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Abstract

Although entity coherence, i.e. the coherence that arises from certain patterns of references to

entities, is of attested importance for characterising a descriptive text structure, whether and how

current formal models of entity coherence such as Centering Theory can be used for the purposes of

natural language generation remains unclear. This thesis investigates this issue and sets out to explore

which of the many formulations of Centering best suits text structuring. In doing this, we assume text

structuring to be a search task where different orderings of propositions are evaluated according to

scores assigned by a metric.

The main question behind this study is how to choose a metric of entity coherence among many

alternatives as the only guidance to the text structuring component of a system that produces descrip-

tions of objects. Different ways of defining metrics of entity coherence using Centering’s notions are

discussed and a general corpus-based methodology is introduced to identify which of these metrics

constitute the most promising candidates for search-based text structuring before the actual generation

of the descriptive structure takes place.

The performance of a large set of metrics is estimated empirically in a series of computational

experiments using two kinds of data: (i) a reliably annotated corpus representing the genre of interest

and (ii) data derived from an existing natural language generation system and ordered according to the

instructions of a domain expert. A final experiment supplements our main methodology by automat-

ically evaluating the best scoring orderings of some of the best performing metrics in comparison to

an upper bound defined by orderings produced by multiple experts on additional application-specific

data and a lower bound defined by a random baseline.

The main findings are summarised as follows: In general, the simplest metric of entity coher-

ence constitutes a very robust baseline for both datasets. However, when the metrics are modified

according to an additional constraint on entity coherence, then the baseline is beaten in domain (ii).

The employed modification is supported by the subsidiary evaluation which renders all employed

metrics superior to the random baseline and helps identify the metric which overall constitutes the

most suitable candidate (among the ones investigated) for search-based descriptive text structuring in

domain (ii).

This thesis provides substantial insight into the role of entity coherence as a descriptive text struc-

turing constraint. Viewing Centering from an NLG perspective raises a series of interesting challenges

that the thesis identifies and attempts to investigate to a certain extent. The general evaluation method-

ology and the results of the empirical studies are useful for any subsequent attempt to generate a de-

scriptive text structure in the context of an application that makes use of the notion of entity coherence

as modelled by Centering.
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Chapter 1

Introduction

This doctoral thesis is about:

a) Defining metrics of entity coherence in a text structure.

b) Exploring the usefulness of some of these metrics for the text structuring component in natural

language generation.

After identifying a large set of potential answers to point (a) above, we focus on evaluating some of the

possible candidates from the generation perspective presented in (b). Crucially, although the problem

we are dealing with is extremely relevant to text structuring, the thesisis not about implementing the

various possibilities in the context of a generation system and deciding which works out best on the

basis of elicited human judgements. Instead, the possible solutions are investigated prior to the actual

generation of a text structure. Thus, the evaluation isautomatic andcorpus-based, instead of relying

on generally more expensive psycholinguistic techniques.

Following Mellish and Dale (1998), we distinguish between the evaluation of atheory for the

purposes of language generation and the evaluation of the chosenimplementation in a system. The

experimental methodology described in this thesis represents a principled way of evaluating the under-

lying theory from a generation perspective. It is our means for choosing the most motivated candidates

for generating a text structure within the premises of a specific theory before the actual generation

takes place. Then, human-based evaluation on the output of an NLG system can show whether imple-

menting such solutions in the text structuring component does indeed generate felicitous structures. In

this sense, the corpus-based evaluation reported in this thesis can be seen as a test-bench that provides

a subsequent human-based evaluation with some testable hypotheses.

In this chapter, we start with a brief introduction to natural language generation and the text

structuring task in particular. Then, we show how text structuring relates to the notion of entity

coherence. We conclude the chapter with an overview of the thesis.

1
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1.1 Text structuring in NLG

Reiter and Dale (2000) define natural language generation (NLG) as the subfield of artificial intelli-

gence and computational linguistics which focuses on computer systems that produce understandable

texts in English or some other human language. Typically starting from some nonlinguistic represen-

tation of information as the input, NLG systems use knowledge about language and the application

domain to automatically produce reports, descriptions, directions, explanations, help messages and

other kinds of text.

Despite the variability in the structure of NLG systems, the process of generation appears to break

down logically into at least six tasks, each of which can be described informally as follows (for more

details see Reiter and Dale 2000, Chapter 3):

• Content determinationselects which information should be communicated to the user.

• Text structuringorganises this information. This includes decisions on how chunks of content

should be related with each other, in which order they will be presented, etc.

• Aggregationmaps the output of text structuring into linguistic constituents such as phrases,

clauses and sentences, often by merging already related pieces of information into more concise

structures.

• Referring expression generationdetermines the properties of the phrases used to identify and

describe domain objects.

• Lexicalisationchooses the lexemes that will be used to express the terminal nodes of a linguistic

constituent.

• Surface realisationconverts the abstract representations of sentences into surface text.

The task that we are concerned with is text structuring, independently from its possible interactions

with other tasks. Oversimplifying things even further, we view text structuring as the task of only

orderingthe output of content determination. Hence, atext structure, i.e. the output of text structuring,

is merely anorder in our view (as e.g. in Sibun 1992, Barzilay et al. 2002, Dimitromanolaki and

Androutsopoulos 2003, Lapata 2003).

Additionally, in accordance with Mellish et al. (1998a) and Kibble and Power (2000) among

others, text structuring (in our case simply ordering) is assumed to be asearchtask where different

possible solutions are generated and evaluated according to scores assigned by ametric. The output

of text structuring is the order which scores best among its alternatives.
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1.2 Text structuring and entity coherence

The importance of text structuring arises from the fact that normally a text is not a randomly-ordered

collection of information. As most literature in text linguistics argues (Halliday and Hasan 1976,

Lyons 1981, De Beaugrande and Dressler 1981, inter alia), a text possessescoherencewhich is to say

that the content is organised in a way that is easy for humans to read and understand.

Arguably, the easiest way to demonstrate this is by arbitrarily reordering the sentences that a text

consists of. The result of this process will often be hard to comprehend, although the information

content is the same before and after the reordering (Hovy 1988, Marcu 1997, Mellish and Dale 1998,

Reiter and Dale 2000, among others). Consider for example the following potential answers to the

questionhow does the system enhance a program?(from Hovy 1988):

(1.1) The system performs the enhancement. Before that, the system resolves conflicts. First, the

system asks the user to tell it the characteristic of the program to be enhanced. The system

applies transformations to the program. It confirms the enhancement with the user. It scans

the program in order to find opportunities to apply transformations to the program.

(1.2) The system asks the user to tell it the characteristic of the program to be enhanced. Then the

system applies transformations to the program. In particular, the system scans the program

in order to find opportunities to apply transformations to the program. Then the system

resolves conflicts. It confirms the enhancement with the user. Finally, it performs the

enhancement.

According to Hovy (1988), example (1.1) is not as satisfactory as (1.2) because the reader has to

work much harder to make sense of it. In contrast, paragraph (1.2) where the same propositions are

rearranged (and linked with appropriate phrases such as “then” and “in particular”) is far easier to

understand.

Text structuring is usually viewed as a genre, or even application, specific problem (Reiter and

Dale 2000, p.80). Hence, the scope of this thesis must be restricted to investigating the properties

of a certain type of text structure, the one that characterises a specific genre, namely descriptions of

objects. Although these texts have already been studied for the purposes ofdescriptive text generation

(e.g. McKeown 1985, Knott et al. 2001, O’Donnell et al. 2001), the thesis identifies and attempts to

address a number of unresolved problems in the field ofdescriptive text structuring, i.e. the generation

of the structure of a descriptive text.

These problems have to do with the fact that descriptive texts are often described as “entity coher-

ent” which means that their coherence is based on the wayentities(also known as domain objects or
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concepts) are introduced and discussed in the discourse (Poesio et al. 2002). Evidence for the role of

entity coherence in characterising a descriptive text structure comes from examples like the following:

(1.3) This exhibit is an amphora. Amphoras have an ovoid body and two looped handles, reach-

ing from the shoulders up. They were produced in two major variations: type A and the

type with a neck. This exhibit is a type A amphora. It comes from the archaic period.

The first sentence in this example introduces two entities in the discourse, namely the referents of

the phrases “this exhibit” and “an amphora”. The discourse continues with two sentences providing

information about the characteristics of amphoras and their variations. Then, the current exhibit is

identified as belonging to one of these variations and the discourse concludes with additional infor-

mation about the current exhibit. Thus, the organisation of the text can be seen as evolving around

some general patterns for introducing and discussing entities sentence after sentence.

Poesio et al. (2002) identify Chafe (1976), Kintsch and van Dijk (1978) and Givon (1983), among

others, as the earliest attempts to account for some of these principles on the basis of empirical evi-

dence. Important aspects of entity coherence are also discussed in theories oftopichood(e.g. Reinhart

1981, Horn 1986),givenness(Gundel et al. 1993) and the computational theory offocusingin Sidner

(1979) (see Poesio and Stevenson 2003 for more details).

Following the suggestions of Knott et al. (2001) and Kibble and Power (2000), we formalise entity

coherence according to Centering Theory (Brennan et al. 1987, Grosz et al. 1995, Walker et al. 1998a,

inter alia), a computational model that has been used quite extensively for the purposes of natural

language understanding in the last 10 to 15 years, but has only recently started to attract attention

within the generation community. However, viewing this model from an NLG perspective raises a

series of interesting challenges that the thesis identifies and attempts to investigate to a certain extent.

More specifically, in this thesis we discuss how Centering gives rise to many different metrics of

entity coherence and how these metrics can be evaluated with respect to their potential usefulness for

guiding the text structuring process (under the assumptions stated at the end of the previous section).

In general, entity coherence as modelled by Centering is the only characteristic of the genre in

question which is investigated in significant depth in this thesis. Hence, entity coherence is isolated

and assessed as the most relevant factor for descriptive text structuring, while additional constraints

such as rhetorical relations (Mann and Thompson 1987) are considered only to the limited extent that

the datasets available for the study allow us.

Although the investigation of the problem is unavoidably adapted to some specific features of the

available datasets, the proposed methodology and the questions raised in the study are general enough

to be useful for any subsequent attempt to generate a text structure in the context of an application

which makes use of the notion of entity coherence. Further to this, a great amount of effort has been
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placed on identifying which results are specific to the employed domain of application and which hold

across the text genre in general.

In the next section, we present a chapter-by-chapter overview of the thesis which serves as an

introduction to the main issues that each chapter is concerned with and shows how these contribute to

answering the questions that motivate the thesis as a whole.

1.3 Chapter-by-Chapter overview

In the next two chapters, we motivate and define the scope of our research in more detail. After

setting up the relevant background in chapter 2, Centering’s potential for providing a solution to the

generation of descriptive text structures is assessed. The chapter concludes with the formulation of

the first research question that our work addresses:

Q1: How can Centering be used to define an evaluation metric of entity coherence for search-based

descriptive text structuring?

Possible answers to (Q1) are presented in chapter 3. This chapter discusses possible ways of

defining a metric of entity coherence, starting with an investigation of existing metrics of text structure

that employ notions from Centering. Then, we define additional metrics of entity coherence based on

the different formulations of Centering. We conclude the chapter with the following question that our

empirical work investigates to a certain extent:

Q2: Which metrics of entity coherence constitute the most promising candidates for text structuring?

This is the main question that we deal with in the subsequent chapters of the thesis. Chapter 4

presents a psycholinguistic study that aims at testing the different predictions of three metrics using

acceptability judgements. After reporting the problems we encountered in this study and commenting

on the general cost of human-based evaluation, we conclude that an alternative methodology is de-

sirable for deciding which metrics represent good candidates for the purposes of NLG, the results of

which can be supplemented by subsequent human-based evaluation on a smaller scale.

Chapter 5 defines such a methodology. We present the basic aspects of a corpus-based, search-

oriented evaluation task and describe the main features ofSEEC, the system that was implemented to

carry out our experiments. We show how each text in the corpus is used as theBasis for Comparisonin

a search-oriented evaluation which calculates theclassification rateof each metric and compares their

performance. We conclude the chapter with a discussion of our solution to the factorial complexity of

the operation that this search entails.
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The next two chapters report on a series of empirical studies that make use ofSEEC and eight

metrics from chapter 3 to investigate potential answers to (Q2). Each of these chapters is structured

in a similar way, first by specifying the aims of the experiments, as motivated by the discussion in

earlier chapters. Then, we present an overview of the data used and conclude with the discussion of

the results of each study.

In chapter 6, we make use of GNOME (Poesio 2000), a corpus reliably annotated for the features

that the Centering-based metrics make use of. The relevant subset of texts that represent the genre

of interest is identified and experiments are conducted using the methodology of chapter 5. The

main result of this study is that none of the employed metrics of entity coherence manages to return

significantly better results than the baseline which in fact overtakes two of its competitors. The chapter

also touches on the role of rhetorical coherence as a conflicting text structuring constraint in the

investigated genre.

In chapter 7, we employ data from MPIRO (Dimitromanolaki and Androutsopoulos 2003), an

existing NLG application, which manifest the superiority of the baseline even more emphatically.

The baseline now beats all its competitors with only one exception. An examination of the structures

which differentiate the baseline from the metric that overtakes it shows that the marginal difference

against the baseline is due to a specific feature of the dataset from MPIRO which does not characterise

the dataset from GNOME.

In chapter 8, the best scoring structures of the baseline and the metric that overtakes it are inspected

more closely. This investigation equips the employed metrics with an additional constraint on entity

coherence and motivates a new set of pairwise comparisons between the modified metrics. In these

comparisons, a number of modified metrics overtake the baseline in the dataset from MPIRO, but not

in the dataset from GNOME. Hence, a number of best-performing candidates for text structuring are

identified in the particular application domain, although the baseline remains very robust as far as the

genre of interest is concerned.

A question not addressed until this point is whether the results from the MPIRO domain are

specific to EM (the expert who provided the orderings for the application-specific dataset) or whether

they reflect more general strategies for ordering the information derived from the MPIRO system.

In order to answer this question in a general way, the dataset from MPIRO is enhanced with

orderings provided by more than one expert. The distance between the orderings of EM and the

orderings of her colleagues is computed and compared to the distance between the orderings of her

colleagues and each other following the methods of Lapata (2003). The analysis in chapter 9 identifies

another “stand-alone” expert but indicates that EM shares a lot of common ground with her other

colleagues in the ordering task, deviating from them only as much as they deviate from each other.
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Further to this, the methodology used to investigate the distance between the experts is extended in

chapter 9 to automatically evaluate the best scoring orderings of some of the metrics from the previous

chapter in comparison to an upper bound defined by the combined data of the human experts and a

random baseline. This defines a subsidiary evaluation task that deals with potential shortcomings of

the methodology specified in chapter 5.

The results in chapter 9 indicate that the distance between the orderings of the experts and the best

scoring orderings of each metric is significantly smaller than the distance between the orderings of the

experts and the orderings of the random baseline. Thus, all metrics score significantly better than the

random baseline in this experiment.

The analysis also provides additional evidence in favour of the modification of the metrics sug-

gested in chapter 8, as it is shown that the modified baseline metric stands much closer to the experts

than the unmodified one. This in turn indicates that the additional constraint of entity coherence is not

specific to EM but is shared by her colleagues to a great extent.

Only one of the modified metrics employed in chapter 9 manages to return a distance from the

experts which is not significantly greater than the distance between the orderings of the experts and

each other. Hence, this metric is identified as the one that performs best across all evaluation tasks and

can be rendered as the most promising candidate for text structuring in the MPIRO domain among the

ones investigated in the thesis.

Finally, chapter 10 summarises the primary results of the thesis, presents our main contributions

and points out possible directions for future work.





Chapter 2

Motivation

This chapter provides a review of relevant approaches to text structuring and entity coherence, dis-

cusses their shortcomings and describes how previous research motivates our work in this field. Cen-

tering Theory, a current formal model of entity coherence, is introduced and its potential for providing

a solution to descriptive text structuring is assessed. The chapter concludes with the formulation of

the first research question that our work aims to address:

Q1: How can Centering be used to define an evaluation metric of entity coherence for search-based

descriptive text structuring?

2.1 Major approaches to text structuring

In this section, we review the two main approaches to text structuring, namelyschemataandRST-

based planning. We discuss their appropriateness for the generation of descriptive text structures and

how our work contributes to existing research in this field.

2.1.1 Schemata

The idea of using entity coherence in NLG is not entirely new. The TEXT system described in

McKeown (1985) performs text structuring using a predefined representation called aschema. A

schema portrays stereotypical patterns of expression, and can be seen as a template with slots at

appropriate positions (called predicates by McKeown) that are filled with propositions during text

structuring. The matching process is monitored by a focusing mechanism, based on the theory of

immediate focus in Sidner (1979), which selects between alternative propositions.1

1As we mention in the introductory chapter, Sidner (1979) represents one of the earliest formalisations of the notion of
entity coherence in computational linguistics. Her theory of immediate focus supported her attempt to specify algorithms
for anaphora resolution. McKeown (1985) modified her model to constrain NLG as explained in the current section.

9
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More specifically, during the process of schema filling more than one proposition from the relevant

knowledge pool may match the next predicate in the schema. To choose between the alternatives in

the schema, the system applies a set of immediate focus rules (McKeown 1985, pp.60-75). The

proposition that satisfies the most preferred rule for immediate focus movement is chosen over the rest

of the candidates for what to say next. Focus information is then available for the tactical component

in order to control for pronominalisation and select the appropriate syntactic constructions that appear

in the surface text (McKeown 1985, pp.77-79).

For each proposition that matches a predicate in the schema adefault focussingles out the argu-

ment that is most likely to be focused on. The default focus is the first argument of the proposition

to be tested for the application of the immediate focus rules. If it satisfies the most preferred rule, it

is then established as the current focus and appears in the surface subject position as indicated by the

unmarked syntax of the predicate.

The default focus is overridden if another argument within the proposition allows for the applica-

tion of a more preferred immediate focus rule. This argument will then appear as the surface subject of

the sentence by means of syntactic mechanisms such as passivisation or there-insertion which account

for reordering the constituents of a sentence on the basis of focus information.

McKeown (1985) defined 4 schemata that were found to capture the structure of 56 paragraphs

from 10 different authors. In order to define the schemata, McKeown analysed the paragraphs by

hand into sequences of predicates. Except from the subjectivity that this methodology entails, pointed

out by McKeown herself (McKeown 1985, p.25), the main practical problem with the schema-based

approach to text structuring is that new schemata may need to be defined every time a system like

TEXT has to be ported to a new domain, admittedly a laborious and time-consuming effort.

Duboue and McKeown (2002) present a recent attempt to define schemata automatically in order

to improve the efficiency and reliability of schema-based text structuring. They describe an evolu-

tionary algorithm that learns a schema from an aligned corpus of semantic inputs and corresponding

human outputs. Duboue and McKeown (2002) use two evaluation functions in their genetic search.

The first evaluation function is based on the ordering constraints acquired on their domain (Duboue

and McKeown 2001). The second evaluation function computes the average of the alignment scores

between the texts generated by their system and the corresponding human transcripts for a set of

semantic inputs.

Other recent approaches to text structuring and multidocument summarisation have also addressed

the problem of ordering information using machine learning techniques. Dimitromanolaki and An-

droutsopoulos (2003) apply standard machine learning algorithms in order to specify the most nat-

ural ordering of propositions derived from the database of the MPIRO system (Isard et al. 2003).

Kan and McKeown (2002) use ann-gram model to infer ordering constraints between facts, whereas
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Lapata (2003) presents an unsupervised probabilistic model for text structuring that learns ordering

constraints from a large corpus operating on sentences rather than facts.

Finally, Barzilay et al. (2002) present an integrated strategy for content organisation derived from

experiments asking humans to order information. In order to yield a coherent summary, the algorithm

in Barzilay et al. (2002) combines the chronological order of events with a constraint which ensures

that sets of sentences on the same topic occur together. This results in a bottom-up approach for text

structuring that opportunistically groups topically related sets of sentences.

2.1.2 RST-based planning

As we saw in the previous section, schemata are an effective way to express frequently occurring,

domain-dependent text structures that exhibit little variation. On the other hand,Rhetorical Struc-

ture Theory(RST) is an attempt to describe the structure of a wider variety of texts in terms of the

combination of a more or less fixed set of rhetorical relations which are seen as the building elements

from which coherent texts are composed (Mann and Thompson 1987). According to RST, a natural

text can be described as a tree-like hierarchical structure with rhetorical relations applying recursively

between adjacent spans of text as well as between larger text spans already related via a rhetorical re-

lation. For each pair of text spans related via a rhetorical relation, RST distinguishes between the span

which is more important to the writer’s purpose (thenucleusof the relation) and the span that simply

supports the nucleus (termed thesatellite) which can often be deleted without severely impairing the

comprehensibility of the text.2

RST-based approaches to text structuring have been very popular within the NLG literature.3 The

seminal work of Hovy (Hovy 1988, 1990, 1991, 1993) defines a dynamic top-down text planning

strategy that formalises each rhetorical relation as an RST plan operator with preconditions on its nu-

cleus and satellite as well as intended effects which express the goals and beliefs of the conversational

participants. Each operator has growth points which are collections of additional goals. The planner

starts by selecting an RST plan operator whose intended effects include achieving (one of) the sys-

tems’ communicative goals; it then inspects which of the input propositions match the preconditions

of the operator and adds them to the text structure. When the preconditions are fulfilled, the planner

2RST also recognises more complex linear combinations of nuclei and satellites, such asmultinuclearrelations, single
relations with more than one satellite contributing to the same nucleus, etc. See Mann and Thompson (1987) for a discussion
of these patterns and a wide range of RST analyses of natural texts. The principle ofnuclearityis discussed in Mann and
Thompson (1987, pp.30-38). A study on the psycholinguistic plausibility of the principle ofstrict compositionalitywhich
is Marcu’s recursive formulation of nuclearity appears in Marcu (1997, Chapter 6).

3One of the problems caused by the popularity of RST for text generation is the proliferation of rhetorical relations.
Mann and Thompson provide definitions for 23 relations although the authors are careful to say that “other relations might
be reasonable constructs in a theory of text structure” (Mann and Thompson 1987, p.8, footnote 5). Indeed, Hovy and Maier
(1995) taxonomise more than 400 relations that have been proposed by approximately 30 researchers into a hierarchy of
around 70 increasingly semantic relations. Hovy and Maier (1995) argue that even though the taxonomy is open-ended in
one dimension, it is bounded in the other and therefore does not give rise to anarchy.
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tries to achieve each growth point goal by searching for an appropriate RST operator again. When

the new operator is found, its preconditions are matched to the input propositions and added to the

text structure. The text planning process finishes when either the input propositions are exhausted

or no goals remain to be satisfied. Thus, top-down text planning results in a tree-like structure with

non-crossing branches in which terminal nodes are elementary propositions and intermediate nodes

correspond to RST plan operators representing discourse relations.

As Hovy himself points out (e.g. Hovy 1990, p.31 and Hovy 1991, p.94) treating growth points as

“suggestions” to include additional material rather than “injunctions” as happens in his standard text

planning approach makes the difference between an RST plan operator that shows more flexibility

during the text planning process and one that acts like a schema. In an extension of Hovy’s basic

approach, Hovy and McCoy (1989) propose an architecture that combines a more flexible rhetorically-

driven planner with a constraining mechanism that bars certain expansions of growth points using

domain-specific focus information.

A further extension of Hovy’s planning strategy for the purposes of dialogue generation is de-

scribed by Moore and Paris (1993). Moore and Paris (1993) argue that for an expert system to be

able to participate in a dialogue with the user it must have an explicit representation of the intentional

structure of the conversation at each step. This is not provided by Hovy’s operationalisation of RST

relations that does not distinguish betweeninformationalandintentionalrhetorical relations (Moore

and Pollack 1992; Moser and Moore 1996).4 According to Moore and Paris (1993), the mapping

between a speaker’s intention and an intentional relation is one-to-one. By contrast, the mapping

between a speaker’s intention and an informational relation is one-to-many. This means that a dia-

logue system requires an explicit representation of the intention that lies behind the introduction of an

informational relation in the text structure in order to be able to participate in a dialogue efficiently.

Based on the distinction between the two types of rhetorical relations, Moore and Paris (1993)

describe a system that preserves an explicit representation of both intentional and rhetorical structure.

Using information of the intended effect of individual parts of a text on the hearer, Moore and Paris

(1993) make their dialogue system capable of reasoning about its previous utterances, interpreting

follow-up questions and generating appropriate explanations in the context of ongoing conversation.

Marcu (1997, Chapter 7) discusses the inability of both top-down planning and schema-based

techniques to construct a text structure that subsumes all the information in the relevant knowledge

pool and proposes an RST-based, bottom-up, data-driven text planning method to deal with this prob-

lem. His text structuring algorithms assume that global coherence is achieved by satisfying as many as

4Mann and Thompson (1987, pp.17-18) do distinguish betweensubject-matter(i.e. informational) andpresentational
(i.e. intentional) relations, but do not discuss the implications of this distinction. Although they recognise that RST “some-
times” triggers simultaneous analyses, they attribute this to the fact that the speaker occasionally tries to achieve more than
one goal with a single utterance (Mann and Thompson 1987, pp.26-30).
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possible of the local constraints on ordering and clustering of the nuclei and satellites of the rhetorical

relations that hold between the pairs of units in the knowledge pool. Using corpus analysis to cal-

culate the weights of these constraints for each rhetorical relation, Marcu (1997) is able to construct

hierarchical text structures which not only subsume the whole information in the knowledge pool but

also satisfy multiple high-level communicative goals.

Despite its popularity, the appropriateness of RST-based text structuring has been challenged in

a number of domain-specific applications: Kittredge et al. (1991) argue in favour of representing

domain-specific communication knowledge explicitly, albeit complementary to domain-independent

rhetorical knowledge, for the generation of short reports such as weather forecasts and employment

statistics summaries. Mooney et al. (1991) argue that the high-level structure of extended explanations

is not completely recursive as RST has claimed and propose a bottom-up process for generating this

sort of structure in terms of basic blocks each consisting of a domain-specific organisational focus and

textual units clustered around this focus. Once the high-level structure is determined by the bottom-up

strategy, it can be used to control the top-down generation of local plans within the resulting block

structure. Moreover, Sibun (1992) describes a system that does not use any top-down guidance from

explicit knowledge of overall hierarchical structure (be it domain or rhetorical). The approach in

Sibun (1992) relies largely on local regularities in the structure of the knowledge base which makes it

possible to generate the best next increment of text without any tree-like structure.

More recently, Bouayad-Agha et al. (2000) questioned the compatibility between rhetorical struc-

ture and text structure as assumed by Scott and de Souza (1990), by presenting examples of acceptable

text structures which are not compatible with their underlying rhetorical structures. Bouayad-Agha

et al. (2000) attribute this incompatibility to a phenomenon that they callextrapositionand discuss

how an NLG system can be configured in order to improve the quality of the generated text by allow-

ing solutions that violate compatibility.

In conclusion, although RST appears to be a more domain-independent framework than McKe-

own’s schemata for describing the structure of a text, neither schemata nor RST-based text planning

are able to generate text structures across all genres. In fact, it has often been argued that it is difficult

to deal with text structuring within a unified general model due to the inherent domain-dependence of

the task (Reiter and Dale 2000). On the other hand, domain-independent approaches that can be used

in as many different settings and applications as possible would be particularly appealing due to their

generality and potential portability.

In the next section, we discuss how certain structural properties of descriptive texts, which is our

own genre of interest, have motivated an attempt to identifywhich component of a general theory

such as RST fails to make the appropriate predictions about the role of entity coherence. Further to

this, an effort to replace this component with a more elegant general mechanism that accounts for the
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observed phenomena is desirable. This gives rise to the question whether a general theory of entity

coherence can supplement an already suggested refinement of RST.

2.1.3 An ELABORATIONless framework of descriptive text structure

In a standard RST analysis of a descriptive text, most of the material appears to be related via a specific

kind of rhetorical relation calledELABORATION. In general,ELABORATION has been characterised

as “the weakest of all rhetorical relations in that its semantic role is simply one of providing more

detail” (Scott and de Souza 1990, p.60). Thus, it is somehow surprising thatELABORATION turns out

to be the most frequent rhetorical relation in the corpus analysis of Marcu (2000, p.438). As Cheng

(2002, p.157) notices, because this relation can have a very large number of possible expansions, its

predominance in the descriptive genre makes it hard for a top-down planner based on growth points

to determine which specific information to select from the knowledge base.

In a further analysis motivated by the structural properties of the descriptive genre, Knott et al.

(2001) identified a number of additional general theoretical problems in the RST framework all related

to OBJECT-ATTRIBUTE ELABORATION.5 One of their main observations is thatELABORATION does

not hold between two propositions directly in the same way as the rest of the RST relations. Rather,

it holds indirectly by virtue of an identity relation between two entities that both propositions refer to.

Consequently, it is better thought of as expressing constraints on how the focus of a text moves from

one entity to another.

Knott et al. (2001) suggest thatELABORATION be eliminated from the group of RST relations and

replaced by a theory of entity coherence. The main operational unit in the suggested framework of text

structure is theentity chain. An entity chain consists of a sequence of localRS-treesconnected with

each other linearly via subsequent entity links. These trees can either consist of only one proposition

(in which case they are called trees purely by convention), or have additional levels of hierarchy, thus

being complex trees each constructed using RST’s relations (minusELABORATION). Thetop nucleus

of a tree is the proposition which is reached by following a chain of nuclei from its root. In other

words, the top nucleus is the nucleus of the nucleus of (...) the nucleus of the tree.

A legal entity chain Cn is one where the top nucleus of each local RS-tree that the chain consists

of is a proposition “about” the same entityEn.6 Hence, each legal entity chainCn sets a unique entity

En as its global focus.7 Crucially, the propositions within a single RS-tree do not all have to be about
5The objections of Knott et al. (2001) are specific toOBJECT-ATTRIBUTE ELABORATION and not to the other types

of ELABORATION such asPROCESS-STEP ELABORATION (see Mann and Thompson 1987, p.52).OBJECT-ATTRIBUTE

ELABORATION applies between two spans when the nucleus mentions an entity and the satellite subsequently “presents
additional detail about” this entity. Unless otherwise stated, subsequent mentions ofELABORATION in this text should be
taken to refer toOBJECT-ATTRIBUTE ELABORATION only.

6A working definition of what it means for a proposition to be “about” a certain entity according to Knott et al. (2001)
is provided in the next section.

7Knott et al. (2001) take an entity chain to correspond to afocus spaceas discussed by Grosz and Sidner (1986).
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the same entity. Coherence between these propositions is not determined by their having entities in

common, but by the rhetorical relations between them.

At a higher level of discourse structure, a coherent descriptive text is defined as alegal sequence

of entity chains. A legal sequence of entity chains is a sequence in which the global focusEn of a

chainCn is mentioned in any RS-tree within thei previous chains.8 Hence, the admissibility ofCn

with focusEn at a particular point in a text is seen as a function of the linear distance ofCn from the

previous mention ofEn. Also note that the position of the RS-tree where the previous mention ofEn

took place does not matter.

As a result, the constraints of global coherence in this framework are much weaker than applying

ELABORATION recursively to build a tree-like structure. This accounts for a phenomenon that Knott

et al. (2001) callresumptionwhich violates RST’s assumption of hierarchical text structure. Knott

et al. (2001) present an example of resumption and define it pretheoretically as the move where an en-

tity mentioned in the middle of a paragraph becomes the central topic in a subsequent (not necessarily

adjacent) paragraph.9

In summary, Knott et al. (2001) are making three main claims with respect to the structure of

descriptive texts:

• Rhetorical relations apply onlylocally: local RS-trees are related linearly with each other via

entity links.

• Rhetorical and entity coherence arenot simultaneousconstraints on text structure (as assumed

e.g. by Hovy and McCoy 1989): Two adjacent propositions are related coherently if either there

is a rhetorical relation between them or they have an entity in common.

• ELABORATION overlapswith theories of global and local entity coherence: Entity links within

a chain account for the application ofELABORATION on adjacent text spans. Subsequent entity

chains are not related hierarchically but via loose constraints on their global foci (similarly to

Mooney et al. 1991).

In the next two sections, we discuss how the framework of text structure in Knott et al. (2001) has

been used in a system that generates text describing artefacts in a virtual museum. We conclude

our review of the main approaches to text structuring with a discussion of the underspecification of

local entity coherence in theELABORATIONless model and how this motivates the investigation of

Centering Theory as a potential solution.

Hitzeman and Poesio (1998) argue that relating each focus space to a single entity is needed to account for long distance
pronominal anaphora, a suggestion supported by the analysis of long distance pronominalisation in Poesio et al. (2002).

8Knott et al. (2001) seti to 4 by convention.
9Another example of resumption appears in Kittredge et al. (1991). Also see example (2.1) in the next section.
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2.1.4 Structuring descriptive text

Mellish et al. (1998b) argue that describing an object such as a museum exhibit lacks an explicit uni-

tary overriding communicative goal. The meta-level intention behind the structure of this kind of text

can be stated generally as “provide the hearer with suitable, unknown, interesting, and accurate infor-

mation about an object in the gallery”. This is better analysed as a set of non-hierarchical descriptive

goals each providing an opportunity for other goals to be executed. This setting makes both a standard

top-down approach to text planning based on goal decomposition and schema-driven text generation

unsuitable for the descriptive domain. Mellish et al. (1998b) describe an opportunistic approach to

text generation that structures important, untold and non-trivial interconnected pieces of information

from a precompiled knowledge base at runtime. This strategy was implemented in the context of a

generation system called ILEX that delivers hypertext descriptions of artefacts in a virtual museum

(O’Donnell et al. 2001).

The domain knowledge of ILEX is organised in the form of a directed acyclic graph called thecon-

tent potential. The content potential consists of three kinds of nodes: entity nodes (each corresponding

to a generic or specific domain object), fact nodes each linked to two entity nodes (corresponding to

an instantiated binary predicate with the two entities filling the argument positions)10 and relation

nodes which are linked to fact nodes (each representing a rhetorical relation between two facts). In

accordance with the claims of Knott et al. (2001), the rhetorical relations in the content potential do

not includeELABORATION. Given the ubiquity ofELABORATION in the descriptive domain, the rela-

tions in ILEX’s content potential are a small subset of the complete set of rhetorical relations defined

by RST.

When ILEX receives a request from the user to describe an object in the collection, it sets this

object as the focal entity of the description which will always consist of a single page of hypertext.11

Then, the content determination algorithm extracts a set ofrelevantfacts from the content potential

(see O’Donnell et al. 2001, pp.243-244 for more details on how relevance is computed). The text

structuring stage starts with the system extracting a subgraph of the content potential based on the

facts that were delivered from the content determination module. This subgraph contains all the entity

nodes pointed to by the relevant facts together with all the relation nodes which link pairs of fact

nodes. Once the subgraph has been obtained, the text structuring problem is the same as the one

discussed by Marcu (1997) with the exception that the representation that ILEX strives for is a legal

sequence of entity chains according to the framework in Knott et al. (2001) rather than a recursive

RST tree.

10These entities are annotated asArg1andArg2of the predicate. Arg1 is used as the working definition of the entity that
the fact “is primarily about” in Knott et al. (2001).

11In chapter 8, we shall use the termPageFocusto refer to this entity. A particular instantiation of the PageFocus results
into the selection of the relevant information from ILEX’s database.
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In order to generate this representation, the system proceeds in two independent directions

(O’Donnell et al. 2001, p.246). First, it builds a number of entity chains, grouping together the fact

nodes that have the same Arg1. Second, it searches for the best RS-tree that can be created from the

complete set of fact nodes, regardless of which entities they are about.12 After the RS-tree is built, the

fact nodes that make it up are deleted from their entity chains and the fact node that corresponds to

the top nucleus of the tree is replaced by the whole tree in its entity chain. The algorithm then checks

if a legal sequence of entity chains exists; if it does not, it tries the same procedure on the next best

tree. The whole process is iterated and the set of trees containing facts not yet incorporated into the

tree is produced. The algorithm finishes when no more trees can be added to the legal sequence of

entity chains.

In short, what the text structuring component of ILEX does is to “saturate” an initially constructed

set of entity chains with local RS-trees. Note that in the discussion of theELABORATIONless frame-

work of text structure, Knott et al. (2001) claim that either entity links or rhetorical relations are

sufficient for establishing coherence between two text spans. However, the description of the text

structuring algorithm in O’Donnell et al. (2001) prioritises the construction of as many “good” trees

as possible which are subsequently linked to each other and to stray facts with Arg1 links, probably

because rhetorical relations are seen as more interesting features of text structure than plain entity

links. This procedure can give rise to the following type of text (taken from Knott et al. 2001, p.192,

example 6). The example is annotated with the primary constructs of global text structure in ILEX.

Satellites of local RS-trees are pointed out by additional levels of indentation:13

(2.1) (C1, E1: J-999)

a. This piece is a necklace.

b. It was designed by a jeweller called Jessie King.

c. It was designed in 1905.

d. It is made of silver.

(C2, E2: King)

e. Jessie King was a famous designer.

fS. She was Scottish,

f. but she worked in London.

12The details of this process are not documented substantially. The evaluation of an RS-tree appears to be based on
intuitive preferences for some relations over others and a preference for “bushy” trees without self-expanding relations.

13For instance, the first RS-tree of example (2.1) consists of the satellite (fS) followed by its top nucleus (f).



18 Chapter 2. Motivation

g. It was in London that this piece was made.

(C3, E3: Arts-and-Crafts-style)

hS. Like the previous piece,

h. this piece is in the Arts-and-Crafts style.

iS. Although the previous piece had a simple shape,

i. Arts-and-Crafts style jewels tend to be elaborate;

iS. for instance, this piece has detailed florals.

There are three entity chains in this text according to Knott et al. (2001). The first entity chainC1

consists of the fact nodes (2.1a) to (2.1d). Its focusE1 is the focal object of the whole description, that

is, the particular exhibitJ-999 (as recorded in the content potential). The focus of the second entity

chain consisting of spans (2.1e-g) isKing, the jewel’s designer. The last entity chainC3 sets the entity

Arts-and-Crafts-style as its focus.

Within the chains there exist a number of local RS-trees. The first tree consists of the top nucleus

(f) and its satellite (fS). The top nucleus of the second tree is fact node (h). The third tree consists of

the top nucleus (i) and one satellite on each side.

According to Knott et al. (2001) there are two resumption relations in (2.1), fromC2 to C1 and

from C3 to C1.14 Neither of these resumptions is to material in an adjacent text span. Nevertheless,

Knott et al. (2001) are satisfied that the text in (2.1) represents a good optimisation of entity- and

relation-based constraints on coherence.

2.1.5 A search-based approach to descriptive text structuring

In the seminal paper of Mellish et al. (1998a), text structuring is viewed as a formalsearchproblem.

Broadly speaking, in search-based text structuring a number of potential solutions are generated and

emphasis is placed on defining ascoring functionwhich assigns each solution with a measure of

“goodness”. The scoring function is an essential part of theevaluation metricthat compares the

solutions and picks the one which scores best.15

In the experiments of Mellish et al. (1998a), a text structure is represented as an ordered RS-tree

with propositions at its leaves. A stochastic search approach to text structuring in the ILEX domain

14Arguably, the entityArts-and-Crafts-style, which is recognised as the focus of the chainC3 by Knott et al. (2001),
is not mentioned in any of the previous two entity chains, so it is difficult to seeC3 as a legal entity chain introduced via a
resumption. In addition, the Arg1 of the top nucleus (h) is clearlyJ-999, the referent of the NP “this piece”. However, the
RS-tree of (h) is included in a chain that sets the global focus to theArts-and-Crafts-style.

15A more formal definition of the termsscoring functionandevaluation metricis given in the next chapter.
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is introduced that maintains a population of candidate solutions which evolves according to genetic

rules of selection, recombination and mutation. At each evaluation cycle, new candidate structures are

created by applying these rules, and subsequently assigned scores by an ad-hoc function which takes

into account factors such as interestingness, substructure size and fulfilled preconditions for rhetorical

relations as well as some intuitively specified features of entity coherence. Then, the new structures

replace the least fit individuals in the population. This process is not guaranteed to find the optimal

solution, but can be stopped at any point during the generation process and output the best structure

“found so far”. An extension of Mellish et al. (1998a) which accounts for the interaction between

aggregation and text structuring is presented in Cheng (2002).

The functions in Mellish et al. (1998a) and Cheng (2002) are devised in accordance with the model

of text structure in Knott et al. (2001).16 The main difference between the approaches of Cheng (2002)

and Mellish et al. (1998a) and the algorithm in O’Donnell et al. (2001) is that the former are much less

deterministic in nature, taking into account a much larger space of possible, but not equally plausible,

candidate structures.

Another search-based approach to text structuring is followed in ICONOCLAST, a system which

generates medical leaflets (Kibble and Power 2000). Although the set of candidate solutions enumer-

ated by Kibble and Power (2000) appears to be much more restricted than in Mellish et al. (1998a),

both approaches evaluate a population of text structures according to the values of an intuitive scor-

ing function. Because the formalisation of entity coherence in Kibble and Power (2000) is extremely

relevant to our purposes, as it will soon become obvious, it is discussed in subsequent sections of

the thesis in substantial detail. At this point, we would simply like to emphasise that a search-based

approach as represented by the work reviewed in this section is a plausible alternative to the more

deterministic methods traditionally used for descriptive text structuring.

2.1.6 Centering: the missing entity link?

To our understanding, McKeown (1985) and Knott et al. (2001) argue in favour of usinggeneral

notions of entity coherence to guide the generation process.17 As we mentioned earlier, although focus

information was used in schema-driven text generation to constrain what to say next, schemata are not

flexible enough to express the opportunism in the domain of ILEX. The same holds for top-down text

planning including the variations in Hovy and McCoy (1989) and Mooney et al. (1991) which employ

domain-specific notions of focus as additional constraints to rhetorical coherence. By contrast, Knott

16Note that the features for entity coherence carry less weight than rhetorical features in Mellish et al. (1998a), similarly
to the strategy followed in O’Donnell et al. (2001). It is not clear to us how this function accounts for resumptions. The
features for entity coherence employed by Mellish et al. (1998a) and Cheng (2002) are discussed in section 3.1.1 of the next
chapter in more detail.

17The same is true for Kibble and Power (2000) as section 2.4.3 discusses.
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et al. (2001) argue in favour of exploiting a general theory of entity coherence alongside independent,

locally applying rhetorical relations in the generation of a descriptive text structure.

However, as Knott et al. (2001) state in their conclusion, the structure within and between entity

chains is underspecified. Hence, a formally defined model of entity coherence might be necessary to

further constrain a descriptive text structure. AlthoughCentering Theoryis identified as one of the

models of entity coherence that can be possibly used in the context of descriptive text structuring,

whether Centering can indeed serve this purpose remains an open question.

In order to assess whether Centering is compatible with the framework of text structure which un-

derlies ILEX, in the next section we describe the basic aspects of the theory, the ways it was evaluated

and how it was used for NLG so far. Then, the preferences which underlie Centering are compared

with the framework of Knott et al. (2001) in section 2.4.4. Subsequent and more thorough investiga-

tion of these preferences leads to the conclusion that the most appropriate way to incorporate Center-

ing into text structuring is by defining scoring functions of entity coherence which are paramount to

search-based text structuring as presented in the previous section.

2.2 Centering Theory

In this section, we discuss the basic aspects of Centering Theory (henceforth CT). First, we present the

general claims of the theory and its formalisation in the seminal papers of Brennan et al. (1987) and

Grosz et al. (1995), and then we discuss some more recent formulations. Next, we review how CT was

used by its various proponents, with particular reference to a recent corpus-based evaluation which

points out and addresses CT’s underspecification (Poesio et al. 2002).18 We conclude by discussing

how specific NLG applications used CT with particular reference to Kibble and Power (2000).

The material which is covered in these sections should be enough for the reader to gain an

overview of the various aspects of CT in order to be able to follow our discussion of the model

throughout the subsequent chapters of the thesis. For more details on CT the reader is referred to

the work cited in this section, especially Brennan et al. (1987), Grosz et al. (1995), the collection of

papers in Walker et al. (1998b), the evaluation of CT by Poesio et al. (2002) and the original paper of

Kibble and Power (2000).

2.2.1 Basic terminology

CT is a simple entity-oriented theory of text coherence. Grosz et al. (1983, 1995) defined CT as a

model of some aspects of immediate focus (Sidner 1979). It is assumed that discourses are composed

of discourse segments (Grosz and Sidner 1986), each of which consists of a sequence of utterances.

18Clearly, this underspecification is different from the one discussed in the previous section.
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Each segment is represented as a part of a discourse model.Centersare semantic objects that are

part of the discourse model for each utterance in a discourse segment. The centers are evoked and

subsequently referred to by some of the NPs in each utterance and correspond to discourse entities in

the sense of Webber (1978) or Kamp and Reyle (1993).19

Each utterance Un in a given discourse segment is assigned alist of forward-looking centers,

denoted as CF(Un), and a uniquebackward-looking center, the CB(Un). The CF(Un) represents a

partial ranking of the discourse entities evoked or referred to by the NPs in Un in order of prominence.

The preferred center, CP(Un), is the most highly ranked member of CF(Un), whereas the CB(Un)

represents the discourse entity that Un is most centrally concerned with. As a result, the CB(Un)

corresponds to the immediate center of attention, similar to what is elsewhere called thetopic (e.g.

Reinhart 1981, Horn 1986).

The CB(Un) links the current utterance to the previous discourse. The ranking imposed on the

elements of CF(Un) reflects the assumption that the preferred center, CP(Un), will most likely be the

CB(Un+1). The most highly ranked element of CF(Un) that is finally realised in Un+1 is the actual

CB(Un+1). Obviously, segment-initial utterances lack a CB.

Grosz et al. (1995) define the CB(Un) as being strictly local: The choice of a backward-looking

center for an utterance Un is from the set of forward looking centers of the previous utterance Un−1

while the forward-looking centers of Un−1 depend only on the discourse entities that constitute Un−1.

In other words, CB(Un) cannot be from CF(Un−2) or other prior sets of forward-looking centers.

2.2.2 Formalisation

The distinction between looking back to the previous discourse with the CB(Un) and projecting pref-

erences for interpretation in subsequent discourse with the CP(Un) is a key aspect of CT. Based on

this distinction, CT defines four transition relations across pairs of adjacent utterances. The typology

of transitions (from Walker et al. 1998a, p.6 and Walker et al. 1994, p.200), presented in Table 2.1,

is based on two factors: whether the backward-looking center, CB, is the same from Un−1 to Un, and

whether the CB(Un) is the same as the CP(Un).20

The formal system of constraints and rules in CT (as they appear in Brennan et al. 1987 and

Walker et al. 1998a, pp.3-4) is as follows:

19Although Grosz et al. (1995, p.209, footnote 6) allude that “events and other entities that are more often directly
realised by VPs can also be centers”, the only work towards that direction is Kameyama et al. (1993). Also note that, as
Kibble (2001) and Poesio et al. (2003) emphasise, the various formulations of CT do not appear to explicitly acknowledge
any other factor as being relevant to local coherence.

20Note that the formulation of CT in Grosz et al. (1995) defines only oneSHIFT transition using only the condition
CB(Un)6=CB(Un−1). Brennan et al. (1987) namedSMOOTH-SHIFT “Shifting-1” and ROUGH-SHIFT “Shifting”. The more
figurative names come from Walker et al. (1994). “CB(Un−1) undef” in Table 2.1 stands for the cases where Un−1 does not
have a CB (also see section 2.2.4).
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CB(Un)=CB(Un−1) CB(Un) 6=CB(Un−1)

or CB(Un−1) undef

CB(Un)=CP(Un) CONTINUE SMOOTH-SHIFT

CB(Un)6=CP(Un) RETAIN ROUGH-SHIFT

Table 2.1: Centering transitions

For each utterance Un in a discourse segment D consisting of utterances U1, ... , Um:

Constraints

C1. There is precisely one CB(Un).

C2. Every element of CF(Un) must be realised in Un.

C3. The CB(Un) is the highest-ranked element of CF(Un−1) realised in Un.

Rules

R1. If any element of CF(Un−1) is realised by a pronoun in Un, then the CB(Un) must
be realised by a pronoun also.

R2. Transition states are ordered.CONTINUE is preferred toRETAIN, which is preferred
to SMOOTH-SHIFT, which is preferred toROUGH-SHIFT:

CONTINUE>RETAIN>SMOOTH-SHIFT>ROUGH-SHIFT

Rule 1 is often called the pronoun rule. It captures the intuition that the CB(Un) is often pronomi-

nalised.21 According to Rule 1 no element from the previous utterance can be realised by a pronoun in

an utterance unless the CB is realised by a pronoun too. In other words, if there are multiple pronouns

in an utterance, realising discourse entities from the previous utterance, then one of these pronouns

must realise the CB. In addition, if there is only one pronoun realising entities from Un−1, then this

pronoun must be the CB.

Rule 2 claims that some transitions between utterances are more coherent than others by stipu-

lating that these transitions are preferred over others. Measuring coherence is based on an estimate

of the hearer’s inference load, relative to other choices the speaker had as to how to realise the same

propositional content. The most fundamental claim of CT is that if a discourse adheres to the rules

and constraints of CT, its coherence will increase and the inference load placed upon the hearer will

decrease.
21Or deleted in languages like Japanese that allow for zero pronouns. The correspondence between unstressed pronouns

in English and null pronouns in languages such as Japanese was established first by Kameyama (1985, 1988). Rule 1 has
been extended directly to zero pronouns in Japanese (Walker et al. 1990, 1994), Yiddish (Prince 1994), Turkish (Turan
1995) and Italian (Di Eugenio 1990), among other languages.
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The combination of constraints, transition states, and rules makes a set of testable predictions

about which interpretations hearers will prefer because they require less processing. Maximally co-

herent segments are those that require less processing time. For example, aCONTINUE followed by

anotherCONTINUE should require the hearer to keep track of only one main discourse entity, which is

currently both the CB and the CP. As a result, discourses thatCONTINUE centering the same entity are

claimed to be more coherent than those that repeatedlySHIFT from one center to another. Moreover,

a single pronoun realising an entity from the previous utterance is the current CB by Rule 1 and can

often be interpreted to co-specify the discourse entity realised by CP(Un−1) in one step.

2.2.3 Example discourses

In this section, we present two discourses annotated with CT’s data structures and transitions in order

to show how the rules and constraints of CT apply to these examples. First, let us consider the

following discourse (from Walker et al. 1998a, pp.6-7) where (2.2c) and (2.2c’) are alternatives for

the third utterance:

(2.2) a. Jeff helped Dick wash the car.

CF(Jeff, Dick, car)

b. He washed the windows as Dick waxed the car.

CF(Jeff, windows, Dick, car)

CB=Jeff, CONTINUE

c. He soaped the pane.

CF(Jeff, pane)

CB=Jeff, CONTINUE

c’. He buffed the hood.

CF(Dick, hood)

CB=Dick, SMOOTH-SHIFT

Walker et al. (1998a) assume the standard CT ranking based on grammatical function in order to

compute the CF lists in (2.2). According to this, discourse entities realised in subject position rank

more highly than entities realised in object position which are more highly ranked that entities coming

from NPs in subordinate clauses or NPs with other grammatical functions.22

The first utterance of the discourse does not have a CB by definition. According to the definition

of the transitions in Table 2.1, utterance (2.2b) is annotated as aCONTINUE since the CB(2.2a) is

22A more precise definition of this ranking appears in Miltsakaki (2002). Section 6.3.3 of chapter 6 discusses the CF
ranking in Miltsakaki (2002) in more detail.



24 Chapter 2. Motivation

undefined and the CB(2.2b) equals the CP(2.2b).23 When the third utterance in the discourse is (2.2c),

it is marked as aCONTINUE transition sinceJeff, the CB(2.2c), is the same as the CB(2.2b) as well

as the same as the CP(2.2c). In contrast, (2.2c’) is aSMOOTH-SHIFT transition, because the CB(2.2c’)

has changed from the CB(2.2b) although it is the same as the CP(2.2c’).

CT predicts that the transition in (2.2c’) is less coherent that the one in CB(2.2c). Since (2.2b) is

a CONTINUE with the discourse entityJeff as the CB, the speaker is taken to indicate an intention to

talk about the same entity in the subsequent utterance. Indeed, this happens in (2.2c) which continues

centering onJeff. By contrast, despite the indicated intent in (2.2b), the speaker starts talking about

Dick in (2.2c’). An indication for the predicted preference of aCONTINUE over aSMOOTH-SHIFT

comes from the way that the hearer interprets the pronoun “he” in (2.2c’): “he” is first taken to refer

to the CP(2.2b), that isJeff, but when the hearer processes the rest of (2.2c’) she has to revise this

interpretation and resolve the pronoun toDick because the verb “buffed” can only be related to the

waxing event. According to Walker et al. (1998a), the combination of theSMOOTH-SHIFT and the use

of a pronominal form to realise a new center in (2.2c’) are factors that contribute to making (2.2c’) a

less coherent transition than (2.2c).24

In order to postulate the preference of aSMOOTH-SHIFT over aROUGH-SHIFT for the purposes of

pronominal resolution, Brennan et al. (1987) discuss the following (now classic) example, read with

the pronouns in (2.3d) destressed:

(2.3) a. Brennan drives an Alpha Romeo.

CF(Brennan, Alpha-Romeo)

b. She drives too fast.

CF(Brennan)

CB=Brennan, CONTINUE

c. Friedman races her on weekends.

CF(Friedman, Brennan, weekends)

CB=Brennan, RETAIN

d. She often beats her.

CF(???, ???)

CB=Friedman, SHIFT

Utterance (2.3d) is characterised by the fact that it achieves aSHIFT. According to Constraint 3, the

SHIFT is inevitable because the CP(2.3c)Friedman is realised in (2.3d) as one of the two pronouns,

23Different suggestions for the transition in (2.2b) are discussed in section 2.2.4.1.
24Hudson-D’Zmura and Tanenhaus (1998) provide experimental evidence that the “garden path” in (2.2c’) corresponds

to an increase in processing time and a participant’s judgement that the discourse concluding with (2.2c’) makes less sense
than the one finishing with (2.2c).
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thus being the CB(2.3d). The question is which of the two pronouns in (2.3d) realises the CB. Note

that the formulation of transitions in Grosz et al. (1995) fails to make a choice since their definition

of SHIFT does not consider whether the CB(Un) equals the CP(Un). Brennan et al. (1987) propose the

preference of aSMOOTH-SHIFT over aROUGH-SHIFT which enables them to successfully bind the

pronoun “she” toFriedman as shown below:25

(2.4) She often beats her.

d. She:Friedman, her:Brennan

CF(Friedman, Brennan)

CB=Friedman, SMOOTH-SHIFT

d’. She:Brennan, her:Friedman

CF(Brennan, Friedman)

CB=Friedman, ROUGH-SHIFT

2.2.4 Underlying notions of Centering

In this section, we present a more recent analysis of CT into the prerequisite ofCONTINUITY and

three underlying principles, namelyCOHERENCE, SALIENCE and CHEAPNESSwhich was claimed

to further simplify CT.26 Then, we discuss how CT has been used and evaluated by its numerous

proponents. We conclude the review of CT with a discussion of its use in the context of NLG.

2.2.4.1 Continuity

Constraint 1 of standard CT can be taken to presuppose thateach utterance in the discourse refers

to at least one entity in the utterance that precedes it. Arguably, this requirement can be seen as a

prerequisitefor the computation of the standard CT transitions in Table 2.1. The definition of the

prerequisite ofCONTINUITY in terms of CT is as follows:

25Walker (1989) performed a manual evaluation of the algorithm for the resolution of pronominal anaphora in Brennan
et al. (1987) (known as the BFP algorithm) on a corpus of 281 sentences distributed over texts from 3 genres in comparison
with the algorithm in Hobbs (1978). She reports an accuracy of 77.6% for BFP and 81.8% for Hobbs. The main problem
with the BFP algorithm is that it can be used directly to resolveonly one pronoun, that is, the one that is taken to refer
to the current CB. However, corpus-based studies have shown that a) many CBs are not pronominalised and b) many non-
CB referents are pronominalised (Henschel et al. 2000). Although this is not strictly incompatible with the mainstream
definition of Rule 1 (as defined in section 2.2.2), in quite a few cases it makes pronoun resolution according to the BFP
algorithm not possible. Hence, subsequent work on CT-based pronoun resolution revised the BFP algorithm substantially
(e.g. Strube 1998; Strube and Hahn 1999; Tetreault 2001; Miltsakaki 2002). A critical discussion of the BFP algorithm
appears in Kehler (1997).

26As the title of the section suggests, we refer collectively to the three underlying principles and their prerequisite as the
underlying notionsof CT.
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(2.5) CONTINUITY:

Cf(Un−1) ∩ Cf(Un) 6= /0

Grosz et al. (1995) do not discuss the effects of violations of Constraint 1 in the coherence of discourse.

Kibble and Power (2000, Figure 1) define the additional transitionNOCB for the second member of a

pair of utterances that do not have any entity in common, suggesting that aNOCB can be considered

to be the worst transition causing the highest degradation of entity coherence. Miltsakaki and Kukich

(2000b), however, consider theNOCB transition to be a type ofROUGH-SHIFT.

In an attempt to distinguish between different kinds ofNOCBs, Di Eugenio (1998, p.128) uses the

termCENTER ESTABLISHMENTfor an utterance without a CB that corresponds to a global focus shift

or contains an entity coreferring with an entity in Un−2 when Un−1 is an adjunct. Moreover, in Poesio

et al. (2002, p.28) the transition that connects two utterances without a CB is calledNULL (also in

Passoneau 1998), whereas the transition from an utterance with a CB to an utterance that does not

have one is calledZERO.

We remind the reader that the inverse case, that is, where Un−1 does not have a CB but

CB(Un)=CP(Un), is classified as aCONTINUE or a RETAIN by Walker et al. (1998a).27 The addi-

tional transitionESTABLISHMENT is often used to refer to such an utterance, which has a CB itself

but follows aNOCB transition (e.g. in Kameyama 1998 and Poesio et al. 2002).

2.2.4.2 Coherence and Salience

As Table 2.2 shows, the table of transitions in Brennan et al. (1987) can be rephrased in terms of

two generalprinciples(Kibble 2001; Beaver 2003). We refer to the first of these principles, i.e. the

requirement that CB(Un)=CB(Un−1), as the principle ofCOHERENCEand to the second one, that is

the requirement that CB(Un)=CP(Un), as the principle ofSALIENCE.28

Beaver (2003) and Kibble (2001) notice that rankingCOHERENCEover SALIENCE (denoted as

COHERENCE>SALIENCE) is a simpler way of stating the preferences over transitions in Rule 2 (that

is, CONTINUE>RETAIN>SMOOTH-SHIFT>ROUGH-SHIFT). This is evident from CT’s preference

of a RETAIN over aSMOOTH-SHIFT. Since aRETAIN only violatesCOHERENCEand aSMOOTH-

SHIFT only violatesSALIENCE, the preference of aRETAIN over aSMOOTH-SHIFT is an indirect

27See the definition of transitions in Table 2.1 of section 2.2.1.
28Kibble (2001) uses the termCOHESION instead ofCOHERENCEfor the first of these principles. In traditional text

linguistics (e.g. Halliday and Hasan 1976), the term cohesion often refers to the surface cues that communicate several
aspects of the discourse structure. Lyons (1981) and De Beaugrande and Dressler (1981) use the term coherence to express
the logical consistency of utterances at the content level. Coherence is the term employed here as well since it operates
closer to the text structuring task than cohesion. The principles ofCOHESION and SALIENCE in Kibble (2001) are the
same as the constraintsCOHEREandALIGN used by Beaver (2003) for his reformulation of the BFP algorithm in terms of
Optimality Theory (see section 2.5.2). The relation betweenCOHERENCEand the existence of aNOCB transition in Un−1
is investigated in section 3.5 of the following chapter in more detail.
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COHERENCE: COHERENCE∗:
CB(Un)=CB(Un−1) CB(Un)6=CB(Un−1)

SALIENCE: CB(Un)=CP(Un) CONTINUE SMOOTH-SHIFT

SALIENCE∗: CB(Un) 6=CP(Un) RETAIN ROUGH-SHIFT

Table 2.2: COHERENCEand SALIENCE in the table of Centering transitions

way of stating that violatingCOHERENCEis more serious than violatingSALIENCE. More generally,

reformulating the preferences of Rule 2 directly in terms of the underlying principles instead of the

set of transitions is argued to make the CT model simpler and more transparent:

Givenk binary constraints it is possible to definek! possible rankings for the constraints
themselves. If transitions are used instead of constraints, at least 2k! possible rankings
can be defined.

(Beaver 2003, pp.9-10 and p.16)

2.2.4.3 Cheapness

A reformulation of CT, namedFunctional Centering(FC), is defined in Strube and Hahn (1999).

Strube and Hahn (1999) introduce the principle ofCHEAPNESSin order to improve the way that

standard CT accounts for certain cases of pronoun anaphora.CHEAPNESSis defined as follows:

(2.6) CHEAPNESS:

CB(Un) = CP(Un−1)

In an attempt to specify the set of CT transitions more precisely, Strube and Hahn (1999, Table 20)

use the principle ofCHEAPNESSto define two additional transitions. According to the “revised” ta-

ble of transitions in FC shown in Table 2.3, the definitions ofCONTINUE and SMOOTH-SHIFT are

extended since these transitions are also required to satisfy the principle ofCHEAPNESS. Two corre-

sponding transitions which violate the principle ofCHEAPNESSare labelledEXPENSIVE CONTINUE

andEXPENSIVE SMOOTH-SHIFT.29

However, the transitions in Table 2.3 are not central in FC. This is clear by the redefinition of Rule 2 in

FC which now favourscheap transition pairs, thus giving total priority to the principle ofCHEAPNESS

over the other two underlying principles of CT:30

29Note that Strube and Hahn (1999) do not applyCHEAPNESSon the definitions ofRETAIN andROUGH-SHIFT, without
an obvious explanation. See section 3.5.1 of the next chapter for more detailed discussion of this issue.

30As we mention in section 2.3.1, although the formulation of Rule 2 in FC refers to pairs of transitions, it can be
simplified as applying to triples or even pairs of utterances. Not surprisingly, a pair of utterances< Un−1,Un > is cheap if
the CB(Un) is correctly predicted by the CP(Un−1), i.e. CB(Un)=CP(Un−1).
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CB(Un)=CB(Un−1) CB(Un) 6=CB(Un−1)

or CB(Un−1) undef

CB(Un)=CP(Un) and CONTINUE SMOOTH-SHIFT

CB(Un)=CP(Un−1)

CB(Un)=CP(Un) and EXPENSIVE CONTINUE EXPENSIVE SMOOTH-SHIFT

CB(Un) 6=CP(Un−1)

CB(Un)6=CP(Un) RETAIN ROUGH-SHIFT

Table 2.3: Transitions in Functional Centering

Rule 2 in FC

Cheap transition pairs are preferred over expensive ones.

(Strube and Hahn 1999, p.334)

2.2.5 More Centering

CT has motived many cross-linguistic studies in a variety of languages such as a)Japanese: Kameyama

(1985, 1988, 1998); Iida (1998); Walker et al. (1990, 1994); Matsui (1999) b)Korean: Kim et al.

(1999) c)German: Rambow (1993); Strube and Hahn (1999) d)Yiddish: Prince (1994) e)Hebrew:

Grosz and Ziv (1998) f)Turkish: Turan (1995, 1998); Hoffman (1998) g)Italian: Di Eugenio (1990,

1996, 1998) h)Greek: Dimitriadis (1996); Miltsakaki (2002) i)Spanish: Taboada (2002) j)Finnish:

Kaiser (2000) k)Hindi: Prasad (2000); Prasad and Strube (2000), etc.

Moreover, a substantial amount of CT-based work tests the psychological and cognitive plausi-

bility of the model (mainly Hudson-D’Zmura et al. 1986; Hudson-D’Zmura and Tanenhaus 1998;

Gordon et al. 1993; Stevenson et al. 1994, 2000; Brennan 1995, 1998), or studies its usefulness

for discourse segmentation (Passoneau 1993, 1998), its appropriateness for evaluating student es-

says (Miltsakaki and Kukich 2000a,b) and its integration with a) Grosz and Sidner’s theory of global

focus: Hitzeman and Poesio (1998); Walker (1996, 1998); Grosz and Gordon (1999) b) Gundelet al.’s

givenness hierarchy: Gundel (1998); Walker and Prince (1995); Kaiser (2000) c) theories of informa-

tion structure: Hoffman (1998); Strube and Hahn (1996, 1999) d) relevance theory: Matsui (1999) e)

theories of dynamic, lexical and discourse semantics: Roberts (1998); Cote (1998); Hudson-D’Zmura

(1998); Stevenson et al. (1994, 2000) and f) various syntactic phenomena: Grosz and Ziv (1998);

Hurewitz (1998); Birner (1998).

As far as computational implementations are concerned, most aspects of the above cited research

have been used to specify algorithms for anaphora resolution. In addition to the BFP algorithm (Bren-

nan et al. 1987), a number of algorithms for pronoun resolution, often based on different formulations

of CT, have appeared in the recent literature (Strube 1998; Strube and Hahn 1999; Kim et al. 1999;
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Tetreault 1999, 2001; Miltsakaki 2002). All these algorithms have been tested on English data, al-

though most of them are applicable to a least one more language, thus providing some evidence for

the universality of the theory.

The next two sections review those aspects of CT that our work mostly relates to: the corpus-based

evaluation of the theory and its use for the purposes of NLG.

2.3 Corpus-based evaluations of Centering

Starting from the evaluation of the BFP algorithm in Walker (1989), most papers on CT involve some

sort of informal corpus-based study that supports, or at least motivates, the reported work. Hence, we

will often refer to relevant results from the most detailed evaluations of CT. However, Poesio et al.

(2002) were the first to point out that most of the existing corpus-based investigations paid limited

attention to theunderspecification of CT, an issue with interesting methodological and theoretical

implications. In this section, we discuss this problem in some detail on the basis of their observations.

Then, we present an overview of the methodology and the main results of Poesio et al. (2002) which

we consider to be the most complete of all corpus-based evaluations of CT up to now.31

2.3.1 Underspecification of Centering

Poesio et al. (2002) start with the observation that CT is best characterised as a parametric theory in

that theoretical concepts such asutterance, previous utterance, realisationandrankingwere intention-

ally left unspecified in its formulation. In order to present the basic aspects of this underspecification

more clearly, let us first repeat the constraints and rules of the theory:

For each utterance Un in a discourse segment D consisting of utterances U1, ... , Um:

Constraints

C1. There is precisely one CB(Un).

C2. Every element of CF(Un) must be realised in Un.

C3. The CB(Un) is the highest-ranked element of CF(Un−1) realised in Un.

Rules

R1. If any element of CF(Un−1) is realised by a pronoun in Un, then the CB(Un) must
be realised by a pronoun also.

31Note that a shorter, but more updated, version of Poesio et al. (2002) appears as Poesio et al. (2003). Our discussion
is mainly based on Poesio et al. (2002), although we tried to accommodate for the most relevant points from Poesio et al.
(2003) as well.
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R2. Transition states are ordered:CONTINUE is preferred toRETAIN, which is preferred
to SMOOTH-SHIFT, which is preferred toROUGH-SHIFT.

Starting from the notion ofutterance, most researchers follow Kameyama (1998) who defined utter-

ance as the tensed clause with the exception of relative clauses and verbal complements which are

called “embedded utterance units” and result in updates of the local focus that are then erased, much

as in the way the information provided by subordinate discourse segments is erased when they are

popped. Suri and McCoy (1994) suggest that some types of tensed adjuncts (in particular, clauses

headed by the words “after” and “before”) should be treated as embedded utterance units as well.

However, Miltsakaki (2002) brings forth arguments from English, Greek and Japanese that the appro-

priate update unit for topic tracking is the sentence in its traditional sense (i.e. the unit containing the

main clause and all the subordinate clauses associated with it) and not the tensed (or finite) clause.

Moving to the definition of Constraint 1, we are quoting what Poesio et al. (2002) call the “strong”

formulation of Constraint 1 (Walker et al. 1998a, p.3). A very important point about Constraint 1, first

made clear by Poesio et al. (2003), is that its strong formulation makes two claims with respect to

the entity coherence of the discourse: first, that all pairs of utterances (except for the first one) satisfy

CONTINUITY (see section 2.2.4.1); and that there is not more than one CB in the second member of

the pair, what Poesio et al. (2003) call CBUNIQUENESS.32 A more relaxed formulation of Constraint

1 appears in Walker et al. (1998a, p.3, footnote 2) who mention that C1 is often treated as stating that

“there isnot more than oneCb” (their emphasis). As Poesio et al. (2003) clarify, this formulation

does away withCONTINUITY, but retains CBUNIQUENESS. That is, an utterance may or may not

have a CB, but when it does satisfyCONTINUITY then the CB is unique.33

With respect to the formulation of Constraint 2, the notionrealisecan be interpreted in a strict

sense, that is, by taking a centerc to be realised by a noun phraseNP in Un only if NP denotesc. In

that caseNP directly realises c. In addition, a centerc can be counted asindirectly realisedif it is

referred to indirectly by means of a bridging reference (Clark 1977) or a similar kind of functional

dependence, e.g. an inferable relation (Prince 1981, 1992).

According to Constraint 3, theranking of CF(Un−1) determines which of the elements that are

realised in Un will be the CB(Un). Thus, the CF ranking is the main determinant of the transition

state that holds between two utterances. Hence, it is not surprising that the definition of the ranking

criteria appropriate for different languages (known as theCF template, Cote 1998), has been a matter

of controversy. In fact, Walker et al. (1994) hypothesise that the CF template is the only language

dependent factor within CT. Kameyama (1985) was the first to argue that grammatical role, rather

than thematic role which Sidner (1979) used, affected CF ranking. Evidence for many additional

32In fact, Poesio et al. (2003) use the results of their evaluation to argue that these two claims be separated.
33Note that CBUNIQUENESScontrasts with Sidner’s hypothesis that utterances may have two foci and theories which

view “topichood” as a matter of degree such as Gundel (1998).
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criteria for the CF template have been brought forward in the literature such as a) surface order of

realisation: Rambow (1993); Gordon et al. (1993) b) information status: Strube and Hahn (1999) c)

semantic role: Stevenson et al. (1994, 2000); Turan (1998); Hoffman (1998); Cote (1998). However,

grammatical role is used in most formalisations of CT since it appears to be the most clearly defined

concept, by contrast to rather imprecise notions such as thematic role. Grosz et al. (1995) have not

excluded other factors, but strongly suggested a CF template for English based on grammatical role

which was the definition followed by Brennan et al. (1987) as well.

In a separate line of research, Gordon et al. (1993) and Passoneau (1993) suggested replacing

Constraint 3 with operational definitions of the CB(Un) based on pronominalisation preferences. Gor-

don et al. (1993) identify the CB(Un) with the entity that is subject to arepeated name penaltywhich

is a slower reading time whenever a full NP is used instead of a pronoun to refer to the CB(Un). The

operational definition of the CB(Un) in Passoneau (1993) is based on the observed uses of “it” and

“that” in a corpus of dialogues.

The cited version of Rule 1 makes the pronominalisation of the CB(Un) conditional on the exis-

tence of another pronoun in Un. An earlier definition of the rule in Grosz et al. (1983) stated that the

CB(Un) shouldbe pronominalised if it is the same as the CB(Un−1). In addition, Gordon et al. (1993)

supplement their operational definition of the CB(Un) with a requirement that the CB(Un) should

alwaysbe pronominalised.

Last but not least, a further controversy within CT is whether Rule 2 applies topairs or sequences

of adjacent utterances. Grosz et al. (1995) claimed that Rule 2 applies to the level ofsequences

of transitions stating that sequences ofCONTINUEs are preferred to sequences ofRETAINs and se-

quences ofRETAINs are preferred to sequences ofSHIFTs.

Brennan et al. (1987) apply Rule 2 on an utterance-by-utterance basis for the BFP algorithm. Bren-

nan (1998) suggests that this approach is plausible because psychological research has shown that both

human sentence production and interpretation take place incrementally on a phrase by phrase level. In

addition, Hudson-D’Zmura and Tanenhaus (1998) show that an immediate provisional interpretation

of potentially ambiguous pronouns is made in a way that supports the predictions made by the CT

model of Brennan et al. (1987).

Strube and Hahn (1999) as well as Di Eugenio (1998) and Turan (1998) examine how the previous

CT transition affects the current one. Strube and Hahn (1999) follow the middle way between the

definition of Rule 2 by Brennan et al. (1987) and the one in Grosz et al. (1995) stating that some

transition types which receive bad marks in isolation might be more felicitous when occurring in the

appropriate context and vice versa. For example, aCONTINUE:CONTINUE sequence is thought to

require the lowest processing costs. But aCONTINUE transition that follows aRETAIN implies higher

processing costs than aSMOOTH-SHIFT following a RETAIN. This is based on the claim that aRETAIN
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should be used where possible before aSHIFT transition to a new CB (Grosz et al. 1995, p.215).

Moreover, Strube and Hahn (1999) notice that according to the table of transitions in Brennan et al.

(1987) it is possible for aSMOOTH-SHIFT following a RETAIN to move the CB(Un) to an entity other

than the CP(Un−1) of the RETAIN. In order to express theRETAIN:SMOOTH-SHIFT preference more

precisely, Strube and Hahn (1999, p.333) introduce a table of 36transition pairs , labelled as “cheap”,

“expensive”, or “-” (not occurring). As we have shown in section 2.2.4.3, the main idea advocated by

Rule 2 in FC is that cheap transition pairs be preferred over their expensive counterparts. However,

Kibble (2001) notices that the table of transition pairs in Strube and Hahn (1999) is unnecessarily

complicated, since it can be recast simply on the basis of the principle ofCHEAPNESSusing triples of

utterances instead of pairs of transitions.

2.3.2 Using a reliably annotated corpus for evaluation

Poesio et al. (2002) observe that because of the underspecification of CT, the claims made in the model

have only been tested fixing upon a particular way of instantiating the parameters, constraints and rules

of CT, e.g. by using “finite clause” as the definition of utterance and Constraint 3 (henceforth C3) as

the definition of the CB(Un). This leaves a number of equally plausible theoretical combinations

empirically unexplored.

In addition, most of previous corpus-based investigations of CT (such as Walker 1989; Di Eugenio

1996, 1998; Passoneau 1993, 1998; Hurewitz 1998; Kameyama 1998; Byron and Stent 1998; Strube

and Hahn 1999; Tetreault 2001) were carried out by a single annotator marking up her corpus accord-

ing to her subjective judgement. Hence, the idea of using only the information that can be annotated

reliably appears to have skipped methodological attention.

Poesio et al. (2002) take Constraint 1 (henceforth C1), Rule 1 (henceforth R1) and Rule 2 (hence-

forth R2) to be the main claims of CT.34 They test CT in a more general way than in the previous

studies by trying to identify which ways of instantiating the parameters result in the fewest violations

of its main claims. In order to carry out this study, they collected GNOME, a corpus of texts from

several genres, and annotated it with information that is relevant to the different instantiations of CT.35

As we discuss in section 2.5, none of the existing studies on CT specifies a rigid methodology for

estimating the entity coherence of the whole text or the collection of texts in a corpus. Poesio et al.

(2002) overcome this problem by defining a function that sums up the violations of each claim in

the corpus, which serve as a performance measure for each way of specifying the parameters of CT.

34Indeed, identifying which are the main claims of CT (especially with respect to C1 which differs from the other two
Constraints that are definitions in essence), is pointed out by Poesio et al. (2002) as one of their main contributions.

35Section 6.2 of chapter 6 provides more details on the GNOME corpus and its annotation features. Note that using only
those features that can be annotated reliably has its own price: It has not been possible for Poesio et al. (2002) to test the
claims of CT which are based on features such as the thematic role of an NP for which the annotators were not able to reach
acceptable agreement.
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Poesio et al. (2002) argue that CT’s claims should be viewed aspreferences, best tested by standard

statistical tests, and propose using the signtest for C1 and R1. Their aim is to study the effects of CT’s

parameterisation much more systematically than before, using appropriate tests of significance for the

first time.36

Different configurations of CT are first compared according to the extent that they reduce the sum

of violations of C1 in the corpus. One of the main findings of Poesio et al. (2002) is that defining the

CB(Un) in ways other than C3 results in a very large number ofNOCB (in their terms,NULL or ZERO)

transitions. Even when the CB(Un) is defined according to C3, identifying utterances as finite clauses

and only allowing for direct realisation of centers in the computation of CF(Un) results in more pairs

of utterances violating C1 than satisfying it. The number ofNOCB transitions is reduced significantly

when indirect realisation is specified and sentences are used for the definition of utterance. However,

trying to reduce the number ofNOCBs results in an increased number of violations of R1 and vice

versa. Because of this tradeoff between C1 and R1, it is very difficult to say which is the “best way”

of specifying CT.37

In order to evaluate the different instantiations of CT with respect to the standard version of R2

due to Brennan et al. (1987), the scoring function of Poesio et al. (2002) sums up the transitions in

the corpus for a given specification of the CT parameters. A version of CT is taken to satisfy the

canonical ordering of R2 ifCONTINUE is found to be more frequent thanRETAIN which in turn is

found to be more frequent than the various kinds ofSHIFT. In other words, if the frequencies of

transitions from the corpus correspond to the canonical ordering of R2, then the version of CT that

achieves this is taken to account for the entity coherence of the texts. Conversely, finding versions

of CT the frequencies of transitions of which satisfy the canonical ordering of R2 is interpreted as

providing evidence in favour of R2 as a robust estimator of the entity coherence of the texts in the

corpus.

Only a few of the versions of CT invoked by Poesio et al. (2002) return frequencies of transitions

that correspond precisely to the canonical ordering of R2. This replicates results from most previous

corpus-based studies of CT that often introduce a more lenient criterion for the evaluation of R2

simply stating thatCONTINUE should be the most frequent transition.38 Somehow surprisingly, even

under this lenient criterion standard R2 is not verified by most versions of CT tested by Poesio et al.

36We believe that this aim is stated much more clearly in the latest version of the paper (Poesio et al. 2003), where the
Page Rank test is used to evaluate R2 as well.

37The tradeoff between C1 and R1 was one of the main findings of the preliminary evaluation of CT using the GNOME
corpus reported in Poesio et al. (2000). Poesio et al. (2003) report an ever bigger tradeoff between C1 and R2 (the latter
now being evaluated by the Page Rank test).

38However, the transitions used in these studies are not exactly the same as the ones used by Poesio et al. (2002). This
has mainly to do with the different treatment ofNOCBs, ESTABLISHMENTs andROUGH-SHIFTs across researchers (see
section 2.2.4.1 for a brief discussion).
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(2002) including those with the fewest violations of C1.39 Note that the version of R2 in Grosz et al.

(1995) that employs sequences of transitions was not verified in the corpus-based investigation of

Poesio et al. (2002). The same is true for the definition of R2 according to FC: all configurations of

CT returned more expensive than cheap transition pairs (Poesio et al. 2002, p.66).

In their conclusions, Poesio et al. (2002) emphasise that CT should be supplemented by other

coherence inducing factors, a point not discussed extensively in the CT literature, and suggest the

ELABORATIONless framework of Knott et al. (2001) as a plausible model of the interaction between

entity and rhetorical coherence.40

They also point out the difficulty of coming up with the “best way” of specifying CT. They argue,

however, that despite the tradeoff between C1 and R1 and the high frequency of transitions other

thanCONTINUE, treating the main claims of CT as preferences rather than hard constraints makes it

possible to find quite a few ways of setting the parameters of CT so that C1 and R1, and perhaps R2,

are statistically verified.

2.3.3 Remaining issues in corpus-based evaluation

Although Poesio et al. (2002) present the most methodologically sound corpus-based evaluation of

CT, we shall argue in section 2.5.3 that their method of evaluation does not investigate the choices

available to an author for structuring a certain set of utterances (Kibble 2001). This is particularly

important from an NLG viewpoint, but was not taken into account by Poesio et al. (2002) or by any

previous corpus-based study of CT.

Chapter 5 presents a novel corpus-based, search-oriented evaluation methodology which is more

suitable for the purposes of text structuring than the one presented by Poesio et al. (2002). In chapter 6,

we apply this methodology to a subset of texts from the museum section of the GNOME corpus using

the same tools as Poesio et al. (2002).

2.4 Centering and natural language generation

In this section, we review the way that CT motivated recent work on NLG. As a starting point for

our discussion we compare the focus rules of TEXT with the preferences of R2. Then, we argue

that CT has mainly covered aspects of pronominalisation within NLG, neglecting the original idea

of McKeown (1985) that constraints on entity coherence can be used for more than one task in the

39This accords with the findings of Passoneau (1998) who reports that dispreferred transitions such asNULL appear more
frequently thanCONTINUE in her formulation of CT. However, other corpus-based investigations of CT do find that the
CONTINUE transition is more frequent than its competitors (e.g. Di Eugenio 1998; Strube and Hahn 1999; Hurewitz 1998).
These results are often taken to confirm R2 as be a reliable estimator of the entity coherence of the whole text. Note that R2
appears much more robust when tested by the Page Rank test in Poesio et al. (2003).

40This suggestion is discussed in section 6.4.1 of chapter 6 in more detail.
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generation process. What is more, most of the recent systems that “pronominalise the CB” do not

define it according to C3. This raises the question whether it is indeed possible to make use of C3 for

the purposes of NLG.

To address these two issues we review the approach of Kibble and Power (2000) who go directly

back to the claims of McKeown (1985). Kibble and Power (2000) integrate pronominalisation and

text planning on the basis of CT, using the definition of the CB according to C3. Although we are

not directly concerned with the task of pronominalisation, most of our work expands on the approach

of Kibble and Power (2000) to text structuring, sharing similar assumptions. As pointed out in sec-

tion 2.1.6, this section concludes with a discussion of the differences between CT and the framework

of text structure in Knott et al. (2001).

2.4.1 Centering and focusing in TEXT

In section 2.1.1, we mentioned that McKeown used Sidner’s Theory of Immediate Focus (henceforth,

STIF) to control both text structuring and referring expression generation. Although CT and STIF

have a lot in common, a direct comparison between them is beyond the scope of this chapter.41 In

this section, we restrict the discussion to the way that McKeown’s preferences for immediate focus

compare with standard R2.

To begin with, the preferences for changing and maintaining the focus in McKeown (1985) are

quite different from the ones of R2. More specifically, changing the current focus to a member of

the potential focus list of the previous proposition is preferred to maintaining the focus in order to

avoid reintroducing the potential focus at a later point (McKeown 1985, p.62-64). This strategy has

the effect of producing “topic clusters” around items just introduced in the discourse. By contrast, R2

favours talking about an established topic instead of shifting the focus to a new one.

On the other hand, McKeown’s default focus is similar to the CP(Un) of standard CT in being

directly associated with subjecthood. By contrast, the definition of the default focus in STIF is based

on thematic role.42 However, McKeown’s default focus is different from the CP(Un) and STIF’s

default focus in that it is used to establish the focus of thecurrent utterance and not to predict the focus

of thenext one (McKeown 1985, p.70). In other words, focusing in TEXT is not computed by ranking

the entities mentioned in the previous proposition in order of prominence as it happens with CT’s C3.

By contrast, it is the preferences among the focus rules which mainly specify which argument is

recognised as the focused entity. After the focus has been established, the tactical component favours

pronominalisation over using a definite description for subsequent reference to an already focused

entity (McKeown 1985, p.77).

41In general, CT can be seen as a simplification of STIF. The reader is referred to the review of Lecoeuche et al. (1998)
and the extended discussion in Poesio and Stevenson (2003) for more details.

42According to Walker et al. (1998a, p.3, footnote 1), CP(Un) roughly corresponds to Sidner’sexpected focus.
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Although the focusing rules in TEXT are quite distinct from the rules and constraints of CT, the

main intuition behind McKeown’s implementation is to use preferences for entity coherencedirectly

during text structuring. As we show in the next section, this has been neglected by more recent NLG

applications. In these systems, the CB(Un) is predefined in the database and used for pronominali-

sation during sentence planning. What these systems have in common with TEXT is that neither is

using C3 (or anything similar) in order to define the CB(Un).

2.4.2 Centering and the generation of referring expressions

A number of NLG practitioners followed the CT-oriented research in anaphora resolution by imple-

menting various pronominalisation algorithms within Reiter’s pipeline architecture.43 However, most

of this work does not define the CB(Un) according to the standard formulation of CT, maybe due to

the limitations of reversing R1 for the purposes of generation (recently pointed out by McCoy and

Strube 1999 and Henschel et al. 2000)

A typical example of this approach is the algorithm in Passoneau (1993, 1998), where the CB(Un)

is not defined in terms of C3. Similarly, Dale (1992) uses a domain-dependent criterion for identifying

the “center” which is semantically defined as the result of the previously described operation (Dale

1992, p.170).

ILEX uses a simplified version of CT for pronominalisation as well (Hitzeman et al. 1997;

O’Donnell et al. 1998). We mentioned in section 2.1.4 that each fact node in the content potential

is indexed according to the entity that it is primarily about, termed as Arg1. O’Donnell et al. (1998,

p.49) allow pronominalisation only when the referent of an NP is the same as the Arg1 of the previous

proposition (or of the top nucleus of the previous RS-tree). In their view, the Arg1 is equivalent to

the CB(Un). In our opinion, the Arg1 is better seen as specifying a preferrence for the CP(Un), i.e.

the most prominent argument of the proposition/RS-tree. If the referent of an NP is the same as the

CP(Un−1), it is also the CB(Un) in accordance with the standard formulation of CT.

Hence, we interpret the algorithm for pronominalisation in ILEX aspronominalising the CB(Un) if

it is the same as the CP(Un−1). This algorithm reverses the main preference for anaphora resolution in

Strube and Hahn (1999) which is directly based on the principle ofCHEAPNESS, viz. the requirement

that CB(Un)=CP(Un−1).

The reluctance of the recent approaches to define the CB(Un) explicitly using C3 raises the ques-

tion whether a straightforward implementation of CT for the purposes of NLG is desirable or even

43As we mentioned in section 1.1 of the introductory chapter, although there is a lot of variability in the structure of NLG
systems, there is considerable consensus that the process of generation breaks down logically to at least six tasks, namely
content determination, text structuring, aggregation, referring expression generation, lexicalisation and surface realisation
(Reiter 1994; Reiter and Dale 1997, 2000). Pronominalisation is usually considered to be a subtask of referring expression
generation. The modules implementing (some of) these tasks are often arranged in a pipeline fashion where the output of
one module serves as the input for the next.
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possible. This issue is discussed in the next section.

2.4.3 Integrating Centering with text generation

In his discussion of the appropriateness of CT for the purposes of NLG, Kibble (1999) argues that

COHERENCEand SALIENCE belong to different tasks within the pipeline architecture. According

to Kibble (1999),COHERENCEcan be responsible for ordering propositions to maintain referential

continuity, a task related to text structuring, whereasSALIENCE can be used to choose a construction

that makes the CB(Un) prominent within a clause or sentence, a matter relevant to sentence planning.

In addition to this, Kibble (1999) points out that there might not be a single point in the generation

process for making a choice between one or the other type of transition as defined by standard CT.

The conclusion of Kibble (1999) is that in NLG “the topic” should not be defined according to

C3. Instead, it should appear prerecorded in the database, as in the systems reviewed in the previous

section. Kibble (1999) suggests that, in order to implement CT for text structuring, the text planner

can be used to independently designate the CB(Un) if the topic of Un is an argument of Un−1. The

text should be organised so that the same CB is maintained over a sequence of clauses. Then, the

realisation of Un−1 can be planned in order to promote an entity to the highest-ranked subject position

in Un−1 if this entity is either the CB(Un) or, less preferably, the CB(Un−1).

However, Kibble and Power (2000) claim that designating the topic independently as part of the

semantic input as suggested by Kibble (1999) does not solve the problem of identifying the topic.

Following Prince (1999), they propose that the topic should be identified with the CB(Un) as defined

by CT. Kibble and Power (2000) treat the task of identifying the CB(Un) as a constraint satisfaction

problem, assuming that certain options for syntactic realisation can be predicted on the basis of the

argument structure of predicates. In their system, the potential CBs of a proposition Un are given

by the intersection between CF(Un) and CF(Un−1), which consists of all the arguments that the two

propositions have in common. The potential CPs of Un are all those referents in the current proposition

that can be realised in the subject position, a decision based on case roles within the proposition.

Note that Kibble and Power (2000) return to the basic intuition of McKeown (1985) that a theory

of entity coherence could fit the generation process in more than one task, namely text structuring and

sentence planning. Their operationalisation of CT means that transitions can be calculated as part of

text structuring, contrary to the arguments in Kibble (1999).

Our work on text structuring is a systematic attempt to determine whether the constraints and rules

of CT can be turned round to guide the text structuring process, extending the approach of Kibble and

Power (2000). In this sense, we assume that the CB(Un) is computed on the fly during text structuring

according to the standard apparatus of CT. After the extended review of CT, we are now ready to

discuss how well it fits to the framework of text structure in Knott et al. (2001).
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2.4.4 Centering beyond ELABORATION

In this section, we compare the preferences of CT with theELABORATIONless framework that un-

derlies the text structuring component of ILEX. To do this we repeat example (2.1) of section 2.1.4

as example (2.7), annotated with the data structures of standard CT, namely CF lists, CBs and the

transitions in Table 2.1:44

(2.7) C1, E1: J-999

a. This piece is a necklace.

CF(J-999, necklace)

b. It was designed by a jeweller called Jessie King.

CF(J-999, King),

CB=J-999, CONTINUE

c. It was designed in 1905.

CF(J-999, 1905),

CB=J-999, CONTINUE

d. It is made of silver.

CF(J-999, silver),

CB=J-999, CONTINUE

C2, E2: King

e. Jessie King was a famous designer.

CF(King, designer),

NOCB

fS. She was Scottish,

44Since all utterances in example (2.7) correspond to fact nodes in ILEX’s content potential, the CF lists in example
(2.7) are computed accordingly. That is, the entities in the CF list correspond to the arguments of the facts in the content
potential. In this sense, the entitynecklace is part of the CF(2.7a) even though it is evoked by a predicative NP. In addition,
the correspondence between NPs and entities is not strictly one-to-one: for example, the entityKing is evoked by a complex
NP in (2.7b). Further to this, in the computation of the CF list we do not account for bridging relations between entities
related in the domain ontology of ILEX. To compute the CF list of local RS-trees such as the one represented by (h) and its
satellite (hS) we extend the standard CF template of Walker et al. (1998a), mentioned in section 2.2.3, to cover the nucleus-
satellite distinction: According to this, the Arg1 of the top nucleus corresponds to the CP of the RS-tree (see section 6.3.3
of chapter 6 for more details). In addition, we take the cleft sentence (2.7g) to manifest the promotion of an Arg2 to the
CP position in accordance with the assumptions of Kibble and Power (2000). Finally, instead of identifying the Arg1 of the
propositions or RS-trees with the CB(Un) we take it to correspond to the CP(Un), whereas the CB(Un) is computed on the
fly according to C3.
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f. but she worked in London.

CF(King, London),

CB=King, CONTINUE

g. It was in London that this piece was made.

CF(London, J-999),

CB=London, SMOOTH-SHIFT

C3, E3: Arts-and-Crafts-style

hS. Like the previous piece,

h. this piece is in the Arts-and-Crafts style.

CF(J-999, Arts-and-Crafts-style, J-888),

CB=J-999, SMOOTH-SHIFT

iS. Although the previous piece had a simple shape,

i. Arts-and-Crafts style jewels tend to be elaborate;

iS. for instance, this piece has detailed florals.

CF(Arts-and-Crafts-style, J-888, J-999),

CB=J-999, RETAIN

The first question we have to address in our attempt to recast ILEX’s framework of text structure

in terms of standard CT is whether CT applies to the whole of the discourse or should simply be

restricted within the entity chain. Knott et al. (2001) maintain that entity chains are equivalent to the

focus spaces of Grosz and Sidner (1986). This might suggest that CT is only allowed to apply within

the entity chains with the first unit of each chain taken to correspond to a segment-initial utterance.

The main problem with this assumption is that in Grosz and Sidner’s theory of discourse structure,

the global attentional state is dependent on theintentions of the conversational participants. Due to

the opportunistic nature of intentionality within the descriptive genre, the equation of entity chains

with Grosz and Sidner’s focus spaces is difficult to maintain. In this sense, (2.7) is better seen as a

single segment where CT controls the local attentional structure between and within entity chains.

C1 is a sequence of text spans adhering to the rigid definition of a legal entity chain in Knott

et al. (2001). All the fact nodes inC1 haveJ-999 as their Arg1. This defines utterances (2.7b-d) as

a sequence ofCONTINUE transitions in our CT analysis. Note that Knott et al. (2001) do not explain

how the set of propositions are ordered with respect to each other withinC1. This turns out to be quite

important when we consider the move to the second entity chainC2, which according to Knott et al.
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(2001) is achieved via a resumption relation to the discourse-old entityKing. At this point we identify

the main incompatibility between the framework of text structure in ILEX and the preferences of

CT: achieving a resumption from (2.7e) to (2.7b) results in aNOCB transition in (2.7e). Note that the

NOCB in (2.7e) can be easily undone if (2.7b) is placed as the last utterance ofC1, so thatCONTINUITY

is preserved within and across the first two entity chains.

Interestingly, although Knott et al. (2001) claim that all propositions within a legal entity chain

should have the same Arg1 (unless they are part of a local RS-tree), this is clearly not the case for

(2.7g), since the Arg1 of (2.7g) is notKing, the global focus ofC2. Instead, according to our CT

analysis, (2.7g) shifts the CB(Un) to London within the second entity chain. This shows that an

entity chain in the framework of text structure underlying ILEX can employ a variety of transitions in

addition toCONTINUE.

This becomes more evident whenC3 is considered. After being shifted fromKing to London

in the second entity chain, the CB is placed back toJ-999 at the end of the discourse. Note that

according to this analysis the entityArts-and-Crafts-style never becomes the CB. Rather, the

discourse finishes with aRETAIN which creates the expectation that the next utterance after the last

local tree of (2.7) might center on theArts-and-Crafts-style.

We conclude that the entity chains of ILEX can be analysed into various CT transitions. However,

the main incompatibility between the CT analysis and the framework of ILEX is the resumption

relation from (2.7e) to (2.7b). Knott et al. (2001) acknowledge the need for more empirical work to

investigate the structural properties of a resumption. Hence, we provisionally take resumption to be a

constraint which is specific to their domain of application.

Crucially, the existence of resumptions is not the only theoretical argument of Knott et al. (2001)

in favour of anELABORATIONless framework of RST relations. Therefore, the question remains

whether, modulo resumptions, the framework of text structure in ILEX can be supplemented with an

account of entity coherence based on notions from CT. However, there is a significant modification in

the way that our work addresses this question.

Following the suggestions of Kibble and Power (2000) and Knott et al. (2001), this thesis is a

systematic attempt to use notions from CT to specify a model of entity coherence for the purposes of

text structuring in NLG. In an important deviation from them, however, entity coherence is isolated

as the most relevant factor for text structuring, while rhetorical relations are considered only to the

limited extent that the datasets available for the study allow us. Despite this modification, we believe

that considering entity coherence as theonly factor for descriptive text structuring is an interesting

question on its own and comes closer to the various formulations of CT which do not appear to

acknowledge other constraints as being relevant to characterising textual coherence.
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In order to specify how CT can be used for the purposes of text structuring in more detail, some

more discussion of the theory is in order. This is motivated by our observation that despite the partial

compatibility between the two models of text structure, there seems to be an intuition that entity chains

capture, but the transitions of CT fail to address. Standard CT applies on a pair of utterances, whereas

entity chains are an attempt to estimate the entity coherence of longer spans of text within a segment.

Clearly, in NLG there is a need for a more global estimate of entity coherence than the one provided

by C1 and R2. Note that this seems to arise when CT is used for interpretation as well as shown by the

underspecification of the window of application of R2 (pairs vs sequences of utterances, as already

discussed in section 2.3.1). In the next section, we discuss the problems that need to be confronted for

CT to be able to estimate the entity coherence of longer spans of text directly, without resorting to an

intermediate representation such as the entity chain.

2.5 Applying Centering to longer spans of text

In this section, we discuss whether the preferences underlying R2 and C1 can be used to estimate the

entity coherence of text spans longer than a pair of utterances. We begin with the inappropriateness

of R2 as a predictor of theRETAIN:SHIFT pattern which has been claimed to be the preferred way for

shifting the CB(Un). This leads to the conclusion that an estimate of entity coherence that extends to

more than two utterances is necessary for CT to account for the allegedRETAIN:SHIFT preference.

Then, we look at the more general question of whether CT can be used to estimate the coherence of

a structure that spans across several utterances. We suggest that, although summing up the transitions

in a text is the first step to this direction, comparing these sums with the preferences underlying R2

and C1 directly might not be the most appropriate way to estimate the entity coherence of the whole

text given a certain content.

To support this argument, we present examples that include transitions dispreferred by R2 and

C1. We show that in order to account for the existence of dispreferred transitions in a text of attested

coherence, one has to consider the choices available to an author when structuring a certain set of

utterances. One way to do this is by employing a search-oriented strategy which views the preferences

underlying R2 and C1 as a relative rather than an absolute measure of entity coherence.

What is more important for our purposes, the discussion in this section shows that defining a

scoring function of entity coherence for the complete text structure is a more appropriate alternative

than trying to use R2 incrementally for text structuring. We conclude the chapter by formalising the

first research question that our work addresses.
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2.5.1 RETAIN as a prediction for a SHIFT

Consider the following example, where (2.8c-d) and (2.8c’-d’) are different context-independent real-

isations of the propositions that follow utterance (2.8b):45

(2.8) a. This exhibit is an amphora.

CF(exhibit1, amphora)

b. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)

CB=exhibit1, CONTINUE

c. This exhibit was decorated by an artist known as the “painter of Kleofrades”.

CF(exhibit1, painter-of-Kleofrades)

CB=exhibit1, CONTINUE

d. The “painter of Kleofrades” used to decorate big vases.

CF(painter-of-Kleofrades, entity-4049)

CB=painter-of-Kleofrades, SMOOTH-SHIFT

c’. An artist known as the “painter of Kleofrades” decorated this exhibit.

CF(painter-of-Kleofrades, exhibit1)

CB=exhibit1, RETAIN

d’. The “painter of Kleofrades” used to decorate big vases.

CF(painter-of-Kleofrades, entity-4049)

CB=painter-of-Kleofrades, SMOOTH-SHIFT

The CB of both (2.8c) and (2.8c’) is the entityexhibit1. Note that in both cases this CB is the same

as the CB of (2.8b). The transition of (2.8c) is aCONTINUE becauseexhibit1 is both the CB(2.8c)

and the CP(2.8c). By contrast, in (2.8c’) it is thepainter-of-Kleofrades that is promoted to the

CP position. Since the CB(2.8c’) is the same as the CB(2.8b) but distinct from the CP(2.8c’), the

transition of (2.8c’) is aRETAIN.

According to Grosz et al. (1995, p.215), aRETAIN ideally should be used to introduce aSHIFT

in the following utterance. Brennan (1995, 1998), Turan (1995, 1998), and Di Eugenio (1996, 1998)

45Most of the utterances in the examples that follow realise propositions derived from the database of the MPIRO system,
which is the multilingual extension of ILEX (Isard et al. 2003). The procedure used to realise database propositions out
of context is explained in section 9.2.3 of chapter 9. The CF lists of the utterances are computed in accordance with the
assumptions stated in footnote 44 in section 2.4.4. An example of the computation of the CF lists from propositions in
MPIRO is given in section 7.3 of chapter 7. A major difference between ILEX and MPIRO is that, at the time of writing
these lines, MPIRO’s database does not represent rhetorical relations. Like ILEX, the propositions in MPIRO correspond to
binary predicates, the Arg2 of which can often be an entity such asentity-4049 in (2.8d). This entity is not represented in
the domain ontology of the system and is realised by canned text.
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report studies on pronominalisation in different languages which are often taken to support the hy-

pothesis that aRETAIN in Un−1 is a signal of an intention to (SMOOTH-)SHIFT the CB(Un) to another

entity by realising the CB(Un−1) in a lower-ranked position in CF(Un−1).46 In addition, Brennan et al.

(1987) suggest that a computational system for generation should try to use aRETAIN as a signal for

an impendingSMOOTH-SHIFT, so that after aRETAIN, aSMOOTH-SHIFT will be preferred rather than

a CONTINUE.

Crucially, all these suggestions aim at promoting a (SMOOTH-)SHIFT instead of aCONTINUE after

a RETAIN, rather than choosing between aRETAIN over aCONTINUE beforea (SMOOTH-)SHIFT. As

indicated by Kibble and Power (2000), although an incremental algorithm for text structuring based on

R2 is conceivable, if it is applied on an utterance-by-utterance basis to structure the utterances in (2.8),

the CONTINUE in (2.8c) will be preferred over theRETAIN in (2.8c’) as the most coherent transition

following (2.8b). However, it is theRETAIN:SMOOTH-SHIFT sequence that is taken to represent the

globally best solution for (2.8) according to standard CT.

We identify this problem as theRETAIN:SMOOTH-SHIFT inadequacy of R2(RSI). In order to

account for theRETAIN:SMOOTH-SHIFT pattern, R2 must be supplemented with a global estimate of

the text structure that extends to at least a triple of utterances. Such an estimate is provided by the

principle ofCHEAPNESSwhich advocates theRETAIN:SMOOTH-SHIFT sequence as one of the cheap

transition pairs, by contrast to theCONTINUE:SMOOTH-SHIFT sequence in (2.8c-d) which belongs to

the expensive transition pairs.47

In section 3.2.1 of chapter 3, we use notions from Optimality Theory (Prince and Smolensky 1997)

to define a simpler version of this estimate. By analysing (2.8) in terms of the competition between

the principles ofCHEAPNESSandSALIENCE, we provide a simple solution to RSI, without having to

resort to the more complicated definition of 36 transition pairs in Strube and Hahn (1999).

46None of the corpus-based studies of CT, including Poesio et al. (2002), reports a substantial amount of
RETAIN:(SMOOTH-)SHIFT pairs. In other words, most of the times (SMOOTH-)SHIFTing the CB(Un) is not preceded by a
RETAIN in Un−1 in the way assumed by Grosz et al. (1995). The studies on pronominalisation in Brennan (1995, 1998),
Di Eugenio (1996, 1998) and Turan (1995, 1998) provideindirect evidence in favour of theRETAIN:(SMOOTH-)SHIFT

pattern. Brennan (1995, 1998) reports that an entity first realised in object position cannot be pronominalised in the next ut-
terance. In addition, Di Eugenio (1996, 1998) and Turan (1995, 1998) report that aCONTINUE that follows aRETAIN is just
as likely to realise the subject with a strong pronoun as with a null pronoun whereas aCONTINUE that follows another type
of transition is much more likely to use a null pronoun in the subject position. This was taken to provide evidence in favour
of the hypothesis that aRETAIN signals an upcoming (SMOOTH-)SHIFT rather than aCONTINUE. If the (SMOOTH-)SHIFT

does not occur, then the speaker must use an NP other than a null pronoun to prevent the hearer from misinterpreting the
utterance. However, as Karamanis (2001) explains, Di Eugenio’s remarks on pronominalisation should not be restricted to
the RETAIN:CONTINUE pattern but can be extended to all pairs of utterances whose second member violates the principle
of CHEAPNESS.

47Note, however, that this only holds when grammatical function is used to compute the CF list. In this case, utterance
(2.8d) can be indeed classified as anEXPENSIVE SMOOTH-SHIFT. If information structure is used for the ranking of the CF
list, as Strube and Hahn (1999) suggest, both (2.8c) and (2.8c’) areCONTINUEs and the utterance that follows them will
violateCHEAPNESS.
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2.5.2 Estimating the coherence of the whole text

RSI arises from conflicting predictions within CT caused by the inability of the canonical ordering in

standard R2 to account for the suggestion that aRETAIN is the preferred way of introducing aSHIFT.

As we mentioned in the previous section, corpus-based evidence in favour of theRETAIN:SHIFT pref-

erence is at best inconclusive. Our discussion of RSI does not aim at supporting or rejecting the view

of Grosz et al. (1995), but to introduce a more general problem of CT, that is, the inability to use R2

directly in order to estimate the coherence of a text that consists of more than one pair of utterances.

As Beaver (2003) notices, the utterance-by-utterance classification of transitions in Brennan et al.

(1987) and indeed the bulk of later literature in CT do not provide a clear way to estimate the coherence

of a complete text.48 In other words, what CT can do directly is to compare two different transitions

from an utterance on the basis of R2. Because the preferences of R2 in Brennan et al. (1987) act

at a sentence-by-sentence level, CT does not directly provide ascoring functionfor estimating the

coherence of a structure that spans across several pairs of utterances.

Beaver (2003) reformulates the Centering algorithm for anaphora resolution in Brennan et al.

(1987) into a set of violable constraints in the spirit of Optimality Theory (OT). His model, namely

Centering in Optimality Theory(COT), is not only relevant to anaphora resolution, but is also thought

to apply to the evaluation of complete texts:49

It is possible to apply COT to compare the felicity of arbitrary large texts. [To do this]
it is necessary to decide how to count violations of constraints in different sentences. To
demonstrate the possibility of optimising entire texts, I propose that we count violations
in a multi-sentence discourse in the most obvious way: we form one tableau using the
standard COT constraint ranking, we enter violations of each constraint in the column
corresponding to the violated constraint regardless of the sentence in which the violation
occurred and then select the optimal candidate using the standard OT method.

(Beaver 2003, section 5.4)

In general, the main focus of Beaver (2003) is placed upon the equivalence of COT with the model of

Brennan et al. (1987), so most of the specified constraints and the discussed examples do not have to

do with the estimation of the coherence of the whole text per se, but are inspired by ways of facilitating

pronoun resolution in comparison to the algorithm in Brennan et al. (1987). As a result, the evaluation

of complete text structures is discussed very briefly using only two examples from Grosz and Sidner

(1998).

48Neither do the immediate focus rules of McKeown (1985). As we mentioned in section 2.4.1, the difference between
the way that McKeown (1985) interprets STIF and standard R2 is that McKeown prefers to shift the focus in the second
member of a given pair of utterances whereas R2 maintains it. However, both models define local preferences operating at
the level of a pair of utterances. We cannot see a way of estimating the coherence of a complete text without translating the
rules of McKeown (1985) into a scoring function of text structure in the sense discussed in this section. Defining such a
function lies beyond the scope of the thesis which is restricted to investigating CT’s potential for this purpose.

49Various examples of applying Beaver’s methodology are presented in the next chapter.
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However, the remark of Beaver (2003) about estimating the coherence of awhole text by counting

sums of violations is quite useful for the following reason: As we mentioned in section 2.3.2, none of

the existing corpus-based investigations of CT formally specifies a rigid methodology for estimating

the coherence of a complete text structure. However, what most of them do practically is to countsums

of transitions in a text. Thus, they informally define a scoring function of entity coherence which

sums up the transitions in different utterances. Then, the frequencies of transitions are compared to

the preferences that underlie the basic claims of CT. C1 and R2 are taken to be robust estimators of

the entity coherence of the texts in the corpus, if a certain specification of CT returns frequencies of

transitions that correspond to these preferences.

At this point, we need to emphasise that counting sums of COT violations or standard CT tran-

sitions is by no means specific to these versions of CT. For the sake of simplicity, in the examples

that follow we employ the scoring function for standard C1 and R2 from Poesio et al. (2002). In

chapter 3, we show how this approach can be extended to the definition of other scoring functions of

entity coherence based on the different ways of specifying CT reviewed in section 2.2.4.

In the next section, we argue that summing up the transitions in a text, although necessary, might

not be the most reliable way for estimating the coherence of a text structure given a certain content.

To support this claim we present two examples which show that considering the alternative sequences

of the utterances that a text consists of can be more enlightening than comparing the frequencies of

transitions with the underlying preferences of R2 and C1.

2.5.3 Looking at alternative sequences of utterances

As we saw in the preceding sections, R2 and C1 are the main predictions of standard CT with respect

to the entity coherence of a pair of utterances. However, CT is unclear on how to use them in order

to estimate the entity coherence of longer text spans. What most of the existing corpus-based investi-

gations of CT did in response to this was to define scoring functions of entity coherence based on the

sums of transitions in a text. The frequencies of the transitions are often compared with the follow-

ing absolute preferences: a)CONTINUE is the most frequent transition (abs-CONT) and b) minimise

NOCB (abs-NOCB). When the frequencies of transitions are found to adhere to these preferences, CT

is taken to be a reliable estimator of the entity coherence of a text.

Kibble (2001) was the first to point out that the methods followed in previous corpus-based eval-

uations of CT are incomplete:

[...] corpus analysis itself is not sufficient to evaluate the claims of CT without taking into
account the underlying semantic content of a text. That is, statistics about the relative
frequency of occurrences of different transition types [...] do not take account of the
choices available to an author.

(Kibble 2001, p.582)
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The suggestion of Kibble (2001) is very important since it relates to a quote from Grosz et al. (1995):

Rule 2 provides a constraint on speakers, and on natural language generation systems.
They should plan ahead to minimise the number of shifts. [...] To empirically test the
claim made by Rule 2 requires examination of differences in inference load of alternative
multi-utterance sequences that differentially realise the same content.

(Grosz et al. 1995, p.215)

To our knowledge, the suggestion of Grosz et al. (1995) to examinealternative sequences of ut-

terances that differentially realise the same content has not been followed in any of the existing

corpus-based evaluations of CT. Note that in Grosz et al. (1995) the preferences that underlie C1 and

R2 are viewed as a way of discriminating an attested sequence of utterances from its alternatives.50

The suggestions of Kibble (2001) and Grosz et al. (1995) are very important not only from an

interpretation but also from a generation point of view. In NLG, and especially in the generation

of structures for descriptive texts, most (if not all) of the semantics that have to be communicated

are available to the system before text structuring. The text structuring component needs to output

a coherent sequence of propositions from a large set of potential alternatives. Thus, the problem of

choicebetween solutions, central to any decision in NLG, needs to be considered in the definition of

a model of entity coherence based on CT for the purposes of text structuring.

In the remainder of this section we present two examples that elaborate on the quotations of

Kibble (2001) and Grosz et al. (1995). We argue that comparing the frequency of transitions with abs-

CONT and abs-NOCB, without considering their alternatives, is an incomplete way for estimating the

coherence of a text given a certain content. We conclude that judging the coherence of a complete

structure sufficiently requires searching through different sequences of utterances that realise the same

content.

Clearly, this thesis presents only one way of investigating the problem of choice, the one that

arises from a specific NLG viewpoint. For instance, our argument in the next section is based on the

assumption that content determination is done strictly before text structuring, that is, we ignore the

possibility of changing the propositional content in order to make the text structure more coherent.

Additional complications that have to do with decisions such as segmentation, aggregation, etc. are

also not taken into account. Even with these modifications, to our knowledge, this thesis represents

the first, albeit limited, attempt to account for the problem of choice in the corpus-based evaluation of

CT.

50As Grosz et al. (1995) talk about “differences on inference load”, the best way to test their claim is by perceptual
experiments and indeed this path was followed by many proponents of CT (see section 2.2.5 for relevant citations). However,
as Poesio et al. (2002) very convincingly argue, these experiments are very difficult to take place on a large scale, while it is
practically impossible to address CT’s underspecification with them. We maintain that the same is true for the problem of
estimating the coherence of a complete text structure given a propositional content. Hence, corpus-based research represents
the most realistic alternative, especially for an extensive study. See section 4.6 of chapter 4 for an elaboration on this point.
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2.5.4 Estimating the coherence of the whole text structure requires search

In order to demonstrate how important it is to account for alternative ways of ordering the same set of

utterances, consider the following example, adapted from a human text describing a museum artefact

in the MPIRO domain:51

(2.9) a. This exhibit is an amphora.

CF(exhibit1, amphora)

b. Amphoras have an ovoid body and two looped handles, reaching from the shoulders

up.

CF(amphora, entity-3908),

CB=amphora, CONTINUE

c. Amphoras were produced in two major variations: type A and the type with a neck.

CF(amphora, typeA, type-neck)

CB=amphora, CONTINUE

d. This exhibit is a type A amphora.

CF(exhibit1, typeA)

CB=typeA, ROUGH-SHIFT

e. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)

CB=exhibit1, SMOOTH-SHIFT

f. This exhibit was painted using the red figure technique.

CF(exhibit1, red-figure-technique)

CB=exhibit1, CONTINUE

Assuming a scoring function that calculates the sums of standard CT transitions, the structure in (2.9)

has threeCONTINUEs, oneROUGH-SHIFT in position (2.9d), and oneSMOOTH-SHIFT in position

(2.9e). Note that the text in (2.9) satisfies abs-CONT because it has moreCONTINUEs than (SMOOTH

or ROUGH) SHIFTs. Abs-NOCB is also satisfied since none of the pairs of utterances in (2.9) violates

C1, i.e. there are noNOCBs in (2.9).

Do abs-CONT and abs-NOCB account for the coherence of (2.9) after all? One is tempted to

be affirmative since (2.9) has more preferred than dispreferred transitions, thus roughly satisfying the

intuition behind R2, and no violations ofCONTINUITY, adhering to C1 for every pair of utterances.

51Although utterances (2.9c) and (2.9d) appear in the human text, they do not correspond to propositions in the MPIRO
database. For this reason we computed their CF lists using the ranking assumed by the standard version of CT.
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Therefore, R2 and C1 as manifested by abs-CONT and abs-NOCB could be taken as robust estimators

of the coherence of (2.9).

However, there are a couple of questions that remain unaddressed by abs-CONT and abs-NOCB.

For example: Why is the structure at (2.9) not a series ofCONTINUEs as the canonical ordering of R2

would optimally predict? Isn’t it at odds with R2 that two of the transitions in (2.9) areSHIFTs? How

is it possible for a coherent text like (2.9) to have aROUGH-SHIFT, the most dispreferred transition

according to R2? Is there a way to violate C1 given the utterances in (2.9)? All these questions are

summed up to the following one:What are the alternatives to(2.9)? Or to put it more generally:

Given a discourse D consisting of an ordered set of utterances UD= {U1, ... , Un}, is it
possible for the alternative sequences of the members of UD to differ from D according
to the way a scoring function based on some formulation of CT estimates their entity
coherence?

In order to address this question, we search through the alternative sequences of the utterances in

(2.9) and record their transitions.52 Then, we can compare the sums of transitions in the alternative

orderings with the sums from (2.9). First, we notice that 116/120 (96.67%) of the possible orderings

have at least oneNOCB transition. This shows that although it is possible to put the utterances in (2.9)

in such an order as to violateCONTINUITY, (2.9) is one of the 4 sequences of utterances that does

not exhibit this property. Arguably, abs-NOCB cannot account for this fact; only a relative account of

the preference that underlies C1, such as the one provided here, manages to estimate the amount of

differentiation of (2.9) from its alternatives with respect to the propertyNOCB.

Crucially for abs-CONT, each of these 4 sequences has threeCONTINUEs, oneSMOOTH-SHIFT

and oneROUGH-SHIFT as their transitions. Hence, given the set of utterances that (2.9) consists of,

bothSHIFTs in (2.9) are unavoidable under any ordering that satisfies C1 for every pair of utterances.

As a result, using abs-CONT to estimate the coherence of (2.9) is not so informative since the same

sums of transitions emerge in all structures that minimise onNOCB.

In summary, using frequencies of transitions to evaluate the coherence of (2.9) in direct com-

parison with abs-CONT (or the canonical ordering of R2) does not account for the existence of two

dispreferred transitions. Looking at the alternative sequences of utterances provides a clearer expla-

nation on what are the possible choices for ordering the utterances in (2.9). This way of estimating

the coherence of (2.9) reveals that theROUGH-SHIFT and theSMOOTH-SHIFT in (2.9) are unavoidable

for any sequence of utterances that avoids aNOCB transition.

52As Dimitromanolaki and Androutsopoulos (2003) report, there is a strong preference for the first utterance in each
ordering always to be “This exhibit is an amphora”. We view this convention as a piece of domain communication knowl-
edge (Kittredge et al. 1991) that our investigation needs to account for. Therefore, what one needs to do is to permute the
utterances in positions (2.9b-f), keeping the utterance in (2.9a) as the first utterance in each possible sequence of utterances.
We did this for examples (2.9) and (2.10) and recorded the transitions for 5!=120 possible orderings.
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Since (2.9) is distinguished from its alternatives by the lack ofNOCB transitions, one might be

tempted to believe that estimating the coherence of a structure in terms of abs-NOCB might be just

enough. However, our main claim is that a structure of attested coherence needs to be compared with

its alternatives as far as the preference for avoidingNOCBs is concerned as well. This is made clear

by the following example which comes from a corpus of coherent sequences of propositions derived

from the MPIRO database:53

(2.10) a. This exhibit is an amphora.

CF(exhibit1, amphora)

b. This exhibit was painted using the red figure technique.

CF(exhibit1, red-figure-technique),

CB=exhibit1, CONTINUE

c. In the red figure technique, the background was painted black and the figures that

were predesigned had the natural color of the clay.

CF(red-figure-technique, entity-2474),

CB=red-figure-technique, SMOOTH-SHIFT

d. The red figure technique is the opposite of the black figure technique.

CF(red-figure-technique, black-figure-technique),

CB=red-figure-technique, CONTINUE

e. This exhibit was decorated by an artist known as “the painter of Kleofrades”.

CF(exhibit1, painter-of-Kleofrades),

CB=exhibit1, NOCB

f. “The painter of Kleofrades” used to decorate big vases.

CF(painter-of-Kleofrades, entity-4049),

CB=painter-of-Kleofrades, CONTINUE

The structure in (2.10) has oneNOCB transition in position (2.10e). Using the preference which under-

lies C1 absolutely condemns the structure as incoherent since theNOCB transitions are not minimised

between all pairs of utterances.

However, simply summing up the pairs of utterances that violate C1 is not enough for estimating

the coherence of a text like (2.10). What one needs to do in addition is to search through the search

space of possible orderings to investigate whether there exists a structure that minimises the observed

violations. Profiling the search space in such a way for (2.10) reveals that there are no orderings with

53See Dimitromanolaki and Androutsopoulos (2003) and section 7.2 of chapter 7 for more details on this corpus.
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zero NOCBs! The structure in (2.10) is a member of a set of 18 orderings, all of which include a

pair of utterances violating C1. Crucially, this is the best that one can get with the set of utterances

in (2.10) as far as C1 is concerned, since 85% of the alternative sequences return moreNOCBs than

(2.10). Again, regarding the preference behind C1 absolutely fails to account for this fact which can

only emerge if alternative sequences of the utterances in (2.10) are considered.

With respect to the preference behind R2, 10 of the sequences that optimise on the number of

NOCBs return fewerCONTINUEs than (2.10). Therefore, there are only 7 alternative sequences of

utterances (5.83%) that have the same transitions as (2.10). This time, the number ofCONTINUEs is

found to positively discriminate (2.10) against its alternatives.

Similarly to what was argued in section 2.5 above, the discussion in this section points out the

difficulty of using R2 incrementally for generating an order for the utterances in (2.9), as such an

algorithm might be confronted with a locally worst, yet globally best, choice at any time during the

text structuring process.

It is then the search-based approach to text structuring reviewed in section 2.1.5 that makes use

of the required global measure and represents a more appropriate alternative than the deterministic

use of R2. Hence, it seems that defining a scoring function of entity coherence such as the one

provided by Poesio et al. (2002) appears to be the most appropriate solution for the problem of how

CT should be formulated for the purposes of text structuring. And it should not be a coincidence that,

to our knowledge, the only two implemented versions of CT for text structuring, namely Kibble and

Power (2000) and the genetic algorithm in Cheng (2002), do make use of the search-based approach

(although, as the next chapter points out, the ways that CT is formulated there represent only two of

the many possible options).

Going back to the point raised in the previous section, when the sequence of utterances in (2.9)

and (2.10) are compared with their alternatives, computing the sum ofCONTINUEs and the sum of

NOCBs provides a more informative estimate of their entity coherence than comparing these sums

with absolute preferences.

Clearly, a more extended search-oriented operation such as the one presented in this section is

required in order to specify how general the phenomena in (2.9) and (2.10) are.54 In chapter 5, we

pursue the issue further by introducing a search oriented, corpus-based methodology especially de-

vised for our purposes. Although we indicate that determining how coherent a structure is (compared

to the alternatives for the same content) requires search, our empirical research cannot investigate this

issue exhaustively. Instead, we restrict ourselves to raising the question with respect to the standard

54It should be clear to the reader that we refer to two distinct uses of search: (a) the one that is presented in this section
that is usedprior to the actual generation, but is essential for a scoring function to be seen as a robust estimator of the
entity coherence of a complete text structure (b) the one usedduring the actual generation in systems such as Mellish et al.
(1998a) to output the best scoring solution. Obviously, (a) is the use that the thesis is concerned with.
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corpus-based evaluation of CT, but attempt to explore it under a specific NLG perspective.

2.6 A research question for search-based text structuring

In summary, the previous section shows that CT needs to be extended in order to:

a) Resolve RSI in favour of theRETAIN:SHIFT pattern (section 2.5.1).

b) Estimate the entity coherence of the whole text (section 2.5.2).

c) Examine alternative sequences of utterances (section 2.5.3 and section 2.5.4).

The discussion points out that it is difficult to use R2 directly on an utterance-by-utterance basis to

generate a complete text structure. An alternative to the incremental use of R2 is provided by the

global scoring functions typically used in the corpus-based evaluation of the theory. Hence, it seems

to us that defining a scoring function of entity coherence appears to be the most plausible way of

representing CT for the the purposes of text structuring.

Although we have already introduced the scoring function of entity coherence from Poesio et al.

(2002), we feel that this might not be the only possibility, given the many different ways of formulating

CT. Thus, the first research question that our work addresses is the following:55

Q1: How can CT be used to define an evaluation metric of entity coherence for search-based de-

scriptive text structuring?

In an attempt to discuss in detail a number of potential solutions to question (Q1), we begin the

following chapter with a review of some metrics of entity coherence already in use for the purposes

of text structuring including the ones in Mellish et al. (1998a), Cheng (2002) and Kibble and Power

(2000). Then, we define additional metrics based on the different specifications of CT.

55See section 2.1.5 and the beginning of the next chapter for a clarification of the difference between a scoring function
and an evaluation metric.





Chapter 3

Defining metrics of entity coherence

The previous chapter argues that the most appropriate way to use CT to aid the text structuring process

is by defining a metric of entity coherence. This chapter discusses possible ways of defining such a

metric, starting with an investigation of existing metrics of text structure that use notions from CT.

Then, we define additional metrics of entity coherence based on the different formulations of CT. We

conclude the chapter with the next question that our empirical work needs to investigate:

Q2: Which metrics of entity coherence constitute the most promising candidates for text structuring?

3.1 Existing metrics of entity coherence

We define ascoring functionof entity coherence as a simple function that returns a score (or a set of

scores) S for the entity coherence of a text structure T. Anevaluation methodof entity coherence uses

S to compare T with one or more alternatives. When the scoring function is supplemented with an

evaluation method, then it constitutes anevaluation metricof entity coherence.

In the previous chapter, we discussed one of the informal CT-based scoring functions of Poesio

et al. (2002). This scoring function sums up the number of transitions in a text and can be formalised

as follows for our purposes:1

• Scoring function in Poesio et al. (2002):

Sum(NOCB), Sum(CONTINUE), Sum(RETAIN), Sum(SMOOTH-SHIFT), Sum(ROUGH-SHIFT)

Poesio et al. (2002) evaluate the different ways of specifying the parameters of CT, among other crite-

ria, according to the extent that they minimise the sum ofNOCBs and maximise the sum ofCONTINUEs

1As mentioned in the previous chapter, we do not follow Poesio et al. (2002) in distinguishingNOCBs into ZERO and
NULL transitions. A plus (+) is used to denote that the scores which are calculated by the scoring function are added up (see
section 3.1.2 for an example), whereas a comma denotes that the set of scores is passed to the evaluation method without
being added up.

53
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in the GNOME corpus. In section 2.5.4 of the previous chapter, we presented two examples of apply-

ing this function, and argued that this method of evaluation does not account for the problem of choice

which is particularly important from an NLG viewpoint. Chapter 5 presents such a search-oriented,

corpus-based methodology especially devised from an NLG perspective.

Before entering the discussion in chapter 5, however, we feel that there exists another question

that remains unaddressed: Are the suggestions in Poesio et al. (2002) theonly possibleCT-based

scoring functions of entity coherence?

In this section, we start investigating that question by reviewing other existing scoring functions

as well as complete evaluation metrics of entity coherence that have been used to guide the text

structuring process in NLG. As we mentioned in section 2.1.5 of the previous chapter, these metrics

are associated with a view of text structuring as a formal search problem where the metric is used to

select a candidate solution between its alternatives.

3.1.1 Metrics in stochastic ILEX

As we mentioned in section 2.1.5 of the previous chapter, Mellish et al. (1998a) define an intuitive

scoring function which employs entity-based features of coherence as well as other parameters of

text quality. Some of the entity-based features of this function draw upon CT, although Mellish et al.

(1998a) do not make any direct reference to it. They acknowledge, however, that integrating a formal

model of entity coherence with their approach would be worthwhile.

Cheng (2002) builds upon the remarks of Mellish et al. (1998a) by presenting a genetic algorithm

which handles the interaction between text structuring and aggregation in the ILEX domain. Cheng

uses her own intuitions to specify preferences for rhetorical relations, entity coherence, aggregation,

and their interactions (Cheng 2002, p.127). Her function extends the scoring scheme of Mellish et al.

(1998a) with features weighted according to these preferences (Cheng 2002, pp.186-188). A series of

evaluation experiments are employed to show that the intuitions underlying her scoring function are

correct (Cheng 2002, Chapter 8).

Cheng formulates entity coherence using standard CT, weighting the transitions in her scoring

function according to the preferences of R2.2 Because the main focus of Cheng (2002) is on the

interaction of aggregation with text structuring, replicating the scoring function for entity coherence

outside her stochastic system using her exact weights would not make much sense. Instead, the

unconditional preferences of standard R2 are captured in terms of Optimality Theory (OT) without

specific numerical weights (see section 3.4.1 for more details).

2A novel transition calledASSOCIATE SHIFTwhich captures a bridging relation between two entities in adjacent utter-
ances is introduced in the formulation of CT transitions by Cheng (2002, p.142). Since we do not investigate the effect of
indirect realisation we take the preferences between transitions in Cheng (2002) to be equivalent to the ones in standard R2.
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3.1.2 Summing up the underlying notions

Kibble and Power (2000) use the reformulation of CT into the prerequisite ofCONTINUITY and the

three underlying principles of CT (namelyCOHERENCE, CHEAPNESSandSALIENCE) in the definition

of their scoring function of entity coherence.3 This function sums up the number of times each can-

didate structure violates each CT notion and then adds the four resulting sums together. Sum(NOCB),

Sum(COH∗), Sum(CHEAP∗) and Sum(SAL∗) stand for the sums of the violations ofCONTINUITY,

COHERENCE, CHEAPNESSandSALIENCE respectively:

i. Scoring function of entity coherence in Kibble and Power (S.KP):

Sum(NOCB)+Sum(COH∗)+Sum(CHEAP∗)+Sum(SAL∗)

In order to explain how S.KP works more clearly, let us apply it to examples (3.1) and (3.2), assuming

that these examples correspond to two (of the) candidate solutions for text structuring. The utterances

in the examples are annotated with the violations of the underlying notions of CT in addition to

the standard CT transitions.4 For instance, theROUGH-SHIFT in (3.1d) violates all three underlying

principles of CT, only satisfying the prerequisite ofCONTINUITY:

(3.1) a. This exhibit is an amphora.

CF(exhibit1, amphora)

b. Amphoras have an ovoid body and two looped handles, reaching from the shoulders

up.

CF(amphora, entity-3908),

CB=amphora, CONTINUE

CHEAP∗

c. Amphoras were produced in two major variations: type A and the type with a neck.

CF(amphora, typeA, type-neck)

CB=amphora, CONTINUE

d. This exhibit is a type A amphora.

CF(exhibit1, typeA)

CB=typeA, ROUGH-SHIFT

3Following the terminology in section 2.2.4 of chapter 2, we refer collectively to the three underlying principles and
their prerequisite as the underlying notions of CT.

4Example (3.1) is the same as example (2.9) in section 2.5.4 of chapter 2. Clearly all metrics presented in this chapter
can apply to more than two candidate structures. In this chapter, the discussion is restricted to only two examples for the
sake of simplicity.
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COH∗, CHEAP∗, SAL∗

e. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)

CB=exhibit1, SMOOTH-SHIFT

COH∗

f. This exhibit was painted using the red figure technique.

CF(exhibit1, red-figure-technique)

CB=exhibit1, CONTINUE

In (3.2), utterance (b) appears between (d) and (e). This creates two violations ofCONTINUITY in

positions (3.2b) and (3.2e):

(3.2) a. This exhibit is an amphora.

CF(exhibit1, amphora)

c. Amphoras were produced in two major variations: type A and the type with a neck.

CF(amphora, typeA, type-neck)

CB=amphora, CONTINUE

CHEAP∗

d. This exhibit is a type A amphora.

CF(exhibit1, typeA)

CB=typeA, ROUGH-SHIFT

COH∗, CHEAP∗, SAL∗

b. Amphoras have an ovoid body and two looped handles, reaching from the shoulders

up.

CF(amphora, entity-3908)

NOCB

e. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)

NOCB

f. This exhibit was painted using the red figure technique.

CF(exhibit1, red-figure-technique)

CB=exhibit1, CONTINUE
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Violations of Centering notions S.KP

Text NOCB COH∗ CHEAP∗ SAL∗ Total

(3.1) - d, e b, d d 5

(3.2) b, e d c, d d 6

Table 3.1: Violations of Centering notions and scores for examples (3.1) and (3.2) according to the

scoring function S.KP

Table 3.1 summarises the violations of the underlying notions of CT for the two examples.5 The last

column of the Table reports the total number of violations for each example which corresponds to the

score returned by S.KP. As Table 3.1 shows, the total number of violations in (3.1) is 5, whereas the

total number of violations in (3.2) is 6. Thus, the structure with the smaller sum of violations of the CT

notions is (3.1). If S.KP is supplemented with an evaluation method which selects the structure with

the smallest number of CT violations as a better solution for text structuring than its competitor(s),

then (3.1) wins the competition with (3.2).

The combination of the S.KP scoring function with the preference for the structure with the small-

est number of violations of the CT notions gives rise to the following metric of entity coherence, which

we callM.KP :

• Metric of entity coherence employing S.KP (M.KP):

– scoring function:

Sum(NOCB)+Sum(COH∗)+Sum(CHEAP∗)+Sum(SAL∗)

– evaluation method:

Prefer the solution with the lowest score

3.1.3 Isolating the effects of entity coherence

The scoring function of entity coherence in Kibble and Power (2000) is part of a larger evaluation

module that applies a battery of tests to a restricted set of candidate solutions and selects the one with

the lowest total cost. Kibble and Power (2000) claim that a candidate solution that does worse than

another competitor according to S.KP can still be selected over its alternative if it is assigned with

a better score for certain stylistic preferences. These preferences are related to favourable ways of

realising the underlying rhetorical structure of a candidate text structure.

5The columns in the middle of Table 3.1 are headed by the violations of the CT notions. Following the approach of
Beaver (2003), quoted in section 2.5.2 of chapter 2, the cells beneath each violation report the utterances in which the
violation occurs for each example.
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As in Mellish et al. (1998a), the interaction between entity and rhetorical coherence in Kibble and

Power (2000) is specified intuitively, a point clearly acknowledged by the authors. Hence, these met-

rics of entity coherence for text structuring provide reasonable indications for, rather than a complete

solution to, the complex issue of how different models of coherence interact with each other.

As we have clearly mentioned section 2.4.4 of the previous chapter, specifying a model for this

interaction is beyond the scope of this thesis. Instead, we attempt to estimate the importance of entity

coherence on characterising a descriptive text structure. Hence, treating S.KP in isolation for the

definition of M.KP seems appropriate.

This does not mean, however, that the effects of other coherence-inducing mechanisms are com-

pletely ignored in our work. In chapter 6, we investigate the interaction of rhetorical and entity coher-

ence in a subset of the GNOME corpus based on the assumptions of Knott et al. (2001). In chapter 8,

we discuss how an additional constraint on entity coherence can supplement our general experimental

approach.

All in all, the main argument in this chapter is that the different formulations of CT give rise to

many metrics of entity coherence, M.KP being one of the numerous possibilities. Identifying the most

appropriate metrics for text structuring is an empirical issue as our experiments in subsequent chapters

show.

3.2 An OT ranking of the underlying principles

Although Kibble and Power (2000) mention that each CT notion that their metric employs may be

assigned a different cost, in practice they decide that all of them be weighted equally. However, this

decision does not stem from any empirical finding or theoretical claim of CT.

It is notable that calculating the sum of violations for each underlying notion of CT in S.KP is

similar to the way Beaver (2003) computes the violations of COT constraints. The main difference

is that COT violations areranked in a standard OT fashion instead of being summed up. Another

difference is that COT only employs two of the underlying principles of CT (that is,COHERENCEand

SALIENCE as reported in section 2.2.4.2 of chapter 2). Thus, as shown by Beaver (2003), COT is

equivalent to standard CT.

A metric of entity coherence based on standard CT is defined in section 3.4.1. This section ar-

gues in favour of anOT ranking of the CT notions. To support this argument we first remind the

reader of theRETAIN:SMOOTH-SHIFT inadequacy of R2(RSI) as discussed in section 2.5.1 of chap-

ter 2. Although RSI cannot be resolved when the underlying principles of CT are taken to be of equal

importance as in S.KP, a simple solution to RSI can be defined by considering the three underlying

principles of CT as ranked violable constraints in the sense of OT. This, in turn, gives rise to an eval-
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uation method that ranks the sums of the violations of the CT principles according to the preference

order defined for the resolution to RSI.

In the remainder of the section, we discuss some alternatives for the ranking of the CT notions.

Then, we define metrics that further reduce the complexity of the CT framework by considering only

a few of the underlying notions as contributors to the overall coherence of the text.

The chapter continues with the definition of a metric closer to the standard formalisation of R2 and

a detailed discussion of less explored aspects of the relation between CT principles and transitions.

We conclude by defining the next aim of our research as the comparison of some of these metrics on

an empirical basis.

3.2.1 Resolving RSI

In order to motivate the reformulation of M.KP in terms of OT, let us repeat example (2.8) from

section 2.5.1 of chapter 2 as example (3.3), annotated with the violations of the underlying principles

of CT in addition to the standard CT transitions:

(3.3) a. This exhibit is an amphora.

CF(exhibit1, amphora)

b. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)

CB=exhibit1, CONTINUE

c. This exhibit was decorated by an artist known as the “painter of Kleofrades”.

CF(exhibit1, painter-of-Kleofrades)

CB=exhibit1, CONTINUE

d. The “painter of Kleofrades” used to decorate big vases.

CF(painter-of-Kleofrades, entity-4049)

CB=painter-of-Kleofrades, SMOOTH-SHIFT

COH∗, CHEAP∗

c’. An artist known as the “painter of Kleofrades” decorated this exhibit.

CF(painter-of-Kleofrades, exhibit1)

CB=exhibit1, RETAIN

SAL∗

d’. The “painter of Kleofrades” used to decorate big vases.

CF(painter-of-Kleofrades, entity-4049)
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CB=painter-of-Kleofrades, SMOOTH-SHIFT

COH∗

As we discussed in section 2.5.1, RSI emerges from the inability of R2 to resolve the competition

between (3.3c-d) and (3.3c’-d’) in favour of theRETAIN:SMOOTH-SHIFT sequence in (3.3c’-d’). Note

that since both (3.3a-b-c-d) and (3.3a-b-c’-d’) violate the underlying principles two times in total,

M.KP cannot discriminate between them at all.

Kibble and Power (2000) suggest that the principle ofCHEAPNESScan provide a solution to

RSI. Indeed, theRETAIN:SMOOTH-SHIFT sequence in (3.3c’-d’) is one of the cheap transition pairs

according to Strube and Hahn (1999), by contrast to theCONTINUE: (EXPENSIVE) SMOOTH-SHIFT

sequence in (3.3c-d) which belongs to the expensive transition pairs. Since cheap transition pairs are

preferred over expensive ones, the preference for (3.3c’-d’) over (3.3c-d) is predicted. However, as

Kibble (2001) mentions, the definition of 36 transition pairs is unnecessarily complicated, since its

only purpose is to define the priority of the principle ofCHEAPNESSover the other principles of CT.

In this section, we propose a solution to RSI by defining an OT rankingdirectly on the three

underlying principles of CT. That is, we view the principles of CT as violable constraints in an OT

way and rank them according to the following preference which we will conventionally name POT1

(from CT Principles in OT - Ranking 1):6

ii. CT Principles in OT - Ranking 1 (POT1):

COHERENCE>CHEAPNESS>SALIENCE

This preference states that violatingCOHERENCEis more serious than violatingCHEAPNESSwhich,

in turn, is more serious than violatingSALIENCE. RankingCOHERENCEoverSALIENCE is motivated

by the reanalysis of the table of standard CT transitions in terms of these two principles, discussed

in section 2.2.4.2 of chapter 2, and the precedence of theRETAIN transition over aSMOOTH-SHIFT

as defined by standard R2. In what follows, we explain how rankingCHEAPNESSover SALIENCE

resolves RSI in favour of theRETAIN:SMOOTH-SHIFT pattern.

The violations of the underlying principles in the competing sequences of utterances in (3.3) are

summarised in Table 3.2. According to OT (Prince and Smolensky 1997), the optimal structure is

the one that returns fewer violations of the most highly ranked constraint on which the competing

structures differ. Because both configurations in Table 3.2 violateCOHERENCE the same number

of times, this constraint cannot decide the competition. Crucially, theRETAIN in (3.3c’) violates

SALIENCE whereas theSMOOTH-SHIFT in (3.3d) violatesCHEAPNESS. SinceCHEAPNESSis ranked

higher thanSALIENCE, POT1 decides the competition in favour of (3.3a-b-c’-d’) that contains the

6Note that no crosslinguistic predictions are associated with this ranking, contrary to standard assumptions in OT.
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Violations of Centering principles

Text COH∗ CHEAP∗ SAL∗
(3.3a-b-c-d) d d

(3.3a-b-c’-d’) d’ c’

Table 3.2: Violations of Centering principles in the utterances of example (3.3)

RETAIN:SMOOTH-SHIFT sequence. Arguably, ranking the CT principles directly provides a much

more straightforward solution to RSI than resorting to the 36 pairs of transitions in FC.

A new metric of entity coherence can be defined on the basis of the solution to RSI discussed

so far. In order to emphasise its relation with the ranking defined by POT1, the metric bears the

nameM.POT1. The scoring function of this metric computes the sums of the violations of the four

CT notions. However, instead of adding up the sums as in M.KP, the scoring function of M.POT1

communicates with an OT-like evaluation method.

The evaluation method of M.POT1 examines the sums of violations of the three underlying prin-

ciples in a way that abides with the resolution to RSI. In addition, the sum of violations of the prereq-

uisite of CONTINUITY is ranked as the most important penalty. This is motivated by the fact that if

CONTINUITY is violated between two utterances one cannot apply any of the underlying principles to

the second member of the pair.7

• RSI-motivated metric of entity coherence (M.POT1):

– scoring function:

Sum(NOCB), Sum(COH∗), Sum(CHEAP∗), Sum(SAL∗)

– evaluation method:

Sum(NOCB)>Sum(COH∗)>Sum(CHEAP∗)>Sum(SAL∗)

Applying M.POT1 to examples (3.1) and (3.2) works as follows: The most serious violations of entity

coherence in Table 3.1 are theNOCB transitions, each corresponding to a violation ofCONTINUITY.

There are noNOCBs in (3.1), whileCONTINUITY is violated twice in (3.2). Hence, (3.1) is optimal

when compared to (3.2) using M.POT1 because it returns less violations of the most highly ranked

constraint.

Note that according to mainstream OT no other lower ranked constraint violated by either of the

candidates is taken into account by the evaluation method of M.POT1 in determining the winner.

7Note that the prioritisingCONTINUITY is expressed purely in the way that the sums of violations are inspected by
the evaluation method. IfCONTINUITY is violated by the second member of a pair of utterances, the scoring function of
M.POT1 returns 0 (that is, no violation) for each underlying principle of CT, thus avoid penalising the utterance more than
once for the same defect.
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Only the most highly ranked constraint on which the two candidates differ (in this caseCONTINUITY)

matters. The sum of violations ofCOHERENCEwill only be considered if the candidate structures

are found to have the same number ofNOCBs. If the sum of violations ofCOHERENCEis the same

as well, then the violations ofCHEAPNESSwill be considered to resolve the competition between

the structures and so on. If the candidate structures have the same number of violations for each CT

notion, then they are considered equivalent by M.POT1.

Crucially, the competition would be decided in favour of example (3.2), wereCOHERENCEranked

as the most serious constraint overCONTINUITY. This shows that the ranking of the CT notions is

very important in the way that an OT-inspired evaluation metric of entity coherence works. This issue

is discussed in the next section in more detail.

3.2.2 Alternative POT rankings

As we mentioned in the previous chapter, the argumentation in favour of theRETAIN:SHIFT pattern

is not infallible. Thus, the evaluation method of M.POT1 employs only one of the possible ways of

ranking the underlying notions of CT in OT terms. This ranking needs to be subjected to empirical

justification in the same way as the decision to sum up the violations in S.KP.

Indeed, Kibble (2001) argues against the priority ofCOHERENCEoverSALIENCE. He tentatively

suggests the following preference in order to resolve the conflicts between the underlying principles.

iii. Kibble’s ranking of CT Principles:

{CHEAPNESS, SALIENCE}>COHERENCE

According to this ranking, the violations ofCHEAPNESSandSALIENCE have the same effects on the

entity coherence of the discourse. Moreover, violating either of these constraints is more serious than

violating COHERENCE.

Alongside Kibble (2001), we believe that the exact ranking of the notions of CT remains an

open question. As we have already mentioned in the previous section, a very interesting parameter

in addition to the ones considered by Kibble (2001) is the ranking of the sum ofNOCB transitions.

Table 3.3 shows how two extreme possibilities for ranking of the sum ofNOCBs give rise to 11 metrics

in addition to M.POT1.

The metrics in Table 3.3 can be divided into two sets: Like M.POT1, the sum ofNOCBs is the

first score to be examined in metrics M.POT2 to M.POT6. However, these metrics differ in the way

that the evaluation method prioritises the sums of violations of the CT principles. In all remaining

metrics the sum ofNOCB transitions is the least important violation. The last choice reflects the

view of standard CT which does not discuss the effects of theNOCB transition on the coherence of
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Metric Evaluation method

M.POT2 Sum(NOCB)>Sum(COH∗)>Sum(SAL∗)>Sum(CHEAP∗)
M.POT3 Sum(NOCB)>Sum(SAL∗)>Sum(CHEAP∗)>Sum(COH∗)
M.POT4 Sum(NOCB)>Sum(SAL∗)>Sum(COH∗)>Sum(CHEAP∗)
M.POT5 Sum(NOCB)>Sum(CHEAP∗)>Sum(COH∗)>Sum(SAL∗)
M.POT6 Sum(NOCB)>Sum(CHEAP∗)>Sum(SAL∗)>Sum(COH∗)
M.POT7 Sum(COH∗)>Sum(CHEAP∗)>Sum(SAL∗)>Sum(NOCB)

M.POT8 Sum(COH∗)>Sum(SAL∗)>Sum(CHEAP∗)>Sum(NOCB)

M.POT9 Sum(SAL∗)>Sum(CHEAP∗)>Sum(COH∗)>Sum(NOCB)

M.POT10 Sum(SAL∗)>Sum(COH∗)>Sum(CHEAP∗)>Sum(NOCB)

M.POT11 Sum(CHEAP∗)>Sum(COH∗)>Sum(SAL∗)>Sum(NOCB)

M.POT12 Sum(CHEAP∗)>Sum(SAL∗)>Sum(COH∗)>Sum(NOCB)

Table 3.3: Some alternative rankings of the violations of Centering notions

the discourse. Again, each metric examines the sums of violations of the underlying principles in a

different order of priority.

The metrics in Table 3.3 were not used in the experiments reported in the chapters that follow. In

order to somehow contain the effort, we only considered M.POT1 that was given theoretical priority

because of its relation to the resolution of RSI, which, in our view, is a very interesting debate within

CT. Nevertheless, we regard experimenting with different rankings of the underlying principles more

extensively as an appealing direction for empirical future work.8

3.3 Simpler metrics of entity coherence

This section presents metrics that are simpler than M.KP and M.POT1 in the sense that they employ

fewer (combinations of) CT principles. This is based on the assumption that only specific violations

of CT notions cause incoherence in a structure.

3.3.1 Computing only the violations of CHEAPNESS

According to Strube and Hahn (1999) the principle ofCHEAPNESSis to be given complete priority

over the other notions of CT for the purposes of anaphora resolution. We are interested to see how

suitable a metric based on the formulation of R2 in FC (see section 2.2.4.3 of chapter 2) could be

8This could be extended to the remaining 12 possible ways of ranking the underlying principles not illustrated in
Table 3.3.
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for the text structuring task. For this reason we devise the following metric that computes the sum

of violations of CHEAPNESSonly and compares the candidate structures according to these scores

(M.CHEAP ):

• FC metric of entity coherence (M.CHEAP):

– scoring function:

Sum(CHEAP∗)

– evaluation method:

Prefer the solution with the lowest score

Note that ifCHEAPNESSis used as the only criterion for evaluating the entity coherence of (3.1) and

(3.2), then both structures are considered to be equivalent since each violatesCHEAPNESStwice (see

Table 3.1).

3.3.2 Computing only the violations of CONTINUITY

Under a slightly more radical view of entity coherence one can do away with the underlying principles

of CT and only rely on the prerequisite ofCONTINUITY. M.NOCB is the metric that uses the sum of

violations ofCONTINUITY only, ignoring all other aspects of entity coherence as defined by the three

CT principles:

• Metric of entity coherence based only onCONTINUITY (M.NOCB):

– scoring function:

Sum(NOCB)

– evaluation method:

Prefer the solution with the lowest score

Looking at Table 3.1 again, the evaluation method of M.NOCB favours (3.1) over (3.2) as the structure

that violatesCONTINUITY less times. Hence, the result for this example is the same as using M.POT1.

The relationship between M.POT1 and M.NOCB is defined more generally as follows: Assuming

that M.NOCB returnst1 NOCB transitions for structure T1 andt2 NOCB transitions for structure T2,

whent1 < t2, then T1 is preferred over T2 by the evaluation methods of both M.NOCB and M.POT1.

Conversely, ift1 > t2, then both metrics favour T2. Thus, it is only whent1 = t2 that using M.POT1

might return different results from using M.NOCB.

Whent1 = t2, the evaluation method of M.NOCB considers T1 to be equivalent to T2 with respect

to their entity coherence. However, as we mentioned at the end of in section 3.2.1, the evaluation
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method of M.POT1 does not rest its case so easily. Instead, the sums of violations of the three un-

derlying principles of CT are consulted in the order defined by their ranking in POT1. The next most

highly ranked CT constraint on which the two candidates differ decides the competition. T1 and T2

are considered equivalent by the evaluation method of M.POT1 only if its scoring function returns the

same scores for each violation of the underlying notions of CT.

As we discussed in section 2.3.2 of chapter 2, the sum ofNOCBs is used by Poesio et al. (2002) as

the measure of violations of C1 in the evaluation of different versions of CT. This metric is also used

in the stochastic text structuring system of Karamanis and Manurung (2002). Because M.NOCB only

uses the prerequisite ofCONTINUITY, it is recognised as the simplest among the metrics discussed in

this chapter.9 As we mention in chapter 5, because of its simplicity, M.NOCB serves as thebaseline

for our corpus-based experiments which aim to specify which of the different metrics are the most

promising candidates for the purposes of text structuring.

3.3.3 ROUGH-SHIFT as a source of incoherence

A view of entity coherence closer to standard CT comes from Miltsakaki and Kukich (2000a,b).

Miltsakaki and Kukich (2000a,b) supplemented a system for grading student essays with a measure

of entity incoherence based on the percentage ofROUGH-SHIFT andNOCB transitions.10 They show

that this modification improves the accuracy of the grades generated by the system when compared

with grades from human experts. Our next metric, namelyM.MIL , is inspired by the combination of

the sum ofROUGH-SHIFT andNOCB transitions as an estimate of incoherence in the scoring function

of Miltsakaki and Kukich (2000a,b):11

• M.MIL metric:

– scoring function:

Sum(NOCB)+Sum(ROUGH-SHIFT)

– evaluation method:

Prefer the solution with the lowest score
9M.CHEAP also employs only one CT notion, namelyCHEAPNESS, but for CHEAPNESSto be satisfied or violated

CONTINUITY needs to apply first. For this reason, M.NOCB is considered to be simpler than M.CHEAP.
10Because of the impreciseness of standard CT about theNOCB transition discussed in section 2.2.4.1 of chapter 2, Milt-

sakaki and Kukich (2000a,b) only talk aboutROUGH-SHIFT transitions. That is, they do not make the distinction between a
violation of CONTINUITY, represented by aNOCB transition and aROUGH-SHIFT whereCONTINUITY is preserved but both
COHERENCEandSALIENCE are violated (i.e Cb(Un) 6=Cb(Un−1) 6=Cp(Un) as shown by the definition ofROUGH-SHIFT in
Table 2.1 in section 2.2.1 of chapter 2). That Miltsakaki and Kukich (2000a,b) include the violations ofCONTINUITY in
their scoring function is clear from the discussion of the example of an incoherent essay in Miltsakaki and Kukich (2000a),
the second transition of which does not have a CB and is marked as aROUGH-SHIFT.

11As chapter 5 explains, each metric which is subject to our experimental methodology evaluates structures of the same
length. For this reason, we can define M.MIL directly in terms of the sums ofROUGH-SHIFT andNOCB transitions rather
than their percentages as done by Miltsakaki and Kukich (2000a,b).
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Text NOCB ROUGH-SHIFT M.MIL

(3.1) - d 1

(3.2) b, e d 3

Table 3.4: Scores for examples (3.1) and (3.2) according to metric M.MIL

The last column of Table 3.4 reports the scores of (3.1) and (3.2) according to the scoring function

of M.MIL. Example (3.1) has aROUGH-SHIFT transition in utterance (3.1d) and no violations of

CONTINUITY, so its overall score is 1. Example (3.2) has aROUGH-SHIFT transition in utterance

(3.2d) and two violations ofCONTINUITY in (3.2b) and (3.2e), so its score is 3. Example (3.1) is

preferred over (3.2) according to the evaluation method of M.MIL as the structure that returns a lower

score for entity incoherence.

3.3.4 What is a SHIFT?

The reader might recall from the discussion of standard CT in the previous chapter that Grosz et al.

(1995) do not follow the distinction betweenSMOOTH- andROUGH-SHIFT as introduced by Brennan

et al. (1987). For them, the second member of a pair of utterances that violatesCOHERENCEis simply

classified as aSHIFT. In other to accommodate for this definition ofSHIFT, we modify the scoring

function of M.MIL so that instead of the sum ofROUGH-SHIFTs it computes the sum of all utterances

that violateCOHERENCEin addition to the violations ofCONTINUITY.12 The resulting metric is called

M.SH:

• Revision of M.MIL usingSHIFTs (M.SH):

– scoring function:

Sum(NOCB)+Sum(COH∗)

– evaluation method:

Prefer the solution with the lowest score

M.SHOT1 is a version of M.SH in which violatingCONTINUITY is considered to be more severe

than violatingCOHERENCE. To express this we devise the evaluation method of M.SHOT1 so that the

sums of violations are considered in the order defined by the evaluation method in M.POT1:

• M.POT1 revision of M.SH (M.SHOT1):

12Clearly, a violation ofCOHERENCE(COH∗) corresponds to theSHIFT transition between two utterances. See Table 2.2
in section 2.2.4.2 of chapter 2.
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M.SHOT1 M.SH

Text NOCB COH∗ Total

(3.1) - d, e 2

(3.2) b, e d 3

Table 3.5: Scores for examples (3.1) and (3.2) according to metrics M.SH and M.SHOT1

– scoring function:

Sum(NOCB), Sum(COH∗)

– evaluation method:

Sum(NOCB)>Sum(COH∗)

Table 3.5 reports the scores for examples (3.1) and (3.2) according to M.SH and M.SHOT1. The total

number ofNOCBs andSHIFTs for (3.1) is 2, whereas the total for (3.2) is 3. Hence, M.SH decides in

favour of (3.1). The same is true for M.SHOT1 which only considers the violations ofCONTINUITY in

the same way as M.POT1 and M.NOCB. The difference between M.POT1, M.NOCB and M.SHOT1

has to do with the number of additional scores that the evaluation method takes into account when the

candidate structures have the same scores for the number ofNOCBs.

3.4 Transition-based metrics of entity coherence

The metrics presented so far are based on the logic that if the scoring function counts violations of

CT notions or incoherent transitions, examples (3.1) and (3.2) should be compared with respect to the

extent they minimise these violations. However, the standard formulation of R2 places emphasis on

maximising preferred transitions such asCONTINUE, instead ofminimising violations.

Although recasting standard transitions in terms of (some of) the underlying principles simplifies

the CT framework (see section 2.2.4.2 of chapter 2), using transitions in the scoring function of an

evaluation metric of entity coherence is not completely out of place. Note that metrics such as M.KP

and M.POT1 are agnostic with respect to the occurrence of violations of different underlying princi-

ples in the same utterance. By contrast, certain formulations of CT define a variety of transitions as a

vocabulary for the way that such violations are combined in the same utterance.

In this section, we discuss metrics of entity coherence that employ transitions as a way to ex-

press certain combinations of the underlying principles of CT. Like the scoring function of Poesio

et al. (2002) which is used for the evaluation of different versions of CT on the basis of R2, the scor-

ing function of these metrics computes thesum of transitions in a candidate structure. Then, their

evaluation method promotes the structure with the highest number of preferred transitions.
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We start by ranking the sums of transitions according to the preferences of R2. Then, we investi-

gate the relation between the underlying principles and the various transitions of CT in more detail.

3.4.1 The BFP metric

The scoring function of the BFP metric (M.BFP) computes the sums of standard CT transitions in

a structure. Then, its evaluation method compares the candidate structures by examining the sum of

transitions in the order specified by the standard formulation of R2:

• Standard transition-based metric of entity coherence (M.BFP):

– scoring function:

Sum(CONTINUE), Sum(RETAIN), Sum(SMOOTH-SHIFT), Sum(ROUGH-SHIFT)

– evaluation method:

Sum(CONTINUE)>Sum(RETAIN)>Sum(SMOOTH-SHIFT)>Sum(ROUGH-SHIFT)

Table 3.6 shows the standard CT transitions for (3.1) and (3.2). This time, the structures are compared

with respect to the number of coherent transitions in the order indicated by the preferences of R2. The

first score to be examined is the sum ofCONTINUE transitions. Because (3.1) has moreCONTINUEs

than (3.2), it is declared to be the winner of the competition in one go. Only if the two structures were

found to have the same number ofCONTINUEs would the sum ofRETAINs be examined. Moreover,

the fact that (3.1) has oneSMOOTH-SHIFT more than (3.2) is irrelevant, since the sum ofSMOOTH-

SHIFTs is examined only when the structures have the same scores for the two more highly ranked

transitions.

The evaluation method of M.BFP resembles the OT-inspired evaluation method of a principle-

based metric such as M.POT1, with the exception that the scoring function of M.POT1 counts sums

of violations of CT notions and its evaluation method prefers the candidate structure with thesmallest

number of the most severe violation. By contrast, the scoring function of M.BFP counts sums of

transitions and its evaluation method gives preferences to the structure with thehighestnumber of the

most preferred transition.

However, a scoring function that computes the sum of apreferred transition Sum(TRAN), can

be trivially changed into a scoring function closer to standard OT that computes Sum(TRAN∗), i.e.

the number ofdispreferred transitions other thanTRAN. The relation between Sum(TRAN) and

Sum(TRAN∗) is given by the following equation:

iv. Sum(TRAN∗)=(n−1)−Sum(TRAN)
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Centering Transitions

Text CONTINUE RETAIN SMOOTH-SHIFT ROUGH-SHIFT

(3.1) b, c, f - e d

(3.2) c, f - - d

Table 3.6: Standard Centering transitions in examples (3.1) and (3.2)

where n stands for the number of utterances a structure consists of. Then, an evaluation method can

be defined so that it prefers the structure with the smallest number of Sum(TRAN∗).

For an evaluation metric such as M.BFP that employs more than one transition the scoring function

could be redefined to return the list of scores of dispreferred transitions. The evaluation method then

examines these scores accordingly, showing preference for the structure with the smallest number of

the most highly ranked dispreferred transition:

v. Definition of M.BFP using dispreferred transitions:

– scoring function:

Sum(CONTINUE∗), Sum(RETAIN∗), Sum(SMOOTH-SHIFT∗), Sum(ROUGH-SHIFT∗)

– evaluation method:

Sum(CONTINUE∗)>Sum(RETAIN∗)>Sum(SMOOTH-SHIFT∗)>Sum(ROUGH-SHIFT∗)

Although the two ways of defining M.BFP are equivalent, the one in the beginning of the section is

more straightforward and was the one used in our implementation of M.BFP.

Note that, as in Brennan et al. (1987),NOCBs are not taken into account for the definition of tran-

sitions in M.BFP. It should also be made clear to the reader that M.BFP is different from the principle-

based metrics in the following sense: Assume that the number ofNOCB transitions for structure T1 is

t1 and the number ofCONTINUEs isc1. In addition, structure T2 hast2 NOCBs andc2 CONTINUEs. If

both t1 > t2 andc1 > c2 hold, T1 will loose the competition with T2 according to M.NOCB (and its

extensions such as M.POT1 and M.SHOT1), but win it according to M.BFP.

As with the underlying principles of CT, the definition of transitions in Brennan et al. (1987) is

not the only way of specifying transitions in CT. The metric M.GJW can be defined on the basis of

the definition of transitions in Grosz et al. (1995) as follows:13

vi. Revision of M.BFP using only oneSHIFT (M.GJW):

13Clearly, Sum(SHIFT)=Sum(SMOOTH-SHIFT)+Sum(ROUGH-SHIFT).
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– scoring function:

Sum(CONTINUE), Sum(RETAIN), Sum(SHIFT)

– evaluation method:

Sum(CONTINUE)>Sum(RETAIN)>Sum(SHIFT)

However, M.GJW is not expected to return very different results from M.BFP because its evaluation

method, like the one of M.BFP, considers the various sums ofSHIFTs very late (if ever). For this

reason, it is better to incorporate this transition with M.SH and M.SHOT1 as shown in section 3.3.4

above.

3.5 Examining the relation between principles and transitions

In this section, we explore the relationship between principles and transitions in more detail. First, we

enhance the table of transitions in Strube and Hahn (1999), by defining the full set of basic transitions

using all possible combinations of the three underlying principles.

This results in a large number of basic transitions, which can be subsequently merged with each

other according to the number of underlying principles that they violate. These new transitions give

rise, in turn, to more metrics of entity coherence. Like the different ways of ranking the sums of

violations of the CT principles in section 3.2.2, these additional metrics of entity coherence have

not been taken into account in our experimentation, the results of which are reported in subsequent

chapters of the thesis.

However, they are included in this chapter as promising directions for empirical future work and

as a way of exemplifying theproliferation of CT-based metrics of entity coherence. The chapter

concludes with a discussion of how this this problem relates to our research aims and the underspeci-

fication of CT as discussed in Poesio et al. (2002).

3.5.1 Extending the table of FC transitions

As mentioned in the previous chapter, the table of transitions in FC (Strube and Hahn 1999, Table 20,

p.333) is incomplete. More specifically, as Table 2.3 in section 2.2.4.3 of chapter 2 shows,CONTINUE

andSMOOTH-SHIFT in FC satisfyCHEAPNESS. Violating CHEAPNESSdefines two additional transi-

tions,EXP. CONTINUE andEXP. SMOOTH-SHIFT. Note thatCHEAPNESSdoes not apply toRETAIN

andROUGH-SHIFT.

Table 3.7 presents a more complete table ofbasic Centering transitionsusing all possible com-

binations of the three underlying principles (assuming thatCONTINUITY holds). In this Table, a
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Basic transition Centering principles N of violated

COHERENCE CHEAPNESS SALIENCE principles

CONTINUE + + + 0

EXP. CONTINUE + ∗ + 1

RETAIN + + ∗ 1

EXP. RETAIN + ∗ ∗ 2

SMOOTH-SHIFT ∗ + + 1

EXP. SMOOTH-SHIFT ∗ ∗ + 2

ROUGH-SHIFT ∗ + ∗ 2

EXP. ROUGH-SHIFT ∗ ∗ ∗ 3

Table 3.7: Basic Centering transitions using all combinations of the three Centering principles

Transition Centering Principles

COHERENCE CHEAPNESS SALIENCE

ESTABLISHMENT NOCB(Un−1) + +

EXP. ESTABLISHMENT NOCB(Un−1) ∗ +

RETAIN-ESTABLISHMENT NOCB(Un−1) + ∗
EXP. RETAIN-ESTABLISHMENT NOCB(Un−1) ∗ ∗

Table 3.8: The various types of the ESTABLISHMENT transition

violation of an underlying principle is indicated with a “∗”. Satisfying a principle is indicated with a

“+”. The last column of the Table reports the number of violated principles for each basic transition.

Another thing to notice is thatCOHERENCE in FC and the standard formulation of CT is not

a binary constraint. As Table 2.1 and Table 2.3 in chapter 2 show,COHERENCEholds both when

Cb(Un)=Cb(Un−1) and when Un−1 does not have aNOCB. As discussed in section 2.2.4.1 of chapter 2,

the additional transitionESTABLISHMENT is often introduced to account for these cases. In Table 3.8

we equateCOHERENCEwith the existence of aNOCB transition in Un−1 and use the remaining two

underlying principles to define different sorts ofESTABLISHMENT.14 Appendix A shows the analysis

of examples (3.1) and (3.2) in terms of basic transitions andESTABLISHMENTs.

14The second utterance in a sequence is always taken to be some kind ofESTABLISHMENT as well under this configura-
tion, although U1 is not classified as aNOCB.
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Basic PT transition Basic Centering transitions N of violated principles

V0 CONTINUE 0

V1 EXP. CONTINUE, RETAIN, SMOOTH-SHIFT 1

V2 EXP. RETAIN, EXP. SMOOTH-SHIFT, ROUGH-SHIFT 2

V3 EXP. ROUGH-SHIFT 3

Table 3.9: Basic transitions in the Principles and Transitions (PT) formulation of Centering

3.5.2 A new set of transitions

As the previous section shows, the 3 underlying principles of CT result in at least 12 transitions;

12 transitions can be ranked in at least 12! ways (that is, more than 479,000,000 possibilities) as

discussed in section 2.2.4.2 of chapter 2. Obviously, an exhaustive exploration of this vast number of

possible rankings of basic transitions is impossible. Using principles instead of transitions, as argued

by Beaver (2003) and Kibble (2001), does simplify the CT framework significantly, but fails to express

possible combinations of the principles in the same utterance.

We believe that an interesting direction for future work within the transition-based versions of CT

is to investigate possible mergings of transitions using Tables 3.7 and 3.8. This might express the

combination of the underlying principles in the same utterance in a more complete way than in FC

and standard CT, avoiding the complications that the set of 12 transitions creates. In the remainder of

this section we sketch out one such possibility.

Our novel formulation of CT is calledPrinciples and Transitions(PT). In this framework, all

underlying principles are of equal importance and the basic Centering transitions in Table 3.7 are

merged into basic PT transitions according to the number of principles they violate.

The set of basic PT transitions is shown in Table 3.9. The first column of the table shows the

conventional name of the novel PT transition. The second column shows which basic Centering

transitions from Table 3.7 are conflated into the corresponding basic PT transition. The third column

reports the number of violated principles by the basic transitions. As we mentioned already, the basic

Centering transitions that violate the same number of principles are merged into the same basic PT

transition although they violate different principles.

Both FC and standard CT prioritiseCOHERENCEover SALIENCE which means that aRETAIN

transition is preferred over aSMOOTH-SHIFT although both transitions violate only one principle in

Table 3.7. In PT,RETAIN andSMOOTH-SHIFT belong to the same basic transition V1 because both

violate only one underlying principle (albeit a different one).

Moreover,RETAIN andEXP. RETAIN in FC and the standard version of CT are considered to be

the same transition althoughRETAIN violates only one underlying principle andEXP. RETAIN violates
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two. In PT,RETAIN belongs to the basic PT transition V1 which is different from the PT transition

V2, whereEXP. RETAIN is classified, becauseRETAIN violates only one underlying principle and

EXP. RETAIN violates two.

PT is a hybrid between the ideas in Kibble and Power (2000), FC and the standard formulation

of CT. As in Kibble and Power (2000) we do not define priorities between the underlying principles

of CT. Following FC and the standard formulation of CT, we translate the combination of principles

into transitions. Our table of basic transitions is more exhaustive than the ones used so far in the CT

literature. To simplify the framework, the basic transitions are conflated into basic PT transitions.

Then, a ranking is imposed into the PT transitions according to the total number of principles they

violate:

Rule 2 in PT

Transitions which violate less principles are preferred over transitions which violate more
principles:

V0>V1>V2>V3

There exist two ways of incorporating theESTABLISHMENTs in Table 3.8 with basic PT transitions.15

This gives rise to the extended PT transitions displayed in Table 3.10. In the upper section of the

Table, labelled after the scoring function PT-EST-1, the various cases ofESTABLISHMENT behave like

CONTINUEs or RETAINs. According to the second scoring function, namely PT-EST-2, anESTAB-

LISHMENT is considered to be a type ofSHIFT.

The scoring functions in Table 3.10 can be used in the definitions of the PT-based metric, the

evaluation method of which follows the preference order defined in PT’s version of R2:16

• PT-based metric of entity coherence (M.PT):

– scoring function:

Sum(V0), Sum(V1), Sum(V2), Sum(V3)

– evaluation method:

Sum(V0)>Sum(V1)>Sum(V2)>Sum(V3)

The evaluation method of M.PT works in the same way as the evaluation method of M.BFP in sec-

tion 3.4.1 with the exception that its input is not sums of standard CT transitions, but sums of PT

transitions extended withESTABLISHMENTs.
15Thus, the problem of whether aNOCB transition in Un−1 satisfiesCOHERENCEin Un is now treated as an open question.

This is motivated by the discussion ofESTABLISHMENT in Poesio et al. (2002).
16That is, we actually define two PT-based metrics, one for each way of incorporatingESTABLISHMENTSto the definition

of basic PT transitions. The translation of examples (3.1) and (3.2) into extended PT transitions and their scores for each
PT-based metric are shown in appendix A.
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PT-EST-1

PT transition Basic Centering transitions &ESTABLISHMENTs N of violated principles

V0 CONTINUE, ESTABLISHMENT 0

V1 EXP. CONTINUE, RETAIN, SMOOTH-SHIFT,

EXP. ESTABLISHMENT, RETAIN-ESTABLISHMENT 1

V2 EXP. RETAIN, EXP. SMOOTH-SHIFT, ROUGH-SHIFT

EXP. RETAIN-ESTABLISHMENT 2

V3 EXP. ROUGH-SHIFT 3

PT-EST-2

PT transition Basic Centering transitions &ESTABLISHMENTs N of violated principles

V0 CONTINUE 0

V1 EXP. CONTINUE, RETAIN, SMOOTH-SHIFT,

ESTABLISHMENT 1

V2 EXP. RETAIN, EXP. SMOOTH-SHIFT, ROUGH-SHIFT,

EXP. ESTABLISHMENT, RETAIN-ESTABLISHMENT 2

V3 EXP. ROUGH-SHIFT, EXP. RETAIN-ESTABLISHMENT 3

Table 3.10: Extending the transitions in the Principles and Transitions (PT) formulation of Centering

with ESTABLISHMENTs

3.6 The proliferation of CT-based metrics

This chapter addresses the question whether it is possible to use CT to define metrics that might prove

useful for the purposes of text structuring in NLG. Our conclusion is summarised in the following

statement:

Proliferation of CT-based Metrics

There existmany waysof using CT to define metrics of entity coherence for the purposes of

text structuring.

As we have shown in the previous section and in section 3.2.2, CT is open-ended enough for one to

propose new metrics which appear to be as plausible as some existing ones from a purely theoret-

ical point of view. Hence, a general methodology for identifying which metrics represent the most

promising candidates for text structuring is required, so that at least some of the possible metrics can

be compared empirically.

Although ultimately all these metrics need to be subjected to empirical verification, the exper-

iments reported in this thesis employ the eight metrics in Table 3.11 for reasons of practicality.17

17LS in Table 3.11 stands for preferring the structure with the lowest score in the evaluation method of the metric in
question. OT signifies that the metric employs an OT ranking of the sums of violations that the scoring function returns.
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Name Scoring Function Eval. method

M.NOCB Sum(NOCB) LS

M.CHEAP Sum(CHEAP∗) LS

M.MIL Sum(NOCB)+Sum(ROUGH-SHIFT) LS

M.SH Sum(NOCB)+Sum(COH∗) LS

M.KP Sum(NOCB)+Sum(COH∗)+Sum(CHEAP∗)+Sum(SAL∗) LS

M.SHOT1 Sum(NOCB), Sum(COH∗) OT

M.POT1 Sum(NOCB), Sum(COH∗), Sum(CHEAP∗), Sum(SAL∗) OT

M.BFP Sum(CONTINUE), Sum(RETAIN), Sum(SMOOTH-SHIFT), Sum(ROUGH-SHIFT) R2-OT

Table 3.11: The metrics used in our experiments

Priority was given to these metrics because their scoring functions are discussed in the existing CT

literature more extensively than novel metrics such as the ones emerging from the alternative POT

rankings (see section 3.2.2) and the extended PT transitions (see the previous section) which are in-

troduced in this chapter for the very first time. Despite limiting our empirical investigation to eight

metrics, this thesis considers more metrics of entity coherence than any previous work.

3.7 The second research question for text structuring

After having restricted the scope of the thesis to the metrics in Table 3.11, the question that we deal

with in the next four chapters of the thesis is the following:

Q2: Which metrics of entity coherence constitute the most promising candidates for text structuring?

The next chapter employs a psycholinguistic study on text acceptability as our initial investigation

of (Q2). Chapter 5 presents a novel corpus-based, search-oriented methodology as the main experi-

mental framework under which we attempt to resolve the competition of the metrics. Although this

methodology is general enough to be applied to any existing (or possible) CT-based metric, our ex-

periments investigate the performance of the eight metrics specified above. The results of our initial

corpus-based experiments are reported in chapter 6 and chapter 7. A modification of the metrics on

the basis of an additional constraint on entity coherence is introduced in chapter 8. An alternative

evaluation methodology which supplements the one in chapter 5 is discussed in chapter 9.

In a very general sense, trying to answer (Q2) is an effort similar to addressing the underspecifica-

tion of CT discussed in section 2.3.1 of chapter 2. Hence, this thesis builds upon Poesio et al. (2002)

in two ways. First, we identify and attempt to evaluate more scoring functions of entity coherence

The special OT-like evaluation method of M.BFP is named R2-OT.



76 Chapter 3. Defining metrics of entity coherence

than the ones employed by Poesio et al. (2002).18 Second, while the approach in Poesio et al. (2002)

does not consider the problem of choice, which is particularly important from an NLG viewpoint as

we discussed extensively in the previous chapter, our methodology in chapter 5 is specifically devised

for this purpose.

On the other hand, while Poesio et al. (2002) experiment with many different ways of specifying

the CT parameters, in our work these parameters arefixed according to the needs of text structuring

under the assumptions stated in chapter 2, as we discuss in chapter 6 and chapter 7 in more detail. Ar-

guably, each of the employed metrics can be tested against different specifications for CT parameters

such asutterance, realisation, etc. as well.19

18As we mentioned in section 2.3.2 of chapter 2 and in the beginning of this chapter, Poesio et al. (2002) employ the
scoring functions of M.NOCB and M.BFP (as well as M.CHEAP and a version of S.KP) in their experiments. We believe
that the other metrics in this chapter can also be seen as evaluating “claims” of CT, like the scoring functions employed by
Poesio et al. (2002).

19See section 6.6 of chapter 6 for a more specific suggestion.
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A preliminary study on text acceptability

In this chapter, we initiate our empirical work with a psycholinguistic study that aims at testing the dif-

ferent predictions of three metrics of entity coherence using acceptability judgements. We report the

problems we encountered in this study, comment on the cost of human-based evaluation and conclude

that an alternative methodology is desirable for deciding which metrics represent good candidates for

the purposes of text structuring, the results of which can be supplemented by subsequent human-based

evaluation on a smaller scale.

4.1 Introduction

The previous chapter motivates our main research question, namely to identify the CT-based metrics

of entity coherence which constitute the most promising solutions for text structuring among eight

preselected candidates. This chapter initiates our empirical work with a psycholinguistic study that

investigates the different predictions of three of these metrics using human acceptability judgements.

Like the rest of the experiments reported in this thesis, this study aims to identify promising metrics

before their actual implementation in a text structuring component. The following sections describe

the experimental design, the predictions and the results of this study.

4.2 Magnitude estimation

The experimental paradigm employed in this study isMagnitude Estimation(ME), a technique orig-

inating from psychophysics. In ME, the participants estimate the magnitude of physical stimuli by

assigning numerical values proportional to a reference stimulus which is called themodulus.

Bard et al. (1996) and Cowart (1997) show that linguistic judgements can be elicited in the same

way as judgements of sensory stimuli using ME. Following the standard ME procedure, the partic-

77
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ipants are first exposed to a linguistic stimulus that serves as the modulus to which they assign an

arbitrary number. Then, they are asked to express the acceptability that they perceive by assigning

numbers to a series of linguistic stimuli. Each stimulus is rated in proportion to the modulus, that is,

if the participant is presented with a stimulus that is perceived to be three times more acceptable than

the modulus she assigns three times the modulus number to it, etc.

Because ME provides gradient data, it is very appropriate for judgements which fall within a

continuum. These judgements are difficult to express in the informal scales usually employed in

traditional linguistic studies which appear to compress a very wide range of acceptability levels into

just a few imprecise categories of grammaticality.

Numerous recent studies such as Keller and Alexopoulou (2001) and Alexopoulou and Keller

(2003) show that ME provides fine-grained measurements of linguistic acceptability which are robust

enough to yield statistically significant results, while being replicable both within and across speakers.

In these experiments, ME is used to judge the acceptability of single sentences or short discourses

consisting of up to two sentences. The judgements shed light on the effects of various syntactic

phenomena which cannot be modelled using a binary notion of grammaticality.

Further to this, Pearson (2000) shows that ME can be used to estimate the acceptability of longer

texts that differ in their coherence. The text structures in Pearson (2000) were generated automati-

cally following a stochastic approach similar to the one in Mellish et al. (1998a). Intuitive measures

for “very high” and “very low” entity coherence, remotely related to CT, were used in the scoring

function, alongside rhetorical coherence and coherence based on fact types. The structures were re-

alised by hand and the participants were asked to judge the acceptability of the resulting texts using a

ME technique.

Our experiment is similar to the one in Pearson (2000) since we are interested in measuring the

acceptability of texts consisting of more than two sentences. In our experiment, entity coherence is

modelled in terms of three of the metrics that were presented in the previous chapter. The metrics

make different predictions with respect to the relative acceptability of the experimental items. The

experiment investigates which predictions are best validated by human judgements.

Although ME appears to be a very appropriate experimental paradigm for our purposes, design-

ing a single experiment which accounts for the different predictions of all eight metrics would be

extremely complicated if not practically impossible. For this reason this study employs only three of

them, namely M.NOCB, M.SHOT1 and M.SH. If the results are encouraging, then a series of similar

experiments can be motivated in order to compare the metrics with each other in a systematic way.
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4.3 Experimental conditions

Our experimental design uses the six textual variations in Figure 4.1 as the experimental conditions.

In utterance (a) of condition (4.1) two entities A and B (in this case the referents of the phrases “this

exhibit” and “an amphora”) are introduced in the discourse. Utterance (b) provides more information

about entity B, while utterance (c) also refers to B and evokes, among others, a third entity C (in

our case the referent of the phrase “type A”) which is subsequently mentioned together with entity

A in utterance (d). The discourse concludes with additional information about A in (e). The textual

variations in conditions (4.2) to (4.6) represent different orderings of utterances (b) to (e).

The table at the bottom end of the Figure shows the utterances withNOCB transitions and the vio-

lations ofCOHERENCE(COH∗) for each condition (COND). The experimental design is based on the

fact that M.NOCB, M.SHOT1 and M.SH make different predictions about the relative acceptability

of the texts according to the number ofNOCBs andCOHERENCEviolations in each condition.

4.3.1 Predictions

The experimental design is similar to the way Keller and Alexopoulou (2001) investigate whether

violations of syntactic constraints affect the relative acceptability of sentences belonging to different

conditions. In our set-up, one of the conditions is predicted to be more acceptable than the others

according to the way that the violations of entity coherence are combined to a metric. Since the

conditions in Figure 4.1 are ranked by the metrics in different ways, the aim of the study is to find out

which ranking is confirmed by the experimental data.

Following Keller and Alexopoulou (2001), we make the distinction betweenStrict Optimalityand

Relative Suboptimalitywith respect to the way that this ranking is defined. According to the Strict

Optimality Hypothesis (SOH), one condition will be preferred whereas the remaining conditions will

be equally suboptimal. The predictions of each metric under SOH are presented in Table 4.1.

As Table 4.1 shows, both M.NOCB and M.SHOT1 predict that the optimal condition will be

(4.1) because it has fewerNOCB transitions that the other conditions. M.SH uses the sum ofNOCB

transitions and violations ofCOHERENCEas the measure of incoherence in a structure. According

to M.SH the most acceptable condition will be (4.2), because this is the condition that returns the

lowest sum. As we have already mentioned, under SOH acceptability is viewed as a binary notion:

one optimal candidate is selected whilst all remaining conditions are equally suboptimal.

Table 4.2 shows the predictions of the metrics under the Relative Suboptimality Hypothesis (RSH).

Under RSH, the metrics make the same predictions as under SOH with respect to the condition that

is ranked best. Further to this, under RSH the metrics make additional predictions about the relative

acceptability of the suboptimal conditions.
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(4.1) (a) This exhibit is an amphora. (b) Amphoras have an ovoid body and two looped handles, reaching

from the shoulders up. (c) They were produced in two major variations: type A and the type with a

neck. (d) This exhibit is a type A amphora. (e) It comes from the archaic period.

(4.2) (a) This exhibit is an amphora. (b) Amphoras have an ovoid body and two looped handles, reaching

from the shoulders up. (c) They were produced in two major variations: type A and the type with a

neck. (e) This exhibit comes from the archaic period. (d) It is a type A amphora.

(4.3) (a) This exhibit is an amphora. (e) It comes from the archaic period. (b) Amphoras have an ovoid

body and two looped handles, reaching from the shoulders up. (c) They were produced in two major

variations: type A and the type with a neck. (d) This exhibit is a type A amphora.

(4.4) (a) This exhibit is an amphora. (c) Amphoras were produced in two major variations: type A and

the type with a neck. (d) This exhibit is a type A amphora. (e) It comes from the archaic period. (b)

Amphoras have an ovoid body and two looped handles, reaching from the shoulders up.

(4.5) (a) This exhibit is an amphora. (e) It comes from the archaic period. (c) Amphoras were produced

in two major variations: type A and the type with a neck. (b) They have an ovoid body and two

looped handles, reaching from the shoulders up. (d) This exhibit is a type A amphora.

(4.6) (a) This exhibit is an amphora. (c) Amphoras were produced in two major variations: type A and

the type with a neck. (d) This exhibit is a type A amphora. (b) Amphoras have an ovoid body and

two looped handles, reaching from the shoulders up. (e) This exhibit comes from the archaic period.

COND NOCB COH∗
(4.1) - d, e

(4.2) e -

(4.3) b d

(4.4) b d, e

(4.5) c, d -

(4.6) b, e d

Figure 4.1: Experimental conditions and their NOCB transitions and COHERENCEviolations

M.NOCB, M.SHOT1 M.SH

Rank COND NOCB COND NOCB+COH∗
1 (4.1) 0 (4.2) 1

2 (4.2), (4.3), (4.4), (4.5), (4.6) > 0 (4.1), (4.3), (4.4), (4.5), (4.6) > 1

Table 4.1: Rankings of conditions under the Strict Optimality Hypothesis for each metric
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M.NOCB M.SH

Rank COND NOCB COND NOCB+COH∗
1 (4.1) 0 (4.2) 1

2 (4.2), (4.3), (4.4) 1 (4.1), (4.3), (4.5) 2

3 (4.5), (4.6) 2 (4.4), (4.6) 3

M.SHOT1

Rank COND NOCB COH∗
1 (4.1) 0 2

2 (4.2) 1 0

3 (4.3) 1 1

4 (4.4) 1 2

5 (4.5) 2 0

6 (4.6) 2 1

Table 4.2: Rankings of conditions under the Relative Suboptimality Hypothesis for each metric

More specifically, M.NOCB under RSH predicts that conditions (4.2), (4.3) and (4.4) will be

equally acceptable when compared to each other, albeit more acceptable than (4.5) and (4.6). This

is because all conditions in the second rank have fewerNOCB transitions than the conditions that are

ranked third. Conversely, M.SH predicts that the group of conditions that will be ranked second will

consist of (4.1), (4.3) and (4.5), whereas the conditions with the highest sum ofNOCBs and violations

of COHERENCEwill be ranked last.

Finally, the violations ofCOHERENCEplay a crucial role in distinguishing between M.NOCB and

M.SHOT1 under RSH. Conditions such as (4.2), (4.3) and (4.4) have the same number ofNOCBs and

are considered equivalent by M.NOCB. Since these conditions differ on the violations ofCOHER-

ENCE, M.SHOT ranks them relatively to each other in accordance with these violations. The same

holds for conditions (4.5) and (4.6).

4.3.2 Testing for significance

Both under SOH and RSH we expect either (4.1) or (4.2) to be the most acceptable condition on

average. If this is the case, a planned comparison between the most acceptable condition and the one

with the second highest average will be employed. If the test shows that the difference is significant,

then the experiment will provide evidence in favour of the metric(s) which makes the corresponding

prediction under SOH.



82 Chapter 4. A preliminary study on text acceptability

More specifically, if (4.1) is most acceptable and significantly different than the condition with

the second average acceptability, then the experiment provides evidence in favour of M.NOCB and

M.SHOT1 under SOH. If (4.2) is most acceptable and significantly different than the second condition

on average, then we have evidence in favour of M.SH under SOH.

Investigating RSH with standard tests of significance might require a large number of additional

pairwise comparisons, most of which cannot be planned in advance. For this reason, the predictions

under RSH are tested using the methodology of Keller and Alexopoulou (2001).

First, the average judgements are converted to ranks, ignoring differences that are smaller that one

standard error. More specifically, Keller and Alexopoulou (2001, p.333) adopt the following criterion:

two meansm1 andm2, for which m1 > m2 holds, are considered to be of different rank ifboth m2

is lower thanm1− se1 and m1 is higher thanm2 + se2, wherese1 and se2 are the standard errors

associated withm1 andm2 respectively. If either of these tests does not hold,m2 is assigned the same

rank asm1 in the acceptability order. Then, Keller and Alexopoulou (2001) compare the resulting

ranking with the grammaticality order predicted under RSH using standard correlation statistics. The

degree of correlation between the theoretical and the experimental orders indicates how well the RSH

model fits the experimental data.

4.4 Method

4.4.1 Participants

63 native speakers of English participated in the experiment. They were recruited through the Lan-

guage Experiments Portal1 and by postings to mailing lists of various academic institutions within

and outside the University of Edinburgh. Participation was voluntary and unpaid.

Six participants were automatically excluded by the experimental software used in this study either

because they did not complete the experiment, or because they did not provide a valid email address

(see section 4.4.3). Additionally, the data of 11 out of the 57 remaining participants contained many

outliers and extreme values (see section 4.5.1 for more details). This left judgements from 46 partic-

ipants for analysis. Of these, 26 were female and 20 male; 6 were left-handed and 40 right-handed.

The age of the participants ranged from 18 to 49 years (mean age: 25.4 years).

4.4.2 Materials

As we shall explain in the next section in more detail, the experiment was conducted in three phases:

a training phase, a practice phase and the actual experiment. A different set of materials was prepared

1http://www.language-experiments.org/
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for each experimental phase.

The role of the training materials is to familiarise subjects with the magnitude estimation task by

eliciting judgements on line length. A standard set of four horizontal lines used previously in other

ME experiments were used for this task.

The linguistic materials for the next two phases were prepared by the author using information

derived from the Getty museum webpage and the sample descriptions of archaeological artefacts

written for the purposes of the MPIRO project.2

The practice phase familiarises the participants with applying magnitude estimation to linguistic

stimuli and is not meant to be taken into account in the analysis. The materials for this phase consisted

of three texts and a modulus that were distinct from, but representative of, the materials in the main

experiment.

Six variations of 12 texts corresponding to the six experimental conditions, i.e. 72 lexicalisations

in total, 12 fillers and a second modulus were prepared for the main experiment. Pronominalisation

was controlled according to the algorithm in O’Donnell et al. (1998).3 The length of the 12 lexicalisa-

tions in condition (4.1) ranged from 47 to 70 words (mean length: 58 words). In all cases, condition

(4.1) consisted of five utterances evoking and subsequently referring to three entities A, B and C ac-

cording to the pattern presented in section 4.3. Appropriate reorderings of the utterances in condition

(4.1) gave rise to the lexicalisations in the other five conditions. Two native speakers of English were

asked to check all lexicalisations for disfluencies and language errors.4

The fillers are items which do not belong to the experimental conditions and are not taken into

account in the analysis. They are presented together with the experimental items in random order

and aim at preventing any bias in judgements caused by the participants being able to recognise the

experimental conditions.

The standard ME methodology requires the modulus to appear somewhere “in the middle of the

acceptability range”. A lexicalisation belonging to condition (4.4) was chosen as the modulus in

the main experimental phase because we expected that the mean acceptability of (4.4) will appear

somewhere between the highest and the lowest average.5

After the lexicalisations had been corrected according to the comments of the native speakers, the

texts were grouped randomly in six pairs. Then, a Latin square design was used to form 6 blocks

2All materials appear online at http://www.iccs.informatics.ed.ac.uk/˜nikiforo/thesis-online/ME/ME.items.html
3As we mentioned in section 2.4.2 of chapter 2, we interpret this algorithm as pronominalising the CB(Un) if it is the

same as the CP(Un−1).
4Many thanks to Amy Isard and Tracy Markusic for undertaking this task.
5Looking at Table 4.2 with hindsight leads us to the conclusion that a better choice for the modulus might have been a

lexicalisation belonging to condition (4.3), since (4.3) is always predicted to be “in the middle” of the range by all metrics
under RSH. By contrast, M.SH under RSH ranks (4.4) and (4.6) as last. Note that the predictions under SOH shown in
Table 4.1 are not helpful for identifying which condition is expected to appear in the middle of the range. See section 4.5.4
for more discussion on the difficulty of choosing an appropriate modulus.
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(test sets) in order to make sure that each participant is not going to be presented with more than

one lexicalisation for each text. Each block consisted of 2 lexicalisations per condition, that is, 12

experimental items, and the 12 fillers.

4.4.3 Procedure

The experiment was conducted remotely over the Internet using WebExp, an interactive software

package for administering web-based psychological experiments (Keller et al. 1998).6 Although a

web-based study is likely to attract rapidly a large number of participants, the experimenter exercises

less control over the conditions under which the participants undertake the experiment compared

to conventional laboratory experiments. WebExp is designed to ensure the authenticity of web-based

data by automatically eliminating participants whose identity cannot be verified, who participate more

than once, or who respond either too quickly or too slowly. As Keller and Alexopoulou (2001) show,

web-based data obtained via WebExp can be as reliable as laboratory data obtained under a similar

experimental design as the experiment conducted through WebExp.

Each participant accessed the experiment using her browser. First, the participant had to read a

set of instructions.7 The instructions started by explaining the concept of numerical magnitude esti-

mation of line length. An example reference line, a longer and a shorter line as well as corresponding

numerical estimates were provided to illustrate the concept of proportionality.

Then, the participant was told that the acceptability of texts can be judged in the same way as

line length. She was instructed that during the experiment she will be asked to give numbers to texts

according to how well each text organises the information it consists of. An example of a reference

text and a text to be judged for its acceptability in proportion to the reference were provided together

with examples of numerical estimates.

At this point it was stressed that there are no “correct” answers and that the participant should

base her judgements on her first impression after having read the text carefully and having compared

it with the modulus. She was free to use any number she liked, including decimals, except for zero

and negative numbers. She was urged to use a wide range of numbers and to distinguish as many

degrees of acceptability as possible.

After reading the instructions, the participant clicked on the “Start” button and was presented with

a short demographic questionnaire which included name, email address, age, sex, handedness, occu-

pation or subject of study, and first language region. After filling in the questionnaire, she had to go

through the training phase where she was first presented with a modulus line which had to be assigned

6Many thanks to Frank Keller for practical advice on running WebExp.
7The full text of the instructions appears in appendix B and is an adaptation of the instructions normally used in WebExp-

based experiments to our purposes.
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with an arbitrary number. The modulus remained on the upper half of her screen while she was subse-

quently presented with another line centered in her browser that had to be judged in comparison to the

modulus. After the judgement was given, the current line disappeared from the screen and a new item

to be judged was presented. In total, the participant had to provide judgements for all four items in the

training set presented one after the other in random order, with a new randomisation being generated

each time.

After the training phase with the lines, the participant entered the practice phase in which she was

presented with the modulus text and the three texts to be judged in comparison to it. The presentation

and response procedure was the same as in the training phase, with texts being displayed instead of

lines. As in the training phase, the participant first judged the modulus item which remained on the

screen to facilitate the comparison with the next randomly presented text.

After the training phase and the practice phase, the participant entered the actual experiment. At

this stage, she was randomly assigned to one of the six blocks of the experimental design. As in the

practice phase, the participant first judged the modulus text and then saw the 24 test items of her block

in random order, with a new randomisation generated each time. As we explained in the previous

section, the modulus and the experimental items in the main phase did not overlap with the ones used

in the practice phase.

4.5 Results

The data from the main phase of the experiment were normalised by dividing each numerical judge-

ment by the modulus value that the participant assigned to the reference text. This operation creates a

common scale for all participants. Then, the data were transformed to their decadic logarithm, which

is a standard practice for ME data. All analyses were conducted on the normalised, log-transformed

judgements.

4.5.1 Outliers

The initial exploration of the 684 judgements from the 57 authenticated participants revealed a large

number of outliers. This points to one of the problems related to web-based studies, namely the limited

control over the experimental situation, which is, however, counterbalanced by the increased number

of participants compared to the number of participants recruited in standard laboratory experiments.

The upper part of Figure 4.2 shows the boxplots of the six conditions using the complete set of data

including the outliers and extreme values as computed by the SPSS statistical software.8

8The lower boundary of each box in the boxplot represents the 25th percentile and the upper boundary represents the
75th percentile so that fifty percent of the cases have values within the box. The length of the box corresponds to the
interquartile range, that is, the difference between the 75th and the 25th percentiles. The horizontal line inside each box
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Figure 4.2: Boxplots of conditions with and without outliers
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COND mean SE

(4.1) 356 160

(4.5) 183 163

(4.3) 51 169

(4.6) 21 194

(4.2) -8 176

(4.4) -249 193

Table 4.3: Mean acceptability and standard error (SE) for the experimental conditions

The acceptability judgements of 11 participants were not taken into account because their data

mostly consisted of outliers and extreme values. This resulted in 552 datapoints from 46 participants.

However, 18 of these datapoints were outliers as well. Because each condition was lexicalised twice

for each participant, it was possible to disregard these values and replace them with the value from

the other lexicalisation in the same condition.9 The boxplot of the six conditions using the 534 valid

datapoints, cleared from outliers, is displayed in the lower part of Figure 4.2.

4.5.2 Results for strict optimality

Table 4.3 reports the average acceptability and the standard error (SE) for each condition.10 As the

table shows, (4.1) is indeed the most acceptable condition on average. The condition with the second

highest mean is (4.5). Condition (4.2) is the second least acceptable, whilst (4.4) is the condition with

the lowest mean.

However, the omnibus one-way ANOVA showed no main effect for COND (by subjects:

F(5,225)=1.634, p=0.152; by items: F(5,55)=2.250, p=0.062). Hence, this analysis fails to find any

significant difference between the six conditions and cannot justify rejecting the null hypothesis.11

represents the median of the corresponding condition. The boxplot includes two categories of cases with outlying values.
Cases that are more than 3 box-lengths from the upper or lower edge of box are calledextreme valuesand are denoted with
an asterisk. Cases with values between 1.5 and 3 box-lengths from the upper or lower edge of the box are calledoutliersand
are designated with a circle. The largest and smallest observed values which are not outliers are also shown with lines drawn
from the ends of the box to these values (whiskers). Outliers and extreme values are labelled according to the conventional
number assigned by WebExp to the participant who provided the values.

9We acknowledge, however, that excluding more than 1/5 of the datapoints from the final analysis compromises the
generality of any significant results that might arise from this study.

10The numbers in Table 4.3 are in the log-transformed scale, multiplied by 10,000. That is, the mean value 356 cor-
responds to the value 0.0356 that results from the normalisation procedure. The minus sign indicates that on average the
condition was found to be less acceptable than the modulus.

11Note that including the outliers in the analysis retains (4.1) as the condition with the highest average and (4.4) as the
condition with the lowest average. However, the omnibus ANOVA is again not significant (by subjects: F(5,280)=1.616,
p=0.156; by items F(5,55)=1.630, p=0.167).
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merged COND COND mean SE

(4.1) 356 160

A3 (4.5)+(4.6) 102 136

A2 (4.2)+(4.3)+(4.4) -68 118

Table 4.4: Mean acceptability and standard error (SE) for merged conditions

Faced with this inconvenient result, our next step was to try different ways of grouping the condi-

tions together. The most obvious way of doing so was to combine the values from the conditions of

the original experimental design into three new conditions according to the predictions of M.NOCB.

Table 4.4 shows the means and standard errors of acceptability of the new conditions that this merging

results in.

This time the omnibus one-way ANOVA was significant at the 0.05 level (by subjects:

F(2,90)=3.480, p=0.035; by items: F(2,22)=3.884, p=0.036). A set of pairwise comparisons were

then employed to see whether the predictions of M.NOCB are indeed verified. Note that according to

the Bonferroni method the threshold for significance for three pairwise comparisons is reduced from

0.05 to 0.05/3=0.017.

Crucially for M.NOCB and M.SHOT1 under SOH, the planned comparison between (4.1) and

A3, that is, the merged condition with the second highest average which contains the combined scores

of (4.5) and (4.6), failed to reach significance (by subjects: F(1,45)=1.859, p=0.179; F(1,11)=2.180,

p=0.168). The difference between A3 and A2 was also not significant (by subjects: F(1,45)=1.648,

p=0.206; by items: F(1,11)=2.374, p=0.152). The only significant difference, in the by subjects

analysis, is the one between (4.1) and A2, which is not entirely surprising since A2 contains (4.2) and

(4.4), the two least acceptable original conditions (by subjects: F(1,45)=6.838, p=0.012; by items:

F(1,11)=6.705, p=0.025, which is higher than the Bonferroni threshold of p=0.017).

The latter result might have been useful, were A2 the condition with the second highest average.

However, since A2 is the least acceptable merged condition, this difference does not seem to support

any of our initial predictions.

In summary, although (4.1) is the condition with the highest average in all analyses, it does not

appear to be significantly different from the condition with the second highest average, contrary to

what M.NOCB and M.SHOT1 predict under SOH.

4.5.3 Computing the acceptability order

Computing the acceptability order according to the methodology in Keller and Alexopoulou (2001)

was seen originally as a way to investigate RSH without having to resort to a large number of pairwise
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COND mean SE mean+SE mean−SE m2 < m1−se1 m1 > m2 +se2

(4.1) 356 160 n.a.

196

346 yes yes

(4.5) 183 163

20

220 no no

(4.3) 51 169

-118

215 no no

(4.6) 21 194

-173

168 no no

(4.2) -8 176

-184

-56 yes yes

(4.4) -249 193

Table 4.5: Determining the acceptability order of the experimental conditions

comparisons.

Obviously, RSH can only be examined provided that there is some evidence that SOH (as modelled

by at least one of the metrics) holds. This did not emerge from our analysis. However, instead of

abandoning the idea of computing the acceptability order altogether, we did follow the methodology

of Keller and Alexopoulou (2001) in order to see whether this could reveal any tendencies that might

be interesting but not significant enough to survive standard statistical tests.

The second and third columns of Table 4.5 repeat the means and standard errors of the six ex-

perimental conditions as in Table 4.3. The next two columns show the two thresholds that Keller

and Alexopoulou (2001) use for the conversion of average values to ranks. As we mentioned in sec-

tion 4.3.2, the first threshold for two subsequent meansm1 andm2 results from addingm2 with se2.

The second threshold is the result from the subtraction ofse1 from m1. The last two columns of Ta-

ble 4.5 show whether the testsm2 < m1−se1 andm1 > m2 +se2 hold. The two cases where the tests

do indeed hold are highlighted in bold font.

According to Table 4.5, the acceptability order of the conditions in our experiment is:12

• Acceptability order of ME conditions:

12The sign>> signifies difference in rank, i.e. (4.1) is more highly ranked than (4.5) which is of equivalent rank as (4.3),
(4.6) and (4.2), etc.
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(4.1)>> (4.5), (4.3), (4.6), (4.2)>> (4.4)

Although this order does show a tendency for (4.1) to be preferred, the differences between the mean

of (4.1) and the boundary set by the mean and the SE of (4.5) and vice versa are very small. In

any case, it is difficult to take the acceptability order as computed here as a clear trend in favour of

M.NOCB and M.SHOT1, because this order shows a strong tendency for (4.4) to be dispreferred,

which is not predicted by any of our experimental hypotheses.13

4.5.4 Discussion

In conclusion, an interesting, yet not necessarily generalisable, result of this experiment is a dispref-

erence for condition (4.4) which was not predicted by any of the metrics. A less clear trend for (4.1)

to be preferred was also observed. Despite this trend, it is difficult for us to claim that the experiment

answers the research questions that motivated it.

We believe that disprefering (4.4) does not have to do with entity coherence, at least in the way that

this notion is modelled by the metrics employed in this study. Note that it is not possible to explain

the results using any of the other metrics from the previous chapter either, because the way that these

metrics differ with respect to the conditions in Figure 4.1 is not as systematic as for the three metrics

employed in this experiment.

Trying to determine why (4.4) is dispreferred, we considered additional features that might affect

the acceptability of this condition such as “mentioning the shape of the amphora” too late as well as

similar characteristics of the other lexicalisations of utterance (b) in Figure 4.1. However, it appears

that condition (4.6) which resembles (4.4) in this respect is not penalised as severely as (4.4).

Another implication arises from the fact that the participants identified the lexicalisations in con-

dition (4.4) as less acceptable than the experimental modulus, although the text used as the modulus

was thought to correspond to condition (4.4) as well according to our design. Outliers excluded, our

dataset contains 90 judgements for the 12 lexicalisations in condition (4.4) most of which are much

lower than the score assigned to the modulus, thus giving rise to the negative mean in Table 4.3. Fig-

ure 4.3 shows the modulus in comparison with the lexicalisation of condition (4.4) from Figure 4.1.

Subsequent informal interviews with some participants showed that they considered the modu-

lus as “more interesting” than the experimental item in Figure 4.3. Although the participants were

specifically instructed to give numbers to each text that “reflect your judgement on the way that the

text organises the information it consists of” and not according to some other property, practically

13M.SH under RSH does predict that (4.4), together with (4.6), will be the least acceptable conditions. However, it also
predicts that (4.2) will be significantly more acceptable than all other conditions including (4.4) which does not hold as we
already showed.
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Modulus:

This statue was made by Polyclitus. Polyclitus is one of the most important ancient sculptors, together

with Phidias and Praxiteles. This statue is wider and better built than the ones of Phidias. It comes from

around 440 BC. Polyclitus expresses the spirituality and the anthropocentric attitude of the classical

world.

Lexicalisation in (4.4):

This exhibit is an amphora. Amphoras were produced in two major variations: type A and the type with

a neck. This exhibit is a type A amphora. It comes from the archaic period. Amphoras have an ovoid

body and two looped handles, reaching from the shoulders up.

Figure 4.3: Experimental modulus and lexicalisation in condition (4.4)

it proves that it is very difficult to dissociate unpredictable aspects such as “interestingness” from

acceptability judgements.

Although controlling for confounds like this is very hard in any experimental design, this finding

brings forward an important point which is specific to ME. Choosing the wrong modulus, as appears

to have happened in our experimental set-up, might turn out to be particularly problematic. However,

as we mentioned earlier, it is difficult to tell in advance whether an item is an appropriate modulus or

not.

4.6 The cost of human-based evaluation

As we mentioned in the beginning of this chapter, because it is practically impossible to come up

with an experimental design which accounts for the predictions of all eight candidate metrics at the

same time, a systematic way to compare the metrics using psycholinguistic methods before the actual

implementation of the text structuring component is to design a series of supplementary perceptual

experiments. Designing and preparing the materials for this set of experiments requires a very sub-

stantial amount of effort, even if one ignores problems like the ones discussed in this chapter which

might render the whole attempt almost fruitless at the end.

On the other hand, the usefulness of psycholinguistic methods is undeniable, thus it is desirable

to combine them with the demands of NLG. This general approach has been already followed by

Cheng (2002), Rambow et al. (2001) and Bangalore et al. (2000), among others, who validate their

quantitative approaches with additional evaluation based on human judgements of quality and under-

standability. However, to the best of our understanding, Rambow et al. (2001) and Bangalore et al.

(2000) evaluate sentence planning choices rather than longer texts, and we feel justified to believe that

eliciting human judgements for this task might be easier than evaluating the output of a text structuring
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system.

On the other hand, while the study in Cheng (2002) takes place on a very small scale (only 10

participants), to the best of our knowledge, the only recent large-scale attempt to evaluate the output

of a text structuring component using acceptability judgements, is represented by Pearson (2000),

which in turn shows that EM experiments on text acceptabilityare possible. Note, however, that the

items that Pearson (2000) used were assigned with extreme values for “high” and “low” coherence by

the scoring function of its genetic algorithm. Thus, eliciting judgements that differ significantly for

these items might also have been easier than for items much closer in the acceptability range.

Instead of following the experimental design sketched out in this chapter, one could implement

each different metric of entity coherence for the purposes of text structuring and then use their out-

puts in a series of perceptual experiments now aiming at deciding which metric generates the best

structures. However, this kind of evaluation is especially demanding and time consuming as well: For

instance, Lester and Porter (1997) report a seven year effort to evaluate a system that generates expla-

nations from large and semantically rich databases. Consequently, it would be desirable to minimise

the effort by finding another way to decide in advance which metrics represent good candidates for

the purposes of text structuring and restrict the implementation and the user-based evaluation only to

(some of) these candidates.

The next chapter presents a corpus-based, search-oriented methodology which adheres to the aim

of finding out which metrics of entity coherence represent more suitable candidates for text structuring

prior to the actual generation of a text structure. It is then these metrics that are best to implement

and evaluate using human judgements. Because, as this chapter has shown, addressing this point

through a large-scale psycholinguistic study would be especially demanding, we present the corpus-

based evaluation as a sensible shortcut. In this sense, the corpus-based evaluation can be seen as a

test-bench that provides a subsequent human-based evaluation with fewer hypotheses to test.



Chapter 5

Corpus-based evaluation: Methodology

In this chapter, we discuss the basic methodological issues of our corpus-based, search-oriented eval-

uation of different metrics of entity coherence and describe the main features ofSEEC, the system that

was implemented to carry out our experiments. We show how each corpus instance is used as the

Basis for Comparisonin a search-oriented evaluation which calculates theclassification rateof each

metric and compares their performance. We conclude the chapter with a discussion of our solution to

the factorial complexity of the operation that this search entails.

5.1 Motivation

As we discussed in chapter 2, most of the existing corpus-based studies of CT treat eachNOCB tran-

sition as an absolute measure of incoherence and evaluate the preferences of R2 using the relative

frequency of the standard CT transitions. However, this method of evaluation is insufficient, at least

from an NLG point of view, because it does not address the problem of choice.

Moreover, in chapter 3, we showed that the fundamental notions of CT can be used to define a

very wide range of metrics of entity coherence. Therefore, an adequate corpus-based evaluation of CT

should not be restricted simply to the preferences of C1 or R2 but should try to experiment with many

theoretically motivated metrics. In the previous chapter, we discussed the problems that emerged from

a study on human perception and concluded that an alternative methodology is desirable for deciding

which metrics represent good candidates for the purposes of text structuring.

In this chapter, we discuss how our corpus-based, search-oriented evaluation operates on a repre-

sentation called theBasis for Comparisonin order to compute aclassification ratefor each metric.

This rate is used to compare the metrics to each other. Compared to previous ways of evaluating

versions of CT using corpora, our approach is the first one that considers the problem of choice. Note

that, as we mentioned in section 3.7 of chapter 3, the methodology described in this chapter is general
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enough to apply to any metric that might emerge from CT’s proliferation of possible metrics. How-

ever, the experimental studies reported in subsequent chapters of the thesis employ only eight of these

metrics for practical reasons.

5.2 Issues in corpus-based evaluation

According to Reiter and Dale (2000, p.80), both the genre of interest and the particular domain of

application impose constraints on the kind of text structures that it is appropriate to generate. Hence,

GNOME-LAB and MPIRO-PROP, the corpora that we use in the studies reported in subsequent chap-

ters of the thesis, are chosen as representatives of the text genre and a particular application domain

respectively.

GNOME-LAB, which is used in our main corpus study in chapter 6, is a subset of the collection

of texts in the museum section of the GNOME corpus which is made up of texts published on official

webpages and books about museum collections (Poesio 2000). This subset consists of all texts in the

museum section that are recognised as museum labels.1

Subsequent evaluation within the context of a specific application makes use of MPIRO-PROP

which consists of sets of coherent sequences of propositions instead of texts. The propositions were

derived from the database of the MPIRO system and manually assigned an order to reflect what a

domain expert considered to be the most natural ordering of the corresponding sentences in the texts

to be generated (Dimitromanolaki and Androutsopoulos 2003).

5.2.1 The assumption of the gold standard

Reiter and Sripada (2002) notice an increasing interest in using corpora of human-authored texts in

NLG, especially for knowledge acquisition (e.g. Barzilay and McKeown 2001; Duboue and McK-

eown 2001; Hardt and Rambow 2001). Most of the papers reviewed by Reiter and Sripada (2002)

assume that an approximate evaluation for a system is to compare its output to human texts from

the corpus. This is in turn based on the underlying assumption that NLG systems should attempt to

generate corpus texts, in other words that corpus texts are agold standardfor NLG.

A clear manifestation of this approach is described by Bangalore et al. (2000) who define several

intrinsic metrics for quantitative evaluation of their single-sentence realisation module using different

ways of calculating the string edit distance between the surface output of their system and the reference

corpus string or substrings derived by the dependency tree of the reference string. Similarly, Cheng

and Mellish (2000a) and Cheng (2002, Chapter 8) use corpus texts to evaluate the output of a genetic

1The museum section of the GNOME corpus includes texts from other genres which have not been taken into account
in our study (see section 6.2.1 of chapter 6 for more details).
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algorithm which models the interaction between aggregation and text structuring in the ILEX domain.

Although the aim of our corpus-based study is not to evaluate the output of a system, but to identify

promising metrics before the actual implementation of the text structuring component takes place, the

assumption of the gold standard which underlies existing corpus-based evaluations is shared by our

approach to a great extent.

Reiter and Sripada (2002) draw from their own experience in using corpora as gold standards to

question the underlying assumption that an NLG system should produce texts similar to the corpus

texts for two main reasons:

1. Human authors make mistakes, especially when they are writing hastily. NLG systems should

not imitate these mistakes.

2. There are substantial variations between individual writers which reduces the effectiveness of

corpus-based learning.

Note that the points brought forward by Reiter and Sripada (2002) do not have to do with the coher-

ence of the texts per se, but raise general issues on the quality and use of corpora. In general, we agree

with Reiter and Sripada (2002) that for the purposes of our evaluation a smaller corpus of high-quality

texts would be more useful than a larger corpus of problematic texts. Further to this, we have reasons

to believe that the quality of our corpora has not been severely compromised by the circumstances

of authoring. This is because our corpora are either publicly available texts targeting a wide audi-

ence (GNOME-LAB) or carefully considered text structures resulting from close consultation with a

domain expert (MPIRO-PROP). Therefore, the writers are expected to have paid enough attention in

order to avoid sloppiness during authoring, although it is impossible to ensure that the corpora are

completely flawless.

Since the texts in GNOME-LAB are written by multiple individuals, some variation between them

is unavoidable. Nevertheless, this is a rather desirable property in our opinion, if one wants to avoid

overfitting the data. Crucially, there is no way to predict in advance the extent to which the expected

variation affects the performance of the metrics of entity coherence in the evaluation task. For this

reason, it is desirable to use texts from different authors in order to see whether a metric does indeed

reflect general preferences for entity coherence shared by different writers.

Taking an application-specific corpus into account makes it possible to identify which constraints

on text structure from the genre of interest apply to a real application such as MPIRO. Since MPIRO-

PROP is authored by only one domain expert, the question arises whether the results from MPIRO-

PROP are due to an idiosyncratic behaviour of this expert or whether they express more general

strategies for ordering the data from the particular application. In order to address this question,
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additional orderings from multiple experts are gathered and compared to the orderings of the expert

consulted by Dimitromanolaki and Androutsopoulos (2003) in a general way in chapter 9.

As Gaizauskas (1998) notices, evaluation efforts in text generation (and fields closely related to it

such as dialogue systems and speech synthesis) have to face the possibility that there exist more than

one good output. Although we are aware of the problems related to the assumption that a corpus text

is “the best possible text”, the purpose of our corpus-based evaluation is to estimate the performance

of each metric across different texts in an attempt to overcome any implications caused by potential

mistakes, the variation between texts and the possibility of many good outputs. In this way, we believe

that we manage to account for these problems to a satisfactory extent.

As we explained at the end of the previous chapter, the main motivation behind our approach is

to avoid time-consuming evaluation of many generated outputs by restricting human evaluation to a

subset of the theoreticallyand empirically motivated metrics. In this sense, we agree with Reiter and

Sripada (2002) that the results of a corpus-based evaluation should be treated as hypotheses which

need to be integrated with other types of evaluation. Such a subsidiary evaluation which supplements

the main methodology of the current chapter is presented in chapter 9.

5.3 The Basis for Comparison

As we discussed in chapter 2, the representation that CT operates on is the CF list. In a standard

CT analysis, the surface utterances in a text are translated into a corresponding sequence of CF lists.

Since our metrics are defined in terms of CT, for their corpus-based evaluation to take place, each text

in our corpora needs to be represented as a sequence of CF lists in a similar way. This is possible not

only for GNOME-LAB, our main corpus, which consists of human texts, but also for MPIRO-PROP,

our supplementary corpus, which consists of coherent sequences of propositions instead of texts. In

order to be able to use the same basic terminology irrespective of the identity of our corpora, will use

the termcorpus instancesto refer to what our corpora consist of, which is either texts or coherent

sequences of propositions.

As we mentioned already, each corpus instance in GNOME-LAB corresponds to an annotated

text. The translation of the corpus instance as a sequence of CF lists gives rise to a representation that

is called theBasis for Comparison(BfC). The unordered set of CF lists that the BfC consists of is

called thesemantic contentof the BfC.

To explain this terminology with an example, let us turn our attention to the texttorc1 in (5.1),

one of the shortest corpus instances in GNOME-LAB. Following the existing annotation of the corpus,

each utterance in (5.1) is indexed with its unit-id (e.g. u210 is the unit-id for the first utterance):

(5.1) torc1 corpus instance:
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u210: 144 (top left) is a torc.

u212: Its present arrangement, twisted into three rings, may be a modern alteration;

u214: it should probably be a single ring, worn around the neck.

u216: The terminals are in the form of goats’ heads.

The representation of the utterances in (5.1) as a sequence of CF lists is shown in (5.2):2

(5.2) BfC for torc1 :

u210: CF(de374, de375)

u212: CF(de376, de374, de377)

u214: CF(de374, de379)

u216: CF(de380, de381, de382)

The sequence of CF lists in (5.2) is the BfC for (5.1). The unordered set of CF lists in (5.2) is the

semantic content of (5.2).

For MPIRO-PROP, the term corpus instance does not refer to a sequence of utterances but to a

sequence of propositions. Each BfC in MPIRO-PROP corresponds to the translation of a sequence of

propositions as a sequence of CF lists.3 The semantic content is again the unordered set of CF lists

that the BfC consists of.

5.4 Exploring the search space

Given a corpus instance of attested coherence and a method for computing the corresponding BfC,

one can use a metric of entity coherence to compare the properties of the BfC with the properties of

alternative ways of structuring its semantic content. As we discussed in section 2.5.4 of chapter 2,

the idea that underlies this operation is that certain properties of the BfC such as the sums of CT

transitions can be thought of as expressing apreferencefor entity coherence only if it is possible to

structure the semantic content in ways that deviate from the observations from the BfC. In order to be

able to estimate this deviation empirically, first one needs to define a metric of entity coherence that

2Since each text in the GNOME corpus has already been annotated for information related to its entity coherence we
draw on the methods of Poesio et al. (2002) for the translation of the utterances in (5.1) into CF lists. According to this,
the entities that the NPs refer to are denoted by the prefixde and a number. For example,de374 in the CF list of unit
u210 corresponds to the entity referred to by the NP “144” in (5.1). Section 6.3 of chapter 6 provides more details on the
translation of the corpus instances in GNOME-LAB into BfCs.

3The main aspects of this procedure have already been introduced in chapter 2. Section 7.3 of chapter 7 provides
additional details.
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computes such a property from the BfC. Then, a search-oriented experimental methodology is needed

to specify the extent to which this metric distinguishes the BfC from its alternatives.

TheSystem for Evaluating Entity Coherence(SEEC) is a program that implements the main stage

of our corpus-based, search-oriented experimental methodology. In this section, we discuss howSEEC

uses a metric of entity coherence to compare the BfC with alternative ways of structuring the same

semantic content. Then, we show how the output ofSEEC can be used to compute a performance

measure for the metric and how this measure can be used in order to compare many metrics on the

basis of their performance across many BfCs.

5.4.1 Comparing permutations using SEEC

In this section, we describe howSEEC uses a metric of entity coherence to compare a BfC with

alternative ways of ordering its semantic content by navigating through a large search space of possible

structures. Figure 5.1 shows the algorithm thatSEECuses to calculate its outputs. The inputs toSEEC

are:

a) a BfC B

b) the semantic content of B, SCB

c) a metric M

SEECreturns three outputs which correspond to the number of permutations of SCB that scoreBetter,

EqualandWorsethan B according to M in the explored search space. The outputs are held as the final

values of the variablesNBetter, NEqual andNWorse respectively.

The output variables are originally set to 0. LetSb be the score that M assigns to B. In each

iteration,SEECcreates an ordering of the CF lists that constitute SCB. A sequence of the CF lists as

the result of thepermute operation is called apermutation.4 Assuming that the sequence of CF lists

in (5.2) is B, the sequence of CF lists in (5.3) represents another permutation of the members of the

semantic content of (5.2). In (5.3) the CF list of u216 appears between the CF lists of u210 and u212:

(5.3) A permutation of SC(5.2):

u210: CF(de374, de375)

u216: CF(de380, de381, de382)

u212: CF(de376, de374, de377)

u214: CF(de374, de379)

4Note that B can also be produced as a permutation of SCB.
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Given B, SCB and M:

a. ComputeSb, the score that M assigns to B.

b. NBetter=0,NEqual=0,NWorse=0.

c. i is the number of iterations,t = 0.

while t < i

do

- permute SCB to get Per.

- ComputeSp, the score that M assigns to Per.

- CompareSp with Sb and

- IncrementNBetter or NEqual or NWorse by 1 accordingly.

- t = t +1

end while

Report the final values ofNBetter, NEqual, NWorse.

Figure 5.1: Algorithm for calculating how many permutations of the elements of the set SCB score

Better, Equal and Worse than the permutation represented by B according to metric M

SEECmoves through the large search space of possible sequences of CF lists by permuting the mem-

bers of SCB. Each permutation is assigned a scoreSp by M which can be directly compared toSb

using the evaluation method of M.5 Then,SEECincrements the count ofNBetter, NEqual or NWorse

by 1, according to the result of the comparison. When the specified number of iterationsi is reached,

SEECreports the final values of the three output variables, each corresponding to the size of the set of

permutations classified as Better, Equal or Worse than B by M in the explored search space.

The exact size of the search space that is explored bySEECdepends on a) the idiosyncrasies of the

genre that specify thepermutation strategyof SEEC, and b) the cardinality of SCB which determines

thesearch strategyof SEEC.

With respect to the permutation strategy, it was suggested in section 2.5.4 of chapter 2 that there

is a standard way to start a description, typically by using a title or a phrase of the type:“This exhibit

is a ...” This means that instead of permuting CF1, the first CF list of B, this CF list should always

appear in the first position of every permutation.6 In other words,permute should operate on all the

members of the semantic content with the exception of CF1.

SEEC implements this preference as the standard permutation strategy in the descriptive genre.

This strategy is labellednot1 and can be seen as a simple heuristic modeling the interaction of entity

5See chapter 3 for more details on how two structures are compared with each other according to their scores for M.
6Assuming that the sequence of CF lists in (5.2) is B, CF1 is the one corresponding to the CF list of unit u210.
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coherence with a piece of domain-specific communication knowledge (Kittredge et al. 1991), thus

excluding some less plausible permutations from the search space. Hence, we assume that when SCB

serves as the input to text structuring, it is possible to identify which of its members will be the initial

CF list of the structure to be generated.7

Alternatively,SEECcan apply thepermute operation on the complete set of CF lists that constitute

SCB. This alternative strategy for creating permutations is labelledall, but has not been used in the

experiments reported in subsequent chapters of the thesis. The complete set of permutations that the

search space consists of according to a given permutation strategy is the set ofvalid permutations.

The exact number of permutations that is explored for B depends on the cardinality of SCB. If

SCB consists of up to 11 CF lists we use exhaustive enumeration of all valid permutations (EX) as the

search strategy.8 This means that when|SCB| = n≤ 11, the permutation strategy being set tonot1,

SEECgoes through the complete search space of sizei = (n−1)! by creating all valid permutations

of the members of the semantic content with the exception of CF1 which always appears in the first

position of every permutation.

For a larger semantic content we generate 10 random samples of 1,000,000 permutations. In the

latter case, the performance of M on B is estimated by calculating its average performance on the 10

random samples. In section 5.6 we show that by using a large random sample we can estimate reliably

the performance of M on the whole population of valid permutations for any largen.

5.5 Computing a performance measure

As we mentioned in the previous section,SEECcalculates the sizes of the sets of permutations scoring

Better, Equal or Worse than B according to M in the explored search space. The next question is

how it is possible to use this output to determine the suitability of the many CT-based metrics for text

structuring as required by (Q2) at the end of chapter 3.

We start investigating this question by discussing how two metrics, Mx and My, can be compared

to specify which one represents a more promising solution for the purposes of a hypothetical text

structuring algorithm that uses SCB as its input. After this is made clear, we show how this comparison

can be applied to more than one BfC and all our available metrics.

5.5.1 Calculating the classification rate

Hypothetical distributions of the permutations in the search space generated bySEECon a) B, SCB

and Mx and b) B, SCB and My are shown in Figure 5.2. What we want to do initially is to compare Mx

7As shown in chapter 6 and chapter 7, this is true for the BfCs from both GNOME-LAB and MPIRO-PROP.
8EX is implemented in such a way that a different permutation is created in each iteration. Thus, the number of iterations

i equals the number of valid permutations.
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Figure 5.2: Distributions of the search space of possible permutations for metrics Mx and My

with My according to the portions that the search space is divided into. Such a comparison is called

the individual comparisonof Mx and My on B.

Because our ultimate goal is to express the performance of the metrics on search spaces of various

sizes defined by any|SCB|, it is best to state the number of permutations classified under each portion

of the explored search space in terms of percentages. Hence, Better(M) corresponds to the percentage

of the explored search space that scores Better than B according to M, Equal(M) is the percentage of

the explored search space that scores Equal to B according to M, etc.

Let us first assume that the search space of sizei explored for M equals the set of valid permuta-

tions of SCB and that Better(M)= 0%, which means that the set of permutations classified as Better

than B by M equals the empty set. In addition, let Equal(M)= 100
i %, which means that the set of Equal

permutations contains just B. If both conditions hold, then M singles out B as the unique best struc-

ture in the explored search space. If it is possible to use M to guide a text structuring component that

receives SCB as its input, then M on its own can be seen as a very promising solution for the purposes

of structuring SCB. Under this scenario, B resembles the notion of the gold standard as discussed in

section 5.2.1.

Hence, a possible way to resolve the competition between Mx and My is to favour the metric

that best fits these two requirements, maybe by first considering whether Better(My) is smaller than

Better(Mx), and then by resorting to the comparison of Equal(My) with Equal(Mx) if the percentage

of permutations classified in Better is the same for both metrics.

However, what we are mainly interested in is not the individual comparison of Mx and My on B

per se. Rather, we strive to come up with a way of assessing the performance of the metrics on more

than one BfC from a corpus. This is necessary in order to be able to generalise our results safely,

accounting for the problems discussed in section 5.2.1. Under this perspective, a more convenient

way to account for each individual comparison is by using a single arithmetic measure to express the

performance of each metric on the explored search space. This measure can be subsequently used as
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the dependent variable in the statistical analysis which compares Mx with My across many BfCs.

The dependent variable we employ is called theclassification rateof a metric M on B. Clearly,

there exist several ways of defining the classification rate, the simplest of which might be to com-

pare the metrics according to the percentage of Better only. That is, if Better(My) is smaller than

Better(Mx), then My beats Mx in their individual comparison on B.

However, defining the classification rate solely in terms of the percentage of Better ignores the per-

centage of permutations classified in Equal. A possible way to account for Equal is by using the sum of

the percentage of Better and the percentage of Equal in the definition of the classification rate, thus re-

solving the individual comparison in favour of My, if it returns a lower sum of Better(My)+Equal(My)

than Mx.9

Nonetheless, we believe that it is preferable to associate Equal(M) with a weight instead of con-

sidering it equivalent to Better(M) in the calculation of the classification rate. The value of the weight

for Equal(M) is set to1
2. Hence, the classification rateυ of a metric M on B is formally defined as

follows:

(5.4) Classification rate

υ(M,B) = Better(M)+ Equal(M)
2

If υ(Mx,B) is the classification rate of Mx on B, andυ(My,B) is the classification rate of My on B, My

beats Mx in their individual comparison on B ifυ(My,B) is smaller thanυ(Mx,B). In what follows

we explain the motivation behind weighting Equal with1
2.

First, let us assume a generation scenario where a permutation of SCB has a higher chance of being

selected as the output of text structuring the better it scores according to M.10 In that case, the existence

of Better structures increases the probability that one of them will be the output instead of B. Even if no

Better structures exist, acknowledging a set of Equal structures introduces additional distractors in an

attempt to output B. Assuming that the algorithm implements additional biases for the selection of the

output when the permutations are assigned the same score for M, the less B violates these constraints

the higher are its chances to be favoured over the members of Equal. Conversely, if the additional

biases disfavour B, it might end up being the least probable solution for text structuring between the

members of Equal. On average, one expects B to sit in the middle of the set of Equal structures when

ranked according to the additional biases of the hypothetical text structuring algorithm. Given this

scenario, the expected percentage of structures with a higher probability being generated than B is

Better(M)+Equal(M)/2, i.e. the classification rate of M on B.

9Obviously, since Better(M)+Equal(M)+Worse(M)=100%, using Better(M)+Equal(M) is the same as defining the
classification rate in terms of Worse(M) and deciding the individual comparison of Mx and My on B in favour of the metric
with a higher percentage of Worse.

10Thanks to Chris Mellish for coming up with this scenario.
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Figure 5.3: Spliting the set of Equal for metric Mx in the distribution of the search space for My

In a further attempt to justify the value12 for the weight of Equal, let us consider Figure 5.3. In

this Figure, the members of Equal for Mx are redistributed to either Equal, Better or Worse for My, but

the members of Better and Worse for Mx are unchanged. This relation is calledSplitEqualand always

arises in the individual comparison of M.NOCB with either M.SHOT1 or M.POT1 when the metrics

classify the permutations in the search space in a different way.11 ToBetter(My) is the percentage

of permutations that leave Equal of Mx to join Better for My. ToWorse(My) is the percentage of

permutations that leave Equal of Mx and are added to Worse for My. SplitEqual(My) is defined as the

sum of ToBetter(My) and ToWorse(My).

If the classification rate simply penalises a metric according to Better(M)+Equal(M), My needs to

classify only one permutation from the Equal of Mx to its own Worse to win the competition with Mx

on B.12 For this reason, we believe that the most objective way of dealing with SplitEqual is to com-

pare ToBetter(My) with ToWorse(My). If ToBetter(My) is larger than ToWorse(My), then SplitEqual is

divided in a way that favours Mx, but if ToBetter(My) is smaller than ToWorse(My), then My wins the

competition with Mx. The idea behind this is that My should be thought as doing better than Mx, when

it manages to move more than12 of SplitEqual(My) to Worse(My), thus reducing Equal(My) when

compared to Equal(Mx) without increasing Better(My) disproportionately. The proof in appendix C

shows that when ToWorse(My) is higher that half of SplitEqual(My), then the classification rate of Mx

on B is higher than the classification rate of My on B.

Finally, assume thatmnumber of BfCsB1, ...,Bm from a corpus C and their corresponding seman-

tic contents are used as the subsequent inputs toSEEC, as well as M. A convenient way of summarising

the performance of M on the BfCs from C is in terms of theaverage classification rate Ywhich is

11This happens because M.SHOT1 and M.POT1 can return different results from M.NOCB with respect to the comparison
of Per with B, only if Per and B have the same number ofNOCBs (see section 3.3.2 of chapter 3 for more details).

12Similarly, if Better(M) is used in the definition of the classification rate, My loses the competition with Mx if a single
permutation from the Equal of Mx is reclassified as Better for My, even if everything else in SplitEqual is characterised as
Worse by My.
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calculated as follows:

(5.5) Average classification rate

Y(M,C) = υ(M,B1)+...+υ(M,Bm)
m

5.5.2 Testing for significance

As we mentioned repeatedly, Mx and My should be compared on more than one BfC from a corpus

C. Comparing Mx with My in terms of their classification rates on the BfCs from C using tests of

significance is termed thepairwise comparisonof Mx with My on C.

In our standard experimental analysis, the BfCsB1, ...,Bm from C are treated as the random factor

in a repeated measures design since each BfC contributes a score for both metrics. Then, the classifi-

cation rates for Mx and My on the BfCs are compared with each other and significance is tested using

the signtest. After calculating the number of BfCs that return a lower classification rate for Mx than

for My and vice versa, the signtest reports whether the difference in the number of BfCs is significant,

that is, whether there are significantly more BfCs with a lower classification rate for Mx than the BfCs

with a lower classification rate for My (or vice versa).

The signtest was chosen to test significance because it does not carry specific assumptions about

population distributions and variance. Considering the small number of BfCs in one of our corpora

and their often unequal size, priority is given to a rather conservative statistic like the signtest over its

parametric alternatives such as the paired-samples t-test.

5.5.3 Comparing several metrics

The previous section introduced the pairwise comparison of Mx with My using the scores from the

BfCs in a corpus. Our experiments extend this effort to comparing many metrics of entity coherence,

each defined according to a different formulation of CT (see chapter 3 for an overview).

In our analysis, instead of performing all possible pairwise comparisons between the metrics, we

define M.NOCB, the simplest metric, as thebaselineand compare its classification rates with the clas-

sification rates of each of the remaining metrics. In this sense, Mx in the previous section stands for

M.NOCB, and My for one of its competitors. The null hypothesis of each planned pairwise compari-

son is that the difference between the baseline and My will not be significant. If more than one metric

is found to significantly outperform the baseline, we conduct pairwise comparisons between them.

Note that despite conducting more than one pairwise comparison simultaneously we refrain from

further adjusting the overall threshold of significance (e.g. according to the Bonferroni method, typi-

cally used for multiple planned comparisons that employ parametric statistics) since it is assumed that
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n n! time

10 3,628,800 4 mins

11 39,916,800 45 mins

12 479,001,600 9 hours and 45 mins

13 6,227,020,800 5 days and 6 hours

14 87,178,291,200 2 months and 14 days

15 1,307,674,368,000 more than 3 years

Table 5.1: Approximate computation time for n! permutations

choosing a conservative statistic such as the signtest already provides substantial protection against

the possibility of a type I error.

5.6 Dealing with factorial complexity

One of the most intimidating problems in our search-oriented methodology is the factorial complexity

of producing all valid permutations. The second column of Table 5.1 displays the total number of

permutations of the members of a set which consists ofn elements whenn ranges between 10 and

15. The third column of the table shows approximately how long it will take forSEECto perform the

classification task for M.NOCB, the simplest of our metrics, by exhaustively enumerating all possible

permutations for a semantic content of cardinality from 10 to 15 CF lists when running on a computer

with more than 2GB of real memory. For a semantic content consisting of 10 to 12 propositions we

calculated the average of 5 runs on the same input. The last three cells of the third column show an

estimation of the computation time for larger inputs. Table 5.1 shows that whenn becomes greater

than 12, the population of permutations is so large that the operation becomes impractical. Even

though usingnot1 as the permutation strategy reduces the overall complexity fromn! to (n−1)!, the

gain is too small when compared to the size of the complete search space that remains to be explored.

In our first attempt to overcome this limitation we considered a constraint programming approach

to navigate the search space more efficiently. In this context, M.NOCB was implemented in terms

of the Oz programming language.13 Unfortunately, the informal results of this study suggest that al-

though constraint programming appears to be more efficient than exhaustive enumeration forn smaller

than 12, search remains impractical for larger search spaces.

The most efficient solution to the problem of factorial complexity was to implement random sam-

pling of permutations (RS) as an alternative search strategy to EX whenn is greater than 11. In the

13Special thanks to Malte Gabsdil and Peter Dienes for doing the actual implementation. See www.mozart-oz.org for
more details on Oz.
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remainder of this chapter we provide a theoretical argument and a simple empirical study which show

that implementing RS for the purposes of the search task that is carried out bySEEC returns results

that are representative of the entire population of permutations.

5.6.1 Sample size

In this section, we use standard statistical notions in order to show that the result returned for a metric

M from a random sample of 1,000,000 permutations is representative of the result from the entire

population of valid permutations.14

To begin with, let us assume that in the whole population of N valid permutations of the members

of SCB, there are b permutations that are classified as Better than or Equal to B according to M. Let

the variable X be

• 1 when a randomly selected permutation is classified as Better than or Equal to B,

• 0 otherwise.

The mean value for X isµ = b/N. The variance for X isσ2 = b/N ∗ (N−b)/N.15 The standard

deviationσ is equal to the square root ofσ2. Note that the largest value forσ occurs whenµ = 1
2, in

which caseσ is also equal to 0.5.

If we take a random sample ofn variables like X, the average of the random samplem is equal to:

m= X1+...+Xn
n . According to the Central Limit Theorem when the size of the sample is large enough

(i.e. n > 30) the averagem behaves like a normally distributed variable with a mean equal to the

population meanµ and a standard errorσm = σ√
n.

Sincem is normally distributed, in order for it to be significantly different fromµ at the standard

alpha level ofp≤ 0.05 it has to achieve azscore of at least 1.96.16 In other words, 95% of the sample

means are expected to appear within 1.96 standard errors from the population mean.

Due to the large size of our sample the standard error isσm = σ/
√

1000000= σ/1000. Sinceσ

cannot be greater than 0.5,σm cannot be greater than 0.0005. This means that we expect the true value

of µ to be at most 0.0005*1.96=0.00098 away fromm in 95% of our random samples. Due to the very

small value ofσm we are justified to believe that RS is unlikely to return significantly different results

from EX for arbitrarily large search spaces. In section 5.6.3 we present a simple empirical study that

confirms this claim.

14Many thanks to Chris Mellish for developing the basic aspects of this argument. The argument concerns the estimation
of the set of Better or Equal permutations. Similar arguments apply to Better, Equal, etc. separately.

15This is a special case of the binomial distribution.
16A zscore of 1.96 corresponds to a probability value ofp = 0.025 which is the threshold of significance that is required

in a two-tailed prediction like the one made here.
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n Replications

Within % Between %

12 1032.5 0.10 2087.7 0.10

13 81 0.01 158.6 0.01

14 5.8 0.00 11.5 0.00

15 0.4 0.00 0.8 0.00

Table 5.2: Average number of replicated permutations within and between samples

5.6.2 Implementing random sampling

Our implementation of RS forSEEC is based on Prolog’srandom/3 predicate.17 Each new permuta-

tion is built by randomly selecting a CF list from SCB and placing it to the first available position in

the new permutation.18 Then another CF list is randomly selected between the remaining CF lists in

the semantic content and placed in the next available position in the new permutation. The process is

repeated until the semantic content is empty.19

This implementation allows for permutations to be replicated within and across samples. This

means that it is possible for the same permutation to appear more than once within the random sample.

In addition, when generating more than one random sample their intersection might not be equal to

the empty set. In order to be able to use RS reliably for our purposes, first we need to estimate the

average amount of replicated permutations within and between samples.

In order to estimate how many unique permutations ofn members of a set are contained within

a random sample of 1,000,000 permutations, we variedn between 12 and 15 and generated 10 sam-

ples of size 1,000,000 for eachn. Then we counted the number of replicated permutations in each

sample and calculated their average number for eachn. In addition, we tried to estimate how many

permutations are replicated between the samples. To do this we counted the number of intersecting

permutations in every pair of the 10 samples and calculated their average.

As Table 5.2 shows, whenn is equal to 12, the average number of replicated individuals within a

sample of 1,000,000 permutations is approximately 1030, that is, almost 99.9% of the permutations

in the sample are unique. The average number of intersecting permutations between two samples

was less than 2090, which again suggests that for every pair of samples approximately 99.9% of the

2,000,000 permutations are distinct from each other. Whenn is equal to 13, the average percentage of

replicated permutations within and between samples drops to 0.01%. Forn > 13 the average number

17See the Sicstus Prolog manual at http://www.sics.se/sicstus/ for the definition ofrandom/3.
18This might be the first position in the new permutation when the permutation strategy isall or the second position in

the new permutation when the permutation strategy isnot1. When the permutation strategy isnot1, then the first CF list of
the new permutation is CF1 which is excluded from the random selection from SCB.

19Or left only with CF1 when the permutation strategy isnot1.
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of replicated permutations is extremely small.

5.6.3 Empirical studies on random sampling

The fact that there are few replicated permutations within a random sample and that different random

samples do not consist of the same permutations shows that our implementation of RS does indeed

create different random samples of permutations. The next step is to investigate whether using dif-

ferent samples to perform the search task ofSEEC returns significantly different calculations of the

classification rate for M.

In this section, we report the results from a simple empirical study which shows that different

random samples do not behave significantly differently from each other. In addition, whenn ranges

between 10 and 12, in which case calculatingυ(M,B) is possible using both RS and EX, the results

of RS are not significantly different from the ones returned by EX. This study in addition to the

argument brought forward in section 5.6.1 leads us to the conclusion that for the purposes of the

operations performed bySEECone can safely restrict the search space to a few samples of 1,000,000

permutations instead of enumerating exhaustively the complete search space defined by an arbitrarily

largen.

As a first step in our empirical study on RS we generated 50 random samples of size 1,000,000

by permuting the CF lists of 10 BfCs. 5 random samples were generated for each BfC. The shortest

BfCs consisted of 10 CF lists, and the longest of 15 CF lists. Then, we used the output ofSEEC to

estimate the performance of three of our metrics (namely, M.NOCB, M.SH and M.KP) on each of

the samples. The classification rate of the metric on each sample was the dependent variable and

the 10 BfCs were treated as the random factor. SAMPLE (5 levels) and METRIC (3 levels) were

the two crossing independent variables. Our prediction was that the random variation between the

samples would not have any significant effect in the estimation of the average classification rate for

each metric.

Indeed, a repeated-measures ANOVA did not find any main effect for the factor SAMPLE on

the dependent variable: F(4,36)=0.15, p=0.960. By contrast, a significant main effect of the factor

METRIC was recorded: F(2,18)=100.05, p<0.001. The interaction between SAMPLE and METRIC

was not significant as predicted: F(8,72)=0.34, p=0.948.

The results of the first empirical study clearly suggest that different samples do not return signifi-

cantly different results with respect to the performance of the metrics. However, the metrics do differ

from each other with respect to their classification rate. In addition, the difference in the performance

of the metrics does not interact with the identity of the random sample.

In our second experiment we focused on the problem discussed in section 5.6.1, that is, we tried to

estimate how representative of the population value is the performance of a metric M when calculated
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using RS instead of EX. 8 BfCs consisting of 10 to 12 CF lists were treated as the random variable.20

5 random samples of 1,000,000 permutations were generated for each BfC. Like the previous study,

we used the same 3 metrics as one of the two independent variables. We defined the factor SEARCH

as our second independent variable with layers RS and EX. The performance of each metric under

RS and EX was the dependent variable. The experiment compares the average performance of each

metric in the 5 random samples for each BfC with the classification rate returned by enumerating all

possible permutations of the CF lists of the same BfC.21 Our main prediction was that the difference,

if any, in the estimation of the classification rate between the two levels of SEARCH will not be

significant.

The factors METRIC (3 layers) and SEARCH (RS vs EX) were used as the input to a repeated-

measures ANOVA which again revealed a significant main effect of METRIC on the dependent vari-

able: F(2,14)=46.40, p<0.001. By contrast, the effect of SEARCH and the interaction between MET-

RIC and SEARCH were not significant: F(1,7)=1.06, p=0.337 and F(2,14)=0.84, p=0.454 respec-

tively. This confirms the predictions of the theoretical argument in section 5.6.1.

Once again, the results show that the metrics differ with respect to their average performance. In

addition, for BfCs that consist of 10 to 12 CF lists, RS does not return significantly different results

from EX. Note that since it takes on average around 1.5 mins forSEEC to generate and evaluate a

random sample of 1,000,000 permutations the gain in real time is remarkable: As Table 5.1 shows,

enumerating exhaustively 12! permutations takes more than 9 hours, whereas the same result can be

achieved with a sample of size 1,000,000 which represents less than 0.21% of the entire population of

permutations.

Almost all BfCs that we deal with in the experimental studies reported in subsequent chapters

consist of less than 12 CF lists, so we had to resort to RS in only a couple of cases. However,

the argumentation and the empirical studies in this section make it clear that despite the factorial

complexity of the problem that we are confronted with,SEEC is able to estimate the performance of

different metrics using semantic contents of arbitrary cardinality.

In the next two chapters we are going to focus on our main research question by investigating

the main effect of the factor METRIC more closely. We will be usingSEEC in order to perform the

corpus-based, search-oriented evaluation aiming to find out which metrics constitute the most suitable

candidates for the purposes of text structuring.

20These are BfCs for which exhaustive enumeration is practical (see Table 5.1). For BfCs that consist of less than 10 CF
lists RS is not sensible sincen factorial is smaller than 1,000,000.

21The first empirical study suggests that the samples do not differ significantly from each other with respect to the way
they estimate the classification rate of the metrics. Therefore, one could use just one of the 5 samples to estimate the
classification rate of the metrics rather than their average. However, in our standard experimental methodology we try to
explore as much of the search space as possible and minimise the amount of replicated permutations between samples. For
this reason we generate more than one random sample and calculate their average performance. We did the same in this
empirical study in order to be consistent with our general sampling strategy.





Chapter 6

Experiments on the GNOME corpus

This chapter presents our main corpus-based experimental work on the museum labels of the GNOME

corpus. The GNOME corpus provides us with reliable annotation for the main notions that our analy-

sis is based on, namelyunitsfor the computation of the CF list andnominal expressionsthat introduce

entities to the CF list, making it possible to specify the inputs toSEECautomatically.

We begin with the aims of the study, as motivated by the discussion in the previous chapters.

Then, we present an overview of the GNOME corpus and the data used in our experiments. The

chapter concludes with the discussion of the main results and directions for future work.

6.1 Motivation and aims

In section 2.3.2 of chapter 2, we reviewed the main results of the evaluation of CT by Poesio et al.

(2002).1 In this section, we present the main aims of our research on the GNOME corpus and their

relation to the work carried out by Poesio et al. (2002).

As we mentioned in section 2.5.3 of chapter 2, the problem of choice is very important for the

purposes of text structuring. However, even though Poesio et al. (2002) present the most methodolog-

ically sound evaluation of CT up to now, they do not investigate this problem in detail.

In the previous chapter, we presented an evaluation methodology more appropriate for the pur-

poses of text structuring than the ones previously employed. In this chapter, we describe how we

apply this methodology to a subset of the GNOME corpus, using the same tools as Poesio et al.

(2002) did for their experiments.2

As discussed in chapter 3, our evaluation estimates the performance of a wider range of metrics of

1The GNOME corpus has also been used to inform the implementation of general algorithms for referring expression
generation (Cheng et al. 2001; Cheng and Mellish 2000b; Henschel et al. 2000; Poesio et al. 1999b).

2I am grateful to Massimo Poesio not only for making the data and computational tools of the GNOME corpus available
to me, but also for our lengthy discussions and his continuous interest in my work.
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entity coherence than ever before. Thus, the main aim of our research is to use data from the GNOME

corpus to answer (Q2), as formulated in section 3.7:

Q2: Which metrics of entity coherence constitute the most promising candidates for text structuring?

6.2 The GNOME corpus

The GNOME corpus is divided into three sections: The museum section consists of descriptions

of artefacts, argumentative texts about their style and period of creation, etc.3 The pharmaceutical

section is a selection of leaflets providing patients with the legally mandatory information about their

medicine.4 The tutorial dialogues section consists of a subset of the Sherlock corpus (Lesgold et al.

1992).

The GNOME corpus is annotated for a number of features. In what follows we provide an

overview of the features that are relevant to our research. Our brief overview of the annotation is

a summary of the discussion in Poesio et al. (2002).5

Each subcorpus contains about 6,000 NPs. The NPs in the GNOME corpus are callednominal

expressions(NEs) and are marked up with the<ne> element. The instructions for identifying NE

markables derive from those proposed in the MATE scheme for annotating anaphoric relations (Poe-

sio et al. 1999a), which in turn are derived from those proposed by Passoneau (1997) and MUC-7

(Chinchor and Sundheim 1995).

Each NE in the GNOME corpus has a uniqueid and is annotated for 14 features specifying its

syntactic, semantic and discourse properties (Poesio 2000). The attribute which is most relevant to

our work is the grammatical function of an NE (gf). The instructions for marking up this feature are

derived from those used in the FRAMENET project (Baker et al. 1998). The values forgf include

subj, obj, comp (for indirect objects),adjunct (for the argument of PPs modifying VPs),gen (for

NEs in determiner position in possessive NEs), etc. Other NE attributes include the NE type (cat),

basic syntactic features such as number (num), person (per), and gender (gen), and more abstract

features such as animacy (ani), abstract or concrete ontological status (onto), etc.

The NEs in the GNOME corpus are also marked for their anaphoric relations, again using a variant

of the MATE scheme. A special<ante> element specifies theid of the anaphor and the type of the

anaphoric relation (e.g. identity), whereas an<anchor> tag embedded within the<ante> element

indicates the closest antecedent.
3The museum subcorpus extends the corpora collected to support ILEX and a related project called SOLE. SOLE

extended ILEX with concept-to-speech abilities, using linguistic information to control intonation (Hitzeman et al. 1998).
4The leaflets in the pharmaceutical subcorpus are a subset of the collection of all patient leaflets in the UK which was

digitised to support the ICONOCLAST project (Scott et al. 1998).
5The annotation manual, available from the GNOME project’s webpage at http://www.hcrc.ed.ac.uk/˜gnome, provides

more details.
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The NEs in the GNOME corpus are marked up for a number of bridging relations (Clark 1977)

in addition to identity (ident). Previous work, particularly in the context of the MUC initiative

suggested that while it is fairly easy to mark up identity relations, annotating bridging references

is quite hard; this was confirmed by studies such as Poesio and Viera (1998). For this reason, the

GNOME corpus is annotated for only three types of relations between objects (and not e.g. anaphoric

reference to propositions or events). The relations that are marked up are a subset of those proposed

in the “extended relations” version of the MATE scheme and consist of set membership (element),

subset (subset) and generalised possession (poss), which includes part-of relations as well as more

traditional ownership relations.

In addition to NEs, the GNOME corpus is annotated for all spans of text that can be claimed to

update the local focus. This includes sentences (defined on the basis of punctuation as the span of

text ending with a full stop, a question mark, or an exclamation point) as well as what is called a

discourseunit. Units include clauses (defined as sequences of text containing a verbal complex, all

its obligatory arguments and its postverbal adjuncts) as well as other sentence subconstituents that can

be claimed to independently update the local focus, such as parentheticals, preposed PPs, the second

element of coordinated VPs and layout elements such as titles and list elements.6

The following example gives an idea of the annotation in the GNOME corpus at the beginning

and the end of unitu227.7 The surface text reads as follows: “The drawing of the corner cupboard, or

more probably an engraving of it, ...” The example shows how units likeu227 andu228 are marked

up for their finiteness. It also shows how various NEs are annotated for their grammatical function

(gf). The<ante> element at the end of example (6.1) specifies thatne549 “ it” is related tone547

“ the corner cupboard” via an identity anaphoric relation.

(6.1)

<unit finite=’finite-yes’ id=’u227’>

<ne id=’ne546’ gf=’subj’> The drawing of

<ne id=’ne547’ gf=’np-compl’> the corner cupboard

</ne> </ne>

<unit finite=’no-finite’ id=’u228’>, or more probably

<ne id=’ne548’ gf=’no-gf’> an engraving of

6The instructions for marking up such elements are based on the discussions of clauses in Quirk and Greenbaum (1973)
and the proposals for the annotation of discourse units in Marcu (1999).

7This is example (15) in Poesio et al. (2002).
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<ne id=’ne549’ gf=’np-compl’> it

</ne> </ne>

</unit>,

...

</unit>.

<!-- ne549 ident ne547 -->

<ante current=’ne549’ rel=’ident’>

<anchor antecedent=’ne547’>

</anchor> </ante>

As we mentioned in section 2.3.2 of chapter 2, one of the objectives in marking up the GNOME

corpus was to achieve reliable annotation in order to make corpus-based studies easier to replicate.

Consequently, each feature was marked up by at least two annotators. Agreement on the annotation

for each feature was checked using theκ statistic (Carletta 1996) on part of the corpus.

Poesio et al. (2002) report that the annotators reached acceptable agreement for most features

relevant to the evaluation of CT, with the exception of thematic role which proved too difficult to

annotate reliably. Moreover, despite reducing bridging references into only three categories, reaching

agreement on this information involved several discussions between the annotators and more than one

pass over the corpus.

6.2.1 GNOME-LAB: Museum labels in GNOME

Not all texts, or in our termscorpus instances(see section 5.3 of the previous chapter), in the mu-

seum section of the GNOME corpus belong to our genre of interest, namely label-like descriptions of

artefacts in a museum gallery. In order to restrict the scope of the experiment to the text-type most

relevant to our study, a museum label was identified as a short text which describes a concrete entity,

typically evoked by the phrase “This is a ...” or the title e.g. “Cabinet”.8 This informal definition of a

museum label is similar to the one in Cheng (2002, p.65).

Our subcorpus, GNOME-LAB, consists of 20 corpus instances that fall under the informal def-

inition of a museum label.9 Of these, 8 corpus instances are captions of figures from a book about

jewellery and have already been part of the SOLE corpus.10 The 12 remaining labels describe French

8It is then this unit that gives rise to CF1 (see section 5.4.1 of the previous chapter).
9Using GNOME’s layout annotation, a corpus instance was identified as the segment of text within a<section> tag

in the extracts from the SOLE corpus or a<div> tag in the texts from the Getty webpage.
10Tait, H., editor (1986).Seven Thousands Years of Jewellery. British Museum Publications, London.
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artefacts from the 17th and 18th century and come from the webpage of the J. Paul Getty Museum.11

In the next section, we describe how each corpus instance from the genre of interest was automatically

translated into the corresponding inputs toSEEC.

6.3 Computing the inputs to SEEC

The main computational tool in Poesio et al. (2002) is the script which uses GNOME’s annotation

to compute the CF list of each utterance in a corpus instance according to a particular instantiation

of CT. This information is used to calculate the violations of the main claims of CT in the specified

configuration.12 In order to run our experiments, first we employed the script to compute the CF lists

according to a certain CT instantiation. Then, the CF lists were translated into a format appropriate

for SEEC.13

As we mentioned in section 3.7 of chapter 3, although Poesio et al. (2002) experiment with many

different ways of computing the CF list using different configurations of CT, our aim is not to fully

replicate their experiments. Hence, we did not follow them in invoking many different instantiations

of the script. Instead, we used the specification that appeared to be general enough and most relevant

to our main research aim.

According to this specification, the CB was defined according to C3 as in standard CT (see sec-

tion 2.2.2 of chapter 2). All annotated NEs were treated as introducing CFs, but only direct realisation

was used for the computation of the CF list, which means that bridging references were not taken into

account. The instantiation of the other two main parameters of the theory, namely utterance and CF

ranking, are explained in the following sections.14

6.3.1 Definition of utterance

In our specification of the script, a CF list is computed for all finite units except for:15

• clause complements

• the second element of coordinated VPs

• relative clauses

11http://www.getty.edu/museum/
12Hence, the scoring function of entity coherence in Poesio et al. (2002) is incorporated in the script that computes a

certain instantiation of CT.
13Many thanks to James Soutter for writing the program that performs this transformation.
14We do not discuss the instantiation of parameters that are not relevant to our study e.g. which NEs should be counted

as pronouns for the purposes of R1, etc.
15As in Poesio et al. (2002), titles, which are non-finite units, give rise to independent CF lists as well.
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Starting from Kameyama (1998), complements have consistently been shown not to have their own

CF list. As in Poesio et al. (2002), we took the CFs of complements to be part of the CF list of the

main finite unit they belong to. In a construction such as [VP VP1 and VP2], VP2 is recognised as the

second element of the coordination. Depending on whether a trace is computed for the empty subject

of VP2 or not, the elements of the coordinated VP either always satisfyCONTINUITY or introduce a

potentialNOCB. Following Poesio et al. (2002) again, VP1 and VP2 give rise to a single CF list.

The script in Poesio et al. (2002) makes it possible to define CF lists for embedded units, such

as finite and non-finite relative clauses and appositions.16 These units are often surrounded by their

superordinate clause, as shown in (6.2):

(6.2) [u291 The painted reserves, [u292 which imitate carved stone reliefs], show mythological

scenes ... ].

In example (6.2),u292 is “center-embedded” withinu291. The main problem with this construc-

tion is that there is no obvious way to orderu292 in relation to its superordinate unit291 for the

definition of the BfC.

However, it seems to us that the relation betweenu292 and 291 is more relevant to sentence

planning rather than text structuring. For this reason, we decided that it is more appropriate to treat

relative clauses and appositions in the same way as complements, that is, by considering their CFs

as part of the CF list of the main finite unit they are embedded in.17 Note that Poesio et al. (2002,

pp.31-33) reach the same conclusion, using arguments relevant to their own methods of evaluation.

When the script is invoked in this way, the CF lists of the specified finite units are readily put in a

sequence for the BfC based on the order that the units appear in the surface text.

We named each corpus instance in GNOME-LAB after the entity it describes. For instance, the

corpus instance which the units in example (6.2) come from is conventionally calledvase1. A BfC

that results from the specification of utterance as described in this section is given the suffix-finite.

Thus, in the BfC ofvase1is vase1-finite. We refer to this way of computing the BfCs collectively as

Finite.

In the following section, we present an adjustment to the Finite computation of the BfC which

helps us investigate to some extent the effect of rhetorical coherence on the performance of the metrics

employed in the experiment.

16A detailed analysis of the different kinds of modifiers and embedded units in the GNOME corpus appears in Cheng
(2002, Chapter 4).

17Thus, we assume that the embedding of these units precedes text structuring in the NLG architecture that our metrics
are tested to be suitable for. Then, it is the larger units that result from embedding which are ordered by the text structuring
component.
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6.3.2 Computing CF lists for local rhetorical relations

Some of the units that are used for the computation of the CF list are linked to an adjacent finite

unit via a local rhetorical relation (RR) explicitly marked with a cue phrase such as “because”, “but”,

“although”, etc. Using a cue phrase as the signal for a RR, we identified 19 RRs in 12 corpus instances

from GNOME-LAB.18 These RRs belong mainly to the informational type (Moore and Pollack 1992;

Moser and Moore 1996) and are reminiscent of ILEX-like local RS-trees, for instance:

(6.3) [u185 Access to the cartonnier’s lower half can only be gained by the doors at the sides, [u186

because the table would have blocked the front]].

In all but one case, the finite units that are related with each other via a RR appear within the same

sentence which consists only of these units. These are cases of isomorphism between the surface form

of the sentence and the RS-tree that the sentence is analysed to.

As we mentioned in section 2.1.4 of chapter 2, the rhetorical information in (6.3) can pose addi-

tional constraints in the architecture of an NLG system. For example, RRs like the one in (6.3) are

recorded in the database of ILEX as relation nodes. When a relation node is selected as part of the

input to text structuring, the system tries to express it by building a local RS-tree. This tree cannot be

interrupted by intervening spans in the text structure.

In the Finite computation of the BfC, rhetorically related units give rise to independent CF lists.

We are interested in investigating the performance of the metrics when we treat the RS-trees in

GNOME-LAB as units that cannot be interrupted by other units. This will give us the opportunity

to explore which metrics are more suitable for an NLG architecture that requires the RRs recorded in

the database to be expressed locally during the text structuring process. For this reason, we create an

additional input toSEECwhere the finite units connected via a RR give rise to a single CF list. This

way of computing the BfCs is denoted with the suffix-finite-RR.

For example, (6.4) shows the CF lists of the units in example (6.3) as computed in the BfCcarto1-

finite. The entities that the NEs refer to are denoted by the prefixde.19

(6.4) %%% u185

%%% Access to the cartonnier’s lower half

%%% can only be gained by the doors at the sides,

CF(de12, de13, de1, de15, de16)

18Most RRs (15/19) appear in 10 corpus instances from the Getty webpage. The remaining 4 appear in 2 corpus instances
from SOLE. Although we acknowledge that cue phrases are not the only hint for a RR, it has been shown that they constitute
a very reliable way of detecting one (Knott and Dale 1994).

19More details on the referents and the ranking of the CFs are given in the next section.
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%%% u186

%%% because the table would have

%%% blocked the front.

CF(de9, de18)

Because of the isomorphism between the local RS-tree and the sentence boundaries in (6.3), the CF

list of the RS-tree can be computed by using “sentence” instead of “finite unit” for the definition of

utterance and defining the other parameters of the script in the same way as for the computation of the

CF lists in (6.4). The CF list for the sentence that containsu185 andu186 is shown in (6.5). This CF

list is used as the CF list of the local RS-tree in (6.3) as well.20

(6.5) %%% RR: u185-u186

%%% s55

%%% Access to the cartonnier’s lower half

%%% can only be gained by the doors at the sides,

%%% because the table would have

%%% blocked the front.

CF(de12, de9, de18, de13, de1, de15, de16)

The CF list ofs55 in (6.5) replaces the CF lists ofu185 andu186 in (6.4) in the computation of the

BfC carto1-finite-RR. The next section provides more details on the ranking of the CFs in (6.4) and

(6.5).

6.3.3 CF ranking

Following most mainstream work on CT for English, we used grammatical function combined with

linear order within the unit (gftherelin) for CF ranking: In this configuration, the CP, i.e. the first

member of the CF list, corresponds to the first NE within the unit that is annotated as a subject for its

gf.21

20Despite the isomorphism between RS-trees and sentences in GNOME-LAB, it would be a mistake to consider the rela-
tionship between sentences consisting of more than one finite unit and RS-trees as 1:1. We identified 15 sentences consisting
of more than one finite unit which are not related to each other via an explicit RR marked with a connective although they
appear within the same sentence. These units are represented as subsequent CF lists in both ways of computing the BfC. A
more detailed and general study on the lack of isomorphism between document and rhetorical structure, motivated mainly
by examples from GNOME’s pharmaceutical section appears in Power et al. (2003).

21Or as the post-copular NE in athere-clause.
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In general, Poesio et al. (2002) report that despite the fact that CF ranking is one of the most

debated issues within CT, different specifications of CF ranking did not appear to have a significant

effect on their evaluation. This result is not very surprising given that most of the different suggestions

on CF ranking are based on evidence from languages other than English. There seems to be consider-

able consensus, however, that as far as English is concerned usinggftherelin is a very robust way

of estimating CF ranking. Hence, we expect that different ranking functions would not have made

much of a difference for our study either.

We will now explain howgftherelin gives rise to the CF lists in examples (6.4) and (6.5). In

(6.4), the subject ofu185 “Access to the cartonnier’s lower half” denotes the entityde12. Using

gftherelin, de12 is ranked as the first member of the CF list ofu185. Similarly, de9 is ranked as

the CP ofu186 becausede9 is the entity denoted by the NE “the table” which functions as the surface

subject ofu186. Note that in both cases, the CP can be seen as corresponding to Arg1 if an ILEX-like

representation of the predications underlying (6.4) is used.

Sentences55 in example (6.5) contains two NEs annotated as subjects. The CP ofs55 is de12

because the NE “Access to the cartonnier’s lower half” that denotesde12 precedes the NE “the table”

that denotesde9 within the sentence.22

Notice that ifu186 happened to precedeu185 within the sentence, it would have beende9, that is,

the referent of the subject ofu186, that would have been ranked as the CP ofs55 bygftherelin. This

is the main difference betweengftherelin andrs-tree, which is the ranking function introduced

in section 2.4.4 of chapter 2 for the computation of the CF list of an ILEX-like local RS-tree.

More specifically, according tors-tree, sinceu185 is the nucleus of the local RS-tree within

s55, its Arg1de12 will always be ranked as the CP ofs55 irrespective of the order ofu185 andu186

within s55. Since Poesio et al. (2002) do not account for the existence of local RRs in GNOME-LAB,

the nucleus-satellite distinction was not taken into account in the possible specifications of CF ranking

by their script.

From the various suggestions within CT, there seems to be one that comes very close tors-tree

but has not been tested by Poesio et al. (2002) either. This is the CF ranking in Miltsakaki (2002)

which is also based on grammatical function, but makes the same predictions asrs-tree about the

CP ofs55. Instead of referring to the underlying rhetorical structure, Miltsakaki (2002) uses notions

from traditional grammar to argue that the subject of the main clause in a sentence, in our casede12,

should always be ranked as the CP.

In conclusion, although we believe thatgftherelin was the best available choice for CF ranking

at the time that our study took place, we need to point out that using it imposed an additional restriction

22As we mentioned already, we found only one case of a local RS-tree consisting of two finite units each forming a single
sentence. Since it is not possible to use the script to compute the CF list for this RS-tree automatically as in (6.5) above, we
computed its CF list by hand, using the surface order of the sentences for the linearisation of CFs with the samegf.
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on the assumed NLG architecture that the metrics were tested to be suitable for. More specifically,

gftherelin assumes that the order of the units that an RS-tree consists of is definedbefore the text

structuring process. Somehow differently, Miltsakaki (2002) claims that ordering clauses within a

sentence is orthogonal to ordering sentences. Finally, in O’Donnell et al. (2001) the ordering of the

fact nodes within an RS-tree appears to be dealt by the sentence planning module quite independently

of the text structuring process.

6.4 Experimental questions

As the previous sections have discussed, GNOME-LAB was used to compute two of the inputs to

SEEC, namely the BfC and its semantic content. The third input was each of the metrics in Table 3.11

of chapter 3.23 Our experimental work aims at answering (Q2), using the various BfCs from GNOME-

LAB as the random factor and their classification rates for each metric of entity coherence as the

dependent variable.

Finite was chosen among the many specifications of CT evaluated by Poesio et al. (2002) as the

configuration which is most relevant to our research aims. In addition to this, we want to explore

which metrics do best with respect to (Q2) when local RRs are taken into account for the computation

of the CF lists as happens in Finite-RR, and whether these metrics are different from the metrics that

perform best in Finite. A related experimental question, which involves another potential difference

between Finite and Finite-RR, is discussed in the following section.

6.4.1 Rhetorical compensation

As section 2.3.2 of chapter 2 reports, Poesio et al. (2002) set out to find the version of CT with

as fewNOCB transitions as possible,24 the underlying assumption being that a version of CT with

fewer NOCBs is a “better” model of entity coherence than a version with moreNOCBs. Because

none of the tested versions completely eliminatesNOCBs, Poesio et al. (2002) conclude that entity

coherence should be supplemented by other coherence inducing factors at the local level and suggest

the framework of Knott et al. (2001) as a plausible model for the interaction between rhetorical and

entity coherence.

As we explained in section 2.1.3 of chapter 2, Knott et al. (2001) assume that rhetorical and entity

coherence are not simultaneous constraints on text structure. In a further attempt to account for the

existence ofNOCBs in a structure, one could follow their assumption to hypothesise that when aNOCB

23As already mentioned in section 5.4.1 of the previous chapter, the permutation strategy used in the experiments was
alwaysnot1. The search strategy was always EX, with the exception of one corpus instance that gives rise to BfCs consisting
of more than 11 CF lists both in Finite and in Finite-RR. The search strategy in these cases was RS.

24Or the versions of CT where there are significantly fewerNOCBs than other transitions (Poesio et al. 2003).



6.5. Results 121

exists, the units which violateCONTINUITY are related rhetorically. In other words, local RS-trees

introduce some sort ofrhetorical compensationfor the NOCBs in a structure.25 According to this

hypothesis, moving from the Finite to the Finite-RR computation of the BfC is expected to reduce the

percentage ofNOCBs because (most of) the RRs between two adjacent units make up for a potential

violation of CONTINUITY.26

Indeed, the change from Finite to Finite-RR results in a lower percentage ofNOCBs for 8 BfCs.27

Although Finite-RR has moreNOCBs than Finite for 4 BfCs, the average percentage ofNOCBs for the

12 BfCs in Finite-RR is 53%, that is 4% lower than in Finite, thus providing some weak evidence in

favour of rhetorical compensation overall.

However, investigating the effect of rhetorical relations on entity coherence simply by calculat-

ing the percentage ofNOCBs for each way of computing the BfC does not account for the fact that

the number ofNOCBs in a BfC might not estimate its entity coherence reliably (see section 2.5.4 of

chapter 2 for more details). As this issue is addressed by our methodology under a specific NLG

perspective, the interesting question from our point of view about the interaction between rhetorical

and entity coherence is not simply to calculate the percentage ofNOCBs as an indication of rhetorical

compensation but to examine whether the move from Finite to Finite-RR results in a decreasing classi-

fication rate for M.NOCB as well. M.NOCB is singled out as the metric of interest because it uses the

number ofNOCBs as the sole measure of the incoherence of a structure. Given the observed reduction

on the percentage ofNOCBs, we are interested to see whether the percentage of permutations which

score Better than or Equal to the BfC is also reduced with the move from Finite to Finite-RR. This

question is examined in section 6.5.3.

6.5 Results

In this section we report the main results of the experiments on GNOME-LAB. First, we report the

average classification rate (Y) of each metric as a way of summarising its performance across the

whole corpus. Then, we attempt to answer (Q2) using the BfCs from Finite and Finite-RR in a set of

25The term is due to Jon Oberlander.
26As example (6.5) shows, moving from Finite to Finite-RR is also expected to make the BfC shorter, i.e. consisting of

fewer CF lists, since the CFs that come from finite units that used to contribute independent CF lists to the BfC in Finite
now appear together in the same CF list in Finite-RR. Indeed, the 12 BfCs in Finite-RR contain on average 1.58 fewer CF
lists when compared to their average number of CF lists in Finite. This in turn means that the set of valid permutations is
smaller in Finite-RR than in Finite.

27However, in all 8 cases the percentage of the pairs of utterances that violate one or more of the underlying principles
of CT, namelyCOHERENCE, CHEAPNESSor SALIENCE, is increased. That is, Finite-RR has fewerNOCBs than Finite as
predicted, but the transitions that are mainly introduced by this change are notCONTINUEs. Poesio et al. (2002) report a
similar result with respect to the change from direct to indirect realisation for the computation of the CF list.
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Finite Finite-RR

Metric Better Equal Y Metric Better Equal Y

M.NOCB 8.66 22.58 19.95 M.NOCB 9.25 27.96 23.24

M.POT1 15.33 10.02 20.34 M.SHOT1 16.49 19.30 26.15

M.SHOT1 11.43 18.69 20.77 M.POT1 23.65 6.33 26.81

M.MIL 10.82 25.29 23.47 M.MIL 14.79 26.24 27.91

M.SH 15.19 27.72 29.05 M.SH 17.15 27.02 30.66

M.BFP 26.33 13.37 33.01 M.BFP 28.71 9.38 33.39

M.CHEAP 35.56 43.35 57.23 M.KP 39.38 34.99 56.87

M.KP 40.60 35.24 58.22 M.CHEAP 41.98 40.22 62.10

N 20 N 12

Table 6.1: Average classification rate (Y=Better+Equal/2) in Finite and Finite-RR

pairwise comparisons with the baseline, M.NOCB.28 Finally, we discuss the differences between the

two ways of computing the BfCs and how these relate to the question raised in the previous section.

6.5.1 Average classification rate

Table 6.1 shows the average performance of the eight metrics in the experiment. The metrics are

sorted in ascending order according to their average classification rate (Y) for each way of computing

the BfC. In addition to this, the Table reports the average percentage of Better and Equal permutations,

as well as the number of BfCs (N) in Finite and Finite-RR.

Before entering the discussion of the main questions that motivate this chapter, some preliminary

observations are appropriate. First, one needs to keep in mind that on average more than 50% of

the recorded transitions in Finite areNOCBs (as Poesio et al. 2002 have already reported) and the

same is true for Finite-RR. However, the Y value for M.NOCB in each way of computing the BfC

shows that on average the BfC appears very close to the top 20% of alternative permutations when

these permutations are ranked according to their probability of being selected as the output of the

hypothetical text structuring algorithm in section 5.5.1 of the previous chapter.

This shows that even though the ordering of CF lists in the BfC might not be completely min-

imising the number of observedNOCB transitions, the BfC tends to be in greater agreement with the

preference to avoidNOCBs than most of the alternative orderings. In this sense, it appears that the BfC

optimises with respect to the number of potentialNOCBs to a certain extent. As in section 2.5.4 of

28As section 5.5.2 of the previous chapter explains, a metric M beats the baseline if it has a lower classification rate than
the baseline for significantly more BfCs than the BfCs for which the classification rate for the baseline is lower than for M.
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Pair Winner

Finite Finite-RR

M.NOCB vs M.CHEAP M.NOCB M.NOCB

M.NOCB vs M.KP M.NOCB M.NOCB

M.NOCB vs M.BFP M.NOCB ns

M.NOCB vs M.SH ns ns

M.NOCB vs M.MIL ns ns

M.NOCB vs M.SHOT1 ns ns

M.NOCB vs M.POT1 ns ns

Table 6.2: Winners of pairwise comparisons with M.NOCB in Finite and Finite-RR

chapter 2, we maintain that exploring the search space of valid permutations provides more informa-

tion on the role of entity coherence as a text structuring constraint than simply calculating the number

of observedNOCBs in the BfC.

Moving to issues closer to our experimental questions, it is worth noting that the metric with

the lowest Y both in Finite and in Finite-RR is the baseline, M.NOCB. Moreover, Y(M.NOCB, Fi-

nite) is lower than Y(M.NOCB, Finite-RR), 19.95% versus 23.24% respectively. Indeed, the average

classification rate of all metrics except for M.KP is greater in Finite-RR than in Finite.

As we stated in the previous chapter, Y is reported for purely descriptive purposes. The following

section presents the results of the statistical analysis which employs the signtest in a set of pairwise

comparisons between M.NOCB and each competing metric of entity coherence in order to investigate

potential answers to (Q2).

6.5.2 Pairwise comparisons with M.NOCB

Table 6.2 provides an overview of the results of the pairwise comparisons with M.NOCB in Finite and

Finite-RR. The first column of the Table identifies the comparison in question, e.g. M.NOCB versus

M.CHEAP. The next two columns report which metric is the “winner” of the pairwise comparison, that

is, which metric has a lower classification rate than its competitor for significantly more BfCs in each

way of computing the BfC. In our example, the baseline M.NOCB has a lower classification rate than

M.CHEAP in significantly more BfCs both in Finite and Finite-RR. By contrast, in the comparison of

M.NOCB versus M.POT1, neither metric has a lower classification rate for significantly more BfCs

than its competitor in either Finite or Finite-RR.

The exact number of BfCs for which the classification rate of M.NOCB is lower than its competitor

for each pairwise comparison in Finite is reported in the second column of Table 6.3. For example,
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Pair M.NOCB p Sig Winner

lower greater ties

M.NOCB vs M.CHEAP 18 2 0 0.000 *** M.NOCB

M.NOCB vs M.KP 16 2 2 0.001 *** M.NOCB

M.NOCB vs M.BFP 12 3 5 0.018 * M.NOCB

M.NOCB vs M.SH 7 4 9 0.274 ns

M.NOCB vs M.MIL 5 6 9 0.500 ns

M.NOCB vs M.SHOT1 4 6 10 0.377 ns

M.NOCB vs M.POT1 7 10 3 0.315 ns

N 20

Table 6.3: Details of pairwise comparisons with M.NOCB in Finite

M.NOCB has a lower classification rate than M.CHEAP for 18 (out of 20) BfCs in Finite. M.CHEAP

manages a lower classification rate for only 2 BfCs in Finite, while there are no ties, i.e cases where

the classification rate of the two metrics is the same. The p value, rounded in the third decimal point,

which is returned by the signtest for the difference in the number of BfCs is reported in the fifth

column of the Table.

The last two columns report the achieved level of significance and the winner of the comparison.

In this and subsequent similar tables throughout the thesis, three asterisks (***) indicate p≤0.001,

as happens for the comparison of M.NOCB versus M.CHEAP, while two asterisks (**) are used for

0.001<p≤0.01, and one asterisk (*) for 0.01<p≤0.05. When the p value is greater than 0.05, the result

is reported as not significant (ns) and no winner is reported for the pairwise comparison. Similarly,

Table 6.4 reports the numbers of BfCs for each category, the associated p values, the achieved level of

significance and the winners of the pairwise comparisons in Finite-RR.

The Tables clearly show that M.NOCB does significantly better than M.CHEAP and M.KP irre-

spective of the way that the BfC is computed. Most additional comparisons fail to reach significance,

a result which might be due to the small sample size used in this study. In general, we acknowledge

that this is a serious limitation which raises issues of statistical power and generalisability.29 How-

ever, we also point the attention of the reader to the fact that some of the observed effectsare strong

enough to reject the null hypothesis, despite the small size of the samples. Crucially, all significant

differences in the pairwise comparisons are in favour of M.NOCB. In addition to this, none of the

other comparisons shows a trend to the opposite direction.

For example, while there are significantly more BfCs with a lower classification rate for M.NOCB

29Note that these issues are addressed in the next chapter, where a larger corpus is used to evaluate the same metrics.
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Pair M.NOCB p Sig Winner

lower greater ties

M.NOCB vs M.CHEAP 10 2 0 0.019 * M.NOCB

M.NOCB vs M.KP 11 1 0 0.003 ** M.NOCB

M.NOCB vs M.BFP 7 5 0 0.387 ns

M.NOCB vs M.SH 5 3 4 0.363 ns

M.NOCB vs M.MIL 4 4 4 0.500 ns

M.NOCB vs M.SHOT1 2 4 6 0.344 ns

M.NOCB vs M.POT1 5 6 1 0.500 ns

N 12

Table 6.4: Details of pairwise comparisons with M.NOCB in Finite-RR

than for M.BFP in Finite, the result of the comparison of M.NOCB versus M.BFP in Finite-RR is not

significant. Keeping the discussion in the previous paragraph in mind, if one applies Occam’s logical

principle to resolve a pairwise comparison when the signtest fails to reach significance, a simple

metric such as M.NOCB that employs only the violations of the prerequisite ofCONTINUITY in its

scoring function will be given priority over a competitor such as M.BFP that makes use of a more

complicated model of entity coherence, especially given that M.NOCB is found to overtake two other

potential competitors overwhelmingly in the same sample. Although we are careful enough to admit

that lack of significance per se does not provide conclusive evidence against a certain competitor

of M.NOCB, we do maintain that the results of the study in GNOME-LAB can be interpreted as

indicating that M.NOCB is a baseline hard to overtake for the rest of the employed metrics of entity

coherence.

6.5.3 Differences between Finite and Finite-RR

In section 6.5.1 we spotted a general trend for the average classification rate to rise with the move

from Finite to Finite-RR. In order to investigate this trend a bit further we conducted signtests on the

classification rates of the 12 BfCs in Finite-RR and the corresponding classification rates in Finite

for each metric, the details of which are displayed in Table 6.5. The second column of the Table

shows the number of BfCs for which the classification rate in Finite-RR is lower than in Finite for a

given metric, whereas the third column shows the number of BfCs with a greater classification rate in

Finite-RR than in Finite. The last section of the Table reports the associated p value for the difference

on the number of BfCs, the achieved level of significance and the winner of the comparison, i.e. the

way of computing the BfC which contains significantly more BfCs with a lower classification rate.
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Metric Finite-RR p Sig Winner

lower greater ties

M.NOCB 3 9 0 0.073 ns

M.SH 4 8 0 0.194 ns

M.SHOT1 4 8 0 0.194 ns

M.POT1 4 8 0 0.194 ns

M.BFP 5 7 0 0.387 ns

M.MIL 2 10 0 0.019 * Finite

M.KP 10 2 0 0.019 * Finite-RR

M.CHEAP 9 3 0 0.073 ns

N 12

Table 6.5: Details of the comparisons of Finite-RR versus Finite for each metric

The Table confirms the already observed trend of the metrics to return a greater classification rate

in Finite-RR than in Finite. Although only M.MIL returns significantly more BfCs with a greater

classification rate in Finite-RR than in Finite, all other comparisons are in the same direction as for

M.MIL, except for the ones involving M.CHEAP and M.KP. In fact, M.KP reports significantly more

BfCs with a lower classification rate in Finite-RR than in Finite. However, since both M.CHEAP and

M.KP are defeated by M.NOCB in Finite-RR (see Table 6.4) as well as in Finite, this improvement in

the classification rate is of little use.

Note that Table 6.5 is relevant to the question raised in section 6.4.1 as well. More specifically,

the classification rate of M.NOCB is lower in Finite-RR than in Finite foronly 3 BfCs. As we have

already reported, changing from Finite to Finite-RR reduces the percentage ofNOCBs for 8 BfCs. As

Table 6.6 shows, the 3 cases where the classification rate of M.NOCB is lower in Finite-RR than in

Finite do indeed belong to this category. However, for the remaining 5 BfCs from the same category

the reduction on the percentage ofNOCBs in the BfC results in the classification rate of M.NOCB being

greater in Finite-RR than in Finite.30 This shows that even though a BfC in Finite-RR may often have

fewerNOCBs than in Finite, the percentage of permutations that score Better than or Equal to the BfC

is not always lower in Finite-RR than in Finite. This situation is similar to the examples discussed

in section 2.5.4 of chapter 2, showing once again that using the percentage ofNOCBs absolutely to

estimate the entity coherence of the BfC is not as informative as going through the search space of

valid permutations.

30The 4 additional BfCs with a greater classification rate in Finite-RR are the ones where the percentage ofNOCBs in the
BfC rises with the move from Finite to Finite-RR.
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Finite-RR vs Finite

% of NOCBs υ of M.NOCB

lower greater

lower 3 5

greater - 4

Table 6.6: Distribution of BfCs according to the difference in a) the percentage of NOCBs and b) the

classification rate (υ) of M.NOCB between Finite-RR and Finite

6.5.4 Discussion

Assuming the generation scenario in section 5.5.1 of the previous chapter, the results in section 6.5.2

suggest that if one is provided with a semantic content similar to what emerges from the BfCs in

GNOME-LAB as the input to the hypothetical text structuring algorithm and has to choose which of

the eight candidate metrics to use to guide the algorithm (aiming to arrive at the BfC as the output), the

baseline M.NOCB is a better choice than M.KP or M.CHEAP because it returns a smaller percentage

of permutations with a higher probability of being selected than the BfC in significantly more cases

than the other two metrics.

Moreover, since none of the remaining five metrics manages to overtake M.NOCB, one can pro-

visionally argue that it is the baseline which represents the most suitable candidate for text structuring

(between the ones considered) in the genre represented by GNOME-LAB. This holds irrespective of

whether local RS-trees are taken into account or not for the computation of the input to the hypothet-

ical algorithm.

The decision whether RRs should be accounted for in this input could be quite independent of

which way of computing the BfC returns better results in the corpus-based evaluation of the met-

rics. For instance, O’Donnell et al. (2001) emphasise the importance of representing RRs in ILEX’s

database, so from their point of view the best performing metrics in Finite-RR would probably be

preferable to the best performing metrics in Finite irrespective of any differences in their performance

since entity coherence is in practice inferior to RRs in characterising a descriptive text structure. In

this sense, the fact that M.NOCB proves robust across both ways of computing the BfC is an additional

point in its favour, at least as far as the comparison with the other candidate metrics goes.

Section 6.5.3 indicates that although the search space of valid permutations becomes smaller when

local RS-trees are taken into account, there are proportionally more permutations scoring Better than

and Equal to the BfC in Finite-RR than in Finite. This seems to suggest that RRs and entity coherence

are not supplementary but conflicting constraints on text structuring since optimising on one does

not result in optimising on the other. It also shows that if M.NOCB is used to guide the generation
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process (always according to the scenario in section 5.5.1), the chances of the BfC being chosen over

its alternatives will probably be reduced when the input is computed according to Finite-RR instead

of Finite. However, as we have already mentioned, this cannot be used as the sole criterion to decide

which way of computing the BfC best serves as the input to text structuring.

At this point we need to emphasise that even though M.NOCB can be taken to be the most promis-

ing candidate, it is still the case that on average around 20% of the permutations appear more likely

to be selected than the BfC (see Table 6.1). This shows that M.NOCB needs to be supplemented by

other features to improve its performance, although this cannot be achieved with the help of RRs as

already discussed.31

In general, the difference in the two types of BfC is an issue that we intend to investigate in more

detail in the future, as the following section points out. After reviewing the main directions for future

work, we conclude the chapter with a summary of the main findings from the investigation of the

selected subset of the GNOME corpus.

6.6 Future work

There are two main directions for future work: a) specifically for the GNOME corpus and b) involving

more general issues that apply to the thesis as a whole.

As far as the GNOME corpus is concerned, given the importance of bridging references in the

evaluation of Poesio et al. (2002), we would like to experiment with a configuration of CT which

uses indirect realisation for the computation of the CF list. Moreover, we intend to investigate the

difference between the Finite and the Finite-RR way of computing the BfC in more detail, e.g. by

identifying factors that might account for the drop in the classification rate more clearly than the

percentage ofNOCBs. Last but not least, we are looking forward to an extension of the GNOME

corpus so that more corpus instances are added in GNOME-LAB, which in turn might enable us to

investigate more subtle differences than the ones reported in this chapter.

With respect to the general directions for future work, we remain committed to the employment

of more metrics of entity coherence from chapter 3 in order to investigate whether they can yield

better results in their pairwise comparison with the baseline than the metrics used in the current ex-

periments. Moreover, we would be interested in investigating the performance of the metrics on a

different genre.32

31Another attempt to supplement M.NOCB with an additional domain-specific constraint on coherence giving rise to
similar results as the attempt to use RRs is discussed in chapter 8.1.2.

32In addition to the museum labels, there are three texts on the Getty webpage which provide biographical information
about three famous craftsmen from the 18th century. Our preliminary investigation of the performance of the metrics on
these texts reveals that they show different preferences from the museum labels. However, due to the tiny size of the sample
it is not possible to defend the generality of these results which are not reported here. Thus, a more extended study on the
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6.7 Summary

In summary, the main result from the study on the specified subset of the GNOME corpus is that none

of the seven employed metrics of entity coherence manages to return significantly better results than

the baseline M.NOCB. By contrast, M.NOCB, which simply employs the number ofNOCB transitions

in its scoring function, performs significantly better than M.KP and M.CHEAP given both ways of

computing the BfC, namely Finite and Finite-RR. These results indicate that M.NOCB sets a baseline

difficult to overtake for any metric that makes use of additional constraints for entity coherence.

Finite-RR computes the CF lists for each BfC by taking the local RRs between adjacent finite

units into account. We noticed that in general the performance of the metrics drops as one moves

from Finite to Finite-RR. This is the case for M.NOCB as well, although a BfC in Finite-RR has

often fewerNOCBs than in Finite. Although this cannot be used as the only criterion to decide which

way of computing the BfC best serves as the input to text structuring, it suggests that RRs and entity

coherence are conflicting constraints in the overall coherence of the structures from GNOME-LAB.

As we mentioned in section 6.5.4, although the tradeoff between rhetorical and entity coherence is

one of the most interesting issues that emerged from this study, we shall not pursue it any further in the

remaining chapters. Instead, we will continue to explore potential answers for (Q2) using additional

data from a specific application domain.

As mentioned in section 5.2 of the previous chapter, GNOME-LAB represents the genre of inter-

est, namely human-authored museum labels. Additional constraints on text structuring can be imposed

by a particular application. The domain of application is represented in our study by the MPIRO sys-

tem which lacks informative RRs and specifies rather simple preferences for sentence planning. What

is more, because the corpus from MPIRO is much larger than the available data in GNOME, it makes

it possible to address the issues of power and generalisability raised in this chapter. In the following

chapters we describe the experimental efforts within the context of MPIRO and how these relate to

the study in GNOME.

behaviour of biographies awaits future work.





Chapter 7

Initial experiments on the MPIRO domain

This chapter presents our initial experiments on data from the MPIRO system which are appropriate

for the task performed bySEEC. We begin with the aims of our study and an overview of the avail-

able data. Then, we present the results of our experiments and compare them with the results from

GNOME-LAB reported in the previous chapter. The chapter concludes with a summary of the main

findings from the two investigated datasets.

7.1 Motivation and aims

As mentioned in section 5.2 of chapter 5, GNOME-LAB represents the genre of interest in our study.

Additional constraints on text structuring can be imposed by a particular application. The MPIRO

system provides us with the opportunity to investigate the performance of the metrics on data from an

existing NLG system and was chosen as the application-specific domain of our study. Hence, the aim

of this chapter is to use data from MPIRO to answer (Q2), first defined in section 3.7 of chapter 3 and

repeated throughout the thesis:

Q2: Which metrics of entity coherence constitute the most promising candidates for text structuring?

Moreover, we investigate whether the findings from MPIRO are similar to the results obtained from

GNOME-LAB in order to identify which of these results apply to a real application such as MPIRO.

As we already mentioned in section 2.5 of chapter 2, MPIRO is the multilingual extension of

ILEX. At the time that our experiments took place, the main difference between MPIRO and ILEX was

that the database of MPIRO did not represent rhetorical relations. Hence, MPIRO is a predominantly

entity-based NLG domain which prima facie appears to be very suitable for our purposes. In the next

two sections, we present the acquired data in more detail and comment on their portability to the task

performed bySEEC.
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7.2 Database facts in MPIRO

Our application-specific corpus, MPIRO-PROP, contains 122 ordered sets of propositions (facts) and

is a subset of the 880 orderings employed in Dimitromanolaki and Androutsopoulos (2003). Dimitro-

manolaki and Androutsopoulos (2003) derived the facts from the database of the MPIRO system and

assigned them to sets, each set of propositions being treated as a hypothetical input to text structur-

ing. Each set consisted of 6 facts which were manually assigned an order to reflect what a domain

expert (EM) considered to be the most natural ordering of the corresponding sentences in the text to

be generated.

An example of a set of facts as ordered by EM is shown in (7.1):1

(7.1) a. subclass(exhibit1, amphora):

This exhibit is an amphora.

b. creation-period(exhibit1, archaic-period):

This exhibit comes from the archaic period.

c. period-story(archaic-period, entity-4009):

The archaic period ranges from 700 to 480 BC.

d. creation-time(exhibit1, date-894):

This exhibit dates from the early 5th century BC.

e. painting-technique-used(exhibit1, red-figure-technique):

This exhibit was painted using the red figure technique.

f. technique-description(red-figure-technique, entity-2474):

In the red figure technique, the background was painted black and the figures that

were predesigned had the natural color of the clay.

The dataset in Dimitromanolaki and Androutsopoulos (2003) was divided into ten disjoint parts,

each of which was used for testing while the other 9 parts were used for training. Each time, two

standard machine learning (ML) algorithms were applied to the orderings of EM in the training set to

specify the most natural ordering of the facts. The information that the ML algorithms primarily used

was the fact-type (predicate), i.e. “subclass”, “creation-period”, etc.2 A set of classifiers informed by

the results of ML was then used to generate an order for each set of facts in the testing set. This text

1Each fact is accompanied with a context-independent realisation of its content, derived by EXPRIMO, MPIRO’s gen-
eration engine. More details on realising facts out of context are given in section 9.2.3 of chapter 9.

2Note that some fact-types in Dimitromanolaki and Androutsopoulos (2003) express information on the generic type of
the entity that appears as their Arg1. For instance, the generic fact-type “story” is broken down into a set of fact-types such
as “period-story”, “painter-story”, etc.
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structuring technique did significantly better than two baselines in terms of their average precision

when compared to the orderings of EM.

We obtained 225 randomly sampled orderings from the dataset of Dimitromanolaki and Androut-

sopoulos (2003).3 In the next section, we explain in more detail how the acquired data were trans-

formed into the inputs toSEECand why our evaluation had to be restricted to only a subset of them.

7.3 Computing the inputs to SEEC

As we explained in section 2.4.2 of chapter 2 in some detail, we regard the Arg1 of a fact as the CP

of the corresponding CF list. Hence, example (7.1) above readily gives rise to the BfC in (7.2).4 Note

that, unlike Dimitromanolaki and Androutsopoulos (2003), the information thatSEECrelies on is not

the fact-types, but directly the arguments of the facts.

(7.2) a. CF(exhibit1, amphora)

b. CF(exhibit1, archaic-period)

c. CF(archaic-period, entity-4009)

d. CF(exhibit1, date-894)

e. CF(exhibit1, red-figure-technique)

f. CF(red-figure-technique, entity-2474)

In our preliminary experimentation, we found out that a large part of the randomly selected corpus

was not informative for our purposes. An example of such an ordering, accompanied by the context-

independent realisations of the facts it consists of, is given in (7.3):

(7.3) a. subclass(exhibit41, lekythos):

This exhibit is a lekythos.

b. original-location(exhibit41, attica):

This exhibit originates from Attica.

c. creation-time(exhibit41, date-4475):

This exhibit dates from between 475 and 470 BC.

3I am grateful to Aggeliki Dimitromanolaki for providing me with the random samples used in this study and in the
experiments reported in chapter 9. As the chapter shows, experimenting with a reasonably large sample makes it easy to
identify which data are indeed meaningful for our purposes and investigate potential differences with GNOME-LAB.

4Many thanks to David Schlangen for writing the program which translates the acquired data into a format appropriate
for SEEC. Note that, like (7.2a), CF1 always comes from the fact with the “subclass” predicate. Since the database of
MPIRO does not record RRs, we did not have to specify CF lists for local RS-trees.
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d. painting-technique-used(exhibit41, red-figure-technique):

This exhibit was painted using the red figure technique.

e. exhibit-depicts(exhibit41, entity-4492):

This exhibit depicts an athlete preparing to perform a long jump.

f. current-location(exhibit41, national-archaeological-athens):

This exhibit is currently displayed in the National Archaeological Museum of Athens.

All CF lists in the BfC from (7.3) have the same CP, namelyexhibit41. When such a BfC is used

as the input toSEEC, all metrics return 100% for the percentage of permutations classified in Equal

because every permutation of the CF lists is assigned the same score as the BfC. The BfCs which

display this behaviour define the class ofAllEq .

AllEq accounts for 45.78% (103/225) of the BfCs from the randomly sampled orderings. Luckily,

more than half of the dataset (122/225, 54.22%) gives rise to BfCs which do not score the same

as every permutation of their semantic content. This set of 122 corpus instances defines MPIRO-

PROP, the application-specific corpus of our study.5 Following our standard methodology defined in

chapter 5, MPIRO-PROP gave rise to the inputs toSEEC together with the metrics in Table 3.11 of

chapter 3.6

7.4 Results

In this section, we report the main results of the experiments on MPIRO-PROP. We begin with the

average classification rate (Y) of each metric, an often informative summary statistic. Then, we at-

tempt to answer (Q2) in a set of pairwise comparisons with the baseline M.NOCB. The results in each

section are discussed in comparison with the corresponding findings in GNOME-LAB. The chapter

concludes with a summary of the main findings from the two investigated datasets.

7.4.1 Average classification rate

The fourth column in the first section of Table 7.1 shows the average classification rate of the metrics

on the BfCs from MPIRO-PROP. The metrics are sorted according to the returned value of Y from

5In general, ordering the CF lists of a BfC from AllEq is considered to be a problem that is tackled very crudely by
the employed metrics of entity coherence, e.g. by choosing randomly one ordering. Although section 9.7 of chapter 9
provides some evidence that the ordering task in AllEq is less constrained than in MPIRO-PROP, it is plausible that other
preferences, unrelated to entity coherence as modelled by the metrics, do exist in AllEq as well. In this sense, the algorithms
in Dimitromanolaki and Androutsopoulos (2003), which make only indirect use of the notion of entity coherence, are much
more informed than any metric of entity coherence in the way they order the data from AllEq. However, at this stage we
are only interested in comparing the metrics with each other and not with alternative approaches. An experimental design
towards that direction is outlined in section 9.6.5 of chapter 9.

6As in GNOME-LAB, the permutation strategy used in the experiments was alwaysnot1. The search strategy was
always EX. See section 5.4.1 of chapter 5 for more details on these terms.
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MPIRO-PROP GNOME-LAB

Finite Finite-RR

Metric Better Equal Y Metric Y Metric Y

M.BFP 13.76 12.30 19.91 M.NOCB 19.95 M.NOCB 23.24

M.MIL 7.70 24.73 20.06 M.POT1 20.34 M.SHOT1 26.15

M.NOCB 7.75 25.34 20.42 M.SHOT1 20.77 M.POT1 26.81

M.SHOT1 14.13 17.32 22.79 M.MIL 23.47 M.MIL 27.91

M.POT1 19.55 11.48 25.29 M.SH 29.05 M.SH 30.66

M.SH 11.74 44.90 34.18 M.BFP 33.01 M.BFP 33.39

M.KP 34.13 38.04 53.15 M.CHEAP 57.23 M.KP 56.87

M.CHEAP 65.42 31.23 81.04 M.KP 58.22 M.CHEAP 62.10

N 122 N 20 N 12

Table 7.1: Average classification rate (Y=Better+Equal/2) in MPIRO-PROP and GNOME-LAB

lowest to highest. The percentage of Better and Equal permutations for each metric is also reported

as well as the number of BfCs (N). The last four columns of Table 7.1 show the performance of the

metrics in Finite and Finite-RR in the same order as in Table 6.1 of section 6.5.1.

Whilst M.NOCB is found to have the lowest Y for both BfC versions in GNOME-LAB, it is

overtaken slightly in MPIRO-PROP by two metrics, M.BFP and M.MIL, which do not do as well

in GNOME-LAB. The relative positions of the other metrics in MPIRO-PROP do not appear to be

very different from GNOME-LAB with M.SHOT1 and M.POT1 immediately following M.NOCB,

whereas M.KP and M.CHEAP have the greatest classification rates and always appear last in the

Table.7

In the following section, we report on the pairwise comparisons of the metrics in MPIRO-PROP

which investigate a) whether the baseline is beaten by the two metrics with the lowest Y and b) which

metrics are overtaken by the baseline in a similar way as in GNOME-LAB.

7.4.2 Pairwise comparisons with M.NOCB

Table 7.2 presents an overview of the winners of the pairwise comparisons with M.NOCB in MPIRO-

PROP and GNOME-LAB. Table 7.3 shows the details of the pairwise comparisons in MPIRO-PROP.8

7Also note that MPIRO-PROP is similar to GNOME-LAB in that on average the BfC appears close to the top 20% of
alternative permutations when these permutations are ranked according to their probability of being selected as the output of
the hypothetical text structuring algorithm in section 5.5.1 of chapter 5. As we argued in section 6.5.1, this result indicates
that although the ordering of CF lists in the BfC might not be completely minimising the observed number ofNOCBs it does
optimise on the number of potentialNOCBs to a certain extent.

8See section 6.5.2 of the previous chapter for clarifications on the notation used in the Tables.
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Pair Winner

MPIRO-PROP GNOME-LAB

Finite Finite-RR

M.NOCB vs M.CHEAP M.NOCB M.NOCB M.NOCB

M.NOCB vs M.KP M.NOCB M.NOCB M.NOCB

M.NOCB vs M.BFP ns M.NOCB ns

M.NOCB vs M.SH M.NOCB ns ns

M.NOCB vs M.MIL M.MIL ns ns

M.NOCB vs M.SHOT1 M.NOCB ns ns

M.NOCB vs M.POT1 M.NOCB ns ns

Table 7.2: Winners of pairwise comparisons with M.NOCB in the two datasets (MPIRO-PROP and

GNOME-LAB)

Pair M.NOCB p Sig Winner

lower greater ties

M.NOCB vs M.CHEAP 110 12 0 0.000 *** M.NOCB

M.NOCB vs M.KP 103 16 3 0.000 *** M.NOCB

M.NOCB vs M.BFP 41 31 49 0.121 ns

M.NOCB vs M.SH 100 17 5 0.000 *** M.NOCB

M.NOCB vs M.MIL 0 6 116 0.016 * M.MIL

M.NOCB vs M.SHOT1 44 14 64 0.000 *** M.NOCB

M.NOCB vs M.POT1 52 11 59 0.000 *** M.NOCB

N 122

Table 7.3: Details of pairwise comparisons with M.NOCB in MPIRO-PROP
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As Table 7.2 reveals, a striking commonality between the results from the two datasets is the very

bad performance of M.CHEAP and M.KP compared to the baseline. Indeed, M.NOCB in MPIRO-

PROP is even stronger than in GNOME-LAB, since it manages to beat M.SH, M.SHOT1 and M.POT1

in addition to M.CHEAP and M.KP.

Even though Table 7.1 reports Y(M.BFP, MPIRO-PROP) to be somewhat lower than Y(M.NOCB,

MPIRO-PROP), M.NOCB is actually found to have a lower classification rate than M.BFP for 41 BfCs

in Table 7.3, while M.BFP has a lower classification rate than M.NOCB for only 31 BfCs. Despite

the fact that the difference in the number of BfCs is not significant, inability to beat the baseline in

the pairwise comparison is not good news for M.BFP, as explained in section 6.5.2 of the previous

chapter.9

Thus, it seems that the most genuine competitor of M.NOCB in MPIRO-PROP is M.MIL. Note

that the two metrics differ only on 6 BfCs, all of which return a greater classification rate for M.NOCB

than for M.MIL. In all other cases, the classification rate of the two metrics is the same. In the next

section, we investigate the difference between the two metrics in more detail using additional data

from GNOME-LAB.

7.4.3 Examining the number of ROUGH-SHIFTs in the BfC

As we mentioned in the previous section, there are 6 BfCs in MPIRO-PROP which return a lower

classification rate for M.MIL than for M.NOCB. Since the classification rate of the two metrics is the

same in all other cases, the pairwise comparison ends up in favour of M.MIL. An example of the 6

corpus instances, accompanied by the associated standard CT transitions in addition to the realisations

of the facts it consists of, is given in (7.4):

(7.4) a. subclass(exhibit26, relief):

This exhibit is a relief.

b. creation-period(exhibit26, classical-period):

This exhibit was created during the classical period.

CONTINUE

c. creation-time(exhibit26, date-5946):

This exhibit dates from circa 470 BC.

CONTINUE

d. location-found(exhibit26, acropolis):

9This is particularly true for the relatively large sample in MPIRO-PROP. Note that M.NOCB versus M.BFP is the only
pairwise comparison failing to reach significance in MPIRO-PROP.
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This exhibit was found in the Acropolis.

CONTINUE

e. current-location(exhibit26, acropolis-museum):

This exhibit is currently displayed in the Acropolis Museum.

CONTINUE

f. region(acropolis-museum, acropolis):

The Acropolis Museum is in the Acropolis.

SMOOTH-SHIFT

Two ROUGH-SHIFTs are created by reversing the order of the last two facts as shown in example (7.5):

(7.5) a. subclass(exhibit26, relief-generic-instance):

This exhibit is a relief.

b. creation-period(exhibit26, classical-period):

This exhibit was created during the classical period.

CONTINUE

c. creation-time(exhibit26, date-5946):

This exhibit dates from circa 470 BC.

CONTINUE

d. location-found(exhibit26, acropolis):

This exhibit was found in the Acropolis.

CONTINUE

f. region(acropolis-museum, acropolis):

The Acropolis Museum is in the Acropolis.

ROUGH-SHIFT

e. current-location(exhibit26, acropolis-museum):

This exhibit is currently displayed in the Acropolis Museum.

ROUGH-SHIFT

Since (7.5) has the same number ofNOCBs as the ordering of EM in (7.4), the two orders are rendered

equivalent by M.NOCB.10 By contrast, M.MIL classifies (7.5) as Worse than (7.4) since its scoring

function takes into account the sum ofROUGH-SHIFTs in addition to the sum ofNOCBs. The 6 BfCs
10In this example, the BfCs of (7.4) and (7.5) do not contain anyNOCBs. However, 2 of the 6 BfCs in question contain

oneNOCB.
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MPIRO-PROP

ROUGH-SHIFTs in BfC M.NOCB

lower greater ties

none - 6 116

one or more - - -

Finite

ROUGH-SHIFTs in BfC M.NOCB

lower greater ties

none - 6 9

one or more 5 - -

Finite-RR

ROUGH-SHIFTs in BfC M.NOCB

lower greater ties

none - 4 4

one or more 4 - -

Table 7.4: Distribution of the BfCs according to a) their number of ROUGH-SHIFTs and b) the result of

M.NOCB versus M.MIL in MPIRO-PROP, Finite and Finite-RR

for which M.MIL is found to have a lower classification rate than M.NOCB are all cases like (7.4),

where it is possible to reorder the semantic content of the BfC in such a way as to create at least

one additionalROUGH-SHIFT without causing moreNOCBs. These additionalROUGH-SHIFTs are

penalised by M.MIL, but not taken into account by M.NOCB.

As the top section of Table 7.4 shows, MPIRO-PROP does not contain any BfCs with one or more

ROUGH-SHIFTs. GNOME-LAB, however, includes BfCs withROUGH-SHIFTs. Hence, it allows us to

explore how this property of the BfC relates with the result of the pairwise comparison of M.NOCB

versus M.MIL in more detail.

The remaining sections of Table 7.4 show the distribution of the BfCs in GNOME-LAB according

to their number ofROUGH-SHIFTs and the results of the pairwise comparison of M.NOCB versus

M.MIL. Crucially, both in Finite and Finite-RR, when the BfC has at least oneROUGH-SHIFT, then

the classification rate of M.NOCB is always lower than M.MIL. Like MPIRO-PROP, when the BfC

does not contain aROUGH-SHIFT, then the classification rate of M.NOCB is either the same or greater

than the classification rate of M.MIL.

On the one hand, the proportion of BfCs without aROUGH-SHIFT in GNOME-LAB for which

M.MIL beats M.NOCB (6/15 in Finite and 4/8 in Finite-RR) appears to be greater than in MPIRO-
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PROP (6/122). On the other hand, the table shows that BfCs with at least oneROUGH-SHIFT do exist

outside MPIRO-PROP, which always result in the classification rate for M.NOCB being lower than

for M.MIL. In these cases, the penalty imposed forROUGH-SHIFTs by M.MIL is too great to allow

these BfCs to score better than permutations that have the same number ofNOCBs but do not contain

anyROUGH-SHIFTs.

In conclusion, when a BfC does not haveROUGH-SHIFTs, the classification rate of M.MIL might

or might not be lower than the classification rate of M.NOCB. Crucially, when a BfC has at least

oneROUGH-SHIFT, then the classification rate of M.MIL is always greater than the classification rate

of M.NOCB. Thus, the significantly better performance of M.MIL in its pairwise comparison with

M.NOCB is probably due an idiosyncrasy of MPIRO-PROP, namely, the complete lack of BfCs with

at least oneROUGH-SHIFT.

7.4.4 Discussion

The results in section 7.4.2 suggest that there will be proportionally more permutations with a higher

probability of being selected than the BfC if M.CHEAP or M.KP are used instead of M.NOCB

to structure a semantic content similar to what is provided by MPIRO (modulo AllEq) as well as

GNOME-LAB under the generation scenario in section 5.5.1 of chapter 5. Thus, M.CHEAP and

M.KP can be identified as the least suitable candidates for text structuring (between the ones consid-

ered) both in the specific application domain and in the investigated genre.

The results of the pairwise comparisons of M.NOCB with M.SH, M.SHOT1 and M.POT1 in

GNOME-LAB are not significant. Although we acknowledge that lack of significance per se does not

provide conclusive evidence against the competitors of M.NOCB, the facts that a) the only significant

differences found in GNOME-LAB are in favour of M.NOCB and b) the pairwise comparisons which

do not achieve significance do not reveal any particular tendency in any direction, at the very least

show that M.NOCB is a baseline difficult to beat in GNOME-LAB.

The results from MPIRO-PROP manifest the superiority of M.NOCB in the context of a particular

application quite emphatically since it does significantly better than M.SH, M.SHOT1 and M.POT1

in addition to M.KP and M.CHEAP and cannot be overtaken by M.BFP either. Thus, the only metric

which manages to beat M.NOCB, albeit marginally, is M.MIL. However, as the previous section

shows, this is should be attributed to the absolute lack of BfCs withROUGH-SHIFTs, a feature specific

to MPIRO-PROP.

Given the fact that the data derived from MPIRO were ordered by only one expert, the question

that arises at this point is whether the results from MPIRO-PROP reflect general strategies for ordering

the application-specific data or whether they are specific to this expert.11 In chapter 9, we attempt to

11Note that the same question holds for the evaluation methodology of Dimitromanolaki and Androutsopoulos (2003) as
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answer this question by gathering orderings from other experts and comparing them to the orderings

of EM.

Finally, the analysis in section 7.4.3 can also be taken to suggest that, instead of giving general

priority to one or more metrics for the purposes of text structuring, which metric is the best candidate

to structure a certain semantic content might depend on factors such as whether it is possible to

come up with an ordering containing aROUGH-SHIFT given this input or some relation between

the percentage of possibleROUGH-SHIFTs and their expected frequency in the BfC, etc. Although

we conducted some preliminary work in this direction, the results are not conclusive enough to be

reported in the context of this thesis. Hence, this is another interesting issue which awaits future work

as pointed out in chapter 10.

7.5 Summary of chapters 6 and 7

In summary, both MPIRO-PROP and GNOME-LAB show that significantly more BfCs return a

greater classification rate for M.CHEAP and M.KP than M.NOCB. Hence, M.CHEAP and M.KP

can be identified as the least suitable candidates for text structuring both in the specific application

domain and in the genre of interest.

The pairwise comparisons of M.NOCB with the remaining five metrics in GNOME-LAB show

that none of them manages to overtake the baseline, a result which is interpreted as favouring M.NOCB

over its competitors. The results from MPIRO-PROP manifest the superiority of M.NOCB in the con-

text of a specific application quite emphatically since it does significantly better than most of its

competitors with the exception of M.MIL. However, as section 7.4.3 shows, the marginal difference

in favour of M.MIL should be attributed to the absolute lack of BfCs withROUGH-SHIFTs, a feature

specific to MPIRO-PROP.

Up to now we have made exclusive use of the experimental methodology from chapter 5 which

simply considers the position of the BfC in the explored search space. This has already provided us

with a testable hypothesis, namely that the most promising solution for the purposes of text structuring

is M.NOCB (or M.MIL specifically for MPIRO-PROP).

Even though using either of these metrics for the purposes of text structuring is motivated by the

fact that it is for these candidate solutions that the BfC has best chances of being selected among

its alternatives under the generation scenario in section 5.5.1 of chapter 5, this does not exclude per-

mutations other than the BfC from being selected by M.NOCB or M.MIL with equal or even higher

probability. Clearly, a closer look at (some of) these structures is necessary in order to get a more

complete picture of the orderings favoured by the metrics.

well. However, this question is not relevant to the results from GNOME-LAB, the corpus-instances of which were written
by different authors.
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In the next chapter, the structures that are assigned the best scores by M.NOCB and M.MIL in

MPIRO-PROP are investigated more closely. This introduces an additional, possibly domain-specific,

constraint on entity coherence which motivates the final set of pairwise comparisons. The thesis

concludes with an experiment which extends the study on MPIRO-PROP using orderings produced

by more than one expert.



Chapter 8

The role of PageFocus

The previous chapter recognised M.NOCB and M.MIL as the most promising candidates for text

structuring in the MPIRO domain and identified the structures for which the two metrics differ. This

chapter begins by inspecting the structures that get the best scores by these metrics more closely.

This investigation equips the employed metrics with an additional constraint on entity coherence and

motivates a new set of pairwise comparisons between the modified metrics. In these comparisons, a

number of modified metrics overtake the baseline in MPIRO-PROP, but not in GNOME-LAB. This

identifies a number of promising candidates for text structuring in the particular application domain,

but shows that M.NOCB remains very robust as far as the genre of interest is concerned.

8.1 Motivation

As we mentioned at the end of the previous chapter, inspecting the set of best scoring permutations

for M.MIL and M.NOCB is expected to provide us with a more complete picture of the orderings

favoured by the metrics that are hypothesised to be the most promising solutions for the purposes of

text structuring according to the experimental methodology of chapter 5.

In this section, the orderings that are assigned the best scores by M.NOCB and M.MIL in MPIRO-

PROP are investigated more closely. This introduces an additional constraint on entity coherence

called thePageFocuswhich accounts for differences which are not captured by the definition of the

metrics in chapter 3.

8.1.1 Computing the BestTable

In order to investigate which permutations are assigned the best score by the evaluation function of a

metric M, the algorithm in section 5.4.1 of chapter 5 was modified to output the set of permutations

143
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that are favoured by M. M and a set of CF lists, i.e. the semantic content SCB of a BfC B, serve as the

inputs to the algorithm. The first CF list in B is marked as CF1 in SCB.

The algorithm goes through the complete set of valid permutations of SCB by always placing CF1

in the first position of a permutation and permuting the remaining facts.1 The scoring function of M

is used to calculate a score for each permutation and the permutations are ranked according to their

scores. The output of the algorithm is the set of best scoring permutations according to M denoted as

BestTable(M).2

8.1.2 The PageFocus constraint on entity coherence

In our preliminary investigations we inspected the BestTable of M.NOCB and M.MIL for the semantic

contents of a number of BfCs from MPIRO-PROP. We soon found out that the BestTable of M.NOCB

and M.MIL often contains, among others, the following types of permutations:3

(8.1) a. subclass(exhibit1, amphora):

This exhibit is an amphora.

b. painted-by(exhibit1, painter-of-Kleofrades):

This exhibit was decorated by “the painter of Kleofrades”.

CONTINUE

c. painter-story(painter-of-Kleofrades, entity-4049):

“The painter of Kleofrades” used to decorate big vases.

SMOOTH-SHIFT

d. exhibit-depicts(exhibit1, entity-914):

This exhibit depicts a warrior performing splachnoscopy before leaving for the battle.

NOCB

e. current-location(exhibit1, martin-von-wagner-museum):

This exhibit is currently displayed in the Martin von Wagner Museum.

CONTINUE

f. museum-country(martin-von-wagner-museum, germany):

The Martin von Wagner Museum is in Germany.

SMOOTH-SHIFT

1This operation corresponds to the permutation strategynot1 (see section 5.4.1 of chapter 5).
2When the permutations which score better than the BfC are assigned with different scores by M, BestTable(M) is a

subset of the set of Better permutations the cardinality of which is calculated bySEEC. When no permutation is scoring
Better than the BfC, then the BestTable consists of the permutations classified as Equal bySEEC.

3As in chapter 7, the facts in the examples are accompanied by their context-independent realisations and the associated
standard CT transitions (see section 9.2.3 of chapter 9 for more details).
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(8.2) a. subclass(exhibit1, amphora):

This exhibit is an amphora.

b. painted-by(exhibit1, painter-of-Kleofrades):

This exhibit was decorated by “the painter of Kleofrades”.

CONTINUE

d. exhibit-depicts(exhibit1, entity-914):

This exhibit depicts a warrior performing splachnoscopy before leaving for the battle.

CONTINUE

e. current-location(exhibit1, martin-von-wagner-museum):

This exhibit is currently displayed in the Martin von Wagner Museum.

CONTINUE

f. museum-country(martin-von-wagner-museum, germany):

The Martin von Wagner Museum is in Germany.

SMOOTH-SHIFT

c. painter-story(painter-of-Kleofrades, entity-4049):

“The painter of Kleofrades” used to decorate big vases.

NOCB

The ordering assigned to the set of facts by EM is shown in (8.1), while (8.2) is a permutation with the

same number ofNOCB andROUGH-SHIFT transitions as (8.1).4 Crucially, although both entities are

discourse-old, havingexhibit1 as the CP in theNOCB utterance (8.1d) seems to be a better strategy

than the one followed in (8.2c) where the CP of theNOCB utterance is thepainter-of-Kleofrades.

O’Donnell et al. (2001) setexhibit1 as the focal entity of the whole description which always

consists of a single page of hypertext.5 We will subsequently refer to this entity as thePageFocus

(PF). Note that assigning the PF with a special status also relates to work on CT which discusses

how pragmatic constraints such as situational deixis interact with the prominence of the entities in the

discourse model (e.g. Walker et al. 1994; Turan 1998; Hoffman 1998).

We define the PF as the visually salient entity which initiates the generation process. In terms of

Reiter and Dale (2000, p.81), the PF corresponds to the parameter of the metalevel communicative

goal DescribeExhibit(PF), where PF is the artefact to be described. A particular instantiation of PF

results in the selection of a given set of facts from the database.

4Note that because (8.1) contains fewerCONTINUEs than (8.2), it scores worse than (8.2) according to M.BFP.
5The main difference between (8.2) and an ILEX-like resumption is that (8.2c) is not followed by utterances providing

additional information about thepainter-of-Kleofrades. See sections 2.1.3, 2.1.4 and 2.4.4 of chapter 2 for more details
on the role of resumption in the text structure assumed by ILEX.



146 Chapter 8. The role of PageFocus

Since both examples contain the same number ofNOCBs (and noROUGH-SHIFTs), neither

M.NOCB nor M.MIL can distinguish them from each other. In fact, because the phenomenon in

question is more related to the type of theNOCB transition rather than whether aNOCB can be avoided

or not, it cannot be accounted for by any metric employed in chapter 3. Hence, in order to differentiate

between examples (8.1) and (8.2), we postulate a distinction between two types ofNOCB:

• Plain NOCB where, given a pair of utterances violatingCONTINUITY, the CP of the second

utterance is the PF:

(8.1’) c. painter-story(painter-of-Kleofrades, entity-4049):

“The painter of Kleofrades” used to decorate big vases.

SMOOTH-SHIFT

d. exhibit-depicts(exhibit1, entity-914):

This exhibit depicts a warrior performing splachnoscopy before leaving for the battle.

NOCB, CP=PF=exhibit1

• NOCBPF∗ where, given a pair of utterances violatingCONTINUITY, the CP of the second utter-

ance isnot the PF:

(8.2’) f. museum-country(martin-von-wagner-museum, germany):

The Martin von Wagner Museum is in Germany.

SMOOTH-SHIFT

c. painter-story(painter-of-Kleofrades, entity-4049):

“The painter of Kleofrades” used to decorate big vases.

NOCBPF∗, CP6=PF=exhibit1

Further to this, aNOCBPF∗ is taken to be a more serious violation of entity coherence than aNOCB.

Then, aPF-modifiedset of metrics can be defined by incorporating the definition ofNOCBPF∗ to the

scoring functions of the metrics employed in chapter 3. As shown in Table 8.1, the scoring function

of each PF-modified metric computes the sum ofNOCBPF∗s independently from the other scores.6

The evaluation method of each PF-modified metric first compares a pair of permutations with

respect to the sum ofNOCBPF∗s. The permutation with the smallest sum ofNOCBPF∗s wins the

competition. Thus, all PF-modified metrics will now prefer example (8.1) over (8.2). If the sum of

NOCBPF∗s is found to be the same, then the permutations are compared using the rest of the scores

6Obviously, Sum(NOCBPF∗) in e.g. PF.NOCB excludes all plainNOCBs. We will refer to M.NOCB from Table 3.11 in
chapter 3 as the non-PFcounterpartof PF.NOCB.
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Name Scoring Function

PF.NOCB Sum(NOCBPF∗), Sum(NOCB)

PF.CHEAP Sum(NOCBPF∗), Sum(CHEAP∗)
PF.MIL Sum(NOCBPF∗), Sum(NOCB)+Sum(ROUGH-SHIFT)

PF.SH Sum(NOCBPF∗), Sum(NOCB)+Sum(COH∗)
PF.KP Sum(NOCBPF∗), Sum(NOCB)+Sum(COH∗)+Sum(CHEAP∗)+Sum(SAL∗)
PF.SHOT1 Sum(NOCBPF∗), Sum(NOCB), Sum(COH∗)
PF.POT1 Sum(NOCBPF∗), Sum(NOCB), Sum(COH∗), Sum(CHEAP∗), Sum(SAL∗)
PF.BFP Sum(NOCBPF∗), Sum(CONTINUE), Sum(RETAIN), Sum(SMOOTH-SHIFT), Sum(ROUGH-SHIFT)

Table 8.1: Scoring functions of the modified metrics which compute the sum of NOCBPF∗s indepen-

dently from other scores

in the same way as for their non-PF counterparts. The details of this operation have already been

discussed in chapter 3.7

8.2 Experimental questions

The previous section motivated the PF-modification of the metrics as a way for distinguishing between

examples (8.1) and (8.2). In the remainder of the chapter, the PF-modified metrics are engaged into a

series of pairwise comparisons to estimate the effect of the PF-modification on the task performed by

SEEC.8

First, we investigate whether computing the sum ofNOCBPF∗s independently fromNOCBs in a

metric lowers the classification rate compared to its non-PF counterpart. A lower classification rate

for a PF-modified metric compared to its non-PF counterpart shows that there are proportionally fewer

permutations with a higher probability of being selected than the BfC when the PF-modified metric is

used to guide the hypothetical text structuring algorithm in section 5.5.1 of chapter 5. In this case, the

PF-modification increases the suitability of the metric for text structuring. We continue with the main

experimental question, now reformulated as (Q2’):

Q2’: Which PF-modified metrics of entity coherence constitute the most promising candidates for

text structuring?

7Note that utterance (3.2b) in section 3.1.2 of chapter 3 is aNOCBPF∗. However, the only difference in the way that
the PF-modified metrics evaluate the examples in chapter 3 is that PF.CHEAP prefers (3.1) over (3.2), whereas M.CHEAP
renders them equivalent.

8The permutation strategy and the search strategy in the set of experiments reported in this chapter were the same as
the ones specified in chapter 6 and chapter 7 for the BfCs from GNOME-LAB and MPIRO-PROP respectively. The only
difference is that instead of using the metrics in Table 3.11 of chapter 3 as the input toSEECwe used their PF-modifications
in Table 8.1 above.
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PF-modified non-PF

Metric Better Equal Y Metric Y

PF.KP 6.46 12.40 12.66 M.BFP 19.91

PF.BFP 7.22 11.48 12.96 M.MIL 20.06

PF.SH 6.74 13.85 13.66 M.NOCB 20.42

PF.POT1 8.38 11.46 14.11 M.SHOT1 22.79

PF.MIL 7.90 12.49 14.15 M.POT1 25.29

PF.SHOT1 8.38 11.71 14.24 M.SH 34.18

PF.NOCB 7.96 13.05 14.48 M.KP 53.15

PF.CHEAP 2.73 26.33 15.90 M.CHEAP 81.04

N 122

Table 8.2: Average classification rate (Y=Better+Equal/2) for PF-modified and non-PF metrics in

MPIRO-PROP

This question is answered by comparing the performance of the new baseline PF.NOCB with the

rest of the metrics in Table 8.1. Like the previous chapter, the results obtained from GNOME-LAB

are compared to the findings from MPIRO-PROP to identify which of characteristics of the genre of

interest apply to a real application such as MPIRO.

8.3 Results from MPIRO-PROP

8.3.1 Average classification rate

Table 8.2 shows the average classification rate of the PF-modified metrics sorted in ascending order

as well as the percentages of Better and Equal permutations and the number of BfCs (N) in MPIRO-

PROP. The last two columns of the Table are a reminder of the Y values of the non-PF counterparts

of the metrics (already reported in the fourth column of Table 7.1 in the previous chapter).

A couple of interesting preliminary observations can be made with respect to Table 8.2. First, Y

of every metric is lower in PF-modified than in non-PF. In this context, Y(PF.KP, MPIRO-PROP) with

12.66%, much lower than the 53.15% of Y(M.KP, MPIRO-PROP), appears as the lowest Y among

the PF-modified metrics.

Second, even though the classification rate of the baseline Y(PF.NOCB, MPIRO-PROP) is lower

than Y(M.NOCB, MPIRO-PROP) - 14.48% versus 20.42% respectively, it turns out to be the second

greatest Y value, which indicates a number of metrics with the potential of overtaking the baseline in

the pairwise comparisons.
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Pair non-PF p Sig Winner

lower greater ties

M.NOCB vs PF.NOCB 3 55 64 0.000 *** PF.NOCB

M.SH vs PF.SH 14 105 3 0.000 *** PF.SH

M.SHOT1 vs PF.SHOT1 3 55 64 0.000 *** PF.SHOT1

M.POT1 vs PF.POT1 3 55 64 0.000 *** PF.POT1

M.BFP vs PF.BFP 2 53 67 0.000 *** PF.BFP

M.MIL vs PF.MIL 3 55 64 0.000 *** PF.MIL

M.KP vs PF.KP 15 105 2 0.000 *** PF.KP

M.CHEAP vs PF.CHEAP 15 105 2 0.000 *** PF.CHEAP

N 122

Table 8.3: Details of comparisons of each PF-modified metric with its non-PF counterpart in MPIRO-

PROP

In the next two subsections, we answer the experimental questions defined in the previous sec-

tion by employing the signtest to identify significant differences between the number of BfCs that

contribute to each average score in MPIRO-PROP.

8.3.2 Differences between PF-modified and non-PF metrics

Table 8.3 shows the details of the comparison of each PF-modified metric with its non-PF counterpart

in MPIRO-PROP.9 As the Table shows, in all cases the non-PF counterpart has a greater classification

rate in significantly more BfCs than its PF-modification. Thus, the winner of the comparison is always

the PF-modified metric. This in turn means that consideringNOCBPF∗s as different fromNOCBs

helps the metrics improve their performance in MPIRO-PROP. In terms of the generation scenario in

section 5.5.1 of chapter 5, using any PF-modified metric instead of its non-PF counterpart to structure

a semantic content defined according to MPIRO-PROP is expected to increase the chances of the BfC

being selected over its alternatives as the output of the hypothetical algorithm.

8.3.3 Pairwise comparisons with PF.NOCB

After having established that a PF-modified metric returns a lower classification rate for significantly

more BfCs than its non-PF counterpart in MPIRO-PROP, we turn our attention to (Q2’) above. Ta-

ble 8.4 shows the details of the comparison of the new baseline PF.NOCB with the rest of the PF-

9See section 6.5.2 of chapter 6 for clarifications on the notation used in the Tables.
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Pair PF.NOCB p Sig Winner

lower greater ties

PF.NOCB vs PF.CHEAP 67 52 3 0.100 ns

PF.NOCB vs PF.KP 12 27 83 0.013 * PF.KP

PF.NOCB vs PF.BFP 9 23 90 0.011 * PF.BFP

PF.NOCB vs PF.SH 13 26 83 0.027 * PF.SH

PF.NOCB vs PF.MIL 0 6 116 0.016 * PF.MIL

PF.NOCB vs PF.SHOT1 10 11 101 0.500 ns

PF.NOCB vs PF.POT1 9 12 101 0.332 ns

N 122

Table 8.4: Details of pairwise comparisons with metric PF.NOCB in MPIRO-PROP

modified metrics in MPIRO-PROP.

By contrast to what is reported in the previous chapter for the non-PF metrics, computing

NOCBPF∗s independently fromNOCBs makes it possible for a number of PF-modified metrics (namely

PF.KP, PF.BFP and PF.SH) in addition to PF.MIL to overtake the baseline. First, it is worth noting

that the result of the pairwise comparison of PF.NOCB versus PF.MIL is due to the same 6 BfCs

which render M.MIL winner over M.NOCB (see Table 7.3 and section 7.4.3 of the previous chapter

for more details). Hence, PF.MIL retains the marginal, possibly domain-specific, superiority of its

non-PF counterpart over the baseline irrespective of the PF-modification.

Although M.BFP is unable to overtake the baseline (again see Table 7.3 in section 7.4.2 of the

previous chapter), its PF-modification manages to do so. However, the metrics that benefit most

spectacularly from the PF-modification are PF.KP and PF.SH: Although their non-PF counterparts

are badly beaten by M.NOCB, the PF-modifications of these metrics, perhaps somehow surprisingly,

manage to overtake the new baseline PF.NOCB in the same way as PF.MIL and PF.BFP.

In accordance to the methodological point in section 5.5.3 of chapter 5, the metrics which overtake

the baseline are compared with each other to identify additional differences. The details of these

comparisons are displayed in Table 8.5. While most differences are not significant, PF.SH is overtaken

by PF.KP and PF.BFP. This shows that although PF.SH beats the baseline, it is quite often doing worse

than two of its competitors, which makes it a less favourable candidate solution than them. Hence,

the comparisons in Table 8.5 reveal a dispreference for M.SH but no significant preference for any

other PF-modified metric. Consequently, PF.KP, PF.BFP and PF.MIL are identified, at this point, as

the most promising candidates for text structuring in MPIRO-PROP.10

10Arguably, PF.MIL could be seen as the simplest metric of the three. Note that the 6 BfCs that differentiate PF.MIL from



8.3. Results from MPIRO-PROP 151

MPIRO-PROP

Pair PF.SH p Sig Winner

lower greater ties

PF.SH vs PF.KP 1 20 101 0.000 *** PF.KP

PF.SH vs PF.BFP 6 28 88 0.000 *** PF.BFP

Pair PF.MIL p Sig Winner

lower greater ties

PF.MIL vs PF.KP 13 21 88 0.115 ns

PF.MIL vs PF.BFP 10 17 95 0.124 ns

PF.MIL vs PF.SH 16 20 86 0.309 ns

Pair PF.KP p Sig Winner

lower greater ties

PF.KP vs PF.BFP 18 11 93 0.133 ns

N 122

Table 8.5: Details of comparisons of PF-modified metrics overtaking the baseline with each other
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Finite Finite-RR

Metric Better Equal Y Metric Better Equal Y

PF.MIL 14.00 15.78 21.89 PF.NOCB 16.19 21.07 26.73

PF.NOCB 13.77 16.70 22.13 PF.MIL 20.89 15.91 28.85

PF.POT1 18.06 9.20 22.66 PF.SHOT1 23.40 12.76 29.78

PF.SHOT1 15.77 13.89 22.72 PF.SH 23.44 13.27 30.07

PF.SH 15.88 14.25 23.01 PF.POT1 28.41 5.25 31.04

PF.BFP 18.38 11.40 24.08 PF.BFP 28.12 6.29 31.26

PF.KP 19.58 14.95 27.05 PF.CHEAP 23.93 15.68 31.76

PF.CHEAP 22.46 14.15 29.54 PF.KP 25.90 12.92 32.36

N 20 N 12

Table 8.6: Average classification rate (Y=Better+Equal/2) of PF-modified metrics in GNOME-LAB

8.4 Results from GNOME-LAB

In this section we investigate the performance of the PF-modified metrics in GNOME-LAB and com-

pare it with MPIRO-PROP. We start by reporting the average classification rate of each metric with

and without the PF-modification. Then, we present the results of our statistical analysis.

8.4.1 Average classification rate

Table 8.6 shows the Y values as well as the percentage of Better and Equal permutations for the

PF-modified metrics and the number of BfCs in the Finite and Finite-RR versions of GNOME-LAB,

whilst Table 8.7 repeats the Y values of the non-PF metrics from Table 6.1 in chapter 6. As always,

the metrics are ranked in ascending order according to Y.

The situation in GNOME-LAB seems to be rather different from MPIRO-PROP. First,

Y(PF.NOCB, Finite) and Y(PF.NOCB, Finite-RR) appear quite high up in Table 8.6. Moreover, as

Table 8.7 shows, M.NOCB returns lower values than all PF-modified metrics in both BfC versions.

In the remainder of the chapter, these tendencies are examined more closely and compared with the

results from MPIRO-PROP.
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Finite Finite-RR

PF-modified non-PF PF-modified non-PF

Metric Y Metric Y Metric Y Metric Y

PF.MIL 21.89 M.NOCB 19.95 PF.NOCB 26.73 M.NOCB 23.24

PF.NOCB 22.13 M.POT1 20.34 PF.MIL 28.85 M.SHOT1 26.15

PF.POT1 22.66 M.SHOT1 20.77 PF.SHOT1 29.78 M.POT1 26.81

PF.SHOT1 22.72 M.MIL 23.47 PF.SH 30.07 M.MIL 27.91

PF.SH 23.01 M.SH 29.05 PF.POT1 31.04 M.SH 30.66

PF.BFP 24.08 M.BFP 33.01 PF.BFP 31.26 M.BFP 33.39

PF.KP 27.05 M.CHEAP 57.23 PF.CHEAP 31.76 M.KP 56.87

PF.CHEAP 29.54 M.KP 58.22 PF.KP 32.36 M.CHEAP 62.10

N 20 N 12

Table 8.7: Average classification rate (Y) of PF-modified and non-PF metrics in GNOME-LAB

Pair non-PF p Sig Winner

lower greater ties

M.NOCB vs PF.NOCB 9 2 9 0.033 * M.NOCB

M.SH vs PF.SH 8 6 6 0.395 ns

M.SHOT1 vs PF.SHOT1 9 2 9 0.033 * M.SHOT1

M.POT1 vs PF.POT1 8 2 10 0.055 ns

M.BFP vs PF.BFP 7 8 5 0.500 ns

M.MIL vs PF.MIL 9 5 6 0.212 ns

M.KP vs PF.KP 4 14 2 0.015 * PF.KP

M.CHEAP vs PF.CHEAP 4 16 0 0.006 ** PF.CHEAP

N 20

Table 8.8: Details of comparisons of each PF-modified metric with its non-PF counterpart in Finite
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Pair non-PF p Sig Winner

lower greater ties

M.NOCB vs PF.NOCB 6 0 6 0.016 * M.NOCB

M.SH vs PF.SH 5 5 2 0.500 ns

M.SHOT1 vs PF.SHOT1 6 0 6 0.016 * M.SHOT1

M.POT1 vs PF.POT1 6 0 6 0.016 * M.POT1

M.BFP vs PF.BFP 3 6 3 0.254 ns

M.MIL vs PF.MIL 6 4 2 0.377 ns

M.KP vs PF.KP 3 9 0 0.073 ns

M.CHEAP vs PF.CHEAP 3 9 0 0.073 ns

N 12

Table 8.9: Details of comparisons of each PF-modified metric with its non-PF counterpart in Finite-RR

8.4.2 Differences between PF-modified and non-PF metrics

Table 8.8 and Table 8.9 show the details of the comparisons of each PF-modified metric with its non-

PF counterpart in the two ways of computing the BfC in GNOME-LAB. Table 8.10 compares the

results from GNOME-LAB with the results from MPIRO-PROP.

As Table 8.10 shows, whereas a PF-modified metric always beats its non-PF counterpart in MPIRO-

PROP, M.NOCB, M.SHOT1 and M.POT1 have a lower classification rate for significantly more BfCs

than their PF-modifications in both BfC versions in GNOME-LAB.11 This means that considering

NOCBPF∗s as different fromNOCBs lowers the performance of these metrics in GNOME-LAB, in-

stead of improving it as in MPIRO-PROP. Note that a number of comparisons in GNOME-LAB do

not reach significance.

Even though failing to reach significance in some pairwise comparisons might be due the small

sample in GNOME-LAB, the fact that M.NOCB beats PF.NOCB in both ways of representing the

BfCs is enough to show that the effect ofNOCBPF∗s on the performance of the metrics in GNOME-

LAB is not the same as in MPIRO-PROP. This result also shows that M.NOCB remains very robust,

and should be retained as the baseline in subsequent comparisons with the PF-modified metrics.

The only PF-modified metrics in GNOME-LAB which have a lower classification rate for signif-

PF.NOCB are distributed in such a way that the comparisons of PF.MIL with the other three metrics that overtake PF.NOCB
fail to reach significance. However, the tendency against PF.NOCB appears to be inherited to the comparisons with PF.MIL,
especially as far as PF.KP and PF.BFP are concerned.

11Although the result of the comparison M.POT1 vs PF.POT1 in Finite is not significant (see Table 8.8), it is very close
to p=0.05 and in the same direction as the corresponding comparison in Finite-RR which does achieve significance.
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Pair Winner

GNOME-LAB MPIRO-PROP

Finite Finite-RR

M.NOCB vs PF.NOCB M.NOCB M.NOCB PF.NOCB

M.SH vs PF.SH ns ns PF.SH

M.SHOT1 vs PF.SHOT1 M.SHOT1 M.SHOT1 PF.SHOT1

M.POT1 vs PF.POT1 ns M.POT1 PF.POT1

M.BFP vs PF.BFP ns ns PF.BFP

M.MIL vs PF.MIL ns ns PF.MIL

M.KP vs PF.KP PF.KP ns PF.KP

M.CHEAP vs PF.CHEAP PF.CHEAP ns PF.CHEAP

Table 8.10: Winners of comparisons of each PF-modified metric with its non-PF counterpart in

GNOME-LAB and MPIRO-PROP

icantly more BfCs than their non-PF versions are PF.KP and PF.CHEAP in Finite.12 This is perhaps

not very surprising given the very bad performance of M.KP and M.CHEAP in GNOME-LAB, as

already reported in section 6.5.2 of chapter 6.

The question which now arises is whether PF.KP and PF.CHEAP, the only two metrics that bene-

fit from the PF-modification for significantly more BfCs than their non-PF counterparts in GNOME-

LAB, can overtake the retained baseline M.NOCB. Other potential PF-modified competitors of

M.NOCB are PF.SH, PF.BFP and PF.MIL which do not appear to benefit from the PF-modification

in GNOME-LAB as much as PF.KP and PF.CHEAP, but might still be able to do better than their

non-PF counterparts in the pairwise comparison with M.NOCB.13 These questions are addressed in

the next section.

8.4.3 Pairwise comparisons with M.NOCB

So far we have shown that computingNOCBPF∗s independently fromNOCBs does not boost the perfor-

mance of the metrics in GNOME-LAB as clearly as it does in MPIRO-PROP. Moreover, M.NOCB re-

mains a very robust baseline in GNOME-LAB, although some PF-modified metrics (namely

PF.CHEAP, PF.KP, PF.BFP, PF.SH, PF.MIL) might still challenge it. Since these metrics, except

for PF.CHEAP, were found to overtake the new baseline PF.NOCB in MPIRO-PROP (see Table 8.4

12A difference in the same direction, failing to reach significance, is also observed in Finite-RR (see Table 8.9).
13PF.SHOT1 and PF.POT1 are not regarded as “potential PF-modified competitors” of M.NOCB because as Table 8.10

shows, they are beaten by their non-PF counterpart (which in turn fails to overtake M.NOCB as reported in section 6.5.2 of
chapter 6).
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Finite

Pair M.NOCB p Sig Winner

lower greater ties

M.NOCB vs PF.CHEAP 11 6 3 0.116 ns

M.NOCB vs PF.KP 13 3 4 0.017 * M.NOCB

M.NOCB vs PF.BFP 11 3 6 0.029 * M.NOCB

M.NOCB vs PF.SH 11 3 6 0.029 * M.NOCB

M.NOCB vs PF.MIL 9 5 6 0.212 ns

N 20

Finite-RR

Pair M.NOCB p Sig Winner

lower greater ties

M.NOCB vs PF.CHEAP 9 3 0 0.073 ns

M.NOCB vs PF.KP 10 1 1 0.006 ** M.NOCB

M.NOCB vs PF.BFP 9 3 0 0.073 ns

M.NOCB vs PF.SH 8 2 2 0.055 ns

M.NOCB vs PF.MIL 7 3 2 0.172 ns

N 12

Table 8.11: Details of comparisons of metric M.NOCB with potential PF-modified competitors in

GNOME-LAB

in section 8.3.3) we are interested to see whether GNOME-LAB returns similar results.

Table 8.11 shows the details of the pairwise comparisons of M.NOCB, the retained baseline in

GNOME-LAB, with the metrics that were recognised as its potential PF-modified competitors at

the end of the previous section. Table 8.12 compares the winners of the pairwise comparisons with

M.NOCB in Table 8.11 with the winners of its corresponding comparisons with the non-PF metrics

from section 6.5.2 of chapter 6.

As the Tables show, the PF-modification in GNOME-LAB is not enough for the PF-modified

metrics to overtake M.NOCB. Clearly, this does not abide by the findings from MPIRO-PROP where

a number of PF-modified metrics overtake the baseline (albeit in a larger sample). Crucially, PF.KP,

one of the metrics which beats the baseline in MPIRO-PROP, is overtaken by M.NOCB even though it

benefits from the PF-modification in GNOME-LAB. Note that all pairwise comparisons which reach

significance are in favour of M.NOCB while the remaining comparisons are in the same direction as

well. Keeping the limitations imposed by the small sample sizes in mind, these results indicate that the
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GNOME-LAB

PF-modified Winner non-PF Winner

Finite Finite-RR Finite Finite-RR

PF.CHEAP ns ns M.CHEAP M.NOCB M.NOCB

PF.KP M.NOCB M.NOCB M.KP M.NOCB M.NOCB

PF.BFP M.NOCB ns M.BFP M.NOCB ns

PF.SH M.NOCB ns M.SH ns ns

PF.MIL ns ns M.MIL ns ns

Table 8.12: Winners of pairwise comparisons of metric M.NOCB with some PF-modified metrics and

their non-PF counterparts

PF-modified metrics are as unable to beat the baseline as their non-PF counterparts in GNOME-LAB,

contrary to what happens in MPIRO-LAB.

8.5 Summary and discussion

In summary, this chapter introduces a modification of the metrics in chapter 3 by computing the sum

of NOCBPF∗s separately fromNOCBs. This yields a significant improvement in the performance of

the metrics in MPIRO-PROP, but not in GNOME-LAB. Thus, the PF constraint on entity coherence

does not appear to characterise the whole of the investigated genre as represented by GNOME-LAB,

but is useful for, albeit specific to, structuring the data from MPIRO-PROP.

In terms of the generation scenario that the metrics are tested to be suitable for, the chances of

the BfC to be the output of text structuring are increased when data similar to MPIRO-PROP serve as

the input and certain PF-modified metrics guide the hypothetical algorithm. However, if the input is

replaced with a semantic content similar to what comes from GNOME-LAB, then the chances of the

BfC to be selected are better when the algorithm is driven by M.NOCB instead of the PF-modified

metrics. Hence, although a number of promising candidates for text structuring have emerged in

the particular application domain, M.NOCB remains very robust as far as the genre of interest is

concerned.

Consequently, the case still is that even though M.NOCB appears to be the most promising candi-

date among its alternatives in the investigated genre, on average around 20% of the permutations are

more likely to be selected than the BfC (see Table 8.7). Clearly, M.NOCB needs to be supplemented

by other features to improve its performance, although this cannot be achieved with the help of the PF

constraint or the computation of RRs in the BfC (see sections 6.5.3 and 6.5.4 of chapter 6 for more



158 Chapter 8. The role of PageFocus

discussion). Hence, although M.NOCB is good starting point to investigate the effect of entity coher-

ence in the genre of interest, the factors that can supplement it to build a more efficient text structuring

metric remain unclear to us.

The PF-modification of the metrics resulted from the inspection of the best scoring permutations

for the best performing metrics in chapter 7. As far as MPIRO-PROP is concerned, this modification

accounts for differences between the BfC and some of the best scoring permutations that previously

remained undetected under the definition of the metrics in chapter 3. Note, however, that the exper-

imental methodology used to evaluate the PF-modified metrics in this chapter is the same as before.

Thus, the BfC remains the only point of reference and the methodology continues to be agnostic

about the felicity of other permutations that might also be favoured by the new best performing met-

rics. Hence, an even closer look at these permutations is in order before drawing the final conclusions

about the suitability of the best PF-modified metrics for text structuring.

Another pending question is whether the results from MPIRO-PROP reflect an ordering strategy

solely followed by EM (the expert who ordered the data derived from MPIRO) or a more general

strategy for ordering the data from the particular application domain. In order to answer this question,

orderings from more than one expert on the same type of data need to be acquired and compared to

the orderings of EM.

In the next chapter, we present the final evaluation experiment which first attempts to shed some

more light on the last issue by computing the average distance between the orderings of EM and

the orderings of other experts on additional data from MPIRO-PROP. Then, the same performance

measure used to investigate the differences between the experts is used to evaluate the best performing

metrics and the two baselines employed so far in terms of the average distance of their best scoring

permutations from the orderings of the experts. This distance is compared to the distances between

the orderings of the experts and a) each other and b) a random baseline, which serve as the upper and

the lower bound of the evaluation respectively. This study supplements the experimental methodology

of chapter 5 and concludes our experimental efforts in the MPIRO domain.
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Using data from more than one expert

A question not addressed so far is whether the results from MPIRO-PROP are specific to EM (the

expert who ordered the information derived from MPIRO) or whether they reflect more general strate-

gies for ordering the application-specific data. In order to answer this question in a general way in

this chapter, the dataset from MPIRO-PROP is enhanced with orderings provided by more than one

expert. Then, the distance between EM and her colleagues is computed and compared to the distance

between her colleagues and each other. The results indicate that EM shares a lot of common ground

with two of her colleagues in the ordering task, while another “stand-alone” expert who uses strategies

not shared by the rest of the experts is identified as well.

The same methodology used to investigate the distance between the experts is used to automati-

cally evaluate the best scoring orderings of some of the the best performing metrics in chapter 8, as

well as the two previously employed baselines. More specifically, distances are computed and com-

pared between the orderings of the experts and a) each other, b) the orderings of a random baseline,

c) the best scoring orderings of some of the best performing metrics so far and d) the best scoring or-

derings of the two previously employed baselines. This attempts to account for a number of possible

deficiencies of the main methodology employed in the experiments previously reported in the thesis.

The results provide additional evidence in favour of the PF constraint on entity coherence which

is shown not to be specific to EM but shared by her colleagues to a great extent. They also indicate

that the distance between the orderings of the experts and the best scoring orderings of each metric is

significantly smaller than the distance between the orderings of the experts and the orderings of the

random baseline. Hence, all metrics are superior to the random baseline.

However, only one PF-modified metric manages to return a distance from the experts which is not

significantly different from the distance of the orderings between the experts and each other. Hence,

this metric is identified as the one that performs best across all evaluation tasks and can be rendered

as the most promising candidate for text structuring in MPIRO-PROP among the ones investigated.

159
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9.1 Motivation and aims

The data, aims and requirements of this study differ from the ones reported in previous chapters of the

thesis. To begin with, one open question behind the results from MPIRO-PROP is whether they should

be attributed solely to EM or whether they express more general strategies for ordering the data from

the particular application. In an attempt to answer this question, more than one expert is presented

with additional sets of facts, similar to the ones that the data in MPIRO-PROP consist of, and asked

to provide us with an ordering for each set. These orderings are then compared with the orders of EM

in a general way using the methodology of Lapata (2003) (see section 9.4 for more details).

More than one expert may give rise tomore than onecorpus instance for each set of facts. Cru-

cially, the “parallel corpus” collected for this study can prove useful for investigating the performance

of the metrics even further. Although the experimental methodology of chapter 5 can be extended to

account for the data collected in this study, this will still isolate each BfC as theonly permutation of

interest. As we mentioned repeatedly in the previous two chapters, because this methodology con-

siders only the position of the BfC in the search space, it remains agnostic about the felicity of other

permutations that might score Equal to or Better than the BfC according to the metric which is as-

sumed to drive the text structuring process. As the metrics are compared on their ability to single out

the BfC as the most desirable output, the possibility that there might actually exist additional equally

good solutions is also ignored.

In order to account for these possible deficiencies, we investigateall best scoring permutations for

the best performing metrics so far even more closely than in the previous chapter and compare them

with the orderings of the multiple experts.1 Interestingly, the same dependent variable which allows

us to investigate how different the orders of EM are from the orders of her colleagues can also be

used to evaluate the metrics of interest using the complete set of best scoring permutations. This not

only reveals interesting points about the best scoring orderings for each metric, but also serves as an

additional evaluation test in the sense that will be made clearer in section 9.5.

The dependent variable employed in this study is thedistance between two orderings, defined

more precisely in section 9.4. Because consulting more than one expert is a time-consuming proce-

dure, it can easily be done on a small scale but is more difficult to extend to the complete dataset in

MPIRO-PROP. For this reason, the study takes place on a smaller set of data and is restricted to fewer

metrics than in the last two chapters. The metrics employed in this chapter are PF.BFP, PF.KP and

PF.MIL (that is, the three metrics that outperform the PF-modified baseline but do not differ signifi-

cantly from each other)2 as well as the two previously used baselines PF.NOCB and M.NOCB. The

1Note that, as stated in section 8.1.1 of the previous chapter, these permutations might be a subset of the permutations
used to calculate the classification rate.

2PF.SH is not taken into account as it is beaten by PF.BFP and PF.KP (see Table 8.5 in section 8.3.3 of chapter 8).
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study is designed to explore the specific issues explained in the previous paragraphs, although it can

also be seen as specifying a different, more general, evaluation methodology which is valid to apply

to all metrics, provided that a larger dataset of multiple orderings is created.

Hence, the primary aim of the main experiment, the results of which are reported in section 9.6,

is to estimate the average distance between (the orderings of) the human experts3 and:

a) each other:

This information is first used to investigate the difference between the orderings of EM and her

colleagues. Then, it used as the upper bound in the analysis of the performance of the metrics.

b) the orderings that are assigned the best scores by the metrics in question:

By investigating the difference between a) and b) one can estimate how the metrics perform in

comparison to the upper bound.

c) a random baseline:

This information is used as the lower bound in the subsidiary evaluation of the metrics.

9.1.1 Secondary experiment

In addition to the main experiment, the first score, i.e. the distance between the experts and each other,

is used in a secondary experiment which investigates the difference between AllEq and MPIRO-PROP,

the two datasets identified in section 7.3 of chapter 7. As we already mentioned in that section, the

orderings in MPIRO-PROP are awarded with different scores for their entity coherence as estimated

by the metrics. By contrast, in AllEq all orderings are completely equivalent with respect to their

entity coherence and are not meaningful for our purposes.

Assuming that entity coherence is important for the experts in their search for a good ordering, it

is to be expected that the distance between their outputs in the Testitems from MPIRO-PROP will be

smaller than the distance in AllEq, since the space of the most entity coherent solutions in AllEq is

much wider than in MPIRO-PROP. Hence, the aim of the secondary experiment is to specify whether

the distance between the experts and each other computed on data from AllEq is indeed larger than

the distance between the experts and each other computed on data from MPIRO-PROP. The results of

this study are reported in section 9.7.

3Throughout the chapter we often refer to e.g. “the distance between the orderings of the experts” with the phrase “the
distance between the experts”, etc. for the sake of brevity.
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9.2 Gathering additional data

In addition to the data used in the studies reported in chapter 7 and chapter 8, 16 sets of facts were

randomly selected from the dataset of Dimitromanolaki and Androutsopoulos (2003). We will subse-

quently refer to each unordered set of facts as aTestitem. As mentioned in section 7.2 of chapter 7, the

facts that each Testitem consists of are ordered according to the instructions of an expert working for

the MPIRO project (EM). Being appropriate for the task performed bySEEC, the 16 orderings of EM

are similar to the 122 corpus instances in MPIRO-PROP. These data are supplemented with 6 addi-

tional randomly selected orderings belonging to AllEq which were used in our secondary experiment.

Following the procedure in section 7.3 of chapter 7, each Testitem gave rise to a set of CF lists

(semantic content), which was then used as the input to the algorithm in section 8.1.1 of chapter 8.

Using a metric M and each semantic content as its inputs, the algorithm outputs the permutations that

score best according to M (BestTable).

As specified in the previous section, the members of the BestTable (BestOrders) were generated

for the semantic content of each Testitem using PF.BFP, PF.KP and PF.MIL as well as the two base-

lines PF.NOCB and M.NOCB as subsequent inputs to the algorithm.

9.2.1 Examining the BestOrders

An examination of the BestOrders generated by the metrics showed that for quite a few Testitems, the

metrics output the same set of BestOrders. More specifically, PF.MIL and PF.NOCB output identical

BestTables for all 16 Testitems. This is not very surprising given that, as we saw in section 8.3.3

of the previous chapter, the difference between PF.MIL and PF.NOCB is due to a specific type of

construction with relatively low frequency in MPIRO-PROP (6/122). For this reason, the dataset of

this study cannot be used to investigate the difference between PF.MIL and PF.NOCB in more detail

than already done in section 7.4.3 of chapter 7.

Further to this, the remaining three PF-modified metrics (PF.BFP, PF.KP and PF.NOCB) output

the same BestTable as M.NOCB for 6 Testitems. In one additional case, the BestOrders are the same

for the three PF-modified metrics, but distinct from the BestOrders of M.NOCB. Hence, there are 7

Testitems in total for which the three PF-modified metrics output identical BestTables.

The differences in the BestOrders of the three PF-modified metrics for the remaining 9 Testitems

are summarised in Figure 9.1. As the Figure shows, there are 4 Testitems for which PF.KP out-

puts 2 more BestOrders, denoted asORn+1 andORn+2, in addition to the BestOrders of PF.BFP and

PF.NOCB, which are identical with each other and with the remaining BestOrders in the BestTable of

PF.KP.4 Finally, for the remaining 5 Testitems, PF.NOCB outputs two additional BestOrders, denoted

4Note thatn might differ from one Testitem to another.
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BestOrders BestOrders

PF.BFP/PF.NOCB︷ ︸︸ ︷
OR1, ...,ORn ,ORn+1,ORn+2︸ ︷︷ ︸

PF.KP

PF.BFP/PF.KP︷ ︸︸ ︷
OR1, ...,ORn,ORn+1,ORn+2︸ ︷︷ ︸

PF.NOCB

N of Testitems: 4 N of Testitems: 5

Figure 9.1: Differences in BestOrders for PF.NOCB, PF.BFP and PF.KP

asORn+1 andORn+2, to the identical BestTables of PF.BFP and PF.KP.

9.2.2 Implementing a random baseline

A random baseline was implemented as the lower bound of the analysis. The random baseline (RB)

consists of 10 randomly selected permutations for each Testitem. The permutations are selected irre-

spective of their scores for the various metrics.

As mentioned in section 9.1, the upper bound of the evaluation is defined by orderings provided

by the experts, in our case archaeologists trained in museum labelling. Our methods for preparing the

data which were used to consult the experts are described in the next section.

9.2.3 Realising facts as sentences

In order to consult experts who, unlike EM, are not familiar with MPIRO’s underlying representation,

the facts in each Testitem were realised as sentences with the help of EXPRIMO, MPIRO’s generation

engine.5 More specifically, first EXPRIMO was invoked to generate descriptions of the PF in each set

of facts.6 For instance, the PF of the set of facts in example (9.1) isexhibit36:

(9.1) • subclass(exhibit36, kylix)

• creation-period(exhibit36, classical-period)

• period-story(classical-period, entity-8555)

• creation-time(exhibit36, date-4956)

• original-location(exhibit36, attica)

5The same methodology was used for the realisation of the sentences which correspond to MPIRO’s facts in the examples
used throughout the thesis.

6We remind the reader that the PF is the artefact to be described, which initiates the generation process. See section 8.1.2
of the previous chapter for more details.
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• current-location(exhibit36, museum-of-art-toledo)

Asking EXPRIMO to generate a description forexhibit36 gives rise to the following text:

This exhibit is a kylix. It was created during the classical period. The classical period
ranges from 480 to 323 BC. It was defined by the rise in the political supremacy of Athens
(its “golden age”) and the expansion of the Greek world under the rule of Alexander the
Great of Macedonia. This kylix dates from circa 480 BC. It originates from Attica and it
is currently displayed in the Museum of Art of Toledo.

Then, the author and another computational linguist experienced in MPIRO identified which clause in

the generated description corresponds to each fact.7 The corresponding clauses in this example are:

subclass:[This exhibit is a kylix.] creation-period:[It was created during the classical
period.] period-story:[The classical period ranges from 480 to 323 BC.] ...creation-
time:[This kylix dates from circa 480 BC.]original-location:[It originates from Attica]
andcurrent-location:[it is currently displayed in the Museum of Art of Toledo.]

After the clauses had been identified, all pronouns were replaced with full noun phrases in order to be

presented to the experts out of context. This gives rise to the following set of sentences realising the

facts in (9.1):8

(9.2) • subclass(exhibit36, kylix):

This exhibit is a kylix.

• creation-period(exhibit36, classical-period):

This exhibit was created during the classical period.

• period-story(classical-period, entity-8555):

The classical period ranges from 480 to 323 BC.

• creation-time(exhibit36, date-4956):

This exhibit dates from circa 480 BC.

• original-location(exhibit36, attica):

This exhibit originates from Attica.

• current-location(exhibit36, museum-of-art-toledo):

This exhibit is currently displayed in the Museum of Art of Toledo.

7When the clauses in a generated description did not realise all facts in a Testitem, then EXPRIMO was invoked again to
generate a new description for the same PF so that all facts were eventually realised by a clause in at least one description. I
am grateful to Aggeliki Dimitromanolaki for providing me with the Testitems and EM’s corpus instances used in this study,
invoking EXPRIMO and helping me identify which sentence realises each fact.

8Because some facts are occasionally realised by canned text which might span more than one sentence and can be more
sophisticated than the output of deep generation, some of the realisations were simplified so that they look similar to the
deep generated ones. However, we tried to keep changes to a necessary minimum, in order not to deviate substantially from
the surface output of EXPRIMO.
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9.3 Interviews with experts

Three experts (E1, E2, E3), one male and two females, between 28 and 45 years of age, all trained in

cataloguing and museum labelling, were recruited from the Department of Classics at the University of

Edinburgh.9 Each expert was consulted by the author in a separate interview. First, she was presented

with a set of instructions describing the ordering task. The full text of the instructions is given in

appendix D and is adapted from the instructions used in Barzilay et al. (2002).10

The instructions mention that the expert will be presented with sets of six sentences which come

from a computer program that generates descriptions of artefacts in a virtual museum.11 The first

sentence for each set will be given by the experimenter.12 The task of the expert is to order the

remaining five sentences in a coherent text.

When ordering the sentences, the expert was instructed to consider which ones should be together

and which should come before another in the text without using hints other than the sentences them-

selves. She could revise her ordering at any time by moving the sentences around. When she was

satisfied with the ordering she produced, she was asked to write next to each sentence its position, and

give them to the experimenter in order to perform the same task with the next randomly selected set

of sentences.

During the experiment, the expert was encouraged to share any comments or questions she might

have with the author. The experiment was followed by an informal interview where the expert com-

mented on the difficulty of the task, the strategies she had followed, etc. In the interview, all experts

recognised the task as an interesting and familiar problem which they undertook with enthusiasm.

9.4 Dependent variable

Given an unordered set of sentences and two possible orderings OR1 and OR2, a number of measures

can be employed to calculate the distance between the orderings, such as Spearman’srs, Kendall’s

τ, etc. Howell (2002, p.309) argues that Kendall’sτ has a more straightforward interpretation than

Spearman’s coefficient:

If a pair of objects is sampled at random, the probability that two judges will rank these
objects in the same order isτ times higher than the probability that they will rank them in
the reverse order.

9Many thanks to Katerina Kolotourou for her invaluable assistance in recruiting the experts.
10These instructions are available online at http://www1.cs.columbia.edu/˜noemie/ordering/experiments/
11Each sentence was printed on a different filecard. The filecards were presented to the experts in sets according to

the design of the experiment. From the sets of sentences presented to the experts, 16 correspond to the Testitems from
MPIRO-PROP and 6 to sets of facts from AllEq.

12This is the sentence corresponding to the fact with the “subclass” predicate.
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A B C D E F

E1 1 2 3 4 5 6

E2 1 5 6 2 3 4

Table 9.1: Example of orders for sentences A to F from two experts E1 and E2

Lapata (2003) uses Kendall’sτ in a series of experiments which evaluate the performance of a prob-

abilistic text structuring model in comparison to orderings provided by human judges. Kendall’sτ

appears to be very appropriate for our purposes as well since this study is very similar to the one

reported by Lapata (2003).13

Kendall’s τ penalises inverse rankings and is sensitive to the fact that some sentences may be

ordered next to each other even though their absolute orders might differ. Its calculation is based on

the number ofinversionsbetween the two orderings and is defined in (9.3):

(9.3) τ = 1− 2I
PN

= 1− 2I
N(N−1)/2

wherePN stands for the number of pairs of sentences andN is the number of sentences to be ordered.14

I stands for the number of inversions, that is, the number of adjacent transpositions necessary to bring

one order to another. Assume, for example, that the orders produced by two experts E1 and E2 for a

Testitem consisting of 6 sentences A, B, C, D, E, F are the ones displayed in Table 9.1.

The sentences in the second row of Table 9.1 are indexed from 1 to 6 according to the order given

by E1 and lines are drawn to connect the sentences which are given different positions by E2. The

number of inversionsI can be calculated by counting the number of intersections between the lines.

In this example there are six intersections, and therefore six inversions.

Kendall’s τ ranges from -1 (inverse ranks) to 1 (identical ranks). Thehigher the τ value, the

smaller the distance between the orderings of the two experts. Theτ value in our example is 0.20,

which indicates that the two orderings are not very close to each other.

9.4.1 Calculating significance

Eachτ value can be associated with azscore which indicates whether the orderings of the two experts

are significantly close to or away from each other. The formula for calculating thezscore for aτ value

from Howell (2002) is given in (9.4):

(9.4) z= τ/
√

2(2N+5)
9N(N−1)

13Special thanks to Maria Lapata for providing me with the scripts for the computation ofτ and appropriate data formating
together with her extensive and prompt advice on their use.

14In our caseN is always equal to 6.
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In our example, sinceτ is equal to 0.20, the associatedz score is 0.56, which is not significant

(p=0.288). This, in turn, means that in this example the orderings of the two experts are not signifi-

cantly close to each other.15

Using the formula in (9.4), one can calculate that the absoluteτ value of the orderings of two

experts for a given Testitem that consists of 6 sentences has to be 0.696 or greater to achieve signifi-

cance. In that case, the associated absolutez score is at least 1.96, which corresponds to a p value of

0.025, the threshold of significance for a two-tailed prediction.

Since calculatingz is possible for every single Testitem and a given pair of experts, a useful way

for summarising the performance of two experts across many Testitems is to report the percentage

of Testitems for which the orders of the experts are significantly close to or away from each other.

Indeed, in order to investigate the difference between the Testitems from MPIRO-PROP and the ones

from AllEq in section 9.7 we use a descriptive statistic like this, among other means.

However, using the same approach to estimate the performance of a metric runs into two problems.

First, since each metric outputs more than one ordering, we need to somehow reward it for an ordering

that is significantly close to the expert’s order, but penalise it for every ordering that is not. Even if

one comes up with a good formula to express this tradeoff, it might still be difficult to say whether the

difference with the upper bound, in this case the percentage of Testitems for which the orders of two

experts are significantly close, is significant.

A more straightforward analysis which uses directly the complete set ofτ values as the dependent

variable comes from Lapata (2003). Instead of calculating the percentage of items which achieve

a significantz score, Lapata (2003) estimates whether the average distance between the orderings

of the human judges and each other is significantly different from the average distance between the

orderings of the judges and the ones of her stochastic model. In what follows, we will show how the

methodology of Lapata (2003) applies to our experimental set-up.

9.4.2 Computing the distance between the experts

As we have already mentioned, for a Testitem TEST1, which is ordered by e.g. EM and E1,τ can be

used to computeτ(EM.OR1,E1.OR1,TEST1) as the distance measure between EM.OR1 and E1.OR1,

i.e. the orderings of EM and E1 for TEST1:

EM E1

TEST1 EM.OR1 E1.OR1 → τ(EM.OR1,E1.OR1,TEST1)

First, we calculate a set ofτ values for each Testitem in the dataset:

15Clearly, this is different from saying that the two orderings are significantly away from each other, which can only be
shown when a negativeτ value is associated with a significantly lowz score.
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EM E1

TEST1 EM.OR1 E1.OR1 → τ(EM.OR1,E1.OR1,TEST1)

... ... ...

TESTN EM.ORN E1.ORN → τ(EM.ORN,E1.ORN,TESTN)

Theaverageτ, T(EME1), is the mean of theτ values, and can be used to express the average distance

between the (orderings of) EM and the (orderings of) E1 in the complete dataset of cardinality N:16

(9.5) T(EME1) = τ(EM.OR1,E1.OR1,TEST1)+...+τ(EM.ORN,E1.ORN,TESTN)
N

Assume now that two additional experts E2 and E3 give the following set ofτ and T values for the

distance of their orderings from EM:

EM E2 E3

TEST1 EM.OR1 E2.OR1 E3.OR1 → τ(EM.OR1,E2.OR1,TEST1) τ(EM.OR1,E3.OR1,TEST1)

... ... ...

TESTN EM.ORN E2.ORN E3.ORN → τ(EM.ORN,E2.ORN,TESTN) τ(EM.ORN,E3.ORN,TESTN)

Average: T(EME2) T(EME3)

As in Lapata (2003), significant differences between the average T scores can be investigated with

the help of the Tukey test. Provided that an omnibus ANOVA has revealed a significant main effect

of the factor DISTANCE, the Tukey test can be used to specify which of the conditionsd1, ...,dn

that DISTANCE consists of differ significantly. It uses the set of meansm1, ...,mn (corresponding

to conditionsd1, ...,dn) and the mean square error of the scores that contribute to these means to

calculate a critical difference between any two means. An observed difference between any two

means is significant if it exceeds the critical difference.

In our example, the test performs all possible pairwise comparisons between the three means,

T(EME1), T(EME2) andT(EME3), to specify whether the average distance between EM and another

expert e.g. E1 is significantly different from the average distance between EM and either of her other

two colleagues, in this case either E2 or E3.

Since all judges involved in the study are ab initio taken to be of equivalent expertise, in the actual

analysis we compute all possible T scores to estimate the distance between each expert and each of

her colleagues. That is, we do not simply computeT(EME1), T(EME2) andT(EME3) as above, but

alsoT(E1E2), T(E1E3) andT(E2E3). The 6 T scores give rise to 15 pairwise comparisons, with the

Tukey test used to specify which differences are significant.

16As already pointed out, we often refer to “the distance between the orderings of EM and the orderings of E1” as “the
distance between EM and E1”, etc.
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9.4.3 Computing the distance between the experts and a metric

Assume now that a metric M outputs K BestOrders, M.OR1.1 ... M.OR1.K, as the members of the

BestTable of TEST1. Aτ value can be computed for the distance between the order provided by EM

and each BestOrder:

EM M

M.OR1.1 → τ(EM.OR1,M.OR1.1,TEST1)

TEST1 EM.OR1 ... ...

M.OR1.K → τ(EM.OR1,M.OR1.K,TEST1)

The average distance between the order of EM and the BestOrders of M for TEST1,T(EMM,TEST1),

is given by the formula:17

(9.6) T(EMM,TEST1) = τ(EM.OR1,M.OR1.1,TEST1)+...+τ(EM.OR1,M.OR1.K,TEST1)
K

Consequently, the average distance between (the orders of) EM and (the orders of) M,T(EMM) often

referred to as “the distance between EM and M”, for N Testitems is calculated as follows:

(9.7) T(EMM) = T(EMM ,TEST1)+...+T(EMM ,TESTN)
N

Hence, one can compare the average distance between M and an expert e.g.T(EMM) with the distance

between M and another expert e.g.T(E1M). Moreover, one can compare e.g.T(EMM) with T(EME1)

to see whether EM stands closer to M than to E1, etc. Clearly, as the remainder of the chapter shows,

this sort of analysis can be extended to scores involving M and all available experts.

In the next two sections, we present the analysis of the differences in the average distance be-

tween the orders provided by the experts and a) each other, b) the best scoring orders of the four

metrics employed in this study (PF.BFP, PF.KP, PF.NOCB, M.NOCB) and c) the orders of RB using

the Testitems from MPIRO-PROP. We start by formulating our predictions. Then, we report which

predictions were verified.

9.5 Main experiment: Predictions

As Barzilay et al. (2002) report, differences between humans in the way they order sentences are

not uncommon. Hence, it is difficult to make very specific predictions with respect to the average

distance between the orderings of the experts and each other. On the other hand, one expects the

experts to share some common ground in the way they put sentences in order. In this sense, some

17The distance between EM and RB for TEST1,T(EMRB,TEST1) is computed as the average of theτ values for the 10
randomly chosen orderings for TEST1.
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of the distances between them should be short and not significantly different from each other. Thus,

a particularly welcome result for our purposes would be to show that the average distance between

EM and her colleagues is short and not significantly different from the distance between most of her

colleagues and each other, although it might be the case that some other significant differences in the

distances between the experts arise. This will show that EM is not a “stand-alone” expert but deviates

from her colleagues to the same extent as they deviate from each other.

Despite the potential differences between the experts, we do expect that the distance between the

orders of the experts and each other will be significantly lower than the distance between the orders of

the experts and the orders of RB. This is again based on the assumption that even though the experts

might not follow identical strategies, they do not operate with complete diversity either. In this sense,

for a given pair of experts EM and E1, we predict thatT(EME1) will be significantly greater than both

T(EMRB) andT(E1RB), etc.

Since the metrics are found to produce the same BestTable for quite a few Testitems (see sec-

tion 9.2.1), it is possible that they do not differ significantly from each other with respect to their

average distance from the experts. For instance, it might be hard to expect e.g.T(EMPF.BFP) to be

significantly different fromT(EMPF.NOCB), since the scores that contribute to both means are identical

for 11 out of the 16 Testitems.

Although PF.BFP outperforms PF.NOCB according to the analysis in section 8.3.3 of the previous

chapter, the different aims and requirements of this study (pointed out in section 9.1) mean that this

result does not need to be replicated here. Rather than comparing the metricsdirectly with each other,

this study examines their behaviour with respect to the upper and the lower bound. We anticipate that

this will not only reveal interesting points about the best scoring orderings for each metric, but can

also allow us to compare the metrics with each other, albeitindirectly , in a sense that will be made

clearer in the next paragraph.

What is crucial for the analysis is the difference of the T scores that involve the metrics from the

upper and the lower bound. That is, although the average distance between a metric and an expert

might not differ significantly from the average distance of another metric and the same expert, each

T score may or may not differ significantly from the upper and the lower bound of the analysis.

For instance, even thoughT(EMPF.NOCB) andT(EMPF.BFP) might not be significantly different from

each other, it could be the case than one of them is significantly different from e.g. eitherT(EME1)

or T(EMRB) andT(E1RB) but the other one is not.

We identify the best metrics in this study as the ones whose T scores i) are significantly greater

from the T scores involving the experts and RB and ii) do not differ significantly from the T scores

that involve the experts and each other.18

18Criterion (ii) can only be applied provided that the distance between the experts and at least one metric is found to
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EME1: ** ** **

0.692 EME2: ** ** **

0.717 E1E2: ** ** **

0.758 EME3:

CD at 0.01: 0.338 0.258 E1E3:

CD at 0.05: 0.282 0.300 E2E3:

F(5,75)=14.931, p<0.000 0.192

Table 9.2: Comparison of distances between the experts (EM, E1, E2, E3) and each other

As we mentioned in the beginning of the chapter, this experiment is an additional evaluation test

for the best performing metrics in the previous studies. This test may help us identify trends and

differences that previously remained undetected. Clearly, a metric that has already done well in the

previous chapters, gains extra bonus by performing well in an additional test. Hence, as far as the

evaluation of the metrics goes, this study attempts to answer the following general question:

Q3: Which of the metrics that were previously identified as outperforming the baseline survive an

additional evaluation task?

9.6 Results of main experiment

9.6.1 Distances between the experts and each other

As the first step in our analysis, we computed the 6 average T scores for the 4 experts, namely

T(EME1), T(EME2), T(EME3), T(E1E2), T(E1E3) andT(E2E3). Then we performed all compar-

isons between them using the Tukey test, the results of which are summarised in Table 9.2.

The cells in the Table report the level of significance returned by the Tukey test when the difference

between two distances exceeds the critical difference (CD). Significance beyond the 0.05 threshold

is reported with one asterisk (*), while significance beyond the 0.01 threshold is reported with two

asterisks (**). A cell remains empty when the difference between two distances does not exceed the

critical difference. For example, the value ofT(EME1) is 0.692 and the value ofT(EME3) is 0.258.

Since their difference exceeds the CD at the 0.01 threshold, it is reported to be significant beyond that

level by the Tukey test.19

be significantly lower that the distance between the experts and each other. Then, if the distance between the experts and
another metric does not differ significantly from the distance of the experts with each other, the latter metric is among the
best performing metrics in the study.

19The Table also reports the result of the omnibus ANOVA that uses all scores contributing to the means compared by
the Tukey test, which shows a significant main effect of the factor DISTANCE: F(5,75)=14.931, p<0.000. As we explained
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The Table shows that the average T scores for the distance between EM and E1 or E2, i.e.

T(EME1) andT(EME2), as well as the average T for the distance between E1 and E2, i.e.T(E1E2),

are significantly greater than the average T scores achieved by E3 and any of the three aforementioned

experts, i.e.T(EME3), T(E1E3), andT(E2E3). Further to this, the differences betweenT(EME1),

T(EME2), andT(E1E2) are not significant or approaching significance. The same is true for the

differences betweenT(EME3), T(E1E3), andT(E2E3).

The comparison ofT(EME1) with T(EME2) shows that the distance between the orderings of

EM and the orderings of E1 is not significantly different from the distance between her orderings and

the orderings of E2. Moreover, neither distance is significantly different fromT(E1E2), the distance

between E1 and E2. This shows that the three experts deviate from each other to more or less the same

extent.

Note that these three T values are quite high, which can be taken as an indication that on average

the orderings of the three experts are quite close to each other. The fact that the T scores are high and

not significantly different from each other suggests that EM, E1 and E2 share quite a lot of common

ground in the ordering task. Hence, EM is found to give rise to similar orderings to the ones of E1

and E2, deviating from them only as much as they deviate from each other.

However, when any of the previous distances is compared with a distance that involves the order-

ings of E3 the difference is significant. In other words, although the orderings of E1 and E2 seem to

deviate from each other and the orderings of EM to more or less the same extent, the orderings of E3

stand much further away from all of them. Hence, although there exists a “stand-alone” expert among

the ones consulted in our studies, this is not EM but E3.

This finding can be easily explained if we consider that E3 employed domain communication

knowledge (Kittredge et al. 1991) as her only constraint for the ordering task. As pointed out in her

informal interview, E3 followed the very schematic way shown in Figure 9.2 for ordering the sentences

presented to her. This schema gives rise to significantly lower T scores for the distance between her

orderings and the orderings of the other experts compared to the distance between the orderings of the

other experts and each other.

Although the schema implemented by E3 might indeed be a “way of generating readable text”,

the analysis in this section shows that the distance between the orderings that this schema outputs and

the orderings of the other three experts is significantly greater than the distance between the orderings

of the other three experts and each other. In this sense, it is the orderings of E3 that manifest rather

peculiar ordering strategies, at least compared to the orderings of EM, E1 and E2. For this reason,

the overall distance between the experts and each other,T(EXPEXP), is computed without taking into

in section 9.4.2, the Tukey test reveals significant differences between conditions provided that the omnibus ANOVA is
significant as well.
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General Schema:

1. Location

2. Other

(e.g. depiction, technique, etc.)

3. Date

Schema in Location:

1a. originates-from

1b. current-location

Schema in Date:

3a. creation-period

3b. creation-time

Figure 9.2: Schema employed by expert E3 for the ordering task

account the orders of E3:

(9.8) T(EXPEXP) = T(EME1)+T(EME2)+T(E1E2)
3 = 0.722

9.6.2 Distances between the experts and RB

As the upper part of Table 9.3 shows, the distance between any two experts other than E3 is signifi-

cantly different from their distance from RB beyond the 0.01 threshold. This verifies one of our main

predictions since it shows that the distance e.g. between EM and E1 is significantly shorter than the

distances between the experts in question and RB.

Only the distances between E3 and another expert, shown in the lower section of Table 9.3, are

not significantly different from the distance between E3 and RB. Note that this result does not mean

that the orders of E3 are similar to the orders of RB.20 It simply shows that E3 is roughly as far away

from e.g. EM as she is from RB. By contrast, EM stands significantly closer to E1 than to RB, and

the same holds for the other distances in the upper part of the Table.

In accordance with the discussion in the previous section, the overall distance between the experts

(excluding E3) and RB,T(EXPRB), is computed as follows:

(9.9) T(EXPRB) = T(EMRB)+T(E1RB)+T(E2RB)
3 = 0.341

20This could have been argued, hadT(E3RB) been much closer to 1.
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EME1: ** ** **

0.692 EME2: ** ** **

0.717 E1E2: ** ** **

0.758 EMRB:

CD at 0.01: 0.242 0.323 E1RB:

CD at 0.05: 0.202 0.347 E2RB:

F(5,75)=18.762, p<0.000 0.352

EME3:

0.258 E1E3:

0.300 E2E3:

CD at 0.01: 0.219 0.192 E3RB:

CD at 0.05: 0.177 0.302

F(3,45)=1.223, p=0.312

Table 9.3: Comparison of distances between experts (EM, E1, E2, E3) and the random baseline (RB)

9.6.3 Distances between the experts and each metric

In the first phase of our analysis we identified E3 as an “stand-alone” expert standing further away

from the other three experts than they stand from each other. We also identified the distance between

E3 and each expert as similar to her distance from RB.

In the second phase of our analysis we computed the distance between the best scoring orders

of a metric and the orders of each expert. For instance, we computedT(EMPF.BFP), T(E1PF.BFP),

T(E2PF.BFP) andT(E3PF.BFP), and compared the scores with each other. The results of these com-

parisons are displayed in Table 9.4.

Because the T scores which involve E3 are always the lowest, they introduce the greatest differ-

ences in the comparisons. Hence, for all three PF-modified metrics (PF.BFP, PF.KP and PF.NOCB),

the average T between E3 and a metric is significantly lower than at least one of the average T values

involving another expert and the same metric.

Consequently, E3 tends to stand further away from the metrics compared to their distance from

the other three experts. This result, together with the remarks made in the previous two sections with

respect to the distances from E3, give rise to the following set of formulas for calculating the overall

distance between the experts (excluding E3) and each metric:



9.6. Results of main experiment 175

EMPF.BFP: *

0.604 E1PF.BFP: **

0.713 E2PF.BFP:

CD at 0.01: 0.303 0.571 E3PF.BFP:

CD at 0.05: 0.244 0.337

F(3,45)=5.992, p=0.002

EMPF.KP:

0.546 E1PF.KP: *

0.654 E2PF.KP:

CD at 0.01: 0.278 0.513 E3PF.KP:

CD at 0.05: 0.224 0.371

F(3,45)=3.892, p=0.015

EMPF.NOCB: *

0.592 E1PF.NOCB: **

0.679 E2PF.NOCB:

CD at 0.01: 0.294 0.546 E3PF.NOCB:

CD at 0.05: 0.237 0.354

F(3,45)=4.833, p=0.005

EMM.NOCB:

0.489 E1M.NOCB:

0.546 E2M.NOCB:

CD at 0.01: 0.245 0.425 E3M.NOCB:

CD at 0.05: 0.198 0.349

F(3,45)=2.635, p=0.061

Table 9.4: Comparison of distances between experts (EM, E1, E2, E3) and each metric (PF.BFP, PF.KP,

PF.NOCB, M.NOCB)
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EXPEXP: ** ** **

0.722 EXPPF.BFP: * **

0.629 EXPPF.NOCB: **

0.606 EXPPF.KP: **

CD at 0.01: 0.150 0.571 EXPM.NOCB: *

CD at 0.05: 0.125 0.487 EXPRB:

F(5,75)=19.111, p<0.000 0.341

Table 9.5: Results of the concluding analysis comparing the distance between the experts and each

other (EXPEXP) with the distance between the experts and each metric (PF.BFP, PF.NOCB, PF.KP,

M.NOCB) and the random baseline (RB)

(9.10)

T(EXPPF.BFP) = T(EMPF.BFP)+T(E1PF.BFP)+T(E2PF.BFP)
3 = 0.629

T(EXPPF.KP) = T(EMPF.KP)+T(E1PF.KP)+T(E2PF.KP)
3 = 0.571

T(EXPPF.NOCB) = T(EMPF.NOCB)+T(E1PF.NOCB)+T(E2PF.NOCB)
3 = 0.606

T(EXPM.NOCB) = T(EMM.NOCB)+T(E1M.NOCB)+T(E2M.NOCB)
3 = 0.487

In the next section, we present the concluding analysis for the main study which compares the overall

distances in (9.8), (9.9) and (9.10) with each other. As we have already mentioned,T(EXPEXP)

serves as the upper bound of the analysis whereasT(EXPRB) is the lower bound. The aim is to

specify which scores in (9.10) are significantly greater thanT(EXPRB), but do not differ significantly

from T(EXPEXP).

9.6.4 Concluding analysis

The results of the comparisons of the scores in (9.8), (9.9) and (9.10) are shown in Table 9.5. As we

have mentioned in section 9.2.1, because the BestTables of the metrics have plenty of orderings in

common, most of the scores that involve them are not significantly different from each other, except

for T(EXPPF.BFP) which is significantly greater thanT(EXPM.NOCB) at the 0.05 level. Also note that

the difference betweenT(EXPPF.NOCB) andT(EXPM.NOCB) falls only 0.006 points short of CD at the

0.05 threshold, whereas the difference betweenT(EXPPF.NOCB) andT(EXPEXP) is only 0.009 points

away from significance.

Crucially, what we are mainly interested in is how the distance between the experts and each

metric compares with the distance of the experts from each other,T(EXPEXP), and their distance

from RB,T(EXPRB). This is shown in the first row and the last column of Table 9.5.

As the Table shows,T(EXPRB) is significantly lower thanT(EXPEXP) at the 0.01 level. As in

Table 9.3 above, this result shows that randomly assembled orderings are significantly further away



9.6. Results of main experiment 177

from the orderings of the experts than the orderings of the experts are from each other.

Crucially, T(EXPRB) is lower thanT(EXPPF.BFP), T(EXPPF.NOCB) andT(EXPPF.KP) as well, at

the same level of significance. Notably, even the distance of the experts from M.NOCB,T(EXPM.NOCB),

is significantly greater thanT(EXPRB), albeit at the 0.05 level. This result shows that the distance

from the experts is significantly reduced when using the best scoring orderings of any metric, even

M.NOCB, instead of the orderings of RB. Hence, all metrics score significantly better than RB in this

experiment.

However, simply using M.NOCB to output the best scoring orders is not enough to yield a dis-

tance from the experts which is comparable toT(EXPEXP). Although the PF-modification appears

to help towards this direction,T(EXPPF.KP) remains significantly lower thanT(EXPEXP), whereas

T(EXPPF.NOCB) falls only 0.009 points short of CD at the 0.05 threshold. Hence, PF.BFP appears

to be the most robust metric, as the difference betweenT(EXPPF.BFP) andT(EXPEXP) is clearly not

significant.

The different performance of the three PF-modified metrics can be investigated by taking account

of the BestOrders that differentiate them from each other. As we mentioned in section 9.2.1, most

BestTables of PF.BFP and PF.NOCB are identical. The only exception to this are the two BestOrders

that PF.NOCB adds to the BestTable of PF.BFP (and PF.KP) in 5 Testitems (see Figure 9.1). As these

additional BestOrders yield lowτ values with the three experts, not only doesT(EXPPF.NOCB) end up

being lower thanT(EXPPF.BFP) but also falls outside the CD in its difference fromT(EXPEXP) by

just 0.009 points. In this sense, PF.NOCB bears a penalty in its comparison with the upper bound that

PF.BFP avoids.

Note that despite this penaltyT(EXPPF.NOCB) manages to be only 0.006 points away from the

CD when compared toT(EXPM.NOCB), showing a marginally better performance than its non-PF

counterpart. This result shows that the distance from the experts is reduced to a great extent when the

best scoring orderings are computed according to PF.NOCB instead of simply M.NOCB. Hence, this

experiment provides additional evidence in favour of the PF modification of M.NOCB in MPIRO-

PROP, showing that the PF constraint of entity coherence is not specific to EM but is shared by her

colleagues as well.

Interestingly, since PF.KP shares the same BestTable as PF.BFP for the Testitems that penalise

PF.NOCB,T(EXPPF.KP) should also benefit from the aforementioned Testitems as well. However,

the two additional BestOrders in the 4 Testitems for which the BestTable of PF.KP is distinct from

the BestTables of PF.BFP and PF.NOCB return lowτ values as well. This pushesT(EXPPF.KP) down

compared to the T scores of the other two PF-modified metrics. Hence,T(EXPPF.KP) ends up not

simply lower thanT(EXPPF.BFP) and T(EXPPF.NOCB), but clearly significantly further away from

T(EXPEXP).
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(9.11) (a) This exhibit is an amphora. (b) This exhibit depicts a warrior performing splachnoscopy

before leaving for the battle. (c) This exhibit was decorated by “the painter of Kleofrades”.

(d) The “painter of Kleofrades” used to decorate big vases. (e) This exhibit is currently

displayed in the Martin von Wagner Museum. (f) The Martin von Wagner Museum is in

Germany.

(9.12) (a) This exhibit is an amphora. (b) This exhibit depicts a warrior performing splachnoscopy

before leaving for the battle. (e) This exhibit is currently displayed in the Martin von

Wagner Museum. (f) The Martin von Wagner Museum is in Germany. (c) This exhibit was

decorated by “the painter of Kleofrades”. (d) The “painter of Kleofrades” used to decorate

big vases.

Figure 9.3: Example BestOrders for metric PF.BFP

9.6.5 PF.BFP: A case for variability in text structuring?

The discussion in the previous section reveals that PF.BFP is the metric that not only outperforms

the baseline in the previous experiments but does best in the additional evaluation task in the current

chapter as well. Hence, PF.BFP is identified as the most promising candidate for text structuring in

the MPIRO domain (modulo AllEq) among the ones investigated in the thesis.

The analysis in section 9.6.1 has shown that even though the orderings of most of the experts are

similar to each other, they are not always identical. This suggests that, instead of simply replicating

the orderings of only one expert, accounting for thevariability between the experts should be seen

as a desideratum for a text structuring algorithm, although the variability between the outputs of the

algorithm ought to be proportionate to the limitations set by the experts themselves. PF.BFP does not

simply prioritise just a few BestOrders (out of a much larger search space of possible permutations),

but also seems to be the metric which allows for enough variability in the BestTable without severely

violating these limits.

However, it seems that even PF.BFP might occasionally allow for what appears to be too much

variability in its preferred outputs. Such an example is presented in Figure 9.3 which shows the

realisations of the two members of the BestTable for one of the Testitems in our study.

BestOrder (9.11) in Figure 9.3 is significantly close to the order of EM and identical to the orders

of the other two experts (which are identical to each other in this case).21 However, BestOrder (9.12)

yields much lowerτ values. This is because the preferences for entity coherence expressed by PF.BFP

21The order of EM is shown in example (8.1) of the previous chapter (Note that the indexation of the utterances in example
(8.1) is different from the one in Figure 9.3). Using the indexation in Figure 9.3 as the point of reference, EM places fact
(b) between facts (d) and (e). Theτ value for the distance between (9.11) and (8.1) is 0.733 (p=0.020).
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in this case are supplemented with a preference to place utterances (e) and (f) at the end of the descrip-

tion which is shared by all three experts and penalises BestOrder (9.12). Although the experts are not

entirely consistent as far as such preferences are concerned (thus allowing for the observed variation

between their orderings), it seems that cases like (9.12) account for the observed, yet not significant,

difference betweenT(EXPEXP) andT(EXPPF.BFP) in the previous section.

Note that approaches to text structuring such as the one presented by Dimitromanolaki and An-

droutsopoulos (2003) (see section 7.2 of chapter 7 for a short overview), are not immune to the prob-

lems discussed in this chapter either. Because Dimitromanolaki and Androutsopoulos (2003) aim at

replicating the orderings of EM, like most other approaches, they do not account for the observed

variability between the experts at all.22 Thus, unless trained on data from multiple experts, these tech-

niques cannot distinguish between the strategies solely used by EM and the strategies shared between

more than one expert.

In any case, the ultimate test for the ability of PF.BFP to generate felicitous structures should come

from human judgements on the readability of its preferred outputs. Although in chapter 4 we argued

that using perceptual experiments to address general questions such as (Q2) first posed in chapter 3 is

extremely hard, the discussion in this thesis has resulted into a few experimental questions which are

much easier to investigate with the help of psycholinguistic techniques.

One of these questions is whether the BestOrders in Figure 9.3 differ in their readability. In our

future work, we intend to ask naive judges to provide us with scores of “goodness” for preferred

possible outputs of PF.BFP such as (9.12). These scores will be compared to scores obtained for

randomly generated orderings, the outputs of the ML-informed algorithms of Dimitromanolaki and

Androutsopoulos (2003) and the orders of the experts consulted in this study. Excluding orderings

such as (9.11) from the outputs of PF.BFP, the experiment will investigate whether the additional

variability allowed by PF.BFP gives rise to orders which are perceived as less felicitous than the

orders of the experts and the outputs of the ML-informed algorithms.

Since the available data derived from MPIRO consist of just a few facts which in turn give rise to

texts of predetermined length, it is not certain how well PF.BFP performs when more facts are used

as the actual input to text structuring. Karamanis and Manurung (2002) show how a metric of entity

coherence can guide a stochastic approach to text structuring when large inputs are provided. In our

future work, we intend to use PF.BFP as the evaluation function of the genetic algorithm in Karamanis

and Manurung (2002), using the methods discussed in Cheng (2002, Chapter 8) to formally evaluate

its performance.

22However, as we mentioned from very early on, the algorithms in Dimitromanolaki and Androutsopoulos (2003) are
much more informed in the way they order the data from AllEq.
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expert pair Dataset

MPIRO-PROP AllEq

EME1 68.75 16.67

EME2 68.75 33.33

E1E2 68.75 33.33

N 16 6

Table 9.6: Testitems (%) for which the experts achieve significant τ scores

9.7 Differences between MPIRO-PROP and AllEq

As we mentioned in section 9.1.1, assuming that entity coherence is important for the experts in their

search for a good ordering, one expects that the distance between their outputs in the Testitems from

MPIRO-PROP will be smaller than the distance in AllEq, since the space of the most entity coherent

solutions in AllEq is much wider than in MPIRO-PROP.

The second column of Table 9.6 reports the percentage ofτ values which are associated with a

significantz score for each pair of experts (except for E3) in the Testitems from MPIRO-PROP. The

third column of the Table reports the percentage of significantτ values in AllEq.23

As the Table shows, the percentage of significantτ values for each pair of experts is 68.75%

(11/16). By contrast, the percentage of significantτ values in AllEq does not exceed 33.33% (2/6). As

we mentioned in section 9.4.1, reporting the percentage of significantτ values is useful for descriptive

purposes. In addition to this, we were interested to see whether the difference in the distance between

the experts and each other in the two datasets is significant.

As Table 9.7 shows, the average T between two experts in the Testitems from MPIRO-PROP is

always greater than in AllEq. A 3X2 ANOVA with factors PAIR (EME1, EME2, E1E2) and DATASET

(MPIRO-PROP vs AllEq) showed a marginally significant main effect of DATASET: F(1,20)=4.571,

p=0.045. The effect of PAIR and the interaction between PAIR and DATASET were not significant:

F(2,40)=2.266, p=0.117 and F(2,40)=1.714, p=0.193, respectively.

Hence, it is indeed the case that the experts are significantly closer to each other in MPIRO-PROP

than in AllEq. As we mentioned in the beginning of the chapter, it is plausible that the difference in

the distance of the experts in the two datasets is due to the larger space of entity coherent solutions

that AllEq enables when compared to the more restrictive MPIRO-PROP.

23As we mentioned in section 9.4.1, aτ value in the datasets is significant when it is equal to or greater than 0.696. Note
that all significantτ values in both datasets are positive, that is, there is no case where the experts are significantly away
from each other.
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expert pair Dataset

MPIRO-PROP AllEq

T(EME1) 0.692 0.333

T(EME2) 0.717 0.578

T(E1E2) 0.758 0.600

Average 0.722 0.504

N 16 6

Table 9.7: Average T in MPIRO-PROP and AllEq

9.8 Summary and conclusion

A question not addressed until this chapter is whether the results from MPIRO-PROP are specific to

EM. In order to answer this question in a general way, the dataset from MPIRO-PROP is enhanced

with orderings provided by more than one expert. Then, the distance between EM and her colleagues

is computed and compared to the distance between her colleagues and each other. The results indicate

that EM shares a lot of common ground with two of her colleagues in the ordering task deviating from

them as much as they deviate from each other, while the orderings of a fourth “stand-alone” expert

are found to manifest rather peculiar ordering strategies.

The same methodology used to investigate the distance between the experts is used to automati-

cally evaluate the best scoring orderings of some of the best performing metrics so far. This attempts

to account for a number of possible deficiencies of the main methodology employed in the experi-

ments previously reported in the thesis. The best scoring permutations of these metrics are isolated

and evaluated by comparing their distance from the orderings produced by multiple experts with the

distance of the orderings of the experts from each other and their distance from a random baseline

RB.24 The main results of this study are summarised as follows:

First, the distance of the experts from each metric employed in this study, was significantly lower

than their distance from RB. This result shows that the distance from the experts is significantly re-

duced when the best scoring orderings of any metric, even M.NOCB, are used instead of the orderings

assembled by RB. Hence, all metrics are superior to RB.

Moreover, the distance from the experts is reduced to a great extent when the best scoring order-

ings are computed according to PF.NOCB instead of simply M.NOCB. Hence, this experiment pro-

vides additional evidence in favour of the PF modification suggested in the previous chapter, showing

24As we mentioned in section 9.2.1, PF.MIL had to be excluded at the very early stages of the study, as its BestOrders
are identical with the BestOrders of PF.NOCB for all randomly sampled Testitems. Hence, an extension of the study in this
chapter to account for PF.MIL is desirable in order to estimate its performance in a more complete way.
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that the PF constraint of entity coherence is not specific to EM but is shared by her colleagues as well.

Crucially,T(EXPPF.BFP) is the only distance which is not significantly different from the distance

of the experts from each other. By contrast, the difference betweenT(EXPEXP) andT(EXPPF.NOCB)

approaches significance, whereas,T(EXPPF.KP) andT(EXPM.NOCB) remain significantly lower than

T(EXPEXP). Hence, PF.BFP, one of the best performing metrics in the previous chapter, yields the

best results in this study as well and can be rendered as the most promising candidate for text struc-

turing in MPIRO-PROP among the ones investigated in the thesis.

The portability of PF.BFP to a domain other than MPIRO depends on how similar the new domain

is. PF.BFP is the recommended metric for a domain that is very similar to MPIRO (at least between

the metrics investigated in this thesis), but if the new domain substantially deviates from MPIRO the

evaluation methodology outlined in this thesis might prove crucial for an informed decision: The

performance of M.NOCB can be compared to the performance of some of its competitors (possibly

excluding solutions such as M.KP and M.CHEAP that are beaten by the baseline both in the genre of

interest and the domain of application as in chapters 6 and 7), modifications such as the one discussed

in chapter 8 can be introduced and tested, while the best performing metrics can be subjected to an

additional evaluation task such as the one presented in chapter 9.

A first step to the portability of PF.BFP to a different application would be to incorporate it to

the genetic algorithm of Mellish et al. (1998a) since this application can be seen as being “between”

MPIRO and GNOME in the sense that the only additional factor to entity coherence in ILEX is

represented by rhetorical relations. Keeping the evaluation features of rhetorical coherence the same,

PF.BFP can replace the features of entity coherence and the outputs of the algorithm can be inspected

and formally evaluated using human judgements.



Chapter 10

Concluding remarks

This chapter summarises the primary results of the thesis, presents its main contributions and points

out possible extensions of our work.

10.1 Contributions

This thesis provides substantial insight into the role of entity coherence as a text structuring constraint.

A general methodology for comparing metrics of entity coherence for the purpose of search-based text

structuring is introduced and applied to data from two corpora. In a series of empirical studies, the

metrics which constitute the most motivated candidates for descriptive text structuring (between the

ones investigated) are identified before the actual generation takes place. The evaluation methodology

and the results of these studies are useful for any subsequent attempt to generate a descriptive text

structure in the context of an application that makes use of the notion of entity coherence.

More specifically, chapter 2 motivates using Centering Theory (CT) to define evaluation met-

rics of entity coherence for search-based descriptive text structuring. While previous work on NLG

has considered CT only in passing, this chapter assesses its potential for this research area, and text

structuring in particular, in substantial detail.

Chapter 3 shows how CT’s notions can be used to define many different metrics of entity coher-

ence. We argue that CT is open-ended enough for one to propose new metrics that in theory appear

as plausible as some existing ones. Hence, a general methodology for identifying which metrics rep-

resent more suitable candidates for text structuring is required, so that at least some of the possible

metrics can be compared empirically.

After arguing in chapter 4 that resolving the competition between the metrics using psycholin-

guistic methods requires a complex experimental design in which the confounding factors would be

particularly difficult to control for, an alternative methodology for deciding which metrics represent
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good candidates for the purposes of NLG is presented in chapter 5. This new corpus-based, search-

oriented methodology is general enough to be applied to any possible CT-based metric and can be

supplemented by less extended, but generally more costly, human evaluation studies.

The corpus-based studies in the next two chapters apply the novel search-oriented methodology

to investigate the performance of eight of the metrics discussed in chapter 3. Despite restricting the

empirical investigation to eight metrics for practical reasons, this thesis considers more metrics of

entity coherence than any previous work.

Our first study in chapter 6 makes use of GNOME-LAB, a subset of the GNOME corpus repre-

senting the genre of interest. The main result of this study is that, none of the other employed metrics

of entity coherence manages to return significantly better results that the baseline metric M.NOCB

which in fact beats two of its competitors. This chapter also touches on the interaction of entity coher-

ence with rhetorical relations which might pose additional, albeit apparently conflicting, constraints

on the generation of a descriptive structure.

The next chapter reports experiments on MPIRO-PROP, an application-specific corpus. These

results manifest the superiority of the baseline even more emphatically, as M.NOCB now does sig-

nificantly better than most of its competitors with the exception of M.MIL which overtakes it. An

investigation of the structures that differentiate M.NOCB from M.MIL across both datasets shows

that the marginal difference in favour of M.MIL is due to a specific feature of MPIRO-PROP that does

not characterise GNOME-LAB.

In chapter 8, we begin inspecting some of the best scoring structures for M.NOCB and M.MIL

more closely. This investigation equips the employed metrics with an additional constraint on entity

coherence and motivates a new set of pairwise comparisons between the modified metrics. In these

comparisons, a number of the modified metrics overtake the baseline in MPIRO-PROP, but not in

GNOME-LAB. This identifies a number of promising candidates for text structuring in the particular

application domain, but shows that M.NOCB remains very robust as far as the genre of interest is

concerned.

All these results indicate that M.NOCB is a good starting point to investigate the effect of entity

coherence in general. However, one has to keep in mind that the performance of M.NOCB in the

genre of interest is not optimal. Since factors such as rhetorical coherence and the modification of the

metrics in chapter 8 do not appear to help, what can supplement M.NOCB to improve its performance

in the investigated genre remains unclear to us.

Our experimental efforts in the MPIRO domain are concluded in chapter 9. An alternative method-

ology which employs the distance between two orderings for the automatic evaluation of the metrics

is discussed in an attempt to address a number of unresolved questions in the previous studies. Order-

ings from more than one expert are collected and used in a subsidiary evaluation which shows that the
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metrics are superior to a random baseline. This study also provides additional evidence in favour of

the constraint introduced in the previous chapter and identifies PF.BFP as the metric which performs

best across all evaluation tasks. Hence, PF.BFP is the most promising candidate for text structuring in

the MPIRO domain among the ones investigated in the thesis.

The portability of PF.BFP to a domain other than MPIRO depends on how similar the new domain

is. PF.BFP is the recommended metric for a domain that is very similar to MPIRO (at least between

the metrics investigated in this thesis), but if the new domain substantially deviates from MPIRO the

evaluation methodology outlined in this thesis might prove crucial for an informed decision: The

performance of M.NOCB can be compared to the performance of some of its competitors (possibly

excluding solutions such as M.KP and M.CHEAP that are beaten by the baseline both in the genre of

interest and the domain of application as in chapters 6 and 7), modifications such as the one discussed

in chapter 8 can be introduced and tested, while the best performing metrics can be subjected to an

additional evaluation task such as the one presented in chapter 9.

10.2 Possible extensions

Throughout the thesis we pointed out to a number of ways in which one can build upon the work pre-

sented in each chapter. In this section we comment on the directions that seem to be most interesting

to us. We begin with extensions that come very close to the work reported in the thesis and conclude

with suggestions that extend the scope of the thesis significantly.

10.2.1 Experimenting with more metrics

Although in chapter 3 we identified a large set of possible CT-based metrics, the empirical investiga-

tion in subsequent chapters is restricted to a handful of them. In our future work, we intend to turn

our attention to metrics that employ the alternative POT rankings of section 3.2.2 and the extended

PT transitions in Table 3.10 of chapter 3. The methodology of chapter 5 can be used to investigate

whether any of these metrics overtakes the baseline in GNOME-LAB and how much they benefit

from the PF-modification in MPIRO-PROP. Their BestOrders can then be compared to the combined

human data using the methods of chapter 9.

10.2.2 Extending GNOME-LAB

One of the aims of the researchers working on the GNOME corpus is to extend its current size so that

a corpus large enough to be used for standard reference (a kind of “semantic treebank”) is built. This

is particularly welcome for our purposes as well, since it will make it possible to include more corpus

instances in GNOME-LAB, which in turn might enable us to investigate more subtle differences than



186 Chapter 10. Concluding remarks

the ones observed in chapter 6 and could shed more light on the features that can supplement M.NOCB

as well. Adding more biographical texts to the existing ones on the Getty webpage will also be very

helpful as it will allow us to investigate the performance of the metrics on a related, yet distinct, genre.

Two other directions of future work with respect to GNOME-LAB were mentioned in section 6.6

of chapter 6. First, given the importance of bridging references in the evaluation of Poesio et al.

(2002), we would like to experiment with a configuration of CT which uses indirect realisation for the

computation of the CF list. Finally, we intend to investigate the difference between the Finite and the

Finite-RR way of computing the BfC in more detail than we had the opportunity to do in this thesis,

e.g. by identifying factors that might account for the drop in the classification rate more clearly than

the percentage ofNOCBs.

10.2.3 Future work in the MPIRO domain

As the ultimate test for a text structuring method is the readability of the structures it favours, in sec-

tion 9.6.5 of chapter 9 we outlined an experimental design to compare the BestOrders of PF.BFP with

the orders of the consulted experts and the output of the ML-informed algorithm of Dimitromanolaki

and Androutsopoulos (2003) on the basis of elicited human judgements.

Since the available data derived from MPIRO consist of just a few facts which in turn give rise to

texts of predetermined length, it is not certain how well PF.BFP performs when more facts are used

as the hypothetical input to text structuring. Karamanis and Manurung (2002) show how a metric of

entity coherence can guide a stochastic approach to text structuring when large inputs are provided.

In our future work, we intend to use PF.BFP as the evaluation function of the genetic algorithm

in Karamanis and Manurung (2002), using the methods discussed in Cheng (2002, Chapter 8) to

formally evaluate its performance.

A first step to the portability of PF.BFP to a different application would be to incorporate it to

the genetic algorithm of Mellish et al. (1998a) since this application can be seen as being “between”

MPIRO and GNOME in the sense that the only additional factor to entity coherence is represented

by rhetorical relations. Keeping the evaluation features of rhetorical coherence the same, PF.BFP can

replace the features of entity coherence and the outputs of the algorithm can be inspected and formally

evaluated.

Finally, as PF.MIL had to be excluded from our investigation in section 9.6 chapter 9 due to the

scarcity of the data that manifest its difference from PF.NOCB, an extension of the study in chapter 9

to account for PF.MIL is desirable in order to estimate its performance in a more complete way.
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10.2.4 Choosing between more complex metrics

As we clarified from very early on, the argumentation throughout the thesis and the inputs to our

experiments were devised in such a way as to ignore possible interactions between text structuring

and decisions such as content determination, segmentation, aggregation, etc.

Although we are not aware of a model of discourse structure which accounts for these interactions

in enough detail, it is possible that specific phenomena can be captured by certain general heuris-

tics. These preferences can supplement the metrics of entity coherence giving rise to larger evaluation

modules as already suggested by Kibble and Power (2000). Each of these modules can then be em-

ployed bySEECto specify which are the best candidates for an integrated generation system such as

the ones presented e.g. in Cheng (2002) or Manurung (2003) that account for constraints interacting

at different levels in the pipeline architecture.

In addition to this, one can allow for more flexibility in the way thatSEECcomputes the permu-

tations of the BfC so that e.g. different aggregation decisions are manifested. Although the main

side-effect of such modifications is that the space of possible permutations grows even larger, the dis-

cussion at the end of chapter 5 suggests that using large random samples might be able to overcome

this problem without having to enumerate all possibilities exhaustively.

10.2.5 Computing input characteristics

Instead of giving general priority to one or more metrics for the purposes of text structuring, choosing

the best metric to structure a specific semantic content that serves as the input to text structuring

might depend on certain characteristics of the input. This was already mentioned in section 7.4.4 of

chapter 7, where the percentage of computableROUGH-SHIFTs given a certain semantic content was

suggested as one possibility. Provided that such features are identified, a general methodology needs

to be developed so that a given metric M is chosen to structure an input SCB when SCB exhibits a

certain featureα which is easy to compute.

10.2.6 Psycholinguistic plausibility

Although this thesis does not make any specific claims about the psycholinguistic plausibility of the

method used to evaluate the employed metrics, investigating this issue in more detail is another in-

teresting direction for furture work. Alongside the perceptual experiments outlined in section 10.2.3,

exploring a more psycholinguistically plausible search space of possible permutations can be intro-

duced for the computation of the classification rate and the comparison of the performance of the

metrics.





Appendix A

Examples of basic CT and extended PT

transitions

In this appendix, we first show the analysis of examples (3.1) and (3.2) in terms of basic transitions and

ESTABLISHMENTs, introduced in Table 3.7 and Table 3.8 of chapter 3 respectively. Then, we show

how these examples score according to the two definitions of the extended PT transitions introduced

in Table 3.10.

TheNOCBs, basic transitions andESTABLISHMENTs in examples (3.1) and (3.2), now repeated as

(A.1) and (A.2), are as follows:

(A.1) a. This exhibit is an amphora.

CF(exhibit1, amphora)

b. Amphoras have an ovoid body and two looped handles, reaching from the shoulders

up.

CF(amphora, entity-3908),

CB=amphora, EXP. ESTABLISHMENT

c. Amphoras were produced in two major variations: type A and the type with a neck.

CF(amphora, typeA, type-neck)

CB=amphora, CONTINUE

d. This exhibit is a type A amphora.

CF(exhibit1, typeA)

CB=typeA, EXP. ROUGH-SHIFT

e. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)
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CB=exhibit1, SMOOTH-SHIFT

f. This exhibit was painted using the red figure technique.

CF(exhibit1, red-figure-technique)

CB=exhibit1, CONTINUE

(A.2) a. This exhibit is an amphora.

CF(exhibit1, amphora)

c. Amphoras were produced in two major variations: type A and the type with a neck.

CF(amphora, typeA, type-neck)

CB=amphora, EXP. ESTABLISHMENT

d. This exhibit is a type A amphora.

CF(exhibit1, typeA)

CB=typeA, EXP. ROUGH-SHIFT

b. Amphoras have an ovoid body and two looped handles, reaching from the shoulders

up.

CF(amphora, entity-3908)

NOCB

e. This exhibit comes from the archaic period.

CF(exhibit1, archaic-period)

NOCB

f. This exhibit was painted using the red figure technique.

CF(exhibit1, red-figure-technique)

CB=exhibit1, ESTABLISHMENT

Without takingNOCBs into account, the basic transitions can be translated into extended PT tran-

sitions in two ways, depending on the way thatESTABLISHMENTS are incorporated to the definition

of basic PT transitions (see Table 3.10 of chapter 3). The translation of the basic transitions in (A.1)

and (A.2) into extended PT transitions according to the two configurations of Table 3.10 are:
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Transition in (A.1) PT-EST-1 PT-EST-2

a. - - -

b. EXP. ESTABLISHMENT V1 V2

c. CONTINUE V0 V0

d. EXP. ROUGH-SHIFT V3 V3

e. SMOOTH-SHIFT V1 V1

f. CONTINUE V0 V0

Transition in (A.2) PT-EST-1 PT-EST-2

a. - - -

c. EXP. ESTABLISHMENT V1 V2

d. EXP. ROUGH-SHIFT V3 V3

b. NOCB - -

e. NOCB - -

f. ESTABLISHMENT V0 V1

Note how theEXP. ESTABLISHMENTs in (A.1b) and (A.2c), the second utterance of each example,

are classified as V1 by the scoring function PT-EST-1 but as V2 by PT-EST-2. Moreover (A.2f), which

follows aNOCB transition but itself contains a CB, is classified as the PT transition V0 by PT-EST-1,

but as V1 by PT-EST-2. The extended PT transitions in each example are summarised as follows:

PT-EST-1

Text V0 V1 V2 V3

(A.1) c, f b, e - d

(A.2) f c - d

PT-EST-2

Text V0 V1 V2 V3

(A.1) c, f e b d

(A.2) - f c d

Note that example (A.1) is the structure that has more instances of the most preferred transition V0 in

both configurations. Hence, the evaluation method of M.PT as defined at the end of section 3.5.2 of

chapter 3 prefers (A.1) over (A.2) irrespective of whether PT-EST-1 or PT-EST-2 is used as the scoring

function.





Appendix B

Instructions to participants in ME

experiment

In this appendix, we present the instructions to the participants in the experiment discussed in chap-

ter 4. As the experiment was web-based, each participant accessed the experiment using her browser.

The first page she had to access included the instructions in a similar format as below.

Experiment on Text Acceptability

Thanks for taking part in this experiment!

To take part in this experiment you need to be a native speaker of English. If English is not your first

language you could check The Psycholinguistic Experiment page for another experiment that suits

you best as a possible participant.

Please read the instructions carefully before starting. Do not hesitate to contact the experimenter in

case you have any questions or comments concerning this experiment.

If you experience any problems with our experimental software, please consult our Technical

Problems Page.

Personal Details

As part of this experiment, we have to collect a small amount of personal information, which we ask

you to enter in the Personal Details window below.This information will be treated confidential, and

will not be made available to a third party. None of the responses collected in this experiment will be
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associated with your name in any way.If you have any questions about this practice, please contact

the experimenter.

Please be careful to fill in the Personal Details questionnaire correctly, as otherwise we will have to

discard your responses.

We ask you to supply the following information:

• your name and email address;

• your age and sex;

• whether you are right or left handed (based on the hand you prefer to use for writing);

• the academic subject you study or have studied (or your current occupation in case you haven’t

attended university);

• under ‘Region’, please specify the place (city, region/state/province, country) where you have

learned your first language.

Instructions

Part 1: Judging Line Length

Before doing the main part of the experiment, you will do a short task involving judging line length.

A series of lines of different length will be presented on the screen. Your task is to estimate how long

they seem by assigning numbers to them.You are supposed to make your estimates relative to the

first line you will see, yourreferenceline. Give it any number that seems appropriate to you, bearing

in mind that some of the lines will belonger than the reference and some will beshorter. Click on

“Continue” once you’ve decided on the reference number.

After you have judged the reference line, assign a number to each following line so that it represents

how long the line is in proportion to the reference. Thelonger it is compared to the reference, the

larger the number you will use; theshorter it is compared to the reference, thesmaller the number

you will use. So if you feel that a line istwice as long asthe reference, give it a numbertwice the

reference number; if it’sthree times shorterthan the reference, provide a number three times smaller

than the reference number. Hit RETURN after you’ve assigned each number.

So, if the reference is this line, you might give it the number 100:

—————————————-

If you have to judge this line, you might assign it 170:
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———————————————————————

And this one might be 25:

———-

There is no limit to the range of numbers you may use. You may use whole numbers or decimals, but

you cannot use zero or negative numbers. If you assigned the reference line the number 1, you might

want to call the second one 1.7, and the last one 0.25 in order to express the same relations. Or you

could use 10 for the reference line, 17 for the second one, and 2.5 for the last line. Just try to make

each number match the length of the line as you see it.

Parts 2 and 3: Judging Texts

In Part 1 of the experiment you used numbers to estimate the length of lines on the screen. In Parts 2

and 3 you will use numbers to judge theacceptabilityof some English texts in the same way.

Those texts are short descriptions of archaeological exhibits that might remind you of the labels that

are used in educational websites and virtual museums. There are more and less successful ways of

describing such an exhibit and the numbers you will give to each text should reflect your judgement

on the way that the text organises the information it consists of.

During the experiment you will see a series of short texts presented one at a time on the screen. Each

text is different. Some will seem to organise the information in a good way, but others will not. Your

task is to judge how good or bad each text is by assigning a number to it.

As with the lines in Part 1, you will first see areferencetext, and you can use any number that seems

appropriate to you for this reference. For each text after the reference, you will assign a number to

show how good or bad that text isin proportion to the reference text.

For example, supposing that the texts describe objects from the Italian Renaissance and you are pre-

sented with the following reference text:

(1) This exhibit is the portrait of “Mona Lisa”. It is kept in Louvre. Mona Lisa married in
1495 the well-known nobleman, Francesco del Giocondo, and thus came to be known as
“La Gioconda”. The Louvre is the largest museum in France. This exhibit depicts Mona
Lisa dressed in the Florentine fashion of her day and seated in a visionary, mountainous
landscape.

you would probably give it a rather low number. (You are free to decide what ‘low’ or ‘high’ means

in this context.) Supposing now that you read the following text:
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(2) This exhibit is the statue of David. David was chosen as the represented figure because
his legend reflects the power and determination of Republican Florence. This exhibit is
made of gigantic marble and is 4.34m tall. It is a creation of Michaelangelo. Michelan-
gelo began work on it in 1501, and by 1504 the sculpture was in place outside the Palazzo
Vecchio.

What you need to do is to compare text (2) with text (1), the reference text. If text (2) seemed10 times

better than the reference, you’d give it a number10 timesthe number you gave to the reference. If

it seemedhalf as good asthe reference, you’d give it a numberhalf the number you gave to the

reference.

You can use any range of positive numbers that you like, including decimal numbers.There is no

upper or lower limit to the numbers you can use, except that you cannot use zero or negative numbers.

Try to use a wide range of numbers and to distinguish as many degrees of acceptability as possible.

There are no ‘correct’ answers, so whatever seems right to you is a valid response. Most of the times

you will have to read the reference text again for your judgement, but remember that we are interested

in your first impressions, so please don’t take too much time to think about each text: try to make up

your mind quickly, spending less than a minute on each text.

Procedure

To participate in the experiment, please press the “Start” button.

First you will have to fill in the Personal Details questionnaire as explained above. Then you will be

able to take part in the experiment.

The experiment will consist of the following 3 parts:

• Training session: judging 4 lines

• Practice session: judging 3 texts

• Experiment session: judging 24 texts

In each part you will see the reference item in the experiment window. Please enter your reference

number and then press the “Continue” button. Now the test items will appear one after the other in

the experiment window. Please type your judgement in the box below each item and hit RETURN in

order to see the next item.

The experiment will take 15 to 20 minutes. After the experiment is completed you will receive an

email confirmation of your participation.

Please keep in mind:
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• Use any number you like for the reference text.

• Judge each text in proportion to the reference, that is, compare the reference text with the text

that you are currently presented with.

• Use any positive numbers which you think are appropriate.

• Use high numbers for ‘good’ texts, low numbers for ‘bad’ texts and intermediate numbers for

texts which are intermediate in acceptability.

• Try to use a wide range of numbers and to distinguish as many degrees of acceptability as

possible.

• Try to make up your mind quickly, basing your judgements on your first impressions.





Appendix C

Weighting Equal for the classification rate

In this appendix, we go back to the SplitEqual configuration which arises in the individual compari-

son of M.NOCB with either M.SHOT1 or M.POT1 and was graphically represented in Figure 5.3 of

chapter 5. Using the notation of section 5.5.1 of chapter 5, we show that when ToWorse(My) is higher

that half of SplitEqual(My), then the classification rate of Mx on B is higher than the classification rate

of My on B and vice versa:

ToWorse(My) >
SplitEqual(My)

2 ⇔ υ(Mx,B) > υ(My,B)

This can be used to support using1
2 as the value of the weight for the percentage of Equal in the

definition of the classification rate in equation (5.4) of chapter 5.

Equations

1. ToBetter(My) = Better(My)−Better(Mx)

2. ToWorse(My) = Equal(Mx)−Equal(My)−ToBetter(My)
1=

ToWorse(My) = Equal(Mx)−Equal(My)−Better(My)+Better(Mx)

3. SplitEqual(My) = Equal(Mx)−Equal(My)

4. υ(Mx,B) = Better(Mx)+ Equal(Mx)
2

υ(My,B) = Better(My)+ Equal(My)
2

Proof

ToWorse(My) >
SplitEqual(My)

2
2+3⇔
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Equal(Mx)−Equal(My)−Better(My)+Better(Mx) >
Equal(Mx)−Equal(My)

2 ⇔

Better(Mx)+ Equal(Mx)
2 > Better(My)+ Equal(My)

2
4⇔

υ(Mx,B) > υ(My,B)



Appendix D

Instructions to experts

In this appendix, we present the instructions to the experts who were consulted for the purposes of the

study in chapter 9.

Experiment on Sentence Ordering

Goal of the experiment

I investigate how sentences are ordered within a short text. For this reason, I ask humans to perform

the same task. Then, I will compare the human orderings with the ones generated by my program.

The Task

The task you will be doing should take approximately 45 minutes.

I will provide you with a few sets of six sentences. I will give you the first sentence for each set and

ask you to order the remaining five. The sentences come from a computer program that generates

descriptions of artefacts in a virtual museum.

Your task is to order them in a coherent text.

When ordering the sentences, try to look at which ones should be together and which should come

before another in the text; do not try to use hints other than the sentences themselves.

For each set: Read the first sentence. Then, read the unordered sentences and select the sentence that

should follow the first sentence. Then, read the remaining sentences and select the one that should
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be placed next.You can revise the ordering at any time by moving the sentences around. When

you are satisfied with the ordering you produced write next to each sentence its position, starting with

number 2 for the second sentence. Then, give me the sentences and perform the same task with the

next set.

Because I do not want you to take into account explicit references while ordering the sentences, the

texts do not contain any pronouns. For example, each text starts with the phrase “This exhibit is”.

Instead ofit, you will see the phrasethis exhibitin every sentence that you need to order and refers to

the same object as the first sentence.

Fell free to ask me any questions at any time during the experiment.

Thanks for your participation!
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