THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfiiment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

* This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

* A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

* This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

* The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

* When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

Interactive program verification using virtual programs

by

Rodney W. Topor

Ph.D.
University of Edinburgh

1975

ABSTRACT

This thesis is concerned with ways of proving the
correctness of computer programs, The first part of the
thesis presents a new method for doing this, The method,
called continuation induction, is based on the ideas of
symbolic execution, the description of a given program by a
virtual program, and the demonstration that these two
programs are equivalent whenever the given program
terminates, The main advantage of continuation induction
over other methods is that it enables programs using a wide
variety of programming constructs such as recursion,
iteration, nan-determinism, procedures with side-effects and
jumps out of blocks to be handled in a natural and uniform

way .

In the second part of the thesis a program verifier
which uses both this method and Floyd'’'s inductive assertion
method is described, The significance of this verifier is
that it 1s designed to be extensible, and to this end the
user can declare new functions and predicates to be used in
\giving a natural description of the program's intention.
Rules describing these new functions can then be used when
verifying the program. To actually prove the verification
conditions, the system employs automatic simplification, a
relatively clever matcher, a simple natural deduction system
and, most importantly, the user’'s advice. A large number of

commands are provided for the user in guiding the system to

a proof of the program’s correctness, The system has been

used to verify various programs including two sorting

programs and a program to invert a permutation fin place”:
+a proof of

the proofs of the sorting programs inclUdesthe fact that

the final array was a permutation of the original one.

Finally, some observations and suggestions are made

concerning the continued development of such interactive

verification systems,

ACKNOWLEDGEMENTS

I would 1like to express my appreciation to the

following people and organizations for helping me in their

different ways:

- to

my supervisor, Rod Burstall, for advice and
encouragement, and for introducing me to the subject of

program verification,

Gordon Plotkin and Jerry Schwarz for their critical

comments on a draft of the thesis,

Raymond Aubin, John Darlington and Mike Gordon for
useful discussions on the subjects of program

verification and manipulation,

Eleanor Kerse for helping with the typing and for
struggling so wvaliantly to help with the editing of

this thesis,

Harry Barrow, Robin Popplestone and all the other
members of the Department of Artificial Intelligence
for creating such a stimulating, if excessively

political, atmosphere in which to work,

the Commonwealth Scholarship Commission and, 1in the
later stages, the Science AResearch Council for

financial support,

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

Chapter 1, INTRODUCTION

1.1
1.2
1.3

Chapter

¢« o & o o
O PWN o

[ASEISIN\S I G BN \G I\ V]

Chapter

W wwww
* o
VR WN -»

. s o

Chapter

PP D
OV PLWN -

Chapter

vy
L] *

[3 - *

NP WwnN o

Chapter

oo
. o
PUWN

Overview
Related work
Notation and conventions

2., THE INDUCTIVE PROOF METHOD: DESCRIPTION

Introduction

Actual programs

Program specification: virtual programs
General description of method

Some exemplary programs

Soundness

3. THE INDUCTIVE PROOF METHOD: DISCUSSION

Termination proofs

Equivalence proofs

Comparison with inductive assertions
Comparison with recursion induction
Other related methods

4, AN INTERACTIVE PROGRAM VERIFIER

Overview

Input language

Definitions and rules
Verification condition generation
Implementation

Discussion

5. ALGEBRAIC MANIPULATION AND INFERENCE

Algebraic manipulation
Pattern matching

Automatic theorem proving
Interactive theorem proving
Discussion

6. DETAILED EXAMPLES OF PROGRAM BEHAVIODUR

The 91—~function

A matching program
A sorting program
Derived rules

22

22
24
32
38
47
57

62

62
65
70
75
78

81

81
82
85
89
92
97

99

99
110
114
121
129

132

133
137
144
153

Chapter 7, CONCLUSIONS

«1 Summary
.2 Improvements and extensions
+3 Further research

NN

REFERENCES

Appendix 1. Notes on POP=2

Appendix 2. Definitions
Appendix 3., Derived rules
Appendix 4, Programs verified
Appendix 5., Listing of matcher
Appendix 6. Schorr-Waite proof

156

156
157
159

164

170
176
180
183
202
205

Chapter 1, INTRODUCTION

1.1 Overview

This thesis describes a method and an implemented
system for proving the correctness of computer programs,
The task of proving programs correct, known as program
yerificatigon, 1is one asaect of the general problem of
developing more reliable programs. Program verification is
desirable as it eliminates the time-consuming task of
debugging programs, and guarantees that a verified program
will always behave as it was intended to. Since proofs of
program correctness can be very 1long and are themselves
prone to human error, it is desirable to obtain machine
assistance either to check the hand proofs or, if possible,
to discover the proofs independently. The ultimate aim is
for a programmer to be able to present his program together
with 1its specifications to the computer which, as well as
looking for syntax errors, will attempt with the
programmer’s help to verify the program, either certifying
it correct or detecting any (semantic) errors, possibly by
giving counter-examples. While such a system, for practical
programs, still lies in the future, considerable progress
has been made both in finding general methods of proving
correctness (and other properties) of programs, and in

mechanizing these methods.

Intraduction Page 2

In this thesis, we are mainly concerned with the

following aspects of program verification:-

1) The use of alternative programs (yirtual progrems)
as specifications of a given (or ggtual) program,
and an associated inductive proof method.

2) The ability to easily add new knowledge about the
different (mathematical) domains programs might
operate on,

3) The design and use of a simple, interactive theorem
prover to prove the verification conditions,

4) The use of a real language'’s compiler and normal
run—time system to generate, by symbolic execution,
verification conditions for programs written in that

language,

The principal contribution of this thesis 1is twofold.
First, it describes and discusses a new method of proving
the partial correctness of programs, This method,
continuation induction, 1is based on symbolic execution:
allows recursive, iterative and non-deterministic programs
to be treated uniformly; handles escapes and procedures
with side-effects; and is especially convenient for proving
properties of certaih recursive programs, Secondly, the
thesis describes an implemented program verifier which wuses
both this method and Floyd's method of inductive assertions,
While the theorem—prover of our verifier is not as powerful
as some others, the verifier is of interest for the way it

uses high—-level descriptions of programs, and for the nature

Introduction Page 3

of the extensive interactive facilities provided. It also
shows that non=-trivial programs can be verified conveniently

using a naive theorem prover with human assistance,

Using this method and the interactive theorem prover
described, our system has verified, sometimes using human

assistance, the following programs, among others:-

1) The 91-function,

2) A version of Ackermann's function,

3) Various common numerical programs,

4) A searching program which jumps out of a block,

5) Programs which test whether one array is equal to,
or a subarray of, another,

6) Two simple sorting programs,

7) A program to invert a permutation "in place”.

A 1ist of programs verified by the system, together with

their specifications, is given in Appendix 4.

The program verification system we have implemented
verifies POP-2 programs, and is written in POP-2 (Burstall,
Collins and Popplestone 1971), a language designed for use
in artificial intelligence and combining features of both
ALGOL and LISP, However the proof method used is applicable
to any similXar 1language. In our system, all the control
aspects of symbolic execution are handled by the normal
POP-2 run-time system, Thus, any correctness results proved
are true with respect to the actual implementation of the

language, rather than with respect to some abstract

Introduction Page 4

definition of it,

To briefly illustrate our method of program

verification, consider the following example,

Start:
[rre SERERRR '1
I:=1 l
R:=1 I (v1)
]
Loop: |]
ey ¥ = - = = = - > = = = = o |
| Yes , (v2)
I=N ? > | |
R:=R*¥N!/I! R:=N!
No I:=N I:=N
i
I:=I+1) :
R:=R*I] |
!

Finish:
—*_I W - e g =) e - - - - . |

The program in solid lines on the left is the actual program
to be verified, The intention of this program is to set R
to n! (the factorial of n) where n is the initial value of
N. It also sets I to N, This is expressed by the virtual
program (V1) in broken 1lines on the right: Start: -
=> Finish, We wish to show that for all values of n the two
programs return the same results, that is they are
equivalent, provided the actual program terminates. Just as
a loop must have an invariant in Floyd's method, so it must
have a virtual program describing it in ours. The virtual
program (V2) corresponding to the loop in the actual program
is shown in broken lines, Loop ~ -> Finish, and we must also
show that whenever the loop alone terminates it returns the

same results as its virtual program,

Introduction Page 5

Each of the actual programs (the whole program and the
loop) 1is now shown separately to be "equivalent” to its
corresponding virtual program. This is done by symbolically
executing both the actual program and the corresponding
virtual program from the same state, and checking that they
terminate in the same state, Considering the inner pair of

programs first, there are two pairs of paths:

1) Loop:N=n,I=i,R=r ——> Finish:N=n,I=1i,R=r with i=n
versus
Loop:N=n,I=1i,R=r = =~> Finish:N=n,I=n,R=r*n!/i!
2) Loop:N=n,I=i,R=r ——> Loop:N=n,I=1i4+1,R=r*(i+1)
with NOT i=n
- => Finish:N=n,I=n,R=r*(i+1)*n!/(1i+1)
with NOT i=n
(induction hypothesis)
versus

Loop:N=n,I=i,R=r = => Finish:N=n,I=n ,R=r*n!/i!

Clearly the resulting state vectors are the same in each
case, Notice how we used the induction hypothesis that the
two programs are in fact equivalent by executing the virtual
program when we returned to Loop. The proof is thus by
induction on the number of times the program goes around the
loop. To wverify the complete program we must compare the
following pair of paths:

3) Start:N=n,I=i,AR=r ——» Loop:N=n,I=1,R=1

- => Finish:N=n,I=n,R=1%n!/1!
versus

Start:N=n,I=i,R=r - => Finish:N=n,I=1i,R=n!

Again the resulting state vectors are clearly the same. In
this case we used the above result that the actual and

virtual programs from Loop are “equivalent” to circumvent

Introduction Page 6

the loop by executing the virtual program from that point,

The method can be applied to recursive procedures in
the o©obvious way by giving a virtual program to describe the
body of the procedure, However its utility comes from the
fact that the wvirtual programs may be considerably more
complex than they were here, In particular, they may
include conditionals, Jumps and non-deterministic

operations.

Generally, as in this example, the wvirtual program
which describes an actual program cannot be expressed using
only the primitives of the programming language, even though
the actual program is computing some well-known mathematical
function such as the greatest common divisor of two numbers,
the factorial of a number, the inverse of a matrix, the
product of two matrices, the transitive closure of a
relation, the inverse of a permutation, the connected
components of a graph, etc, It is clearly desirable in such
cases that the specifications of the actual program should
be in terms of these mathematical concepts rather than at
the 1level of the representation used by the actual program,
OQur system allows the user to declare such functions as new
(undefined) primitives of the programming language and use
them to write his specifications for the program, The
properties of these functions can be defined by giving
axioms and rules which are used in actually verifying the
program, These rules will also relate the abstract

mathematical aobjects involved to the data structures used to

Introduction Page 7?7

represent them, (A complete 1list of such rules used is
given in Appendices 2 and 3.) The verification system can
then be easily extended to deal with programs operating on a

variety of mathematical domains.

The intrinsic complexity of such a daomain is often the
cause of any difficulty in verifying (or understanding) a
given program, To verify such a program requires not merely
a knowledge of programs and programming languages, but also
the ability to prove theorems within the theory of this
domain, Since mechanizing such proofs is a substantial
research problem in its own right, we believe it should be
separated as much as possible from the task of program
verification, We have done this by building an interactive
system which can do some theorem proving by itself, but
which accepts new information about the current domain from
the user (i.e. the programmer) when it is required, This
new information will usually consist of rules describing the
mathematical functions used in the program'’s specification,
Of these rules, some are treated as definitions and are
accepted without question; for a complete proof the others
should be shown to follow from the definitions, but they can
be assumed and their proofs postponed. The theorem prover
will then attempt to apply these new rules in its continued
search for a proof., If it still fails, the user can direct
the proof process himself by providing lemmas, instantiating
variables, adding new hypotheses and so on, A similiar view
of program verification is taken by Good, London and Bledsoe

(1974).

Introduction Page 8

As mentioned above, program verification is only one
approach to the broader goal of developing better, more
reliable programs, One important alternative is the idea of
"structured programming”, a technique for developing a
program in a systematic way and possibly generating a proof
of the program’s correctness at the same time. This often
involves programming at different levels, implementing a
program (primitive) at a higher level by means of a lower
level program, In the long run, we believe that “"structured
programming” and better education of programmers will be the

best way to improve the quality of programs,

Two other approaches related to program verification
are program transformation and program synthesis, By
"program transformation” we mean the process of changing a
simply-stated program at the source language level to make
it more efficient. Program synthesis is the problem of
producing from the (possibly incomplete) specifications of a
program a program which satisfies them. We believe that an
interactive approach is the best one for each of these three
tasks and that since they all involve reasoning about
programs, progress in any one field should be applicable to

the others,

The organization of this thesis 1is as follows: The
next section presents a review of previous work done on
program verification: it describes both proof methods and
implementations of these methods, The essence of the thesis

is in Chapters 2 and 4, An overview could be obtained by

Introduction Page 9

reading these chapters and skimming through Chapter 6,
Chapter 2 describes our proof method in detail; Chapter 3
gives some applications of the method and compares it with
various other methods: Chapter 4 describes the verification
system we have implemented: in Chapter 5 the algebraic
manipulation system, automatic theorem prover, and
interactive facilities are described; Chapter 6 presents
and explains the behaviour of our verification system on
some typical examples: and Chapter 7 presents our

conclusions and suggestions for future research,

1.2 Belated work

There are four commonly used inductive methods for
proving properties of programs. These are: inductive
assertions (Naur 1966, and Floyd 1967), recursion induction
(McCarthy 1963), computational induction (Park 1969, and
deBakker and Scott 1969), and structural induction (Burstall
1969), Of these, inductive assertions has been the principal
one concerned with iterative programs and assignments, while
the remainder have dealt mainly with recursive functions.
Whereas recursion induction is used to prove the equivalence
of two programs, the other methods are usually used to prove
properties (or correctness) of particular programs. The
first method 1is essentially induction on the length of the
computation path, the second and third are induction on the
depth of function calls, and the fourth is induction on the

data structures being manipulated., We shall look briefly at

Introduction Page 10

each of these wmethods in turn, and then describe some
implemented systems for proving properties of programs which

use them,

The most commonly used inductive method, especially in
automatic verification systems, is that of Floyd. In this
approach, assertions (about the values of the program’'s
variables) are attached to key points (such as loops) in the
program, and an assertion must be true each time control
passes through the relevant point during the program’s
execution. In particular, an assertion is usually attached
at the end of the program. Verifying the correctness of the
program consists of proving that for each path through the
diagram, each assertion implies the next one in the path
provided the effects of the intervening program statements
are taken 1into account: such implications are called
verification conditions. Manna (1969) describes a similar
method which wmay be thought off as attaching assertions to
points such that the assertion is true during some pass
through the point, rather than all passes as in Floyd's
method., In Manna and Pnueli (1970) this method has been
generalized to handle recursive functions, Manna's method
was further modified in Burstall (1974). Hoare (1969)
described a structuring principle for using Floyd's method

which has since become widely accepted.

Recursion induction is used to prove the eguivalence of
recursive functions. To prove the equivalence of two

functions f1 and f2 over some domain A, that is, that

Introduction Page 11

f1(x)=Ff2(x) for all x in A, it is necessary to find a third
recursive function g such that both f1 and f2 satisfy the
defining ’equation of g and g is defined for all x in A,
Although this was perhaps the first method explicitly
suggested for proving properties of programs, it seems to
have been little used in practice, McCarthy (1962) showed
that recursion induction could also be used to prove the

equivalence of iterative programs,

To explain computational induction, assume for the
moment that UU is the totally undefined function, that T is
a continuous functional and that F1 is the function defined
by F <= T[F] (these terms are 'explained in Manna et al.
1972). Then to prove the property P(F1) of F1, it is
sufficient to check that P 1is true before starting the
computation (P(UU)), and show that if P is true at one stage
of the computation, it remains true after the next step
(P(F) implies P(T[F]) for every F)., Morris (1971) described
a variant of this called truncation induction, which bears
the same relationship to computational induction as
course-of=-values induction does to ordinary mathematical

induction,

The final method is structural induction which is
described in Burstall (1969) and was first wused (in
computing) by McCarthy and Painter (1967) who proved a
caoampiler for arithmetic expressions correct, It |is
applicable to any class of finite structures (often called

"records” or “plexes”) built up from a set of atoms, and

Introduction Page 12

which do not contain circularities. The induction principle
is: If for some set of structures a structure has a certain
property whenever all its proper constituents have that
property, then all the structures in the set have the
property, Logicians frequently use structural induction to
establish meta-theorems, by inducting upon the structure of

formulas in the theory.

Each of these methods has its own advantages and
disadvantages: the question of which to use is largely a
pragmatic one. For instance, in the presence of assignments
to data structures, Floyd's method is applicable whereas
structural induction is not. The paper by Manna, Ness and

Vuillemin (1972) is a very readable introduction to the

various inductive methods, and has many examples of their use.

We shall now review other implemented systems, paying
particular attention to the aims, methods and
accomplishments of the system, and the features of the
languages used to present programs and assertions (or
theorems), Almost all these systems are concerned with the
inductive assertions method for flow-diagram languages: the
exceptions are Milner (1972) and Boyer and Moore (1973).
These two, together with those of Deutsch; Igarashi, London
and Luckham; Waldinger and Levitt; and Good, London and
Bledsoe are the most powerful of the systems, Our system is
most closely related to those of King, ODeutsch, Waldinger

and Levitt, and Good et al.

Introduction Page 13

The first of these systems, and in many ways the
prototype for several others, was that of King (1969),
King's system dealt with an ALGOL-like flow-~diagram language

by Floyd‘’s method., He allowed integer-valued variables and

one—~dimensional arrays with 1integer elements. Statements
included assignments to variables and array elements,
conditional statements, and goto statements, Procedure

calls were not allowed, The system was designed as a fully
automatic implementation of Floyd‘’s method, The user
submitted his program text with assertions, and King's
system then generated the verification conditions and tried
to prove them, The proof was done by an arithmetic theorem
prover designed specifically for the task, Several
interesting programs were thus verified, including an array
sorting program, and a program to raise an integer ¢to a

power using the binary representation of the power,.

All the knowledge available to King's system was
already built-in, Assertions were just boolean expressions
with universal and/or existential quantifiers, It was not
possible to add a procedure to express an assertion, which
severely limited the expressive power of the language, For
example, functions such as summation and greatest common
divisor were not built-in, and thus not available. The
system was written in assembly language using macros and was

very fast,

Introduction Page 14

Good's thesis (1970) described another formalism for
programs and proved several results within that formalism,
He also presented a program, operating on & language similar
to King's, which generated verification conditions from the
user-supplied text and assertions. However it made no
attempt to prove them, providing only a book~keeping service
to the user, Because the program was not designed to
"understand” the assertions, the assertion language was very
flexible, consisting of arbitrary text strings in which
occurrences of program variables could be recognized and
substituted for, One contribution of Good’s work was to
show that in the presence of subscripted variables (array
elements), generating verification conditions by working
forward along a path, from the initial assertion to the
final assertion, generated simpler conditions than working
backwards, King's system, which worked backwards as Floyd
had originally suggested, was restricted by the large number

of cases sometimes generated,

Cooper (1971) presented a theorem prover which dealt

with flow~diagram languages like those above, without

provision for arrays, The program was designed to
automatically generate and prove the termination and
correctness conditions for flow—-diagrams using the
Presburger alg;rithm (for arithmetic without

multiplication), but was limited in its scope.

Introduction Page 15

In 1973, accounts of several impressive systems
appeared: notably Igarashi, London and Luckham (1973),
Deutsch (1973), Waldinger and Levitt (1973), and Boyer and
Moore (1973), Each of these is significantly more powerful

than those described above,

Igarashi et al, apply Hoare's method to generate
verification conditions for programs written in the
programming language PASCAL (Wirth 1971). The verification
conditions are then given to a resolution theorem prover to
be proved. An example of &a program they can verify 1is
Hoare's (1971b) FIND, Their system does very little actual
resolution and a lot of simplification and reasoning about

equality.

Deutsch's system is a straight—-forward application of
Floyd’s method: it takes a program with assertions,
generates the verification conditions, and uses an automatic
theorem prover to prove them, Programs are written in
essentially the same language that was used by King:
procedure calls are not allowed. The assertion language
consists of quantified boolean expressions, but also allows
parameterized assertions, defined by one-line boolean
procedures, The system, like King's, stores all expressions
in canonical form. The increased power comes not so much
from a better theorem prover, but from the simplifications
and deductions made while generating the verification
conditions (which is done by forward substitution), and from

the context mechanism used, Interactive facilities which

Introduction Page 16

enable the user to help the system find a proof are
provided, but no examples of their wuse are shown, The
system is written in LISP and is rather slower than King's
system: it can verify all of King's examples, FIND, and a

complex enumerative program, among others,

Waldinger and Levitt (1973) have implemented a flexible
system in QA4 (Rulifson et al, 1972), a very high level
language designed for use in artificial intelligence. The
programming language considered contains integers, reals,
arrays, lists, conditionals, assignments, and recursive
procedures, The assertion language is GA4 itself (slightly
extended) which gives maximal flexibility to wuse arbitrary
functions and predicates which describe the program's
properties. For iterative programs Floyd's method (with
backward substitution) is used to generate the verification
conditions, while for recursive programs the Manna-Pnueli
method (computational induction) is wused., Their theorem
prover is a set of QA4 functions. The beauty of their
system is in the simplicity of the functions (or rules)
making up the theorem prover, the ease with which new
information, in the form of new rules, can be added, and the
natural flavour of the resulting proofs. However because of
the backtracking and pattern matching invelved in running
QA4 programs the system is very slow, and the interactive
facilities available are very 1limited. The system can
verify all of King's examples, FIND, and a version of the
unification algorithm, among others. It is intended that

the knowledge about programs embedded in the system will

Introduction Page 17

subsequently be wused in automatic program modifcation and

synthesis systems,

In a recent report (Good, London and Bledsoe 1974), a
philosophy and system quite similiar to ours is described,
The authors have used a sophisticated algebra system
(REDUCE, Hearn 1971) to combine Bledsoe’'s interactive
theorem prover (see below) with a verification condition
generator derived from that of Igarashi et. al. (1973) to
produce an interactive verification system for PASCAL
pragrams, Their system is still in a state of development

and appears very promising.

Suzuki (1974) describes the simplification and 1logical
reduction rules used in an extension of the Igarashi, London
and Luckham verifier, This system also uses high~level,
user-introduced predicates with axioms describing their
properties. It 4is completely automatic and can prove
Hoare’s FIND and Floyd’s (1964) TREESORT programs., Von
Henke and Luckham (1974) use this system to describe a
methodology for verifying programs, The methodology
involves using information from attempted verifications to
successively refine and modify both program and assertions

until they can be shown to be consistent,

Two other systems are perhaps worth noting: Gerhart
(1972) describes the use of Floyd’s method to prove
properties of programs in a subset of APL, but the only
process automated is the verification of the compatibility

of argument types and APL operators. Ragland (1973)

Introduction Page 18

describes a program written 1in a simple language called
NUCLEUS which generates verification conditions for NUCLEUS
programs, and he gives a (hand) proof of this particular

program’s correctness,

All the above systems have required that the inductive
assertions be supplied along with the program, Although it
has been suggested that a programmer does not really
understand his preogram until he can supply these assertions,
their discovery can be quite difficult, Some interesting
work on heuristically automating this process has been done
by Elspas (1972), Katz and Manna (1973), Wegbreit (1973)

and Berman and Wegbreit (1975).

A different approach has been taken by Sites (1974) who
has devised a method for showing that a given program
(without assertions) always terminates without overflow or
array subscript errors. The method has been used on some
difficult programs but fails when the termination proof
depends on non-trivial mathematical facts, It has not been

mechanized,

Boyer and Moore (1973) have written a program which can
prove difficult theorems about pure LISP programs by
structural induction, and which is based on the idea of
symbolic execution, It 1is described in detail in Moore
(1973). The program uses LISP as both its 1logical and
assertion languages, allowing arbitrary LISP functions to be
used as assertions. The main achievements of the program

are that it requires no assertions other than the one to be

Introduction Page 19

proved: it generates its own induction hypotheses: and it -
generalizes the theorem to be proved in an intelligent way
whenever necessary, For instance, given only the LISP
definitions of S0ORT and ORDERED, the program can prove that
(ORDERED(SORT L)) is true. A weakness of the program is
that it cannot deal with programs which “recurse up” rather
than "down” (iterative programs), let alone with destructive

assignments to data structures,

Milner's LCF proof-checker (Milner 1972) is in a sense
the most powerful of all, albeit that the power is entirely
controlled and directed by the user, This system 1is an
implementation of Scott’s Logic for Computable Functions
(Scott 1969). The basic induction rule is computational
induction, although a proof of the recursion induction rule
is ’presented as an example, The program 1is an LCF
proof-checker. The syntax and semantics of a wide range of
programming languages may be expressed in ULCF, including
recursive programs and programs which have other programs as
arguments and results., The program accepts expressions in
LCF as theorems to be proved, and then obeys commands from
the wuser directing the application of the rules of
inference, A powerful simplification routine shortens the
proofs, but they can still be very long. The program keeps
track of the goals to be established and the steps carried
out in each proof. In Milner and We%}auch (1972), the
authors describe the use of the LCF proof-checker to verify
the correctness of a compiler, Newey (1975) has wused the

LCF proof-checker to prove various theorems about LISP

Introduction Page 20

functions, 4including the "correctness” of the LISP

interpreter,

Since program verification inevitably requires a large
number of theorems to be proved, any other research done on
automatic theorem proving should be of interest. However we
shall mention only one such system: that of Bledsoe and
Bruell (1973). They describe an interactive theorem prover
for general topology which works in a fairly natural manner
by subgoaling, applying rewrite rules and definitions, and
using special heuristics for topology. Wé have borrowed
ideas from them about organization and interactive

facilities for our own system.

We shall compare our own work with many of the above
proof methods and verification systems in more detail later,
when we discuss particular aspects of our proof method and

verifier,

1.3 Notatjon and conventions

We have tried to use standard mathematical and
programming notation throughout, When talking about
programs and their executions we distinguish between upper
cases letters which refer to identifiers and lower case
letters which refer to 1logical variables (their wvalues),
Words being defined or emphasized are underlined, and words
used in an unusual way are enclosed in quotes (") as wusual,

For syntax definitions we wuse BNF (Backus-Naur Form) as

Introduction Page 21

described in the POP-2 reference manual.

Because of the restrictions of preparing this document

on the computer we have written e.g. x1, x2, ..., xXn instead

of wusing subscripts, and have used the following

abbreviations,.

Symbol Stands for Meaning
& A logical conjunction
v v " disjunction
=> > * implication
<=> = " equivalence
NOT - ” negation
FA \ 4 for all, universal quantifier
EX 3 there exists,
existential quantifier
EPS € Hilbert's epsilon symbol
== = identity (of expressions),

equivalence (of programs)

Page 22

Chapter 2. THE INDUCTIVE PROOF METHOD: DESCRIPTION

2.1 Introduction

As we have already indicated, the proof method we shall
present relies on the use of alternative programs as
specifications, We originally started studying this idea
and its consequences as it seemed to lend itself well to the
idea of constructing proofs by symbolic execution (Topor and
Burstall 1973) independently of Deutsch (1973) and others
who have wused symbolic execution in systems based on
inductive assertions, The main advantages of the proof
method we eventually developed are that programs containing
iteration, recursion or non-determinism are all treated in
the same way, and that it can handle escapes and procedures
with side-effects, Moreover the method is equivalent to
computational induction (Manna and Pnueli 1970) for
recursive programs, 1is essentially a generalization of
Floyd’s method of inductive assertions (Floyd 1967) for
iterative programs, and can easily be extended to yield
termination proofs in the same way that Floyd's method can.
We refer to the method as continuation induction since it
involves providing a "continuation” for certain points in
the program, that is, a function (or relation) computed by
the program from that point until its end., The work in this
chapter, with the exception of Section 2.6, was done Jjointly

with Dr R.M, Burstall.

Description of method Page 23

In this chapter we shall try to explain the wmethod in
detail independently of any particular implementation. But
before going on to this we shall define some of the terms we
shall be using, First, we use the word "program” in a very
broad sense throughout to include any sequences of
statements possibly preceded by one or more function
definitiens, An agtual prgaram is simply a program whose
correctness we are currently trying to prove: since the
correctness of a program depends on the correctness of its
constituents, these constituents will also be considered as
actual programs at times, A yirtual grogream is the program
which serves as the specification of an actual program, and
to which the actual program is to be proved "equivalent”, We
shall describe later just what the nature of these programs

may be,

But what do we mean by saying that two programs are
"equivalent”? There are (at least) three possible answers,
The first is that two programs are said to be (strongly)
eauivalent if for all inputs either they both terminate and
produce the same results, or neither terminates, that is
they are equal as partial functions. This concept is too
strong for our purposes since although virtual programs
g}ways terminate, actual programs may not, The second
possibility is that of weak equivalence: two programs are
said to be wegakly gauivalent if whenever they both terminate
they produce the same results, Any two programs are weakly
equivalent to a program which never terminates. Finally, a

program P is said to be ingluded in a program @&, written

Description of method Page 24

P & A, if whenever P terminates so does Q@ and they produce
the same results, that is, P is 1less defined than @ as
partial functions, Since we are trying to show that
whenever the actual program terminates it produces the same
results as the virtual program (which always terminates),
this is the desired concept. Notice that inclusion 1is a

reflexive and transitive relation, but is not symmetric,

We can now define a program to be partielly gcorrect if

it 41is included in its corresponding virtual program: it is
totallv correct (i.e. is partially correct and terminates)

if it is strongly eguivalent to its virtual program.

2.2 Agtusl proarams

In this section we shall describe the type of programs
to which the proof method is applicable, how programs are
executed, and what is really meant by “"symbolic execution”.
This lays the groundwork for the following sections in which
we shall describe how to give specifications for actual
programs in terms of wvirtual programs, and how to construct

proofs from such pairs of programs,

2.2.1 Nature of amenable programs

One of the aspects of continuation induction 1is the
uniformity with which various control features of
programming languages can be handled. In particular,

functional and imperative programs are treated in almost the

Description of method Page 25

same way, The method is applicable to programs constructed

from the following control features:

assignments, statement sequencing, blocks,
conditional statements and expressions, labels,
arbitrary jumps, while—~statements, procedures,

escapes and functional arguments,

While we do not believe programmers should wuse jumps
indiscriminately, programs using such jumps can be handled.
Jumps out of blocks and escape funmctions constructed wusing
Landin's J-operator (Landin 1965) are also permitted
provided they are not used to Jjump back into functions,
Escapes are functions which Jjump out of their defining
function when called, and are mainly used for error trapping
and to avoid “unwinding” recursive function applications.
Both recursive procedures and procedures with side-~effects
are allowed, Certain types of functional arguments are
allowed, but we do not yet know how to deal with label

arguments,

The only restrictions on the data types allowed come
from the formal system one has available for reasoning about
the data, In the verification system which we have
implemented, the data types used are truth values, integers,
one—~dimensional arrays of integers, and 1lists (without
destructive updating), The only barrier to introducing other
data types such as reals, strings, records etc, would be
the need for an extended algebraic and inference system to

manipulate and reason about them.

Description of method Page 26

Rather than specifying the syntax and semantics of some
particular programming language and then describing how to
verify programs written in that language, we shall try .to
describe the proof method in a language independent fashion.
Since the proof method is defined in terms of the semantics
of the 1language being considered we shall actually be
describing a family of proof methods, Thus the user should
instantiate our general description which follows to the
particular language and formal (operational) semantics of

his choice,

Unfortunately, it is necessary to use some particular
language while describing the method. We shall use an
ALGOL~like language in which functions are defined, for
example, by abs(X) = 4if X>0 then X glse =X, in which
statements are grouped into blocks by parentheses, and 1in
which the function regturn returns its argument as the result
of the innermost function in which it appears., In all the
examples we shall give, parameters are passed by value, but
this is not a restriction on the proof method as call by

reference and call by value~-result can also be handled.

2.2.2 Execution of orograms

Since the proof method is based on the idea of symbolic
execution of programs, we start by describing ordinary
execution, To do this it is necessary to define a machine
state and éay how the various commands of a program affect

this state. However, we shall merely give an outline of the

Description of method Page 27

operational semantics for the langusge being considered.
When actually doing proofs the user would wuse the formal
operational semantics of his particular language, though in

Chapter 4 we explain how this can be made unnecessary,

Consider first a flow diagram type program without any
procedure calls, Then it can be seen that the machine state

is specified by:

1) a state vector which is a mapping from identifiers
to values, and

2) an jinstruction pointer which indicates the program

statement about to be executed.

For example, &a typical machine state might be

Start: I->0, N->10, R->1, A-> <array [1:4] 3 5 2 4> ,
where Start is the instruction pointer (or label), and the
value of A 1is an array of length 4 with the values shown,
In such a case it is obvious how the various commands -
assignments, tests, and jumps - affect the state, so we do

not give the corresponding state transformations.

However, when we introduce procedures into the language
the situation becomes more complicated, especially since we
want to allow recursive procedures., It is necessary then to

introduce a third component into the machine state:

3) a contrpl stack which holds the 1local variable
values and return addresses necessary to implement

procedure calls and returns,

Description of method Page 28

This corresponds to the Dump of Landin’'s SECD machine
(Landin 1964). Calling a procedure now involves pushing an
activtion record corresponding to the new procedure onto the
control stack, setting the instruction pointer to the start
of the procedure body, and adjusting the state vector (or
environment) by associating the actual and formal parameters
of the procedure, Returning from a procedure involves
"undoing” these changes, We will not bother to invent
details of how this could be done in our pedagogical
language. Notice however -that the semantics of the
goto~statement is now more complex, since jumping to a
non-local 1label will involve popping the control stack and

changing the state vector,

We refer to the sequence of points in the program
through which the program passes as the gcomputation path.
When operating on real data, a deterministic program follows
just one computation path as all the tests can be evaluated,
This is not the case for symbolic execution which we discuss

next,

However, before doing so, we remark on another way to
describe the semantics of our programming language. This is
to systematically transform each program in the 1language
into a system of recursive equtions and then use one of the
evaluation rules described in Manna et al (1972), for
instance, to evaluate the program for particular input.
This is the method we shall actually use in Section 2.6 when

justifying the validity of this proof method, so the reader

Description of method Page 29

should keep it in mind,

2.2.3 Symbolic execution of programs

To prove properties of a program it is necessary to
determine the program's behaviour not only on particular
input data, but 05 all possible data, One way to do this is
to run the program with an initial state vector which
represents all possible state vectors, In this case the
values of the program identifiers are symbolic expressions
constructed from variables (Skolem constants) which are
specified to represent particular data types. These
variables are considered to simultaneously take all possible
values of the appropriate type, A state vector which maps
program identifiers into such a domain of symbolic algebraic
values is called a gymbolic state vegtor. A typical
symbolic state vector might be:

(X=>x+1, Y~>2%y, A->al).

We shall occasionally refer to a generel symbolic state
vector which is just a symbolic state vector of the form

(X=>xy Y=>y, .o.)
where X, Y, ... are all the identifiers of the program and
Xy Y3 e... @are simply logical variables with the same names

as the identifiers,

The fact that the initial input to the program may not
be quite arbitrary, but may be required to satisfy certain
conditions, x>=0 say, can be represented by introducing into

the state a new component called a path condjtion which is a

Description of method Page 30

logical expression expressing these conditions, This extra
component 1is also very important for deciding what to do at
tests as will be seen below. Thus a symbolic machine state

has the following components:

1) a symbolic state vector (sv),
2) an instruction pointer (ip),
3) a control stack (cs),

4) a path condition (pc).

When writing out &a state we will tend to omit those
components which are not of immediate interest and to refer
to the components of a state by the abbreviations shown

above,

The process of running a program from such an initial
state 1is <called gsymbolic executign. There are two obvious
difficulties, The first is that standard operations such as
+, *, =, <, cons, hd, etc, cannot be applied since their
arguments are variables rather than numbers or lists and are
hence of the wrong type., The solution is to redefine these
operations to be symbolic ones, that is operations which
construct new (symbolic) terms from their arguments,
possibly simplifying the result, Functional arguments are
dealt with similiarly. The second difficulty is that the
truth of tests in conditional statements can no 1longer
always be determined - at least, not by evaluation alone.
If it is possible to prove from the current path condition
that the test must be true, or that the test must be false,

then the computation simply proceeds along the appropriate

Description of method Page 31

path, Otherwise the computation path splits into two new
ones, 0On one the test is assumed to be true and is added to
the path condition;:; on the other it is assumed to be false

and its negation is added to the path condition,

We now describe this process more precisely in the
following algorithmic way, In this description we assume
that all conditionals are brought to the top level, e.g.,
“"F(if P then s1 else s2)” becomes "if P then f(s1) else
f(s2)”, and hence “symbolic evaluation” 1is simply the
process of constructing symbolic terms. The "with -~ do”
construct allows wus to refer to the components of a
structure (in this case a state) by the names of their
selectors, and the function mk$ constructs a state from its
components, We assume there is an operation adyance which
moves the instruction pointer on to the next instruction
(unless the previous instruction was a ggtg or some other
statement which affects the instruction pointer), and that
there is a function sym=-val which symbolically evaluates an

expression (possibly performing side-—-effects on SV as well),

Sym-exec (STATE) =
with STATE do

repeat (
if IP is at "halt” then return({STATE})
else if IP is an assignment (LS := RS)
then (SV := SV[sym-val(RS)/LS]): advance IP)
else if IP is a conditional (if P then s1 else s2)
then if PC => P then IP := s1
else if PC => NOT P then IP := 82 y
else return(Sym-exec(mkS(Sv,s1,CS,PC & P))
UNION Sym-exec(mkS(Sv,s2,CS5,PC & NOT P))
else (execute instruction normally: advance IP))

Figure 2,1 - Symbolic execution

Description of method Page 32

Thus symbolic execution is conceptually 1ike normal
execution in all respects except for functional calls,
conditionals and the components of the machine state,
Handling these as described above, it generates a tree of
computation paths, each path having &an associated machine
state which changes as the execution progresses, and returns
the set of states at the ends of the paths, O0Of course, if
performed on a program with loops or recursion, this process
would continue indefinitely: we will explain shortly the
induction principle used to prevent this, The idea of
symbolic execution, at least with regard to the symbolic
evaluation of expressions, was first wused by Perlis and
Iturriaga (1964)., It has also been used by Darlington (1973)
in program optimization, by Deutsch (1973) and Boyer and
Moore (1973) in program verification, and recently by Boyer,

Elspas and Levitt (1975) and King (1975) in program testing,

2.3 Program specification: yirtual programs

2.3.1 Virtual programs

Clearly, for a virtual program to be acceptable as the
specification of the actual program the virtual program must
itself be clear, precise and unambiguous, To achieve this,
the virtual program is written in the same language as the

actual program, subject only to the following condition:

Description of method Page 33

The virtual program may not contain any 1loops,

backward Jjumps or recursive calls, Moreover any

subroutines called by the virtual program must

also satisfy this restriction,
This restriction ensures that the virtual program will
always terminate, and will in fact execute each of its
statements at most once. With this restriction it should be
so obvious what the wvirtual program does that it is
acceptable as a specification for the actual program, Note
that the virtual program may use any other features of the
programming language including conditional statements and

(forward) jumps out of blocks, It may also include jumps to

labels in the program surrounding the current actual

program,

2.3.,2 Langugge extensions

Although virtual programs can sometimes be written in
the language without any extensions (e.g. the 91-function of
Section 2,5.,1) it is usually necessary to introduce new
functions into the language. In writing the virtual program
we can use any mathematical functions, such as factorial,
which are appropriate for the domain on which the actual
program is operating, even if they are not provided as
procedures of the language. To do this, it is necessary to
be able to declare the mathematical function as an operation
of the language which simply comstructs a symbolic term, and
to provide a definitian of the function which can be wused
when proving the inclusion of the two programs. Frequently,

as for factorial, this definition will be in the form gaf a

Description of method Page 34

set of recursive equations, reducing the correctness problem
to that of showing the equivalence of the iterative and
recursive definitions of the functions, Other ways of
defining these new functions can also be used: the only
restriction is on the inference system available. The main
purpose these functions serve is to provide some form of
"canned loop”: this is specially obvious for arrays where we
will need to describe the effect of a program on some
portion of an array without actually using any loops, For
example, writing A[I,J] for the sequence A[I], A[I+1], ...,
A[J] of array elements, the function ggseg could be
introduced to test the equality of ¢two array segments:

eqseq(A[I,d],B[I,d]).

Sometimes, however, the mathematical functions required
to express what a program dops become more complicated than
the program seems to deserve, For instance, consider the
program:

while X<A dg X:=2%X;

Assuming A>0 & X>0, the corresponding virtual program is:

X := 2" (ceiling(log(A/X)))#*X
where the logarithm is to the base 2, and ceiling(x) is the
smallest integer not less than x. However this program seems
more complicated than the original one, and more 1likely to
contain errors, A clearer way to write the virtual program
is

X 1= 27(MU Y)(2TY%¥X>=A)*X
where (MU y)P(y) is the 1least integer satisfying P(y).

Alternatively, if it is not important that X is assigned the

Description of method Page 35

least y satisfying 2 y%*x>=a, we could use Hilbert's epsilon
operator and write
X t= 2°(EPS Y) (2 Y*X>=A) * X;

In fact, we shall use only this operator throughout our
discussion (in addition to the wusual wuniversal and
existential quantifiers), For Hilbert, (EPS y)P(y) denotes
"any object y satisfying P(y), or anything if no such object
exists”, Thus EPS can be used to construct arbitrary terms
for wuse in virtual programs, It can be used to produce
lists and arrays satisfying certain conditions as well as
numbers the type of the resulting term will always be
clear from the context, Thus (EPS x)(0=<x & x=<y) could be
any of 0,1, ..., y=1,y (assuming integer arithmetic is being
used)., Note that EPS is really a non—-deterministic operator
so that (EPS x)P(x) = (EPS x)P(x) is not a valid formula,
We have extended EPS to produce tuples of objects, e.g. (EPS
x,y,2)P(x,y,z) denotes any tuple (x,y,z) such that P(x,y,z)
or any tuple if no such tuple exists. Also in this work,
unlike Hilbert, we consider the term (EPS x)P(x) as
referring to the set {x: P(x)} . The epsilon operator was
originally introduced by Hilbert in his study of
mathematical logic: its wuse is described in Leisenring
(1969) ., It is especially useful in programs dealing with
arrays. For example, the virtual program corresponding to
the outer loop of a sorting program might be:

A := (EPS A1) (perm(A[1,I],A1[1,1I]) &
(FA J)(1=<d<I => A1[J]=<A1[I])).

More detailed examples will be given later,

Description of method Page 36

2.3.3 lnclusion statements

A key concept in this proof technique is that of the
inclusion statement, This is a statement associating each
actual program with its corresponding virtual program, An
inclusion statement has the following components (with their

abbreviations in parentheses):

1) The actual program (ap),

2) The virtual program (vp),

3) The preconditions under which ap = vp (prec),
4) The starting point (sp),

5) All the possible end points (ep),

6) The variables w,r.t, which ap © vp holds (vs),

Clearly, representations of the two programs are required.
The preconditions are mainly required to ensure that the
virtual program always terminates, though by making them
sufficiently detailed and correspondingly simplifying the
virtual program, they can be used in what is effectively a
proof by inductive assertions, This will be illustrated
later, The start and end points define the scope of the
inclusion statement. This 4is important as the actual
program may be contained in a larger program, In this case
the actual program itself can be omitted from the inclusion
statement as it is effectively specified by the description
of its scope. For reasons that will become clear later, it
is also necessary to state whether an end point corresponds
to & normal exit from a recursive procedure or not, For

example, if RBet is an escape function in a recursive

Description of method Page 37

procedure Sgarch the virtual program corresponding to Search
would have the form:

In: s1:

if "condition” then (s2; Ret()) else s3:

Out:
which has two exits: one recursive one at OQOut, and one
non-recursive one at Ret. A detailed example of this nature
will be given in Section 2.,5. While such escapes are the
main motivation for multiple exits, they can also be useful
in flow-chart programs which jump out of loops, as will be
illustrated 1later, Finally, the last component serves to
restrict the amount of testing to be done: variables which
are not used outside the scope of the inclusion need only be
tested for inclusion if particularly desired., The value of
a function and result parameters of procedures must always
be tested. Such an inclusion statement asserts:

Under the given preconditions, the actual program

which starts at the given starting point and is

bounded by the given end points is included in the

corresponding virtual program with respect to the

given variables,
That is, if the actual program was replaced textually by the

virtual program, the result would be either the same or

possibly more defined.

2.3.4 Specified programs

Now, how do we give specifications for a complete
program? Obviously, we must first give an inclusion

statement for the complete program, In addition, it 1is

simply necessary to provide a separate inclusion statement

for each 1loop or function used in the program to be

Description of method Page 38

verified, More ©precisely, in a flow-chart program, each
cycle must contain the start of at least one inclusion
statement, and every program and subroutine must contain an
inclusion statement at its beginning. For example, two
inclusion statements were required in the factorial program
of Chapter 1: one starting at Start and ending at Finish,

and one starting at Loop and ending at Finish,

2.4 Genera)l description of method

Having described how to give the specifications in a
form appropriate for this method, we now say what the method
actually is, We do this in two stages, first for individual

inclusion statements and then for complete programs.

2.4.1 Individual inclusion statements

)

Consider an inclusion statement with actual program A,
virtual program V, preconditions C, start point s, end
points e1,...,en, and variable 1list L. The theorem
expressing the correctness of the inclusion statement is:

"For all integers k>=0, if C is true, and if A

returns to s k times before terminating at an ei,
then A £ V with respect to the variables in L."

It is proved by induction on k, that is, on the 1length of

the computation path,.

Description of method Page 39

The basic idea is simply to symbolically execute both A
and V and to compare the results, In each case we start at
S with a general symbolic state vector and with path
condition C, Symbolically executing the virtual program is
done straightforwardly as described above. If the execution
reaches one of the end points, i, that path of the
computation is terminated, and the state at that point
saved, The states at the ends of the computation paths are

accumulated in a set, SVIRT say.

Symbolically executing the actual program is a 1little
more complicated, As for the virtual program we start at s
with a general symbolic state vector and path condition c,
and start to execute the program. If one of the end points
is reached, the state at that point is saved as before. If
the program returns to s it attempts to prove the
preconditions C using the current values of the program's
variables and the current path condition. If this cannot be
done there is an error either in the program or in the
inclusian statement, Dtherwise the pragram enters
"hypothetical” mode and starts to symbolically execute the
virtual programV . This corresponds to the application of
the induction hypothesis that A E V., The behaviour at an
end point ei is now more complicated. If ei is a normal
exit from a recursiye function, the program leaves
"hypothetical” mode and continues to be executed. (This
will only happen if the actual program A corresponds toc the
body of the recursive function.) Otherwise, if ei

corresponds to an exit from a loop or to an escape exit, the

Description of method Page 40

state 1is saved and the path terminated as before. The
states at the ends of the computation paths of the actual

program are also accumulated into a set.

We describe this process more formally in Figure 2.2,
recalling that the components of an inclusion statement are
ap, vp, prec, sp, ep and vs, Note how the sets of states
are formed one member at a time, by side-~effects, rather
than by explicit unions as in Figure 2.1. In the actual
implementation of the proof procedure these sets are formed

without side~effects but coroutines are used instead.

Description of method Page 41

Verify-inclusion-statement (INCL-STAT) =
with INCL-STAT do (
STATE := mkS(general-symbolic-state-vector, §SP,
arbitrary-control-stack, PREC):;
SACT := {};
Ex-act(STATE,INCL-STAT,false):
SVIRT := {}:
Ex-virt(STATE,INCL~-STAT,false):
Compare(SACT ,SVIRT))

Ex-act (STATE, INCL-STAT, FROM=VIRT) =
with STATE do
with INCL-STAT do
repeat (
if IP is in EP and not (FROM-VIRT) then
(add STATE to SACT: return);
FROM=VIRT := false;
if IP = SP (other than initially) then
(Check that PC => SV(PREC):
Ex-virt(STATE,INCL~-STAT,true);: return)
elseif IP is an assignment (LS := RS) then
(SV := SV[sym-val (RS)/LS]: advance IP)
elseif IP is a conditional (if P then s1 else s2) then
if PC => P then IP := s1
elseif PC => NOT P then IP := s2
else (Ex-act(mkS(SVv,s1,CS,PC & P),INCL~STAT,false):
Ex-act(mkS(Sv,s2,CS,PC&NOT P),INCL~-STAT,false):
return)
else (execute instruction normally; advance IP))

Ex-virt (STATE ,INCL-STAT,HYPMODE) =
with STATE do
with INCL-STAT do
repeat (
if IP (=ei) is in EP and HYPMODE
and the ei is "recursive” then
(Ex-act(STATE,INCL-STAT,true); return)
elseif IP is in EP and HYPMOOE then
(add STATE to SACT: return)
elseif IP is in EP then (add STATE to SVIRT: return)
elseif IP is an assignment (LS := RS) then
(SV := SV[sym-val(RS)/LS]: advance IP)
elseif IP is a conditional (if P then s1 else s2) then
if PC => P then IP := s1
else if PC => NOT P then IP := s2
else (Ex-virt(mkS(Sv,s1,CS,PC&P),INCL~STAT,false):
Ex-virt (mkS(Sv,s2,CS,PC&GNOT P),INCL~STAT,false):
return)
else (execute instruction normally; advance IP))

Figure 2,2 - Verifying one inclusion statement

Description of method Page 42

We are now left with the problem of comparing SACT and
SVIRT, ¢that 1is, of showing that SACT & SVIRT, To do this
we have to show far each pair (s1,s2) in the cartesian
product SACT X SVIRT, that

pc(sl) & pc(s2) => sv(s1) = sv(s2) (*)
where pc and sv refer to the path condition and state vector
respectively of a state, First, if pc(s1) & pc(s2) yields a
contradiction then (%) is immediately proved. (This
corresponds to a pair of paths such that for ne input could
both paths have been followed.,) Secondly, if instruction
pointer(s1) is not the same as instruction pointer(s2) there
is an error somewhere, either in the program or the
inclusion statement so go on to the next inclusion statement
or stop. (The actual and virtual programs for the same
input must terminate at the same point.) Otherwise, if the
two programs have terminated at the same point, we must show
that sv(s1) &= sv(s2), that is, for each identifier i in L,

——

sv(s1)(i) = sv(s2)(i), under the assumption

—

pc(s1) & pc(s2).

There remains the problem of showing that for two
expressions a,b, and a logical expression h, that h =>

a = b, This is done by the wuse of the following three

inference rules:

1) h =>ag b <—= h => a=b
2) h => f((EPS x)P(x))Eb <= (FA x)(h & P(x) => f(x)EDb)

where x is not free in h or b,

Description of method Page 43

3) h => acf((EPS x)&(x)) <= h => (EX x)(Q(x)&6 asf(x))

where x is not free in h or a.

(These rules are read, e.g., to prove h => aeb, it suffices

to prove h => a=b,)

The first of these rules is used when the expressions a
and b do not contain any epsilon expressions; the last two
serve to reduce the number of epsilon expressions in the
formula, Because the 1last rule requires instantiating an
existentially quantified variable, it is usually preferable

to use the following particular instance of the rule:
4) h => a & f((EPS x)A(x)) <~ h => Q(finv(a)) ,

In this rule finv is the 4inverse of f, and x has been
instantiated to finv(a). However, since finv (which may be a
relation) could be difficult to find and may not be defined
on &, the rule cannot always be applied. If a does not
contain an epsilon expression and the rule 1is applicable
then it 1is actually equivalent to rule 3. Rules 2), 3) and
4) are best understood by interpreting (EPS x)Q(x) as
{x: Q(x)} when [becomes set inclusion. The details of

this interpretation are omitted here.

Each of the rules 2), 3) and 4) has a natural
generalization to the case when EPS returns a tuple of
terms. For example, assuming that g and x are tuples and

that f is a function from tuples to tuples, rule 4) becomes

4g) h => a c f((EPS _’_‘_)(Q(,&)) <~ h => Q(fin\’(ﬁ))

Description of method Page 44

Whenever such tuples have been produced by EPS, inclusion
must be shown using these generalized rules and not by
individual components as described earlier {(which would not

usually work anyway),

Finally, if other methods of showing that an array a
with bounds 1b and wub is included in an array b with the

same bounds fail, the following rule is used:
5) ac b <= (FA i)(lb=<i=<ub => a[i] C bl[i])) .

That is, to show one array is less than another, show that

all the corresponding elements are.

2.,4,2 Complete programs

To verify a complete program it is simply necessary to
verify each of individual inclusion statements assuming the
truth of all of the others,. This requires the following
slight modification in verifying an individual statement,
If while symbolically executing the actual program the start
of another inclusion statement is reached, then the program
enters "hypothetical” mode and starts to execute the virtual
program of this new statement, When one of its end points
are reached, the program leaves “"hypothetical” mode, and

continues its symbolic execution, This process is described

more formally in Figure 2.3.

Description of method Page 45

Verify-specified—-program(INCL-STATS)
foreach INCL-STAT in INCL-STATS do
Verify-incl-stat(INCL-STAT)

Verify—-incl-stat{INCL-STAT)
with INCL-STAT do
STATE := mkS(general-symbolic-state-vector, SP,
arbitrary-control-stack, PREC):
CUR-INCL-STAT := INCL-STAT:
SACT := {}:
Ex-act (STATE,INCL-STAT,false);
SVIRT := {}:
Ex-virt(STATE,INCL-STAT,false):
Compare(SACT,SVIRT))

Ex-act(STATE, INCL~STAT, FROM=VIRT)
with STATE do
with INCL-STATE do
repeat (
if IP is in EP and not(FROM-=VIRT) then
(add STATE to SACT: return):
FROM-VIRT := false:
if IP is at sp(IS1) for some IS1 in INCL-STATS
(other than initially) then
(Check that PC '=> SV(prec(IS1)):
Ex-virt(STATE,IS1,true): return)
elseif IP is an assignment (LS := RS} then
(SV := SV[sym-val(RS)/LS]}): advance IP)
elseif IP is a conditional (if P then s1 else s2) then
if PC => P then IP := s1
elseif PC => NOT P then IP := s2
else (Ex-act(mkS(Sv,s1,CS,PC & P),INCL-STAT,false)
Ex-act(mkS(Sv,s2,C5,PC&GNOT P),INCL-STAT,false)
return);
else (execute instruction normally:; advance IP))

Figure 2,3 = Verifying a complete program

Description of method Page 46

Ex—virt(STATE,INCL~5TAT,HYPMODE) =
with STATE do
with INCL-STAT do
repeat (
if IP (=ei) is in EP and HYPMODE and the ei is “"recursive”
then (Ex-act(STATE,CUR~INCL~STAT,true); return)
elseif IP is in EP and HYPMODE then
(add STATE to SACT: return)
elseif IP is in EP then (add STATE to SVIRT: return)
elseif IP is an assignment (LS := RS) then
(SV := SV[sym~-val(RS)/LS]): advance IP)
elseif IP is a conditional (if P then s1 else s2) then
if PC => P then IP := s1
elseif PC => NOT P then IP := s2
else (Ex-virt(mkS(Sv,s1,CS,PC&P),INCL-STAT,false)
Ex~virt(mkS(Sv,s2,CS,PCENOT P),INCL~STAT,false);
return); ‘
else (execute instruction normally: advance IP))

Figure 2.3 (continued)

Description of method Page 47

2.5 Some exemplery programs

In this section we shall apply continuation induction
to several simple programs. The programs are chosen to
illustrate how the method copes with various language
features and programming techniques, rather than for their
own intrinsic interest. Some applications of the method to
more complex programs will be discussed later when

describing the interactive program verifier and its use.

2.5.1 Becursion

f(X) = if X>100 then X-10 glse F(f(X+11))

This program, called the 91-function, is discussed in Manna
and Pnueli (1970)., There is just one inclusion statement
needed to describe it,

Actual program: body of f
Virtual program: if X>100 then X-10 glse 91

Preconditions: true

Start point: entry to f

End points: exit from f (recursive)
Variables: none

In this example, as in others, we identify the body of the
function with the program consisting of the function's
definition and a single call of the function with its formal
parameters as arguments., OStrictly speaking, there should be
another (identical) virtual program corresponding to the
call of the function, but the proof of this extra inclusion
statement is always completely trivial, That X 1is an

integer is actually a precondition, but we ignore such type

Description of method Page 48

restrictions throughout this work (though we recognize their
importance in programming languages and program verification
generally). There are no explicit variables to be tested as
we are not interested in the value of X at the end of the
program, but anly in the result of the function <call which

is always tested.

Figure 2.4 shows the tree of computation paths
generated by symbolically executing the actual and virtual
programs. Except for the top=-level <call in the actual
program, whenever f 1is called the virtual program is
executed instead, Note that one branch, 91>100, has been

cut off at the symbolic execution stage,

Actual program: fix)
’x;>100/ \\5é=<100~
x=-10 wiéh x>100 F(F(x+11)) with x=<100
X#11>100 X+11=<100 G
f(x+1) with B89<x=<100 F(91) with x=<89
x»1>100// \\?+1=<100 /, \\f1=<100
x=9 with x=100 91 with B89<x=<99 ’ 91 with x=<89
Virtual program: f{x)
x>100/ \x=<100
x=10 with x>100 91 with x=<100

Figure 2.4 - 91~-function

Description of method Page 49

Now, by considering all pairs in the cartesian product

of the sets of states at the tips of the trees, the

verification conditions shown in Figure 2.5 are generated,

Notice how the problem has been broken down into simple

cases automatically by the theorem generation process. We
shall later show how our verifier generates and proves these

theorems,

x>100 & x>100 => x=10 = x=-10
x>100 & x=<100 => x-10 = 91
x=100 & x>100 => x=9 = 91
x=100 & x=<100 => x-9 = 91
89<x=<99 & x>100 => 91 = x-10
89<x=<99 & x=<100 => 91 = 91
x=<89 & x>100 => 91 = x-10
x=<B89 & x=<100 => 91 = 91

Figure 2.5 ~ Verification conditiens

2.,5,2 lteration and recursion

f(N) = (yars R;
Start: R := 1:

Loop: while N>0 dg (N:=N-=1; R:= R+N*F(N))
Finish: return(R))

This program taken from King (1969) uses both recursion and

iteration to compute -~ guess what? - the factorial

function. The declaration "vars R:” declares R to be a

local variable of the function, The two inclusion

statements needed to verify this program are:

1) Actual program: body of f
Virtual program: N !
Preconditions: N>=0

Start point:
End points:
Variables:

entry of f
exit from f (recursive)
none

Description of method Page 50

2) Actual program: while N>0 dg (N:=N=1; R:= R+N¥*f(N))
Virtual program: R:= R + N! - 1

Preconditions: N>=0

Start point: L.oop

End points: Finish (non-recursive)
Variables: N

Given these statements, the actual proof is straightforward
and will not be shown, It depends on the fact that

1 4+ 1%1)0 4+ 2%210 ¢+ ., + (n=1)¥(n=1)! = n !

2.5.3 Non=local Jjumps

S(A) <= (”)
(Sin: if istip;and X=A thepn (R:=true; gptg Finish)
glse if isnode(A) then (S(1 A);S(r A)):
Sout:): '
Start: AR:=false:
S(A):
Finish:
This program searches a tree A, returning true if one of its
tips 1is equal to X, and false otherwise. (We assume & tree
is either a tip or a node which has a left which is a tree
and a right which is a tree.,) The program uses a recursive
function § which does a non-local jump if it finds a tip
equal to X. In a more functional language this jump would be
written as a call of an escape function,. In giving the
specifications for this program we assume the existence of a
function fr (for fringe) defined by
istip(a) => fr(a) = 1list(a)

isnode(a) => fr(a) concat(fr(l a), fr(r a))

and a function memb (for member) which has its normal
definition. Then we can express the correctness of the

program using the following two inclusion statements:

Description of method Page 51

1) Actual program: whole program
Virtual program: R:= memb(X,fr(A))

Preconditions: none

Start point: Start

End points: Finish (non-recursive)
Variables: R

2) Actual program: body of S
Virtuael program: Aif memb(X,fr(A))
then (R:=true:; gotg Finish)

Preconditions: none

Start point: entry to S (Sin)

End points: exit from S (Sout, recursive)
Finish (non-recursive)

Variables: R

Again we only consider the second statement since the proof
of the first one is trivial, The trees of computation paths
and the resulting verification conditions are shown in
Figure 2.,6. Notice that the computation continues at (%)
since Sout is a “"recursive” end point. The verification
conditions are all easily proved using the definitions of
memb, fr and concat, mostly by showing the hypotheses are

contradictory.

Description of method Page 52

Actual program: 8in: R->r,X->x,A=->a
istip(a) isnode(a) istip(a)
& x=a & x*a
Finish: R->true Sin: R->r ,A->left a Sout: R->r
memb(x,fr(left a)i/// \NOT memb(x,fr(left a))
Finish: R->true S;:t: R=>r (%)

8in: R->r,A->right a

memb (x,fr{(right a);/// NOT mgkb(x,fr(right a))

Finish: R->true Sout: R->r

Virtual program: Sin: R=->r,A->a

memb(x,Fr(a)i// \\NOT memb (x,fr(a))

Finish: R->true Sout: R=->r
with memb(x,fr(a)) with NOT memb(x,fr(a))

Verification conditions:

istip(a) & x=a & memb(x,fr{(a)) => true=true
istip(a) & x=a & NOT memb(x,fr(a)) => true=r
isnode(a) & memb(x,fr(left a)) & memb(x,fr(a)) => true=true
isnode(a) & memb(x,fr(left a)) & NOT memb(x,fr(a)) => true=r
isnode(a) & NOT memb(x,fr{(left a)) & memb(x,fr(right a))
& memb(x,fr(a)) => true=true
isnode(a) & NOT memb(x,fr{(left a)) & memb(x,fr(right a))
& NOT memb(x,fr{a)) => true=r
isnode(a) & NOT memb(x,fr(left a)) & NOT memb(x,fr(right a))
& memb(x,fr(a)) => r=true
isnode(a) é NOT memb(x,fr(left a)) & NOT memb(x,fr(right a))
& NOT memb(x,fr(a)) => r =r
istip(a) & x*a & memb(x,fr(a)) => r=true
istip(a) & x*a & NOT memb(x,fr(a)) => r=r

Figure 2.6 = Non-local jumps

Description of method Page 53

2.5.4 Eupngtional arguments

while not(null(L)) da (X:= f(x, hd L): L:= tl L);:

return(X):
For any function f which is both associative and
commutative, this program is included in "lit(L,X,f)", where
lit is defined by

null(l) => 1it(l,x,f) = x

not(null(l)) => 1it(l,x,f) = f(hd 1, 1it(tl 1,x,f)) ,
Applying our proof method to the above program, the anly
non-~trivial verification condition resulting is

not(null(l)) => 1it(tl 1, f(x, hd 1, f) = 1it(1,x,f),
that is, applying the definition of 1lit,

not(null(l)) => 1it(tl 1,f(x,hd 1),f)

= f(hd 1,14t(tl 1,x,f) ,

This theorem can now be generalized to

1it(1,f(x,y),f) = f(y,1it(1l,x,f))
which is easily proved using associativity and commutativity
by structural induction on 1, In fact the same original
verification condition is generated if structural induction
is used from the start, Thus, this example demonstrates
that functional arguments can be used in certain cases with

our method.

2.5.5 Nop-determinism

Start: I:= 1;
Loop: while I<N dg
L: (if A[I] > A[I+1] then
(X:=A[I]); A[I]:=A[I4+1]; A[I+1]:=X);
I:= I+1):
Finish:

Description of method Page 54

This is a program which finds the 1largest element of an
array A[1:N] and moves it to the top of the array; it could
form the inner looﬁ of a sorting program, Assuming the
existence of functions gasga and perm which test whether one
array is equal to, or a permutation of, another, we can
write one of the inclusion statements as follows (the other
one is similiar):

Actual program: above program from Loop to Finish

Virtual program: A := (EPS B)(eagsea(B[1,I-1]),A[1,I-1])

& perm(B[I,N],A[I,N])
& (FA J)(I=<Jd<N => B[J])=<B[N]))

Preconditions: 1=<I=<N

Start point: l.oop

End points: Finish (non-recursive)
Variables: A

Note that the wvirtual program is non-deterministic. In
giving the proof of this inclusion statement we use an
operation xchng(a,i,j) which constructs & new array by
exchanging the ith and jth elements of the array a, The
computation trees and verification conditions for this
inclusion statement are shown in Figure 2.7. The values of N

are omitted since they never change.

Description of methad Page 55

Actual program: Loop: A->a,Il->i with 1=<i=<n

i<n / \i>=n

L: A=>a,I->i Finish: A->a
with 1=<i«n with 1=<i=n

a[i)>a[i+1] /// \\\ alil=<ali+1]

Laop: A=->xchng(a,i,i+1),I->1i+1 Loap: A->a,I->i+1
with 1=<i<n & a[i)l>a[i+1] with 1=<i<nGali]=<ali+1]

(Induction hypothesis)
Finish:

A-> (EPS b)(eqgsea(b[1,i],xchng(a,i,i+1)[1,1i])
& perm(b[i+1,n]),xchng(a,i,i+1)[i+1,n])

& (FA j)(i+1=<j<n => b[jl=<bln]))
=b1, say

with 1=<i<n & a[i)>a[i+1]

Finish: A-> (EPS b)(eqseaq(b[1,i],a[1,i])
& perm(b[i+1,n]),a[i+1,n])

& (FA j)(i+1=<j<n => b[jl=<b[n]))
=b2, say

with 1=<i<n & a[il=<al[i+1]

Virtual program: Loop: A=>a,I->1i with 1=<i=<n

Finish: A-> (EPS b)(eqseq(b[1,i-1),a[1,i~1])
& perm(b[i,n],a[i,n])

& (FA j)(i=<j<n => b[jl=<b[n]))
=b, say
with 1=<i=<n

Verification caonditions:

1=<i<n & a[i)>a[i+1] => b1
i=<i<n & a[i)=<al[i+1) => b2
1=<i=n => a £ b

mnin
o

Figure 2.7 - Non-determinism

Description of method Page 56

In this example, since it matters, we have been more careful
about stating inclusion rather than equality, and will give
the proof of a verification condition in more detail than
previously, We will wuse the inference rules given in
Section 2.4.1 (previously we have been using the first of
these implicitly). Consider the first verification
condition, Applying rule 2 with the identity function for f
reduces it to
t=<i<n & a[il>al[i+1]
& eqseq(b1[1,i],xchng(a,i,i+1)[1,1])
& perm(bi[i+1,n],xchng(a,i,i+1)[i+1,n])
& (FA j)(i+1=<j<n => bB1[j)=<b1[n])
= bt c b
Applying rule 4 next, again with the identity function for f

gives

t=<i<n & a[i)>ali+1]

& easeq(b1[1,i],xchng(a,i,i+1)[1,1]) (1)

& perm(b1[i+1,n),xchng(a,i,i+1)[i+1,n]) (ii)

& (FA j)(i+1=<j<n => b1[j]=<b1{n]) (1ii)
=>

egseq(b1[1,i-1],a{1,i-1]) (iv)

& perm(b1[i,n],ali,n]) (v)

& (FA j)(i=<j<n => b1[j)=<b1[n]) (vi)

Since xchng(a,i,i+1)[1,i-1] = al[1,i-1], (iv) follows
immediately from (i), From (i) and (ii), b1[i)=a[i+1], so
perm(b1[i,n},xchng(a,i,i+1)[i,n]) and (v) then follows. To
prove (vi) 1t is only necessary to show additionally that
b1[i]=<b1[n], But b1[1] = af[i+1] < ali] =
xchng(a,i,i+1)[i+1] = b1[J] for some j with i+1=<j=<n,
Hence, by (iii), b1[i)l=<b1{n]. The proofs of the other two
conditions are similiar but easier, To complete the proof
of the program, we should also use the definitions of perm

and eqgseq to prove the facts about them which we have used.

Description of method Page 57

The proof-checker described in Chapters 4 and 5 can be used

to do this, and examples of such proofs will be given there.

2.6 Juystification gof the method

In Burstall (1975) a proof is given that the proof
method we have just described is sound, that is, that its
successful application to a program does in fact imply that
the program is correct. Burstall proves soundness by
considering the relation computed from one point in a flow
diagram to another and hence shows that the actual program
may also be non-~deterministic (in the random and not the
"backtracking” sense)., However the details of his proof are

complicated,

In this section we shall outline an alternative method
of proving soundness. This method involves translating all
programs into systems of recursive equations and then
applying computation induction, It is not clear that the
resulting proof would be any simpler than Burstall’s if all

t
the dq@ils were filled in.

2.6.,1" Translation tg recursive equations

McCarthy (1960) first described how to translate an
arbitrary flow-~chart program into a set of mutually
recursive functions. While this method is well known, it is
inadequate for our purposes, The reason 1is that in

McCarthy’'s method the recursive functions introduced

Description of method Page 58

describe the program from a given point until the end,
whereas we want to describe the program from one internal
point to another, The motivation for this is that we want
to be able to describe the effect of an inner 1loop without
considering the rest of the program containing it.
Moreover, McCarthy's method does not allow one to handle
escapes when applied to flow-chart programs containing

recursive calls., As an example, consider the program:

return(X):

McCarthy's method would translate this into something like:
f(X) <= 4f P(X) then g(X) else X
g(X) <= 4f Q(X) then g(s2(X)) else f(s1(x))

whereas our method would give:
F(X) <= if P(X) then f(s1(g(X))) else X|

g{X) <= if Q(X) then g(s2(X)) else X

Having decided to nest recursive functions in this way,
the problem of translating arbitrary flow-chart programs
becomes slightly more difficult, but since the solution also
deals with escapes from recursive functions, the increased
complexity is well justified., To appreciate the difficulty,
consider the following program schema (which could

correspond to a naive matcher or prime finder):

Description of method Page 59

A: while P(X) da
(X:=a(Xx);
B: while Q(X) dg
(if R(X) then (X:=b(X): goto Next);:
X:=c(X)):
goto Finish:

Next: X:=d(X)):

Finish:
The natural way to write 1inclusion statements for this
program 1is to have an outer one from A to Finish and an
inner one from B to Next or Finish, It 1is possible to
translate this program into recursive functions such that
each function corresponds to one of the actual programs by
using escapes, but we choose to do it using the more general
device of cbntinuations described in AReynolds (1972). A
continuation 1is &a function which 1is added ¢to a given
function Fold as an additional argument, giving a new
function Fnew, which evaluates Fold and then applies the
continuation to this result. That is, for any Fold we can
define Fnew by

Fnew(x1,...,Xn,C) = c(Fold(x1yeee,yxn)) .

Using continuations, we can now write the above program in

the following way:

A(X,F) <= if P(X) then B(a(x),(LAMBDA u.A(d(u),F)),F)
glse F(X)

B(X:N:F) <= i.t Q(X) then
if R(X) then N(b(X)) glse Blc(X),N,F)
else F(X)
where N and F are the continuations, and can be thought of

as describing the computations which continue from the

labels Next and Finish,

Description of method Page 60

Thus the idea is to translate a specified program by
associating a recursive function with the start point of
each inclusion statement. In addition to its normal
arguments, this recursive function has one extra argument =-
a continuation - for each end point of the inclusion
statement, The details of this translation process depend

on the particular language being used and are omitted here.

2,6,2 Validity proof

The argument that the method is sound now goes as
follows, A specified program consists of a set of n
inclusion statements, say, The whole program can be
rewritten as indicated above as a set of mutually recursive
functions-

fi <= Ti[f1,...,fn], for i=1,...,n .
where each Ti is a monotonic functional, and
where each fi is associated with a distinct inclusion
statement, That this transformation preserves the meaning
of the program is the main gap in our proof, Let gi be the
virtual program of that inclusion statement, The proof
procedure itself, if successful, has shown that

Ti(g1444e2gn)] = gi, for i=1,...,n .

This 1is +true even though the proof procedure stops
immediately before executing the continuations, In the
terminology above, it shows that

fold(x1,..09xn) £ gold(x1,...,xn) .
Since we check that fold and gold terminate at the same

point, before executing the same continuation ¢, and since c

Description of method Page 61

itself is monotonic, we have

C(fOId(x1'ooo'xn))
C(QOld(X1oooooxn))
g{x1,..eyxn,c) ,

F(X1,e00y,xn,c)

LI (]

We now have to prove that

fi e gi, for i=1,4ee4n .
But it is a well-known theorem (e.g. Park 1969) that for a
manotonic functional T,

TGl 2 G => /uF.T[F] E G
where lAF.T[F] is the least fixed point of T, Applying this,
with (g1,02,...,0n) in the cartesian product domain for G,

yields the result immediately.

Page 62

Chapter 3, THE INDUCTIVE PROOF METHOD: DISCUSSION

The first part of this chapter discusses an extension
and an application of the proof method just described, while
the second part compares it in some detail with several

other commonly used methods,

3.1 lermination proofs

We start by describing how to extend continuation
induction to vyield proofs of termination, and hence strong
equivalence, of programs. A new component, a decremand {a
quantity which is decremented, abbreviated dec), is added to
each inclusion statement which corresponds to the body of a
recursive procedure or to a cycle, i.e. wherever repetition
is possible. (It could in fact be added to every inclusion
statement.) This component must contain an expression
involving the program identifiers which, for dif ferent
state-vectors, takes values in some well-founded set, that
is, a partially-ordered set with no infinite descending
chains, Examples of such well-founded sets are the natural
numbers: strings, where a < b if a is a proper substring of
b: and 1lists (as in pure LISP), where a < b if a is a
sublist of b, i.,e, if a is the hd of b eor the tl of b or a

sublist of the hd or tl of b, (We use "hd” and "t1" for the

LISP "car” and "cdr”.)

Discussion of method Page 63

The proof procedure is now just as before, but with the
following addition, Assume we are about to verify an
inclusion statement containing a decremand, In the initial
symbolic state the symbolic value of the decremand is found
and saved. If the program’'s execution returns to this
point, as well as checking the preconditions, the decremand
is tested to see that it is now strictly less than the saved
value, This will require symbolic reasoning (i.e, theorem
proving) of course, rather than simple numerical comparison,
for example, If the decremand is indeed less upon return,
and this is true for each inclusion statement, then the
program must terminate as there are no infinite descending
chains. With this extension the proof method now yields
strong equivalence if successful, as both programs always
terminate, Figure 3.1 below shows the functions
Verify-incl-stat and Ex-act of Figure 2,4, modified to

incorporate this test,

As a simple example, consider the “counting-up”
factorial program of Section 2.5. The decremand of the
inclusion statement at Loop is N-I, and the partial order is
defined by: x 1is 1less than y 1if O=<x<y. Since I is
increased by one each time the program reaches Loop, and I<N

implies O0=<N-(I+1)<N-I, the program (or at least the loop)

must terminate,

Discussion of method Page 64

Verify-~incl~stat(INCL~STAT) =
with INCL-STAT do
STATE := mkS(general-symbolic-state-vector, 6&P,
arbitrary~-control-stack, PREC);
CUR-INCL~STAT := INCL~STAT:
CUR-DEC := SV(DEC):
SACT := {}:
Ex-act (STATE,INCL-STAT,false):
SVIRT := {}:
Ex=-virt{(STATE,INCL-STAT,false);
Compare (SACT,SVIRT))

Ex-act(STATE, INCL-STAT, FROM~VIRT) =
with STATE do
with INCL~-STATE do
repeat (
if IP is in EP and not(FROM-VIRT) then
(add STATE to SACT: return):
FROM-VIRT := false:
if IP is at sp(CUR-INCL-STAT)
(other than initially) then
ensure SV(dec(CUR-INCL~STAT)) is less than CUR-DEC:
if IP is at sp(IS1) for some IS1 in INCL-STATS
(other than initially) then
(Check that PC => SV(prec(IS1)):
Ex-virt(STATE,IS1,true);: return)
elseif IP is an assignment (LS := RS) then
(SV := SV[sym=-val(RS)/LS]): advance IP)
elseif IP is a conditional (if P then s%1 else s2) then
if PC => P then IP := s1
elseif PC => NOT P then IP := s2
else (Ex-act(mkS(Sv,s%1,CS,PC&P),INCL-STAT,false)
Ex-act{(mkS(Sv,s2,CS,PC&NOT P),INCL-STAT,false)
return):
else (execute instruction normally; advance IP))

Figure 3.1 — Termination proofs

Discussion of method Page 65

A more difficult example is the program which sorts an
array of elements by exchanging pairs of adjacent elements
which are out of order, and which terminates when it can
make a complete pass through the array without finding such
a pair, The decremand of the main inclusion statement of
this program 1is Inversions(A,N}, and the partial order is
the standard one on the natural numbers, “Inversions” is a
function which counts the total number of pairs of elements
in the array A from 1 to N which are out of order, It
requires some knowledge about permutations and careful
reasoning to show that Inversions(A,N) is actually reduced
each time around the loop, Sites (1974) was unable to prove
this program terminated as he did not have this knowledge
about Inversions or permutations, Our theorem prover is
capable of doing this sort of reasoning, but we have not yet

extended the verification system to do termination proofs,

3.2 Eauivalence proofs

Clearly, if we are given two programs A and B such that
B satisfies the requirements of 2.3.1 for virtual programs,
then we can use this method in an attempt to prove A is
included in B. In fact this is what we did with the
91-function., If the program B always terminates, and the
termination proof method is applied to program A, then we

can even prove that A and B are strongly equivalent,

Discussion of method Page 66

But it is also possible to prove more interesting
programs equivalent, The general method is to treat one of
the two programs as the virtual program and translate it, if
necessary, into &a recursive function, proving separately
that it always terminates. Then change the function to a
symbolic one (which constructs a symbolic term but is not
otherwise evaluated), and use a call of it as the virtual
program, saving its definition - a set of recursive
equations - for later use., The proof method is then applied
as before, and the recursive equations are applied only when
comparing the resulting state vectors, This gives a simple
method of showing the equivalence (or inclusion) of an

iterative function with a recursive function.

As a very simple example consider the following two
programs for computing the factorial function:-
Start: 1I:=
H:=1
Loop: while I<N do (I:=I+1; R:=R*I)
Finish: return(R)

and

F(N) <= if N=0 then 1 glse N*f(N-=1)
f(N)

In this case we would construct a new symbolic function f1
such that the value of f1(3), say, was simply the term
"f1(3)" and save the formulae

n=0 => f1(n)=1,

n#0 => f1(n)=n*f1(n-1)
for later use. We would then treat the whole first program

as an actual program with virtual program f1(N), and treat

Discussion of method Page 67

the while-statement from loop to Finish as a second actual
program with virtual program:
Loop: Re= R*¥F1(N)/F1(I);
I:=N:
Finish:
The remainder of the proof would then go through as in

Section 2.1 above,

As a more interesting example, consider the following

program:

Start: C:=0:

Loop: while N=<100 dg (C:=C+1; N:=N+11):
N:=N-10:

L: if C>0 xthen (C:=C-1; goto Loop):

Finish: return(N):

We shall prove it is included in the following familiar
function:

fF(N) <= if N>100 then N-10 glse F(F(N+11))
As before we change f to the symbolic function f1 with
defining equations

x>100 => f1(x)=x-10,

x=<100 => fF1(x)=F1(F1(x+11)),
and construct the inclusion statement which associates the
whole actual program with the virtual program f1(N). We now
define an auxiliary function Appr (apply f1 repeatedly) with
the following defining equations:

y=0 => Appr(x,y)=f1(x),

y>0 => Appr(x,y)=Appr(f1(x),y=1).
Unfortunately we know of no way to derive this function

mechanically, We now construct a second inclusion statement

Discussion of method Page 68

which starts at Loop, ends at Finish, has the corresponding
virtual program:

Loop: N:=Appr(N,C):

Finish:
and which has the preconditions c>=0, We concentrate on the
proof of this inclusion statement, since the proof of the
first one is trivial. 1In fact even this proof is quite
easy, The trees of computation paths of the two progréms
are shown in Figure 3,2, as are the verification conditions
generated, All these verification conditions are easily

proved using the definitions of f1 and Appr,

We realise that it will not usually be so easy to find
intermediate virtual programs, and that the functions such
as Appr and division which need to be introduced may become
excessively complex, Nevertheless we believe this is a

method which may occasionally be useful,.

Discussion of method Page 69

Actual program: Loop: N=>n,C->c with c>=0

n=<100 /// \\\n>100

Loop: N->n+11,C—>c+1 L: N->n-10,C->c
with c>=0 & n=<100 with c>=0 & n>100
Ind’'n hyp c>0 \ c=0
Finish: N->Appr(n+%11,c+1) Finish: N->n-10
with c>=0 & n=<100 with c=0 & n>100

Loop: N=->n-10,C->c-1
with c>0 & n>100

Ind’n hyp

Finish: N-=>Appr(n-10,c-10
with ¢c>0 & n>100

Virtual program: Loop: N=->n, C=>c with c>=0

Finish: N=>Appr(n,c) with c>=0

Verification conditions:

c>=0 & n=<100 => Appr(n+11,c+1) = Appr(n,c)
c>0 & n>100 => Appr(n-10,c-1) = Appr(n,c)
c=0 & n>100 => n-10 = Appr{n,c)

Figure 3.2 - 91-function (iterative)

Discussion of m€thod Page 70

3.3 Comperison with inductive assertions
3.3.1 Elow=disarams

We assume the reader is familiar with this method of
verifying programs, Accounts of it are given by Floyd
(1967), Hoare (1969), Elspas et al (1972) and others,
Applicable to flow-chart programs, it is closely related to
continuation induction. In each case one has to provide, in
addition to the overall specifications of a program, some
sort of generalized statement at 1loops: in one cdase an
assertion, in the other an inclusion statement,. Both
methods do induction on the length of the computation, but
whereas with inductive assertions it is on the length from
the beginning of the computation to the middle, in ours it

is on the length from the middle to the end,

However, there is a much closer connection than this,
Continuation induction is really @ generalization of the
jinductive assertion method, and every proof by inductive
assertions can be mechanically translated into a proof by
continuation induction, We shall demonstrate how this is
done by means of two typical examples.

Loop: {A1(X)}

while P(X) da X:=F(X):
Out: {A2(X)}

Here, A1(X) is the loop invariant and A2(x) 1is the output
assertion. Using virtual programs, these specifications can

be expressed as the following inclusion statement:

Discussion of method Page 71

Actual program: while P(X) dag X:=F(X):
Virtual program: X:=(EPS Y)A2(Y)
Preconditions: A1(X)

Start point: Loop
End points: Out (non-recursive)
Variables: X

Ta verify this inclusion statement we must prove the

following three theorems:

a) A1(X) & P(X) => A1(F(X)),
b) A1(X) & P(X) => (EPS Y) A2(Y) B (EPS Y) A2(Y),

c) A1N(X) & NOT P(X) => X & (EPS Y) A2(Y),

The second of these is always trivially true, and using rule

4) of Section 2.4.1 the third reduces to
d) A1(X) & NOT P(X) => A2(X).

But these two theorems (a and d) are exactly those generated
using the inductive assertions directly. If there is a
conditional involved the situation is a little more complex.

Consider the following flow diagram:

L1: { A1(X) }
|

P(X) ?
Yes Nol

X:=F(X) X:=6(X)
| |
L2: { A2(x) } L3: { A3(X) 1}

In this case the corresponding inclusion statement is

Discussion of method Page 72

Actual program: as shown
Virtual program: X := (EPS Y)(P(Y) => A2(F(Y)) &
NOT P(Y) => A3(G(Y))):
if P(X) then (X:=F(X): goto L2)
else (X:=6(X):; gotg L3):

Preconds: . A1(X)

Start point: L1

End points: L2, L3 (non-recursive)
Variables: X

Verifying this inclusion statement using rule 3 (rule 4 will
not work in this case) again reduces the problem to exactly
those theorems generated by using the assertions directly.
In general, the epsilon expression is written to return a
tuple of terms and the generalized forms of rules 2, 3 and 4

used to show the equivalence of the two methods.

Thus we can assume that proofs of program correctness
by inductive assertions are simply abbreviations for proofs
using virtual programs., There 1is then a choice between
putting the main specifications of the program into the
preconditions of an inclusion statement or into the virtual
program, Often, less detail is required when the
information is put into the preconditions. For example, the
loop invariant for the program of Section 2.5.5 is

perm(A[1,N],AQ[1,N]) & (FA J)(1=<J<I => A[J]=<A[I])
where A0 is (a ghost variable whose value is) the original
array, The corresponding virtual program

A := (EPS B)(perm(A[1,N],B[1,N])
& (FA J)(I=<J<N => B[J]=<B[N]))

is too weak for the proof to go through as before. The more
detailed virtual program
A := (EPS B)(egseq(B[1,I-1],A[1,I-1])

& per‘m(B[I,N],A[I,N])
& (FA J)(I=<Jd<N => B[J]=<B[N]))

Discussion of method Page 73

is required, though perm could be instead of eqseq, This

phenomenon seems to be a weakness of the proof method.

3.3.2 Procedures and Hoere's rules

Because of the above phenomenon it is useful to be able
to describe programs using both inductive assertions and
virtual programs: the assertions to act as loop invariants,
and the virtual programs to describe complete programs and
(recursive) subroutines., As an example, the program of
Section 2.5.3 is described by:

f(NO) <= (vars N,R;

Start: N:=NO:
R:= 1;
Loop: assert R + N! ~

1 =
while N>0 do (N:=N-1;
Finish: return(R))

NO!
R:=R+N¥*f (N));

Actual program: body of f
Virtual program: NO!

Preconditions: NO>=0

Start point: entry of f

End points: exit from f (recursive)
Variables: none

Virtual programs can also be used to describe inner 1loops
when the outer loop is described by a loop invariant, The
program to invert a permutation, shown in Appendix 4, has

its specifications given in this way,.

The restrictions on using both inclusion statements and
inductive assertions to describe a program are that each
cycle in the program must contain either an invariant or the
start of an inclusion statement, each subroutine must have a

corresponding inclusion statement, and each assertion other

Discussion of method Page 74

than an output assertion must be followed (dynamically)
either by another assertion or by the end of an inclusion
statement, To verify such a program we then verify each
inclusion statement and each assertion in turn, Verifying
an 1inclusion statement is done as before except that if we
encounter an assertion, we check it i§ true with respect to
the current state vector and path condition, replace the
state vector by a new, general symbolic one, 1let the
assertion itself be the new path condition, and continue
until an end point of the inclusion statement 1is reached
(ignoring any path which reaches an assertion seen before
while verifying that inclusion statement). The reason for
this treatment of intermediate assertions 1is that the
assertion typically occurs in a loop, so all we know about
the’ state wvector 1is that it satisfies the assertion. To
verify an assertion we prove that starting with it as the
path condition and symbolically executing the program, every
assertion reached is true, We terminate and ignore paths
which reach the end of an inclusion statement, If the start
of an inclusion statement is reached, the preconditions are
checked, the virtual program executed, and the computation

continued as before., In this way all the paths through the

program will be considered,

In Hoare's theory (Hoare 1969), the statement P{S}Q
means that if the assertion P is true before statement S is
executed, then the assertion R will be true when (and if) S
terminates; axioms and rules for each basic statement & of

a programming language effectively define the semantics of

Discussion of method Page 75

that language, and are used to verify programs written in
that language. This approach was extended in Hoare (1971a)
to handle recursive procedures and in Clint and Hoare (1972)
to deal with jumps out of blocks and with functions, While
Hoare's theory is as general as ours, and can be used to
define the semantics of a programming language, our method
does have one advantage over it, resulting from our use of
symbolic execution. This is that we can deal with
procedures having side-effects, The virtual program for
that procedure simply includes the assignments to the
non-local variables. When the procedure is called during
another proof these side-effects simply take place as they

would during normal execution,

3.4 Comparison with recursion induction

This is a method proposed by McCarthy (1963) for
proving the equivalence of recursive functions. He gives
the following example of its use. Suppose addition 1is

defined in terms of the operations suc and pre by

Discussion of method Page 76

m+n = if n=0 then m glse suc(m)+pre(n)
and we wish to prove the theorem
suc(m+n) = suc(m)+n .
Let f(m,n)= 4if n=0 then suc(m) glse f(suc(m),pre(n)):
g(m,n)=suc(mgn); and h(m,n)=suc(m)+n, Both g and h can
easily be seen to satisfy the defining equation of f, so by
recursion induction they are equivalent over the domain on

which f is defined, the set of non-negative integers,

McCarthy (1962) extended this principle to apply to
flow—chart programs in the following way.

(a) F:

(b) if P then (g: F);:

(c) while P do g:

If program (a) can be shown equivalent to program (b), then
we can conclude that program (a) is equivalent to program
(c) for those state vectors which do not cause program (c)
to get stuck in a 1loop. Saying that program (a) is
equivalent to (b) is the same as saying that the program
satisfies &a functional equation. If another program, G,
also satisfies the same functional equation then F is
equivalent to G whenever program (c) converges. McCarthy's
method of showing the two programs satisfy the same
functional equation is by "massaging” them separately until

they have the same syntactic structure. For example, to

prove

A: if N=0 then goto B:
R:=N*R: N:=N-1; gpto A:
B:

Discussion of method Page 77

equivalent to the program

A: R:=NI!*R: N:=0:
B:

he converts the first program to
A: if N=0 then goto B: R:=N*R; N:=N=1:
A1: Af N=0 then ggtg B1; R:=N*R; N:=N-1; ggtg A1;
B1:
B:

and the second to

A: Lf N=0 then goto B; R:=N*R; N:=N-1:
R:=N!*R; N=0:
B:
using properties of the factorial function. Thus both

programs satisfy a relation of the form:

"program"”
is equivalent to

A: Af N=0 then goto B; R:=N*R; N:=N-1; “"program”: B:

and are hence equivalent whenever the first of them

terminates,

This seems an wunnecessarily complicated procedure,
having to syntactically transform both programs, but in
essence it is again the same as ours, However, continuation
induction has the following advantages over recursion

induction as McCarthy described it.

(1) A minor advantage is that our method makes explicit the
way to handle nested loops., McCarthy gave no examples (in
the papers we have seen) containing them, and his method of
translating flow~chart programs into recursive functions is

not suitable for the task, as we observed in Section 2.,6.

Discussion of method Page 78

(2) Proofs seem more natural and easier to find in our
me thod as the "massaging” of the programs is done

automatically in the course of the symbolic execution.

(3) Strong equivalence (i.e. termination) can often be

proved in the course of the main proof.,

(4) Our method is capable of proving properties of programs
which contain escapes or, equivalently, multi-exit loops in
flow-chart programs, This would seem ¢to be its main
advantage over recursion induction, Of course, at the time
McCarthy did his work the concept of a continuation was not

explicitly available to him as it was to us,

3.5 Other related methods

Another method based on symbolic execution (or hand
simulation) is described in Burstall (1974). The basic
inductive statement of this method is of the form:

"Starting from label K with state vector X=x0,

Y=y0, ... satisfying P(x0,y0,...), for all i such

that O0=<i=z<n, the program eventually reaches label

L with the state vector X=x(i), VY=y(i), ...

satisfying Q(x(i),y(i),eece)e”

Thus the method automatically yields proofs of total
correctness whereas all the other methods we have discussed
only vyielded partial correctness. The main difference
between it and continuation induction 1is that it does

induction on the data whereas continuation induction does

induction on the length of the computation,

Discussion of method Page 79

Burstall and I programmed a simple implementation of
the method in 1972 and proved some trivial programs using
it., We eventually rejected it in favour of the present
method because it needed a more sophisticated logical
apparatus to do the inductions. Moreover the continuation

proof method seemed easier to implement at the time.

However, for certain types of programs, such as
iterative translations of recursive programs which operate
on trees, for example, it can be very useful, In Topor
(1974), Appendix 6 of this thesis, I gave a proof of the
Schorr-Waite list marking algorithm, This is an example
where a data induction approach is clearly preferable to
doing induction on the length of the computation, and both
the inductive assertion method and continuation induction

are unsuitable,

Recently, and independently of our own work, Mills
(1975) and Basu and Misra (1975) have shown how continuation
induction can be used to prove the correctness of iterative
programs constructed using while statements alone (loop
programs)., In each case they assume that the "virtual
program” is given 1initially as some function f and they
attempt to show that the function computed by the while
statement is equal to f whenever the while statement
terminates. They formulate the principle as follows: the
equivalence "f = while p do g” holds if and only if for
every {(x,y) in f the iteration terminates and

p{x) =» y=F{g(x)) & NOT p(x) => y=x, Basu and Misra also

Discussion of method Page 80

show that given the function f which the loop computes one
can find a 1loop invariant which suffices to prove the
correctness of the program., This provides a dual to our
result that proofs wusing inductive assertions can be
translated into proofs by continuation induction. However,
when the program has the form "initialization: loop” and the
function (intended to be) computed by the whole program is
known, our experience indicates that it is often just as
difficult to find and describe the function computed by the
loop alone as it is to find a loop invariant directly. This
can be seen from the examples we have already studied, In
neither of these two papers are these methods applied to the
other control structures such as arbitrary flow-charts,

recursion and escapes which we have considered,

Page 81

Chapter 4, AN INTERACTIVE PROGRAM VERIFIER

4.1 Quvervigw

Any reasonable program verifier will clearly require
human assistance to prove some of the verification
conditions, It will aiso require a certain amount of
knowledge about the problem domain on which the program is
operating, Our aim has been to develop a system which a
programmer could use to verify & moderately complex program
by interactively proving the verification conditions and
extracting the required facts about the domain in the
process, We expect that it might take some time to
interactively verify a program in this way, possibly longer
than the time which would be taken to "debug” the program,
since @& period of thought away from the terminal will

usually be required,

The system we have implemented verifies POP-2 programs
and is written in POP-2, (A brief description of this
language is given in Appendix 1,) It is basically an
implementation of the continuation inddction proof method
described in Chapters 2 and 3, extended to allow inductive
assertions but not functional arguments, To use it the user
provides a POP-2 program together with its specifications as
a set of inclusion statements and/or inductive assertions,
The specifications can be written in terms of new primitive
functions declared by the user, The system then compiles

the specified program and attempts to verify each inclusion

verifier Page 82

statement and assertion in turn, If the system cannot prove
a particular verification condition it asks the wuser for
help. The user then has available a wide repertoire of
commands he can give in guiding the system to a proof; in
this mode the system acts as a proof-checker, In
particular, the user can provide or use facts about the new
primitive functions in the form of reduction and inference
rules., It is also possible to execute the specified program
with actual numerical data either to satisfy the sceptic or,

having verified the program, to actually use it.

The most complex programs we have verified wusing the
system are two sorting programs and a program to invert a
permutation "in place”. The permutation example was done
after the rest of this work had been completed, and took
about ebewt two weeks to find and define the appropriate
concepts, give an adequate specification, and then verify
the program'’s correctness. We now describe the different
aspects of the verification system in more detail, The
reader should refer to the examples in Chapter 6 while

reading this description.

4.2 Input lanauages

The program to be verified must be written in a subset
of POP-2 as a normal function which may call other
functions. Each non-trivial function thus called must be

described by a separate inclusion statement, The subset of

verifier Page 83

POP-2 used allows integers with their normal operations;
truthvalues: one—~dimensional arrays of integers; and lists
with constructive operations but without destructive

updating,.

The standard functions and variables allowed are: < >
=< >= = [= + - (binary only) % div rem (not //) :: <> atom
back cons dest erase false front hd identfn jumpout nil not

null tl1 true undef.

The syntax words allowed are:{() . , : :: => => and
close else (but not inside LOOPIF) end function goto if

lambda loopif nonmac nonop or then vars,

This is quite a restriction on the language, but there
is still infinite scope for writing complex programs, An
extension is that epsilon expressions are allowed, having
the syntax (ANY <varlist>)<expression> or
<ANYARR <varlist>)<expression> (for arrays) where <varlist>
is either a word or a list of words, The syntax of the

language is also changed in the following way:

1) Every label must be preceded by a dollar sign (%)
2) Subscripted variables must be written e.g. A \ (I+J), and

arrays are declared differently (see later),

A virtual program is written as a POP-2 imperative
sequence using the same subset of the language, but
naturally without loops or recursion. If the inclusion
statement to which it beleongs has more than one end-label,

each exit from the virtual program must have a GOTO

Verifier Page 84

<end~label> at it, Virtual programs may also contain new
primitive functions as described in the next section; they
may refer to array sequences e.g. A<<I,I+d>>; they may
contain assignments to arrays e,g. (ANYARR B)P(B) -> A; and
they may contain assignments to array sequences e.g.
A<<1,d>> => Bg<I+1,I+d>>., Note also that the verifier
assumes that the body of a function terminates immediately
before the output locals are put on the stack, so this must

be considered when writing virtual programs.

A specified program must then have the following form:

<function~definition %>

<declaration-of—-input-variables>:
<actual-parameter~list> -~> INITARGS:

<inclusion~-statement 1>:

<inclusion~statement n>:

The syntax of each inclusion statement is as follows:

<incl-statement> ::= ISTAT <incl-loccation>
VIRT «<«<virtual-program>
UNDER <preconditions>
WRT [<identifier%*>]

<incl-location> ::= BODY (REC ?) <function-name> /
<begin-label> TO [<end-label=list>]

<end-label-list> ::= (<end-label> (REC ?) %)
<virtual-program> ::= <imperative-sequence>

<preconditions> ::= <logical-expression>

Examples of specified programs are given in Appendix 4,

Verifier Page 85

The program to be verified may also contain assertions
after labels at key points throughout the program., The

syntax of these statements is simply
<assertion> ::= ASSERT <logical-expression>;

Every assertion except for an input assertion wmust be

preceded by a label., An output assertion is identified by

having the corresponding label OUT.

4.3 Definitions and rules

In giving the specifications for a program, new
primitive functions are wusually required to express the
program’s intention, This is specially important to enable
the verifier to deal with programs operating on new domains,
The verification system allows the wuser to declare such
functions by typing, for example, DECFUNS F 2 G 3: which
declares F to be a symbolic POP-2 function of 2 arguments
and G of 3, It also allows him to specify their properties
either as simple predicates or as reduction or inference
rules. Amongst these properties the definition of the
function is singled out; whilst the other properties may be
taken as given, for a proof to be complete, they must be
shown to follow from the definition. The functions W¥e have
used in verifying programs are SEQOF, EQSEQ, ISIN, PERM,
ORDERED, MEMB and FRINGE. The function application
SEQOF(A,I,J) is also written A<<I,J>>, The definitions of

these functions are given in Appendix 2.

verifier Page 86

The simple properties which a function can be declared
to have are associativity, commutativity, transitivity and
whether it takes numerical values, These are specified
using the doublets ISASS0C, ISCOMM, ISTRANS and ISNUMFN
respectively. New boolean predicates 1like these can be
introduced by the user and this facility proved very useful
while developing the system. Functions can also be assigned

an identity and a zero, using the doublets IDENTOF and

ZEROOF ,

We next describe the two sorts of rules which can be
used, These rules are defined using variables declared by,
e.g., DECLVARS X Y: The collection of rules defining and
describing a particular function constitutes, in effect, a
mini-theory of that function; all the rules relating to
this function are 1lopaded with the verifier whenever a
program involving it is being verified. A list of all the
derived rules (rules or facts which are not definitions) 1is
given in Appendix 3; we have proved Some but not all of
these using the interactive theorem prover. The description

of how these rules are actually used is deferred until the

next chapter,

4.3.1 Beduction rules

Reduction rules are used to define functions which are
not predicates, and correspond roughly to the antecedent
theorems of PLANNER or the demons of QA4. They are rules for

rewriting (or transforming) expressions into equivalent but

Verifier Page 87

"simpler” ones, In general, a rule is only applicable to an
expression 1if the subterms of an expression satisfy certain
restrictions. These restrictions are written as a 1list of

conjuncts:

<conjunct=-list> ::= [% <expression-seg ?> %]

<expression-seq> ::= <expression> (,<expression> 7%)

Reduction rules are then defined by:

<reduction~rule> ::= (WHEN <conjunct-=list>, ?)
<gxpression> ==> <expression>
For example, integer division which 1is treated by the

algebra system as a user-defined function, has some of its
properties given by the following rules:

WHEN [% 0 =< X, X<Y%], X DIV Y ==> 0;

WHEN [% X>=Y, Y>0 %], X DIV Y ==> 14(X=Y)DIV Y;

X DIV 1 ==> X:

(X%Y)DIV(X*Z) ==> Y DIV Z;

WHEN [% X REM Y = 0 %], (X DIV Y)¥Y ==> X;
The first two of these constitute the definition of division

when restricted to the non-negative integers,

4.3.2 Inference rules

Inference rules are used to define and give properties
to predicates: they correspond to the consequent theorems
of PLANNER or the goal class rules of @QA4, They are
inference rules in the sense that if their hypatheses are
true then their conclusion must also be true, but they are

always used in a top-down manner: to prove the conclusion,

Verifier Page 88

try to prove the hypotheses. Inference rules are defined

by:

<inference~rule> ::= IR <rulename>
<expression> <== <conjunct-list>

<rulename> ::= <identifier>,
Two typical inference rules are:
IR ORD1
DRDERED (A<<I,J>>) <== [% I>=J %]
IR DRD2
DRDERED (A<<I,J>>)
<== [% I<J, A\I<A\(I+1), ORDERED(A<<I+1,d>>) %]:
Inference rules are given names SO they can be referred to
when using them interactively. Note that we have explicitly
written "if and only if” definitions as two or more separate
implications in an equivalent but heuristically more useful
way. Thus instead of writing the rule
ORDERED (A<<I,Jd>>) <=> I>=J

OR A\I =< A\(I+1)
& ORDERED(A<<I+1,J>>) ,

we write the four equivalent rules

DRDERED (A<<I,d>>) <== [% I>=J %]

ORDERED (A<<I,J>>) <== [% I<d, A\I=<A\(I+1),
ORDERED (A<<I+1,d>>) %]

A\I=<A\ (I+1) <== [%(EX "J")(I<Jd & ODRDERED (A<<I J>>))%]

DRDERED (A<<I ,d>>) <== [% I-1<d, DRDERED (A<<I=1,J¥)k] .

Notice also that we have used recursion in writing both the
definitions and properties of most new functions. This was

done to make them more immediately applicable to the

Verifier Page 89

theorems produced by the verification generator. However
definitions using quantifiers can also be used, and in fact
we have used both the recursive and non-recursive
definitions of ordered to prove the two sorting programs
correct, The alternative definition was expressed as the
two inference rules:

ORDERED (A<<I,J>>)

<== [% (FA U)(I=<U & U<d =>> A\U=<A\(U+1)) %] ,

A\U =< A\ (U+1)

<== [% (EX [I J])(I=<U & U<J & ORDERED(A<<I,J>>)) %] .
Using this definition the proofs required slightly more user
intervention since the system does not automatically invoke
the proof by cases which corresponds to the recursive
definition, However, because fewer non-recursive rules are
required to express the same properties as several recursive
rules we are currently modifying the system so that they can

be used more easily,.

4.4 Verjfication condition generator
As stated above, the verifier is basically an

implementation of continuation induction extended to allow
inductive assertions, §Since the POP~2 user has access to
the stack, this is added to the machine state as an
additional component, When the specified program is
"compiled”, a 1list of all the inclusion statements is
formed. The user can then ask either for all of them or for

a particular one to be verified, An attempt is made to

Verifier Page 90

actually prove the verification conditions generated from
each 1inclusion statement before starting on the next one.
After verifying the inclusion statements, each assertion

present is verified in turn as described in Section 3.3.

To compare two states s1 and s2, found by running an
actual program and a virtual program, the verifier has to
prove a theorem of the form

pc(s1) & pc(s2) => sv(s1) & sv(s2)
where pc is the path condition and sv is the state vector,
The algorithm it uses to do this is as follows:
1) If for each variable v, sv(s1)(v) is identical to
sv(s2)(v), then exit with success,
2) Otherwise, if there exists a conjunct ¢ in pc(s2) such
that pc(s1) => NOT c, then exit with success.
3) Otherwise try to prove that for each variable Vv,
sv(s1)(v) & sv(s2)(v).
In the successful cases the system also checks that the two
programs terminated at the same end point and that the
stacks are equal, If the proof fails, the system gives an
appropriate message, and the wuser can direct the theorem
prover to work interactively on either 2) or 3). However if
the theorem is clearly false, qn error in the program or its
specifications is indicated. The error can be 1located by
observing the path condition of the actual program which

caused the error to appear,

Verifier Page 91

It is also possible to make the system generate
verification conditions without trying to prove them. More
usefully, the user can specify that no proofs should be
attempted at conditionals during symbolic execution.
Although this may 1lead to wunnecessary branches of the
computation tree being generated the resulting theorems are
invariably easy to prove: moreover, especially in cases
where there are no conditionals in the virtual programs,
some processing time will be saved, The wuser can also
choose whether to apply rule 3 or 4 (of Section 2.4.1) when
proving inclusion of epsilon expressions: rule 4 1is the

default case,

Output from the verifier can be sent in varying degrees
of detail either to disc or to the terminal. A record of
any interactive proofs is always saved on disc, and at the
end of verifying a program the user can save any unproved

verification conditions on disc for later analysis,

The most significant aspect of the way verification
conditions are generated is the use made of the normal POP-2
compiler and run-time system, In fact we have used these
exclusively and have written neither our own parser nor our
own interpreter. All the <control aspects of symbolic
execution (statement sequencing, Jjumps, procedure entries
and exits) are handled by the normal run-time system. Thus
any correctness results proved are true with respect to the
actual implementation of the language, rather than with

respect to some abstract definition of it. This has the

Verifier Page 92

curious consequence that even if there are errors in the
language implementation (with respect to its definition),
programs verified using that implementation will always run
correctly on it, Moreover it enables programs using
non-standard language features (such as escapes) to be
verified without having to give abstract definitions of
these features beforehand. The disadvantage is that there
is no guarantee that programs verified on one implementation

of the language will run correctly on another,

4.5 Implementation
4.5.1 Summary

The system is implemented in POP~2 and runs aon a PDP-10
(with a KA-10 CPU). When the system is loaded together with
all the inference and reduction rules it occupies about 47K
36~bit words. The breakdown of this into the system

components is as follows:

POP-2 system 14 K
Algebra system 12 K

Verification condition generator 5 K

Theorem prover 6 K
Inference and reduction rules 10 K
Total 47 K

Normally when using the system we only compile those rules

involving the functions occurring in the particular example

Verifier Page 93

being studied, Note also that a list cell in POP-2 requires
3 POP-10 words. The system spends most of its time in

algebraic simplification and matching,

In the remainder of this section we shall describe the
implementation of the verification condition generator in
more detail, The key to implementing the proof procedure
described in Figure 2.3 by using the normal run time system
is the use of recursive coroutines, 0One coroutine 1is the
actual (or wvirtual) program being symbolically executed;
the other is a recursive function <called MONITOR which
actually controls the symbolic execution. Control and
information is passed between these two coroutines by a
function GSWAP of one argument and one result - a message -
which uses a global saved state called STATE for resuming a
coroutine. Since there are only the two coroutines neither
this saved state nor, equivalently, the name of the

coroutine need to be given as an argument to SWAP,

4.5.2 MONITOR

MONITOR is the function which actually simulates the
functions Ex-act and Ex-virt of Figure 2,3, It is resumed
whenever the actual (or virtual) program reaches a label or
a conditional; the other cases are handled by the normal
run—-time system, A slightly simplified, descriptive
definition of MONITOR is shown 1in Figure 4.1, The only
component of the state which needs to be given to MONITOR is

the path condition as the others are again all held

Verifier Page 94

implicitly by the run-time system, At the start of an
inclusion statement calling SWAP with TRUE or FALSE runs the
virtual or actual program respectively. HYPMOOE is
initially FALSE, and CURINCLSTAT is initially the inclusion
statement being verified. Notice how closely MONITOR
corresponds to the functions in Figure 2.1. The main
difference is that it only calls itself recursively at
conditionals, The advantage of writing the function
recursively is that the stack of branch points is maintained

automatically as was suggested by Stansfield (1972),

The extension to handle inductive assertions is done
within the same framework, Assertions are stored as
expressions and are associated with the labels at which they
occur. GSome extra cases are added to MONITOR and OOLABEL as
a label may now have an assertion, The procedure given in

Section 3.3 is then followed in a straightforward fashion.

Verifier Page 95

FUNCTION MONITOR MESS PATHCOND HYPMODE => STATES:
VARS RETFLAG:
LOOP:
IF ATOM(MESS) THEN SWAP (MESS)->MESS
ELSEIF HD(MESS)="COND" THEN
DOCOND(HD(TL(MESS)) ,PATHCOND)->STATES: RETURN
ELSEIF HD(MESS)="LABEL"” THEN
DOLABEL (HD(TL(MESS)),PATHCOND)->RETFLAG;
IF RETFLAG="RETURN" THEN
UNITSET(PATHCOND::TL(MESS))=->STATES: RETURN
ELSE SWAP(RETFLAG)->MESS CLOSE
ELSE _ERROR() CLOSE;
GOTO LOOP
END:

FUNCTION DOCOND TEST PATHCOND => STATES:
VARS SAVSTATE:
IF "PATHCOND implies TEST” THEN
MONITOR(1,PATHCOND,HYPMODE)=->STATES: RETURN
ELSEIF "PATHCOND implies NOT(TEST)"™ THEN
MONITOR(0,PATHCOND ,HYPMODE)=>STATES: RETURN
CLOSE;
STATE->SAVSTATE
MONITOR(1, TEST & PATHCOND, HYPMODE) -> S1:
SAVSTATE=>STATE:
MONITOR(0, NOT(TEST) & PATHCOND, HYPMODE) -> S2:
UNION(S1,52) => STATES:
END:

FUNCTION DOLABEL LABEL PATHCOND => RETFLAG;
VARS I;
IF ISEXIT(LABEL ,CURINCLSTAT) THEN
IF NOT(HYPMODE) THEN "RETURN”"->RETFLAG: RETURN CLOSE:
FALSE->HYPMODE ;
SAVINCLSTAT->CURINCLSTAT:
IF "LABEL is a recursive endpoint” THEN
FALSE—->RETFLAG: RETURN
ELSEIF ISEXIT(LABEL,CURINCLSTAT) THEN
"RETURN"->RETFLAG: RETURN
CLOSE
CLOSE:;
IF ISSTART(LABEL) THEN => I;
COMMENT °LABEL is the start of inclusion statement I';
CURINCLSTAT->SAVINCLSTAT:; I->CURINCLSTAT:
"check preconditions of CURINCLSTAT";
TRUE->HYPMODE ;
TRUE=->RETFLAG
ELSE FALSE->RETFLAG CLOSE

END

Figure 4.1 - MONITOR

Verifier Page 96

4.5.3 ggurce program transformations

Compiling a specified program is actually done in two
passes, In the first pass variables are declared and a
record is made of all the inclusion statements, In the
second pass new labels are inserted at the beginning and end
of every function body, and the actual program alone is
compiled by the POP-2 compiler after the transformations
shown in Figure 4.2 are made using macros. These changes
are necessary to enable the program to communicate with
MONITOR. The conditional statement in parentheses is only
inserted if the 1label is the start label of an inclusion

statement,

Before After
L: <program> L: SWAP([%"LABEL",L,current-state-vector%])
-> RESULT;

(IF RESULT THEN
<corresponding-virtual-program>

CLOSE:)
<program>
IF <expr> IF SWAP([%"COND",<expr>%])
THEN ,.. THEN ...
L: LOOPIF <expr> L: IF <expr> THEN
THEN ... coo
CLOSE G0TO L; CLOSE

Figure 4,2 - Program transformations

Verifier Page 97

4.6 Discussion

The verification condition generator, at 1least when
restricted to proofs by inductive assertions, is very
similiar to Deutsch's and contrasts with those of Igarashi,
London and Luckham, and the use of LCF, The difference is
that our system uses the operational semantics of the
language rather than an axiomatic definition. Using
continuation induction enables this approach to be applied
to a wider range of programs than it was previously.
Moreover, using the acc, thg and xchng functions on arrays
and assignments to array variables avoids a proliferation of

cases as had been previously observed,

Also, using forward evaluation to construct
verification <conditions allows the verification conditions
to be simplified before they reach the theorem prover,
While our system does not do as much simplification as
Deutsch's — in particular it does not treat equality tests
as assignments -~ it does simplify all expressions as they
are constructed, thereby saving work later, and sometimes

cutting ofé impossible computation paths,

Practically, the use of an actual language system has
had both advantages and disadvantages: it saves some work
of course, but it has occasionally been awkward conforming

to POP-2 syntax and keeping variables distinct,

Verifier Page 98

The verification systems most similiar to ours are (i)
the one being developed by Good, London and Bledsoe (1974)
and (ii) the one being developed at Stanford (von Henke and
Luckham 1974, Suzuki 1974). Both these systems support the
use of abstraction in writing specifications and have the
ability to easily add new knowledge about the abstract
functions being used. The main differences from our system
is that they both wuse an axiomatic definition of their
programming language (PASCAL) for generating verification
conditions and only use the inductive assertion method., The
simplifier and theorem prover of the §Stanford system 1is
completely automatic, whereas our system and Good's rely on

interactive theorem proving.

There is also a difference in the way the systems are
used. In each system unsuccessful proofs are used to
indicate which properties of the new (abstract) functions
are required, However, whereas we isolate certain basic
properties as definitions and (attempt to) prove the other
properties from them, the §Stanford group ensure that all
their properties are consistent by observing that they have
a model, It is not clear how Good et al, ensure that their

properties are consistent.

Page 99

Chapter 5, ALGEBRAIC MANIPULATION AND INFERENCE

In this chapter we shall describe the way we represent
and manipulate symbolic expressions, how the automatic
theorem prover works, what interactive commands are

provided, and how they are used.

5.1 Algebraic manipulation

At the heart of the theorem prover and the verification
condition generator 1lies a general purpose algebra system,
or more accurately, a symbolic manipulation system, This
system 1is, in many ways, similar to those used by King and
Deutsch, however, in other ways, it is rather more general,
The system 1s wused to construct and manipulate symbolic
expressions in the domain of 1integers and also in other
domains e.g. that of lists. General routines for applying
properties of operators are used to put expressions 1into a
canonical form whenever possible. It is easy to add new
functions together with brief descriptions of their

properties which can then be used to simplify expressions

involving the new functions, The system also contains
routines for simplifying relational expressions and
conjunctions of relational expressions, for applying

substitutioms, and for matching one expression against

another. Ea&ach of these aspects is discussed in turn,

Inference Page 100

We start by giving some definitions, Two expressions,
el and e2, are said to be jidentical, written e1==e2, if they
are the same string of symbols or, if presented in abstract
syntax, they have exactly the same form. That is they are
Syﬁtactically the same, They are said to be ggujivalent (or
equal), written e1=e2, if for any assignment of values (in
the domain) to their (free) variables they have the same
value in the domain, That 1is they are semantically the
same, Thus a+b and b+a are equivalent but not identical.
An f-canonical form for a class of expressions C is a
computable mapping f:C->C such that:

1) for all e in C, f(e)=e, and

2) for all e1,e2 in C such that e1=e2, f(e1)==f(e2).
Often the function f is implicit, and we simply talk about
canonical forms: an expression e is said to be in canonical
form if f(e)==e. A pormal form is a weaker concept
applicable to algebraic expressions which maps all
expressions equivalent to zero 1into zero, though the

distinction between normal and canonical forms is often

ignored. Simplifjcation is a still weaker operation which
transforms an expression into an equivalent (simpler)

expression which may or not be in normal form,

Canonical forms are important in both algebraic
manipulation and theorem proving, since if a canonical form
exists, and all expressions are put into it, then two
expressions are equivalent if and only 1if they are
identical, Being able to detect equivalence immediately in

this way is a big help in both further simplification and

Inference Page 101

deduction. Normal forms are useful because expressions
which are equivalent to zero are always reduced to zero,
thereby simplifying subsequent processing, Moses (1971)
reviews known results concerning the existence of normal
(called zero—equivalence) and canonical forms for various

classes of algebraic expressions,

5.1.1 Expressions and simplification

Dur system deals with a simple but general class of
expressions, The range of wvalues, or domain, of these
expressions can vary, depending on the application: they
could be truth~values, numbers, lists, arrays or functions,
Members of the domain are called gpecjific jitems {(or
constants), The expressions have the following abstract
syntax:

An expression is either a primitive expressionp

or a function appljcation
or a guantified expression,

A primjtive gxpression is either a specific jitem
or a yariable,

A functjon applicatjon has a funpname which is a word
and a funaragas which is a expression-list,

A auantified expressipn has a bdvar which is a variable

and a guantifjer which is FA, EX or EPS

and a bpdy which is an expression,

Internally, specific items represent themselves,
variables are represented by words, function applications
are represented by lists whose head is the funname and whose

tail 1is the funargs, and quantifjiers are represented by a

three element list containing the quantifier, bdvar and body

Inference Page 102

respectively., Associative functions are variadic, so both
+(1,2) and +(1,2,3) could be expressions, Every function
has two variants: a symbolic function which, for addition,
returns +(a,b) as the value of a+b, and the original
(specific) function, possibly modified to take a variable

number of arguments, which returns 3 as the value of 1+2.

All expressions are automatically simplified as they
are constructed, This simplification aids later processing
by increasing the number of equivalent expressions which are
also identical: for the class of multivariate polynomials
over the integers, the resulting simplified form is actually
a canonical form. To simplify an expression the following
steps are performed in order:

1) Primitive and ﬁuantified expressions are left unchanged.,
2) Otherwise the expression is a function application.

the function’'s 2zero is in the argument list it is returned
as the result,

3) If all the arguments are specific items, the original
function is applied to them and the result returned as the
simplified expression.

4) If the function distributes over any other functions the
appropriate transformation is applied, recursively
simplifying the inner terms, The two functions considered
in this category are multiplication (a%(b+c) ==> a¥*b+a¥*c),
and disjunction ((agb) v c ==> (avb) & (avc)).

5) If the (possibly new) function is associative, all
applications of this function as arguments are brought to

the top 1level. For example, +(a,+(b,c)) simplifies to

Inference Page 103

+(a,b,c). Note that this cannot undo steps 1) to 4) as all
the inner terms have already been simplified.

6) Next, if the function is commutative, its arguments are
sorted into 1lexicographic order (with numbers before words
before lists, and words ordered as they were declared)
ignoring constant factors of products when simplifying sums
and exponents of powers when simplifying products, and
combining arguments whenever possible. An example should
make this clear: a¥c+a " 2+b+3%a+2+5%a reduces to
2+8%a+a”"2+b+a*c,

7) If the function is associative and not commutative
another pass is made through the expression combining terms
whenever possible,

8) Finally, any occurences of the identity ae removed, and
any expressions of the form f(a) where f is associative are

simplified to a.

With the exception of only two functions, a function's
symbolic variant merely constructs a new term which is then
handed to the simplifier described above. The exceptions
are subtraction, which immediately simplifies a-b to
a+(-1)*¥b (unary minus does not exist at all), and
exponentiation which performs the following simplifications:
x"0==>1, 1"x==>1, x"1==>x, (x"y)7z==>x"(y¥z) and the

expansion of sums raised to an integer power,

With these additions, the canonical form produced for
multivariate polynomials can be seen to be basically a sum

of products. The uniqueness of the resulting form for this

Inference Page 104

class follows, since inner terms have already been
simplified, redundant summands, factors and powers have been
removed, 1like terms combined, and the terms of sums and

products put into a canonical order.

The following points about this canonical form are
perhaps worth noting, First, unlike Deutsch’s form, sums
and products do not always contain a constant term. While
this makes the simplification algorithm slightly more
complex, we found it considerably easier to write the
matcher wusing this representation, Secondly, when adding
two sums together, for instance, the order of summands in
the arguments 1is ignored: this results in an 0(mn) rather
than an 0(m+n) algorithm, but since the terms which occur in
practice are usually very short, this does not slow down the
simplification algorithm appreciably, Moreover, after
applying substitutions to expressions, it allows the same
simplification routine to be used in ensuring that the

result is still in the "simplified” form.

Finally, note that there was nothing special about
addition and multiplication in the above description - they
were merely operations with particular properties and
identities ~ and the simplification process works on other

functions as well, for example, conjunction and disjunction.

While the user of the algebra system can always declare
new functions together with their properties, certain

functions are declared for him initially. The 1initialized

functions are +, *, - (subtraction), (exponentiation), div

Inference Page 105

(integer division) and rem (remainder). The functions div
and rem are treated as any other user-~declared functions
would be; in their case the simplifier knows nothing about
them, However, many of their properties are given as rules
which are used by the theorem prover and are described in
the discussion of reduction rules. For use in programs
operating on lists, the functions front, back, ¢ons, hd, tl,

dest, concat and fringe are also declared initially.

An array is initially represented by a word (its name).
The array’s bounds are ’kept' in its "property 1list” (see
below). Accessing an array is done using the function acec
(acc(a,i)=a[i]). Updating the array is done using the
function chng: after the assignment X->A[I] to the array a
its wvalue is chng(x,i,a). This basic method of representing
operations on arrays was originally proposed by McCarthy,
and was used by Waldinger and Levitt, The concept of a
sequence has proved impartant when describing programs which
operate on arrays, A seguence 1is just a subarray of an
array: the function seqof is wused to construct them:

seqof(a,i,j) (a<<i,j>>) is the sequence al[i],

a[i""l])--')a[j‘-ll]) a[j]~

It remains to describe how the information about each
function or word is stored. Conceptually, associated with
each word ever seen by the system, there is a property list,
For instance "#” might have the property list

[ISFUNCTION TRUE ISASSOC TRUE ISCOMM TRUE DISTRIBOVER "+”"

INDENTITY 1 SYMBOLICVERSION "**" _ .7,

Inference Page 106

where the value of property O0OISTRIBOVER indicates that #
distributes over +, and * % is the symbolic,
term—-constructing variant of %, For efficiency, this
property 1list 1is implemented as a record having a finite
number of components - all immediately accessible - and is
kept in the word’s MEANING. The first component of this
record contains a bit-string representing the values of
various boolean-valued properties. Thus new predicates can

easily be declared and associated with words in the system,.

5.1.2 Logical expressions

A logical expression 1is simply an expression whose

values are truth-values, Two important subclasses of the
logical expressions are the literals which do not contain

any 1logical connectives other than NOT, and the relatipnal

expressions which are constructed from the operators =, [=,
>y, >=, <, and =<, We shall use the word "term” when
referring to an expression which 1is not a logical

expression,

All logical expressions (with two exceptions noted
later) are simplified as they are constructed, For
relational expressions in integer arithmetic the simplified
form of eqguivalent expressions 1is unique, and is hence a
canonical form, The simplification process for relational
expressions is as follows:

1) If both arguments of the relation are numbers, the truth

value is simply evaluated.

Inference Page 107

2) Otherwise the transformations a>b => a>=b+1, and a<b =>
a<=b—-1 are applied (we are assuming integer arithmetic
throughout),

3) The expression is then put into the form e op n, where op
is one of >=, <=, = or /=, n is a number, and e is neither a
number nor a sum containing a numerical summand. At this
stage we would have reduced a>b, through a>=b-1 into a-b>=1,
and b<a through b<=a-1 into b-a<==1: to put these two
equivalent expressions into the same form, we do the
following:

4) Let revop denote the operator which satisfies e revop n

if and only if n op e. Then, if e is a product whose
numerical factor is less than zero, return -e revop -n,
Otherwise, if e is a sum, and the first summand of -e

precedes the first summand of e (in the ordering described
for commutative functions), then again return —-e revop -n.
Otherwise leave the expression unchanged. Since a precedes
b in this ordering, both the above expressions are reduced
to a=-b>=1,

While this procedure sounds complex, it is important for
simplifying conjunctions that relational expressions should
be in canonical form. The relational operators can also
take subarrays as arguments: the expression a<<i,k>> >= p
is equivalent to (FA j)(i=<j=<k=>al[k]>=p). In this case the
only simplification done is to possibly reverse the order of
the arguments. Reasoning about such expressions 1is then
done using inference rules. For computing in domains other

than integer arithmetic, some other predicates are required,

Inference Page 108
For lists, atom, null and memb are provided initially.

We come now to the logical operators. Conjunctions and
disjunctions (and literals which are not rélational
expressions) are simplified by the same routines as
arithmetic expressions, They are both associative,
commutative functions having a zero and an identity. We
keep expressions in conjunctive normal form, so we define v
to distribute over &. The main simplifications however
result from the merging done when forming the conjunction of
two expressions. (The ordering used ensures that relational
expressions with the same 1left-hand side are brought
together,) Clearly P & NOT P ==> false, and P & P ==> P, but
for relational expressions the transformations shown in

Figure 5.1 take place as well.

e=m & e=n ==> false if m/=n,

e=m & e/=m ==> false

e=m & e>=n ==> false if m«n

e=m & e=<n ==> false if m>n

e=m & e op n ==> e=m otherwise

e/=m & e>=n ==> e>=n if m<n

e/=m & e=<n ==> e=<n if m>n

e/=m & e>=m ==> e>=m+1 (for integers)
e/=m & e=<m ==> e=<m-1 (for integers)
e>=m & e>=n ==> e>=m if m>=n

e>=m & e=<m ==> e=m

e>=m & e=<n ==> false if m<n

e=<m & e=<n ==> e=<m 1if m=<n

Figure 5.1 - Conjunction transformations

These simple rules, used with the general purpose simplifier
described earlier, enable conjunctions of relational

expressions to be put into their simplest form, e.g. a>=b &

Inference Page 109

a>b & a=b/=21 ==> a-b>=2, King and Deutsch, with their more
specialised systems, had to write separate routines to
achieve this. Two remaining rules are that a & (a v b) ==>

a, and a v (a & b) ==> a,

The operators =>> (implication) and <=> (equivalence)
are Aalso available, but no simplification is done when they
are applied. We will describe later how the theorem prover
deals with them. The operation NOT performs the following
simplifications when applied: NOT true ==> false, NOT false
==> true, NOT NOT p ==> p, NOT (a & b) ==> (NOT a) v (NOT
b), NOT(a v b) ==> (NOT a) & (NOT b), NOT(a =>> b) ==> a &
(NOT b),//NOT(a <=> b) ==> (a v b) & (NOT a v NOT b),
NOT (FA x)a ==> (EX x)NOT a, and NOT (EX x)a ==>
(FA x)NOT a. It also simplifies relational expressions when

applied to them, e.g. NOT(a<b) ==> a=<b ==> a-b=<0,

The quantifiers which can be used are FA, EX, ANY and
ANYARR, ANY and ANYARR are variants of the epsilon operator
EPS: ANYARR is used for arrays, and ANY for other kinds of
objects as described previously, Again these expressions
are not simplified as they are constructed, but only by the

theorem prover,

Inference Page 110

5.2 Pattern matching

Clearly, any rule-driven system requires some sort of
pattern matcher to control the application of rules, and
ours is no exception, However, a unification algorithm has
not been necessary, and we have only used a one-way pattern
matcher. The simple syntactic matcher we wrote initially
soon proved inadequate, and we then implemented a rather
sophisticated matcher which took into account the
associative, commutative and identity properties of the
functions with which we were dealing. Although slower, this
new matcher has proved invaluable in the subsequent
development of our theorem prover. The matcher is similfar
to the QA4 matcher which operates on tuples and bags, but is
more general in that all variables are automatically

“fragment variables” and that it knows about identities,

The matcher operates on the same class of expressions
as descibed above, with the exception that there are no
guantifiers, It assumes that all expressions are stored in
canonical form, An expression containing variables which
may be instantiated is called a pattern. A substitution 1is
a finite function mapping variables into expressions: each

substitution has a unique extension whiph maps patterns into

expressions, A gpne-way patterp matcher is a function

I: expressions x patterns =-> substitution-sets

which satisfies

Inference Page 111

for all s in I(e,p), s(p)=e.

The equality in this condition is with respect to any 1laws
the functions of this class of expressions may satisfy. The
matcher is gomplete if it produces all such substitutions
(ignoring the substitutions’ effect on variables naot

contained in p).

To explain how the algorithm works, suppose we are
trying to match f(s1,s2,...,5m) against f(t1,t2,...,tn)
where the 1latter term is the pattern containing the
varjiables to be instantiated and where e is the identity of
f (if it exists), If f 4is not associative, we match s1
against t1, and extend the resulting substitution (if any)
by recursively matching f(s2,.,..,5m) against f(t2,...tn).
However, if f 1is associative, we could match any of s1,
f(s1,82)y veey, fF(s1,...,5m) against t1, and extend the
resulting substitution by matching f(s2,...sm), f(s3,...sm),
eeey F() respectively against f(t2,...tn). f() is treated as
the identity e of f if one exists: f(s) is considered to be
equal to s, If f is commutative as well, we could match any
of S$1,52,40435Mm, f(s1,s2), f(s1,s3), ..., f(s1,...sm)
against t1, and the remainder of the term against
f(t2,...tn)., This case essentially involves finding all the
subbags of a bag. In all these cases matching s1, say,
against t1 may return more than one substitution, and each
of these will be used in turn when matching the remainder of
the terms, Notice that the operations performed in the

three cases are the same, only they are applied 'to the

Inference Page 112

members of the successively larger sets {s1}, {fe, s1,
f(s1,52), eeey f(s1,...8m)}, and {e, s1, s2, ..., sm,
f(s1,s2), f(s1, s3), ...y F(s1,...,5m)}. (Actually these are
sets of pairs; the first element of each pair is shown, and
the second is the list of remaining arguments of the term.)
We consider this method, treating the above three cases
uniformly but generating a different set in each case, the

most interesting aspect of the pattern matcher,

The algorithm is clearly complete with respect to the
associative, commutative and identity 1laws, fFor if
f(s1,s2,...sm) does match f(t1,t2,...,tn) then t1 will
eventually be compared with the subterm it matches, as there
is no cancellation, and the remainder of the match will be

found similfarly.

The actual matcher implements the above algorithm in a
fairly straight-forward way. It generates the set of all
the substitutions at once, rather than producing them one at
a time, Since the set is usually quite small in our
application, and since backtracking is quite expensive 1in
POP-2, this method seems acceptably efficient, The POP-2
listing of the matcher is shown in Appendix 5, It wuses a
library program [LIB ASSOC] to represent substitutions by
association sets, so that ASSOC(x,sub) = sub(x)., The actual
matcher also allows patterns to contain function variables

which can be matched only against function constants,

Inference Page 113

Figure 5.2 shows some examples of the matcher’s
behaviour; a and b are constants, x, y and z are variables,
Notice that 0 matches x*y in two ways since 1 1is the
multiplicative identity, but 0 will not match 2%*x as the
matcher knows nothing about the multiplicative properties of
0. More generally, the matcher does not know anything about
factorization, so even 2%a¥b+4%a%*c will not match 2%x*y, The
fact that the matcher does not know about cancellation
occasionally prevents potential matches such as

f(a~1,b+1)+a+b against f(x,y)+x+y from being found.

Expression Pattern Matches
a X { (x—>a) }
a X +y { (x=>a, y=>0),

(x=>0, y->a) }

0 x *y { (x=>0, y=>1),
(x=>1, y=>0) 1}

) 2%x {1}

a*b X 4y { (x=>a*b, y=>0)

(x—>0, y—->a*b) }
a+b x ¥y { }

a+b X +y ¥z { (x->a, y=>b, z=>1),
(x=>a, y=>1, z->b),
(x=>b, y—>a, z->1),
(x=>b, y=->1, z—>a),
(x=>a+b, y=>0, z=>1),
(x—>a+b, y->1, z—>0) }

Figure 5.2 =~ Output of matcher

Inference Page 114

5.3 Automatic thegrem proving

The automatic theorem prover is not intended to be a
powerful, gdeneral-purpose theorem prover, Rather, it is
designed to prove the simpler theorems which arise as
verification <conditions, leaving the more difficult ones to
be proved interactively, Thus, it can prove all theorems
depending only on propositional logic, and many which depend
on properties of relational expressions, transitivity,
reduction rules, and short sequences of inference rules.
Proofs which wuse case-analysis, instantiations, longer
sequences of inferences and so on must be done

interactively,

The theorem prover can best be seen as having two
phases, In the first (deterministic) phase a set of rewrite
rules converts the theorem into a set of formulae of the
form h1 & h2 6§ h3 & ... & hn => c where all the hi and c are
literals (or guantified expressions)., During this process
any equalities in the hypotheses are eliminated by
substituting one term for another throughout the formula,
In the second phase, some more heuristic methods are applied
to each of these formulae. In both phases the simplication
routines described in Section 5.1 are used continually to
simplify new conjunctions, implicit conjunctions and all

other new expressions,

Inference Page 115

5.3.1 Bewriting phase

During this phase the theorem to be proved is
simplified by successively applying rewrite rules until no
more are applicable, To describe these rules we use a
sequent calculus, writing h1,.,..,hn => c to stand for the
formula h1&...6hn => ¢, Now, 1letting A be a set of
expressions (which represents their conjunction), and p, q

and r be expressions, we have the following rules:

@) A->p and A=->q ib) p,q,A=>r
A—>p&q ;;;:;::;
2a) = p,A,->q 2b) p,A->r and q,A=->r
-;::;;;- pvg,A—->r)
3a) p,A->q 3b) = p,A->r and g,A=>r
;::;::q pP=>q,A=->r
4a) p,A->q and q,A=>p 4b) p,a,A->r and p, q,A=>r
A => p<=>q P<=>q, A => r
5a) A=>p(x0) 5b) p(xO)->r
A=>(FA x)p(x) (EX x)p(x)=>r -

6) a(x0),A => p(x0)

A=>p ((EPS x)q(x))

7) p(t1,...,tn),A => p(s1,...,8n)

"'D(S1,...,5n)pA -> ﬂp(t"poooptn)

Notes

1) These rules should be read: to prove the formula below
the line it suffices to prove the formula(e) above the line,
2) The system differs from more common sequent calculi in

that the consequent is an expression rather than a

Inference Page 116

disjunction of expressions,

3) In applying rule 2a) we heuristically choose the “less
interesting” of p and g to negate on the grounds that there
is more likely to be an inference rule applicable to g than
one applicable to p., An expression is assumed to be
"interesting” if its top-level function is one of the
newly-declared functions ERSEQ@, ISIN, DRDERED, etc, If both
expressions are interesting or neither are, then p or q is
chosen arbitrarily,

4) The variable x0 in rules Sa), 5b) and 6) must not occur
in the formula below the line,

5) The use of the two rules

Ba) A -> p(t) 8b) p(t) => r

A->(EX x)p(x) (FA x)p(x)=>r

will be described later, Briefiy, an attempt is made in
stage two to instantiate the variable x of rule 8a), and the
user can also apply the two rules directly.

6) The following additional rule is also applied whenever
possible during this stage. It removes equalities by

replacing variables equal to a term by that term,

9) A(t) => r(t)

x=t,A(x) => r{x)

The system has a limited equation solver which enables this
rule to be applied with expressions such as 2¥%a+b+3%c=4, The
automatic application of this rule can be suppressed

interactively if desired, A more general substitution rule

Inference Page 117

can also be applied interactively and will be described
later.

7) Formulae whose consequents are inclusions involving
epsilon expressions are simplified using the rules described

in Section 2.4.1,

5.3.2 Heuristic phase

The original theorem has now been reduced to a set of
formulae of the form h1 & ... & hn => ¢ where each hi and ¢
is either a literal or a quantified expression, Each of
these formulae is now proved separately. To prove such a

formula, each of the following methods is applied in turn.

5.3.2.1 Simplification:

This routine test whether hi16...6hn implies c as a
tautology or by simple properties of the relational
operators., It uses the routine described earlier for taking
conjunctions of expressions. If the hypothesis hi1&...6hn is
false (i.e. simplifies to false) then the formula is valid:
if hi16...6hn & ¢ is false the formula is invalid; and if
h1&...6hn&c equals h1&,..6hn or h16,..6hn & NOT ¢ is false,
the formula is again valid, These tests include the cases
that c or NOT c is one of the hi, They suffice td show, for

example, that x>=1 => x>=0, and that x=<10 => x/=20,

Inference Page 118

5.3.2.2 Heduction:

If c is an equality, t1=t2, both terms t1 and t2 are
transformed separately using any applicable reduction rules.
If the results are identical the formula 1is proved;
otherwise we proceed to the next step, The transformation
is done by attempting to apply each reduction rule in turn
at the top 1level. If one is applicable the procedure is
repeated with the new term. If, and only if, none of the
rules are applicable, each of the term's subterms 1is
transformed using the same procedure recursively., 1If one of
the subterms has been changed, the procedure starts again,
this time applying rules at the top level only. No record
is kept (at present) of which reduction rules have been
applied., The "simplification” routine just described is
used to check that the preconditions of the rule being
applied are satisfied., As an example, using the rules of
Section 4.3.,1, (a*b) div b is transformed via a div 1 to a.
To prevent impossible applications being attempted,
reduction rules are indexed by the top—-level function of
their left-hand side as they are constructed, and only the
rules associated with the top-level function of the current

term are considered.

5.3.2,3 Instaptiatjion:

If ¢ is of the form (EX x1,x2,...)P(x1,x2,,..) we
attempt to find instantiations t1,t2,... for the variables
x1,x2,.,.. so that p(t1,t2,...) follows from the hypotheses,

that is we attempt to apply rule éa) above, p(x1,x2,...) is

Inference Page 119

typically a conjunction, and we start by forming a 1ist of
its "interesting” conjuncts (as defined above): if this is
empty we use the list of all its conjunctions. We then form
the set of all substitutions produced by matching each
"interesting” term against each each hi, and for each
substitution s we recursively attempt to prove that
h1&...6hn implies s(p(x1,X2,...)) . If we have to match
relational expressions they are first put into the form
t op 0 since, for example, a=3>=0 matches x>=0 but a>=3 does
not match x>=0, Transitivity is in the system as an
inference rule which requires such an instantiation to be

made for the intermediate term.

5.3.2.4 Inference rules:

This is perhaps the most general method but is very
simple to describe: it is applied if all the previous
methods have failed, An inference rule is applied to a
formula by matching its conclusion against the conclusion,
c, of the formula to be proved, For each resulting
substitution, s, (provided c does not occur in s(hr)) the
theorem prover is called recursively to show that h1&.,,.6hn
implies s(hr) where hr is the hypothesis of the rule, A
depth counter is incremented each time this 1is done to
prevent this search from going too deep. The heuristic that
the same rule should never be used twice on the same path is
also employed, This procedure is repeated for each
potentially applicable iqérence rule - the filtering is done

by applying the same indexing mechanism as before to the

Inference Page 120

conclusions of the rules = until one succeeds. Note that
each substitution resulting frem the match is considered in
these last two methods whereas, when applying the reduction

rules, only one arbitrary substitution was used.

Thus it <can be seen that the theorem prover |is
essentially traversing an AND-OR search tree 1in a
depth—first manner. The AND-~branches arise from the natural
deduction system of the first stage, and the OR-branches
arise from the choice of inference rules and from the choice
of substitutions when instantiating existentially quantified
variables and when applying inference rules. Each node on
this search tree is labelled by a list, The first element
of this 1list is an arbitrary constant; the successors of an
AND-node, [i ... j], are labelled [i ... j 1], [1 ... § 2],
..o respectively; the successors of an OR-node, [i ... i],
are labelled [i ... j -1), [1i ... § -2, ... respectively.
This labelling is used when tracing the theorem prover and

by the interactive commands,

5.3.3 An example

As an example of the theorem prover'’s behaviour, we
consider the proof of the formula
a>b+1 & b>c+3 => a>c
which is immediately "simplified” by the algebra system to
a-b>=2 & b-c>=4 => a=-c>=1 ,
The proof is by transitivity which is in the system as the

inference rule

Inference nge 121

f(x,z) <= 4istrans(f) & (EX y)(f(x,y) & fly,z))

where f, x, y and z are all variables, The first phase of
the theorem prover leaves the formula unchanged, as do the
simplification, reduction and instantiation routines., After
attempting to apply other inference rules the transitivity
rule is eventually applied, Relational expressions are put
into the form t op 0 when they are being matched, so f(x,z)
is matched against a-c-1>=0, returning the instantiation
(x=>a~-c-1, z->0, f=> >=), Applying this to the hypotheses
of the rule yields the goal

a=b>=2 & b-c>=4 => istrans(>=) & (EX y)(a=c=1>=y & y>=0).
Now istrans is true by definition, and instantiating vy
yields the two matches (y->a-b-2) and (y->b-c~4), The first
of these yields the goal a-c-~1>=a-b-2 which simplifies to
b-c>= =1 which then follows by simplification from the

hypotheses,

5.4 Interactive theorem proving

If the automatic theorem prover fails to find a proof
it can ask the user for help. The user can then investigate
why the theorem prover failed and try to lead it to a proof
(as a proof-checker), or else abort the proof, all using the
commands described below., The user can also interrupt the
theorem prover while it is running if he desires, see what
it is doing, and either continue in interactive mode from
there or 1let it resume running. To use the interactive

facilities effectively it is necessary to have a general

Inference Page 122

idea of how the automatic theorem prover works and to have
available a 1ist of all the relevant rules known to the

system,

5.4.1 Interactive commands

It is useful to divide the commands available into
three categories: informative, control and advice. The
informative commands are used to display the current theorem
being worked on, the top-level theorem, or the hypotheses or
conclusions of either of these. Since the whole power of
the POP-2 language 1is available while typing interactive
commands, any other aspects of the program's state can also
be examined: this ability has proved very useful while
developing the program. The control commands are used to
move around the AND-DOR search space of the problem, and to
regulate the degree to which the theorem prover either runs
freely or under the user's control. The advice commands are
the most important in actually aiding the theorem prover to
find a proof:; they are used to fill gaps in its knowledge
by adding hypotheses, axioms or lemmas, to narrow its search
space by eliminating alternatives, and to choose values for
variables to be instantiated. We now 1list the commands
available to the user, Fach command or sequence of
commands, except for control commands and those marked with

an asterisk, is terminated by the user typing GOON,

Inference Page 123

5.4.,1.1 Informative

PRTHM:; Prints the theorem currently being proved,
possibly a subgoal of the top-level theorem.

PPR(item): Prints the item in a readable format, The
item is normally one of HYPS, GOAL, TOPHYP, TOPGOAL or
CUNODE which refer respectively to the current
hypotheses and goal, the top-level hypothesis and goal,
and the label of the current node in the search tree,

TRACE n: A trace of the proof process, of
successively increasing detail, is printed on the

current output device by setting n to 0, 1 or 2.

5.4.1.,2 Control

ASSUME : The current theorem is assumed valid, and is
saved on a global list, THMSPOST, to be proved later.

ASSUMENS ; The same as ASSUME but the current theorem
is not saved for later,

ASSUMEAND ; The current theorem is assumed Valid, as are
all 1its brothers at the AND-node immediately above the
current node, and all these theorems are saved on
THMSPOST to be proved later,

FAIL: The current theorem is assumed invalid, and
the theorem prover returns to the previous node,

FAILTO node: The theorem at node 1is assumed to be
invalid, and the theorem prover returns to the previous
node. The node must be higher up the search tree on

the current path: it is written as a list, e.g. [10 2

Inference Page 124

FAILOR; The current theorem is assumed to be invalid
as are all its brothers at the OR-node immediately
above the current node, and the theorem prover returns
to that node.

STEP; The theorem prover is forced into a
completely interactive mode; after each step it prints
its current position and goal and waits for a new
command from the user,

GO; Cancels the STEP command, allowing the
theorem prover to run automatically again.

RESTART: A safety device: it allows the wuser to

start again with the top-level theorem.

5.4.1,3 Advice

LEMMA (hypotheses,conclusion,name):
Try to prove the conclusion from the hypotheses. If
successful, add it as a new inference rule with the
given name., For example,
LEMMA([% X REM 2 /= 0 %], (X-1)REM 2 = 0, "REM1");
RLEMMA (hypotheses,leftside,rightside):*
Try to prove that the hypotheses imply the other two
expressions are equal, If successful, add the
corresponding new reduction rule,
AXIOM rule; Add the new rule to the present ones without

trying to prove it, but save it on THMSPOST to be

proved later,

Inference Page 125

DEDUCE expression;

Try to prove the logical expression from the current
hypotheses (HYPS) and then add it to them.

ADD expression; The logical expression is temporarily added
to the current hypotheses and the theorem that the
current hypotheses imply the expression is saved.

ADDNS expression: Like ADD but the theorem that the
current hypotheses imply the expression is not saved,

DEL expression; The expression is temporarily removed from
the current hypotheses,

USE rulename: The inference with the given name is applied
at the next opportunity, for example, USE REM1;

CASES expression-list; (%)

Each of the cases is successively assumed and
temporarily added to the current hypotheses, The cases
must be exhaustive with respect to the hypotheses. For
example, CASES [% X=<N=-1, X=N %]:

INTERM term: (*) Tries to prove both f(a,term) and
f(term,b) where the current goal is f(a,b) and f is a
transitive operator,

LETEX(var,term): Assigns the term to the
existentially gquantified variable var of the goal,
thereby implementing rule 8a).

LETFA(var,term): Assuming one of the hypotheses
contains a universally quantified variable var,
instantiate var to term in it, thereby implementing
rule 8b)., If there is more than one such hypothesis,

typing LETFA(var,n,term) instantiates the nth

Inference Page 126

hypothesis,

LET vart1 BE termt1, ... varn BE termn IN rulename:

Use the named inference rule with the variables
instantiated as shown (cf, POP-2 partial application).
This is sometimes necessary to overcome weaknesses in
the matcher,

REWRITE: (%) Applies the rewriting rules 1) to 9) to
remove any logical connectives which have appeared in
the hypotheses and to substitute for any equalities
which have appeared,

CONTRAPOS n: (%) Prove the contrapositive form of the
current theorem, negating the nth hypothesis, For
example, if the current theorem is a[il>al[i+1] & i<j =>
NOT ORDERED(a,i,j), after executing CONTRAPOS 1: the
theorem would become i<j & OROERED(a,i,j) =>
al[i)<cali+1], which is easier to prove from the
definition of OROERED given in Appendix 2. CONTRAPOS 0
invokes proof by contradiction by converting the
theorem A=>p to NOT p,A=>false.

DOSUBST (expr1,expr2,expr3); Substitutes expr1 for all
occurrences of expr2 in expr3: expr3 would normally be
GOAL or HYPS, and expr1 must be provably equal to
expr2. For example, DOSUBST(A+B, C2, GOAL) -> GOAL;

SIMPGOAL: This transforms the goal by applying
reduction rules. At one stage this was done
automatically and sometimes Prevented proofs being

found, so it is now done only when requested,

Inference Page 127

SIMPHYPS:; Similiarly, this applies the reduction rules
to all the expressions in the hypotheses.

SIMPHYP expression: Applies the reduction rules to the
particular expression in the hypotheses,

INDUCT var; Prove the current theorem by mathematical
induction on the variable var, e.g. INDUCT M;

INDUCZ2 var; Prove the current theorem by
course—-of-values induction on the wvariable var. These
two rules are required for proving derived rules rather
than programs where the induction has been done by the
proof method,

INDLEMMA(hypotheses,conclusion,name,var):

Try to prove that the hypotheses imply the conclusion
by mathematical induction on var, Then add it as a new
inference rule with the given name,

SWEAT n: Temporarily increases the depth to which the

proof can go by n,

5.4.2 Angther example

As a typical example of these rules, we reproduce one
proof done while verifying the sorting program of Section
6.3, Commands typed by the user appear in 1lower case, and
explanatory comments are indented. The hypothesis of a
theorem is represented by the list of its conjuncts, Proofs
of particular goals and subgoals are shown as tree
structures, with the rule name or routine at the root
followed by the instantiation used, and a description of how

the remaining subgoals were proved; SIMP, CONJ and INST

Inference Page 128

refer to simplification, conjunction and instantiation

respectively,

FAILED [5 1 5] DRDERED(XCHNG(A,I,K)[1,I])
>: prthm:

[((I >= 1) (A[I,-1+Jd]) >= A[K]) (A[I,=14d]) >= A[=1+I])
(I-d =< =3) (IK =< 0) (J=K >= 1)
PERM(A[1,~1+J],A0[1,-1+J]) DRDERED(A[1,-1+I])]

=D

ORDERED([XCHNG(A,I ,K)[1,11):
: cases [% "1i"=1, "1">1 %];

This sort of case analysis 1is wusually required
when using our recursive definitions to prove an
array segment is ordered,

CASE PROVED [ORD1 [(XJ. 1) (XI. 1) (XA.XCHNG(A,1,K))] SIMP]
FAILED [5 1 5 2] ORDERED(XCHNG(A,I,K)[1,I])

The system has proved the first case (I=1) using
the rule DRD1 (see Appendix 2) with the
instantiation shown., The second case now remains
to be proved.

>: use ordi12:
: goon

ORD12 is a counting-down property of ORDERED, It
is - applied here since we are given
DRDERED(A[1,I-1]) as a hypothesis,

FAILED [5 1 5 2 -1 2]
(XCHNG(A ,I,K)[I]J-XCHNG(A,I,K)[-1+I] 5= 0)

>: simpgoal:

(A[K]-A[-1+I] >= 0):
:+ use xf6;
: goon

XFé6 is a rule which proves that an array element
has a property if it is in an array segment all of
whose members have that property,.

FAILED [5 1 5 2 =1 2 =1) EX([XI XK],((A[XI,xK] >= A[=-1+I])
& (XI-K =< 0) & (XK=K >= 0)), 3)

>: sweat 1;
¢ goon

Inference Page 129

Because the default depth is normally 1, and using
the instantiation routine increments the depth
counter, the instantiation 1is not automatically
attempted. However, after temporarily increasing
the depth bound, the correct instantiation 1is
found.

FAILEDO [5 1 5 2 -1 3] ORDERED(XCHNG(A,I,K)[1,-1+I])
This is the third hypothesis of the rule ORD12,

>: simpgoal:

ORDEREO(A[1,=1+4I]):

: goon

CASE PROVED [ORD12 [(XJ.I) (XI. 1) (XA.XCHNG(A,I,K))] [CONUJ

SIMP [XF6 [(XK.=1+J) (XI.I)] [INST [(XK.=14+Jd) (XI.I)]

[CONJ SIMP SIMP SIMP]]] SIMP]]

CASES PROVED [(I = 1) (I >= 2)]

s+ goon

[5 15] PROVED

5.5 Discussign

The top-down tree searching method of proof described
above 1is basically the same as that used by Waldinger and
Levitt, B8ledsoe and Bruell, and Milner, It contrasts with
the approach taken by King, Deutsch, and resolution systems
of negating the conclusion and trying to derive a
contradiction., The direct approach seems preferable in that
it is more natural, easier for the user to understand, and
hence easier for him to give appropriate advice, A possible
disadvantage may arise when the user knows how the proof
should go, wgnts to do it in a bottom-up fashion, but finds
he is being driven by the theorem prover rather than
vice—-versa, In our system such bottom-up proofs can be done

by making deductions from the hypotheses, and by proving

Inference Page 130

lemmas to be treated as reduction rules and then calling

SIMPHYPS

In several systems, including ours, Waldinger and
Levitt’s, Suzuki's and the new LCF (Milner 1975), it is
possible to introduce derived inference rules, Good, London
and Bledsoe can define reduction rules to describe their
newly=-introduced functions. Weir and Burstall (1972) also
used derived rules (macro-inferences) in a resolution-based
proof checker for program correctness. A restriction of our
system is the 1limited 1language in which rules can be
written; a more powerful language (such as @QA4) would be
useful, But whereas our rules are simple logical formulae
which can be proved, the QA4 rules are themselves programs
and hence harder to verify. Only in our system and Milner's
are derived rules prerd from definitions, though Moore's
(1974) LISP theorem prover uses theorems which have been

previously proved as lemmas.

Much of the "knowledge” our system has is embodied in
its rules, While this is a flexible system it can be rather
inefficient. The main problem is that a 1large number of
obviously useless rules are optimistically applied by the
theorem prover. An indexing scheme which considered the
expressions in the hypotheses as well as the conclusion
would greatly reduce this branching ratic and improve the
speed, if not the power, of the theorem prover, There is a
clear trade-off here between (i) storing all rules

concerning the functions involved, which enables some

Inference Page 131

programs to be proved automatically but slowly, (ii) storing
only some of them (the relevant ones), and (iii) not storing
any rules, which means more interaction (to provide the
rules) but faster execution. Roughly speaking, we take the
first alternative, Suzuki the second, and Good, London and
Bledsoe the third. Our reasoning in taking this alternative
is that the system itself should be able to choose the right
property (i.e., rule) to use, since otherwise the user would
either have to delete rules given previously or to give the
same rule more than once in the course of proving a single

program,

Page 132

Chapter 6, EXAMPLES OF PROGRAM BEHAVIOUR

In ¢this chapter we shall study the verifier's
performance on several typical programs, The progams
considered are the 91-function, a program to test whether
one array is a subarray of another, and an insertion sort
program taken from King's thesis. In each case, we start by
showing the specified program which is input to the
verifier, followed by the output of the verifier. The
user’s commands are shown in lower case to distinguish them
from the verifier’s output which 1is in upper case,
Explanatory comments have been added to the proof, indented
and in lower case., In Section 6.4 we show two different

proofs of an inference rule involving the predicate sorted,

In these examples the variable MAXDEPTH refers to the
maximum depth (in terms of the number of inference rules
applied) to which the proof <can go, though this can be
overridden at the wuser’s command. The value of CONDPROVE
determines whether proofs are attempted at conditionals or
not, and TRACE indicates the detail to which the proof is
given, The times shown are in seconds. The reader should
also remember that in POP-2 the truthvalues TRUE and FALSE

have the values 1 and 0 respectively,.

Examples Page 133

6.1 1he 91-function

We have already seen this program in Section 2.,5.1. The
verifier is able to prove it 1is correct without any
assistance from the user, No inference rules are used, but
only the built-in routines for reasoning about relational

expressions and substitution of equalities.

FUNCTION FN91 N => R:
IF N>100 THEN N-10 ELSE FN91(FN91(N+11)) CLOSE -> R:
END:

VARS NO;
[NO]->INITARGS;

ISTAT BODY REC FN91:

VIRT IF N>100 THEN N-10 ELSE 91 CLOSE =-> R;
UNDER TRUE:

WRT [R]

Eroof

FN91 14-4-1975
MAXDEPTH= 1 CONOPROVE= 1 TRACE= 1

COMPILE TIME = 0.753
STARTING NEW PROOF FROM FN91BEG

The function FN91 has labels FN91BEG and FN91ENO
inserted at the beginning and the end of its body.

. . L4 [- L4 L 4 » L4

RUN ACTUAL PROGRAM
AT COND (N >= 101)

The actual program has reached the conditional in
FN91, The verifier now tries to prove either that
the condition or its negation follows from the
path condition, As the initial path condition is
TRUE, its list of conjuncts is NIL.

ASSUME TRUE
This refers to the preceding condition, The path

terminates immediately, and the alternative path
is then taken,

Examples , Page 134

ASSUME FALSE

The inner call of function FN91 has just been
entered, so the precondition of its inclusion
statement 1is being tested. (N=<100) is. the
current path condition.

TEST PRECONDS OF INCLUSION AT FN91BEG
1

FROM PATH CONOITION

(N =< 100)

0K SIMP
SIMP indicates that the condition was proved by
simplification. The virtual program is now
executed., The test N>=90 corresponds to
N+11>=101,

AT COND (N >= 90)
ASSUME TRUE

The outer call of FN91 is now entered with path
condition (N>=190 & N=<100), and with state vector
N=->N+1 (=N+11-10),

TEST PRECONDS OF INCLUSION AT FN91BEG
1

FROM PATH CONDITION

((N >= 90) & (N =< 100))

0K SIMP

AT CONO (N >= 100)
ASSUME TRUE

ASSUME FALSE

ASSUME FALSE

That is, assume N=<89 (N+11=<100), The outer call
of FN91 is now entered with path condition N=<89,
and with state vector N->91,

TEST PRECONOS OF INCLUSION AT FN91BEG
1

FROM PATH CONDITION

(N =< 89)

oK SIMP

AT COND 0
MUST BE FALSE, FROM PATH CONDITION

(N =< 89)
RUN VIRTUAL PROGRAM

All the paths of the actual program have
terminated, and the virtual program 1is now

executed.

Examples Page 135

AT COND (N >= 101)
ASSUME TRUE
ASSUME FALSE

All the paths of the virtual program have now
terminated also, Fach pair of states is now
considered in turn,

FROM PATH CONOITION (N >= 101)
AND (N >= 101)
I.E. (N >= 101)

The first two expressions are the path conditions
of the actual and virtual programs respectively;
the third expression is their conjunction,.

PROVE INCLUSION
R: -=10+N ~=10+N OK SIMP

The equality N=-10=N-10 has simplified to TRUE,

STACKS: NIL NIL oK
ENO PDINTS: FN91END FNS1END

The program is now considering the next pair of
states. It tries to establish the inconsistency
of the two path conditions by proving that the
negation of a conjunct of the virtual program’'s
path condition follows from the actual program’s
path condition, i.e., that N>=101 implies
NOT N=<100,

THE ACTUAL~-VIRTUAL PAIR:
(N >= 101)

(N =< 100)

IS INCONSISTENT: SIMP

THE ACTUAL-VIRTUAL PAIR:
(N = 100)

(N >= 101)

IS INCONSISTENT: GSIMP

FROM PATH CONDITION (N = 100)
AND (N =< 100)
I,E. (N = 100)

PROVE INCLUSION

R: ~9+N 91 DK SIMP

The theorem was trivially proved by substituting
the equality of the hypotheses into the goal. The
remainder of the theorems are all proved directly

by simplification,

STACKS: NIL NIL OK
END PDINTS: FN91END FN91END

Examples

THE ACTUAL-VIRTUAL PAIR:
((N >= 90) & (N =< 99))
(N >= 101)

IS INCONSISTENT: SIMP

FROM PATH CONDITION ((N >= 90) & (N =<
AND (N =< 100)
I.E. ((N>= 90) & (N =< 99))
PROVE INCLUSION
R: 91 91 0K SIMP
STACKS: NIL NIL oK
END POINTS: FN91END FN91END

THE ACTUAL-~VIRTUAL PAIR:
(N =< B89)

(N >= 101)

IS INCONSISTENT: SIMP

FROM PATH CONDITION (N =< 89)
AND (N =< 100)
I.E. (N =< 89)
PROVE INCLUSION
R: 91 91 0K SIMP
STACKS: NIL NIL oK
END POINTS: FN91END FN9I1END

RUN TIME = 5,536

THEOREMS PENDING: NIL

99))

Page 136

Examples Page 137

6.2 A matching program

This program determines whether the array B occurs as a
subarray of the array A. The verifier can prove this program
completely automatically with the exception of one

application of CONTRAPOS invoked by the user.

FUNCTION MATCHV A M B N => BISINA:
VARS I J :
FALSE~>BISINA:
0->1I;
$LOOPI:
LOOPIF I=< M-=N THEN
1=>J;
$LOOPJ:
LOOPIF J=<N THEN
IF A\(I+J)/=B\(J) THEN GDTOD BREAKJ CLOSE:;
J+1=>J:
CLOSE:
$ENOLOOPJ:
TRUE->BISINA; GOTD BREAKI:
$BREAKJ:
I4+1=>1:
CLODSE:
$BREAKI:
ENO:

DECARRAY A [1 M]:
DECARRAY B [1 N];
[%A,"M",B,"N"%]=->INITARGS:

ISTAT BOOY MATCHV:
VIRT IF ISIN(B<<1,N>>,A<<1,M>>)
THEN TRUE ELSE FALSE CLOSE «~> BISINA:
UNOER 0=<N & N=<M:
WRT [BISINA];

ISTAT LOOPI TO [BREAKI]
VIRT IF ISIN(B<<1,N>>,A<<I+1,M>>)
THEN TRUE~>BISINA:
ELSE M-N+1->I CLOSE:
UNDER 0=<I & I=<M-=N+1 & O0=<N:
WRT [BISINA]:;

ISTAT LOOPJ TO [ENOLOOPJ BREAKJ];
VIRT IF EQSEQ(B<<J ,N>>,A<<I+J,I+N>>)
THEN N+1->J; GOTO ENOLOOPJ

ELSE GOTO BREAKJ CLOSE;
UNDER 1=<J & J=<N+1;
WRT [I];

Examples Page 138

Progf

MATCHV 13-5-1975
MAXOEPTH= 1 CONDPROVE= 0 TRACE= 0

COMPILE TIME = B8.169

STARTING NEW PROOF FROM MATCHVBE

Each program FOO implicitly contains labels called
FOOBEG and FODENO at the beginning and end of its
body. In this case the POP-2 system truncates the
name MATCHVBEG to MATCHVBE.

. . . [L] [L) [.

RUN ACTUAL PROGRAM

TEST PRECONDS OF INCLUSION AT LOOPI
((N>= 0) & (M=N >= -1))

FROM PATH CONOITION

((N>= 0) & (M=N >= 0))

OK [CONJ SIMP SIMP]

AT CONO TISIN(B[1,N],A[1,M])
ASSUME TRUE
ASSUME FALSE

RUN VIRTUAL PROGRAM

AT CONO TISIN(B[1,N],A[1,M])
ASSUME TRUE
ASSUME FALSE

ASSUMING ((N >= 0) & (M—N >= 0) & ISIN(B[1,N],A[1,M]))
ANO ((N >= 0) & (M-N >= 0) & ISIN(B[1,N],A[1,M]))
I.e. ((N>= 0) & (M=N >= 0) & ISIN(B[1,N],A[1,M]))

PROVE INCLUSION

BISINA: 1 1 OK SIMP

STACKS: NIL NIL 0K

END POINTS: MATCHVEN MATCHVEN

THE ACTUAL-VIRTUAL PAIR:

((N >= 0) & (M=N >= 0) & ISIN(B[1,N],A[1,M]))
((N>= 0) & (M—=N >= 0) & NOT(ISIN(B[1,N],A[1,M])))
IS INCONSISTENT: SIMP

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) & (M=N >= 0)
((N >= 0) & (M=N >= 0)
IS INCONSISTENT: SIMP

NOT(ISIN(B[1,N],A[1,M])))
ISIN(B[1,N],A[1,M]))

Qo

= 0) & NOT(ISIN(B[1,N],A[1,M])))
= 0) & NOT(ISIN(B[1,N],A[1,M])))
= 0) & NOT(ISIN(B[1,N],A[1,M]1)))

ASSUMING ((N >= 0) & (M=N >
AND ((N >= 0) & (M=N >
I.E., ((N >= 0) & (M=N >

PROVE INCLUSION

BISINA: 0 0 OK SIMP

STACKS: NIL NIL 0K

Examples Page 139

ENO POINTS: MATCHVEN MATCHVEN
STARTING NEW PROOF FROM LOOPI

The first inclusion statement has been verified
and the system is now starting to verify the one
whose start point is LOOPI,

RUN ACTUAL PROGRAM

AT CONO (M=N=I >= 0)
ASSUME TRUE

TEST PRECONDS OF INCLUSION AT LOOPJ

(N >= 0)

FROM PATH CONOITION ~
((N>= 0) & (I >= 0) & (M=N=-I >= 0))
OK SIMP

AT CONO EQSEQ(A[1+I,N+I],B[1,N])
ASSUME TRUE
ASSUME FALSE

TEST PRECONOS OF INCLUSION AT LOOPI

((N>= 0) & (I >= =1) & (M=N=I >= 0))

FROM PATH CONODITION

((N >= 0) & (I >= 0) & (M=N-I >= 0) & NOT(EQSEQ(A[
1+I,N+I],8[1,N])))

OK [CONJ SIMP SIMP SIMP]

AT COND ISIN(B[1,N],A[2+I,M])
ASSUME TRUE
ASSUME FALSE
ASGUME FALSE

RUN VIRTUAL PROGRAM

AT CONO ISIN(B[1,N],A[1+4I,M])
ASSUME TRUE
ASSUME FALSE

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I = 0) & EQSEQ(A[
1+I ,N+I],B[1,N]))

AND ((N >= 0) & (I >= 0) & (M=N-I >= -1) & ISIN(B[
1,N],A[1+4I,M]))

I.E. ((N >= 0) & (I >= 0) & (M=N-I >= 0) & EQSEQ(A]
1+4I,N+I],8[1,N]) & ISIN(B[1,N],A[1+4I,M]))
PROVE INCLUSION
BISINA: 1 1 0K SIMP
STACKS: NIL NIL OK
END POINTS: BREAKI BREAKI

THE ACTUAL-VIRTUAL PAIR:
((N >= 0) & (I >= 0) & (M-N-I >= 0) & EQSEQ(A[1+I,N+I],

B[1,N]))
((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN(B[

Examples Page 140

1,N],A[1+I,M])))
IS INCONSISTENT: [ISINT [(XM.M) (XK., 14I) (XB.A) (XJ.N)
(XI, 1) (XA.B)] [CONJ SIMP SIMP]]

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ
(A[1+I,N+I],B[1,N])) & ISIN(B[1,N],A[2+I,M]))

AND ((N >= 0) & (I >= 0) & (M=N-I >= -1) & ISIN(B[
1,N],A[14I,M]))

I.E, ((N>= 0) & (I >= 0) & (M=N-I >= 0) & NOT(EQSEQ
(Al 1+I,N+I],B[1,N])) & ISIN(B[1,N],A[1+I,M]) & ISIN(B[
1,N],A[2+I,M]))
PROVE INCLUSION
BISINA: 1 1 0K SIMP
STACKS: NIL NIL OK
END POINTS: BREAKI BREAKI

THE ACTUAL-VIRTUAL PAIR:
((N >> 0) & (I >= 0) & (M=N-I >= 0) & NOT(EQSEQ(A[
1+4I ,N4I],B[1,N])) & ISIN(B[1,N],A[2+I,M]))

((N>= 0) & (I >= 0) & (M=N-I >= =1) & NOT(ISIN(B[
1,N],AL 1+I,M])))

IS INCONSISTENT: [ISIN2 [(XM.M) (XK, 14I) (XB.A) (XJ.N)
(XI. 1) (XA.B)] SIMP]

THE ACTUAL-VIRTUAL PAIR:

((N>= 0) & (I >~ 0) & (M=N~-I >= 0) & NOT(EQSEQ(A[
1+4I ,N+I],B[1,N])) & NOT(ISIN(B[1,N],A[2+I,M])))

((N > 0) & (I >>= 0) & (M-N-I >=-1) & ISIN(B[1,N],Al
1+I,M]))

IS INCONSISTENT: [ISINg [(XM.M) (XK, 2+4I) (XB.A) (XJ.N)

(XI. 1) (XA.B)] [CONJ SIMP SIMP SIMP]]

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ
(Al 1+I,N+I]1,B8[1,N])) & NOT(ISIN(B[1,N],A[2+I,M])))

AND ((N >= 0) & (I >= 0) & (M=-N-I >= =1) & NOT(ISIN(
B[1,N],A[1+4I,M])))

I.E. ((N > 0) & (I >= 0) & (M=N-I >= 0) & NOT(EQSEQ
(A[1+I,N+I],B[1,N])) & NOT(ISIN(B[1,N],A[1+I,M])) &
NOT(ISIN(B[1,N],A[2+I,M1)))
PROVE INCLUSION
BISINA: BISINA BISINA OK SIMP
STACKS: NIL NIL OK
END POINTS: BREAKI BREAKI

THE ACTUAL-VIRTUAL PAIR: :
((N >= 0) & (I >= 0) & (M=N=I = =1))

((N >= 0) & (I >= 0) & (M=N-I >= -1) & ISIN(B[1,N],A[
14+4I,M]))

IS INCONSISTENT: [ISIN20 [(XL.=1+N+I) (XK. 1+4I) (XB.A) (XJ.N)

(XI. 1) (XA.B)] SIMP]

ASSUMING ((N >= 0) & (I >= 0) & (M=N-I = =1))

AND ((N >= 0) & (I >= 0) & (M=N=I >= =1) & NOT(ISIN(
B[1,N],A[1+4I,M])))

IE. ((N>= 0) & (I >= 0) & (M-N-I = =1) & NOT(ISIN(B
[17,N],A[1+I,M])))

PROVE INCLUSION

Examples Page 141

BISINA: BISINA BISINA 0K SIMP
STACKS: NIL NIL 0K
END POINTS: BREAKI BREAKI

STARTING NEW PROOF FROM LOOPJ

AT COND (M-N >= 0)
ASSUME TRUE

» . * - * L] L L L

RUN ACTUAL PROGRAM

AT CONOD (N-J >= 0)
ASSUME TRUE

AT coNnO0 (A[I+J]-B[J] /= 0)
ASSUME TRUE
ASSUME FALSE

TEST PRECONDS OF INCLUSION AT LOOPJ

((b >= 0) & (N=J 5= 0))

FROM PATH CONOITION

((J >= 1) & (N=J >= 0) & (A[I+J]-B[Uu] = 0))
OK [CONJ SIMP SIMP]

AT CONO EQSEQ(A[1+I+J,N+I],B[1+J,N])
ASSUME TRUE

ASSUME FALSE

ASSUME FALSE

RUN VIRTUAL PROGRAM

AT CONO EQSEQ(A[I+J,N+I],B[J,N])
ASSUME TRUE
ASSUME FALSE

ASSUMING ((J >= 1) & (N~J >= 0) & (A[I+J]=-B[J] /= 0))
ANO ((J >= 1) & (N=J >= -1) & EQSER(A[I+J,N+I],B[J,N]))
I.e. ((J>= 1) & (N=J >= 0) & (A[I+J]=-B[J] /= 0)

& EQSEQ(A[I+J,N+I],B[J,N]))

PROVE INCLUSION

I: I I 0K SIMP

STACKS: NIL NIL OK

ENO PDINTS: BREAKJ ENOLODOPJ

The system realizes that something is wrong as the
two end points are different so it goes back and
again tries to show that the two sets of
conditions are inconsistent (without initial

success).
FAILEO [37] NOT(ERSEQR(A[I+J,N+I],B[J,N]))
>prthm:

[(J >= 1) (N=J >= 0) (A[I+J]-B[J] /= 0)]

==>

Examples Page 142

NOT(EQSEQ(A[I+J ,N+I],B[J,N]))
contrapos 3:
FAILEDO [37 1] (A[I+J]-B[J] = 0)

sppr(hyps);
((J >= 1) (N-J >= 0) EQSEQ(A[I+J,N+I],B[J,N])]

sweat 1:
goon

CONTRAPO PROVED [EQSEQ3 [(XJ.N) (XM,N+I)] [INST [(XJ.N)
(XM.N+I)] [CONJ SIMP SIMP1]]
goon

[37] PROVED

THE ACTUAL-VIRTUAL PAIR:

((b>= 1) & (N~J >= 0) & (A[I+J]=B[J] /= 0))

((b >= 1) & (N-J >= =-1) & EQSEQ(A[I+J,N+I],B[J,N]))
IS INCONSISTENT: [CONTRAPO 3]

ASSUMING ((J >= 1) & (N=J >= 0) & (A[I+J]-B[J] /= 0))
])))AND ((b >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,
N
I.e, ((J>= 1) & (N-J >= 0) & (A[I+J])-B[J] /= 0)

& NOT(EQSER(A[I+J,N+I],B[J,N])))
PROVE INCLUSION
I: I I 0K SIMP
STACKS: NIL NIL oK
END POINTS: BREAKJ BREAKJ

ASSUMING ((J >= 1) & (N=J >=

& EQSEQ(A[1+I+J,N+I],B[1+J,N]
AND ((J >= 1) & (N~J >= =
I.E. ((J >= 1) & (N-J >=

& EQSEQ(A[1+I+J,N+I],B[1+J,N]

PROVE INCLUSION

I: I I DK SIMP

STACKS: NIL NIL 0K

END POINTS: ENOLOOPJ ENOLDOPJ

& (A[I+J])-B[J] = 0)

& (A[I+y])-B[J] = 0)

0)

))

1) & EQSEQ(A[I+J,N+I],B[J,N]))
0)

) & ERSEQ(A[I+J,N+I],B[J,N]))

THE ACTUAL-VIRTUAL PAIR:
((J >= 1) & (N=J >= 0) & (A[I+J]-B[JU] = 0) & ERSER(A[
1+I+J,N+I],B[1+J,N]))

((J >= 1) & (N=J >= =1) & NDT(EQSEQ(A[I+J,N+I],B[J,N])))
IS INCONSISTENT: [EQSEQ2 [(XM.N) (XK.J) (XB.B) (XJ.N+I)
(XI.I+J) (XA.A)] [CONJ SIMP SIMP SIMP SIMP]]

THE ACTUAL-VIRTUAL PAIR:
((J >= 1) & (N=Jd >= 0) & (A[I+J4)-B[J] = 0) & NOT(ERSEQ(A

[14I+J,N+I],B[1+J,N])))

((J >= 1) & (N=J >= -1) & EQSEQ(A[I+J,N+I],B[J,N]))

IS INCONSISTENT: [EQSEQR4 [(XM.N) (XK. 1+4J) (XB.B) (XJ.N+I)
(XI, 1+4I+J) (XA.A)] [CONJ SIMP SIMP SIMP]]

Examples

ASSUMING ((J >= 1) &
& NOT(EQSER(A[1+I+J,N+I],B[

(N=J >= 0)
1+J,N])))

Page 143

& (A[I+J])-B[J] = 0)

AND ((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,
N]1)))
I.E, ((J >= 1) & (N=J >= 0) & (A[I+J]=-B[J] = 0)
& NOT(EQSEQ(A[1+I+J,N+I],B[14J,N])) & NOT(EQSEQ(A[I+J,N+I],
B[J,N])))
. PROVE INCLUSION
I: I I OK SIMP
STACKS: NIL NIL 0K
END POINTS: BREAKJ BREAKJ

ASSUMING ((J >= 1) &
AND ((J >= 1) &

(N=-J

v

I.E. ((J>= 1) & (N=J = =1)
PROVE INCLUSION

I: I I 0K SIMP

STACKS: NIL NIL OK

ENO POINTS: ENOLOOPJ ENDLOOPJ

THE ACTUAL-VIRTUAL PAIR:

((J >= 1) & (N=J = =1))
((J >= 1) & (N~Jd >= ~-1) &
IS INCONSISTENT:
(XI.I+J) (XA.A)] [CONJ SIMP SIMP]]

RUN TIME = 67.661

THEOREMS PENOING: NIL

(N=J = =1))
)

& EQSEQ(A[I+J,N+I],B[J,N]))

& EQSEQ(A[I+J,N+I],B[J,N]))

NOT (EQSEQ(A[I+J,N+I],B[J,N])))
[EQSEQT [(XM.=1+J) (XK.d) (XB.B) (XJ.=1+I+J)

Examples Page

6.3 A sorting program

This program is from King's thesis, although his system
was unable to prove it. Our proof includes the fact that
the final array is a permutation of the original one. The
proof requires advice from the user in several places but in
many cases it suffices to tell the automatic theorem prover
to work harder, Most of the substantative advice given by

the user consists of the commands CASES and USE,

FUNCTION K9 A N:
VARS I J K X:
ASSERT A=AD0 & 2=<N:
1~>1:
$L1:
LODOPIF I<N THEN
ANI->X; I->K; I+1=->J:

$L2:
ASSERT 1=2<I & I=<K & K<Jd & J=<N+1
I<N
X=A\K

(I=1 OR A\(I-1) =< A<<I,N>>)
A<<I ,J=1>> >= X

ORDERED (A<<1,I-1>>)
PERM(A<<1,N>>,A0<<1,N>>);

e lireline Jre i re Jog)

LOOPIF J=<N THEN
IF X>A\J THEN A\J->X; J->K CLOSE;
J+1->J;
CLOSE
A\I->A\K; X=>A\I; I+1->I;
CLOSE;
$0UT:
ASSERT ORDERED(A<<1,N>>) & PERM(A<<1,N>>,A0<<1,N>>);
ENO:

VARS NO:
ODECARRAY AC [1 NOJ;
[% A0,"NO" %]->INITARGS:;

144

Examples Page 145

Proof

K9 13-5-1975
MAXOEPTH= 1 CONOPROVE= 0 TRACE= 0

COMPILE TIME = 5,442

STARTING NEW PROOF FROM K9BEG

L4 L] . L 4 L . . L] L

AT CONO (N >= 2)
ASSUME TRUE

TEST ASSERTION AT L2

((N >= 2) & (A[1, 11 >= A[1]) & PERM(A[1,N],AO[1,N])
& OROEREO(A[1, 01))

FROM PATH CONOITION

((N >= 2) & (AD = A))

FAILED [1 2] (A[1, 1] >= A[1])

>sweat 1;
goon

[1 2] PROVED

OK [CONJ SIMP [XF1 [(XZ.A[1]) (XJd. 1) (XI. 1) (XA.A) (XF.>=)]
[CONJ [XFO [(XZ.A[1]) (XJ. 0) (XI. 1) (XA.A) (XF.>=)] SIMP]
SIMP]] [PERMT [(XM.N) (XK. 1) (XB.A) (XJ.N) (XI, 1) (XA.A)]
REDUCTN] [ORO1 [(XJ. 0) (XI. 1) (XA.A)] SIMP]]

ASSUME FALSE

TEST ASSERTION AT 0OUT
(PERM(A[1,N],AO[1,N]) & OROEREO(A[1,N]))
FROM PATH CONOITION
0
OK [CONJ SIMP SIMP]

STARTING NEW PROOF FROM L2

AT CONO (NO >= 2)
ASSUME TRUE

AT CONO (N-J >= 0)
ASSUME TRUE

AT CONO (X~A[J] >= 1)
ASSUME TRUE

TEST ASSERTION AT L2
((I >= 1) & (A[I,J] >= A[J]) & (N=I >= 1) & (N=~d >=
0) & (I-J =< 0) & PERM(A[1,N],AO0[1,N]) & OROERED(A[
1,-1+I]1) & ((I = 1) OR (A[I,N] >= A[-1+I])))
FROM PATH CONOITION
((I >= 1) & (A[I,=1+4] >=X) & (N=I >= 1) & (N=J >=
0) & (I-K =< 0) & (U= >= 1) & (X=A[J] >= 1) &
(x-A[K] = 0) & PERM(A[1,N],AO0[1,N]) & ORODEREO(A[1,-1+I])
& ((I = 1) OR (A[I,N] >= A[=-1+I])))

Examples Page 146

FAILED [3 1 2] (A[I,J] >= A[J])

>sweat 2:;
goon

[3121 PROVED
FAILED [3 1 5] (I-Jd =< 0)

>sweat 1:
goon

[3 15] PROVED
FAILED [3 2 2] (A[1,J] >= A[J])

sprthm:

[(N>= 2) (K >= 1) (A[1,-14d] >= A[K]) (N=J >= 0) (UK

:: 0;;](A[J]—A[K] =< =1) PERM(A[1,N],AQ[1,N]) OROERED(A[
==>

(Al 1,9] >= A[J])

use xf1:
goon

FAILED [3 2 2 =1 1] (A[1,=-1+4J] >= A[J])

>sweat 2:
goon

[32 2] PROVED
FAILEO [3 2 5] (J >= 1)

>sweat 1:
goon

[32 5] PROVED

OK [CONJ [CONJ SIMP [XF1 [(XZ.A[J]) (XJ.J) (XI.I) (XA.A)
(XF .>=)] [CONJ [TR [(XY.A[K])] [CONJ DEF [INST [(XY.A[K])]
(CONJ SIMP SIMP1]]] SIMP]] SIMP SIMP [TR [(XY.=-1+J—K)] [CONJ
DEF [INST [(XY.=-1+J-K)] [CONJ SIMP SIMP1]]] SIMP SIMP SIMP]
[CONJ SIMP [XF1 [(XZ.A[J]) (XJ.J) (XI. 1) (XA.A) (XF.>=)]
[conNJ [TR [(XY.A[K])] [conJy DEF [INST [(XY.A[K])] [conJ
SIMP SIMP1]]] SIMP]] SIMP SIMP [TR [(XY.K)] [CONJ DEF [INST
[(XY.K)] [CONJ SIMP SIMP1]]] SIMP SIMP SIMP]]

ASSUME FALSE

TEST ASSERTION AT L2

((I >= 1) & (A[I,J] >=X) & (N=-I >= 1)
& (I-K =< 0) & (UK >= 0) & (X-A[K]

1,N],A0[1,N]) & ORDERED(A[1,-1+I]) & (

(A[I,N] >= A[=-1+1])))

FROM PATH CONDITION

((I >= 1) & (A[I,=14J] >=X) & (N-I >= 1) & (N=J >=
0) & (IX =< 0) & (J=K >= 1) & (x-~A[J] =< 0) &
(Xx-A[K] 0) & PERM(A[1,N],AO[1,N]) & ORDERED(A[1,-1+4I])
& ((I 1) OR (A[I,N] >= A[=-1+I1)))

& (N=J >= 0)
= 0) & PERM(A[
(I = 1) OR

Examples Page 147

OK [CONJ [CONJ SIMP [XF1 [(XZ.A[K]) (XJ.J) (XI.I) (XA.A)
(XF.>=)] [CONJ SIMP SIMP]] SIMP SIMP SIMP SIMP SIMP SIMP SIMP
SIMP] [CONJ SIMP [XF1 [(XZ.A[K]) (XJ.d) (XI. 1) (XA.A) (XF.>=)]
[CONJ SIMP SIMP]] SIMP SIMP SIMP SIMP SIMP SIMP SIMP SIMP]]
ASSUME FALSE

AT COND (N-I s>= 2)
ASSUME TRUE

TEST ASSERTION AT L2

((I >= 0) & (CHNG{CHNGB(A,A[I],K),X,I)[1+I, 1+I] >= CHNG{CHNG(
AA[fI],K),X,I)[14I1) €& (N-I >= 2) & PERM(AO[1,N],CHNG(CHNG
(A,A[I],K),X,I)[1,N]) & ORDERED(CHNG(CHNG(A ,A[I],K),.X,I)[
1,I1) & ((I = 0) OR (CHNG(CHNG(A,ATI],K),X,I)[1+I,N]

>= CHNG(CHNG(A,A[I],K),X,I)[I])))

FROM PATH CONDITION

((I >= 1) & (A[I,-1+J] >=X) & (N~I >= 2) & (N-J =
~1) & (I-K =< 0) & (J-K >= 1) & (X-A[K] = 0) &
PERM(A[1,N],A0[1,N]) & ORDERED(A[1,-1+I]) & ((I =

1t} 0R (A{I,N] >= A[~14I])))
FAI%ED [51 2] (XCHNG(A,I,K)}[1+I, 14I] >« XCHNG(A,I,K)[
1+1])

>sweat 1;
goon

[5121 PROVED
FAILED [5 1 4] PERM(AO[1,-1+J],XCHNG(A,I,K)[1,-1+4J])

>sinterm "a"<<1,"§"=15>;

SUBGOAL PROVED SIMP
FAILED [5 1 4 2] PERM{A[1,=1+J] ,XCHNG(A,I,K}[1,~-1+4])

>use permi13:
goon

FAILED [5 1 4 2 =1 3] (K »>= %)

>sweat 1;
goon

FAILED [5 1 4 2 ~1 3] (K >= 1)

>sweat 1
goon

SUBGOAL PROVED [PERM13 [(XV.K) (XU.I) (XJd.=~t+J)} (XI. 1) (XA.A)}]
{CONJ SIMP SIMP [TR [(XY.-I+K)] [CONJ DEF [INST [(XY.-I+K)]
{conNd SIMP SIMP11]] SIMPY]

goon

[5141 PROVED
FAILED [5 1 5] ORDEREO(XCHNG(A,I,K)[1,I])

sassume

ExampPles Page 148

The proof of this condition is given in Section 5.4.2,
FAILED [5 1 6] (XCHNG(A,I,K)[1+4I,=-14J] >= XCHNG(A,I,K)[I])
>8impgoal;
(XCHNG(A,I,K)[1+4I,-14J] >= A[K])

use xf3:
goon

FAILED [5 1 6 =1] (XCHNG(A,I,K)[I,=1+J] >= A[K])

> use xchngh:
goon

[516] PROVED
FAILED [5 2 2] (XCHNG(A, 1,K)[2, 2] >= XCHNG(A, 1,K)[21])

>sweat 1:
goon

[52 2] PROVED
FAILED [5 2 4] PERM(AO[1,-1+J],XCHNG(A, 1,K)[1,-1+J])

sinterm "a"<<1,"j"=1>>:

SUBGDAL PROVED SIMP _

SUBGDAL PROVED [PERM13 [(XV.K) (XU. 1) (XJ.=1+J) (XI. 1)
(XA.A)] [CONJ SIMP SIMP SIMP SIMP1]

goon

[5 2 4] PROVED
FAILEDO [5 2 6] (XCHNG(A, 1,K)[2,=-1+J] >= XCHNG(A, 1,K)[1])

>Simpgoal:
(XCHNG(A, 1,K)[2,=-1+4] >= A[K])

use xf3:
goon

FAILED [5 2 6 =1] (XCHNG(A, 1,K)[1,=-1+J] >= A[K])

>use xchngb:
goon

[5 2 6] PROVED

DK [CONJ [CONJ SIMP [XF1 [(XZ.XCHNG(A,I,K)[14I]) (XJ. 1+I)
(XI. 14+I) (XA.XCHNG(A,I,K)) (XF.>=)] [CONJ [XFO [(XZ.XCHNG(A,I,K
Y[14I]) (XJ.I) (XI. 14I) (XA.XCHNG(A,I,K)) (XF.,>=)] SIMP]

SIMP]] SIMP [INTERM A[1,-1+J]] ASSUMED [XF3 [(XX.A[K]) (XJ.=1+J
) (XI. 14+I) (XA.XCHNG(A,I,K)) (XF.>=)] [XCHNGS [(XZ.A[K])
(XJ.=14d) (XI.I) (XV.K) (Xu.,I) (XA.A) (XF.>=)] [CONJ SIMP

SIMP SIMP SIMP SIMP]]]] [CONJ SIMP [XF1 [(XZ.XCHNG(A, 1,K)[

2]) (XJ. 2) (XI. 2) (XA.XCHNG(A, 1,K)) (XF.>=)] [CONJ [XFO

[(XZ.XCHNB(A, 1,K)[21) (XJ. 1) (XI. 2) (XA.XCHNG(A, 1,K))

Examples Page 149

(XF.>=)] SIMP] SIMP]] SIMP [INTERM A[1,-1+J]] [0RD1 [(XJ.

1) (XI. 1) (XA.XCHNG(A, 1,K))] SIMP) [XF3 [(XX.A[K]) (XJ.=1+J)

(XI. 2) (XA .XCHNG(A, 1,K)) (XF.,>=)] [XCHNGS [(XZ.A[K]) (XJ.=1+J)
(XI. 1) (XV.K) (XU, 1) (XA.A) (XF.>=)] [CONJ SIMP SIMP SIMP

SIMP SIMP1]111]]

ASSUME FALSE

TEST ASSERTION AT 0OUT

(PERM(AD[1,N],CHNG(CHNG(A,A[I],K),X,I)[1,N]) & ORDERED(CHNG(C
HNG (A,A[I],K),X,I)[1,N]))

FROM PATH CONDITION

((I >= 1) & (A[I,-14J] >=X) & (N~I = 1) & (N=J =
-1) & (I =< 0) & (UK >= 1) & (Xx-A[K] = 0) &
PERM(A[1,N],AO[1,N]) & OROERED(A[1,-1+I]) & ((I =

1) OR (A[I,N] >= A[-14I1)))
FAILED [6 1 1) PERM(AO[1,-14+J],XCHNG(A,=2+J,K)[1,=-14J])

sprthm:

[(J >= 3) (A[-24J,=-14J] >= A[K]) (A[-24J,-14+J] >= A[-3+J])
(J=K >= 1) (J=K =< 2) PERM(A[1,-14+J],A0[1,-1+J]) OROEREO(A[
1,-3+J])]

-_—

PERM(AD[1,=14J],XCHNG(A,=2+J,K)[1,=1+J])
interm "a"<<1,"j"-1>>;

SUBGOAL PROVED SIMP
FAILED [6 1 1 2] PERM(A[1,-14J],XCHNG(A,=2+J,K)[1,-1+J])

>use perm13:
goon

FAILED [6 1 1 2 =1 3] (K >= 1)

>sweat 1:
goon

FAILED [6 1 1 2 =1 3] (K >= 1)

>interm "j"-2:

SUBGOAL PROVED SIMP
SUBGOAL PROVED SIMP
goon

SUBGOAL PROVED [PERM13 [(XV.K) (XU.-2+J) (XJ.=14J) (XI. 1)
(XA.A)] [CONJ SIMP SIMP [INTERM =-2+J] SIMP]]
goon

[6 1 1] PROVED
FAILED [6 1 2] ORDERED(XCHNG(A,=2+J,K)I[1,-1+J])

>use ord12:
goon

Examples Page 150

FAILED [6 1 2 ~1 2] (XCHNG(A,=2+J,K)[=2+J]=XCHNG(A ,~2+J,K)[=1+J]
=< 0)

>simpgoal;

(A[K]=XCHNG (A ,=-2+J,K)[=-1+J] =< 0)

cases [% "k"="3"-2, "k"="j"-1 %];

FAILED [6 1 2 =1 2 1] (A[K]-XCHNG(A,K,K)[14K] =< 0)
>simpgoal;

(A[K]=-A[14K] =< 0)

sweat 2:
goon

CASE PROVED [XF6 [(XK. 1+K) (XI.K)] [INST [(XK. 1+K) (XI.K)]
SIMP1]
FAILED [6 1 2 =1 2 2] (A[K]=XCHNG(A,=-1+K,K)[K] =< 0)

>simpgoal:
(A[K]-A[-1+4K] =< 0)

sweat 2:
goon

CASE PROVED [XF6 [(XK.K) (XI.-14K)] [INST [(XK.K) (XI.=-14K)]
SIMP]])

CASES PROVED [(J=K = 2) (J=K = 1)]

goon

FAILED [6 1 2 -1 3] ORDERED (XCHNG (A ,=2+J,K)[1,-24J])
>cases [% 1="j"=2, 1<"j"=2 %];

CASE PROVED [0RD1 [(XJ. 1) (XI. 1) (XA.XCHNG(A, 1,K))] SIMP]
FAILED [6 1 2 =1 3 2] ORDERED (XCHNG(A,=2+J,K)[1,-2+J])

>use ord12;
goaon

FAILED [6 1 2 -1 3 2 -1 2] (XCHNG(A,-2+J,K)[“3+J]-XCHNG(A,-2+J,K
J[-2+J] =< 0)

>simpgoal:
(A[K]-A[=-3+J] >= 0)

sweat 2:;
goon

FAILED [6 1 2 =1 3 2 -1 3] ORDERED(XCHNG(A,=2+J,K)[1,-3+J])

Examples Page 151

>simpgoal;
ORDERED (A[1,=-3+4+J])
goon

CASE PRDVED [DRD12 [(XJ.=2+J) (XI. 1) (XA.XCHNG(A,-2+J,K))]
[CONJ SIMP [XF6 [(XK.=14J) (XI.=2+J)] [INST [(XK.=14J) (XI.,=2+J
)] [CONJ SIMP SIMP SIMP1]] SIMP]]

CASES PROVED [(J = 3) (J >= 4)]

goon

[6 1 21 PRDVED
FAILED [6 2 1] PERM(AO[1, 21,XCHNG(A, 1,K)[1, 2])

>prthm:

[(K >= 1) (K =< 2) (A[1, 2] >= A[K]) PERM(A[1, 2],A0([
1, 2]) DRDERED(A[1, 0])]

==>
PERM(AO[1, 2],XCHNG(A, 1,K)[1, 21)

interm "a"<<1,2>>:

SUBGDAL PRDVED SIMP

SUBGDAL PRDVED [PERM13 [(XV.K) (Xu. 1) (XJ. 2) (XI. 1) (XA.A)]
[CONJ SIMP SIMP SIMP SIMP]]

goon

[6 2 1] PROVED
FAILED [6 2 2] DRDERED(XCHNG(A, 1,K)[1, 21)

>use ord2:
goon

FAILED [6 2 2 =1 2] (XCHNG(A, 1,K)[1]-XCHNG(A, 1,K)[2]
=< 0)

>cases [% "k"=1, "k"=2 %];

FAILED [6 2 2 =1 2 1] (XCHNG(A, 1, 1)[1]=XCHNG(A, 1, 1)[
2] =< 0)

>simpgoal;
(A[1]-A[2] =< 0)

sweat 2:
goon

CASE PROVED [XF6 [(XK. 2) (XI. 1)] [INST [(XK. 2) (XI. 1)]
SIMP]]

FAILED [6 2 2 -1 2 2] (XCHNG(A, 1, 2)[1)=XCHNG(A, 1, 2)[
2] =< 0)

>simpgoal:

Examples Page 152

(A[1]-A[2] >= ©0)

sweat 2:
goon

CASE PRDVED [XF6 [(XK, 2) (XI, 1)) [INST [(XK. 2) (XI. 1)]
SIMP]]

CASES PROVED [(K = 1) (K = 2)]
goon

FAILED [6 2 2 =1 3] ORDERED(XCHNG(A, 1,K)[2, 21])

>sweat 1:
goon

[6 2 2] PRDVED

DK [CDONJ [CONJ [INTERM A[1,-1+J]] [ORD12 [(XJ.-14J) (XI.

1) (XA ,XCHNG(A,-2+J,K))] [CDNJ SIMP [CASES (J-kK = 2) (J=K

= 1)) [CASES (J = 3) (J >= 4)])1)] [CONJ [INTERM A[1, 2]]
[DRD2 [(XJ. 2) (XI. 1) (XA.XCHNG(A, 1,K))] [CONJ SIMP [CASES
(K = 1) (K = 2)] [DRD1 [(XJ. 2) (XI. 2) (XA.XCHNG(A, 1,K))]
SIMP1]111]

RUN TIME = 417.022

THEDREMS PENDING:

[0(I >= 1) (A[I,-1+4] >= A[K]) (A[I,-1+J] >= A[=1+I]) (I-J
=< =3) (I-K =< 0) (J=K >= 1) PERM(A[1,-1+J],A0[1,=-1+J])
ORDERED(A[1,-1+I])] ORDERED(XCHNG{(A,I,K)[1,I1)]

Examples Page 153

6.4 Derived rules

In this section we show the proof of the validity of a
particular derived inference rule. The rule 1is DRD12
(Appendix 3), a counting-down, recursive characterization of
the predicate ordered,

IR DRD12

DRDERED (XA<<XI ,XJ>>)

<== [% XI<XJ, XA(XJ=1)=<XAxJ, DRDERED(XA<<XI,XJ=~1>>) %]:
We shall actually give two proofs of this rule. In the
first proof we assume that ordered is defined recursively

by:

ordered(ali,j]) <-> 1i>=j or
ali)=<a[i+1] & ordered(ali+1,3i]).

This definition is represented by the rules DRD1 to DRD4 of
Appendix 2, In this case the proof is by induction on the
length of the array segment, Since we are assuming that i<

we start by letting j=i+n+1 and do induction on n.

In the second proof we define ordered in the more
direct way by:
ordered(ali,j]) <-> (FA x)(i=<x & x<j => al[x]=<alx+1]),
using the two inference rules
IR NORD1
DRDERED (XA<<XI, XJ>>)
<== [% (FA XX)(XI=<XX & XX<XdJ =>> XA\XX=<XA\ (XX+1)) %]:
IR NORDZ2
XA\ XX=<XA\ (XX+1)
<== [% (EX [XI XJ])(XI=<XX & XX<XJ &
DRDERED (XA<<XI , XJ>>)) %];
In this case the proof reduces to a case analysis, In

practice, given this definition the rule ORD12 would not

also be required but the proof is indicative of the way the

Examples Page 154
rules NORD1 and NORD2 are used.

In each case, the theorem to be proved is

i<j & alj-1)=<alj] & ordered(ali,j-1]) => ordered(al[i,j])

Eirst proof

ORD 14-5-1975
MAXDEPTH= 2 CONDPROVE= 0 TRACE= 0

FAILED [3] ORDERED(XA[XI,XJ])
>prthm:

[(XI-XJ =< =1) (XA[XJ]=XA[=14XJ] >= 0) ORDERED (XA[XI,=-1+XJ])]
==

ORDERED(XA[XI,XJ])

add xj=xi+xn+1;
subst(xi+xn+1,xj,goal) -> goal:
subst (xi+xn+1,xj,hyps) =-> hyps:

This substitutes i+n+1 for j throughout the theorem.
prthm:

[(XN >= 0) (XA[1+XI#XN]-XA[XI+XN] >= 0) ORDERED(XA[XI,XI+XNJ])]

==>

ORDERED(XA[XI, 1+XI+XN])
induct xn:

BASIS PROVED [ORD2 [(XJ. 14XI) (XI.XI) (XA.XA)] [CONJ SIMP
SIMP [ORD1 [(XJ. 14XI) (XI. 14XI) (XA.XA)] SIMP1]]
FAILED [3 2] ORDERED(XA[XI, 2+XI+XN01])

>use ord2:
goon

FAILED [3 2 =1 2] (XA[XI]-XA[1+XI] =< 0)

>use ord3;
goon

FAILED [3 2 =1 3] ORDERED(XA[14XI, 2+XI+XN01])

The induction hypothesis is the rule
ordered(xal[xi,xi+xn01+1]) <= ...

The two conclusions will not match unless the

instantiations for the variables of the induction

hypothesis are given explicitly, In doing this,

the first xi is the one in the rule and the second

is the one in the goal,

Examples Page 155

>let xi be xi+1 in indhyp:
goon

STEP PROVED [DRD2 [(XI. 14XI)] [CONJ SIMP [DRD3 [(XJ. 1+XI+XNO1
) (XI.XI) (XA.XA)] [INST [(XJ. 1+XI+XNO1) (XI.XI) (XA.XA))

[CONJ SIMP SIMP1]] [INODHYP [(XI.XI) (XA.XA)] [CONJ SIMP SIMP
[ORD4 [(XJ. 1+4XI+XNO1) (XI., 14+XI) (XA.XA)] [CDNJ SIMP SIMP1]]]]]

goon

[3] PROVED

Second proof

DRD 14-5-1975
MAXDEPTH= 2 CONDPRDVE= 0 TRACE= O

FAILED [4] ORDERED(XA[XI,XxJ])
sprthm:

[(XI-XJ =< =1) (XA[XJ]-XA[-1+XJ] >= 0) DRDERED(XA[XI,~1+XJ])]

DROERED (XA[XI,XxJ])

use nord1:
goon

FAILED [4 -1] (XA[XX02]=XA[1+XX02] =< 0)

XX02 is a Skolem constant introduced from the FA
expression,

>prthm:

[(XI=XJ =< =1) (XI-XX02 =< 0) (XJ=XX02 >= 1) (XA[XJ]=XA[-1+XJ]
>= 0) DRDERED(XA[XI,~-1+XJ])]
m=D

(XA[XX02]-XA[1+XX02] =< 0)
cases [% xx02=xj=-1, xx02<xj=1 %]:

CASE PRDVED SIMP ’
FAILED [4 -1 2] (XA[XX02]-XA[1+XX02] =< 0)

>use nord?2:
goon

CASE PRDVED [NDRD2 [(XJ.=1+XJ) (XI.XI) (XA.XA)] [INST [(XJ.=14X
J) (XI.XI) (XA.XA)] [CONJ SIMP SIMP SIMP]]]

CASES PROVED [(XJ=XX02 = 1) (XJ=XX02 >= 2)]

goon

[41 PRDVED

Page 156

Chapter 7. CONCLUSIONS

7.1 Summary

We have presented in this thesis a new method for
proving properties of programs and an implemented
verification system which uses both this method and Floyd'’s
method. The proof method is based on symbolic execution and
as such relies on the operational semantics of a 1language.
It is a generalization of Floyd’s method and can be
effectively used in conjunction with it, especially for
handling subroutines and recursive procedures, Moreover, it
can also handle language features such as non-local Jjumps,
side-effects and non-determinism. While the method is very
convenient to use for some programs (e.g. the 91-function),
for others it can require more detailed specifications than
are really necessary and hence makes these programs harder
te verify (e.g. GCD, Section 3.3.1). Thus the method is
perhaps best seen as a complement to existing methods, one

which is occasionally preferable to any of them.

The program verification system 1is interesting for
several reasons: firstly for the way it "borrows"” the
s;mantics of the language as actually implemented, thereby
obviating the need for a formal definition of the language,
secondly for the use of high=-level specifications, and
thirdly for the way an interactive theorem prover can

augment a simple automatic one, enabling non~trivial

programs, including two sorting programs and a program to

Conclusions Page 157

invert a permutation "in place”, to be verified, It is also
an extensible system, allowing new functions to be declared,
defined by rules, and given properties which are then used
by the simplifier and matcher., The major weakness of the
verification system is that, with the exception of the
permutation example, we have not been able to use it to
verify any difficult programs which have not already been
verified completely automatically by other systems, Fven
those proofs we have done have been quite hard to find
(certainly while sitting at a terminal) and tedious to
check, Finally, the system can be very slow, especially
considering that its automatic theorem prover possesses
almost no "intelligence”, Nevertheless the system has
achieved a limited success in a difficult area, and with the
modifications and extensions described in the next section

could be a useful tool.

7.2 Improvements and extensions

Several factors contribute to the deficiencies just
mentioned. These include the 1lack of a routine for
simplifying conjunctions of more than two relational
expressions (e.g. our system cannot simplify asb & b>c & c>a
to false), the implementation of transitivity as an
inference rule requiring the use of the matcher, the fact
that rules are applied without considering the hypotheses
and thus leading to a rather blind search, the limited

knowledge about quantifiers and sets, and the excessive use

Conclusions Page 158
of the algebraic simplifier.

Some of these difficulties can be overcome in
straightforward Ways. For example, using a unigue
representation for identical expressions (as in QA4) allows
a property l1list to be associated with each expression which
can facilitate transitivity and set operations, and avoid
repeated computations of related expressions (e.g.
negations), Alternatively, and more simply in our system,
adding the typing and cases mechanism described briefly in
Good et al. (1974) would also improve our ability to reason

about relational expressions.,

A more difficult problem is deciding which inference
rule to apply at any given point, It is clearly necessary
to consider the hypotheses of both the theorem and the rule
when doing this, A generalization of our current indexing
scheme which only applied a rule automatically if every
"interesting”™ predicate in the rule’'s hypotheses also
occurred in the theorem's hypotheses would surrender
completeness (which the automatic theorem prover doesn't
have anyway), but it would drastically reduce the search
space, allow the search to go deeper and possibly result in

improved performance.

But the most important problem is the nature of the
rules themselves, There are too many rules doing similiar
things, the user needs to know exactly what they each are,
and must be able to decide which one 1is currently

applicable. More descriptive names alone would help, but a

Conclusions Page 159

better solution 1is to give "natural” rather than recursive

definitions of new functions, for example,

ordered(alx,y]) <=> (FA u)(x=<u<y => al[ul=<alu+1]) .

Our various counting—-up and counting-down rules would then
be combined into rules about the quantifiers only, and to
prove ordered{(a[i,j]) the user would say "count-down” rather
than "use ORD12", This would also allow uniform heuristics
for quantifiers to be introduced, thereby lessening still
further the burden on the user, We are currently modifying

the system to use such non-recursive definitions.

Extensions which would make the system more useful
include the ability to do proofs by Burstall's hand
simulation method, and the provision of raoutines for
manipulating explicit sets, including sets defined by
abstraction., The first of these would allow the proofs of
programs such as the Schorr—-Waite program to be attempted,
and the second would be an additional aid to writing

assertions in the most natural way.

7.3 Eurther research

There are two dimensions in program verification:
towards increased program complexity, and toward increased
programming language complexity. This thesis has considered
both aspects, in the verifier and the proof method

respectively., While it is a non-trivial task to devise =a

Conclusions Page 160

proof system and write a verification condition generataor
for a language with powerful features (as evidenced by the
present work and by Igarashi, London and Luckham, 1973), we
now believe that this is much the less important direction
of the two. Even in the simplest language it is possible to
write arbitrarily complicated programs which require a
considerable body of extra-programming knowledge in order to
be verified, Thus it seems that mechanized program
verifiers will only be as successful as the theorem provers

/ proof checkers which they use.

The development of effective, powerful interactive
theorem provers for wuse in program verification remains a
difficult problem, There is the question of what is the
best way to organize such an interactive theorem prover,
The approach taken by most workers in program verification,
including ourselves, is to supplement an automatic theorem
prqoqver by commands from the wuser, However, in LCF, the
basic program is a low-level proof checker controlled by the
user, to which successively more powerful derived inference
rules are added, There is also the choice between an LCF /
Bledsoe natural deduction system and a King / Deutsch /
resolution system, In the first case it probably does not
make much differeA% which choice is taken since they will
come to the same thing in the end. However it seems that
interactive systems should be based on a natural deduction
approach rather than one based on deriving contradictions,
simply because the resulting proofs in a natural deduction

system are more similﬂ%r to the ones people produce, and

Conclusions Page 161

hence people can more easily interact with and guide such a

system,

For program verification to become a widespread,
profitable activity, it will also be necessary to remove the
burden of giving detailed specifications from the user,
Some work has been done on automatically generating loop
invariants from input-output assertions (German and Wegbreit
1975), but this by itself seems to be an artificial problem,
especially since it requires the program to be correct in
the first place. Moreover, as German and Wegbreit observe,
since the programmer presumably knows why his program works,
he can always give at 1least an outline of this loop
invariant. It should then be practical to complete this
invariant, adapting the techniques of Sites (1974) to find
array subscript bounds, etc., and use it to verify the

program,

It might also be possible, especially when using
continuation induction, to adapt the ideas of Moore (1974)
and Aubin (1975) who have independently found methods for
extending the generalization techniques of the Boyer-Moore
LISP theorem prover to handle iterative programs. Both
methods involve the introduction .of recursive functions
describing the state of the computation after an arbitrary
number of iterations, While these new functions do not
exactly describe the computation to the end of the 1loops,
the fact that in both cases induction 1is done on the

remaining length of the computation suggests that their

Conclusions Page 162

methods could be applied in deriving the function computed
by a particular loop, particularly if a partial description

was given initially,

To carry these ideas even further, the most fruitful
approach could well be that of interactively constructing
the assertions and the program simultaneously, continually
testing their consistency, and using the results of these
tests in their further development, This approach was
advocated in Floyd (1971) and was shown to be feasible by

Deutsch,

Finally, to verify large programs it will be necessary
to adopt the principles of abstraction and structure as
advocated in Dahl, Dijkstra and Hoare (1972) for example.
As Good, London and Bledsoe observe, to keep the size of
proofs manageable, abstractions must be used in the
specifications as well as in the programs. Some progress
has been made in this direction by the use of array segments
and defined predicates (ordered, perm) but most programs
which have been mechanically verified are still too simple
for the advantages of this approach to be manifest. The
chief exception is the verification condition generator
proved correct.' by Ragland (1973). The next step is to start
by verifying the truly abstract programs which operate on
sets, bags, graphs, etc. and then showing that the concrete
program correctly simulates the abstract program using, for

example, the method described in Hoare (1972),

Conclusions Page 163

The future progress of (interactive) program
verification is unclear, There are now several
well-understood and practical methods for proving properties
of programs, and it is a question of implementing them as
effectively as possible., But despite a considerable amount
of research in the last three years, and the implementation
of several new verification systems, the complexity of
verified programs has only increased modestly. To verify
more complex programs it will be necessary to
whole-heartedly adopt the structuring and abstraction
principles referred to above, thereby keeping the proofs
manageable, There 1is no reason this cannot be done, and
with some effort the field should continue to make steady

progress.

Page 164
REFERENCES

Aubin, R, (1975) Some generalization heuristics in proofs by
induction. Proceedings 9f the Internatiopal Symposium
on Proving &and JImproving Programs, Arc-et-Senans,

France,

de Bakker, J.,W. and Scott, D. (1969) A theory of programs,
Unpublished memog, Vienna,

Basu, S.K., and Misra, J, (1975) Proving loop programs. JIEEE
Transactions gn Software Engineering 1, 1, 76-86.

Bledsoe, W.W. and Bruell, P, (1973) A man-ﬁachine theorem

proving system, Proceedings g9f Ihird International
Jalnt Conference on Artificisl Intelligence, Stanford,

California, pp. 56-65. Also Artificia] Intelligence
dourpnal 5, 1 (1974) 51~72,

Boyer, R., Elspas, B, and Levitt, K.N, (1975) SELECT - a
formal system for testing and debugging programs by
symbolic execution. Procgeedings gf the International

Conference on Beliable Software, Los Angeles,
California, pp. 234-245,

Boyer, R, and Moore J S. (1973) Proving theorems about LISP

functions. Proceedings gof Ihird Internatiopal Joint
Conference on Artificisl Intellicence, Stanford,
California, pp. 486-493, Also J,. ACM 22. 1 (1975)

Burstall, R.,M, (1969) Proving properties of programs by
structural induction. Camputer Jgurpnal 12, 1, 41-47.

Burstall, R .M,, Collins, J.5, and Popplestone, R.J. (1971)
Programming in POP~2. Edinburgh: University Press,

Burstall, R.M. (1974) Program proving as hand simulation

with a little induction, Proceedings gof IFIP Congress
1974, Stockholm, Sweden,

Burstall, R.M. (1975) A note on program proof by a
continuation method. DAL Working Paper 7. Department
of Artificial Intelligence, University of Edinburgh.

Clint, M. and Hoare, C.A,R. (1972) Program proving: jumps
and functions. Acta Informatica 1, 214-224,

Cooper, D.C. (1971) Programs for mechanical program
verification. Machine Intelligence & (eds. B. Meltzer
and D, Michie) Edinburgh: University Press, pp.

43-59,

REFERENCES Page 165

Dahl, O0.,-J.,, Dijkstra, E.W. and Hoare, C.A.R. (1972)
Structured Proggramming. Academic Press, London.

Darlington, J. (1973) A semantic approach to automatic

program improvement, Ph.D, thesis, University of
Edinburgh,

Deutsch, L.P. (1973) An interactive program verifier. Ph.D.
thesis. University of California, Berkeley,

California, Also Xerox PARC BRepogrt CSL=-73-1, Palto
Alto, California.

Elspas, B. (1972) The semiautomatic generation of inductive
assertions for program correctness proofs. Beport No.
55, Seminar, Des Institute fur Theorie der Automaten
und Schaltnetzwerke, Gesellschaft fur Mathematik und

Datenverarbeitung, Bonn, Also SRHI Proiect 2686,
Stanford Research Institute, Menlo Park, California

(1974).

Elspas, B.,, Levitt, K.N,, Waldinger, R.,J. and Waksman, A,
(1972) An assessment of techniques for proving program

correctness, ACM Computing Surveyvs 4, 2, 97-147,.

Floyd, R.W. (1964) Algorithm 245, TREESORT 3. Comm. ACM 2.
12, 701,

Floyd, R.W, (1967) Assigning meanings to programs,
Proceedings of a Svmposium in Applied Mathematics, Vaol.
19 (ed, J.T. Schwartz), Providence, BRhode Island,
American Mathematical Society, pp. 19-32.

Floyd, R.,W, (1971) Toward interactive design of correct
programs., Prgceedings of IEIP Cangress 1921,

Amsterdam, Netherlands.

Gerhart, S.L., (1972) Vverification of APL programs, Ph.D.
thesis. Carnegie-Mellon University, Pittsburgh,
Pennsylvania,

German, S.M, and Wegbreit, B, (1975) A synthesizer of

inductive assertions. IEEE JTransagctions gn Software
Engineering 1, 1, 68-75.

Good, D.I. (1970) Toward a man-machine system for proving
program correctness., Ph.D. Xthesis. University of
Wisconsin.

Good, D.I., London, R.L., and Bledsoe, W.W. (1974) An
interactive program verification system, ISI/AR-=724-22.
Information Sciences Institute, University of GSouthern

California,. Also JIEEE Iransactions on Software
Engineering 1. 1 (1975) 59-67.

REFERENCES Page 166

von Henke, F W, and Luckham, D.C, (1974) Automatic program

verification III: A methodology for verifying
programs, Computer Science Department HReport Cg=474,
AIM—~-256, Stanford University, California. Also
Broceedings of Interpatigpnal Conference gn BReliasble
Software, Los Angeles, California (1975) pp.156-164.

Hoare, C.A.R. (1969) An axiomatic basis for computer
programming. Comm, ACM 12, 10, 576-580, 583,

Hoare, C.A.R. (1971a) Procedures and parameters: an
axiomatic approach. Sympgsjum gn the Semantics of
Algorithmic Languages (ed. E. Engeler). Lecture Notes
in Mathematics 188. Springer-Verlag, pp. 102-116.

Hoare, C.A.R. (1971b) Proof of a program: FIND. Comm. ACM
14, 1, 39-45.

Hoare, C.A.R. (1972) Proof of correctness of data
representations, Acta Informatica 1, 271-278.

Igarashi, §., London, R, and Luckham, D. (1973) Automatic
verification of programs 1I: a logical basis and

implementation. (Computer Science Department BRepart
£g8-365, AIM=200, Stanford University, California.

Katz, 8§.M, and Manna, Z. (1973) A heuristic approach to
program verification. Proceedings of Ihird
Interpational Jgint Copnference an Artificial
Intelliogence, Stanford, California, pp. 500-512,.

King, J.C. (1969) A program verifier, Ph.D, thesis.
Carnegie-Mellon University, Pittsburgh, Pennsylvania,

King, J.C. (1975) A new approach to program testing.

Proceedings of the International Conference gn Beliable
Sgftware, Los Angeles, California, pp. 228-233,.

Knuth, D.E. (1968) Ihe Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, Mass,

Landin, P.J. (1964) The mechanical evaluation of
expressions, (gmputer Jourpal 6, 308-320,

Leisenring, A.C. (1969) Mathematical Logic and Hilbert's
€ =Symbol. MacDonald and Co., London,

Manna, Z, (1969) The correctness of programs. Journal gaf
Computer and Systems Sciepces 3, 119-127.

Manna, Z. and Pnueli, A, (1970) Formalization of properties
of functional programs. J. ACM 12, 3, 555-569.

REFERENCES Page 167

Manna, 2., Ness, S. and Vuillemin, J. (1971) Inductive

methods for proving properties of programs,
Praceedings of the ACM SIGPLAN Conference gn PEroving
Assertions about Programs, Las Cruces, New Mexico, pp.

27-50. Also Comm., ACM 16, 8 (1973) 491-502.

McCarthy, J. (1960) Recursive functions of symbolic
expressions and their computation by machine, Part I.

Comm, ACM 3, 184-195,

McCarthy, J. (1962) Toward a mathematical science of
computation, Informatiaon Processing 1962 (ed. C.M.

Popplewell). Proceedinas g@f IEIP Congress 1262.
Amsterdam: North-Holland.

McCarthy, J., (1963) A basis for a mathematical theory of

computation, Computer Proorammina and Formal Svstems
(eds, P. Braffort and D. Hirschberg) Amsterdam:

North-Holland, pp. 33-70.

McCarthy, J, and Painter, J.,A., (1967) Correctness of a
compiler for arithmetic expressions. Proceedings of a

Symoosium in Applied Mathematics. Vol. 19 (ed. J.T.
Schwartz), Providence, Rhode Island, American
Mathematical Society, pp. 33-41,

Mills, H.D, (1975) The new math of computer programming.
Comm,. ACM 18, 1, 43-48. :

Milner, R. (1972) Implementation and applications of Scott’'s
logic for computable functions. Proceedings gf the ACM

SIGPLAN Conference gn Provinag Assertions Abgut
Prggrams, Las Cruces, New Mexico, pp. 1-6.

Milner, R, (1975) Private communication.

Milner, R. and Weyhrauch, R. (1972) Proving compiler
correctness in a mechanised logic. Machipe

Intelligence 7 (eds. B. Meltzer and D. Michie)
Edinburgh: University Press, pp. 51-70.

Moore, J S, (1973) Computational logic: Structure sharing

and proving program properties. Bh.D. Zthesis,
University of Edinburgh.

Moore, J S. (1974) Introducing iteration into the pure LISP

theorem prover., Xerox PABRC Heport CSL-724-3, Palo Alto,
California,

Morris, J.,H. (1971) Another recursion induction principle.
Comm,. ACM 14, 5, 351-354.

Moses, J. (1971) Algebraic simplification: a guide for the
perplexed. Comm, ACM 14, 8, 527-537.

REFERENCES Page 168

Naur, P. (1966) Proof of algorithms by general snapshots.
BIT &, 310-316,

Newey, M.C. (1975) Formal semantics of LISP with
applications to program correctness. Computer Science
Department Beport CS-475, AIM-257, Stanford University,

California,

Park, D. (1969) Fixpoint induction and proofs of program

properties, Machine Intelligence 5 (eds, B. Meltzer
and D, Michie) Edinburgh: University Press, pp.
59-78.

Perlis, A.J., and Itturiaga, R. (1964) An extension to ALGDL
for manipulating formula. Comm., ACM 2. 2, 127-130.

Ragland, L.C, (1973) A verified program verifier. JIechnical

Beport No, 18, Department of Computer Sciences,
University of Texas at Austin,

Reynolds, J.C. (19722) Definitional interpreters for
higher—-order programming languages. Prpceedings of ACM
National Conference, Boston, Mass.

Rulifson, J.F., Derkson, J.A. and Waldinger, R.J. (1972)
HA4: a procedural calculus for intuitive reasoning.

Jechnical Ngte 23, Artificial 1Intelligence Center,

Stanford Research Institute, Menlo Park, California.

Scott, D. (1969) A type theoretical alternative to ISWIM,
CUCH, DWHY, Uppubljished notes, Dxford University,

Sites, R.L. (1974) Clean termination of programs. Computer
Science Department Beport £S~-418, Stanford University,

California,

Stansfield, J.L. (1972) [PRDCESS 1]: A generalisation of

recursive programming languages. Biopnics Besearch
Reports: Ng, 8, School of Artificial Intelligence,
University of Edinburgh.

Suzuki, N. (1974) Automatic program verification II:
Verifying programs by algebraic and logical reduction,
Computer Science Department PReport (5=473, AIM=255,
Stanford University, California, Also Proceedinas gf
International Conference gop ABReliable Software, Los
Angeles, California (1975) pp. 473-481,

Topor, R.W. (1974) The correctness of the Schorr-Waite 1list

marking algorithm, MIP-R~104, School of Artificial
Intelligence, University of Edinburgh.

Topor, R.W. and Burstall, R.M, (Feb. 1973) Proving programs
by symbolic execution. Working ngte 1, University of
Edinburgh. (Privately circulated)

REFERENCES Page 169

waldinger, R,J, and Levitt, K.,N. (1973) AReasoning about
programs, ACM Symposium gon Principles of Progremming
Languacdes, Boston, Mass., pp. 169-182, Alsoc Artificial
Intelligence Jourpal 5. 3 (1974) 235-316.

Wegbreit, B. (1973) Heuristic methods for mechanically

deriving inductive assertions. Praoceedings gf Ihird
International Jgint Conference an Artificial

Intellicence, Stanford, California, pp. 524-536. Also
Comm. ACM 12, 2 (1974) 102-112,

Weir, S, and Burstall, R.,M, (1972) Macro-inference steps in

proofs of program correctness, MIP-R-96, School of
Artificial Intelligence, University of Edinburgh,

Wirth, N. (1971) The programming language Pascal., Acta
Informatica 1, 35-63.

Page 170

Appendix 1: Notaes gn POP=2

In this appendix we give a brief account of those
aspects of the POP-2 programming language neccessary for the
reader to be able to follow our examples and description.
The language was designed and implemented at the University
of Edinburgh and is described in detail in Burstall, Collins

and Popplestone (1971),

POP-2 allows a programmer to represent and manipulate
various kinds of objects including numbers, words, arrays,
lists, strings, records and functions. There is no
distinction between functions and procedures, All
assignments, argument passing and result returning is done
using &a pushdown stack which is freely accessible to the
programmer, To push the‘number 6 onto the stack and leave
it there, one writes

6;
If there is something on the stack, it can be popped and
assigned to the variable X by writing
-> X3
Thus to assign 6 to X one writes
6 ~> X; (cf. X := 6: in ALGOL)
One can also use the stack to interchange the values of two

variables X and Y by writing

Xy ¥ => X =Y

Notes on POP-2 Page 171

Function application is invoked by writing, for

example,

F(1,2);
The sequence of actions in this application is that the
arguments 1 and 2 are placed on the stack (after having been
evaluated) and the function stored in the identifier F is
then applied, F then takes its arguments off the stack.
Thus the same result is obtained by writing

1, F(2);
or

1, 2;: F():
Function applications can also be signified by using a dot
(".") before any identifier (or expression) whose value is a
function, So the above example can also be written as

1, 2 F;
Any function may return more than one result, simply by

leaving the results on the stack when it exits.

To define a function with name F0O0O, formal parameters X
and Y, and local variables Z and W, one writes

FUNCTION FOD X Y;
VARS Z W;

body
END

For example, the function definition
FUNCTION SUMSQ X Y;
X"2 +Y"2
END
defines a new function called SUMSQ whose value is the sum

of the squares of its two arguments, It is possible to

declare 1local variables SO that their values are

Notes on POP=-2 Page 172

automatically placed on the stack when the execution of the
function is terminated. Such variables are called gutput
logcals. The function SUMSQ@ could also be defined using
output locals as

FUNCTION SUMSA X Y => Z:

X2 + Y 2 - 2
END

In this case Z is the output local and its value is placed
on the stack immediately before the function exits.
Anonymous functions, or Jlambda expressipns, may also be
constructed and assigned to variables, For example,

LAMBDA X Y: X3 + Y3 ENO -> F:
assigns the anonymous function which computes the sum of the
cubes of its two arguments to the variable F which can then

be used like any other function.

Non-~local variables in POP-2 take their wvalues from
their dynamic environment as in LISP rather than from their

textual (or static) environment as in ALGOL.

The conditional statement in POP-2 has the form
IF cond THEN stat1 ELSE stat2 CLOSE;
If the condition is true (i.,e, it does not evaluate to 0)
then the first alternative statement is executed; otherwise
the second statement is executed. FALSE in POP-2 is 0 and
TRUE is 1, The form

IF cond?1 THEN stat1
ELSEIF cond2 THEN stat?2

ELSE statn CLOSE;

can be used to avoid repeated CLOSE's.

Notes on POP-2 Page 173

The main iterative statement in POP-2 has the form

LOOPIF condl1 THEN stat?
ELSEIF cond2 THEN stat?

ELSEIFOQGAén THEN statn CLOSE;
This statement evaluates each condition in turn until one of
them is true (i.e. not 0)., It then executes the
corresponding sub-statement and repeats the whole statement,
If each condition evaluates to 0 the statement terminates,
(This statement is a deterministic version of O0Oijkstra’'s
guarded command construction.) The simple case

LOOPIF cond THEN stat CLOSE
corresponds to the familiar while-statement:

while cond dg stat

of other languages. Labels and GOTO's have roughly the same

syntax as in ALGOL,

However, since a GOTO statement cannot refer to a label
outside the function body in which it occurs, the standard
function JUMPOUT is provided to construct escape functions,

We write, for example,

FUNCTION F X
IF X=0 THEN ERROR() CLOSE;
(x+1) / X

ENO:

FUNCTION G Y:
JUMPOUT(LAMBDA: PR(°ZERO ERROR') END, 0) ->
ERROR ;
F(Y) + F(Y"3)
END
After JUMPOUT in this example, ERROR is a function of no

arguments and no results, In fact it is identical to the
function LAMBOA: PR('ZERD ERROR') END except that as soon

as FERROR has been executed, execution of G is terminated

Notes on POP-2 Page 174

instead of execution of F being resumed as one would
normally expect, That is, ERROR has a special "fire-escape”
which enables it to climb out of G (the function where it
was created) when it is called. The second argument, 0, of
JUMPOUT indicates that the function produced returns no

results,

A more general state-saving facility allows the user to
save the complete state of his computation below a
"barrier”, enabling more complex control structures such as

backtracking and coroutines to be implemented.,

Data structures in POP-2 include words, 1lists, arrays
and records, Lists are basically the same as in LISP,

There are several ways to construct them, For example, the

expressions

[ABCD]
CONS("A",[B C D])
"A" :: [B C D]

[A B] <> [C D]

all have the same value, a list consisting of the four words
"A", "B", “"C” and "D"., The binary operation :: is the same
as the function CONS and the binary operation <> is the same
as the LISP function APPEND, The other main standard
functions which operate on 1lists are HD (cf. CAR) which
returns the first element of a list, TL (cf. CDR) which
returns all but the first element of the 1list, and NULL

which tests whether or not the list is equal to NIL.

Notes on POP-2 Page 175

Arrays in POP-2 are just particular kinds of functions:
A(I) is the Ith element of the array A. (In our verification
system, this is written A\I.) To assign 0 to the first
element of an array A one writes
0 -> A(1):
This leads to the concept of a dgublet. Every function can
be given an associated function called an ypdater. A
function which has an updater is called & doublet. The
function itself is applied normally but the updater is
applied when it is the top-level function to the right of
the assignment arrow ("->"). Both HD and TL have updaters,
so after performing

[ABC] — X:
1 =~> HD(X): (cf. (RPLACA X 1) in LISP)

the value of X is the l1ist [1 B C]. Another standard doublet
is MEANING which is used to assgciate information with words

and hence can he used to implement property lists in POP-2,

Pairs are an example of records having two components,
FRONT and BACK which are both doublets. A pair is formed
with the function CONSPAIR which takes two arguments and
constructs a record with two components. List cells are
actually pairs except that the TL of a list in POP-2 must be
NIL or another 1list, while the back of a pair can be
anything., The standard function ATOM returns TRUE if its

argument is not a pair and FALSE if it is,

Page 176

Appendix 2: Definitigns

COMMENT ARITH:

WHEN [% XU>=0 %], ABS(XU) ==> XU;
WHEN [% XU<0 %], ABS(XU) ==> MINUS(XU):

WHEN [% XU>=0 %], SGN(XU) ==> 1;
WHEN [% XU<0 %], SGN(XU) ==> MINUS(1):

IR TR: COMMENT TRANSITIVITY AXIOM:
XF(XX,XZ) <== [% TRANSOP("XF"),
(EX XY)(XF(XX,XY) & XF(XY,XZ)) %]:
TORULES:
COMMENT TORULES INDEXES THE PRECEOING RULE UNDER =, >= and =<:

IR XSAQ:
XX"2 >= 0 <== NIL:

COMMENT DIV AND REM:

WHEN [% O0=<XU, XU<XV %]}, XU DIV XV
WHEN [% XU>=XV, XV>0 %], XU DIV XV

> 0:
> 1 + (XU=XV) DIV XV:

WHEN [% 0=<XU, XU<XV %], XU REM XV
WHEN [% XU>=XV, XV>0 %], XU REM XV

> XU:
(XU=XV) REM XV:

non
\"

COMMENT FAGC:

WHEN [% XU=0 %], FACTORIAL (XU)
WHEN [% XU>0 %], FACTORIAL (XU)

L
XU*FACTORIAL (XU=1);

nu
\"

v

[|

COMMENT GCD;

WHEN [% XU=0 %], GCD(XU,XV) ==> ABS(XV):

WHEN [% XV=0 %], GCD(XU,XV) ==> ABS(XU):

COMMENT SINCE GCD IS COMMUTATIVE ONLY ONE OF THESE RULES
EXISTS IN THE ACTUAL SYSTEM;

WHEN [% XX/=0 %], GBCD(XX,XX) ==> XX;

WHEN [% XU/=0, XV/=0 %], GCD(XU,XV) ==> BCD(XV, XU REM XV);

COMMENT CHNG (AND XCHNG);:

WHEN [% XJ=XI %], CHNG(XA,XX,XI)\XJ =
WHEN [% XJ/=XI %], CHNG(XA,XX,XI)\XJ =

WHEN [% XK=XI %], XCHNG(XA,XI,XJ)\XK ==> XA\XJ:

WHEN [% XK=XJ %], XCHNG(XA,XI,XJ)\XK ==> XA\XI;
WHEN [% XK /=XI, iK/=xa %], XCHNG(XA,XI,XJ)\XK ==> XA\XK;

COMMENT SETS;

Definitions Page 177

IR XFO

XF(XA<<XI,XJ>>,XZ2) <=
TORULES:
IR XF1:

XF (XA<<XI, XJ>>,X2)

<== [% XF(XA<<XI,XJ=1>>,XZ), XF(XA\XJ,XZ) %]:
TDRULES;
IR XF2:

XF (XA<<XI,XJ>>,XZ)

<== [% XF(XA<<XI+1,XJ>>,XZ), XF(XA\XI,XZ) %]:
TORULES ;
IR XF3

XF(XA<<XI XJ>>,XX) <=
TORULES:
IR XF4

XF(XA<<XI, XJ>>,XX) <=
TORULES:
IR XF5

XF {(XX~XA\XJ,0) «

== [% (EX [XI XK])(XI=<XJ & XJ=<XK & XF (XX, XA<<XI,XK>>)) %] ;

TORULES:

[% XI>XJ %]:

[% XF(XA<<XI=1,XJ>>,XX) %]:

(% XF(XA<<XI,XJ+15>,XX) %]

IR XF6
XF (XA\XJ=XX,0)
<== [% (EX [XI XK])(XI=<XJ & XJ=<XK & XF(XA<<XI,XK>>, XX)) %]:
TORULES :

COMMENT EQSERQ;

IR EQSEQR1

EQSERQ(XA<<XI, XU>>,XB<<XK,XM>>) <== [% XI>XJ, XK>XM %] :
IR EQSER2

EQSEQ(XA<<XI ,XJ>>,XB<<XK ,XM>>)

<== [% XI=<XJ, XJ=XI=XM=XK, XA\XI=XB\XK,

EQSEQ(XA<<XI+1,XJ>>,XB<<XK+1,XM>>) %]:

IR EQSER3

XA\XI=XB\XK

<== [% (EX [XJ XM])(XI=<XJ & XM-XK=XJ-XI &

EQSEQ(XA<<XI, XJ>>,XB<<XK,XM>>)) %]:

IR EQSEQR4

EQSER(XA<<XI,XJ>> ,XB<<XK XM>>)

<== [% XI=-1=<XJ, XM~XK=XJ=XI,
EQSEQ(XA<<XI=1,XJ>>,XB<<XK=1,XM>>) %]:

COMMENT ISIN;

IR ISIN1

ISIN(XA<<XI, XJ>>,XB<<XK ,XM>>)

<== [% XJ=XI=<XM=XK, EQSEQ(XA<<XI,XJ>>,XB<c<XK,XK+XJ=XI>>) %]:
IR ISIN2

ISIN(XA<<XI ,XJ>>,XB<<XK,XM>>)

== [% ISIN(XA<<XI, XdJ>>,XB<<XK+1,XM>>) %];
IR ISIN3

EQSEQ(XA<<XI,XJ>>,XB<<XK,XL>>)

<== [% (EX XM)(XL=<XM & XJ=XI=<XM-XK &

ISIN(XA<<XI,XJ>>,XB<<XK,XM>>)) %]:

Definitions Page 178

IR ISING
ISIN(XA<<XI, XJ>>,XB<<XK,XM>>)
== [% XJ=XI=<XM=XK+1, ISIN(XA<<XI,XJ>>,XB<<XK=1,XM>>),
NOT (EQSER (XA<<XI XJ>> ,XB<<XK=1,XK=1+XJ=XI>>)) %]:

COMMENT ORD(ERED):

IR DROD1
DROERED (XA<<XI,XJ>>) <== [% XI>=XJ %]:
IR DRD2
DROERED (XA<<XI,XJ>>)
<== [% XI<XJ, XA\XI=<XA\(XI+1), DRDERED(XA<<XI+1,XJd>>) %]:
IR DRO3
XA\XI =< XA\ (XI+1)
<== [% (EX XJ)(XI<XJ & DRDERED(XA<<XI,XJ>>)) %]:
IR DRD4
ORDERED (XA<<XI ,XJ>>)
<== [% XI=-1<XJ, DRDERED(XA<<XI=1,XJ>>) %]:

COMMENT PERM:

WHEN [% XJ<XI %], OCCS(XX,XA<<XI,XJ>>) ==> 0:
WHEN [% XI=<XJ, XX=XA\XI %],

DCCS (XX yXA<<XI XJ>>) ==> 14+DCCS(XX,XA<<XI+1,XJ>>):
WHEN [% XI=<XJ, XX/=XA\XI %],

DCCS (XX ,XA<<XI XJ>>) ==> DCCS(XX,XA<<XI+1,XJ>>);

IR PERM1

PERM(XA<<XI XJ>>,XB<<XK ,XM>>)

<== [% (FA XX)(DCCS(XX,XA<<XI,XJ>>)=DCCS (XX ,XB<<XK,XM>>)) %]:
IR PERMZ2

DCCS (XX yXA<<XI,XJ>>) = DCCS(XX,XB<<XK,XM>>)

<== [% PERM(XA<<XI,XJ>>,XB<<XK,XM>>) %];

COMMENT LISTS (AND TREES):

HD (CONS (XU ,XV)) ==> XU:
TL{(CONS(XU,XV)) ==> XV:
WHEN [% NODT(NULL(XU)) %], CONS(HD(XU),TL(XU)) ==> XU:

WHEN [% NULL(XU) %], XU<>XV ==> XV
WHEN [% NOT(NULL(XU)) %], XU<>XV ==> HD(XU)::(TL(XU)<>XV);

IR MEMB1
MEMB (XU,XL) <== [% NDT(NULL(XL)), XU=HD(XL) %];
IR MEMB2
MEMB (XU,XL) <== [% NDT(NULL(XL)), MEMB(XU,TL(XL)) %1:
IR MEMB3
NOT (NULL (XL)) <== [% (EX "XU")(MEMB(XU,XL)) %1:
IR MEMB4
MEMB (XU,TL(XL)) <== [% XU/=HD(XL), MEMB(XU,XL) %]:

WHEN [% ATOM(XL) %], FRINGE(XL) ==> XL::NIL;

WHEN [% NOT(ATOM(XL)) %],
FRINGE (XL) ==> FRINGE(FRONT (XL))<>FRINGE (BACK(XL)):

Definitions Page 179

NULL(NIL) ==> TRUE:
NULL (CONS (XU ,XV)) ==> FALSE;
ATOM (CONS (XU ,XV)) ==> FALSE:

Appendix 3: Derived rules

Page 180

WHEN [% XX>=0, XY>0, XZ>=0 %],
(XX+XY¥XZ) DIV XY ==> XX DIV XY + XZ:
WHEN [% XX>=0, XY>0, XZ>=0 %],
(XX+XY*#XZ) REM XY ==> XX REM XY:
XX DIV 1 ==> XX:
(XX¥XY) DIV (XX*¥XZ) ==> XY DIV XZ:
WHEN [% XX REM XY = 0 %], (XX DIV XY)¥XY ==> XX:
IR DIV1:
XX DIV XY >=0 «<== [% XX>=0, XY>0 %]:
IR REM1:
XX REM XY >= 0 <== [% XX>=0, XY>0 %]:
IR REM2:
XX REM XY =<0 <== [% XX=<0 %]:

1->ISASSDC ("GCD");

1->ISCOMM ("GCD") ;

WHEN [% 0<XX, XX=<XY %], GCD(XX,XY=XX) ==> GCD(XX,XY);
WHEN [% XY>0, XX REM XY=0 %], GCD(XX,XY) ==> XY:

IR GCD1
GCD(XU,XX) = GCD(XV,XX)
<== [% XX/=0, (XU=-XV) REM XX = 0 %];

CHNG (CHNG (XA ,XA\XI , XJ),XA\XJ,XI) ==> XCHNG(XA,XI,XJ):
WHEN [% XU<XI,XV<XI %],

XCHNG (XA , XU, XV)<<XI, XJ>>
WHEN [% XU<XI,XV>XJ %],

XCHNG (XA , XU ,XV)<<XI,XJ>>
WHEN [% XU>XJ,XV<XI %],

XCHNG (XA, XU, XV)<<XI,XJ>>
WHEN [% XU>XJ,XV>XJ %],

XCHNG (XA , XU, XV)<<XI,XJ>>

XA<<XI XJd>>1

=>

> XA<<XI, XJ>>:

> XA<<XI, XJ>>:

=> XA<<XI,XJ>>;
IR CHNG1:

XF (CHNG (XA, XX ,XI)<<XI, XJ>>, XZ)
[% XF(XX,XZ), XF(XA<<XI+1,XJ>>, XZ) %]:
TDRULES :
IR CHNG2;

XF (CHNG (XA , XX ,XJ)<<XI, XJ>>,XZ)

<== [% XF(XA<<XI,XJ=1>>,XZ), XF(XX,XZ) %]:
TDRULES ;

==

IR XCHNG1

XF (XCHNG (XA, XU ,XV)<<XI, XJ>>, XZ)

<== [% XU=XJ, XV>XJ, XF(XA<<XI,XJ=1>>,XZ), XF(XA\XV,XZ) %]:
TDRULES ;
IR XCHNG2 X2}

XF (XCHNG (XA ,XU,XV)<<XI,XJ>>,

<== [% XV=£J,’XU>XJ, XF(XA<<XI,XJ=1>>,XZ), XF(XA\XU,XZ) %];

TDRULES ;

Derived rules Page 181

IR XCHNG3

XF (XCHNG (XA ,XU,XV)<<XI,XJ>>, XZ)

<== [% XU=XI, XV<XI, XF(XA<<XI+1,XJ>>,XZ), XF(XA\XV,XZ) %]:
TORULES .

IR XCHNG4

XF(XCHNG (XA ,XU,XV)<<XI XJ>>, XZ)

<== [% XV=XI, XU<XI, XF(XA<<XI+1,XJ>>,XZ), XF(XA\XU,XZ) %];
TORULES:
IR XCHNGS

XF (XCHNG (XA ,XU,XV)<<XI,XJ>>, XZ)
<== [% XI=<XU,XU=<XJ,XI=<XV,XV=<XdJ, XF(XA<<XI,XJ>>,XZ) %];

TORULES:;

1->ISCOMM("EQSER"™):
1->ISTRANS ("EQSEQ"™):
IR EQRSEQR10
EQSEQ (XX ,XX) <== NIL;:
IR EQSEQ12
EQSEQ (XA<<XI,XJ>>,XB<<XK,XM>>)
== [% XI=<Xd, XJ=XI=XM=XK, XA\XJ=XB\XM,
EQSEQ(XA<<XI,XJ-1>>,XB<<XK,XM=1>5) %]:
IR ERSEQ13
XA\ XJ=XB\ XM
<== [% (EX [XI XK])(XI=<XJ & XM=XK=XJ-XI &
EQSEQ (XA<<XI, XJ>>,XB<<XK,XM>>)) %];
IR EQSEQR14
EQSEQ(XA<<XI , XJ>> ,XB<<XK,XM>>)
<== [% XI=<XJ+1, XM=XK=XJ=XI,
EQSEQ(XA<<XI XJ+1>> ,XB<<XK ,XM+1>>) %]:

IR EQSER15
EQSEQ (XA<<XI ,XJ>>,XB<<XK,XL>>)
<== [% XJ~XI = XL-XK,
(FA XU)(D=<XUEXU=<XJ=XI =>> XA\ (XI+XU)=XB\ (XK+XU)) %]:
IR EQRSER16
XA\ XU=XB\XV
<== [% (EX [XI XJ XK XL])(XI=<XU & XU=<XJ & XK=<XV & XV=<XL &
XJ=XI = XL=XK & XU=XI = XV=XK &
EQSEQ (XA<<XI,XJ>>,XB<<XK,XL>>)) %]:

IR ISIN1D
ISIN (XA<<XI,XJ>>,XB<<XK,XL>>)
<== [% (EX XM)(XK=<XM & XM+XJ=-XI=<XL &
EQSEQ (XA<<XI, XU>> ,XB<<XM , XM+XJ=XI>>)) %]

IR ISIN11
ISIN(XA<<XI,XJ>>,XB<<XK,XM>>)
<== [% XJ=XI=<XM~XK, EQSEQ(XA<<XI,XJ>>,XB<<XM=XJ+XI XM>>) %]:
IR ISIN12
ISIN(XA<<XI XJ>> ,XB<<XK,XM>>)
<== [% ISIN(XA<<XI, XJ>>,XB<<XK,XM=1>>) %]:
IR ISIN13
EQSEQ(XA<<XI,XJ>>,XB<<XK,XL>>)
<== [% (EX XM)(XM=<XK & XJ=XI=<XL-XM &
ISIN(XA<<XI,XJ>>,XB<<XM,XL>>)) %]:

Derived rules Page 182

IR ISIN14
ISIN(XA<<XI ,XJ>>,XB<<XK,XM>>)
<== [% XJ=XI=<XM=-XK+1, ISIN(XA<<XI,XJ>> ,XB<<XK,XM+1>>),
NDT(EQSEQ(XA<<XI XJU>> ,XB<<XM4+1=XJ+XI , XM+1>>)) %]:
IR ISINZ20
NOT(ISIN(XA<<XI ,XJ>>,XB<<XK,XL>>)) <== [% XJ=-XI>XL-XK %]:
IR DRD12

DRDERED (XA<<XI , XJ>>)

<== [% XI<XJ, XA\ (XJ=1)=<XA\XJ, DRDERED(XA<<XI,XJ=1>>) %]:
IR DRD13

XA\ (XJ=1) =< XA\XJ

<== [% (EX XI)(XI<XJ & DRDERED(XA<<XI,XJ>>)) %]:
IR DRD14

DRDERED (XA<<XI XJd>>)

== [% XI<XJ+1, ORDERED(XA<<XI,XJ+1>>) %]:

1-~>ISCOMM ("PERM™):
1->ISTRANS ("PERM"™) :

IR PERM10
PERM(XX,XX) <== NIL;:
IR PERM11
PERM(XA<<XI, XJ>>,XB<<XI,XJ>>)
<== [% XA\XI=XB\XI, PERM(XA<<XI+1,XJ>>,XB<<XI+1,XJ>>) %]:
IR PERM12
PERM(XA<<XI ,XJ>>,XB<<XI ,XJ>>)
<== [% XA\XJ=XB\XJ, PERM(XA<<XI,XJ=1>>,XB<c<XI,XJ=1>>) %]:
IR PERM13

PERM(XCHNG (XA ,XU,XV)<<XI,XJ>>, XA<<XI,XJ>>)
<== [% XI=<XU,XU=<XdJd, XI=<XV,XV=<XJ %]:

IR MEMBS

MEMB (XU,XV<>XW) <== [% MEMB(XU,XV) %]:
IR MEMB6

MEMB (XU ,XV<>XW) <== [% MEMB(XU,XW) %]

Page 183

Appendix 4: Programs yerified

This appendix contains a l1ist of the programs verified
by our system, The 1list is not complete but it is
indicative of the upper level of the verifier’s performance.
We have verified some programs using both inclusion
statements and assertions, and in such cases we show the

program with each type of specification for comparison,

The examples in King’s thesis have become benchmarks;
our system can verify all of these examples but we have only

shown the more interesting of them here.

Most of these programs required at least some help from

the user in the verification process,

Programs verified Page 184

Countina-up factorjel

This is a simple "counting-up” program to compute the
factorial function, It is basically the same program which
was used as an example in the introduction. An alternative
way to describe the program using virtual programs would be
to use the function prod(j,k) = J*(j+1)%*,,.%¥k, defined
recursively, instead of the function div.

FUNCTION FAC3 N=>R:
VARS I:
1->I; 1->R:
$LOOP :
LOOPIF I=<N THEN R*¥I->R: I+1->I: CLOSE:
$FINISH:
END;

VARS NO;
[NO]=->INITARGS;

ISTAT BOOY FAC3;

VIRT FACTORIAL(N)~>R: N+1=>I:
UNOER N>=0;

WRT [R I]:

ISTAT LOOP TO [FINISH];

VIRT R*¥FACTORIAL(N) BIV FACTORIAL(I-1) -~> R; N+1->I;
UNDER 0<I & I=<N+1:

WRT [R I]:

Praograms verified Page 185

Becursive and jterative factorial

This is the program discussed in Sections 2.5.2 and
3.3.2. We show the program twice: once described by virtual
programs alone, and once using inductive assertions as well.

FUNCTION FAC4QV N=>R:
1->R:
$ LOOP:
LOOPIF N>0 THEN N=1->N: R+N*FAC4V(N)->R: CLOSE:
$ FINISH:
END;

VARS NO:
[NOT->INITARGS:

ISTAT BODY REC FAC4V

VIRT FACTORIAL(N)=>R: 0->N:
UNDER N>=0:

WRT [N R1;

ISTAT LOOP TO [FINISH]

VIRT R+FACTORIAL(N)=1->R; 0->N:
UNDER N>=0;

WRT [N R];

FUNCTION FAC4A NO => R:

VARS N;
NO->N: 1->R:

$ LODP:
ASSERT R+FACTORIAL(N)~1 = FACTORIAL(NO) & N>=0 :
LOOPIF N>0 THEN N-1->N; R+N*FAC4A(N)->R CLOSE:

$ FIN:

ENO:

VARS NI;
[NI]J->INITARGS:

ISTAT BOOY REC FAC4A

VIRT FACTORIAL (NO)->R; 0->N
UNOER NO>=0

WRT [N R];

Programs verified Page 186

GCreatest common divisor

This is a program to find the greatest common divisor
of two positive integers without using division. It is only
one of several greatest common divisor programs the system
has wverified, chosen to illustrate the difference between
the two ways of describing it, We first show the inductive
assertions for the program, then inclusion statements which
describe each loop separately, and finally simpler inclusion
statements which all terminate at the end of the function
body and do not preserve the loop structure,

FUNCTION GCO3A M N => R;

$START:

ASSERT M=MO & N=NO & MO0O>0 & NO>0:
$LOOP:

LOOPIF M/=N THEN

$L1:

ASSERT GCO(M,N)=GCO(MO,NO) & M>0 & N>O0;
LOOPIF M>N THEN M-N->M CLOSE;
$L2:
ASSERT GCO(M,N)=6CO(MO,NO) & M>0 & N>O0:
LOOPIF N>M THEN N-M->N CLODSE:
CLOSE:
M~>R:
$0UT:
ASSERT R=GCO(MO,NO);
ENO:

VARS MO NO:
[MO NO]->INITARGS;

Programs verified Page 187

Greatest common divisor (continued)

FUNCTION GCD3V M N => R:
$LOOP:
LODOPIF M /=N THEN
$INLP1:
LOOPIF M>N THEN M-N->M CLOSE:
$INLPZ:
LOOPIF N>M THEN N-M->N CLOSE:
CLOSE:;
$0UT:
M~>R:
END:

VARS MO NO;
(MO NO]=>INITARGS;

ISTAT BODY GCO3V;
VIRT GCD(M,N)->R;
UNOER M>0 & N>0;
WRT [R]:

ISTAT LOOP TO [OUT]:
VIRT GCD(M,N)->M:
UNDER M>0 & N>0:

WRT [(M]:

ISTAT INLP1 TO [INLPZ2];:
VIRT (ANY "M1")(0<M1 & M1=<M & M1=<N & (M-M1)REM N=0) =-> M:

UNDER M>0 & N>O0;
WRT (M NI]:

ISTAT INLP2 TO [LOGP]:
VIRT (ANY "N1")(0<N1 & N1=<N & N1=<M & (N=N1)REM M=0) -> N:

UNDER M>0 & N>O0:
WRT [M N];

Programs verified

Greatest common divisor (continued)

FUNCTION GCD3vZ2 M N => R:

$LOOP:

LOOPIF M/=N THEN
$INLP:
LOOPIF M>N THEN M-N->M CLOSE:
SINLP2:

LOOPIF N>M THEN N-M->N CLOSE;
CLOSE;
M->R:
$0UT:
END:

VARS MO NO;
{MO NO)->INITARGS;

ISTAT BDDY GCD3Vv2
VIRT GCD(M,N) -> R
UNDER M>0 & N>O

WRT [R]):

ISTAT LOOP TO [OUT])
VIRT GCD(M,N) => R
UNDER M>0 & N>O0

WRT (R];

ISTAT INLP1 TO [OUT]
VIRT GCD(M,N) =-> R
UNDER M>0 & N>O0

WRT [R]:

ISTAT INLP2 TO [0OUT]
VIRT GCD(M,N) =-> R
UNDER M>0 & N>0

WRT (R]:

Page 188

Programs verified Page 189

S1-function

This function was discussed in Section 2.5.1 and its
proof was shown in Section 6.1.

FUNCTION FN91 N => R;

IF N>100 THEN N-10 ELSE FN91(FN91(N+11)) CLOSE -> R;
END;

VARS NO;
[NO)->INITARGS;

ISTAT BODY REC FN91;

VIRT IF N>100 THEN N-10 ELSE 91 CLDSE -> R;
UNDER TRUE:

WRT [R]

Programs verified Page 190

Ackermann's function

This example shows haow Ackermann's function can be
computed directly for m=<3. If m>3 the virtual program is
undefined but this is irrelevant as this path is never taken
in the proof.

FUNCTION ACK M N => R;
IF M=0 THEN N+1
ELSE IF N=0 THEN ACK(M=1,1)

ELSE ACK(M-1,ACK(M,N-1)) CLOSE CLOSE -> R;
END:

VARS MO NO INFINITY:
[MO NO]—=>INITARGS:

ISTAT BODY REC ACK:
VIRT IF M=0 THEN N+1 ELSE
IF M=1 THEN N+2 ELSE
IF M=2 THEN 2%N+3 ELSE
IF M=3 THEN 2IN+3)-3
ELSE INFINITY CLOSE CLOSE CLOSE CLOSE —> R:
UNDER 0O=<M & M=<3 & O0=<N:
WRT [R]:

Programs verified Page 191

Iree-searching function

This function searches the tips of a binary tree for a
1 as described in Section 2.5.4. If it succeeds it
terminates by using a JUMPOUT (escape).

FUNCTION TREEJ T => TV;
VARS WON;
JUMPOUT (LAMBOA; $FND: ENO, 0) -> WON;

FUNCTION SEARCH1 T:
$START:

IF ATOM(T) THEN

IF T=1 THEN TRUE->TV: WON() CLOSE

ELSE SEARCH1(FRONT(T)): SEARCH1(BACK(T))
CLOSE:

$0UT:
ENO:

FALSE=->TV:
SEARCH1(T):
ENO:

VARS T0;
[TO]->INITARGS;

ISTAT START TO [OUT REC FNO]

VIRT IF MEMB(1,FRINGE(T)) THEN TRUE->TV; WON()
ELSE GOTO OUT CLOSE

UNOER TRUE

WRT {Tv]:

ISTAT BOOY TREEJ

VIRT MEMB(1,FRINGE(T))=>TV
UNOER TRUE

WRT [TVv]:

Programs verified Page 192

Matcher

This program determines whether the array B occurs as a
subarray of the array A. The proof produced by the system is
shown 1in Section 6.2, We show here the program
specifications using virtual programs and inductive
assertions successively,

FUNCTION MATCHV A M B N => BISINA:
VARS I J :
FALSE->BISINA:
0->1;
$LODOPI:
LOOPIF I=< M~N THEN
1=>J;
$LOOPJ:
LODOPIF J=<N THEN
IF A\(I+J)/=B\(J) THEN GDOTO BREAKJ CLDSE:
J+ti=>J:
CLODSE;
$ENDLOOP J:
TRUE->BISINA: GOTO BREAKI:
$BREAK J:
I+1->1;
CLOSE:
$BREAKI:
END:

DECARRAY A [1 M]:
DECARRAY B [1 NJ:
[%A,"M”,B,"N"%]~>INITARGS;

ISTAT BOOY MATCHV:
VIRT IF ISIN(B<<1,N>>,A<<1,M>>)
THEN TRUE ELSE FALSE CLOSE =-»> BISINA:
UNDER 0=<N & N=<M:
WRT [BISINAJ;

ISTAT LOOPI TO [BREAKI]
VIRT IF ISIN(B<<1,N>>,A<<I+1,M>>)
THEN TRUE-~>BISINA:
ELSE M~N+1-~>I CLOSE:
UNDER 0=<I & I=<M-N+1 & 0=«<N:
WRT [BISINA]:

ISTAT LOOPJ TO [ENOLOOPJ BREAKJ];
VIRT IF EQSER(B<<J,N>>,A<<I+J,I+N>>)
THEN N+1=>J: GOTO ENOLOOPJ

ELSE GDTO BREAKJ CLOSE;
UNDER 1=<J & J=<N+1;
WRT [1]:

Programs verified Page 193

Matcher (continued)

FUNCTION MATCHA A M B N => BISINA:
VARS I J:
ASSERT 0=<N & N=<M;
FALSE->BISINA:;
0->I;
$LOOP:
LOOPIF I=<M-N THEN
1=>d;
$LO0OPJ:
ASSERT NOT(ISIN(B<<1,N>>,A<<1,I4+N=15>))
& EQSEQ(B<<1,d=1>>,A<<I+1,I4+d=-1>>)
& NOT(BISINA)
& 1=<J & J=<N+1 & 0=<I & I=<M-N & 0=<N & N=<M;

LOOPIF J=<N THEN
IF A\(I+J)/=B\J THEN GOTO BREAKJ CLOSE;
J+1->d
CLOSE;
TRUE=->BISINA;
GOTO OUT:
$BREAK J:
IT+41->1
CLOSE;
$0UT:
ASSERT BISINA<=>ISIN(B<<1,N>>,A<<1,M>>):;
ENOD:

VARS MO NO;
OECARRAY A0 [1 MO0]:

DECARRAY BO [1 NOJ:

[% AD, "MO", BO, "NO” %] -> INITARGS:

Programs verified Page 194

King's example 6

This program moves the largest element of an array to
the top by successive interchanges and was discussed in
Sections 2,5,5 and 3.3,1, Actually, we have been unable to
use the system to completely verify the program with the
specifications given as virtual programs because of a
difficulty in reasoning about existential quantifiers,
However, we were able to complete the proof using inductive
assertions,

FUNCTION K6V A N:
VARS I:
2=>1:
SLOOP:
LOOPIF I=<N THEN
IF A\(I-1)>A\I THEN A\I,A\(I-1)=>A\I->A\(I-1) CLOSE:
I+1->1:
CLOSE :
ENO:

VARS NO:
DECARRAY A0 [1 NO]:
[%A0, "NO"%]~>INITARGS:

ISTAT LOOP TD [K6VEND]:

VIRT (ANYARR "A1")(EQSEQ(A1<<1,I-2>>,A<<1,I-2>>) &
PERM(A1<<I-1,N>>,A<<I~-1,N>>) &
A1<<I=-1,N=1>> =< A1I\N) =-> A:

UNDER 2=<I & I=<N+1:

WRT [A N];

ISTAT BODY Ké6V;

VIRT (ANYARR "A1") (PERM(A1<<1,N>>,A<<1,N>>) &
A1<<1,N=15>> =< AI\N) ~> A;

UNDER N>=1;

WRT [A N]:

Programs verified Page 195

King's example 6 (continued)

FUNCTION K6A A N:
VARS I:
ASSERT A=A0 & 1=<N:
2=->1;
$LOOP
ASSERT PERM(A<<1,I-1>>, AO0<<1,I-1>>)
& A<<1,I-2>> =< A\(I-1)
& EQSERQ(A<<I,N>>,A0<<I,N>>)
&E 2=<I & I=<N+1;
LOOPIF I=<N THEN
IF A\(I-1)>A\I THEN A\I, A\(I-1) ->A\I ~>A\(I-1) CLOSE:
I+41->1I
CLOSE;
$0UT:
ASSERT PERM(A<<1,N>>,A0<<1,N>>)
& A<<1,N=1>> =< A\N
END:

VARS NO:
DECARRAY A0 [1 NO]:
[% A0, "NO" %] -> INITARGS:;

Programs verified Page

King's example 2: Exchange sort

The system verified this program automatically except
for one manual application of INTERM., The specifications
for this program (and the next one) are given as inductive
assertions only, but we have shown how these could be
translated into equivalent inclusion statements.

FUNCTION K7 A N:
VARSE I NOTORO:
ASSERT A=AQ0 & 1=<N;
TRUE~>NOTORO:
$L1:
LLOOPIF NOTOROD THEN
2=>1; FALSE->NOTORO:
$L2:
ASSERT NOTORO OR OROERED(A<<1,I-1>>)
& PERM(A<<1,N>>,A0<<1,N>>)
& 2=<I & I=<N+1;

LOOPIF I=<N THEN
IF A\(I-1) > A\I THEN
A\I, A\(I-1) => A\I =-> A\(I-1);
TRUE~>NOTORD
-CLOSE;
I+1=>I
CLOSE
CLOSE;
$0UT:
ASSERT OROERED(A<<1,N>>)
& PERM(A<<1,N>>,A0<<1,N>>);
ENO;

VARS NO;
OECARRAY A0 [1 NO]:
[% AO, "NO” %] ->INITARGS;

196

Programs verified Page 197

King's example 9: Ipsertion sort

The proof of this program is given in Section 6.3.

FUNCTION K9 A N:
VARS I J K X:
ASSERT A=A0 & 2=<N:
1=->1:
$L1:
LOOPIF I<N THEN
A\I->X: I->K: I+1=>J:

$L2:
ASSERT 1=<I & I=<K & K<J & J=<N+1
I<N
X=A\K

(I=1 GR A\ (I~1) =< A<<I,N>>)}
A<<I , J=1>> >= X

OROERED (A<<1,I-155)
PERM(A<<1,N>> ,A0<<1,N>>);

OO

LOOPIF J=<N THEN
IF X>A\J THEN A\J-s>X: J->K CLOSE:

J+l1=>d:
CLOSE:;
ANI->A\K; X=>A\I; I+1-51;
CLOSE:
$0UT:

ASSERT ORDERED(A<<1,N>>) & PERM(A<<1,N>>,A0<<1,N>>);
ENO:

VARS NO;

DECARRAY A0 [1 NOJ:
[% AO,”NO” %]=>INITARGS;

Programs verified Page 198

Invert a permutation “in place”

This program, presented by Knuth (1972, p172), was
verified after the remainder of the thesis had been
completed. The proof took about two weeks to find and
check, and because of its 1length was done in several
sessions, The proof is 1loosely based on that given by
Burstall (1974) and uses both loop invariants and virtual
programs in the program's specifications. It depends on the
fact that a permutation can be decomposed into disjoint
cycles (as does the program). The proof is complete except
for the fact that the inverse of a permutation is also a
permutation and that the relation of two elements being in

the same cycle (INCYCLE) is an equivalence relation.

Doing this proof substantiated our belief that it is
preferable to use definitions involving explicit quantifiers
rather than recursive definitions, particularly since
relations such as INCYCLE1 are guite difficult to define

recursively, and our initial attempts to use such a

definition in the proof failed.

In the following pages we show the program with its
specifications and the rules used in the proof. Several of
the predicates and functions used actually require AQ and N

as additional arguments, but since these remain constant

throughout they have been omitted.

Programs verified Page 199

Permutatign (continued)

FUNCTION INVERT A N:
VARS I J K M;
$START:
ASSERT N>=1 & A=A0 & ISPERM(AO0<<1,N>>):
N—=>M;
$LOOPM:
ASSERT 0=<M & M=<N & ISPERM(AO<<1,N>>) & (FA "Q"){(
(M<Q@ & Q=<N =>> A\Q = INV(AO)\Q) &
(1=<Q & @=<M & INVERTED(Q,M) =>> A\Q = O0-INV(AO)\Q) &
(1=<Q & Q@=<M & NOT(INVERTED(Q,M)) =>> A\Q = A0\Q)):

LOOPIF M>=1 THEN
A\M=>T:;
IF I<0 THEN(b-Q->A\M
ELSE M->K:
» $LOOPI:
LOOPIF I/=M THEN
A\I->J; (0=K~>A\I; I->K; J=>I;
CLOSE;
K=>A\M:
$FIN:
CLOSE:
M=1=>M:
CLOSE;
$0UT;
ASSERT (FA "Q")(1=<Q & Q=<N =>> A\Q = INV(AD)\Q):
END:

VARS NO:
DECARRAY A0 [1 NO]:
[% AO,"ND0" %] —> INITARGS:

ISTAT LOOPI TO [FIN]
VIRT (ANYARR "B")((FA "R")((R=M =>> B\R = INV(AO)\R) &
(R/=M & INCYCLE1(I,R,M) =>> B\R = O-INV(AO)\R) &
(NOT(INCYCLEA(I,R,M)) =>> B\R = A\R))) => A:
UNDER 1=<K & K=<N & 1=<M & M=<N & I=A0\K & ISPERM(AO<<1,N>>) &
(EX "V")(0=<V & V<LEN(I) & M=ITFN(I,V)) &
(FA "S5")(INCYCLE1(I,5,M) =>> A\S=A0\S)
WRT [A M]:

Programs verified Page 200

Permutation (continued)

INCYCLE1 (XK ,XQ,XM)
==> (EX [XU XV])(0=<XU & XU=<XV & XV<LEN(XK) &
XQ=ITFN(XK,XU) & XM=ITFN(XK,XV)):

INCYCLE (XP,XQ)
==> (EX XU)(0=<XU & XU<LEN(XP) & XQ=ITFN(XP,XU)):

INVERTED(XQ,XM) ==> (EX XI)(XM<XI & XI=<N & INCYCLE(XI,XQ)):
IR 14

ISPERM(XA<<XM,XN>>)

<== [% (FA XQ)(XM=<XQ & XQ=<XN =>> (XM=<XA\XQ & XA\XQ=<XN)),

(FA [XP XA])(XM=<XP & XP=<XN & XM=<XQ & XQ=<XN &
XP/=XQ =>> XA\XP /= XA\XQ) %]:
IR 15

XM =< XA\XQ
== [% (EX XN)(XM=<XG & XQ=<XN & ISPERM(XA<<XM,XN>>)) %]:

IR 16

XA\XQ =< XN

<== [% (EX XM)(XM=<XB & XQ=<XN & ISPERM(XA<<XM,XN>>)) %]:
IR 17

XA\XP /= XA\XQ

<== [% (EX [XM XN])(XM=<XP & XP=<XN & XM=<XQ & XQ@=<XN &

XP/=XQ & ISPERM(XA<<XM,XN>>)) %]:

IR 20

INV(XA)\XI = XJ <== [% XA\XJ = XI %]:
IR 21

ISPERM(INV (XA)<<XM,XN>>) <== [% ISPERM(XA<<XM,XN>>) %]:
ITFN(XP,O) ==> XP;
WHEN [% XX/=0 %], ITFN(XP,XX*LEN(XP)+XY) ==> ITFN(XP,XY):
ITFN(ITFN(XP,XJ),XI) ==> ITFN(XP,XI+XJ):
AO\XP ==> ITFN(XP,1):
IR LO

1 =< LEN(XM) <== NIL:
IR L1

XI = LEN(XP) <== [% ITFN(XP,XI)=XP, 0<XI, XI=<LEN(XP) %]:
IR L2

XI = XJ

== [% (EX XP)(ITFN(XP,XI)=ITFN(XP,XJ) &

0=<XI & XI<LEN(XP) & 0=<XJ & XJ<LEN(XP)) %];

IR L3

XI = LEN(XA\XP) «<== [% XI = LEN(XP) %]:

Programs verified Page 201

Permutation (continued)

IR 101
INCYCLE (XM,XM) <== NIL;:
IR 102
INCYCLE(X@,XM) <== [% INCYCLE(XM,XQ) %]:
1->ISTRANS ("INCYCLE"):
IR 105
1=<XQ
<== [% (EX [XK XM]){(1=<XK & XK=<N & 1=<XM & XM=<N &
INCYCLEYT(XK,XQ,XM)) %]:
IR 106
XB=<N
<== [% (EX [XK XM])(1=<XK & XK=<N & 1=<XM & XM=<N &

INCYCLE1(XK,XQ,XM)) %]:

Page 202

Appendix 5: Listing of matcher

[LIB ASSOC].LIBRARY ,COMPILE;

VARS INST INSTL APSUBST1 SUBXS ASUBXS ASUBXS1 ACSUBXS ACSUBXS1:

COMMENT * 9999696 9 9 36 36 36 3696 96 9 996 3636 96 96 96 9 96 96 9 36 96 36 36 3096 6 36 3 6 36 36 36 36 36 36 9 9 36 36 36 36 3 %
* INSTANCE IS THE ASSOCIATIVE, COMMUTATIVE MATCHER -

* CALLED BY
* INSTANCE(TERM,PATTERN) => SUBSTITUTION-LIST

9 33 36 3 363 I I I I I I I I I I WA I I I I W I I W I I I I I I I I I I I I I I W WK N XQ :

FUNCTION INSTANCE TERM PAT;:
INST(TERM,PAT ,ASSNIL()):
END:

FUNCTION INST TERM PAT SIG:
VARS PATN PATL TERML S1 GENSUBXS;
IF ISVAR(PAT) THEN COMMENT °‘VARIABLE@:;
ASSOC (PAT ,SIG)~>S51;
IF S1=UNDEF THEN [%UPDASSOC(TERM,PAT,SIG)%]
ELSEIF EGX(S1,TERM) THEN [%SIG%)
ELSE NIL CLOSE
ELSEIF ISPRIM(PAT) THEN COMMENT °CONSTANTE;
IF EQX(PAT,TERM) THEN [%5IG%] ELSE NIL CLOSE;
ELSE COMMENT °‘FUNAPE;
FUNNAME (PAT)~>PATN; FUNARGS (PAT)=->PATL:
IF ISASSOC(PATN) THEN
IF ISCOMM(PATN) THEN ACSUBXS ELSE ASUBXS CLOSE -> GENSUBXS:
IF ISFUNAP(TERM) THEN
IF PATN=FUNNAME(TERM) THEN
INSTL(FUNARGS(TERM) ,PATL ,PATN,SIG,GENSUBXS)
ELSE INSTL([%TERM%],PATL,PATN,SIG,GENSUBXS)

CLOSE
ELSE INSTL([%TERM%],PATL ,PATN,SIG,GENSUBXS)

CLOSE
ELSEIF ISFUNAP(TERM) AND PATN=FUNNAME(TERM) THEN
FUNARGS (TERM)~>TERML :
INSTL (TERML,PATL ,PATN,SIG,SUBXS):
IF ISCDOMM(PATN) AND NOT(EGX(HD(TERML),HD(TL(TERML))))
AND NOT(EQX(HD(PATL), HD(TL(PATL)))) THEN
<> INSTL(REV(TERML),PATL,PATN,SIG,SUBXS):
CLOSE
ELSE NIL CLOSE
CLOSE
END;

Listing of matcher Page 203

FUNCTION INSTL TERML PATL OP SIG GENSUBXS => SIGS;
COMMENT * 99636 9636 36 9696 36 3 36 3 36 36 3 36 3636 36 96 96 96 96 6 36 9 3 36 I 36 9696 36 36 636 36 96 36 36 96 36 36 36 3696 96 96 3636 36 3¢
* MATCH THE ARG-LIST TERML AGAINST PATL IN ALL POSSIBLE WAYS,
* DEPENODING ON THE PROPERTIES OF OP AS OESCRIBED BY GENSUBXS
3696969696 696 96 96 96 9696 369 36 96 366 36 9696 96 6 36 36 9 96 969696 F96 96 96 3696 969696 I 996 9696 3696 96 96 3 96 H3 X% H@
VARS PAIR PAIRS ISIG ISIGS IOENT;
IF PATL . NULL THEN
IF TERML ,NULL THEN [%5IG%]) ELSE NIL CLOSE~>SIGS:
EXIT:
IOENTOF (PATN)~>IDENT; NIL->SIGS;
LOOPIF TERML /=NIL ANOD EQX(HO(TERML),IDENT)
THEN TL(TERML)->TERML CLOSE; ‘
GENSUBXS(TERML,0P)~>PAIRS;
LODPIF PAIRS/=NIL THEN OEST(PAIRS)->PAIRS->PAIR:
INST(FRONT(PAIR),HO(PATL),S5I6)~>ISIGS;
LOOPIF ISIGS/=NIL THEN DEST(ISIGS)->ISIGS->ISIG;
INSTL(BACK(PAIR),TL(PATL),0P,ISIG,GENSUBXS) <> SIGS =-> SIGS;
CLOSE:;
CLOSE;
END:

FUNCTION SUBXS XL OP;
IF NULL(XL) THEN NIL ELSE XL::NIL CLOSE;

END:

FUNCTION ASUBXS XL OP => XS;
COMMENT * 9 36 36 36 36 36 36 96 96 3 36 9 36 96 96 696 96 9 96 96 96 96 9696 396 3696 36 6 3696 9636 36 96 96 3 36 96 96 96 3 6 3 9696 9 %9 %

* XS IS THE SET OF ALL PODOSSIBLE (INITIAL) PARTITIONS

* OF THE ARGLIST XL INTD A TERM AND REMAINING ARGLIST,

* EG, ASUBXS([AB],".") =1[(1,[AB]), (A,[B1), (A.B,NIL)],
* WHERE (IOENT(",")=1)
3696 36 36 3636 36 36 96 36 96 36 36 36 3636 36 36 3636 30 36 3696 3 3636 96 3036 96 3036 36 9636 9696 696 36 96 36 963696 96 36 H 6 HH KK G
VARS N LB;

LENGTH(XL)=>N;

IF IOENT=UNDEF THEN 1 ELSE 0 CLOSE ~> LB;

(% LOOPIF N>=LB THEN ASUBXS1(XL,N); N-~1->N CLDOSE %] -> XS

ENOD:

FUNCTION ASUBXS1 XL N:
CONSPAIR (
ABBREV ([%LODPIF N THEN XL ,0EST->XL: N=1->N CLOSE%],0P,IDENT),
XL):
END:

FUNCTION ACSUBXS XL OP => XS
COMMENT " 99 3 96 96 96 9 936 36 96 96 96 96 96 96 36 36 3 3 6 6 36 36 96 96 9696 96 96 96 36 36 36 36 36 96 96 6 96 96 36 36 96 36 6 96 36 6 9 %

* LIKE ASUBXS, BUT FINDOS THE SET OF ALL POSSIBLE SUBBAGS,
* EG: ACSUBXS([A B])"o") = [Av[B])) (Bv[A])]v

* WHERE IODENTOF(",”)=UNDEF |,

69 3 I K K I G :
NIL~>XS:

ACSUBXS1(REV(XL),NIL,NIL):
ENO;

Listing of matcher Page 204

FUNCTION ACSUBXS1 XL S1 S2:
COMMENT °SINCE XL IS SORTED, EQUAL ELEMENTS ARE ADJACENTE:;
VARS X L:
IF NULL(XL) THEN
UNLESS IOENT=UNDEF AND NULL(S1)
THEN CONSPAIR(ABBREV(S51,0P,IDENT),S2)::X5~->XS CLOSE;
EXIT:
DEST(XL)=>XL=->X: X::51->L;
LOOPIF XL /=NIL AND EGX(X,HD(XL)) THEN X::L->L; TL(XL)->XL CLDSE:
LODPIF L /=51 THEN ACSUBXS1(XL,L,S52): DEST(L)=>L=>X: X::52->52
CLOSE:
ACSUBXS1(XL,L,S2);
END:

FUNCTION ABBREV XL OP ID;
COMMENT * 939696 9 9 9 96 9 96 96 96 96 9696 96 96 96 3696 9696 96 96 9 3 36 36 36 36 36 36 96 96 36 96 969696 9696 96 3 3 96 96 96 96 36 36 3¢

* CONSTRUCT THE TERM WITH FUNCTION OP, NORMALIZED ARGLIST XL,
* AND IDENTITY IO, OP MUST BE ASSOCIATIVE,

* ABBREV IS ONLY REALLY RERUIREDO WHEN A NDRMALIZING FUNCTION
* WHICH KNOWS ABDOUT INVERSES IS USED.,

363636 363636 3636 36 36 3636 363636 3 363636 3 3030 36 36360 36 3 36 3 3636 36 363 3636 36 36363 6 36363 3 3636 3 I3 3 6 X3 .

IF NULL(XL) THEN ID

ELSEIF NULL(TL(XL)) THEN HOD(XL)

ELSE MKFUNAP(DP,XL) CLOSE;
END;

FUNCTION UPDASSODC CPT SUB ASS;
COMMENT 'A CONSTRUCTIVE UPDATER FDR ASSOC,
ASS MUST BE UNODOEFINED AT SuB!;
ASSCONS (ASSFAIL (ASS),ASSEQ(ASS),ASSLCONS(CPT,S5UB,ASSOF (ASS)));

END;

SCHOOL OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

Memorandum: MIP-R~-104
Date: July, 1974

Subject:~ The correctness of the Schorr-Waite list marking algorithm

Author:- R. Topor

1. Introduction

We present here a proof of the correctness of an algorithm, due
to Schorr and Waite (1967) and to Deutsch (Knuth 1968, p.417), which
traces and marks an artitrary list structure, and which can be used
for the first stage of garbage collection. The algorithm is of
interest because of the clever way it avoids using a stack. by
manipulating pointers within the structure, restoring them all at the
end. The gereral problem of data siructurc updating is a difficult
one, and work on it has been done by Burstall (1972), Morris (1972),
Poupon and Wegbreit (1972) and Kowaltowski (1973), though we have not

used any of their methods.

The correctness proof of the Schorr-Waite algorithm given here
is simpler than those given by Poupon and Wegbreit, or Kowaltowski.
Our proof is factored into properiies of the algorithm itself, and
properties of the data structure upon which it operates. In fact, one
can use these latter properties to prove correct two simpler versions
of the algorithm, one using recursion and the other an explicit stack.
The proof involves not inductive assertions (Floyd 1967), but
mathematical induction on tne size of the structure to be msarked. It
can be formalized using the method of Burstall (1974), itself a varient
of Manna (1969),

The method of proof was suggested by a hint in Knuth (1968, p.420),*

John Reynolds (1974) has used similar techniques in his treatment of
Tarjun's algorithm (1972).

R.T. -2 MIP-R~104

I am grateful to Rod Burstall and Gordon Plotkin for several helpful

suggestions. The work was supported by a Commonwealth Scholarship.

2. The problem of marking

We are given a set of nodes, i.e. list cells, each node containing
twe fields (hd,tl) which may contain atoms or pointers to other nodes,
a mark bit (m), and, for the Schorr-Waite algorithm, a flag bit (f);
Wwe are also given a particular starting node Zgye The structure may
contain shared and cyclic sublists. Initially all the mark bits are
set to 0. The problem is to set the markluit of every node reachable

by a finite sequence of hd's and tl's from % to 1.

The main difficulty in proving that an algorithm to sclve this
problem is correct is that the natural technique of structural
induction does not work; Dbecause lists may be cyclic there is no
sense in which hd(x) is less than x (thev may even be the same node).
An added difficulty in verifying the Schorr-Waite algorithm is showing
that, apart from the mark bits, the structure is the same at the end as
it was at the start, despite the destructive updating of the nodes.

To overcome these difficulties we introduce the following concepts

before discussing the actual algorithms.

3. Properties of marked list structures

Let C be the set of all nodes, A the set of all atems, and
2
S: c>(cu A)'xf0,1}2 the set of possible machine states.

Definition We define functions hd ¢, t16~: C->C U A, m61,f6-: C—>{O,1}

by hdgec = Xy where 6‘(0) = <x1,x2,b1,b2>,
tlge = X, " "
mg-C = b1 " n
f(f c = b? n]

We further define Marked: Zf -->2C by Marked6~=fc € C: m6'°=1}‘
The subscript 0 is often omitted frem these functions where this can be

done unambiguously,

The/

R‘ Tc '-3" MIP—R—104

The key idea is to define the set of unmarked nodes reachable

{rom a given node. This is the purpose of the following definitions.

Definition The predicate ispath: 2. x(c L}A)2~>{true,false§, is
defined by ispathg(z,y) iff there exists a finite sequence
XO’X1":"Xn' n>0 of distinctAnodes in C such that X=X X =Yy for
0<i<n, mg-x,=0, and for 0&i<m, x, ,=hdgx, or L SREL AP S I Such a

sequence is called a path (w.T.t.).

We can now define nodes: 5 x(C U A)~>2" by
nodesg(x)r-f,v € }ispathg(x,y)}.

We assume that C, and hence nodesS(x), is a finite set throughout.

Fact 1 For all x, 6, nodesé.(x)—_-d if x €@ U Markedgf,
=§x} U nodesﬁ(hdgx) U nodesﬁ(t¥rx) othervise.

Proof Clearly if x € A U Marked, ispath(x,y)=false for all y ¢ C, so
nodes(x):ﬁf.

Suppose x £ AU Marked, and let y € nodes(x).

If y=x then y ¢ {x} U nodes(hd x) U nodes(t1 x).

Otherwise ispath(x,y), i.e. xzxo,x1,x2,.'.,xn=y, n>%, where x1=hd X

or x1=tl x. is a path, Suppose x1=hd x, then ispath(hi x,y), S0

y € nodes{hd x).

Now let y € {x} U nodes(hd x) U nodes(tl x).

If y=x, since x £ A U Marked, ispath(x,x), so y € nodes(x).

Otherwise v € nodes(hd x), say, and hd xzxo,x1,...,xn=y, n>0 is a path.
If for some i, 0<ifn, X =X, then ispath(xyy) and y € nodes(x),

Otherwise x,hd X=X Xqpee s X =Y is & path, and again, y € nodes(x).
Fact 2 TFor all x,y, 6 , if y € nodesd(x), then mg x=0.
Proof Immediate from the definitions of nodes and ispath.

Definition For €1, §2 € 3, define §1C €2 if Larked., C Markedc,,
17d6‘2=hdsg'tlm=t152 and f61=f62’ i.e. if there are fewer unmarked nodes

in 01 tharin 2, (In cases like this we sav Marked c_’,'___l\/larked(ﬁ

62
and/

R.T. 4 MIP-R-104
and §1= §2 otherwise.) The relation [is clearly a partial order.
Fact 3 TFor all x, 61, 02, if 01E G2, then nodesm(x)g nodesé‘z(x).

Proof Let y € nodesm(X), i.e, ispaﬂ;hé-1 (X,y)-

But as hdm =hd6' xj=0~>m6,

Hence y € nodesﬁ.g(x

2,,1:1 1:t16'2 and m 2xi:O, 1spath6-2(X,Y)-

).

61

Definition We define mark: Cx 3 ->5 by markx(c')-«— 6' where §'=§
(i.e. hdg =hd srotle =tlg, and fo =f o) except that mg,y=1 iff
mney=1ory € nodesG-(X)- This concept is important for describing

the effects of the marking algorithms.

Fact 4 For all x,y,, ncdes)(y) U nodesg(x)znodesﬁ(v) U nodesﬁ.(x),

markx (6
i.e. marking one node's descendants and theun thef other's is the same as

marking them 211 together.

)
Proof a) markx(S") £ 6', so nodesmarkx(o,)(y)g nodess(y) (Fact 3).
Thus mdesmarkx(ﬁ') (y) U nodesG-(x) < nodesc(y) U nodesg(x)-

b) let z € nodesc(y), and let Y=V Y qre e sV, =2 n>0 be a path.

If for all i, 0<i<n, mmarkx(ﬁ')('vi)zo’ ispathA (y,Z), S0

markx@?l
7 € 110desmarkx(0~)(7i).

Otherwise, let ,jz/u 50 Mmark &) (yi)=1.
- X

Since m()-yij, y; € n?dess(x), and ispathc-(x,y.).
Clearly ispathq(yj,z), so isnathg(x,z) and z € nodescg(x).
Hence nodeso—(y)g nOdesmarkx(G)<y) U nodesé-(x), and the result follows.

Fact 5 For a1l x, 61, §2, if 1."Leu’ked(s_?zlfhau'kedc).1 U ix], x £ Markede,,

and G§1= 02 otherwise, then nodesm(x)r:{xl U nodes_, (hd x) U nodes. (t1 z).

Ay %62

Proof a) since G261, nodes,yg(hd x) ¢ nodesm(hd x) and
nodeso?(tl x)_C: nodesm(tl x).

So {x}u nOdCS,y(?(hd x) U nodesé.g(tl v:)g {xtu nodesm(hd x) U nodesm(tl x)

=ncdesg (x) (x £ AU Hatkedc,, Fact 1),
b) iet r € nOdeSm(X), i.e, X=Xy Xgseeer X =Yy W20 is a path (wor.t. §1),

1/

R.T. ~5- MIP-R-104

If n=0, y=x and y € {XE(J nodesﬁz(hd x) U nodegfg(tl X) e
Otherwise, ximhd X, say, SO ispatha?(hd x,v) and y € nodesgg(hd x).

Thus nodes61(x) g;{x¥L) nodeﬁfz(hd x) U nod95§2(tl x)e

4, Two simple algorithms

The facts we have derived so far are sufficient and necessary
to prove the correctness of the following two ancestors of the Schorr-
Waite algorithm. The first, recursive program is perhaps the simplest
possible marking algorithm. The second is obtained by replacing the
recursion by an explicit stack. The proofs of these programs are
analogous to the one we are sbout to give, only simpler as no destructive

asgignment is involved, We omit these proofs here.

Program 1

Mk(Z) <= if not(atom(Z)) and m(z)=
then m(Z)<~1; Mk(nd(2)); Me(£1(2)) fi;
k(%) 3

Program 2

Start: Z<~ZO; S<-empty;
Loop : while not(atom(Z)) and m(Z)=0
do(m(Z)<~1; S<-pusn(z,s); Z<-ha(z));
if Sfempty then Z<-pop(S); 2Z<-t1(Z); goto Loop fi;

Finishs

5. The Schorr-VWaite algorithm

This algorithm saves the stack of Program 2 in the elready marked
nodes, The f~bit is used to determine whether the back pointer to the
next node of the stack is in the hd or the tl of the current node (X).
Initially all the f-bits are O. To handle this destructive updating

we introduce the following:

Definition/

Definition For 1, §2 ¢ Z , define 61~G2 4if Markedm:Markedé-?
and for all x £ Marked61, 61(x)= 62(x), i.e. 61 and &2 only differ

on marked nodes.
Fact 6 If 6102 then for all x, nodesd1(x)=nodeﬁfz(x).
Proof Clearly ispath61(x,y) iff ispatth(x,y) and the result follows.

We now give the algorithm. The comma as a connective for the
multiple assignment statement means that a2ll left and right hand values

are calculated, and then the assignment are carried out simultaneously.

Start: Z<~ZO; X<L=nily
P1: whije not(atom(Z)) and m(Z)=0
do(m(2)<~1, hd(Z)<~X, Z<-hd(Z), X<-2);
P2: if X#nil then goto Finish fij
if £(X)=0
then £(X)<=~1, hd(X)<-2, t1(X)<-hd(X). 2<-t1(X); goto P1
else £(X)<-0, t1(X)<-2, X<~t1(X), Z¢=X; goto P2 fi;

Finish:

Before stating and proving the correctuess criterion we still need
to introduce a little more notation, We write f[x;—>y] for the function
g defined by g(z) <= if z=x then y else £(z). Following Burstall

3 HD e — e 1"
(1974) we write "P: X=Xy Xy™Xngees'

exists a stage of the execution when the computation is at label P,

as an abhreviation for "“there

and the identifiers Xi have the values xi". Yhen we say "by
computation" during a proof we mean "by observing the effects of the
assignments on the state vector"., We introduce an imaginary variable,

Store, whose value is the current state.

Theoren If Start: Z =z, Store=(where for all y € nodess(zo) ny=0,

0 "0’
then Finish: ZO:ZO’ Store:markz (6), i.e. all the nodes reachable from
=, are marked but otherwise uncganged.

0

Proof/

R.T. : T MIP-R-104

Proof Letting z=z. and x=nil, this theorem can be seen to follow

0
immediately from the following lemma,

Lemma If P1: Z=z, X=x, Store=§ wvhere for all y € nodesﬁ-(z) f5v=0,
then P2: Z=z, X=x, Storemnarky(ﬁ).

Proof The proof is by course of values induction on the size of
nodes@(Z). Notice how the induction hypothesis is used twice,

corresponding to the two recursive calls of Program 1.

Basis ,nodess(z), =0, i.e. 2 € AU Markeds, the first test fails,

snd the result is immediate.

Step lnodeso-(zﬂ /—-O, i.8. 2 ;é AU Marked@.
Let hdge=u, tlgr=v and §lz-><hdsz,tlsz,1,fgm]=6", i.e. §'=6

except that m z=1,

Since z £ AU Markedd., the body of the while statement is
executed once, yielding P1: Z=u, X=z, Storer:m:».’)'[zf-><x,t16-z,1,f5-z>].
Now, nodes61 (u):nodes 61 (hdsz)

=nodes5,(hd€z) (6 1~g, Fact 6)
gnodes,y(hdgz) (6 L ¢, Fact %)
S'-,nodesd-(z) (Fact 1).

But mmz=1, S0 % ,é nodesm (w) (Fact 2).

Since z € nodes()-(z), nodesG.1 (u) % nodesav(z), and ’nodesm(u) ! < inodesa.(z)% .

We can now use the induction hypothesis, i.e. the lemma with

z=u, x=%, 0 = 01, to obtain
P2: Z=u, X=z, Store= u’)’2~:mar1‘i}1 (61).
Now, as z—/:nil, and f‘ﬁ.?zso, by computation we have

Pt: Z=v, X=z, StorexﬁSxSﬂzr—><u,hdo.gz,m52z,1>].

Thus hd6.3z:hd5z, t15.3z=hd62z=x, and §3~G'.

As before, nodes;GB(v):nodesb..j(tsz)
:nodesé‘,(tlé-z) (Fact 6)
_C;nodesﬁ-(tlgz) (6'C6, Fact 3)
gnodefzd'(z) (Fact 1),

and/

R.T. -8~ MIP-R~104

and as q53z=1, z f ”°de%53(v)* S0 ,nodesGB(v)! <)nodeSS(Z),-

Again we use the induction hypothesis to obtain
P2: Z=v, X=z, Store=54nmarkv(63).
This time z%nil, but Q54z=1, so computation yields

P2: Z=z, X=x, Store § 5= ﬁ4[zk><hd§42,v,m642,0>1,
Thus hdgsz:u:hd§z, thSer=t15z and ﬂsSZ:O. Since applying markx
te § does not affect hdg,tls or fy, hd55:hd6’ t%y5=t15-and §§5=§T‘

It only remaius to show that 55¥mark7(63, i.e. that
Marked =nodes6(z).

65
Markedssz{z} U nodes@1(u) 9] nodesg3(v) ‘ .
:{z} U nodesd1(u) U nodesmarku(61)(v) (Gjn,§2=marku(51), Fact 6)
=fz}\J nodesﬁz(u) U nodegf1(v) (Fact 4)
={z}l) nodesﬁ,(uJ U nodesg,(v) (1~ 61, Fact 6)
=node36(z) (Pact 5)

This completes the proof.,

An alternative method of procf is to first prove Program 2, a
purely constructive program using this method. and then, using the
techniques of Milner (1971) or Hoare (1972) to show that the Schorr-
Waite algorithm simulates Program 2. In particular the representation
function, Rep, for the stack in the Schorr-Waite algorithm is defined
by Rep(X) <= if X=nil then empty

elseif f(X)=1 then Rep(t1(x))
else push(X,Rep(pa(Xx))).
However the resulting proof bv this approach is longer than the one we

have given.

6./

R.T, O MIP-R-104
6. Relerences

Burstall, R.M. (1972) Some techniques for proving correctness of
programs which alter data structures. Machine Intelligence
(eds. B. Meltzer and D. Michie), Edinburgh: University Press,
ppa 23“50 ®

Burstall, R.M, (1974) Progranm proving as hand simulation with a
little induction. To appear in Proccedings of TFMIP Congress ‘74,
Stockholm, Sveden, August 9,10.

7

Floyd, R.W. (1067) Assigning meanings to prosrams. Proreedings of

e s i

Symposium in Applied Mathemotics, AlIS Vol, 19, 19-32,

Knuth, D.E. (1968) TFundnoment~1 Alsori thus, Addison-Veslev,

Hoare, C.A.R. (1972) Proof of correctness of data representations.
Acta Informatica 1, 271-281,

Kowaltowski, T. (1973) Correctnoss of prograns manipulating data
structures. Ph.D. Thesis., Berkelev.

Manna, %. (19€9) The corrvectness of programs. J.C.5.S., 3, 2, 119~i27.

Milner, R, (1971) An algebraic definition of simulation between
Prograns., 205, Stonford University.

Morris, J.JI. Jr. (1972) Verification-oriented language design.
Tech. Rep. 7, Dept. of Computer Sciecnce, Berkcley.

Poupon, J. and Yegbreit, B, (1972) Covering function. Centre for
Research in Computing Technology, Harvard University.

Reynolds, J. (1974) Unpublished work.
Schorr, H, and Waite, W. (1967) An efficient machine-independent

procedure for garbage ceollcction in various list structures.
C'A.C.T/[. lQ, E}‘.

Tarjan, R. (1972) Depth-first search and linear graphs. STAM J, of Comp.

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-75-005

