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ABSTRACT 

This thesis is concerned with ways of proving the 

correctness of computer programs. The first part of the 

thesis presents a new method for doing this. The method, 

called continuation induction, is based on the ideas of 

symbolic execution, the description of a given program by a 

virtual program, and the demonstration that these two 

programs are equivalent whenever the given program 

terminates. The main advantage of continuation induction 

over other methods is that it enables programs using a wide 

variety of programming constructs such as recursion, 

iteration, non-determinism, procedures with side-effects and 

jumps out of blocks to be handled in a natural and uniform 

way. 

In the second part of the thesis a program verifier 

which uses both this method and Floyd's inductive assertion 

method is described. The significance of this verifier is 

that it is designed to be extensible, and to this end the 

user can declare new functions and predicates to be used in 

giving a natural description of the program's intention. 

Rules describing these new functions can then be used when 

verifying the program. To actually prove the verification 

conditions, the system employs automatic simplification, a 

relatively clever matcher, a simple natural deduction system 

and, most importantly, the user's advice. A large number of 

commands are provided for the user in guiding the system to 



a proof of the program's correctness. The system has been 

used to verify various programs including two sorting 
programs and a program to invert a permutation "in place"; 

a proof of 
the proofs of the sorting programs included l the fact that 

the final array was a permutation of the one. 

Finally, some observations and suggestions are made 

concerning the continued development of such interactive 
verification systems. 
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Chapter 1. INTRODUCTION 

1.1 Overview 

This thesis describes a method and an implemented 

system for proving the correctness of computer programs. 

The task of proving programs correct, known as program 

verification, is one aspect of the general problem of 

developing more reliable programs. Program verification is 
desirable as it eliminates the time-consuming task of 

debugging programs, and guarantees that a verified program 

will always behave as it was intended to. Since proofs of 

program correctness can be very long and are themselves 

prone to human error, it is desirable to obtain machine 

assistance either to check the hand proofs or, if possible, 

to discover the proofs independently. The ultimate aim is 
for a programmer to be able to present his program together 

with its specifications to the computer which, as well as 

looking for syntax errors, will attempt with the 

programmer's help to verify the program, either certifying 

it correct or detecting any (semantic) errors, possibly by 

giving counter-examples. While such a system, for practical 
programs, still lies in the future, considerable progress 

has been made both in finding general methods of proving 

correctness (and other properties) of programs, and in 
mechanizing these methods. 
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In this thesis, we are mainly concerned with the 

following aspects of program verification:- 

1) The use of alternative programs (virtual 2roarams) 

as specifications of a given (or actual) program, 

and an associated inductive proof method. 

2) The ability to easily add new knowledge about the 

different (mathematical) domains programs might 

operate on. 

3) The design and use of a simple, interactive theorem 

prover to prove the verification conditions, 

4) The use of a real language's compiler and normal 

run-time system to generate, by symbolic execution, 

verification conditions for programs written in that 

language. 

The principal contribution of this thesis is twofold. 

First, it describes and discusses a new method of proving 

the partial correctness of programs. This method, 

-con_tinuation induction, is based on symbolic execution: 

allows recursive, iterative and non-deterministic programs 

to be treated uniformly; handles escapes and procedures 

with side-effects: and is especially convenient for proving 

properties of certain recursive programs. Secondly, the 

thesis describes an implemented program verifier which uses 

both this method and Floyd's method of inductive assertions. 

While the theorem-prover of our verifier is not as powerful 

as some others, the verifier is of interest for the way it 
uses high-level descriptions of programs, and for the nature 
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of the extensive interactive facilities provided. It also 

shows that non-trivial programs can be verified conveniently 

using a naive theorem prover with human assistance. 

Using this method and the interactive theorem prover 

described, our system has verified, sometimes using human 

assistance, the following programs, among others:- 

1) The 91-function, 

2) A version of Ackermann's function, 

3) Various common numerical programs, 

4) A searching program which jumps out of a block, 

5) Programs which test whether one array is equal to, 
or a subarray of, another, 

6) Two simple sorting programs, 

7) A program to invert a permutation "in place". 

A list of programs verified by the system, together with 

their specifications, is given in Appendix 4. 

The program verification system we have implemented 

verifies POP-2 programs, and is written in POP-2 (Burstall, 
Collins and Popplestone 1971), a language designed for use 

in artificial intelligence and combining features of both 

ALGOL and LISP. However the proof method used is applicable 

to any simil%ar language. In our system, all the control 

aspects of symbolic execution are handled by the normal 

POP-2 run-time system. Thus, any correctness results proved 

are true with respect to the actual implementation of the 

language, rather than with respect to some abstract 
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To briefly illustrate our method of program 

verification, consider the following example. 

Start: 

r------------------1 I:=1 I 

R:=1 I (V1) 

Loop: --I > * I 
--Yes -- ---- 

(V2) 
I=N ? 

R:=R*N!/I R:=N! 
No I:=N I:=N 

I:=I+1 i R:I =R*I 
Finish 

The program in solid lines on the left is the actual program 

to be verified. The intention of this program is to set R 

to n! (the factorial of n) where n is the initial value of 

N. It also sets I to N. This is expressed by the virtual 

program (V1) in broken lines on the right: Start: - 

-> Finish. We wish to show that for all values of n the two 

programs return the same results, that is they are 

equivalent, provided the actual program terminates. Just as 

a loop must have an invariant in Floyd's method, so it must 

have a virtual program describing it in ours. The virtual 

program (V2) corresponding to the loop in the actual program 

is shown in broken lines, Loop - -> Finish, and we must also 

show that whenever the loop alone terminates it returns the 

same results as its virtual program. 
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Each of the actual programs (the whole program and the 

loop) is now shown separately to be "equivalent" to its 

corresponding virtual program. This is done by symbolically 

executing both the actual program and the corresponding 

virtual program from the same state, and checking that they 

terminate in the same state. Considering the inner pair of 

programs first, there are two pairs of paths: 

1) Loop:N=n,I=i,R=r ) Finish:N=n,I=i,R=r with i=n 

versus 

Loop:N=n,I=i,R=r - -> Finish:N=n,I=n,R=r*n!/i! 

2) Loop:N=n,I=i,R=r o Loop:N=n,I=i+1,R=r*(i+1) 
with NOT i=n 

-> Finish:N=n,I=n,R=r*(i+1)*n !/(i+1 ) 
with NOT i=n 

(induction hypothesis) 
versus 

Loop:N=n,I=i,R=r - -> Finish:N=n,I-n,R=r*n!/i! 

Clearly the resulting state vectors are the same in each 

case. Notice how we used the induction hypothesis that the 

two programs are in fact equivalent by executing the virtual 

program when we returned to Loop. The proof is thus by 

induction on the number of times the program goes around the 

loop. To verify the complete program we must compare the 

following pair of paths: 

3) Start:N=n,I=i,R=r * Loop:N=n,I=1,R=1 
- -> Finish:N=n,I=n,R=1*n1/1! 

versus 

Start:N=n,I=i,R=r - -> Finish:N=n,I=i,R=n! 

Again the resulting state vectors are clearly the same. In 

this case we used the above result that the actual and 

virtual programs from Loop are equivalent" to circumvent 
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the loop by executing the virtual program from that point. 

The method can be applied to recursive procedures in 

the obvious way by giving a virtual program to describe the 

body of the procedure. However its utility comes from the 

fact that the virtual programs may be considerably more 

complex than they were here. In particular, they may 

include conditionals, jumps and non-deterministic 

operations. 

Generally, as in this example, the virtual program 

which describes an actual program cannot be expressed using 

only the primitives of the programming language, even though 

the actual program is computing some well-known mathematical 

function such as the greatest common divisor of two numbers, 

the factorial of a number, the inverse of a matrix, the 

product of two matrices, the transitive closure of a 

relation, the inverse of a permutation, the connected 

components of a graph, etc. It is clearly desirable in such 

cases that the specifications of the actual program should 

be in terms of these mathematical concepts rather than at 

the level of the representation used by the actual program. 

Our system allows the user to declare such functions as new 

(undefined) primitives of the programming language and use 

them to write his specifications for the program. The 

properties of these functions can be defined by giving 

axioms and rules which are used in actually verifying the 

program. These rules will also relate the abstract 

mathematical objects involved to the data structures used to 
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represent them. (A complete list of such rules used is 
given in Appendices 2 and 3.) The verification system can 

then be easily extended to deal with programs operating on a 

variety of mathematical domains. 

The intrinsic complexity of such a domain is often the 

cause of any difficulty in verifying (or understanding) a 

given program. To verify such a program requires not merely 

a knowledge of programs and programming languages, but also 

the ability to prove theorems within the theory of this 
domain. Since mechanizing such proofs is a substantial 

research problem in its own right, we believe it should be 

separated as much as possible from the task of program 

verification. We have done this by building an interactive 
system which can do some theorem proving by itself, but 

which accepts new information about the current domain from 

the user (i.e. the programmer) when it is required. This 

new information will usually consist of rules describing the 

mathematical functions used in the program's specification. 
Of these rules, some are treated as definitions and are 

accepted without question: for a complete proof the others 

should be shown to follow from the definitions, but they can 

be assumed and their proofs postponed. The theorem prover 

will then attempt to apply these new rules in its continued 

search for a proof. If it still fails, the user can direct 

the proof process himself by providing lemmas, instantiating 
variables, adding new hypotheses and so on. A similiar view 

of program verification is taken by Good, London and Bledsoe 

(1974). 
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As mentioned above, program verification is only one 

approach to the broader goal of developing better, more 

reliable programs. One important alternative is the idea of 

"structured programming", a technique for developing a 

program in a systematic way and possibly generating a proof 

of the program's correctness at the same time. This often 

involves programming at different levels, implementing a 

program (primitive) at a higher level by means of a lower 

level program. In the long run, we believe that "structured 

programming" and better education of programmers will be the 

best way to improve the quality of programs. 

Two other approaches related to program verification 

are program transformation and program synthesis. By 

"program transformation" we mean the process of changing a 

simply-stated program at the source language level to make 

it more efficient. Program synthesis is the problem of 

producing from the (possibly incomplete) specifications of a 

program a program which satisfies them. We believe that an 

interactive approach is the best one for each of these three 

tasks and that since they all involve reasoning about 

programs, progress in any one field should be applicable to 

the others. 

The organization of this thesis is as follows: The 

next section presents a review of previous work done on 

program verification; it describes both proof methods and 

implementations of these methods. The essence of the thesis 

is in Chapters 2 and 4. An overview could be obtained by 
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reading these chapters and skimming through Chapter 6. 

Chapter 2 describes our proof method in detail; Chapter 3 

gives some applications of the method and compares it with 

various other methods; Chapter 4 describes the verification 
system we have implemented; in Chapter 5 the algebraic 

manipulation system, automatic theorem prover, and 

interactive facilities are described; Chapter 6 presents 

and explains the behaviour of our verification system on 

some typical examples; and Chapter 7 presents our 

conclusions and suggestions for future research. 

1.2 Related irk 
There are four commonly used inductive methods for 

proving properties of programs. These are: inductive 
assertions (Naur 1966, and Floyd 1967), recursion induction 
(McCarthy 1963), computational induction (Park 1969, and 

deBakker and Scott 1969), and structural induction (Burstall 
1969). Of these, inductive assertions has been the principal 
one concerned with iterative programs and assignments, while 
the remainder have dealt mainly with recursive functions. 
Whereas recursion induction is used to prove the equivalence 

of two programs, the other methods are usually used to prove 

properties (or correctness) of particular programs. The 

first method is essentially induction on the length of the 

computation path, the second and third are induction on the 

depth of function calls, and the fourth is induction on the 

data structures being manipulated. We shall look briefly at 
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each of these methods in turn, and then describe some 

implemented systems for proving properties of programs which 

use them. 

The most commonly used inductive method, especially in 

automatic verification systems, is that of Floyd. In this 

approach, assertions (about the values of the program's 

variables) are attached to key points (such as loops) in the 

program, and an assertion must be true each time control 
passes through the relevant point during the program's 

execution. In particular, an assertion is usually attached 

at the end of the program. Verifying the correctness of the 

program consists of proving that for each path through the 

diagram, each assertion implies the next one in the path 

provided the effects of the intervening program statements 

are taken into account; such implications are called 
verification conditions. Manna (1969) describes a similar 
method which may be thought off as attaching assertions to 

points such that the assertion is true during some pass 

through the point, rather than all passes as in Floyd's 
method. In Manna and Pnueli (1970) this method has been 

generalized to handle recursive functions. Manna's method 

was further modified in Burstall (1974). Hoare (1969) 

described a structuring principle for using Floyd's method 

which has since become widely accepted. 

Recursion induction is used to prove the equivalence of 
recursive functions. To prove the equivalence of two 

functions f1 and f2 over some domain A, that is, that 
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fl(x)=f2(x) for all x in A, it is necessary to find a third 

recursive function g such that both f1 and f2 satisfy the 

defining equation of g and g is defined for all x in A. 

Although this was perhaps the first method explicitly 
suggested for proving properties of programs, it seems to 

have been little used in practice. McCarthy (1962) showed 

that recursion induction could also be used to prove the 

equivalence of iterative programs. 

To explain computational induction, assume for the 

moment that UU is the totally undefined function, that T is 

a continuous functional and that F1 is the function defined 

by F <= T(F] (these terms are'explained in Manna at al. 
1972). Then to prove the property P(F1) of F1, it is 

sufficient to check that P is true before starting the 

computation (P(UU)), and show that if P is true at one stage 

of the computation, it remains true after the next step 

(P(F) implies P(T[F]) for every F). Morris (1971) described 

a variant of this called truncation induction, which bears 

the same relationship to computational induction as 

course-of-values induction does to ordinary mathematical 

induction. 

The final method is structural induction which is 
described in Burstall (1969) and was first used (in 

computing) by McCarthy and Painter (1967) who proved a 

compiler for arithmetic expressions correct. It is 
applicable to any class of finite structures (often called 

"records" or " plexes") built up from a set of atoms, and 



Introduction Page 12 

which do not contain circularities. The induction principle 

is: If for some set of structures a structure has a certain 

property whenever all its proper constituents have that 

property, then all the structures in the set have the 

property. Logicians frequently use structural induction to 

establish meta-theorems, by inducting upon the structure of 
formulas in the theory. 

Each of these methods has its own advantages and 

disadvantages; the question of which to use is largely a 

pragmatic one. For instance, in the presence of assignments 

to data structures, Floyd's method is applicable whereas 

structural induction is not. The paper by Manna, Ness and 

Vuillemin (1972) is a very readable introduction to the 
various inductive methods, and has many examples of their use. 

We shall now review other implemented systems, paying 

particular attention to the aims, methods and 

accomplishments of the system, and the features of the 

languages used to present programs and assertions (or 

theorems). Almost all these systems are concerned with the 

inductive assertions method for flow-diagram languages; the 

exceptions are Milner (1972) and Boyer and Moore (1973). 

These two, together with those of Deutsch; Igarashi, London 

and Luckham; Waldinger and Levitt; and Good, London and 

Bledsoe are the most powerful of the systems. Our system is 
most closely related to those of King, Deutsch, Waldinger 

and Levitt, and Good et al. 
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The first of these systems, and in many ways the 

prototype for several others, was that of King (1969). 

King's system dealt with an ALGOL-like flow-diagram language 

by Floyd's method. He allowed integer-valued variables and 

one-dimensional arrays with integer elements. Statements 

included assignments to variables and array elements, 

conditional statements, and goto statements. Procedure 

calls were not allowed. The system was designed as a fully 

automatic implementation of Floyd's method. The user 

submitted his program text with assertions, and King's 

system then generated the verification conditions and tried 
to prove them. The proof was done by an arithmetic theorem 

prover designed specifically for the task. Several 

interesting programs were thus verified, including an array 

sorting program, and a program to raise an integer to a 

power using the binary representation of the power. 

All the knowledge available to King's system was 

already built-in. Assertions were just boolean expressions 

with universal and/or existential quantifiers. It was not 

possible to add a procedure to express an assertion, which 

severely limited the expressive power of the language. For 

example, functions such as summation and greatest common 

divisor were not built-in, and thus not available. The 

system was written in assembly language using macros and was 

very fast. 
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Good's thesis (1970) described another formalism for 
programs and proved several results within that formalism. 

He also presented a program, operating on a language similar 

to King's, which generated verification conditions from the 

user-supplied text and assertions. However it made no 

attempt to prove them, providing only a book-keeping service 

to the user. Because the program was not designed to 

"understand" the assertions, the assertion language was very 

flexible, consisting of arbitrary text strings in which 

occurrences of program variables could be recognized and 

substituted for. One contribution of Good's work was to 

show that in the presence of subscripted variables (array 

elements), generating verification conditions by working 

forward along a path, from the initial assertion to the 

final assertion, generated simpler conditions than working 

backwards. King's system, which worked backwards as Floyd 

had originally suggested, was restricted by the large number 

of cases sometimes generated. 

Cooper (1971) presented a theorem prover which dealt 

with flow-diagram languages like those above, without 

provision for arrays. The program was designed to 

automatically generate and prove the termination and 

correctness conditions for flow-diagrams using the 

Presburger algorithm (for arithmetic without 

multiplication), but was limited in its scope. 
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In 1973, accounts of several impressive systems 

appeared: notably Igarashi, London and Luckham (1973), 

Deutsch (1973), Waldinger and Levitt (1973), and Boyer and 

Moore (1973). Each of these is significantly more powerful 

than those described above. 

Igarashi et al. apply Hoare's method to generate 

verification conditions for programs written in the 

programming language PASCAL (Wirth 1971). The verification 

conditions are then given to a resolution theorem prover to 

be proved. An example of a program they can verify is 

Hoare's (1971b) FIND. Their system does very little actual 

resolution and a lot of simplification and reasoning about 

equality. 

Deutsch's system is a straight-forward application of 

Floyd's method: it takes a program with assertions, 

generates the verification conditions, and uses an automatic 

theorem prover to prove them. Programs are written in 

essentially the same language that was used by King; 

procedure calls are not allowed. The assertion language 

consists of quantified boolean expressions, but also allows 

parameterized assertions, defined by one-line boolean 

procedures. The system, like King's, stores all expressions 

in canonical form. The increased power comes not so much 

from a better theorem prover, but from the simplifications 

and deductions made while generating the verification 

conditions (which is done by forward substitution), and from 

the context mechanism used. Interactive facilities which 
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enable the user to help the system find a proof are 

provided, but no examples of their use are shown. The 

system is written in LISP and is rather slower than King's 

system; it can verify all of King's examples, FIND, and a 

complex enumerative program, among others. 

Waldinger and Levitt (1973) have implemented a flexible 

system in QA4 (Rulifson at al. 1972), a very high level 

language designed for use in artificial intelligence. The 

programming language considered contains integers, reals, 

arrays, lists, conditionals, assignments, and recursive 

procedures. The assertion language is QA4 itself (slightly 

extended) which gives maximal flexibility to use arbitrary 

functions and predicates which describe the program's 

properties. For iterative programs Floyd's method (with 

backward substitution) is used to generate the verification 

conditions, while for recursive programs the Manna-Pnueli 

method (computational induction) is used. Their theorem 

prover is a set of QA4 functions. The beauty of their 

system is in the simplicity of the functions (or rules) 

making up the theorem prover, the ease with which new 

information, in the form of new rules, can be added, and the 

natural flavour of the resulting proofs. However because of 

the backtracking and pattern matching involved in running 

QA4 programs the system is very slow, and the interactive 

facilities available are very limited. The system can 

verify all of King's examples, FIND, and a version of the 

unification algorithm, among others. It is intended that 

the knowledge about programs embedded in the system will 
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subsequently be used in automatic program modifcation and 

synthesis systems. 

In a recent report (Good, London and Bledsoe 1974), a 

philosophy and system quite similiar to ours is described. 

The authors have used a sophisticated algebra system 

(REDUCE, Hearn 1971) to combine Bledsoe's interactive 
theorem prover (see below) with a verification condition 

generator derived from that of Igarashi at. al. (1973) to 

produce an interactive verification system for PASCAL 

programs. Their system is still in a state of development 

and appears very promising. 

Suzuki (1974) describes the simplification and logical 
reduction rules used in an extension of the Igarashi, London 

and Luckham verifier. This system also uses high-level, 

user-introduced predicates with axioms describing their 
properties. It is completely automatic and can prove 

Hoare's FIND and Floyd's (1964) TREESORT programs. Von 

Henke and Luckham (1974) use this system to describe a 

methodology for verifying programs. The methodology 

involves using information from attempted verifications to 

successively refine and modify both program and assertions 

until they can be shown to be consistent. 

Two other systems are perhaps worth noting: Gerhart 

(1972) describes the use of Floyd's method to prove 

properties of programs in a subset of APL, but the only 

process automated is the verification of the compatibility 

of argument types and APL operators. Ragland (1973) 
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describes a program written in a simple language called 

NUCLEUS which generates verification conditions for NUCLEUS 

programs, and he gives a (hand) proof of this particular 

program's correctness. 

All the above systems have required that the inductive 

assertions be supplied along with the program. Although it 
has been suggested that a programmer does not really 
understand his program until he can supply these assertions, 

their discovery can be quite difficult. Some interesting 
work on heuristically automating this process has been done 

by Elspas (1972 ), Katz and Manna (1973), Wegbreit (1973) 

and German and Wegbreit (1975). 

A different approach has been taken by Sites (1974) who 

has devised a method for showing that a given program 

(without assertions) always terminates without overflow or 

array subscript errors. The method has been used on some 

difficult programs but fails when the termination proof 

depends on non-trivial mathematical facts. It has not been 

mechanized. 

Boyer and Moore (1973) have written a program which can 

prove difficult theorems about pure LISP programs by 

structural induction, and which is based on the idea of 

symbolic execution. It is described in detail in Moore 

(1973). The program uses LISP as both its logical and 

assertion languages, allowing arbitrary LISP functions to be 

used as assertions. The main achievements of the program 

are that it requires no assertions other than the one to be 
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proved; it generates its own induction hypotheses; and it 
generalizes the theorem to be proved in an intelligent way 

whenever necessary. For instance, given only the LISP 

definitions of SORT and ORDERED, the program can prove that 

(ORDERED(SORT L)) is true. A weakness of the program is 
that it cannot deal with programs which "recurse up" rather 

than "down" (iterative programs), let alone with destructive 

assignments to data structures. 

Milner's LCF proof-checker (Milner 1972) is in a sense 

the most powerful of all, albeit that the power is entirely 
controlled and directed by the user. This system is an 

implementation of Scott's Logic for Computable Functions 

(Scott 1969). The basic induction rule is computational 

induction, although a proof of the recursion induction rule 

is presented as an example. The program is an LCF 

proof-checker. The syntax and semantics of a wide range of 

programming languages may be expressed in LCF, including 

recursive programs and programs which have other programs as 

arguments and results. The program accepts expressions in 

LCF as theorems to be proved, and then obeys commands from 

the user directing the application of the rules of 

inference. A powerful simplification routine shortens the 

proofs, but they can still be very long. The program keeps 

track of the goals to be established and the steps carried 

out in each proof. In Milner and Weyyrauch (1972), the 

authors describe the use of the LCF proof-checker to verify 

the correctness of a compiler. Newey (1975) has used the 

LCF proof-checker to prove various theorems about LISP 
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functions, including the "correctness" of the 'LISP 

interpreter. 

Since program verification inevitably requires a large 

number of theorems to be proved, any other research done on 

automatic theorem proving should be of interest. However we 

shall mention only one such system: that of Bledsoe and 

Bruell (1973). They describe an interactive theorem prover 

for general topology which works in a fairly natural manner 

by subgoaling, applying rewrite rules and definitions, and 

using special heuristics for topology. We have borrowed 

ideas from them about organization and interactive 
facilities for our own system. 

We shall compare our own work with many of the above 

proof methods and verification systems in more detail later, 
when we discuss particular aspects of our proof method and 

verifier. 

1.3 Notation and conventions 

We have tried to use standard mathematical and 

programming notation throughout. When talking about 

programs and their executions we distinguish between upper 

cases letters which refer to identifiers and lower case 

letters which refer to logical variables (their values). 

Words being defined or emphasized are underlined, and words 

used in an unusual way are enclosed in quotes (") as usual. 

For syntax definitions we use BNF (Backus-Naur Form) as 
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described in the POP-2 reference manual. 

Because of the restrictions of preparing this document 

on the computer we have written e.g. x1, x2, ..., xn instead 

of using subscripts, and have used the following 

abbreviations. 

Symbol Stands for Meaning 

& A logical conjunction 
v V disjunction 
_> implication 
<_> equivalence 
NOT negation 
FA V for all, universal quantifier 
EX there exists, 

existential quantifier 
EPS Hilbert's epsilon symbol 

identity (of expressions), 
equivalence (of programs) 
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Chapter 2. THE INDUCTIVE PROOF METHOD: DESCRIPTION 

2.1 Introduction 

As we have already indicated, the proof method we shall 

present relies on the use of alternative programs as 

specifications. We originally started studying this idea 

and its consequences as it seemed to lend itself well to the 

idea of constructing proofs by symbolic execution (Topor and 

Burstall 1973) independently of Deutsch (1973) and others 

who have used symbolic execution in systems based on 

inductive assertions. The main advantages of the proof 

method we eventually developed are that programs containing 

iteration, recursion or non-determinism are all treated in 

the same way, and that it can handle escapes and procedures 

with side-effects. Moreover the method is equivalent to 

computational induction (Manna and Pnueli 1970) for 

recursive programs, is essentially a generalization of 

Floyd's method of inductive assertions (Floyd 1967) for 

iterative programs, and can easily be extended to yield 

termination proofs in the same way that Floyd's method can. 

We refer to the method as D-ontinuation induction since it 
involves providing a "continuation" for certain points in 

the program,, that is, a function (or relation) computed by 

the program from that point until its end. The work in this 

chapter, with the exception of Section 2.6, was done jointly 

with Or R.M. Burstall. 
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In this chapter we shall try to explain the method in 

detail independently of any particular implementation. But 

before going on to this we shall define some of the terms we 

shall be using. First, we use the word "program" in a very 

broad sense throughout to include any sequences of 

statements possibly preceded by one or more function 

definitions. An actual program is simply a program whose 

correctness we are currently trying to prove: since the 

correctness of a program depends on the correctness of its 
constituents, these constituents will also be considered as 

actual programs at times. A Xirtu_aL program is the program 

which serves as the specification of an actual program, and 

to which the actual program is to be proved "equivalent". We 

shall describe later just what the nature of these programs 

may be. 

But what do we mean by saying that two programs are 

"equivalent"? There are (at least) three possible answers. 

The first is that two programs are said to be (strongly) 
equivalent if for all inputs either they both terminate and 

produce the same results, or neither terminates, that is 
they are equal as partial functions. This concept is too 

strong for our purposes since although virtual programs 

always terminate, actual programs may not. The second 

possibility is that of weak equivalence: two programs are 

said to be jkeakly gouivalent if whenever they both terminate 

they produce the same results. Any two programs are weakly 

equivalent to a program which never terminates. Finally, a 

program P is said to be included in a program Q, written 
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P C Q, if whenever P terminates so does Q and they produce 

the same results, that is, P is less defined than Q as 

partial functions. Since we are trying to show that 

whenever the actual program terminates it produces the same 

results as the virtual program (which always terminates), 

this is the desired concept. Notice that inclusion is a 

reflexive and transitive relation, but is not symmetric. 

We can now define a program to be partially Qorrect if 

it is included in its corresponding virtual program: it is 

totally correct (i.e. is partially correct and terminates) 

if it is strongly equivalent to its virtual program. 

2.2 Actual groarrams 

In this section we shall describe the type of programs 

to which the proof method is applicable, how programs are 

executed, and what is really meant by "symbolic execution". 

This lays the groundwork for the following sections in which 

we shall describe how to give specifications for actual 

programs in terms of virtual programs, and how to construct 

proofs from such pairs of programs. 

2.2.1 Nature gg amenable programs 

One of the aspects of continuation induction is the 

uniformity with which various control features of 

programming languages can be handled. In particular, 
functional and imperative programs are treated in almost the 
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same way. The method is applicable to programs constructed 

from the following' control features: 

assignments, statement sequencing, blocks, 

conditional statements and expressions, labels, 

arbitrary jumps, while-statements, procedures, 

escapes and functional arguments. 

While we do not believe programmers should use jumps 

indiscriminately, programs using such jumps can be handled. 

Jumps out of blocks and escape functions constructed using 

Landin's J-operator (Landin 1965) are also permitted 

provided they are not used to jump back into functions. 

Escapes are functions which jump out of their defining 

function when called, and are mainly used for error trapping 

and to avoid "unwinding" recursive function applications. 

Both recursive procedures and procedures with side-effects 

are allowed. Certain types of functional arguments are 

allowed, but we do not yet know how to deal with label 

arguments. 

The only restrictions on the data types allowed come 

from the formal system one has available for reasoning about 

the data. In the verification system which we have 

implemented, the data types used are truth values, integers, 

one-dimensional arrays of integers, and lists (without 

destructive updating). The only barrier to introducing other 

data types such as reals, strings, records etc. would be 

the need for an extended algebraic and inference system to 

manipulate and reason about them. 
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Rather than specifying the syntax and semantics of some 

particular programming language and then describing how to 

verify programs written in that language, we shall try to 

describe the proof method in a language independent fashion. 

Since the proof method is defined in terms of the semantics 

of the language being considered we shall actually be 

describing a family of proof methods. Thus the user should 

instantiate our general description which follows to the 

particular language and formal (operational) semantics of 

his choice. 

Unfortunately, it is necessary to use some particular 

language while describing the method. We shall use an 

ALGOL-like language in which functions are defined, for 
example, by abs(X) = ,L X>O then X else -X, in which 

statements are grouped into blocks by parentheses, and in 

which the function return returns its argument as the result 

of the innermost function in which it appears. In all the 

examples we shall give, parameters are passed by value, but 

this is not a restriction on the proof method as call by 

reference and call by value-result can also be handled. 

2.2.2 Execution g,f p ourams 

Since the proof method is based on the idea of symbolic 

execution of programs, we start by describing ordinary 

execution. To do this it is necessary to define a machine 

state and say how the various commands of a program affect 
this state. However, we shall merely give an outline of the 
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operational semantics for the language being considered. 

When actually doing proofs the user would use the formal 

operational semantics of his particular language, though in 

Chapter 4 we explain how this can be made unnecessary. 

Consider first a flow diagram type program without any 

procedure calls. Then it can be seen that the machine state 

is specified by: 

1) a state vector which is a mapping from identifiers 

to values, and 

2) an instruction pointer which indicates the program 

statement about to be executed. 

For example, a typical machine state might be 

Start: I->O, N->10, R->1, A-> <array [1:4) 3 5 2 4> 

where Start is the instruction pointer (or label), and the 

value of A is an array of length 4 with the values shown. 

In such a case it is obvious how the various commands 

assignments, tests, and jumps - affect the state, so we do 

not give the corresponding state transformations. 

However, when we introduce procedures into the language 

the situation becomes more complicated, especially since we 

want to allow recursive procedures. It is necessary then to 

introduce a third component into the machine state: 

a control stack which holds the local variable 

values and return addresses necessary to implement 

procedure calls and returns. 
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This corresponds to the Dump of Landin's SECD machine 

(Landin 1964). Calling a procedure now involves pushing an 

activation record corresponding to the new procedure onto the 

control stack, setting the instruction pointer to the start 
of the procedure body, and adjusting the state vector (or 

environment) by associating the actual and formal parameters 

of the procedure. Returning from a procedure involves 

"undoing" these changes. We will not bother to invent 

details of how this could be done in our pedagogical 

language. Notice however that the semantics of the 

goto-statement is now more complex, since jumping to a 

non-local label will involve popping the control stack and 

changing the state vector. 

We refer to the sequence of points in the program 

through which the program passes as the computation Bath. 

When operating on real data, a deterministic program follows 

just one computation path as all the tests can be evaluated. 

This is not the case for symbolic execution which we discuss 

next. 

However, before doing so, we remark on another way to 

describe the semantics of our programming language. This is 

to systematically transform each program in the language 

into a system of recursive equtions and then use one of the 

evaluation rules described in Manna et al (1972), for 

instance, to evaluate the program for particular input. 

This is the method we shall actually use in Section 2.6 when 

justifying the validity of this proof method, so the reader 
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should keep it in mind. 

2.2.3 Symbolic execution ,Qf oarams 

To prove properties of a program it is necessary to 

determine the program's behaviour not only on particular 

input data, but on all possible data. One way to do this is 

to run the program with an initial state vector which 

represents all possible state vectors. In this case the 

values of the program identifiers are symbolic expressions 

constructed from variables (Skolem constants) which are 

specified to represent particular data types. These 

variables are considered to simultaneously take all possible 

values of the appropriate type. A state vector which maps 

program identifiers into such a domain of symbolic algebraic 

values is called a symbolic Mate vector. A typical 

symbolic state vector might be: 

(X->x+1, Y->2*y, A->aO). 

We shall occasionally refer to a general I bolic Mate 

vector which is just a symbolic state vector of the form 

(X->x, Y->y, . . . ) 

where X, Y, .., are all the identifiers of the program and 

x, y, ,.. are simply logical variables with the same names 

as the identifiers. 

The fact that the initial input to the program may not 

be quite arbitrary, but may be required to satisfy certain 

conditions, x>=O say, can be represented by introducing into 

the state a new component called a path Qonditinn which is a 
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logical expression expressing these conditions. This extra 

component is also very important for deciding what to do at 

tests as will be seen below. Thus a symbolic machine state 

has the following components: 

1) a symbolic state vector (sv), 

2) an instruction pointer (ip), 
3) a control stack (cs), 

4) a path condition (pc). 

When writing out a state we will tend to omit those 

components which are not of immediate interest and to refer 
to the components of a state by the abbreviations shown 

above. 

The process of running a program from such an initial 

state is called symbolic &xecution. There are two obvious 

difficulties. The first is that standard operations such as 

a , <, cons, hd, etc. cannot be applied since their 
arguments are variables rather than numbers or lists and are 

hence of the wrong type. The solution is to redefine these 

operations to be symbolic ones, that is operations which 

construct new (symbolic) terms from their arguments, 

possibly simplifying the result. Functional arguments are 

dealt with similiarly. The second difficulty is that the 

truth of tests in conditional statements can no longer 

always be determined - at least, not by evaluation alone. 

If it is possible to prove from the current path condition 

that the test must be true, or that the test must be false, 
then the computation simply proceeds along the appropriate 
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path. Otherwise the computation path splits into two new 

ones. On one the test is assumed to be true and is added to 

the path condition; on the other it is assumed to be false 

and its negation is added to the path condition. 

We now describe this process more precisely in the 

following algorithmic way. In this description we assume 

that all conditionals are brought to the top level, e.g., 

"f (if P then s1 else s2)" becomes "if P then f(s1) else 

f(s2)", and hence "symbolic evaluation" is simply the 

process of constructing symbolic terms. The "with - do" 

construct allows us to refer to the components of a 

structure (in this case a state) by the names of their 
selectors, and the function M &a constructs a state from its 
components. We assume there is an operation advance which 

moves the instruction pointer on to the next instruction 

(unless the previous instruction was a apto or some other 

statement which affects the instruction pointer), and that 

there is a function svm-val which symbolically evaluates an 

expression (possibly performing side-effects on SV as well). 

Sym-exec(STATE) _ 
with STATE do 
repeat ( 

if IP is at "halt" then return({STATE}) 
else if IP is an assignment (LS := RS) 

then (SV := SV[sym-val(RS)/LS]; advance IP) 
else if IP is a conditional (if P then s1 else s2) 

then if PC => P then IP := s1 
else if PC => NOT P then IP := s2 
else return(Sym-exec(mkS(SV,s1,CS,PC f P)) 

UNION Sym-exec(mkS(SV,s2,CS,PC & NOT P) ) 
else (execute instruction normally; advance IP) ) 

Figure 2.1 - Symbolic execution 
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Thus symbolic execution is conceptually like normal 

execution in all respects except for functional calls, 
conditionals and the components of the machine state. 
Handling these as described above, it generates a tree of 

computation paths, each path having an associated machine 

state which changes as the execution progresses, and returns 

the set of states at the ends of the paths. Of course, if 
performed on a program with loops or recursion, this process 

would continue indefinitely; we will explain shortly the 

induction principle used to prevent this. The idea of 

symbolic execution, at least with regard to the symbolic 

evaluation of expressions, was first used by Perlis and 

Iturriaga (1964). It has also been used by Darlington (1973) 

in program optimization, by Deutsch (1973) and Boyer and 

Moore (1973) in program verification, and recently by Boyer, 

Elspas and Levitt (1975) and King (1975) in program testing. 

2.3 Program specification: Xirtual programs 

2.3.1 Virtual proarams 

Clearly, for a virtual program to be acceptable as the 

specification of the actual program the virtual program must 

itself be clear, precise and unambiguous. To achieve this, 
the virtual program is written in the same language as the 

actual program, subject only to the following condition: 
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The virtual program may not contain any loops, 
backward jumps or recursive calls. Moreover any 
subroutines called by the virtual program must 
also satisfy this restriction. 

This restriction ensures that the virtual program will 
always terminate, and will in fact execute each of its 
statements at most once. With this restriction it should be 

so obvious what the virtual program does that it is 
acceptable as a specification for the actual program. Note 

that the virtual program may use any other features of the 

programming language including conditional statements and 

(forward) jumps out of blocks. It may also include jumps to 

labels in the program surrounding the current actual 

program, 

2.3.2 Language extensions 

Although virtual programs can sometimes be written in 

the language without any extensions (e.g. the 91-function of 

Section 2.5.1) it is usually necessary to introduce new 

functions into the language. In writing the virtual program 

we can use any mathematical functions, such as factorial, 
which are appropriate for the domain on which the actual 

program is operating, even if they are not provided as 

procedures of the language. To do this, it is necessary to 

be able to declare the mathematical function as an operation 

of the language which simply constructs a symbolic term, and 

to provide a definition of the function which can be used 

when proving the inclusion of the two programs. Frequently, 

as for factorial, this definition will be in the form of a 
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set of recursive equations, reducing the correctness problem 

to that of showing the equivalence of the iterative and 

recursive definitions of the functions. Other ways of 

defining these new functions can also be used; the only 

restriction is on the inference system available. The main 

purpose these functions serve is to provide some form of 

canned loop": this is specially obvious for arrays where we 

will need to describe the effect of a program on some 

portion of an array without actually using any loops. For 

example, writing A[I,J] for the sequence A[I], A[I+1], ..., 

A[J] of array elements, the function easea could be 

introduced to test the equality of two array segments: 

egseq(A[I,J],B[I,J] ). 

Sometimes, however, the mathematical functions required 

to express what a program dos become more complicated than 

the program seems to deserve. For instance, consider the 

program: 

while X<A da X:=2*X; 

Assuming A>O & X>O, the corresponding virtual program is: 

X := 2"(ceiling (log (A/X)))*X 

where the logarithm is to the base 2, and ceiling(x) is the 

smallest integer not less than x. However this program seems 

more complicated than the original one, and more likely to 

contain errors. A clearer way to write the virtual program 

is 
X := 2"(MU Y)(2"Y*X>=A)*X 

where (MU y)P(y) is the least integer satisfying P(y). 

Alternatively, if it is not important that X is,assigned the 
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least y satisfying 2"y*x>=a, we could use Hilbert's epsilon 

operator and write 

X := 2"(EPS Y)(2'Y*X>=A) * X; 

In fact, we shall use only this operator throughout our 

discussion (in addition to the usual universal and 

existential quantifiers). For Hilbert, (EPS y)P(y) denotes 

any object y satisfying P(y), or anything if no such object 

exists". Thus EPS can be used to construct arbitrary terms 

for use in virtual programs. It can be used to produce 

lists and arrays satisfying certain conditions as well as 

numbers; the type of the resulting term will always be 

clear from the context. Thus (EPS x)(0=<x & x=<y) could be 

any of 0,1, ..., y-1,y (assuming integer arithmetic is being 

used). Note that EPS is really a non-deterministic operator 

so that (EPS x)P(x) = (EPS x)P(x) is not a valid formula. 

We have extended EPS to produce tuples of objects, e.g. (EPS 

x,y,z)P(x,y,z) denotes any tuple (x,y,z) such that P(x,y,z) 

or any tuple if no such tuple exists. Also in this work, 

unlike Hilbert, we consider the term (EPS x)P(x) as 

referring to the set {x: P(x)} . The epsilon operator was 

originally introduced by Hilbert in his study of 

mathematical logic; its use is described in Leisenring 

(1969) It is especially useful in programs dealing with 

arrays. For example, the virtual program corresponding to 

the outer loop of a sorting program might be: 

A := (EPS A1)(perm(A[1,I],A1[1,I]) & 
(FA J)(1=<J<I => A1[J]=<A1[I])). 

More detailed examples will be given later. 
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2.3.3 Inclusion statements 

A key concept in this proof technique is that of the 

inclusion statement. This is a statement associating each 

actual program with its corresponding virtual program. An 

inclusion statement has the following components (with their 

abbreviations in parentheses): 

1) The actual program (ap), 

2) The virtual program (vp), 

3) The preconditions under which ap C vp (prec), 

4) The starting point (sp), 

5) All the possible end points (ep), 

6) The variables w.r.t. which ap c vp holds (vs). 

Clearly, representations of the two programs are required. 

The preconditions are mainly required to ensure that the 

virtual program always terminates, though by making them 

sufficiently detailed and correspondingly simplifying the 

virtual program, they can be used in what is effectively a 

proof by inductive assertions. This will be illustrated 
later. The start and end points define the scope of the 

inclusion statement. This is important as the actual 

program may be contained in a larger program. In this case 

the actual program itself can be omitted from the inclusion 

statement as it is effectively specified by the description 

of its scope. For reasons that will become clear later, it 
is also necessary to state whether an end point corresponds 

to a normal exit from a recursive procedure or not. For 

example, if is an escape function in a recursive 
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procedure Search the virtual program corresponding to Search 

would have the form: 

In: s1 
ifI"condition" then (s2; Ret()) else s3; 

Out: 

which has two exits: one recursive one at Out, and one 

non-recursive one at Ret. A detailed example of this nature 

will be given in Section 2.5. While such escapes are the 

main motivation for multiple exits, they can also be useful 

in flow-chart programs which jump out of loops, as will be 

illustrated later. Finally, the last component serves to 

restrict the amount of testing to be done: variables which 

are not used outside the scope of the inclusion need only be 

tested for inclusion if particularly desired. The value of 

a function and result parameters of procedures must always 

be tested. Such an inclusion statement asserts: 

Under the given preconditions, the actual program 
which starts at the given starting point and is 
bounded by the given end points is included in the 
corresponding virtual program with respect to the 
given variables. 

That is, if the actual program was replaced textually by the 

virtual program, the result would be either the same or 

possibly more defined. 

2.3.4 Specified groarams 

Now, how do we give specifications for a complete 

program? Obviously, we must first give an inclusion 

statement for the complete program. In addition, it is 

simply necessary to provide a separate inclusion statement 

for each loop or function used in the program to be 
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verified. More precisely, in a flow-chart program, each 

cycle must contain the start of at least one inclusion 

statement, and every program and subroutine must contain an 

inclusion statement at its beginning. For example, two 

inclusion statements were required in the factorial program 

of Chapter 1: one starting at Start and ending at Finish, 

and one starting at Loop and ending at Finish. 

2.4 General description 2f method 

Having described how to give the specifications in a 

form appropriate for this method, we now say what the method 

actually is. We do this in two stages, first for individual 

inclusion statements and then for complete programs. 

2.4.1 Individual inclusion statements 

Consider an inclusion statement with actual program A, 

virtual program V, preconditions C, start point s, end 

points el,...,en, and variable list L. The theorem 

expressing the correctness of the inclusion statement is: 

"For all integers k>=O, if C is true, and if A 

returns to s k times before terminating at an ei, 
then A C V with respect to the variables in L." 

It is proved by induction on k, that is, on the length of 

the computation path. 
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The basic idea is simply to symbolically execute both A 

and V and to compare the results. In each case we start at 
s with a general symbolic state vector and with path 

condition C. Symbolically executing the virtual program is 
done straightforwardly as described above. If the execution 

reaches one of the end points, ei, that path of the 

computation is terminated, and the state at that point 
saved. The states at the ends of the computation paths are 

accumulated in a set, SVIRT say. 

Symbolically executing the actual program is a little 
more complicated. As for the virtual program we start at s 

with a general symbolic state vector and path condition C, 

and start to execute the program. If one of the end points 
is reached, the state at that point is saved as before. If 
the program returns to s it attempts to prove the 

preconditions C using the current values of the program's 

variables and the current path condition. If this cannot be 

done there is an error either in the program or in the 

inclusion statement. Otherwise the program enters 

"hypothetical" mode and starts to symbolically execute the 

virtual program V . This corresponds to the application of 

the induction hypothesis that A C V. The behaviour at an 

end point ei is now more complicated. If ei is a normal 

exit from a recursive function, the program leaves 

hypothetical" mode and continues to be executed. (This 

will only happen if the actual program A corresponds to the 

body of the recursive function.) Otherwise, if ei 

corresponds to an exit from a loop or to an escape exit, the 
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state is saved and the path terminated as before. The 

states at the ends of the computation paths of the actual 

program are also accumulated into a set. 

We describe this process more formally in Figure 2.2, 

recalling that the components of an inclusion statement are 

ap, vp, prec, sp, ep and vs. Note how the sets of states 

are formed one member at a time, by side-effects, rather 
than by explicit unions as in Figure 2.1. In the actual 

implementation of the proof procedure these sets are formed 

without side-effects but coroutines are used instead. 
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Verify-inclusion-statement(INCL-STAT) _ 

with INCL-STAT do ( 

STATE := mkS(general-symbolic-state-vector, SP, 
arbitrary-control-stack, PREC): 

SACT := {); 

Ex-act (STATE,INCL-STAT,fal se) ; 

SVIRT :_ {); 
Ex-virt (STATE,,INCL-STAT,false ); 
Compare(SACT,SVIRT) ) 

Ex-act(STATE, INCL-STAT, FROM-VIRT) _ 
with STATE do 
with INCL-STAT do 
repeat ( if IP is in EP and not(FROM-VIRT) then 

(add STATE to SALT; return); 
FROM-VIRT := false; 
if IP = SP (other than initially) then 

(Check that PC => SV(PREC); 
Ex-virt (STATE, INCL-STAT , true) ; return) 

elseif IP is an assignment (LS := RS) then 
(SV := SV[sym-val(RS)/LS]; advance IP) 

elseif IP is a conditional (if P then s1 else s2) then if PC => P then IP := s l 
elseif PC => NOT P then IP := s2 
else (Ex-act(mkS(SV,sl,CS,PC & P),INCL-STAT,false): 

Ex-act(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false); 
return) 

else (execute instruction normally; advance IP) ) 

Ex-virt(STATE,INCL-STAT,HYPMODE) 
with STATE do 
with INCL-STAT do 
repeat ( if IP (=ei) is in EP and HYPMODE 

and the ei is "recursive" then 
(Ex-act (STATE ,INCL-STAT , true) ; return) 

elseif IP is in EP and HYPMODE then 
(add STATE to SACT: return) 

elseif IP is in EP then (add STATE to SVIRT; return) 
elseif IP is an assignment (LS := RS) then 

(SV := SV[sym-val(RS)/LS]; advance IP) 
elseif IP is a conditional (if P then s1 else s2) then 

if PC => P then IP := sl 
else if PC => NOT P then IP := s2 
else (Ex-virt(mkS(SV,s1,CS,PC&P),INCL-STAT,false); 

Ex-virt(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false); 
return) 

else (execute instruction normally; advance IP) ) 

Figure 2.2 - Verifying one inclusion statement 
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We are now left with the problem of comparing SACT and 

SVIRT, that is, of showing that SACT G SVIRT. To do this 

we have to show for each pair (s1,s2) in the cartesian 

product SACT X SVIRT, that 

pc(sl) & pc(s2) _> sv(sl) 9 sv(s2) ( ') 

where pc and sv refer to the path condition and state vector 

respectively of a state. First, if pc(sl) & pc(s2) yields a 

contradiction then (*) is immediately proved. (This 

corresponds to a pair of paths such that for no input could 

both paths have been followed.) Secondly, if instruction 

pointer(s1) is not the same as instruction pointer(s2) there 

is an error somewhere, either in the program or the 

inclusion statement so go on to the next inclusion statement 

or stop. (The actual and virtual programs for the same 

input must terminate at the same point.) Otherwise, if the 

two programs have terminated at the same point, we must show 

that sv(s1) C sv(s2), that is, for each identifier i in L, 

sv(sl)(i) C sv(s2)(i), under the assumption 

pc(sl) & pc(s2). 

There remains the problem of showing that for two 

expressions a,b, and a logical expression h, that h => 

a c b. This is done by the use of the following three 

inference rules: 

1) h => a c= b <- h => a=b 

2) h => f((EPS x)P(x))5b <- (FA x)(h & P(x) => f(x)cb) 
where x is not free in h or b. 



Description of method Page 43 

3) h => atf((EPS x)Q(x)) <- h => (EX x)(Q(x)& a cf(x)) 

where x is not free in h or a. 

(These rules are read, e.g., to prove h => a cb, it suffices 

to prove b => a=b.) 

The first of these rules is used when the expressions a 

and b do not contain any epsilon expressions; the last two 

serve to reduce the number of epsilon expressions in the 

formula. Because the last rule requires instantiating an 

existentially quantified variable, it is usually preferable 

to use the following particular instance of the rule: 

4) h => a C f((EPS x)Q(x)) <- h => Q(finv(a)) , 

In this rule finv is the inverse of f, and x has been 

instantiated to finv(a). However, since finv (which may be a 

relation) could be difficult to find and may not be defined 

on a, the rule cannot always be applied. If a does not 

contain an epsilon expression and the rule is applicable 

then it is actually equivalent to rule 3. Rules 2), 3) and 

4) are best understood by interpreting (EPS x)Q(x) as 

{x: Q(x)) when C becomes set inclusion. The details of 

this interpretation are omitted here. 

Each of the rules 2), 3) and 4) has a natural 

generalization to the case when EPS returns a tuple of 

terms. For example, assuming that ,& and A are tuples and 

that f is a function from tuples to tuples, rule 4) becomes 

4g) h => a C f((EPS 4)(Q(4)) <- h => Q(finv(a)) 
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Whenever such tuples have been produced by EPS, inclusion 
must be shown using these generalized rules and not by 

individual components as described earlier (which would not 

usually work anyway). 

Finally, if other methods of showing that an array a 

with bounds lb and ub is included in an array b with the 

same bounds fail, the following rule is used: 

5) a c b <= (FA i)(lb=<i=<ub => a[i] C b[i]) . 

That is, to show one array is less than another, show that 

all the corresponding elements are. 

2.4.2 Complete proarama 

To verify a complete program it is simply necessary to 

verify each of individual inclusion statements assuming the 

truth of all of the others. This requires the following 

slight modification in verifying an individual statement. 

If while symbolically executing the actual program the start 

of another inclusion statement is reached, then the program 

enters "hypothetical" mode and starts to execute the virtual 

program of this new statement. When one of its end points 

are reached, the program leaves "hypothetical" mode, and 

continues its symbolic execution. This process is described 

more formally in Figure 2.3. 
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Verify-specified-program(INCL-STATS) 
foreach INCL-STAT in INCL-STATS do 
Verify-incl-stat (INCL-STAT ) 

Verify-incl-stat(INCL-STAT) 
with INCL-STAT do 

STATE := mkS(general-symbolic-state-vector, SP, 
arbitrary-control-stack, PREC): 

CUR-INCL-STAT := INCL-STAT: 
SACT := {}; 

Ex-act(STATE,INCL-STAT,false); 
SVIRT := {}; 

Ex-virt(STATE,INCL-STAT,false); 
Compare(SACT,SVIRT) ) 

Ex-act(STATE, INCL-STAT, FROM-VIRT) 
with STATE do 
with INCL-STATE do 
repeat ( 

if IP is in EP and not(FROM-VIRT) then 
(add STATE to SACT; return); 

FROM-VIRT := false; 
if IP is at sp(IS1) for some ISI in INCL-STATS 

(other than initially) then 
(Check that PC'=> SV(prec(ISI)); 
Ex-virt(STATE,IS1,true); return) 

elseif IP is an assignment (LS := RS) then 
(SV := SV[sym-val(RS)/LS]); advance IP) 

elseif IP is a conditional (if P then s1 else s2) then if PC => P then I P := s l 
elseif PC => NOT P then IP := s2 
else (Ex-act(mkS(SV,sl,CS,PC & P),INCL-STAT,false) 

Ex-act(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false) 
return); 

else (execute instruction normally; advance IP) ) 

Figure 2.3 - Verifying a complete program 
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Ex-virt(STATE,INCL-STAT,HYPMODE) _ 
with STATE do 
with INCL-STAT do 
repeat ( 

if IP (=ei) is in EP and HYPMODE and the ei is "recursive" 
then (Ex-act (STATE,CUR-INCL-STAT, true): return) 

elseif IP is in EP and HYPMODE then 
(add STATE to SACT; return) 

elseif IP is in EP then (add STATE to SVIRT; return) 
elseif IP is an assignment (LS := RS) then 

(SV := SV[sym-val(RS)/LS]; advance IP) 
elseif IP is a conditional (if P then sl else s2) then 

if PC => P then IP := sl 
elseif PC => NOT P then IP := s2 
else (Ex-virt(mkS(SV,sl,CS,PC&P),INCL-STAT,false) 

Ex-virt(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false); 
return); 

else (execute instruction normally; advance IP) ) 

Figure 2.3 (continued) 
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2.5 Some exemplary_ aroarams 

In this section we shall apply continuation induction 
to several simple programs. The programs are chosen to 

illustrate how the method copes with various language 

features and programming techniques, rather than for their 
own intrinsic interest. Some applications of the method to 

more complex programs will be discussed later 
describing the interactive program verifier and its use. 

2.5.1 Recursion 

f (X) = jL X>100 then X-10 else f (f (X+1 1) ) 

when 

This program, called the 91-function, is discussed in Manna 

and Pnueli (1970). There is just one inclusion statement 

needed to describe it. 

Actual program: body of f 
Virtual program: jj X>100 then X-10 ILlgg 91 
Preconditions: true 
Start point: entry to f 
End points: exit from f (recursive) 
Variables: none 

In this example, as in others, we identify the body of the 

function with the program consisting of the function's 

definition and a single call of the function with its formal 

parameters as arguments. Strictly speaking, there should be 

another (identical) virtual program corresponding to the 

call of the function, but the proof of this extra inclusion 

statement is always completely trivial. That X is an 

integer is actually a precondition, but we ignore such type 
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restrictions throughout this work (though we recognize their 
importance in programming languages and program verification 
generally). There are no explicit variables to be tested as 

we are not interested in the value of X at the end of the 

program, but only in the result of the function call which 

is always tested. 

Figure 2.4 shows the tree of computation paths 

generated by symbolically executing the actual and virtual 

programs. Except for the top-level call in the actual 

program, whenever f is called the virtual program is 
executed instead. Note that one branch, 91>100, has been 

cut off at the symbolic execution stage. 

Actual program: f(x) 
xp100 =<100 

x-10 with x>100 f (f (x+11)) with x-<100 

x-9 with x=100 91 with 89<x=<99 91 with x=<89 

Virtual program: f(x) 
x>100 / \ x=<100 

x-10 with x>100 91 with x=<100 

X?F1 1>100 X+1 1=<100 

f(x+1) with 89<x=<100 f(91) with x=<89 
i 

x+1>100 x+1=<100 1=<100 

Figure 2.4 - 91-function 
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Now, by considering all pairs in the cartesian product 

of the sets of states at the tips of the trees, the 

verification conditions shown in Figure 2.5 are generated. 

Notice how the problem has been broken down into simple 

cases automatically by the theorem generation process. We 

shall later show how our verifier generates and proves these 

theorems. 

x>100 & x>100 => x-10 = x -10 
x>100 & x=<100 => x-10 = 91 
X=100 & X>100 => x-9 = 91 
X=100 & x=<100 => X-9 = 91 
89<x=<99 & x>100 => 91 = x-10 
89<x=<99 & x=<100 => 91 91 
x-<89 & x>100 => 91 = x-10 
x=<89 & x=<100 => 91 = 91 

Figure 2.5 - Verification conditions 

2.5.2 Iteration aDg recursion 

f (N) = (vars R; 
Start: R 

Loop: while N>O SLQ (N:=N-1; R:= R+N*f(N) ); 
Finish: return(R) ) 

This program taken from King (1969) uses both recursion and 

iteration to compute - guess what? - the factorial 

function. The declaration "vars R;" declares R to be a 

local variable of the function. The two inclusion 
statements needed to verify this program are: 

1) Actual program: body of f 
Virtual program: N ! 

Preconditions: N>=0 
Start point: entry of f 

End points: exit from f (recursive) 
Variables: none 
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2) Actual program: while N>0 yjsi (N:=N-1; R:= R+N*f(N)) 
Virtual program: R:= R + N! - 1 

Preconditions: N>=0 
Start point: Loop 
End points: Finish (non-recursive) 
Variables: N 

Given these statements, the actual proof is straightforward 

and will not be shown. It depends on the fact that 

1 + 1*1! + 2*21 + ... + (n-1)*(n-1)! = n ! 

2.5.3 Non-local jumpa 

S(A) <_ 
(Sin: iL istip4and X=A then (R:=true: goto Finish) 

else j,., isnode(A) then (S(1 A);S(r A)): 
Sout: ): ' 

Start: R:=false; 
S(A); 

Finish: 

This program searches a tree A, returning true if one of its 
tips is equal to X, and false otherwise. (We assume a tree 

is either a tip or a node which has a left which is a tree 

and a right which is a tree.) The program uses a recursive 

function S which does a non-local jump if it finds a tip 
equal to X. In a more functional language this jump would be 

written as a call of an escape function. In giving the 

specifications for this program we assume the existence of a 

function fr (for fringe) defined by 

istip(a) fr(a) = list(a) 
isnode(a) fr(a) = concat(fr(l a), fr(r a)) 

and a function memb (for member) which has its normal 

definition. Then we can express the correctness of the 

program using the following two inclusion statements: 
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1) Actual program: whole program 
Virtual program: R:= memb(X,fr(A)) 
Preconditions: none 
Start point: Start 
End points: Finish (non-recursive) 
Variables: R 

2) Actual program: body of S 

Virtual program: ,L memb(X,fr(A)) 
then (R:=true; goto Finish) 

Preconditions: none 
Start point: entry to S (Sin) 
End points: exit from S (Sout, recursive) 

Finish (non-recursive) 
Variables: R 

Again we only consider the second statement since the proof 

of the first one is trivial. The trees of computation paths 

and the resulting verification conditions are shown in 

Figure 2.6. Notice that the computation continues at (*) 

since Sout is a "recursive" end point. The verification 

conditions are all easily proved using the definitions of 

memb, fr and concert, mostly by showing the hypotheses are 

contradictory. 
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Actual program: Sin: R->r,X->x,A->a 

isnode(a) istip(a) 
& x#a 

Finish: R->true Sin: R->r,A->left a Sout: R->r 

memb(x,fr(left a)) NOT memb(x,fr(left a)) 
Finish: R->true Sout: R->r (*) 

I 

memb(x,fr(right a)) NOT memb(x,fr(right a)) 

Finish: R->true Sout: R->r 

Virtual program: Sin: R->r,A->a 

memb(x,fr(a)) NOT memb(x,fr(a)) 

Finish: R->true Sout: R->r 
with memb(x,fr(a)) with NOT memb (x,fr(a) ) 

Verification conditions: 

istip(a) & x=a & memb(x,fr(a)) => true=true 
istip(a) & x=a & NOT memb (x, fr(a)) => true=r 
isnode(a) & memb(x,fr(left a)) & memb(x,fr(a)) _> true=true 
isnode(a) & memb(x,fr(left a)) & NOT memb(x,fr(a)) => true=r 
isnode(a) & NOT memb(x,fr(left a)) & memb(x,fr(right a)) 

& memb (x ,fr (a)) => true=true 
isnode(a) & NOT memb(x,fr(left a)) & memb(x,fr(right a)) 

& NOT memb(x,fr(a)) _> true=r 
isnode(a) & NOT memb(x,fr(left a)) & NOT memb(x,fr(right a)) 

& memb(x,fr(a)) _> r=true 
isnode(a) & NOT memb(x,fr(left a)) & NOT memb(x,fr(right a)) 

& NOT memb(x,fr(a)) => r = r 
istip(a) & x#a & memb(x,fr(a)) => r=true 
istip(a) & x#a & NOT memb(x,fr(a)) => r=r 

Sin: R->r,A->right a 

Figure 2.6 - Non-local jumps 
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2.5.4 F u tipn-a a,,, gra u_m ti n t s 

while not(null(L)) 9Q. (X:= f(x, hd L); L:= tl L); 
return (X) ; 

For any function f which is both associative and 

commutative, this program is included in "lit(L,X,f)", where 

lit is defined by 

null(l) => lit(l,x,f) = x 

not(null(l)) => lit(l,x,f) = f(hd 1, lit(tl l,x,f)) 
Applying our proof method to the above program, the only 

non-trivial verification condition resulting is 

not(null(l)) => lit(tl 1, f(x, hd 1, f) = lit(l,x,f), 
that is, applying the definition of lit, 

not(null(l)) => lit(tl l,f(x,hd 1),f) 
= f(hd l,lit(tl l,x,f ) 

This theorem can now be generalized to 

lit(l,f(x,y),f) = f(y,lit(l,x,f)) 
which is easily proved using associativity and commutativity 

by structural induction on 1. In fact the same original 
verification condition is generated if structural induction 

is used from the start. Thus, this example demonstrates 

that functional arguments can be used in certain cases with 

our method. 

2.5.5 Non-determinism 

Start: I:= 1; 
Loop: Chile I<N ,. 

L: (, A[I] > A[I+l] then 
(X:=A[I]; A[I]:=A[I+1]; A[I+1]:=X); 

I:= I+1 ); 
Finish: 
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This is a program which finds the largest element of an 

array A[1:N] and moves it to the top of the array; it could 

form the inner loop of a sorting program. Assuming the 

existence of functions eases and Derm which test whether one 

array is equal to, or a permutation of, another, we can 

write one of the inclusion statements as follows (the other 

one is similiar): 

Actual program: above program from Loop to Finish 
Virtual program: A :_ (EPS 8)(egseq(8[1,I-1],A[1,I-1]) 

& perm(B[I,N],A[I,N]) 
& (FA J)(I=<J<N => 8[J]=<B[N]) ) 

Preconditions: 1=<I=<N 
Start point: Loop 
End points: Finish (non-recursive) 
Variables: A 

Note that the virtual program is non-deterministic. In 

giving the proof of this inclusion statement we use an 

operation xchnc (a i , j ) which constructs a new array by 

exchanging the ith and jth elements of the array a. The 

computation trees and verification conditions for this 

inclusion statement are shown in Figure 2.7. The values of N 

are omitted since they never change. 
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Actual program: Loop: A->a,I->i with 1=<i=<n 

i<n \i>=n 

L: A->a,I->i Finish: A->a 
with 1=<i<n with 1=<i=n 

a[i]>a[i+1] a[i]=<a[i+1] 

Loop: A->xchng(a,i,i+1),I->i+1 Loop: A->a,I->i+1 
with 1=<i<n & a[i]>a[i+1] with 1=<i<n&a[i]=<a[i+1] 

(Induction hypothesis) 

Finish : I 

A-> (EPS b)(egseq(b[1,i],xchng(a,i,i+1)[1,i]) 
& perm(b[i+1,n],xchng(a,i,i+1)[i+1,n]) 
& (FA j)(i+1=<j<n => b[j]=<b[n]) ) 

=b1, say 
with 1=<i<n & a[i]>a[i+1] 

Finish: A-> (EPS b)(eqseq(b[1,i],a[1,i]) 
& perm(b[i+1,n],a[i+1,n]) 
& (FA j)(i+1=<j<n => b[j]=<b[n])) 

=b2, say 
with 1=<i<n & a[i]=<a[i+1] 

Virtual program: Loop: A->a,I->i with 1=<i=<n 

Finish: A-> (EPS b)(egseq(b[1,i-1],a[1,i-1]) 
& perm(b[i,n],a[i,n]) 
& (FA j)(i=<j<n => b[j]=<b[n])) 

=b, say 
with 1=<i=<n 

Verification conditions: 

1=<i<n & a[i]>a[i+1] => b1 b 
i=<i<n & a[i]=<a[i+1] => b2 b 

1=<i=n => a rz b 

Figure 2.7 - Non-determinism 



Description of method Page 56 

In this example, since it matters, we have been more careful 

about stating inclusion rather than equality, and will give 

the proof of a verification condition in more detail than 

previously. We will use the inference rules given in 

Section 2.4.1 (previously we have been using the first of 

these implicitly). Consider the first verification 

condition. Applying rule 2 with the identity function for f 

reduces it to 

1=<i<n & a[i]>a[i+1] 
& egseq(bl[1,i],xchng(a,i,i+1)[1,i]) 
& perm(bl[i+1,n],xchng(a,i,i+1)[i+1,n]) 
& (FA j)(i+1=<j<n => b1[j]=<b1[n]) 

b1 C b 

Applying rule 4 next, again with the identity function for f 

gives 

1=<i<n & a[i]>a[i+1] 
& egseq(bl[1,i],xchng(a,i,i+1)[1,i]) (i) 
& perm(bl[i+1,n],xchng(a,i,i+1)[i+1,n]) (ii) 
& (FA j)(i+1=<j<n => bl[j]=<bl[n]) (iii) 
egseq(b1[1,i-1],a[1,i-1]) (iv) 
& perm(b1[i,n],a[i,n]) (v) 
& (FA j)(i=<j<n => b1[j]=<b1[n]) (vi) 

Since xchng (a ,i ,i+1) [ 1 ,i-1 ] = a[ 1 ,i-1 ] , (iv) follows 

immediately from (i). From (i) and (ii), bl[i]=a[i+1], so 

perm(bl[i,n],xchng(a,i,i+1)[i,n]) and (v) then follows. To 

prove (vi) it is only necessary to show additionally that 

b1[i]=<b1[n]. But b1[i] = a[i+1] < a[i] 
xchng(a,i,i+1)[i+1] = b1[ j] for some j with i+1=<j=<n. 

Hence, by (iii), b1[i]=<b1[n]. The proofs of the other two 

conditions are similiar but easier. To complete the proof 

of the program, we should also use the definitions of perm 

and eqseq to prove the facts about them which we have used. 
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The proof-checker described in Chapters 4 and 5 can be used 

to do this, and examples of such proofs will be given there. 

2.6 Justification Qf J JA method 

In Burstall (1975) a proof is given that the proof 

method we have just described is sound, that is, that its 

successful application to a program does in fact imply that 

the program is correct. Burstall proves soundness by 

considering the relation computed from one point in a flow 

diagram to another and hence shows that the actual program 

may also be non-deterministic (in the random and not the 

"backtracking" sense). However the details of his proof are 

complicated. 

In this section we shall outline an alternative method 

of proving soundness. This method involves translating all 

programs into systems of recursive equations and then 

applying computation induction. It is not clear that the 

resulting proof would be any simpler than Burstall's if all 

the deAails were filled in. 

2.6.1 Translation a recursive equations 

McCarthy (1960) first described how to translate an 

arbitrary flow-chart program into a set of mutually 

recursive functions. While this method is well known, it is 

inadequate for our purposes. The reason is that in 

McCarthy's method the recursive functions introduced 
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describe the program from a given point until the end, 

whereas we want to describe the program from one internal 
point to another. The motivation for this is that we want 

to be able to describe the effect of an inner loop without 

considering the rest of the program containing it. 

Moreover, McCarthy's method does not allow one to handle 

escapes when applied to flow-chart programs containing 
recursive calls. As an example, consider the program: 

while P(X) ita 
(while Q(X) AQ, X:= s2(X); 
X:= sl(x)); 

return (X) ; 

McCarthy's method would translate this into something like: 
f(X) <= if. P(X) then g(X) else X 

g(X) <= IL Q(X) then g(s2(X)) else f(sl(x)) 
whereas our method would give: 

f(X) <= if P(X) then f(sl(g(X))) else XI 

g(X) <= if Q(X) then g(s2(X)) else X 

Having decided to nest recursive functions in this way, 

the problem of translating arbitrary flow-chart programs 

becomes slightly more difficult, but since the solution also 

deals with escapes from recursive functions, the increased 

complexity is well justified. To appreciate the difficulty, 

consider the following program schema (which could 

correspond to a naive matcher or prime finder): 
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A: -while P(X) 
(X:=a(X); 

B: while Q(X) sl4. 
(iL R(X) then (X:=b(X); coto Next): 
X:=c(X)): 

onto Finish; 
Next: X:=d(X)): 
Finish: 

The natural way to write inclusion statements for this 

program is to have an outer one from A to Finish and an 

inner one from 8 to Next or Finish. It is possible to 

translate this program into recursive functions such that 

each function corresponds to one of the actual programs by 

using escapes, but we choose to do it using the more general 

device of continuations described in Reynolds (1972). A 

continuation is a function which is added to a given 

function Fold as an additional argument, giving a new 

function Fnew, which evaluates Fold and then applies the 

continuation to this result. That is, for any Fold we can 

define Fnew by 

Fnew(x1,...,xn,c) = c(Fold(x1,...,xn)) 

Using continuations, we can now write the above program in 

the following way: 

A(X,F) <= jL P(X) then B(a(X),(LAMBDA u.A(d(u),F)),F) 
else F(X) 

B(X,N,F) <_ iL Q(X) then if R(X) then N(b(X)) nisa B(c(X),N,F) 
else F(X) 

where N and F are the continuations, and can be thought of 

as describing the computations which continue from the 

labels Next and Finish. 
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Thus the idea is to translate a specified program by 

associating a recursive function with the start point of 

each inclusion statement. In addition to its normal 

arguments, this recursive function has one extra argument - 
a continuation - for each end point of the inclusion 

statement. The details of this translation process depend 

on the particular language being used and are omitted here. 

2.6.2 Validity proof 

The argument that the method is sound now goes as 

follows. A specified program consists of a set of n 

inclusion statements, say. The whole program can be 

rewritten as indicated above as a set of mutually recursive 

functions, 

fi <= Ti[fl,...,fn], for i=1,...,n . 

where each Ti is a monotonic functional, and 

where each fi is associated with a distinct inclusion 

statement. That this transformation preserves the meaning 

of the program is the main gap in our proof. Let gi be the 

virtual program of that inclusion statement. The proof 

procedure itself, if successful, has shown that 

Ti[gl,...,gn] c gi, for i=1,...,n 

This is true even though the proof procedure stops 

immediately before executing the continuations. In the 

terminology above, it shows that 

fold(x1,...,xn) C gold(xl,...,xn) 

Since we check that fold and gold terminate at the same 

point, before executing the same continuation c, and since c 
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itself is monotonic, we have 

f (xl,...,xn,c) = c(fold(x1,...,xn)) 
c c(gold(xl,...,xn)) 
= g(x1,...,xnc) 

We now have to prove that 

for i=1,...,n . 

But it is a well-known theorem (e.g. Park 1969) that for a 

monotonic functional T, 

T[G] c G => pF.T[F] G G 

where ftF.T[F] is the least fixed point of T. Applying this, 

with (g1,g2,...,gn) in the cartesian product domain for G, 

yields the result immediately. 
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Chapter 3. THE INDUCTIVE PROOF METHOD: DISCUSSION 

The first part of this chapter discusses an extension 

and an application of the proof method just described, while 

the second part compares it in some detail with several 

other commonly used methods. 

3.1 Termination proofs 

We start by describing how to extend continuation 

induction to yield proofs of termination, and hence strong 

equivalence, of programs. A new component, a decremand (a 

quantity which is decremented, abbreviated dec), is added to 

each inclusion statement which corresponds to the body of a 

recursive procedure or to a cycle, i.e. wherever repetition 

is possible. (It could in fact be added to every inclusion 

statement.) This component must contain an expression 

involving the program identifiers which, for different 

state-vectors, takes values in some well-founded set, that 

is, a partially-ordered set with no infinite descending 

chains. Examples of such well-founded sets are the natural 

numbers; strings, where a < b if a is a proper substring of 

b; and lists (as in pure LISP), where a < b if a is a 

sublist of b, i.e. if a is the hd of b or the tl of b or a 

sublist of the hd or tl of b. (We use "hd" and "tl" for the 

LISP "car" and "cdr". ) 
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The proof procedure is now just as before, but with the 

following addition. Assume we are about to verify an 

inclusion statement containing a decremand. In the initial 
symbolic state the symbolic value of the decremand is found 

and saved. If the program's execution returns to this 

point, as well as checking the preconditions, the decremand 

is tested to see that it is now strictly less than the saved 

value. This will require symbolic reasoning (i.e. theorem 

proving) of course, rather than simple numerical comparison, 

for example. If the decremand is indeed less upon return, 

and this is true for each inclusion statement, then the 

program must terminate as there are no infinite descending 

chains. With this extension the proof method now yields 

strong equivalence if successful, as both programs always 

terminate. Figure 3.1 below shows the functions 

Verify-incl-stet and Ex-act of Figure 2.4, modified to 

incorporate this test. 

As a simple example, consider the "counting-up" 

factorial program of Section 2.5. The decremand of the 

inclusion statement at Loop is N-I, and the partial order is 

defined by: x is less than y if 0=<x<y. Since I is 

increased by one each time the program reaches Loop, and I<N 

implies 0=<N-(I+1)<N -I, the program (or at least the loop) 

must terminate. 
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Verify-incl-stat(INCL-STAT) 
with INCL-STAT do 

STATE := mkS(general-symbolic-state-vector, SP, 
arbitrary-control-stack, PREC); 

CUR-INCL-STAT : = INCL-STAT ; 
CUR-DEC := SV(DEC); 
SACT := {}; 

Ex-act(STATE,INCL-STAT,false); 
SVIRT :_ {}; 

Ex-virt(STATE,INCL-STAT,false); 
Compare(SACT,SVIRT) ) 
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Ex-act(STATE, INCL-STAT, FROM-VIRT) _ 
with STATE do 
with INCL-STATE do 
repeat ( if IP is in EP and not(FROM-VIRT) then 

(add STATE to SACT; return); 
FROM-VIRT := false; if IP is at sp(CUR-INCL-STAT) 

(other than initially) then 
ensure SV(dec(CUR-INCL-STAT)) is less than CUR--DEC; if IP is at sp(IS1) for some IS1 in INCL-STATS 
(other than initially) then 
(Check that PC => SV(prec(IS1)); 
Ex-virt(STATE,ISI,true): return) 

elseif IP is an assignment (LS := RS) then 
(SV := SV[sym -val(RS)/LS)); advance IP) 

elseif IP is a conditional (if P then s1 else s2) then 
if PC => P then IP := s1 
elseif PC => NOT P then IP := s2 
else (Ex-act(mkS(SV,s1,CS,PC&P),INCL-STAT,false) 

Ex-act(mkS(SV,s2,CS,PC&NOT P),INCL-STAT,false) 
return); 

else (execute instruction normally; advance IP) ) 

Figure 3.1 - Termination proofs 
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A more difficult example is the program which sorts an 

array of elements by exchanging pairs of adjacent elements 

which are out of order, and which terminates when it can 

make a complete pass through the array without finding such 

a pair. The decremand of the main inclusion statement of 

this program is Inversions(A,N), and the partial order is 
the standard one on the natural numbers. "Inversions" is a 

function which counts the total number of pairs of elements 

in the array A from I to N which are out of order. It 
requires some knowledge about permutations and careful 

reasoning to show that Inversions(A,N) is actually reduced 

each time around the loop. Sites (1974) was unable to prove 

this program terminated as he did not have this knowledge 

about Inversions or permutations. Our theorem prover is 
capable of doing this sort of reasoning, but we have not yet 

extended the verification system to do termination proofs. 

3.2 Equivalence proofs 

Clearly, if we are given two programs A and B such that 

B satisfies the requirements of 2.3.1 for virtual programs, 

then we can use this method in an attempt to prove A is 

included in B. In fact this is what we did with the 

91-function. If the program B always terminates, and the 

termination proof method is applied to program A, then we 

can even prove that A and B are strongly equivalent. 
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But it is also possible to prove more interesting 
programs equivalent. The general method is to treat one of 

the two programs as the virtual program and translate it, if 
necessary, into a recursive function, proving separately 

that it always terminates. Then change the function to a 

symbolic one (which constructs a symbolic term but is not 

otherwise evaluated), and use a call of it as the virtual 
program, saving its definition - a set of recursive 

equations - for later use. The proof method is then applied 

as before, and the recursive equations are applied only when 

comparing the resulting state vectors. This gives a simple 

method of showing the equivalence (or inclusion) of an 

iterative function with a recursive function. 

As a very simple example consider the following two 

programs for computing the factorial function:- 

Start: I:=1 
R:=1 

Loop: while I<N IQ (I:=I+1; R:=R*I) 
Finish: return(R) 

and 

f (N) <= if N=O then 1 else N*f (N-1 ) 

f(N) 

In this case we would construct a new symbolic function f1 

such that the value of fl(3), say, was simply the term 

"f 1 (3 )" and save the formulae 

n=0 => fl(n)=1, 

n#0 => f1(n)=n*f1(n-1) 

for later use. We would then treat the whole first program 

as an actual program with virtual program fl(N), and treat 



Discussion of method Page 67 

the while-statement from loop to Finish as a second actual 

program with virtual program: 

Loop: R:= R*f1(N)/f1(I); 
I:=N 

Finish: 

The remainder of the proof would then go through as in 

Section 2.1 above. 

As a more interesting example, consider the following 

program: 

Start: C:=O; 
Loop: while N=<100 dg, (C:=C+1; N:=N+11); 

N:=N-10: 
L: If C>O then (C:=C-1; goto Loop); 
Finish: return(N); 

We shall prove it is included in the following familiar 
function: 

f (N) <= I -f N>100 then N-10 else f (f (N+1 1) ) 

As before we change f to the symbolic function f1 with 

defining equations 

x>100 => fl(x)=x-10, 

x=<100 => f1(x)=f1(f1(x+11)), 

and construct the inclusion statement which associates the 

whole actual program with the virtual program fl(N). We now 

define an auxiliary function Appr (apply f1 repeatedly) with 

the following defining equations: 

y=0 => Appr (x ,y)=f 1 (x) , 

y>O => Appr(x,y)=Appr(f1(x),y-1). 

Unfortunately we know of no way to derive this function 

mechanically. We now construct a second inclusion statement 
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which starts at Loop, ends at Finish, has the corresponding 

virtual program: 

Loop: N:=Appr(N,C); 
Finish: 

and which has the preconditions c>=0. We concentrate on the 

proof of this inclusion statement, since the proof of-the 

first one is trivial. In fact even this proof is quite 

easy. The trees of computation paths of the two programs 

are shown in Figure 3.2, as are the verification conditions 

generated. All these verification conditions are easily 

proved using the definitions of fl and Appr. 

We realise that it will not usually be so easy to find 

intermediate virtual programs, and that the functions such 

as Appr and division which need to be introduced may become 

excessively complex. Nevertheless we believe this is a 

method which may occasionally be useful. 
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Actual program: Loop: N->n,C->c with c>=0 

n-<100 \n>100 
Loop: N->n+11 ,C->c+1 L : N->n-10,C->c 

with c>=0 & n=<100 with c>=0 & n>100 

Ind'n hyp 

Finish: N ->Appr(n +11,c+1) Finish: N ->n-10 
with c>=0 & n=<100 with c=0 & n>100 

Loop: N->n-10,C->c-1 
with c>O & n>100 

Ind'n hyp 

Finish: N->Appr(n-10,c-10 
with c>O & n>100 

Virtual program: Loop: N->n, C->c with c>=0 

Finish: N->Appr (n ,c) with c>=0 

Verification conditions: 

c>=0 & n=<100 => Appr(n+11,c+1) = Appr(n,c) 
c>O & n>100 => Appr(n-10,c-1) = Appr(n,c) 
C-0 & n>100 => n-10 = Appr(n,c) 

Figure 3.2 - 91-function (iterative) 
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3.3 Comparison with Jnductive assertions 

3.3.1 E]oow-diaarams 
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We assume the reader is familiar with this method of 

verifying programs. Accounts of it are given by Floyd 

(1967), Hoare (1969), Elspas et al (1972) and others. 

Applicable to flow-chart programs, it is closely related to 

continuation induction. In each case one has to provide, in 

addition to the overall specifications of a program, some 

sort of generalized statement at loops: in one case an 

assertion, in the other an inclusion statement. Both 

methods do induction on the length of the computation, but 

whereas with inductive assertions it is on the length from 

the beginning of the computation to the middle, in ours it 
is on the length from the middle to the end. 

However, there is a much closer connection than this. 

Continuation induction is really a generalization of thie 

inductive assertion method, and every proof by inductive 

assertions can be mechanically translated into a proof by 

continuation induction. We shall demonstrate how this is 

done by means of two typical examples. 

Loop: {A1(X)} 
while P (X) ip, X: -F (X ) 

Out: {A2(X)} 

Here, A1(X) is the loop invariant and A2(X) is the output 

assertion. Using virtual programs, these specifications can 

be expressed as the following inclusion statement: 



Discussion of method Page 71 

Actual program: while P(X) g. X:=F(X): 
Virtual program: X:.(EPS Y)A2(Y) 
Preconditions: 
Start point: 

A1(X) 
Loop 

End points: Out (non-recursive) 
Variables: X 

To verify this inclusion statement we must prove the 

following three theorems: 

a) 

b) 

A1(X) & P(X) 

A1(X) & P(X) 

A1(F(X)), 

(EPS Y) A 2(Y) G (EPS Y) A2(Y), 

c) A1(X) & NOT P(X) => X G (EPS Y) A2(Y). 

The second of these is always trivially true, and using rule 
4) of Section 2.4.1 the third reduces to 

d) A1(X) & NOT P(X) => A2(X). 

But these two theorems (a and d) are exactly those generated 

using the inductive assertions directly. If there is a 

conditional involved the situation is a little more complex. 

Consider the following flow diagram: 

Yes 

L1: { A1(X) } 

I 

P(X) ? 

No 

X:=E(X) X:=G(X) 
I I 

L2: { A2(X) } L3: { A3(X) } 

In this case the corresponding inclusion statement is 
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Actual program: as shown 
Virtual program: X := (EPS Y)(P(Y) _> A2(F(Y)) & 

NOT P(Y) => A3(G(Y))); 
jf P(X) then (X:=F(X): aoto L2) 

else (X:=G(X); pQto L3): 
Preconds : _ AIM 
Start point: L1 
End points: L2, L3 (non-recursive) 
Variables: X 

Verifying this inclusion statement using rule 3 (rule 4 will 

not work in this case) again reduces the problem to exactly 

those theorems generated by using the assertions directly. 

In general, the epsilon expression is written to return a 

tuple of terms and the generalized forms of rules 2, 3 and 4 

used to show the equivalence of the two methods. 

Thus we can assume that proofs of program correctness 

by inductive assertions are simply abbreviations for proofs 

using virtual programs. There is then a choice between 

putting the main specifications of the program into the 

preconditions of an inclusion statement or into the virtual 

program. Often, less detail is required when the 

information is put into the preconditions. For example, the 

loop invariant for the program of Section 2.5.5 is 

perm(A[1,N],AO[1,N]) & (FA J)(1=<J<I => A[J]=<A[I]) 

where AO is (a ghost variable whose value is) the original 
array. The corresponding virtual program 

A :_ (EPS B)(perm(A[ 1,N],B[ 1,N]) 
& (FA J)(I=<J<N => B[J]=<B[N]) ) 

is too weak for the proof to go through as before. The more 

detailed virtual program 

A :_ (EPS B)(egseq(B[1,I-1],A[1,I-1]) 
& perm(B[I,N],A[I,N]) 
& (FA J)(I=<J<N => B[J]=<B[N]) ) 
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is required, though perm could be instead of eqseq. This 

phenomenon seems to be a weakness of the proof method. 

3.3.2 Procedures and Hoare's rules 

Because of the above phenomenon it is useful to be able 

to describe programs using both inductive assertions and 

virtual programs: the assertions to act as loop invariants, 

and the virtual programs to describe complete programs and 

(recursive) subroutines. As an example, the program of 

Section 2.5.3 is described by: 

f(NO) <= (vars N,R; 
Start: N:=NO; 

R:= 1; 
Loop: assert R + N! - 1 = NO! 

while N>O do (N:=N-1; R:=R+N*f(N)); 
Finish: return(R) ) 

Actual program: body of f 
Virtual program: NO! 
Preconditions: NO>=O 
Start point: entry of f 
End points: exit from f (recursive) 
Variables: none 

Virtual programs can also be used to describe inner loops 

when the outer loop is described by a loop invariant. The 

program to invert a permutation, shown in Appendix 4, has 

its specifications given in this way. 

The restrictions on using both inclusion statements and 

inductive assertions to describe a program are that each 

cycle in the program must contain either an invariant or the 

start of an inclusion statement, each subroutine must have a 

corresponding inclusion statement, and each assertion other 
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than an output assertion must be followed (dynamically) 

either by another assertion or by the end of an inclusion 

statement. To verify such a program we then verify each 

inclusion statement and each assertion in turn. Verifying 

an inclusion statement is done as before except that if we 

encounter an assertion, we check it it true with respect to 

the current state vector and path condition, replace the 

state vector by a new, general symbolic one, let the 

assertion itself be the new path condition, and continue 

until an end point of the inclusion statement is reached 

(ignoring any path which reaches an assertion seen before 

while verifying that inclusion statement). The reason for 
this treatment of intermediate assertions is that the 

assertion typically occurs in a loop, so all we know about 

the state vector is that it satisfies the assertion. To 

verify an assertion we prove that starting with it as the 

path condition and symbolically executing the program, every 

assertion reached is true. We terminate and ignore paths 

which reach the end of an inclusion statement. If the start 

of an inclusion statement is reached, the preconditions are 

checked, the virtual program executed, and the computation 

continued as before. In this way all the paths through the 

program will be considered. 

In Hoare's theory (Hoare 1969), the statement P{S}9 

means that if the assertion P is true before statement S is 

executed, then the assertion R will be true when (and if) S 

terminates: axioms and rules for each basic statement S of 

a programming language effectively define the semantics of 
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that language, and are used to verify programs written in 

that language. This approach was extended in Hoare (1971a) 

to handle recursive procedures and in Clint and Hoare (1972) 

to deal with Jumps out of blocks and with functions. While 

Hoare's theory is as general as ours, and can be used to 

define the semantics of a programming language, our method 

does have one advantage over it, resulting from our use of 

symbolic execution. This is that we can deal with 

procedures having side-effects. The virtual program for 

that procedure simply includes the assignments to the 

non-local variables. When the procedure is called during 

another proof these side-effects simply take place as they 

would during normal execution. 

3.4 Comparison with recursion induction 

This is a method proposed by McCarthy (1963) for 

proving the equivalence of recursive functions. He gives 

the following example of its use. Suppose addition is 

defined in terms of the operations suc and pre by 
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m+n = if n=O tj m 81S_e suc(m)+pre(n) 

and we wish to prove the theorem 

suc(m+n) = suc(m)+n 

Let f(m,n)= if n=© then suc(m) else f(suc(m),pre(n)): 

g (m ,n)=suc (m{.n ): and h (m ,n)=suc (m)+n. Both g and h can 

easily be seen to satisfy the defining equation of f, so by 

recursion induction they are equivalent over the domain on 

which f is defined, the set of non-negative integers. 

McCarthy (1962) extended this principle to apply to 

flow-chart programs in the following way. 

(a) F; 

(b) if P then (g; F): 

(c) While- P AQ g 

If program (a) can be shown equivalent to program (b), then 

we can conclude that program (a) is equivalent to program 

(c) for those state vectors which do not cause program (c) 

to get stuck in a loop. Saying that program (a) is 

equivalent to (b) is the same as saying that the program 

satisfies a functional equation. If another program, G, 

also satisfies the same functional equation then F is 

equivalent to G whenever program (c) converges. McCarthy's 

method of showing the two programs satisfy the same 

functional equation is by "massaging" them separately until 

they have the same syntactic structure. For example, to 

prove 

A: if, N=O the auto 8: 
R:=N*R: N:=N-1; gQta A; 

8: 
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equivalent to the program 

A: R:=N!*R: N:=O; 
8: 

he converts the first program to 

A: If N=O then aoto 8; R:=N*R; N:=N-1; 
Al: j N=O then goto 81: R:=N*R; N:=N-1; aoto Al; 
81: 

and the second to 

A: N=O then auto B; R:=N*R; N:=N-1; 
R:=N!*R: N=O: 

8: 

using properties of the factorial function. Thus both 

programs satisfy a relation of the form: 

"program" 

is equivalent to 

A: IL N=O then aoto 8; R:=N*R; N:=N-1; "program"; B: 

and are hence equivalent whenever the first of them 

terminates. 

This seems an unnecessarily complicated procedure, 

having to syntactically transform both programs, but in 
essence it is again the same as ours. However, continuation 

induction has the following advantages over recursion 

induction as McCarthy described it. 

(1) A minor advantage is that our method makes explicit the 

way to handle nested loops. McCarthy gave no examples (in 

the papers we have seen) containing them, and his method of 

translating flow-chart programs into recursive functions is 

not suitable for the task, as we observed in Section 2.6. 
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(2) Proofs seem more natural and easier to find in our 

method as the "massaging" of the programs is done 

automatically in the course of the symbolic execution. 

(3) Strong equivalence (i.e. termination) can often be 

proved in the course of the main proof. 

(4) Our method is capable of proving properties of programs 

which contain escapes or, equivalently, multi-exit loops in 

flow-chart programs. This would seem to be its main 

advantage over recursion induction. Of course, at the time 

McCarthy did his work the concept of a continuation was not 

explicitly available to him as it was to us. 

3.5 Other related methods 

Another method based on symbolic execution (or hand 

simulation) is described in Burstall (1974). The basic 

inductive statement of this method is of the form: 

"Starting from label K with state vector X=xO, 
Y=yO, ... satisfying P(x0,y0,...), for all i such 
that 0=<i=<n, the program eventually reaches label 
L with the state vector X=x(i), Y=y(i), ... 
satisfying Q(x(i),y(i),...)." 

Thus the method automatically yields proofs of total 
correctness whereas all the other methods we have discussed 

only yielded partial correctness. The main difference 

between it and continuation induction is that it does 

induction on the data whereas continuation induction does 

induction on the length of the computation. 
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Burstall and I programmed a simple implementation of 

the method in 1972 and proved some trivial programs using 

it. We eventually rejected it in favour of the present 

method because it needed a more sophisticated logical 

apparatus to do the inductions. Moreover the continuation 

proof method seemed easier to implement at the time. 

However, for certain types of programs, such as 

iterative translations of recursive programs which operate 

on trees, for example, it can be very useful. In Topor 

(1974), Appendix 6 of this thesis, I gave a proof of the 

Schorr-Waite list marking algorithm. This is an example 

where a data induction approach is clearly preferable to 

doing induction on the length of the computation, and both 

the inductive assertion method and continuation induction 

are unsuitable. 

Recently, and independently of our own work, Mills 

(1975) and Basu and Misra (1975) have shown how continuation 

induction can be used to prove the correctness of iterative 

programs constructed using while statements alone (loop 

programs). In each case they assume that the "virtual 

program" is given initially as some function f and they 

attempt to show that the function computed by the while 

statement is equal to f whenever the while statement 

terminates. They formulate the principle as follows: the 

equivalence "f = while p AU g" holds if and only if for 

every (x,y) in f the iteration terminates and 

p(x) => y=f(g(x)) & NOT p(x) _> y=x. Basu and Misra also 
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show that given the function f which the loop computes one 

can find a loop invariant which suffices to prove the 

correctness of the program. This provides a dual to our 

result that proofs using inductive assertions can 

translated into proofs by continuation induction. However, 

when the program has the form "initialization; loop" and the 

function (intended to be) computed by the whole program is 
known, our experience indicates that it is often just as 

difficult to find and describe the function computed by the 

loop alone as it is to find a loop invariant directly. This 

can be seen from the examples we have already studied. In 

neither of these two papers are these methods applied to the 

other control structures such as arbitrary flow-charts, 

recursion and escapes which we have considered. 
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Chapter 4. AN INTERACTIVE PROGRAM VERIFIER 

4.1 Overview 

Any reasonable program verifier will clearly require 

human assistance to prove some of the verification 
conditions. It will also require a certain amount of 

knowledge about the problem domain on which the program is 
operating. Our aim has been to develop a system which a 

programmer could use to verify a moderately complex program 

by interactively proving the verification conditions and 

extracting the required facts about the domain in the 

process. We expect that it might take some time to 

interactively verify a program in this way, possibly longer 

than the time which would be taken to "debug" the program, 

since a period of thought away from the terminal will 
usually be required. 

The system we have implemented verifies POP-2 programs 

and is written in POP-2. (A brief description of this 

language is given in Appendix 1.) It is basically an 

implementation of the continuation induction proof method 

described in Chapters 2 and 3, extended to allow inductive 

assertions but not functional arguments. To use it the user 

provides a POP-2 program together with its specifications as 

a set of inclusion statements and/or inductive assertions. 

The specifications can be written in terms of new primitive 

functions declared by the user. The system then compiles 

the specified program and attempts to verify each inclusion 
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statement and assertion in turn. If the system -cannot prove 

a particular verification condition it asks the user for 

help. The user then has available a wide repertoire of 

commands he can give in guiding the system to a proof; in 

this mode the system acts as a proof-checker. In 

particular, the user can provide or use facts about the new 

primitive functions in the form of reduction and inference 

rules. It is also possible to execute the specified program 

with actual numerical data either to satisfy the sceptic or, 

having verified the program, to actually use it. 

The most complex programs we have verified using the 

system are two sorting programs and a program to invert a 

permutation "in place". The permutation example was done 

after the rest of this work had been completed, and took 

about two weeks to find and define the appropriate 

concepts, give an adequate specification, and then verify 

the program's correctness. We now describe the different 

aspects of the verification system in more detail. The 

reader should refer to the examples in Chapter 6 while 

reading this description. 

4.2 Input languages 

The program to be verified must be written in a subset 

of POP-2 as a normal function which may call other 

functions. Each non-trivial function thus called must be 

described by a separate inclusion statement. The subset of 
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POP-2 used allows integers with their normal operations; 

truthvalues; one-dimensional arrays of integers: and lists 

with constructive operations but without destructive 

updating. 

The standard functions and variables allowed are: < > 

=< >= _ /. + - (binary only) * div rem (not //) :: <> atom 

back cons dest erase false front hd identfn jumpout nil not 

null tl true undef. 

The syntax words allowed are:( ) . , ; :: and 

close else (but not inside LOOPIF) end function goto if 
lambda loopif nonmac nonop or then vars. 

This is quite a restriction on the language, but there 

is still infinite scope for writing complex programs. An 

extension is that epsilon expressions are allowed, having 

the syntax (ANY <varlist>)<expression> or 

<ANYARR <varlist>)<expression> (for arrays) where <varlist> 

is either a word or a list of words. The syntax of the 

language is also changed in the following way: 

1) Every label must be preceded by a dollar sign ($) 

2) Subscripted variables must be written e.g. A \ (I+J), and 

arrays are declared differently (see later). 

A virtual program is written as a POP-2 imperative 

sequence using the same subset of the language, but 

naturally without loops or recursion. If the inclusion 

statement to which it belongs has more than one end-label, 

each exit from the virtual program must have a GOTO 
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<end-label> at it Virtual programs may also contain new 

primitive functions as described in the next section; they 

may refer to array sequences e.g. A<<I,I+J>>; they may 

contain assignments to arrays e.g. (ANYARR B)P(B) -> A; and 

they may contain assignments to array sequences e.g. 

A<<1,J>> -> 8<<I+1,I+J». Note also that the verifier 
assumes that the body of a function terminates immediately 

before the output locals are put on the stack, so this must 

be considered when writing virtual programs. 

A specified program must then have the following form: 

<function-definition *>; 

<declaration-of-input-variables>; 
<actual-parameter-list> -> INITARGS; 

<inclusion-statement 1>; 

<inclusion-statement n>; 

The syntax of each inclusion statement is as follows: 

<incl-statement> ::= ISTAT <incl-location> 
VIRT <virtual-program> 
UNDER <preconditions> 
WRT [<identifier*>] 

<incl-1ocation> ::= BODY (REC ?) <function-name> / 
<begin-label> TO [<end-label-list>] 

<end-label-list> ::= (<(3nd-label> (REC ?) *) 

<virtual-program> ::= <imperative-sequence> 

<preconditions> <logical-expression> 

Examples of specified programs are given in Appendix 4. 
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The program to be verified may also contain assertions 

after labels at key points throughout the program. The 

syntax of these statements is simply 

<assertion> : := ASSERT <logical-expression>; 

Every assertion except for an input assertion must be 

preceded by a label. An output assertion is identified by 

having the corresponding label OUT. 

4.3 Definitions _ejpA rules 

In giving the specifications for a program, new 

primitive functions are usually required to express the 

program's intention. This is specially important to enable 

the verifier to deal with programs operating on new domains. 

The verification system allows the user to declare such 

functions by typing, for example, DECFUNS F 2 G 3: which 

declares F to be a symbolic POP-2 function of 2 arguments 

and G of 3. It also allows him to specify their properties 

either as simple predicates or as reduction or inference 

rules. Amongst these properties the definition of the 

function is singled out; whilst the other properties may be 

taken as given, for a proof to be complete, they must be 

shown to follow from the definition. The functions *e have 

used in verifying programs are SEQOF, EQSEQ, ISIN, PERM, 

ORDERED, MEMB and FRINGE. The function application 

SEQOF (A ,I ,J) is also written A<<I,J>>. The definitions of 

these functions are given in Appendix 2. 
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The simple properties which a function can be declared 

to have are associativity, commutativity, transitivity and 

whether it takes numerical values. These are specified 

using the doublets ISASSOC, ISCOMM, ISTRANS and ISNUMFN 

respectively. New boolean predicates like these can be 

introduced by the user and this facility proved very useful 

while developing the system. Functions can also be assigned 

an identity and a zero, using the doublets IDENTOF and 

ZEROOF. 

We next describe the two sorts of rules which can be 

used. These rules are defined using variables declared by, 

e.g., DECLVARS X Y; The collection of rules defining and 

describing a particular function constitutes, in effect, a 

mini-theory of that function; all the rules relating to 

this function are loaded with the verifier whenever a 

program involving it is being verified. A list of all the 

derived rules (rules or facts which are not definitions) is 

given in Appendix 3; we have proved some but not all of 

these using the interactive theorem prover. The description 

of how these rules are actually used is deferred until the 

next chapter. 

4.3.1 Reduction rules 

Reduction rules are used to define functions which are 

not predicates, and correspond roughly to the antecedent 

theorems of PLANNER or the demons of QA4. They are rules for 

rewriting (or transforming) expressions into equivalent but 
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"simpler" ones. In general, a rule is only applicable to an 

expression if the subterms of an expression satisfy certain 

restrictions. These restrictions are written as a list of 

conjuncts: 

<conjunct-list> [% <expression-seq ?> %] 

<expression-seq> <expression> (,<expression> ?*) 

Reduction rules are then defined by: 

<reduction-rule> ::_ (WHEN <conjunct-list>, ?) 
<expression> __> <expression> 

For example, integer division which is treated by the 

algebra system as a user-defined function, has some of its 
properties given by the following rules: 

WHEN [% 0 =< X, X<Y%] , X DIV Y =_> 0; 
WHEN [% X>=Y, Y>O %], X DIV Y =_> 1+(X-Y)DIV Y; 
X DIV I =_> X ; 
(X*Y )DIV (X*Z) =_> Y DIV Z ; 

WHEN [% X REM Y = 0 %], (X DIV Y)*Y =_> X; 

The first two of these constitute the definition of division 

when restricted to the non-negative integers. 

4.3.2 Inference rules 

Inference rules are used to define and give properties 

to predicates; they correspond to the consequent theorems 

of PLANNER or the goal class rules of QA4. They are 

inference rules in the sense that if their hypotheses are 

true then their conclusion must also be true, but they are 

always used in a top-down manner: to prove the conclusion, 
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try to prove the hypotheses. Inference rules are defined 

by: 

<inference-rule> ::= IR <rulename> 
<expression> <=_ <conjunct-list> 

<rulename> :: = <identifier>. 

Two typical inference rules are: 

IR OR01 
ORDERED (A<<I , J>>) <_= 1% I>=J %] 

IR ORD2 
ORDERED (A<<I ,J>>) 
<=_ [% I<J, A\I<A\(I+1), OROEREO(A<<I+1,J>>) %]: 

Inference rules are given names so they can be referred to 

when using them interactively. Note that we have explicitly 

written "if and only if" definitions as two or more separate 

implications in an equivalent but heuristically more useful 

way. Thus instead of writing the rule 

ORDERED (A<<I ,J» ) <_> I>=J 
OR A\I -< A\(I+1) 

& OROERED(A<<I+1,J>>) 

we write the four equivalent rules 

ORDERED (A<<I, J>>) 

ORDERED (A<<I , J>>) 

A\I=<A\(I+1) 

[% I>=J %] 

I<J, A\I=<A\(I+1), 
ORDERED (A<<I+1 , J>>) %] 

[%(EX "J")(I<J & ORDERED(A<<I,J>>))%] 

OROERED(A<<I,J>>) <__ [% I-1<J, OROERED(A<<I-1,JW)%] . 

Notice also that we have used recursion in writing both the 

definitions and properties of most new functions. This was 

done to make them more immediately applicable to the 
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theorems produced by the verification generator. However 

definitions using quantifiers can also be used, and in fact 

we have used both the recursive and non-recursive 

definitions of ordered to prove the two sorting programs 

correct. The alternative definition was expressed as the 

two inference rules: 

ORDERED (A<<I , J>>) 
<_= [% (FA U)(I=<U & U<J =>> A\U=<A\(U+1)) %] 

A\U =< A\(U+1) 
<__ (% (EX [I J])(I=<U & U<J & ORDERED(A<<I,J>>)) %] 

Using this definition the proofs required slightly more user 

intervention since the system does not automatically invoke 

the proof by cases which corresponds to the recursive 

definition. However, because fewer non-recursive rules are 

required to express the same properties as several recursive 

rules we are currently modifying the system so that they can 

be used more easily. 

4.4 Verification condition genera or 

As stated above, the verifier is basically an 

implementation of continuation induction extended to allow 

inductive assertions. Since the POP-2 user has access to 

the stack, this is added to the machine state as an 

additional component. When the specified program is 

"compiled", a list of all the inclusion statements is 

formed. The user can then ask either for all of them or for 

a particular one to be verified. An attempt is made to 
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actually prove the verification conditions generated from 

each inclusion statement before starting on the next one. 

After verifying the inclusion statements, each assertion 

present is verified in turn as described in Section 3.3. 

To compare two states s1 and s2, found by running an 

actual program and a virtual program, the verifier has to 

prove a theorem of the form 

pc(sl) & pc(s2) _> sv(sl) sv(s2) 

where pc is the path condition and sv is the state vector. 
The algorithm it uses to do this is as follows: 
1) If for each variable v, sv(s1)(v) is identical to 

sv(s2)(v), then exit with success. 

2) Otherwise, if there exists a conjunct c in pc(s2) such 

that pc(sl) => NOT c, then exit with success. 

3) Otherwise try to prove that for each variable v, 

sv(sl)(v) C sv(s2)(v). 
In the successful cases the system also checks that the two 

programs terminated at the same end point and that the 

stacks are equal. If the proof fails, the system gives an 

appropriate message, and the user can direct the theorem 

prover to work interactively on either 2) or 3). However if 

the theorem is clearly false, an error in the program or its 

specifications is indicated. The error can be located by 

observing the path condition of the actual program which 

caused the error to appear. 
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It is also possible to make the system generate 

verification conditions without trying to prove them. More 

usefully, the user can specify that no proofs should be 

attempted at conditionals during symbolic execution. 

Although this may lead to unnecessary branches of the 

computation tree being generated the resulting theorems are 

invariably easy to prove; moreover, especially in cases 

where there are no conditionals in the virtual programs, 

some processing time will be saved. The user can also 

choose whether to apply rule 3 or 4 (of Section 2.4.1) when 

proving inclusion of epsilon expressions; rule 4 is the 

default case. 

Output from the verifier can be sent in varying degrees 

of detail either to disc or to the terminal. A record of 

any interactive proofs is always saved on disc, and at the 

end of verifying a program the user can save any unproved 

verification conditions on disc for later analysis. 

The most significant aspect of the way verification 

conditions are generated is the use made of the normal POP-2 

compiler and run-time system. In fact we have used these 

exclusively and have written neither our own parser nor our 

own interpreter. All the control aspects of symbolic 

execution (statement sequencing, jumps, procedure entries 

and exits) are handled by the normal run-time system. Thus 

any correctness results proved are true with respect to the 

actual implementation of the language, rather than with 

respect to some abstract definition of it. This has the 
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curious consequence that even if there are errors in the 

language implementation (with respect to its definition), 

programs verified using that implementation will always run 

correctly on it. Moreover it enables programs using 

non-standard language features (such as escapes) to be 

verified without having to give abstract definitions of 

these features beforehand. The disadvantage is that there 

is no guarantee that programs verified on one implementation 

of the language will run correctly on another. 

4.5 implementation 

4.5.1 Summary 

The system is implemented in POP-2 and runs on a POP-10 

(with a KA -10 CPU). When the system is loaded together with 

all the inference and reduction rules it occupies about 47K 

36-bit words. The breakdown of this into the system 

components is as follows: 

POP-2 system 14 K 

Algebra system 12 K 

Verification condition generator 5 K 

Theorem prover 6 K 

Inference and reduction rules 10 K 

Total 47 K 

Normally when using the system we only compile those rules 

involving the functions occurring in the particular example 
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being studied. Note also that a list cell in POP-2 requires 

3 POP-10 words. The system spends most of its time in 

algebraic simplification and matching. 

In the remainder of this section we shall describe the 

implementation of the verification condition generator in 

more detail. The key to implementing the proof procedure 

described in Figure 2.3 by using the normal run time system 

is the use of recursive coroutines. One coroutine is the 

actual (or virtual) program being symbolically executed; 

the other is a recursive function called MONITOR which 

actually controls the symbolic execution. Control and 

information is passed between these two coroutines by a 

function SWAP of one argument and one result - a message - 
which uses a global saved state called STATE for resuming a 

coroutine. Since there are only the two coroutines neither 

this saved state nor, equivalently, the name of the 

coroutine need to be given as an argument to SWAP. 

4.5.2 MONITOR 

MONITOR is the function which actually simulates the 

functions Exact and Ex-virt of Figure 2.3. It is resumed 

whenever the actual (or virtual) program reaches a label or 

a conditional; the other cases are handled by the normal 

run-time system. A slightly simplified, descriptive 

definition of MONITOR is shown in Figure 4.1. The only 

component of the state which needs to be given to MONITOR is 

the path condition as the others are again all held 
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implicitly by the run-time system. At the start of an 

inclusion statement calling SWAP with TRUE or FALSE runs the 

virtual or actual program respectively. HYPMOOE is 
initially FALSE, and CURINCLSTAT is initially the inclusion 

statement being verified. Notice how closely MONITOR 

corresponds to the functions in Figure 2.1. The main 

difference is that it only calls itself recursively at 

conditionals. The advantage of writing the function 
recursively is that the stack of branch points is maintained 

automatically as was suggested by Stansfield (1972). 

The extension to handle inductive assertions is done 

within the same framework. Assertions are stored as 

expressions and are associated with the labels at which they 

occur. Some extra cases are added to MONITOR and OOLABEL as 

a label may now have an assertion. The procedure given in 

Section 3.3 is then followed in a straightforward fashion. 
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FUNCTION MONITOR MESS PATHCOND HYPMODE => STATES: 
VARS RETFLAG; 
LOOP: 

IF ATOM(MESS) THEN SWAP(MESS)->MESS 
ELSEIF HD(MESS)="COND" THEN 

DOCOND(HD(TL(MESS)),PATHCOND)->STATES; RETURN 
ELSEIF HD(MESS)="LABEL" THEN 

DOLABEL(HD(TL(MESS)),PATHCOND)->RETFLAG; 
IF RETFLAG="RETURN" THEN 

UNITSET(PATHCOND::TL(MESS))->STATES; RETURN 
ELSE SWAP(RETFLAG)->MESS CLOSE 

ELSE, ERROR ( ) CLOSE: 
GOTO LOOP 

END: 

FUNCTION D000ND TEST PATHCOND => STATES; 
VARS SAVSTATE; 

IF "PATHCOND implies TEST" THEN 
MONITOR(1,PATHCOND,HYPMODE)->STATES; RETURN 

ELSEIF "PATHCOND implies NOT(TEST)" THEN 
MONITOR(O,PATHCOND,HYPMODE)->STATES: RETURN 

CLOSE; 
STATE->SAVSTATE; 
MONITOR(1, TEST & PATHCOND, HYPMODE) -> S1; 
SAVSTATE->STATE: 
MONITOR(O, NOT(TEST) & PATHCOND, HYPMODE) -> S2; 
UNION(SI,S2) -> STATES: 

END; 

FUNCTION DOLABEL LABEL PATHCOND => RETFLAG; 
VARS I; 

IF ISEXIT(LABEL,CURINCLSTAT) THEN 
IF NOT(HYPMODE) THEN "RETURN"->RETFLAG; RETURN CLOSE; 
FALSE->HYPMODE; 
SAVINCLSTAT->CURINCLSTAT; 
IF "LABEL is a recursive endpoint" THEN 

FALSE->RETFLAG; RETURN 
ELSEIF ISEXIT(LABEL,CURINCLSTAT) THEN 

"RETURN"->RETFLAG; RETURN 
CLOSE 

CLOSE: 
IF ISSTART(LABEL) THEN -> I; 

COMMENT 'LABEL is the start of inclusion statement I*: 
CURINCLSTAT->SAVINCLSTAT: I->CURINCLSTAT; 
"check preconditions of CURINCLSTAT": 
TRUE->HYPMODE; 
TRUE->RETFLAG 

ELSE FALSE->RETFLAG CLOSE 
END 

Figure 4.1 - MONITOR 
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4.5.3 Source program transformations 

Compiling a specified program is actually done in two 

passes. In the first pass variables are declared and a 

record is made of all the inclusion statements. In the 

second pass new labels are inserted at the beginning and end 

of every function body, and the actual program alone is 
compiled by the POP-2 compiler after the transformations 

shown in Figure 4.2 are made using macros. These changes 

are necessary to enable the program to communicate with 

MONITOR. The conditional statement in parentheses is only 

inserted if the label is the start label of an inclusion 

statement. 

Before After 

L: <program> L: SWAP([%"LABEL",L,current-state-vector%]) 
-> RESULT: 

(IF RESULT THEN 
<corresponding-virtual-program> 

CLOSE:) 
<program> 

IF <expr> IF SWAP([%"COND",<expr>%]) 
THEN THEN ... 

L: LOOPIF <expr> L: IF <expr> THEN 
THEN .. 

CLOSE GOTO L; CLOSE 

Figure 4.2 - Program transformations 
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4.6 Discussion 

The verification condition generator, at least when 

restricted to proofs by inductive assertions, is very 

similiar to Deutsch's and contrasts with those of Igarashi, 

London and Luckham, and the use of LCF. The difference is 
that our system uses the operational semantics of the 

language rather than an axiomatic definition. Using 

continuation induction enables this approach to be applied 

to a wider range of programs than it was previously. 

Moreover, using the acc, chng and xchng functions on arrays 

and assignments to array variables avoids a proliferation of 

cases as had been previously observed. 

Also , using forward evaluation to construct 

verification conditions allows the verification conditions 

to be simplified before they reach the theorem prover. 

While our system does not do as much simplification as 

Deutsch's - in particular it does not treat equality tests 

as assignments - it does simplify all expressions as they 

are constructed, thereby saving work later, and sometimes 

cutting off impossible computation paths. 

Practically, the use of an actual language system has 

had both advantages and disadvantages: it saves some work 

of course, but it has occasionally been awkward conforming 

to POP-2 syntax and keeping variables distinct. 
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The verification systems most similiar to ours are (1) 

the one being developed by Good, London and Bledsoe (1974) 

and (ii) the one being developed at Stanford (von Henke and 

Luckham 1974, Suzuki 1974). Both these systems support the 

use of abstraction in writing specifications and have the 

ability to easily add new knowledge about the abstract, 

functions being used. The main differences from our system 

is that they both use an axiomatic definition of their 

programming language (PASCAL) for generating verification 
conditions and only use the inductive assertion method. The 

simplifier and theorem prover of the Stanford system is 
completely automatic, whereas our system and Good's rely on 

interactive theorem proving. 

There is also a difference in the way the systems are 

used. In each system unsuccessful proofs are used to 

indicate which properties of the new (abstract) functions 
are required. However, whereas we isolate certain basic 

properties as definitions and (attempt to) prove the other 

properties from them, the Stanford group ensure that all 
their properties are consistent by observing that they have 

a model. It is not clear how Good et al. ensure that their 
properties are consistent. 
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Chapter 5. ALGEBRAIC MANIPULATION AND INFERENCE 

In this chapter we shall describe the way we represent 

and manipulate symbolic expressions, how the automatic 

theorem prover works, what interactive commands are 

provided, and how they are used. 

5.1 Algebraic man_ioulation 

At the heart of the theorem prover and the verification 

condition generator lies a general purpose algebra system, 

or more accurately, a symbolic manipulation system. This 

system is, in many ways, similar to those used by King and 

Deutsch, however, in other ways, it is rather more general. 

The system is used to construct and manipulate symbolic 

expressions in the domain of integers and also in other 

domains e.g. that of lists. General routines for applying 

properties of operators are used to put expressions into a 

canonical form whenever possible. It is easy to add new 

functions together with brief descriptions of their 

properties which can then be used to simplify expressions 

involving the new functions. The system also contains 

routines for simplifying relational expressions and 

conjunctions of relational expressions, for applying 

substitutions, and for matching one expression against 

another. Each of these aspects is discussed in turn. 
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We start by giving some definitions. Two expressions, 

el and e2, are said to be identical, written el==e2, if they 

are the same string of symbols or, if presented in abstract 

syntax, they have exactly the same form. That is they are 

syntactically the same. They are said to be eg valent (or 

equal), written el=e2, if for any assignment of values (in 
the domain) to their (free) variables they have the same 

value in the domain. That is they are semantically the 

same. Thus a+b and b+a are equivalent but not identical. 
An L- anonical form for a class of expressions C is a 

computable mapping f:C->C such that: 

1) for all a in C, f(e)=e, and 

2) for all el,e2 in C such that el=e2, f (e1)==f (e2). 
Often the function f is implicit, and we simply talk about 

canonical forms: an expression e is said to be in canonical 

form if f(e)==e. A normal form is a weaker concept 

applicable to algebraic expressions which maps all 
expressions equivalent to zero into zero, though the 

distinction between normal and canonical forms is often 

ignored. Simplification is a still weaker operation which 

transforms an expression into an equivalent (simpler) 

expression which may or not be in normal form. 

Canonical forms are important in both algebraic 

manipulation and theorem proving, since if a canonical form 

exists, and all expressions are put into it, then two 

expressions are equivalent if and only if they are 

identical. Being able to detect equivalence immediately in 

this way is a big help in both further simplification and 
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deduction. Normal f arms are useful because expressions 

which are equivalent to zero are always reduced to zero, 

thereby simplifying subsequent processing. Moses (1971) 

reviews known results concerning the existence of normal 

(called zero-equivalence) and canonical forms for various 

classes of algebraic expressions. 

5.1.1 expressions and simplification 

Our system deals with a simple but general class of 

expressions. The range of values, or domain, of these 

expressions can vary, depending on the application; they 

could be truth-values, numbers, lists, arrays or functions. 

Members of the domain are called specific items (or 

constants). The expressions have the following abstract 

syntax: 

An expression is either a primitive expression 
or a function application 
or a au ntified express ian. 

A primitive expression is either a specific ;LIM 
or a variable. 

A function application has a funname which is a word 
and a funargs which is a expression-list. 

A auantif,ied express czn has a bdvar which is a variable 
and a quantifier which is FA, EX or EPS 
and a body which is an expression. 

Internally, specific items represent themselves, 

variables are represented by words, function applications 

are represented by lists whose head is the funname and whose 

tail is the funargs, and quantifiers are represented by a 

three element list containing the quantifier, bdvar and body 
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respectively. Associative functions are variadic, so both 

+(1,2) and +(1,2,3) could be expressions. Every function 

has two variants: a symbolic function which, for addition, 
returns +(a,b) as the value of a+b, and the original 
(specific) function, possibly modified to take a variable 
number of arguments, which returns 3 as the value of 1+2. 

All expressions are automatically simplified as they 

are constructed. This simplification aids later processing 

by increasing the number of equivalent expressions which are 

also identical; for the class of multivariate polynomials 

over the integers, the resulting simplified form is actually 
a canonical form. To simplify an expression the following 
steps are performed in order: 

1) Primitive and quantified expressions are left unchanged. 

2) Otherwise the expression is a function application. 
the function's zero is in the argument list it is returned 

as the result. 
3) If all the arguments are specific items, the original 
function is applied to them and the result returned as the 

simplified expression. 

4) If the function distributes over any other functions the 

appropriate transformation is applied, recursively 

simplifying the inner terms. The two functions considered 

in this category are multiplication (a*(b+c) ==> a*b+a*c), 

and disjunction ( (a&b) v c =_> (avb) & (avc) ). 

5) If the (possibly new) function is associative, all 
applications of this function as arguments are brought to 

the top level. For example, +(a,+(b,c)) simplifies to 
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+(a,b,c). Note that this cannot undo steps 1) to 4) as all 

the inner terms have already been simplified. 

6) Next, if the function is commutative, its arguments are 

sorted into lexicographic order (with numbers before words 

before lists, and words ordered as they were declared) 

ignoring constant factors of products when simplifying sums 

and exponents of powers when simplifying products, and 

combining arguments whenever possible. An example should 

make this clear: a*c+a"2+b+3*a +2+5*a reduces to 

2+8*a+a"2+b+a*c. 

7) If the function is associative and not commutative 

another pass is made through the expression combining terms 

whenever possible. 

8) Finally, any occurences of the identity ae removed, and 

any expressions of the form f(a) where f is associative are 

simplified to a. 

With the exception of only two functions, a function's 

symbolic variant merely constructs a new term which is then 

handed to the simplifier described above. The exceptions 

are subtraction, which immediately simplifies a-b to 

a+(-1)*b (unary minus does not exist at all), and 

exponentiation which performs the following simplifications: 

x^0==>1, 1^x==>1, x^1==>x, (x"y)'z==>x"(Y*z) and the 

expansion of sums raised to an integer power. 

With these additions, the canonical form produced for 

multivariate polynomials can be seen to be basically a sum 

of products. The uniqueness of the resulting form for this 
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class follows, since inner terms have already been 

simplified, redundant summands, factors and powers have been 

removed, like terms combined, and the terms of sums and 

products put into a canonical order. 

The following points about this canonical form are 

perhaps worth noting. First, unlike Deutsch's form, sums 

and products do not always contain a constant term. While 

this makes the simplification algorithm slightly more 

complex, we found it considerably easier to write the 

matcher using this representation. Secondly, when adding 

two sums together, for instance, the order of summands in 
the arguments is ignored; this results in an 0(mn) rather 

than an 0(m +n) algorithm, but since the terms which occur in 

practice are usually very short, this does not slow down the 

simplification algorithm appreciably. Moreover, after 
applying substitutions to expressions, it allows the same 

simplification routine to be used in ensuring that the 

result is still in the "simplified" form. 

Finally, note that there was nothing special about 

addition and multiplication in the above description - they 

were merely operations with particular properties and 

identities - and the simplification process works on other 

functions as well, for example, conjunction and disjunction. 

While the user of the algebra system can always declare 

new functions together with their properties, certain 

functions are declared for him initially. The initialized 

functions are +, *, - (subtraction), (exponentiation), div 
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(integer division) and rem (remainder). The functions div 

and rem are treated as any other user-declared functions 

would be; in their case the simplifier knows nothing about 

them. However, many of their properties are given as rules 

which are used by the theorem prover and are described in 
the discussion of reduction rules. For use in programs 

operating on lists, the functions front, back, dons, hd, tl, 

dest, concat and fringe are also declared initially. 

An array is,initially represented by a word (its name). 

The array's bounds are kept, in its "property list" (see 

below). Accessing an array is done using the function acc 

(acc(a,i)=a[i]). Updating the array is done using the 

function chng; after the assignment X->A[I] to the array a 

its value is chng(x,i,a). This basic method of representing 

operations on arrays was originally proposed by McCarthy, 

and was used by Waldinger and Levitt. The concept of a 

sequence has proved important when describing programs which 

operate on arrays. A sequence is just a subarray of an 

array; the function seqof is used to construct them: 

seqof(a,i,j) (= a<<i,j>>) is the sequence a[i], 
a[i+1],...,a[j-1], a[j]. 

It remains to describe how the information about each 

function or word is stored. Conceptually, associated with 

each word ever seen by the system, there is a property list. 
For instance "*" might have the property list 

[ISFUNCTION TRUE ISASSOC TRUE ISCOMM TRUE DISTRIBOVER "+" 

IDENTITY 1 SYMBOLICVERSION "**" ...], 
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where the value of property OISTRIBOVER indicates that * 

distributes over +, and ** is the symbolic, 

term-constructing variant of *. For efficiency, this 

property list is implemented as a record having a finite 
number of components - all immediately accessible - and is 
kept in the word's MEANING. The first component of this 
record contains a bit-string representing the values of 

various boolean-valued properties. Thus new predicates can 

easily be declared and associated with words in the system. 

5.1.2 Logical -expression 

A logical expression. is simply an expression whose 

values are truth-values. Two important subclasses of the 

logical expressions are the literals which do not contain 

any logical connectives other than NOT, and the relational 
expressions which are constructed from the operators 

>, >=, <, and =<. We shall use the word "term" when 

referring to an expression which is not a logical 
expression. 

All logical expressions (with two exceptions noted 

later) are simplified as they are constructed. For 

relational expressions in integer arithmetic the simplified 

form of equivalent expressions is unique, and is hence a 

canonical form. The simplification process for relational 

expressions is as follows: 

1) If both arguments of the relation are numbers, the truth 

value is simply evaluated. 
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2) Otherwise the transformations a>b => a>=b+1, and a<b => 

a<=b-1 are applied (we are assuming integer arithmetic 

throughout). 

3) The expression is then put into the form e op n, where op 

is one of >_, <_, = or /_, n is a number, and e is neither a 

number nor a sum containing a numerical summand. At this 

stage we would have reduced a>b, through a>=b-1 into a-b>=1, 

and b<a through b<=a-1 into b-a<=-1; to put these two 

equivalent expressions into the same form, we do the 

following: 

4) Let revop denote the operator which satisfies e revop n 

if and only if n op e. Then, if e is a product whose 

numerical factor is less than zero, return -e revop -n. 

Otherwise, if e is a sum, and the first summand of -e 

precedes the first summand of e (in the ordering described 

for commutative functions), then again return -e revop -n. 

Otherwise leave the expression unchanged. Since a precedes 

b in this ordering, both the above expressions are reduced 

to a-b>=1. 

While this procedure sounds complex, it is important for 

simplifying conjunctions that relational expressions should 

be in canonical form. The relational operators can also 

take subarrays as arguments: the expression a <<i,k >> >= p 

is equivalent to (FA j)(i=<j=<k=>a[k]>=p). In this case the 

only simplification done is to possibly reverse the order of 

the arguments. Reasoning about such expressions is then 

done using inference rules. For computing in domains other 

than integer arithmetic, some other predicates are required. 
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For lists, atom, null and memb are provided initially. 

We come now to the logical operators. Conjunctions and 

disjunctions (and literals which are not relational 

expressions) are simplified by the same routines as 

arithmetic expressions. They are both associative, 

commutative functions having a zero and an identity. We 

keep expressions in conjunctive normal form, so we define v 

to distribute over &. The main simplifications however 

result from the merging done when forming the conjunction of 

two expressions. (The ordering used ensures that relational 

expressions with the same left-hand side are brought 

together.) Clearly P & NOT P =_> false, and P & P =_> P, but 

for relational expressions the transformations shown in 

Figure 5.1 take place as well. 

e=m & e=n =_> false if m/=n, 
e=m & e/=m =_> false 
e=m & e>=n =_> false if m<n 
e=m & e=<n =_> false if m>n 
e=m & e op n ==> e=m otherwise 

e/=m & e>=n ==> e>=n if m<n 
e/=m & e=<n ==> e=<n if m>n 
e/=m & e>=m ==> a>=m+1 (for integers) 
e/=m & e=<m ==> e=<m-1 (for integers) 
e>=m & e>=n ==> e>=m if m>=n 
e>=m & e=<m ==> e=m 
e>=m & e=<n ==> false if m<n 

e=<m & e=<n ==> e=<m if m=<n 

Figure 5.1 - Conjunction transformations 

These simple rules, used with the general purpose simplifier 

described earlier, enable conjunctions of relational 

expressions to be put into their simplest form, e.g. a>=b & 
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a>b & a-b/=1 =_> a-b>=2. King and Deutsch, with their more 

specialised systems, had to write separate routines to 

achieve this. Two remaining rules are that a & (a v b) ==> 

a, and a v (a & b) ==> a. 

The operators =>> (implication) and <_> (equivalence) 

are also available, but no simplification is done when they 

are applied. We will describe later how the theorem prover 

deals with them. The operation NOT performs the following 
simplifications when applied: NOT true ==> false, NOT false 
==> true, NOT NOT p ==> p, NOT (a & b) ==> (NOT a) v (NOT 

b), NOT(a v b) __> (NOT a) & (NOT b), NOT(a =>> b) ==> a & 

(NOT b), / NOT (a <=> b) ==> (a v b) & (NOT a v NOT b),. 

NOT (FA x)a ==> (EX x)NOT a, and NOT (EX x)a 

(FA x)NOT a. It also simplifies relational expressions when 

applied to them, e.g. NOT (a <b) ==> a=<b ==> a-b=<0. 

The quantifiers which can be used are FA, EX, ANY and 

ANYARR. ANY and ANYARR are variants of the epsilon operator 

EPS: ANYARR is used for arrays, and ANY for other kinds of 

objects as described previously. Again these expressions 

are not simplified as they are constructed, but only by the 

theorem prover. 
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5.2 Pattern matching 

Clearly, any rule-driven system requires some sort of 

pattern matcher to control the application of rules, and 

ours is no exception. However, a unification algorithm has 

not been necessary, and we have only used a one-way pattern 

matcher. The simple syntactic matcher we wrote initially 
soon proved inadequate, and we then implemented a rather 
sophisticated matcher which took into account the 

associative, commutative and identity properties of the 

functions with which we were dealing. Although slower, this 
new matcher has proved invaluable in the subsequent 

development of our theorem prover. The matcher is similar 
to the QA4 matcher which operates on tuples and bags, but is 
more general in that all variables are automatically 

fragment variables" and that it knows about identities. 

The matcher operates on the same class of expressions 

as descibed above, with the exception that there are no 

quantifiers. It assumes that all expressions are stored in 

canonical form. An expression containing variables which 

may be instantiated is called a pattern. A jubstitution is 
a finite function mapping variables into expressions; each 

substitution has a unique extension which maps patterns into 

expressions. A Qne-way pattern matcher is a function 

I: expressions x patterns -> substitution-sets 

which satisfies 
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for all s in I(e,p), s(p)=e. 

The equality in this condition is with respect to any laws 

the functions of this class of expressions may satisfy. The 

matcher is -complete if it produces all such substitutions 
(ignoring the substitutions' effect on variables not 

contained in p). 

To explain how the algorithm works, suppose we are 

trying to match f(s1,s2,...,sm) against f(t1,t2,,,.,tn) 

where the latter term is the pattern containing the 

variables to be instantiated and where a is the identity of 

f (if it exists). If f is not associative, we match s1 

against t1, and extend the resulting substitution (if any) 

by recursively matching f(s2,.,.,sm) against f(t2,...tn). 

However, if f is associative, we could match any of s1, 

f(sl,s2), ..., f(sl,.,.,sm) against ti, and extend the 

resulting substitution by matching f (s2, ,,,sm ), f (s3, ,,,sm ), 

,.,, f() respectively against f(t2,,,.tn). f() is treated as 

the identity a of f if one exists; f(s) is considered to be 

equal to s. If f is commutative as well, we could match any 

of s1,s2,. , ,sm. f(sl,s2), f(sl,s3), ..., f (sl,...sm) 
against ti, and the remainder of the term against 

f(t2,...tn). This case essentially involves finding all the 

subbags of a bag. In all these cases matching s1, say, 

against t1 may return more than one substitution, and each 

of these will be used in turn when matching the remainder of 

the terms. Notice that the operations performed in the 

three cases are the same, only they are applied 'to the 
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members of the successively larger sets {s1}, {e, s1, 

f(sl,s2), ..., f(s1,...sm)}, and {e, s1, s2, ..., sm, 

f(s1,s2), f(s1, s3), ..., f(s1,...,sm)}. (Actually these are 

sets of pairs; the first element of each pair is shown, and 

the second is the list of remaining arguments of the term.) 

We consider this method, treating the above three cases 

uniformly but generating a different set in each case, the 

most interesting aspect of the pattern matcher. 

The algorithm is clearly complete with respect to the 

associative, commutative and identity laws. For if 

f(s1,s2,...sm) does match f(t1,t2,...,tn) then t1 will 

eventually be compared with the subterm it matches, as there 

is no cancellation, and the remainder of the match will be 

found similjarly. 

The actual matcher implements the above algorithm in a 

fairly straight-forward way. It generates the set of all 

the substitutions at once, rather than producing them one at 

a time. Since the set is usually quite small in our 

application, and since backtracking is quite expensive in 

POP-2, this method seems acceptably efficient. The POP-2 

listing of the matcher is shown in Appendix 5. It uses a 

library program [LIB ASSOC] to represent substitutions by 

association sets, so that ASSOC(x,sub) = sub(x). The actual 

matcher also allows patterns to contain function variables 

which can be matched only against function constants. 
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Figure 5.2 shows some examples of the matcher's 

behaviour: a and b are constants, x, y and z are variables. 

Notice that 0 matches x*y in two ways since I is the 

multiplicative identity, but 0 will not match 2*x as the 

matcher knows nothing about the multiplicative properties of 

0. More generally, the matcher does not know anything about 

factorization, so even 2*a*b+4*a*c will not match 2*x*y. The 

fact that the matcher does not know about cancellation 

occasionally prevents potential matches such as 

f(a-1,b+1)+a+b against f(x,y)+x+y from being found. 

Expression Pattern Matches 

a x { (x->a) } 

a x+y { (x->a, y->O), 
(x->0, y->a) } 

0 x*y { (x->0, y->1), 
(x->1, y->0) } 

0 

aft x+y { (x->a*b, y->0) 
(x->0, y->a*b) } 

a+b x *y { I 

a+b x+y*z { (x->a, y->b, z->1), 
(x->a, y->1, z->b), 
(x->b, y->a, z->1), 
(x->b, y->1, z->a), 
(x->a+b, y->0, z->1 ), 
(x->a+b, y->l, z->0) } 

Figure 5.2 - Output of matcher 
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5.3 Automatic theorem proving 

The automatic theorem prover is not intended to be a 

powerful, general-purpose theorem prover. Rather, it is 
designed to prove the simpler theorems which arise as 

verification conditions, leaving the more difficult ones to 

be proved interactively. Thus, it can prove all theorems 

depending only on propositional logic, and many which depend 

on properties of relational expressions, transitivity, 

reduction rules, and short sequences of inference rules. 
Proofs which use case-analysis, instantiations, longer 

sequences of inferences and so on must be done 

interactively. 

The theorem prover can best be seen as having two 

phases. In the first (deterministic) phase a set of rewrite 

rules converts the theorem into a set of formulae of the 

form h1 & h2 & h3 & ... & hn => c where all the hi and c are 

literals (or quantified expressions). During this process 

any equalities in the hypotheses are eliminated by 

substituting one term for another throughout the formula. 

In the second phase, some more heuristic methods are applied 

to each of these formulae. In both phases the simplication 

routines described in Section 5.1 are used continually to 

simplify new conjunctions, implicit conjunctions and all 

other new expressions. 
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5.3.1 Rewriting phase 

During this phase the theorem to be proved is 
simplified by successively applying rewrite rules until no 

more are applicable. To describe these rules we use a 

sequent calculus, writing hl,...,hn -> c to stand for the 

formula h1&...&hn => c. Now, letting A be a set of 
expressions (which represents their conjunction), and p, q 

and r be expressions, we have the following rules: 

1a) A->p and A->q 1b) p,q,A->r 

A->p&q p&q,A->r 

2a) -1 p,A,->q 2b) p,A->r and q,A->r 

A->pvq pvq,A->r 

3a ) p ,A->q 3b) -, p,A->r and q,A->r ------------------- 
A->p=>q p=>q,A->r 

4a) p,A->q and q,A->p 4b) p,q,A->r and p, q,A->r ---------------- ---------------------- 
A -> p<=>q p<=>q, A -> r 

5a) A->p(xO) 5b ) p(x0)->r ------------ ------------ 
A->(FA x)p(x) (EX x)p(x)->r 

6) q(xO),A -> p(xO) ---------- ---- 
A->p((EPS x)q(x)) 

7) p(t1,...,tn),A -> p(sl,...,sn) ---- - ---- - --------- - --------- 
-7p(s1,...,sn),A -> -lp(t1,...,tn) 

Notes 

1) These rules should be read: to prove the formula below 

the line it suffices to prove the formula(e) above the line. 

2) The system differs from more common sequent calculi in 

that the consequent is an expression rather than a 
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disjunction of expressions. 

3) In applying rule 2a) we heuristically choose the "less 

interesting" of p and q to negate on the grounds that there 

is more likely to be an inference rule applicable to q than 

one applicable to p. An expression is assumed to be 

"interesting" if its top-level function is one of the 

newly-declared functions EQSEQ, ISIN, DRDERED, etc. If both 

expressions are interesting or neither are, then p or q is 

chosen arbitrarily. 

4) The variable xO in rules 5a), 5b) and 6) must not occur 

in the formula below the line. 

5) The use of the two rules 

8a) A -> p(t) 8b) p(t) -> r 

A->(EX x)p(x) (FA x)p(x)->r 

will be described later. Briefly, an attempt is made in 

stage two to instantiate the variable x of rule 8a), and the 

user can also apply the two rules directly. 
6) The following additional rule is also applied whenever 

possible during this stage. It removes equalities by 

replacing variables equal to a term by that term. 

9) A(t) -> r(t) 
x=t,A(x) -> r(x) 

The system has a limited equation solver which enables this 

rule to be applied with expressions such as 2*a+b+3*c=4. The 

automatic application of this rule can be suppressed 

interactively if desired. A more general substitution rule 
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can also be applied interactively and will be described 

later. 
7) Formulae whose consequents are inclusions involving 

epsilon expressions are simplified using the rules described 

in Section 2.4.1. 

5.3.2 Heuristic phase 

The original theorem has now been reduced to a set of 
formulae of the form hl & ... & hn => c where each hi and c 

is either a literal or a quantified expression. Each of 

these formulae is now proved separately. To prove such a 

formula, each of the following methods is applied in turn. 

5.3.2.1 Simplification: 

This routine test whether h 1&...&hn implies c as a 

tautology or by simple properties of the relational 
operators. It uses the routine described earlier for taking 

conjunctions of expressions. If the hypothesis hi&...fhn is 
false (i.e. simplifies to false) then the formula is valid; 
if h l&...&hn & c is false the formula is invalid: and if 
hi&...&hn&c equals hi&...&hn or hi&...&hn & NOT c is false, 
the formula is again valid. These tests include the cases 

that c or NOT c is one of the hi. They suffice td show, for 
example, that x>=1 => x>=O, and that x=<10 => x/=20. 
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5.3.2.2 seduction: 

If c is an equality, tl=t2, both terms t1 and t2 are 

transformed separately using any applicable reduction rules. 

If the results are identical the formula is proved; 

otherwise we proceed to the next step. The transformation 

is done by attempting to apply each reduction rule in turn 

at the top level. If one is applicable the procedure is 
repeated with the new term. If, and only if, none of the 

rules are applicable, each of the term's subterms is 
transformed using the same procedure recursively. If one of 

the subterms has been changed, the procedure starts again, 

this time applying rules at the top level only. No record 

is kept (at present) of which reduction rules have been 

applied. The "simplification" routine just described is 
used to check that the preconditions of the rule being 

applied are satisfied. As an example, using the rules of 

Section 4.3.1, (a*b) div b is transformed via a div I to a. 

To prevent impossible applications being attempted, 

reduction rules are indexed by the top-level function of 

their left-hand side as they are constructed, and only the 

rules associated with the top-level function of the current 

term are considered. 

5.3.2.3 Instantiation: 

If c is of the form (EX x1,x2,...)p(x1,x2,...) we 

attempt to find instantiations tl,t2,... for the variables 

xl,x2,... so that p(t1,t2,...) follows from the hypotheses, 

that is we attempt to apply rule 6a) above. p(xl,x2,...) is 
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typically a conjunction, and we start by forming a list of 

its "interesting" conjuncts (as defined above); if this is 

empty we use the list of all its conjunctions. We then form 

the set of all substitutions produced by matching each 

"interesting" term against each each hi, and for each 

substitution s we recursively attempt to prove that 
h1&...&hn implies s(p(xl,X2,...)) . If we have to match 

relational expressions they are first put into the form 

t op 0 since, for example, a -3>=O matches x>=0 but a>=3 does 

not match x>=0. Transitivity is in the system as an 

inference rule which requires such an instantiation to be 

made for the intermediate term. 

5.3.2.4 j,fergnce rules: 

This is perhaps the most general method but is very 

simple to describe; it is applied if all the previous 

methods have failed. An inference rule is applied to a 

formula by matching its conclusion against the conclusion, 

c, of the formula to be proved. For each resulting 
substitution, s, (provided c does not occur in s(hr)) the 

theorem prover is called recursively to show that hl&...&hn 

implies s(hr) where hr is the hypothesis of the rule. A 

depth counter is incremented each time this is done to 

prevent this search from going too deep. The heuristic that 

the same rule should never be used twice on the same path is 

also employed. This procedure is repeated for each 

potentially applicable ink rence rule - the filtering is done 

by applying the same indexing mechanism as before to the 
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conclusions of the rules - until one succeeds. Note that 

each substitution resulting from the match is considered in 

these last two methods whereas, when applying the reduction 

rules, only one arbitrary substitution was used. 

Thus it can be seen that the theorem prover is 

essentially traversing an AND-OR search tree in a 

depth-first manner. The AND-branches arise from the natural 

deduction system of the first stage, and the OR-branches 

arise from the choice of inference rules and from the choice 

of substitutions when instantiating existentially quantified 

variables and when applying inference rules. Each node on 

this search tree is labelled by a list. The first element 

of this list is an arbitrary constant: the successors of an 

AND-node, [i ... J], are labelled [i ... j 1), [i ... j 21, 

... respectively; the successors of an OR-node, [i ... J1, 

are labelled [i ... j -1), [1 ..0 j -2], ... respectively. 

This labelling is used when tracing the theorem prover and 

by the interactive commands. 

5.3.3 &n example 

As an example of the theorem prover's behaviour, we 

consider the proof of the formula 

a>b+1 & b>c+3 => a>c 

which is immediately "simplified" by the algebra system to 

a-b>=2 & b-c>=4 => a-c>=1 . 

The proof is by transitivity which is in the system as the 

inference rule 
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f(x,z) <- istrans(f) & (EX y)(f(x,y) & f(y,z)) 
where f, x, y and z are all variables. The first phase of 

the theorem prover leaves the formula unchanged, as do the 

simplification, reduction and instantiation routines. After 

attempting to apply other inference rules the transitivity 
rule is eventually applied. Relational expressions are put 

into the form t op 0 when they are being matched, so f(x,z) 
is matched against a--c-1>=0, returning the instantiation 
(x->a-c-1, z->O, f-> >= ). Applying this to the hypotheses 

of the rule yields the goal 

a-b>=2 & b-c>=4 => istrans(>=) & (EX y)(a-c-1>=y & y>=O). 

Now istrans is true by definition, and instantiating y 

yields the two matches (y->a-b-2) and (y->b-c-4). The first 
of these yields the goal a-c-1>=a -b-2 which simplifies to 

b-c>= -1 which then follows by simplification from the 

hypotheses. 

5.4 Interactive theorem proving 

If the automatic theorem prover fails to find a proof 

it can ask the user for help. The user can then investigate 

why the theorem prover failed and try to lead it to a proof 

(as a proof-checker), or else abort the proof, all using the 

commands described below. The user can also interrupt the 

theorem prover while it is running if he desires, see what 

it is doing, and either continue in interactive mode from 

there or let it resume running. To use the interactive 

facilities effectively it is necessary to have a general 
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idea of how the automatic theorem prover works and to have 

available a list of all the relevant rules known to the 

system. 

5.4.1 Interactive commands 

It is useful to divide the commands available into 

three categories: informative, control and advice. The 

informative commands are used to display the current theorem 

being worked on, the top-level theorem, or the hypotheses or 

conclusions of either of these. Since the whole power of 

the POP-2 language is available while typing interactive 

commands, any other aspects of the program's state can also 

be examined; this ability has proved very useful while 

developing the program. The control commands are used to 

move around the AND-OR search space of the problem, and to 

regulate the degree to which the theorem prover either runs 

freely or under the user's control. The advice commands are 

the most important in actually aiding the theorem prover to 

find a proof; they are used to fill gaps in its knowledge 

by adding hypotheses, axioms or lemmas, to narrow its search 

space by eliminating alternatives, and to choose values for 
variables to be instantiated. We now list the commands 

available to the user. Each command or sequence of 

commands, except for control commands and those marked with 

an asterisk, is terminated by the user typing GOON. 
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5.4.1.1 In-formative 

PRTHM: Prints the theorem currently being proved, 

possibly a subgoal of the top-level theorem. 

PPR(item); Prints the item in a readable format. The 

item is normally one of HYPS, GOAL, TOPHYP, TOPGOAL or 

CUNODE which refer respectively to the current 

hypotheses and goal, the top-level hypothesis and goal, 

and the label of the current node in the search tree. 
TRACE n: A trace of the proof process, of 

successively increasing detail, is printed on the 

current output device by setting n to 0, 1 or 2. 

5.4.1.2 Control 

ASSUME; The current theorem is assumed valid, and is 
saved on a global list, THMSPOST, to be proved later. 

ASSUMENS: The same as ASSUME but the current theorem 

is not saved for later. 
ASSUMEAND; The current theorem is assumed valid, as are 

FAIL; 

all its brothers at the AND-node immediately above the 

current node, and all these theorems are saved on 

THMSPOST to be proved later. 
The current theorem is assumed invalid, and 

the theorem prover returns to the previous node. 

FAILTO node; The theorem at node is assumed to be 

invalid, and the theorem prover returns to the previous 

node. The node must be higher up the search tree on 

the current path; it is written as a list, e.g. [10 2 

-4 1 -31. 
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FAILOR; The current theorem is assumed to be invalid 

STEP: 

GO; 

as are all its brothers at the OR-node immediately 

above the current node, and the theorem prover returns 

to that node. 

The theorem prover is forced into a 

completely interactive mode; after each step it prints 

its current position and goal and waits for a new 

command from the user. 

Cancels the STEP command, allowing the 

theorem prover to run automatically again. 

RESTART; A safety device: it allows the user to 

start again with the top-level theorem. 

5.4.1.3 Advice 

LEMMA(hypotheses,conclusion,name); 

Try to prove the conclusion from the hypotheses. If 

successful, add it as a new inference rule with the 

given name. For example, 

LEMMA([% X REM 2 /= 0 %], (X-1)REM 2 = 0, "REM1"); 

RLEMMA(hypotheses,leftside,rightside); 

Try to prove that the hypotheses imply the other two 

expressions are equal. If successful, add the 

corresponding new reduction rule. 

AXIOM rule; Add the new rule to the present ones without 

trying to prove it, but save it on THMSPOST to be 

proved later. 
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DEDUCE expression; 

Try to prove the logical expression from the current 

hypotheses (HYPS) and then add it to them. 

ADD expression; The logical expression is temporarily added 

to the current hypotheses and the theorem that the 

current hypotheses imply the expression is saved. 

ADDNS expression; Like ADD but the theorem that the 

current hypotheses imply the expression is not saved. 

DEL expression; The expression is temporarily removed from 

the current hypotheses. 

USE rulename; The inference with the given name is applied 

at the next opportunity, for example, USE REMI; 

CASES expression-list; (*) 

Each of the cases is successively assumed and 

temporarily added to the current hypotheses. The cases 

must be exhaustive with respect to the hypotheses. For 

example, CASES [% X=<N-1, X=N %]; 

INTERM term; (*) Tries to prove both f(a,term) and 

f(term,b) where the current goal is f (a ,b) and f is a 

transitive operator. 

LETEX(var,term); Assigns the term to the 

existentially quantified variable var of the goal, 

thereby implementing rule Be). 

LETFA(var,term); Assuming one of the hypotheses 

contains a universally quantified variable var, 

instantiate var to term in it, thereby implementing 

rule 8b). If there is more than one such hypothesis, 

typing LETFA(var,n,term) instantiates the nth 
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hypothesis. 

LET var1 BE terml, ... yarn BE termn IN rulename; 

Use the named inference rule with the variables 

instantiated as shown (cf. POP-2 partial application). 
This is sometimes necessary to overcome weaknesses in 

the matcher. 

REWRITE: (*) Applies the rewriting rules 1) to 9) to 

remove any logical connectives which have appeared in 

the hypotheses and to substitute for any equalities 

which have appeared. 

CONTRAPOS n; (*) Prove the contrapositive form of the 

current theorem, negating the nth hypothesis. For 

example, if the current theorem is a[i]>a[i+1] & i<j => 

NOT ORDERED(a,i,j), after executing CONTRAPOS 1; the 

theorem would become i<j & OROEREO (a ,i ,,j) => 

a[i]<a[i+1], which is easier to prove from the 

definition of OROERED given in Appendix 2. CONTRAPOS 0 

invokes proof by contradiction by converting the 

theorem A=>p to NOT p,A=>false. 

OOSUBST(exprl,expr2,expr3); Substitutes expr1 for all 
occurrences of expr2 in expr3; expr3 would normally be 

GOAL or HYPS, and expr1 must be provably equal to 

expr2. For example, DOSUBST(A+B, C2, GOAL) -> GOAL; 

SIMPGOAL; This transforms the goal by applying 

reduction rules. At one stage this was done 

automatically and sometimes prevented proofs being 

found, so it is now done only when requested. 
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SIMPHYPS; Similiarly, this applies the reduction rules 

to all the expressions in the hypotheses. 

SIMPHYP expression; Applies the reduction rules to the 

particular expression in the hypotheses. 

INDUCT var; Prove the current theorem by mathematical 

induction on the variable var, e.g. INDUCT M; 

INDUC2 var; Prove the current theorem by 

course-of-values induction on the variable var. These 

two rules are required for proving derived rules rather 

than programs where the induction has been done by the 

proof method. 

INDLEMMA(hypotheses,conclusion,name,var); 

Try to prove that the hypotheses imply the conclusion 

by mathematical induction on var. Then add it as a new 

inference rule with the given name. 

SWEAT n; Temporarily increases the depth to which the 

proof can go by n. 

5.4.2 Another example 

As a typical example of these rules, we reproduce one 

proof done while verifying the sorting program of Section 

6.3. Commands typed by the user appear in lower case, and 

explanatory comments are indented. The hypothesis of a 

theorem is represented by the list of its conjuncts. Proofs 

of particular goals and subgoals are shown as tree 

structures, with the rule name or routine at the root 

followed by the instantiation used, and a description of how 

the remaining subgoals were proved: SIMP, CONJ and INST 
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refer to simplification, conjunction and instantiation 

respectively. 

FAILED [ 5 1 5] DRDERED(XCHNG(A,I,K)[ 1,I]) 

>: prthm; 

[(I >= 1) (A[I,-1+J]) >= A[K]) (A[I,-1+J]) >= A[-1+I]) 
(I-J =< -3) (I-K =< 0) (J-K >= 1 ) 
PERM(A[ 1,-1+J],AO[ 1,-1+J]) DRDERED(A[ 1,-1+I])] 

aa> 
ORDERED([XCHNG(A,I,K)[ 1,I]): 

cases [% "i"=1, "i">1 %]: 

This sort of case analysis is usually required 
when using our recursive definitions to prove an 
array segment is ordered. 

CASE PROVED [ORD1 [ (XJ. 1) (XI. 1) (XA.XCHNG(A,1,K))] SIMP] 
FAILED [ 5 1 5 2] ORDERED(XCHNG(A,I,K)[ 1,I]) 

The system has proved the first case (1=1) using 
the rule DRD1 (see Appendix 2) with the 
instantiation shown. The second case now remains 
to be proved. 

>: use ord12; 
: goon 

ORD12 is a counting-down property of ORDERED. It 
is I applied here since we are given 
DRDERED(A[1,I-1]) as a hypothesis. 

FAILED [ 5 1 5 2 -1 2] 
(XCHNG(A,I,K)[I]-XCHNG(A,I,K)[-1+I] >= 0) 

>: simpgoal; 

(A[K]-A[-1+I] >= 0): 

use xf6; 
goon 

XF6 is a rule which proves that an array element 
has a property if it is in an array segment all of 
whose members have that property. 

FAILED [ 5 1 5 2 -1 2 -1] EX([XI XK],((A[XI,XK] >= A[-1+I]) 
& (XI-K -< 0) & (XK=K >= 0)), 3) 

>: sweat 1; 
goon 
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Because the default depth is normally 1, and using 
the instantiation routine increments the depth 
counter, the instantiation is not automatically 
attempted. However, after temporarily increasing 
the depth bound, the correct instantiation is 
found. 

FAILED [ 5 1 5 2 -1 3] ORDERED(XCHNG(A,I,K)[ 1,-1+I]) 

This is the third hypothesis of the rule ORD12. 

>: simpgoal; 

ORDEREO(A[ 1,-1+I]): 

goon 

CASE PROVED [ORD12 [ (XJ.I) (XI. 1) (XA.XCHNG(A,I,K))] [CONJ 
SIMP [XF6 [ (XK.-1+J) (XI.I)] [INST [ (XK.-1+J) (XI.I) ] 

[CONJ SIMP SIMP SIMP]]] SIMP]] 
CASES PROVED [(I = 1) (I >= 2)] 
: goon 

[ 5 1 5] PROVED 

5.5 Discussion 

The top-down tree searching method of proof described 

above is basically the same as that used by Waldinger and 

Levitt, Bledsoe and Bruell, and Milner. It contrasts with 

the approach taken by King, Deutsch, and resolution systems 

of negating the conclusion and trying to derive a 

contradiction. The direct approach seems preferable in that 

it is more natural, easier for the user to understand, and 

hence easier for him to give appropriate advice. A possible 

disadvantage may arise when the user knows how the proof 

should go, wants to do it in a bottom-up fashion, but finds 

he is being driven by the theorem prover rather than 

vice-versa. In our system such bottom-up proofs can be done 

by making deductions from the hypotheses, and by proving 
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lemmas to be treated as reduction rules and then calling 

SIMPHYPS 

In several systems, including ours, Waldinger and 

Levitt's, Suzuki's and the new LCF (Milner 1975), it is 

possible to introduce derived inference rules. Good, London 

and Bledsoe can define reduction rules to describe their 
newly-introduced functions. Weir and Burstall (1972) also 

used derived rules (macro-inferences) in a resolution-based 

proof checker for program correctness. A restriction of our 

system is the limited language in which rules can be 

written; a more powerful language (such as QA4) would be 

useful. But whereas our rules are simple logical formulae 

which can be proved, the QA4 rules are themselves programs 

and hence harder to verify. Only in our system and Milner's 
are derived rules proved from definitions, though Moore's 

(1974) LISP theorem prover uses theorems which have been 

previously proved as lemmas. 

Much of the "knowledge" our system has is embodied in 

its rules. While this is a flexible system it can be rather 

inefficient. The main problem is that a large number of 

obviously useless rules are optimistically applied by the 

theorem prover. An indexing scheme which considered the 

expressions in the hypotheses as well as the conclusion 

would greatly reduce this branching ratio and improve the 

speed, if not the power, of the theorem prover. There is a 

clear trade-off here between (i) storing all rules 

concerning the functions involved, which enables some 
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programs to be proved automatically but slowly, (ii) storing 

only some of them (the relevant ones), and (iii) not storing 

any rules, which means more interaction (to provide the 

rules) but faster execution. Roughly speaking, we take the 

first alternative, Suzuki the second, and Good, London and 

Bledsoe the third. Our reasoning in taking this alternative 

is that the system itself should be able to choose the right 

property (i.e. rule) to use, since otherwise the user would 

either have to delete rules given previously or to give the 

same rule more than once in the course of proving a single 

program. 
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Chapter 6. EXAMPLES OF PROGRAM BEHAVIOUR 

In this chapter we shall study the verifier's 

performance on several typical programs. The progams 

considered are the 91-function, a program to test whether 

one array is a subarray of another, and an insertion sort 

program taken from King's thesis. In each case, we start by 

showing the specified program which is input to the 

verifier, followed by the output of the verifier. The 

user's commands are shown in lower case to distinguish them 

from the verifier's output which is in upper case. 

Explanatory comments have been added to the proof, indented 

and in lower case. In Section 6.4 we show two different 

proofs of an inference rule involving the predicate sorted. 

In these examples the variable MAXOEPTH refers to the 

maximum depth (in terms of the number of inference rules 

applied) to which the proof can go, though this can be 

overridden at the user's command. The value of CONDPROVE 

determines whether proofs are attempted at conditionals or 

not, and TRACE indicates the detail to which the proof is 

given. The times shown are in seconds. The reader should 

also remember that in POP-2 the truthvalues TRUE and FALSE 

have the values 1 and 0 respectively. 
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6.1 Ihl. 91-functj 

We have already seen this program in Section 2.5.1. The 

verifier is able to prove it is correct without any 

assistance from the user. No inference rules are used, but 

only the built-in routines for reasoning about relational 
expressions and substitution of equalities. 

FUNCTION FN91 N => R; 
IF N>100 THEN N-10 ELSE FN91(FN91(N+11)) CLOSE -> R; 

END; 

VARS NO; 
(NO] ->I NIT ARGS: 

ISTAT BODY REC FN91; 
VIRT IF N>100 THEN N-10 ELSE 91 CLOSE -> R; 
UNDER TRUE; 
WRT [R] 

Proof 

FN91 14-4-1975 
MAXDEPTH= 1 CONOPROVE= I TRACE= 1 

COMPILE TIME = 0.753 

STARTING NEW PROOF FROM FN9IBEG 

The function FN91 has labels FN9IBEG and FN91ENO 
inserted at the beginning and the end of its body. 

RUN ACTUAL PROGRAM 

AT COND (N >= 101) 

The actual program has reached the conditional in 
FN91. The verifier now tries to prove either that 
the condition or its negation follows from the 
path condition. As the initial path condition is 
TRUE, its list of conjuncts is NIL. 

ASSUME TRUE 

This refers to the preceding condition. The path 
terminates immediately, and the alternative path 
is then taken. 
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ASSUME FALSE 
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The inner call of function FN91 has just been 
entered, so the precondition of its inclusion 
statement is being tested. (N=<100) is. the 
current path condition. 

TEST PRECONDS OF INCLUSION AT FN91BEG 
1 

FROM PATH CONDITION 
(N =< 100) 
OK SIMP 

SIMP indicates that the condition was proved by 
simplification. The virtual program is now 
executed. The test N>=90 corresponds to 
N+11>=101. 

AT COND (N >= 90) 
ASSUME TRUE 

The outer call of FN91 is now entered with path 
condition (N>=190 G N=<100), and with state vector 
N->N+1 (=N+11-10). 

TEST PRECONDS OF INCLUSION AT FN91BEG 
1 

FROM PATH CONDITION 
((N >= 90) & (N =< 100)) 
OK SIMP 

AT CONO (N >= 100) 
ASSUME TRUE 
ASSUME FALSE 
ASSUME FALSE 

That is, assume N=<89 (N+11=<100). The outer call 
of FN91 is now entered with path condition N=<89, 
and with state vector N->91. 

TEST PRECONOS OF INCLUSION AT FN91BEG 
1 

FROM PATH CONDITION 
(N =< 89) 
OK SIMP 

AT COND 0 

MUST BE FALSE, FROM PATH CONDITION 
(N =< 89) 

RUN VIRTUAL PROGRAM 

All the paths of the actual program have 
terminated, and the virtual program is now 
executed. 
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AT CONO (N >= 101) 
ASSUME TRUE 
ASSUME FALSE 
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All the paths of the virtual program have now 
terminated also. Each pair of states is now 
considered in turn. 

FROM PATH CONOITION (N >= 101) 
ANO (N >= 101) 

I.E. (N >= 101) 

The first two expressions are the path conditions 
of the actual and virtual programs respectively: 
the third expression is their conjunction. 

PROVE INCLUSION 
R : -10+N -10+N OK SIMP 

The equality N-10=N-10 has simplified to TRUE. 

STACKS: NIL NIL OK 
ENO POINTS: FN91ENO FN91ENO 

The program is now considering the next pair of 
states. It tries to establish the inconsistency 
of the two path conditions by proving that the 
negation of a conjunct of the virtual program's 
path condition follows from the actual program's 
path condition, i.e., that N>=101 implies 
NOT N=<100. 

THE ACTUAL-VIRTUAL PAIR: 
(N >= 101) 
(N =< 100) 
IS INCONSISTENT: SIMP 

THE ACTUAL-VIRTUAL PAIR: 
(N = 100) 
(N >= 101) 
IS INCONSISTENT: SIMP 

FROM PATH CONOITION (N = 100) 
ANO (N =< 100) 

I.E. (N = 100) 
PROVE INCLUSION 
R: -9+N 91 OK SIMP 

The theorem was trivially proved by substituting 
the equality of the hypotheses into the goal. The 

remainder of the theorems are all proved directly 
by simplification. 

STACKS: NIL NIL OK 
ENO POINTS: FN91ENO FN91ENO 
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THE ACTUAL-VIRTUAL PAIR: 
((N >= 90) & (N =< 99)) 
(N >= 101) 
IS INCONSISTENT: SIMP 

FROM PATH CONDITION ((N >= 90) & (N =< 99)) 
AND (N =< 100) 

I.E. ((N >= 90) & (N =< 99)) 
PROVE INCLUSION 
R: 91 91 OK SIMP 
STACKS: NIL NIL OK 
END POINTS: FN91END FN91END 

THE ACTUAL-VIRTUAL PAIR: 
(N =< 89) 
(N >= 101) 
IS INCONSISTENT: SIMP 

FROM PATH CONDITION (N =< 89) 
AND (N =< 100) 

I.E. (N =< 89) 
PROVE INCLUSION 
R: 91 91 OK SIMP 
STACKS: NIL NIL OK 
END POINTS: FN91END FN91END 

RUN TIME = 5.536 
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THEOREMS PENDING: NIL 
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6.2 A matching orocrram 

This program determines whether the array B occurs as a 

subarray of the array A. The verifier can prove this program 

completely automatically with the exception of one 

application of CONTRAPOS invoked by the user. 

FUNCTION MATCHV A M B N => BISINA; 
VARS I J ; 

FALSE->BISINA; 
0->I: 

$LOOP I : 
LOOPIF I=< M-N THEN 

1->J; 
$LOOPJ: 

LOOPIF J=<N THEN 
IF A\(I+J)/=B\(J) THEN GOTO BREAKJ CLOSE; 
J+1->J; 

CLOSE; 
$ENOLOOPJ: 
TRUE->BISINA; GOTO BREAKI; 

$BREAKJ: 
I+1->I; 

CLOSE; 
$BREAKI: 
ENO; 

OECARRAY A [1 M]; 
OECARRAY B [1 N]; 
[%A, "M",B, "N"%]->INITARGS; 

ISTAT BOGY MATCHV; 
VIRT IF' ISIN(B<<1,N>>,A<<1,M>>) 

THEN TRUE ELSE FALSE CLOSE -> BISINA; 
UNDER 0=<N & N=<M; 
WRT [BISINA]; 

ISTAT LOOPI TO [BREAKI] 
VIRT IF ISIN(B<<1,N>>,A<<I+1,M>>) 

THEN TRUE->BISINA; 
ELSE M-N+1->I CLOSE; 
UNDER 0=<I & I=<M-N+1 & 0=<N; 

WRT [BISINA]; 

ISTAT LOOPJ TO [ENOLOOPJ BREAKJ]; 
VIRT IF EQSEQ(B<<J,N>>,A<<I+J,I+N>>) 

THEN N+1->J; GOTO ENOLOOPJ 
ELSE GOTO BREAKJ CLOSE; 

UNDER 1=<J & J=<N+1 ; 

WRT [I]; 
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Proof 

MATCHV 13-5-1975 
MAXOEPTH= 1 CONDPROVE= 0 TRACE= 0 

COMPILE TIME = 8.169 

STARTING NEW PROOF FROM MATCHVBE 
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Each program FOO implicitly contains labels called 
FOOBEG and FOOENO at the beginning and end of its body. In this case the POP-2 system truncates the 
name MATCHVBEG to MATCHVBE. 

RUN ACTUAL PROGRAM 

TEST PRECONDS OF INCLUSION AT LOOPI 
((N >= 0) f, (M-N >= -1) ) 
FROM PATH CONDITION 
((N >= 0) f, (M-N >= 0)) 
OK [CONJ SIMP SIMP] 

AT CONO ISIN(B[ 1,N],A[ 1,M]) 
ASSUME TRUE 
ASSUME FALSE 

RUN VIRTUAL PROGRAM 

AT CONO ISIN(B[ 1,N],A[ 1,M]) 
ASSUME TRUE 
ASSUME FALSE 

ASSUMING ((N >= 0) FY (M-N >= 0) f ISIN(B[ 1,N],A[ 1,M])) 
ANO ((N >= 0) f, (M-N >= 0) f, ISIN(B[ 1,N],A[ 1,M])) I.E. ((N >= 0) f (M-N >= 0) f ISIN(B[ 1,N],A[ 1,M])) 

PROVE INCLUSION 
BISINA: 1 1 OK SIMP 
STACKS: NIL NIL OK 
END POINTS: MATCHVEN MATCHVEN 

THE ACTUAL-VIRTUAL PAIR: 
((N >= 0) f, (M-N >= 0) f, ISIN(B[ 1,N],A[ 1,M])) 
((N >= 0) FY (M-N >= 0) f NOT(ISIN(B[ 1,N],A[ 1,M]))) 
IS INCONSISTENT: SIMP 

THE ACTUAL-VIRTUAL PAIR: 
((N >= 0) FY (M-N >= 0) f NOT(ISIN(B[ 1,N],A[ 1,M]))) 
((N >= 0) & (M-N >= 0) & ISIN(B[ 1,N],A[ 1,M])) 
IS INCONSISTENT: SIMP 

ASSUMING ((N >= 0) f (M-N >= 0) f NOT(ISIN(B[ 1,N],A[ 1,M]))) 
ANO ((N >= 0) & (M-N >= 0) f, NOT(ISIN(B[ 1,N],A[ 1,M]))) 

I.E. ((N >= 0) FY (M-N >= 0) f NOT(ISIN(B[ 1,N],A[ 1,M]))) 
PROVE INCLUSION 
BISINA: 0 0 OK SIMP 
STACKS: NIL NIL OK 
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ENO POINTS: MATCHVEN MATCHVEN 

STARTING NEW PROOF FROM LOOPI 

The first inclusion statement has been verified 
and the system is now starting to verify the one 
whose start point is LOOPI. 

RUN ACTUAL PROGRAM 

AT CONO (M-N-I >= 0) 
ASSUME TRUE 

TEST PRECONOS OF INCLUSION AT LOOPJ 
(N >= 0) 
FROM PATH CONOITION 
((N >= 0) f (I >= 0) & (M-N-I >= 0)) 
OK SIMP 

AT CONO EQSEQ(A[ 1+I,N+I],B[ 1,N]) 
ASSUME TRUE 
ASSUME FALSE 

TEST PRECONOS OF INCLUSION AT LOOPI 
((N >= 0) f (I >= -1) & (M-N-I >= 0)) 
FROM PATH CONOITION 
((N >= 0) f (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ(A[ 
1+I,N+I],B[ 1,N]))) 
OK [CONJ SIMP SIMP SIMP] 

AT CONO ISIN(B[ 1,N],A[ 2+I,M] ) 
ASSUME TRUE 
ASSUME FALSE 
ASSUME FALSE 

RUN VIRTUAL PROGRAM 

AT CONO ISIN(B[ 1,N],A[ 1+I,M]) 
ASSUME TRUE 
ASSUME FALSE 

ASSUMING ((N >= 0) f (I >= 0) & (M-N-I >= 0) f EQSEQ(A[ 
1+I,N+I],B[ 1,N])) 

ANO ((N >= 0) & (I >= 0) f (M-N-I >= -1) & ISIN(B[ 
1,N],A[ 1+I,M])) 

I.E. ((N >= 0) & (I >= 0) & (M-N-I >= 0) & EQSEQ(A[ 
1+I,N+I],B[ 1,N]) & ISIN(B[ 1,N],A[ 1+I,M])) 
PROVE INCLUSION 
BISINA: 1 1 OK SIMP 
STACKS: NIL NIL OK 
ENO POINTS: BREAKI BREAKI 

THE ACTUAL-VIRTUAL PAIR: 
((N >= 0) & (I >= 0) & (M-N-I >= 0) & EQSEQ(A[ 1+I,N+I], 
B[ 1,N])) 
((N >= 0) & (I >- 0) & (M-N-I >= -1) & NOT(ISIN(B[ 
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1,N],A[ 1+I,M]))) 
IS INCONSISTENT: [ISINI [ (XM.M) (XK. 1+I) (XB.A) (XJ.N) 
(XI. 1) (XA.B)] [CONJ SIMP SIMP]] 

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ 
(A[ 1+I,N+I],B[ 1,N])) & ISIN(B[ 1,N],A[ 2+I,M])) 

AND ((N >= 0) & (I >= 0) & (M-N-I >= -1) & ISIN (B [ 
1,N],A[ 1+I,M])) 

I.E. ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ 
(A[ 1+I,N+I],B[ 1,N])) & ISIN(B[ 1,N],A[ 1+I,M]) & ISIN(B[ 
1,N],A[ 2+I,M])) 
PROVE INCLUSION 
BISINA: I I OK SIMP 
STACKS: NIL NIL OK 
END POINTS: BREAKI BREAKI 

THE ACTUAL-VIRTUAL PAIR: 
((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ(A[ 
1+I,N+I],B[ 1,N])) & ISIN(B[ 1,N],A[ 2+I,M])) 
((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN(B[ 
1,N],A[ 1+I,M]))) 
IS INCONSISTENT: [ISIN2 [ (XM.M) (XK. 1+I) (XB.A) (XJ.N) 
(XI. 1) (XA.B)] SIMP] 

THE ACTUAL-VIRTUAL PAIR: 
((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ(A[ 
1+I,N+I],B[ 1,N])) & NOT(ISIN(B[ 1,N],A[ 2+I,M]))) 
((N >= 0) & (I >= 0) & (M-N-I >= -1) & ISIN(B[ 1,N],A[ 
1+I,M])) 
IS INCONSISTENT: [ISIN4 [ (XM.M) (XK. 2+1) (XB.A) (XJ.N) 
(XI. 1) (XA.B)] [CONJ SIMP SIMP SIMP]] 

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ 
(A[ 1+I,N+I],B[ 1,N])) & NOT(ISIN(B[ 1,N],A[ 2+I,M]))) 

AND 
/ ((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN( 

B[ 1,N],A[ 1+I,M]))) 
I.E. ((N >= 0) & (I >= 0) & (M-N-I >= 0) & NOT(EQSEQ 

(A[ I+I,N+I],B[ 1,N])) & NOT(ISIN(B[ 1,N],A[ 1+I,M])) & 
NOT (ISIN (B [ 1 ,N ] ,A [ 2+I ,M ])) ) 

PROVE INCLUSION 
BISINA: BISINA BISINA OK SIMP 
STACKS: NIL NIL OK 
END POINTS: BREAKI BREAKI 

THE ACTUAL-VIRTUAL PAIR: 
((N >= 0) & (I >= 0) & (M-N-I = -1)) 
((N >= 0) & (I >= 0) & (M-N-I >= -1) & ISIN(B[ 1 ,N] ,A[ 
1+1,M])) 
IS INCONSISTENT: [ISIN20 [ (XL.-1+N+I) (XK. 1+I) (XB.A) (XJ.N) 

(XI. 1) (XA.B)] SIMP] 

ASSUMING ((N >= 0) & (I >= 0) & (M-N-I = -1)) 
AND ((N >= 0) & (I >= 0) & (M-N-I >= -1) & NOT(ISIN( 

BE 1,N],A[ 1+I,M]))) 
I.E. ((N >= 0) & (I >= 0) & (M-N-I = -1) & NOT(ISIN(B 

[ 1,N],A[ 1+I,M]))) 
PROVE INCLUSION 
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BISINA: BISINA BISINA OK SIMP 
STACKS: NIL NIL OK 
ENO POINTS: BREAKI BREAKI 

STARTING NEW PROOF FROM LOOPJ 

AT CONO (M-N >= 
ASSUME TRUE 

RUN ACTUAL PROGRAM 

0) 

AT CONO (N-J >= 
ASSUME TRUE 

0) 

AT CONO (A[I+J]-B[J] 0 
ASSUME TRUE 
ASSUME FALSE 

TEST PRECONOS OF INCLUSION AT LOOPJ 
((J >= 0) & (N-J >= 0)) 
FROM PATH CONDITION 
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0)) 
OK [CONJ SIMP SIMP1 

AT CONO EQSEQ(A[ 1+I+J,N+I],B[ 1+J,N]) 
ASSUME TRUE 
ASSUME FALSE 
ASSUME FALSE 

RUN VIRTUAL PROGRAM 

AT CONO EQSEQ(A[I+J,N+I],B[J,N]) 
ASSUME TRUE 
ASSUME FALSE 

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] /= 0)) 
AND ((J >= 1) & (N -J >= -1) & EQSEQ(A[I+J,N+I],B[J,N])) 

I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] 0) 
& EQSEQ(A[I+J,N+I],B[J,N])) 

PROVE INCLUSION 
I: I I OK SIMP 
STACKS: NIL NIL OK 
END POINTS: BREAKJ ENOLOOPJ 

The system realizes that something is wrong as the 
two end points are different so it goes back and 
again tries to show that the two sets of 
conditions are inconsistent (without initial 
success). 

FAILED [ 37] NOT(EQSEQ(A[I+J,N+I],B[J,N])) 

>prthm ; 

NJ >= 1) (N-J >= 0) (A[I+J]-8[J] /= 0)] 
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NOT(EQSEQ(A[ I+J,N+I] ,B[ J,N]) ) 

contrapos 3; 

FAILED ( 37 1] (A[I+J]-B[J] = 0) 

>ppr(hyps); 
[(J >= 1) (N-J >= 0) EQSEQ(A[I+J,N+I],B[J,N])] 

sweat 1; 
goon 

CONTRAPO PROVED (EQSEQ3 ( (XJ.N) (XM.N+I) ] (INST ( (XJ.N) 
(XM.N+I)] (CONJ SIMP SIMP1]] 
goon 

( 37] PROVED 

THE ACTUAL-VIRTUAL PAIR: 
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] 0)) 
((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N])) 
IS INCONSISTENT: (CONTRAPO 3] 

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] /= 0)) 

N]))) 
ANO ((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J, 

I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] 0) 
& NOT(EQSEQ(A[I+J,N+I],B[J,N]))) 

PROVE INCLUSION 
I: I I OK SIMP 
STACKS: NIL NIL OK 
ENO POINTS: BREAKJ BREAKJ 

ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) 
& EQSEQ(A[ 1+I+J,N+I],B[ 1+J,N])) 

ANO ((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N])) 
I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) 

& EQSEQ(A[ 1+I+J,N+I],B[ 1+J,N]) & EQSEQ(A[I+J,N+I],B[J,N])) 
PROVE INCLUSION 
I: I I OK SIMP 
STACKS: NIL NIL OK 
ENO POINTS: ENOLOOPJ ENOLOOPJ 

THE ACTUAL-VIRTUAL PAIR: 
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) & EQSEQ(A[ 
1+I+J,N+I],B[ 1+J,N]) ) 
((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,N]))) 
IS INCONSISTENT: [EQSEQ2 ( (XM.N) (XK.J) (XB.B) (XJ.N+I) 
(XI.I+J) (XA.A)] (CONJ SIMP SIMP SIMP SIMP]] 

THE ACTUAL-VIRTUAL PAIR: 
((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) & NOT(EQSEQ(A 
( 1+I+J,N+I],B[ 1+J,N]))) 
((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N])) 
IS INCONSISTENT: (EQSEQ4 ( (XM.N) (XK. 1+J) (XB.B) (XJ.N+I) 
(XI. 1+I+J) (XA.A)] [CONJ SIMP SIMP SIMP]] 
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ASSUMING ((J >= 1) & (N-J >= 0) & (A[I+J]-BCJJ = 0) 
& NOT(EQSEQ(A[ 1+I+J,N+I],B[ 1+J,N]))) 

ANO ((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J, 
N]))) 

I.E. ((J >= 1) & (N-J >= 0) & (A[I+J]-B[J] = 0) 
& NOT(EQSEQ(A[ 1+I+J,N+I],B[ 1+J,N])) & NOT(EQSEQ(A[I+J,N+I], 

B[J,N] )) ) 
PROVE INCLUSION 
I: I I OK SIMP 
STACKS: NIL NIL OK 
ENO POINTS: BREAKJ BREAKJ 

ASSUMING ((J >= 1) & (N-J = -1)) 
ANO ((J >= 1) & (N-J >= -1) & EQSEQ(A[I+J,N+I],B[J,N])) 

I.E. ((J >= 1) & (N-J = -1) & EQSEQ(A[I+J,N+I],B[J,N])) 
PROVE INCLUSION 
I: I I OK SIMP 
STACKS: NIL NIL OK 
ENO POINTS: ENOLOOPJ ENOLOOPJ 

THE ACTUAL-VIRTUAL PAIR: 
((J >= 1) & (N-J = -1)) 
((J >= 1) & (N-J >= -1) & NOT(EQSEQ(A[I+J,N+I],B[J,N]))) 
IS INCONSISTENT: [EQSEQI [ (XM.-1+J) (XK.J) (XB.B) (XJ.-1+I+J) 
(XI.I+J) (XA.A)] [CONJ SIMP SIMP]] 

RUN TIME = 67.661 

THEOREMS PENOING: NIL 
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6.3 B, sorting program 

This program is from King's thesis, although his system 

was unable to prove it. Our proof includes the fact that 

the final array is a permutation of the original one. The 

proof requires advice from the user in several places but in 

many cases it suffices to tell the automatic theorem prover 

to work harder. Most of the substantative advice given by 

the user consists of the commands CASES and USE. 

FUNCTION K9 A N; 
VARS I J K X; 

ASSERT A=AO & 2=<N; 
1->I; 

$L 1 : 
LOOPIF I<N THEN 

A\I->X; I->K ; I+1->J ; 
$L2: 

ASSERT 1=<I & I=<K & K<J & J=<N+1 
& I<N 
& X=A\K 

) & (I=1 OR A\ (I-1) =< A<<I,N>> 
& A<<I,J-1>> >= X 
& ORDERED(A<<1,I-1>>) 
& PERM(A<<1,N>>,AO<<1,N>>); 

LOOPIF J=<N THEN 
IF X>A\J THEN A\J->X; J->K CLOSE; 
J+1->J; 

CLOSE; 
A\I->A\K; X->A\I; I+1->I; 

CLOSE; 
$OUT: 

ASSERT ORDEREO (A« 1 ,N>>) & PERM (A<<1 ,N>>,AO<<1 ,N>>) ; 
ENO: 

VARS NO; 
OECARRAY AO [1 NO]; 
[% AO, "NO" %]->INITARGS; 
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Proof 

K9 13-5-1975 
MAXDEPTH= I CONDPROVE= 0 TRACE= 0 

COMPILE TIME = 5.442 

STARTING NEW PROOF FROM K9BEG 

AT COND (N >= 2) 
ASSUME TRUE 

TEST ASSERTION AT L2 
((N >= 2) f (A[ 1, 11 >= A[ 1]) G PERM(A[ 1,N],AO[ 1,N]) 

G ORDERED(A[ 1, 0])) 
FROM PATH CONDITION 
((N >= 2) f (AO = A)) 
FAILED [ 1 2] (A[ 1, 1] >= A[ 1]) 

>sweat 1; 
goon 

[ 1 2] PROVED 
OK [CONJ SIMP [XF1 [ (XZ.A[ 1]) (XJ. 1) (XI. 1) (XA.A) (XF.>=)] 
[CONJ [XFO [ (XZ.A[ 1]) (XJ. 0) (XI. 1) (XA.A) (XF.>=)] SIMP] 
SIMP]] [PERM1 [ (XM.N) (XK. 1) (XB.A) (XJ.N) (XI. 1) (XA.A)] 
REDUCTN] [ORD1 [ (XJ. 0) (XI. 1) (XA.A)] SIMP]] 
ASSUME FALSE 

TEST ASSERTION AT OUT 
(PERM(A[ 1,N],AO[ 1,N]) f ORDERED(A[ 1,N])) 
FROM PATH CONDITION 

0 

OK [CONJ SIMP SIMP] 

STARTING NEW PROOF FROM L2 

AT COND (NO >= 2) 
ASSUME TRUE 

AT COND (N-J >= 0) 
ASSUME TRUE 

AT COND (X-A[J] >= 
ASSUME TRUE 

1) 

TEST ASSERTION AT L2 
((I >= 1) f (A[I,J] >= A[J]) G (N-I >= 1) f (N-J >= 
0) f (I-J =< 0) f PERM(A[ 1,N],AO[ 1,N]) f ORDERED(A[ 

1,-1+I]) G ((I = 1) OR (A[I,N] >= A[-1+I]))) 
FROM PATH CONDITION 
((I >= 1) f (A[I,-1+J] >= X) G (N-I >= 1) & (N-J >= 

0) & (I-K =< 0) & (J-K >= 1) & (X-A[J] >= 1) & 

(X-A[K] = 0) & PERM(A[ 1,N],AO[ 1,N]) & ORDERED(A[ 1,-1+I] ) 

& ((I = 1) OR (A[I,N] >= A[-1+I]))) 



Examples Page 146 

FAILED [ 3 1 2] (A[I,J] >= A[J]) 

>sweat 2; 
oon g 

[ 3 1 21 PROVED 
FAILED [ 3 1 5] (I-J =< 0 

>sweat 1 ; 

goon 

[ 3 1 5] PROVED 
FAILED [ 3 2 2] (A[ 1,J] >= A[J]) 

>prthm; 

((N >= 2) (K >= 1) (A[ 1,-1+J] >= A[K]) (N-J >= 0) (J-K 
>= 1) (A[J]-A[K] =< -1) PERM(A[ 1,N],A0[ 1,N]) OROERED(A[ 
1, 01)] 

(A[ 1,J] >= A[J] ) 

use xf 1 ; 
goon 

FAILED [ 3 2 2 -1 1] (A[ 1,-1+J] >= A[J]) 
>sweat 2; 
goon 

[ 3 2 2] PROVED 
FAILED [ 3 2 5] (J >= 1) 

>sweat 1; 
goon 

[ 3 2 5] PROVED 
OK [CONJ [CONJ SIMP [XF1 [ (XZ.A[J]) (XJ.J) (XI.I) (XA.A) 
(XF.>=)] [CONJ [TR [ (XY.A[K])] [CONJ DEF [INST [ (XY.A[K])] 
[CONJ SIMP SIMP]]]] SIMP]] SIMP SIMP [TR [ (XY.-1+J-K)] [CONJ 
DEF [INST [ (XY.-1+J-K )] [CONJ SIMP SIMP] ]] ] SIMP SIMP SIMP] 
[CONJ SIMP [XF1 [ (XZ.A[J]) (XJ.J) (XI. 1) (XA.A) (XF.>=)] 
[CDNJ [TR [ (XY.A[K])] [CONJ DEF [INST [ (XY.A[K])] [CONJ 
SIMP SIMP)]]] SIMP]] SIMP SIMP [TR [ (XY.K)] [CONJ DEF [INST 
[ (XY.K)] [CONJ SIMP SIMP]]]] SIMP SIMP SIMP]] 
ASSUME FALSE 

TEST ASSERTION AT L2 
((I >= 1) & (A[I,J] >= X) & (N-I >= 1) & (N-J >= 0) 

& (I-K =< 0) & (J-K >= 0) & (X-A[K] = 0) & PERM(A[ 
1,N],A0[ 1,N]) & ORDERED(A[ 1,-1+I]) & ((I = 1) OR 

(A[I,N] >= A[-1+I]))) 
FROM PATH CONDITION 
((I >= 1) & (A[I,-1+J ] >= X) & (N-I >= 1) & (N-J >= 
0) & (I-K =< 0) & (J-K >= 1) & (X-A[J] =< 0) & 

(X-A[K] = 0) & PERM(A[ 1,N],A0[ 1,N]) & ORDERED(A[ 1,-1+I]) 

& ((I = 1) OR (A[I,N] >= A[-1+I]))) 
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OK [CONJ [CONJ SIMP [XF1 [ (XZ.A[K)) (XJ.J) (XI.I) (XA.A) 
(XF.>=)] [CONJ SIMP SIMP) SIMP SIMP SIMP SIMP SIMP SIMP SIMP 
SIMP] [CONJ SIMP [XF1 [ (XZ.A[K]) (XJ.J) (XI. 1) (XA.A) (XF.>=)] 
(CONJ SIMP SIMP)) SIMP SIMP SIMP SIMP SIMP SIMP SIMP SIMP)) 
ASSUME FALSE 

AT COND (N-I >= 2) 
ASSUME TRUE 

TEST ASSERTION AT L2 
((I >= 0) & (CHNG(CHNG(A,A(I],K),X,I)[ 1+I, 1+I] >= CHNG(CHNG( 
A,A[I],K),X,I)[ 1+I]) & (N-I >- 2) & PERM(A0[ 1,N],CHNG(CHNG 
(A,A[I],K),X,I)[ 1,N]) & ORDERED(CHNG(CHNG(A,A[I),K),X,I)[ 
1,I]) & ((I = 0) OR (CHNG(CHNG(A,A[I),K),X,I)[ 1+I,N] 
>= CHNG(CHNG(A,A[I],K),X,I)[I)))) 
FROM PATH CONDITION 
((I >= 1) & (A(I,-1+J) >= X) & (N-I >= 2) & (N-J = 
-1) & (I-K -< 0) & (J--K >= 1) & (X-A[K] = 0) & 
PERM(A[ 1,N],AO[ 1,N]) & ORDERED(A[ 1,-1+I)) & ((I = 
1) OR (A(I,N3 >= A(-1+I)))) 
FAILED [ 5 1 2) (XCHNG(A,I,K)[ 1+I, 1+I] >= XCHNG(A,I,K)( 
1+I] ) 

>sweat 1; 
goon 

( 5 1 2] PROVED 
FAILED ( 5 1 4) PERM(AO[ 1,-1+J],XCHNG(A,I,,K)[ 1,-1+J)) 

>interm "a"« 1 , ". "-1» ; 

SUBGOAL PROVED SIMP 
FAILED [ 5 1 4 21 PERM(A[ 1,-1+J],XCHNG(A,I,K)( 1,-1+J)) 

>use perml3; 
goon 

FAILED ( 5 1 4 2 -1 3] (K >= I 

>sweat 1; 
goon 

FAILED [ 5 1 4 2 -1 31 (K >= 1) 

>sweat 1; 
goon 

SUBGOAL PROVED (PERM13 ( (XV.K) (XU.I) (XJ.-1+J) (XI. 1) (XA.A)1 
(CONJ SIMP SIMP (TR [ (XY.-I+K)) [CONJ DEF [INST ( (XY.-I+K)] 
[CONJ SIMP SIMP])]) SIMP13 
goon 

( 5 1 41 PROVED 
FAILED ( 5 1 51 ORDEREO (XCHNG (A , I , K) [ 1I)) 
>assume; 
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The proof of this condition is given in Section 5.4.2. 

FAILED [ 5 1 6] (XCHNG(A,I,K)[ 1+I,-1+J] >= XCHNG(A,I,K)[I]) 

>simpgoal; 

(XCHNG(A,I,K)[ 1+I,-1+J] >= A[K]) 

use xf3; 
goon 

FAILED [ 5 1 6 -11 (XCHNG(A,I,K)[I,-1+J] >= A[K]) 

> use xchng5; 
goon 

[ 5 1 6] PROVED 
FAILED [ 5 2 2] (XCHNG(A, 1,K)[ 2, 2] >= XCHNG(A, 1,K)[ 2]) 
>sweat 1; 
goon 

[ 5 2 2] PROVED 
FAILED [ 5 2 4] PERM(AO[ 1,-1+J],XCHNG(A, 1,K)[ 1,-1+J]) 

>interm "a"<< 1 , "j "-1»; 
SUBGOAL PROVED SIMP 
SUBGOAL PROVED [PERM13 [ (XV.K) (XU. 1) (XJ.-1+J) (XI. 1) 
(XA.A)] [CONJ SIMP SIMP SIMP SIMP1] 
goon 

[ 5 2 4] PROVED 
FAILED [ 5 2 61 (XCHNG(A, 1,K)[ 2,-1+J] >= XCHNG(A, 1,K)[ 1]) 

>simpgoal; 

(XCHNG(A, 1,K)[ 2,-1+J] >= A[K]) 

use xf3; 
goon 

FAILED [ 5 2 6 -1] (XCHNG(A, 1,K)[ 1,-1+J] >= A[K]) 

>use xchng5; 
goon 

[ 5 2 6] PROVED 
OK [CONJ [CONJ SIMP [XF1 [ (XZ.XCHNG(A,I,K)[ 1+I]) (XJ. 1+I) 
(XI. 1+I) (XA.XCHNG(A,I,K)) (XF.>=)] [CONJ [XFO [ (XZ.XCHNG(A,I,K 
)[ 1+I]) (XJ.I) (XI. 1+I) (XA.XCHNG(A,I,K)) (XF.>=)] SIMP] 
SIMP]] SIMP [INTERM A[ 1,-1+J]] ASSUMED [XF3 [ (XX.A[K]) (XJ.-1+J 
) (XI. 1+I) (XA.XCHNG(A,I,K)) (XF.>=)] [XCHNG5 [ (XZ.A[K]) 
(XJ.-1+J) (XI.I) (XV.K) (XU.I) (XA.A) (XF.>=)] [CONJ SIMP 
SIMP SIMP SIMP SIMP1]]] [CONJ SIMP [XF1 [ (XZ.XCHNG(A, 1,K)[ 
2]) (XJ. 2) (XI. 2) (XA.XCHNG(A, 1,K)) (XF.>=)] [CONJ [XFO 

[ (XZ.XCHNG(A, 1,K)[ 2]) (XJ. 1) (XI. 2) (XA.XCHNG(A, 1,K)) 
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(XF.>=)] SIMP] SIMP]] SIMP [INTERM A[ 1,-1+J]] [ORDI [ (XJ. 
1) (XI. 1) (XA.XCHNG(A, 1,K))] SIMP1 [XF3 [ (XX.A[K]) (XJ.-1+J) 
(XI. 2) (XA.XCHNG(A, 1,K)) (XF.>=)] [XCHNG5 [ (XZ.A[K]) (XJ.-1+J) 
(XI. 1) (XV.K) (XU. 1) (XA.A) (XF.>=)] [CONJ SIMP SIMP SIMP 

SIMP SIMP1]]]] 
ASSUME FALSE 

TEST ASSERTION AT OUT 
(PERM(AO[ 1,N],CHNG(CHNG(A,A[I],K),X,I)[ 1,N]) & ORDERED(CHNG(C 
HNG(A,A[I],K),X,I)[ 1,N])) 
FROM PATH CONDITION 
((I >= 1) & (A[I,-1+J] >= X) & (N-I = 1) & (N-J = 

-1) & (I-K =< 0) & (J-K >= 1) & (X-A[K] = 0) & 
PERM(A[ 1,N],AO[ 1,N]) & OROERED(A[ 1,-1+I]) & ((I = 
1) OR (A[I,N] >= A[-1+I])) ) 
FAILED [ 6 1 1] PERM(A0[ 1,-1+J],XCHNG(A,-2+J,K)[ 1,-1+J]) 

>prthm; 

[(J >= 3) (A[-2+J,-1+J] >= A[K]) (A[-2+J,-1+J] >= A[-3+J]) 
(J-K >= 1) (J-K =< 2) PERM(A[ 1,-1+J],AO[ 1,-1+J]) OROEREO(A[ 
1,-3+J])] 

PERM(AO[ 1,-1+J],XCHNG(A,-2+J,K)[ 1,-1+J]) 

interm "a"<<1,"j"-1>>; 

SUBGOAL PROVED SIMP 
FAILED [ 6 1 1 21 PERM(A[ 1,-1+J],XCHNG(A,-2+J,K)[ 1,-1+J]) 

>use perm 13; 
goon 

FAILED [ 6 1 1 2 -1 3] (K >= 1) 

>sweat 1; 
goon 

FAILED [ 61 12-1 3] (K >_ 1) 

>interm "J"-2; 

SUBGOAL PROVED SIMP 
SUBGOAL PROVED SIMP 
goon 

SUBGOAL PROVED [PERM13 [ (XV.K) (XU.-2+J) (XJ.-1+J) (XI. I 
(XA.A)] [CONJ SIMP SIMP [INTERM -2+J] SIMP]] 
goon 

[ 6 1 1] PROVED 
FAILED [ 6 1 2] OROERED(XCHNG(A,-2+J,K)[ 1,-1+J]) 

>use ord12; 
goon 
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FAILED [ 6 1 2 -1 2] (XCHNG(A,-2+J,K)[-2+J]-XCHNG(A,-2+J,K)[-1+J] 
=< 0) 

>simpgoal; 

(A[K]-XCHNG(A,-2+J,K)[-1+J] =< 0) 

cases [% "k"="j"-2, "k"="j"-1 %] ; 

FAILED [ 6 1 2 -1 2 1] (A[K]-XCHNG(A,K,K)[ 1+K] 0) 

>simpgoal; 

(A[K]-A[ 1+K] =< 0) 

sweat 2; 
goon 

CASE PROVED [XF6 [ (XK. 1+K) (XI.K)] [INST [ (XK. 1+K) (XI.K)] 
SIMPI] 
FAILED [ 6 1 2 -1 2 2] (A[K]-XCHNG(A,-1+K,K)[K] =< 0) 

>simpgoal ; 

(A[K]-A[-1+K] =< 0) 

sweat 2; 
goon 

CASE PROVED [XF6 [ (XK.K) (XI.-1+K)] [INST [ (XK.K) (XI.-1+K)] 
SIMP]] 
CASES PROVED [(J-K = 2) (J-K = 1) ] 
goon 

FAILED [ 6 1 2 -1 3] ORDERED(XCHNG(A,-2+J,K)[ 1,-2+J]) 

>cases [% 1="j"-2, 1<"j"-2 %]; 

CASE PROVED [ORD1 [ (XJ. 1) (XI. 1) (XA.XCHNG(A, 1,K))] SIMP] 
FAILED [ 6 1 2 -1 3 2] ORDERED(XCHNG(A,-2+J,K)[ 1,-2+J]) 

>use ord12: 
goon 

FAILED [ 6 1 2 -1 3 2 -1 2] (XCHNG(A,-2+J,K)[-3+J]-XCHNG(A,-2+J,K 
)[-2+J] =< 0) 

>simpgoal; 

(A[K]-A[-3+J] >= 0) 

sweat 2; 
goon 

FAILED [ 6 1 2 -1 3 2 -1 3] ORDERED(XCHNG(A,-2+J,K)[ 1,-3+J]) 
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>simpgoal; 

ORDERED (A[ 1,-3+J]) 

goon 

CASE PROVED [DRD12 [ (XJ.-2+J) (XI. 1) (XA.XCHNG(A,-2+J,K))] 
[CDNJ SIMP [XF6 [ (XK.-1+J) (XI.-2+J)] [INST [ (XK.-1+J) (XI.-2+J 
)] [CDNJ SIMP SIMP SIMP1]] SIMP]] 
CASES PROVED [(J = 3) (J >= 4)] 
goon 

[ 6 1 21 PROVED 
FAILED [ 6 2 1] PERM(AO[ 1, 2],XCHNG(A, 1,K)[ It 2]) 
>prthm; 

[(K >= 1) (K =< 2) (A[ 1, 2] >= A[K]) PERM(A[ 1, 2],AO[ 
1, 2]) DRDERED(A[ 1, 0])] 
PERM(A0[ 1, 2],XCHNG(A, 1,K)[ 1, 2]) 

interm "a"<<1,2>>; 

SUBGDAL PROVED SIMP 
SUBGDAL PROVED [PERM13 [ (XV.K) (XU. 1) (XJ. 2) (XI. 1) (XA.A)] 
[CDNJ SIMP SIMP SIMP SIMP]] 
goon 

[ 6 2 1] PROVED 
FAILED [ 6 2 21 DRDERED(XCHNG(A, 1,K)[ 1, 2]) 

>use ord2; 
goon 

FAILED [ 6 2 2 -1 2] (XCHNG(A, 1,K)[ 1]-XCHNG(A, 1,K)[ 2] 
=< 0) 

>cases [% "k"=I, "k"=2 %] ; 

FAILED [ 6 2 2 -1 2 11 (XCHNG(A, 1, 1)[ 1]-XCHNG(A, 1, 1)[ 

21 =< 0) 

>simpgoal; 

(A[ 1] A[ 2] =< 0) 

sweat 2; 
goon 

CASE PROVED [XF6 [ (XK. 2) (XI. 1)] [INST [ (XK. 2) (XI. 1)] 
SIMP]] 
FAILED [ 6 2 2 -1 2 2] (XCHNG(A, 1, 2)[ 1]-XCHNG(A, 1, 2)[ 

2] =< 0) 

>simpgoal; 
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(A[ 1]-A[ 21 >= 0 

sweat 2; 

goon 
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CASE PROVED [XF6 [ (XK. 2) (XI. 1)] [INST [ (XK. 2) (XI. 1)] 
SIMP]] 
CASES PROVED [(K = 1) (K = 2) ] 
goon 

FAILED [ 6 2 2 -1 3] ORDERED (XCHNG (A, 1,K)[ 2, 2 ] ) 

>sweat 1; 
goon 

[ 6 2 2] PROVED 
OK [CONJ [CONJ [INTERM A[ 1,-1+J]] [OR012 [ (XJ.-1+J) (XI. 
1) (XA.XCHNG(A,-2+J,K))] [CONJ SIMP [CASES (J-K = 2) (J-K 

1)] [CASES (J = 3) (J >= 4)1]]] [CONJ [INTERM A[ 1, 2]] 
[0R02 [ (XJ. 2) (XI. 1) (XA.XCHNG(A, 1,K))] [CONJ SIMP [CASES 
(K = 1) (K = 2)] [ORD1 [ (XJ. 2) (XI. 2) (XA.XCHNG(A, 1,K))] 
SIMP]]]]] 

RUN TIME = 417.022 

THEOREMS PENDING: 

[[(I >= 1) (A[I,-1+J] >= A[K]) (A[I,-1+J] >= A[-1+I]) (I-J 
=< -3) (I-K =< 0) (J-K >= 1) PERM(A[ 1,-1+J],AO[ 1,-1+J]) 
OROEREO(A[ 1,-1+I])] ORDEREO(XCHNG(A,I,K)[ 1,I3)] 
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6.4 Deriv rules 

In this section we show the proof of the validity of a 

particular derived inference rule. The rule is DRD12 

(Appendix 3), a counting-down, recursive characterization of 

the predicate ordered. 

IR DRD12 
DRDERED(XA<<XI,XJ>>) 
< [% XI<XJ, XA(XJ-1 )=<XAxJ, DRDERED(XA<<XI,XJ-1>>) %J: 

We shall actually give two proofs of this rule. In the 

first proof we assume that ordered is defined recursively 

by: 

ordered(a[i,j]) <-> i>=j or 
a[i]=<a[i+1] & ordered(a[i+1,j]). 

This definition is represented by the rules DRD1 to DRD4 of 

Appendix 2. In this case the proof is by induction on the 

length of the array segment. Since we are assuming that i<j 
we start by letting j=i+n+1 and do induction on n. 

In the second proof we define ordered in the more 

direct way by: 

ordered(a[i,j]) <-> (FA x)(i=<x & x<j => a[x]=<a[x+1]), 

using the two inference rules 

IR NORD1 
DRDERED (XA<<XI,XJ>>) 
<__ [% (FA XX)(XI=<XX & XX<XJ =>> XA\XX=<XA\(XX+1)) %]; 

IR NORD2 
XA\XX=<XA\(XX+1) 
<__ [% (EX [XI XJ])(XI=<XX & XX<XJ & 

DRDERED (XA<<XI ,XJ>>) ) %1; 

In this case the proof reduces to a case analysis. In 

practice, given this definition the rule DRD12 would not 

also be required but the proof is indicative of the way the 
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rules NORD1 and NORD2 are used. 

In each case, the theorem to be proved is 
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i<j & a[j-1]=<a[j] & ordered(a[i,j-1]) => ordered(a[i,j]) 

Urst woof 
ORD 14-5-1975 
MAXDEPTH= 2 CONDPROVE= 0 TRACE= 0 

FAILED [ 3] ORDERED(XA[XI,XJ]) 

>prthm; 

[ (XI-XJ =< -1) (XA[XJ]-XA[-1+XJ] >= 0) ORDERED(XA[XI,-1+XJ] )] 
ORDERED(XA[XI,XJ]) 

add xj=xi+xn+1; 
subst(xi+xn+l,xj,goal) -> goal; 
subst(xi+xn+l,xj,hyps) -> hyps; 

This substitutes i+n+1 for j throughout the theorem. 

prthm; 

[(XN >= 0) (XA[ 1+XI+XN]-XA[XI+XN] >= 0) ORDERED(XA[XI,XI+XN])] 

ORDERED(XA[XI, 1+XI+XN]) 

induct xn; 

BASIS PROVED [ORD2 [ (XJ. 1+XI) (XI.XI) (XA.XA)] [CONJ SIMP 
SIMP [ORDI [ (XJ. 1+XI) (XI. 1+XI) (XA.XA)) SIMP1]] 
FAILED [ 3 21 ORDERED (XA[XI , 2+XI+XNO l ] ) 

>use ord2; 
goon 

FAILED [ 3 2 -1 21 (XA[XI]-XA[ 1+XI] =< 0 

>use ord3; 
goon 

FAILED [ 3 2 -1 31 ORDERED(XA[ 1+XI, 2+XI+XNOI]) 

The induction hypothesis is the rule 
ordered(xa[xi,xi+xn0l+1]) <- ... 

The two conclusions will not match unless the 
instantiations for the variables of the induction 
hypothesis are given explicitly. In doing this, 
the first xi is the one in the rule and the second 
is the one in the goal. 
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>let xi be xi+1 in indhyp; 
goon 

STEP PROVED [OR02 [ (XI. 1+XI)] [CDNJ SIMP [OR03 ( W. 1+XI+XN01 
(XI.XI) (XA.XA)] [INST [ (XJ. 1+XI+XN01) (XI.XI) (XA.XA)] 

[CDNJ SIMP SIMPJ]] [INDHYP [ (XI.XI) (XA.XA)] [CDNJ SIMP SIMP 
[OR04 ( W. 1+XI+XN01) (XI. 1+XI) (XA.XA)] [CDNJ SIMP SIMP]]]]]] 
goon 

[ 3] PROVED 

Second proof 

DRD 14-5-1975 
MAXDEPTH= 2 CDNDPRDVE= 0 TRACE= 0 

FAILED [ 4] ORDERED(XA[XI,XJ]) 

>prthm; 

[(XI-XJ =< -1) (XA[XJ]-XA[-1+XJ] >= 0) DRDERED(XA[XI,-1+XJ])] 

DRDERED(XA[XI,XJ] ) 

use nordl; 
goon 

FAILED [ 4 -1] (XA[XX02]-XA[ 1+XX02] =< 0) 

XX02 is a Skolem constant introduced from the FA 
expression. 

>prthm; 

[(XI-XJ =< -1) (XI-XX02 =< 0) (XJ-XX02 >= 1) (XA[XJ]-XA[-1+XJ] 
>= 0) DRDERED(XA[XI,-1+XJ])] 

(XA[XX02]-XA[ 1+XX02] =< 0) 

cases [% xx02=xj-1, xx02<xj-1 %]; 

CASE PROVED SIMP 
FAILED [ 4 -1 2] (XA[XX02]-XA[ 1+XX02] =< 0) 

>use nord2; 
goon 

CASE PROVED [NOR02 [ (XJ.-1+XJ) (XI.XI) (XA.XA)] [INST [ (XJ.-1+X 
J) (XI.XI) (XA.XA)] [CDNJ SIMP SIMP SIMP]]] 
CASES PROVED [(XJ-XX02 = 1) (XJ-XX02 >= 2)] 

goon 

[ 4] PROVED 



Page 156 

Chapter 7. CONCLUSIONS 

7.1 Summary 

We have presented in this thesis a new method for 

proving properties of programs and an implemented 

verification system which uses both this method and Floyd's 

method. The proof method is based on symbolic execution and 

as such relies on the operational semantics of a language. 

It is a generalization of Floyd's method and can be 

effectively used in conjunction with it, especially for 

handling subroutines and recursive procedures. Moreover, it 
can also handle language features such as non-local jumps, 

side-effects and non-determinism. While the method is very 

convenient to use for some programs (e.g. the 91-function), 
for others it can require more detailed specifications than 

are really necessary and hence makes these programs harder 

to verify (e.g. GCD, Section 3.3.1). Thus the method is 
perhaps best seen as a complement to existing methods, one 

which is occasionally preferable to any of them. 

The program verification system is interesting for 

several reasons: firstly for the way it "borrows" the 

semantics of the language as actually implemented, thereby 

obviating the need for a formal definition of the language, 

secondly for the use of high-level specifications, and 

thirdly for the way an interactive theorem prover can 

augment a simple automatic one, Rnabling non-trivial 
programs, including two sorting programs and a program to 
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invert a permutation "in place", to be verified. It is also 

an extensible system, allowing new functions to be declared, 

defined by rules, and given properties which are then used 

by the simplifier and matcher. The major weakness of the 

verification system is that, with the exception of the 

permutation example, we have not been able to use it to 

verify any difficult programs which have not already been 

verified completely automatically by other systems. Even 

those proofs we have done have been quite hard to find 
(certainly while sitting at a terminal) and tedious to 

check. Finally, the system can be very slow, especially 

considering that its automatic theorem prover possesses 

almost no "intelligence". Nevertheless the system has 

achieved a limited success in a difficult area, and with the 

modifications and extensions described in the next section 

could be a useful tool. 

7.2 Improvements an extensions 

Several factors contribute to the deficiencies just 

mentioned. These include the lack of a routine for 

simplifying conjunctions of more than two relational 

expressions (e.g. our system cannot simplify a>b & b>c & c>a 

to false), the implementation of transitivity as an 

inference rule requiring the use of the matcher, the fact 

that rules are applied without considering the hypotheses 

and thus leading to a rather blind search, the limited 

knowledge about quantifiers and sets, and the excessive use 
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Some of these difficulties can be overcome in 
straightforward ways. For example, using a unique 

representation for identical expressions (as in QA4) allows 

a property list to be associated with each expression which 

can facilitate transitivity and set operations, and avoid 

repeated computations of related expressions (e.g. 
negations). Alternatively, and more simply in our system, 

adding the typing and cases mechanism described briefly in 

Good et al. (1974) would also improve our ability to reason 

about relational expressions. 

A more difficult problem is deciding which inference 

rule to apply at any given point. It is clearly necessary 

to consider the hypotheses of both the theorem and the rule 
when doing this. A generalization of our current indexing 

scheme which only applied a rule automatically if every 

"interesting" predicate in the rule's hypotheses also 

occurred in the theorem's hypotheses would surrender 

completeness (which the automatic theorem prover doesn't 

have anyway), but it would drastically reduce the search 

space, allow the search to go deeper and possibly result in 

improved performance. 

But the most important problem is the nature of the 

rules themselves. There are too many rules doing similiar 
things, the user needs to know exactly what they each are, 

and must be able to decide which one is currently 

applicable. More descriptive names alone would help, but a 
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better solution is to give "natural" rather than recursive 

definitions of new functions, for example, 

ordered(a[x,y)) <-> (FA u)(x=<u<y => a[u]=<a[u+1]) 

Our various counting-up and counting-down rules would then 

be combined into rules about the quantifiers only, and to 

prove ordered(a[i,j]) the user would say "count-down" rather 

than "use ORD12". This would also allow uniform heuristics 
for quantifiers to be introduced, thereby lessening still 
further the burden on the user. We are currently modifying 

the system to use such non-recursive definitions. 

Extensions which would make the system more useful 

include the ability to do proofs by Burstall's hand 

simulation method, and the provision of routines for 
manipulating explicit sets, including sets defined by 

abstraction. The first of these would allow the proofs of 

programs such as the Schorr-Waite program to be attempted, 

and the second would be an additional aid to writing 

assertions in the most natural way. 

7.3 Further research 

There are two dimensions in program verification: 

towards increased program complexity, and toward increased 

programming language complexity. This thesis has considered 

both aspects, in the verifier and the proof method 

respectively. While it is a non-trivial task to devise a 
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proof system and write a verification condition generator 

for a language with powerful features (as evidenced by the 

present work and by Igarashi, London and Luckham, 1973), we 

now believe that this is much the less important direction 
of the two. Even in the simplest language it is possible to 

write arbitrarily complicated programs which require a 

considerable body of extra-programming knowledge in order to 

be verified. Thus it seems that mechanized program 

verifiers will only be as successful as the theorem provers 

/ proof checkers which they use. 

The development of effective, powerful interactive 
theorem provers for use in program verification remains a 

difficult problem. There is the question of what is the 

best way to organize such an interactive theorem prover. 

The approach taken by most workers in program verification, 
including ourselves, is to supplement an automatic theorem 

prqver by commands from the user. However, in LCF, the 

basic program is a low-level proof checker controlled by the 

user, to which successively more powerful derived inference 

rules are added. There is also the choice between an LCF / 
Bledsoe natural deduction system and a King / Deutsch / 

resolution system. In the first case it probably does not 

make much differene which choice is taken since they will 

come to the same thing in the end. However it seems that 

interactive systems should be based on a natural deduction 

approach rather than one based on deriving contradictions, 

simply because the resulting proofs in a natural deduction 

system are more similar to the ones people produce, and 
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hence people can more easily interact with and guide such a 

system. 

For program verification to become a widespread, 
profitable activity, it will also be necessary to remove the 
burden of giving detailed specifications from the user. 
Some work has been done on automatically generating loop 
invariants from input-output assertions (German and Wegbreit 

1975), but this by itself seems to be an artificial problem, 

especially since it requires the program to be correct in 
the first place. Moreover, as German and Wegbreit observe, 

since the programmer presumably knows why his program works, 

he can always give at least an outline of this loop 

invariant. It should then be practical to complete this 
invariant, adapting the techniques of Sites (1974) to find 

array subscript bounds, etc., and use it to verify the 

program, 

It might also be possible, especially when using 

continuation induction, to adapt the ideas of Moore (1974) 

and Aubin (1975) who have independently found methods for 
extending the generalization techniques of the Boyer-Moore 

LISP theorem prover to handle iterative programs. Both 

methods involve the introduction .of recursive functions 

describing the state of the computation after an arbitrary 

number of iterations. While these new functions do not 

exactly describe the computation to the end of the loops, 

the fact that in both cases induction is done on the 

remaining length of the computation suggests that their 
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methods could be applied in deriving the function computed 

by a particular loop, particularly if a partial description 

was given initially. 

To carry these ideas even further, the most fruitful 
approach could well be that of interactively constructing 

the assertions and the program simultaneously, continually 

testing their consistency, and using the results of these 

tests in their further development. This approach was 

advocated in Floyd (1971) and was shown to be feasible by 

Deutsch. 

Finally, to verify large programs it will be necessary 

to adopt the principles of abstraction and structure as 

advocated in Dahl, Dijkstra and Hoare (1972) for example. 

As Good, London and Bledsoe observe, to keep the size of 

proofs manageable, abstractions must be used in the 

specifications as well as in the programs. Some progress 

has been made in this direction by the use of array segments 

and defined predicates (ordered, perm) but most programs 

which have been mechanically verified are still too simple 

for the advantages of this approach to be manifest. The 

chief exception is the verification condition generator 

proved correct,' by Ragland (1973). The next step is to start 

by verifying the truly abstract programs which operate on 

sets, bags, graphs, etc. and then showing that the concrete 

program correctly simulates the abstract program using, for 

example, the method described in Hoare (1972). 
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The future progress of (interactive) program 

verification is unclear. There are now several 

well-understood and practical methods for proving properties 

of programs, and it is a question of implementing them as 

effectively as possible. But despite a considerable amount 

of research in the last three years, and the implementation 

of several new verification systems, the complexity of 

verified programs has only increased modestly. To verify 
more complex programs it will be necessary to 

whole-heartedly adopt the structuring and abstraction 

principles referred to above, thereby keeping the proofs 

manageable. There is no reason this cannot be done, and 

with some effort the field should continue to make steady 

progress. 
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Appendix 1: ,totes an POP-2 

In this appendix we give a brief account of those 

aspects of the POP-2 programming language neccessary for the 

reader to be able to follow our examples and description. 
The language was designed and implemented at the University 

of Edinburgh and is described in detail in Burstall, Collins 

and Popplestone (1971). 

POP-2 allows a programmer to represent and manipulate 

various kinds of objects including numbers, words, arrays, 

lists, strings, records and functions. There is no 

distinction between functions and procedures. All 
assignments, argument passing and result returning is done 

using a pushdown stack which is freely accessible to the 

, programmer. To push the number 6 onto the stack and leave 

it there, one writes 

6; 

If there is something on the stack, it can be popped and 

assigned to the variable X by writing 

-> X; 

Thus to assign 6 to X one writes 

6 -> X; (cf. X := 6; in ALGOL) 

One can also use the stack to interchange the values of two 

variables X and Y by writing 

X, Y -> X -> Y ; 
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Function application is invoked by writing, for 
example, 

F(1,2); 

The sequence of actions in this application is that the 

arguments I and 2 are placed on the stack (after having been 

evaluated) and the function stored in the identifier F is 

then applied. F then takes its arguments off the stack. 

Thus the same result is obtained by writing 

1, F(2); 

or 

1, 2; F(); 

Function applications can also be signified by using a dot 

(".") before any identifier (or expression) whose value is a 

function. So the above example can also be written as 

1, 2 F; 

Any function may return more than one result, simply by 

leaving the results on the stack when it exits. 

To define a function with name FOO, formal parameters X 

and Y, and local variables Z and W, one writes 

FUNCTION FOO X Y; 
VARS Z W; 

body 
END 

For example, the function definition 
FUNCTION SUMSQ X Y; 

X"2 + Y"2 
ENO 

defines a new function called SUMSQ whose value is the sum 

of the squares of its two arguments. It is possible to 

declare local variables so that their values are 
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automatically placed on the stack when the execution of the 

function is terminated. Such variables are called output 

locals. The function SUMSQ could also be defined using 

output locals as 

FUNCTION SUMSQ X Y => Z: 
X"2 + Y"2 -> Z 

END 

In this case Z is the output local and its value is placed 

on the stack immediately before the function exits. 
Anonymous functions, or lambda expressions, may also be 

constructed and assigned to variables. For example, 

LAMBDA X Y; X"3 + Y"3 ENO -> F; 

assigns the anonymous function which computes the sum of the 

cubes of its two arguments to the variable F which can then 

be used like any other function. 

Non-local variables in POP-2 take their values from 

their dynamic environment as in LISP rather than from their 
textual (or static) environment as in ALGOL. 

The conditional statement in POP-2 has the form 

IF cond THEN statl ELSE stat2 CLOSE; 

If the condition is true (i.e. it does not evaluate to 0) 

then the first alternative statement is executed; otherwise 

the second statement is executed. FALSE in POP-2 is 0 and 

TRUE is 1. The form 

IF condl THEN statl 
ELSEIF cond2 THEN stat2 

ELSE statn CLOSE; 

can be used to avoid repeated CLOSE's. 



Notes on POP-2 Page 173 

The main iterative statement in POP-2 has the form 

LOOPIF cond1 THEN statl 
ELSEIF cond2 THEN stat2 

ELSEIF condn THEN statn CLOSE; 

This statement evaluates each condition in turn until one of 

them is true (i.e. not 0). It then executes the 

corresponding sub-statement and repeats the whole statement. 

If each condition evaluates to 0 the statement terminates. 

(This statement is a deterministic version of Oijkstra's 

guarded command construction.) The simple case 

LOOPIF cond THEN stat CLOSE 

corresponds to the familiar while-statement: 

while cond dQ, stat 

of other languages. Labels and GOTO's have roughly the same 

syntax as in ALGOL. 

However, since a GOTO statement cannot refer to a label 

outside the function body in which it occurs, the standard 

function JUMPOUT is provided to construct escape functions. 

We write, for example, 

FUNCTION F X: 
IF X=0 THEN ERROR() CLOSE: 
(X+1) / X 

ENO: 

FUNCTION G Y: 
JUMPOUT(LAMBDA: PR('ZEROI ERROR) ENO, 0) -> 

ERROR; 
F(Y) + F(Y"3) 

END 

After JUMPOUT in this example, ERROR is a function of no 

arguments and no results. In fact it is identical to the 

function LAMBDA; PR('ZERO ERROR) END except that as soon 

as ERROR has been executed, execution of G is terminated 
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instead of execution of F being resumed as one would 

normally expect. That is, ERROR has a special "fire-escape" 

which enables it to climb out of G (the function where it 
was created) when it is called. The second argument, 0, of 

JUMPOUT indicates that the function produced returns no 

results. 

A more general state-saving facility allows the user to 

save the complete state of his computation below a 

"barrier", enabling more complex control structures such as 

backtracking and coroutines to be implemented. 

Data structures in POP-2 include words, lists, arrays 

and records. Lists are basically the same as in LISP. 

There are several ways to construct them. For example, the 

expressions 

[A B C D] 
[% "Amp "B", "C", "D" %] 
CONS("A",[B C D]) 
"A" :: [B C D] 
[A B] <> [C D] 

all have the same value, a list consisting of the four words 

"A " "B " "C" and "D". The binary operation :: is the same 

as the function CONS and the binary operation <> is the same 

as the LISP function APPEND. The other main standard 

functions which operate on lists are HD (cf. CAR) which 

returns the first element of a list, TL (cf. CDR) which 

returns all but the first element of the list, and NULL 

which tests whether or not the list is equal to NIL. 
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Arrays in POP-2 are just particular kinds of functions; 

A(I) is the Ith element of the array A. (In our verification 
system, this is written AEI.) To assign 0 to the first 
element of an array A one writes 

0 -> A(1); 

This leads to the concept of a doublet. Every function can 

be given an associated function called an j odater. A 

function which has an updater is called a doublet. The 

function itself is applied normally but the updater is 
applied when it is the top-level function to the right of 

the assignment arrow ("->"). Both HD and TL have updaters, 

so after performing 

[A 8 C] -> X; 
1 -> HD(X); (cf. (RPLACA X 1) in LISP) 

the value of X is the list [1 8 C]. Another standard doublet 

is MEANING which is used to associate information with words 

and hence can be used to implement property lists in POP-2. 

Pairs are an example of records having two components, 

FRONT and BACK which are both doublets. A pair is formed 

with the function CONSPAIR which takes two arguments and 

constructs a record with two components. List cells are 

actually pairs except that the TL of a list in POP-2 must be 

NIL or another list, while the back of a pair can be 

anything. The standard function ATOM returns TRUE if its 

argument is not a pair and FALSE if it is. 
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appendix ,Z.L ,Qefi nits one 

COMMENT ARITH; 

WHEN [% XU>=O %], ABS(XU) __> XU; 
WHEN [% XU<O %], ABS(XU) ==> MINUS(XU); 

WHEN [% XU>=O %], SGN(XU) __> 1: 

WHEN [% XU<O %], SGN(XU) ==> MINUS(1); 

IR TR; COMMENT TRANSITIVITY AXIOM; 
XF (XX ,XZ) <== [% TRANSOP ("XF ") , 

(EX XY)(XF(XX,XY) & XF(XY,XZ)) %]; 
TORULES; 

COMMENT TORULES INDEXES THE PRECEDING RULE UNDER =, >= and =<: 

IR XSQ; 
XX"2 >= 0 <_= NIL: 

COMMENT DIV AND REM; 

WHEN [% 0=<XU, XU<XV XU DIV XV =_> 0; 
WHEN [% XU>=XV, XV>O %], XU DIV XV =_> I + (XU-XV) DIV XV; 

WHEN [% 0=<XU, XU<XV %], XU REM XV =_> XU; 
WHEN [% XU>=XV, XV>O %], XU REM XV =_> (XU-XV) REM XV; 

COMMENT FAC ; 

WHEN [% XU=O %], 
WHEN [% XU>0 %], 

COMMENT GCD; 

FACTORIAL(XU) ==> 1; 

FACTORIAL(XU) ==> XU*FACTORIAL(XU-1); 

WHEN [% XU=O %], GCD(XU,XV) ABS(XV); 
WHEN [% XV=O %], GCD(XU,XV) ABS(XU); 
COMMENT SINCE GCD IS COMMUTATIVE ONLY ONE OF THESE RULES 

EXISTS IN THE ACTUAL SYSTEM; 
WHEN [% XX/=O %], GCD(XX,XX) ==> XX; 
WHEN [% XU/=0, XV/=0 %], GCD(XU,XV) __> GCD(XV, XU REM XV); 

COMMENT CHNG (AND XCHNG) ; 

WHEN [% XJ=XI %], CHNG(XA,XX,XI)\XJ =_> XX; 

WHEN [% XJ/=XI %], CHNG(XA,XX,XI)\XJ =_> XA\XJ; 

WHEN [% XK=XI %], XCHNG(XA,XI,XJ)\XK =_> XA\XJ: 
WHEN [% XK=XJ %], XCHNG(XA,XI,XJ)\XK =_> XA\XI; 

WHEN [% XK/=XI, XK/=XJ %], XCHNG(XA,XI,XJ)\XK ==> XA\XK; 

COMMENT SETS; 
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IR XFO 
XF(XA<<XI,XJ> ,XZ) <== [% XI>XJ 

TORULES: 
IR XF1; 

XF(XA<<XI,XJ>> XZ) 
<__ [% XF(XA<<XI,XJ-1>>,XZ), XF(XA\XJ,XZ) %]; 

TDRULES; 
IR XF2; 

XF (XA<<XI,XJ»,XZ) 
<__ [% XF(XA<<XI+1,XJ>>,XZ), XF(XA\XI,XZ) 

TORULES; 
IR XF3 

XF(XA<<XI,XJ>>,XX) <== [% XF(XA<<XI-1,XJ>>,XX) %]; 
TORULES; 
IR XF4 

XF(XA<<XI,XJ>>,XX) <== [% XF(XA<<XI,XJ+1>>,XX) 
TORULES: 
IR XF5 

XF(XX-XA\XJ,O) 
<__ [% (EX [XI XK])(XI=<XJ G XJ=<XK G XF(XX, XA<<XI,XK>>)) %]; 

TORULES; 
IR XF6 

XF(XA\XJ-XX,0) 
<__ [% (EX [XI XK])(XI=<XJ G XJ=<XK G XF(XA<<XI,XK>>, XX)) 

TORULES ; 

COMMENT EQSEQ; 

IR EQSEQI 
EQSEQ(XA<<XI,XJ>>,XB<<XK,XM>>) <== [% XI>XJ, XK>XM %]; 

IR EQSEQ2 
EQSEQ (XA<<XI ,XJ>>,XB<<XK ,XM>>) 
<__ [% XI=<XJ, XJ-XI=XM-XK, XA\XI=XB\XK, 

EQSEQ(XA<<XI+1,XJ>>,XB<<XK+1,XM>>) 
IR EQSEQ3 

XA\XI=XB\XK 
<__ [% (EX [XJ XM]) (XI=<XJ G XM-XK=XJ-XI G 

EQSEQ (XA<<XI,XJ>>,XB<<XK,XM>>)) %I: 
IR EQSEQ4 

EQSEQ(XA<<XI,XJ>>,XB<<XK,XM>>) 
<__ [% XI-1=<XJ, XM-XK=XJ-XI, 

EQSEQ (XA<<XI-1 ,XJ>>,XB<<XK-1 ,XM>>) %I: 

COMMENT ISIN; 

IR ISIN1 
ISIN (XA<<XI,XJ>>,XB<<XK,XM>>) 
<__ [% XJ-XI=<XM-XK, EQSEQ(XA<<XI,XJ>>,XB<<XK,XK+XJ-XI>>) %]; 

IR ISIN2 
ISIN(XA<<XI,XJ>>,XB<<XK,XM>>) 
<__ [% ISIN(XA<<XI,XJ>>,XB«xK+1,XM>>) %J 

IR ISIN3 
EQSEQ(XA<<XI,XJ>>,XB<<XK,XL>>) 
<__ [% (EX XM)(XL=<XM & XJ-XI=<XM-XK & 

ISIN (XA<<XI ,XJ>>,XB<<XK,XM>>)) %] ; 
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IR ISIN4 
ISIN(XA<<XI,XJ>>,XB<<XK,XM>>) 
<== [ % XJ-XI=<XM-XK+1, ISIN (XA<<XI ,XJ>>,XB<<XK-1 ,XM>>) , 

NOT (EQSEQ (XA<<XI ,XJ>>,XB<<XK-1 ,XK-1+XJ-XI>>)) %1; 

COMMENT ORO(EREO); 

IR OROI 
OROEREO (XA<<XI,XJ>>) <== [% XI>=XJ %J; 

IR OR02 
OROEREO (XA<<XI,XJ>>) 
<__ [% XI<XJ, XA\XI=<XA\(XI+1), OROEREO(XA <<XI+1,XJ>>) %]; 

IR OR03 
XA\XI =< XA\(XI+1) 
<__ [% (EX XJ)(XI<XJ & OROEREO(XA<<XI,XJ>>)) 

IR OR04 
OROEREO(XA<<XI,XJ>>) 
<__ [% XI-1<XJ, OROEREO (XA<<XI-1 ,XJ>>) 

COMMENT PERM; 

WHEN [% XJ<XI %], OCCS(XX,XA<<XI,XJ>>) ==> 0; 
WHEN [% XI=<XJ, XX=XA\XI %], 

OCCS (XX ,XA<<XI ,XJ>>) ==> 1+OCCS (XX,XA<<XI+1 ,XJ>>) ; 
WHEN [% XI=<XJ, XX/=XA\XI %], 

OCCS (XX,XA<<XI ,XJ>>) ==> OCCS (XX,XA<<XI+1 ,XJ>>) ; 

IR PERMI 
PERM (XA<<XI ,XJ>>,XB<<XK ,XM>>) 
<__ [% (FA XX)(OCCS(XX,XA<<XI,XJ>>)=OCCS(XX,XB<<XK,XM>>)) %]; 

IR PERM2 
OCCS(XX,XA<<XI,XJ>>) = OCCS(XX,XB<<XK,XM>>) 
<__ [% PERM(XA<<XI,XJ>>,XB<<XK,XM>>) %]; 

COMMENT LISTS (ANO TREES); 

HO(CONS(XU,XV)) XU; 
TL(CONS(XU,XV)) XV: 
WHEN [% NOT(NULL(XU)) %], CONS(HO(XU),TL(XU)) ==> XU: 

WHEN [% NULL(XU) %], XU<>XV ==> XV; 
WHEN [% NOT(NULL(XU)) %], XU<>XV ==> HD(XU)::(TL(XU)<>XV): 

IR MEMBI 
MEMB(XU,XL) <== [% NOT(NULL(XL)), XU=HO(XL) %]; 

IR MEMB2 
MEMB(XU,XL) <== [% NOT(NULL(XL)), MEMB(XU,TL(XL)) %]; 

IR MEMB3 
NOT (NULL (XL)) <== [% (EX "XU") (MEMB (XU,XL)) %1: 

IR MEMB4 
MEMB(XU,TL(XL)) <== [% XU/=HO(XL), MEMB(XU,XL) %]; 

WHEN [% ATOM(XL) %], FRINGE(XL) =_> XL::NIL; 
WHEN [% NOT (ATOM (XL)) %J, 

FRINGE(XL) ==> FRINGE(FRONT(XL))<>FRINGE(BACK(XL))-. 
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NULL(NIL) ==> TRUE: 
NULL(CONS(XU,XV)) ==> FALSE: 
ATOM(CONS(XU,XV)) FALSE: 
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Appendix ;, Derived rules 

WHEN [% XX>=0, XY>O, XZ>=0 %], 
(XX+XY*XZ) DIV XY ==> XX DIV XY + XZ; 

WHEN [% XX>=O, XY>O, XZ>=O %], 
(XX+XY*XZ) REM XY ==> XX REM XY; 

XX DIV 1 ==> XX; 
(XX*XY) DIV (XX*XZ) ==> XY DIV XZ ; 

WHEN [% XX REM XY = 0 %], (XX DIV XY)*XY ==> XX; 

IR DIV1; 
XX DIV XY >=0 [% XX>=O, XY>0 

IR REM1; 
XX REM XY >= 0 [% XX>=O, XY>0 %]; 

IR REM2; 
XX REM XY =<0 [% XX=<0 %]; 

1->ISASSDC("GCD"); 
1->ISCDMM("GCD"); 
WHEN [% O<XX, XX=<XY %], GCD(XX,XY-XX) ==> GCD(XX,XY); 
WHEN (% XY>O, XX REM XY=O %1, GCD (XX,XY) ==> XY ; 

IR GCD1 
GCD (XU ,XX) = GCD (XV,XX ) 
<__ [% XX/=O, (XU-XV) REM XX = 

CHNG (CHNG (XA,XA\XI,XJ) ,XA\XJ,XI ) 

WHEN [% XU<XI,XV<XI %], 
XCHNG(XA,XU,XV)<<XI,XJ>> 

WHEN [% XU<XI,XV>XJ %1, 
XCHNG (XA,XU,XV)<<XI,XJ>> 

WHEN [% XU>XJ,XV<XI %], 
XCHNG (XA,XU ,XV) <<X I ,X J>> 

WHEN [% XU>XJ,XV>XJ %] , 
XCHNG (XA,XU,XV)<<XI,XJ>> 

0 %]; 

==> XCHNG(XA,XI,XJ); 

==> XA<<XI,XJ»; 

==> XA<<XI,XJ>>; 

==> XA<<XI,XJ>>; 

==> XA<<XI,XJ>>; 

IR CHNG 1 ; 

XF (CHNG (XA,XX,XI)<<XI ,XJ>>, XZ) 
<== [% XF(XX,XZ), XF(XA<<XI+1,XJ>>, XZ) %]; 

TDRULES; 
IR CHNG2; 

XF (CHNG (XA,XX,XJ)<<XI,XJ>>,XZ ) 
<== [% XF(XA<<XI,XJ-1>>,XZ), XF(XX,XZ) %]; 

TDRULES; 

IR XCHNGI 
XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ) 
<== [% XU=XJ, XV>XJ, XF(XA<<XI,XJ-1>>,XZ), XF(XA\XV,XZ) 

TDRULES; 
IR XCHNG2 

XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ) 
<== [% XV=XJ, XU>XJ, XF(XA<<XI,XJ-1>>,XZ), XF(XA\XU,XZ) %]; 

TDRULES; 



Derived rules Page 181 

IR XCHNG3 
XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ) 
<__ [% XU=XI, XV<XI, XF(XA<<XI+1,XJ>>,XZ), XF(XA\XV,XZ) 

TORULES; 
IR XCHNG4 

XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ) 
<__ [% XV=XI, XU<XI, XF(XA<<XI+1,XJ>>,XZ), XF(XA\XU,XZ) %]; 

TORULES; 
IR XCHNG5 

XF(XCHNG(XA,XU,XV)<<XI,XJ>>, XZ) 
<__ [% XI=<XU,XU=<XJ,XI=<XV,XV=<XJ, XF(XA<<XI,XJ>>,XZ) %]; 

TORULES; 

1->ISCOMM("EQSEQ"); 
1->ISTRANS("EQSEQ"); 
IR EQSEQIO 
EQSEQ(XX,XX) <== NIL; 

IR EQSEQ12 
EQSEQ (XA<<XI,XJ>>,X8«XK,XM>>) 
<__ [% XI=<XJ, XJ-XI=XM-XK, XA\XJ=XB\XM, 

EQSEQ(XA<<XI,XJ-1>>,X8«XK,XM-1>>) 
IR EQSEQ13 

XA\XJ=XB\XM 
<__ [% (EX [XI XK]) (XI=<XJ & XM-XK=XJ-XI & 

EQSEQ(XA<<XI,XJ>>,XB<<XK,XM>>)) 
IR EQSEQ14 

EQSEQ (XA<<XI ,XJ>>,X8«XK,XM>>) 
<__ [% XI=<XJ+1, XM-XK=XJ-XI, 

EQSEQ(XA<<XI,XJ+1>>,XB<<XK,XM+1>>) 

IR EQSEQ15 
EQSEQ (XA<<XI,XJ>>,X8«XK,XL>>) 
<__ [% XJ-XI = XL-XK, 

(FA XU)(0=<XU&XU=<XJ-XI =>> XA\(XI+XU)=XB\(XK+XU)) %]; 
IR EQSEQ16 

XA\XU=XB\XV 
<__ [% (EX [XI XJ XK XL]) (XI=<XU & XU=<XJ & XK=<XV & XV=<XL & 

XJ-XI = XL-XK & XU-XI = XV-XK & 
EQSEQ (XA<<XI ,XJ>>,X8«XK,XL>>)) %J: 

IR ISINIO 
ISIN (XA<<XI,XJ>> ,XB<<XK,XL>>) 
<__ [% (EX XM)(XK=<XM & XM+XJ-XI=<XL & 

EQSEQ(XA<<XI,XJ>>,XB<<XM,XM+XJ-XI>>)) 
IR ISIN11 

ISIN (XA<<XI,XJ>>,XB<<XK,XM>>) 
< [% XJ-XI=<XM-XK, EQSEQ(XA<<XI,XJ>>,XB<<XM-XJ+XI,XM>>) %] 

IR ISIN 12 
ISIN (XA<<X I ,XJ>> ,XB<<XK,XM>>) 
<__ [% ISIN(XA<<XI,XJ>>,XB<<XK,XM-1>>) %]; 

IR ISIN13 
EQSEQ (XA<<XI,XJ>>, X8«XK, XL>>) 
<__ [% (EX XM)(XM=<XK & XJ-XI=<XL-XM & 

ISIN(XA<<XI,XJ>>,XB<<XM,XL>>)) %]; 
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IR ISIN14 
ISIN (XA<<XI ,XJ>>,XB<<XK,XM>>) 
<__ [% XJ-XI=<XM-XK+1, ISIN(XA<<XI,XJ>>,XB<<XK,XM+1>>), 

NOT(EQSEQ(XA<<XI,XJ>>,XB<<XM+1-XJ+XI,XM+1>>)) %]: 

IR ISIN20 
NOT(ISIN (XA<<XI,XJ>>,XB<<XK,XL>>) ) <== [% XJ-XI>XL-XK %]: 

IR 0R012 
ORDERED (XA<<XI ,XJ>>) 
<__ [% XI<XJ, XA\(XJ-1)=<XA\XJ, OROERED(XA<<XI,XJ-1>>) 96]; 

IR DR013 
XA\(XJ-1) =< XA\XJ 
<__ [% (EX XI) (XI<XJ & OROEREO(XA<<XI,XJ>>)) 96] ; 

IR DR014 
ORDERED (XA<<XI ,XJ>> ) 
<__ [% XI<XJ+1, OROEREO(XA<<XI,XJ+1>>) %]; 

1->ISCOMM("PERM"); 
1->ISTRANS("PERM"); 
IR PERM10 

PERM(XX,XX) <== NIL: 
IR PERM11 

PERM(XA«XI,XJ>>,XB<<XI,XJ>>) 
<__ [% XA\XI=XB\XI, PERM(XA<<XI+1,XJ>>,XB<<XI+1,XJ>>) 96]; 

IR PERM12 
PERM (XA<<XI,XJ>> ,XB<<XI,XJ>> ) 
<__ [% XA\XJ=XB\XJ, PERM(XA<<XI,XJ-1>>,XB<<XI,XJ-1>>) %]; 

IR PERM13 
PERM(XCHNG(XA,XU,XV)<<XI,XJ>>, XA<<XI,XJ>>) 
<__ [% XI=<XU,XU=<XJ, XI=<XV,XV=<XJ %]: 

IR MEMB5 
MEMB(XU,XV<>XW) <== [% MEMB(XU,XV) %J: 

IR MEMB6 
MEMB(XU,XV<>XW) <== [% MEMB(XU,XW) 96]; 
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Appendix 4,: Programs verified 

This appendix contains a list of the programs verified 

by our system. The list is not complete but it is 

indicative of the upper level of the verifier's performance. 

We have verified some programs using both inclusion 

statements and assertions, and in such cases we show the 

program with each type of specification for comparison. 

The examples in King's thesis have become benchmarks; 

our system can verify all of these examples but we have only 

shown the more interesting of them here. 

Most of these programs required at least some help from 

the user in the verification process. 
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Countino-up factorial 
This is a simple "counting-up" program to compute the 

factorial function. It is basically the same program which 
was used as an example in the introduction. An alternative 
way to describe the program using virtual programs would be 
to use the function prod(j,k) = j*(j+1)*...*k, defined 
recursively, instead of the function div. 

FUNCTION FAC3 N=>R; 
VARS I; 
1->I; 1->R; 

$LOOP: 
LOOPIF I=<N THEN R*I->R; I+1->I; CLOSE; 

$FINISH: 
END; 

VARS NO; 
[NO]->INITARGS; 

ISTAT BOGY FAC3; 
VIRT FACTORIAL (N)->R ; N+1->I ; 

UNDER N>=0; 
WRT [R I]; 

ISTAT LOOP TO [FINISH]; 
VIRT R*FACTORIAL(N) OIV FACTORIAL(I-1) -> R; N+1->I; 

UNDER 0<I & I=<N+1; 
WRT [R I]; 
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Recursive 2j3SL Iterative factorial 
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This is the program discussed in Sections 2.5.2 and 
3.3.2. We show the program twice: once described by virtual 
programs alone, and once using inductive assertions as well. 

FUNCTION FAC4V N=>R; 
1->R; 

$ LOOP: 
LOOPIF N>O THEN N-1->N: R+N*FAC4V(N)->R: CLOSE: 

$ FINISH: 
END: 

VARS NO: 
[N01->INITARGS; 

ISTAT 
VIRT 

BODY REC FAC4V 
FACTORIAL (N)->P: 0->N: 

UNDER 
WRT 

ISTAT 

N>=O: 
[N RI; 

LOOP TO [FINISH] 
VIRT R+FACTORIAL(N)-1->R: 0->N: 

UNDER N>=0; 
WRT [N Al; 

FUNCTION FAC4A NO => R: 
VARS N; 

NO->N; 1->R; 
$ LOOP: 

ASSERT R+FACTORIAL(N)-1 - FACTORIAL(NO) fr N>=O 

$ 

LOOPIF 
FIN: 

N>O THEN N-1->N: R+N*FAC4A(N)->R CLOSE; 

ENO; 

VARS NI: 
[NI]->INITARGS; 

ISTAT 
VIRT 

BOGY REC FAC4A 
FACTORIAL(NO)->R; 0->N 

UNDER 
WRT 

NO>=O 
[N RI: 
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Greatest Qommon visor 

This is a program to find the greatest common divisor 
of two positive integers without using division. It is only 
one of several greatest common divisor programs the system 
has verified, chosen to illustrate the difference between 
the two ways of describing it. We first show the inductive 
assertions for the program, then inclusion statements which 
describe each loop separately, and finally simpler inclusion 
statements which all terminate at the end of the function 
body and do not preserve the loop structure. 

FUNCTION GC03A M N => R; 
$START: 

ASSERT M=MO & N=NO & MO>O & NO>O; 
$LOOP: 

LOOPIF M/=N THEN 
$L 1 : 

ASSERT GCO(M,N)=GCO(MO,NO) & M>O & N>O; 
LOOPIF M>N THEN M-N->M CLOSE: 

$L2: 
ASSERT GCO(M,N)=GCO(MO,NO) & M>O & N>O; 
LOOPIF N>M THEN N-M->N CLOSE: 

CLOSE: 
M->R 

$OUT: 
ASSERT R=GCO(MO,NO); 

ENO; 

VARS MO NO: 
[MO NO]->INITARGS; 
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Greatest common divisor (continued) 

FUNCTION GCD3V M N => R; 
$LOOP: 

LOOPIF M /=N THEN 
$INLPI: 

LOOPIF M>N THEN M-N->M CLOSE; 
$INLP2: 
LOOPIF N>M THEN N-M->N CLOSE: 

CLOSE; 
$OUT: 

M->R: 
ENO; 

VARS MO NO; 
[MO NO]->INITARGS; 

ISTAT BODY GC03V; 
VIRT GCD (M,N)->R ; 

UNOER M>O & N>O; 
WRT (R]: 

ISTAT LOOP TO [OUT] 
VIRT GCD (M ,N)->M ; 
UNOER M>O & N>O; 
WRT [M]; 

ISTAT INLP4 TO [INLP2]; 
VIRT (ANY "Ml")(O<M4 & 

UNOER M>O & N>O; 
WRT [M N]; 

ISTAT INLP2 TO [LOOP]: 
VIRT (ANY "N4")(0<N4 & 

M4=<M & M4=<N 

N4=<N & N4=<M 
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& (M-M4)REM N=O) -> M; 

& (N-N4)REM M=O) -> N; 

UNOER M>O & N>O; 
WRT [M N]; 
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Greatest Common divisor (continued) 

FUNCTION GCD3V2 M N => R; 
$LOOP: 
LOOPIF M/=N THEN 

$INLP1: 
LOOPIF M>N THEN M-N->M CLOSE: 

$INLP2: 
LOOPIF N>M THEN N-M->N CLOSE: 

CLOSE; 
M->R ; 

$OUT: 
END: 

VARS MO NO; 
[MO NO]->INITARGS; 

ISTAT BODY GCD3V2 
VIRT GCD(M,N) -> R 

UNDER M>O & N>0 
WRT [R]; 

ISTAT LOOP TO [OUT] 
VIRT GCD(M,N) -> R 

UNDER M>O & N>0 
WRT [R]; 

ISTAT INLPI TO [OUT] 
VIRT GCD(M,N) -> R 

UNDER M>0 & N>0 
WRT [R]; 

ISTAT INLP2 TO [OUT] 
VIRT GCD (M ,N) -> R 

UNDER M>0 & N>0 
WRT [R]; 
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91-function 

This function was discussed in Section 2.5.1 and its 
proof was shown in Section 6.1. 

FUNCTION FN91 N => R; 
IF N>100 THEN N-10 ELSE FN91(FN91(N+11)) CLOSE -> R; 

END; 

VARS NO; 
[NO]->INITARGS; 

ISTAT BODY REC FN91; 
VIRT IF N>100 THEN N-10 ELSE 91 CLOSE -> R; 
UNDER TRUE; 
WRT [R] 
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AckermaLln's function 

This example shows how Ackermann's function can be 
computed directly for m=<3. If m>3 the virtual program is 
undefined but this is irrelevant as this path is never taken 
in the proof. 

FUNCTION ACK M N => R: 

IF M=0 THEN N+1 
ELSE IF N=0 THEN ACK(M-1,1) 

ELSE ACK(M-1,ACK(M,N-1)) CLOSE CLOSE -> R; 
END; 

VARS MO NO INFINITY; 
[MO NO]->INITARGS; 

ISTAT BODY REC ACK; 
VIRT IF M=O THEN N+1 ELSE 

IF M=1 THEN N+2 ELSE 
IF M=2 THEN 2*N+3 ELSE 
IF M=3 THEN AN+3)-3 

ELSE INFINITY CLOSE CLOSE CLOSE CLOSE -> R: 
UNDER O=<M & M=<3 & O=<N: 

WRT [R]; 
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This function searches the tips of a binary tree for a 
1 as described in Section 2.5.4. If it succeeds it 
terminates by using a JUMPOUT (escape). 

FUNCTION TREEJ T => TV; 
VARS WON; 
JUMPOUT(LAMBOA; $FND: ENO, 0) -> WON; 

FUNCTION SEARCHI T; 
$START: 
IF ATOM (T) THEN 

IF T=1 THEN TRUE->TV; WON() CLOSE 
ELSE SEARCHI(FRONT(T)); SEARCHI(BACK(T)) 
CLOSE; 

$OUT: 
ENO; 

FALSE->TV; 
SEARCHI(T); 

ENO; 

VARS TO; 
[TO]->INITARGS; 

ISTAT START TO [OUT REC FNO] 
VIRT IF MEMB(1,FRINGE(T)) THEN TRUE->TV; WON() 

ELSE GOTO OUT CLOSE 
UNOER TRUE 
WRT [TV]: 

ISTAT BOOM TREEJ 
VIRT MEMB(1,FRINGE(T))->TV 
UNOER TRUE 
WRT [TV]; 
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Matcher 

This program determines whether the array B occurs as a 
subarray of the array A. The proof produced by the system is 
shown in Section 6.2. We show here the program 
specifications using virtual programs and inductive 
assertions successively. 

FUNCTION MATCHV A M B N => BISINA; 
VARS I J ; 

FALSE->BISINA; 
0->I; 

$LOOPI: 
LOOPIF I=< M-N THEN 

1->J; 
$LOOPJ: 

LOOPIF J=<N THEN 
IF A\(I+J)/=B\(J) THEN GOTO BREAKJ CLOSE; 
J+1->J; 

CLOSE; 
$ENDLOOPJ: 

TRUE->BISINA; GOTO BREAKI; 
$BREAKJ: 

I+1->I; 
CLOSE; 

$BREAKI: 
END; 

DECARRAY A [1 M]; 
DECARRAY B [1 N]; 
[%A, "M",B, "N"%]->INITARGS; 

ISTAT BOGY MATCHV; 
VIRT IF ISIN (B<<1 ,N>>,A<<1 ,M>>) 

THEN TRUE ELSE FALSE CLOSE -> BISINA; 
UNDER 0=<N & N=<M; 
WRT [BISINA]; 

ISTAT LOOPI TO [BREAKI] 
VIRT IF ISIN(B<<1,N>>,A<<I+1,M>>) 

THEN TRUE->BISINA; 
ELSE M-N+1->I CLOSE; 
UNDER 0=<I & I=<M-N+1 & 0=<N; 

WRT [BISINA]; 

ISTAT LOOPJ TO [ENOLOOPJ BREAKJ]; 
VIRT IF EQSEQ (B<<J ,N>>,A<<I+J , I+N>>) 

THEN N+1->J: GOTO ENOLOOPJ 
ELSE GOTO BREAKJ CLOSE; 

UNDER 1=<J & J=<N+1; 
WRT [I]; 
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Matcher (continued) 

FUNCTION MATCHA A M B N => BISINA; 
VARS I J ; 

ASSERT O=<N & N=<M; 
FALSE->BISINA; 
0->I; 

$LOOP: 
LOOPIF I-<M-N THEN 

1->J; 
$LOOPJ: 

ASSERT NOT(ISIN (B<<1 ,N>>,A<<1 ,I+N-1>>) ) 
& EQSEQ(B<<1,J-1>>,A<<I+1,I+J-1>>) 
& NOT(BISINA) 
& 1=<J & J=<N+1 & O=<I & I=<M-N & O=<N 

LOOPIF J=<N THEN 
IF A\(I+J)/=B\J THEN GOTO BREAKJ CLOSE; 
J+1->J 

CLOSE; 
TRUE->BISINA; 
GOTO OUT; 

$BREAKJ: 
I+1->I 

CLOSE; 
$OUT: 

ASSERT BISINA<=>ISIN(e«1,N>>,A<<1,M>>); 
END; 

VARS MO NO; 
DECARRAY AO [1 MO]; 
DECARRAY BO [1 NO]; 
[% AO, "MO", BO, "NO" %] -> INITARGS; 
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& N=<M; 
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King's &xamele .a 

This program moves the largest element of an array to 
the top by successive interchanges and was discussed in 
Sections 2.5.5 and 3.3.1. Actually, we have been unable to 
use the system to completely verify the program with the 
specifications given as virtual programs because of a 
difficulty in reasoning about existential quantifiers. 
However, we were able to complete the proof using inductive assertions. 

FUNCTION K6V A N; 
VARS I: 

2->I; 
$LOOP: 

LOOPIF I=<N THEN 
IF A\(I-1)>A\I THEN A\I,A\(I-1)->A\I->A\(I-1) CLOSE; 
I+1->I: 

CLOSE: 
ENO: 

VARS NO; 
OECARRAY AO [1 NO]; 
[%AO, "NO"%]->INITARGS; 

ISTAT LOOP TO [K6VENOJ: 
VIRT (ANYARR "A 1") (EQSEQ (A 1<<1 ,I-2>>,A<<1 ,I-2>>) & 

PERM(A1<<I-1,N>> ,A<<I-1,N>>) & 
A1<<I-1,N-1>> =< A1\N) -> A; 

UNOER 2=<I & I=<N+1; 
WRT [A N]; 

ISTAT BOOY K6V; 
VIRT (ANYARR -Al-) 

UNOER N>=1; 
WRT [A N]; 

(PERM(A1<<1,N>>,A<<1,N>>) & 
A1<<1,N-1>> =< A1\N ) -> A; 
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FUNCTION K6A A N; 
VARS I; 

ASSERT A=AO & 1=<N; 
2->I: 

$LOOP: 
ASSERT PERM(A«1,I-1>>, AO<<1,I-1>>) 

& A<<1,I-2>> =< A\(I-1) 
EQSEQ (A<<I , N>>,A O<<I ,N>>) 
2=<I & I=<N+1; 

LOOPIF I=<N THEN 
IF A\ (I-1)>A\I THEN A\I, A\(I-1) ->A\I ->A\ (I-1) CLOSE; 
I+1->I 

CLOSE; 
$OUT: 

ASSERT PERM(A<<1,N>>,AO<<1,N>>) 
& A<<1,N-1>> =< A\N ; 

END; 

VARS NO; 
DECARRAY AO [1 NO]; 
[% AO, "NO" %] -> INITARGS: 
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The system verified this program automatically except 
for one manual application of INTERM. The specifications 
for this program (and the next one) are given as inductive 
assertions only, but we have shown how these could be 
translated into equivalent inclusion statements. 

FUNCTION K7 A N: 
VARS I NOTORO; 

ASSERT A=AO C. 1=<N; 
TRUE->NOTORO: 

$L1: 
LOOPIF NOTORO THEN 

2->I; FALSE->NOTORO: 
$L2: 

ASSERT NOTORO OR OROEREO(A<<1,I-1>> ) 
C. PERM(A<<1,N>>,AO<<1,N>>) 
C. 2=<I & I=<N+1: 

LOOPIF I=<N THEN 
IF A\(I-1) > A\I THEN 

A\I, A\ (I-1) -> A\I -> A\ (I-1) ; 
TRUE->NOTORD 

CLOSE: 
I+1->I 

CLOSE 
CLOSE: 

$OUT: 
ASSERT OROEREO (A<<1 ,N>>) 

C. PERM(A<<1,N>>,AO<<1,N>>): 
ENO; 

VARS NO; 
OECARRAY AO [1 NO]; 
[% AO, "NO" %] ->INITARGS: 
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LCina's exa mnai 9-: Insert on sort 
The proof of this program is given in Section 6.3. 

FUNCTION K9 A 
VARS I J K X ; 

N; 

ASSERT A=AO & 2-<N; 
1->I: 

$L 1 : 

LOOPIF I<N THEN 
A\I->X; I->K; I+1->J; 

$L2: 
ASSERT 1=<I & I=<K & K<J & J=<N+1 

& I<N 
& X=A\K 
& (I=1 OR A\ (I-1) =< A<<I,N>> ) 
& A<<I,J-1>> >= X 
& OROEREO(A<<1,I-1>>) 
& PERM(A<<1,N>>,AO<<1 ,N>>) ; 

LOOPIF J=<N THEN 
IF X>A\J THEN A\J->X; J->K CLOSE: 
J+1->J; 

CLOSE; 
A\I->A\K; X->A\I; I+1->I; 

CLOSE; 
$OUT: 

ASSERT ORDERED(A<<1,N>>) & PERM(A<<1,N>>,AO<<1,N>>); 
ENO; 

VARS NO; 
DECARRAY AO [1 NO]; 
[% AO, "NO" %]'->INITARGS; 
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Invert &, germ uta ion an grace" 

This program, presented by Knuth (1972, p172), was 

verified after the remainder of the thesis had been 

completed. The proof took about two weeks to find and 

check, and because of its length was done in several 

sessions. The proof is loosely based on that given by 

Burstall (1974) and uses both loop invariants and virtual 
programs in the program's specifications. It depends on the 

fact that a permutation can be decomposed into disjoint 
cycles (as does the program). The proof is complete except 

for the fact that the inverse of a permutation is also a 

permutation and that the relation of two elements being in 

the same cycle (INCYCLE) is an equivalence relation. 

Doing this proof substantiated our belief that it is 
preferable to use definitions involving explicit quantifiers 
rather than recursive definitions, particularly since 

relations such as INCYCLEI are quite difficult to define 

recursively, and our initial attempts to use such a 

definition in the proof failed. 

In the following pages we show the program with its 
specifications and the rules used in the proof. Several of 

the predicates and functions used actually require AO and N 

as additional arguments, but since these remain constant 

throughout they have been omitted. 
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FUNCTION INVERT A N; 

VARS I J K 

$START: 
ASSERT 
N->M; 

$LOOPM: 
ASSERT 

M ; 

N>=1 Ps A=AO & ISPERM(AO<<1,N>>); 

O=<M & M-<N & ISPERM(AO<<1,N>>) & FA "Q")( 
(M<Q & Q=<N =>> A\Q = INV(AO)\Q ) & 
(1=<Q & Q=<M & INVERTED(Q,M) =>> A\Q = 0-INV(AO)\Q ) 

(1=<Q & Q=<M & NOT(INVERTEO(Q,M)) =>> A\Q = AO\Q )); 

LOOPIF M>=1 THEN 
A\M->I ; 

IF I<0 THEN 
ELSE M->K: 

$LOOPI: 

O-->A\ M 

LOOPIF I /=M THEN 
A\I->J: (O-K)->A\ I: 

CLOSE; 
K->A\M: 

$FIN: 
CLOSE: 
M-1->M: 

CLOSE; 
$OUT: 

ASSERT 
END; 

(FA "Q")(1=<Q & Q=<N 

VARS NO: 
DECARRAY AO [1 NO]; 
[% A0,"NO" %] -> INITARGS: 

I->K; J->I; 

=>> A\Q = INV(AO)\Q): 

ISTAT LOOPI TO 
VIRT (ANYARR 

[FIN] 
"B")((FA "R")((R=M =>> B\R = INV(AO)\R ) & 

(R/=M & INCYCLEI(I,R,M) =>> B\R = 0-INV(AO)\R ) & 

UNDER 1=<K 
(NOT(INCYCLEI(I,R,M)) =>> B\R = A\R) )) -> A; 

& K=<N & 1=<M & M=<N & I=AO\K & ISPERM(AO« 1,N>>) & 
(EX 
(FA 

"V")(O=<V & V<LEN(I) & M=ITFN (I ,V)) & 
"S ") (INCYCLE I (I ,S ,M) =>> A\S=AO\S) 

WAT [A M]; 
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Permutation (continued) 

INCYCLEI(XK,XQ,XM) 
(EX [XU XV])(0=<XU & XU=<XV & XV<LEN(XK) & 

XQ=ITFN(XK,XU) & XM=ITFN(XK,XV)); 

INCYCLE(XP,XQ) 
__> (EX XU)(0=<XU & XU<LEN(XP) & XQ=ITFN(XP,XU)); 

INVERTED(XQ,XM) 
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(EX XI) (XM<XI & XI=<N & INCYCLE (XI,XQ)) ; 

IR 14 
ISPERM (XA<<XM,XN>>) 
<__ [% (FA XQ)(XM=<XQ & XQ=<XN =>> (XM=<XA\XQ & XA\XQ=<XN)), 

(FA [XP XQ]) (XM=<XP & XP=<XN & XM=<XQ & XQ=<XN & 

XP/=XQ =>> XA\XP /= XA\XQ ) %] ; 

IR 15 

XM =< XA\XQ 
<__ [% (EX XN)(XM=<XQ & XQ=<XN & ISPERM(XA<<XM,XN>>)) 

IR 16 

XA\XQ =< XN 
<__ [% (EX XM) (XM=<XQ & XQ=<XN & ISPERM(XA<<XM,XN»)) 

IR 17 
XA\XP /= XA\XQ 
<== [% (EX [XM XN])(XM=<XP & XP=<XN & XM=<XQ & XQ=<XN f, 

XP/=XQ & ISPERM(XA<<XM,XN>>) ) %]; 

IR 20 
INV(XA)\XI = XJ <__ [% XA\XJ = XI %]; 

IR 21 
ISPERM (INV (XA )<<XM,XN>>) [% ISPERM(XA<<XM,XN>>) %]; 

ITFN(XP,O) ==> XP; 
WHEN [% XX/=0 %], ITFN(XP,XX*LEN(XP)+XY) ITFN(XP,XY); 
ITFN (ITFN (XP,XJ ),XI) ==> ITFN (XP,XI+XJ) ; 

AO\XP ==> ITFN(XP,1); 

IR LO 

IR 
1 =< LEN(XM) <_= 

L 1 

NIL; 

IR 
XI 
L2 

= LEN(XP) [% ITFN(XP,XI)=XP, 0<XI, XI=<LEN(XP) 

XI = XJ 
<__ [% (EX XP)(ITFN(XP,XI)=ITFN(XP,XJ) & 

0=<XI & XI<LEN(XP) & 0=<XJ & XJ<LEN(XP)) %]; 
IR L3 

XI = LEN(XA\XP) <__ [% XI = LEN(XP) %]; 
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Permutatian (continued) 

IR 101 
INCYCLE(XM,XM) <_= NIL; 

IR 102 
INCYCLE(XQ,XM) [% INCYCLE(XM,XQ) %]; 

1->ISTRANS ("INCYCLE") ; 

IR 105 
1=<XQ 
<__ [% (EX [XK XM])(1=<XK & XK=<N & 1=<XM & XM=<N & 

INCYCLEI(XK,XQ,XM) 
IR 106 

X Q= <N 
<__ [% (EX [XK XM])(1=<XK & XK=<N & 1=<XM & XM=<N & 

INCYCLEI(XK,XQ,XM)) %]; 
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Aooendix .: Listing 2f matcher 

[LIB ASSOC].LIBRARY.COMPILE; 

VARS INST INSTL APSUBSTI SUBXS ASUBXS ASUBXSI ACSUBXS ACSUBXSI; 

COMMENT'**************************************************** 
* INSTANCE IS THE ASSOCIATIVE, COMMUTATIVE MATCHER - 
* CALLED BY 
* INSTANCE(TERM,PATTERN) => SUBSTITUTION-LIST 
**********************************************************@. 

FUNCTION INSTANCE TERM PAT; 
INST(TERM,PAT,ASSNIL()); 

END; 

FUNCTION INST TERM PAT SIG; 
VARS PATN PATL TERML Si GENSUBXS; 
IF ISVAR(PAT) THEN COMMENT 'VARIABLE@; 
ASSOC(PAT,SIG)->SI; 
IF SI=UNDEF THEN [%UPDASSOC(TEflM,PAT,SIG)%] 
ELSEIF EQX(S1,TERM) THEN [%SIG%] 
ELSE NIL CLOSE 

ELSEIF ISPRIM(PAT) THEN COMMENT 'CONSTANT@; 
IF EQX(PAT,TERM) THEN [%SIG%] ELSE NIL CLOSE; 

ELSE COMMENT 'FUNAP@; 
FUNNAME(PAT)->PATN; FUNARGS(PAT)->PATL; 
IF ISASSOC(PATN) THEN 

IF ISCOMM(PATN) THEN ACSUBXS ELSE ASUBXS CLOSE -> GENSUBXS; 
IF ISFUNAP(TERM) THEN 

IF PATN=FUNNAME(TERM) THEN 
INSTL(FUNARGS(TERM),PATL,PATN,SIG,GENSUBXS) 

ELSE INSTL([%TERM%],PATL,PATN,SIG,GENSUBXS) 
CLOSE 

ELSE INSTL([%TERM%],PATL,PATN,SIG,GENSUBXS) 
CLOSE 

ELSEIF ISFUNAP(TERM) AND PATN=FUNNAME(TERM) THEN 
FUNARGS(TERM)->TERML; 
INSTL(TERML,PATL,PATN,SIG,SUBXS); 
IF ISCDMM(PATN) AND NOT(EQX(HD(TERML),HD(TL(TERML)))) 

AND NOT(EQX(HD(PATL), HD(TL(PATL)))) THEN 
<> INSTL(REV(TERML),PATL,PATN,SIG,SUBXS); 

CLOSE 
ELSE NIL CLOSE 

CLOSE 
END; 
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FUNCTION INSTL TERML PAIL OP SIG GENSUBXS => SIGS; 
COMMENT***************************************************** 
* MATCH THE ARG-LIST TERML AGAINST PATL IN ALL POSSIBLE WAYS, 
* OEPENOING ON THE PROPERTIES OF OP AS OESCRIBEO BY GENSUBXS 
**********************************************************@; 
VARS PAIR PAIRS ISIG ISIGS IOENT; 
IF PATL.NULL THEN 

IF TERML.NULL THEN [%SIG%] ELSE NIL CLOSE->SIGS; 
EXIT: 
IOENTOF(PATN)->IDENT; NIL->SIGS; 
LOOPIF TERML/=NIL ANO EQX(HO(TERML),IOENT) 

THEN TL(TERML)->TERML CLOSE; 
GENSUBXS(TERML,OP)->PAIRS; 
LOOPIF PAIRS/=NIL THEN OEST(PAIRS)->PAIRS->PAIR; 

INST(FRONT(PAIR),HO(PATL),SIG)->ISIGS; 
LOOPIF ISIGS/=NIL THEN OEST(ISIGS)->ISIGS->ISIG; 

INSTL(BACK(PAIR),TL(PATL),OP,ISIG,GENSUBXS) <> SIGS -> SIGS; 
CLOSE; 

CLOSE; 
ENO; 

FUNCTION SUBXS XL OP; 
IF NULL(XL) THEN NIL ELSE XL::NIL CLOSE; 

ENO: 

FUNCTION ASUBXS XL OP => XS; 
COMMENT'**************************************************** 
* XS IS THE SET OF ALL POSSIBLE (INITIAL) PARTITIONS 
* OF THE ARGLIST XL INTO A TERM ANO REMAINING ARGLIST, 
* EG, ASUBXS([A B],".") (1,[A B]), (A,[B1), (A.B,NIL) ], 
* WHERE (IOENT(".")=1) 
**********************************************************@: 
VARS N LB; 
LENGTH (XL )->N: 
IF IOENT=UNOEF THEN I ELSE 0 CLOSE -> LB; 
[% LOOPIF N>=LB THEN ASUBXSI(XL,N); N-I->N CLOSE %] -> XS; 

ENO: 

FUNCTION ASUBXSI XL N; 
CONSPAIR( 
ABBREV([%LOOPIF N THEN XL.OEST->XL; N-I->N CLOSE%],OP,IOENT), 
XL); 

ENO; 

FUNCTION ACSUBXS XL OP => XS; 
COMMENT'**************************************************** 
* LIKE ASUBXS, BUT FINOS THE SET OF ALL POSSIBLE SUBBAGS, 
* EG, ACSUBXS([A B1,".") _ ( A,[B]), (B,[A1) ], 
* WHERE IOENTOF(".")=UNOEF 
**********************************************************@; 

NIL->XS ; 

ACSUBXSI(REV(XL),NIL,NIL); 
ENO; 
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FUNCTION ACSUBXSI XL S1 S2: 
COMMENT 'SINCE XL IS SORTEO, EQUAL ELEMENTS ARE AOJACENT@; 
VARS X L; 
IF NULL(XL) THEN 

UNLESS IOENT=UNOEF ANO NULL(S1) 
THEN CONSPAIR(ABBREV(S1,OP,IOENT),S2)::XS->XS CLOSE; 

EXIT; 
OEST(XL)->XL->X; X::S1->L; 
LOOPIF XL/=NIL ANO EQX(X,HO(XL)) THEN X::L->L; TL(XL)->XL CLOSE; 
LOOPIF L/=S1 THEN ACSUBXSI(XL,L,S2); OEST(L)->L->X; X::S2->S2 
CLOSE; 
ACSUBXSI(XL,L,S2); 

ENO; 

FUNCTION ABBREV XL OP 10; 
COMMENT'**************************************************** 
* CONSTRUCT THE TERM WITH FUNCTION OP, NORMALIZEO ARGLIST XL, 
* ANO IOENTITY 10. OP MUST BE ASSOCIATIVE. 
* ABBREV IS ONLY REALLY REQUIREO WHEN A NORMALIZING FUNCTION 
* WHICH KNOWS ABOUT INVERSES IS USEO. 

IF NULL(XL) THEN 10 
ELSEIF NULL(TL(XL)) THEN HO(XL) 
ELSE MKFUNAP(OP,XL) CLOSE; 

ENO: 

FUNCTION UPOASSOC CPT SUB ASS; 
COMMENT 'A CONSTRUCTIVE UPOATER FOR ASSOC, 

ASS MUST BE UNOEFINEO AT SUB!; 
ASSCONS(ASSFAIL(ASS),ASSEQ(ASS),ASSLCONS(CPT,SUB,ASSOF(ASS))); 

ENO; 
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1. Introduction 

We present here a proof of the correctness of an algorithm, due 

to Schorr and Waite (1967) and to Deutsch (Knuth 1968, p.417), which 

traces and marks an arbitrary list structure, and which can be used 

for the first stage of garbage collection. The algorithm is of 

interest because of the clever way it avoids using a stack. by 

manipulating pointers within the structure, restoring them all at the 

end. The general problem of data structure updating is a difficult 

one, and work on it has been done by Burstall (1972), Morris (1972), 

Poupon and Wegbreit (1972) and Kowaltowski (1973), though we have not 

used any of their methods. 

The correctness proof of the Schorr-Waite algorithm given here 

is simpler than those given by Poupon and Wegbreit, or Kowaltowski. 

Our proof is factored into properties of the algorithm itself, and 

properties of the data structure upon which it operates. In fact, one 

can use these latter properties to prove correct two simpler versions 

of the algorithm, one using recursion and"the other an explicit stack. 

The proof involves not inductive assertions (Floyd 1967), but 

mathematical induction on the size of the structure to be marked. It 

can be formalized using the method of Burstall (1974), itself a variant 

of Manna (1969). 

The method of proof was suggested by a hint in Knuth (1968, p.420).* 

John Reynolds (1974) has used similar techniques in his treatment of 
Tar,j&i's algorithm (1972). 
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2. The problem of marking 

We are given a set of nodes, i.e. list cells, each node containing 

two fields (hd,tl) which may contain atoms or pointers to other nodes, 

a mark bit (m), and, for the Schorr-Waite algorithm, a flag bit (f); 

we are also given a particular starting node z0. The structure may 

contain shared and cyclic sublists. Initially all the mark bits are 

set to 0. The problem is to set the mark bit of every node reachable 

by a finite sequence of hd's and tl''s from z0 to 1. 

The main difficulty in proving that an algorithm to solve this 

problem is correct is that the natural technique of structural 

induction does not work; because lists may be cyclic there is no 

sense in which hd(x) is less than x (they may even be the same node). 

An added difficulty in verifying the Schorr-Waite algorithm is showing 

that, apart from the mark bits, the structure is the same at the end as 

it was at the start, despite the destructive updating of the nodes. 

To overcome these difficulties we introduce the following concepts 

before discussing the actual algorithms. 

3. Properties of marked list structures 

Let C be the set of all nodes, A the set of all atoms, and 

7: C->(C U A)2X{0,1}2 the set of possible machine states. 

Definition We define functions hd6-, t16-: C->C U A, m6,f6- : C->{0,1 { 

by hd -c = x1 where 6'(c) = <x1,x2,b1,b2>, 

tl6c=x2 It to 

m6-c=b1 if it 

f6c=b2 it :1 

Fe further define Marked: f ->2C by Narkedb ={c E C: m6. c=1 }. 
The subscript T is often omittodfrom these functions where this can be 

done unambiguously. 

The 
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The key idea is to define the set of unmarked nodes reachable 

from a given node. This is the purpose of the following definitions. 

Definition The predicate ispath: L. x(C U A)2->{true,false}, is 

defined by ispath6(x,y) iff there exists a finite sequence 

x0,x1,...,xn, n>0 of distinct/nodes in C such that x0=x,xn=y, for 

0<i<n, m4-x.=0, and for 0<i.<n, xi+l=hd6-xi or xi+l'tl6-x.. Such a 
3. 

sequence is called a path (w.r.t. cr). 

We can now define nodes: x(C U A)->2" by 

nodes.(x)=ly r- C 
) ispath,s(x,y)}. 

We assume that C, and hence nodes6(x), is a finite set throughout. 

Fact 1 For all x, 6, nodes,'(x) =/ if x E (A U Marked 

={x} U nodes6(hd6x) J nodes.(t] x) otherwise. 

Proof Clearly if x E A U Marked, i spati.(x,,y)=false for all y c C, so 

nodes(x)=O. 

Suppose x / A U Marked, and let y E nodes(x). 

If y=x they. y E {x} U nodes(hd x) U node,(tl x). 
Otherwise ispath(x,y), i,e. x=x0,x1,x2,...,xn=y, n>1, where x1=hd x 

or x1=tl x, is a path. Suppose x1=hd x, then ispath(hd x,y), so 

y E nodes(hd x). 

Now let y E {x} U nodes(hd x) (3 nodes(tl x). 
If y=x, since x / A U Marked, ispath(x,x), so y E nodes(x). 

Otherwise y E nodes(hd x), say, and hd x=x0,x1,...,xn=y, n>0 is a path. 

If for some i, 0<i<n, x 
1 
,=x, than ispath(xry) and y E nodes(x). 

Otherwise x,hd x=x0,x1,...,xn=yn is a path, and agair_, y E nodes(x). 

Fact 2 For all x,y, 6' , if y E nodes6(x), then m67x=0. 

Proof Immediate from the definitions of nodes and ispath. 

Definition For 61 , 6' 2 E , define 1 G. T2 if Markedi f2 (- Marked61, 

hd62=hd3 
62 

,tl6l=tla.2 and f61=fd2, i.e. if there are fewer unmarked nodes 

in 6'1 than ±n -T2-. (In cases like this we say Marked6,2 C Marked61 

and/ 
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and (1 = (72 other; ise.) The relation [,:is clearly a partial order- 

Fact For all x, 6' 1 , (T 2, if 61 C 62, then nodes 61 (x) c nodes62(%) 

Proof Let y E nodesGl(x), i.e. ispath6.1(x,y). 
But as hdl =hd672' tl 1=t162 and m61 xi=0->m62xi=0, i spath62 (x, y) . 

Hence y E nodes 
62 

W. 

Definition 1^'o define mark: Cx Z ->,f by mark x 
(6')= 6' where V= 6' 

(i.e. hd6 =hd 6 t16 =tl 6. , and f6 =f 6' ,) except that m5,y=l iff 
m .. y=1 or y E nodes6(x). This concept is important for describing 
the effects of the marking algorithms. 

Fact 4 For all x,y, (1 , nodes 
mark (6-) 

nodes 

i.e. marking one node's descendants and then th other's is the same as 

marking them all together. 

Proof a) markx(") so nodesm k (6)(Y) nodes6(y) (Fact 3) - 
x 

Thus nodes 
mark 0-) 

(y) U nodes 
G - (x) C. nodes6 (y) U nodes6(x). 

x 
b) let z E nodes 6(y) , and let y=y0, yl , ... ,yn=z, n>0 be a path. 

If for all i, O<i<n, m 6 markx (y).-0, ispath markx (y,z), so 
( ) i (6") 

z E nodes wark (6)(Y). 

Otherwise, let j i>0 
mmar1 (6)(yi) 1. 

Since m6y=0, yi E nodes6(x), and ispath6(x,yj). 
Clearly ispatheTj(yj ,z), so isnath6(x,z) and z E nodes6(x). 
Hence nodes6(y)c nodes 

mark. (6')(y) U nodes6(x), and the result follows. 
x 

Fact 5 For all x, 61, 5"2, if Marked -Marked6.1 U IXx / Marked,c.1, 

and 451, (T2 otherwise, then nodes6.1(x)={x} U nodes62(hd x) U nodes6?(tl x). 

Proof a) since 6 *2 CT1, node s.2(hd x) c nodes6.1 (hd x) and 

rodes62(tl x)G nodes 61 (tl x). 
So {x} U nodcs(2(hd x) U nodes62(tl x) C. {x} U nodes5.1 (hd x) U nodesGl (tl x) 

If/ 

=ncdes61(x) (x 
,, A U Markeda1, Fact 1). 

b) let E nodes 61(x), i.e. x=x0,xl,...,xn=y, n>0 is a path (w.r.t. ;5"1). 
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If n=0, y=x and y E {x} U nodeso.2(hd x) U nodes.2(t1 x). 
Otherwise, x1=hd x, say, so ispath62(hd x,y) and y E nodes 12(hd x). 

Thus nodes1 (x) C {x} U node s6.2(hd x) U nodesb.2(tl x). 

4. Two simple algorithms 

The facts we have derived so far are sufficient and necessary 

to prove the correctness of the following two ancestors of the Schorr- 

Waite algorithm. The first, recursive program is perhaps the simplest 

possible marking algorithm. The second is obtained by replacing the 

recursion by an explicit stack. The proofs of these programs are 
analogous to the one we are about to give, only simpler as no destructive 

assignment is involved. We omit these proofs here. 

Program 1 

MAY <= if not(atom(Z)) and m(Z)=O 
then m(Z)<-1; Mk(hd(Z)); Mk(tl(Z)) fi; 

Mk(Z0); 

Program 2 

Start: Z<.-Z0; S<-empty; 

Loop : while not(atom(Z)) and m(Z)=0 

do(m(V)<*1; S<-push(Z,S); Z<-hd(Z)); 

if Sempty than Z<-pop(S); Z<-tl(Z); goto Loop fi; 

Finish: 

5. The Schorr-Waite algorithm 

This algorithm saves the stack of Program 2 in the already marked 

nodes. The f-bit is used to determine whether the back pointer to the 

next node of the stack is in the hd or the tl of the current node (X). 

Initially all the f-bits are 0. To handle this destructive updating 

wo introduce the following: 

Definition/ 
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Definition For 6`1, 672 E 2:, define 61162 if Narked,1=Marked,.2 

and for all x A Marked6.1, 61(x)= 62(x), i.e. 61 and 6 2 only differ 
on marked nodes. 

Fact 6 If 61"- 2 then for all x, nodes6.1 (x)==node PT2(x). 

Proof. Clearly ispath6.1(x,y) iff ispath2(x,y) and the result follows. 

We now give the algorithm. The comma as a connective for the 

multiple assignment statement merns that all left and right hand values 

are calculated, and then the assignment; are carried out simultaneously. 

Start: Z<-Z0; X<-nil; 

P1: while not(atom(Z)) and m(Z)=0 

do(m(Z)<-1, hd(Z)<-X, z<-hd(z), x<-z); 

P2: if Xnil then mo Finish fi; 
if f(X)=0 

then f(X)<-1, hd(X)<-Z, tl(X)<-hd(X). Z<-tl(X); goto P1 

else f(X)<-0, tl(X)<-Z, X<-.-tl(X), Z<-X; goto P2 fi; 

Finish: 

Before stating and proving the correctness criterion we still need 

to introduce a little more notation. We write f[x t->y] for the function 
g defined by g(z) <= if z=x then y else f(z). Following Burstall 

(1974) we write "P: X1=x1, X2=x2,..." as an abbreviation for "there 

exists a stage of the execution when the computation is at label P, 

and the identifiers Xi have the values xi". When we say "by 

computation" during a proof we mean "by observing the effects of the 

assignments on the state vector". We introduce an imaginary variable, 

Store, whose value is the current state. 

Theorem If Start: Z0=z0, Store=(1 where for all y e nodes5(z0) ff.y=0, 

then Finish: Z0=z0, Store=markz (6), i.e. all the nodes reachable from 

..0 are marked but otherwise unchanged. 

Proof 
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Proof Letting z=z0 and x=nil, this theorem can. be seen to follow 

immediately from the following lemma. 

Lemma If P1: Z=z, X=x, Store= (r where for ally E nodesG(z) f6y=0, 

then P2: Z=z, X=-x, Store=mark 7(6). 

Proof The proof is by course of values induction on the size of 

nodes-(z). Notice how the induction hypothesis is used twice, 
corresponding to the two recursive calls of Program 1. 

Basis I nodes(,-(z) I =0, i.e. Z E A U Marked,-, the first test fails, 
and the result is immediate. 

Step I nodes6(z`/ 1 L0, i.e. z, A U Marked. 
Let hd6z=u, t1U7=v and T[*-><hd6z,tl5z,l,fz>]=6', i.e. 6'=S 
except that mCT ,z=1. 

Since z , A U Marked., the body of the while statement is 
--61 = r[zf-> <x, t.l,-z, 1 , f6.z> ]. executed once, yielding P1 : Z=u, X=z, Store 

Now, nodes6l (u)=nodes 61 (hd.z) 

=nodes5, (hkz) (6 ti'6' , Fact 6) 

c nodes-(Mc -z) Fact 3) 

c nodes6(z) (Fact 1). 

But m61z=1, so z A nodes 61(u) (Fact 2). 
Since Z E nodes -(z), nodes (u) nodesy(z), and { nodes(., (u) I < i node 

61 
s6(z) 

We can now use the induction hypothesis, i.e. the lemma with 

z=u, x=z, 6 = T1, to obtain 

P2: 'Z,=u, X=z, Store = 62=mar1c (61) . 

Now, as F,/nil, and f.2z=0, by computation we have 

P1 : Z=v, X=z, Store=53=62[zI_><u,hd?z,m52z,1>]. 

Thus hd63z-hd6z, tlf7 3z=hd62z-x, and (S3^- 67'. 

As before, nodes63(v)=nodes63(ti6z) 

=nodes.,, (tl6.z) (Fact 6) 

C. nodes6-(tl6-z) (6' G (T, Fact 3) 

c nodes,(z) (Fact 1), 

and 
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,and as s3z=1, z / nodes3(v), so Inodes63(v) ! 
< ) nodes,5(z) 1. 

Again we use the induction hypothesis to obtain 

P2: Z=v, X=z, Store=G4-mark v(63). 

This time z/nil, but f...4 z=1, so computation yields 

P2: Z=z, X=x, Store 65= (T4[zi-><hd6-4z,v,m,S4z,O>]. 

Thus hd5z=u=hd6z, t165z=v=tl6-z and f,5z=0. Since applying markX 

to 6' does not affect hd F, tlT or fS, hd,f 5=hdp t7.6 5=t1 and fG 5=f.. 

It only remains to show that S5-mark 7(T), i.e. that 
14arkeds,5=nodes.(z) . 

Marked5={z} U nodes5.1 (u) U nodes 6'3(v) 

={z} U nodes 61(u) U nodes 
ma rk (61)(v) (63-c2=mark1z(S1), Fact 6) 

{z} U nodes61 (u) (,j nodess1 (;v) (Fact 4) 

{z} U nodes., (u) U nodes, (v) 1"- 6'', Fact 6) 

-nodesfj(z) (Fact 5) 

This completes the proof. 

An alternative method of proof is to first prove Program 2, a 

purely constructive program usin* this method. and then, using the 

techniques of Milner (1971) or Hoare (1972) to show that the Schorr- 

Waite algorithm simulates Program 2. In particular the representation 
function, Rep, for the stack in the Schorr-Waite algorithm is defined 

by Rep(X) <- if X=nil then empty 

elseif f(X) i then RRep(tl(X)) 

else push(X,Rep(1)d(X))). 

However the resulting proof by this approach is longer than the one we 

have given. 

6./ 
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