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Abstract

The recent shift toward multi-core chips has pushed the burden of extracting perfor-

mance to the programmer. In fact, programmers now have to be able to uncover more

coarse-grain parallelism with every new generation of processors, or the performance

of their applications will remain roughly the same or even degrade. Unfortunately,

parallel programming is still hard and error prone. This has driven the development of

many new parallel programming models that aim to make this process efficient.

This thesis first combines the skeleton-based and transactional memory program-

ming models in a new framework, called OpenSkel, in order to improve performance

and programmability of parallel applications. This framework provides a single skele-

ton that allows the implementation of transactional worklist applications. Skeleton or

pattern-based programming allows parallel programs to be expressed as specialized in-

stances of generic communication and computation patterns. This leaves the program-

mer with only the implementation of the particular operations required to solve the

problem at hand. Thus, this programming approach simplifies parallel programming

by eliminating some of the major challenges of parallel programming, namely thread

communication, scheduling and orchestration. However, the application programmer

has still to correctly synchronize threads on data races. This commonly requires the

use of locks to guarantee atomic access to shared data. In particular, lock programming

is vulnerable to deadlocks and also limits coarse grain parallelism by blocking threads

that could be potentially executed in parallel.

Transactional Memory (TM) thus emerges as an attractive alternative model to sim-

plify parallel programming by removing this burden of handling data races explicitly.

This model allows programmers to write parallel code as transactions, which are then

guaranteed by the runtime system to execute atomically and in isolation regardless of

eventual data races. TM programming thus frees the application from deadlocks and

enables the exploitation of coarse grain parallelism when transactions do not conflict

very often. Nevertheless, thread management and orchestration are left for the applica-

tion programmer. Fortunately, this can be naturally handled by a skeleton framework.

This fact makes the combination of skeleton-based and transactional programming a

natural step to improve programmability since these models complement each other.

In fact, this combination releases the application programmer from dealing with thread

management and data races, and also inherits the performance improvements of both

models. In addition to it, a skeleton framework is also amenable to skeleton-driven
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performance optimizations that exploits the application pattern and system informa-

tion.

This thesis thus also presents a set of pattern-oriented optimizations that are auto-

matically selected and applied in a significant subset of transactional memory appli-

cations that shares a common pattern called worklist. These optimizations exploit the

knowledge about the worklist pattern and the TM nature of the applications to avoid

transaction conflicts, to prefetch data, to reduce contention etc. Using a novel autotun-

ing mechanism, OpenSkel dynamically selects the most suitable set of these pattern-

oriented performance optimizations for each application and adjusts them accordingly.

Experimental results on a subset of five applications from the STAMP benchmark suite

show that the proposed autotuning mechanism can achieve performance improvements

within 2%, on average, of a static oracle for a 16-core UMA (Uniform Memory Ac-

cess) platform and surpasses it by 7% on average for a 32-core NUMA (Non-Uniform

Memory Access) platform.

Finally, this thesis also investigates skeleton-driven system-oriented performance

optimizations such as thread mapping and memory page allocation. In order to do

it, the OpenSkel system and also the autotuning mechanism are extended to accom-

modate these optimizations. The conducted experimental results on a subset of five

applications from the STAMP benchmark show that the OpenSkel framework with the

extended autotuning mechanism driving both pattern and system-oriented optimiza-

tions can achieve performance improvements of up to 88%, with an average of 46%,

over a baseline version for a 16-core UMA platform and up to 162%, with an average

of 91%, for a 32-core NUMA platform.
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Chapter 1

Introduction

1.1 Context

Leading processor manufacturers have recently shifted toward the multi-core design

paradigm [39, 43]. As devices continue to scale we can expect future systems to be

comprised of an even larger number of cores. Unfortunately, this means that to sus-

tain performance improvements the programmers/compilers now have to exploit the

available cores as much as possible through coarse-grain parallelism. Although par-

allel programming is not a new concept, the vast majority of programmers still find it

a hard and error-prone process, especially when based on low-level programming ap-

proaches, such as threads with locks [54]. Among the many difficulties associated with

such low-level parallel programming, data partitioning, synchronization, communica-

tion, and thread scheduling are the most challenging to deal with. Unfortunately, tools

to support parallel programming are still in their infancy, while automatic parallelizing

compilers still fail to deliver significant results in all but very few instances.

One alternative to simplify the development of parallel applications is to employ

parallel algorithmic skeletons or patterns [5, 19, 61]. Skeleton-based programming

stems from the observation that many parallel algorithms fit into generic communica-

tion and computation patterns, such as pipeline, map and reduce. The communication

and computation pattern can be encapsulated in a common infrastructure, leaving the

programmer with only the implementation of the particular operations required to solve

the problem at hand. Thus, this programming approach eliminates some of the major

challenges of parallel programming, namely thread communication, scheduling and

orchestration. At present, skeletal principles are exploited in the Berkeley’s motifs [5],

Intel’s Threading Building Blocks (TBB) [69] and Google’s MapReduce [25]. These
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2 Chapter 1. Introduction

are an important step toward consolidating parallel skeletons as a practical program-

ming model for regular data and task-parallel applications.

Transactional Memory (TM) [37, 40] is another alternative parallel programming

model. From a different perspective, it simplifies parallel programming by remov-

ing the burden of correctly synchronizing threads on data races [70]. This model al-

lows programmers to write parallel code as transactions, which are then guaranteed by

the runtime system to execute atomically and in isolation regardless of eventual data

races. Hardware implementations of TM have been proposed, but software transac-

tional memory (STM) [26, 29, 31, 57] is especially appealing since it can be deployed

in existing shared-memory systems, including multi-cores. Although removing the

burden of correctly synchronizing parallel applications is an important simplification,

the programmer is still left with the tasks of thread scheduling and orchestration. These

tasks can be naturally handled by a skeleton framework.

Another opportunity provided by skeletons in addition to the simplification of pro-

gramming is the enabling of performance optimizations. The skeleton framework

can exploit pattern, application and/or system information to perform optimizations

such as communication contention management and data prefetching. Moreover, such

skeleton-driven optimizations can be performed automatically, that is, without requir-

ing any additional programming effort from the application programmer. Nevertheless,

the decision of which optimizations should be enabled and how to adjust them for a

given application is still a daunting task.

1.2 Main Contributions

1.2.1 Combining Parallel Skeletons and Transactional Memory

In this thesis, it has been identified that many current transactional memory applica-

tions share a common parallel pattern. This pattern is called Worklist, in which worker

threads grab work-units from a worklist. In order to process these work-units, worker

threads access and update shared data structures as depicted in Figure 1.1. These oper-

ations are performed under the supervision of a transactional memory system to handle

memory conflicts transparently. That pattern can be made explicit to the programmer

by employing a skeleton approach while hiding transactional memory semantics.

The first contribution of this thesis is to combine the worklist parallel skeleton with

software transactional memory into a single framework, inheriting the programming
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Figure 1.1: An example of a transactional worklist application.

and performance benefits of both models. This framework is called OpenSkel and

it provides the new Transactional Worklist pattern. In previous work, to the best of

our knowledge, no one has exploited the use of skeletons on top of existing STM

applications and systems as a means of improving performance and programmability.

OpenSkel simplifies parallel programming based on the fact that it makes thread

and worklist management, and the interaction with the STM system fully transparent

to the application programmer. In fact, OpenSkel provides a minimal API that permits

the programmer to focus mainly in the implementation of the application kernel. This

releases the programmer from dealing with many parallel programming issues such

as thread synchronization, data races, load balancing etc. Additionally, experimental

results on a subset of five applications from the STAMP benchmark suite also show

that the baseline version can achieve performance improvements of up to 28%, with

an average of 3%, over the original TM version for a 16-core UMA (Uniform Memory

Access) platform and up to 26%, with an average of 3%, for a 32-core NUMA (Non-

Uniform Memory Access) platform. These results show that on average the OpenSkel

framework improves programmability without degrading the application performance.

1.2.2 Pattern-Oriented Performance Optimizations

As mentioned earlier, parallel skeletons create an opportunity to enable transparent

skeleton-driven performance optimizations. Some of these optimizations make use of

the well structured pattern defined by a skeleton. In particular, both the worklist and

TM nature of the applications can be exploited in the transactional worklist pattern.

Another contribution of this thesis is to adapt and enable pattern-oriented perfor-
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mance optimizations and analyze their combined performance impact on real appli-

cations. In this thesis, several pattern-oriented optimizations such as work stealing,

work coalescing, swap retry and helper threads are analyzed in detail. Among these

optimizations, helper threads are employed for the first time (to the best of our knowl-

edge) to transactional applications using a completely novel approach. It exploits the

fact that transactional applications have scalability limitations and spare cores can be

used for data prefetching. Additionally, it uses the skeleton structure to solve the issue

of synchronization between the worker and helper threads.

Experimental results on a subset of five applications from the STAMP benchmark

suite show that employing combined pattern-oriented performance optimizations the

OpenSkel framework can achieve performance improvements of up to 90%, with an

average of 48%, over a baseline version for a 16-core UMA platform and up to 111%,

with an average of 49%, for a 32-core NUMA platform.

1.2.3 Dynamic Autotuning Mechanism

Although enabling many pattern-oriented optimizations transparently in a single frame-

work is an important achievement, the application programmer is still left with the

daunting task of choosing the most profitable set of optimizations. He has also to

manually determine internal parameters for each optimization. Additionally, the static

selection of optimization parameters inhibits the framework from exploiting dynamic

information to adjust them and improve performance even further.

Another contribution of this thesis is a novel autotuning mechanism that dynami-

cally selects a suitable performing set of pattern-oriented optimizations for each appli-

cation. This mechanism incrementally enables and tunes optimizations following their

performance impact and abstraction level order. It also automatically tunes the thread

concurrency level using a hill-climbing strategy.

Experimental results on a subset of five applications from the STAMP benchmark

suite show that the proposed autotuning mechanism can achieve performance improve-

ments within 2%, on average, of a static oracle for a 16-core UMA platform and sur-

passes it by 7% on average for a 32-core NUMA platform.

1.2.4 System-Oriented Performance Optimizations

Another branch of skeleton-driven performance optimizations are the system-oriented

ones used to enhance system functionalities such as thread scheduling/mapping and
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memory page allocation. The operating system usually takes care of these services

applying some generic heuristics. In some cases, these heuristics deliver good perfor-

mance to applications for the average case, but they perform poorly for several spe-

cific instances depending on the application behavior and platform. A skeleton-based

framework can provide a set of alternatives to the default operating system strategies

in a transparent way. In addition to it, these alternative strategies can be automatically

selected by the skeleton framework.

The last contribution of this thesis is to enable system-oriented performance opti-

mizations for thread mapping and memory page allocation within OpenSkel and inves-

tigate their performance impact on transactional worklist applications. In particular,

the proposed autotuning mechanism is extended to also dynamically select system-

oriented optimizations combined with the pattern-oriented ones.

Experimental results on a subset of five applications from the STAMP benchmark

suite show that combining system-oriented and pattern-oriented optimizations guided

by an extended version of the proposed autotuning mechanism, the OpenSkel frame-

work can achieve performance improvements of up to 88%, with an average of 46%,

over a baseline version for a 16-core UMA platform and up to 162%, with an average

of 91%, for a 32-core NUMA platform.

1.3 Thesis Structure

The rest of this thesis is organized as follows.

Chapter 2 provides background information on skeleton-based and transactional

programming. It also briefly summarizes some of the state-of-the-art techniques de-

signed for automatic parallel software optimizations focusing on transparent optimiza-

tions and autotuners.

Chapter 3 describes the proposed transactional skeleton-based framework. It starts

by presenting the worklist pattern and the optimization opportunities unveiled when

combined with transactional memory. Then it presents the OpenSkel framework, its

application programming interface (API), its implementation details and the baseline

version.

Chapter 4 outlines our experimental methodology. It provides details on the hard-

ware platforms, transactional memory system and benchmark applications. In subse-

quent chapters, this information will be needed in order to analyze the experimental

results. This chapter ends with a performance comparison between the original ver-
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sion of the STAMP benchmark applications and their corresponding versions ported to

OpenSkel.

Chapter 5 presents the concepts and implementation details of four pattern-oriented

performance optimizations. In this chapter, each optimization is evaluated individually

and compared to the baseline version. This chapter ends with a discussion of the overall

performance improvement across the evaluated optimizations.

Chapter 6 introduces the proposed autotuning mechanism. It describes each step

of the autotuning mechanism and the hill-climbing algorithms to tune helper threads

and thread concurrency level. Then the performance improvement of the autotuning

mechanism is compared to a static oracle. Additionally, a sensitivity analysis of the

autotuning mechanism is conducted in order to better understand its internal parame-

ters behavior. Finally, this chapter shows the dynamic behavior of the mechanism for

each application.

Chapter 7 presents skeleton-driven system-oriented optimizations for thread map-

ping and memory page allocation. This chapter discusses the performance benefits of

applying these optimizations compared to the baseline version. It also proposes an ex-

tension to the autotuning mechanism in order to automatically select system-oriented

optimizations. Then it concludes with an analysis of the performance improvement of

system-oriented optimizations combined with pattern-oriented ones.

Chapter 8 describes and compares the existing related work with this thesis con-

tributions. It covers parallel programming frameworks, including parallel skeletons,

pattern-oriented and system-oriented optimizations, and autotuning mechanisms.

Chapter 9 summarizes the contributions of this thesis and highlights some possible

future work.



Chapter 2

Background

This chapter first presents the background on parallel programming models. Second,

it outlines concepts of the skeleton-based parallel programming model and discusses

some existing skeleton frameworks. Then it introduces the transactional memory pro-

gramming model and presents some available software libraries. Finally, this chapter

describes automatic parallel software optimizations including autotuners.

2.1 Parallel Programming Models

Parallel programming can be split in two main programming models: message passing

and shared variable [24, 34, 42]. Both models provide low-level primitives to build

parallel applications. The former model is more suitable for distributed memory ma-

chines such as clusters and grids. In this model, each node has its own private memory,

as depicted in Figure 2.1a. For instance, if a thread placed on core 1 (C1) in node 0

needs to read data from node 1, it must send an explicit data request message to an-

other thread that holds the required data on node 1. When the message is delivered,

the thread on node 1 then reads the data from its local memory and sends it back to

requesting thread through the network. Note that this programming model forces an

application programmer to handle parallelism explicitly. As a result, the programmer

has to be aware of thread communication and synchronization, data placement and

network topology. This parallel programming model is supported by message passing

libraries such as the Message Passing Interface (MPI) [34].

In contrast, the shared variable model is widely used in shared memory machines

such as SMPs (Symmetric Multiprocessors), NUMA (Non-Uniform Memory Access)

machines and multi-cores. Figure 2.1b shows that in this model cores share a common

7
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Figure 2.1: Parallel programming models: (a) In the message passing model, each

node has its own private memory and threads placed on cores (C0, C1, C2 or C3) from

different nodes need to exchange messages in order to read a remote data; (b) In the

shared variable model, threads can access data directly in the shared memory.

main memory wherein threads communicate by synchronized read and write opera-

tions on shared variables. Nowadays, locks are the most usual technique to implement

the shared variable model. In lock-based programming, for each shared data access

or critical section access, a thread must acquire a lock before accessing the data [45].

If another thread has already acquired the same lock, the latter thread must wait until

the lock is released by the former thread [42]. This approach has some drawbacks, for

instance: i) coarse-grain locks or large critical sections limit parallelism; ii) misplaced

locks results into deadlock; iii) error recovery is not trivial; and iv) lock programming

is not modular.

A large number of programming libraries such as pthreads and Java threads sup-

port the shared variable model based on lock-based programming [42]. These libraries

force the programmer to explicitly handle thread control and locks. Nevertheless, there

are other approaches to provide shared variable programming known as implicit paral-

lelism techniques, such as language extensions to support parallelism (e.g., HPF - High

Performance Fortran) and compiler directives (e.g., OpenMP) [24, 42, 77]. Implicit

parallelism avoids that programmers have to create and synchronize threads. Instead,

they only have to annotate pieces of code that can be executed independently in par-

allel. A compiler thus automatically handles the parallelism issues. In short, implicit

parallelism works only on regular loops in which iterations are free of data dependen-

cies. Additionally, implicit parallelism techniques do not completely free programmers

from locks. Finally, if a programmer wants to exploit task parallelism within an appli-

cation, he must protect global shared counters and conditional variable accesses with

locks [77].
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2.2 Skeletal Parallel Programming

Skeletal parallel programming is a high-level programming model that is orthogonal

to message passing and shared variable programming. It is a pattern-based approach

which proposes that parallel programming complexity should be addressed by extend-

ing the programming model with a small number of architecture independent con-

structs, known as algorithmic skeletons [19, 32]. Each skeleton specification captures

the behavior of a commonly occurring pattern of computation and interaction, while

packaging and hiding the details of its concrete implementation [60]. This both sim-

plifies programming, by encouraging application and combination of the appropriate

skeletons, and enables optimizations, by virtue of the macro knowledge of application

structure that is provided.

Essentially, the skeleton “knows what will happen next” and can use this knowl-

edge to choose and adjust implementation details. For instance, skeleton implemen-

tations may be able to place threads that communicate frequently on cores that share

some level of cache memory, to prefetch data for the next step of a thread computation,

and so on. A key benefit of skeletons is that the optimizations can be applied trans-

parently and architecture-sensitively, without user intervention, to any application for

which the programmer has used the corresponding skeleton.

2.2.1 Parallel Algorithmic Skeletons

Algorithmic skeletons have been classified in many categories according to their be-

havior [14, 32, 55]. A recent and general classification [55] divides skeletons into

three categories: i) control skeletons - they act as a link to compose other skeletons;

ii) data-parallel skeletons - these skeletons exploit data-parallelism, that is, threads ex-

ecute the same task across multiple input data; and iii) task-parallel skeletons - these

skeletons exploit task-parallelism, that is, threads execute a different task across a sin-

gle or multiple input data. For instance, the most common control skeletons are: i)

seq (sequential) - it acts as a barrier to ensure the termination of recursive nesting of

other skeletons; ii) while - a skeleton is executed several times until a condition is not

satisfied; iii) for - a skeleton is executed a pre-defined number of times; and iv) if - it is

a conditional branch that receives an output from a skeleton, and based on a condition,

decides which skeleton will be executed next [55, 81].

In some skeleton programming libraries such as Intel TBB, instead of a control

skeleton, the for skeleton is a data-parallel skeleton in which iterations of a for loop
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(d) Pipeline(c) Task farm

Output 

Results

(a) Worklist (b) Reduce

New 

Work-Units

Figure 2.2: Examples of parallel algorithmic skeletons. Small red circles represent input

data elements. Big circles correspond to threads and different colors represent different

tasks. Arrows stand for the communication flow between threads.

are executed in parallel [69]. Other well-known data-parallel skeletons are: i) map

- it represents the classical single instruction multiple data parallelism (SIMD). An

input data is split into smaller data elements, and the skeleton maps each element to

a different thread; ii) reduce (or scan) - it is the opposite operation of map. It takes

different input data elements and applies an operator recursively on them until it has

a single output (see Figure 2.2b); iii) mapreduce - it is a more complex skeleton that

basically combines map and reduce skeletons; iv) divide and conquer - it is a general

case of mapreduce. It recursively divides the input data until it reaches a pre-defined

condition. Then it executes some computation over the data. After this stage, it starts

hierarchically merging pairs of partial results until it has a single result; and v) worklist

- it iterates over a worklist until the list is empty as depicted in Figure 2.2a. The

work-units or data elements are executed in parallel by worker threads. Additionally, a

worker thread can produce and add new work-units to the worklist during its execution

[25, 52, 55].

In task-parallelism skeletons, each thread computes a task over a single or multiple

data. For example, a task farm skeleton has one master and a number of worker threads.

The master thread schedules tasks to workers and collects their results. As opposed to
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the worklist pattern, worker threads process different tasks on a single or multiple data

as depicted in Figure 2.2c. Another classical task-parallel skeleton is the pipeline.

As shown in Figure 2.2d, it is composed of a number of sequential stages executing

different tasks in parallel [32, 55, 81]. Interestingly, each stage of a pipeline skeleton

can be composed by another data-parallel skeleton (e.g., map or worklist) to increase

parallelism.

In the literature, there are many other skeletons, for instance: parmod, multi-block,

deal, butterfly, hallowswap, filter, intermem, loop, ring, torus, comp, fold, fork, ex-

pander, geometric, queue, heartbeat, wavefront, singleton, sort, replicate and so far

[1, 32, 55]. Unfortunately, there is not a standard for designing parallel skeletons,

therefore some of these skeletons have different names to represent the same behavior.

Furthermore, some skeletons, as mentioned before, exist just for control purposes to

enable skeleton composition, such as while and seq [1].

2.2.2 Skeleton Frameworks

Parallel skeletons are commonly implemented as language extensions or libraries.

As described in [32, 55], there is an extensive list of these skeleton-based frame-

works. This section summarizes three typical frameworks in chronological order: eS-

kel, Lithium (Muskel) and Calcium. These frameworks provide a comprehensive set

of skeletons and also highlight the evolution of skeleton-based programming.

The Edinburgh Skeleton library (eSkel) was the first implementation of parallel

skeletons [19]. It is a C skeleton library that extends MPI [20]. Basically, the eSkel

framework defines five skeletons: pipeline, task farm, deal, halloswap and butterfly.

These skeletons thus can be composed and nested to describe complex parallel com-

munication patterns. Recently, it has been extended to support automatic scheduling

of algorithmic skeletons [32].

Lithium is a Java library that provides a set of composable classic parallel skeletons,

such as map, pipeline, divide-and-conquer, comp, farm and while [1]. These template-

based skeletons are stateless, therefore Lithium does not support any kind of global

state. Its successor, called Muskel, adressed this limitation by implementing stateful

skeletons such as farm and pipeline [2]. Both are designed for distributed memory

machines such as clusters and grids (i.e., shared memory is not supported).
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Calcium is a Java skeleton framework, inspired by Lithium and Muskel, that uses

the ProActive middleware for distributed computing [55]. It supports nestable, task

and data-parallel skeletons. Although it focuses on grid computing, it also provides

multithreading for shared memory machines. In comparison to Muskel, Calcium has

stateless skeletons, type safe operations, transparent file access and an additional skele-

ton called fork.

Skeletons can also be found in the Berkeley ParLab software strategy [5], where

they are known as “program frameworks”, are present in Intel’s Threading Building

Blocks (TBB) software [69] in the form of the pipeline and scan operations, and are

exemplified by Google’s MapReduce paradigm [25] and frameworks derived from it

such as Phoenix [68], Hadoop [79] and MRJ [71].

2.3 Programming with Transactional Memory

For at least the short and medium term, multi-core processors will present shared ad-

dress space programming interfaces. If a conventional approach is followed, these will

present complex, weakened memory models, synchronization built around locks and

condition variables. In contrast, the Transactional Memory (TM) model [31, 37] of-

fers both conceptually simplified programming and potential for competitive, or even

improved performance against traditional approaches. In essence, TM requires the

programmer to express all synchronization through transactions: blocks of code that

must appear to execute atomically. The core aim of a TM implementation is to allow

as many transactions as possible to proceed concurrently, in potential conflict with the

atomic semantics, backtracking (or “aborting”) on one or more transactions only when

the memory accesses actually conflict. It is important to note that TM is an interesting

model to program applications in which the data access pattern is not known a priori.

For instance, in a stencil application in which the communication and synchronization

pattern is known at compile time, the use of transactional memory would lead to un-

necessary runtime overhead to deal with data races that could be avoided by applying

simple data partitioning mechanisms.

TM systems can be either implemented in software [16, 22, 45, 57, 58, 75] or hard-

ware [9, 10, 18, 36, 64, 67]. In this thesis, the main focus is on Software Transactional

Memory (STM). Overall, STMs provide a small set of basic operations implemented
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01: void foo(void *args)

02: {
03: ...

04: atomic {
05: a = b + c;

06: }
07: ...

08: }

01: void foo(void *args)

02: {
03: ...

04: tm start();
05: tm write(a,tm read(b) + tm read(c));
06: tm commit();
07: ...

08: }

(a) Source code (b) Translated code

Figure 2.3: A high-level user code using the atomic statement before and after a TM

compiler translation.

as an API. The first operation is tm start() that is responsible to create a transaction.

Once a transaction is started, each access to shared data must be protected by trans-

actional barriers. These barriers are commonly implemented within tm read() and

tm write() operations. The STM system thus can keep track of each data update and

identify possible data conflicts. Another important operation is tm commit() that ter-

minates the transaction, updating shared data to memory with new values produced by

tm write() operations. These operations can be automatically placed by a TM compiler

as shown in Figure 2.3. However, it requires the use of the atomic statement to delim-

itate the scope of a transaction. Finally, the tm abort() operation may be used during

any other TM operation if a conflict is detected and a transaction must be squashed and

restarted [57, 59, 73].

In STM systems, transactions modify data in a shared memory without being con-

cerned about other concurrent transactions. In order to provide this abstraction, each

memory address accessed by a tm read() or tm write() operation is recorded in a log,

instead of updating the memory address directly. On a transaction commit, the STM

runtime system verifies if another transaction has modified any common memory ad-

dresses. If none of them has modified any shared data, the transaction validates and

commits the data. Otherwise a transaction is aborted and re-executed from its begin-

ning. Although STMs avoid deadlocks and livelocks (most of the time), some I/O

operations can not be reversed. In this case, some systems provide an inevitable mode

to guarantee that I/O transactions never abort [59, 73, 74].
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2.3.1 STM Synchronization Mechanisms

STM implementations exploit nonblocking synchronization mechanisms in order to

provide concurrent execution of transactions. These mechanisms can be split in three

classes: i) wait-freedom - it guarantees that all transactions sharing the same set of con-

current data make progress in a finite number of time steps. It avoids the occurrence of

deadlocks and starvation; ii) lock-freedom - it guarantees that at least one transaction

sharing the same concurrent data makes progress in a finite number of time steps. It

avoids the occurrence of deadlocks but not starvation; and iii) obstruction-freedom -

given a group of transactions accessing the same set of concurrent data, it guarantees

that at least one transaction will make progress in the absence of contention. It avoids

the occurrence of deadlocks, however livelocks can occur if all transactions start abort-

ing each other.

In practice, despite wait-freedom being a desirable property, the synchronization

overhead is too high to be implemented in a real system. Lock-free based STMs

present reasonable performance. However, when compared to obstruction-free STMs

with good contention resolution policies, lock-free based STMs design is more com-

plex, less flexible and efficient. As a result, most recent STMs are built based on the

obstruction-freedom property [57]. Nevertheless, conflict resolution, formally called

contention management, thus becomes an important part of the STM design.

In order to be resolved, a conflict has first to be detected. This is handled by a con-

flict detection mechanism. Typically, a conflict can be detected as soon as it happens,

called eager detection, or left to commit time, that is, lazy detection. Eager detection

reduces the overhead in the tm commit() operation, while increasing the overhead dur-

ing the transaction execution. In contrast, lazy conflict detection can potentially result

in excessive wasted work, specially if there are long transactions under high contention

to shared data [57, 74].

2.3.2 STM Libraries

Existing STMs can be split in two categories: object-based [58] and word-based [74].

Word-based STMs detect conflicts and guarantee consistency for each access to shared

words in the memory. This may result in unacceptable overheads due to its fine gran-

ularity level [58]. On the other hand, in object-based STMs, each object behaves as

a buffer that supports multiple accesses by different transactions. In this case, these

coarse-grained objects may cause high contention, leading applications to perform
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poorly in some instances [57]. This section describes the most widely known object

and word-based STM systems: TL2, TinySTM and RSTM.

Transactional Locking II (TL2) is implemented as a C library. The main idea be-

hind TL2 is the use of a global version-clock that is incremented on each tm write()

operation, and then read by all transactions [26]. This approach avoids the reading

of inconsistent memory states and it allows that memory locations allocated within a

transaction be reallocated in a non-transactional code. In its original version, it sup-

ported only lazy conflict detection. A newer version available in the STAMP bench-

mark also provides eager conflict detection [15].

TinySTM is a word-based STM library that uses locks, instead of CAS (compare-

and-swap) operations, to access shared memory locations [29]. Similar to TL2, it is

also a word and time-based STM that guarantees consistent memory states to trans-

actions. Furthermore, it provides two memory access policies: write-through (i.e.,

directly updates memory) and write-back (i.e., updates only at commit time). Addi-

tionally, TinySTM has some contention management strategies such as suicide (i.e.,

aborts a transaction as soon as it detects a conflict) and delay (i.e., same as suicide, but

it waits until the contended lock has been released).

Rochester Software Transactional Memory (RSTM) is a C++ library for object-

oriented transactional programming [58]. It supports a wide range of contention man-

agement mechanisms (e.g., aggressive, eruption, greedy, highlander, justice etc.). RSTM

also reduces cache misses by employing one single level of indirection to access shared

objects. It means that each object has a unique metadata structure during its lifetime,

avoiding the creation of a new locator whenever a object is acquired by a transaction.

In addition to it, RSTM has an epoch-based collector for transactional data objects.

Recently, RSTM also provides inevitability and privatization policies. Inevitability

allows transactions to perform I/O operations within a transaction [59, 73] while priva-

tization policies deal with the interaction between transactional and non-transactional

code over the same shared data. Furthermore, RSTM has a collection of applications

and supports a wide range of architectures and operating systems.

Despite the effort to design a high performance STM system, [16] points out some

weaknesses of existing STM systems. For instance, I/O operations within a transaction
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must be handled by the application programmer through inevitability calls. Otherwise,

during a transaction abort operation, the rollback of I/O operations can be very com-

plex and time consuming to be implemented in a STM. Furthermore, STMs are still

vunerable to livelock and privatization. Although [16] claims that many applications

can not scale due to high contention in the current STM systems, [28] shows that these

STM systems still achieve high performance compared to sequential applications.

2.4 Automatic Parallel Software Optimizations

In the multi-core era, automatic software parallelization and optimization has become

crucial to achieve high performance [5]. Various types of performance optimizations

have been employed to parallelize and speed up applications [25, 62, 63, 69]. They are

commonly transparent, that is, hidden from the application programmer by compiler

and/or runtime system support. This thesis focuses on runtime optimizations.

2.4.1 Runtime Performance Optimizations

Runtime optimizations are mainly performed transparently by the operating system

and middlewares such as the Java Virtual Machine (JVM). These optimizations use

runtime information (e.g., memory behavior) to migrate threads and data, to optimize

data allocation and garbage collection, to adjust the thread concurrency level etc. The

program structure can also be used to apply runtime optimizations. For instance, a for

loop has a fixed number of iterations. In OpenMP, these iterations can be scheduled

dynamically in order to balance the amount of work between threads. In contrast

to compiler optimizations, global optimizations can be applied at runtime. However,

compiler support is still needed to auto-parallelization.

A more interesting approach is to combine both compiler and runtime support to

provide automatic optimizations. MapReduce is a classical example in which the appli-

cation programmer writes sequential code independent from a target platform. Then,

a compiler translates that code into parallel code and a runtime system deals with

thread and communication management. Additionally, the runtime system performs

transparent and automatic optimizations such as task scheduling, load balancing and

replication [25]. These optimizations and some others, such as work stealing, are also

exploited in systems such Intel TBB and OpenMP.
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2.4.2 Autotuners

An interesting problem arises when the same code has to be compiled and executed

on several different platforms. The number of possible combinations between opti-

mizations and platforms becomes exponential. In order to find the most efficient code

plus runtime optimizations, it requires exhaustive search across the space of execution

instances. In addition to it, many optimizations themselves need parameter tuning,

increasing even further the search space. To tackle this problem, autotuners are em-

ployed to generate variants of the given code, test, adjust and select the most efficient

instance [5].

Autotuning techniques can be applied at compile time and/or runtime. Usually,

off-line approaches involve Machine Learning (ML) techniques to reduce the search

space. Machine learning has become a common component of approaches to model

the behavior of complex interactions between applications, optimizations and plat-

forms [33, 71, 76, 78]. It provides a portable solution to predict the behavior of new

combinations of application/optimizations/platforms, also called instances, based on

apriori profiled runs. ML-based approaches share a common framework that is com-

monly composed of a static and a dynamic phase. The static phase is subdivided in the

following three major steps: i) application profiling; ii) data pre-processing and feature

selection; and iii) learning process. Its target is to build up a predictor to be integrated

in the actual system. In the dynamic phase, each new instance is profiled at runtime

and then the collected data is used as an input to the predictor. Finally, the predictor

outputs the target variable and the system applies it.

In a pure runtime approach, exhaustive search is not feasible due to timing con-

straints. Thus it normally relies on simple heuristics based on application runtime

profiling [29, 82]. It takes into account application features, platform characteris-

tics and performance metrics to tune performance optimizations dynamically. For in-

stance, hill-climbing is a technique that converges to an efficient solution based on

feedback information to evaluate the actual performance improvement on each pro-

gression step [29]. The side-effect of dynamic approaches is that the on-line profiling

can lead to high runtime overhead.
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Combining Parallel Skeletons and

Transactional Memory

Lock-based programming is often very efficient in terms of performance for fine-

grained parallelism. However, when programability is considered as an important goal,

locks fail to provide an intuitive abstraction for the programmer. For coarse-grained

parallelism, lock-based programming does not deliver both programmability and per-

formance. This is, thus, the case where the transactional memory programming model

shines. It provides a programming abstraction equivalent to a lock-based one, with-

out side-effects such as deadlock, and at the same time attaining high performance on

coarse-grained parallel applications [37]. Regardless of the performance benefits of

transactional memory, the application programmer still has to deal with the placement

of transactional barriers and thread management. Skeleton-based programming can

naturally address these issues since it provides structured parallelism constructs and

provide a more intuitive programming abstraction.

3.1 How Skeletons Can Improve Transactional Memory

Applications

In order to apply the skeletal programming methodology within the context of TM,

there are three important questions to be answered: What are the relevant skeletons?,

Which optimization opportunities can be exploited by these skeletons? and How to

automatically tune these skeletons? The focus of this thesis is a TM oriented worklist

skeleton, for which a number of performance optimizations have been investigated and

19
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an autotuning mechanism to select and adjust them has been proposed. The skeleton

was derived from a study of TM applications from the STAMP benchmark suite. Af-

ter detailed code analysis, it was detected that the most predominant pattern on the

STAMP benchmark suite was the worklist. Other applications from STAMP present

an irregular behavior with specific characteristics which make them hard to general-

ize to a single skeleton, such as an arbitrary number of synchronization barriers and

very fine grained transactions. Thus only the STAMP benchmark applications that fit

the worklist pattern are used in this thesis. This is in keeping with standard pattern-

oriented programming philosophy: no single skeleton will fit all applications, and it is

likely that access to ad-hoc parallelism will always be required for the most inherently

unstructured applications. Finally, the study of other skeletons is left as future work.

3.1.1 A Skeleton for Transactional Applications

Many TM applications exhibit the worklist pattern. Such applications are characterized

by the existence of a single operation: process an item of work known as a work-unit

from a dynamically managed collection of work-unit instances, the worklist.

input: Work-Units u ∈ U, Worklist W ,

Threads t ∈ T

1 begin
2 Add seed work-units ui into W
3 foreach ti ∈ T do
4 while W 6= Ø do
5 Remove a work-unit u j from W
6 Process u j

7 [Add new work-units u′j to W]
8 end
9 end

10 end

Figure 3.1: Generic behavior of the worklist skeleton found in many transactional mem-

ory applications.

The algorithm in Figure 3.1 sketches the generic behavior of worklist algorithms.

The worklist is seeded with an initial collection of work-units. The worker threads

then iterate, grabbing and executing work-units until the worklist is empty. As a side
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effect of work-unit execution, a worker may add new work-units to the worklist.

Typically, work-units access and update common data and require mutual exclu-

sion mechanisms to avoid conflicts and ensure correct behavior. Such applications, in

areas such as routing, computer graphics, and networking [52, 73] are fertile territory

for TM programming models. The proposed transactional worklist skeleton ensures

correctness by executing all concurrent computation of work-units protected by trans-

actional memory barriers. The implementation details of this new skeleton is discussed

later in this chapter.

3.1.2 Performance Optimization Opportunities

The proposed transactional worklist skeleton also provides many performance opti-

mization opportunities. These opportunities derive from pattern and STM information.

First, the worklist pattern carries the important semantics that there is no required or-

dering on execution of available work-units. This frees the implementation to radically

alter the mechanisms by which the worklist is stored and accessed.

Second, the worklist pattern does not specify lock-step progression by workers

through iterations. This means that an execution in which some worker commits the

effects of several work-units in sequence, without interleaving with other workers is

valid. This gives the skeleton freedom to experiment with the granularity of transac-

tions.

Another opportunity stems from the fact that the proposed skeleton deals with

transactional applications. Preliminary investigations revealed that some of the work-

lists as implemented in the original benchmarks were causing aborts by tending to

focus activity within small regions of the application data space. These were often

unnecessary, since many other potential work-units were available which were better

distributed across the data space.

Additionally, many of the selected applications seem to experience inherent scal-

ability constraints, leading to poor returns for the use of additional cores. This obser-

vation creates an opportunity to exploit the assignment of additional cores to do some

other useful computation that would help to boost the execution of the application as a

whole. These pattern-oriented optimizations mentioned above are discussed in detail

in Chapter 5.

Finally, skeleton frameworks can also exploit system level information to optimize

the execution of applications. For instance, depending on the machine’s memory hier-
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archy a specific thread mapping strategy can be more efficient than the one provided

by the operating system. The skeleton framework can provide these optimizations as

an alternative to the operating system default strategies. These system-oriented opti-

mizations are discussed in Chapter 7.

3.1.3 Autotuning Skeletons

As mentioned earlier, skeletons have the full control of threads and know the structure

of the application behavior. In particular, for the worklist transactional skeleton, this

allows the skeleton to communicate directly with the underlying TM system and adjust

the worklist structure accordingly. More specifically, the skeleton collects runtime

performance measurements such as work-unit aborts and commits, the number of stalls

to access the worklist and work-units throughput. This information, coupled with the

current parameters with which the measurements are collected, and then used to drive

decisions on how to adjust the behavior so that performance improvements are attained.

Adjusting the behavior is done by enabling or disabling performance optimizations or

even by fine-tuning internal parameters for specific optimizations. Chapter 6 presents

a novel dynamic autotuning mechanism that allows skeletons to automatically adjust

to the application behavior.

3.2 The OpenSkel System

OpenSkel is a C runtime system library that enables the use of the transactional work-

list skeleton. It provides an API to handle transactional worklists and implements

transparent skeleton-driven performance optimizations with autotuning. OpenSkel re-

lies on existing word-based STM systems to deal with transactions.

Figure 3.2 shows the steps to implement and execute transactional worklist appli-

cations using OpenSkel. Additionally, it shows the interaction between the OpenSkel

framework, the STM system and the application. First, a programmer identifies if a

given sequential code or a kernel can be potentially executed as a transactional work-

list. Then, he adds OpenSkel API calls around that sequential code in order to satisfy

the OpenSkel skeleton structure. Second, this new structured code is instrumented with

TM calls by a TM compiler and translated into binary code. The TM compiler also

generates code for one of the pattern-oriented optimizations as discussed in Chapter

5. Finally, the application interacts with the OpenSkel and STM runtime systems dur-



3.2. The OpenSkel System 23

Figure 3.2: The OpenSkel framework interaction with the application code and transac-

tional memory system.

ing its execution. The STM runtime system takes care of data conflicts. When they

are detected, transactions are squashed and re-executed. In parallel, the OpenSkel run-

time system manages threads and the worklist. Furthermore, it applies pattern-oriented

optimizations automatically depending on the application behavior.

3.2.1 The OpenSkel API

In order to build a transactional worklist application, the OpenSkel framework provides

an API presented in Table 3.1. The programmer is provided with three basic primitives

so as to allocate, run and free a worklist, respectively oskel wl alloc(), oskel wl run()

and oskel wl free() functions. Additionally, the API provides a function, namely os-

kel wl addWorkUnit(), with which the programmer can dynamically add work-units to

the worklist. Following the abstract model, the programmer should feed the worklist

with initial work-units using oskel wl addWorkUnit() before calling oskel wl run() or

do it dynamically, when the skeleton is already running. It is important to note that

these are the only function calls that a programmer has to learn to start programming

with OpenSkel.

Figure 3.3 shows a typical application pseudocode based on the OpenSkel API.

The programmer has to implement four functions required to describe a transactional

worklist. The functions oskel wl initWorker() and oskel wl destroyWorker() respec-

tively initialize and terminate local variables used by each worker thread. The main



24 Chapter 3. Combining Parallel Skeletons and Transactional Memory

OpenSkel Transactional Worklist API

oskel t* oskel wl alloc(void* (*oskel wl initWorker)(oskel wl shared t* global),

void (*oskel wl processWorkUnit)(void* w, oskel wl private t* local, oskel wl shared t* global),

void (*oskel wl update)(oskel wl private t* local, oskel wl shared t* global),

void (*oskel wl destroyWorker)(oskel wl private t* local, oskel wl shared t* global))

Return an instance of a transactional worklist skeleton and fills each thread skeletal structure.

void oskel wl addWorkUnit(oskel t* oskelPtr, void* workUnit)

Insert a work-unit into the transactional worklist skeleton.

void oskel wl run(oskel t* oskelPtr, oskel wl shared t* global)

Run the transactional worklist skeleton with global arguments until the worklist is empty.

void oskel wl free(oskel t* oskelPtr)

Free the transactional worklist skeleton.

Table 3.1: The OpenSkel Application Programming Interface function calls.

function is oskel wl processWorkUnit(), in which the programmer implements the ker-

nel to process an individual work-unit. Lastly, the oskel wl update() implements any

kind of operation to update the global data when a worker thread is just about to finish.

Figure 3.4 presents a simple application code to update a bank account. In this ap-

plication, clients keep depositing a certain amount to a bank account until there are no

more deposits to be done. First, the worklist has to be filled up with the amounts to be

deposited (i.e., work-units) as presented on line 14 in Figure 3.3. This is a generic step

in which all worklist applications have to fill up the worklist with work-units. Then,

each client has a simple task: to add a given amount to the current balance and to count

the number of deposits it has done so far. This kernel is implemented on line 16 in Fig-

ure 3.4. Particularly, each client has to initialize its counter in the oskel wl initWorker()

function before start processing deposits and reset it in the oskel wl destroyWorker()

function when the client is about to finish.

In addition to the aforementioned functions, the programmer has also to declare

two structures as part of the interface specification. The oskel wl shared t structure

contains all shared global variables, and the oskel wl private t data structure specifies

all private local variables of each thread. In this example, the number of deposits is

local to each client, so it has to be declared in the oskel wl private t data structure.

In contrast, the total number of deposits is a global variable that is calculated as the
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01: int main(void *args)

02: {
03: file f = open(args[1]);

04:
05: oskel wl t* oskelPtr =

06: oskel wl alloc(&oskel wl initWorker,

07: &oskel wl processWorkUnit,

08: &oskel wl update,

09: &oskel wl destroyWorker);

10:
11: oskel wl shared t global = malloc();

12: global -> data = malloc();

13:
14: while (!feof(f))

15: oskel wl addWorkUnit(oskelPtr,read(f));
16:
17: oskel wl run(oskelPtr,global);
18: oskel wl free(oskelPtr);
19: }

Figure 3.3: The main function of a typical transactional worklist application on

OpenSkel.

clients execute the oskel wl update() function. For this reason, it has to be declared in

the oskel wl shared t structure along with the bank account balance.

Once an oskel wl shared t instance is initialized and the worklist is loaded with

work-units, the programmer has just to call oskel wl run(). The oskel wl run() func-

tion starts all worker threads and waits in a barrier. Figure 3.5 shows OpenSkel’s inter-

nal implementation of each worker. Each worker thread coordinates the execution of

the aforementioned user functions. After initialization, each worker grabs work-units

with oskel wl getWorkUnit() and calls the oskel wl processWorkUnit() function until

the worklist is empty. Although the oskel wl getWorkUnit() is within a transaction, its

variables are not protected by transactional barriers. Instead, this function internally

uses locks to access OpenSkel worklist and internal state. This is essential to decou-

ple the worklist management from the transactional memory system, avoiding extra

transaction conflicts and contention.

The oskel wl processWorkUnit() procedure is executed within transactional barri-

ers placed by the skeleton library. This function is then translated to transactional code

at compile time by any existing TM compiler such as Dresden TM [29]. This process

is transparent and completely relieves the application programmer of the burden of
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01: struct oskel wl private t {
02: long nDeposits;

03: };
04:
05: struct oskel wl shared t {
06: long balance;

07: long totalDeposits;

08: };
09:
10: void oskel wl initWorker(oskel wl private t* p,

11: oskel wl shared t* s)

12: {
13: p −> nDeposits = 0;

14: }
15:
16: void oskel wl processWorkUnit(void* workUnit,

17: oskel wl private t* p,

18: oskel wl shared t* s)

19: {
20: long amount = *(long*)workUnit;

21: s −> balance += amount;

22: p −> nDeposits++;

23: }
24:
25: void oskel wl update(oskel wl private t* p,

26: oskel wl shared t* s)

27: {
28: s −> totalDeposits += p −> nDeposits;

29: }
30:
31: void oskel wl destroyWorker(oskel wl private t* p,

32: oskel wl shared t* s)

33: {
34: p −> nDeposits = 0;

35: }

Figure 3.4: A simple application code using the OpenSkel API.

having to handle transactions explicitly.

3.2.2 The OpenSkel Baseline

The OpenSkel default implementation is known as the OpenSkel baseline. It means

that any performance optimization is applied on top of this baseline. There are two

important implementation issues to be addressed in the baseline version: i) the data
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01: void oskel wl worker(oskel wl t* oskelPtr,

02: oskel wl shared t* global)

03: {
04: void* workUnit;

05: int tid = getThreadId();

06: oskel wl private t* local = oskelPtr -> locals[tid];

07: oskel wl initWorker(local,global);
08:
09: do {
10: atomic {
11: if((workUnit = oskel wl getWorkUnit()))
12: oskel wl processWorkUnit(workUnit,local,global);

13: }
14: } while(workUnit);

15:
16: atomic {
17: oskel wl update(local,global);
18: }
19:
20: oskel wl destroyWorker(local,global);
21: }

Figure 3.5: The OpenSkel internal worker pseudocode. This code releases the pro-

grammer from the burden of dealing with the worklist and placing STM barriers.

structure with which to implement the worklist and ii) how to access the worklist.

The worklist data structure can be implemented in many ways. The main target

is to find a simple, efficient, and flexible enough structure to allow different optimiza-

tions. Based on that, the OpenSkel worklist is implemented as a stack under a work

sharing scheme. First, work sharing provides a centralized worklist and promotes load

balancing. Second, a stack is a fast structure to insert to and remove elements from it

since there are no search operations for elements. In particular, because OpenSkel does

not execute any search operations in the worklist, there is no need for a more complex

structure. Additionally, if consecutive elements in a stack are memory correlated (i.e.,

work-units that access data in common), the stack may improve data locality because

workers would work within the same memory region. However, this very property is a

double-edged sword. Poor exploitation of this behavior could lead to high contention

as workers will start competing for the same data. This side-effect could be avoided

with the use of a queue data structure, as in [50], at the cost of losing the data locality

property. In addition to it, a queue allows that work-units are inserted and removed at

the same time as opposed to a stack.
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Accesses to the worklist, implemented as a stack, can be protected by a transac-

tion or a lock. Since an access to the worklist is short and transactional concurrent

accesses to the worklist usually lead to a conflict, locks seems to be the best alterna-

tive as implemented in [50]. It means that any operations on the stack (e.g. push and

pop) are protected by locks, avoiding data races when different threads try to push and

pop at the same time. This might sequentialize accesses to the worklist under high

contention. In particular, this effect is minimized on the OpenSkel baseline version

by implementing fast locks based on compare-and-swap primitives with busy waiting

to access the worklist. It is expected that under high abort ratio, this synchronization

strategy will lower contention for the worklist. When existing STM applications are

ported to OpenSkel, the baseline performance matches the one of the original TM ver-

sion as discussed in Chapter 4.



Chapter 4

Evaluation Methodology

This chapter presents the experimental methodology used to evaluate the solutions

proposed in this thesis. It first describes in detail the metrics, platforms, tools, and ap-

plications employed to obtain the performance results. Then this chapter describes and

discusses how the selected applications were ported to OpenSkel. Finally, it compares

the performance of the original and ported versions.

4.1 Experimental Setup

This thesis uses three metrics to evaluate performance: speedup, transaction abort ratio

and last level cache (LLC) miss ratio. The speedup metric can be easily calculated

by dividing the execution time of the sequential (hence transactionless) code by the

execution time of the target parallel code as presented in Equation 4.1. Particularly,

the execution time is measured by the gettimeofday() call.

Speedup =
Execution Time Sequential

Execution Time Parallel
(4.1)

Equation 4.2 shows how the transaction abort ratio is calculated using available infor-

mation provided by the STM system.

Abort Ratio =
Aborted Transactions

Aborted Transactions + Committed Transactions
(4.2)

Finally, Equation 4.3 shows how to compute the LLC miss ratio. Particularly, this

information is obtained through PAPI [13], a library that provides a simple interface

to access hardware performance counters. It is important to notice that this tool is

29
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available only in one of the three platforms (i.e., NUMA32). The cache miss ratio

then is showed only for this specific platform in Section 5.2 when data prefetching is

evaluated.

Cache Miss Ratio =
Cache Misses

Cache Accesses
(4.3)

All average performance improvements reported in this thesis are calculated as the

arithmetic mean across all benchmarks of the best performance improvement for each

individual benchmark on a specific number of cores. This is described in Equation 4.4

where N is the number of benchmarks and B is the best performance improvement of

a benchmark.

Average Per f ormance Improvement =

N

∑
i=1

B i

N
(4.4)

The experimental tests were conducted on the platforms depicted in Table 4.1.

They differ in many aspects as number of cores, memory hierarchy, processor fre-

quency etc., providing ground for investigating the proposed optimizations in different

scenarios. Figure 4.1 shows details of the memory hierarchy and topologies of these

platforms. In particular, the NUMA16 platform is used exclusively in Section 7.2 in

order to evaluate page memory allocation. The rest of the results were conducted on

the UMA16 and NUMA32 platforms. In particular, the NUMA32 platform supports

Simultaneous Multi-Threading (SMT) but this feature was disabled in the conducted

experiments.

TinySTM [29] was selected as the STM platform. It can be configured with sev-

eral locking and contention management strategies. In all the experiments conducted,

TinySTM was configured with encounter-time locking, write-back memory update and

the commit suicide contention strategy. Encounter-time locking is an eager conflict

detection strategy. Once a conflict is detected, the commit suicide contention strat-

egy immediately aborts and restarts the conflicting transaction. The same experiments

have been also conducted configuring TinySTM with a commit-time locking strategy

and with TL2 [26]. Since the applications and optimizations behaved similarly, these

results are not shown in this thesis. All code was compiled using GCC with the -O3

option enabled. Finally, all the results presented in this thesis are based on an arith-

metic mean of at least 10 runs. The standard deviation is presented later in Section

4.3.
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Table 4.1: Overview of the multi-core platforms.

Characteristic UMA16 NUMA16 NUMA32
Number of cores 16 16 32
Number of sockets 4 8 4
NUMA Nodes 1 8 4
Processor Intel Xeon E7320 AMD Opteron 875 Intel Xeon x7560
Clock (GHz) 2.13 2.2 2.27
Last level cache (MB) 2 (L2) 1 (L2) 24 (L3)
DRAM capacity (GB) 64 32 64
Linux kernel version 2.6.18 2.6.32-5 2.6.32-5
GCC version 4.1.2 4.4.4 4.4.4

4.2 Analyzing the STAMP Benchmark Suite

To evaluate the performance trade-offs of the transactional worklists under the OpenSkel

system, five applications from the STAMP benchmark suite [15] that matched the

worklist pattern were selected: Intruder, Kmeans, Labyrinth, Vacation and Yada. Other

applications from STAMP present an irregular behavior with specific characteristics

which make them hard to generalize to a single skeleton, such as an arbitrary number

of synchronization barriers and very fine grained transactions (SSCA2 and Genome).

Although Bayes was ported to OpenSkel, it was discarded due to its high variability

in performance observed in preliminary experiments. All selected applications were

executed with the recommended input data sets. Kmeans and Vacation have two input

data sets, high and low contention. As Intruder and Yada only have high contention

input data sets, the low contention inputs for Kmeans and Vacation were selected in or-

der to cover a wider range of behaviors. Particularly, preliminary experiments confirm

that both high and low contention input data sets do not affect the behavior of Vacation

significantly. The original STAMP versions of these five applications were profiled

according to four criteria: scalability, transaction abort ratio, L3 cache miss ratio and

transaction length on the NUMA32 platform. These results are summarized in Table

4.2, which demonstrates that the applications selected span a varied range of points in

the behavior space, and so provide a sound basis for evaluation.
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(a) UMA16

(b) NUMA16

(c) NUMA32

Figure 4.1: Memory hierarchy and machine topology diagrams for the platforms used

in the experiments. Only shared caches are shown.
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Table 4.2: Summary of STAMP application runtime characteristics on TinySTM for the

NUMA32 platform.

Application
Scalable up Transaction L3 Cache Transaction
to # Cores Abort Ratio Miss Ratio Length

Intruder 4 high medium short
Kmeans 8 high high medium
Labyrinth 32 medium low long
Vacation 16 low low short
Yada 16 high medium medium

4.3 Porting to OpenSkel

To port the selected applications, single worker functions were decomposed into the

ones required by OpenSkel, global and local variables were grouped into the new

declared structures and a work-unit structure was declared when it was not already

there. The code transformation was straightforward for all five applications. However,

the original version of Vacation created work-units in a distributed fashion without a

worklist. The inclusion of a centralized worklist in the new ported OpenSkel version

led to a significant performance difference. In the next section, this will be discussed

in more detail. This thesis’s authors believe that implementing an application from

scratch under the OpenSkel philosophy as described in Section 3.2.1 would be even

more intuitive.

Regarding the transactional code transformation, it was decided to use the manu-

ally instrumented transactional code available in the STAMP benchmark suite, since

[7] showed that the code generated by the OpenTM compiler achieves very similar

performance. Additionally, this thesis focuses on the runtime system instead of the

compiler support. Finally, the rest of this chapter focuses on the implementation details

and performance trade-offs between the original TM version and the version ported to

OpenSkel.

4.3.1 Performance Trade-offs of the Baseline vs. Original

Some compromises have to be made when existing transactional applications are ported

to OpenSkel. These implementation decisions may impact the performance of the

OpenSkel version compared to the original application.
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First, the worklist data structure in OpenSkel is implemented as a stack. This will

influence the ordering and amount of time to access work-units. For instance, the

original Yada and Intruder implement the worklist as a heap and as a queue, respec-

tively. Second, as mentioned before, the application has to have work-units declared

as a structure. Vacation and Kmeans do not have an explicit worklist in the original

benchmark, although they match the worklist pattern. Allocating and handling these

work-units may introduce some overhead.

Transactional applications may split the processing of a work-unit into a few phases.

Each phase is executed within a fine-grained transaction to reduce the number of

aborts. For example, Yada and Intruder use more than two transactions to process

each work-unit. On the other hand, to free the programmer from the burden of han-

dling transactions explicitly, each work-unit in OpenSkel is processed within a single

coarse-grained transaction. However, a single coarse-grained transaction may increase

the number of aborts, since each transaction becomes longer. Fortunately, if the ma-

jority of aborts are concentrated into a single phase, combining multiple transactions

into a single transaction does not become a bottleneck. Based on preliminary exper-

iments, that is the case for Intruder and Yada. Since the other applications use only

a single transaction to process each work-unit then their performance is not affected.

Another issue is thread mapping and scheduling. STMs do not manage threads and

thus they are left with the operating system default scheduling strategy. The Linux

scheduling strategy in the selected platforms and applications tends to map threads

initially following the scatter mapping strategy. Scatter distributes threads across dif-

ferent processors avoiding cache sharing between cores in order to reduce memory

contention. However, at runtime the Linux scheduler migrates threads trying to reduce

memory accesses and I/O costs. The baseline version employs a static scatter mapping

strategy in which threads are not allowed to migrate at runtime, guaranteeing a more

predictable performance.

4.3.2 Performance Analysis of the Baseline vs. Original

Based on the results in Figure 4.2, this section presents each application and compares

the performance of the baseline against the original version. For all applications, the

input work-units are first shuffled and then inserted in the worklist. This is done to

avoid benefits from a particular input order. Table 4.3 shows the average standard

deviation (i.e., the average for all number of cores) per application version and plat-
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Table 4.3: Average standard deviation (in percentage %) of the execution time for the

baseline and original versions of the STAMP benchmark applications for the UMA16

and NUMA32 platforms.

Application
UMA16 NUMA32

Baseline Original Baseline Original
Intruder 0.2% 1.2% 0.8% 1.6%
Kmeans 1.8% 3.9% 2.6% 4.2%
Labyrinth 4.3% 6.5% 4.9% 7.5%
Vacation 0.8% 1.4% 1.5% 1.6%
Yada 0.7% 2.0% 1.8% 1.7%

form. It can be observed that most baseline versions present less variation than the

original versions. The reason for this is twofold. Firstly, the number of transactions

created on both versions are very different as explained in the previous section. This is

also showed in Figure 4.3. These results also point out that the more transactions are

created, the more unpredictable is the performance behavior of the observed applica-

tions. Lastly, the Linux scheduler migrates threads at runtime in the original version.

However, the first factor still accounts for the most part of the variability.

Table 4.3 also shows that Intruder, Vacation and Yada present very low variability

in performance. In contrast, the performance of Labyrinth and Kmeans varies signif-

icantly due to their intrinsic behaviors. In short, they are applications in which their

behaviors are very dependent on the input data order, leading to more unpredictable

performance. In the rest of this section, these details are discussed for each application.

Intruder. This application is a signature-based network intrusion detection system

(NIDS). It matches network packets against a pre-configured set of known intrusion

signatures. The application has three phases: packet capture, stateful NIDS avoidance

countermeasures and signature matching. First, packets are captured from a queue.

In the second phase, packets belonging to the same flow are processed by the same

thread. A shared tree keeps information used in this phase. The last phase is the

signature matching which basically involves string searching [15]. In the OpenSkel

version, phases two and three are executed in a single transaction unlike the original

version. One could expect that the increase in the transaction size could lead to an

increase in the number of transaction aborts. However, the third phase involves mostly
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Figure 4.2: Comparison between the baseline and original versions of the STAMP

benchmark applications for the UMA16 and NUMA32 machines.
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searching and not update operations such that combining phases two and three does

not increase the number of aborts. In fact, as depicted in Figures 4.2a and 4.2b, the

baseline exhibits better performance than the original version.

Intruder computes a large number of small transactions that conflict frequently im-

posing high contention to access the worklist. Figures 4.2a and 4.2b show that the

original version exhibits significantly higher abort ratio than the baseline. This is also

observed in Figures 4.3a and 4.3b in which the total number of transactions created by

the original version is much higher than the baseline version. In an eager transactional

memory system, the contention on the worklist is even higher due to the eager abort

of transactions. Combined with the fact that the original version protects the worklist

accesses within transactional barriers, it confirms that the baseline has a more efficient

implementation compared to the original version. Even so, the baseline Intruder could

not scale beyond 8 cores on both machines due to contention in accessing shared data.

Kmeans. This is a clustering algorithm that tries to group similar elements into K

clusters. It iterates over a set of elements and calculates the distance between these

elements and their centroids. At the end of each step, threads synchronize and a master

thread recalculates all the centroids based on the new distances calculated. All ele-

ments are contained in an array and on each step, each thread processes chunks of

elements. The OpenSkel baseline version implements each step as a worklist and each

element as a work-unit. At each step, the worklist has to be re-populated with all work-

units. Unlike Vacation, the introduction of a worklist itself did not present a significant

negative performance impact since chunks are also grabbed in a centralized fashion

in the original version. However, the introduction of the re-population step makes the

baseline slower than the original version on average, as shown in Figures 4.2c and 4.2d.

Regarding the abort ratio, the baseline version presents a slightly lower abort ratio as

it avoids the use of transactions to grab work-units. In contrast, the Kmeans original

version grabs new chunks from a global variable within a transaction, increasing the

number of conflicts. Figures 4.3c and 4.3d show that this increase in the number of

transactions did not contribute to degrade the performance of the original version. Fi-

nally, both implementations do not scale beyond 8 cores as depicted in Figures 4.2c

and 4.2d.

Labyrinth. This application implements a routing algorithm that finds paths through a

grid between source and destination points that do not overlap [15]. On each iteration
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Figure 4.3: Total number of transactions in the baseline and original versions of the

STAMP benchmark applications for the UMA16 and NUMA32 machines.
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of the algorithm, a thread grabs a pair of source and destination points from a shared

queue. It then creates a local copy of the grid instead of updating it directly. After it

routes a path between the pair of points, it reads all grid points that belong to the path

and tries to commit by adding the new path to a global list. The routing process and

the addition to the path list is encapsulated into a single transaction.

Figures 4.2e and 4.2f show that the baseline and original versions present simi-

lar performance. This stems from the fact that Labyrinth has low contention to the

worklist due to its long and few transactions. Furthermore, the baseline code is very

similar to the original one. However, the abort ratio of the baseline is higher since each

access to the worklist is not within a transaction. The baseline version thus has half

the number of transactions but almost the same amount of aborts, as depicted in Fig-

ures 4.3e and 4.3f. As a consequence, the baseline version presents a higher abort ratio.

Vacation. This application emulates an on-line travel reservation system [15]. Each

client has a fixed number of requests generated randomly in a distributed fashion. Each

request is enclosed in a single transaction that performs the accesses to the database

server. The system keeps track of customer reservations through a set of shared trees.

The baseline version introduced a worklist and transformed the requests into work-

units. As Vacation executes short transactions, the new centralized worklist becomes

a bottleneck. These code transformations led to a semantically different version since

all work-units are generated sequentially by a single worker thread. This makes the

baseline much slower than the original version on more than 4 cores as observed in

Figures 4.2g and 4.2h.

The abort ratio and the total number of transactions are very similar for both ver-

sions as presented in Figures 4.3g and 4.3h. It stems from the fact that transactions

in Vacation rarely conflict. An exception is the NUMA32 platform with 32 cores in

which the abort ratio increases exponentially for the original version. In contrast, the

abort ratio in the baseline version continues low due to the high contention to access

the worklist. This contention forces many threads to waste time waiting to grab a

work-unit from the worklist instead of executing transactions concurrently.

Yada. This is an implementation of Ruppert’s algorithm for Delaunay mesh refine-

ment [15]. It consists of a shared graph structure where each node is a triangle, a set of

segments that delimits the mesh boundary and a shared worklist of bad triangles (i.e.,

triangles that do not satisfy a quality criteria). The refinement is an iterative process
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over a worklist of bad triangles that removes these bad triangles from the mesh and

determines the affected neighborhood. It repeatedly replaces the affected neighbor tri-

angles with new ones (re-triangulation phase), adds new bad triangles, and continues

until the worklist is empty. As seen in Figures 4.2i and 4.2j, the baseline and orig-

inal version behave similarly. Both versions do not scale due to the high abort ratio

and contention. However, the baseline version presents a slightly lower abort ratio.

It stems from the fact that accesses to the worklist in the baseline version are done

without transactions, reducing the number of conflicts.

Although the number of transactions on the original version is much higher com-

pared to the baseline version, as shown in Figures 4.3i and 4.3j, the abort ratio is high

on both cases. This leads to roughly the same performance for both versions.

In short, these experimental results show that the baseline version can achieve per-

formance improvements of up to 28%, with an average of 3%, over the original TM

version for a 16-core UMA system and up to 26%, with an average of 3%, for a 32-

core NUMA system. The only exception is Vacation as discussed before. This thus

indicates that, on average, existing applications ported to OpenSkel do not lose perfor-

mance and can enjoy the performance improvement provided by the automatic opti-

mizations presented in the next chapter.



Chapter 5

Pattern-Oriented Performance

Optimizations

A skeleton-driven approach makes available useful information about the pattern of the

applications at compile time and runtime. This information allows OpenSkel to pro-

vide a set of performance optimizations. In this chapter, the implementation details of

several pattern-oriented performance optimizations to the transactional worklist skele-

ton are presented. These optimizations have been proposed and used separately in other

contexts [4, 63, 69, 72]. However, in order to apply them on a transactional worklist

skeleton, they had to be adapted or re-designed within a completely new approach.

Additionally, these optimizations can be enabled simultaneously and transparently in

a single transactional skeleton framework.

5.1 Employing Pattern-Oriented Optimizations

5.1.1 Stealing Work-Units

The first implemented optimization is work stealing (WS), employed in many systems

such as Intel TBB [69], Cilk [8] and the Java Fork/Join framework [53]. It tackles the

contention to access the worklist which occurs with increasing number of work-units

and worker threads. It exploits the knowledge that work-units can be executed in any

order and by any core in the system.

The WS optimization is composed of a set of private worklists, with the initial

number of work-units being split among workers in a round-robin fashion. As shown

in Figure 5.1b, each worker has its own privatized worklist in which it inserts and

41
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Figure 5.1: Pattern-oriented performance optimizations.

removes work-units. When a local worklist runs out of work-units it steals work-units

from a victim worker.

In the OpenSkel framework, this WS optimization is implemented within the os-

kel wl getWorkUnit() function. This function call checks if there is any work-unit in

its private worklist. If the worklist is empty it tries to steal work-units from another

thread. This stealing policy is a standard implementation that uses busy-waiting locks

to synchronize the victim and the thief workers, copies half of the work-units to the

thief worker, removes them from the victim worker and frees both worker threads. In
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order to identify when there are no work-units left, each worker increments a global

counter when it is trying to steal. If the stealing process is successful, it decrements

this counter. Otherwise it checks if the counter reached the total number of threads,

that is, if there are no work-units to be stolen. In that case, the worker thread finishes

its execution. However, if the counter is different from the total number of threads, the

thief worker tries to steal from another randomly selected victim. This optimization

tries to reduce the contention to the worklist. As a side-effect, when there are just a

few work-units left and several idle worker threads, it may take a longer time before an

idle worker steals new work-units. This is due to the randomness in selecting a victim

worker.

5.1.2 Coalescing Work-Units

The second optimization exploits the fact that two work-units executed in a single

transaction are as semantically correct as if executed in separate transactions. This op-

timization, called “work coalescing” (WC), is based on the technique proposed in [63].

It executes two work-units that would be executed in different transactions, within the

same transaction. If a conflict is detected, the whole transaction is rolled-back. Figure

5.1c exemplifies how this optimization works.

The main benefits expected from coalescing work-units are a reduction of con-

tention to the worklist and exploitation of memory locality. As worker threads grab

two work-units at once, they take more time to access the worklist again. This reduces

the contention over the worklist. As a side-effect, these longer transactions may in-

crease the number of conflicts. Additionally, if two work-units are memory correlated,

WC increases cache efficiency and reduces TM overhead. The former is done natu-

rally by keeping the same data in the cache, instead of starting a new transaction and

possibly fetching the same data again. The latter avoids that the same data is buffered

and validated again by the TM system.

The OpenSkel framework implements the WC optimization within the main worker

function (see oskel wl worker() in Figure 3.5). Instead of calling the oskel wl get-

WorkUnit() just once in a transaction, the worker thread calls it twice and stores the re-

turned work-units in a temporary buffer. Then it calls the oskel wl processWorkUnit()

function to process the first work-unit. If this succeeds, then the worker thread tries to

process the second work-unit. Finally, after the successful completion of the second
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work-unit, it commits the transaction and clears the temporary buffer. If the worker

thread produces any new work-units, they are first stored in a temporary list and then

transfered to the worklist only after the transaction is committed. On a transaction

abort, the worker thread resets the temporary list and calls the oskel wl processWorkUnit()

function to start processing from the first work-unit again.

5.1.3 Swapping Work-Units

Swap retry (SR) is the third implemented optimization. This is based on the steal-on-

abort technique proposed in [4]. Usually, when a transaction aborts, a STM re-executes

the transaction hoping that the conflict will not re-occur. The other common available

alternatives to the STM are to assign a higher priority to the transaction or wait for

a time interval (e.g., back-off strategy) before re-executing it. Nevertheless, a STM

does not have an alternative to try to execute a different transaction, unless explicitly

implemented by the programmer through a retry function [73].

In a transactional worklist skeleton, it is possible to try a different work-unit since

the skeleton has full control over the worklist and work-units can be executed in any

order. This optimization takes advantage of this high level information. As shown in

Figure 5.1d, when a transaction aborts, this optimization swaps the current work-unit

with another one before it re-executes. In particular, in the OpenSkel implementation,

this optimization is implemented within the oskel wl getWorkUnit() function. Each

time a worker thread tries to grab a new work-unit, it checks if the current work-unit

has been executed. Otherwise it means that the worker thread has aborted and restarted.

In this case, it swaps the current work-unit with a randomly chosen work-unit in the

worklist. In this way, transactions that keep aborting can be postponed and executed

later.

Swap retry is employed to reduce the number of aborts. However, one side-effect is

to reduce cache prefetching. When a transaction aborts, it works as a cache prefetcher

for its own re-execution. In contrast, if the work-unit is swapped, then this prefetching

effect is lost since the transaction will restart and access different data. To alleviate

this problem, a parameter to limit the number of retries was introduced. The swapping

is only actually done after a transaction reaches a particular number of retries. It also

avoids an excessive number of swaps that may increase contention to access the work-

list. However, this parameter is application and system dependent, making it hard to
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Table 5.1: OpenSkel helper thread internal programming interface.

OpenSkel Helper Thread Internal Functions

helperThread t* oskel wl ht alloc(void* (*htFunction)(void*), void* htArgs);

Create and spawn a helper thread for the calling thread.

void oskel wl ht signal(helperThread t* ht, void* sharedBuffer);

Signal a helper thread sending the next work-unit to be prefetched.

void oskel wl ht wait(helperThread t* ht);

A helper thread waits in a barrier until the next work-unit is signaled.

determine an optimal value.

5.1.4 Employing Helper Threads

Another pattern-oriented optimization is to perform data prefetching using automat-

ically created helper threads (HT). They are auxiliary threads that run concurrently

with a main thread. Their purpose is not to directly contribute to the actual program

computation, which is still performed in full by the main thread, but to facilitate the

execution of the main thread indirectly. Typically modern multi-cores have at least one

shared level of cache among the cores, so that HTs may try to bring data that will be

required by the main thread into this shared cache ahead of time. Helper threads have

previously been developed in software [72] and hardware [21, 80].

TM applications have a number of characteristics that render the use of HTs ap-

pealing. First of all, some transactional applications do not scale up to a large number

of cores because the number of aborts and restarts increases. If more cores are avail-

able, they can be used to run HTs instead of more TM threads and thus improve the

performance of the applications. Another characteristic of STM applications is the

high overhead and cache miss ratio of transactional loads and stores. This suggests

that HT can more easily stay ahead of the main thread while effectively prefetching for

it.

Unfortunately, a STM does not have the required information to implement HT

on its own. The worklist skeleton, on the other hand, provides two key information

to make HTs feasible: when to start a HT and which data to prefetch. As observed

in Figure 5.1e, every time a worker thread starts computing a work-unit, a HT should

start computing the next work-unit assigned to the worker in the worklist.
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Helper thread code is generated and instrumented in the same way compilers like

the Tanger [30] and OpenTM [7] would do for STM systems. However, instead of

function calls to the STM system, they use modified functions for reading and writing

shared variables. Instead, as with normal TM threads, every time a HT has to access a

shared global variable it has to use special functions to redirect accesses to the internal

metadata structures managed by OpenSkel runtime system. This is a somewhat similar

approach to hardware HT, but we do not rely on hardware to perform the buffering. As

HTs do not change the state of the application, each write to a global variable is done

in its local entry in a hash table rather than in the actual memory location. If the same

variable is read after being written, the value will be extracted from the hash table

instead of the actual memory location. This enables HTs to follow the correct path

of control and hopefully prefetch the correct data. However, if a transaction modifies

shared data, the HT may go down the wrong path, possibly prefetching wrong data or

even worse, raising exceptions that could crash the whole application. OpenSkel HT

thus implement a transparent mechanism to deal with exceptions. If an exception is

raised, the OpenSkel library aborts the helper thread and restarts it in a wait barrier

(oskel wl ht wait()).

Each main thread calls oskel wl ht alloc() to start a new helper thread. The OpenSkel

system first checks whether there are cores that share any level of cache memory and

if this is true, it schedules the main thread and the helper thread to cores that share

the same level of cache. To reduce cache pollution due to inefficient prefetching, a

lifespan parameter (i.e., number of words prefetched per work-unit) and a limit to the

hash table size are employed.

Figure 5.2 shows how helper threads interact with the worklist skeleton using the

internal HT API provided by OpenSkel (see Table 5.1). The oskel wl ht signal() and

oskel wl ht wait() are placed inside the oskel wl getWorkUnit(). When the calling

thread is a helper thread it waits, otherwise it sends a signal. Each helper thread

is a copy of the oskel wl processWorkUnit() function, but instrumented with the HT

calls. However, instead of grabbing a work-unit directly from the worklist or start-

ing processing of a range of elements, it waits for a signal from the transactional os-

kel wl processWorkUnit() function with the work-unit to be processed. This commu-

nication between the main thread and the helper thread is done through an efficient

lock-free shared buffer. The main thread just writes the next work-unit to a shared

buffer and the cache coherence protocol does the rest, updating the value in the shared

cache level. Since the oskel wl ht wait() implements a busy wait, as soon as the value
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Figure 5.2: Interaction between Helper Threads (HT) and the worklist skeleton: (a)

a correct execution from both transaction and HT; (b) a transaction abort results in

a HT abort and restart; (c) when a HT raises an exception, it transparently aborts and

restarts; and (d) when a HT is too slow or seems stuck in a infinite loop, the transactional

thread forces it to abort and restart with the next work-unit.

is updated by the coherence protocol, the helper thread is able to detect that a new

work-unit should be executed. The use of locks is avoided for the following two rea-

sons: locks introduce a large overhead to the main thread, eliminating any chance of

performance improvement; to guarantee that the helper thread will not be scheduled

by the operating system or sleep for an undetermined period of time, missing signals

and starting prefetching too late.

In order to guarantee that the HT is always executing the correct next work-unit,
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Table 5.2: Summary of the pattern-oriented optimizations characteristics.

Optimization Pros Cons Parameters
Work Stealing • improve locality • increase imbalance -

• reduce contention for few work-units
Work Coalescing • improve locality • increase conflicts -

• reduce contention • load imbalance
Swap Retry • reduce aborts • increase contention • number retries

• reduce prefetching
Helper Threads • reduce LLC misses • pollute cache • lifespan

• buffer size

the transactional or main thread always keeps two work-units at the same time. While

it processes the former work-unit, it signals the HT with the latter one. Thus, when

the transactional thread calls oskel wl getWorkUnit() for the first time, it grabs two

work-units. For all the following calls to oskel wl getWorkUnit(), it grabs just one

work-unit, sends it to the HT and starts executing the previous one as shown in Figure

5.2a. Meanwhile, the transactional thread can insert new work-units into the work-

list with an oskel wl addWorkUnit() call. Without keeping two work-units at the same

time per transactional thread, this would lead to inefficient data prefetching as the HT

would be prefetching data for the wrong thread. Figure 5.2b, 5.2c and 5.2d show how

OpenSkel deals with transaction aborts and helper thread incorrect executions.

Table 5.2 summarizes the pros, cons and input parameters of each pattern-oriented

optimization. In particular, WS and WC optimizations tackle the same problem but

present different side-effects. Additionally, they do not have input parameters to be

determined. SR is the only optimization that is designed to reduce the number of

aborts. However, WS may also reduce the abort ratio in a specific scenario discussed

later in the following section. Finally, HTs have two input parameters and focus on

reducing the cache miss ratio.

5.2 Analysis of the Pattern-Oriented Optimizations

In this section, the performance of the proposed pattern-oriented optimizations are an-

alyzed. For all transactional worklist applications, the input work-units are shuffled
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before start computing them. This is done to avoid benefits from a particular input

order. Since the average standard deviations for each application/optimization are sim-

ilar to the baseline version ones (see Table 4.3), they are not shown in this section. For

the helper threads optimization half the cores run transactional threads and the other

half run helper threads. Due to this, the results for helper threads range from 2 to the

maximum number of cores. Nevertheless, HT are expected to be profitable only for 8

or more cores, depending on when the baseline version stops scaling.

In the rest of this section, the performance benefits of individually applying each

optimization are first analyzed. Then, these results are summarized and compared

altogether in Section 5.2.5.

5.2.1 Evaluating Work Stealing

The work stealing optimization is effective in reducing the contention to access the

worklist. According to Figure 5.3, it improves the performance of most applications,

up to 102% for Intruder. With the increasing number of cores, applications that ex-

ecute small to medium transactions are bound to stop scaling due to contention to a

centralized worklist. Work stealing significantly reduces the contention in the work-

list, splitting it between threads. The exception is Labyrinth, which executes a small

number of long transactions, as shown in Figures 5.3e and 5.3f. When the number

of threads increases the time to search for a victim with a non-empty worklist also

increases. This stems from the fact that work stealing selects a victim in a random

fashion. Since Labyrinth is left with just a few long transactions in the end of its ex-

ecution, worker threads may have zero or just one work-unit to be stolen. Thus this

searching process takes longer to converge, that is, to find a suitable target victim.

For Kmeans and Vacation, work stealing improved significantly their performance,

by respectively 35% and 47%, over the baseline version. In particular, as aforemen-

tioned, when Vacation was ported to OpenSkel, the introduction of the worklist itself

became a bottleneck, alleviated by the WS optimization. Nevertheless, Figures 5.3d

and 5.3h show that these applications were not able to scale up to 32 cores in the

NUMA32 platform. It then turns out to be an application/STM scalability limitation

rather than a bottleneck in the worklist itself.

The internal implementation of the OpenSkel worklist as a stack enabled the ex-

ploitation of a specific property of Yada. Each new bad triangle added to the worklist

is correlated to the previous one. Since the work stealing optimization has independent
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Figure 5.3: Comparison between the baseline version and the work stealing optimiza-

tion on the STAMP benchmark applications for the UMA16 and NUMA32 platforms.
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stacks for each thread, this leads to two beneficial effects. First, threads stop process-

ing triangles in the same neighborhood, avoiding conflicts. Second, there is a natural

prefetching mechanism as a thread will keep working in the same neighborhood. As

depicted in Figures 5.3i and 5.3j, WS was able to reduce the number of aborts of Yada,

and achieve performance improvements of up to 35% over the baseline version in the

UMA16 platform.

5.2.2 Evaluating Work Coalescing

This optimization can reduce contention to the worklist at the cost of increasing aborts.

As expected, Figures 5.4e and 5.4f show that Labyrinth had no improvement since

combining long transactions within a single transaction leads to high abort ratio. On

the other hand, transaction aborts are not an issue for Vacation, the abort ratio being

less than 20% on both platforms. This enabled the work coalescing optimization to

perform 32% better than the baseline due to a reduction in the contention to the worklist

as depicted in Figure 5.4g.

In the NUMA32 platform, the contention problem becomes even worse due to the

increase in the number of remote accesses to the worklist. In this case, Figures 5.4b

and 5.4d show that work coalescing was able to add up to 16% for Intruder and 4% for

Kmeans as they present high contention. This shows that in some cases it is profitable

to reduce the contention to access the worklist even when the transaction abort ratio is

increased. However, WC did not alleviate the contention for Vacation in the NUMA32

platform. Vacation has very short transactions, such that even combined work-units

are not long enough to hide the latencies to access the worklist in a NUMA platform.

As a consequence, the contention to access the worklist is still high, preventing any

performance improvement.

This optimization was not able to exploit any memory locality due to the fact that

consecutive work-units are not correlated in most of the applications, except for Yada

as shown in Figure 5.4i. Work coalescing performed 7% faster than the baseline for

Yada in the UMA16 platform. This stems from the fact that in Yada work-units gener-

ate new work-units that are memory correlated. In this case, combining two work-units

also improves cache efficiency.
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Figure 5.4: Comparison between the baseline version and work coalescing optimization

on the STAMP benchmark applications for the UMA16 and NUMA32 platforms.
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Figure 5.5: Comparison between the baseline version and swap retry optimization on

the STAMP benchmark applications for the UMA16 and NUMA32 platforms.
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5.2.3 Evaluating Swap Retry

This is an optimization that tackles transaction aborts by swapping conflicting work-

units to other available ones. In the results presented in Figure 5.5, the parameter to

limit the number of retries was set to 2. It avoids that work-units are swapped eagerly,

reducing cache efficiency if a transaction is successfully committed in the following re-

execution. According to Figures 5.5i and 5.5j, SR improves the performance of Yada

by up to 33%. Yada presents a high abort ratio enabling SR to fit in nicely reducing

the abort ratio. Since new inserted work-units are spatially correlated in Yada, SR also

avoids having threads working on the same region.

The swap retry optimization adds accesses to the global worklist for each swap

operation. Under high abort ratio, these extra accesses will contribute to increase the

contention to the worklist. Thus any performance benefit attained from reducing trans-

action aborts will be outweighed by the contention overhead. Due to this behavior,

SR does not provide any performance improvement to Kmeans and Intruder as de-

picted in Figures 5.5a-d. Unless the contention to the worklist is tackled by another

optimization, these applications can not exploit the benefits from swap retry.

Vacation has a very low transaction abort ratio, thus swap retry is rarely invoked

and does not impact on performance. Finally, Labyrinth shows a slight 4% perfor-

mance improvement in the UMA16 platform as observed in Figure 5.5e.

5.2.4 Evaluating Helper Threads

The performance of helper threads is evaluated by using also the last level cache miss

ratio as shown in Figure 5.7. It allows to measure the effectiveness of prefetching data

on the last level cache. All miss ratios are computed based on the cache accesses and

misses measured on a single core since it is representative of all cores in the system.

As aforementioned, hardware performance counters are accessed through the PAPI

[13] interface to compute the miss ratio. Unfortunately, this tool is available only in

the NUMA32 platform. In the results presented in Figures 5.6 and 5.7, the lifespan

was set to 1000 words and the buffer size to 32. Backed by preliminary results, these

values showed that on average they present a reasonable trade-off between aggressive

prefetching and cache pollution.

Figure 5.6 first compares the benefits of using helper threads with the baseline

version based on the speedup and abort ratio. When helper threads are used, there is
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Figure 5.6: Comparison between the baseline and helper threads optimization on the

STAMP benchmark applications for the UMA16 and NUMA32 platforms.
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one auxiliary thread for each worker thread and both are placed on different cores as

close as possible to profit from shared caches. Then, Figure 5.7 presents the results

considering the cache miss ratio for the NUMA32 platform.

This optimization can be profitable only when an application stops scaling, leaving

idle cores to run helper threads. Even so, the presented results include helper threads

for all numbers of cores. Figures 5.6e and 5.6f show that Labyrinth scales up to the

maximum number of cores. Labyrinth thus cannot be improved by HTs in the selected

platforms. For the other applications, helper threads performed up to 20% faster than

the baseline version. Vacation exhibits substantial cache miss ratio, alleviated with

HTs which improved performance up to 10% according to Figure 5.6g.

Figure 5.6i shows that Yada benefits from the use of helper threads and in fact

this benefit increases as the number of cores in the UMA16 platform is increased. As

the abort ratio does not increase proportionally to the number of concurrent transac-

tions, the abort ratio per thread is actually reduced. On the NUMA32 platform, helper

threads increase the memory pressure over the shared L3 memory thus degrading per-

formance. An exception is Intruder that sees an improvement of 12% over the baseline

version as depicted in Figure 5.6b. Since it stops scaling with only four cores, adding

more four helper threads leave only one main thread and one HT per node. That is,

each L3 cache is shared by non-concurrent threads, and so avoids having competing

transactions evicting each others cache lines.

As it can be noticed in Figure 5.7, by applying helper threads the last level cache

miss ratio was reduced in all applications, except Labyrinth. This confirms the effec-

tiveness of helper threads: triggering future cache miss events far enough in advance

by the main thread reduces the memory miss latency. Although the miss ratio was

decreased, such improvement did not significantly reflect well on the overall perfor-

mance of all applications. In fact, there are performance improvements compared to

the baseline version from 2 to 8 worker threads on most of the applications. However,

they did not deliver any performance gains with 16 worker threads (i.e., 16 worker

threads + 16 HTs).

In Figure 5.7a, Intruder showed important cache miss ratio reduction when apply-

ing HTs. This led to a performance improvement when Intruder stops scaling with

8 worker threads. Helper threads did not improve the performance of the baseline

version of Kmeans (Figure 5.7b) although the cache miss ratio was reduced. It is an

iterative application that alternates between a sequential and a parallel phase, the latter

implemented as a worklist. At the end of each phase, the worklist is empty and it is re-
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Figure 5.7: Comparison of cache miss ratio between the baseline version and helper

threads optimization on the STAMP benchmark applications for the NUMA32 platform.

populated by a single thread (sequential code) before starting the next phase. On each

iteration, HTs have to be re-initialized in the parallel phase. This causes extra overhead

which is significant since Kmeans has a short execution time per parallel phase. Thus,

this overhead of creating auxiliary threads surpasses the benefits obtained from them.

Helper threads led to significant cache miss ratio improvements on Vacation as

depicted in Figure 5.7d. This stems from the fact that Vacation has short transactions.

This allows actual and prefetched data to coexist in the shared cache without causing

extra cache misses. Additionally, Vacation presents very low abort ratio avoiding the

side-effect of wasting the prefetched data by transaction re-execution. As opposed to

Vacation, Yada has long transactions. This makes it harder to attain fair timing between

the worker and helper threads. In fact, it increases the probability that a helper thread
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Figure 5.8: Comparison between all versions on the STAMP benchmark applications

for the UMA16 and NUMA32 platforms.
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takes a wrong path of execution due to premature execution. Even though, the cache

miss ratio was reduced but it did not improved the performance of Yada.

5.2.5 Summary of Pattern-Oriented Optimizations

Figure 5.8 summarizes all the presented results. As it can be noticed, the work stealing

optimization is responsible for many of the best performance benefits. An exception

is Labyrinth, in which contention to the worklist is not a bottleneck. Swap retry has

also delivered best performance improvements for Yada (see Figures 5.8i and 5.8j) on

both platforms and for Labyrinth in the UMA16 platform. In particular, it reduced the

abort ratio for other applications at the cost of increasing contention to the worklist. It

means that once the contention is alleviated, it could also improve performance even

further in other applications. Another optimization that achieved best performance

improvements was work coalescing for Kmeans and Vacation as presented in Figures

5.8d and 5.8g respectively.

It is important to note that at least one optimization on each application achieved

better performance than the original version, except for Vacation. Even though, the

work stealing optimization led the OpenSkel implementation to a very close perfor-

mance compared to the original version as depicted in Figures 5.8g and 5.8h. Addi-

tionally, Labyrinth on the NUMA32 platform is the only application where the baseline

version achieved the best performance. Finally, helper threads improved the perfor-

mance of some applications, although it was less efficient than other optimizations.

Overall, these results show that not a single optimization always delivers the best

performance. In particular, it varies depending on the platforms and applications. It

thus raises the question on how to automatically select them. Additionally, these opti-

mizations can be combined in order to achieve even more performance. Furthermore,

the optimization parameters such as lifespan and number of retries were fixed through-

out the application executions. The tuning of these parameters could also provide

additional performance. These opportunities are further exploited in the next chapter.





Chapter 6

Autotuning Performance

Optimizations

Although enabling many pattern-oriented performance optimizations transparently in a

single framework is an important step, the application programmer is still left with the

daunting task of choosing the most profitable set of optimizations. In order to tackle

this issue, this chapter first presents a novel autotuning mechanism and its implemen-

tation details. In addition to enabling the most efficient set of optimizations, it also ad-

justs each optimization’s internal parameters. Additionally, this mechanism also tunes

the number of concurrent threads automatically. Then, the autotuning mechanism is

compared to individual pattern-oriented optimizations and a static oracle. Finally, the

dynamic behavior of the proposed mechanism is investigated.

6.1 Autotuning Mechanism Overview

The previous chapter showed that pattern-oriented optimizations commonly tackle dif-

ferent performance bottlenecks. This creates an opportunity to combine more than one

optimization to improve performance even further. Additionally, the pattern-oriented

optimizations proposed in this thesis are orthogonal. As a result, the OpenSkel frame-

work can enable multiple optimizations simultaneously. However, the dynamic selec-

tion of the best performing set of optimizations is still dependent on the order in which

these optimizations are activated. This stems from the fact that enabling a specific op-

timization can influence the performance of a subsequent optimization. For instance, if

the number of concurrent threads are adjusted before the worklist sharing optimization,

it may lead to poor performance since an application may scale to a higher number of

61
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 Idle 

CoresSST SWS STC SHT

Figure 6.1: State diagram of the proposed autotuning mechanism.

cores after enabling the WS optimization. Additionally, there are some particular con-

straints that have to be taken into account in the selection of an autotuning strategy.

First, the optimization space is large since some optimizations have also internal pa-

rameters to be tuned (i.e. swap retry). Second, based on the results presented in the

previous chapter, it was observed that the transactional worklist applications are usu-

ally short (e.g. low execution time). The autotuning mechanism thus has limited time

to converge to a set of tuned optimizations. Finally, as mentioned before, some opti-

mizations have more performance impact than others, meaning that the order in which

optimizations are enabled is significant.

This thesis thus proposes an autotuning mechanism that boots optimizations in an

specific order determined by their performance impact on scalability. This one-factor-

at-a-time (OFAT) method simplifies the design and improves the interpretability of the

autotuning mechanism. In addition to it, this method allows the autotuning mecha-

nism to be easily extended with new optimizations. Backed by the results presented in

Section 5.2.5, it was possible to evaluate the performance impact of each optimization

individually and determine a predominance order between these optimizations. Fig-

ure 6.1 shows the autotuning mechanism in the form of a state diagram that takes into

account this predominance order.

The initial state is the start state (SST ), which initializes the autotuning mechanism

and triggers a collection of statistics such as number of aborts, stalls and commits.

Then it moves onto the worklist sharing state (SWS). In this state, it decides to enable

or not the WS optimization.

The proposed autotuning mechanism also tunes the number of concurrent threads.

The aforementioned results showed that the most profitable number of threads changes

if the WS optimization is activated. It means that the enabling of the WS optimization

affects the application scalability which in turn limits the maximum number of threads

that can run concurrently without degrading performance. For this reason, SWS pre-

cedes the thread counting state (STC). Once SWS is finished, the autotuning mechanism

then adjusts the number of concurrent threads in STC.

The other optimizations do not affect scalability, allowing them to be enabled in
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a more flexible order. It was decided then that the next natural step was to check if

there are any cores still available in order to enable and adjust HTs in the helper thread

state (SHT ). In particular, the autotuning mechanism fine-tunes HTs by adjusting their

lifespan parameter. Preliminary results showed that HTs are not sensitive to applica-

tion phases. As a result, it would be too costly and inefficient to continuously tune

HTs. In addition to it, the buffer size internal parameter do not also make a significant

performance impact that would justify the inclusion of it in the tuning process. For

these reasons, the autotuning mechanism adjusts only the lifespan of the HTs during

the SHT state and uses a fixed buffer size.

If there are no idle cores left, then the mechanism moves directly to the work co-

alescing state SWC. The WC optimization is only enabled in a very specific scenario

since the WS optimization have already tackled the same performance bottleneck (i.e.,

contention to access the worklist) for most scenarios in the SWS state. Finally, the

mechanism enables and keeps tuning the SR optimization in the swap retry state SSR,

until the program ends. It is assumed that swapping work-units is always beneficial

since contention to access the worklist has been already alleviated by the preceding

optimizations.

All the pattern-oriented optimizations could be continuously tuned throughout the

application execution. However, based on preliminary results, it was identified that

the first iterations of most STM applications are representative of their whole average

behavior. This hints that optimizations could be enabled and tuned just once whereas

achieving high performance during the rest of the application execution. Additionally,

enabling and disabling optimizations repeatedly such as work sharing strategies and

helper threads has a significant runtime overhead as mentioned before. Although the

first iterations represents the average behavior of an application, it was also observed

that some applications have multiple execution phases. In this case, an application

could benefit from a continuous tuning mechanism. Among the available optimiza-

tions in OpenSkel, SR presents less runtime overhead and is more sensitive to the

application execution phases (i.e., to the variation in the STM contention measured by

the transaction abort ratio). For these reasons, in this thesis, it was decided that only

the SR optimization is continuously tuned.
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input : State S, Number of Work-Units I,

Number of Aborts A, Number of Stalls B,

Number of Commits C, Lifespan L,

Number of Threads N, Number of Cores P

output: State S, Number of Threads N,

Lifespan L, Number of Retries R

1 begin
2 if C mod

√
I/P = 0 then

3 if S = SST then
4 S← SWS
5 T ← P
6 L← 1
7 else if S = SWS then
8 if B/C > α then
9 optWorkStealing← true

10 S← STC

11 end
12 else if S = STC then
13 autoTuningTC()

14 else if S = SHT then
15 optHel perT hreads← true
16 autoTuningHT ()
17 else if S = SWC then
18 if A/C < β/10 and B/C > α then
19 optWorkCoalescing← true
20 S← SSR

21 else if S = SSR then
22 optSwapRetry← true
23 R← 2b(A/(A+C))×10

24 end
25 end
26 end

Figure 6.2: The main algorithm of the proposed autotuning mechanism.

6.2 Autotuning Mechanism Implementation

The main algorithm of the autotuning mechanism is shown in Figure 6.2. It imple-

ments the state diagram depicted in Figure 6.1. First, the application starts with the

default baseline version with an optimistic number of threads, that is, the maximum

number of available cores. This avoids the case where the application loses any avail-

able parallelism in its first iterations. However, as a side-effect, this approach increases

the contention and may slowdown applications with low parallelism. Additionally, the
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state variable S is initially set to the initial state SST . Then, on each iteration, the

main worker thread (i.e., thread id = 0) calls the main algorithm before grabbing a new

work-unit. The frequency at which the tuning process actually happens is proportional

to the number of initial work-units I and cores P, as depicted on line 2 in Figure 6.2.

On every
√

I/P committed work-units, defined as an epoch, the autotuning mechanism

re-evaluates its current state. This usually results in a change of state and/or the en-

abling of an optimization. The latter is represented by the assignment of true to the

corresponding optimization variable. For instance, line 9 shows when the WS opti-

mization is activated. In particular, some states take several epochs to switch to the

next state. This is the case for the STC and SHT states in which the autoTuningTC() and

autoTuningHT() functions, on lines 13 and 16 in Figure 6.2, implement respectively

the hill-climbing strategies to tune the number of threads and the lifespan of helper

threads. These functions are presented in detail in Figures 6.3 and 6.4. Finally, the α
and β thresholds, on lines 8 and 18 in Figure 6.2, are determined at design time by a

sensitivity analysis that is discussed in Section 6.3.3. The rest of this section describes

the implementation details to tune each of the pattern-oriented optimizations.

6.2.1 Enabling Work Stealing

After the initial SST state, the autotuning mechanism moves to the SWS state. In this

state, it evaluates if there is high contention to access the worklist as a condition to

enable the WS optimization. In order to do this, it checks if the ratio between the

number of stalls to access the worklist and the number of committed work-units is

above a threshold α as shown on line 7 in Figure 6.2. Each time a thread access the

worklist and has to wait in a lock, this is counted as a stall. Low stall ratio means

that the worklist is not under contention. In this scenario, the work sharing should be

maintained since it provides optimal load balancing.

6.2.2 Autotuning the Concurrency Level

16. p65, g 6.3. Mention that R values are limited to +1,0,-1. Somewhere (in caption or

in code) you need to mention that this routine is named autoTuningTC().

The next step is to adjust the number of threads in the STC state. The proposed

mechanism uses a hill climbing heuristic implemented in the autoTuningTC() function

as depicted in Figure 6.3. It is based on the ratio between work-units aborts and com-

mits. If this ratio is below a threshold β it means that the actual number of threads
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input : State S, Counter R, Number of Aborts A,

Number of Commits C, Number of Threads N,

Number of Cores P

output: State S, Counter R, Number of Threads N

1 begin
2 if A/C < β then
3 if R = 0 then
4 R← R+1
5 else if R = 1 then
6 if N < P then
7 S← SHT

8 else
9 S← SWC

10 end
11 else
12 R← 0
13 end
14 else
15 if R = 0 then
16 R← R−1
17 else if R =−1 then
18 N← max(N/2,1)
19 R← 0
20 else
21 R← 0
22 end
23 end
24 end

Figure 6.3: The algorithm to autotune the thread concurrency level in the autoTun-

ingTC() function.

exploits parallelism efficiently. However, this has to be confirmed in one more epoch

through a counter R before fixing the number of threads. In particular, this counter

R can assume only three values +1,0 and -1. This double checking avoids making a

wrong decision based on a biased interval. The same is valid when the ratio is above

β. The algorithm waits for a consecutive confirmation before halving the number of

threads. This process ends when consecutive epochs present a ratio below β. In Sec-

tion 6.3.3, a sensitivity analysis is performed in order to choose and understand the

performance impact of these thresholds. In particular, it shows that there is small per-

formance variation on most of the investigated space. It means that even when the

mechanism uses non-optimal threshold values, it still makes the right choices.
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input : State S, Counter R, Lifespan L,

Number of Commits C, Epoch E,

Max Lifespan M

output: State S, Counter R, Lifespan L

1 begin
2 if Ci/Ei <Ci−1/Ei−1 then
3 if R = 0 then
4 R← R−1
5 else if R =−1 then
6 S← SWC
7 if L = 1 then
8 L← 0
9 end

10 else
11 R← 0
12 end
13 else
14 if R = 0 then
15 R← R+1
16 else if R = 1 then
17 L← min(L×10,M)
18 R← 0
19 else
20 R← 0
21 end
22 end
23 end

Figure 6.4: The algorithm to autotune the lifespan of helper threads in the autoTun-

ingHT() function.

6.2.3 Autotuning Helper Threads

Next, the algorithm switches to the SHT state if there are idle cores or goes straight

to the SWC state. The autotuning strategy to determine the lifespan of helper threads

follows similar approach to the STC state. As shown in Figure 6.4, it also uses a hill

climbing strategy but in the opposite direction. In contrast, it starts with a pessimistic

lifespan equal to one and move towards a maximum lifespan. Basically, if the current

throughput with HTs enabled is higher than without them, it multiplies the lifespan by

a factor of 10. Once the lifespan is determined, the algorithm switches to the SWC state.
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6.2.4 Autotuning Work Coalescing

The SWC state is implemented on line 17 in Figure 6.2. Since the WC optimization

also tackles the contention problem in the worklist, it is only enabled if the number of

stalls is high and the ratio between abort and commits is very low, a tenth of β. Then,

it switches to the SSR state.

6.2.5 Continuous Tuning of Swap Retry

Finally, in the last state, the SR optimization is enabled and adjusted continuously. It

uses an exponential function based on the abort ratio to adjust the number of retries

before a swap as described on line 23 in Figure 6.2. The intuition behind it is that

as the abort ratio increases, work-unit swaps become expensive and inefficient. This

stems from the fact that under high abort ratio, when a work-unit is swapped it will

end up aborting anyway and the thread may also lose the natural prefetching of the

previous execution. On the other hand, it is also assumed that aggressive SR (i.e.,

swap on every abort) is not beneficial since in the next execution the work-unit can

execute and commit faster using the prefetched data. Thus, the number of retries is

limited to a minimum of one retry before swapping.

6.3 Analysis of the Autotuning Mechanism

After analyzing the impact of each optimization individually in Chapter 5, this section

compares the proposed autotuning mechanism with the best single optimization and the

static oracle. In particular, the static oracle is obtained through exhaustive investigation

of the search space of combined optimizations. Since it is static, that is, optimizations

and their parameters are fixed throughout the application execution, so it is possible

for the dynamic autotuning mechanism to outperform it.

Figure 6.5 shows the performance improvement, in percentage, over the best base-

line execution. By best, it means the fastest execution for a specific application, from

all possible number of cores (i.e., in some cases more cores result to slowdowns). Ad-

ditionally, the set of optimizations (e.g., WS+SR+HT) used to achieve the performance

improvement is also highlighted in Figure 6.5. In order to analyze the following re-

sults, the performance benefits of combining optimizations (i.e., static oracle) against

individual optimizations are first discussed. Then, the static oracle is compared with

the autotuning mechanism.
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(b) NUMA32
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Figure 6.5: Performance improvement of the autotuning mechanism and the best com-

bination of optimizations over the best baseline execution.

6.3.1 Single vs. Combined Optimizations

Figure 6.5 shows that the static oracle, that combines optimizations, delivers perfor-

mance improvements up to 15%, when compared to individual optimizations for most

of the applications. As expected, the WS optimization is beneficial for all applications

except Labyrinth. Labyrinth reaches its best performance with the baseline version for

the NUMA32 platform and with SR for the UMA16 platform.

As mentioned earlier, under high abort ratio, SR increases the contention to access
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Figure 6.6: Sensitivity analysis of parameters α and β.

the centralized worklist. However, since the WS optimization distributes the worklist,

this undesired behavior is largely negated when the two optimizations are combined.

Based on the fact that SR only swaps work-units within its local worklist, it was able

to deliver performance improvements for many applications.

The WS and WC optimizations tackle the same performance bottleneck, namely

contention to access the worklist. Since the WS benefits outweigh the ones of WC,

combining them unnecessarily increases the abort ratio in most cases. An exception to

this is Vacation that has very small transactions and very low abort ratio. Enabling WC

on top of WS, reduces contention even further in the NUMA32 platform as shown in

Figure 6.5b. Finally, combining HTs with WS and SR improved performance even a

slightly further in Yada and Kmeans, showing that idle cores, when available, can be

utilized for prefetching (i.e., most applications scale to the maximum number of cores

after optimizations). Since SR reduces the number of re-executions, HTs become more

profitable by prefetching data that will be used soon instead of being discarded, pollut-

ing the cache.

6.3.2 Autotuning vs. Static Oracle

In order to better understand the behavior of the proposed autotuning mechanism, a

sensitivity analysis for its internal parameters was performed. As aforementioned, the
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α threshold is related to the ratio between stalls and commits and it is used in the WS

step. The β threshold defines the desired ratio between aborts and commits and is used

to choose the number of concurrent threads and also in the SWC state.

Figure 6.6 shows the averaged normalized speedup for the applications running in

the UMA16 platform. The best tuple is (0.1,0.1) as highlighted in Figure 6.6. This

means that only under very low contention, the worklist should be not be distributed

using the WS optimization. Additionally, the number of threads has to be reduced

until a low ratio between aborts and commits is reached, so as to achieve the best

performance. In contrast, the worst results are achieved with the (0.9,0.9) tuple. In this

case, WS is never used and the number of threads is always the maximum number of

cores, which is not profitable for some applications. However, it can also be observed

that there is small performance variation across most of the investigated space. It shows

that even when non-optimal values are used, the autotuning mechanism still delivers

good average performance.

Based on this study, we chose the tuple (0.1,0.1) to drive the proposed mechanism

in all results shown in Figure 6.5. The same tuple was also used for the NUMA32

machine, showing that it can be portable across machines.

Figure 6.5 shows that the autotuning mechanism can deliver similar performance,

or in some cases be even more efficient, when compared to the best static combination

of optimizations. The proposed mechanism was only 2% slower than the best combina-

tion on average for the UMA16 machine and 7% faster for the NUMA32 platform. It is

also important to point out that the proposed mechanism was always equal to or faster

than the single best optimization case. The continuous tuning of swap retry proved

to have a significant impact for the NUMA32 platform, improving the performance of

Yada by 31% over the static oracle.

6.3.3 Analysis of the Autotuning Dynamic Behavior

In Figure 6.7, the behavior of the autotuning component is analyzed further for all

applications, running on the UMA16 platform. Each graph shows, when each of the

states are activated, how many epochs it takes to finish and the values for each of the

optimization internal parameters. For instance, Figure 6.7c in the SSR state shows that

for Labyrinth the number of retries is reduced from 32 to 4 across epochs. Note that it

took less than 2% of Yada’s total execution time to autotune the application as shown

in Figure 6.7e. This trend is consistent across all applications, except Labyrinth which
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has few long transactions. Despite this fact, it takes fewer epochs to converge since it

is profitable to make use of all cores.

Another interesting result derived from these graphs is that they show how the SR

optimization exploits the variation of the abort ratio throughout the application execu-

tion. For instance, the number of aborts increases radically by the end of Intruder’s

execution. Since the number of retries is proportional to the abort ratio, this increase

can be observed in the SSR state in Figure 6.7a. SR thus almost stops swapping work-

units since it will be probably worthless as aborts become inevitable.

In 6.7e, it is also important to observe that HTs are enabled and the lifespan is in-

creased until 1000 which is not the maximum lifespan. This shows that the autotuning

mechanism was able to detect the most profitable lifespan for Yada in the UMA16,

which in this case is 1000 words per work-unit.

Overall, the proposed autotuning mechanism converges to a set of optimizations

that matches the ones of the static oracle. Additionally, it surpasses the static oracle

performance benefits when the dynamic tuning of SR is profitable. Finally, it can

achieve performance improvements of up to 88%, with an average of 46%, over a

baseline version for the UMA16 platform and up to 115%, with an average of 56% for

the NUMA32 platform.
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Figure 6.7: Autotuning dynamic behavior for all applications in the UMA16 platform.





Chapter 7

System-Oriented Performance

Optimizations

In addition to enabling pattern-oriented optimizations, a skeleton framework can also

employ system-oriented performance optimizations. These optimizations are usually

used to enhance memory affinity, which keeps data close to the cores which access it [6,

11]. In particular, these system functionalities such as thread mapping and memory

page allocation are provided by the operating system. However, the operating system

commonly applies a fixed set of generic heuristics that delivers good performance to

applications for the average case. This means that these heuristics do not take into

account specific behavior characteristics shared by some classes of applications such

as TM worklist applications.

This chapter presents how to enable and automatically tune system-oriented per-

formance optimizations such as thread mapping and memory page allocation within

OpenSkel. Additionally, the autotuning mechanism is extended to support both pattern-

oriented and system-oriented optimizations. Then, it is compared to a static oracle that

uses both categories of optimizations.

7.1 Employing System-Oriented Optimizations

7.1.1 Memory Accesses in TM Worklist Applications

On transactional worklist applications, data dependencies cannot be determined at

compile time. In principle, no specific memory access pattern can be assumed since

threads may potentially access memory addresses in an uniformly random fashion.

75
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Figure 7.1: Sampled memory footprint of pages accesses for transactional worklist

applications executing with four threads. Each data point represents a thread accessing

a certain memory page at a specific time. Each symbol represents a different thread.

Figure 7.1 supports this observation by showing the memory page accesses foot-

print of four STAMP applications during their execution. In particular, this shows that

each thread ends up traversing most of the memory page space, frequently conflict-

ing with other threads. This fact makes harder to enhance memory affinity by applying

pure static approaches. At the same time, dynamic approaches usually require frequent

data or thread migrations that can be prohibitively expensive.

To tackle this problem, this chapter proposes an extension to the autotuning mech-

anism to enable and select system-oriented optimizations in order to enhance mem-

ory affinity for transactional worklist applications. Although the skeleton framework

leaves to the STM system the handling of data accesses and dependencies, it can im-

prove memory affinity applying these system-oriented optimizations based on the TM

nature of the applications and the platform features. The solution proposed thus ex-

ploits static and dynamic information to provide affinity by thread mapping and mem-

ory page allocation. In the thread level, thread mapping strategies are implemented in
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(a) Scatter

(b) Compact

Figure 7.2: Thread mapping strategies enabled by the OpenSkel framework. The high-

lighted cores represent where threads are placed.

OpenSkel. These strategies place threads on specific cores in order to enhance mem-

ory affinity. This allows the autotuning mechanism to select the most efficient thread

mapping strategy depending on the memory hierarchy of the platform. In the mem-

ory level, the autotuning mechanism takes into account this irregular memory access

pattern to apply a more suitable page allocation policy. Such policy is used to spec-

ify how memory pages are distributed over the physical memory banks of a platform.

Additionally, based in the skeleton information, the autotuning mechanism switches to

a different policy if profitable. This approach do not employ page migration since it

would be to costly as threads access different memory pages in a short period of time.

7.1.2 Mapping Threads to Cores

A well-known system-oriented functionality is thread mapping [41, 44]. It places

threads on specific cores in order to reduce memory latency or alleviate memory con-

tention. For instance, threads that communicate often could be placed on cores that

share some level of cache memory to avoid high latency accesses to the main mem-

ory. Thread mapping strategies can use prior knowledge of the application behavior

[27] and/or of the platform memory topology [23] to map threads to cores. Although

several mapping strategies have been proposed [23, 27], there is no single solution

that delivers high performance across different applications and platforms. In particu-

lar, transactional worklist applications present even more complex behavior due to the

speculative nature of the transactional system. Thus, the programmer needs alternative
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thread mapping strategies for each application and platform.

As aforementioned, the OpenSkel baseline version employs the scatter thread map-

ping strategy. It distributes threads across different processors avoiding cache sharing

between cores in order to reduce memory contention as shown in Figure 7.2a. Another

alternative thread mapping strategy is called compact (CP). This is one of the strate-

gies employed on Intel OpenMP system [23]. In this optimization, threads are placed

in cores in order to maximize memory sharing. In contrast to the scatter strategy, Fig-

ure 7.2b shows that compact forces threads to run on cores located on the same socket

or node with shared caches. It reduces memory access latency for communicating

threads. However, as a side-effect it also increases the contention of cache accesses,

degrading the performance of memory intensive applications. Finally, the Linux de-

fault scheduling strategy is a dynamic priority-based one that allows threads to migrate

to other cores considering their behavior.

7.1.3 Allocating Physical Memory

Memory allocation policies reduce latency costs or increase bandwidth for memory

accesses by enhancing memory affinity [66]. This is specially appealing for NUMA

platforms where latencies and bandwidth are variable between nodes. These memory

allocation policies have been predominantly studied in the context of regular parallel

applications on NUMA multi-core platforms, in which the memory access pattern is

stable and predictable [6, 11, 66]. Irregular applications such as transactional work-

lists differ from regular ones as their memory access pattern is more complex, stem-

ming from the fact that data dependencies between threads are only know at runtime

as discussed in Section 7.1.1. An approach to improve memory affinity for irregular

applications is to provide a set of customized data structures to the application pro-

grammer, so that the runtime system can be aware of where the data is allocated in the

memory [51]. The runtime system is then able to partition the data between threads

in such a way that each thread works on a different subset of the data whenever pos-

sible. This approach improves memory affinity at the cost of forcing the application

programmer to use a set of pre-defined data structures and a very specialized runtime

system. Another more general approach is to allocate memory based on the architec-

ture features rather than the application data structures. This approach does not require

any source code modifications, freeing the application programmer to use its own data

structures. Furthermore, both regular and irregular applications are similarly affected
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(a) Bind

(b) Cyclic

Figure 7.3: Bind and cyclic memory allocation policies enabled by the OpenSkel frame-

work.

by the affinity dilemma: to reduce latency or to alleviate contention. In fact, this trade-

off is intrinsic to NUMA platforms. For that reason, the same mechanisms employed

to enhance affinity in regular applications should also be profitable to irregular ones.

In order to improve DRAM memory affinity in the OpenSkel framework, it was

extended to provide NUMA-aware memory policies. The OpenSkel baseline does not

provide any memory allocation support, leaving memory management to the native

operating system. Furthermore, it expects that an application programmer provides

accurate information regarding the platform topology. To overcome this limitation,

that process was automated by the use of a tool to capture machine topology informa-

tion similar to hwloc [12]. This information is essential to implement NUMA-aware

memory policies.

A memory allocation policy is used to specify how memory pages are distributed

over the physical memory banks of a machine. For instance, the Linux operating sys-

tem uses the first-touch policy which places data on the node of the thread that first

touches it [6]. To support memory affinity in transactional worklist applications, two

existing memory policies named bind and cyclic were employed. Both memory poli-

cies are implemented within the OpenSkel runtime, avoiding application source code

modifications.
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The bind memory policy aims at reducing access latency by gluing a thread to

a single memory bank. Whenever a thread allocates or requests a memory page, its

corresponding virtual page is placed on a physical memory bank based on information

about the NUMA platform topology.

Figure 7.3a depicts the bind policy in a NUMA platform with n nodes. In this

example, the application data is allocated by a team of n threads. Then it is split in

n parts, each one being placed on a different memory bank. A side-effect of binding

thread to memory banks is that it may cause more memory contention when different

threads share the same memory range. In order to avoid such behavior, the cyclic

memory policy spreads memory pages over the memory banks following a round-robin

distribution. The granularity unit used in the cyclic memory policy is a memory page.

Therefore, a page i is placed in the memory bank i mod m, where m is the number of

memory banks of the platform. The cyclic policy aims to balance memory bank usage,

because it allows memory banks to be accessed in parallel, providing more bandwidth

to cores.

Figure 7.3b shows a schema that represents the cyclic memory policy in a NUMA

platform. Thus, the first memory page of the application data is physically stored on

memory banks sequentially from 0 to 3 in a round-robin fashion.

In order to implement these policies in OpenSkel, the libnuma [48] library was

integrated to the framework. It provides an API to set specific page allocation policies

such as bind and cyclic which are encapsulated by the OpenSkel framework. As a

consequence, page allocation policies are not exposed to the application programmer.

In particular, it can fully automate the process of selecting page allocation policies.

7.1.4 Autotuning System-Oriented Optimizations

After extending OpenSkel to support both thread mapping strategies and memory page

allocation policies, the autotuning mechanism can be also extended to handle the these

optimizations. It is extended with a simple but efficient heuristic to automatically

enable and select the system-oriented optimizations. This heuristic exploits the appli-

cation algorithmic pattern and system information to choose which strategies should

be applied.

As aforementioned in Section 7.1.1, transactional worklist applications exhibit very

irregular memory access footprint tending to an uniform distribution. Based on this ob-

servation, the autotuning mechanism always set cyclic as the default page allocation
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policy in the OpenSkel initialization (i.e., within the oskel wl alloc() function) as it

distributes memory pages equally across nodes. This can increase the average perfor-

mance of the applications since each thread will potentially access the same amount

of data on each node. However, if the skeleton informs that threads are generating

new work-units (i.e., use of the oskel wl addWorkUnit() function), the mechanism op-

timistically assumes that these work-units are memory related. Then it switches the

page allocation policy to bind.

Backed by preliminary results, it was observed that selecting the most appropriate

thread mapping strategy for a transactional application is more complex than expected.

This stems from the fact that each combination of STM system/application/platform

modifies the behavior of the application, so the best thread mapping strategy is also

affected. In order to efficiently solve this problem, more sophisticated solutions are

required. This led to the proposal of a machine learning-based (ML) approach to

automatically infer a suitable thread mapping strategy for transactional memory ap-

plications, not constrained by TM worklist applications. First, it builds a set of input

instances. Then, such data feeds a machine learning algorithm called ID3, which pro-

duces a decision tree able to predict the most suitable thread mapping strategy for

new unobserved instances. The results obtained by applying this ML approach are

presented in [17].

This thesis focuses only on transactional worklist applications and simple dynamic

heuristics to autotune a broader range of performance optimizations. Then, instead

of employing a more complex approach, the proposed autotuning mechanism in this

thesis relies on a simple but efficient heuristic. First, it employs the compact strategy

when the platform is NUMA. This stems from the fact that on NUMA platforms com-

munication between nodes is expensive, so placing threads as close as possible can

reduce the amount of remote data requests. And since transactional worklist applica-

tions communicate quite often, this is potentially an efficient solution. Then, the scatter

strategy is employed when the application is running on an UMA platform. This can

be explained by the fact that in the absence of different memory access latencies, cache

memories become the main source of contention. The scatter strategy maps threads in

such a way that each thread has usually exclusive access to a shared cache that would

be otherwise used also by another thread at the same time. This can improve each

thread individual performance potentially boosting the whole application. Finally, this

automatic decision in made within the the oskel wl alloc() function.

System-oriented optimizations are orthogonal to pattern-oriented ones and can be
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naturally applied simultaneously. However, the enabling of system-oriented optimiza-

tions affects performance and consequently the decision on which pattern-based opti-

mizations should be activated. Nevertheless, system-oriented optimizations commonly

cause higher performance impacts since they happen in a lower level. For this reason,

they should be enabled before the pattern-based optimizations.

7.2 Analysis of the System-Oriented Optimizations

In this section, the performance of the enabled skeleton-driven system-oriented opti-

mizations are analyzed. The memory allocation policies are executed on the NUMA16

platform instead of the UMA16, since they do not affect the performance of UMA

platforms. In the rest of this section, the performance benefits of the thread mapping

strategies are first analyzed. Second, the memory allocation policies are also investi-

gated. Then, the results of combining both system-oriented and pattern-oriented ones

are discussed. Finally, the new extended autotuning mechanism is compared to a static

oracle.

7.2.1 Evaluating Thread Mapping

Overall, the Linux mapping strategy presents similar performance to the scatter strat-

egy according to Figure 7.4. This is due to the fact that Linux also tries to split

threads in different nodes/sockets rather than cluster them. In contrast, the compact

mapping strategy tries to reduce communication latency between threads by placing

them in cores that share higher levels of memory. As shown in Figure 7.4, compact

improved application performance by up to 134%, and 48% on average. Basically,

in the NUMA32 platform, it improved the best performance of all applications but

Labyrinth. Since it scales up to 32 cores, then thread mapping does not affect its best

performance. All other applications communicate frequently, so reducing this commu-

nication latency is an important issue. In particular, the NUMA32 platform has a L3

cache shared by each group of 8 cores. Compact thus places threads so they use this

L3 cache as a fast communication channel, reducing memory access latency.

As opposed to the NUMA32 platform, in the UMA platform, only Yada and Kmeans

benefit from compact. Both execute medium-sized transactions that demand an amount

of data that fits within the L2 shared caches. Once threads competing for the same L2

cache do not degrade memory latency, they also benefit from fast communication.
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Figure 7.4: Comparison between different thread mapping strategies for the baseline

version on the STAMP benchmark applications for the UMA16 and NUMA32 platforms.
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Then Yada and Kmeans observed an increase in performance over the baseline version

of up to 31% and 11% respectively.

For Vacation and Intruder, scatter is a better strategy than compact since they have

short memory intensive transactions. Labyrinth is also a memory intensive applica-

tion. However, as it scales up to the maximum number of cores, this thread mapping

strategy does not affect its best performance. Finally, the abort ratio is not shown due

to the fact that these thread mapping strategies do not affect it. This is expected since

they are system optimizations that do not tackle TM conflicts.

7.2.2 Evaluating Physical Memory Affinity

As aforementioned, the bind and cyclic memory allocation policies were implemented

in OpenSkel. Figure 7.5 reports the speedup of the selected benchmarks on both

NUMA16 and the NUMA32 platforms. It shows the performance of the baseline

version which uses the default Linux memory allocation policy compared to the im-

plemented ones. The Linux operating system uses the first-touch policy which places

data on the node of the thread that first touches it [6]. Overall, bind and cyclic poli-

cies perform 8% better than the baseline, on average. In particular, these policies

improved the performance of Kmeans and Vacation up to 14% and 46% respectively

on the NUMA16 platform as depicted in Figures 7.5c and 7.5g.

In the NUMA16 platform, NUMA-aware memory polices presented significant

performance gains as opposed to the NUMA32 platform. Since the NUMA16 platform

does not have shared cache memories and nodes are not fully connected, the impact of

the memory policies is more significant. In the NUMA32, remote data requests rarely

lead to an access to a remote memory bank. This stems from the fact that each node has

a large shared L3 cache and they are interconnected through high speed communication

channels. Instead of accessing a remote memory bank directly on a data request, a core

checks if the data is available on its local and remote caches. Due to this, the impact

of physical allocation memory policies in the NUMA32 platform is smaller.

Intruder, Kmeans and Vacation benchmarks which experience more memory con-

tention have presented better performance with the cyclic memory allocations policy

in the NUMA16 platform. This policy makes more bandwidth available per core due

to its distributed nature of placing memory pages. Therefore, lower latencies to access

the worklist are expected with this memory policy. In particular, the cyclic policy de-
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Figure 7.5: Comparison between different memory allocation policies for the baseline

version on the STAMP benchmark applications for the NUMA16 and NUMA32 plat-

forms.
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livers a significant performance improvement to Vacation as presented in Figures 7.5c.

This application has very small transactions increasing contention to access the work-

list. The cyclic policy thus alleviates that contention since it distributes the pages that

compose the worklist among the memory banks.

In contrast, Figures 7.5i shows that Yada benefits more from the bind policy since

it has long transactions and much less contention to access the worklist. Due to this,

the most suited policy is to allocate memory pages closer to the thread that access

them. Additionally, in Yada, each thread inserts new work-units in the worklist during

the benchmark execution. For that reason, threads have already data close to them,

reducing the need of accessing remote nodes.

7.2.3 Evaluating System and Pattern-Oriented Optimizations

This last section investigates the performance improvement of combining system and

pattern-oriented optimizations in the UMA16 and NUMA32 platforms. Moreover,

it shows that even when these system-oriented optimizations provides a significant

speedup, the pattern-oriented optimizations can add up further performance. Basically,

the investigated memory allocation policies do not apply to the UMA16 platform. Fur-

thermore, they do not have a significant impact on the NUMA32 as explained in the

previous section. As a result, these optimizations did not influenced in the best execu-

tion or static oracle of each application as shown in Figure 7.6.

In contrast, the compact thread mapping strategy improved performance even fur-

ther for many applications. Particularly, in the NUMA32 platform, compact became

the best single optimization for Intruder, Kmeans and Yada as depicted in Figure 7.6b.

The exceptions are Labyrinth and Vacation that scales up to the maximum number of

cores, when thread mapping becomes irrelevant. Figure 7.6a shows that it is also the

case for most applications in the UMA16 platform, except from Yada that scales only

up to 8 cores. In particular, the combined performance of compact and other optimiza-

tions led to a performance improvement of 15% compared to the previous static oracle

based only on pattern-oriented optimizations.

For the UMA16 platform, the extended autotuning mechanism did not improved

compared to the previous one. This stems from the fact that for UMA platforms the

scatter thread mapping policy is always used and only Yada benefits from employing

the compact strategy. In contrast, the compact strategy at least as efficient as the scatter

strategy in the NUMA32 platform and is always employed by the autotuning. This
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Figure 7.6: Performance improvement of the extended autotuning mechanism, the

static oracle including system-oriented optimizations and the single best optimization

over the best baseline execution.

enabled the autotuning mechanism to achieve performance improvements that surpass

the static oracle by 6% and 15% for Intruder and Yada respectively.

In summary, the experimental results show that the extended autotuning version

combining system-oriented and pattern-oriented optimizations can achieve performance

improvements of up to 88%, with an average of 46%, over the baseline version for the

UMA16 platform and up to 162%, with an average of 91%, for the NUMA32 platform.





Chapter 8

Related Work

8.1 High Level Parallel Programming

8.1.1 Parallel Languages and Extensions

One approach to support parallelism is to extend existing programming languages with

keywords from the parallel programming domain to spawn and synchronize threads

and partition data. This alternative is well exploited in languages such as Cilk++ [8]

and Charm++ [46]. Particularly, Cilk++ [8] has extensively employed work stealing in

order to overcome scalability bottlenecks. In [62], several optimizations were applied

transparently to the Charm runtime system to support clusters of multi-cores. However,

both Charm++ and Cilk++ are designed for non-transactional parallel applications.

Another alternative is to support parallelism in functional programming languages.

For instance, Haskell map function can express data-parallelism in an elegant manner.

In [38], Concurrent Haskell is extended to support transactional memory. It takes

advantage of the Haskell type system to provide stronger guarantees. Additionally,

transactions can be composed to form larger transactions. Such language solutions

aim to improve programmability and enable compiler-driven optimizations. As with

sequential languages, their main goal is to be generic. Also, unlike skeleton libraries,

they rely on a compiler for analysis and optimizations.

8.1.2 Library-Based Frameworks

In contrast to parallel language extensions, this thesis’s proposed approach is based on

skeletal programming for software transactional memory applications. An extensive

survey of recent parallel skeleton languages and libraries is presented in [32]. Although

89



90 Chapter 8. Related Work

many parallel skeletons have been proposed, they are efficient only for regular data and

task-parallel applications.

In [49, 51, 52], the authors have identified that new programming abstractions are

required to efficiently use speculative execution on a particular class of irregular ap-

plications that exhibits amorphous data-parallelism. These applications are mostly

worklist-based algorithms that work within a shared graph data structure. They have

implemented the Galois system, a Java-based interface that provides a set of iterators

to implement the worklist and a runtime system that implements the speculative execu-

tion support. Galois follows a data-centric approach where users must plan their code

around especially designed recursive data structures, while OpenSkel focuses on an al-

gorithmic abstraction based on computation patterns in which there are no restrictions

on the data structures used. Additionally, the proposed framework in this thesis and its

optimizations are decoupled from the underlying speculation mechanism. This means

that it runs on top of state-of-the-art STM systems, extending the STM paradigm and

inheriting the performance achieved by existing STMs.

8.2 Skeleton-Driven Performance Optimizations

8.2.1 Pattern-Oriented Performance Optimizations

Recent work [63] has exploited structure-driven optimizations for irregular applica-

tions. In fact, they proposed a technique called iteration coalescing that was adapted

to work coalescing (WC) in the proposed skeleton framework. Both techniques coa-

lesce smaller transactions into larger ones in order to reduce overheads related to the

dynamic assignment of work to threads. Differently from [63], WC does not support

partial commit since it requires modification in the target speculation system.

The work in [4] proposes a “steal-on-abort” mechanism. When concurrent trans-

actions conflict, the aborted transaction is stolen by its opponent transaction and queued

to avoid simultaneous execution. Multiple local queues with job stealing for load bal-

ancing are also employed. In contrast, rather than stealing a conflicting transaction

from another thread, one of the proposed optimizations in this thesis, called swap retry

(SR), tries to compute a different work-unit from its own stack whenever it aborts. It

does not require visible readers and can be applied to any word-based software trans-

actional memory system. Moreover, [4] focuses on a single optimization within a
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software transactional memory system, where the proposed skeleton-driven approach

has a set of transparent optimizations.

One of the optimizations developed in this thesis exploits the use of helper threads

to improve performance. Helper threads have been explored as a means of exploit-

ing otherwise idle hardware resources to improve performance on multi-cores [21]. A

compiler framework to automatically generate software helper threads code for prof-

itable loops in sequential applications has been developed [72]. As in our system, it

prefetches data to shared cache levels. Finally, in [65] helper threads were manually

coded within hardware transactional memory barriers, to improve the performance of

a sequential implementation of Dijkstra’s algorithm. In this case, a helper thread does

useful work rather than just prefetching. In the proposed approach, helper threads

are employed to speedup transactional applications rather than sequential applications.

Additionally, synchronization between the worker and helper threads is solved by the

use of pattern-oriented information.

8.2.2 System-Oriented Performance Optimizations

Mechanisms to enhance memory affinity on data parallel applications such as thread

scheduling and NUMA-aware memory allocation have been studied in [6, 11]. In [11],

the authors proposed a NUMA-aware runtime implementation for OpenMP interface.

Differently to those proposed system-oriented optimizations, OpenSkel runtime relies

on thread schedulers to efficiently manage memory affinity. In [6], the authors de-

signed dynamic mechanisms that decide data placement over the physical memory of

a NUMA machine. The proposed mechanisms use hardware counters to compute the

most suitable data placement (e.g., queuing delays, on-chip latencies, and row-buffer

hit-rates of on-chip memory controllers). Due to this, the target architecture must im-

plement the hardware support for these counters. Although these mechanisms showed

reasonable performance in simulations, when employed in real systems they led to

small gains.

Some studies on thread mapping for MPI and OpenMP applications are relevant

to this thesis, since they propose heuristics to map threads on multi-core platforms.

In [83], the authors presented a process mapping strategy for MPI applications with

collective communications. The strategy uses the graph partitioning algorithm to gen-

erate an appropriate process mapping for an application. The proposed strategy was
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then compared with Compact and Scatter. In [27], two thread mapping algorithms are

proposed for applications based on the shared memory programming model. These

algorithms rely on memory traces extracted from benchmarks to find data sharing pat-

terns between threads. During the profiling phase, these patterns are extracted by run-

ning the workloads in a simulated machine. The proposed approach was compared to

Compact, Scatter and the operating system process mapping strategies. In [41], the

authors proposed a dynamic thread mapping strategy for regular data parallel applica-

tions implemented with OpenMP. The strategy considers the machine description and

the application characteristics to map threads to processors. The efficiency of their

proposed thread mapping strategy was evaluated using simulation.

In this thesis, memory allocation and thread mapping strategies are applied under

a skeleton framework to transactional worklist applications. To the best of our knowl-

edge, this is the first work to implement and autotune these optimizations for the target

applications.

8.3 Autotuning Software Systems

8.3.1 Autotuning Mechanisms for Parallel Applications

In [47], the authors propose an autotuning framework for stencil applications. It auto-

matically parallelizes and tunes sequential Fortran stencil applications. The autotuning

strategy selects a subset of the optimization search space instantiations based on archi-

tectural constraints. Then it runs each instantiation, measures the execution time and

chooses the fastest instantiation for the target machine. It is an off-line approach based

on exhaustive search as opposed to the proposed autotuning mechanism in this thesis.

Another class of automatic tuning systems is based on Machine Learning tech-

niques. This approach involves off-line training to build a predictor used by the run-

time system to choose between the available alternatives. It has been applied to parti-

tion data-parallel OpenCL tasks [33], to select task scheduling strategies [76] and map

threads [78] in OpenMP parallel programs. It has become also common applying ML-

based approaches to autotune the Java runtime system. In [71], the authors applied

a decision tree to automatically select among various garbage collection strategies in

Java for MapReduce applications.
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8.3.2 Autotuning Mechanisms for STMs

In [56], the authors use a history-based heuristic to dynamically select the most effi-

cient STM design considering dimensions such as level of indirection and type of non-

blocking semantics. Automatic tuning of STM systems is considered in [29], which

proposes a hill climbing strategy to adjust the number of locks, the number of shifts

in a hash function and the size of the hierarchical array implemented on TinySTM.

In contrast, this thesis focuses on the tuning of higher level optimizations rather than

STM internal designs and parameters. Transactional Memory contention managers

([35, 73]) dynamically react to contention and try to minimize it by changing the con-

flict resolution policy, for example, in order to improve performance. In this thesis,

the proposed scheme does take contention into account, but targets a broader range

of optimizations. In [82], the authors propose an adaptive mechanism to transaction

scheduling on top of a STM contention manager. It uses contention feedback informa-

tion to adjust the number of available active transactions running in parallel to avoid

high contention. In [3], the authors also propose a concurrency control mechanism

that continuously tunes the number of threads based on the transaction commit rate.

In contrast, this thesis proposes an autotuning mechanism that follows a hill climbing

strategy to select the most suitable number of threads in a few intervals rather than

during the whole application execution.





Chapter 9

Conclusions and Future Work

9.1 Summary of Contributions

Although many parallel programming models and systems have been proposed in the

recent past, improving performance and programmability of applications is still hard

and error-prone. Transactional memory is a recent attractive programming model that

simplifies the extraction of coarse-grained parallelism formerly limited by lock pro-

gramming. In this programming model, critical sections are speculatively executed

and data conflicts solved by a runtime system. However, it still resembles lock pro-

gramming in the sense that the application programmer has to explicitly point out the

critical sections and to create and synchronize threads. These are limitations that have

been possibly preventing TM to be largely adopted by the larger programming com-

munity as an alternative to lock-based programming. Additionally, the TM system

is limited to implement optimizations in the transactional level. Although these opti-

mizations are essential to achieve high performance, they do not take into account the

algorithmic structure of the application. As a consequence, high-level optimizations

that could help to enhance the TM system even further and also the application as a

whole are not fully exploited.

Parallel algorithmic skeletons are designed to encapsulate parallelism issues, such

as thread management, leaving the programmer with the single task of programming

the application kernel. These parallel skeletons can naturally complement transactional

memory programming as long as transactional applications present a well-defined pat-

tern. Additionally, these high-level constructs reveal structural information of the ap-

plications otherwise not available to the TM system. This information can be used to

provide skeleton-driven performance optimizations that are transparent to the applica-
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tion programmer.

This thesis presents a new skeleton framework called OpenSkel to improve per-

formance and programmability of a subset of transactional memory applications. The

main idea is to enhance transactional memory programming by providing an abstrac-

tion that reliefs the application programmer from the burden of dealing with thread

management and TM issues such as barriers placement. In addition to simplifying

the programming task, this framework also frees the programmer from manually tun-

ing the application by automatically enabling and selecting various pattern-oriented

performance optimizations. This framework is also extended to provide automatic

system-oriented optimizations such as thread mapping and memory allocation. These

platform dependent optimizations also impacts the application performance and should

be addressed.

To the best of our knowledge, this thesis is the first to provide a skeleton-based

framework to a subset of existing TM applications and to automatic tune a set of

pattern-oriented optimizations according to the application behavior. In particular, the

proposed autotuning mechanism presents a novel approach that successfully allows

our framework to achieve performance improvements that are close to, and sometimes

surpass a static oracle. Additionally, this thesis also automates the selection of exist-

ing system-oriented optimizations when applied to transactional worklist applications.

In addition to simplifying programming of transactional applications, the experimen-

tal results presented in this thesis show that ultimately combining system-oriented and

pattern-oriented optimizations the OpenSkel framework can automatically achieve per-

formance improvements of up to 88%, with an average of 46%, over a baseline version

for a 16-core UMA platform and up to 162%, with an average of 91%, for a 32-core

NUMA platform.

9.2 Future Work

This research can be extended in many directions. Probably, the most obvious im-

provement is to add new pattern-oriented and system-oriented optimizations. Particu-

larly, the helper threads optimization can be used not only for data prefetching but also

as profiling threads. For instance, HTs could record page memory accesses and for-

ward this information to the memory allocator. Then, the allocator could do a smarter

memory allocation to avoid remote accesses or even to migrate pages it is profitable.

Nevertheless, HTs could also be also applied to non-transactional worklist applica-
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tions.

Regarding the autotuning mechanism, it can be enhanced considering new opti-

mizations and STM configurations. For instance, it can choose the best locking and

contention management strategies depending on the application behavior. This au-

totuning mechanism could also apply dynamic tuning to helper threads and thread

concurrency level throughout the application execution if profitable.

Another important continuation to this thesis is to extend OpenSkel to accommo-

date more patterns and allow composability between them. For instance, the pipeline

pattern can be created by composing a sequence of worklists. Finally, it is the inten-

tion of the authors to continue the development of OpenSkel, integrating it to existing

compilers and extending them to produce helper thread code.
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