviated from a straight line and then to 

use Pythagoras’ theorem to work out the angle of curvature. With this in mind, a tool 

was designed which combined two digital callipers – one to record bone length and 

the other to measure how much the shaft deviated from a straight line at a certain 

point. Some thought was given to adding a protractor to measure bone torsion but 

this was found to be unfeasible given the difficulty in moving the foot through a 

repeatable plane of motion accounting for rotation at both the stifle and hock joints.  
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Fig. 2. The bone curvature tool, consisting of two digital callipers, fixed 

perpendicular to each other. Tibiotarsal length (a proxy, see text for details) is 

measured as the distance between points A and B. The degree of lateral bending of 

the tibiotarsal shaft is measured at a fixed point (33mm from B) as the distance 

between C and a line joining A and B. These distances are then used to estimate 

the overall bone curvature (using Pythagoras’ theorem). 

The tool was tested on adult layers at the Roslin Institute, University of Edinburgh. 

At this point it was realised that the way in which the tool was held while making the 

measurement would affect the result. For instance, slightly tilting the tool would 

mean that while the length measurement remained the same, the deviation of the 

shaft from a straight line would be more or less, depending on which way the tool 

was tilted. It was decided that the tool would be held as flat as possible (parallel to 

the table surface on which the bird is held) when making measurements. 

The ‘length’ calliper was used to measure the distance between the tibial tuberosity 

and the DEP and this distance was used as a proxy for overall tibiotarsal length. As 

the length calliper was held at these landmarks, the ‘curve’ calliper was extended 

until further extension was halted by the bone. Some firmness was applied to the 

‘curve’ calliper to ensure its extension had been stopped by bone and not skin. 

A B 
C 
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These two measurements, in theory, could be used to accurately estimate bone 

curvature. 

Data collection 

 The tool was used to measure curvature in the left tibiotarsus of male line Pekin 

ducks (male line) at three ages on farm at Cherry Valley’s Highfield trial site. 

Tibiotarsal curvature, weight and gait were recorded at three ages: 21 days, 28 days 

and 42 days. These ages where chosen to represent the standard life span of the 

production bird. The birds were held in place using a duck holding device 

(previously developed at Cherry Valley). The device requires approximately eight 

seconds to get the bird restrained and once the bird is in place it does not need to 

be held. The device consists of a flat board, on one end of which a metal crook is 

attached to hold the neck and on the other end a bar is attached under which the 

legs are held. The bird is restrained in supine position (on its back). This leg bar 

obstructed the tool so it was discarded and replaced with a member of staff who 

held both legs (Fig. 1). A putty mould (which took the shape of the left leg and the 

abdomen side) was instead used to ensure the body and legs were held in the 

same position for each measurement.  

A total of 172 birds were measured at 21 days, 185 birds at 28 days and 158 birds 

at 42 days of age. Numbers varied due to staff availability and ease of 

measurement at each age. At the end of each batch of measurements, a number of 

birds from the batch were measured again to assess the repeatability of the tool. 

Gait was also scored again to estimate the repeatability of the gait score. At 21 days 

the tibial tuberosity was difficult to locate by palpation which made it difficult to 

accurately measure the tibial length. Also, the putty, which worked well for most 

birds, was not suitable for the largest birds which did not fit into the mould formed by 

its predecessors. This mould also became dry over time and lost shape. Therefore it 
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was decided that the mould would not be used in future and instead the legs would 

be held extended, with the tarsometatarsus positioned at marked points on the duck 

holding board. At 28 days, with the legs held extended, it was easier to locate to 

tibial tuberosity; it felt as it had become bigger but this may have been an effect of 

extension of the legs which would reduce the muscle belly around the bone. 

However, at this age the abdomen had also become bigger and was obstructing the 

tool, forcing the tool to tilt during measurement, which would lead to inaccuracies 

measuring the lateral displacement of the bone shaft. Therefore it was decided to 

use wooden blocks at the end of the duck-holding device for the next measurement 

(42 days) in order to raise the legs up so that the abdomen would not obstruct the 

tool. The repeatability of bone curvature measured by the tool at 28 days using 

Pearson’s correlation coefficient was poor (r2=0.41, p≤0.001, n=22). At 42 days the 

blocks worked well to reduce the obstruction caused by the abdomen. However, at 

this age, the musculature around the proximal tibiotarsus had grown to a point 

where the tibial tuberosity was very difficult to palpate. This led to inaccuracies in 

measuring the tibial length. The repeatability of bone curvature measured by the 

tool at 42 days using Pearson’s correlation coefficient was poor (r2=0.38, p≤0.0001, 

n=32). 

From these trials it was decided that the most reliable measurements would be 

made at approximately 28 days, with the legs extended and raised on blocks. 

At a later date (approximately nine months after the initial trial above), when male 

line birds were available, another repeatability test was carried out (this time using 

26 day old birds rather than 28 day old birds due to staff availability). The raised 

wooden blocks were used, and the abdomen only noticeably obstructed the tool for 

one bird. However, repeatability using Pearson’s correlation coefficient was very 

poor (r2=0.046, p=0.257, n=30). It was expected that the repeatability at 26 days 

would be close to the repeatability previously estimates at 28 days, or even better 
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due to the addition of the wooden blocks to limit obstruction from the abdomen. This 

was not the case, possibly because far fewer birds were measured at 26 days so 

the tool user was out of practice. The testing of the curvature measurement tool was 

discontinued as it was no longer of interest to the breeding company. 
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Discussion 

Tibiotarsal curvature is difficult to measure in ducks using a caliper-style tool, partly 

because the proximal tibiotarsus is obscured by the muscle mass of the leg; only 

the distal half of the bone is ‘visible’. These results suggest that a hand-held tool will 

always be subject to tilting by the user and imprecision in the location of the 

proximal landmark, leading to inaccuracy and reducing the reliability of the tool. As 

the tool measurements were unreliable, no comparison was made between bone 

curvature and gait scores for these birds. The tibial tuberosity is also sometimes 

difficult to find by palpation and this time-consuming step limits the tool’s potential to 

integrate into current selection procedures. However, it is likely that this skeletal 

curvature (which seems to be unique to ducks) plays some role in the birds’ gait; 

therefore it is important to understand the adaptive origin of this bone curvature and 

its role in gait. Skeletal morphology has been suggested to affect gait in various 

studies (Kestin et al. 1992, Bradshaw et al. 2002, Garner et al. 2002, Knowles et al. 

2008, Kapell et al. 2012, Kapell et al. 2017). The system described above, in its 

current state, is not suitable for the accurate measurement of tibiotarsal curvature in 

the Pekin duck. However, a similar system may be successful if the tool was fixed 

on a pivot which could swing into position to make a measurement. This would 

eliminate the issue of tool-tilting, which likely plays a major role in reducing the 

repeatability of the results. An alternate, if more expensive, option is to take an X-

ray image of the leg of each bird and use automated software to measure the angle 

of curvature. This could form part of a general leg health X-ray assessment which 

may also include bone density and TD measurements. However, the angle at which 

the bone is positioned for X-ray scanning will affect the curvature angle measured.  

The advantage of X-ray (and X-ray-based imaging methods such as computed 

tomography is that measurements can be made from the very centre point of the 

bone, rather than from the outer surface of the bone as occurs with the tool 
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developed in this pilot-study. By measuring from the bone centre, the true functional 

curvature of the bone can be recorded. Computed tomography (CT, described in 

Chapter 1) remains the most reliable, if most labour-intensive and expensive, 

method for measuring bone curvature in intact birds. However, in commercial 

setting, labour and cost may not be an issue, as CT is now routinely used as part of 

commercial breeding programmes to measure yield. Since CT scans already exist 

for each selection candidate as part of this yield-measurement process, the issues 

of labour and cost become negligible. In theory, it should be possible to develop 

automated software to identify the tibiotarsus in each scan (birds are always 

scanned in the same confirmation to ensure uniformity of measurements). The wide 

variety of potential traits which CT can measure suggests that this technology will 

play a growing role in phenotype measurement within commercial breeding 

programmes, possibly leading to a shift away from the use of hand-held tools to 

measure phenotypes. 

There were many limitations to this study. As it was initially conceived as a simple 

pilot study, the work was carried out on an ad hoc basis. Staff availability to help 

with data collection was very limited, which meant that data collection dates were 

chosen based on staff availability, rather than on development ages of the birds, 

and on any given day, the number of birds that could be recorded was limited. The 

availability of staff was limited partly by the low priority of this exploratory study 

within the company, and partly by biosecurity restrictions at the study site; staff 

taking part in this study were restricted from visiting other farms within the breeding 

company for a number of days afterwards due to routine biosecurity protocols. Staff 

availability also limited the number of birds that could be re-tested to calculate 

repeatability of the tool. If staff were available for more hours on testing days, more 

birds could be measured. Given the low priority of the work, limited staff availability 

and the limited success of initial trails, the study was ended relatively early in the 
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tool development process. A greater investment of time, staff and equipment may 

have improved the success of this tool development.
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Conclusions 

A hand-held tool such as the device tested in this chapter is unsuitable to accurate 

measurement of bone curvature in live birds. Further progress in measuring this trait 

is more likely to be made from imaging software, such as that associated with CT 

scanning.  
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Chapter Four 

Higher heritabilities for gait components 
compared with overall gait scores can 
improve mobility in ducks 
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Abstract 

Genetic progress in selection for higher body mass and meat yield in poultry has 

been associated with an increase in gait problems which are detrimental to 

productivity and welfare. The incidence of suboptimal gait in breeding flocks is 

controlled through the use of a visual gait score, a subjective assessment of walking 

ability in each bird. The subjective nature of the visual gait score has led to 

concerns over its effectiveness in reducing the incidence of suboptimal gait in 

poultry through breeding. The aims of this study were to assess the reliability of the 

current visual gait scoring system in ducks and to develop a more objective method 

of selecting for better gait. A more objective system for recording gait would give 

breeding companies the opportunity to more accurately assess the gait of each 

individual and calculate accurate breeding values for walking ability in each 

individual bird. 

Experienced gait scorers assessed short video clips of walking ducks to estimate 

the reliability of the current visual gait scoring system. In order to develop a more 

objective scoring system, gait components were visually scored on 5000 pedigreed 

Pekin ducks and genetic parameters were estimated for these components. It was 

expected that measurements of gait components would be more objective than 

those of the overall visual gait score. 

Heritability estimates of the more objective gait components were as good as, or 

better than, those of the standard visual gait score. The recording of gait 

components can potentially be automated, which may increase accuracy further. 

Genetic correlations were generally low and suggest that it is possible to use gait 

components to select for an overall improvement in both economic traits and gait as 

part of a balanced breeding programme. 
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Introduction 

Increases in growth rate and breast muscle mass which have been achieved 

through selective breeding of poultry have been associated with welfare problems, 

notably an increased incidence of poor gait (which includes ‘leg weakness’) (Farm 

Animal Welfare Council 1992, Bradshaw et al. 2002, Knowles et al. 2008, Jones 

and Dawkins 2010, Paxton et al. 2013). Birds with leg weakness may suffer pain 

and have difficulty reaching food and water (McGeown et al. 1999, Danbury et al. 

2000, Bradshaw et al. 2002, Caplen et al. 2013) leading to economic losses for the 

producer and possible starvation for the animals. Gait problems were first reported 

in turkeys and broiler chickens (Nestor 1984, Kestin et al. 1992) although early 

studies focussed mainly on the emergence of skeletal leg defects rather than gait 

itself (Mercer and Hill 1984, Nestor 1984). Poor gait has since been observed in 

other heavy meat-producing birds (Abourachid 1991, Martrenchar 1999, Jones and 

Dawkins 2010, Da Costa et al. 2014, Makagon et al. 2015). Although poor gait has 

not been reported to as great an extent in Pekin ducks, there is concern that gait 

problems may manifest in the future if selection for production traits continues along 

its current trajectory, mirroring their emergence in other poultry species. It is 

important to consider that while gait problems may be associated with pain, sub-

optimal gait may also be simply a functional consequence of an altered morphology 

in lines which have been heavily selected for increased muscle mass (Corr et al. 

2003, Duggan et al. 2015). 

Traditionally, in chickens and ducks, gait is assessed and selected against using a 

visual gait score (Kestin et al. 1992, Kestin et al. 2001), an ordinal score given to 

each bird based on a visual assessment of how that individual walks. Although 

efforts have been made to refine the visual gait score (Garner et al. 2002), it 

remains a subjective measure of walking ability and thus is prone to error. Previous 

studies have found relatively moderate kappa coefficients between 0.6 and 0.8 in 
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ducks and chickens (Webster et al. 2008, Makagon et al. 2015). This may suffice for 

flock-level welfare assessments but is below the accuracy required for selection. A 

recent EU report on the welfare of broiler chickens acknowledges the subjective 

nature of the gait scoring system and highlights the need to develop a more 

objective system of assessing gait (Anon 2000). 

Gait is a complex trait requiring the integration of sensory input, balance, 

conformation and fine motor control and heritability estimates for poultry gait tend to 

be low (Whitehead et al. 2003, EFSA Panel on Animal Health and Welfare 2010, 

Kapell et al. 2016). Similarly low heritability estimates have been published for 

visual gait scores in other species (Chapinal et al. 2012). Additionally, as the visual 

assessment of gait is a subjective measure (Garner et al. 2002) heritability 

estimates may be low, limiting the potential genetic progress when selecting for 

such a trait. Attempts have been made to circumvent this problem of low heritability 

estimates by focusing selection on objectively measured traits such as tibial 

dyschondroplasia or bone deformity (Kapell et al. 2012), although it remains unclear 

how these phenotypes affect the overall walking ability of birds. However, some gait 

components, such as step width will certainly affect the overall walking ability of an 

animal and have not as yet been genetically evaluated. 

The aim of this study was to estimate the reliability, heritability and genetic 

parameters of the visual gait score which is currently used in Pekin ducks and to 

compare this to heritability estimates for particular components of gait that are 

scored visually. It was hypothesised that heritability estimates for these components 

of gait would be more heritable than the overall gait score. This was previously 

found to be the case in dairy cattle (Chapinal et al. 2012). Components were chosen 

for ease of measurement as well as for their hypothesised influence on overall gait. 

This study focusses on two gait components; step width, which influences balance 

during the stride, and body roll, which is a proxy for centre of mass movement 
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during walking. There may be other components of gait which are more central to 

the overall movement of the bird; these components were chosen due to their ease 

of measurement.  The components were also chosen on the basis of our previous 

findings that poultry lines selected for breast muscle mass ambulate with a wider 

step width and at a slower velocity (which is likely to increase body roll for a given 

step width) (Duggan et al. 2016).  The purpose of this study was to ascertain the 

suitability of selecting for gait components, rather than to identify which components 

in particular should become the focus of future selection programmes. The benefit 

of assessing the suitability of gait components is that these components lend 

themselves more readily to automated (and thus objective) measurement than the 

current (subjective) overall gait assessment. The development of automated and 

objective measurement of gait components can potentially increase the accuracy of 

our assessments of gait and facilitate an improvement in the walking ability of 

poultry populations through selective breeding. Such automated systems (for 

example pressure platforms linked to analysis software) have been developed for 

gait analysis in humans and other species. 
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Methods 

Assessment of gait score 

In order to assess the reliability of the standard visual gait score in ducks, seven-

week-old Pekin ducks were gait scored by four industry gait scorers. Scorers were 

shown three video sequences of 36 birds walking over a runway. The video camera 

(Microsoft LifeCam Studio, recording at 30 frames per second) was placed behind 

each bird at a height of 15 cm. The video sequence contained 144 walks - four 

walks (including one duplicate) from each bird. Each walk lasted approximately 3 

seconds in order to replicate the high throughput of birds during assessments on 

breeding farms. Scorers were asked to rate each walk with a score of 1 (very poor 

gait) to 5 (perfect gait). None of the scorers were informed that the sequences 

contained duplicate recordings or multiple walks from the same birds. Agreement 

between and within scorers was assessed using Kendall’s coefficient of 

concordance using Minitab software (Minitab version 17, Minitab Inc.). 

Measurement of gait components 

Over the course of eight weeks, on one day per week, a total of over 5000 Pekin 

ducks were visually scored for gait. On average, 650 birds were visually scored in 

each week. Two breeding lines (A and B) of Pekin duck were used, alternating each 

week. In total, data was collected from four hatches of each line (a different hatch 

was measured each week). These breeding lines are grandparent stock of the 

standard Cherry Valley commercial hybrid duck. Line A forms part of the maternal 

grandparent stock and Line B forms part of the paternal grandparent stock. All birds 

were hatched in the same hatchery and raised according to the Cherry Valley 

published guidelines. Water and feed (standard industry rations) were provided ad 

lib. The photoperiod was 23 hours light on day one, reducing by one hour per day 

until day six when the photoperiod was 18 hours of light and this was maintained to 
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the end of the trial. Gait scoring took place as part of standard phenotypic 

measurement procedures which form the normal selection procedures of the 

breeding company. All phenotypic measurements took place at a single 

measurement station on the same breeding farm. After corralling birds at six weeks 

of age into a small area adjacent to the measurement station, each bird was 

weighed and its (ultrasonic) breast muscle depth was recorded. The birds were 

subsequently placed on a custom-built walkway (1.2 m wide and 4.8 m long) and 

allowed to walk away at their own pace, during which time each bird’s overall gait 

and gait components were scored (during normal selection procedures, birds are 

gait scored while walking over loose straw bedding). The walkway consisted of a 

wooden base (6mm thick plywood) which was covered by a sheet of 7mm green 

artificial turf in order to provide grip and to create a contrast so as to make the birds’ 

feet easier to see. Perspex sheeting (30 cm high) was fixed to the sides of the 

walkway to ensure the birds walked straight to the end of the walkway. Gait was 

assessed using a visual gait score (which forms part of the company’s routine 

phenotypic measurement). Gait scores for Lines A and B were recorded by two 

different members of staff (each line was scored by only one individual), both of 

whom were experienced at scoring gait.  

The visual gait score used by the breeding company spans a 1 to 5 scale, with 1 

representing a bird which is markedly lame and 5 representing perfect gait. The 

score for a bird was downgraded if, when walking, that individual displayed bowed 

or splayed legs, medially or laterally rotated feet, or if the angle of the back to the 

floor was outside the 35-65 degree range. Birds which were lame, immobile or 

walked on their hocks were given a score of 1. Most ducks were assigned scores 

between 2 and 4 (in this trial, 1% were given a gait score of 1; 29% a score of 2; 

61% a score of 3 and 8% a score of 4). 
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 An experienced farm staff member scored the overall visual gait score for each line. 

In addition to the overall visual gait score, two gait components were recorded 

simultaneously (i.e.) step width and body roll. Different members of staff recorded 

the visual scores on each line, whereas the same person scored components of gait 

for both lines. Step width was scored visually as the estimated distance 

(perpendicular to the direction of travel) between the most posterior parts of the feet 

on a 1 to 3 scale, a score of 1 denoting the feet as being very close together (or 

overlapping) and a score of 3 denoting that the feet were widely spaced during 

walking. Body roll (also on a 1 to 3 scale) was recorded as the degree of rolling of 

the shoulders during walking. This was considered an approximation of centre of 

mass movement, since the position of centre of mass was impossible to ascertain 

visually. A score of 1 represented very little rolling of the shoulders whereas a score 

of 3 was given to birds which rolled their shoulders to a large degree while walking. 

In addition to standard phenotypic measures of breast depth and body mass, feed 

conversion ratios (FCRs) for each bird were calculated by automated measurement 

of each bird’s individual feed intake and body mass. Data collected at the 

phenotypic measurement station was collated with information of the FCR of each 

bird. The pedigree of all birds was known, stretching back 15 generations. 

Phenotypic information was not available for any of the previous generations. 

Genetic analysis 

Variance components resulting from univariate and bivariate mixed models of 

restricted maximum likelihoods were used to estimate heritability of the visual gait 

score and the gait component scores as well as to calculate the genetic correlations 

between traits using ASReml (ASReml-W, version 3, VSN International Ltd.). A total 

of six traits were analysed using the following model which included fixed effects of 

sex and hatch and random effects of animal, pen and the permanent environment 

effect of the dam. The model terms were: 
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y = Xb + Za + Vp + Wd + e, 

where y is the vector of trait measurements, b is a vector of the fixed effects 

accounting for the interaction between the hatch and the sex of each bird, a the 

vector of additive genetic effects, p is a vector of the pen effects, d the vector of 

permanent environmental effects of the dam and e is the vector of residuals. X, Z, V 

and W are incidence matrices which relate the vectors b, a, p and d with y. The 

variance/covariance structure was assumed to be:  
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where A and I are the additive genetic relationship matrix and identity matrix, 

respectively. G, P, C and R represent the variance - covariance matrices of additive 

genetic effects, pen effects, permanent environmental effects of the dam and 

residual effects, respectively. Breast muscle depth and body mass were not 

included as covariates in order to assess how gait traits correlate to these important 

economic traits. Breast depth was measured by ultrasound and while this can be 

used as a proxy for overall breast muscle volume, this is not a measure of the 

overall breast size (as it is measured only in a plane perpendicular to the breast 

width). Breast muscle depth may be a partial covariate, and we would expect the 

breast width to grow in all planes, but not necessarily proportionally. Both breast 

size and body mass are important economic traits which are selected for in their 

own right. The pedigree and data structures are summarised in Tables 1 and 2 

respectively. 
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Line Individuals 

in 

pedigree 

Generations 

in pedigree 

Sires Sires 

of 

sires 

Dams 

of 

sires 

Dams Sires 

of 

dams 

Dams 

of 

sires 

 A 120,031 15 1078 364 577 4039 663 1418 

 B 81,765 15 1078 377 535 3622 699 1349 

Table 1. Pedigree structure for Lines A and B. 

 

 

Line Phenotyped 

Males 

Phenotyped 

Females 

Gait 

score 

Step 

width 

Body 

roll 

Finish 

weight 

(g) 

Breast 

depth 

(mm) 

FCR 

 A 1375 1254 2.80 

(0.66) 

{23.6} 

[0] 

2.13 

(0.46) 

{21.6} 

[229] 

2.08 

(0.53) 

{25.5} 

[230] 

3760 

(290) 

{7.7} 

[0] 

152 

(15.3) 

{10.1} 

[0] 

1.90 

(0.17) 

{8.9} 

[887] 

 B 1342 1280 2.70 

(0.56) 

{20.7} 

[1] 

2.10 

(0.43) 

{20.5} 

[269] 

2.06 

(0.47) 

{22.8} 

[271] 

3362 

(297) 

{8.8} 

[0] 

146 

(16.7) 

{11.4} 

[0] 

2.02 

(0.23) 

{11.4} 

[69] 

Table 2. Means (and standard deviations) and {coefficients of variation} for all traits 

measured in Lines A and B. Phenotypes were recorded at six weeks of age. The 

number of missing values for each trait are presented in square parentheses.
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Results 

Kendall’s coefficient of concordance, calculated between four experienced 

observers scoring gait in short video clips, was 0.49 (df = 132, p<0.001). The 

Kendall’s coefficient of concordance within observers (scoring duplicate videos) was 

0.75 (df = 135, p<0.001). No clear observer drift effect was detected – scorers 

deviated to a similar degree when scoring the first 60 walks compared to the last 60. 

Heritability estimates with genetic and phenotypic correlations for Lines A and B are 

displayed in Tables 3 and 4 respectively. The heritability estimates of the standard 

gait score were low and standard errors in the female line were high. Body roll had 

similar heritability estimates to gait score whereas step width was estimated to have 

higher heritabilities than both gait score and body roll. Economic traits (finish weight, 

breast depth and FCR)  had moderate heritabilities, with the exception of breast 

depth in Line A.  

Phenotypic correlations between traits varied between lines. Generally, gait traits 

had very low phenotypic correlations with economic traits and correlations between 

economic traits were also low, with the exception of finish weight and breast depth 

(Tables 3 and 4). As this study used relatively low sample sizes, estimates for 

genetic correlations between traits were associated with relatively high standard 

errors. Most genetic correlations between gait traits and economic traits were not 

significant (p>0.05), with the exception of line B, where significant genetic 

correlations were observed between step width and breast depth (t=2.16, p<0.05), 

and between gait score and FCR (t=3.26, p<0.01). The standard gait score had 

moderate to good genetic correlations with other gait traits (-0.51 to -0.69; 0.56 to 

0.57). The significant rG between economic traits were moderate (0.23 to 0.61). 
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Trait  Gait 

score 

Step 

width 

Body roll Finish 

weight 

Breast 

depth 

FCR 

Gait 

score 

0.061    

(0.055) 

-0.346    

(0.202) 

-0.690    

(0.146) 

-0.703    

(0.373) 

-0.374    

(0.319) 

0.095    

(0.303) 

Step 

width 

-0.162    

(0.034) 

0.238    

(0.074) 

0.561    

(0.227) 

0.217    

(0.167) 

0.066    

(0.165) 

-0.111    

(0.181) 

Body roll -0.337    

(0.025) 

0.282    

(0.029) 

0.079    

(0.034) 

0.160    

(0.215) 

-0.033    

(0.222) 

-0.379    

(0.218) 

Finish 

weight 

-0.039    

(0.030) 

0.069    

(0.034) 

0.020    

(0.029) 

0.274    

(0.091) 

0.452    

(0.145) 

0.609    

(0.135) 

Breast 

depth 

0.056    

(0.040) 

0.092    

(0.028) 

0.065    

(0.037) 

0.439    

(0.028) 

0.151    

(0.074) 

0.205    

(0.172) 

FCR 0.1226    

(0.037) 

0.007    

(0.036) 

-0.037    

(0.032) 

0.067    

(0.036) 

0.079    

(0.031) 

0.272    

(0.096) 

Table 3. Heritability estimates (in bold) of gait and other major economic traits for 

Line A, along with their genetic correlations (above diagonal) and phenotypic 

correlations (in italics, below diagonal). Standard errors for all estimates are in 

parentheses. 
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Trait  Gait 

score 

Step 

width 

Body roll Finish 

weight 

Breast 

depth 

FCR 

Gait 

score 

0.115    

(0.058) 

0.138    

(0.199) 

-0.506    

(0.170) 

0.126    

(0.176) 

-0.022    

(0.186) 

0.442    

(0.136) 

Step 

width 

-0.016    

(0.028) 

0.166    

(0.058) 

0.571    

(0.155) 

0.029    

(0.150) 

-0.326    

(0.151) 

-0.156    

(0.160) 

Body roll -0.156    

(0.028) 

0.314    

(0.023) 

0.112    

(0.047) 

-0.164    

(0.163) 

0.059    

(0.173) 

-0.136    

(0.175) 

Finish 

weight 

0.186    

(0.025) 

0.048    

(0.027) 

0.010    

(0.025) 

0.401    

(0.090) 

0.230    

(0.112) 

0.303    

(0.127) 

Breast 

depth 

0.074    

(0.024) 

-0.034    

(0.025) 

0.046    

(0.024) 

0.390    

(0.024) 

0.295    

(0.046) 

0.077    

(0.140) 

FCR 0.071    

(0.026) 

-0.016    

(0.027) 

0.004    

(0.026) 

-0.079    

(0.028) 

-0.074    

(0.025) 

0.294    

(0.048) 

Table 4. Heritability estimates (in bold) of gait and other major economic traits for 

Line B, along with their genetic correlations (above diagonal) and phenotypic 

correlations (in italics, below diagonal). Standard errors for all estimates are in 

parentheses.



156 
 

Discussion 

Gait problems are a major animal welfare issue facing modern poultry in intensive 

production systems. The present results suggest that a more targeted approach to 

assessing gait by focussing on gait components has the potential to improve 

progress in selecting for better gait in breeding birds. 

The pilot study using limited data suggests that the current visual gait scoring 

system, while showing some level of agreement between scorers, is not adequately 

reliable for long-term use in breeding programmes, but can be improved. The 

Kendall’s coefficient of concordance suggests that low concordance exists between 

scorers. A coefficient of concordance of at least 0.7 is desirable (Martin and 

Bateson 2007) and it could be argued that within a breeding programme, the 

acceptable level of concordance should be higher than this. Indeed, when scoring 

video clips of the same walks (using the standard visual gait score described 

above), all four scorers agreed 28% of the time and three of the four scorers agreed 

74% of the time. Individual scorers failed to allocate the same score to two duplicate 

walks 26% of the time. Some of these inconsistencies may be due to the short 

duration of each video recording. Short recordings were chosen so as to replicate 

conditions during assessments on farm; however for certain birds on farm, the 

scorer will observe a walk for longer than three seconds before allocating a score 

for that bird. The viewing angle of the camera, which was chosen to give a clearer 

view of the birds’ gait, is also different from the viewpoint used when scoring during 

selection on farm, which is from a standing position.  

The suboptimal reliability of the visual gait score recorded using these video clips 

suggest that an alternate and more rigorous method of gait assessment is required 

to make progress on selecting for optimal gait as weight increases. Previous work 

on gait in cows suggests that assessing components of gait may yield better 
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heritability estimates (Chapinal et al. 2012). Certain gait components such as step 

width and the ratio of double to single support time are known to have changed to a 

similar extent in both ducks and chickens which have undergone selection for 

increased growth weight and meat yield (Duggan et al. 2016) and selection 

decisions based on these components may yield greater progress than the current 

subjective gait scoring system.   

This study estimated genetic parameters for components of gait and compared 

these to those of the overall visual gait score. The data gathered on economic traits 

had coefficients of variation (CVs) in the range expected for economic traits (Table 

2). Data for gait traits had CVs in a similar range to objectively measured gait data 

in Pekin lines in Chapter 2. The heritability of step width was greater than that of the 

original gait score in both lines and standard errors were approximately the same for 

both estimates. This is to be expected; the gait score is a subjective measurement 

based on a visual assessment of overall body movements, without any tangible 

reference points. Although many gait scoring systems refer to reference points in 

their categorisation of each score (such as a splay of the legs or the angle of the 

back to the floor), there are often so many parameters and reference points within 

the overall gait score that it can be difficult to refer to these while scoring birds in a 

short space of time. Step width on the other hand is a simpler score based on only 

one aspect of foot placement and therefore one would expect this score to be more 

objective. Additionally, the recorder measuring step width can make use of 

reference points on the ground to compare successive birds. The heritability of body 

roll was similar to that of the gait score, probably because unlike step width, the 

assessment of body roll is a more subjective assessment. However, it is likely that 

body roll and step width are not fully independent traits. A bird with greater step 

width is expected to exhibit more body roll at a given speed when walking, given 

that once it lifts a foot during the stride phase, its centre of mass will be less aligned 
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with its point of support (the remaining grounded foot) in birds with greater step 

width travelling at the same velocity. Therefore the body will begin to roll until such 

time as the swinging foot is grounded again. By increasing speed, the swinging foot 

can be grounded quicker, leaving less time for the body to roll. Momentum may also 

play a role in reducing body roll at higher speeds. Heritability estimates for other 

economic traits (finish weight, breast depth and FCR) were in the range expected, 

with some differences observed between lines. For example, the mean estimate for 

the heritability of body weight in this study (0.34) is in a similar range to heritabilities 

of 0.28 to 0.45 which have been estimated in other recent poultry studies (Mignon-

Grasteau et al. 1998, Rekaya et al. 2013, Bailey et al. 2015, Kapell et al. 2016). 

Heritability estimates presented in this study were calculated from one phenotyped 

generation; it is expected that these heritabilities could be estimated with more 

accuracy if more generations had been phenotyped, as is the case within 

commercial breeding programmes. Some relatively large differences exist between 

lines in heritabilities for certain traits. For example, Line A (a female line) has lower 

heritabilities for finish weight and breast depth than Line B (a male line). Greater 

selection emphasis is likely to be placed on these traits in the male line than in the 

female line. But given that only one generation of data has been phenotyped in 

each line, sampling bias may have occurred, where the accuracy of the heritabilities 

may differ because the variation seen for a given trait in this small dataset is not 

representative of the variation in that line as a whole. A larger dataset may result in 

heritability estimates that are more closely aligned between lines.  

Phenotypic correlations of the gait score with the production traits were generally 

low, which suggests that the gait score is indeed a measure of gait, rather than a 

proxy measure of body mass or breast depth. The gait score had a low to moderate 

rP with the components of gait, whereas rP between each component of gait was 

generally moderate. Due to the relatively low sample size, genetic correlations were 
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generally associated with relatively large standard errors that were of a similar 

magnitude to the correlation estimates. These correlations will not be discussed 

here because, due to these high standard errors, the existence of a biologically 

genuine correlation is uncertain. The notable exception was the favourable genetic 

correlations between gait score, step width and body roll in both lines A and B. In 

Line B, breast depth (considered a proxy for pectoral muscle mass) is negatively 

correlated with step width; continued selection for greater breast depth may lead to 

a narrower step width. The effect of this narrower step width on balance will depend 

on the degree to which the body’s centre of mass moves laterally during gait. It is 

important to remember that breast muscle depth is a proxy measure and may not be 

an accurate representation of overall breast size. In addition, we cannot say for 

certain whether selection for larger breast muscle mass would indeed decrease the 

step width. Our understanding of how various traits relate to each other to affect gait 

(or particular components of gait such as step width) is still very rudimentary. If we 

assume that a larger breast muscle size reduces stability in the walking bird due to 

a more erratic or expansive displacement of the centre of mass, then the position of 

the centre of pressure in relation to the centre of mass becomes more important in 

maintaining stability. A narrow step width may ensure that during the swing phase 

(when only one foot is grounded), the centre of mass is more closely aligned with 

the centre of pressure (ie - the grounded foot). Conversely a wide step width, which 

may seem more stable during standing, could increase the misalignment of the 

centre of pressure with the centre of mass during the swing phase of walking. 

However, these are theoretical assumptions and more work is needed to clarify the 

relationships between step width, breast muscle size and gait. 

In Line B, a positive genetic correlation exists between FCR and gait score. Birds 

with a high FCR may be more likely to have a lower body mass and less breast 

muscle, which would increase the likelihood that these birds would have a higher 
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gait score. Genetic correlations between gait components and  production traits in 

this study were generally low and the data suggest that selection for improved gait 

may not be compromised by negative responses in economic traits. The basis of 

these genetic correlations may be linkage disequilibrium – genes which control one 

trait may be located close to genes controlling the correlated trait, so that these 

genes remain linked during recombination. Pleiotropy may also play a role, where 

the same genes may control multiple traits. An example may be a gene for increase 

body mass. This same gene is also likely to lead to a lower gait score, since a 

greater mass may reduce balance when walking. 

Poor gait is acknowledged to have arisen as a consequence of selection for 

production traits such as growth rate and body mass and it is difficult to select for an 

improvement in both traits simultaneously. However, this emergence of gait 

problems may be due to the extreme emphasis historically placed on production 

traits within breeding programmes. Also, it is possible that inaccuracies in 

measuring a trait such as gait subjectively may have hindered progress in selecting 

towards improvements in both gait and production traits simultaneously. The use of 

gait components, which are potentially more accurate that the traditional overall gait 

score may lead to progress in selecting both gait and production traits 

simultaneously. Poor gait can be caused by leg health defects such as long bone 

deformities, foot pad dermatitis and crooked toes (Julian 1984, Bradshaw et al. 

2002, Da Costa et al. 2014). In chickens, these components of gait have been 

shown to have low heritabilities and low to moderately unfavourable correlations 

with body mass, an important economic trait (Kapell et al. 2012). However, long 

term balanced selection has led to reductions in the incidences of those defect traits 

that negatively affect gait, suggesting that similar changes are also possible for 

populations selected for gait components other than those related to leg defects.  
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These results should be viewed in the context of the data available. Some 

correlations have likely been missed due to a lack of data (only one generation was 

phenotyped). Therefore, the significant correlations and also the heritability 

estimates reported here may be different if a larger data set had been available. 

Also, these data do not represent the true variation present in this population. Some 

birds were excluded from the dataset due to splayed legs, internally rotated feet or 

valgus/varus long bone deformities as these birds are eliminated as selection 

candidates during data screening. Inclusion of these defective birds in the dataset 

would likely affect the variation in step width, body roll and overall gait scores 

recorded and thus affect heritability and correlation estimates for this population. A 

limitation of this study is the relevance of these results when compared with the 

everyday gait of birds on standard commercial farms. As part of routine phenotypic 

data collection within the breeding programme, gait was scored immediately after 

each bird was weighed, leg health-checked and an ultrasound reading of breast 

depth had been recorded. Each bird was then placed on the farm bedding and 

walked away from the recording station at its own pace, during which time gait was 

visually measured, both as an overall gait score and as gait components. The 

disorienting effect of the previous trait measurements (birds are turned upside down 

during body weight and leg health measurements) should not be under-estimated. 

While this does not affect the validity of comparing the overall gait score to 

components in this instance, each bird may not exhibit exactly the same gait had it 

not undergone phenotypic measurement immediately prior to walking. For example, 

the gait component ‘body roll’ may be more exaggerated in this setting due to a 

temporary reduction in balance and orientation. To more accurately measure the 

true gait of a bird, either using the overall gait score or gait components, birds 

should not be subject to phenotypic measurement or excessive handling 

immediately prior to gait scoring. Another potential limitation is the choice of 

substrate used during scoring. The straw bedding on the farm was too irregular and 
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uneven to give a fair representation of gait for each bird (as each may chose a 

slightly different path over the irregularities of the surface provided by the straw 

bedding). The artificial grass walkway was used to provide a level walking surface 

on which all birds could be assessed. Birds will walk differently on this novel surface 

depending on how familiar and comfortable they are with it. In order to habituate the 

birds to the artificial grass surface, the walkway was left in the home pen on the 

birds for two days; this was judged a sufficient amount of time for birds to habituate 

to the surface and they showed no sign of unease towards the artificial grass 

surface during data recording. 

These data demonstrate that the visual assessment of gait components during 

selection is both feasible and yields promising heritability estimates. The use of gait 

components holds promise for future improvements in selection for improved gait in 

ducks; as they are simpler traits, the assessment of gait components can be 

automated, for example by using pressure sensing technology as in Duggan et al 

(2016). Automation of measurement has the potential to bring about greater 

objectivity and increase breeding success. It is important to note however, that 

although the gait components that are the focus of this paper can be measured 

satisfactorily and carry reasonable heritability estimates, it is not yet known which 

components should be selected to improve gait. For example, it could be argued 

that a wide step width would be beneficial to a bird with large lateral displacement of 

the centre of mass whereas a narrow step width would be beneficial to a bird with 

little lateral centre of mass movement. However, it is also difficult to differentiate 

cause and effect associations between step width and lateral body movement. A 

more thorough understanding of how gait components are integrated to effect 

overall locomotion is therefore necessary before recommendations can be made 

upon which particular gait components should be used in breeding programmes. It 

is likely that most improvement will be achieved using a selection index which 
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combines weighted measurement of various gait components. Indeed, current 

overall gait scoring methods use a combination of components which are 

subconsciously weighted in different ways depending on the observers’ opinions of 

what optimal gait entails. By solely focussing on the measurement of gait 

components, this differential weighting among observers can be avoided. 
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Conclusions 

Scoring overall gait visually is a subjective measure which generally generates low 

(but useable) heritabilities. We demonstrate that focussing on gait components, 

rather than overall gait, can generate heritability estimates which are equal to or 

better than the conventional visual gait score in ducks. The benefit of using 

components of gait is that their measurement can be automated to generate greater 

accuracy and easily combined to create an index score of overall gait. Genetic 

correlations, while difficult to ascertain, are generally low; therefore it is possible to 

use gait components to select for an overall improvement in both economic traits 

and gait as part of a balanced breeding programme. 
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General Discussion 

 

Summary 

The overall aims of this thesis were to understand how intense selection for faster 

growth rates and larger body masses has changed morphology and gait in poultry 

and whether a more objective alternative to the standard visual gait score could be 

developed as a means to improve poultry gait through selection. Gait problems 

have not yet been widely reported in ducks but a concern exists that sub-optimal 

gait may develop in the future if the Pekin duck continues on its current selection 

trajectory towards a larger body mass and faster growth rate. As gait problems have 

been widely reported in the broiler chicken, this thesis therefore considered the 

chicken as a model to compare with the duck, given that both species share similar 

selection practices in recent times. Choosing the most appropriate model species 

for use as comparisons can be difficult. Each line or species has benefits and 

disadvantages; the rational for using the chosen lines in this thesis is explored later 

in this Discussion. 

The first chapter reported how the morphology of both chickens and ducks has 

changed over the course of intense selection for higher growth rates and body 

masses. In this study, the heavy broiler chicken was compared to its lighter 

conspecific, the layer chicken, and the heavy Pekin duck was compared to its lighter 

conspecific (and ancestral phenotype), the mallard. The ancestral phenotype of the 

broiler chicken is the red jungle-fowl. The layer chicken has obviously undergone 

intense selection when compared with the jungle-fowl; however, selection in layer 

lines has focused on health and reproductive traits, rather than growth rate or body 
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mass and therefore, since the layer chicken was more easily available than the red 

jungle-fowl, it was deemed appropriate to be used here as a comparison. It should 

be noted however, that the layer chicken has undergone some selection for leg and 

bone health traits. All duck lines developed adult-sized legs at an earlier stage than 

the chicken lines. This finding agrees with previous studies on the ontogeny of legs 

and wings in mallards (Dial and Carrier 2012, Dial et al. 2012), demonstrating that 

this species has evolved to prioritise leg development in early life before functional 

capabilities of the wing are developed. This has advantages, especially in predator 

escape, which relies heavily on the legs (running and swimming) in ducks. Whereas 

size does not equate to skeletal maturity, as the duck legs did not grow after five 

weeks of age, the bones may have had more opportunity to remodel in order to 

tolerate the loads imposed on them. This may explain why the duck tibiotarsi were 

relatively stronger than those of chickens by seven weeks of age. Another 

interesting finding from this chapter was the lateral curvature observed in the 

tibiotarsi of all duck lines. This bone curvature complements findings on joint 

anatomy in another duck species, the ringed teal (Provini et al. 2013). This 

curvature would hypothetically move the feet to a more medial position during 

swimming and walking. When swimming, this adaptation would reduce diagonal 

motion across a body of water and thus most likely reduce the energy expenditure 

associated with swimming. Other work has reported that ducks will swim in 

formations that reduce energy expenditure (Prange and Schmidt-Nielsen 1970, Fish 

1995), suggesting that a strong selection pressure exists in order for this behaviour 

to evolve. Therefore it is conceivable that such a selection pressure may also affect 

limb morphology, as seems to be the case here. However, a more medial 

placement of the feet during walking would increase the risk of falling over, if the 

ducks’ centre of mass tended to sway laterally to a large degree during the gait 

cycle, as seems to be the case. This lateral sway would bring the centre of mass 

outside of the zone of stability provided by the medially positioned supporting foot. 
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Conversely, in the mallard, where such a lateral movement of the centre of mass is 

not as evident, the medially positioned supporting foot can increase stability, as is 

also suggested in another study on teal (Provini et al. 2012). Thus, is seems that 

this lateral curvature seen in ducks may create instability in birds who’s centre of 

mass ranges laterally during walking, such as the relatively heavy-breasted Pekin 

lines but may benefit birds with less dynamic lateral centre of mass movement. 

The second chapter reported how gait has changed through selection in these same 

lines. A pressure walkway was used to measure various components of the birds’ 

gait. It was clear that although they belonged to two separate species with very 

different gaits, the heavy lines of both the chickens and ducks have adapted their 

gait in similar ways to deal with the increased loads they are required to carry. The 

hypothesised effect of more medial foot placements (mentioned above) was not 

observed when step width was measured in these walking birds. Indeed, the step 

width of the Pekin lines was similar to that of the broiler chicken. Gait is an 

extremely complex trait, composed of intersections between the morphology of 

various body parts, behaviour, sensory input, processing and physiology. This 

thesis examines only some of the many morphological aspects of gait; therefore it is 

not surprising that gait observed in Chapter 2 may not match the hypothesised 

predictions based on morphology measurements from Chapter 1. For example, leg 

muscle sizes and force-generating capabilities have changes greatly through 

selection in chickens (Paxton et al. 2010) (and likely in ducks) but muscle 

morphology/physiology has not been examined in detail in this thesis. Both the 

Pekin and broiler chicken move their centre of mass in different ways and the step 

width of the Pekin is not wide enough to cater for the range of its centre of mass 

movements. The lateral motion of the Pekins during the gait cycle, which is also 

seen in broiler chickens (Paxton et al. 2013), likely causes their centre of mass to 

stray outside the ‘zone of safety’ established by the positioning of the feet during 
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stance phase. A greater understanding is required of how tibiotarsal curvature 

affects foot positioning and how this relates to the ‘zone of safety’ within which the 

centre of mass can move in Pekin ducks. If this is achieved then it may be possible 

to reduce the incidence of falls and birds ‘on their backs’ by selecting breeding birds 

based on leg curvature. Data from other studies on this topic is not available since 

this distal tibiotarsal curvature has not previously been reported.  

The second chapter also reported a difference in foot angle observed between 

species. Chickens generally pointed their feet in the direction of travel during the 

stance phase of the gait cycle (with seven week broilers pointing their feet slightly 

outward) as has been seen elsewhere (Corr et al. 2003b). All duck lines, on the 

other hand, pointed their feet medially (inward) when walking. This may be linked to 

the bone curvature or torsion observed in duck lines in Chapter One. However, 

many factors not measured here, such as muscling, tendon or ligament position 

may play a role in foot angle during gait and therefore it would be speculative to 

suggest a cause for this foot angle with the data that is available. Provini et al also 

report a medially orientated foot position in teal and suggest it may be due to the 

position of the tarsus and metatarsus but do not offer a further explanation (Provini 

et al. 2012). 

The third chapter investigated the feasibility of incorporating bone curvature 

measurements into the current phenotyping system of Pekin ducks on Cherry Valley 

selection farms and concluded that manual objective assessment of bone curvature 

using a hand-held tool would be difficult; alternate solutions (such as X-ray or CT) 

may prove more useful. While the tool could measure curvature in a dissected out 

bone, it was not useful for live birds, as the muscle around the bone made accurate 

measurements of bone curvature impossible. Previous studies on measuring long 

bone curvature in live poultry (or other species) were not found, perhaps due to the 

inherent difficulties involved in this type of measurement, as detailed within the 
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chapter. Bone curvature is an important trait and previous work has shown that leg 

bone morphology can be related to gait (Bradshaw et al. 2002, Corr et al. 2003a, 

Provini et al. 2013, Robison et al. 2015).  

The fourth chapter attempted to draw on the results of the preceding chapters on 

morphology and gait changes to identify components of gait which could be scored 

as an alternative to the standard visual gait score. The visual gait score currently 

used to assess gait in birds under selection in duck breeding systems is subjective 

and therefore prone to error. The need to develop an objective measure of poultry 

gait has been acknowledged by the scientific community (Anon 2000). An initial 

repeatability test (based on video clips which, however, do not exactly match the 

scoring conditions on breeding farms) demonstrated the lack of concordance which 

exists using the visual gait score. The aim of this study was to develop a more 

objective score by focussing on simpler, easier to measure gait components, rather 

than attempting to judge the overall walking ability of a bird. A study on dairy cattle 

has found that using gait components can yield higher heritabilities that using an 

overall visual gait score (Chapinal et al. 2012). The original gait score and the new 

gait components score were used to assess approximately 5000 pedigreed Pekin 

ducks as part of Cherry Valley’s selection procedures. The gait components had an 

equal or higher heritability to the visual gait score and the components did not show 

any unfavourable genetic correlations with important economic traits. This very 

positive development demonstrates the potential benefits of focussing on gait 

components rather than on an overall gait score and furthermore the recording of 

these components could be automated using the pressure walkway used in Chapter 

Two. These automated measures will likely yield more accurate heritability 

estimates as the error in recording them will be reduced. Selection can then be 

performed on those objectively measured components which are deemed most 

important, or the components can be weighted and combined to form an objective 
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gait score. As our knowledge of how gait components interact is still rather limited 

(especially in ducks), a greater understanding of gait is required before appropriate 

gait components can be chosen on which to practice selection within breeding 

programmes. Many studies have addressed this issue (Abourachid 1991, Corr et al. 

2003b, a, Usherwood et al. 2008, Paxton et al. 2010, Abourachid et al. 2011, Clark 

and Higham 2011, Caplen et al. 2012, Paxton et al. 2013, Robison et al. 2015) and 

further works such as these will help to develop a picture of how gait components 

interact to influence overall gait. The findings in Chapters One and Two of this 

thesis will add to that body of information on morphology and gait dynamics in 

poultry and how they interact. Chapter Four also adds to the neglected area of the 

genetics of gait. Along with recently published heritability estimates for gait in 

turkeys (Kapell et al. 2017) and previous work on the genetics of leg health traits 

which affect gait in broiler chickens (Kapell et al. 2012), this study can help breeding 

companies to gain a better understanding of the genetic control of gait in poultry and 

work towards the development of breeding strategies to achieve an optimal gait for 

broiler birds. 

Limitations 

While the three chapters presented here contain interesting results, there are 

aspects of the work which could have been improved. An immediate criticism may 

be the omission in Chapters One and Two of the red jungle-fowl as the ancestral 

phenotype in chickens. Instead, the layer chicken was used to represent a 

conspecific of the broiler which had not undergone intense selection for high growth 

rate and body mass. There are various reasons for choosing the layer chicken. 

Firstly, jungle-fowl are rare in the UK and true jungle-fowl chicks are very expensive; 

the layer chicks used in this study were free. Secondly, jungle-fowl are much 

flightier than the fully-domestic layer chicken. This is an important consideration, 

especially with regard to the gait work presented in Chapter Two; in order to collect 
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gait data representative of the normal walking behaviour of each line, birds must 

remain calm and not display evasive behaviours during locomotion. It is likely that 

jungle-fowl would have displayed an aversion towards handlers which may have 

affected the data collected. Finally, it is unknown whether true jungle-fowl still exist. 

The habitat of the jungle-fowl in South-east Asia has been home to human settlers 

for millennia. Domestic chickens were part of almost all human settlements which 

were distributed throughout the jungle-fowl’s natural range. Therefore, since it is 

likely that gene transfer occurred numerous times between the wild jungle-fowl 

population and the domesticated chicken over many generations, it is unlikely that 

‘true’ jungle-fowl (which are fully representative of the ancestral phenotype of the 

broiler chicken) exist today, although the currently available jungle-fowl would still 

be the most ancestral species available. The layer chicken has not undergone 

selection for growth rate and body mass to the same extent as the broiler chicken. 

However, the layer chicken has undergone some selection towards leg health, 

especially towards improving bone mineral content in the leg, as bone fractures 

have been a long term issue in laying hens. This is an important point since the 

layer chicken here is being used to represent a proxy of the ancestral ‘unselected’ 

form when, in fact, the layer chicken has undergone considerable selection for leg 

health that may affect traits such as gait. Bone mineral density is unlikely to have a 

great effect on gait in healthy birds but the selection process for improving bone 

mineral density may have led to other structural changes in the architecture of the 

layer chicken leg that can affect gait. This should be considered when interpreting 

the results on skeletal morphology in Chapter 1 and the results on gait in Chapter 2. 

An alternative to using a different line to represent slow growing conspecifics if to 

use the same line as the line of interest but to feed restrict birds so that they 

represent a slower-growing version of the bird of interest. This approach has been 

used previously (Williams et al. 2004) and has both advantages and drawbacks. On 
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one hand, the study benefits from the reduced variability in lines. If ad lib fed Pekin 

ducks were compared to feed-restricted of the same line, any differences seen in a 

trait (for example leg bone morphology or gait) could be considered to be due to the 

difference in mass between the two lines, suggesting that selection for high body 

mass may be responsible for an altered bone morphology or gait in the modern 

broiler bird. This would not be possible if two totally separate lines were used (such 

as the modern Pekin and the mallard) as difference seen in a trait could be due to 

body mass but could also be due to the differing selective histories of each line. 

However, the use of feed-restricted birds for comparison is not ideal. Feed 

restriction will not only affect the mass of the feed-restricted bird, but will also affect 

its physiology and development. Feed-restricted birds may not reach sexual or 

physiological maturity at the same time as ad lib birds of the same line. Feed 

restriction may also affect behaviour. For example, it may lead to pecking or 

cannabilism and increased activity (Williams et al. 2004), which can affect traits 

such as gait. There are also serious welfare concerns associated with hunger and 

feed-restriction in broiler birds which are genetically pre-disposed to high feed 

intake. For these reasons, the decision was made to use slow-growing conspecifics 

of a different line, rather than to feed-restrict individuals of the same line for 

comparison. But it should be acknowledged that neither system is an ideal method 

to compare the effects of selection for body mass in broiler birds. 

The data presented in Chapter One and Chapter Two was collected from birds in 

two experiments. Broiler chickens, layer chickens and Pekin commercial hybrids 

were raised in Experiment One in pens located in a converted pig shed. Pekin male 

line birds, Pekin female line birds and mallards were raised in Experiment Two, 

which was located in the same pens four months later. There was not enough space 

to raise all lines together at the same time. The gap in time between the two 

experiments was due to availability; this shed was also used for farrowing and the 
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bird experiments were run between farrowings. A dedicated poultry research facility 

was not available for use due to biosecurity concerns. Ideally, all six lines would 

have been raised at the same time in the same shed, had a suitable location been 

available. There is a possibility that seasonal differences may have affected the 

internal environment in each experiment but no evidence was found of this. 

Most of the results presented in Chapter Two relate to temporal and spatial aspects 

of the birds’ gait, rather than the forces applied through the ground as the birds 

walk. This is because the pressure walkway was not sensitive enough to accurately 

record ground reaction forces or pressures at all ages, particularly in the lighter lines 

(the layer chicken and the mallard). A smaller walkway, which is more sensitive and 

records at a higher spatial resolution, can be used but this smaller walkway would 

not capture the necessary number of steps for most of the birds measured in this 

study. The purchase of both plates was not financially feasible. The technology can 

be custom made at a level of sensitivity and in a size which would suit this study but 

this option was not available at the time of purchase. 

Chapter Three was an exploratory proof-of-concept trial to develop a tool for 

measuring lateral curvature of the tibiotarsus in live Pekin ducks. The trial would 

have been improved had staff availability been greater, as it would have reduced 

time limitations on test days and increased numbers of birds being tested. Also, as 

this trial was deemed a low priority in relation to the rest of the project, limited time 

was available for tool design and development. 

The fourth chapter demonstrated that heritability estimates for components of gait 

can be higher than those for the visual gait score. Genetic correlations however 

were difficult to estimate in some cases, as the standard errors of the estimate were 

almost as large as the estimates themselves. This is due to the sample size of birds 

measured; for this pilot study, only approximately 2,500 birds were measured in 
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each line. Over 3000 individuals would usually be required to estimate genetic 

correlations which were significant. The genetic correlations which were significant 

in this study were low but favourable, which is promising. The study also made no 

indication of which gait components should be used in future selection, or indeed 

what type of step width or body roll is desirable. This is outside the scope of the 

present work. It is likely that an intermediate step width and minimal body roll will 

lead to a more balance gait; however, the ideal step width will depend on the centre 

of mass movements. A far greater understanding of how gait components interact to 

form the overall gait of each bird is necessary before particular components can be 

identified as playing a central role in ‘good gait’. Indeed, the concept of ‘good gait’ 

has yet to be properly defined. There is the possibility of a circular argument here – 

how can we select for ideal gait if we are unsure of what the ideal is? And how can 

a new system of recording gait be validated if the current system that is used for 

comparison is not in itself reliable? A solution may be to view the ancestral 

phenotype as an example of the ideal gait for that species, before the effects of 

artificial selection have changed this ‘ideal gait’. For example, the gait of the mallard 

with a narrow step with and minimal lateral movement of the centre of mass may be 

viewed as an optimal gait to select toward in all duck lines. However, the 

morphology of the mallard and the modern Pekin have diverged considerably and 

so a gait that is optimal for the mallard’s morphology may not be optimal for the very 

different morphology of a broiler bird such as the Pekin. It has been suggested that 

the gait of the modern broiler chicken (greatly altered from its ancestral phenotype) 

may indeed be the optimal gait for moving this new broiler phenotype with its 

proportionally larger breast muscle mass and altered centre of mass position, 

although that is not to say it is without welfare issues (Corr et al. 2003b). The 

solution may be to use the ancestral gait as the ideal to aim towards, but to allow for 

some deviation from this ideal due to the altered morphology of the modern broiler 

bird. The validation of a new system of gait scoring (such as the use of certain gait 
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components) is difficult if the current gait scoring system is not considered reliable 

way of measuring gait. It may be necessary to validate the new measures by 

rigorous modelling of the effects of selecting towards this new gait score over 

generations. For example, one could attempt to estimate various moments and 

ground reaction forces that make up gait and model how these would change 

between different gaits. For example, how much lateral movement of the centre of 

mass would occur if the feet were placed in a narrow step width during walking, or in 

a wide step width? Similar modelling studies have been carried out to model 

dinosaur or robotic gait (Hutchinson 2004b, a, Hugel et al. 2011, Allen et al. 2013). 

Implications 

The results presented in this thesis can make a genuine impact in improving the 

welfare of poultry raised for meat production while also making production more 

profitable for producers and breeding companies alike. The work, which focusses in 

particular on the Cherry Valley Pekin duck, will enable this breeding company to 

maintain its reputation for sound gait. Selection against the lateral curvature of the 

tibiotarsus (reported in Chapter One) and the medial rotation of the foot (reported in 

Chapter Two) may improve stability in birds which tend to fall over when making 

quick turns. It is however important to firstly test the theory of lateral tibiotarsal 

curvature causing a reduction in the size of the ‘zone of safely’ and secondly the 

consequences of altering the skeletal architecture must be examined before any 

selection takes place. Measurement of lateral tibiotarsal curvature in live birds using 

a physical tool is unlikely to be successful, as shown in Chapter Three. A greater 

potential for success in this area lies in the use of CT scanning and software 

development for automated measurement of bone curavtures. 

The entire work of the thesis builds towards the development of a more objective 

gait score. Chapter Two outlines particular components of gait, such as step width 
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and support time ratios which have changed due to selection for larger body mass. 

Chapter Four looks at the suitability of the current visual gait score in ducks. The 

less that optimal reliability between scorers highlights some of the limitations in 

using a categorical scoring system for such a subjective trait. Since birds of gait 

score 1 are completely lame and cannot walk, and even birds with excellent gait are 

almost never given a score of 5 (perhaps this is because subjective gait scoring 

involves looking out for faults so there may be a hesitancy for scorers to give even 

good birds a perfect score of 5), the gait scoring system used on this farm is 

essentially a three-score system; almost all birds receive a score of 2, 3 or 4 (in this 

trial, 1% were given a gait score of 1; 29% a score of 2; 61% a score of 3 and 8% a 

score of 4). When analysing this categorical gait score, there is a statistical 

assumption that the categorical scores represent an underlying continuous trait. 

With a 3-score system, the likelihood that the categorical scale accurately 

represents the underlying continuous scale is low. A possible improvement on this 

scoring system would be to create more scoring categories, to bring the categorical 

scale closer to the underlying continuous scale. The data presented in Chapter Four 

also demonstrates that by focusing on gait components, rather than on the 

traditional visual gait score, higher heritabilities are observed, which can lead to 

greater genetic progress if selecting those traits. Only relatively minor development 

of the proprietary software is required to fully automate the system for high-

throughput use in poultry, thus making the use of gait components more objective 

and accurate than the visual gait score. The proprietary software can currently 

automatically recognise and analyse the steps of cats, dogs and humans. 

Automating analysis for another biped species, especially one with as simple a foot 

shape as ducks, would require a small training set of data. A greater challenge is to 

ensure that a normal gait is measured on each bird in the breeding programme is a 

quick and efficient manner. Birds which hesitate, stumble or do not walk in a straight 

line will not provide the normal gait recording that is necessary for an automated 
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system such as this. In a research setting, walks can be repeated in order to gather 

clean, usable data but within the industrial setting, repeating a walk may not be 

feasible due to time constraints associated with measuring a large number of traits 

on many birds as part of a breeding programme. A possible solution to this may be 

to measure birds at younger ages when walking ability is better and the birds are 

more likely to walk uninterrupted to the end of the recording walkway. Gait at this 

younger age may be an adequate predictor of gait at a later age. A greater 

understanding of how gait components relate to the overall walking ability of the bird 

is required in order to establish which gait components should be selected for to 

achieve the breeding goal of an ideal gait. Morphological traits, such as leg length or 

hip angle, can also be incorporated into a model of ideal gait. This study has 

demonstrated the feasibility of eschewing the traditional visual gait score and 

adopting gait components as a more objective and potentially more accurate 

method of improving gait in all species of poultry. Welfare concerns surrounding gait 

have plagued the poultry industry for decades and while some progress has been 

made on reducing leg health problems (Kapell et al. 2012), poor gait still remains. 

The development of an objective gait scoring technique that can be used in high-

throughput phenotyping within breeding companies has the potential to increase 

genetic progress of gait traits in a range of poultry species and improve the welfare 

of billions of individual birds. 
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