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Abstract

The algebraic theory of surgery gives a necessary and sufficient chain level condition
for a space with n-dimensional Poincaré duality to be homotopy equivalent to an n-
dimensional topological manifold. A relative version gives a necessary and sufficient
chain level condition for a simple homotopy equivalence of n-dimensional topological
manifolds to be homotopic to a homeomorphism. The chain level obstructions come
from a chain level interpretation of the fibre of the assembly map in surgery.

The assembly map A : Hn(X; L•) → Ln(Z[π1(X)]) is a natural transformation from
the generalized homology groups of a space X with coefficients in the 1-connective
simply-connected surgery spectrum L• to the non-simply-connected surgery obstruc-
tion groups L∗(Z[π1(X)]). The (Z,X)-category has objects based f.g. free Z-modules
with an X-local structure. The assembly maps A are induced by a functor from the
(Z,X)-category to the category of based f.g. free Z[π1(X)]-modules. The generalized
homology groups H∗(X; L•) are the cobordism groups of quadratic Poincaré complexes
over (Z,X). The relative groups S∗(X) in the algebraic surgery exact sequence of X

· · · → Hn(X; L•)
A
−→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•) → . . .

are the cobordism groups of quadratic Poincaré complexes over (Z,X) which assemble
to contractible quadratic Poincaré complexes over Z[π1(X)].

The total surgery obstruction s(X) ∈ Sn(X) of an n-dimensional simple Poincaré
complex X is the cobordism class of a quadratic Poincaré complex over (Z,X) with
contractible assembly over Z[π1(X)], which measures the homotopy invariant part of
the failure of the link of each simplex in X to be a homology sphere. The total surgery
obstruction is s(X) = 0 if (and for n > 5 only if) X is simple homotopy equivalent to
an n-dimensional topological manifold.

The Browder-Novikov-Sullivan-Wall surgery exact sequence for an n-dimensional
topological manifold M with n > 5

· · · → Ln+1(Z[π1(M)]) → STOP (M) → [M,G/TOP ] → Ln(Z[π1(M)])

is identified with the corresponding portion of the algebraic surgery exact sequence

· · · → Ln+1(Z[π1(M)]) → Sn+1(M) → Hn(M ; L•)
A
−→ Ln(Z[π1(M)]) .

The structure invariant s(h) ∈ STOP (M) = Sn+1(M) of a simple homotopy equivalence
of n-dimensional topological manifolds h : N → M is the cobordism class of an n-
dimensional quadratic Poincaré complex in (Z,M) with contractible assembly over
Z[π1(M)], which measures the homotopy invariant part of the failure of the point
inverses h−1(x) (x ∈ M) to be acyclic. The structure invariant is s(h) = 0 if (and for
n > 5 only if) h is homotopic to a homeomorphism.
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1

1 Introduction

The structure set of a differentiable n-dimensional manifold M is the set SO(M) of equiva-
lence classes of pairs (N, h) with N a differentiable manifold and h : N → M a simple ho-
motopy equivalence, subject to (N, h) ∼ (N ′, h′) if there exist a diffeomorphism f : N → N ′

and a homotopy f ' h′f : N → M . The differentiable structure set was first computed for
N = Sn (n > 5), with SO(Sn) = Θn the Kervaire-Milnor group of exotic spheres. In this
case the structure set is an abelian group, since the connected sum of homotopy equivalences
h1 : N1 → Sn, h2 : N2 → Sn is a homotopy equivalence

h1#h2 : N1#N2 → Sn#Sn = Sn .

The Browder-Novikov-Sullivan-Wall theory for the classification of manifold structures
within the simple homotopy type of an n-dimensional differentiable manifold M with n > 5
fits SO(M) into an exact sequence of pointed sets

· · · → Ln+1(Z[π1(M)]) → SO(M) → [M,G/O] → Ln(Z[π1(M)])

corresponding to the two stages of the obstruction theory for deciding if a simple homotopy
equivalence h : N →M is homotopic to a diffeomorphism:

(i) The primary obstruction in [M,G/O] to the extension of h to a normal bordism (f, b) :
(W ;M,N) → M × ([0, 1]; {0}, {1}) with f | = 1 : M →M . Here G/O is the classifying
space for fibre homotopy trivialized vector bundles, and [M,G/O] is identified with the
bordism of normal maps M ′ →M by the Browder-Novikov transversality construction.

(ii) The secondary obstruction σ∗(f, b) ∈ Ln+1(Z[π1(M)]) to performing surgery on (f, b)
to make (f, b) a simple homotopy equivalence, which depends on the choice of solution
in (i). Here, it is necessary to use the version of the L-groups L∗(Z[π1(X)]) in which
modules are based and isomorphisms are simple, in order to take advantage of the
s-cobordism theorem.

The Whitney sum of vector bundles makes G/O anH-space (in fact an infinite loop space), so
that [M,G/O] is an abelian group. However, the surgery obstruction function [M,G/O] →
Ln(Z[π1(M)]) is not a morphism of groups, and in general the differentiable structure set
SO(M) does not have a group structure (or at least is not known to have), abelian or
otherwise.

The 1960’s development of surgery theory culminated in the work of Kirby and Sieben-
mann [4] on high-dimensional topological manifolds, which revealed both a striking similar-
ity and a striking difference between the differentiable and topological catgeories. Define
the structure set of a topological n-dimensional manifold M exactly as before, to be the set
STOP (M) of equivalence classes of pairs (N, h) with N a topological manifold and h : N →M
a simple homotopy equivalence, subject to (N, h) ∼ (N ′, h′) if there exist a homeomorphism
f : N → N ′. The similarity is that again there is a surgery exact sequence for n > 5

· · · → Ln+1(Z[π1(M)]) → STOP (M) → [M,G/TOP ] → Ln(Z[π1(M)]) (∗)
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corresponding to a two-stage obstruction theory for deciding if a simple homotopy equivalence
is homotopic to a homeomorphism, with G/TOP the classifying space for fibre homotopy
trivialized topological block bundles. The difference is that the topological structure set
STOP (M) has an abelian group structure and G/TOP has an infinite loop space structure
with respect to which (∗) is an exact sequence of abelian groups. Another difference is given
by the computation STOP (Sn) = 0, which is just a restatement of the generalized Poincaré
conjecture in the topological category : for n > 5 every homotopy equivalence h : Mn → Sn

is homotopic to a homeomorphism.

Originally, the abelian group structure on (∗) was suggested by the characteristic vari-
ety theorem of Sullivan [15] on the homotopy type of G/TOP , including the computation
π∗(G/TOP ) = L∗(Z). Next, Quinn [6] proposed that the surgery obstruction function should
be factored as the composite

[M,G/TOP ] = H0(M ;G/TOP ) ∼= Hn(M ;G/TOP )
A
−→ Ln(Z[π1(M)])

with G/TOP the simply-connected surgery spectrum with 0th space G/TOP , identifying the
topological structure sequence with the homotopy exact sequence of a geometrically defined
spectrum-level assembly map. This was all done in Ranicki [8], [9], but with algebra instead
of geometry.

The algebraic theory of surgery was used in [9] to define the algebraic surgery exact
sequence of abelian groups for any space X

· · · → Hn(X; L•)
A
−→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•) → . . . . (∗∗)

The expression of the L-groups L∗(Z[π1(X)]) as the cobordism groups of quadratic Poincaré
complexes over Z[π1(X)] (recalled in the notes on the foundations of algebraic surgery)
was extended to H∗(X; L•) and S∗(X), using quadratic Poincaré complexes in categories
containing much more of the topology of X than just the fundamental group π1(X). The
topological surgery exact sequence of an n-dimensional manifold M with n > 5 was shown
to be in bijective correspondence with the corresponding portion of the algebraic surgery
sequence, including an explicit bijection

s : STOP (M) → Sn+1(M) ; h 7→ s(h) .

The structure invariant s(h) ∈ Sn+1(M) of a simple homotopy equivalance h : N → M
measures the chain level cobordism failure of the point inverses h−1(x) ⊂ N (x ∈ M) to be
points.

The Browder-Novikov-Sulivan-Wall surgery theory deals both with the existence and
uniqueness of manifolds in the simple homotopy type of a geometric simple n-dimensional
Poincaré complex X with n ≥ 5. Again, this was first done for differentiable manifolds, and
then extended to topological manifolds, with a two-stage obstruction :

(i) The primary obstruction in [X,B(G/TOP )] to the existence of a normal map (f, b) :
M → X, with b : νM → ν̃X a bundle map from the stable normal bundle νM of M to a
topological reduction ν̃X : X → BTOP of the Spivak normal fibration νX : X → BG.
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(ii) The secondary obstruction σ∗(f, b) ∈ Ln(Z[π1(M)]) to performing surgery to make
(f, b) a simple homotopy equivalence, which depends on the choice of solution in (i).

For n > 5 X is simple homotopy equivalent to a topological manifold if and only if there
exists a topological reduction ν̃X : X → BTOP for which the corresponding normal map
(f, b) : M → X has surgery obstruction σ∗(f, b) = 0. The algebraic surgery exact sequence
(∗∗) unites the two stages into a single invariant, the total surgery obstruction s(X) ∈ Sn(X),
which measures the chain level cobordism failure of the points x ∈ X to have Euclidean
neighbourhoods. For π1(X) = {1}, n = 4k the condition s(X) = 0 ∈ S4k(X) is precisely the
Browder condition that there exist a topological reduction ν̃X for which the signature of X
is given by the Hirzebruch formula

signature(X) = 〈L(−ν̃X), [X]〉 ∈ Z .

2 Geometric Poincaré assembly

This section describes the assembly for geometric Poincaré bordism, setting the scene for
the use of quadratic Poincaré bordism in the assembly map in algebraic L-theory. In both
cases assembly is the passage from objects with local Poincaré duality to objects with global
Poincaré duality.

Given a space X let ΩP
n (X) be the bordism group of maps f : Q→ X from n-dimensional

geometric Poincaré complexes Q. The functor X 7→ ΩP
∗ (X) is homotopy invariant. If

X = X1 ∪Y X2 it is not in general possible to make f : Q → X Poincaré transverse at
Y ⊂ X, i.e. f−1(Y ) ⊂ Q will not be an (n − 1)-dimensional geometric Poincaré complex.
ThusX 7→ ΩP

∗ (X) does not have Mayer-Vietoris sequences, and is not a generalized homology
theory. The general theory of Weiss and Williams [19] provides a generalized homology theory
X 7→ H∗(X; ΩP

• ) with an assembly map A : H∗(X; ΩP
• ) → ΩP

∗ (X). However, it is possible to
obtain A by a direct geometric construction : Hn(X; ΩP

• ) is the bordism group of Poincaré
transverse maps f : Q → X from n-dimensional Poincaré complexes Q, and A forgets the
transversality. The coefficient spectrum ΩP

• is such that

π∗(Ω
P
• ) = ΩP

∗ ({pt.}) ,

and may be constructed using geometric Poincaré n-ads.

In order to give a precise geometric description of Hn(X; ΩP
• ) it is convenient to assume

that X is the polyhedron of a finite simplicial complex (also denoted X). The dual cell of a
simplex σ ∈ X is the subcomplex of the barycentric subdivision X ′

D(σ,X) = {σ̂0σ̂1 . . . σ̂n | σ 6 σ0 < σ1 < · · · < σn} ⊂ X ′ ,

with boundary the subcomplex

∂D(σ,X) =
⋃

τ>σ

D(τ,X) = {τ̂0τ̂1 . . . τ̂n | σ < τ0 < τ1 < · · · < τn} ⊂ D(σ,X) .
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Every map f : M → X from an n-manifold M can be made transverse across the dual cells,
meaning that for each σ ∈ X

(M(σ), ∂M(σ)) = f−1(D(σ,X), ∂D(σ,X))

is an (n − |σ|)-dimensional manifold with boundary. Better still, for an n-dimensional PL
manifold M every simplicial map f : M → X ′ is already transverse in this sense, by a result
of Marshall Cohen.

A map f : Q→ X is n-dimensional Poincaré transverse if for each σ ∈ X

(Q(σ), ∂Q(σ)) = f−1(D(σ,X), ∂D(σ,X))

is an (n− |σ|)-dimensional geometric Poincaré pair.

Proposition. Hn(X; ΩP
• ) is the bordism group of Poincaré transverse maps Q → X from

n-dimensional geometric Poincaré complexes. �

It is worth noting that

(i) The identity 1 : X → X is n-dimensional Poincaré transverse if and only if X is an
n-dimensional homology manifold.

(ii) If a map f : Q → X is n-dimensional Poincaré transverse then Q is an n-dimensional
geometric Poincaré complex. The global Poincaré duality of Q is assembled from the
local Poincaré dualities of (Q(σ), ∂Q(σ)). For f = 1 : Q = X → X this is the essence
of Poincaré’s original proof of his duality for a homology manifold.

The Poincaré structure group SP
n (X) is the relative group in the geometric Poincaré

surgery exact sequence

· · · → Hn(X; ΩP
• )

A
−→ ΩP

n (X) → SP
n (X) → Hn−1(X; ΩP

• ) → . . . ,

which is the cobordism group of maps (f, ∂f) : (Q, ∂Q) → X from n-dimensional Poincaré
pairs (Q, ∂Q) with ∂f : ∂Q → X Poincaré transverse. The total Poincaré surgery obstruction

of an n-dimensional geometric Poincaré complex X is the image sP (X) ∈ SP
n (X) of (1 : X →

X) ∈ ΩP
n (X), with sP (X) = 0 if and only if there exists an ΩP

• -coefficient fundamental class
[X]P ∈ Hn(X; ΩP

• ) with A([X]P ) = (1 : X → X) ∈ ΩP
n (X).

In fact, it follows from the Levitt-Jones-Quinn-Hausmann-Vogel Poincaré bordism theory
that SP

n (X) = Sn(X) for n > 5, and that sP (X) = 0 if and only if X is homotopy equivalent
to an n-dimensional topological manifold. The geometric Poincaré bordism approach to the
structure sets and total surgery obstruction is intuitive, and has the virtue(?) of dispensing
with the algebra altogether. Maybe it even applies in the low dimensions n = 3, 4. However,
at present our understanding of the Poincaré bordism theory is not good enough to use it
for foundational purposes. So back to the algebra!
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3 The algebraic surgery exact sequence

This section constructs the quadratic L-theory assembly map A and the algebraic surgery
exact sequence

· · · → Hn(X; L•)
A
−→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•) → . . . (∗∗)

for a finite simplicial complex X. A ‘(Z, X)-module’ is a based f.g. free Z-module in which
every basis element is associated to a simplex of X. The construction of (∗∗) makes use of
a chain complex duality on the (Z, X)-module category A(Z, X).

The quadratic L-spectrum L• is 1-connective, with connected 0th space L0 ' G/TOP
and

πn(L•) = πn(L0) = Ln(Z) =





Z if n ≡ 0(mod 4) (signature)/8

Z2 if n ≡ 2(mod 4) (Arf invariant)

0 otherwise

for n > 1. From the algebraic point of view it is easier to start with the 0-connective
quadratic L-spectrum L• = L•(Z), such that

πn(L•) =

{
Ln(Z) if n > 0

0 if n 6 −1

with disconnected 0th space L0 ' L0(Z) × G/TOP . The two spectra are related by a
fibration sequence L• → L• → K(L0(Z)) with K(L0(Z)) the Eilenberg-MacLane spectrum
of L0(Z).

The algebraic surgery exact sequence was constructed in Ranicki [9] using the (Z, X)-
module category of Ranicki and Weiss [12]. (This is a rudimentary version of controlled
topology, cf. Ranicki [11]).

A (Z, X)-module is a direct sum of based f.g. free Z-modules

B =
∑

σ∈X

B(σ) .

A (Z, X)-module morphism f : B → C is a Z-module morphism such that

f(B(σ)) ⊆
∑

τ>σ

C(τ) ,

so that the matrix of f is upper triangular. A (Z, X)-module chain map f : B → C is a
chain equivalence if and only if each f(σ, σ) : B(σ) → C(σ) (σ ∈ X) is a Z-module chain

equivalence. The universal covering projection p : X̃ → X is used to define the (Z, X)-
module assembly functor

A : A(Z, X) → A(Z[π1(X)]) ; B 7→
∑

σ̃∈X̃

B(pσ̃)
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with A(Z, X) the category of (Z, X)-modules and A(Z[π1(X)]) the category of based f.g.
free Z[π1(X)]-modules. In the language of sheaf theory A = q!p

! (cf. Verdier [16]), with

q : X̃ → {pt.}.

The involution g 7→ g = g−1 on Z[π1(X)] extends in the usual way to a duality involution
on A(Z[π1(X)]), sending a based f.g. free Z[π1(X)]-module F to the dual f.g. free Z[π1(X)]-
module F ∗ = HomZ[π1(X)](F,Z[π1(X)]). Unfortunately, it is not possible to define a duality
involution on A(Z, X) (since the transpose of an upper triangular matrix is a lower triangular
matrix). See Chapter 5 of Ranicki [9] for the construction of a ‘chain duality’ on A(Z, X)
and of the L-groups L∗(A(Z, X)). The chain duality associates to a chain complex C in
A(Z, X) a chain complex TC in A(Z, X) with

TC(σ)r =
∑

τ>σ

HomZ(C−|σ|−r(τ),Z) .

Example. The simplicial chain complex C(X ′) is a (Z, X)-module chain complex, with

assembly A(C(X ′)) Z[π1(X)]-module chain equivalent to C(X̃). The chain dual TC(X ′) is
(Z, X)-module chain equivalent to the simplicial cochain complex D = HomZ(C(X),Z)−∗,

with assembly A(D) which is Z[π1(X)]-module chain equivalent to C(X̃)−∗. �

The quadratic L-group Ln(A(Z, X)) is the cobordism group of n-dimensional quadratic
Poincaré complexes (C, ψ) in A(Z, X).

Proposition. ([9], 14.5) The functor X 7→ L∗(A(Z, X)) is the generalized homology theory
with L•(Z)-coefficients

L∗(A(Z, X)) = H∗(X; L•(Z)) . �

The coefficient spectrum L• = L•(Z) is the special case R = Z of a general construction.
For any ring with involution R there is a 0-connective spectrum L•(R) such that

π∗(L•(R)) = L∗(R) ,

which may be constructed using quadratic Poincaré n-ads over R.

The assembly functor A : A(Z, X) → A(Z[π1(X)]) induces assembly maps in the quadratic
L-groups, which fit into the 4-periodic algebraic surgery exact sequence

· · · → Hn(X; L•)
A
−→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•) → . . .

with the 4-periodic algebraic structure set Sn(X) the cobordism group of (n−1)-dimensional
quadratic Poincaré complexes (C, ψ) in A(Z, X) such that the assembly A(C) is a simple
contractible based f.g. free Z[π1(X)]-module chain complex. (See section 4.5 for the ge-
ometric interpretation). A priori, an element of the relative group Sn(X) = πn(A) is an
n-dimensional quadratic Z[π1(X)]-Poincaré pair (C → D, (δψ, ψ)) in A(Z, X). Using this
as data for algebraic surgery results in an (n − 1)-dimensional quadratic Poincaré complex
(C ′, ψ′) in A(Z, X) such that the assembly A(C ′) is a simple contractible based f.g. free
Z[π1(X)]-module chain complex.

Killing π0(L•) = L0(Z) in L• results in the 1-connective spectrum L•, and the algebraic

surgery exact sequence

· · · → Hn(X; L•)
A
−→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•) → . . . (∗∗)
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with Sn(X) the algebraic structure set. The two types of structure set are related by an
exact sequence

· · · → Hn(X;L0(Z)) → Sn(X) → Sn(X) → Hn−1(X;L0(Z)) → . . . .

4 The structure set and the total surgery obstruction

This chapter states the results in Chapters 16,17,18 of Ranicki [9] on the L-theory orientation
of topology, the total surgery obstruction and the structure set.

The algebraic theory of surgery fits the homotopy category of topological manifolds of
dimension > 5 into a pullback square

{topological manifolds} //

��

{local algebraic Poincaré complexes}

��

{geometric Poincaré complexes} // {global algebraic Poincaré complexes}

where local means A(Z, X) and global means A(Z[π1(X)]). In words : the homotopy type
of a topological manifold is the homotopy type of a geometric Poincaré complex with a local
algebraic Poincaré structure.

4.1 The L-theory orientation of topological block bundles

The topological k-block bundles of Rourke and Sanderson [13] are topological analogues of
vector bundles. By analogy with the classifying spaces BO(k), BO for vector bundles there

are classifying spaces BT̃OP (k) for topological block bundles, and a stable classifying space
BTOP . It is known from the work of Sullivan [15] and Kirby-Siebenmann [4] that the
classifying space for fibre homotopy trivialized topological block bundles

G/TOP = homotopy fibre(BTOP → BG)

has homotopy groups π∗(G/TOP ) = L∗(Z). A map Sn → G/TOP classifies a topological

block bundle η : Sn → BT̃OP (k) with a fibre homotopy trivialization Jη ' {∗} : Sn →
BG(k) (k > 3). The isomorphism πn(G/TOP ) → Ln(Z) is defined by sending Sn → G/TOP
to the surgery obstruction σ∗(f, b) of the corresponding normal map (f, b) : M → Sn from
a topological n-dimensional manifold M , with b : νM → νSn ⊕ η. Sullivan [15] proved that
G/TOP and BO have the same homotopy type localized away from 2

G/TOP [1/2] ' BO[1/2] .

(The localization Z[1/2] is the subring {`/2m | ` ∈ Z, m > 0} ⊂ Q obtained from Z by
inverting 2. The localization X[1/2] of a space X is a space such that

π∗(X[1/2]) = π∗(X) ⊗Z Z[1/2] .
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Thus X 7→ X[1/2] kills all the 2-primary torsion in π∗(X).)

Let L• = L(Z)• be the symmetric L-spectrum of Z, with homotopy groups

πn(L•) = Ln(Z) =





Z if n ≡ 0(mod 4) (signature)

Z2 if n ≡ 1(mod 4) (deRham invariant)

0 otherwise .

The hyperquadratic L-spectrum of Z is defined by

L̂• = cofibre(1 + T : L• → L•) .

It is 0-connective, fits into a (co)fibration sequence of spectra

· · · → L•
1+T
−−→ L• → L̂• → ΣL• → . . . ,

and has homotopy groups

πn(L̂•) =





Z if n = 0

Z8 if n ≡ 0(mod 4) and n > 0

Z2 if n ≡ 2, 3(mod 4)

0 if n ≡ 1(mod 4) .

An h-orientation of a spherical fibration ν : X → BG(k) with respect to a ring spectrum

h is an h-coefficient Thom class in the reduced h-cohomology U ∈ ḣk(T (ν)) of the Thom

space T (ν), i.e. a ḣ-cohomology class which restricts to 1 ∈ ḣk(Sk) = π0(h) over each x ∈ X.

Theorem ([9], 16.1) (i) The 0th space L0 of L• is homotopy equivalent to G/TOP

L0 ' G/TOP .

(ii) Every topological k-block bundle ν : X → BT̃OP (k) has a canonical L•-orientation

Uν ∈ Ḣk(T (ν); L•) .

(iii) Every (k − 1)-spherical fibration ν : X → BG(k) has a canonical L̂•-orientation

Ûν ∈ Ḣk(T (ν); L̂•) ,

with Ḣ denoting reduced cohomology. The topological reducibility obstruction

t(ν) = δ(Ûν) ∈ Ḣk+1(T (ν); L•)

is such that t(ν) = 0 if and only if ν admits a topological block bundle reduction ν̃ : X →

BT̃OP (k). Here, δ is the connecting map in the exact sequence

· · · → Ḣk(T (ν); L•) → Ḣk(T (ν); L•) → Ḣk(T (ν); L̂•)
δ
−→Ḣk+1(T (ν); L•) → . . . .
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The topological block bundle reductions of ν are in one-one correspondence with lifts of Ûν

to a L•-orientation Uν ∈ Hk(T (ν); L•). �

Example. Rationally, the symmetric L-theory orientation of ν : X → BT̃OP (k) is the
L-genus

Uν ⊗ Q = L(ν) ∈ Ḣk(T (ν); L•) ⊗ Q = H4∗(X; Q) . �

Example. Localized away from 2, the symmetric L-theory orientation of ν : X → BT̃OP (k)
is the KO[1/2]-orientation of Sullivan [15]

Uν [1/2] = ∆ν ∈ Ḣk(T (ν); L•)[1/2] = K̃O
k
(T (ν))[1/2] . �

4.2 The total surgery obstruction

The total surgery obstruction s(X) ∈ Sn(X) of an n-dimensional geometric Poincaré complex
X is the cobordism class of the Z[π1(X)]-contractible (n−1)-dimensional quadratic Poincaré
complex (C, ψ) in A(Z, X) with C = C([X]∩− : C(X)n−∗ → C(X ′))∗+1, using the dual cells
in the barycentric subdivision X ′ to regard the simplicial chain complex C(X ′) as a chain
complex in A(Z, X).

Theorem ([9], 17.4) The total surgery obstruction is such that s(X) = 0 ∈ Sn(X) if (and for
n > 5 only if) X is homotopy equivalent to an n-dimensional topological manifold.
Proof A regular neighbourhood (W, ∂W ) of an embedding X ⊂ Sn+k (k large) gives a Spivak
normal fibration

Sk−1 → ∂W →W ' X

with Thom space T (ν) = W/∂W S-dual to X+ = X ∪ {pt.}. The total surgery obstruction
s(X) ∈ Sn(X) has image the topological reducibility obstruction

t(ν) ∈ Ḣk+1(T (ν); L•) ∼= Hn−1(X; L•) .

Thus s(X) has image t(ν) = 0 ∈ Hn−1(X; L•) if and only if ν admits a topological block

bundle reduction ν̃ : X → BT̃OP (k), in which case the topological version of the Browder-
Novikov transversality construction applied to the degree 1 map ρ : Sn+k → T (ν) gives a nor-
mal map (f, b) = ρ| : M = f−1(X) → X. The surgery obstruction σ∗(f, b) ∈ Ln(Z[π1(X)])
has image

[σ∗(f, b)] = s(X) ∈ im(Ln(Z[π1(X)]) → Sn(X)) = ker(Sn(X) → Hn−1(X; L•))

The total surgery obstruction is s(X) = 0 if and only if there exists a reduction ν̃ with
σ∗(f, b) = 0. �

Example. For a simply-connected space X the assembly map A : H∗(X; L•) → L∗(Z) is
onto, so that

Sn(X) = ker(A : Hn−1(X; L•) → Ln−1(Z)) = Ḣn−1(X; L•) ,

with Ḣ denoting reduced homology. The total surgery obstruction s(X) ∈ Sn(X) of a
simply-connected n-dimensional geometric Poincaré complex X is just the obstruction to
the topological reducibility of the Spivak normal fibration νX : X → BG. �
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There are also relative and rel ∂ versions of the total surgery obstruction.

For any pair of spaces (X, Y ⊆ X) let Sn(X, Y ) be the relative groups in the exact
sequence

· · · → Hn(X, Y ; L•)
A
−→ Ln(Z[π1(Y )] → Z[π1(X)]) → Sn(X, Y ) → Hn−1(X, Y ; L•) → . . . .

The relative total surgery obstruction s(X, Y ) ∈ Sn(X, Y ) of an n-dimensional geometric
Poincaré pair is such that s(X, Y ) = 0 if (and for n > 6 only if) (X, Y ) is homotopy
equivalent to an n-dimensional topological manifold with boundary (M, ∂M). In the special
case π1(X) = π1(Y )

s(X, Y ) ∈ Sn(X, Y ) = Hn−1(X, Y ; L•)

is just the obstruction to the topological reducibility of the Spivak normal fibration νX :
X → BG, which is the π-π theorem of Chapter 4 of Wall [17].

The rel ∂ total surgery obstruction s∂(X, Y ) ∈ Sn(X) of an n-dimensional geometric
Poincaré pair (X, Y ) with manifold boundary Y is such that s∂(X, Y ) = 0 if (and for n > 5
only if) (X, Y ) is homotopy equivalent rel ∂ to an n-dimensional manifold with boundary.

4.3 The L-theory orientation of topological manifolds

An n-dimensional geometric Poincaré complex X determines a symmetric Z[π1(X)]-Poincaré
complex (C(X ′), φ) in A(Z, X), with assembly the usual symmetric Poinacaré complex

(C(X̃), φ(X̃)) representing the symmetric signature σ∗(X) ∈ Ln(Z[π1(X)]).

Example. For n = 4k σ∗(M) ∈ L4k(Z[π1(M)]) has image

signature(X) = signature(H2k(X; Q),∪) ∈ L4k(Z) = Z . �

A triangulated n-dimensional manifold M determines a symmetric Poincaré complex
(C(M ′), φ) in A(Z,M). The symmetric L-theory orientation of M is the L•-coefficient class

[M ]L = (C(M ′), φ) ∈ Ln(A(Z,M)) = Hn(M ; L•)

with assembly
A([M ]L) = σ∗(M) ∈ Ln(Z[π1(M)]) .

Example. Rationally, the symmetric L-theory orientation is the Poincaré dual of the L-genus

[M ]L = L(M) ∩ [M ]Q ∈ Hn(M ; L•) ⊗ Q = Hn−4∗(M ; Q) = H4∗(M ; Q) .

Thus A([M ]L) = σ∗(M) ∈ Ln(Z[π1(M)]) is a π1(M)-equivariant generalization of the Hirze-
bruch signature theorem for a 4k-dimensional manifold

signature(M) = 〈L(−ν̃M), [M ]〉 ∈ L4k(Z) = Z . �

Example. Localized away from 2, the symmetric L-theory orientation is the KO[1/2]-
orientation ∆(M) of Sullivan [15]

[M ]L ⊗ Z[1/2] = ∆(M) ∈ Hn(M ; L•)[1/2] = KOn(M)[1/2] . �

See Chapter 16 of [9] for the detailed definition of the visible symmetric L-groups V L∗(X)
of a space X, with the following properties :
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(i) V Ln(X) is the cobordism group of n-dimensional symmetric complexes (C, φ) in A(Z, X)
such that the assembly A(C, φ) is an n-dimensional symmetric Poincaré complex in
A(Z[π1(X)]), and such that each (C(σ), φ(σ)) (σ ∈ X(n)) is a 0-dimensional symmetric
Poincaré complex in A(Z).

(ii) The (covariant) functor X 7→ V L∗(X) is homotopy invariant.

(iii) The visible symmetric L-groups V L∗(K(π, 1)) of an Eilenberg-MacLane space K(π, 1)
of a group π are the visible symmetric L-groups V L∗(Z[π]) of Weiss [18].

(iv) The V L-groups fit into a commutative braid of exact sequences

Sn+1(X)

&&MMMMMMM

%%

Hn(X; L•)
A

&&MMMMMMM

&&

Hn(X; L̂•)

Hn(X; L•)

1+T
88qqqqqqq

A

&&MMMMMMM
V Ln(X)

88qqqqqq

&&MMMMMMM

Hn+1(X; L̂•)

88qqqqqq

99
Ln(Z[π1(X)])

1+T
88qqqqqqq

99
Sn(X)

(v) Every n-dimensional simple Poincaré complex X has a visible symmetric signature
σ∗(X) ∈ V Ln(X) with image the total surgery obstruction s(X) ∈ Sn(X).

An h-orientation of an n-dimensional Poincaré complex X with respect to ring spectrum
h is an h-homology class [X]h ∈ hn(X) which corresponds under the S-duality isomorphism

hn(X) ∼= ḣk+1(T (ν)) to an h-coefficient Thom class Uh ∈ ḣk(T (ν)) of the Spivak normal
fibration ν : X → BG(k) (k large, X ⊂ Sn+k).

Theorem ([9], 16.16) Every n-dimensional topological manifold M has a canonical L•-orient-
ation [M ]L ∈ Hn(M ; L•) with assembly

A([M ]L) = σ∗(M) ∈ V Ln(M) . �

If M is triangulated by a simplicial complex K then

[M ]L = (C, φ) ∈ Hn(M ; L•) = Ln(Z, K)

is the cobordism class of an n-dimensional symmetric Poincaré complex (C, φ) in A(Z, K)
with C = C(K ′).

Example. The canonical L•-homology class of an n-dimensional manifold M is given ratio-
nally by the Poincaré dual of the L(M)-genus L(M) ∈ H4∗(M ; Q)

[M ]L ⊗ Q = L(M) ∩ [M ]Q ∈ Hn(M ; L•) ⊗ Q = Hn−4∗(M ; Q) . �
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Theorem ([9], pp. 190–191) For n > 5 an n-dimensional simple Poincaré complex X is simple
homotopy equivalent to an n-dimensional topological manifold if and only if there exists a
symmetric L-theory fundamental class [X]L ∈ Hn(X; L•) with assembly

A([X]L) = σ∗(X) ∈ V Ln(X) . �

In the simply-connected case π1(X) = {1} with n = 4k this is just :

Example. For k > 2 a simply-connected 4k-dimensional Poincaré complex X is homotopy
equivalent to a 4k-dimensional topological manifold if and only if the Spivak normal fibration
νX : X → BG admits a topological reduction ν̃X : X → BTOP for which the Hirzebruch
signature formula

signature(X) = 〈L(−ν̃X), [X]〉 ∈ L4k(Z) = Z

holds. The if part is the topological version of the original result of Browder [1] on the con-
verse of the Hirzebruch signature theorem for the homotopy types of differentiable manifolds.

�

4.4 The structure set

The structure invariant of a homotopy equivalence h : N →M of n-dimensional topological
manifolds is is the rel ∂ total surgery obstruction

s(h) = s∂(W,M ∪N) ∈ Sn+1(W ) = Sn+1(M)

of the (n + 1)-dimensional geometric Poincaré pair with manifold boundary (W,M ∪ N)
defined by the mapping cylinder W of h.

Here is a more direct description of the structure invariant, in terms of the point inverses
h−1(x) ⊂ N (x ∈ M). Choose a simplicial complex K with a homotopy equivalence g :
M → K such that g and gh : N → K are topologically transverse across the dual cells
D(σ,K) ⊂ K ′. (For triangulated M take K = M). Then s(h) is the cobordism class

s(h) = (C, ψ) ∈ Sn+1(K) = Sn+1(M)

of a Z[π1(M)]-contractible n-dimensional quadratic Poincaré complex (C, ψ) in A(Z, K) with

C = C(h : C(N) → C(K ′))∗+1 .

Theorem ([9], 18.3, 18.5) (i) The structure invariant is such that s(h) = 0 ∈ Sn+1(M) if (and
for n > 5 only if) h is homotopic to a homeomorphism.
(ii) The Sullivan-Wall surgery sequence of an n-dimensional topological manifold M with
n > 5 is in one-one correspondence with a portion of the algebraic surgery exact sequence,
by a bijection

. . . // Ln+1(Z[π1(M)]) // STOP (M)

s∼=

��

// [M,G/TOP ]

t∼=

��

// Ln(Z[π1(M)])

. . . // Ln+1(Z[π1(M)]) // Sn+1(M) // Hn(M ; L•)
A // Ln(Z[π1(M)])
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The higher structure groups are the rel ∂ structure sets

Sn+k+1(M) = STOP
∂ (M ×Dk,M × Sk−1) (k > 1)

of homotopy equivalences (h, ∂h) : (N, ∂N) → (M×Dk,M×Sk−1) with ∂h : ∂N →M×Sk−1

a homeomorphism. �

Example. For a simply-connected space M the assembly maps A : H∗(M ; L•) → L∗(Z) are
onto. Thus for a simply-connected n-dimensional manifold M

STOP (M) = Sn+1(M)

= ker(A : Hn(M ; L•) → Ln(Z)) = Ḣn(M ; L•)

= ker(σ∗ : [M,G/TOP ] → Ln(Z))

with σ∗ the surgery obstruction map. The structure invariant s(h) ∈ STOP (M) of a homotopy
equivalence h : N →M is given modulo 2-primary torsion by the difference of the canonical
L•-orientations

s(h)[1/2] = (h∗[N ]L − [M ]L, 0) ∈ Ḣn(M ; L•)[1/2] = Ḣn(M ; L•)[1/2] ⊕Hn(M)[1/2] .

Rationally, this is just the difference of the Poincaré duals of the L-genera

s(h) ⊗ Q = h∗(L(N) ∩ [N ]Q) − L(M) ∩ [M ]Q

∈ Sn(M) ⊗ Q = Ḣn(M ; L•) ⊗ Q =
∑

4k 6=n

Hn−4k(M ; Q) . �

Example. Smale [14] proved the generalized Poincaré conjecture: if N is a differentiable
n-dimensional manifold with a homotopy equivalence h : N → Sn and n > 5 then h is
homotopic to a homeomorphism. Stallings and Newman then proved the topological version:
if N is a topological n-dimensional manifold with a homotopy equivalence h : N → Sn and
n > 5 then h is homotopic to a homeomorphism. This is the geometric content of the
computation of the structure set of Sn

STOP (Sn) = Sn+1(S
n) = 0 (n > 5) . �

Here are three consequences of the Theorem in the non-simply-connected case, subject
to the canonical restriction n > 5 :

(i) For any finitely presented group π the image of the assembly map

A : Hn(K(π, 1); L•) → Ln(Z[π])

is the subgroup consisting of the surgery obstructions σ∗(f, b) of normal maps (f, b) :
N →M of closed n-dimensional manifolds with π1(M) = π.

(ii) The Novikov conjecture for a group π is that the higher signatures for any manifold
M with π1(M) = π

σx(M) = 〈x ∪ L(M), [M ]〉 ∈ Q (x ∈ H∗(K(π, 1); Q))
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are homotopy invariant. The conjecture holds for π if and only if the rational assembly
maps

A : Hn(K(π, 1); L•) ⊗ Q = Hn−4∗(K(π, 1); Q) → Ln(Z[π]) ⊗ Q

are injective.

(iii) The topological Borel rigidity conjecture for an n-dimensional aspherical manifold
M = K(π, 1) is that every simple homotopy equivalence of manifolds h : N → M
is homotopic to a homeomeorphism, i.e. STOP (M) = {∗}, and more generally that

STOP
∂ (M ×Dk,M × Sk−1) = {∗} (k > 1) .

The conjecture holds for π if and only if the assembly map

A : Hn+k(K(π, 1); L•) → Ln+k(Z[π])

is injective for k = 0 and an isomorphism for k > 1.

See Chapter 23 of Ranicki [9] and Chapter 8 of Ranicki [10] for the algebraic Poincaré
transversality treatment of the splitting obstruction theory for homotopy equivalences of
manifolds along codimension q submanifolds, involving natural morphisms S∗(X) → LS∗−q−1

to the LS-groups defined geometrically in Chapter 11 of Wall [17]. The case q = 1 is
particularly important : a homotopy invariant functor is a homology theory if and only if it
has excision, and excision is a codimension 1 transversality property.

4.5 Homology manifolds

An n-dimensional Poincaré complex X has a 4-periodic total surgery obstruction s(X) ∈
Sn(X) such that s(X) = 0 if (and for n > 6 only if) X is simple homotopy equivalent to
a compact ANR homology manifold (Bryant, Ferry, Mio and Weinberger [2]). The S- and
S-groups are related by an exact sequence

0 → Sn+1(X) → Sn+1(X) → Hn(X;L0(Z)) → Sn(X) → Sn(X) → 0 .

The total surgery obstruction s(X) ∈ Sn(X) of an n-dimensional homology manifold X is
the image of the Quinn [7] resolution obstruction i(X) ∈ Hn(X;L0(Z)), such that i(X) = 0
if (and for n > 6 only if) there exists a map M → X from an n-dimensional topological
manifold M with contractible point inverses. The homology manifold surgery sequence of X
with n > 6 is in one-one correspondence with a portion of the 4-periodic algebraic surgery
exact sequence, by a bijection

. . . // Ln+1(Z[π1(X)]) // SH(X)

s∼=

��

// [X,L0(Z) ×G/TOP ]

t∼=

��

// Ln(Z[π1(X)])

. . . // Ln+1(Z[π1(X)]) // Sn+1(X) // Hn(X; L•)
A // Ln(Z[π1(X)])

with SH(X) the structure set of simple homotopy equivalences h : Y → X of n-dimensional
homology manifolds, up to s-cobordism.
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Example. The homology manifold structure set of Sn (n > 6) is

SH(Sn) = Sn+1(S
n) = L0(Z) ,

detected by the resolution obstruction. �

See Chapter 25 of Ranicki [9] and Johnston and Ranicki [3] for more detailed accounts
of the algebraic surgery classification of homology manifolds.

The homology manifold surgery exact sequence of [2] required the controlled algebraic
surgery exact sequence

Hn+1(B; L•) → Sε,δ(N, f) → [N, ∂N ;G/TOP, ∗] → Hn(B; L•)

which has now been established by Pedersen, Quinn and Ranicki [5].
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