

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Interactive program verification using virtual programs

by

Rodney W. Topor

Ph.D.

University of Edinburgh

1975

ABSTRACT

This thesis is concerned with ways of proving the

correctness of computer programs. The first part of the

thesis presents a new method for doing this. The method,

called continuation induction, is based on the ideas of

symbolic execution, the description of a given program by a

virtual program, and the demonstration that these two

programs are equivalent whenever the given program

terminates. The main advantage of continuation induction

over other methods is that it enables programs using a wide

variety of programming constructs such as recursion,

iteration, non-determinism, procedures with side-effects and

jumps out of blocks to be handled in a natural and uniform

way.

In the second part of the thesis a program verifier

which uses both this method and Floyd's inductive assertion

method is described. The significance of this verifier is

that it is designed to be extensible, and to this end the

user can declare new functions and predicates to be used in

giving a natural description of the program's intention.

Rules describing these new functions can then be used when

verifying the program. To actually prove the verification

conditions, the system employs automatic simplification, a

relatively clever matcher, a simple natural deduction system

and, most importantly, the user's advice. A large number of

commands are provided for the user in guiding the system to

a proof of the program's correctness. The system has been

used to verify various programs including two sorting
programs and a program to invert a permutation "in place";

a proof of
the proofs of the sorting programs included l the fact that

the final array was a permutation of the one.

Finally, some observations and suggestions are made

concerning the continued development of such interactive
verification systems.

ACKNOWLEDGEMENTS

I would like to express my appreciation to the

following people and organizations for helping me in their

different ways:

to my supervisor, Rod Burstall, for advice and

encouragement, and for introducing me to the subject of

program verification,

- to Gordon Plotkin and Jerry Schwarz for their critical

comments on a draft of the thesis,

- to Raymond Aubin, John Darlington and Mike Gordon for

useful discussions on the subjects of program

verification and manipulation,

- to Eleanor Kerse for helping with the typing and for

struggling so valiantly to help with the editing of

this thesis,

- to Harry Barrow, Robin Popplestone and all the other

members of the Department of Artificial Intelligence

for creating such a stimulating, if excessively

political, atmosphere in which to work,

- to the Commonwealth Scholarship Commission and, in the

later stages, the Science Research Council for

financial support.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

Chapter 1. INTRODUCTION I

1.1 Overview 1

1.2 Related work 9

1.3 Notation and conventions 20

Chapter 2. THE INDUCTIVE PROOF METHOD: DESCRIPTION 22

2.1 Introduction 22
2.2 Actual programs 24
2.3 Program specification: virtual programs 32
2.4 General description of method 38
2.5 Some exemplary programs 47
2.6 Soundness 57

Chapter 3. THE INDUCTIVE PROOF METHOD: DISCUSSION 62

3.1 Termination proofs 62
3.2 Equivalence proofs 65
3.3 Comparison with inductive assertions 70
3.4 Comparison with recursion induction 75
3.5 Other related methods 78

Chapter 4. AN INTERACTIVE PROGRAM VERIFIER 81

4.1 Overview 81
4.2 Input language 82
4.3 Definitions and rules 85
4.4 Verification condition generation 89
4.5 Implementation 92
4.6 Discussion 97

Chapter 5. ALGEBRAIC MANIPULATION AND INFERENCE 99

5.1 Algebraic manipulation 99
5.2 Pattern matching 110

5.3 Automatic theorem proving 114

5.4 Interactive theorem proving 121

5.5 Discussion 129

Chapter 6. DETAILED EXAMPLES OF PROGRAM BEHAVIOUR 132

6.1 The 91-function 133
6.2 A matching program 137
6.3 A sorting program 144
6.4 Derived rules 153

Chapter 7. CONCLUSIONS 156

7.1 Summary 156
7.2 Improvements and extensions 157
7.3 Further research 159

REFERENCES 164

Appendix 1. Notes on POP-2 170
Appendix 2. Definitions 176
Appendix 3. Derived rules 180
Appendix 4. Programs verified 183
Appendix 5. Listing of matcher 202
Appendix 6. Schorr-Waite proof 205

Chapter 1. INTRODUCTION

1.1 Overview

This thesis describes a method and an implemented

system for proving the correctness of computer programs.

The task of proving programs correct, known as program

verification, is one aspect of the general problem of

developing more reliable programs. Program verification is
desirable as it eliminates the time-consuming task of

debugging programs, and guarantees that a verified program

will always behave as it was intended to. Since proofs of

program correctness can be very long and are themselves

prone to human error, it is desirable to obtain machine

assistance either to check the hand proofs or, if possible,

to discover the proofs independently. The ultimate aim is
for a programmer to be able to present his program together

with its specifications to the computer which, as well as

looking for syntax errors, will attempt with the

programmer's help to verify the program, either certifying

it correct or detecting any (semantic) errors, possibly by

giving counter-examples. While such a system, for practical
programs, still lies in the future, considerable progress

has been made both in finding general methods of proving

correctness (and other properties) of programs, and in
mechanizing these methods.

Introduction Page 2

In this thesis, we are mainly concerned with the

following aspects of program verification:-

1) The use of alternative programs (virtual 2roarams)

as specifications of a given (or actual) program,

and an associated inductive proof method.

2) The ability to easily add new knowledge about the

different (mathematical) domains programs might

operate on.

3) The design and use of a simple, interactive theorem

prover to prove the verification conditions,

4) The use of a real language's compiler and normal

run-time system to generate, by symbolic execution,

verification conditions for programs written in that

language.

The principal contribution of this thesis is twofold.

First, it describes and discusses a new method of proving

the partial correctness of programs. This method,

-con_tinuation induction, is based on symbolic execution:

allows recursive, iterative and non-deterministic programs

to be treated uniformly; handles escapes and procedures

with side-effects: and is especially convenient for proving

properties of certain recursive programs. Secondly, the

thesis describes an implemented program verifier which uses

both this method and Floyd's method of inductive assertions.

While the theorem-prover of our verifier is not as powerful

as some others, the verifier is of interest for the way it
uses high-level descriptions of programs, and for the nature

Introduction Page 3

of the extensive interactive facilities provided. It also

shows that non-trivial programs can be verified conveniently

using a naive theorem prover with human assistance.

Using this method and the interactive theorem prover

described, our system has verified, sometimes using human

assistance, the following programs, among others:-

1) The 91-function,

2) A version of Ackermann's function,

3) Various common numerical programs,

4) A searching program which jumps out of a block,

5) Programs which test whether one array is equal to,
or a subarray of, another,

6) Two simple sorting programs,

7) A program to invert a permutation "in place".

A list of programs verified by the system, together with

their specifications, is given in Appendix 4.

The program verification system we have implemented

verifies POP-2 programs, and is written in POP-2 (Burstall,
Collins and Popplestone 1971), a language designed for use

in artificial intelligence and combining features of both

ALGOL and LISP. However the proof method used is applicable

to any simil%ar language. In our system, all the control

aspects of symbolic execution are handled by the normal

POP-2 run-time system. Thus, any correctness results proved

are true with respect to the actual implementation of the

language, rather than with respect to some abstract

Introduction

definition of it.

Page 4

To briefly illustrate our method of program

verification, consider the following example.

Start:

r------------------1 I:=1 I

R:=1 I (V1)

Loop: --I > * I
--Yes -- ----

(V2)
I=N ?

R:=R*N!/I R:=N!
No I:=N I:=N

I:=I+1 i R:I =R*I
Finish

The program in solid lines on the left is the actual program

to be verified. The intention of this program is to set R

to n! (the factorial of n) where n is the initial value of

N. It also sets I to N. This is expressed by the virtual

program (V1) in broken lines on the right: Start: -

-> Finish. We wish to show that for all values of n the two

programs return the same results, that is they are

equivalent, provided the actual program terminates. Just as

a loop must have an invariant in Floyd's method, so it must

have a virtual program describing it in ours. The virtual

program (V2) corresponding to the loop in the actual program

is shown in broken lines, Loop - -> Finish, and we must also

show that whenever the loop alone terminates it returns the

same results as its virtual program.

Introduction Page 5

Each of the actual programs (the whole program and the

loop) is now shown separately to be "equivalent" to its

corresponding virtual program. This is done by symbolically

executing both the actual program and the corresponding

virtual program from the same state, and checking that they

terminate in the same state. Considering the inner pair of

programs first, there are two pairs of paths:

1) Loop:N=n,I=i,R=r) Finish:N=n,I=i,R=r with i=n

versus

Loop:N=n,I=i,R=r - -> Finish:N=n,I=n,R=r*n!/i!

2) Loop:N=n,I=i,R=r o Loop:N=n,I=i+1,R=r*(i+1)
with NOT i=n

-> Finish:N=n,I=n,R=r*(i+1)*n !/(i+1)
with NOT i=n

(induction hypothesis)
versus

Loop:N=n,I=i,R=r - -> Finish:N=n,I-n,R=r*n!/i!

Clearly the resulting state vectors are the same in each

case. Notice how we used the induction hypothesis that the

two programs are in fact equivalent by executing the virtual

program when we returned to Loop. The proof is thus by

induction on the number of times the program goes around the

loop. To verify the complete program we must compare the

following pair of paths:

3) Start:N=n,I=i,R=r * Loop:N=n,I=1,R=1
- -> Finish:N=n,I=n,R=1*n1/1!

versus

Start:N=n,I=i,R=r - -> Finish:N=n,I=i,R=n!

Again the resulting state vectors are clearly the same. In

this case we used the above result that the actual and

virtual programs from Loop are equivalent" to circumvent

Introduction Page 6

the loop by executing the virtual program from that point.

The method can be applied to recursive procedures in

the obvious way by giving a virtual program to describe the

body of the procedure. However its utility comes from the

fact that the virtual programs may be considerably more

complex than they were here. In particular, they may

include conditionals, jumps and non-deterministic

operations.

Generally, as in this example, the virtual program

which describes an actual program cannot be expressed using

only the primitives of the programming language, even though

the actual program is computing some well-known mathematical

function such as the greatest common divisor of two numbers,

the factorial of a number, the inverse of a matrix, the

product of two matrices, the transitive closure of a

relation, the inverse of a permutation, the connected

components of a graph, etc. It is clearly desirable in such

cases that the specifications of the actual program should

be in terms of these mathematical concepts rather than at

the level of the representation used by the actual program.

Our system allows the user to declare such functions as new

(undefined) primitives of the programming language and use

them to write his specifications for the program. The

properties of these functions can be defined by giving

axioms and rules which are used in actually verifying the

program. These rules will also relate the abstract

mathematical objects involved to the data structures used to

Introduction Page 7

represent them. (A complete list of such rules used is
given in Appendices 2 and 3.) The verification system can

then be easily extended to deal with programs operating on a

variety of mathematical domains.

The intrinsic complexity of such a domain is often the

cause of any difficulty in verifying (or understanding) a

given program. To verify such a program requires not merely

a knowledge of programs and programming languages, but also

the ability to prove theorems within the theory of this
domain. Since mechanizing such proofs is a substantial

research problem in its own right, we believe it should be

separated as much as possible from the task of program

verification. We have done this by building an interactive
system which can do some theorem proving by itself, but

which accepts new information about the current domain from

the user (i.e. the programmer) when it is required. This

new information will usually consist of rules describing the

mathematical functions used in the program's specification.
Of these rules, some are treated as definitions and are

accepted without question: for a complete proof the others

should be shown to follow from the definitions, but they can

be assumed and their proofs postponed. The theorem prover

will then attempt to apply these new rules in its continued

search for a proof. If it still fails, the user can direct

the proof process himself by providing lemmas, instantiating
variables, adding new hypotheses and so on. A similiar view

of program verification is taken by Good, London and Bledsoe

(1974).

Introduction Page 8

As mentioned above, program verification is only one

approach to the broader goal of developing better, more

reliable programs. One important alternative is the idea of

"structured programming", a technique for developing a

program in a systematic way and possibly generating a proof

of the program's correctness at the same time. This often

involves programming at different levels, implementing a

program (primitive) at a higher level by means of a lower

level program. In the long run, we believe that "structured

programming" and better education of programmers will be the

best way to improve the quality of programs.

Two other approaches related to program verification

are program transformation and program synthesis. By

"program transformation" we mean the process of changing a

simply-stated program at the source language level to make

it more efficient. Program synthesis is the problem of

producing from the (possibly incomplete) specifications of a

program a program which satisfies them. We believe that an

interactive approach is the best one for each of these three

tasks and that since they all involve reasoning about

programs, progress in any one field should be applicable to

the others.

The organization of this thesis is as follows: The

next section presents a review of previous work done on

program verification; it describes both proof methods and

implementations of these methods. The essence of the thesis

is in Chapters 2 and 4. An overview could be obtained by

Introduction Page 9

reading these chapters and skimming through Chapter 6.

Chapter 2 describes our proof method in detail; Chapter 3

gives some applications of the method and compares it with

various other methods; Chapter 4 describes the verification
system we have implemented; in Chapter 5 the algebraic

manipulation system, automatic theorem prover, and

interactive facilities are described; Chapter 6 presents

and explains the behaviour of our verification system on

some typical examples; and Chapter 7 presents our

conclusions and suggestions for future research.

1.2 Related irk
There are four commonly used inductive methods for

proving properties of programs. These are: inductive
assertions (Naur 1966, and Floyd 1967), recursion induction
(McCarthy 1963), computational induction (Park 1969, and

deBakker and Scott 1969), and structural induction (Burstall
1969). Of these, inductive assertions has been the principal
one concerned with iterative programs and assignments, while
the remainder have dealt mainly with recursive functions.
Whereas recursion induction is used to prove the equivalence

of two programs, the other methods are usually used to prove

properties (or correctness) of particular programs. The

first method is essentially induction on the length of the

computation path, the second and third are induction on the

depth of function calls, and the fourth is induction on the

data structures being manipulated. We shall look briefly at

Introduction Page 10

each of these methods in turn, and then describe some

implemented systems for proving properties of programs which

use them.

The most commonly used inductive method, especially in

automatic verification systems, is that of Floyd. In this

approach, assertions (about the values of the program's

variables) are attached to key points (such as loops) in the

program, and an assertion must be true each time control
passes through the relevant point during the program's

execution. In particular, an assertion is usually attached

at the end of the program. Verifying the correctness of the

program consists of proving that for each path through the

diagram, each assertion implies the next one in the path

provided the effects of the intervening program statements

are taken into account; such implications are called
verification conditions. Manna (1969) describes a similar
method which may be thought off as attaching assertions to

points such that the assertion is true during some pass

through the point, rather than all passes as in Floyd's
method. In Manna and Pnueli (1970) this method has been

generalized to handle recursive functions. Manna's method

was further modified in Burstall (1974). Hoare (1969)

described a structuring principle for using Floyd's method

which has since become widely accepted.

Recursion induction is used to prove the equivalence of
recursive functions. To prove the equivalence of two

functions f1 and f2 over some domain A, that is, that

Introduction Page 11

fl(x)=f2(x) for all x in A, it is necessary to find a third

recursive function g such that both f1 and f2 satisfy the

defining equation of g and g is defined for all x in A.

Although this was perhaps the first method explicitly
suggested for proving properties of programs, it seems to

have been little used in practice. McCarthy (1962) showed

that recursion induction could also be used to prove the

equivalence of iterative programs.

To explain computational induction, assume for the

moment that UU is the totally undefined function, that T is

a continuous functional and that F1 is the function defined

by F <= T(F] (these terms are'explained in Manna at al.
1972). Then to prove the property P(F1) of F1, it is

sufficient to check that P is true before starting the

computation (P(UU)), and show that if P is true at one stage

of the computation, it remains true after the next step

(P(F) implies P(T[F]) for every F). Morris (1971) described

a variant of this called truncation induction, which bears

the same relationship to computational induction as

course-of-values induction does to ordinary mathematical

induction.

The final method is structural induction which is
described in Burstall (1969) and was first used (in

computing) by McCarthy and Painter (1967) who proved a

compiler for arithmetic expressions correct. It is
applicable to any class of finite structures (often called

"records" or " plexes") built up from a set of atoms, and

Introduction Page 12

which do not contain circularities. The induction principle

is: If for some set of structures a structure has a certain

property whenever all its proper constituents have that

property, then all the structures in the set have the

property. Logicians frequently use structural induction to

establish meta-theorems, by inducting upon the structure of
formulas in the theory.

Each of these methods has its own advantages and

disadvantages; the question of which to use is largely a

pragmatic one. For instance, in the presence of assignments

to data structures, Floyd's method is applicable whereas

structural induction is not. The paper by Manna, Ness and

Vuillemin (1972) is a very readable introduction to the
various inductive methods, and has many examples of their use.

We shall now review other implemented systems, paying

particular attention to the aims, methods and

accomplishments of the system, and the features of the

languages used to present programs and assertions (or

theorems). Almost all these systems are concerned with the

inductive assertions method for flow-diagram languages; the

exceptions are Milner (1972) and Boyer and Moore (1973).

These two, together with those of Deutsch; Igarashi, London

and Luckham; Waldinger and Levitt; and Good, London and

Bledsoe are the most powerful of the systems. Our system is
most closely related to those of King, Deutsch, Waldinger

and Levitt, and Good et al.

Introduction Page 13

The first of these systems, and in many ways the

prototype for several others, was that of King (1969).

King's system dealt with an ALGOL-like flow-diagram language

by Floyd's method. He allowed integer-valued variables and

one-dimensional arrays with integer elements. Statements

included assignments to variables and array elements,

conditional statements, and goto statements. Procedure

calls were not allowed. The system was designed as a fully

automatic implementation of Floyd's method. The user

submitted his program text with assertions, and King's

system then generated the verification conditions and tried
to prove them. The proof was done by an arithmetic theorem

prover designed specifically for the task. Several

interesting programs were thus verified, including an array

sorting program, and a program to raise an integer to a

power using the binary representation of the power.

All the knowledge available to King's system was

already built-in. Assertions were just boolean expressions

with universal and/or existential quantifiers. It was not

possible to add a procedure to express an assertion, which

severely limited the expressive power of the language. For

example, functions such as summation and greatest common

divisor were not built-in, and thus not available. The

system was written in assembly language using macros and was

very fast.

Introduction Page 14

Good's thesis (1970) described another formalism for
programs and proved several results within that formalism.

He also presented a program, operating on a language similar

to King's, which generated verification conditions from the

user-supplied text and assertions. However it made no

attempt to prove them, providing only a book-keeping service

to the user. Because the program was not designed to

"understand" the assertions, the assertion language was very

flexible, consisting of arbitrary text strings in which

occurrences of program variables could be recognized and

substituted for. One contribution of Good's work was to

show that in the presence of subscripted variables (array

elements), generating verification conditions by working

forward along a path, from the initial assertion to the

final assertion, generated simpler conditions than working

backwards. King's system, which worked backwards as Floyd

had originally suggested, was restricted by the large number

of cases sometimes generated.

Cooper (1971) presented a theorem prover which dealt

with flow-diagram languages like those above, without

provision for arrays. The program was designed to

automatically generate and prove the termination and

correctness conditions for flow-diagrams using the

Presburger algorithm (for arithmetic without

multiplication), but was limited in its scope.

Introduction Page 15

In 1973, accounts of several impressive systems

appeared: notably Igarashi, London and Luckham (1973),

Deutsch (1973), Waldinger and Levitt (1973), and Boyer and

Moore (1973). Each of these is significantly more powerful

than those described above.

Igarashi et al. apply Hoare's method to generate

verification conditions for programs written in the

programming language PASCAL (Wirth 1971). The verification

conditions are then given to a resolution theorem prover to

be proved. An example of a program they can verify is

Hoare's (1971b) FIND. Their system does very little actual

resolution and a lot of simplification and reasoning about

equality.

Deutsch's system is a straight-forward application of

Floyd's method: it takes a program with assertions,

generates the verification conditions, and uses an automatic

theorem prover to prove them. Programs are written in

essentially the same language that was used by King;

procedure calls are not allowed. The assertion language

consists of quantified boolean expressions, but also allows

parameterized assertions, defined by one-line boolean

procedures. The system, like King's, stores all expressions

in canonical form. The increased power comes not so much

from a better theorem prover, but from the simplifications

and deductions made while generating the verification

conditions (which is done by forward substitution), and from

the context mechanism used. Interactive facilities which

Introduction Page 16

enable the user to help the system find a proof are

provided, but no examples of their use are shown. The

system is written in LISP and is rather slower than King's

system; it can verify all of King's examples, FIND, and a

complex enumerative program, among others.

Waldinger and Levitt (1973) have implemented a flexible

system in QA4 (Rulifson at al. 1972), a very high level

language designed for use in artificial intelligence. The

programming language considered contains integers, reals,

arrays, lists, conditionals, assignments, and recursive

procedures. The assertion language is QA4 itself (slightly

extended) which gives maximal flexibility to use arbitrary

functions and predicates which describe the program's

properties. For iterative programs Floyd's method (with

backward substitution) is used to generate the verification

conditions, while for recursive programs the Manna-Pnueli

method (computational induction) is used. Their theorem

prover is a set of QA4 functions. The beauty of their

system is in the simplicity of the functions (or rules)

making up the theorem prover, the ease with which new

information, in the form of new rules, can be added, and the

natural flavour of the resulting proofs. However because of

the backtracking and pattern matching involved in running

QA4 programs the system is very slow, and the interactive

facilities available are very limited. The system can

verify all of King's examples, FIND, and a version of the

unification algorithm, among others. It is intended that

the knowledge about programs embedded in the system will

Introduction Page 17

subsequently be used in automatic program modifcation and

synthesis systems.

In a recent report (Good, London and Bledsoe 1974), a

philosophy and system quite similiar to ours is described.

The authors have used a sophisticated algebra system

(REDUCE, Hearn 1971) to combine Bledsoe's interactive
theorem prover (see below) with a verification condition

generator derived from that of Igarashi at. al. (1973) to

produce an interactive verification system for PASCAL

programs. Their system is still in a state of development

and appears very promising.

Suzuki (1974) describes the simplification and logical
reduction rules used in an extension of the Igarashi, London

and Luckham verifier. This system also uses high-level,

user-introduced predicates with axioms describing their
properties. It is completely automatic and can prove

Hoare's FIND and Floyd's (1964) TREESORT programs. Von

Henke and Luckham (1974) use this system to describe a

methodology for verifying programs. The methodology

involves using information from attempted verifications to

successively refine and modify both program and assertions

until they can be shown to be consistent.

Two other systems are perhaps worth noting: Gerhart

(1972) describes the use of Floyd's method to prove

properties of programs in a subset of APL, but the only

process automated is the verification of the compatibility

of argument types and APL operators. Ragland (1973)

Introduction Page 18

describes a program written in a simple language called

NUCLEUS which generates verification conditions for NUCLEUS

programs, and he gives a (hand) proof of this particular

program's correctness.

All the above systems have required that the inductive

assertions be supplied along with the program. Although it
has been suggested that a programmer does not really
understand his program until he can supply these assertions,

their discovery can be quite difficult. Some interesting
work on heuristically automating this process has been done

by Elspas (1972), Katz and Manna (1973), Wegbreit (1973)

and German and Wegbreit (1975).

A different approach has been taken by Sites (1974) who

has devised a method for showing that a given program

(without assertions) always terminates without overflow or

array subscript errors. The method has been used on some

difficult programs but fails when the termination proof

depends on non-trivial mathematical facts. It has not been

mechanized.

Boyer and Moore (1973) have written a program which can

prove difficult theorems about pure LISP programs by

structural induction, and which is based on the idea of

symbolic execution. It is described in detail in Moore

(1973). The program uses LISP as both its logical and

assertion languages, allowing arbitrary LISP functions to be

used as assertions. The main achievements of the program

are that it requires no assertions other than the one to be

Introduction Page 19

proved; it generates its own induction hypotheses; and it
generalizes the theorem to be proved in an intelligent way

whenever necessary. For instance, given only the LISP

definitions of SORT and ORDERED, the program can prove that

(ORDERED(SORT L)) is true. A weakness of the program is
that it cannot deal with programs which "recurse up" rather

than "down" (iterative programs), let alone with destructive

assignments to data structures.

Milner's LCF proof-checker (Milner 1972) is in a sense

the most powerful of all, albeit that the power is entirely
controlled and directed by the user. This system is an

implementation of Scott's Logic for Computable Functions

(Scott 1969). The basic induction rule is computational

induction, although a proof of the recursion induction rule

is presented as an example. The program is an LCF

proof-checker. The syntax and semantics of a wide range of

programming languages may be expressed in LCF, including

recursive programs and programs which have other programs as

arguments and results. The program accepts expressions in

LCF as theorems to be proved, and then obeys commands from

the user directing the application of the rules of

inference. A powerful simplification routine shortens the

proofs, but they can still be very long. The program keeps

track of the goals to be established and the steps carried

out in each proof. In Milner and Weyyrauch (1972), the

authors describe the use of the LCF proof-checker to verify

the correctness of a compiler. Newey (1975) has used the

LCF proof-checker to prove various theorems about LISP

Introduction Page 20

functions, including the "correctness" of the 'LISP

interpreter.

Since program verification inevitably requires a large

number of theorems to be proved, any other research done on

automatic theorem proving should be of interest. However we

shall mention only one such system: that of Bledsoe and

Bruell (1973). They describe an interactive theorem prover

for general topology which works in a fairly natural manner

by subgoaling, applying rewrite rules and definitions, and

using special heuristics for topology. We have borrowed

ideas from them about organization and interactive
facilities for our own system.

We shall compare our own work with many of the above

proof methods and verification systems in more detail later,
when we discuss particular aspects of our proof method and

verifier.

1.3 Notation and conventions

We have tried to use standard mathematical and

programming notation throughout. When talking about

programs and their executions we distinguish between upper

cases letters which refer to identifiers and lower case

letters which refer to logical variables (their values).

Words being defined or emphasized are underlined, and words

used in an unusual way are enclosed in quotes (") as usual.

For syntax definitions we use BNF (Backus-Naur Form) as

Introduction Page 21

described in the POP-2 reference manual.

Because of the restrictions of preparing this document

on the computer we have written e.g. x1, x2, ..., xn instead

of using subscripts, and have used the following

abbreviations.

Symbol Stands for Meaning

& A logical conjunction
v V disjunction
_> implication
<_> equivalence
NOT negation
FA V for all, universal quantifier
EX there exists,

existential quantifier
EPS Hilbert's epsilon symbol

identity (of expressions),
equivalence (of programs)

Page 22

Chapter 2. THE INDUCTIVE PROOF METHOD: DESCRIPTION

2.1 Introduction

As we have already indicated, the proof method we shall

present relies on the use of alternative programs as

specifications. We originally started studying this idea

and its consequences as it seemed to lend itself well to the

idea of constructing proofs by symbolic execution (Topor and

Burstall 1973) independently of Deutsch (1973) and others

who have used symbolic execution in systems based on

inductive assertions. The main advantages of the proof

method we eventually developed are that programs containing

iteration, recursion or non-determinism are all treated in

the same way, and that it can handle escapes and procedures

with side-effects. Moreover the method is equivalent to

computational induction (Manna and Pnueli 1970) for

recursive programs, is essentially a generalization of

Floyd's method of inductive assertions (Floyd 1967) for

iterative programs, and can easily be extended to yield

termination proofs in the same way that Floyd's method can.

We refer to the method as D-ontinuation induction since it
involves providing a "continuation" for certain points in

the program,, that is, a function (or relation) computed by

the program from that point until its end. The work in this

chapter, with the exception of Section 2.6, was done jointly

with Or R.M. Burstall.

Description of method Page 23

In this chapter we shall try to explain the method in

detail independently of any particular implementation. But

before going on to this we shall define some of the terms we

shall be using. First, we use the word "program" in a very

broad sense throughout to include any sequences of

statements possibly preceded by one or more function

definitions. An actual program is simply a program whose

correctness we are currently trying to prove: since the

correctness of a program depends on the correctness of its
constituents, these constituents will also be considered as

actual programs at times. A Xirtu_aL program is the program

which serves as the specification of an actual program, and

to which the actual program is to be proved "equivalent". We

shall describe later just what the nature of these programs

may be.

But what do we mean by saying that two programs are

"equivalent"? There are (at least) three possible answers.

The first is that two programs are said to be (strongly)
equivalent if for all inputs either they both terminate and

produce the same results, or neither terminates, that is
they are equal as partial functions. This concept is too

strong for our purposes since although virtual programs

always terminate, actual programs may not. The second

possibility is that of weak equivalence: two programs are

said to be jkeakly gouivalent if whenever they both terminate

they produce the same results. Any two programs are weakly

equivalent to a program which never terminates. Finally, a

program P is said to be included in a program Q, written

Description of method Page 24

P C Q, if whenever P terminates so does Q and they produce

the same results, that is, P is less defined than Q as

partial functions. Since we are trying to show that

whenever the actual program terminates it produces the same

results as the virtual program (which always terminates),

this is the desired concept. Notice that inclusion is a

reflexive and transitive relation, but is not symmetric.

We can now define a program to be partially Qorrect if

it is included in its corresponding virtual program: it is

totally correct (i.e. is partially correct and terminates)

if it is strongly equivalent to its virtual program.

2.2 Actual groarrams

In this section we shall describe the type of programs

to which the proof method is applicable, how programs are

executed, and what is really meant by "symbolic execution".

This lays the groundwork for the following sections in which

we shall describe how to give specifications for actual

programs in terms of virtual programs, and how to construct

proofs from such pairs of programs.

2.2.1 Nature gg amenable programs

One of the aspects of continuation induction is the

uniformity with which various control features of

programming languages can be handled. In particular,
functional and imperative programs are treated in almost the

Description of method Page 25

same way. The method is applicable to programs constructed

from the following' control features:

assignments, statement sequencing, blocks,

conditional statements and expressions, labels,

arbitrary jumps, while-statements, procedures,

escapes and functional arguments.

While we do not believe programmers should use jumps

indiscriminately, programs using such jumps can be handled.

Jumps out of blocks and escape functions constructed using

Landin's J-operator (Landin 1965) are also permitted

provided they are not used to jump back into functions.

Escapes are functions which jump out of their defining

function when called, and are mainly used for error trapping

and to avoid "unwinding" recursive function applications.

Both recursive procedures and procedures with side-effects

are allowed. Certain types of functional arguments are

allowed, but we do not yet know how to deal with label

arguments.

The only restrictions on the data types allowed come

from the formal system one has available for reasoning about

the data. In the verification system which we have

implemented, the data types used are truth values, integers,

one-dimensional arrays of integers, and lists (without

destructive updating). The only barrier to introducing other

data types such as reals, strings, records etc. would be

the need for an extended algebraic and inference system to

manipulate and reason about them.

Description of method Page 26

Rather than specifying the syntax and semantics of some

particular programming language and then describing how to

verify programs written in that language, we shall try to

describe the proof method in a language independent fashion.

Since the proof method is defined in terms of the semantics

of the language being considered we shall actually be

describing a family of proof methods. Thus the user should

instantiate our general description which follows to the

particular language and formal (operational) semantics of

his choice.

Unfortunately, it is necessary to use some particular

language while describing the method. We shall use an

ALGOL-like language in which functions are defined, for
example, by abs(X) = ,L X>O then X else -X, in which

statements are grouped into blocks by parentheses, and in

which the function return returns its argument as the result

of the innermost function in which it appears. In all the

examples we shall give, parameters are passed by value, but

this is not a restriction on the proof method as call by

reference and call by value-result can also be handled.

2.2.2 Execution g,f p ourams

Since the proof method is based on the idea of symbolic

execution of programs, we start by describing ordinary

execution. To do this it is necessary to define a machine

state and say how the various commands of a program affect
this state. However, we shall merely give an outline of the

Description of method Page 27

operational semantics for the language being considered.

When actually doing proofs the user would use the formal

operational semantics of his particular language, though in

Chapter 4 we explain how this can be made unnecessary.

Consider first a flow diagram type program without any

procedure calls. Then it can be seen that the machine state

is specified by:

1) a state vector which is a mapping from identifiers

to values, and

2) an instruction pointer which indicates the program

statement about to be executed.

For example, a typical machine state might be

Start: I->O, N->10, R->1, A-> <array [1:4) 3 5 2 4>

where Start is the instruction pointer (or label), and the

value of A is an array of length 4 with the values shown.

In such a case it is obvious how the various commands

assignments, tests, and jumps - affect the state, so we do

not give the corresponding state transformations.

However, when we introduce procedures into the language

the situation becomes more complicated, especially since we

want to allow recursive procedures. It is necessary then to

introduce a third component into the machine state:

a control stack which holds the local variable

values and return addresses necessary to implement

procedure calls and returns.

Description of method page 28

This corresponds to the Dump of Landin's SECD machine

(Landin 1964). Calling a procedure now involves pushing an

activation record corresponding to the new procedure onto the

control stack, setting the instruction pointer to the start
of the procedure body, and adjusting the state vector (or

environment) by associating the actual and formal parameters

of the procedure. Returning from a procedure involves

"undoing" these changes. We will not bother to invent

details of how this could be done in our pedagogical

language. Notice however that the semantics of the

goto-statement is now more complex, since jumping to a

non-local label will involve popping the control stack and

changing the state vector.

We refer to the sequence of points in the program

through which the program passes as the computation Bath.

When operating on real data, a deterministic program follows

just one computation path as all the tests can be evaluated.

This is not the case for symbolic execution which we discuss

next.

However, before doing so, we remark on another way to

describe the semantics of our programming language. This is

to systematically transform each program in the language

into a system of recursive equtions and then use one of the

evaluation rules described in Manna et al (1972), for

instance, to evaluate the program for particular input.

This is the method we shall actually use in Section 2.6 when

justifying the validity of this proof method, so the reader

Description of method Page 29

should keep it in mind.

2.2.3 Symbolic execution ,Qf oarams

To prove properties of a program it is necessary to

determine the program's behaviour not only on particular

input data, but on all possible data. One way to do this is

to run the program with an initial state vector which

represents all possible state vectors. In this case the

values of the program identifiers are symbolic expressions

constructed from variables (Skolem constants) which are

specified to represent particular data types. These

variables are considered to simultaneously take all possible

values of the appropriate type. A state vector which maps

program identifiers into such a domain of symbolic algebraic

values is called a symbolic Mate vector. A typical

symbolic state vector might be:

(X->x+1, Y->2*y, A->aO).

We shall occasionally refer to a general I bolic Mate

vector which is just a symbolic state vector of the form

(X->x, Y->y, . . .)

where X, Y, .., are all the identifiers of the program and

x, y, ,.. are simply logical variables with the same names

as the identifiers.

The fact that the initial input to the program may not

be quite arbitrary, but may be required to satisfy certain

conditions, x>=O say, can be represented by introducing into

the state a new component called a path Qonditinn which is a

Description of method Page 30

logical expression expressing these conditions. This extra

component is also very important for deciding what to do at

tests as will be seen below. Thus a symbolic machine state

has the following components:

1) a symbolic state vector (sv),

2) an instruction pointer (ip),
3) a control stack (cs),

4) a path condition (pc).

When writing out a state we will tend to omit those

components which are not of immediate interest and to refer
to the components of a state by the abbreviations shown

above.

The process of running a program from such an initial

state is called symbolic &xecution. There are two obvious

difficulties. The first is that standard operations such as

a , <, cons, hd, etc. cannot be applied since their
arguments are variables rather than numbers or lists and are

hence of the wrong type. The solution is to redefine these

operations to be symbolic ones, that is operations which

construct new (symbolic) terms from their arguments,

possibly simplifying the result. Functional arguments are

dealt with similiarly. The second difficulty is that the

truth of tests in conditional statements can no longer

always be determined - at least, not by evaluation alone.

If it is possible to prove from the current path condition

that the test must be true, or that the test must be false,
then the computation simply proceeds along the appropriate

Description of method Page 31

path. Otherwise the computation path splits into two new

ones. On one the test is assumed to be true and is added to

the path condition; on the other it is assumed to be false

and its negation is added to the path condition.

We now describe this process more precisely in the

following algorithmic way. In this description we assume

that all conditionals are brought to the top level, e.g.,

"f (if P then s1 else s2)" becomes "if P then f(s1) else

f(s2)", and hence "symbolic evaluation" is simply the

process of constructing symbolic terms. The "with - do"

construct allows us to refer to the components of a

structure (in this case a state) by the names of their
selectors, and the function M &a constructs a state from its
components. We assume there is an operation advance which

moves the instruction pointer on to the next instruction

(unless the previous instruction was a apto or some other

statement which affects the instruction pointer), and that

there is a function svm-val which symbolically evaluates an

expression (possibly performing side-effects on SV as well).

Sym-exec(STATE) _
with STATE do
repeat (

if IP is at "halt" then return({STATE})
else if IP is an assignment (LS := RS)

then (SV := SV[sym-val(RS)/LS]; advance IP)
else if IP is a conditional (if P then s1 else s2)

then if PC => P then IP := s1
else if PC => NOT P then IP := s2
else return(Sym-exec(mkS(SV,s1,CS,PC f P))

UNION Sym-exec(mkS(SV,s2,CS,PC & NOT P))
else (execute instruction normally; advance IP))

Figure 2.1 - Symbolic execution

Description of method Page 32

Thus symbolic execution is conceptually like normal

execution in all respects except for functional calls,
conditionals and the components of the machine state.
Handling these as described above, it generates a tree of

computation paths, each path having an associated machine

state which changes as the execution progresses, and returns

the set of states at the ends of the paths. Of course, if
performed on a program with loops or recursion, this process

would continue indefinitely; we will explain shortly the

induction principle used to prevent this. The idea of

symbolic execution, at least with regard to the symbolic

evaluation of expressions, was first used by Perlis and

Iturriaga (1964). It has also been used by Darlington (1973)

in program optimization, by Deutsch (1973) and Boyer and

Moore (1973) in program verification, and recently by Boyer,

Elspas and Levitt (1975) and King (1975) in program testing.

2.3 Program specification: Xirtual programs

2.3.1 Virtual proarams

Clearly, for a virtual program to be acceptable as the

specification of the actual program the virtual program must

itself be clear, precise and unambiguous. To achieve this,
the virtual program is written in the same language as the

actual program, subject only to the following condition:

Description of method Page 33

The virtual program may not contain any loops,
backward jumps or recursive calls. Moreover any
subroutines called by the virtual program must
also satisfy this restriction.

This restriction ensures that the virtual program will
always terminate, and will in fact execute each of its
statements at most once. With this restriction it should be

so obvious what the virtual program does that it is
acceptable as a specification for the actual program. Note

that the virtual program may use any other features of the

programming language including conditional statements and

(forward) jumps out of blocks. It may also include jumps to

labels in the program surrounding the current actual

program,

2.3.2 Language extensions

Although virtual programs can sometimes be written in

the language without any extensions (e.g. the 91-function of

Section 2.5.1) it is usually necessary to introduce new

functions into the language. In writing the virtual program

we can use any mathematical functions, such as factorial,
which are appropriate for the domain on which the actual

program is operating, even if they are not provided as

procedures of the language. To do this, it is necessary to

be able to declare the mathematical function as an operation

of the language which simply constructs a symbolic term, and

to provide a definition of the function which can be used

when proving the inclusion of the two programs. Frequently,

as for factorial, this definition will be in the form of a

Description of method Page 34

set of recursive equations, reducing the correctness problem

to that of showing the equivalence of the iterative and

recursive definitions of the functions. Other ways of

defining these new functions can also be used; the only

restriction is on the inference system available. The main

purpose these functions serve is to provide some form of

canned loop": this is specially obvious for arrays where we

will need to describe the effect of a program on some

portion of an array without actually using any loops. For

example, writing A[I,J] for the sequence A[I], A[I+1], ...,

A[J] of array elements, the function easea could be

introduced to test the equality of two array segments:

egseq(A[I,J],B[I,J]).

Sometimes, however, the mathematical functions required

to express what a program dos become more complicated than

the program seems to deserve. For instance, consider the

program:

while X<A da X:=2*X;

Assuming A>O & X>O, the corresponding virtual program is:

X := 2"(ceiling (log (A/X)))*X

where the logarithm is to the base 2, and ceiling(x) is the

smallest integer not less than x. However this program seems

more complicated than the original one, and more likely to

contain errors. A clearer way to write the virtual program

is
X := 2"(MU Y)(2"Y*X>=A)*X

where (MU y)P(y) is the least integer satisfying P(y).

Alternatively, if it is not important that X is,assigned the

Description of method Page 35

least y satisfying 2"y*x>=a, we could use Hilbert's epsilon

operator and write

X := 2"(EPS Y)(2'Y*X>=A) * X;

In fact, we shall use only this operator throughout our

discussion (in addition to the usual universal and

existential quantifiers). For Hilbert, (EPS y)P(y) denotes

any object y satisfying P(y), or anything if no such object

exists". Thus EPS can be used to construct arbitrary terms

for use in virtual programs. It can be used to produce

lists and arrays satisfying certain conditions as well as

numbers; the type of the resulting term will always be

clear from the context. Thus (EPS x)(0=<x & x=<y) could be

any of 0,1, ..., y-1,y (assuming integer arithmetic is being

used). Note that EPS is really a non-deterministic operator

so that (EPS x)P(x) = (EPS x)P(x) is not a valid formula.

We have extended EPS to produce tuples of objects, e.g. (EPS

x,y,z)P(x,y,z) denotes any tuple (x,y,z) such that P(x,y,z)

or any tuple if no such tuple exists. Also in this work,

unlike Hilbert, we consider the term (EPS x)P(x) as

referring to the set {x: P(x)} . The epsilon operator was

originally introduced by Hilbert in his study of

mathematical logic; its use is described in Leisenring

(1969) It is especially useful in programs dealing with

arrays. For example, the virtual program corresponding to

the outer loop of a sorting program might be:

A := (EPS A1)(perm(A[1,I],A1[1,I]) &
(FA J)(1=<J<I => A1[J]=<A1[I])).

More detailed examples will be given later.

Description of method Page 36

2.3.3 Inclusion statements

A key concept in this proof technique is that of the

inclusion statement. This is a statement associating each

actual program with its corresponding virtual program. An

inclusion statement has the following components (with their

abbreviations in parentheses):

1) The actual program (ap),

2) The virtual program (vp),

3) The preconditions under which ap C vp (prec),

4) The starting point (sp),

5) All the possible end points (ep),

6) The variables w.r.t. which ap c vp holds (vs).

Clearly, representations of the two programs are required.

The preconditions are mainly required to ensure that the

virtual program always terminates, though by making them

sufficiently detailed and correspondingly simplifying the

virtual program, they can be used in what is effectively a

proof by inductive assertions. This will be illustrated
later. The start and end points define the scope of the

inclusion statement. This is important as the actual

program may be contained in a larger program. In this case

the actual program itself can be omitted from the inclusion

statement as it is effectively specified by the description

of its scope. For reasons that will become clear later, it
is also necessary to state whether an end point corresponds

to a normal exit from a recursive procedure or not. For

example, if is an escape function in a recursive

Description of method Page 37

procedure Search the virtual program corresponding to Search

would have the form:

In: s1
ifI"condition" then (s2; Ret()) else s3;

Out:

which has two exits: one recursive one at Out, and one

non-recursive one at Ret. A detailed example of this nature

will be given in Section 2.5. While such escapes are the

main motivation for multiple exits, they can also be useful

in flow-chart programs which jump out of loops, as will be

illustrated later. Finally, the last component serves to

restrict the amount of testing to be done: variables which

are not used outside the scope of the inclusion need only be

tested for inclusion if particularly desired. The value of

a function and result parameters of procedures must always

be tested. Such an inclusion statement asserts:

Under the given preconditions, the actual program
which starts at the given starting point and is
bounded by the given end points is included in the
corresponding virtual program with respect to the
given variables.

That is, if the actual program was replaced textually by the

virtual program, the result would be either the same or

possibly more defined.

2.3.4 Specified groarams

Now, how do we give specifications for a complete

program? Obviously, we must first give an inclusion

statement for the complete program. In addition, it is

simply necessary to provide a separate inclusion statement

for each loop or function used in the program to be

Description of method Page 38

verified. More precisely, in a flow-chart program, each

cycle must contain the start of at least one inclusion

statement, and every program and subroutine must contain an

inclusion statement at its beginning. For example, two

inclusion statements were required in the factorial program

of Chapter 1: one starting at Start and ending at Finish,

and one starting at Loop and ending at Finish.

2.4 General description 2f method

Having described how to give the specifications in a

form appropriate for this method, we now say what the method

actually is. We do this in two stages, first for individual

inclusion statements and then for complete programs.

2.4.1 Individual inclusion statements

Consider an inclusion statement with actual program A,

virtual program V, preconditions C, start point s, end

points el,...,en, and variable list L. The theorem

expressing the correctness of the inclusion statement is:

"For all integers k>=O, if C is true, and if A

returns to s k times before terminating at an ei,
then A C V with respect to the variables in L."

It is proved by induction on k, that is, on the length of

the computation path.

Description of method Page 39

The basic idea is simply to symbolically execute both A

and V and to compare the results. In each case we start at
s with a general symbolic state vector and with path

condition C. Symbolically executing the virtual program is
done straightforwardly as described above. If the execution

reaches one of the end points, ei, that path of the

computation is terminated, and the state at that point
saved. The states at the ends of the computation paths are

accumulated in a set, SVIRT say.

Symbolically executing the actual program is a little
more complicated. As for the virtual program we start at s

with a general symbolic state vector and path condition C,

and start to execute the program. If one of the end points
is reached, the state at that point is saved as before. If
the program returns to s it attempts to prove the

preconditions C using the current values of the program's

variables and the current path condition. If this cannot be

done there is an error either in the program or in the

inclusion statement. Otherwise the program enters

"hypothetical" mode and starts to symbolically execute the

virtual program V . This corresponds to the application of

the induction hypothesis that A C V. The behaviour at an

end point ei is now more complicated. If ei is a normal

exit from a recursive function, the program leaves

hypothetical" mode and continues to be executed. (This

will only happen if the actual program A corresponds to the

body of the recursive function.) Otherwise, if ei

corresponds to an exit from a loop or to an escape exit, the

Description of method Page 40

state is saved and the path terminated as before. The

states at the ends of the computation paths of the actual

program are also accumulated into a set.

We describe this process more formally in Figure 2.2,

recalling that the components of an inclusion statement are

ap, vp, prec, sp, ep and vs. Note how the sets of states

are formed one member at a time, by side-effects, rather
than by explicit unions as in Figure 2.1. In the actual

implementation of the proof procedure these sets are formed

without side-effects but coroutines are used instead.

Description of method Page 41

Verify-inclusion-statement(INCL-STAT) _

with INCL-STAT do (

STATE := mkS(general-symbolic-state-vector, SP,
arbitrary-control-stack, PREC):

SACT := {);

Ex-act (STATE,INCL-STAT,fal se) ;

SVIRT :_ {);
Ex-virt (STATE,,INCL-STAT,false);
Compare(SACT,SVIRT))

Ex-act(STATE, INCL-STAT, FROM-VIRT) _
with STATE do
with INCL-STAT do
repeat (if IP is in EP and not(FROM-VIRT) then

(add STATE to SALT; return);
FROM-VIRT := false;
if IP = SP (other than initially) then

(Check that PC => SV(PREC);
Ex-virt (STATE, INCL-STAT , true) ; return)

elseif IP is an assignment (LS := RS) then
(SV := SV[sym-val(RS)/LS]; advance IP)

elseif IP is a conditional (if P then s1 else s2) then if PC => P then IP := s l
elseif PC => NOT P then IP := s2
else (Ex-act(mkS(SV,sl,CS,PC & P),INCL-STAT,false):

Ex-act(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false);
return)

else (execute instruction normally; advance IP))

Ex-virt(STATE,INCL-STAT,HYPMODE)
with STATE do
with INCL-STAT do
repeat (if IP (=ei) is in EP and HYPMODE

and the ei is "recursive" then
(Ex-act (STATE ,INCL-STAT , true) ; return)

elseif IP is in EP and HYPMODE then
(add STATE to SACT: return)

elseif IP is in EP then (add STATE to SVIRT; return)
elseif IP is an assignment (LS := RS) then

(SV := SV[sym-val(RS)/LS]; advance IP)
elseif IP is a conditional (if P then s1 else s2) then

if PC => P then IP := sl
else if PC => NOT P then IP := s2
else (Ex-virt(mkS(SV,s1,CS,PC&P),INCL-STAT,false);

Ex-virt(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false);
return)

else (execute instruction normally; advance IP))

Figure 2.2 - Verifying one inclusion statement

Description of method Page 42

We are now left with the problem of comparing SACT and

SVIRT, that is, of showing that SACT G SVIRT. To do this

we have to show for each pair (s1,s2) in the cartesian

product SACT X SVIRT, that

pc(sl) & pc(s2) _> sv(sl) 9 sv(s2) (')

where pc and sv refer to the path condition and state vector

respectively of a state. First, if pc(sl) & pc(s2) yields a

contradiction then (*) is immediately proved. (This

corresponds to a pair of paths such that for no input could

both paths have been followed.) Secondly, if instruction

pointer(s1) is not the same as instruction pointer(s2) there

is an error somewhere, either in the program or the

inclusion statement so go on to the next inclusion statement

or stop. (The actual and virtual programs for the same

input must terminate at the same point.) Otherwise, if the

two programs have terminated at the same point, we must show

that sv(s1) C sv(s2), that is, for each identifier i in L,

sv(sl)(i) C sv(s2)(i), under the assumption

pc(sl) & pc(s2).

There remains the problem of showing that for two

expressions a,b, and a logical expression h, that h =>

a c b. This is done by the use of the following three

inference rules:

1) h => a c= b <- h => a=b

2) h => f((EPS x)P(x))5b <- (FA x)(h & P(x) => f(x)cb)
where x is not free in h or b.

Description of method Page 43

3) h => atf((EPS x)Q(x)) <- h => (EX x)(Q(x)& a cf(x))

where x is not free in h or a.

(These rules are read, e.g., to prove h => a cb, it suffices

to prove b => a=b.)

The first of these rules is used when the expressions a

and b do not contain any epsilon expressions; the last two

serve to reduce the number of epsilon expressions in the

formula. Because the last rule requires instantiating an

existentially quantified variable, it is usually preferable

to use the following particular instance of the rule:

4) h => a C f((EPS x)Q(x)) <- h => Q(finv(a)) ,

In this rule finv is the inverse of f, and x has been

instantiated to finv(a). However, since finv (which may be a

relation) could be difficult to find and may not be defined

on a, the rule cannot always be applied. If a does not

contain an epsilon expression and the rule is applicable

then it is actually equivalent to rule 3. Rules 2), 3) and

4) are best understood by interpreting (EPS x)Q(x) as

{x: Q(x)) when C becomes set inclusion. The details of

this interpretation are omitted here.

Each of the rules 2), 3) and 4) has a natural

generalization to the case when EPS returns a tuple of

terms. For example, assuming that ,& and A are tuples and

that f is a function from tuples to tuples, rule 4) becomes

4g) h => a C f((EPS 4)(Q(4)) <- h => Q(finv(a))

Description of method Page 44

Whenever such tuples have been produced by EPS, inclusion
must be shown using these generalized rules and not by

individual components as described earlier (which would not

usually work anyway).

Finally, if other methods of showing that an array a

with bounds lb and ub is included in an array b with the

same bounds fail, the following rule is used:

5) a c b <= (FA i)(lb=<i=<ub => a[i] C b[i]) .

That is, to show one array is less than another, show that

all the corresponding elements are.

2.4.2 Complete proarama

To verify a complete program it is simply necessary to

verify each of individual inclusion statements assuming the

truth of all of the others. This requires the following

slight modification in verifying an individual statement.

If while symbolically executing the actual program the start

of another inclusion statement is reached, then the program

enters "hypothetical" mode and starts to execute the virtual

program of this new statement. When one of its end points

are reached, the program leaves "hypothetical" mode, and

continues its symbolic execution. This process is described

more formally in Figure 2.3.

Description of method Page 45

Verify-specified-program(INCL-STATS)
foreach INCL-STAT in INCL-STATS do
Verify-incl-stat (INCL-STAT)

Verify-incl-stat(INCL-STAT)
with INCL-STAT do

STATE := mkS(general-symbolic-state-vector, SP,
arbitrary-control-stack, PREC):

CUR-INCL-STAT := INCL-STAT:
SACT := {};

Ex-act(STATE,INCL-STAT,false);
SVIRT := {};

Ex-virt(STATE,INCL-STAT,false);
Compare(SACT,SVIRT))

Ex-act(STATE, INCL-STAT, FROM-VIRT)
with STATE do
with INCL-STATE do
repeat (

if IP is in EP and not(FROM-VIRT) then
(add STATE to SACT; return);

FROM-VIRT := false;
if IP is at sp(IS1) for some ISI in INCL-STATS

(other than initially) then
(Check that PC'=> SV(prec(ISI));
Ex-virt(STATE,IS1,true); return)

elseif IP is an assignment (LS := RS) then
(SV := SV[sym-val(RS)/LS]); advance IP)

elseif IP is a conditional (if P then s1 else s2) then if PC => P then I P := s l
elseif PC => NOT P then IP := s2
else (Ex-act(mkS(SV,sl,CS,PC & P),INCL-STAT,false)

Ex-act(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false)
return);

else (execute instruction normally; advance IP))

Figure 2.3 - Verifying a complete program

Description of method Page 46

Ex-virt(STATE,INCL-STAT,HYPMODE) _
with STATE do
with INCL-STAT do
repeat (

if IP (=ei) is in EP and HYPMODE and the ei is "recursive"
then (Ex-act (STATE,CUR-INCL-STAT, true): return)

elseif IP is in EP and HYPMODE then
(add STATE to SACT; return)

elseif IP is in EP then (add STATE to SVIRT; return)
elseif IP is an assignment (LS := RS) then

(SV := SV[sym-val(RS)/LS]; advance IP)
elseif IP is a conditional (if P then sl else s2) then

if PC => P then IP := sl
elseif PC => NOT P then IP := s2
else (Ex-virt(mkS(SV,sl,CS,PC&P),INCL-STAT,false)

Ex-virt(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false);
return);

else (execute instruction normally; advance IP))

Figure 2.3 (continued)

Description of method Page 47

2.5 Some exemplary_ aroarams

In this section we shall apply continuation induction
to several simple programs. The programs are chosen to

illustrate how the method copes with various language

features and programming techniques, rather than for their
own intrinsic interest. Some applications of the method to

more complex programs will be discussed later
describing the interactive program verifier and its use.

2.5.1 Recursion

f (X) = jL X>100 then X-10 else f (f (X+1 1))

when

This program, called the 91-function, is discussed in Manna

and Pnueli (1970). There is just one inclusion statement

needed to describe it.

Actual program: body of f
Virtual program: jj X>100 then X-10 ILlgg 91
Preconditions: true
Start point: entry to f
End points: exit from f (recursive)
Variables: none

In this example, as in others, we identify the body of the

function with the program consisting of the function's

definition and a single call of the function with its formal

parameters as arguments. Strictly speaking, there should be

another (identical) virtual program corresponding to the

call of the function, but the proof of this extra inclusion

statement is always completely trivial. That X is an

integer is actually a precondition, but we ignore such type

Description of method Page 48

restrictions throughout this work (though we recognize their
importance in programming languages and program verification
generally). There are no explicit variables to be tested as

we are not interested in the value of X at the end of the

program, but only in the result of the function call which

is always tested.

Figure 2.4 shows the tree of computation paths

generated by symbolically executing the actual and virtual

programs. Except for the top-level call in the actual

program, whenever f is called the virtual program is
executed instead. Note that one branch, 91>100, has been

cut off at the symbolic execution stage.

Actual program: f(x)
xp100 =<100

x-10 with x>100 f (f (x+11)) with x-<100

x-9 with x=100 91 with 89<x=<99 91 with x=<89

Virtual program: f(x)
x>100 / \ x=<100

x-10 with x>100 91 with x=<100

X?F1 1>100 X+1 1=<100

f(x+1) with 89<x=<100 f(91) with x=<89
i

x+1>100 x+1=<100 1=<100

Figure 2.4 - 91-function

Description of method Page 49

Now, by considering all pairs in the cartesian product

of the sets of states at the tips of the trees, the

verification conditions shown in Figure 2.5 are generated.

Notice how the problem has been broken down into simple

cases automatically by the theorem generation process. We

shall later show how our verifier generates and proves these

theorems.

x>100 & x>100 => x-10 = x -10
x>100 & x=<100 => x-10 = 91
X=100 & X>100 => x-9 = 91
X=100 & x=<100 => X-9 = 91
89<x=<99 & x>100 => 91 = x-10
89<x=<99 & x=<100 => 91 91
x-<89 & x>100 => 91 = x-10
x=<89 & x=<100 => 91 = 91

Figure 2.5 - Verification conditions

2.5.2 Iteration aDg recursion

f (N) = (vars R;
Start: R

Loop: while N>O SLQ (N:=N-1; R:= R+N*f(N));
Finish: return(R))

This program taken from King (1969) uses both recursion and

iteration to compute - guess what? - the factorial

function. The declaration "vars R;" declares R to be a

local variable of the function. The two inclusion
statements needed to verify this program are:

1) Actual program: body of f
Virtual program: N !

Preconditions: N>=0
Start point: entry of f

End points: exit from f (recursive)
Variables: none

Description of method Page 50

2) Actual program: while N>0 yjsi (N:=N-1; R:= R+N*f(N))
Virtual program: R:= R + N! - 1

Preconditions: N>=0
Start point: Loop
End points: Finish (non-recursive)
Variables: N

Given these statements, the actual proof is straightforward

and will not be shown. It depends on the fact that

1 + 1*1! + 2*21 + ... + (n-1)*(n-1)! = n !

2.5.3 Non-local jumpa

S(A) <_
(Sin: iL istip4and X=A then (R:=true: goto Finish)

else j,., isnode(A) then (S(1 A);S(r A)):
Sout:): '

Start: R:=false;
S(A);

Finish:

This program searches a tree A, returning true if one of its
tips is equal to X, and false otherwise. (We assume a tree

is either a tip or a node which has a left which is a tree

and a right which is a tree.) The program uses a recursive

function S which does a non-local jump if it finds a tip
equal to X. In a more functional language this jump would be

written as a call of an escape function. In giving the

specifications for this program we assume the existence of a

function fr (for fringe) defined by

istip(a) fr(a) = list(a)
isnode(a) fr(a) = concat(fr(l a), fr(r a))

and a function memb (for member) which has its normal

definition. Then we can express the correctness of the

program using the following two inclusion statements:

Description of method Page 51

1) Actual program: whole program
Virtual program: R:= memb(X,fr(A))
Preconditions: none
Start point: Start
End points: Finish (non-recursive)
Variables: R

2) Actual program: body of S

Virtual program: ,L memb(X,fr(A))
then (R:=true; goto Finish)

Preconditions: none
Start point: entry to S (Sin)
End points: exit from S (Sout, recursive)

Finish (non-recursive)
Variables: R

Again we only consider the second statement since the proof

of the first one is trivial. The trees of computation paths

and the resulting verification conditions are shown in

Figure 2.6. Notice that the computation continues at (*)

since Sout is a "recursive" end point. The verification

conditions are all easily proved using the definitions of

memb, fr and concert, mostly by showing the hypotheses are

contradictory.

Description of method Page 52

Actual program: Sin: R->r,X->x,A->a

isnode(a) istip(a)
& x#a

Finish: R->true Sin: R->r,A->left a Sout: R->r

memb(x,fr(left a)) NOT memb(x,fr(left a))
Finish: R->true Sout: R->r (*)

I

memb(x,fr(right a)) NOT memb(x,fr(right a))

Finish: R->true Sout: R->r

Virtual program: Sin: R->r,A->a

memb(x,fr(a)) NOT memb(x,fr(a))

Finish: R->true Sout: R->r
with memb(x,fr(a)) with NOT memb (x,fr(a))

Verification conditions:

istip(a) & x=a & memb(x,fr(a)) => true=true
istip(a) & x=a & NOT memb (x, fr(a)) => true=r
isnode(a) & memb(x,fr(left a)) & memb(x,fr(a)) _> true=true
isnode(a) & memb(x,fr(left a)) & NOT memb(x,fr(a)) => true=r
isnode(a) & NOT memb(x,fr(left a)) & memb(x,fr(right a))

& memb (x ,fr (a)) => true=true
isnode(a) & NOT memb(x,fr(left a)) & memb(x,fr(right a))

& NOT memb(x,fr(a)) _> true=r
isnode(a) & NOT memb(x,fr(left a)) & NOT memb(x,fr(right a))

& memb(x,fr(a)) _> r=true
isnode(a) & NOT memb(x,fr(left a)) & NOT memb(x,fr(right a))

& NOT memb(x,fr(a)) => r = r
istip(a) & x#a & memb(x,fr(a)) => r=true
istip(a) & x#a & NOT memb(x,fr(a)) => r=r

Sin: R->r,A->right a

Figure 2.6 - Non-local jumps

Description of method Page 53

2.5.4 F u tipn-a a,,, gra u_m ti n t s

while not(null(L)) 9Q. (X:= f(x, hd L); L:= tl L);
return (X) ;

For any function f which is both associative and

commutative, this program is included in "lit(L,X,f)", where

lit is defined by

null(l) => lit(l,x,f) = x

not(null(l)) => lit(l,x,f) = f(hd 1, lit(tl l,x,f))
Applying our proof method to the above program, the only

non-trivial verification condition resulting is

not(null(l)) => lit(tl 1, f(x, hd 1, f) = lit(l,x,f),
that is, applying the definition of lit,

not(null(l)) => lit(tl l,f(x,hd 1),f)
= f(hd l,lit(tl l,x,f)

This theorem can now be generalized to

lit(l,f(x,y),f) = f(y,lit(l,x,f))
which is easily proved using associativity and commutativity

by structural induction on 1. In fact the same original
verification condition is generated if structural induction

is used from the start. Thus, this example demonstrates

that functional arguments can be used in certain cases with

our method.

2.5.5 Non-determinism

Start: I:= 1;
Loop: Chile I<N ,.

L: (, A[I] > A[I+l] then
(X:=A[I]; A[I]:=A[I+1]; A[I+1]:=X);

I:= I+1);
Finish:

Description of method Page 54

This is a program which finds the largest element of an

array A[1:N] and moves it to the top of the array; it could

form the inner loop of a sorting program. Assuming the

existence of functions eases and Derm which test whether one

array is equal to, or a permutation of, another, we can

write one of the inclusion statements as follows (the other

one is similiar):

Actual program: above program from Loop to Finish
Virtual program: A :_ (EPS 8)(egseq(8[1,I-1],A[1,I-1])

& perm(B[I,N],A[I,N])
& (FA J)(I=<J<N => 8[J]=<B[N]))

Preconditions: 1=<I=<N
Start point: Loop
End points: Finish (non-recursive)
Variables: A

Note that the virtual program is non-deterministic. In

giving the proof of this inclusion statement we use an

operation xchnc (a i , j) which constructs a new array by

exchanging the ith and jth elements of the array a. The

computation trees and verification conditions for this

inclusion statement are shown in Figure 2.7. The values of N

are omitted since they never change.

Description of method Page 55

Actual program: Loop: A->a,I->i with 1=<i=<n

i<n \i>=n

L: A->a,I->i Finish: A->a
with 1=<i<n with 1=<i=n

a[i]>a[i+1] a[i]=<a[i+1]

Loop: A->xchng(a,i,i+1),I->i+1 Loop: A->a,I->i+1
with 1=<i<n & a[i]>a[i+1] with 1=<i<n&a[i]=<a[i+1]

(Induction hypothesis)

Finish : I

A-> (EPS b)(egseq(b[1,i],xchng(a,i,i+1)[1,i])
& perm(b[i+1,n],xchng(a,i,i+1)[i+1,n])
& (FA j)(i+1=<j<n => b[j]=<b[n]))

=b1, say
with 1=<i<n & a[i]>a[i+1]

Finish: A-> (EPS b)(eqseq(b[1,i],a[1,i])
& perm(b[i+1,n],a[i+1,n])
& (FA j)(i+1=<j<n => b[j]=<b[n]))

=b2, say
with 1=<i<n & a[i]=<a[i+1]

Virtual program: Loop: A->a,I->i with 1=<i=<n

Finish: A-> (EPS b)(egseq(b[1,i-1],a[1,i-1])
& perm(b[i,n],a[i,n])
& (FA j)(i=<j<n => b[j]=<b[n]))

=b, say
with 1=<i=<n

Verification conditions:

1=<i<n & a[i]>a[i+1] => b1 b
i=<i<n & a[i]=<a[i+1] => b2 b

1=<i=n => a rz b

Figure 2.7 - Non-determinism

Description of method Page 56

In this example, since it matters, we have been more careful

about stating inclusion rather than equality, and will give

the proof of a verification condition in more detail than

previously. We will use the inference rules given in

Section 2.4.1 (previously we have been using the first of

these implicitly). Consider the first verification

condition. Applying rule 2 with the identity function for f

reduces it to

1=<i<n & a[i]>a[i+1]
& egseq(bl[1,i],xchng(a,i,i+1)[1,i])
& perm(bl[i+1,n],xchng(a,i,i+1)[i+1,n])
& (FA j)(i+1=<j<n => b1[j]=<b1[n])

b1 C b

Applying rule 4 next, again with the identity function for f

gives

1=<i<n & a[i]>a[i+1]
& egseq(bl[1,i],xchng(a,i,i+1)[1,i]) (i)
& perm(bl[i+1,n],xchng(a,i,i+1)[i+1,n]) (ii)
& (FA j)(i+1=<j<n => bl[j]=<bl[n]) (iii)
egseq(b1[1,i-1],a[1,i-1]) (iv)
& perm(b1[i,n],a[i,n]) (v)
& (FA j)(i=<j<n => b1[j]=<b1[n]) (vi)

Since xchng (a ,i ,i+1) [1 ,i-1] = a[1 ,i-1] , (iv) follows

immediately from (i). From (i) and (ii), bl[i]=a[i+1], so

perm(bl[i,n],xchng(a,i,i+1)[i,n]) and (v) then follows. To

prove (vi) it is only necessary to show additionally that

b1[i]=<b1[n]. But b1[i] = a[i+1] < a[i]
xchng(a,i,i+1)[i+1] = b1[j] for some j with i+1=<j=<n.

Hence, by (iii), b1[i]=<b1[n]. The proofs of the other two

conditions are similiar but easier. To complete the proof

of the program, we should also use the definitions of perm

and eqseq to prove the facts about them which we have used.

Description of method Page 57

The proof-checker described in Chapters 4 and 5 can be used

to do this, and examples of such proofs will be given there.

2.6 Justification Qf J JA method

In Burstall (1975) a proof is given that the proof

method we have just described is sound, that is, that its

successful application to a program does in fact imply that

the program is correct. Burstall proves soundness by

considering the relation computed from one point in a flow

diagram to another and hence shows that the actual program

may also be non-deterministic (in the random and not the

"backtracking" sense). However the details of his proof are

complicated.

In this section we shall outline an alternative method

of proving soundness. This method involves translating all

programs into systems of recursive equations and then

applying computation induction. It is not clear that the

resulting proof would be any simpler than Burstall's if all

the deAails were filled in.

2.6.1 Translation a recursive equations

McCarthy (1960) first described how to translate an

arbitrary flow-chart program into a set of mutually

recursive functions. While this method is well known, it is

inadequate for our purposes. The reason is that in

McCarthy's method the recursive functions introduced

Description of method Page 58

describe the program from a given point until the end,

whereas we want to describe the program from one internal
point to another. The motivation for this is that we want

to be able to describe the effect of an inner loop without

considering the rest of the program containing it.

Moreover, McCarthy's method does not allow one to handle

escapes when applied to flow-chart programs containing
recursive calls. As an example, consider the program:

while P(X) ita
(while Q(X) AQ, X:= s2(X);
X:= sl(x));

return (X) ;

McCarthy's method would translate this into something like:
f(X) <= if. P(X) then g(X) else X

g(X) <= IL Q(X) then g(s2(X)) else f(sl(x))
whereas our method would give:

f(X) <= if P(X) then f(sl(g(X))) else XI

g(X) <= if Q(X) then g(s2(X)) else X

Having decided to nest recursive functions in this way,

the problem of translating arbitrary flow-chart programs

becomes slightly more difficult, but since the solution also

deals with escapes from recursive functions, the increased

complexity is well justified. To appreciate the difficulty,

consider the following program schema (which could

correspond to a naive matcher or prime finder):

Description of method Page 59

A: -while P(X)
(X:=a(X);

B: while Q(X) sl4.
(iL R(X) then (X:=b(X); coto Next):
X:=c(X)):

onto Finish;
Next: X:=d(X)):
Finish:

The natural way to write inclusion statements for this

program is to have an outer one from A to Finish and an

inner one from 8 to Next or Finish. It is possible to

translate this program into recursive functions such that

each function corresponds to one of the actual programs by

using escapes, but we choose to do it using the more general

device of continuations described in Reynolds (1972). A

continuation is a function which is added to a given

function Fold as an additional argument, giving a new

function Fnew, which evaluates Fold and then applies the

continuation to this result. That is, for any Fold we can

define Fnew by

Fnew(x1,...,xn,c) = c(Fold(x1,...,xn))

Using continuations, we can now write the above program in

the following way:

A(X,F) <= jL P(X) then B(a(X),(LAMBDA u.A(d(u),F)),F)
else F(X)

B(X,N,F) <_ iL Q(X) then if R(X) then N(b(X)) nisa B(c(X),N,F)
else F(X)

where N and F are the continuations, and can be thought of

as describing the computations which continue from the

labels Next and Finish.

Description of method Page 60

Thus the idea is to translate a specified program by

associating a recursive function with the start point of

each inclusion statement. In addition to its normal

arguments, this recursive function has one extra argument -
a continuation - for each end point of the inclusion

statement. The details of this translation process depend

on the particular language being used and are omitted here.

2.6.2 Validity proof

The argument that the method is sound now goes as

follows. A specified program consists of a set of n

inclusion statements, say. The whole program can be

rewritten as indicated above as a set of mutually recursive

functions,

fi <= Ti[fl,...,fn], for i=1,...,n .

where each Ti is a monotonic functional, and

where each fi is associated with a distinct inclusion

statement. That this transformation preserves the meaning

of the program is the main gap in our proof. Let gi be the

virtual program of that inclusion statement. The proof

procedure itself, if successful, has shown that

Ti[gl,...,gn] c gi, for i=1,...,n

This is true even though the proof procedure stops

immediately before executing the continuations. In the

terminology above, it shows that

fold(x1,...,xn) C gold(xl,...,xn)

Since we check that fold and gold terminate at the same

point, before executing the same continuation c, and since c

Description of method Page 61

itself is monotonic, we have

f (xl,...,xn,c) = c(fold(x1,...,xn))
c c(gold(xl,...,xn))
= g(x1,...,xnc)

We now have to prove that

for i=1,...,n .

But it is a well-known theorem (e.g. Park 1969) that for a

monotonic functional T,

T[G] c G => pF.T[F] G G

where ftF.T[F] is the least fixed point of T. Applying this,

with (g1,g2,...,gn) in the cartesian product domain for G,

yields the result immediately.

Page 62

Chapter 3. THE INDUCTIVE PROOF METHOD: DISCUSSION

The first part of this chapter discusses an extension

and an application of the proof method just described, while

the second part compares it in some detail with several

other commonly used methods.

3.1 Termination proofs

We start by describing how to extend continuation

induction to yield proofs of termination, and hence strong

equivalence, of programs. A new component, a decremand (a

quantity which is decremented, abbreviated dec), is added to

each inclusion statement which corresponds to the body of a

recursive procedure or to a cycle, i.e. wherever repetition

is possible. (It could in fact be added to every inclusion

statement.) This component must contain an expression

involving the program identifiers which, for different

state-vectors, takes values in some well-founded set, that

is, a partially-ordered set with no infinite descending

chains. Examples of such well-founded sets are the natural

numbers; strings, where a < b if a is a proper substring of

b; and lists (as in pure LISP), where a < b if a is a

sublist of b, i.e. if a is the hd of b or the tl of b or a

sublist of the hd or tl of b. (We use "hd" and "tl" for the

LISP "car" and "cdr".)

Discussion of method Page 63

The proof procedure is now just as before, but with the

following addition. Assume we are about to verify an

inclusion statement containing a decremand. In the initial
symbolic state the symbolic value of the decremand is found

and saved. If the program's execution returns to this

point, as well as checking the preconditions, the decremand

is tested to see that it is now strictly less than the saved

value. This will require symbolic reasoning (i.e. theorem

proving) of course, rather than simple numerical comparison,

for example. If the decremand is indeed less upon return,

and this is true for each inclusion statement, then the

program must terminate as there are no infinite descending

chains. With this extension the proof method now yields

strong equivalence if successful, as both programs always

terminate. Figure 3.1 below shows the functions

Verify-incl-stet and Ex-act of Figure 2.4, modified to

incorporate this test.

As a simple example, consider the "counting-up"

factorial program of Section 2.5. The decremand of the

inclusion statement at Loop is N-I, and the partial order is

defined by: x is less than y if 0=<x<y. Since I is

increased by one each time the program reaches Loop, and I<N

implies 0=<N-(I+1)<N -I, the program (or at least the loop)

must terminate.

Discussion of method

Verify-incl-stat(INCL-STAT)
with INCL-STAT do

STATE := mkS(general-symbolic-state-vector, SP,
arbitrary-control-stack, PREC);

CUR-INCL-STAT : = INCL-STAT ;
CUR-DEC := SV(DEC);
SACT := {};

Ex-act(STATE,INCL-STAT,false);
SVIRT :_ {};

Ex-virt(STATE,INCL-STAT,false);
Compare(SACT,SVIRT))

Page 64

Ex-act(STATE, INCL-STAT, FROM-VIRT) _
with STATE do
with INCL-STATE do
repeat (if IP is in EP and not(FROM-VIRT) then

(add STATE to SACT; return);
FROM-VIRT := false; if IP is at sp(CUR-INCL-STAT)

(other than initially) then
ensure SV(dec(CUR-INCL-STAT)) is less than CUR--DEC; if IP is at sp(IS1) for some IS1 in INCL-STATS
(other than initially) then
(Check that PC => SV(prec(IS1));
Ex-virt(STATE,ISI,true): return)

elseif IP is an assignment (LS := RS) then
(SV := SV[sym -val(RS)/LS)); advance IP)

elseif IP is a conditional (if P then s1 else s2) then
if PC => P then IP := s1
elseif PC => NOT P then IP := s2
else (Ex-act(mkS(SV,s1,CS,PC&P),INCL-STAT,false)

Ex-act(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false)
return);

else (execute instruction normally; advance IP))

Figure 3.1 - Termination proofs

Discussion of method Page 65

A more difficult example is the program which sorts an

array of elements by exchanging pairs of adjacent elements

which are out of order, and which terminates when it can

make a complete pass through the array without finding such

a pair. The decremand of the main inclusion statement of

this program is Inversions(A,N), and the partial order is
the standard one on the natural numbers. "Inversions" is a

function which counts the total number of pairs of elements

in the array A from I to N which are out of order. It
requires some knowledge about permutations and careful

reasoning to show that Inversions(A,N) is actually reduced

each time around the loop. Sites (1974) was unable to prove

this program terminated as he did not have this knowledge

about Inversions or permutations. Our theorem prover is
capable of doing this sort of reasoning, but we have not yet

extended the verification system to do termination proofs.

3.2 Equivalence proofs

Clearly, if we are given two programs A and B such that

B satisfies the requirements of 2.3.1 for virtual programs,

then we can use this method in an attempt to prove A is

included in B. In fact this is what we did with the

91-function. If the program B always terminates, and the

termination proof method is applied to program A, then we

can even prove that A and B are strongly equivalent.

Discussion of method Page 66

But it is also possible to prove more interesting
programs equivalent. The general method is to treat one of

the two programs as the virtual program and translate it, if
necessary, into a recursive function, proving separately

that it always terminates. Then change the function to a

symbolic one (which constructs a symbolic term but is not

otherwise evaluated), and use a call of it as the virtual
program, saving its definition - a set of recursive

equations - for later use. The proof method is then applied

as before, and the recursive equations are applied only when

comparing the resulting state vectors. This gives a simple

method of showing the equivalence (or inclusion) of an

iterative function with a recursive function.

As a very simple example consider the following two

programs for computing the factorial function:-

Start: I:=1
R:=1

Loop: while I<N IQ (I:=I+1; R:=R*I)
Finish: return(R)

and

f (N) <= if N=O then 1 else N*f (N-1)

f(N)

In this case we would construct a new symbolic function f1

such that the value of fl(3), say, was simply the term

"f 1 (3)" and save the formulae

n=0 => fl(n)=1,

n#0 => f1(n)=n*f1(n-1)

for later use. We would then treat the whole first program

as an actual program with virtual program fl(N), and treat

Discussion of method Page 67

the while-statement from loop to Finish as a second actual

program with virtual program:

Loop: R:= R*f1(N)/f1(I);
I:=N

Finish:

The remainder of the proof would then go through as in

Section 2.1 above.

As a more interesting example, consider the following

program:

Start: C:=O;
Loop: while N=<100 dg, (C:=C+1; N:=N+11);

N:=N-10:
L: If C>O then (C:=C-1; goto Loop);
Finish: return(N);

We shall prove it is included in the following familiar
function:

f (N) <= I -f N>100 then N-10 else f (f (N+1 1))

As before we change f to the symbolic function f1 with

defining equations

x>100 => fl(x)=x-10,

x=<100 => f1(x)=f1(f1(x+11)),

and construct the inclusion statement which associates the

whole actual program with the virtual program fl(N). We now

define an auxiliary function Appr (apply f1 repeatedly) with

the following defining equations:

y=0 => Appr (x ,y)=f 1 (x) ,

y>O => Appr(x,y)=Appr(f1(x),y-1).

Unfortunately we know of no way to derive this function

mechanically. We now construct a second inclusion statement

Discussion of method Page 68

which starts at Loop, ends at Finish, has the corresponding

virtual program:

Loop: N:=Appr(N,C);
Finish:

and which has the preconditions c>=0. We concentrate on the

proof of this inclusion statement, since the proof of-the

first one is trivial. In fact even this proof is quite

easy. The trees of computation paths of the two programs

are shown in Figure 3.2, as are the verification conditions

generated. All these verification conditions are easily

proved using the definitions of fl and Appr.

We realise that it will not usually be so easy to find

intermediate virtual programs, and that the functions such

as Appr and division which need to be introduced may become

excessively complex. Nevertheless we believe this is a

method which may occasionally be useful.

Discussion of method Page 69

Actual program: Loop: N->n,C->c with c>=0

n-<100 \n>100
Loop: N->n+11 ,C->c+1 L : N->n-10,C->c

with c>=0 & n=<100 with c>=0 & n>100

Ind'n hyp

Finish: N ->Appr(n +11,c+1) Finish: N ->n-10
with c>=0 & n=<100 with c=0 & n>100

Loop: N->n-10,C->c-1
with c>O & n>100

Ind'n hyp

Finish: N->Appr(n-10,c-10
with c>O & n>100

Virtual program: Loop: N->n, C->c with c>=0

Finish: N->Appr (n ,c) with c>=0

Verification conditions:

c>=0 & n=<100 => Appr(n+11,c+1) = Appr(n,c)
c>O & n>100 => Appr(n-10,c-1) = Appr(n,c)
C-0 & n>100 => n-10 = Appr(n,c)

Figure 3.2 - 91-function (iterative)

Discussion of method

3.3 Comparison with Jnductive assertions

3.3.1 E]oow-diaarams

Page 70

We assume the reader is familiar with this method of

verifying programs. Accounts of it are given by Floyd

(1967), Hoare (1969), Elspas et al (1972) and others.

Applicable to flow-chart programs, it is closely related to

continuation induction. In each case one has to provide, in

addition to the overall specifications of a program, some

sort of generalized statement at loops: in one case an

assertion, in the other an inclusion statement. Both

methods do induction on the length of the computation, but

whereas with inductive assertions it is on the length from

the beginning of the computation to the middle, in ours it
is on the length from the middle to the end.

However, there is a much closer connection than this.

Continuation induction is really a generalization of thie

inductive assertion method, and every proof by inductive

assertions can be mechanically translated into a proof by

continuation induction. We shall demonstrate how this is

done by means of two typical examples.

Loop: {A1(X)}
while P (X) ip, X: -F (X)

Out: {A2(X)}

Here, A1(X) is the loop invariant and A2(X) is the output

assertion. Using virtual programs, these specifications can

be expressed as the following inclusion statement:

Discussion of method Page 71

Actual program: while P(X) g. X:=F(X):
Virtual program: X:.(EPS Y)A2(Y)
Preconditions:
Start point:

A1(X)
Loop

End points: Out (non-recursive)
Variables: X

To verify this inclusion statement we must prove the

following three theorems:

a)

b)

A1(X) & P(X)

A1(X) & P(X)

A1(F(X)),

(EPS Y) A 2(Y) G (EPS Y) A2(Y),

c) A1(X) & NOT P(X) => X G (EPS Y) A2(Y).

The second of these is always trivially true, and using rule
4) of Section 2.4.1 the third reduces to

d) A1(X) & NOT P(X) => A2(X).

But these two theorems (a and d) are exactly those generated

using the inductive assertions directly. If there is a

conditional involved the situation is a little more complex.

Consider the following flow diagram:

Yes

L1: { A1(X) }

I

P(X) ?

No

X:=E(X) X:=G(X)
I I

L2: { A2(X) } L3: { A3(X) }

In this case the corresponding inclusion statement is

Discussion of method Page 72

Actual program: as shown
Virtual program: X := (EPS Y)(P(Y) _> A2(F(Y)) &

NOT P(Y) => A3(G(Y)));
jf P(X) then (X:=F(X): aoto L2)

else (X:=G(X); pQto L3):
Preconds : _ AIM
Start point: L1
End points: L2, L3 (non-recursive)
Variables: X

Verifying this inclusion statement using rule 3 (rule 4 will

not work in this case) again reduces the problem to exactly

those theorems generated by using the assertions directly.

In general, the epsilon expression is written to return a

tuple of terms and the generalized forms of rules 2, 3 and 4

used to show the equivalence of the two methods.

Thus we can assume that proofs of program correctness

by inductive assertions are simply abbreviations for proofs

using virtual programs. There is then a choice between

putting the main specifications of the program into the

preconditions of an inclusion statement or into the virtual

program. Often, less detail is required when the

information is put into the preconditions. For example, the

loop invariant for the program of Section 2.5.5 is

perm(A[1,N],AO[1,N]) & (FA J)(1=<J<I => A[J]=<A[I])

where AO is (a ghost variable whose value is) the original
array. The corresponding virtual program

A :_ (EPS B)(perm(A[1,N],B[1,N])
& (FA J)(I=<J<N => B[J]=<B[N]))

is too weak for the proof to go through as before. The more

detailed virtual program

A :_ (EPS B)(egseq(B[1,I-1],A[1,I-1])
& perm(B[I,N],A[I,N])
& (FA J)(I=<J<N => B[J]=<B[N]))

Discussion of method Page 73

is required, though perm could be instead of eqseq. This

phenomenon seems to be a weakness of the proof method.

3.3.2 Procedures and Hoare's rules

Because of the above phenomenon it is useful to be able

to describe programs using both inductive assertions and

virtual programs: the assertions to act as loop invariants,

and the virtual programs to describe complete programs and

(recursive) subroutines. As an example, the program of

Section 2.5.3 is described by:

f(NO) <= (vars N,R;
Start: N:=NO;

R:= 1;
Loop: assert R + N! - 1 = NO!

while N>O do (N:=N-1; R:=R+N*f(N));
Finish: return(R))

Actual program: body of f
Virtual program: NO!
Preconditions: NO>=O
Start point: entry of f
End points: exit from f (recursive)
Variables: none

Virtual programs can also be used to describe inner loops

when the outer loop is described by a loop invariant. The

program to invert a permutation, shown in Appendix 4, has

its specifications given in this way.

The restrictions on using both inclusion statements and

inductive assertions to describe a program are that each

cycle in the program must contain either an invariant or the

start of an inclusion statement, each subroutine must have a

corresponding inclusion statement, and each assertion other

Discussion of method Page 74

than an output assertion must be followed (dynamically)

either by another assertion or by the end of an inclusion

statement. To verify such a program we then verify each

inclusion statement and each assertion in turn. Verifying

an inclusion statement is done as before except that if we

encounter an assertion, we check it it true with respect to

the current state vector and path condition, replace the

state vector by a new, general symbolic one, let the

assertion itself be the new path condition, and continue

until an end point of the inclusion statement is reached

(ignoring any path which reaches an assertion seen before

while verifying that inclusion statement). The reason for
this treatment of intermediate assertions is that the

assertion typically occurs in a loop, so all we know about

the state vector is that it satisfies the assertion. To

verify an assertion we prove that starting with it as the

path condition and symbolically executing the program, every

assertion reached is true. We terminate and ignore paths

which reach the end of an inclusion statement. If the start

of an inclusion statement is reached, the preconditions are

checked, the virtual program executed, and the computation

continued as before. In this way all the paths through the

program will be considered.

In Hoare's theory (Hoare 1969), the statement P{S}9

means that if the assertion P is true before statement S is

executed, then the assertion R will be true when (and if) S

terminates: axioms and rules for each basic statement S of

a programming language effectively define the semantics of

Discussion of method Page 75

that language, and are used to verify programs written in

that language. This approach was extended in Hoare (1971a)

to handle recursive procedures and in Clint and Hoare (1972)

to deal with Jumps out of blocks and with functions. While

Hoare's theory is as general as ours, and can be used to

define the semantics of a programming language, our method

does have one advantage over it, resulting from our use of

symbolic execution. This is that we can deal with

procedures having side-effects. The virtual program for

that procedure simply includes the assignments to the

non-local variables. When the procedure is called during

another proof these side-effects simply take place as they

would during normal execution.

3.4 Comparison with recursion induction

This is a method proposed by McCarthy (1963) for

proving the equivalence of recursive functions. He gives

the following example of its use. Suppose addition is

defined in terms of the operations suc and pre by

Discussion of method Page 76

m+n = if n=O tj m 81S_e suc(m)+pre(n)

and we wish to prove the theorem

suc(m+n) = suc(m)+n

Let f(m,n)= if n=© then suc(m) else f(suc(m),pre(n)):

g (m ,n)=suc (m{.n): and h (m ,n)=suc (m)+n. Both g and h can

easily be seen to satisfy the defining equation of f, so by

recursion induction they are equivalent over the domain on

which f is defined, the set of non-negative integers.

McCarthy (1962) extended this principle to apply to

flow-chart programs in the following way.

(a) F;

(b) if P then (g; F):

(c) While- P AQ g

If program (a) can be shown equivalent to program (b), then

we can conclude that program (a) is equivalent to program

(c) for those state vectors which do not cause program (c)

to get stuck in a loop. Saying that program (a) is

equivalent to (b) is the same as saying that the program

satisfies a functional equation. If another program, G,

also satisfies the same functional equation then F is

equivalent to G whenever program (c) converges. McCarthy's

method of showing the two programs satisfy the same

functional equation is by "massaging" them separately until

they have the same syntactic structure. For example, to

prove

A: if, N=O the auto 8:
R:=N*R: N:=N-1; gQta A;

8:

Discussion of method Page 77

equivalent to the program

A: R:=N!*R: N:=O;
8:

he converts the first program to

A: If N=O then aoto 8; R:=N*R; N:=N-1;
Al: j N=O then goto 81: R:=N*R; N:=N-1; aoto Al;
81:

and the second to

A: N=O then auto B; R:=N*R; N:=N-1;
R:=N!*R: N=O:

8:

using properties of the factorial function. Thus both

programs satisfy a relation of the form:

"program"

is equivalent to

A: IL N=O then aoto 8; R:=N*R; N:=N-1; "program"; B:

and are hence equivalent whenever the first of them

terminates.

This seems an unnecessarily complicated procedure,

having to syntactically transform both programs, but in
essence it is again the same as ours. However, continuation

induction has the following advantages over recursion

induction as McCarthy described it.

(1) A minor advantage is that our method makes explicit the

way to handle nested loops. McCarthy gave no examples (in

the papers we have seen) containing them, and his method of

translating flow-chart programs into recursive functions is

not suitable for the task, as we observed in Section 2.6.

Discussion of method Page 78

(2) Proofs seem more natural and easier to find in our

method as the "massaging" of the programs is done

automatically in the course of the symbolic execution.

(3) Strong equivalence (i.e. termination) can often be

proved in the course of the main proof.

(4) Our method is capable of proving properties of programs

which contain escapes or, equivalently, multi-exit loops in

flow-chart programs. This would seem to be its main

advantage over recursion induction. Of course, at the time

McCarthy did his work the concept of a continuation was not

explicitly available to him as it was to us.

3.5 Other related methods

Another method based on symbolic execution (or hand

simulation) is described in Burstall (1974). The basic

inductive statement of this method is of the form:

"Starting from label K with state vector X=xO,
Y=yO, ... satisfying P(x0,y0,...), for all i such
that 0=<i=<n, the program eventually reaches label
L with the state vector X=x(i), Y=y(i), ...
satisfying Q(x(i),y(i),...)."

Thus the method automatically yields proofs of total
correctness whereas all the other methods we have discussed

only yielded partial correctness. The main difference

between it and continuation induction is that it does

induction on the data whereas continuation induction does

induction on the length of the computation.

Discussion of method Page 79

Burstall and I programmed a simple implementation of

the method in 1972 and proved some trivial programs using

it. We eventually rejected it in favour of the present

method because it needed a more sophisticated logical

apparatus to do the inductions. Moreover the continuation

proof method seemed easier to implement at the time.

However, for certain types of programs, such as

iterative translations of recursive programs which operate

on trees, for example, it can be very useful. In Topor

(1974), Appendix 6 of this thesis, I gave a proof of the

Schorr-Waite list marking algorithm. This is an example

where a data induction approach is clearly preferable to

doing induction on the length of the computation, and both

the inductive assertion method and continuation induction

are unsuitable.

Recently, and independently of our own work, Mills

(1975) and Basu and Misra (1975) have shown how continuation

induction can be used to prove the correctness of iterative

programs constructed using while statements alone (loop

programs). In each case they assume that the "virtual

program" is given initially as some function f and they

attempt to show that the function computed by the while

statement is equal to f whenever the while statement

terminates. They formulate the principle as follows: the

equivalence "f = while p AU g" holds if and only if for

every (x,y) in f the iteration terminates and

p(x) => y=f(g(x)) & NOT p(x) _> y=x. Basu and Misra also

Discussion of method Page 80

show that given the function f which the loop computes one

can find a loop invariant which suffices to prove the

correctness of the program. This provides a dual to our

result that proofs using inductive assertions can

translated into proofs by continuation induction. However,

when the program has the form "initialization; loop" and the

function (intended to be) computed by the whole program is
known, our experience indicates that it is often just as

difficult to find and describe the function computed by the

loop alone as it is to find a loop invariant directly. This

can be seen from the examples we have already studied. In

neither of these two papers are these methods applied to the

other control structures such as arbitrary flow-charts,

recursion and escapes which we have considered.

Page 81

Chapter 4. AN INTERACTIVE PROGRAM VERIFIER

4.1 Overview

Any reasonable program verifier will clearly require

human assistance to prove some of the verification
conditions. It will also require a certain amount of

knowledge about the problem domain on which the program is
operating. Our aim has been to develop a system which a

programmer could use to verify a moderately complex program

by interactively proving the verification conditions and

extracting the required facts about the domain in the

process. We expect that it might take some time to

interactively verify a program in this way, possibly longer

than the time which would be taken to "debug" the program,

since a period of thought away from the terminal will
usually be required.

The system we have implemented verifies POP-2 programs

and is written in POP-2. (A brief description of this

language is given in Appendix 1.) It is basically an

implementation of the continuation induction proof method

described in Chapters 2 and 3, extended to allow inductive

assertions but not functional arguments. To use it the user

provides a POP-2 program together with its specifications as

a set of inclusion statements and/or inductive assertions.

The specifications can be written in terms of new primitive

functions declared by the user. The system then compiles

the specified program and attempts to verify each inclusion

Verifier Page 82

statement and assertion in turn. If the system -cannot prove

a particular verification condition it asks the user for

help. The user then has available a wide repertoire of

commands he can give in guiding the system to a proof; in

this mode the system acts as a proof-checker. In

particular, the user can provide or use facts about the new

primitive functions in the form of reduction and inference

rules. It is also possible to execute the specified program

with actual numerical data either to satisfy the sceptic or,

having verified the program, to actually use it.

The most complex programs we have verified using the

system are two sorting programs and a program to invert a

permutation "in place". The permutation example was done

after the rest of this work had been completed, and took

about two weeks to find and define the appropriate

concepts, give an adequate specification, and then verify

the program's correctness. We now describe the different

aspects of the verification system in more detail. The

reader should refer to the examples in Chapter 6 while

reading this description.

4.2 Input languages

The program to be verified must be written in a subset

of POP-2 as a normal function which may call other

functions. Each non-trivial function thus called must be

described by a separate inclusion statement. The subset of

Verifier Page 63

POP-2 used allows integers with their normal operations;

truthvalues; one-dimensional arrays of integers: and lists

with constructive operations but without destructive

updating.

The standard functions and variables allowed are: < >

=< >= _ /. + - (binary only) * div rem (not //) :: <> atom

back cons dest erase false front hd identfn jumpout nil not

null tl true undef.

The syntax words allowed are:() . , ; :: and

close else (but not inside LOOPIF) end function goto if
lambda loopif nonmac nonop or then vars.

This is quite a restriction on the language, but there

is still infinite scope for writing complex programs. An

extension is that epsilon expressions are allowed, having

the syntax (ANY <varlist>)<expression> or

<ANYARR <varlist>)<expression> (for arrays) where <varlist>

is either a word or a list of words. The syntax of the

language is also changed in the following way:

1) Every label must be preceded by a dollar sign ($)

2) Subscripted variables must be written e.g. A \ (I+J), and

arrays are declared differently (see later).

A virtual program is written as a POP-2 imperative

sequence using the same subset of the language, but

naturally without loops or recursion. If the inclusion

statement to which it belongs has more than one end-label,

each exit from the virtual program must have a GOTO

Verifier Page 84

<end-label> at it Virtual programs may also contain new

primitive functions as described in the next section; they

may refer to array sequences e.g. A<<I,I+J>>; they may

contain assignments to arrays e.g. (ANYARR B)P(B) -> A; and

they may contain assignments to array sequences e.g.

A<<1,J>> -> 8<<I+1,I+J». Note also that the verifier
assumes that the body of a function terminates immediately

before the output locals are put on the stack, so this must

be considered when writing virtual programs.

A specified program must then have the following form:

<function-definition *>;

<declaration-of-input-variables>;
<actual-parameter-list> -> INITARGS;

<inclusion-statement 1>;

<inclusion-statement n>;

The syntax of each inclusion statement is as follows:

<incl-statement> ::= ISTAT <incl-location>
VIRT <virtual-program>
UNDER <preconditions>
WRT [<identifier*>]

<incl-1ocation> ::= BODY (REC ?) <function-name> /
<begin-label> TO [<end-label-list>]

<end-label-list> ::= (<(3nd-label> (REC ?) *)

<virtual-program> ::= <imperative-sequence>

<preconditions> <logical-expression>

Examples of specified programs are given in Appendix 4.

Verifier Page 85

The program to be verified may also contain assertions

after labels at key points throughout the program. The

syntax of these statements is simply

<assertion> : := ASSERT <logical-expression>;

Every assertion except for an input assertion must be

preceded by a label. An output assertion is identified by

having the corresponding label OUT.

4.3 Definitions _ejpA rules

In giving the specifications for a program, new

primitive functions are usually required to express the

program's intention. This is specially important to enable

the verifier to deal with programs operating on new domains.

The verification system allows the user to declare such

functions by typing, for example, DECFUNS F 2 G 3: which

declares F to be a symbolic POP-2 function of 2 arguments

and G of 3. It also allows him to specify their properties

either as simple predicates or as reduction or inference

rules. Amongst these properties the definition of the

function is singled out; whilst the other properties may be

taken as given, for a proof to be complete, they must be

shown to follow from the definition. The functions *e have

used in verifying programs are SEQOF, EQSEQ, ISIN, PERM,

ORDERED, MEMB and FRINGE. The function application

SEQOF (A ,I ,J) is also written A<<I,J>>. The definitions of

these functions are given in Appendix 2.

Verifier Page 86

The simple properties which a function can be declared

to have are associativity, commutativity, transitivity and

whether it takes numerical values. These are specified

using the doublets ISASSOC, ISCOMM, ISTRANS and ISNUMFN

respectively. New boolean predicates like these can be

introduced by the user and this facility proved very useful

while developing the system. Functions can also be assigned

an identity and a zero, using the doublets IDENTOF and

ZEROOF.

We next describe the two sorts of rules which can be

used. These rules are defined using variables declared by,

e.g., DECLVARS X Y; The collection of rules defining and

describing a particular function constitutes, in effect, a

mini-theory of that function; all the rules relating to

this function are loaded with the verifier whenever a

program involving it is being verified. A list of all the

derived rules (rules or facts which are not definitions) is

given in Appendix 3; we have proved some but not all of

these using the interactive theorem prover. The description

of how these rules are actually used is deferred until the

next chapter.

4.3.1 Reduction rules

Reduction rules are used to define functions which are

not predicates, and correspond roughly to the antecedent

theorems of PLANNER or the demons of QA4. They are rules for

rewriting (or transforming) expressions into equivalent but

Verifier Page 87

"simpler" ones. In general, a rule is only applicable to an

expression if the subterms of an expression satisfy certain

restrictions. These restrictions are written as a list of

conjuncts:

<conjunct-list> [% <expression-seq ?> %]

<expression-seq> <expression> (,<expression> ?*)

Reduction rules are then defined by:

<reduction-rule> ::_ (WHEN <conjunct-list>, ?)
<expression> __> <expression>

For example, integer division which is treated by the

algebra system as a user-defined function, has some of its
properties given by the following rules:

WHEN [% 0 =< X, X<Y%] , X DIV Y =_> 0;
WHEN [% X>=Y, Y>O %], X DIV Y =_> 1+(X-Y)DIV Y;
X DIV I =_> X ;
(X*Y)DIV (X*Z) =_> Y DIV Z ;

WHEN [% X REM Y = 0 %], (X DIV Y)*Y =_> X;

The first two of these constitute the definition of division

when restricted to the non-negative integers.

4.3.2 Inference rules

Inference rules are used to define and give properties

to predicates; they correspond to the consequent theorems

of PLANNER or the goal class rules of QA4. They are

inference rules in the sense that if their hypotheses are

true then their conclusion must also be true, but they are

always used in a top-down manner: to prove the conclusion,

Verifier
Page 88

try to prove the hypotheses. Inference rules are defined

by:

<inference-rule> ::= IR <rulename>
<expression> <=_ <conjunct-list>

<rulename> :: = <identifier>.

Two typical inference rules are:

IR OR01
ORDERED (A<<I , J>>) <_= 1% I>=J %]

IR ORD2
ORDERED (A<<I ,J>>)
<=_ [% I<J, A\I<A\(I+1), OROEREO(A<<I+1,J>>) %]:

Inference rules are given names so they can be referred to

when using them interactively. Note that we have explicitly

written "if and only if" definitions as two or more separate

implications in an equivalent but heuristically more useful

way. Thus instead of writing the rule

ORDERED (A<<I ,J») <_> I>=J
OR A\I -< A\(I+1)

& OROERED(A<<I+1,J>>)

we write the four equivalent rules

ORDERED (A<<I, J>>)

ORDERED (A<<I , J>>)

A\I=<A\(I+1)

[% I>=J %]

I<J, A\I=<A\(I+1),
ORDERED (A<<I+1 , J>>) %]

[%(EX "J")(I<J & ORDERED(A<<I,J>>))%]

OROERED(A<<I,J>>) <__ [% I-1<J, OROERED(A<<I-1,JW)%] .

Notice also that we have used recursion in writing both the

definitions and properties of most new functions. This was

done to make them more immediately applicable to the

Verifier Page 89

theorems produced by the verification generator. However

definitions using quantifiers can also be used, and in fact

we have used both the recursive and non-recursive

definitions of ordered to prove the two sorting programs

correct. The alternative definition was expressed as the

two inference rules:

ORDERED (A<<I , J>>)
<_= [% (FA U)(I=<U & U<J =>> A\U=<A\(U+1)) %]

A\U =< A\(U+1)
<__ (% (EX [I J])(I=<U & U<J & ORDERED(A<<I,J>>)) %]

Using this definition the proofs required slightly more user

intervention since the system does not automatically invoke

the proof by cases which corresponds to the recursive

definition. However, because fewer non-recursive rules are

required to express the same properties as several recursive

rules we are currently modifying the system so that they can

be used more easily.

4.4 Verification condition genera or

As stated above, the verifier is basically an

implementation of continuation induction extended to allow

inductive assertions. Since the POP-2 user has access to

the stack, this is added to the machine state as an

additional component. When the specified program is

"compiled", a list of all the inclusion statements is

formed. The user can then ask either for all of them or for

a particular one to be verified. An attempt is made to

Verifier Page 90

actually prove the verification conditions generated from

each inclusion statement before starting on the next one.

After verifying the inclusion statements, each assertion

present is verified in turn as described in Section 3.3.

To compare two states s1 and s2, found by running an

actual program and a virtual program, the verifier has to

prove a theorem of the form

pc(sl) & pc(s2) _> sv(sl) sv(s2)

where pc is the path condition and sv is the state vector.
The algorithm it uses to do this is as follows:
1) If for each variable v, sv(s1)(v) is identical to

sv(s2)(v), then exit with success.

2) Otherwise, if there exists a conjunct c in pc(s2) such

that pc(sl) => NOT c, then exit with success.

3) Otherwise try to prove that for each variable v,

sv(sl)(v) C sv(s2)(v).
In the successful cases the system also checks that the two

programs terminated at the same end point and that the

stacks are equal. If the proof fails, the system gives an

appropriate message, and the user can direct the theorem

prover to work interactively on either 2) or 3). However if

the theorem is clearly false, an error in the program or its

specifications is indicated. The error can be located by

observing the path condition of the actual program which

caused the error to appear.

Verifier Page 91

It is also possible to make the system generate

verification conditions without trying to prove them. More

usefully, the user can specify that no proofs should be

attempted at conditionals during symbolic execution.

Although this may lead to unnecessary branches of the

computation tree being generated the resulting theorems are

invariably easy to prove; moreover, especially in cases

where there are no conditionals in the virtual programs,

some processing time will be saved. The user can also

choose whether to apply rule 3 or 4 (of Section 2.4.1) when

proving inclusion of epsilon expressions; rule 4 is the

default case.

Output from the verifier can be sent in varying degrees

of detail either to disc or to the terminal. A record of

any interactive proofs is always saved on disc, and at the

end of verifying a program the user can save any unproved

verification conditions on disc for later analysis.

The most significant aspect of the way verification

conditions are generated is the use made of the normal POP-2

compiler and run-time system. In fact we have used these

exclusively and have written neither our own parser nor our

own interpreter. All the control aspects of symbolic

execution (statement sequencing, jumps, procedure entries

and exits) are handled by the normal run-time system. Thus

any correctness results proved are true with respect to the

actual implementation of the language, rather than with

respect to some abstract definition of it. This has the

Verifier Page 92

curious consequence that even if there are errors in the

language implementation (with respect to its definition),

programs verified using that implementation will always run

correctly on it. Moreover it enables programs using

non-standard language features (such as escapes) to be

verified without having to give abstract definitions of

these features beforehand. The disadvantage is that there

is no guarantee that programs verified on one implementation

of the language will run correctly on another.

4.5 implementation

4.5.1 Summary

The system is implemented in POP-2 and runs on a POP-10

(with a KA -10 CPU). When the system is loaded together with

all the inference and reduction rules it occupies about 47K

36-bit words. The breakdown of this into the system

components is as follows:

POP-2 system 14 K

Algebra system 12 K

Verification condition generator 5 K

Theorem prover 6 K

Inference and reduction rules 10 K

Total 47 K

Normally when using the system we only compile those rules

involving the functions occurring in the particular example

Verifier Page 93

being studied. Note also that a list cell in POP-2 requires

3 POP-10 words. The system spends most of its time in

algebraic simplification and matching.

In the remainder of this section we shall describe the

implementation of the verification condition generator in

more detail. The key to implementing the proof procedure

described in Figure 2.3 by using the normal run time system

is the use of recursive coroutines. One coroutine is the

actual (or virtual) program being symbolically executed;

the other is a recursive function called MONITOR which

actually controls the symbolic execution. Control and

information is passed between these two coroutines by a

function SWAP of one argument and one result - a message -
which uses a global saved state called STATE for resuming a

coroutine. Since there are only the two coroutines neither

this saved state nor, equivalently, the name of the

coroutine need to be given as an argument to SWAP.

4.5.2 MONITOR

MONITOR is the function which actually simulates the

functions Exact and Ex-virt of Figure 2.3. It is resumed

whenever the actual (or virtual) program reaches a label or

a conditional; the other cases are handled by the normal

run-time system. A slightly simplified, descriptive

definition of MONITOR is shown in Figure 4.1. The only

component of the state which needs to be given to MONITOR is

the path condition as the others are again all held

Verifier Page 94

implicitly by the run-time system. At the start of an

inclusion statement calling SWAP with TRUE or FALSE runs the

virtual or actual program respectively. HYPMOOE is
initially FALSE, and CURINCLSTAT is initially the inclusion

statement being verified. Notice how closely MONITOR

corresponds to the functions in Figure 2.1. The main

difference is that it only calls itself recursively at

conditionals. The advantage of writing the function
recursively is that the stack of branch points is maintained

automatically as was suggested by Stansfield (1972).

The extension to handle inductive assertions is done

within the same framework. Assertions are stored as

expressions and are associated with the labels at which they

occur. Some extra cases are added to MONITOR and OOLABEL as

a label may now have an assertion. The procedure given in

Section 3.3 is then followed in a straightforward fashion.

Verifier Page 95

FUNCTION MONITOR MESS PATHCOND HYPMODE => STATES:
VARS RETFLAG;
LOOP:

IF ATOM(MESS) THEN SWAP(MESS)->MESS
ELSEIF HD(MESS)="COND" THEN

DOCOND(HD(TL(MESS)),PATHCOND)->STATES; RETURN
ELSEIF HD(MESS)="LABEL" THEN

DOLABEL(HD(TL(MESS)),PATHCOND)->RETFLAG;
IF RETFLAG="RETURN" THEN

UNITSET(PATHCOND::TL(MESS))->STATES; RETURN
ELSE SWAP(RETFLAG)->MESS CLOSE

ELSE, ERROR () CLOSE:
GOTO LOOP

END:

FUNCTION D000ND TEST PATHCOND => STATES;
VARS SAVSTATE;

IF "PATHCOND implies TEST" THEN
MONITOR(1,PATHCOND,HYPMODE)->STATES; RETURN

ELSEIF "PATHCOND implies NOT(TEST)" THEN
MONITOR(O,PATHCOND,HYPMODE)->STATES: RETURN

CLOSE;
STATE->SAVSTATE;
MONITOR(1, TEST & PATHCOND, HYPMODE) -> S1;
SAVSTATE->STATE:
MONITOR(O, NOT(TEST) & PATHCOND, HYPMODE) -> S2;
UNION(SI,S2) -> STATES:

END;

FUNCTION DOLABEL LABEL PATHCOND => RETFLAG;
VARS I;

IF ISEXIT(LABEL,CURINCLSTAT) THEN
IF NOT(HYPMODE) THEN "RETURN"->RETFLAG; RETURN CLOSE;
FALSE->HYPMODE;
SAVINCLSTAT->CURINCLSTAT;
IF "LABEL is a recursive endpoint" THEN

FALSE->RETFLAG; RETURN
ELSEIF ISEXIT(LABEL,CURINCLSTAT) THEN

"RETURN"->RETFLAG; RETURN
CLOSE

CLOSE:
IF ISSTART(LABEL) THEN -> I;

COMMENT 'LABEL is the start of inclusion statement I*:
CURINCLSTAT->SAVINCLSTAT: I->CURINCLSTAT;
"check preconditions of CURINCLSTAT":
TRUE->HYPMODE;
TRUE->RETFLAG

ELSE FALSE->RETFLAG CLOSE
END

Figure 4.1 - MONITOR

Verifier Page 96

4.5.3 Source program transformations

Compiling a specified program is actually done in two

passes. In the first pass variables are declared and a

record is made of all the inclusion statements. In the

second pass new labels are inserted at the beginning and end

of every function body, and the actual program alone is
compiled by the POP-2 compiler after the transformations

shown in Figure 4.2 are made using macros. These changes

are necessary to enable the program to communicate with

MONITOR. The conditional statement in parentheses is only

inserted if the label is the start label of an inclusion

statement.

Before After

L: <program> L: SWAP([%"LABEL",L,current-state-vector%])
-> RESULT:

(IF RESULT THEN
<corresponding-virtual-program>

CLOSE:)
<program>

IF <expr> IF SWAP([%"COND",<expr>%])
THEN THEN ...

L: LOOPIF <expr> L: IF <expr> THEN
THEN ..

CLOSE GOTO L; CLOSE

Figure 4.2 - Program transformations

Verifier Page 97

4.6 Discussion

The verification condition generator, at least when

restricted to proofs by inductive assertions, is very

similiar to Deutsch's and contrasts with those of Igarashi,

London and Luckham, and the use of LCF. The difference is
that our system uses the operational semantics of the

language rather than an axiomatic definition. Using

continuation induction enables this approach to be applied

to a wider range of programs than it was previously.

Moreover, using the acc, chng and xchng functions on arrays

and assignments to array variables avoids a proliferation of

cases as had been previously observed.

Also , using forward evaluation to construct

verification conditions allows the verification conditions

to be simplified before they reach the theorem prover.

While our system does not do as much simplification as

Deutsch's - in particular it does not treat equality tests

as assignments - it does simplify all expressions as they

are constructed, thereby saving work later, and sometimes

cutting off impossible computation paths.

Practically, the use of an actual language system has

had both advantages and disadvantages: it saves some work

of course, but it has occasionally been awkward conforming

to POP-2 syntax and keeping variables distinct.

Verifier Page 98

The verification systems most similiar to ours are (1)

the one being developed by Good, London and Bledsoe (1974)

and (ii) the one being developed at Stanford (von Henke and

Luckham 1974, Suzuki 1974). Both these systems support the

use of abstraction in writing specifications and have the

ability to easily add new knowledge about the abstract,

functions being used. The main differences from our system

is that they both use an axiomatic definition of their

programming language (PASCAL) for generating verification
conditions and only use the inductive assertion method. The

simplifier and theorem prover of the Stanford system is
completely automatic, whereas our system and Good's rely on

interactive theorem proving.

There is also a difference in the way the systems are

used. In each system unsuccessful proofs are used to

indicate which properties of the new (abstract) functions
are required. However, whereas we isolate certain basic

properties as definitions and (attempt to) prove the other

properties from them, the Stanford group ensure that all
their properties are consistent by observing that they have

a model. It is not clear how Good et al. ensure that their
properties are consistent.

Page 99

Chapter 5. ALGEBRAIC MANIPULATION AND INFERENCE

In this chapter we shall describe the way we represent

and manipulate symbolic expressions, how the automatic

theorem prover works, what interactive commands are

provided, and how they are used.

5.1 Algebraic man_ioulation

At the heart of the theorem prover and the verification

condition generator lies a general purpose algebra system,

or more accurately, a symbolic manipulation system. This

system is, in many ways, similar to those used by King and

Deutsch, however, in other ways, it is rather more general.

The system is used to construct and manipulate symbolic

expressions in the domain of integers and also in other

domains e.g. that of lists. General routines for applying

properties of operators are used to put expressions into a

canonical form whenever possible. It is easy to add new

functions together with brief descriptions of their

properties which can then be used to simplify expressions

involving the new functions. The system also contains

routines for simplifying relational expressions and

conjunctions of relational expressions, for applying

substitutions, and for matching one expression against

another. Each of these aspects is discussed in turn.

Inference Page 100

We start by giving some definitions. Two expressions,

el and e2, are said to be identical, written el==e2, if they

are the same string of symbols or, if presented in abstract

syntax, they have exactly the same form. That is they are

syntactically the same. They are said to be eg valent (or

equal), written el=e2, if for any assignment of values (in
the domain) to their (free) variables they have the same

value in the domain. That is they are semantically the

same. Thus a+b and b+a are equivalent but not identical.
An L- anonical form for a class of expressions C is a

computable mapping f:C->C such that:

1) for all a in C, f(e)=e, and

2) for all el,e2 in C such that el=e2, f (e1)==f (e2).
Often the function f is implicit, and we simply talk about

canonical forms: an expression e is said to be in canonical

form if f(e)==e. A normal form is a weaker concept

applicable to algebraic expressions which maps all
expressions equivalent to zero into zero, though the

distinction between normal and canonical forms is often

ignored. Simplification is a still weaker operation which

transforms an expression into an equivalent (simpler)

expression which may or not be in normal form.

Canonical forms are important in both algebraic

manipulation and theorem proving, since if a canonical form

exists, and all expressions are put into it, then two

expressions are equivalent if and only if they are

identical. Being able to detect equivalence immediately in

this way is a big help in both further simplification and

Inference Page 101

deduction. Normal f arms are useful because expressions

which are equivalent to zero are always reduced to zero,

thereby simplifying subsequent processing. Moses (1971)

reviews known results concerning the existence of normal

(called zero-equivalence) and canonical forms for various

classes of algebraic expressions.

5.1.1 expressions and simplification

Our system deals with a simple but general class of

expressions. The range of values, or domain, of these

expressions can vary, depending on the application; they

could be truth-values, numbers, lists, arrays or functions.

Members of the domain are called specific items (or

constants). The expressions have the following abstract

syntax:

An expression is either a primitive expression
or a function application
or a au ntified express ian.

A primitive expression is either a specific ;LIM
or a variable.

A function application has a funname which is a word
and a funargs which is a expression-list.

A auantif,ied express czn has a bdvar which is a variable
and a quantifier which is FA, EX or EPS
and a body which is an expression.

Internally, specific items represent themselves,

variables are represented by words, function applications

are represented by lists whose head is the funname and whose

tail is the funargs, and quantifiers are represented by a

three element list containing the quantifier, bdvar and body

Inference Page 102

respectively. Associative functions are variadic, so both

+(1,2) and +(1,2,3) could be expressions. Every function

has two variants: a symbolic function which, for addition,
returns +(a,b) as the value of a+b, and the original
(specific) function, possibly modified to take a variable
number of arguments, which returns 3 as the value of 1+2.

All expressions are automatically simplified as they

are constructed. This simplification aids later processing

by increasing the number of equivalent expressions which are

also identical; for the class of multivariate polynomials

over the integers, the resulting simplified form is actually
a canonical form. To simplify an expression the following
steps are performed in order:

1) Primitive and quantified expressions are left unchanged.

2) Otherwise the expression is a function application.
the function's zero is in the argument list it is returned

as the result.
3) If all the arguments are specific items, the original
function is applied to them and the result returned as the

simplified expression.

4) If the function distributes over any other functions the

appropriate transformation is applied, recursively

simplifying the inner terms. The two functions considered

in this category are multiplication (a*(b+c) ==> a*b+a*c),

and disjunction ((a&b) v c =_> (avb) & (avc)).

5) If the (possibly new) function is associative, all
applications of this function as arguments are brought to

the top level. For example, +(a,+(b,c)) simplifies to

Inference Page 103

+(a,b,c). Note that this cannot undo steps 1) to 4) as all

the inner terms have already been simplified.

6) Next, if the function is commutative, its arguments are

sorted into lexicographic order (with numbers before words

before lists, and words ordered as they were declared)

ignoring constant factors of products when simplifying sums

and exponents of powers when simplifying products, and

combining arguments whenever possible. An example should

make this clear: a*c+a"2+b+3*a +2+5*a reduces to

2+8*a+a"2+b+a*c.

7) If the function is associative and not commutative

another pass is made through the expression combining terms

whenever possible.

8) Finally, any occurences of the identity ae removed, and

any expressions of the form f(a) where f is associative are

simplified to a.

With the exception of only two functions, a function's

symbolic variant merely constructs a new term which is then

handed to the simplifier described above. The exceptions

are subtraction, which immediately simplifies a-b to

a+(-1)*b (unary minus does not exist at all), and

exponentiation which performs the following simplifications:

x^0==>1, 1^x==>1, x^1==>x, (x"y)'z==>x"(Y*z) and the

expansion of sums raised to an integer power.

With these additions, the canonical form produced for

multivariate polynomials can be seen to be basically a sum

of products. The uniqueness of the resulting form for this

Inference Page 104

class follows, since inner terms have already been

simplified, redundant summands, factors and powers have been

removed, like terms combined, and the terms of sums and

products put into a canonical order.

The following points about this canonical form are

perhaps worth noting. First, unlike Deutsch's form, sums

and products do not always contain a constant term. While

this makes the simplification algorithm slightly more

complex, we found it considerably easier to write the

matcher using this representation. Secondly, when adding

two sums together, for instance, the order of summands in
the arguments is ignored; this results in an 0(mn) rather

than an 0(m +n) algorithm, but since the terms which occur in

practice are usually very short, this does not slow down the

simplification algorithm appreciably. Moreover, after
applying substitutions to expressions, it allows the same

simplification routine to be used in ensuring that the

result is still in the "simplified" form.

Finally, note that there was nothing special about

addition and multiplication in the above description - they

were merely operations with particular properties and

identities - and the simplification process works on other

functions as well, for example, conjunction and disjunction.

While the user of the algebra system can always declare

new functions together with their properties, certain

functions are declared for him initially. The initialized

functions are +, *, - (subtraction), (exponentiation), div

Inference Page 105

(integer division) and rem (remainder). The functions div

and rem are treated as any other user-declared functions

would be; in their case the simplifier knows nothing about

them. However, many of their properties are given as rules

which are used by the theorem prover and are described in
the discussion of reduction rules. For use in programs

operating on lists, the functions front, back, dons, hd, tl,

dest, concat and fringe are also declared initially.

An array is,initially represented by a word (its name).

The array's bounds are kept, in its "property list" (see

below). Accessing an array is done using the function acc

(acc(a,i)=a[i]). Updating the array is done using the

function chng; after the assignment X->A[I] to the array a

its value is chng(x,i,a). This basic method of representing

operations on arrays was originally proposed by McCarthy,

and was used by Waldinger and Levitt. The concept of a

sequence has proved important when describing programs which

operate on arrays. A sequence is just a subarray of an

array; the function seqof is used to construct them:

seqof(a,i,j) (= a<<i,j>>) is the sequence a[i],
a[i+1],...,a[j-1], a[j].

It remains to describe how the information about each

function or word is stored. Conceptually, associated with

each word ever seen by the system, there is a property list.
For instance "*" might have the property list

[ISFUNCTION TRUE ISASSOC TRUE ISCOMM TRUE DISTRIBOVER "+"

IDENTITY 1 SYMBOLICVERSION "**" ...],

Inference Page 106

where the value of property OISTRIBOVER indicates that *

distributes over +, and ** is the symbolic,

term-constructing variant of *. For efficiency, this

property list is implemented as a record having a finite
number of components - all immediately accessible - and is
kept in the word's MEANING. The first component of this
record contains a bit-string representing the values of

various boolean-valued properties. Thus new predicates can

easily be declared and associated with words in the system.

5.1.2 Logical -expression

A logical expression. is simply an expression whose

values are truth-values. Two important subclasses of the

logical expressions are the literals which do not contain

any logical connectives other than NOT, and the relational
expressions which are constructed from the operators

>, >=, <, and =<. We shall use the word "term" when

referring to an expression which is not a logical
expression.

All logical expressions (with two exceptions noted

later) are simplified as they are constructed. For

relational expressions in integer arithmetic the simplified

form of equivalent expressions is unique, and is hence a

canonical form. The simplification process for relational

expressions is as follows:

1) If both arguments of the relation are numbers, the truth

value is simply evaluated.

Inference Page 107

2) Otherwise the transformations a>b => a>=b+1, and a<b =>

a<=b-1 are applied (we are assuming integer arithmetic

throughout).

3) The expression is then put into the form e op n, where op

is one of >_, <_, = or /_, n is a number, and e is neither a

number nor a sum containing a numerical summand. At this

stage we would have reduced a>b, through a>=b-1 into a-b>=1,

and b<a through b<=a-1 into b-a<=-1; to put these two

equivalent expressions into the same form, we do the

following:

4) Let revop denote the operator which satisfies e revop n

if and only if n op e. Then, if e is a product whose

numerical factor is less than zero, return -e revop -n.

Otherwise, if e is a sum, and the first summand of -e

precedes the first summand of e (in the ordering described

for commutative functions), then again return -e revop -n.

Otherwise leave the expression unchanged. Since a precedes

b in this ordering, both the above expressions are reduced

to a-b>=1.

While this procedure sounds complex, it is important for

simplifying conjunctions that relational expressions should

be in canonical form. The relational operators can also

take subarrays as arguments: the expression a <<i,k >> >= p

is equivalent to (FA j)(i=<j=<k=>a[k]>=p). In this case the

only simplification done is to possibly reverse the order of

the arguments. Reasoning about such expressions is then

done using inference rules. For computing in domains other

than integer arithmetic, some other predicates are required.

Inference page 108

For lists, atom, null and memb are provided initially.

We come now to the logical operators. Conjunctions and

disjunctions (and literals which are not relational

expressions) are simplified by the same routines as

arithmetic expressions. They are both associative,

commutative functions having a zero and an identity. We

keep expressions in conjunctive normal form, so we define v

to distribute over &. The main simplifications however

result from the merging done when forming the conjunction of

two expressions. (The ordering used ensures that relational

expressions with the same left-hand side are brought

together.) Clearly P & NOT P =_> false, and P & P =_> P, but

for relational expressions the transformations shown in

Figure 5.1 take place as well.

e=m & e=n =_> false if m/=n,
e=m & e/=m =_> false
e=m & e>=n =_> false if m<n
e=m & e=<n =_> false if m>n
e=m & e op n ==> e=m otherwise

e/=m & e>=n ==> e>=n if m<n
e/=m & e=<n ==> e=<n if m>n
e/=m & e>=m ==> a>=m+1 (for integers)
e/=m & e=<m ==> e=<m-1 (for integers)
e>=m & e>=n ==> e>=m if m>=n
e>=m & e=<m ==> e=m
e>=m & e=<n ==> false if m<n

e=<m & e=<n ==> e=<m if m=<n

Figure 5.1 - Conjunction transformations

These simple rules, used with the general purpose simplifier

described earlier, enable conjunctions of relational

expressions to be put into their simplest form, e.g. a>=b &

Inference Page 109

a>b & a-b/=1 =_> a-b>=2. King and Deutsch, with their more

specialised systems, had to write separate routines to

achieve this. Two remaining rules are that a & (a v b) ==>

a, and a v (a & b) ==> a.

The operators =>> (implication) and <_> (equivalence)

are also available, but no simplification is done when they

are applied. We will describe later how the theorem prover

deals with them. The operation NOT performs the following
simplifications when applied: NOT true ==> false, NOT false
==> true, NOT NOT p ==> p, NOT (a & b) ==> (NOT a) v (NOT

b), NOT(a v b) __> (NOT a) & (NOT b), NOT(a =>> b) ==> a &

(NOT b), / NOT (a <=> b) ==> (a v b) & (NOT a v NOT b),.

NOT (FA x)a ==> (EX x)NOT a, and NOT (EX x)a

(FA x)NOT a. It also simplifies relational expressions when

applied to them, e.g. NOT (a <b) ==> a=<b ==> a-b=<0.

The quantifiers which can be used are FA, EX, ANY and

ANYARR. ANY and ANYARR are variants of the epsilon operator

EPS: ANYARR is used for arrays, and ANY for other kinds of

objects as described previously. Again these expressions

are not simplified as they are constructed, but only by the

theorem prover.

Inference Page 110

5.2 Pattern matching

Clearly, any rule-driven system requires some sort of

pattern matcher to control the application of rules, and

ours is no exception. However, a unification algorithm has

not been necessary, and we have only used a one-way pattern

matcher. The simple syntactic matcher we wrote initially
soon proved inadequate, and we then implemented a rather
sophisticated matcher which took into account the

associative, commutative and identity properties of the

functions with which we were dealing. Although slower, this
new matcher has proved invaluable in the subsequent

development of our theorem prover. The matcher is similar
to the QA4 matcher which operates on tuples and bags, but is
more general in that all variables are automatically

fragment variables" and that it knows about identities.

The matcher operates on the same class of expressions

as descibed above, with the exception that there are no

quantifiers. It assumes that all expressions are stored in

canonical form. An expression containing variables which

may be instantiated is called a pattern. A jubstitution is
a finite function mapping variables into expressions; each

substitution has a unique extension which maps patterns into

expressions. A Qne-way pattern matcher is a function

I: expressions x patterns -> substitution-sets

which satisfies

Inference Page 111

for all s in I(e,p), s(p)=e.

The equality in this condition is with respect to any laws

the functions of this class of expressions may satisfy. The

matcher is -complete if it produces all such substitutions
(ignoring the substitutions' effect on variables not

contained in p).

To explain how the algorithm works, suppose we are

trying to match f(s1,s2,...,sm) against f(t1,t2,,,.,tn)

where the latter term is the pattern containing the

variables to be instantiated and where a is the identity of

f (if it exists). If f is not associative, we match s1

against t1, and extend the resulting substitution (if any)

by recursively matching f(s2,.,.,sm) against f(t2,...tn).

However, if f is associative, we could match any of s1,

f(sl,s2), ..., f(sl,.,.,sm) against ti, and extend the

resulting substitution by matching f (s2, ,,,sm), f (s3, ,,,sm),

,.,, f() respectively against f(t2,,,.tn). f() is treated as

the identity a of f if one exists; f(s) is considered to be

equal to s. If f is commutative as well, we could match any

of s1,s2,. , ,sm. f(sl,s2), f(sl,s3), ..., f (sl,...sm)
against ti, and the remainder of the term against

f(t2,...tn). This case essentially involves finding all the

subbags of a bag. In all these cases matching s1, say,

against t1 may return more than one substitution, and each

of these will be used in turn when matching the remainder of

the terms. Notice that the operations performed in the

three cases are the same, only they are applied 'to the

Inference Page 1 12

members of the successively larger sets {s1}, {e, s1,

f(sl,s2), ..., f(s1,...sm)}, and {e, s1, s2, ..., sm,

f(s1,s2), f(s1, s3), ..., f(s1,...,sm)}. (Actually these are

sets of pairs; the first element of each pair is shown, and

the second is the list of remaining arguments of the term.)

We consider this method, treating the above three cases

uniformly but generating a different set in each case, the

most interesting aspect of the pattern matcher.

The algorithm is clearly complete with respect to the

associative, commutative and identity laws. For if

f(s1,s2,...sm) does match f(t1,t2,...,tn) then t1 will

eventually be compared with the subterm it matches, as there

is no cancellation, and the remainder of the match will be

found similjarly.

The actual matcher implements the above algorithm in a

fairly straight-forward way. It generates the set of all

the substitutions at once, rather than producing them one at

a time. Since the set is usually quite small in our

application, and since backtracking is quite expensive in

POP-2, this method seems acceptably efficient. The POP-2

listing of the matcher is shown in Appendix 5. It uses a

library program [LIB ASSOC] to represent substitutions by

association sets, so that ASSOC(x,sub) = sub(x). The actual

matcher also allows patterns to contain function variables

which can be matched only against function constants.

Inference Page 113

Figure 5.2 shows some examples of the matcher's

behaviour: a and b are constants, x, y and z are variables.

Notice that 0 matches x*y in two ways since I is the

multiplicative identity, but 0 will not match 2*x as the

matcher knows nothing about the multiplicative properties of

0. More generally, the matcher does not know anything about

factorization, so even 2*a*b+4*a*c will not match 2*x*y. The

fact that the matcher does not know about cancellation

occasionally prevents potential matches such as

f(a-1,b+1)+a+b against f(x,y)+x+y from being found.

Expression Pattern Matches

a x { (x->a) }

a x+y { (x->a, y->O),
(x->0, y->a) }

0 x*y { (x->0, y->1),
(x->1, y->0) }

0

aft x+y { (x->a*b, y->0)
(x->0, y->a*b) }

a+b x *y { I

a+b x+y*z { (x->a, y->b, z->1),
(x->a, y->1, z->b),
(x->b, y->a, z->1),
(x->b, y->1, z->a),
(x->a+b, y->0, z->1),
(x->a+b, y->l, z->0) }

Figure 5.2 - Output of matcher

Inference Page 114

5.3 Automatic theorem proving

The automatic theorem prover is not intended to be a

powerful, general-purpose theorem prover. Rather, it is
designed to prove the simpler theorems which arise as

verification conditions, leaving the more difficult ones to

be proved interactively. Thus, it can prove all theorems

depending only on propositional logic, and many which depend

on properties of relational expressions, transitivity,

reduction rules, and short sequences of inference rules.
Proofs which use case-analysis, instantiations, longer

sequences of inferences and so on must be done

interactively.

The theorem prover can best be seen as having two

phases. In the first (deterministic) phase a set of rewrite

rules converts the theorem into a set of formulae of the

form h1 & h2 & h3 & ... & hn => c where all the hi and c are

literals (or quantified expressions). During this process

any equalities in the hypotheses are eliminated by

substituting one term for another throughout the formula.

In the second phase, some more heuristic methods are applied

to each of these formulae. In both phases the simplication

routines described in Section 5.1 are used continually to

simplify new conjunctions, implicit conjunctions and all

other new expressions.

Inference Page 115

5.3.1 Rewriting phase

During this phase the theorem to be proved is
simplified by successively applying rewrite rules until no

more are applicable. To describe these rules we use a

sequent calculus, writing hl,...,hn -> c to stand for the

formula h1&...&hn => c. Now, letting A be a set of
expressions (which represents their conjunction), and p, q

and r be expressions, we have the following rules:

1a) A->p and A->q 1b) p,q,A->r

A->p&q p&q,A->r

2a) -1 p,A,->q 2b) p,A->r and q,A->r

A->pvq pvq,A->r

3a) p ,A->q 3b) -, p,A->r and q,A->r -------------------
A->p=>q p=>q,A->r

4a) p,A->q and q,A->p 4b) p,q,A->r and p, q,A->r ---------------- ----------------------
A -> p<=>q p<=>q, A -> r

5a) A->p(xO) 5b) p(x0)->r ------------ ------------
A->(FA x)p(x) (EX x)p(x)->r

6) q(xO),A -> p(xO) ---------- ----
A->p((EPS x)q(x))

7) p(t1,...,tn),A -> p(sl,...,sn) ---- - ---- - --------- - ---------
-7p(s1,...,sn),A -> -lp(t1,...,tn)

Notes

1) These rules should be read: to prove the formula below

the line it suffices to prove the formula(e) above the line.

2) The system differs from more common sequent calculi in

that the consequent is an expression rather than a

Inference Page 116

disjunction of expressions.

3) In applying rule 2a) we heuristically choose the "less

interesting" of p and q to negate on the grounds that there

is more likely to be an inference rule applicable to q than

one applicable to p. An expression is assumed to be

"interesting" if its top-level function is one of the

newly-declared functions EQSEQ, ISIN, DRDERED, etc. If both

expressions are interesting or neither are, then p or q is

chosen arbitrarily.

4) The variable xO in rules 5a), 5b) and 6) must not occur

in the formula below the line.

5) The use of the two rules

8a) A -> p(t) 8b) p(t) -> r

A->(EX x)p(x) (FA x)p(x)->r

will be described later. Briefly, an attempt is made in

stage two to instantiate the variable x of rule 8a), and the

user can also apply the two rules directly.
6) The following additional rule is also applied whenever

possible during this stage. It removes equalities by

replacing variables equal to a term by that term.

9) A(t) -> r(t)
x=t,A(x) -> r(x)

The system has a limited equation solver which enables this

rule to be applied with expressions such as 2*a+b+3*c=4. The

automatic application of this rule can be suppressed

interactively if desired. A more general substitution rule

Inference Page 117

can also be applied interactively and will be described

later.
7) Formulae whose consequents are inclusions involving

epsilon expressions are simplified using the rules described

in Section 2.4.1.

5.3.2 Heuristic phase

The original theorem has now been reduced to a set of
formulae of the form hl & ... & hn => c where each hi and c

is either a literal or a quantified expression. Each of

these formulae is now proved separately. To prove such a

formula, each of the following methods is applied in turn.

5.3.2.1 Simplification:

This routine test whether h 1&...&hn implies c as a

tautology or by simple properties of the relational
operators. It uses the routine described earlier for taking

conjunctions of expressions. If the hypothesis hi&...fhn is
false (i.e. simplifies to false) then the formula is valid;
if h l&...&hn & c is false the formula is invalid: and if
hi&...&hn&c equals hi&...&hn or hi&...&hn & NOT c is false,
the formula is again valid. These tests include the cases

that c or NOT c is one of the hi. They suffice td show, for
example, that x>=1 => x>=O, and that x=<10 => x/=20.

Inference Page 118

5.3.2.2 seduction:

If c is an equality, tl=t2, both terms t1 and t2 are

transformed separately using any applicable reduction rules.

If the results are identical the formula is proved;

otherwise we proceed to the next step. The transformation

is done by attempting to apply each reduction rule in turn

at the top level. If one is applicable the procedure is
repeated with the new term. If, and only if, none of the

rules are applicable, each of the term's subterms is
transformed using the same procedure recursively. If one of

the subterms has been changed, the procedure starts again,

this time applying rules at the top level only. No record

is kept (at present) of which reduction rules have been

applied. The "simplification" routine just described is
used to check that the preconditions of the rule being

applied are satisfied. As an example, using the rules of

Section 4.3.1, (a*b) div b is transformed via a div I to a.

To prevent impossible applications being attempted,

reduction rules are indexed by the top-level function of

their left-hand side as they are constructed, and only the

rules associated with the top-level function of the current

term are considered.

5.3.2.3 Instantiation:

If c is of the form (EX x1,x2,...)p(x1,x2,...) we

attempt to find instantiations tl,t2,... for the variables

xl,x2,... so that p(t1,t2,...) follows from the hypotheses,

that is we attempt to apply rule 6a) above. p(xl,x2,...) is

Inference Page 119

typically a conjunction, and we start by forming a list of

its "interesting" conjuncts (as defined above); if this is

empty we use the list of all its conjunctions. We then form

the set of all substitutions produced by matching each

"interesting" term against each each hi, and for each

substitution s we recursively attempt to prove that
h1&...&hn implies s(p(xl,X2,...)) . If we have to match

relational expressions they are first put into the form

t op 0 since, for example, a -3>=O matches x>=0 but a>=3 does

not match x>=0. Transitivity is in the system as an

inference rule which requires such an instantiation to be

made for the intermediate term.

5.3.2.4 j,fergnce rules:

This is perhaps the most general method but is very

simple to describe; it is applied if all the previous

methods have failed. An inference rule is applied to a

formula by matching its conclusion against the conclusion,

c, of the formula to be proved. For each resulting
substitution, s, (provided c does not occur in s(hr)) the

theorem prover is called recursively to show that hl&...&hn

implies s(hr) where hr is the hypothesis of the rule. A

depth counter is incremented each time this is done to

prevent this search from going too deep. The heuristic that

the same rule should never be used twice on the same path is

also employed. This procedure is repeated for each

potentially applicable ink rence rule - the filtering is done

by applying the same indexing mechanism as before to the

Inference Page 120

conclusions of the rules - until one succeeds. Note that

each substitution resulting from the match is considered in

these last two methods whereas, when applying the reduction

rules, only one arbitrary substitution was used.

Thus it can be seen that the theorem prover is

essentially traversing an AND-OR search tree in a

depth-first manner. The AND-branches arise from the natural

deduction system of the first stage, and the OR-branches

arise from the choice of inference rules and from the choice

of substitutions when instantiating existentially quantified

variables and when applying inference rules. Each node on

this search tree is labelled by a list. The first element

of this list is an arbitrary constant: the successors of an

AND-node, [i ... J], are labelled [i ... j 1), [i ... j 21,

... respectively; the successors of an OR-node, [i ... J1,

are labelled [i ... j -1), [1 ..0 j -2], ... respectively.

This labelling is used when tracing the theorem prover and

by the interactive commands.

5.3.3 &n example

As an example of the theorem prover's behaviour, we

consider the proof of the formula

a>b+1 & b>c+3 => a>c

which is immediately "simplified" by the algebra system to

a-b>=2 & b-c>=4 => a-c>=1 .

The proof is by transitivity which is in the system as the

inference rule

Inference Page 121

f(x,z) <- istrans(f) & (EX y)(f(x,y) & f(y,z))
where f, x, y and z are all variables. The first phase of

the theorem prover leaves the formula unchanged, as do the

simplification, reduction and instantiation routines. After

attempting to apply other inference rules the transitivity
rule is eventually applied. Relational expressions are put

into the form t op 0 when they are being matched, so f(x,z)
is matched against a--c-1>=0, returning the instantiation
(x->a-c-1, z->O, f-> >=). Applying this to the hypotheses

of the rule yields the goal

a-b>=2 & b-c>=4 => istrans(>=) & (EX y)(a-c-1>=y & y>=O).

Now istrans is true by definition, and instantiating y

yields the two matches (y->a-b-2) and (y->b-c-4). The first
of these yields the goal a-c-1>=a -b-2 which simplifies to

b-c>= -1 which then follows by simplification from the

hypotheses.

5.4 Interactive theorem proving

If the automatic theorem prover fails to find a proof

it can ask the user for help. The user can then investigate

why the theorem prover failed and try to lead it to a proof

(as a proof-checker), or else abort the proof, all using the

commands described below. The user can also interrupt the

theorem prover while it is running if he desires, see what

it is doing, and either continue in interactive mode from

there or let it resume running. To use the interactive

facilities effectively it is necessary to have a general

Inference Page 122

idea of how the automatic theorem prover works and to have

available a list of all the relevant rules known to the

system.

5.4.1 Interactive commands

It is useful to divide the commands available into

three categories: informative, control and advice. The

informative commands are used to display the current theorem

being worked on, the top-level theorem, or the hypotheses or

conclusions of either of these. Since the whole power of

the POP-2 language is available while typing interactive

commands, any other aspects of the program's state can also

be examined; this ability has proved very useful while

developing the program. The control commands are used to

move around the AND-OR search space of the problem, and to

regulate the degree to which the theorem prover either runs

freely or under the user's control. The advice commands are

the most important in actually aiding the theorem prover to

find a proof; they are used to fill gaps in its knowledge

by adding hypotheses, axioms or lemmas, to narrow its search

space by eliminating alternatives, and to choose values for
variables to be instantiated. We now list the commands

available to the user. Each command or sequence of

commands, except for control commands and those marked with

an asterisk, is terminated by the user typing GOON.

Inference Page 123

5.4.1.1 In-formative

PRTHM: Prints the theorem currently being proved,

possibly a subgoal of the top-level theorem.

PPR(item); Prints the item in a readable format. The

item is normally one of HYPS, GOAL, TOPHYP, TOPGOAL or

CUNODE which refer respectively to the current

hypotheses and goal, the top-level hypothesis and goal,

and the label of the current node in the search tree.
TRACE n: A trace of the proof process, of

successively increasing detail, is printed on the

current output device by setting n to 0, 1 or 2.

5.4.1.2 Control

ASSUME; The current theorem is assumed valid, and is
saved on a global list, THMSPOST, to be proved later.

ASSUMENS: The same as ASSUME but the current theorem

is not saved for later.
ASSUMEAND; The current theorem is assumed valid, as are

FAIL;

all its brothers at the AND-node immediately above the

current node, and all these theorems are saved on

THMSPOST to be proved later.
The current theorem is assumed invalid, and

the theorem prover returns to the previous node.

FAILTO node; The theorem at node is assumed to be

invalid, and the theorem prover returns to the previous

node. The node must be higher up the search tree on

the current path; it is written as a list, e.g. [10 2

-4 1 -31.

Inference Page 124

FAILOR; The current theorem is assumed to be invalid

STEP:

GO;

as are all its brothers at the OR-node immediately

above the current node, and the theorem prover returns

to that node.

The theorem prover is forced into a

completely interactive mode; after each step it prints

its current position and goal and waits for a new

command from the user.

Cancels the STEP command, allowing the

theorem prover to run automatically again.

RESTART; A safety device: it allows the user to

start again with the top-level theorem.

5.4.1.3 Advice

LEMMA(hypotheses,conclusion,name);

Try to prove the conclusion from the hypotheses. If

successful, add it as a new inference rule with the

given name. For example,

LEMMA([% X REM 2 /= 0 %], (X-1)REM 2 = 0, "REM1");

RLEMMA(hypotheses,leftside,rightside);

Try to prove that the hypotheses imply the other two

expressions are equal. If successful, add the

corresponding new reduction rule.

AXIOM rule; Add the new rule to the present ones without

trying to prove it, but save it on THMSPOST to be

proved later.

Inference Page 125

DEDUCE expression;

Try to prove the logical expression from the current

hypotheses (HYPS) and then add it to them.

ADD expression; The logical expression is temporarily added

to the current hypotheses and the theorem that the

current hypotheses imply the expression is saved.

ADDNS expression; Like ADD but the theorem that the

current hypotheses imply the expression is not saved.

DEL expression; The expression is temporarily removed from

the current hypotheses.

USE rulename; The inference with the given name is applied

at the next opportunity, for example, USE REMI;

CASES expression-list; (*)

Each of the cases is successively assumed and

temporarily added to the current hypotheses. The cases

must be exhaustive with respect to the hypotheses. For

example, CASES [% X=<N-1, X=N %];

INTERM term; (*) Tries to prove both f(a,term) and

f(term,b) where the current goal is f (a ,b) and f is a

transitive operator.

LETEX(var,term); Assigns the term to the

existentially quantified variable var of the goal,

thereby implementing rule Be).

LETFA(var,term); Assuming one of the hypotheses

contains a universally quantified variable var,

instantiate var to term in it, thereby implementing

rule 8b). If there is more than one such hypothesis,

typing LETFA(var,n,term) instantiates the nth

Inference Page 126

hypothesis.

LET var1 BE terml, ... yarn BE termn IN rulename;

Use the named inference rule with the variables

instantiated as shown (cf. POP-2 partial application).
This is sometimes necessary to overcome weaknesses in

the matcher.

REWRITE: (*) Applies the rewriting rules 1) to 9) to

remove any logical connectives which have appeared in

the hypotheses and to substitute for any equalities

which have appeared.

CONTRAPOS n; (*) Prove the contrapositive form of the

current theorem, negating the nth hypothesis. For

example, if the current theorem is a[i]>a[i+1] & i<j =>

NOT ORDERED(a,i,j), after executing CONTRAPOS 1; the

theorem would become i<j & OROEREO (a ,i ,,j) =>

a[i]<a[i+1], which is easier to prove from the

definition of OROERED given in Appendix 2. CONTRAPOS 0

invokes proof by contradiction by converting the

theorem A=>p to NOT p,A=>false.

OOSUBST(exprl,expr2,expr3); Substitutes expr1 for all
occurrences of expr2 in expr3; expr3 would normally be

GOAL or HYPS, and expr1 must be provably equal to

expr2. For example, DOSUBST(A+B, C2, GOAL) -> GOAL;

SIMPGOAL; This transforms the goal by applying

reduction rules. At one stage this was done

automatically and sometimes prevented proofs being

found, so it is now done only when requested.

Inference Page 127

SIMPHYPS; Similiarly, this applies the reduction rules

to all the expressions in the hypotheses.

SIMPHYP expression; Applies the reduction rules to the

particular expression in the hypotheses.

INDUCT var; Prove the current theorem by mathematical

induction on the variable var, e.g. INDUCT M;

INDUC2 var; Prove the current theorem by

course-of-values induction on the variable var. These

two rules are required for proving derived rules rather

than programs where the induction has been done by the

proof method.

INDLEMMA(hypotheses,conclusion,name,var);

Try to prove that the hypotheses imply the conclusion

by mathematical induction on var. Then add it as a new

inference rule with the given name.

SWEAT n; Temporarily increases the depth to which the

proof can go by n.

5.4.2 Another example

As a typical example of these rules, we reproduce one

proof done while verifying the sorting program of Section

6.3. Commands typed by the user appear in lower case, and

explanatory comments are indented. The hypothesis of a

theorem is represented by the list of its conjuncts. Proofs

of particular goals and subgoals are shown as tree

structures, with the rule name or routine at the root

followed by the instantiation used, and a description of how

the remaining subgoals were proved: SIMP, CONJ and INST

Inference Page 128

refer to simplification, conjunction and instantiation

respectively.

FAILED [5 1 5] DRDERED(XCHNG(A,I,K)[1,I])

>: prthm;

[(I >= 1) (A[I,-1+J]) >= A[K]) (A[I,-1+J]) >= A[-1+I])
(I-J =< -3) (I-K =< 0) (J-K >= 1)
PERM(A[1,-1+J],AO[1,-1+J]) DRDERED(A[1,-1+I])]

aa>
ORDERED([XCHNG(A,I,K)[1,I]):

cases [% "i"=1, "i">1 %]:

This sort of case analysis is usually required
when using our recursive definitions to prove an
array segment is ordered.

CASE PROVED [ORD1 [(XJ. 1) (XI. 1) (XA.XCHNG(A,1,K))] SIMP]
FAILED [5 1 5 2] ORDERED(XCHNG(A,I,K)[1,I])

The system has proved the first case (1=1) using
the rule DRD1 (see Appendix 2) with the
instantiation shown. The second case now remains
to be proved.

>: use ord12;
: goon

ORD12 is a counting-down property of ORDERED. It
is I applied here since we are given
DRDERED(A[1,I-1]) as a hypothesis.

FAILED [5 1 5 2 -1 2]
(XCHNG(A,I,K)[I]-XCHNG(A,I,K)[-1+I] >= 0)

>: simpgoal;

(A[K]-A[-1+I] >= 0):

use xf6;
goon

XF6 is a rule which proves that an array element
has a property if it is in an array segment all of
whose members have that property.

FAILED [5 1 5 2 -1 2 -1] EX([XI XK],((A[XI,XK] >= A[-1+I])
& (XI-K -< 0) & (XK=K >= 0)), 3)

>: sweat 1;
goon

Inference Page 129

Because the default depth is normally 1, and using
the instantiation routine increments the depth
counter, the instantiation is not automatically
attempted. However, after temporarily increasing
the depth bound, the correct instantiation is
found.

FAILED [5 1 5 2 -1 3] ORDERED(XCHNG(A,I,K)[1,-1+I])

This is the third hypothesis of the rule ORD12.

>: simpgoal;

ORDEREO(A[1,-1+I]):

goon

CASE PROVED [ORD12 [(XJ.I) (XI. 1) (XA.XCHNG(A,I,K))] [CONJ
SIMP [XF6 [(XK.-1+J) (XI.I)] [INST [(XK.-1+J) (XI.I)]

[CONJ SIMP SIMP SIMP]]] SIMP]]
CASES PROVED [(I = 1) (I >= 2)]
: goon

[5 1 5] PROVED

5.5 Discussion

The top-down tree searching method of proof described

above is basically the same as that used by Waldinger and

Levitt, Bledsoe and Bruell, and Milner. It contrasts with

the approach taken by King, Deutsch, and resolution systems

of negating the conclusion and trying to derive a

contradiction. The direct approach seems preferable in that

it is more natural, easier for the user to understand, and

hence easier for him to give appropriate advice. A possible

disadvantage may arise when the user knows how the proof

should go, wants to do it in a bottom-up fashion, but finds

he is being driven by the theorem prover rather than

vice-versa. In our system such bottom-up proofs can be done

by making deductions from the hypotheses, and by proving

Inference Page 130

lemmas to be treated as reduction rules and then calling

SIMPHYPS

In several systems, including ours, Waldinger and

Levitt's, Suzuki's and the new LCF (Milner 1975), it is

possible to introduce derived inference rules. Good, London

and Bledsoe can define reduction rules to describe their
newly-introduced functions. Weir and Burstall (1972) also

used derived rules (macro-inferences) in a resolution-based

proof checker for program correctness. A restriction of our

system is the limited language in which rules can be

written; a more powerful language (such as QA4) would be

useful. But whereas our rules are simple logical formulae

which can be proved, the QA4 rules are themselves programs

and hence harder to verify. Only in our system and Milner's
are derived rules proved from definitions, though Moore's

(1974) LISP theorem prover uses theorems which have been

previously proved as lemmas.

Much of the "knowledge" our system has is embodied in

its rules. While this is a flexible system it can be rather

inefficient. The main problem is that a large number of

obviously useless rules are optimistically applied by the

theorem prover. An indexing scheme which considered the

expressions in the hypotheses as well as the conclusion

would greatly reduce this branching ratio and improve the

speed, if not the power, of the theorem prover. There is a

clear trade-off here between (i) storing all rules

concerning the functions involved, which enables some

Inference Page 131

programs to be proved automatically but slowly, (ii) storing

only some of them (the relevant ones), and (iii) not storing

any rules, which means more interaction (to provide the

rules) but faster execution. Roughly speaking, we take the

first alternative, Suzuki the second, and Good, London and

Bledsoe the third. Our reasoning in taking this alternative

is that the system itself should be able to choose the right

property (i.e. rule) to use, since otherwise the user would

either have to delete rules given previously or to give the

same rule more than once in the course of proving a single

program.

Page 132

Chapter 6. EXAMPLES OF PROGRAM BEHAVIOUR

In this chapter we shall study the verifier's

performance on several typical programs. The progams

considered are the 91-function, a program to test whether

one array is a subarray of another, and an insertion sort

program taken from King's thesis. In each case, we start by

showing the specified program which is input to the

verifier, followed by the output of the verifier. The

user's commands are shown in lower case to distinguish them

from the verifier's output which is in upper case.

Explanatory comments have been added to the proof, indented

and in lower case. In Section 6.4 we show two different

proofs of an inference rule involving the predicate sorted.

In these examples the variable MAXOEPTH refers to the

maximum depth (in terms of the number of inference rules

applied) to which the proof can go, though this can be

overridden at the user's command. The value of CONDPROVE

determines whether proofs are attempted at conditionals or

not, and TRACE indicates the detail to which the proof is

given. The times shown are in seconds. The reader should

also remember that in POP-2 the truthvalues TRUE and FALSE

have the values 1 and 0 respectively.

Examples Page 133

6.1 Ihl. 91-functj

We have already seen this program in Section 2.5.1. The

verifier is able to prove it is correct without any

assistance from the user. No inference rules are used, but

only the built-in routines for reasoning about relational
expressions and substitution of equalities.

FUNCTION FN91 N => R;
IF N>100 THEN N-10 ELSE FN91(FN91(N+11)) CLOSE -> R;

END;

VARS NO;
(NO] ->I NIT ARGS:

ISTAT BODY REC FN91;
VIRT IF N>100 THEN N-10 ELSE 91 CLOSE -> R;
UNDER TRUE;
WRT [R]

Proof

FN91 14-4-1975
MAXDEPTH= 1 CONOPROVE= I TRACE= 1

COMPILE TIME = 0.753

STARTING NEW PROOF FROM FN9IBEG

The function FN91 has labels FN9IBEG and FN91ENO
inserted at the beginning and the end of its body.

RUN ACTUAL PROGRAM

AT COND (N >= 101)

The actual program has reached the conditional in
FN91. The verifier now tries to prove either that
the condition or its negation follows from the
path condition. As the initial path condition is
TRUE, its list of conjuncts is NIL.

ASSUME TRUE

This refers to the preceding condition. The path
terminates immediately, and the alternative path
is then taken.

Examples

ASSUME FALSE

Page 134

The inner call of function FN91 has just been
entered, so the precondition of its inclusion
statement is being tested. (N=<100) is. the
current path condition.

TEST PRECONDS OF INCLUSION AT FN91BEG
1

FROM PATH CONDITION
(N =< 100)
OK SIMP

SIMP indicates that the condition was proved by
simplification. The virtual program is now
executed. The test N>=90 corresponds to
N+11>=101.

AT COND (N >= 90)
ASSUME TRUE

The outer call of FN91 is now entered with path
condition (N>=190 G N=<100), and with state vector
N->N+1 (=N+11-10).

TEST PRECONDS OF INCLUSION AT FN91BEG
1

FROM PATH CONDITION
((N >= 90) & (N =< 100))
OK SIMP

AT CONO (N >= 100)
ASSUME TRUE
ASSUME FALSE
ASSUME FALSE

That is, assume N=<89 (N+11=<100). The outer call
of FN91 is now entered with path condition N=<89,
and with state vector N->91.

TEST PRECONOS OF INCLUSION AT FN91BEG
1

FROM PATH CONDITION
(N =< 89)
OK SIMP

AT COND 0

MUST BE FALSE, FROM PATH CONDITION
(N =< 89)

RUN VIRTUAL PROGRAM

All the paths of the actual program have
terminated, and the virtual program is now
executed.

Examples

AT CONO (N >= 101)
ASSUME TRUE
ASSUME FALSE

Page 135

All the paths of the virtual program have now
terminated also. Each pair of states is now
considered in turn.

FROM PATH CONOITION (N >= 101)
ANO (N >= 101)

I.E. (N >= 101)

The first two expressions are the path conditions
of the actual and virtual programs respectively:
the third expression is their conjunction.

PROVE INCLUSION
R : -10+N -10+N OK SIMP

The equality N-10=N-10 has simplified to TRUE.

STACKS: NIL NIL OK
ENO POINTS: FN91ENO FN91ENO

The program is now considering the next pair of
states. It tries to establish the inconsistency
of the two path conditions by proving that the
negation of a conjunct of the virtual program's
path condition follows from the actual program's
path condition, i.e., that N>=101 implies
NOT N=<100.

THE ACTUAL-VIRTUAL PAIR:
(N >= 101)
(N =< 100)
IS INCONSISTENT: SIMP

THE ACTUAL-VIRTUAL PAIR:
(N = 100)
(N >= 101)
IS INCONSISTENT: SIMP

FROM PATH CONOITION (N = 100)
ANO (N =< 100)

I.E. (N = 100)
PROVE INCLUSION
R: -9+N 91 OK SIMP

The theorem was trivially proved by substituting
the equality of the hypotheses into the goal. The

remainder of the theorems are all proved directly
by simplification.

STACKS: NIL NIL OK
ENO POINTS: FN91ENO FN91ENO

Examples

THE ACTUAL-VIRTUAL PAIR:
((N >= 90) & (N =< 99))
(N >= 101)
IS INCONSISTENT: SIMP

FROM PATH CONDITION ((N >= 90) & (N =< 99))
AND (N =< 100)

I.E. ((N >= 90) & (N =< 99))
PROVE INCLUSION
R: 91 91 OK SIMP
STACKS: NIL NIL OK
END POINTS: FN91END FN91END

THE ACTUAL-VIRTUAL PAIR:
(N =< 89)
(N >= 101)
IS INCONSISTENT: SIMP

FROM PATH CONDITION (N =< 89)
AND (N =< 100)

I.E. (N =< 89)
PROVE INCLUSION
R: 91 91 OK SIMP
STACKS: NIL NIL OK
END POINTS: FN91END FN91END

RUN TIME = 5.536

Page 136

THEOREMS PENDING: NIL

Examples Page 137

6.2 A matching orocrram

This program determines whether the array B occurs as a

subarray of the array A. The verifier can prove this program

completely automatically with the exception of one

application of CONTRAPOS invoked by the user.

FUNCTION MATCHV A M B N => BISINA;
VARS I J ;

FALSE->BISINA;
0->I:

$LOOP I :
LOOPIF I=< M-N THEN

1->J;
$LOOPJ:

LOOPIF J=<N THEN
IF A\(I+J)/=B\(J) THEN GOTO BREAKJ CLOSE;
J+1->J;

CLOSE;
$ENOLOOPJ:
TRUE->BISINA; GOTO BREAKI;

$BREAKJ:
I+1->I;

CLOSE;
$BREAKI:
ENO;

OECARRAY A [1 M];
OECARRAY B [1 N];
[%A, "M",B, "N"%]->INITARGS;

ISTAT BOGY MATCHV;
VIRT IF' ISIN(B<<1,N>>,A<<1,M>>)

THEN TRUE ELSE FALSE CLOSE -> BISINA;
UNDER 0=<N & N=<M;
WRT [BISINA];

ISTAT LOOPI TO [BREAKI]
VIRT IF ISIN(B<<1,N>>,A<<I+1,M>>)

THEN TRUE->BISINA;
ELSE M-N+1->I CLOSE;
UNDER 0=<I & I=<M-N+1 & 0=<N;

WRT [BISINA];

ISTAT LOOPJ TO [ENOLOOPJ BREAKJ];
VIRT IF EQSEQ(B<<J,N>>,A<<I+J,I+N>>)

THEN N+1->J; GOTO ENOLOOPJ
ELSE GOTO BREAKJ CLOSE;

UNDER 1=<J & J=<N+1 ;

WRT [I];

Examples

Proof

MATCHV 13-5-1975
MAXOEPTH= 1 CONDPROVE= 0 TRACE= 0

COMPILE TIME = 8.169

STARTING NEW PROOF FROM MATCHVBE

Page 138

Each program FOO implicitly contains labels called
FOOBEG and FOOENO at the beginning and end of its body. In this case the POP-2 system truncates the
name MATCHVBEG to MATCHVBE.

RUN ACTUAL PROGRAM

TEST PRECONDS OF INCLUSION AT LOOPI
((N >= 0) f, (M-N >= -1))
FROM PATH CONDITION
((N >= 0) f, (M-N >= 0))
OK [CONJ SIMP SIMP]

AT CONO ISIN(B[1,N],A[1,M])
ASSUME TRUE
ASSUME FALSE

RUN VIRTUAL PROGRAM

AT CONO ISIN(B[1,N],A[1,M])
ASSUME TRUE
ASSUME FALSE

ASSUMING ((N >= 0) FY (M-N >= 0) f ISIN(B[1,N],A[1,M]))
ANO ((N >= 0) f, (M-N >= 0) f, ISIN(B[1,N],A[1,M])) I.E. ((N >= 0) f (M-N >= 0) f ISIN(B[1,N],A[1,M]))

PROVE INCLUSION
BISINA: 1 1 OK SIMP
STACKS: NIL NIL OK
END POINTS: MATCHVEN MATCHVEN

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) f, (M-N >= 0) f, ISIN(B[1,N],A[1,M]))
((N >= 0) FY (M-N >= 0) f NOT(ISIN(B[1,N],A[1,M])))
IS INCONSISTENT: SIMP

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) FY (M-N >= 0) f NOT(ISIN(B[1,N],A[1,M])))
((N >= 0) & (M-N >= 0) & ISIN(B[1,N],A[1,M]))
IS INCONSISTENT: SIMP

ASSUMING ((N >= 0) f (M-N >= 0) f NOT(ISIN(B[1,N],A[1,M])))
ANO ((N >= 0) & (M-N >= 0) f, NOT(ISIN(B[1,N],A[1,M])))

I.E. ((N >= 0) FY (M-N >= 0) f NOT(ISIN(B[1,N],A[1,M])))
PROVE INCLUSION
BISINA: 0 0 OK SIMP
STACKS: NIL NIL OK

Examples Page 139

ENO POINTS: MATCHVEN MATCHVEN

STARTING NEW PROOF FROM LOOPI

The first inclusion statement has been verified
and the system is now starting to verify the one
whose start point is LOOPI.

RUN ACTUAL PROGRAM

AT CONO (M-N-I >= 0)
ASSUME TRUE

TEST PRECONOS OF INCLUSION AT LOOPJ
(N >= 0)
FROM PATH CONOITION
((N >= 0) f (I >= 0) & (M-N-I >= 0))
OK SIMP

AT CONO EQSEQ(A[1+I,N+I],B[1,N])
ASSUME TRUE
ASSUME FALSE

TEST PRECONOS OF INCLUSION AT LOOPI
((N >= 0) f (I >= -1) & (M-N-I >= 0))
FROM PATH CONOITION
((N >= 0) f (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ(A[
1+I,N+I],B[1,N])))
OK [CONJ SIMP SIMP SIMP]

AT CONO ISIN(B[1,N],A[2+I,M])
ASSUME TRUE
ASSUME FALSE
ASSUME FALSE

RUN VIRTUAL PROGRAM

AT CONO ISIN(B[1,N],A[1+I,M])
ASSUME TRUE
ASSUME FALSE

ASSUMING ((N >= 0) f (I >= 0) & (M-N-I >= 0) f EQSEQ(A[
1+I,N+I],B[1,N]))

ANO ((N >= 0) & (I >= 0) f (M-N-I >= -1) & ISIN(B[
1,N],A[1+I,M]))

I.E. ((N >= 0) & (I >= 0) & (M-N-I >= 0) & EQSEQ(A[
1+I,N+I],B[1,N]) & ISIN(B[1,N],A[1+I,M]))
PROVE INCLUSION
BISINA: 1 1 OK SIMP
STACKS: NIL NIL OK
ENO POINTS: BREAKI BREAKI

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) & (I >= 0) & (M-N-I >= 0) & EQSEQ(A[1+I,N+I],
B[1,N]))
((N >= 0) & (I >- 0) & (M-N-I >= -1) & NOT(ISIN(B[

Examples Page 140

1,N],A[1+I,M])))
IS INCONSISTENT: [ISINI [(XM.M) (XK. 1+I) (XB.A) (XJ.N)
(XI. 1) (XA.B)] [CONJ SIMP SIMP]]

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ
(A[1+I,N+I],B[1,N])) & ISIN(B[1,N],A[2+I,M]))

AND ((N >= 0) & (I >= 0) & (M-N-I >= -1) & ISIN (B [
1,N],A[1+I,M]))

I.E. ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ
(A[1+I,N+I],B[1,N])) & ISIN(B[1,N],A[1+I,M]) & ISIN(B[
1,N],A[2+I,M]))
PROVE INCLUSION
BISINA: I I OK SIMP
STACKS: NIL NIL OK
END POINTS: BREAKI BREAKI

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ(A[
1+I,N+I],B[1,N])) & ISIN(B[1,N],A[2+I,M]))
((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN(B[
1,N],A[1+I,M])))
IS INCONSISTENT: [ISIN2 [(XM.M) (XK. 1+I) (XB.A) (XJ.N)
(XI. 1) (XA.B)] SIMP]

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ(A[
1+I,N+I],B[1,N])) & NOT(ISIN(B[1,N],A[2+I,M])))
((N >= 0) & (I >= 0) & (M-N-I >= -1) & ISIN(B[1,N],A[
1+I,M]))
IS INCONSISTENT: [ISIN4 [(XM.M) (XK. 2+1) (XB.A) (XJ.N)
(XI. 1) (XA.B)] [CONJ SIMP SIMP SIMP]]

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ
(A[1+I,N+I],B[1,N])) & NOT(ISIN(B[1,N],A[2+I,M])))

AND
/ ((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN(

B[1,N],A[1+I,M])))
I.E. ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ

(A[I+I,N+I],B[1,N])) & NOT(ISIN(B[1,N],A[1+I,M])) &
NOT (ISIN (B [1 ,N] ,A [2+I ,M])))

PROVE INCLUSION
BISINA: BISINA BISINA OK SIMP
STACKS: NIL NIL OK
END POINTS: BREAKI BREAKI

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) & (I >= 0) & (M-N-I = -1))
((N >= 0) & (I >= 0) & (M-N-I >= -1) & ISIN(B[1 ,N] ,A[
1+1,M]))
IS INCONSISTENT: [ISIN20 [(XL.-1+N+I) (XK. 1+I) (XB.A) (XJ.N)

(XI. 1) (XA.B)] SIMP]

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I = -1))
AND ((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN(

BE 1,N],A[1+I,M])))
I.E. ((N >= 0) & (I >= 0) & (M-N-I = -1) & NOT(ISIN(B

[1,N],A[1+I,M])))
PROVE INCLUSION

Examples Page 141

BISINA: BISINA BISINA OK SIMP
STACKS: NIL NIL OK
ENO POINTS: BREAKI BREAKI

STARTING NEW PROOF FROM LOOPJ

AT CONO (M-N >=
ASSUME TRUE

RUN ACTUAL PROGRAM

0)

AT CONO (N-J >=
ASSUME TRUE

0)

AT CONO (A[I+J]-B[J] 0
ASSUME TRUE
ASSUME FALSE

TEST PRECONOS OF INCLUSION AT LOOPJ
((J >= 0) & (N-J >= 0))
FROM PATH CONDITION
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0))
OK [CONJ SIMP SIMP1

AT CONO EQSEQ(A[1+I+J,N+I],B[1+J,N])
ASSUME TRUE
ASSUME FALSE
ASSUME FALSE

RUN VIRTUAL PROGRAM

AT CONO EQSEQ(A[I+J,N+I],B[J,N])
ASSUME TRUE
ASSUME FALSE

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] /= 0))
AND ((J >= 1) & (N -J >= -1) & EQSEQ(A[I+J,N+I],B[J,N]))

I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] 0)
& EQSEQ(A[I+J,N+I],B[J,N]))

PROVE INCLUSION
I: I I OK SIMP
STACKS: NIL NIL OK
END POINTS: BREAKJ ENOLOOPJ

The system realizes that something is wrong as the
two end points are different so it goes back and
again tries to show that the two sets of
conditions are inconsistent (without initial
success).

FAILED [37] NOT(EQSEQ(A[I+J,N+I],B[J,N]))

>prthm ;

NJ >= 1) (N-J >= 0) (A[I+J]-8[J] /= 0)]

Examples Page 142

NOT(EQSEQ(A[I+J,N+I] ,B[J,N]))

contrapos 3;

FAILED (37 1] (A[I+J]-B[J] = 0)

>ppr(hyps);
[(J >= 1) (N-J >= 0) EQSEQ(A[I+J,N+I],B[J,N])]

sweat 1;
goon

CONTRAPO PROVED (EQSEQ3 ((XJ.N) (XM.N+I)] (INST ((XJ.N)
(XM.N+I)] (CONJ SIMP SIMP1]]
goon

(37] PROVED

THE ACTUAL-VIRTUAL PAIR:
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] 0))
((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N]))
IS INCONSISTENT: (CONTRAPO 3]

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] /= 0))

N])))
ANO ((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,

I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] 0)
& NOT(EQSEQ(A[I+J,N+I],B[J,N])))

PROVE INCLUSION
I: I I OK SIMP
STACKS: NIL NIL OK
ENO POINTS: BREAKJ BREAKJ

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0)
& EQSEQ(A[1+I+J,N+I],B[1+J,N]))

ANO ((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N]))
I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0)

& EQSEQ(A[1+I+J,N+I],B[1+J,N]) & EQSEQ(A[I+J,N+I],B[J,N]))
PROVE INCLUSION
I: I I OK SIMP
STACKS: NIL NIL OK
ENO POINTS: ENOLOOPJ ENOLOOPJ

THE ACTUAL-VIRTUAL PAIR:
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) & EQSEQ(A[
1+I+J,N+I],B[1+J,N]))
((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,N])))
IS INCONSISTENT: [EQSEQ2 ((XM.N) (XK.J) (XB.B) (XJ.N+I)
(XI.I+J) (XA.A)] (CONJ SIMP SIMP SIMP SIMP]]

THE ACTUAL-VIRTUAL PAIR:
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) & NOT(EQSEQ(A
(1+I+J,N+I],B[1+J,N])))
((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N]))
IS INCONSISTENT: (EQSEQ4 ((XM.N) (XK. 1+J) (XB.B) (XJ.N+I)
(XI. 1+I+J) (XA.A)] [CONJ SIMP SIMP SIMP]]

Examples Page 143

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-BCJJ = 0)
& NOT(EQSEQ(A[1+I+J,N+I],B[1+J,N])))

ANO ((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,
N])))

I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0)
& NOT(EQSEQ(A[1+I+J,N+I],B[1+J,N])) & NOT(EQSEQ(A[I+J,N+I],

B[J,N])))
PROVE INCLUSION
I: I I OK SIMP
STACKS: NIL NIL OK
ENO POINTS: BREAKJ BREAKJ

ASSUMING ((J >= 1) & (N-J = -1))
ANO ((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N]))

I.E. ((J >= 1) & (N-J = -1) & EQSEQ(A[I+J,N+I],B[J,N]))
PROVE INCLUSION
I: I I OK SIMP
STACKS: NIL NIL OK
ENO POINTS: ENOLOOPJ ENOLOOPJ

THE ACTUAL-VIRTUAL PAIR:
((J >= 1) & (N-J = -1))
((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,N])))
IS INCONSISTENT: [EQSEQI [(XM.-1+J) (XK.J) (XB.B) (XJ.-1+I+J)
(XI.I+J) (XA.A)] [CONJ SIMP SIMP]]

RUN TIME = 67.661

THEOREMS PENOING: NIL

Examples Page 144

6.3 B, sorting program

This program is from King's thesis, although his system

was unable to prove it. Our proof includes the fact that

the final array is a permutation of the original one. The

proof requires advice from the user in several places but in

many cases it suffices to tell the automatic theorem prover

to work harder. Most of the substantative advice given by

the user consists of the commands CASES and USE.

FUNCTION K9 A N;
VARS I J K X;

ASSERT A=AO & 2=<N;
1->I;

$L 1 :
LOOPIF I<N THEN

A\I->X; I->K ; I+1->J ;
$L2:

ASSERT 1=<I & I=<K & K<J & J=<N+1
& I<N
& X=A\K

) & (I=1 OR A\ (I-1) =< A<<I,N>>
& A<<I,J-1>> >= X
& ORDERED(A<<1,I-1>>)
& PERM(A<<1,N>>,AO<<1,N>>);

LOOPIF J=<N THEN
IF X>A\J THEN A\J->X; J->K CLOSE;
J+1->J;

CLOSE;
A\I->A\K; X->A\I; I+1->I;

CLOSE;
$OUT:

ASSERT ORDEREO (A« 1 ,N>>) & PERM (A<<1 ,N>>,AO<<1 ,N>>) ;
ENO:

VARS NO;
OECARRAY AO [1 NO];
[% AO, "NO" %]->INITARGS;

Examples Page 145

Proof

K9 13-5-1975
MAXDEPTH= I CONDPROVE= 0 TRACE= 0

COMPILE TIME = 5.442

STARTING NEW PROOF FROM K9BEG

AT COND (N >= 2)
ASSUME TRUE

TEST ASSERTION AT L2
((N >= 2) f (A[1, 11 >= A[1]) G PERM(A[1,N],AO[1,N])

G ORDERED(A[1, 0]))
FROM PATH CONDITION
((N >= 2) f (AO = A))
FAILED [1 2] (A[1, 1] >= A[1])

>sweat 1;
goon

[1 2] PROVED
OK [CONJ SIMP [XF1 [(XZ.A[1]) (XJ. 1) (XI. 1) (XA.A) (XF.>=)]
[CONJ [XFO [(XZ.A[1]) (XJ. 0) (XI. 1) (XA.A) (XF.>=)] SIMP]
SIMP]] [PERM1 [(XM.N) (XK. 1) (XB.A) (XJ.N) (XI. 1) (XA.A)]
REDUCTN] [ORD1 [(XJ. 0) (XI. 1) (XA.A)] SIMP]]
ASSUME FALSE

TEST ASSERTION AT OUT
(PERM(A[1,N],AO[1,N]) f ORDERED(A[1,N]))
FROM PATH CONDITION

0

OK [CONJ SIMP SIMP]

STARTING NEW PROOF FROM L2

AT COND (NO >= 2)
ASSUME TRUE

AT COND (N-J >= 0)
ASSUME TRUE

AT COND (X-A[J] >=
ASSUME TRUE

1)

TEST ASSERTION AT L2
((I >= 1) f (A[I,J] >= A[J]) G (N-I >= 1) f (N-J >=
0) f (I-J =< 0) f PERM(A[1,N],AO[1,N]) f ORDERED(A[

1,-1+I]) G ((I = 1) OR (A[I,N] >= A[-1+I])))
FROM PATH CONDITION
((I >= 1) f (A[I,-1+J] >= X) G (N-I >= 1) & (N-J >=

0) & (I-K =< 0) & (J-K >= 1) & (X-A[J] >= 1) &

(X-A[K] = 0) & PERM(A[1,N],AO[1,N]) & ORDERED(A[1,-1+I])

& ((I = 1) OR (A[I,N] >= A[-1+I])))

Examples Page 146

FAILED [3 1 2] (A[I,J] >= A[J])

>sweat 2;
oon g

[3 1 21 PROVED
FAILED [3 1 5] (I-J =< 0

>sweat 1 ;

goon

[3 1 5] PROVED
FAILED [3 2 2] (A[1,J] >= A[J])

>prthm;

((N >= 2) (K >= 1) (A[1,-1+J] >= A[K]) (N-J >= 0) (J-K
>= 1) (A[J]-A[K] =< -1) PERM(A[1,N],A0[1,N]) OROERED(A[
1, 01)]

(A[1,J] >= A[J])

use xf 1 ;
goon

FAILED [3 2 2 -1 1] (A[1,-1+J] >= A[J])
>sweat 2;
goon

[3 2 2] PROVED
FAILED [3 2 5] (J >= 1)

>sweat 1;
goon

[3 2 5] PROVED
OK [CONJ [CONJ SIMP [XF1 [(XZ.A[J]) (XJ.J) (XI.I) (XA.A)
(XF.>=)] [CONJ [TR [(XY.A[K])] [CONJ DEF [INST [(XY.A[K])]
[CONJ SIMP SIMP]]]] SIMP]] SIMP SIMP [TR [(XY.-1+J-K)] [CONJ
DEF [INST [(XY.-1+J-K)] [CONJ SIMP SIMP]]]] SIMP SIMP SIMP]
[CONJ SIMP [XF1 [(XZ.A[J]) (XJ.J) (XI. 1) (XA.A) (XF.>=)]
[CDNJ [TR [(XY.A[K])] [CONJ DEF [INST [(XY.A[K])] [CONJ
SIMP SIMP)]]] SIMP]] SIMP SIMP [TR [(XY.K)] [CONJ DEF [INST
[(XY.K)] [CONJ SIMP SIMP]]]] SIMP SIMP SIMP]]
ASSUME FALSE

TEST ASSERTION AT L2
((I >= 1) & (A[I,J] >= X) & (N-I >= 1) & (N-J >= 0)

& (I-K =< 0) & (J-K >= 0) & (X-A[K] = 0) & PERM(A[
1,N],A0[1,N]) & ORDERED(A[1,-1+I]) & ((I = 1) OR

(A[I,N] >= A[-1+I])))
FROM PATH CONDITION
((I >= 1) & (A[I,-1+J] >= X) & (N-I >= 1) & (N-J >=
0) & (I-K =< 0) & (J-K >= 1) & (X-A[J] =< 0) &

(X-A[K] = 0) & PERM(A[1,N],A0[1,N]) & ORDERED(A[1,-1+I])

& ((I = 1) OR (A[I,N] >= A[-1+I])))

Examples Page 147

OK [CONJ [CONJ SIMP [XF1 [(XZ.A[K)) (XJ.J) (XI.I) (XA.A)
(XF.>=)] [CONJ SIMP SIMP) SIMP SIMP SIMP SIMP SIMP SIMP SIMP
SIMP] [CONJ SIMP [XF1 [(XZ.A[K]) (XJ.J) (XI. 1) (XA.A) (XF.>=)]
(CONJ SIMP SIMP)) SIMP SIMP SIMP SIMP SIMP SIMP SIMP SIMP))
ASSUME FALSE

AT COND (N-I >= 2)
ASSUME TRUE

TEST ASSERTION AT L2
((I >= 0) & (CHNG(CHNG(A,A(I],K),X,I)[1+I, 1+I] >= CHNG(CHNG(
A,A[I],K),X,I)[1+I]) & (N-I >- 2) & PERM(A0[1,N],CHNG(CHNG
(A,A[I],K),X,I)[1,N]) & ORDERED(CHNG(CHNG(A,A[I),K),X,I)[
1,I]) & ((I = 0) OR (CHNG(CHNG(A,A[I),K),X,I)[1+I,N]
>= CHNG(CHNG(A,A[I],K),X,I)[I))))
FROM PATH CONDITION
((I >= 1) & (A(I,-1+J) >= X) & (N-I >= 2) & (N-J =
-1) & (I-K -< 0) & (J--K >= 1) & (X-A[K] = 0) &
PERM(A[1,N],AO[1,N]) & ORDERED(A[1,-1+I)) & ((I =
1) OR (A(I,N3 >= A(-1+I))))
FAILED [5 1 2) (XCHNG(A,I,K)[1+I, 1+I] >= XCHNG(A,I,K)(
1+I])

>sweat 1;
goon

(5 1 2] PROVED
FAILED (5 1 4) PERM(AO[1,-1+J],XCHNG(A,I,,K)[1,-1+J))

>interm "a"« 1 , ". "-1» ;

SUBGOAL PROVED SIMP
FAILED [5 1 4 21 PERM(A[1,-1+J],XCHNG(A,I,K)(1,-1+J))

>use perml3;
goon

FAILED (5 1 4 2 -1 3] (K >= I

>sweat 1;
goon

FAILED [5 1 4 2 -1 31 (K >= 1)

>sweat 1;
goon

SUBGOAL PROVED (PERM13 ((XV.K) (XU.I) (XJ.-1+J) (XI. 1) (XA.A)1
(CONJ SIMP SIMP (TR [(XY.-I+K)) [CONJ DEF [INST ((XY.-I+K)]
[CONJ SIMP SIMP])]) SIMP13
goon

(5 1 41 PROVED
FAILED (5 1 51 ORDEREO (XCHNG (A , I , K) [1I))
>assume;

Examples Page 148

The proof of this condition is given in Section 5.4.2.

FAILED [5 1 6] (XCHNG(A,I,K)[1+I,-1+J] >= XCHNG(A,I,K)[I])

>simpgoal;

(XCHNG(A,I,K)[1+I,-1+J] >= A[K])

use xf3;
goon

FAILED [5 1 6 -11 (XCHNG(A,I,K)[I,-1+J] >= A[K])

> use xchng5;
goon

[5 1 6] PROVED
FAILED [5 2 2] (XCHNG(A, 1,K)[2, 2] >= XCHNG(A, 1,K)[2])
>sweat 1;
goon

[5 2 2] PROVED
FAILED [5 2 4] PERM(AO[1,-1+J],XCHNG(A, 1,K)[1,-1+J])

>interm "a"<< 1 , "j "-1»;
SUBGOAL PROVED SIMP
SUBGOAL PROVED [PERM13 [(XV.K) (XU. 1) (XJ.-1+J) (XI. 1)
(XA.A)] [CONJ SIMP SIMP SIMP SIMP1]
goon

[5 2 4] PROVED
FAILED [5 2 61 (XCHNG(A, 1,K)[2,-1+J] >= XCHNG(A, 1,K)[1])

>simpgoal;

(XCHNG(A, 1,K)[2,-1+J] >= A[K])

use xf3;
goon

FAILED [5 2 6 -1] (XCHNG(A, 1,K)[1,-1+J] >= A[K])

>use xchng5;
goon

[5 2 6] PROVED
OK [CONJ [CONJ SIMP [XF1 [(XZ.XCHNG(A,I,K)[1+I]) (XJ. 1+I)
(XI. 1+I) (XA.XCHNG(A,I,K)) (XF.>=)] [CONJ [XFO [(XZ.XCHNG(A,I,K
)[1+I]) (XJ.I) (XI. 1+I) (XA.XCHNG(A,I,K)) (XF.>=)] SIMP]
SIMP]] SIMP [INTERM A[1,-1+J]] ASSUMED [XF3 [(XX.A[K]) (XJ.-1+J
) (XI. 1+I) (XA.XCHNG(A,I,K)) (XF.>=)] [XCHNG5 [(XZ.A[K])
(XJ.-1+J) (XI.I) (XV.K) (XU.I) (XA.A) (XF.>=)] [CONJ SIMP
SIMP SIMP SIMP SIMP1]]] [CONJ SIMP [XF1 [(XZ.XCHNG(A, 1,K)[
2]) (XJ. 2) (XI. 2) (XA.XCHNG(A, 1,K)) (XF.>=)] [CONJ [XFO

[(XZ.XCHNG(A, 1,K)[2]) (XJ. 1) (XI. 2) (XA.XCHNG(A, 1,K))

Examples Page 149

(XF.>=)] SIMP] SIMP]] SIMP [INTERM A[1,-1+J]] [ORDI [(XJ.
1) (XI. 1) (XA.XCHNG(A, 1,K))] SIMP1 [XF3 [(XX.A[K]) (XJ.-1+J)
(XI. 2) (XA.XCHNG(A, 1,K)) (XF.>=)] [XCHNG5 [(XZ.A[K]) (XJ.-1+J)
(XI. 1) (XV.K) (XU. 1) (XA.A) (XF.>=)] [CONJ SIMP SIMP SIMP

SIMP SIMP1]]]]
ASSUME FALSE

TEST ASSERTION AT OUT
(PERM(AO[1,N],CHNG(CHNG(A,A[I],K),X,I)[1,N]) & ORDERED(CHNG(C
HNG(A,A[I],K),X,I)[1,N]))
FROM PATH CONDITION
((I >= 1) & (A[I,-1+J] >= X) & (N-I = 1) & (N-J =

-1) & (I-K =< 0) & (J-K >= 1) & (X-A[K] = 0) &
PERM(A[1,N],AO[1,N]) & OROERED(A[1,-1+I]) & ((I =
1) OR (A[I,N] >= A[-1+I])))
FAILED [6 1 1] PERM(A0[1,-1+J],XCHNG(A,-2+J,K)[1,-1+J])

>prthm;

[(J >= 3) (A[-2+J,-1+J] >= A[K]) (A[-2+J,-1+J] >= A[-3+J])
(J-K >= 1) (J-K =< 2) PERM(A[1,-1+J],AO[1,-1+J]) OROEREO(A[
1,-3+J])]

PERM(AO[1,-1+J],XCHNG(A,-2+J,K)[1,-1+J])

interm "a"<<1,"j"-1>>;

SUBGOAL PROVED SIMP
FAILED [6 1 1 21 PERM(A[1,-1+J],XCHNG(A,-2+J,K)[1,-1+J])

>use perm 13;
goon

FAILED [6 1 1 2 -1 3] (K >= 1)

>sweat 1;
goon

FAILED [61 12-1 3] (K >_ 1)

>interm "J"-2;

SUBGOAL PROVED SIMP
SUBGOAL PROVED SIMP
goon

SUBGOAL PROVED [PERM13 [(XV.K) (XU.-2+J) (XJ.-1+J) (XI. I
(XA.A)] [CONJ SIMP SIMP [INTERM -2+J] SIMP]]
goon

[6 1 1] PROVED
FAILED [6 1 2] OROERED(XCHNG(A,-2+J,K)[1,-1+J])

>use ord12;
goon

Examples Page 150

FAILED [6 1 2 -1 2] (XCHNG(A,-2+J,K)[-2+J]-XCHNG(A,-2+J,K)[-1+J]
=< 0)

>simpgoal;

(A[K]-XCHNG(A,-2+J,K)[-1+J] =< 0)

cases [% "k"="j"-2, "k"="j"-1 %] ;

FAILED [6 1 2 -1 2 1] (A[K]-XCHNG(A,K,K)[1+K] 0)

>simpgoal;

(A[K]-A[1+K] =< 0)

sweat 2;
goon

CASE PROVED [XF6 [(XK. 1+K) (XI.K)] [INST [(XK. 1+K) (XI.K)]
SIMPI]
FAILED [6 1 2 -1 2 2] (A[K]-XCHNG(A,-1+K,K)[K] =< 0)

>simpgoal ;

(A[K]-A[-1+K] =< 0)

sweat 2;
goon

CASE PROVED [XF6 [(XK.K) (XI.-1+K)] [INST [(XK.K) (XI.-1+K)]
SIMP]]
CASES PROVED [(J-K = 2) (J-K = 1)]
goon

FAILED [6 1 2 -1 3] ORDERED(XCHNG(A,-2+J,K)[1,-2+J])

>cases [% 1="j"-2, 1<"j"-2 %];

CASE PROVED [ORD1 [(XJ. 1) (XI. 1) (XA.XCHNG(A, 1,K))] SIMP]
FAILED [6 1 2 -1 3 2] ORDERED(XCHNG(A,-2+J,K)[1,-2+J])

>use ord12:
goon

FAILED [6 1 2 -1 3 2 -1 2] (XCHNG(A,-2+J,K)[-3+J]-XCHNG(A,-2+J,K
)[-2+J] =< 0)

>simpgoal;

(A[K]-A[-3+J] >= 0)

sweat 2;
goon

FAILED [6 1 2 -1 3 2 -1 3] ORDERED(XCHNG(A,-2+J,K)[1,-3+J])

Examples Page 151

>simpgoal;

ORDERED (A[1,-3+J])

goon

CASE PROVED [DRD12 [(XJ.-2+J) (XI. 1) (XA.XCHNG(A,-2+J,K))]
[CDNJ SIMP [XF6 [(XK.-1+J) (XI.-2+J)] [INST [(XK.-1+J) (XI.-2+J
)] [CDNJ SIMP SIMP SIMP1]] SIMP]]
CASES PROVED [(J = 3) (J >= 4)]
goon

[6 1 21 PROVED
FAILED [6 2 1] PERM(AO[1, 2],XCHNG(A, 1,K)[It 2])
>prthm;

[(K >= 1) (K =< 2) (A[1, 2] >= A[K]) PERM(A[1, 2],AO[
1, 2]) DRDERED(A[1, 0])]
PERM(A0[1, 2],XCHNG(A, 1,K)[1, 2])

interm "a"<<1,2>>;

SUBGDAL PROVED SIMP
SUBGDAL PROVED [PERM13 [(XV.K) (XU. 1) (XJ. 2) (XI. 1) (XA.A)]
[CDNJ SIMP SIMP SIMP SIMP]]
goon

[6 2 1] PROVED
FAILED [6 2 21 DRDERED(XCHNG(A, 1,K)[1, 2])

>use ord2;
goon

FAILED [6 2 2 -1 2] (XCHNG(A, 1,K)[1]-XCHNG(A, 1,K)[2]
=< 0)

>cases [% "k"=I, "k"=2 %] ;

FAILED [6 2 2 -1 2 11 (XCHNG(A, 1, 1)[1]-XCHNG(A, 1, 1)[

21 =< 0)

>simpgoal;

(A[1] A[2] =< 0)

sweat 2;
goon

CASE PROVED [XF6 [(XK. 2) (XI. 1)] [INST [(XK. 2) (XI. 1)]
SIMP]]
FAILED [6 2 2 -1 2 2] (XCHNG(A, 1, 2)[1]-XCHNG(A, 1, 2)[

2] =< 0)

>simpgoal;

Examples

(A[1]-A[21 >= 0

sweat 2;

goon

Page 152

CASE PROVED [XF6 [(XK. 2) (XI. 1)] [INST [(XK. 2) (XI. 1)]
SIMP]]
CASES PROVED [(K = 1) (K = 2)]
goon

FAILED [6 2 2 -1 3] ORDERED (XCHNG (A, 1,K)[2, 2])

>sweat 1;
goon

[6 2 2] PROVED
OK [CONJ [CONJ [INTERM A[1,-1+J]] [OR012 [(XJ.-1+J) (XI.
1) (XA.XCHNG(A,-2+J,K))] [CONJ SIMP [CASES (J-K = 2) (J-K

1)] [CASES (J = 3) (J >= 4)1]]] [CONJ [INTERM A[1, 2]]
[0R02 [(XJ. 2) (XI. 1) (XA.XCHNG(A, 1,K))] [CONJ SIMP [CASES
(K = 1) (K = 2)] [ORD1 [(XJ. 2) (XI. 2) (XA.XCHNG(A, 1,K))]
SIMP]]]]]

RUN TIME = 417.022

THEOREMS PENDING:

[[(I >= 1) (A[I,-1+J] >= A[K]) (A[I,-1+J] >= A[-1+I]) (I-J
=< -3) (I-K =< 0) (J-K >= 1) PERM(A[1,-1+J],AO[1,-1+J])
OROEREO(A[1,-1+I])] ORDEREO(XCHNG(A,I,K)[1,I3)]

Examples Page 153

6.4 Deriv rules

In this section we show the proof of the validity of a

particular derived inference rule. The rule is DRD12

(Appendix 3), a counting-down, recursive characterization of

the predicate ordered.

IR DRD12
DRDERED(XA<<XI,XJ>>)
< [% XI<XJ, XA(XJ-1)=<XAxJ, DRDERED(XA<<XI,XJ-1>>) %J:

We shall actually give two proofs of this rule. In the

first proof we assume that ordered is defined recursively

by:

ordered(a[i,j]) <-> i>=j or
a[i]=<a[i+1] & ordered(a[i+1,j]).

This definition is represented by the rules DRD1 to DRD4 of

Appendix 2. In this case the proof is by induction on the

length of the array segment. Since we are assuming that i<j
we start by letting j=i+n+1 and do induction on n.

In the second proof we define ordered in the more

direct way by:

ordered(a[i,j]) <-> (FA x)(i=<x & x<j => a[x]=<a[x+1]),

using the two inference rules

IR NORD1
DRDERED (XA<<XI,XJ>>)
<__ [% (FA XX)(XI=<XX & XX<XJ =>> XA\XX=<XA\(XX+1)) %];

IR NORD2
XA\XX=<XA\(XX+1)
<__ [% (EX [XI XJ])(XI=<XX & XX<XJ &

DRDERED (XA<<XI ,XJ>>)) %1;

In this case the proof reduces to a case analysis. In

practice, given this definition the rule DRD12 would not

also be required but the proof is indicative of the way the

Examples

rules NORD1 and NORD2 are used.

In each case, the theorem to be proved is

Page 154

i<j & a[j-1]=<a[j] & ordered(a[i,j-1]) => ordered(a[i,j])

Urst woof
ORD 14-5-1975
MAXDEPTH= 2 CONDPROVE= 0 TRACE= 0

FAILED [3] ORDERED(XA[XI,XJ])

>prthm;

[(XI-XJ =< -1) (XA[XJ]-XA[-1+XJ] >= 0) ORDERED(XA[XI,-1+XJ])]
ORDERED(XA[XI,XJ])

add xj=xi+xn+1;
subst(xi+xn+l,xj,goal) -> goal;
subst(xi+xn+l,xj,hyps) -> hyps;

This substitutes i+n+1 for j throughout the theorem.

prthm;

[(XN >= 0) (XA[1+XI+XN]-XA[XI+XN] >= 0) ORDERED(XA[XI,XI+XN])]

ORDERED(XA[XI, 1+XI+XN])

induct xn;

BASIS PROVED [ORD2 [(XJ. 1+XI) (XI.XI) (XA.XA)] [CONJ SIMP
SIMP [ORDI [(XJ. 1+XI) (XI. 1+XI) (XA.XA)) SIMP1]]
FAILED [3 21 ORDERED (XA[XI , 2+XI+XNO l])

>use ord2;
goon

FAILED [3 2 -1 21 (XA[XI]-XA[1+XI] =< 0

>use ord3;
goon

FAILED [3 2 -1 31 ORDERED(XA[1+XI, 2+XI+XNOI])

The induction hypothesis is the rule
ordered(xa[xi,xi+xn0l+1]) <- ...

The two conclusions will not match unless the
instantiations for the variables of the induction
hypothesis are given explicitly. In doing this,
the first xi is the one in the rule and the second
is the one in the goal.

Examples Page 155

>let xi be xi+1 in indhyp;
goon

STEP PROVED [OR02 [(XI. 1+XI)] [CDNJ SIMP [OR03 (W. 1+XI+XN01
(XI.XI) (XA.XA)] [INST [(XJ. 1+XI+XN01) (XI.XI) (XA.XA)]

[CDNJ SIMP SIMPJ]] [INDHYP [(XI.XI) (XA.XA)] [CDNJ SIMP SIMP
[OR04 (W. 1+XI+XN01) (XI. 1+XI) (XA.XA)] [CDNJ SIMP SIMP]]]]]]
goon

[3] PROVED

Second proof

DRD 14-5-1975
MAXDEPTH= 2 CDNDPRDVE= 0 TRACE= 0

FAILED [4] ORDERED(XA[XI,XJ])

>prthm;

[(XI-XJ =< -1) (XA[XJ]-XA[-1+XJ] >= 0) DRDERED(XA[XI,-1+XJ])]

DRDERED(XA[XI,XJ])

use nordl;
goon

FAILED [4 -1] (XA[XX02]-XA[1+XX02] =< 0)

XX02 is a Skolem constant introduced from the FA
expression.

>prthm;

[(XI-XJ =< -1) (XI-XX02 =< 0) (XJ-XX02 >= 1) (XA[XJ]-XA[-1+XJ]
>= 0) DRDERED(XA[XI,-1+XJ])]

(XA[XX02]-XA[1+XX02] =< 0)

cases [% xx02=xj-1, xx02<xj-1 %];

CASE PROVED SIMP
FAILED [4 -1 2] (XA[XX02]-XA[1+XX02] =< 0)

>use nord2;
goon

CASE PROVED [NOR02 [(XJ.-1+XJ) (XI.XI) (XA.XA)] [INST [(XJ.-1+X
J) (XI.XI) (XA.XA)] [CDNJ SIMP SIMP SIMP]]]
CASES PROVED [(XJ-XX02 = 1) (XJ-XX02 >= 2)]

goon

[4] PROVED

Page 156

Chapter 7. CONCLUSIONS

7.1 Summary

We have presented in this thesis a new method for

proving properties of programs and an implemented

verification system which uses both this method and Floyd's

method. The proof method is based on symbolic execution and

as such relies on the operational semantics of a language.

It is a generalization of Floyd's method and can be

effectively used in conjunction with it, especially for

handling subroutines and recursive procedures. Moreover, it
can also handle language features such as non-local jumps,

side-effects and non-determinism. While the method is very

convenient to use for some programs (e.g. the 91-function),
for others it can require more detailed specifications than

are really necessary and hence makes these programs harder

to verify (e.g. GCD, Section 3.3.1). Thus the method is
perhaps best seen as a complement to existing methods, one

which is occasionally preferable to any of them.

The program verification system is interesting for

several reasons: firstly for the way it "borrows" the

semantics of the language as actually implemented, thereby

obviating the need for a formal definition of the language,

secondly for the use of high-level specifications, and

thirdly for the way an interactive theorem prover can

augment a simple automatic one, Rnabling non-trivial
programs, including two sorting programs and a program to

Conclusions Page 157

invert a permutation "in place", to be verified. It is also

an extensible system, allowing new functions to be declared,

defined by rules, and given properties which are then used

by the simplifier and matcher. The major weakness of the

verification system is that, with the exception of the

permutation example, we have not been able to use it to

verify any difficult programs which have not already been

verified completely automatically by other systems. Even

those proofs we have done have been quite hard to find
(certainly while sitting at a terminal) and tedious to

check. Finally, the system can be very slow, especially

considering that its automatic theorem prover possesses

almost no "intelligence". Nevertheless the system has

achieved a limited success in a difficult area, and with the

modifications and extensions described in the next section

could be a useful tool.

7.2 Improvements an extensions

Several factors contribute to the deficiencies just

mentioned. These include the lack of a routine for

simplifying conjunctions of more than two relational

expressions (e.g. our system cannot simplify a>b & b>c & c>a

to false), the implementation of transitivity as an

inference rule requiring the use of the matcher, the fact

that rules are applied without considering the hypotheses

and thus leading to a rather blind search, the limited

knowledge about quantifiers and sets, and the excessive use

Conclusions

of the algebraic simplifier.

Page 158

Some of these difficulties can be overcome in
straightforward ways. For example, using a unique

representation for identical expressions (as in QA4) allows

a property list to be associated with each expression which

can facilitate transitivity and set operations, and avoid

repeated computations of related expressions (e.g.
negations). Alternatively, and more simply in our system,

adding the typing and cases mechanism described briefly in

Good et al. (1974) would also improve our ability to reason

about relational expressions.

A more difficult problem is deciding which inference

rule to apply at any given point. It is clearly necessary

to consider the hypotheses of both the theorem and the rule
when doing this. A generalization of our current indexing

scheme which only applied a rule automatically if every

"interesting" predicate in the rule's hypotheses also

occurred in the theorem's hypotheses would surrender

completeness (which the automatic theorem prover doesn't

have anyway), but it would drastically reduce the search

space, allow the search to go deeper and possibly result in

improved performance.

But the most important problem is the nature of the

rules themselves. There are too many rules doing similiar
things, the user needs to know exactly what they each are,

and must be able to decide which one is currently

applicable. More descriptive names alone would help, but a

Conclusions Page 159

better solution is to give "natural" rather than recursive

definitions of new functions, for example,

ordered(a[x,y)) <-> (FA u)(x=<u<y => a[u]=<a[u+1])

Our various counting-up and counting-down rules would then

be combined into rules about the quantifiers only, and to

prove ordered(a[i,j]) the user would say "count-down" rather

than "use ORD12". This would also allow uniform heuristics
for quantifiers to be introduced, thereby lessening still
further the burden on the user. We are currently modifying

the system to use such non-recursive definitions.

Extensions which would make the system more useful

include the ability to do proofs by Burstall's hand

simulation method, and the provision of routines for
manipulating explicit sets, including sets defined by

abstraction. The first of these would allow the proofs of

programs such as the Schorr-Waite program to be attempted,

and the second would be an additional aid to writing

assertions in the most natural way.

7.3 Further research

There are two dimensions in program verification:

towards increased program complexity, and toward increased

programming language complexity. This thesis has considered

both aspects, in the verifier and the proof method

respectively. While it is a non-trivial task to devise a

Conclusions Page 160

proof system and write a verification condition generator

for a language with powerful features (as evidenced by the

present work and by Igarashi, London and Luckham, 1973), we

now believe that this is much the less important direction
of the two. Even in the simplest language it is possible to

write arbitrarily complicated programs which require a

considerable body of extra-programming knowledge in order to

be verified. Thus it seems that mechanized program

verifiers will only be as successful as the theorem provers

/ proof checkers which they use.

The development of effective, powerful interactive
theorem provers for use in program verification remains a

difficult problem. There is the question of what is the

best way to organize such an interactive theorem prover.

The approach taken by most workers in program verification,
including ourselves, is to supplement an automatic theorem

prqver by commands from the user. However, in LCF, the

basic program is a low-level proof checker controlled by the

user, to which successively more powerful derived inference

rules are added. There is also the choice between an LCF /
Bledsoe natural deduction system and a King / Deutsch /

resolution system. In the first case it probably does not

make much differene which choice is taken since they will

come to the same thing in the end. However it seems that

interactive systems should be based on a natural deduction

approach rather than one based on deriving contradictions,

simply because the resulting proofs in a natural deduction

system are more similar to the ones people produce, and

Conclusions Page 161

hence people can more easily interact with and guide such a

system.

For program verification to become a widespread,
profitable activity, it will also be necessary to remove the
burden of giving detailed specifications from the user.
Some work has been done on automatically generating loop
invariants from input-output assertions (German and Wegbreit

1975), but this by itself seems to be an artificial problem,

especially since it requires the program to be correct in
the first place. Moreover, as German and Wegbreit observe,

since the programmer presumably knows why his program works,

he can always give at least an outline of this loop

invariant. It should then be practical to complete this
invariant, adapting the techniques of Sites (1974) to find

array subscript bounds, etc., and use it to verify the

program,

It might also be possible, especially when using

continuation induction, to adapt the ideas of Moore (1974)

and Aubin (1975) who have independently found methods for
extending the generalization techniques of the Boyer-Moore

LISP theorem prover to handle iterative programs. Both

methods involve the introduction .of recursive functions

describing the state of the computation after an arbitrary

number of iterations. While these new functions do not

exactly describe the computation to the end of the loops,

the fact that in both cases induction is done on the

remaining length of the computation suggests that their

Conclusions page 162

methods could be applied in deriving the function computed

by a particular loop, particularly if a partial description

was given initially.

To carry these ideas even further, the most fruitful
approach could well be that of interactively constructing

the assertions and the program simultaneously, continually

testing their consistency, and using the results of these

tests in their further development. This approach was

advocated in Floyd (1971) and was shown to be feasible by

Deutsch.

Finally, to verify large programs it will be necessary

to adopt the principles of abstraction and structure as

advocated in Dahl, Dijkstra and Hoare (1972) for example.

As Good, London and Bledsoe observe, to keep the size of

proofs manageable, abstractions must be used in the

specifications as well as in the programs. Some progress

has been made in this direction by the use of array segments

and defined predicates (ordered, perm) but most programs

which have been mechanically verified are still too simple

for the advantages of this approach to be manifest. The

chief exception is the verification condition generator

proved correct,' by Ragland (1973). The next step is to start

by verifying the truly abstract programs which operate on

sets, bags, graphs, etc. and then showing that the concrete

program correctly simulates the abstract program using, for

example, the method described in Hoare (1972).

Conclusions Page 163

The future progress of (interactive) program

verification is unclear. There are now several

well-understood and practical methods for proving properties

of programs, and it is a question of implementing them as

effectively as possible. But despite a considerable amount

of research in the last three years, and the implementation

of several new verification systems, the complexity of

verified programs has only increased modestly. To verify
more complex programs it will be necessary to

whole-heartedly adopt the structuring and abstraction

principles referred to above, thereby keeping the proofs

manageable. There is no reason this cannot be done, and

with some effort the field should continue to make steady

progress.

Page 164

REFERENCES

Aubin, R. (1975) Some generalization heuristics in proofs by
induction. Proceedings gf j=j g International ,Symposium
on Qrovin an,d Improving Pro ams, Arc-et-Senans,
France.

de Bakker, J.W. and Scott, D. (1969) A theory of programs.
Unpublished memo, Vienna.

Basu, S .K . and Misra, J. (1975) Proving loop programs. IEEE
Transactions on Software Engineering J,j. 1, 76-86.

Bledsoe, W.W. and Bruell, P. (1973) A man-machine theorem
proving system. Proceedings at Third International
Joint Conference gn, Artificial Intelligence, Stanford,
California, pp. 56-65. Also Artificial Intelligence
Journal 1 (1974) 51-72.

Boyer, R., Elspas, B. and Levitt, K.N. (1975) SELECT - a
formal system for testing and debugging programs by
symbolic execution. Proceedings of the I,nternationa1
Conference gn, Reliable Software, Los Angeles,
California, pp. 234-245.

Boyer, R. and Moore J S. (1973) Proving theorems about LISP
functions. Proceedings Qf Third International Joint
Conference 2a Artificial Intelligence, Stanford,
California, pp. 486-493. Also ,,i ABM P2, 1 (1975)
129-144.

Burstall, R.M. (1969) Proving properties of programs by
structural induction. Computer y[ournal 12. 1, 41-47.

Burstall, R.M., Collins, J.S. and Popplestone, R.J. (1971)
Programming Iti POP-2. Edinburgh: University Press.

Burstall, R.M. (1974) Program proving as hand simulation
with a little induction. Proceedings of IFIP Congress
1974, Stockholm, Sweden.

Burstall, R.M. (1975) A note on program proof by a
continuation method. D Working Paper 2. Department
of Artificial Intelligence, University of Edinburgh.

Clint, M. and Hoare, C .A.R . (1972) Program proving: jumps
and functions. Acta Informatica .,, 214-224.

Cooper, D .C . (1971) Programs for mechanical program
verification. Machine Intelligence k (eds. B. Meltzer
and D. Michie) Edinburgh: University Press, pp.
43-59.

REFERENCES Page 165

Dahl, O.-J., Dijkstra, E.W. and Hoare, C.A.R. (1972)
Structured ,eroarammina. Academic Press, London.

Darlington, J. (1973) A semantic approach to automatic
program improvement, Ph.D. thesis, University of
Edinburgh.

Deutsch, L.P. (1973) An interactive program verifier. Ph.D.
thesis. University of California, Berkeley,
California. Also Aero4 E$EE Report CSL-7311, Palto
Alto, California.

Elspas, B. (1972) The semiautomatic generation of inductive
assertions for program correctness proofs. Report Jjg

, Seminar, Des Institute fur Theorie der Automaten
and Schaltnetzwerke, Gesellschaft fur Mathematik and
Datenverarbeitung, Bonn. Also SBJ Project 2686,
Stanford Research Institute, Menlo Park, California
(1974).

Elspas, B., Levitt, K.N., Waldinger, R.J. and Waksman, A.
(1972) An assessment of techniques for proving program
correctness. ACM Computing Surveys 4. ?., 97-147.

Floyd, R.W. (1964) Algorithm 245, TREESORT 3. Comm_ ell L.
12, 701.

Floyd, R.W. (1967) Assigning meanings to programs.
Proceedings a Symposium In Applied Mathematics. Vol. jQL

19 (ed. J.T. Schwartz), Providence, Rhode Island,
American Mathematical Society, pp. 19-32.

Floyd, R.W. (1971) Toward interactive design of correct
programs. Proceedinas ,Q, I,EIE l pnaress 1971,

Netherlands.

Gerhart, S.L. (1972) Verification of APL programs. Ph.D.
theCarnegie-Mellon University, Pittsburgh,
Pennsylvania.

German, S.M. and Wegbreit, B. (1975) A synthesizer of

inductive assertions. IEEE Transactions an Software
Enaiireering 1. 1, 68-75.

Good, D.I. (1970) Toward a man-machine system for proving

program correctness. `Eh.D_ thesis. University of

Wisconsin.

Good, D.I., London, R.L. and Bledsoe, W.W. (1974) An

interactive program verification system. ISI/RR-74-22.

Information Sciences Institute, University of Southern
California. Also I. . Transactions Q,a Software
Enairieering 1.. 1 (1975) 59-67.

REFERENCES Page 166

von Henke, F .W . and Luckham, D .C . (1974) Automatic program
verification III: A methodology for verifying
programs. Computer Science Department Report QS_474
AID 6, Stanford University, California. Also
Proceedings Qf International Conference g. Reliable
Software, Los Angeles, California (1975) pp.156-164.

Hoare, C.A.R. (1969) An axiomatic basis for computer
programming. Comm. AQM 12,.,, 1Q, 576-580, 583.

Hoare, C.A.R. (1971a) Procedures and parameters: an
axiomatic approach. Symposium ,on the Semantics sLE
Alaori -hmi Languages (ed. E. Engeler). Lecture Notes
jJ Mathematics 1U. Springer-Verlag, pp. 102-116.

Hoare, C.A.R. (1971b) Proof of a program: FIND. Comm. M

1.4.. 1, 39-45.

Hoare, C.A.R. (1972) Proof of correctness of data
representations. &c a Informatics 1, 271-278.

Igarashi, S., London, R. and Luckham, D. (1973) Automatic
verification of programs I: a logical basis and
implementation. Computer Science Department Report
QS-365, AIM-200, Stanford University, California.

Katz, S .M . and Manna, Z. (1973) A heuristic approach to
program verification. Proceedinas Of Third
J_nterpational Joint Conference ga Artificial
Intelligence, Stanford, California, pp. 500-512.

King, J.C. (1969) A program verifier. Ph.D. thesis.
Carnegie-Mellon University, Pittsburgh, Pennsylvania.

King, J.C. (1975) A new approach to program testing.
Proceedings Qf tAg International Conference Qa Reliable
Software, Los Angeles, California, pp. 228-233.

Knuth, D .E . (1968) The Art of Computer Prroaramming,,, Vol _ 1-
Fundamental Algorithms. Addison-Wesley, Reading, Mass.

Landin, P.J. (1964) The mechanical evaluation of
expressions. Computer Journal S, 308-320.

Leisenring, A.C. (1969) Mathematical Logic and Uilbert's
£ -Symbol. MacDonald and Co., London.

Manna, Z. (1969) The correctness of programs. .4ournal gf
Computer and Systems Sciences S, 119-127.

Manna, Z. and Pnueli, A. (1970) Formalization of properties

of functional programs. . ALI 12-, ,2, 555-569.

REFERENCES Page 167

Manna, Z., Ness, S. and Vuillemin, J. (1971) Inductive
methods for proving properties of programs.
Proceedings gf tb& gM SIGPLAN Conference Qn. rovinsi
Assertions about Programs, Las Cruces, New Mexico, pp.
27-50. Also Comm. ACM 16. $ (1973) 491-502.

McCarthy, J. (1960) Recursive functions of symbolic
expressions and their computation by machine, Part I.
Comm_ bf& j, 184-195.

McCarthy, J. (1962) Toward a mathematical science of
computation. Information Erocessina 1962 (ed. C.M.
Popplewell). Proceedings gf j,EIP ,ion r ess 11.2.
Amsterdam: North-Holland.

McCarthy, J. (1963) A basis for a mathematical theory of
computation. Computer Proarammina and Formal Bystems
(eds. P. Braffort and D. Hirschberg) Amsterdam:
North-Holland, pp. 33-70.

McCarthy, J. and Painter, J.A. (1967) Correctness of a
compiler for arithmetic expressions. Proceedings of a
Symposium in ADD lied Math ma_tics . Vol. 19 (ed. J .T .
Schwartz), Providence, Rhode Island, American
Mathematical Society, pp. 33-41.

Mills, H.D. (1975) The new math of computer programming.
Comm _ I 1 .1, 43-48.

Milner, R. (1972) Implementation and applications of Scott's
logic for computable functions. Proceedings Qf thg Ar&
SIGPLAN Conference on, Proving Assertions About
Programs, Las Cruces, New Mexico, pp. 1-6.

Milner, R. (1975) Private communication.

Milner, R. and Weyhrauch, R. (1972) Proving compiler
correctness in a mechanised logic. Machine
Intelligence 2 (eds. B. Meltzer and D. Michie)
Edinburgh: University Press, pp. 51-70.

Moore, J S. (1973) Computational logic: Structure sharing
and proving program properties. ,Ph.D_ thesis,
University of Edinburgh.

Moore, J S. (1974) Introducing iteration into the pure LISP
theorem prover. Xerox PARC $epsrt CS -74- , Palo Alto,
California.

Morris, J.H. (1971) Another recursion induction principle.
Comm. ACM 14. a, 351-354.

Moses, J. (1971) Algebraic simplification: a guide for the
Perplexed. COMM. ALI 14. a, 527-537.

REFERENCES Page 168

Naur, P. (1966) Proof of algorithms by general snapshots.
BI , 310-316.

Newey, M.C. (1975) Formal semantics of LISP with applications to program correctness. Qomputer Science
Department Report CS-475, AI M-257, Stanford University, California.

Park, D. (1969) Fixpoint induction and proofs of program properties. Machine Intelligence ,5- (eds. B. Meltzer
and D. Michie) Edinburgh: University Press, pp.
59-78.

Perlis, A.J. and Itturiaga, R. (1964) An extension to ALGDL
for manipulating formula. Comm. ACM . ?., 127-130.

Ragland, L.C. (1973) A verified program verifier. Technical
Report NQ. 1.B, Department of Computer Sciences,
University of Texas at Austin.

Reynolds, J.C. (1972) Definitional interpreters for higher-order programming languages. Proceedings jf Affil
National C nference, Boston, Mass.

Rulifson, J.F., Derkson, J.A. and Waldinger, R.J. (1972)
QA4: a procedural calculus for intuitive reasoning.
Technical Note 73, Artificial Intelligence Center,
Stanford Research Institute, Menlo Park, California.

Scott, D. (1969) A type theoretical alternative to ISWIM,
CUCH, DWHY. Inpublished notes, Dxford University.

Sites, R.L. (1974) Clean termination of programs. Computer
Science Department Report fS-418, Stanford University,
California,

Stansfield, J.L. (1972) [PRDCESS 1]: A generalisation of
recursive programming languages. Bionics Research
Reports: No. 8, School of Artificial Intelligence,
University of Edinburgh.

Suzuki, N. (1974) Automatic program verification II:
Verifying programs by algebraic and logical reduction.
Computer Science Department Report RS-473, AIM-255,
Stanford University, California. Also E,roceedings Qf
International Conference on Reliable Software, Los
Angeles, California (1975) pp. 473-481.

Topor, R.W. (1974) The correctness of the Schorr-Waite list
marking algorithm. MIP-R-104, School of Artificial
Intelligence, University of Edinburgh.

Topor, R.W. and Burstall, R.M. (Feb. 1973) Proving programs
by symbolic execution. A kina ng 1, University of
Edinburgh. (Privately circulated)

REFERENCES Page 169

Waldinger, R.J. and Levitt, K.N. (1973) Reasoning about
programs. ACM Symposium on Principles af Programming
Languages, Boston, Mass., pp. 169-182. Also Artificial
Intelligence Journal Z,,,,1 (1974) 235-316.

Wegbreit, B. (1973) Heuristic methods for mechanically
deriving inductive assertions. Proceedings Qf Third
International Joint Conference as artificial
Intelligence, Stanford, California, pp. 524-536. Also
Comm _ A 17. (1974) 102-112.

Weir, S. and Burstall, R.M. (1972) Macro-inference steps in
proofs of program correctness. M,IP-R-96, School of
Artificial Intelligence, University of Edinburgh.

Wirth, N. (1971) The programming language Pascal. Acta
j,nformatica 1 , 35-63.

Page 170

Appendix 1: ,totes an POP-2

In this appendix we give a brief account of those

aspects of the POP-2 programming language neccessary for the

reader to be able to follow our examples and description.
The language was designed and implemented at the University

of Edinburgh and is described in detail in Burstall, Collins

and Popplestone (1971).

POP-2 allows a programmer to represent and manipulate

various kinds of objects including numbers, words, arrays,

lists, strings, records and functions. There is no

distinction between functions and procedures. All
assignments, argument passing and result returning is done

using a pushdown stack which is freely accessible to the

, programmer. To push the number 6 onto the stack and leave

it there, one writes

6;

If there is something on the stack, it can be popped and

assigned to the variable X by writing

-> X;

Thus to assign 6 to X one writes

6 -> X; (cf. X := 6; in ALGOL)

One can also use the stack to interchange the values of two

variables X and Y by writing

X, Y -> X -> Y ;

Notes on POP-2 Page 171

Function application is invoked by writing, for
example,

F(1,2);

The sequence of actions in this application is that the

arguments I and 2 are placed on the stack (after having been

evaluated) and the function stored in the identifier F is

then applied. F then takes its arguments off the stack.

Thus the same result is obtained by writing

1, F(2);

or

1, 2; F();

Function applications can also be signified by using a dot

(".") before any identifier (or expression) whose value is a

function. So the above example can also be written as

1, 2 F;

Any function may return more than one result, simply by

leaving the results on the stack when it exits.

To define a function with name FOO, formal parameters X

and Y, and local variables Z and W, one writes

FUNCTION FOO X Y;
VARS Z W;

body
END

For example, the function definition
FUNCTION SUMSQ X Y;

X"2 + Y"2
ENO

defines a new function called SUMSQ whose value is the sum

of the squares of its two arguments. It is possible to

declare local variables so that their values are

Notes on POP-2 Page 172

automatically placed on the stack when the execution of the

function is terminated. Such variables are called output

locals. The function SUMSQ could also be defined using

output locals as

FUNCTION SUMSQ X Y => Z:
X"2 + Y"2 -> Z

END

In this case Z is the output local and its value is placed

on the stack immediately before the function exits.
Anonymous functions, or lambda expressions, may also be

constructed and assigned to variables. For example,

LAMBDA X Y; X"3 + Y"3 ENO -> F;

assigns the anonymous function which computes the sum of the

cubes of its two arguments to the variable F which can then

be used like any other function.

Non-local variables in POP-2 take their values from

their dynamic environment as in LISP rather than from their
textual (or static) environment as in ALGOL.

The conditional statement in POP-2 has the form

IF cond THEN statl ELSE stat2 CLOSE;

If the condition is true (i.e. it does not evaluate to 0)

then the first alternative statement is executed; otherwise

the second statement is executed. FALSE in POP-2 is 0 and

TRUE is 1. The form

IF condl THEN statl
ELSEIF cond2 THEN stat2

ELSE statn CLOSE;

can be used to avoid repeated CLOSE's.

Notes on POP-2 Page 173

The main iterative statement in POP-2 has the form

LOOPIF cond1 THEN statl
ELSEIF cond2 THEN stat2

ELSEIF condn THEN statn CLOSE;

This statement evaluates each condition in turn until one of

them is true (i.e. not 0). It then executes the

corresponding sub-statement and repeats the whole statement.

If each condition evaluates to 0 the statement terminates.

(This statement is a deterministic version of Oijkstra's

guarded command construction.) The simple case

LOOPIF cond THEN stat CLOSE

corresponds to the familiar while-statement:

while cond dQ, stat

of other languages. Labels and GOTO's have roughly the same

syntax as in ALGOL.

However, since a GOTO statement cannot refer to a label

outside the function body in which it occurs, the standard

function JUMPOUT is provided to construct escape functions.

We write, for example,

FUNCTION F X:
IF X=0 THEN ERROR() CLOSE:
(X+1) / X

ENO:

FUNCTION G Y:
JUMPOUT(LAMBDA: PR('ZEROI ERROR) ENO, 0) ->

ERROR;
F(Y) + F(Y"3)

END

After JUMPOUT in this example, ERROR is a function of no

arguments and no results. In fact it is identical to the

function LAMBDA; PR('ZERO ERROR) END except that as soon

as ERROR has been executed, execution of G is terminated

Notes on POP-2 Page 174

instead of execution of F being resumed as one would

normally expect. That is, ERROR has a special "fire-escape"

which enables it to climb out of G (the function where it
was created) when it is called. The second argument, 0, of

JUMPOUT indicates that the function produced returns no

results.

A more general state-saving facility allows the user to

save the complete state of his computation below a

"barrier", enabling more complex control structures such as

backtracking and coroutines to be implemented.

Data structures in POP-2 include words, lists, arrays

and records. Lists are basically the same as in LISP.

There are several ways to construct them. For example, the

expressions

[A B C D]
[% "Amp "B", "C", "D" %]
CONS("A",[B C D])
"A" :: [B C D]
[A B] <> [C D]

all have the same value, a list consisting of the four words

"A " "B " "C" and "D". The binary operation :: is the same

as the function CONS and the binary operation <> is the same

as the LISP function APPEND. The other main standard

functions which operate on lists are HD (cf. CAR) which

returns the first element of a list, TL (cf. CDR) which

returns all but the first element of the list, and NULL

which tests whether or not the list is equal to NIL.

Notes on POP-2 Page 175

Arrays in POP-2 are just particular kinds of functions;

A(I) is the Ith element of the array A. (In our verification
system, this is written AEI.) To assign 0 to the first
element of an array A one writes

0 -> A(1);

This leads to the concept of a doublet. Every function can

be given an associated function called an j odater. A

function which has an updater is called a doublet. The

function itself is applied normally but the updater is
applied when it is the top-level function to the right of

the assignment arrow ("->"). Both HD and TL have updaters,

so after performing

[A 8 C] -> X;
1 -> HD(X); (cf. (RPLACA X 1) in LISP)

the value of X is the list [1 8 C]. Another standard doublet

is MEANING which is used to associate information with words

and hence can be used to implement property lists in POP-2.

Pairs are an example of records having two components,

FRONT and BACK which are both doublets. A pair is formed

with the function CONSPAIR which takes two arguments and

constructs a record with two components. List cells are

actually pairs except that the TL of a list in POP-2 must be

NIL or another list, while the back of a pair can be

anything. The standard function ATOM returns TRUE if its

argument is not a pair and FALSE if it is.

Page 176

appendix ,Z.L ,Qefi nits one

COMMENT ARITH;

WHEN [% XU>=O %], ABS(XU) __> XU;
WHEN [% XU<O %], ABS(XU) ==> MINUS(XU);

WHEN [% XU>=O %], SGN(XU) __> 1:

WHEN [% XU<O %], SGN(XU) ==> MINUS(1);

IR TR; COMMENT TRANSITIVITY AXIOM;
XF (XX ,XZ) <== [% TRANSOP ("XF ") ,

(EX XY)(XF(XX,XY) & XF(XY,XZ)) %];
TORULES;

COMMENT TORULES INDEXES THE PRECEDING RULE UNDER =, >= and =<:

IR XSQ;
XX"2 >= 0 <_= NIL:

COMMENT DIV AND REM;

WHEN [% 0=<XU, XU<XV XU DIV XV =_> 0;
WHEN [% XU>=XV, XV>O %], XU DIV XV =_> I + (XU-XV) DIV XV;

WHEN [% 0=<XU, XU<XV %], XU REM XV =_> XU;
WHEN [% XU>=XV, XV>O %], XU REM XV =_> (XU-XV) REM XV;

COMMENT FAC ;

WHEN [% XU=O %],
WHEN [% XU>0 %],

COMMENT GCD;

FACTORIAL(XU) ==> 1;

FACTORIAL(XU) ==> XU*FACTORIAL(XU-1);

WHEN [% XU=O %], GCD(XU,XV) ABS(XV);
WHEN [% XV=O %], GCD(XU,XV) ABS(XU);
COMMENT SINCE GCD IS COMMUTATIVE ONLY ONE OF THESE RULES

EXISTS IN THE ACTUAL SYSTEM;
WHEN [% XX/=O %], GCD(XX,XX) ==> XX;
WHEN [% XU/=0, XV/=0 %], GCD(XU,XV) __> GCD(XV, XU REM XV);

COMMENT CHNG (AND XCHNG) ;

WHEN [% XJ=XI %], CHNG(XA,XX,XI)\XJ =_> XX;

WHEN [% XJ/=XI %], CHNG(XA,XX,XI)\XJ =_> XA\XJ;

WHEN [% XK=XI %], XCHNG(XA,XI,XJ)\XK =_> XA\XJ:
WHEN [% XK=XJ %], XCHNG(XA,XI,XJ)\XK =_> XA\XI;

WHEN [% XK/=XI, XK/=XJ %], XCHNG(XA,XI,XJ)\XK ==> XA\XK;

COMMENT SETS;

Definitions Page 177

IR XFO
XF(XA<<XI,XJ> ,XZ) <== [% XI>XJ

TORULES:
IR XF1;

XF(XA<<XI,XJ>> XZ)
<__ [% XF(XA<<XI,XJ-1>>,XZ), XF(XA\XJ,XZ) %];

TDRULES;
IR XF2;

XF (XA<<XI,XJ»,XZ)
<__ [% XF(XA<<XI+1,XJ>>,XZ), XF(XA\XI,XZ)

TORULES;
IR XF3

XF(XA<<XI,XJ>>,XX) <== [% XF(XA<<XI-1,XJ>>,XX) %];
TORULES;
IR XF4

XF(XA<<XI,XJ>>,XX) <== [% XF(XA<<XI,XJ+1>>,XX)
TORULES:
IR XF5

XF(XX-XA\XJ,O)
<__ [% (EX [XI XK])(XI=<XJ G XJ=<XK G XF(XX, XA<<XI,XK>>)) %];

TORULES;
IR XF6

XF(XA\XJ-XX,0)
<__ [% (EX [XI XK])(XI=<XJ G XJ=<XK G XF(XA<<XI,XK>>, XX))

TORULES ;

COMMENT EQSEQ;

IR EQSEQI
EQSEQ(XA<<XI,XJ>>,XB<<XK,XM>>) <== [% XI>XJ, XK>XM %];

IR EQSEQ2
EQSEQ (XA<<XI ,XJ>>,XB<<XK ,XM>>)
<__ [% XI=<XJ, XJ-XI=XM-XK, XA\XI=XB\XK,

EQSEQ(XA<<XI+1,XJ>>,XB<<XK+1,XM>>)
IR EQSEQ3

XA\XI=XB\XK
<__ [% (EX [XJ XM]) (XI=<XJ G XM-XK=XJ-XI G

EQSEQ (XA<<XI,XJ>>,XB<<XK,XM>>)) %I:
IR EQSEQ4

EQSEQ(XA<<XI,XJ>>,XB<<XK,XM>>)
<__ [% XI-1=<XJ, XM-XK=XJ-XI,

EQSEQ (XA<<XI-1 ,XJ>>,XB<<XK-1 ,XM>>) %I:

COMMENT ISIN;

IR ISIN1
ISIN (XA<<XI,XJ>>,XB<<XK,XM>>)
<__ [% XJ-XI=<XM-XK, EQSEQ(XA<<XI,XJ>>,XB<<XK,XK+XJ-XI>>) %];

IR ISIN2
ISIN(XA<<XI,XJ>>,XB<<XK,XM>>)
<__ [% ISIN(XA<<XI,XJ>>,XB«xK+1,XM>>) %J

IR ISIN3
EQSEQ(XA<<XI,XJ>>,XB<<XK,XL>>)
<__ [% (EX XM)(XL=<XM & XJ-XI=<XM-XK &

ISIN (XA<<XI ,XJ>>,XB<<XK,XM>>)) %] ;

Definitions Page 178

IR ISIN4
ISIN(XA<<XI,XJ>>,XB<<XK,XM>>)
<== [% XJ-XI=<XM-XK+1, ISIN (XA<<XI ,XJ>>,XB<<XK-1 ,XM>>) ,

NOT (EQSEQ (XA<<XI ,XJ>>,XB<<XK-1 ,XK-1+XJ-XI>>)) %1;

COMMENT ORO(EREO);

IR OROI
OROEREO (XA<<XI,XJ>>) <== [% XI>=XJ %J;

IR OR02
OROEREO (XA<<XI,XJ>>)
<__ [% XI<XJ, XA\XI=<XA\(XI+1), OROEREO(XA <<XI+1,XJ>>) %];

IR OR03
XA\XI =< XA\(XI+1)
<__ [% (EX XJ)(XI<XJ & OROEREO(XA<<XI,XJ>>))

IR OR04
OROEREO(XA<<XI,XJ>>)
<__ [% XI-1<XJ, OROEREO (XA<<XI-1 ,XJ>>)

COMMENT PERM;

WHEN [% XJ<XI %], OCCS(XX,XA<<XI,XJ>>) ==> 0;
WHEN [% XI=<XJ, XX=XA\XI %],

OCCS (XX ,XA<<XI ,XJ>>) ==> 1+OCCS (XX,XA<<XI+1 ,XJ>>) ;
WHEN [% XI=<XJ, XX/=XA\XI %],

OCCS (XX,XA<<XI ,XJ>>) ==> OCCS (XX,XA<<XI+1 ,XJ>>) ;

IR PERMI
PERM (XA<<XI ,XJ>>,XB<<XK ,XM>>)
<__ [% (FA XX)(OCCS(XX,XA<<XI,XJ>>)=OCCS(XX,XB<<XK,XM>>)) %];

IR PERM2
OCCS(XX,XA<<XI,XJ>>) = OCCS(XX,XB<<XK,XM>>)
<__ [% PERM(XA<<XI,XJ>>,XB<<XK,XM>>) %];

COMMENT LISTS (ANO TREES);

HO(CONS(XU,XV)) XU;
TL(CONS(XU,XV)) XV:
WHEN [% NOT(NULL(XU)) %], CONS(HO(XU),TL(XU)) ==> XU:

WHEN [% NULL(XU) %], XU<>XV ==> XV;
WHEN [% NOT(NULL(XU)) %], XU<>XV ==> HD(XU)::(TL(XU)<>XV):

IR MEMBI
MEMB(XU,XL) <== [% NOT(NULL(XL)), XU=HO(XL) %];

IR MEMB2
MEMB(XU,XL) <== [% NOT(NULL(XL)), MEMB(XU,TL(XL)) %];

IR MEMB3
NOT (NULL (XL)) <== [% (EX "XU") (MEMB (XU,XL)) %1:

IR MEMB4
MEMB(XU,TL(XL)) <== [% XU/=HO(XL), MEMB(XU,XL) %];

WHEN [% ATOM(XL) %], FRINGE(XL) =_> XL::NIL;
WHEN [% NOT (ATOM (XL)) %J,

FRINGE(XL) ==> FRINGE(FRONT(XL))<>FRINGE(BACK(XL))-.

Definitions

NULL(NIL) ==> TRUE:
NULL(CONS(XU,XV)) ==> FALSE:
ATOM(CONS(XU,XV)) FALSE:

Page 179

Page '480

Appendix ;, Derived rules

WHEN [% XX>=0, XY>O, XZ>=0 %],
(XX+XY*XZ) DIV XY ==> XX DIV XY + XZ;

WHEN [% XX>=O, XY>O, XZ>=O %],
(XX+XY*XZ) REM XY ==> XX REM XY;

XX DIV 1 ==> XX;
(XX*XY) DIV (XX*XZ) ==> XY DIV XZ ;

WHEN [% XX REM XY = 0 %], (XX DIV XY)*XY ==> XX;

IR DIV1;
XX DIV XY >=0 [% XX>=O, XY>0

IR REM1;
XX REM XY >= 0 [% XX>=O, XY>0 %];

IR REM2;
XX REM XY =<0 [% XX=<0 %];

1->ISASSDC("GCD");
1->ISCDMM("GCD");
WHEN [% O<XX, XX=<XY %], GCD(XX,XY-XX) ==> GCD(XX,XY);
WHEN (% XY>O, XX REM XY=O %1, GCD (XX,XY) ==> XY ;

IR GCD1
GCD (XU ,XX) = GCD (XV,XX)
<__ [% XX/=O, (XU-XV) REM XX =

CHNG (CHNG (XA,XA\XI,XJ) ,XA\XJ,XI)

WHEN [% XU<XI,XV<XI %],
XCHNG(XA,XU,XV)<<XI,XJ>>

WHEN [% XU<XI,XV>XJ %1,
XCHNG (XA,XU,XV)<<XI,XJ>>

WHEN [% XU>XJ,XV<XI %],
XCHNG (XA,XU ,XV) <<X I ,X J>>

WHEN [% XU>XJ,XV>XJ %] ,
XCHNG (XA,XU,XV)<<XI,XJ>>

0 %];

==> XCHNG(XA,XI,XJ);

==> XA<<XI,XJ»;

==> XA<<XI,XJ>>;

==> XA<<XI,XJ>>;

==> XA<<XI,XJ>>;

IR CHNG 1 ;

XF (CHNG (XA,XX,XI)<<XI ,XJ>>, XZ)
<== [% XF(XX,XZ), XF(XA<<XI+1,XJ>>, XZ) %];

TDRULES;
IR CHNG2;

XF (CHNG (XA,XX,XJ)<<XI,XJ>>,XZ)
<== [% XF(XA<<XI,XJ-1>>,XZ), XF(XX,XZ) %];

TDRULES;

IR XCHNGI
XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ)
<== [% XU=XJ, XV>XJ, XF(XA<<XI,XJ-1>>,XZ), XF(XA\XV,XZ)

TDRULES;
IR XCHNG2

XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ)
<== [% XV=XJ, XU>XJ, XF(XA<<XI,XJ-1>>,XZ), XF(XA\XU,XZ) %];

TDRULES;

Derived rules Page 181

IR XCHNG3
XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ)
<__ [% XU=XI, XV<XI, XF(XA<<XI+1,XJ>>,XZ), XF(XA\XV,XZ)

TORULES;
IR XCHNG4

XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ)
<__ [% XV=XI, XU<XI, XF(XA<<XI+1,XJ>>,XZ), XF(XA\XU,XZ) %];

TORULES;
IR XCHNG5

XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ)
<__ [% XI=<XU,XU=<XJ,XI=<XV,XV=<XJ, XF(XA<<XI,XJ>>,XZ) %];

TORULES;

1->ISCOMM("EQSEQ");
1->ISTRANS("EQSEQ");
IR EQSEQIO
EQSEQ(XX,XX) <== NIL;

IR EQSEQ12
EQSEQ (XA<<XI,XJ>>,X8«XK,XM>>)
<__ [% XI=<XJ, XJ-XI=XM-XK, XA\XJ=XB\XM,

EQSEQ(XA<<XI,XJ-1>>,X8«XK,XM-1>>)
IR EQSEQ13

XA\XJ=XB\XM
<__ [% (EX [XI XK]) (XI=<XJ & XM-XK=XJ-XI &

EQSEQ(XA<<XI,XJ>>,XB<<XK,XM>>))
IR EQSEQ14

EQSEQ (XA<<XI ,XJ>>,X8«XK,XM>>)
<__ [% XI=<XJ+1, XM-XK=XJ-XI,

EQSEQ(XA<<XI,XJ+1>>,XB<<XK,XM+1>>)

IR EQSEQ15
EQSEQ (XA<<XI,XJ>>,X8«XK,XL>>)
<__ [% XJ-XI = XL-XK,

(FA XU)(0=<XU&XU=<XJ-XI =>> XA\(XI+XU)=XB\(XK+XU)) %];
IR EQSEQ16

XA\XU=XB\XV
<__ [% (EX [XI XJ XK XL]) (XI=<XU & XU=<XJ & XK=<XV & XV=<XL &

XJ-XI = XL-XK & XU-XI = XV-XK &
EQSEQ (XA<<XI ,XJ>>,X8«XK,XL>>)) %J:

IR ISINIO
ISIN (XA<<XI,XJ>> ,XB<<XK,XL>>)
<__ [% (EX XM)(XK=<XM & XM+XJ-XI=<XL &

EQSEQ(XA<<XI,XJ>>,XB<<XM,XM+XJ-XI>>))
IR ISIN11

ISIN (XA<<XI,XJ>>,XB<<XK,XM>>)
< [% XJ-XI=<XM-XK, EQSEQ(XA<<XI,XJ>>,XB<<XM-XJ+XI,XM>>) %]

IR ISIN 12
ISIN (XA<<X I ,XJ>> ,XB<<XK,XM>>)
<__ [% ISIN(XA<<XI,XJ>>,XB<<XK,XM-1>>) %];

IR ISIN13
EQSEQ (XA<<XI,XJ>>, X8«XK, XL>>)
<__ [% (EX XM)(XM=<XK & XJ-XI=<XL-XM &

ISIN(XA<<XI,XJ>>,XB<<XM,XL>>)) %];

Derived rules Page 182

IR ISIN14
ISIN (XA<<XI ,XJ>>,XB<<XK,XM>>)
<__ [% XJ-XI=<XM-XK+1, ISIN(XA<<XI,XJ>>,XB<<XK,XM+1>>),

NOT(EQSEQ(XA<<XI,XJ>>,XB<<XM+1-XJ+XI,XM+1>>)) %]:

IR ISIN20
NOT(ISIN (XA<<XI,XJ>>,XB<<XK,XL>>)) <== [% XJ-XI>XL-XK %]:

IR 0R012
ORDERED (XA<<XI ,XJ>>)
<__ [% XI<XJ, XA\(XJ-1)=<XA\XJ, OROERED(XA<<XI,XJ-1>>) 96];

IR DR013
XA\(XJ-1) =< XA\XJ
<__ [% (EX XI) (XI<XJ & OROEREO(XA<<XI,XJ>>)) 96] ;

IR DR014
ORDERED (XA<<XI ,XJ>>)
<__ [% XI<XJ+1, OROEREO(XA<<XI,XJ+1>>) %];

1->ISCOMM("PERM");
1->ISTRANS("PERM");
IR PERM10

PERM(XX,XX) <== NIL:
IR PERM11

PERM(XA«XI,XJ>>,XB<<XI,XJ>>)
<__ [% XA\XI=XB\XI, PERM(XA<<XI+1,XJ>>,XB<<XI+1,XJ>>) 96];

IR PERM12
PERM (XA<<XI,XJ>> ,XB<<XI,XJ>>)
<__ [% XA\XJ=XB\XJ, PERM(XA<<XI,XJ-1>>,XB<<XI,XJ-1>>) %];

IR PERM13
PERM(XCHNG(XA,XU,XV)<<XI,XJ>>, XA<<XI,XJ>>)
<__ [% XI=<XU,XU=<XJ, XI=<XV,XV=<XJ %]:

IR MEMB5
MEMB(XU,XV<>XW) <== [% MEMB(XU,XV) %J:

IR MEMB6
MEMB(XU,XV<>XW) <== [% MEMB(XU,XW) 96];

Page 183

Appendix 4,: Programs verified

This appendix contains a list of the programs verified

by our system. The list is not complete but it is

indicative of the upper level of the verifier's performance.

We have verified some programs using both inclusion

statements and assertions, and in such cases we show the

program with each type of specification for comparison.

The examples in King's thesis have become benchmarks;

our system can verify all of these examples but we have only

shown the more interesting of them here.

Most of these programs required at least some help from

the user in the verification process.

Programs verified Page 184

Countino-up factorial
This is a simple "counting-up" program to compute the

factorial function. It is basically the same program which
was used as an example in the introduction. An alternative
way to describe the program using virtual programs would be
to use the function prod(j,k) = j*(j+1)*...*k, defined
recursively, instead of the function div.

FUNCTION FAC3 N=>R;
VARS I;
1->I; 1->R;

$LOOP:
LOOPIF I=<N THEN R*I->R; I+1->I; CLOSE;

$FINISH:
END;

VARS NO;
[NO]->INITARGS;

ISTAT BOGY FAC3;
VIRT FACTORIAL (N)->R ; N+1->I ;

UNDER N>=0;
WRT [R I];

ISTAT LOOP TO [FINISH];
VIRT R*FACTORIAL(N) OIV FACTORIAL(I-1) -> R; N+1->I;

UNDER 0<I & I=<N+1;
WRT [R I];

Programs verified

Recursive 2j3SL Iterative factorial

Page 185

This is the program discussed in Sections 2.5.2 and
3.3.2. We show the program twice: once described by virtual
programs alone, and once using inductive assertions as well.

FUNCTION FAC4V N=>R;
1->R;

$ LOOP:
LOOPIF N>O THEN N-1->N: R+N*FAC4V(N)->R: CLOSE:

$ FINISH:
END:

VARS NO:
[N01->INITARGS;

ISTAT
VIRT

BODY REC FAC4V
FACTORIAL (N)->P: 0->N:

UNDER
WRT

ISTAT

N>=O:
[N RI;

LOOP TO [FINISH]
VIRT R+FACTORIAL(N)-1->R: 0->N:

UNDER N>=0;
WRT [N Al;

FUNCTION FAC4A NO => R:
VARS N;

NO->N; 1->R;
$ LOOP:

ASSERT R+FACTORIAL(N)-1 - FACTORIAL(NO) fr N>=O

$

LOOPIF
FIN:

N>O THEN N-1->N: R+N*FAC4A(N)->R CLOSE;

ENO;

VARS NI:
[NI]->INITARGS;

ISTAT
VIRT

BOGY REC FAC4A
FACTORIAL(NO)->R; 0->N

UNDER
WRT

NO>=O
[N RI:

Programs verified Page 186

Greatest Qommon visor

This is a program to find the greatest common divisor
of two positive integers without using division. It is only
one of several greatest common divisor programs the system
has verified, chosen to illustrate the difference between
the two ways of describing it. We first show the inductive
assertions for the program, then inclusion statements which
describe each loop separately, and finally simpler inclusion
statements which all terminate at the end of the function
body and do not preserve the loop structure.

FUNCTION GC03A M N => R;
$START:

ASSERT M=MO & N=NO & MO>O & NO>O;
$LOOP:

LOOPIF M/=N THEN
$L 1 :

ASSERT GCO(M,N)=GCO(MO,NO) & M>O & N>O;
LOOPIF M>N THEN M-N->M CLOSE:

$L2:
ASSERT GCO(M,N)=GCO(MO,NO) & M>O & N>O;
LOOPIF N>M THEN N-M->N CLOSE:

CLOSE:
M->R

$OUT:
ASSERT R=GCO(MO,NO);

ENO;

VARS MO NO:
[MO NO]->INITARGS;

Programs verified

Greatest common divisor (continued)

FUNCTION GCD3V M N => R;
$LOOP:

LOOPIF M /=N THEN
$INLPI:

LOOPIF M>N THEN M-N->M CLOSE;
$INLP2:
LOOPIF N>M THEN N-M->N CLOSE:

CLOSE;
$OUT:

M->R:
ENO;

VARS MO NO;
[MO NO]->INITARGS;

ISTAT BODY GC03V;
VIRT GCD (M,N)->R ;

UNOER M>O & N>O;
WRT (R]:

ISTAT LOOP TO [OUT]
VIRT GCD (M ,N)->M ;
UNOER M>O & N>O;
WRT [M];

ISTAT INLP4 TO [INLP2];
VIRT (ANY "Ml")(O<M4 &

UNOER M>O & N>O;
WRT [M N];

ISTAT INLP2 TO [LOOP]:
VIRT (ANY "N4")(0<N4 &

M4=<M & M4=<N

N4=<N & N4=<M

Page 187

& (M-M4)REM N=O) -> M;

& (N-N4)REM M=O) -> N;

UNOER M>O & N>O;
WRT [M N];

Programs verified Page 188

Greatest Common divisor (continued)

FUNCTION GCD3V2 M N => R;
$LOOP:
LOOPIF M/=N THEN

$INLP1:
LOOPIF M>N THEN M-N->M CLOSE:

$INLP2:
LOOPIF N>M THEN N-M->N CLOSE:

CLOSE;
M->R ;

$OUT:
END:

VARS MO NO;
[MO NO]->INITARGS;

ISTAT BODY GCD3V2
VIRT GCD(M,N) -> R

UNDER M>O & N>0
WRT [R];

ISTAT LOOP TO [OUT]
VIRT GCD(M,N) -> R

UNDER M>O & N>0
WRT [R];

ISTAT INLPI TO [OUT]
VIRT GCD(M,N) -> R

UNDER M>0 & N>0
WRT [R];

ISTAT INLP2 TO [OUT]
VIRT GCD (M ,N) -> R

UNDER M>0 & N>0
WRT [R];

Programs verified Page 189

91-function

This function was discussed in Section 2.5.1 and its
proof was shown in Section 6.1.

FUNCTION FN91 N => R;
IF N>100 THEN N-10 ELSE FN91(FN91(N+11)) CLOSE -> R;

END;

VARS NO;
[NO]->INITARGS;

ISTAT BODY REC FN91;
VIRT IF N>100 THEN N-10 ELSE 91 CLOSE -> R;
UNDER TRUE;
WRT [R]

Programs verified Page 190

AckermaLln's function

This example shows how Ackermann's function can be
computed directly for m=<3. If m>3 the virtual program is
undefined but this is irrelevant as this path is never taken
in the proof.

FUNCTION ACK M N => R:

IF M=0 THEN N+1
ELSE IF N=0 THEN ACK(M-1,1)

ELSE ACK(M-1,ACK(M,N-1)) CLOSE CLOSE -> R;
END;

VARS MO NO INFINITY;
[MO NO]->INITARGS;

ISTAT BODY REC ACK;
VIRT IF M=O THEN N+1 ELSE

IF M=1 THEN N+2 ELSE
IF M=2 THEN 2*N+3 ELSE
IF M=3 THEN AN+3)-3

ELSE INFINITY CLOSE CLOSE CLOSE CLOSE -> R:
UNDER O=<M & M=<3 & O=<N:

WRT [R];

Programs verified

Tree-searchin function

Page 191

This function searches the tips of a binary tree for a
1 as described in Section 2.5.4. If it succeeds it
terminates by using a JUMPOUT (escape).

FUNCTION TREEJ T => TV;
VARS WON;
JUMPOUT(LAMBOA; $FND: ENO, 0) -> WON;

FUNCTION SEARCHI T;
$START:
IF ATOM (T) THEN

IF T=1 THEN TRUE->TV; WON() CLOSE
ELSE SEARCHI(FRONT(T)); SEARCHI(BACK(T))
CLOSE;

$OUT:
ENO;

FALSE->TV;
SEARCHI(T);

ENO;

VARS TO;
[TO]->INITARGS;

ISTAT START TO [OUT REC FNO]
VIRT IF MEMB(1,FRINGE(T)) THEN TRUE->TV; WON()

ELSE GOTO OUT CLOSE
UNOER TRUE
WRT [TV]:

ISTAT BOOM TREEJ
VIRT MEMB(1,FRINGE(T))->TV
UNOER TRUE
WRT [TV];

Programs verified Page 192

Matcher

This program determines whether the array B occurs as a
subarray of the array A. The proof produced by the system is
shown in Section 6.2. We show here the program
specifications using virtual programs and inductive
assertions successively.

FUNCTION MATCHV A M B N => BISINA;
VARS I J ;

FALSE->BISINA;
0->I;

$LOOPI:
LOOPIF I=< M-N THEN

1->J;
$LOOPJ:

LOOPIF J=<N THEN
IF A\(I+J)/=B\(J) THEN GOTO BREAKJ CLOSE;
J+1->J;

CLOSE;
$ENDLOOPJ:

TRUE->BISINA; GOTO BREAKI;
$BREAKJ:

I+1->I;
CLOSE;

$BREAKI:
END;

DECARRAY A [1 M];
DECARRAY B [1 N];
[%A, "M",B, "N"%]->INITARGS;

ISTAT BOGY MATCHV;
VIRT IF ISIN (B<<1 ,N>>,A<<1 ,M>>)

THEN TRUE ELSE FALSE CLOSE -> BISINA;
UNDER 0=<N & N=<M;
WRT [BISINA];

ISTAT LOOPI TO [BREAKI]
VIRT IF ISIN(B<<1,N>>,A<<I+1,M>>)

THEN TRUE->BISINA;
ELSE M-N+1->I CLOSE;
UNDER 0=<I & I=<M-N+1 & 0=<N;

WRT [BISINA];

ISTAT LOOPJ TO [ENOLOOPJ BREAKJ];
VIRT IF EQSEQ (B<<J ,N>>,A<<I+J , I+N>>)

THEN N+1->J: GOTO ENOLOOPJ
ELSE GOTO BREAKJ CLOSE;

UNDER 1=<J & J=<N+1;
WRT [I];

Programs verified

Matcher (continued)

FUNCTION MATCHA A M B N => BISINA;
VARS I J ;

ASSERT O=<N & N=<M;
FALSE->BISINA;
0->I;

$LOOP:
LOOPIF I-<M-N THEN

1->J;
$LOOPJ:

ASSERT NOT(ISIN (B<<1 ,N>>,A<<1 ,I+N-1>>))
& EQSEQ(B<<1,J-1>>,A<<I+1,I+J-1>>)
& NOT(BISINA)
& 1=<J & J=<N+1 & O=<I & I=<M-N & O=<N

LOOPIF J=<N THEN
IF A\(I+J)/=B\J THEN GOTO BREAKJ CLOSE;
J+1->J

CLOSE;
TRUE->BISINA;
GOTO OUT;

$BREAKJ:
I+1->I

CLOSE;
$OUT:

ASSERT BISINA<=>ISIN(e«1,N>>,A<<1,M>>);
END;

VARS MO NO;
DECARRAY AO [1 MO];
DECARRAY BO [1 NO];
[% AO, "MO", BO, "NO" %] -> INITARGS;

Page 193

& N=<M;

Programs verified Page 194

King's &xamele .a

This program moves the largest element of an array to
the top by successive interchanges and was discussed in
Sections 2.5.5 and 3.3.1. Actually, we have been unable to
use the system to completely verify the program with the
specifications given as virtual programs because of a
difficulty in reasoning about existential quantifiers.
However, we were able to complete the proof using inductive assertions.

FUNCTION K6V A N;
VARS I:

2->I;
$LOOP:

LOOPIF I=<N THEN
IF A\(I-1)>A\I THEN A\I,A\(I-1)->A\I->A\(I-1) CLOSE;
I+1->I:

CLOSE:
ENO:

VARS NO;
OECARRAY AO [1 NO];
[%AO, "NO"%]->INITARGS;

ISTAT LOOP TO [K6VENOJ:
VIRT (ANYARR "A 1") (EQSEQ (A 1<<1 ,I-2>>,A<<1 ,I-2>>) &

PERM(A1<<I-1,N>> ,A<<I-1,N>>) &
A1<<I-1,N-1>> =< A1\N) -> A;

UNOER 2=<I & I=<N+1;
WRT [A N];

ISTAT BOOY K6V;
VIRT (ANYARR -Al-)

UNOER N>=1;
WRT [A N];

(PERM(A1<<1,N>>,A<<1,N>>) &
A1<<1,N-1>> =< A1\N) -> A;

Programs verified

fu's example 6 (continued)

Page 195

FUNCTION K6A A N;
VARS I;

ASSERT A=AO & 1=<N;
2->I:

$LOOP:
ASSERT PERM(A«1,I-1>>, AO<<1,I-1>>)

& A<<1,I-2>> =< A\(I-1)
EQSEQ (A<<I , N>>,A O<<I ,N>>)
2=<I & I=<N+1;

LOOPIF I=<N THEN
IF A\ (I-1)>A\I THEN A\I, A\(I-1) ->A\I ->A\ (I-1) CLOSE;
I+1->I

CLOSE;
$OUT:

ASSERT PERM(A<<1,N>>,AO<<1,N>>)
& A<<1,N-1>> =< A\N ;

END;

VARS NO;
DECARRAY AO [1 NO];
[% AO, "NO" %] -> INITARGS:

Programs verified

&ina,j example 2_: Exchange s©rt

Page 196

The system verified this program automatically except
for one manual application of INTERM. The specifications
for this program (and the next one) are given as inductive
assertions only, but we have shown how these could be
translated into equivalent inclusion statements.

FUNCTION K7 A N:
VARS I NOTORO;

ASSERT A=AO C. 1=<N;
TRUE->NOTORO:

$L1:
LOOPIF NOTORO THEN

2->I; FALSE->NOTORO:
$L2:

ASSERT NOTORO OR OROEREO(A<<1,I-1>>)
C. PERM(A<<1,N>>,AO<<1,N>>)
C. 2=<I & I=<N+1:

LOOPIF I=<N THEN
IF A\(I-1) > A\I THEN

A\I, A\ (I-1) -> A\I -> A\ (I-1) ;
TRUE->NOTORD

CLOSE:
I+1->I

CLOSE
CLOSE:

$OUT:
ASSERT OROEREO (A<<1 ,N>>)

C. PERM(A<<1,N>>,AO<<1,N>>):
ENO;

VARS NO;
OECARRAY AO [1 NO];
[% AO, "NO" %] ->INITARGS:

Programs verified

LCina's exa mnai 9-: Insert on sort
The proof of this program is given in Section 6.3.

FUNCTION K9 A
VARS I J K X ;

N;

ASSERT A=AO & 2-<N;
1->I:

$L 1 :

LOOPIF I<N THEN
A\I->X; I->K; I+1->J;

$L2:
ASSERT 1=<I & I=<K & K<J & J=<N+1

& I<N
& X=A\K
& (I=1 OR A\ (I-1) =< A<<I,N>>)
& A<<I,J-1>> >= X
& OROEREO(A<<1,I-1>>)
& PERM(A<<1,N>>,AO<<1 ,N>>) ;

LOOPIF J=<N THEN
IF X>A\J THEN A\J->X; J->K CLOSE:
J+1->J;

CLOSE;
A\I->A\K; X->A\I; I+1->I;

CLOSE;
$OUT:

ASSERT ORDERED(A<<1,N>>) & PERM(A<<1,N>>,AO<<1,N>>);
ENO;

VARS NO;
DECARRAY AO [1 NO];
[% AO, "NO" %]'->INITARGS;

Page 197

Programs verified Page 198

Invert &, germ uta ion an grace"

This program, presented by Knuth (1972, p172), was

verified after the remainder of the thesis had been

completed. The proof took about two weeks to find and

check, and because of its length was done in several

sessions. The proof is loosely based on that given by

Burstall (1974) and uses both loop invariants and virtual
programs in the program's specifications. It depends on the

fact that a permutation can be decomposed into disjoint
cycles (as does the program). The proof is complete except

for the fact that the inverse of a permutation is also a

permutation and that the relation of two elements being in

the same cycle (INCYCLE) is an equivalence relation.

Doing this proof substantiated our belief that it is
preferable to use definitions involving explicit quantifiers
rather than recursive definitions, particularly since

relations such as INCYCLEI are quite difficult to define

recursively, and our initial attempts to use such a

definition in the proof failed.

In the following pages we show the program with its
specifications and the rules used in the proof. Several of

the predicates and functions used actually require AO and N

as additional arguments, but since these remain constant

throughout they have been omitted.

Programs verified

Permutation (continued)

Page 199

FUNCTION INVERT A N;

VARS I J K

$START:
ASSERT
N->M;

$LOOPM:
ASSERT

M ;

N>=1 Ps A=AO & ISPERM(AO<<1,N>>);

O=<M & M-<N & ISPERM(AO<<1,N>>) & FA "Q")(
(M<Q & Q=<N =>> A\Q = INV(AO)\Q) &
(1=<Q & Q=<M & INVERTED(Q,M) =>> A\Q = 0-INV(AO)\Q)

(1=<Q & Q=<M & NOT(INVERTEO(Q,M)) =>> A\Q = AO\Q));

LOOPIF M>=1 THEN
A\M->I ;

IF I<0 THEN
ELSE M->K:

$LOOPI:

O-->A\ M

LOOPIF I /=M THEN
A\I->J: (O-K)->A\ I:

CLOSE;
K->A\M:

$FIN:
CLOSE:
M-1->M:

CLOSE;
$OUT:

ASSERT
END;

(FA "Q")(1=<Q & Q=<N

VARS NO:
DECARRAY AO [1 NO];
[% A0,"NO" %] -> INITARGS:

I->K; J->I;

=>> A\Q = INV(AO)\Q):

ISTAT LOOPI TO
VIRT (ANYARR

[FIN]
"B")((FA "R")((R=M =>> B\R = INV(AO)\R) &

(R/=M & INCYCLEI(I,R,M) =>> B\R = 0-INV(AO)\R) &

UNDER 1=<K
(NOT(INCYCLEI(I,R,M)) =>> B\R = A\R))) -> A;

& K=<N & 1=<M & M=<N & I=AO\K & ISPERM(AO« 1,N>>) &
(EX
(FA

"V")(O=<V & V<LEN(I) & M=ITFN (I ,V)) &
"S ") (INCYCLE I (I ,S ,M) =>> A\S=AO\S)

WAT [A M];

Programs verified

Permutation (continued)

INCYCLEI(XK,XQ,XM)
(EX [XU XV])(0=<XU & XU=<XV & XV<LEN(XK) &

XQ=ITFN(XK,XU) & XM=ITFN(XK,XV));

INCYCLE(XP,XQ)
__> (EX XU)(0=<XU & XU<LEN(XP) & XQ=ITFN(XP,XU));

INVERTED(XQ,XM)

Page 200

(EX XI) (XM<XI & XI=<N & INCYCLE (XI,XQ)) ;

IR 14
ISPERM (XA<<XM,XN>>)
<__ [% (FA XQ)(XM=<XQ & XQ=<XN =>> (XM=<XA\XQ & XA\XQ=<XN)),

(FA [XP XQ]) (XM=<XP & XP=<XN & XM=<XQ & XQ=<XN &

XP/=XQ =>> XA\XP /= XA\XQ) %] ;

IR 15

XM =< XA\XQ
<__ [% (EX XN)(XM=<XQ & XQ=<XN & ISPERM(XA<<XM,XN>>))

IR 16

XA\XQ =< XN
<__ [% (EX XM) (XM=<XQ & XQ=<XN & ISPERM(XA<<XM,XN»))

IR 17
XA\XP /= XA\XQ
<== [% (EX [XM XN])(XM=<XP & XP=<XN & XM=<XQ & XQ=<XN f,

XP/=XQ & ISPERM(XA<<XM,XN>>)) %];

IR 20
INV(XA)\XI = XJ <__ [% XA\XJ = XI %];

IR 21
ISPERM (INV (XA)<<XM,XN>>) [% ISPERM(XA<<XM,XN>>) %];

ITFN(XP,O) ==> XP;
WHEN [% XX/=0 %], ITFN(XP,XX*LEN(XP)+XY) ITFN(XP,XY);
ITFN (ITFN (XP,XJ),XI) ==> ITFN (XP,XI+XJ) ;

AO\XP ==> ITFN(XP,1);

IR LO

IR
1 =< LEN(XM) <_=

L 1

NIL;

IR
XI
L2

= LEN(XP) [% ITFN(XP,XI)=XP, 0<XI, XI=<LEN(XP)

XI = XJ
<__ [% (EX XP)(ITFN(XP,XI)=ITFN(XP,XJ) &

0=<XI & XI<LEN(XP) & 0=<XJ & XJ<LEN(XP)) %];
IR L3

XI = LEN(XA\XP) <__ [% XI = LEN(XP) %];

Programs verified

Permutatian (continued)

IR 101
INCYCLE(XM,XM) <_= NIL;

IR 102
INCYCLE(XQ,XM) [% INCYCLE(XM,XQ) %];

1->ISTRANS ("INCYCLE") ;

IR 105
1=<XQ
<__ [% (EX [XK XM])(1=<XK & XK=<N & 1=<XM & XM=<N &

INCYCLEI(XK,XQ,XM)
IR 106

X Q= <N
<__ [% (EX [XK XM])(1=<XK & XK=<N & 1=<XM & XM=<N &

INCYCLEI(XK,XQ,XM)) %];

Page 201

Page 202

Aooendix .: Listing 2f matcher

[LIB ASSOC].LIBRARY.COMPILE;

VARS INST INSTL APSUBSTI SUBXS ASUBXS ASUBXSI ACSUBXS ACSUBXSI;

COMMENT'**
* INSTANCE IS THE ASSOCIATIVE, COMMUTATIVE MATCHER -
* CALLED BY
* INSTANCE(TERM,PATTERN) => SUBSTITUTION-LIST
**@.

FUNCTION INSTANCE TERM PAT;
INST(TERM,PAT,ASSNIL());

END;

FUNCTION INST TERM PAT SIG;
VARS PATN PATL TERML Si GENSUBXS;
IF ISVAR(PAT) THEN COMMENT 'VARIABLE@;
ASSOC(PAT,SIG)->SI;
IF SI=UNDEF THEN [%UPDASSOC(TEflM,PAT,SIG)%]
ELSEIF EQX(S1,TERM) THEN [%SIG%]
ELSE NIL CLOSE

ELSEIF ISPRIM(PAT) THEN COMMENT 'CONSTANT@;
IF EQX(PAT,TERM) THEN [%SIG%] ELSE NIL CLOSE;

ELSE COMMENT 'FUNAP@;
FUNNAME(PAT)->PATN; FUNARGS(PAT)->PATL;
IF ISASSOC(PATN) THEN

IF ISCOMM(PATN) THEN ACSUBXS ELSE ASUBXS CLOSE -> GENSUBXS;
IF ISFUNAP(TERM) THEN

IF PATN=FUNNAME(TERM) THEN
INSTL(FUNARGS(TERM),PATL,PATN,SIG,GENSUBXS)

ELSE INSTL([%TERM%],PATL,PATN,SIG,GENSUBXS)
CLOSE

ELSE INSTL([%TERM%],PATL,PATN,SIG,GENSUBXS)
CLOSE

ELSEIF ISFUNAP(TERM) AND PATN=FUNNAME(TERM) THEN
FUNARGS(TERM)->TERML;
INSTL(TERML,PATL,PATN,SIG,SUBXS);
IF ISCDMM(PATN) AND NOT(EQX(HD(TERML),HD(TL(TERML))))

AND NOT(EQX(HD(PATL), HD(TL(PATL)))) THEN
<> INSTL(REV(TERML),PATL,PATN,SIG,SUBXS);

CLOSE
ELSE NIL CLOSE

CLOSE
END;

Listing of matcher Page 203

FUNCTION INSTL TERML PAIL OP SIG GENSUBXS => SIGS;
COMMENT***
* MATCH THE ARG-LIST TERML AGAINST PATL IN ALL POSSIBLE WAYS,
* OEPENOING ON THE PROPERTIES OF OP AS OESCRIBEO BY GENSUBXS
**@;
VARS PAIR PAIRS ISIG ISIGS IOENT;
IF PATL.NULL THEN

IF TERML.NULL THEN [%SIG%] ELSE NIL CLOSE->SIGS;
EXIT:
IOENTOF(PATN)->IDENT; NIL->SIGS;
LOOPIF TERML/=NIL ANO EQX(HO(TERML),IOENT)

THEN TL(TERML)->TERML CLOSE;
GENSUBXS(TERML,OP)->PAIRS;
LOOPIF PAIRS/=NIL THEN OEST(PAIRS)->PAIRS->PAIR;

INST(FRONT(PAIR),HO(PATL),SIG)->ISIGS;
LOOPIF ISIGS/=NIL THEN OEST(ISIGS)->ISIGS->ISIG;

INSTL(BACK(PAIR),TL(PATL),OP,ISIG,GENSUBXS) <> SIGS -> SIGS;
CLOSE;

CLOSE;
ENO;

FUNCTION SUBXS XL OP;
IF NULL(XL) THEN NIL ELSE XL::NIL CLOSE;

ENO:

FUNCTION ASUBXS XL OP => XS;
COMMENT'**
* XS IS THE SET OF ALL POSSIBLE (INITIAL) PARTITIONS
* OF THE ARGLIST XL INTO A TERM ANO REMAINING ARGLIST,
* EG, ASUBXS([A B],".") (1,[A B]), (A,[B1), (A.B,NIL)],
* WHERE (IOENT(".")=1)
**@:
VARS N LB;
LENGTH (XL)->N:
IF IOENT=UNOEF THEN I ELSE 0 CLOSE -> LB;
[% LOOPIF N>=LB THEN ASUBXSI(XL,N); N-I->N CLOSE %] -> XS;

ENO:

FUNCTION ASUBXSI XL N;
CONSPAIR(
ABBREV([%LOOPIF N THEN XL.OEST->XL; N-I->N CLOSE%],OP,IOENT),
XL);

ENO;

FUNCTION ACSUBXS XL OP => XS;
COMMENT'**
* LIKE ASUBXS, BUT FINOS THE SET OF ALL POSSIBLE SUBBAGS,
* EG, ACSUBXS([A B1,".") _ (A,[B]), (B,[A1)],
* WHERE IOENTOF(".")=UNOEF
**@;

NIL->XS ;

ACSUBXSI(REV(XL),NIL,NIL);
ENO;

Listing of matcher Page 204

FUNCTION ACSUBXSI XL S1 S2:
COMMENT 'SINCE XL IS SORTEO, EQUAL ELEMENTS ARE AOJACENT@;
VARS X L;
IF NULL(XL) THEN

UNLESS IOENT=UNOEF ANO NULL(S1)
THEN CONSPAIR(ABBREV(S1,OP,IOENT),S2)::XS->XS CLOSE;

EXIT;
OEST(XL)->XL->X; X::S1->L;
LOOPIF XL/=NIL ANO EQX(X,HO(XL)) THEN X::L->L; TL(XL)->XL CLOSE;
LOOPIF L/=S1 THEN ACSUBXSI(XL,L,S2); OEST(L)->L->X; X::S2->S2
CLOSE;
ACSUBXSI(XL,L,S2);

ENO;

FUNCTION ABBREV XL OP 10;
COMMENT'**
* CONSTRUCT THE TERM WITH FUNCTION OP, NORMALIZEO ARGLIST XL,
* ANO IOENTITY 10. OP MUST BE ASSOCIATIVE.
* ABBREV IS ONLY REALLY REQUIREO WHEN A NORMALIZING FUNCTION
* WHICH KNOWS ABOUT INVERSES IS USEO.

IF NULL(XL) THEN 10
ELSEIF NULL(TL(XL)) THEN HO(XL)
ELSE MKFUNAP(OP,XL) CLOSE;

ENO:

FUNCTION UPOASSOC CPT SUB ASS;
COMMENT 'A CONSTRUCTIVE UPOATER FOR ASSOC,

ASS MUST BE UNOEFINEO AT SUB!;
ASSCONS(ASSFAIL(ASS),ASSEQ(ASS),ASSLCONS(CPT,SUB,ASSOF(ASS)));

ENO;

SCHOOL OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

Memorandum: MIP-R-104

Date: July, 1974

Subject:- The correctness of the Schorr-Waite list marking algorithm

Author:- R. Topor

1. Introduction

We present here a proof of the correctness of an algorithm, due

to Schorr and Waite (1967) and to Deutsch (Knuth 1968, p.417), which

traces and marks an arbitrary list structure, and which can be used

for the first stage of garbage collection. The algorithm is of

interest because of the clever way it avoids using a stack. by

manipulating pointers within the structure, restoring them all at the

end. The general problem of data structure updating is a difficult

one, and work on it has been done by Burstall (1972), Morris (1972),

Poupon and Wegbreit (1972) and Kowaltowski (1973), though we have not

used any of their methods.

The correctness proof of the Schorr-Waite algorithm given here

is simpler than those given by Poupon and Wegbreit, or Kowaltowski.

Our proof is factored into properties of the algorithm itself, and

properties of the data structure upon which it operates. In fact, one

can use these latter properties to prove correct two simpler versions

of the algorithm, one using recursion and"the other an explicit stack.

The proof involves not inductive assertions (Floyd 1967), but

mathematical induction on the size of the structure to be marked. It

can be formalized using the method of Burstall (1974), itself a variant

of Manna (1969).

The method of proof was suggested by a hint in Knuth (1968, p.420).*

John Reynolds (1974) has used similar techniques in his treatment of
Tar,j&i's algorithm (1972).

R.T. -2- MIP-R-104

I am grateful to Rod Burstall and Gordon Plotkin for several helpful

suggestions. The work was supported by a Commonwealth Scholarship.

2. The problem of marking

We are given a set of nodes, i.e. list cells, each node containing

two fields (hd,tl) which may contain atoms or pointers to other nodes,

a mark bit (m), and, for the Schorr-Waite algorithm, a flag bit (f);

we are also given a particular starting node z0. The structure may

contain shared and cyclic sublists. Initially all the mark bits are

set to 0. The problem is to set the mark bit of every node reachable

by a finite sequence of hd's and tl''s from z0 to 1.

The main difficulty in proving that an algorithm to solve this

problem is correct is that the natural technique of structural

induction does not work; because lists may be cyclic there is no

sense in which hd(x) is less than x (they may even be the same node).

An added difficulty in verifying the Schorr-Waite algorithm is showing

that, apart from the mark bits, the structure is the same at the end as

it was at the start, despite the destructive updating of the nodes.

To overcome these difficulties we introduce the following concepts

before discussing the actual algorithms.

3. Properties of marked list structures

Let C be the set of all nodes, A the set of all atoms, and

7: C->(C U A)2X{0,1}2 the set of possible machine states.

Definition We define functions hd6-, t16-: C->C U A, m6,f6- : C->{0,1 {

by hd -c = x1 where 6'(c) = <x1,x2,b1,b2>,

tl6c=x2 It to

m6-c=b1 if it

f6c=b2 it :1

Fe further define Marked: f ->2C by Narkedb ={c E C: m6. c=1 }.
The subscript T is often omittodfrom these functions where this can be

done unambiguously.

The

MIP-R-104

The key idea is to define the set of unmarked nodes reachable

from a given node. This is the purpose of the following definitions.

Definition The predicate ispath: L. x(C U A)2->{true,false}, is

defined by ispath6(x,y) iff there exists a finite sequence

x0,x1,...,xn, n>0 of distinct/nodes in C such that x0=x,xn=y, for

0<i<n, m4-x.=0, and for 0<i.<n, xi+l=hd6-xi or xi+l'tl6-x.. Such a
3.

sequence is called a path (w.r.t. cr).

We can now define nodes: x(C U A)->2" by

nodes.(x)=ly r- C
) ispath,s(x,y)}.

We assume that C, and hence nodes6(x), is a finite set throughout.

Fact 1 For all x, 6, nodes,'(x) =/ if x E (A U Marked

={x} U nodes6(hd6x) J nodes.(t] x) otherwise.

Proof Clearly if x E A U Marked, i spati.(x,,y)=false for all y c C, so

nodes(x)=O.

Suppose x / A U Marked, and let y E nodes(x).

If y=x they. y E {x} U nodes(hd x) U node,(tl x).
Otherwise ispath(x,y), i,e. x=x0,x1,x2,...,xn=y, n>1, where x1=hd x

or x1=tl x, is a path. Suppose x1=hd x, then ispath(hd x,y), so

y E nodes(hd x).

Now let y E {x} U nodes(hd x) (3 nodes(tl x).
If y=x, since x / A U Marked, ispath(x,x), so y E nodes(x).

Otherwise y E nodes(hd x), say, and hd x=x0,x1,...,xn=y, n>0 is a path.

If for some i, 0<i<n, x
1
,=x, than ispath(xry) and y E nodes(x).

Otherwise x,hd x=x0,x1,...,xn=yn is a path, and agair_, y E nodes(x).

Fact 2 For all x,y, 6' , if y E nodes6(x), then m67x=0.

Proof Immediate from the definitions of nodes and ispath.

Definition For 61 , 6' 2 E , define 1 G. T2 if Markedi f2 (- Marked61,

hd62=hd3
62

,tl6l=tla.2 and f61=fd2, i.e. if there are fewer unmarked nodes

in 6'1 than ±n -T2-. (In cases like this we say Marked6,2 C Marked61

and/

MIP-R-104

and (1 = (72 other; ise.) The relation [,:is clearly a partial order-

Fact For all x, 6' 1 , (T 2, if 61 C 62, then nodes 61 (x) c nodes62(%)

Proof Let y E nodesGl(x), i.e. ispath6.1(x,y).
But as hdl =hd672' tl 1=t162 and m61 xi=0->m62xi=0, i spath62 (x, y) .

Hence y E nodes
62

W.

Definition 1^'o define mark: Cx Z ->,f by mark x
(6')= 6' where V= 6'

(i.e. hd6 =hd 6 t16 =tl 6. , and f6 =f 6' ,) except that m5,y=l iff
m .. y=1 or y E nodes6(x). This concept is important for describing
the effects of the marking algorithms.

Fact 4 For all x,y, (1 , nodes
mark (6-)

nodes

i.e. marking one node's descendants and then th other's is the same as

marking them all together.

Proof a) markx(") so nodesm k (6)(Y) nodes6(y) (Fact 3) -
x

Thus nodes
mark 0-)

(y) U nodes
G - (x) C. nodes6 (y) U nodes6(x).

x
b) let z E nodes 6(y) , and let y=y0, yl , ... ,yn=z, n>0 be a path.

If for all i, O<i<n, m 6 markx (y).-0, ispath markx (y,z), so
() i (6")

z E nodes wark (6)(Y).

Otherwise, let j i>0
mmar1 (6)(yi) 1.

Since m6y=0, yi E nodes6(x), and ispath6(x,yj).
Clearly ispatheTj(yj ,z), so isnath6(x,z) and z E nodes6(x).
Hence nodes6(y)c nodes

mark. (6')(y) U nodes6(x), and the result follows.
x

Fact 5 For all x, 61, 5"2, if Marked -Marked6.1 U IXx / Marked,c.1,

and 451, (T2 otherwise, then nodes6.1(x)={x} U nodes62(hd x) U nodes6?(tl x).

Proof a) since 6 *2 CT1, node s.2(hd x) c nodes6.1 (hd x) and

rodes62(tl x)G nodes 61 (tl x).
So {x} U nodcs(2(hd x) U nodes62(tl x) C. {x} U nodes5.1 (hd x) U nodesGl (tl x)

If/

=ncdes61(x) (x
,, A U Markeda1, Fact 1).

b) let E nodes 61(x), i.e. x=x0,xl,...,xn=y, n>0 is a path (w.r.t. ;5"1).

MIP-R-104

If n=0, y=x and y E {x} U nodeso.2(hd x) U nodes.2(t1 x).
Otherwise, x1=hd x, say, so ispath62(hd x,y) and y E nodes 12(hd x).

Thus nodes1 (x) C {x} U node s6.2(hd x) U nodesb.2(tl x).

4. Two simple algorithms

The facts we have derived so far are sufficient and necessary

to prove the correctness of the following two ancestors of the Schorr-

Waite algorithm. The first, recursive program is perhaps the simplest

possible marking algorithm. The second is obtained by replacing the

recursion by an explicit stack. The proofs of these programs are
analogous to the one we are about to give, only simpler as no destructive

assignment is involved. We omit these proofs here.

Program 1

MAY <= if not(atom(Z)) and m(Z)=O
then m(Z)<-1; Mk(hd(Z)); Mk(tl(Z)) fi;

Mk(Z0);

Program 2

Start: Z<.-Z0; S<-empty;

Loop : while not(atom(Z)) and m(Z)=0

do(m(V)<*1; S<-push(Z,S); Z<-hd(Z));

if Sempty than Z<-pop(S); Z<-tl(Z); goto Loop fi;

Finish:

5. The Schorr-Waite algorithm

This algorithm saves the stack of Program 2 in the already marked

nodes. The f-bit is used to determine whether the back pointer to the

next node of the stack is in the hd or the tl of the current node (X).

Initially all the f-bits are 0. To handle this destructive updating

wo introduce the following:

Definition/

MIP-R-104

Definition For 6`1, 672 E 2:, define 61162 if Narked,1=Marked,.2

and for all x A Marked6.1, 61(x)= 62(x), i.e. 61 and 6 2 only differ
on marked nodes.

Fact 6 If 61"- 2 then for all x, nodes6.1 (x)==node PT2(x).

Proof. Clearly ispath6.1(x,y) iff ispath2(x,y) and the result follows.

We now give the algorithm. The comma as a connective for the

multiple assignment statement merns that all left and right hand values

are calculated, and then the assignment; are carried out simultaneously.

Start: Z<-Z0; X<-nil;

P1: while not(atom(Z)) and m(Z)=0

do(m(Z)<-1, hd(Z)<-X, z<-hd(z), x<-z);

P2: if Xnil then mo Finish fi;
if f(X)=0

then f(X)<-1, hd(X)<-Z, tl(X)<-hd(X). Z<-tl(X); goto P1

else f(X)<-0, tl(X)<-Z, X<-.-tl(X), Z<-X; goto P2 fi;

Finish:

Before stating and proving the correctness criterion we still need

to introduce a little more notation. We write f[x t->y] for the function
g defined by g(z) <= if z=x then y else f(z). Following Burstall

(1974) we write "P: X1=x1, X2=x2,..." as an abbreviation for "there

exists a stage of the execution when the computation is at label P,

and the identifiers Xi have the values xi". When we say "by

computation" during a proof we mean "by observing the effects of the

assignments on the state vector". We introduce an imaginary variable,

Store, whose value is the current state.

Theorem If Start: Z0=z0, Store=(1 where for all y e nodes5(z0) ff.y=0,

then Finish: Z0=z0, Store=markz (6), i.e. all the nodes reachable from

..0 are marked but otherwise unchanged.

Proof

R. T . -7- MIP-R-104

Proof Letting z=z0 and x=nil, this theorem can. be seen to follow

immediately from the following lemma.

Lemma If P1: Z=z, X=x, Store= (r where for ally E nodesG(z) f6y=0,

then P2: Z=z, X=-x, Store=mark 7(6).

Proof The proof is by course of values induction on the size of

nodes-(z). Notice how the induction hypothesis is used twice,
corresponding to the two recursive calls of Program 1.

Basis I nodes(,-(z) I =0, i.e. Z E A U Marked,-, the first test fails,
and the result is immediate.

Step I nodes6(z`/ 1 L0, i.e. z, A U Marked.
Let hd6z=u, t1U7=v and T[*-><hd6z,tl5z,l,fz>]=6', i.e. 6'=S
except that mCT ,z=1.

Since z , A U Marked., the body of the while statement is
--61 = r[zf-> <x, t.l,-z, 1 , f6.z>]. executed once, yielding P1 : Z=u, X=z, Store

Now, nodes6l (u)=nodes 61 (hd.z)

=nodes5, (hkz) (6 ti'6' , Fact 6)

c nodes-(Mc -z) Fact 3)

c nodes6(z) (Fact 1).

But m61z=1, so z A nodes 61(u) (Fact 2).
Since Z E nodes -(z), nodes (u) nodesy(z), and { nodes(., (u) I < i node

61
s6(z)

We can now use the induction hypothesis, i.e. the lemma with

z=u, x=z, 6 = T1, to obtain

P2: 'Z,=u, X=z, Store = 62=mar1c (61) .

Now, as F,/nil, and f.2z=0, by computation we have

P1 : Z=v, X=z, Store=53=62[zI_><u,hd?z,m52z,1>].

Thus hd63z-hd6z, tlf7 3z=hd62z-x, and (S3^- 67'.

As before, nodes63(v)=nodes63(ti6z)

=nodes.,, (tl6.z) (Fact 6)

C. nodes6-(tl6-z) (6' G (T, Fact 3)

c nodes,(z) (Fact 1),

and

MTP-R-104

,and as s3z=1, z / nodes3(v), so Inodes63(v) !
<) nodes,5(z) 1.

Again we use the induction hypothesis to obtain

P2: Z=v, X=z, Store=G4-mark v(63).

This time z/nil, but f...4 z=1, so computation yields

P2: Z=z, X=x, Store 65= (T4[zi-><hd6-4z,v,m,S4z,O>].

Thus hd5z=u=hd6z, t165z=v=tl6-z and f,5z=0. Since applying markX

to 6' does not affect hd F, tlT or fS, hd,f 5=hdp t7.6 5=t1 and fG 5=f..

It only remains to show that S5-mark 7(T), i.e. that
14arkeds,5=nodes.(z) .

Marked5={z} U nodes5.1 (u) U nodes 6'3(v)

={z} U nodes 61(u) U nodes
ma rk (61)(v) (63-c2=mark1z(S1), Fact 6)

{z} U nodes61 (u) (,j nodess1 (;v) (Fact 4)

{z} U nodes., (u) U nodes, (v) 1"- 6'', Fact 6)

-nodesfj(z) (Fact 5)

This completes the proof.

An alternative method of proof is to first prove Program 2, a

purely constructive program usin* this method. and then, using the

techniques of Milner (1971) or Hoare (1972) to show that the Schorr-

Waite algorithm simulates Program 2. In particular the representation
function, Rep, for the stack in the Schorr-Waite algorithm is defined

by Rep(X) <- if X=nil then empty

elseif f(X) i then RRep(tl(X))

else push(X,Rep(1)d(X))).

However the resulting proof by this approach is longer than the one we

have given.

6./

R.T. -9- MIP-R-104

6. References

Burstall, R.M. (1972) Some techniques for proving correctness of
programs which a1 ter date structures. flfi,nchine fn tc:1 l-f once 7
(eds. B. Meltzer and P. Michie), Edinbur h : University Press,
pp. 23--50

Burstall, R.N. (1974) Program proving; as hand simulation with a
little induction. To appear in Proceer3in of 1F?P Congress '74-,
Stockholm, Sweden, August 5,10,

Floyd, R.T, (1967) Assigning meanings to programs. 1'x°7epdin^ of
S-mnosium in Applied Tiathenmrnt-ics, AIMS Vol. 19, 19-32,

Knuth, D..1. (1968) Fundament-l_ A_lgori AdWi_son-,wh eiey.
Hoare, C.A.R. (19`72) Proof of correctness of data representations.

Acta lnforma,tica 1, 271-281.
Kowaltowski, T. (1973) Correctness of programs man i pui a tint; data

structures. Ph.D. Allies, s, Berkeley.
Manna, Z. (19E9) The correctness of pro;re.ma. T.i.S.S 3, 2, 119-127.

Milner, R. (1971) An algebraic definition of simulation between
programs. C; 205, Stanford University.

Morris, J.H. Jr. (1972) Verif i ca ti on-oriented. language design.
Tee h kep. , Dept. of Computer Science, Berkeloy.

Poupon, J. and Iv1eghreit, B. (1972) Covering function. Centre for
Research in Computing Technology, Harvard University.

Reynolds, J. (1974) Unpublished work.

Schorr, R. and Waite, W. (1967) An efficient machine-independent
procedure for garbage collection in various list structures.
C.A.C.M. 10, 8.

Tarjan, R. (1972) Depth-first search and linear graphs. SIAM J. of Coma, 1.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-75-005

