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ABSTRACT 

The use of a photon 'count correlator for analysing 

• 	different flow situations is described. The problem of 

flow parameter estimation from.thecorrelogram is discussed 

in some detail. After describing some approximate methods, 

the least square fitting and Fourier. transformation methods 

are considered. The effect of frequency shifting on .par-

meter estimation is described. The use of high resolution 

spectral estimators such as theMaximurn Entropy and Naximum 

Likelihood spectra have been considered. An experiment 

on a sinusoidall, fluctuating flow is described. The error 

involved in uniform random clipping of photon counts in 

order to make the correlogram independent of the field 

• statistics is derived. 	 . . . 

• 	The errors in the determination of the mean and variance 

of the velocity using a bu±st counter are derived. This is 

• accomplished by assuming Poisson sampling of a continuous 

velocity record with a known correlation functiOn. The 

method d± obtaining the turbulence spectra fromthe burst 

counter data is described. 	 . . 

KEY WORDS : Laser Doppler Velocimeter, Photon Correlator; 

Turbulence, Periodic Flow, Parameter Estimation, Least Square 

Pitting, Fourier Transformation, Maximum Entropy and Maximum 

Likelihood Spectra, Burst Counter, Poisson Samplii and 

Error Estimation. 	. 	 . 	 .. . 
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CHAPTER 1 

INTRODUCTION 

Photon counting techniques have been used in various 

branches of physics, chemistry and biology. It is due to 

the high sensitivity of these techniques that it has been 

possible to investigate a large number of interesting 

light, scattering phenomena. The use of high speed clipped 

digital correlators for analysing the detected photon counts 

in real time has led.to many applications. During the last 

few years the correlator has been used with a Laser Doppler 

Velocimeter (LDV), ' Unlike previous LDV procesors, the, 

photon cbunt correlator does not rquire a continuously 

varying intensity at the detector when a particle traverses 

the scattering volume. 	 0 

In chapter 2 the basic principles of the LDV are 

described briefly. Different optical configurations are 

considered, but emphasis is on the cross-beam system 

which is commonly used with a photon count correlator. 

Expressions for the correlation functions for sinusoidally 

fluctuating flow and turbulent flow with Gaussian statistics 

are obtained. The use of periodic sampling of the detector's 

output/input for the analysis of periodically fluctuating 

flows is described. It is shown how the variation in 

particle density in the flow can be determined using a 

correlator. 
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The estimation of flow parameters from a correlogram 

is discussed in some detail in chapter 3. After describing 

some approximate methods of parameter estimation the non-

linear least square fitting of the correlogram to a 

model is described. The Fourier transformation of a fully 

damped correlogram into the spectral plane is shown to be 

the most convenient method of parameter estimation. By 

proper frequency shifting most correlograms can be 

completely damped before the last lag value. The use of 

high resolution spectral estimators is also illustrated. 

The burst counter has been used with considerable 

success in analysing flows with low particle density. In 

chapter 4 the errors in estimating the mean and variance 

of 'the velocity from the data obtained from the burst 

counter are derived. Iis necessary to assume the form 

of the velocity correlation function. 	Exponentially 

decayed and Gaussian corrlã.tion functions are examined. 

The method of obtaining turbulence spectra is also presented. 

In appendix A results are presented of.experiments' on 

a sinusoidally fluctuating flow. This involved the 

investigation of the flow behind, a circular cylinder placed 

in a steady air-flow.. A'hot-wire anemometer was used to 

compare results with those obtained from correlograms 
( 

a 48' channel Pre.on Devices photon correlator was used 
). 

Appendix B consists of. a paper which discusses the 

error involved in uniform random clipping of photon' counts used 

in order to make the correlogram independent of field,statigtics. 

A list of reports and papers written during the course 

of this. thesis is presented. 	' 

0 
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C.'HAPTER 2 

APPLICATION of CORRELATION TECHNIQUE to FLOW NEASITRENENT 

§ 1. 	INTRODUCTION 	 S  

The statistical and instramerital developments in photon-

counting and photon-clipping techniques have been discussed by 

JAKEMAN( 41,0ecause of the use of digital circuits these methods have a 

• 	much higher sensitivity than analogue techniques for obtaining the 

intensity correlation function of scattered light. ABBISS et al (1972) 

succeeded in measuring the flow velocity using light scattered from 

• . 	naturally occurring dust particles in a wind tunnel using a photon 

correlator. MENEELY et at carried, out a similar experiment for 

measurement of flow in a jet. They identified the "self-beat tt  and •, 

."cross-heat" components in the correlogram. 

BOURKE et at in an important paper described the spectrum 

obtained using the reference beam heteiodyne technique and the homodyne 

technique in the measurement of turbulent flows. They discussed the 

influence of the concentration of scatterers and the strength. and 

coherence of the scattered light on the different components of the 

spectrum. ADRIAN & COLDSTEIN have obtained similar results. EDWARDS 

et at (1971, '73) related the spectrum to the Van Hove space-time 

correlation function and by assuming a, Gaussian form for this function 

they derived expressions for the spectrum and its moments. All the 

papes mentioned in this paragraph discus the analysis of the 

reference-beam system used in conjunction with a sweep frequency 

analyser to obtain the spectrum. 
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The sweep mode slows the response of the frequency analyser and it 

is therefore advantageous to use a filter bank or a phase lock loop. 

The phase lock loop requires a continuous signal input and hence cannot 

be used when there are few particles in the flow while the filter bank 

is very expensive and difficult to construct. Therefore, for low 

seeding conditions there are only two effident LDV processors at the 

moment 	i. burst counter system 

and 	 ii. photon correlation system. 

The photon correlation system, while more sensitive tilan the burst 

counter system, has not yet been used for obtaining turbulence spectra. 

In order to obtain the spectrum it would be necessary 

inter-arrival times of particles and also analyse the 

function due to eachparticle to obtain its velocity, 

be obtained by one of the following methods: 

i. zero-crossing analysis of the correlation functi 

it through a digital high-pass filter 

to measure the. 

correlation 

The velocity can 

n after passing. 

or 

ii. by detecting the peak of the Fourier transform of the correlogram, 

which can be obtained by using a hardware FFT analyser (BERGLAND). 

The use of these methods has not been reported in the literature. 

In Chapter 4 the burst counter is discussed and it is shown how 

the tur' üence spectra can be obtained using it. 	. 

In § 2 the principle of Doppler shift and its application to LDV 

is described. It is shown that the cross-beam 'configuration can be 

analysed by a real figure model. When the number of particles in the 

flow is high, the reference-beamsystem is generally preferred to the 
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cross-beam system. Both these systems are discussed in 9 3. 

In § 4 the spatial resolution of the LDV is considered. In a 

cross-beam system it is useful to have a large angle between the bcais 

and also between the principal bisector of the beams and theline of 

the detector. This arrangement accompanied by a suitable field stop 

in front of the detector improves the spatial resolution. In the 

reference-beam system the scattering volume is defined principally by 

the size of the detector's field stop. 

in § 5, the relation between the count correlation function 

(which would be obtained when an ideal full digital correlator is 

used) and the intensity correlation function is given. Since these. 

two functions are related linearly, only expressions for the intensity 

correlation function are derived in ihe succeeding sections. 

In § 6, there is a discussibn on the statistics of random pulse 

trains. It is shown that the general expression for the correlation 

function obtained by BEUTLER &'LENEMAN reduces to Campbell's theorem 

under certain conditions. It is shown in § 7 how Campbell's theorem 

can be used to obtain the correlation function for a constant flow. 

In § 7.1 it is indicated how the results in § 7 can be applied to the 

measurement of particle concentration. . 

In § 8 the correlation function for the case of turbulent flow 

is derived. An attempt has been made in this section to explain the 

approaches taken by different authors in analysing this flow 

situation. 



 

I 

chapter 2 

(k-.).v/2 

 

(a 

Lf = 2Vcos sin(9/2) 

S 

Pig.(1) Principle of Doppler shift.. 

(b) 

k 2. 
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Measurement of periodic flows is possible using correlation techniques. 

The procedure, which depends on periodically sampling the scattered 

light, is described in 99. 

The correlation function for a sinusoidally fluctuating velocity 

is discussed in some detail in § 10. Details of experiments performed 

in order to verify the expessions obtained in 510 are given in 

Appendix A. 

§ 11 presents a brief review of the cross-correlation technique. 

It is indicated how this method can be used to study diffusive motion. 

§ 2. 	PRINCIPLE of the DOPPLER EFFECT 	 : 

The laser anemometer is based on the principle of the Doppler 

shift; the frequency of light scattered by an object moving relative 

to a radiating light  source is changed by an amount which depends on 

the vefocity and the scattering geometry. In fig. (la), k. and kare 

the incident and scattered wave vectors respectively. The magnit-

udes of thase vectors 4) given by Iki = 27T/X g  (g H i,$), where X g • 

represents the wavelength of the incident and scattered light. For a 

particle travelling with velocity V, the Doppler shift is given by 

the dot product, Af = (k - k.). V /2it Hz. 

For high speed flows the Doppler shift is usually very large 

and so a Fnbry Perot interferometer can be used to determine the flow 

velocity. The finite spectral resolution of the interferometer 

presEnts a lower bound on the velocity that can be measured 

accuely. Typically one might have a 'frequency shift of 500 MHz at 
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supersonic velocities which would require an instrumental bandwidth 

of the order of 5 MHz; this corresponds to avery high resolution 

instrument. Conventional plane Fabry-Perot interferometers have 

resolutions of the order of 100 MHz and even this is difficult to 

maintain except under carefully controlled conditions. Confocal 

systems such as described by AVIDOR can have resolutions of the.order 

of 1 MHz. Even at such high resolutions, the interferometer is 

essentially a high velocity measuring instrument. 

The principle of light beating was demonstrated by FORRESTER 

ct al about 20 years ago. YEI-L & CUNMINS using this principle and the 

Doppler effect showed that it was possible to. measure very low 

frequency shifts in light and hence determine a large range of 

velocities which are not accessible to the Fabry Perot. 

Consider the cross-beam geometry in fig.(lh). Two convegent 

beams with wave vectors k. 1  arid k. 2  illuminate a particle moving 

with velocity V. . The frequency shift of the light scattered' from 

each of these vectors in the direction of k isv = (k - k. ). V 
I —s 	- 

and AV = (k - k. ). V. The difference of these frequencies is 2 —s —i2 - 

obtained when a square-law detector is used to observe the scattered 

light. 

AV - AV 2 = -i2 - 	= 	 (1) 

Now 

=i2 = 2rr/A, 

hence 	Af.  = (v 1  - u 2 ')/2ir 	{2 u sin 	A' 	' ( 2) 
, 



lens 	 probe 	
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1 	1 beam-splitter 	volume 

S., 

lens 
• 	 (a) 

s/u ,  

field stop 

light scattered by a 	 detector 
particle in the cross- 

• 	 beam system while 
traversing the probe 
volume 

neutral 
filter 

ns 

• 	 (b) 	 • 	detector 

•:/2usi.n( 0/2) 	 • 	• 

• 
WWMNM%1V\ 

light scattered by a particle • 	t 

in the reference-beam system 
• 	while traversing the probe • 	•• 	 • 

• 	 volume • 	 • 	• 

Fig,(2) Optical arrangements 

• 	(a) cross-beam system • 	 • 

(b) reference-beam system 	• 	• • 

U velocity of particle, s = fringe spacing 	• 

Doppler frequency = u/s• = 2u sin(e/2)/A , 	 , 



- 2.6 - 

where u = IVI cos 	is the component of V in the direction of K, and 

u is perpendicular to the planes of interference fringes formed at 

the intersection of the two beams of equal intensity. The relation-

ship beteen the spatial frequency of the interference pattern and 

the Doppler frequency tf will be discussed later. Eq.(2) indicates 

that f is independent of the scattering direction. Consequently, 

the collecting efficiency can be enhanced by using a large collecting 

lens. It is also worth noting that Af is not direction sensitive, ic. 

it depends on the speed u. 

The reference beam system which will be discussed in the next 

section also measures a frequency shift as given in eq.(2). This 

system hoever. cannot be described by a real fringe geometry and has 

an upper limit on size of the collection aperture. 

§ 3. OPTICAL ARRANGEMENTS and COHERENCE CONSIDERATIONS 

The cross-beam system, fig.(2a), and reference-beam system, 

fig.(2b), will be described in this section. Only the salient 

features will be discussed here while the practical details will be 

left to the next section. 	 -- 

In a cross-beam system, fig. (2a), the laser beam is split by a 

beam splitter into two beams of equal intensity which are focussed to 

a point in the flow by a lens. The region inspacC where the two 

beams cross, together with the field stop on the face of the detector, 

define the scattering volume from which the velocity information is 
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obtained. This region will also be referred to as the probe volume. 

The scattered light due to particle traversing the probe which falls 

on the,  detector is collected by a large aperture lens,, (,, cJ.' pj2.%). 

The cross-beam niethod is particularly well suited to flows in 

which the density of scatterers is low. Ideally there should be not 

more than one particle present in the probe volume at any instant. 

The S/N ratio decreases with increasing number of particles because 

the signals from individual particles are of random phases. DRAIN has 

• likened the presence of a large number of particles to a "cloud" with 

the effect of blurring the contrast between the light and dark 

• fringes of the interferce pattern in the probe volume. This argument 

is justifiable since the cross-beam anemometer can be explained by a 

fringe model which helps to clarify the working of the aneiiometer. 

• Since fringe spacing in the scattering volume' is s = 

• a particle with velocity u moviig perpendicular to the fringes results 

in a fluctuating scattered intensity with frequency 2u.sin(0/2)/X. 

This is identical to the result. in eq.(2) ,of the previous section, 

obtained by using only the Doppler shift principle. This is a 

result that is explained by either of two different physical processes, 

namely', Doppler frequency shift and interference pattern formed in 

Young's double-shift experiment. This observation has been discussed 

in some detail by PENNER et al. 

When the average number of partic].es in the probe volume is 

significantly greater than unity, thq reference-beam system is to be 

preferred to the cross-beam system. This has also been noted in 

DRAIN's paper in which the important features àf the cross-beam and 
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the reference-beam systems have been summarised. 

The reference-beamsystem, fig. (2b), requires the aperture of 

the field stop in front of the detector to be sufficiently small so 

the scattered light from any point in the scattering volume arrives 

with approximately the same phase as the reference-beam. This ensures 

that the' cancellation of the cross-beam signal due to random phases 

of the particles does not occur in the reference-beam system. The 

criterion for such coherent detection is that the solid angle sub-

tended at the scattering volume by the detector aperture be at most 

where w is the largest dimension of the scattering.volume.. It 

is necessary for the intensity of the scattered light to be natch 

lower than that of the reference-beam. It is recommended that the 

intensity of the reference beam be one tenth the intensity of the 

scattering beam. This generally ensures good mixing at the detector. 

Several optical configurations have been devised for LDV. 

Take for instance the system with one incident beam and two 

scattering directions which WANG 	labelled the Symmetric hetero- 

dyne arrangement and showed that the signal analysis for this system 

was identical tothat used for the cross-beam system. This system 

however is inferior to the cross-beam system since the scattered light 

is collected over a comparatively small area. Such systems are 

not used widely and will not be discussed furthe. 



- 2.9 - 

A unified analysis of cross-beam and reference-beam systems 

has beencarried out by SHE & WALL. Their article isavery important 

contribution to the LDV literature. They have considered the effect 

of parameters such as spatial coherence and scatterer density fluct-

uations on the autocorrelation function and the power spectrum of 

the observed signal. Their analysis of the cross-beam and the 

reference-beam system is an extension of the results of DRAIN and 

ADRIAN & GOLDSTEIN respectively. The results for the S/N ratios of 

the two systems obtained by SHE & WALL are however more practical 

than those of WANG 	, 	DRAIN and ADRIAN & GOLDSTEIN. 

• : .f ... ............. SHE & WALL have presented a corehensive descriptthn of th 

use of an LDV for the measurement of turbulence. A tabulated . 

comparison of the S/N ratios for different modes of operation 

(reference-beam vs.cross-beam) and for different methods of analysis 

(spectral measurement vs. correlation function analysis) has been 

given. The unified character of their work relies on the reference- 

beam and cross-beam systems both being analysed by adding the 

scattered fields incident at the detector. By using different 

coherence factors, expressions for the spectrum and the correlation 

function for these two systems are obtained. It has been 'shown that 

for the ref erence-beam system the form of the correlation function, 

which is independent of the particle density in this case, is the 

same as that of the correlation function for the cross-beam system 

with low particle density. When the particle density in a cross-

beam system increases there can be significant interence between 

fields scatered by diff3rent particles and this gives a low frequency 
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contribution to the spectrum. The reason why this effect is insig-

nificant in the reference-beam system is that the intensity of the 

detected scattered light is very small compared with that in the cross-

beam system. The crossbeam system is used when the scattered 

intensity is low (this usually occurs when there are few particles in 

the probe volume) and hence is generally used in conjunction with a 

photon correlator. Whei the collection-lens aperture is large, as is 

usual in a cross-beam system, it is reasonable to assume  that the 

photnultiplier.in this situation acts as a linear detector of 

intensity, ie the scattered intensity due to each particle adds at 

the detector surface. When the number of scatterers is laige, and a 

small, collectionaperture, however,. therigorous analysis of ..SRE. & ...... 

WALL is necessary in order to explain the total photocurrent and the. 

correlogramwhich contains alow frequeácy cOntribution due to 

interference between fields scattered by different particles. This 

effect will not be considered further in this thesis. It is however 

worth noting that this term can be used to determine the particle 

concentration. This has been demonstrated by SHE & LUCERO. Their 

method is however rather complicated and is not of great practical 

significance (SHE,private comnunication). 	 \ 

Although the form of correlation function for the ref erence-

beam system and the cross-beam system (for low particle density) is 

the same, the correlogram damps more quickly in the case of the cross-

beam system than for the reference-beam system. This ef;Eect can be 

underslwd by noticing the form of signal detected due to a single 



focal plane 

bbapter 2 

(a) 

= d/sin(8/2) 

l/e-  point. 

d.diarneter at = Lf/jtD • 	
l/epoint 

Fig. (3) Details of the probe volume: 

Geometry of a focused.laser beam with a 
Gaussian intensity profile. 

Práhe volume formed by using a thin lens •  
assuming no phase distortion. The length 
of the intersection L' is obtained by neglect-
ing the beam divergence in the vicinity of 
the focal point. 
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particle traversing each system (see fig.(2) ). It is also borne out 

by the analysis of SHE & WALL. As mentioned in § 1, however, the SIN 

ratios of the two systs are different. 

§ 4. 	SCATTERING VOLIDE,  GEOTRY and SPATIAL RESOLUTION 

The size of the probe volume is in important consideration 

because it determines the dimensions over which any Vplocity 

fluctuations and gradients in the flow are averaged. The probe volume 

is determined by the optics of the transmitter and the collection lens 

and by the size of the laser beam. -As shown in fig.(2a), two beams 

are focussed to a spot to minimise the scattering volume. Under these 

concfitions, the spot size is determind by the diffraction limit of the 

focussing lens. The effect of placing the beaiii splitter before the 

lens will be discussed later. 	- 

Consider a parallel, monochromatic beam, of uniform intensity, 

diameter D and wavelength A passing through a thin lens of focal 

length f. At the focal point of the lens a diffraction pattern is 

formed and the diameter, d, of the central bright spot (Airy disc) is 

given by the relation d = 1.22Af/D (KLEIN). 

For a laser beam incident on a lens of focal length f, the 

intensity of the laser beam is not uniform but has a Gaussian profile 

as shown in fig. (3a), and the wave front is usually spherical. The 

diameter of the beam at the focal point is (CHU) 

d = (4h)f/D 	 (3) 
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/ 

Fi. (LI.) Receiver optics for a cross-beam system. 
For the sake of clarity only one beam is 
shown. The fOur free parameters a,f ,h 
and 0 should be selected carefully C1 
order to keep the probe volume as small 
as possible. See eq.(4). 
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The significance of d and D is shown in fig.(3a). It is noted that 

the diameter in this case is almost equal to the Airy disc and also 

that d can be reduced by beam expansion  in the transmission optics. 

In the cross-beam system, the two beams intersect at the focal 

point of the transmission lens and the interference fringes are formed 

only where the beams intersect. When the two beams of diameter D are 

focussed as in fig.(3b), the width of.the probe vo1ume d' is dJcos(O/2), 

where d is given by eq.(3). Although real fringes are not formed in 

the reference-beam system, the width of the scattering volume is.also 

As previously mentioned, stops and apertures in the collector 

optics are n6rmally used to limit the size of the &cattering volume to 

a small probe volume because generally the dimension (P. or P.t)  of the 

scattering volume along the optical axis is too long for good spatial 

resolution in the flow. A simple means of reducing this dimension by 

using the collector optics for a cross-beam system is shown in fig.(4 ) 

where for clarity, only one beam is shown. A pinhole of diameter h is 

placed in front of the detector so that it isin the image plane of the 

collector lens with focal length f. In this arrangement, the length 

of the probe volume P. seen by the detector is 2. 	p/sin 0, where 	is 

the mean scatting angle. By using the lens formula we obtain 

P. 	(a/f - 1) h/sin 
	

(4) 

Thus the length of the probe volume can be controlled by a judicious 

choice of collector optics and the scattering angle. Usually not all the 

parameters in eq. (4) will be free since there will be constraints due 



to the experimental geometry. For the sake of clarity 

only one beam is shown in fig.(4). 

HANSON has considered the broadening in the 

power spectrum due to impr9per alignment of the beams 

forming the interference pattern.. A number of 

investigators have used the laser-beam splitter-lens 

transmission arrangement. In this set-up the lens. 

is not used paraxially, hence the waists of the two 

beams may not co.incide with the cross-over point 

where the interference pattern is formed. This leads 

to a variable fringe spaciiig which can lead to a 

spectral broadening which under certain conditions can be 

greater than the transit time broadening, HANSOI'T. 

It is for this reason that the laser-lens-beam splitter 

configuration in figs'. (2a,b) is recommended. 

5. 	DETECTION of SCATTEIED LIGHT 

Photodiodes or photomultipliers are generally 

used for the detection of scattered light. When there 

is a high scattered intensity, the signal at the output 

of these devices varies continuously because the 

detection system has a finite bandwidth0 In a photo-

multiplier, the absorption of a photon creates individual photo- 
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electrons at the'cathode which after multiplication appear as discrete 

pulses attheoutput. These discrete pulses can be observed if the 

incident light levels are low so that pulses do not overlap and the 

finite bandwidth effect is not dominant. In flows with low or very 

little seeding the scattered intensity is inevitably low and hence it 

is necessary to detect (count) these discrete pulses in order to obtain 

information about the flow. This is the basis of the photon. 

correlation method (AB]3ISS et aZ), for which a photon counting photo-

multiplier is necessary. This type of photomultipliei has a high 

temporal resolution and a discriminator unit attached to it outputs a 

sequence of pulses of equal height which can 'then be analysed by a 

digital correlator.  

It can be shown (PIKE) that the count correlation is proportional 

to the intensity correlation function for non-zero time lags if the 

fluctuations of the scattered field are 'stationary', ie 

E[n(o;At).n(T;&)] = (flt) 2  R1 (T) + nt.E[I(0)]0 	
(5) 

where n(T;t) is the number. of pulses output.from the discriminator 

at the time T in an interval At short enough for the intensity to' 

remain constant over this interval; n  is the quantum efficiency of the 

photanUtiplier; R.1 (T) = ELI(0)I(r)] is the intensity correlation 

function and . 6 	 is the Kronecker delta. Sine the digital correlator,TO  

(Precision Devices) used in the experiments to be described, does not 

compute the correlation function for T = 0, the second term' 

nAt E1I(0)]0  in eq..(5) will not be considered any further. From 

now ononly expressions ior R1 ('r) the intensity correlation function 

will he given since the count correlation function is proportional to it. 
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§ 6. 	STATISTICS of RANDOM PIJLSE TRAIN 

There has been a considerable interest in the analysis of 

random pulse trains since there are a number of physical processes 

that can be represented by such a model. Notable among the 

publications is the work of BEUTLER & LENEMAN. A brief account of 

their iesults will be given in this section while the application to 

the LDV will be discussed in the following sections. 

Consider a general pulse train of the form 

y(t) = 	i 
n  (t-t n ) 	 (6) 

- 

in which {t} is a random time 1ase. (a stationary poiit process) and 

i(.) is the n-th pulse. The mean of y(t) in eq.(6) is computed by 

averaging successively over {i(.)} and {t} (these are assumed to be 

• 	independent random variables) thu, 	 .. 	 . 

• 	 E{y(t)} 	
Et[E i[ i(t_t)]] =Et.[Lm(t_tn)J 	 (7) 

If g(t) = 	S(t_tn) it is possible to write 

Co 

m(t_tn) = m(t_T)g(T)dT  

and hence. 
00 

E[y(t)j = E[Jm(t_T)g(T)dT] 	. 	 (9) 

By interchanging the order of expectation and integration in eq.(9): 

E[y(t)] = vjm(u)du 	 , 	 (10) 
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where E[g(T)] 	V, which is the average number of pt1ses per unit time. 

It can be shown that autocorrelation of y(t) is 

CO 

= E[y(t)y(t+T)] = v{r (T±u,u)du + 
y 	 k=ljLrk 

dv) 	 (11) 

in which 

tk(u,v) = E Ii(u)  im(V)] 	 (12) 
n+k 

and 2 (t —t ) is the probability density of the interval t —t k m+k m 	 mi-k m 

between k successive intervals. 

In the second integral of eq;(ll), by assuming independence of 

the {i(t)} 

rk(u ,v) = Ein (u)] E[in(v)], k 	0. 	 (13) 

Thus r does not depend on its index and the summation may be applied 

only toFor aPoisson point process {t} it follows that whencver 

u#v 

k(kI). = 	
v Iu-vI 	 =v, 	 (14) 

k=1 	 k=l 

accordingly in this case the autocorrelation is 

Ry(V). 
= 	

+ v2 fE[iundu 2 	(15) 

where the first term is T dependent and the second term contributes 
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only to the d.c. When i is deterministic, the expectation operator 

Ecan be removed and the result is Campbell's theorem. In this case 

the characteristic functionof the pulse process can also be 

determined and hence any statistic of y(t) is available in principle. 

From eq. (12) it can be seen that the second term in eq. (11) 

will contribute to the fluctuation in the correlation function if 

{i(t)} is a correlated sequence. 

Eq.(il) will be discussed further. in § 8,where the correlation 

function for a turbulent flow will be considered. 

§ 7. 	INTENSITY CORRELATION FUNCTION for CONSTANT VELOCITY 

Consider...a typical cross—beam arrangement as shown in fig.(2a). 

For simplicity it is assumed that particles traverse the scattering 

volume in the plane of maximum fringe contrast or in other words, 

pass through all the fringes. A particle with'velocity u produces a 

scattered intensity. 

22 (t—t)u 
1(t) = Iexp{ — 	

2 	cos 2 ) 	 (16) 

where I. is the peak scattered iitensity, t o  is the time of arrival 

of the particle at the centre of the scattering volume where it 

scatters I, r = (d./4)/cos(0/2) and s is the fringe spacing (see § 3 

and eq.(3) ). After normalizing 1(t), it can also be regarded as the 

probability of absorption of a scattered photon by the photomultiplier. 
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When a number of particles pass through, the resultant scattered 

intensity is the sum of the contributionsdue toeach particle, Ic 

1(t) = 
	

I01exp_ttok)} ..{l+cos(2it/s)i 	(17) 

By assuming that the arrival times {t 01 } of the particles form 

a Poisson sequince, the autocorrelation function of 1(t) can be 

evaluated using eqs.(15) and (17) after a simple but rather tedious 

calculation: 

R1 (T) = 	E[I2

[ 	

exp() ( 1 + 2 exp{) cos() + 

1 cos ( 2 T) + exP 	2  _4r 	 ) 2  })] +(E[I k][2  

(1 + 2 exp{ 2 	) + e{_42r})] 	 (18) 

where v = E[N/T and v = E[N(N-l)/T,(T = total experimental time). 

A similar expression has been obtained by. ABBISS et al (1974). 

There seem to be three errors in their formula noticeable when it is 

converted to the form of eq.(18). They have E[Ikand  21r/u instead 

of E[1 k2]and Ir/u respectively in the term multiplied by v. Instead 

of. E2Ik]  as in the term mu1tip1ied by v 2 , they have E111k2];  his 

too seems to be incorrect. 

For the successful operation of an LDV there should be at least 

two fringes inside the probe volume, ie r > s. Therefore eq.(18) can 

he greatly simplified to give 
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R1 (T) = . E[I] .4!:. 	UT' [i + 	
2 Cos ( 2 T)] + 

....E 2 rI 1 
4 	'L0i 2 U 

(19) 

where a fringe visibility constant (o<m'<l) has been, introduced to 

take account of less than .100% contrast between light and dark 

fringes. The value of m is due only to the optics and not to the 

number of particles in the probe volume. 

There can be some confusion when comparing eqs. (17) and (19). 

The -r dependent terms in the two equations appear, to be the same 

except that, while the amplitude 1 ofa puls6 in eq.(17):  is 

independent of the velocity, the amplitude of R 1 (t) seems to be 

proportional to u.1 . This is obviously incorrect since it suggests 

that the amplitude of R1 (-r) approaches infinity as,the velocity 

approaches zero. This fact has however not been noted by ABBISS et al 

(1974) who expressed the fluctuating part of the correlation function 

as ao exp(.)[l+.  m2cos(.)], (their eq.11), having implicitly' absorbed 

v in the constant a. Since v is proportional to the velocity 	(v = 

d.u, where d is proportional to the number of particles per unit 

- 	volume),, the amplitude of the correlation function, like the amplitude 

is independent of the velocity.  

Before discussing some aspects of particle concentration 

determination some consequences of the Poisson arrival times will be 

described. Inherent in the Poisson assumption is that no two 

particles arrive at the same time in the middle of the probe volume. 
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This consequence is often not stated in the LDV literature. DURRANI & 

CREATED (1974), using the formulation of the shot noise introduced by 

COX & MILLER have used concentration constants and K instead of v and 

respectively and have hence considered a non-Poisson point process in 

which coinciding points are allowed. In eq.(11) by assuming an 

arbitrary distribution for {t), noting of course the independence of 

the occurrencetimes, the two concentration constants '' and K would 

become vand vj f
k 
 respectively. This suggests that. 	

k 
K/y. Even 

k 	 . 	 k 
when the Poisson assumption is not valid, as when the particle density 

• 	is high, v = N/T and vX f 1 	N2/T. This aspect will be discussed 
k 

• 	further in. § 7.1,. 	 •• 	 : 	 . .... 

1 7.1 	Determination of particle concentration 

Assume that. identical parti'cles (size < fringe width) used for 

seeding in a flow are mono-disperse and are moving with a constant 

velocity. The correlation function given by eq. (19) can now he. 

written as 	 •, 

• 	
R(t) = 	N 2  exp( 	T 2){1 + 	cos(2t)}, 	2 	N212 	(2b) 

where K = - 
	and EEIkj = E2IIi = 12 sincethe particies are 

identical. 

By using a large number of fringes or by frequency shifting, 

22 	2 the term exp(-u T /4r ) in eq. (20) can be made approximately equal to 

unity and by proper optical alignment m can be made very close to 
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units. Eq. (20) can now be further simplified to give 

2  KNI 
T) 	 + 

= 	
0(1 	cos 	~ K N 1 222  R1 ( 	 (21) 

	

- 	
21TUT

cos 	)+ 2  K 1  2N2I, (N >> 1) 	 (22) (— 

The first and second terms in eq.(22) give the a.c. and d.c. 

contribution to the power of the scattered intensity. The total power 

is the sum of the mean square a.c. and d.c. power. It can be shown 

ea5ily that the ratio (a.c./d.c.) of these two components varies as 

N 3 . This result has ben obtained before by LADING (1973a) and 

FARMER. The result in eq.(22), however, shows that a correlator can 

be used to detect the effect of particle concentration in the flow. 

The only practical drawback with this method is the inevitable 

contribution of background light to the d.c. power. This contribution 

can however be removed either by clipping or averaging the background 

contribution with no flow. The clipping procedure will be described 

iri the next chapter. 

The N 1  variation is common to all situations where quantities 

with random phases are summed. When using this relationship to 

determine the variation in particle concentration with.  a correlator 

it should be borne in mind that it is only true for a constant flow 

with N >>l. FARMER has indicated that in theory the particle nuthber 

density can be calculated in a turbulent flow if the velocity 

distribution is available, however no analytical proof is given. He 

has also not considered the fact that a larger number ofparticles with 
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high velocities pass through the probe volume than those with low 

velocities.. Leaving aside this complication, it is still felt that the 

complex scattering process and flow charactaristics.can only permit,at 

the very best, not more than an approximate N 1  relationship. 

§ 8. INTENSITY CORRELATION FUNCTION for TURBULENT FLOW 

A number of authors have derived expressions for the intensity 

correlation function without stating clearly the underlying assumptions. 

The complete analysis in this case needs to take into account the fact 

that the time of arrival of particles {t} is modulated by the 

velocity bf the fluid and the light scattered by a particle is correlated 

•withthat scattered by other_particles. Under these conditions the 

methods of derivation adopted by the authors will be discussed. 

Two models of point processes have been discussed at considerable 

length in the literature of applied stochastic processes. PAPOULIS 

has derived the correlation function of a non-homogenous Poisson process 

(rate = v(t) ) with a deterministic pulse shape. This model is in-

applicable to the LDV since the time dependent rate v(t) can only occur 

with a fluctuating velocity and this in turn means that the centre 

frequencies of the Doppler bursts becomes random. The model described 

in § 7 is more appropriate to the LDV, however, it does not take into 

account the time dependent rate of the point process. By deriving an 

expression for the correlation function from first principles it will 

become clearer what assulnr,ticns  are necessary in the process of 

obtaining the result. 
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Let the signal input to the correlator at time t due toN 

particles be 

N• 
y(t) = 	i(t-t) 	 (23) 

n=l 

where unlike the uniform velocity case N, i and t are correlated 
n 	n 

with the velocity {v}, n=l,...,N, of each particle in the probe 

volume. The correlation function is R(T) = A(T) + B(T) where 
rN 

A(T) = EI 	i (t-t ) i (t+t -t ) 	 (24a) n 	a n 	a 

NN 
and 	B(t) = E 	i (t-t ) I (t+T- t )J 	 (24b) 

p#qP 	p q 

Eq. (24) gives the complete expression for the correlation function. 

The single particle contribution is given by A(t), and B(T) represents 

the two particle contribution. Only the single particle contribution 

is considered by ABBISS et at (1974) while DURRANI& CREATED (1974) 

and SHE have considered both the contributions. SHE has pointed out 

thet in order to evaluate B(T) it is necessary to assume that the 

velocities of the particles are üncorrelated which is not stated but 

is implicit in the derivation of DURRMfl & GREATED (1974). As 

mentioned earlier ABBISS et at (1974) consider only the case when 

there is not more than one particle in the probe volume; here B(t) 	0. 

CROSIGNANI et at have derived an expression for B(T) asuming a 

jointGaussian probability density function for the velocities of the 

particles. They have not considered, however, the finite transit 

time, effect which does play a significant part in damping the 

influence of the correlated velocity effects. It can be 'shown 
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qualitatively (also analytically but this would be rather tedious) 

that B(T) contributes a low frequency component to the correlation 

function when the number of particles in the probe volume is greater 

than unity and if the velocities are correlated. It does not con-

tribute a d.c. component as suggested by DURBANI & GREATED (1974); 

their result for B(T) is true only when the velocities are 

uncorrelated. It should be noted that the two particle contribution 

B(T), in SHE's analysis contains an extra time dependent term due to 

coherent detection which is neglected in the above discussion since a 

large detection aperture is used generally in a cross-beam system. 

For a dtai1ed discussion on B(T) refer to chap.6 of the book by 

CROSICNANI et al. If all contributoiy. effects were taken into account, 

assuming that all the statistics were available, the complete result 

would be extremely complicated and not very useful for parameter 

estimation. 	. 	 . 	 .: 

An expression for A(T)  will now be derived. Let the velocity 

of the N particles in the flow be {v}, n= 1,...,N. In eq.(24a) the 

averaging has to be over {v}, {t} and N. First, taking expectation 

over {tn} gives 

TRy Kv 	N 	. 
A(i) = Ef 	dt1. . . JT 

	

dtN 	.i(t-t)i(t+T-t) (25a) 

where the probability of a particle arriving at time t is Kvdt/T; T 

is the total experimental time and K is a normalization constant. 
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This is equivalent to saying that the higher the velocity of 

the particle the more likely it is to be present at time t. This 

modulated Voisson process was first discussedby McLAUGHLIN & 

TIEDERNAN. Eq.(25a) can be simplified (for a similar manipulation 

see pg.148 of WAX) 

	

1(v IT 
A(T) = E i%

i(t_t)i(t+T_t)dtl 	
(2b) 

The integral w.r.t. tn  has already been evaluated in eq. (19) and the 

result will be represented as a function g(T,v.). Averaging eq. (25b) 

w.r.t. the velocities {v) gives S  

A(T) = E[jdvi 	JdvN  f(v1 	,vN) 	g(T,v) 	(25c) 
-CO 

where f('l,...,vN)  is the joint velocity probability density function. 

On further simplification eq. (25c) becomes 

A(T) = E{ 	f 	g(,v) f(vn)  dvn] 	 (25d) 

where f(v) is the probability density of velocity of the n-th 

particle. Since it is assumed that the particles "track" the fluid 

perfectly, v can be replaced in eq. (25d) by v the velocity of the 

fluid. Before averaging over N, it should be noted that the previous 

expectations w.r.t. it 	and {v} assumed that these sequences were 

independent of N. This is justifiable if T is much greater than the 

inverse of the velocity fluctuation bandwidth. Now, averaging over N 

gives 	 S 	 S  

I 



A(T); E{N].fv g(t,v)f()dv 	 (25e) 

-00 

(see pg.248 of PAPOULIS fora discussion on "random sums"); The form 

of g(T,v) is (from eq.l9) 

2. 	2 a 	 m 	2iTvt 
g(T,v) =  - exp( 2 ){l+ 	cos( 	)} 	 (26) 

4r 

Eq.(25e) can be evaluaicd now if the velocity probability density is 

known; By assuming a Gaussian probability density eq.(25e) becomes ;  

2 	2 	2 	22 u 	u 	in 	2iro 	22iiu 
• A(T) = Dexp{--2-- - 	1 + --- exp{- 	

2 	T }cos(—T) 	(25f)
SC  

2aC 	2a 	 SC 	
•. 

where u and a 2  are the mean and variance of the flow velocity 

• 

	

	respectively, D is a constant and C = .1 +02 T 2 /(2r 2). This formula is 

similar to that quoted by FOORDet al and applies for an arbitrary 

• 	turbulence intensity. Hen the turbulence intensity is low (a/u<<l) and 

assuming that the velocities of the particles do not change while 

traversing the pobe volume (OT<<r, whe T is the maximum correlation 

lag value of the order of the mean transit time) eq. (25f) can be 

simplified (1/C 	1-a T /(2r )) to give 

221 	2 	22 	• • 	• 	 • -u T 	I 	m 	-2rr a 	2 	211.1T 
• 	 A(T) = D exp{ 	

2 
 )jl + •- exp{ 	

2 
T }cos(---- ) 	(27) 

• 	 4r 	I 	 s 

For experiments conducted in a flow with no or very little 

artificial seeding, the correlation function will have the form 

given by eq.(27). This expression has been derived by a number of 

authors. SHE and DURRANI & GREATED (1974) for example do not 
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consider the modulated Poisson process t} and, hence effectively end 

up with a relationship with D in eq.(27) replaced by D/u. SHE has 

avoided this sticky point by dividing the autocorreition of the 

weighting function (the weighting function function defines the transit 

timeeffect) by its value at zero lag hence cancelling the i/u  in the 

numeratr and denominator. After this has been done, the expectation 

over {v) is taken assuming a Poisson distribution of particles. GRANT 

et at use a method similar to DURRANI & CREATED (1974) and hence also 

arrive at the surprising i/u dependence. ABBISS et at (1974) arrive at 

an identical expression to eq.(27). Their method is similar to that 

used in this section. It is felt however that the derivation given 

here gives a clearer picture of the necessary assumptions required in 

arrivingat the solution. 

9. 	PERIODIC FLOW ANALYSIS by SM'LING 

The investigation of periodic flows is of considerable interest 

to the fluid dy'namicist. In such flows it is sufficient to determine 

the velodty of the fluid over one period. In such flows the excitor, 

which for example could be a wave-paddle, a peristaltic pump or a lung 

machine, stimulates the flow in a periodic fashion. 'The fre4uency of' 

this motion is generally linked to the frequency of the observed 

periodic response of the fluid. Such flows can be measured by using a 

ga.ted cathode photomuitiplier which is triggered by periodic pulses 

derived from the excitor, such that.the photomultiplier always 'sees" 

the same velocity. The duty cycle of the gating pulses should there- 
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fore be very short compared to the period. By varying the phase of the 

gating waveform aid observing the correlograms for each of these 

different phases, the fluctuating velocity of the fluid can be mapped 

completely by using eq.(9). See fig.(5). 

In certain cases there might be some background turbulence 

which'will add to the periodic signal. Using the procedure mentioned 

•in the previous paragraph, but in this case using eq.(13), the mean and 

variance of •the velocities can be determined. Seefig.(5). 

The procedures that have been suggested can be used to analyse 

any periodic flow. Since the photonultiplier.. t sees" the velocity only 

for a short time the disadvantage of this method is that the corelo-

gram takes a long time to build up. This method is therefore 

susceptible to etranéous low frequency fluctuations. 

5 10. SINUSOIDAL FLOW 

Simple periodic flows can be analysed by the correlation method 

withoutthe need for periodic sampling, hence improving the response 

time of the technique. It is necessary in such situations to know the 

form of the fluctuation a priori. 

In this section the form of the correlation function for a mean 

velocity with a sinusoLdal fluctuation will be derived. The fluctuation 

will be assumed to be small in comparison with the mean velocity. 
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Let the velocity in the mean flow direction be 

	

v(t) = u + a cos(W t + ) 	. . 	 . 	(28) 

whereu is the mean velocity; a,w are the amplitude and frequency 

of the fluctuation respectively and is uniformly distributed over 

0,27T).  

The velocity probability density function is then 

p(v) = 	
- 	2 	IviI 	a 	 (29) 

	

it/a -(v-u) 	 . 	 . 

5; ,, 	 , 	 =• o 	otherwise  

Bj using eqs. (25e) and (26) and the procedure of averaging 

suggested in § 8, the correlation function for this flow' can be 

• 	obtained:  

R1 (T) 
= A ju+a exP2T2/(4r2)}[+ M 

cos()]dv 	(30) 
ua a (v-u) 

By assuming that u >> a the Gaussian term can be taken outside the 

integral to give 	. 	 S 

22,u+a 	 .2 
R (T.) = 	exp{ 	+ - cos(--T) dv (31) I 	• 	 2 	i 	/2 	2i 	2 	S 

	

4r 	'u-a ,'a - tv -u) 	 j 

• Eq.(16) can be simplified to give 	S .  

22 	2. 	 5 

• 	• 	• R1 (T) ;  = F eXp { 	TTII + m 1(21Ta(27Tu)] 	 (32) 	• 

t for arbitrary a/u ratio a closed form result is not possible. See 
eq. (25f) which is valid for any turbulence intensity. 
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Notice the similarity in form with eq.(27). For the turbulent flow 

case the cosine term is damped by a Gaissian factor whereas for a 

periodic flow this damping is replaced by J, the zero order Bessel 

function. This causes a beating effect in the correlation function. 

Experiments were carried out to verify eq. (32) and are 

discussed in Appendix A where a simple method of estimating the 

parameters u and a is described. 

§ 11. CROSSCORRELATION TECKNIQUES 

Ciosscorrelation techniques hav been applied extensively in 

the analysis of signals from various types of transducers used for 

f low measurements. For example BECK etal have described how the fluid 

velocity and the particle size listribution can be determined by cross-

correlating signals arising from two conductivity probes placed a 

short distance apart in a pipeline. For industrial applications cross-

correlation techniques are particularly powerful becaue of their 

simplicity and the case with which the results can be interpreted. The 

mean velocity of the flow can be determined directly from the lag value 

of the peak of the correlation function. The ratio of the distance 

between the probes and the lag value of the peak gives the mean 

velocity. 

A distinctive peak can be observed even with a low S/N ratio. A 

peak detection circuit (TAI et al) or a. delay lock loops (HAYKIN & 

THORSTEINSON) can be used to keep track of the peak of the cross--

correlation function. If the separation between the traisducers is 
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made extremely small the crosscorrelat'ion methods can be made to be 

almost as effective as the frequence trackers corimionly used in LDV 

work. 

• 	The crosscorrelator is analogous to the time-of--flight 

measuring counter used in nuclear physics experiments. A distribution 

of the time-of-flight of particles, is obtained by using a multich'annel 

pulse. height analyser, into which is fed the flight time of each 

particle. The output of this instrument is then the probability 

density of the times of flight. Similarly the output of the cross-

correlator is the probability density of the transit time of 

particles passing from one beam to the other. The area under the 

crosscorrelation function can be riorjnalised to unity. 
 

LADING (1973b) and DIJRRANI & CREATED (1975) 'have derived 

expressions for the crosscorrelation function in a turbulent fluid 

when the probability density function of the velocity is assumed to be 

Gaussian. It can be shown easily that when the separation between the 

probe volumes (or transducers) is small the crosscorrelation function 

approximates closely the velocity probability density function. 

A possible interesting application of the crosscorrelation 

technique is the investigation of diffusive motion. WASAN has 

discussed the first-passage-time probability density of Brownian 

motion with a positive drift. This probability density has also been 

considered in the statistical literature under the heading 

Gaussian (Wald) Distributions", JOHNSON & KOTZ. Based on the results 

of WASAN it can be shown easily that the diffusion constant "  canbe 
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determined from the correlation function. A more accessible reference 

than WASAN's monograph is a paper .  by ROY & WASAN to which the reader 

may refer for details. 
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CHAPTER 3 

PARAMETER ESTIMATION from COUNT CORRELATION FUNCTION 

1. 	INTRODUCTION 	' 

To obtain a photon count correlogram the number of 

counts occurring in consecutive non-overlapping intervals 

of length T are theasured. If n is the number of counts 

in the time interval (kT,iiT), then a digital correlator 

computes the correlation function N n 1 fl 1 	, s=O,l..,N-1, 
kni K 

where N-i is the maximun lag value and NT is the' total 

experimental time. In practice' digital photon correlat'ors 

oftenuse some form of clipping procedure which results 

in an 'a'proximation. to correlation function described above. 

• 	

' 

 

The Precision Devices correlator which was used in 

the experiments, in addition to other statistics, computes 

the single clipped correlation function for 48 correlation 
tJ 

lag values. The value's computed are 	 (s=l,2..,48), 

and T 'k  where 

	

1cj 	• 	 ' 

Lnk] 	= 	• 	 • 	 ' 	 • 	 ' 	 '' 	 '., 	 ' 	 ' 

I n1j = 0 if n k<c  

The clipping level c, sample time T and 'total number of 

samples N can be set by the experimenter. 

Before estimating the .1' low parameters' it is convenient 

to normalize the correlation function to give 	• 	 ' 

R(sT) = N 	-Lnkj' 	 - ' 	 Sis, 
itJ 	 1 L 	r 	-c 	-_i.. 	 ' 	 S '('N 	~'Etk 	)(N 	hlk 	. 	 ' 	 . 	 •' 	 :. 

k1 	. 	 ' 	 • 

I 

which can be simplified by cahcelling the N Jactors. This 

forr of normalization is useful in that'the effect of slow 
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extraneous variations in the mean count rate can be 

minimized and also that the first term on the r.h.s. 

approaches unity as sT -+ c, hence R(sT) 	Q. This 

ensures that there is no pedestal in the correlation 

function. and this reduces by one the number of free 

parameters required in parameterizing the correlation 

function. It is noted that the effect of. background 

light, which otherwise leads to a pedestal, is also 

eliminated. The constant pedestal term included in the 

expressions for the correlation function for the different 

flows discussed in chapter 2 will be neglected for the 

rest of this chapter. 

Associated with the discriminator ( attached to the 

photon counting photomultiplier ) there is normally a 

dead time which is introduced into the circuitry to 

inhibit the formation'. of two pulses in Very rapid' 

succession. This is necessary because of ringing effects 

• associated with the signal which reaches the discriminators. 

• 'Dead times are typically of the order of 50 ns. and result 

in a reduced correlation between counts at delay times of 

this order. This does not generally cause any serious 

problems but sometimes means means that the first poin6 

( sl  ) on a correlogram 'has to be ignored whe'n sample 

times of the order of 50 ns. are used. 

In order to simplify the notation, R(sT) will be 

'replaced byR(t), where''r now takes discretevalues: 

t=1,2... 1 48 if the sample time T=l. 



It was rioted on pg. 2.14, eq,(5) , that the full 

count correlation function is ±elated very simply to the 

intensity correlation function. This result is independent 

• of. the statistics of the incident field. Since the use of 

clipping techniques can considerably reduce the hardware 

• and time necessaryto compute the count correlation 

function, it is reasonible to enquire how the clipped 

• correlation function is related to the intensity correlation 

function. For Gaussian fields these two functions are 

again simply related. There is however no simple relation- 

• ship for an arbitrary field. 

• 	 When the field scattered by a fluid has a non-Gaussian 

probability density, the reference-beam system gives the 

spectrum of the field if a full correlator is used with 

• 

 

Nr>~, Nsj  where Nr and N5 ..are the average photon counts per 

• 	sample time due to the reference beam and scattered beam 

• respectively. For a weak sIgnal (NK<l  and  N>'N) the 
• 	

• effect, of non- Gaussian statistics is dominated by the 	:1 
shot noie due to the referencebeam so that the single 

clipped correlator may be Used in this case vdthout 

distortion. For details see JAKENAN(1972).  The use of 

• 	the reference-beam system with photon correlation to 

measure fluid velocities has however not been reported. 

For a large particle density and a constant velocity 

the field and intensity detected in a •cro-beam system 

has a Gaussian probability density because of the central 

limit theorem. In general; for low particle density and 

and turbulent flow the detected field is non-G'aussian. 

Uniform random clipping can be used here to make the count 
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correlation function independent of the sinl statisics. 

In Appendix B there is a discussion on the use of uniform 

random clipping while the error associated with this method 

is derived and also articles relevant to this topic are 

referenced. As mentioned earlier., for a low count rate 

(E[n](O.l) the single-clipped correlation function is 

essentially undistorted so that non-Gaussian signals can 

always be handled at these low light levels. For a general 

review of correlation techniques refer to the article by 

Oliver referenced in AppendixB. 

In the following sections it will'be assumed that 

the count correlation function is proportional to the 

intensity correlation function. 

2. 	GENERAL FORM of CORRELATION FUNCTION 

The intensity correlation function for a fluctuating 

flow with a finite mean velocity and a perturbation which 

is small compared with the mean is given by 

	

1+1/2.m2  f(t) cos(2ut)] 	(1) 

where u is the mean velocity, T( -r) is the transit time 

effect term and can be replaced by a ôonstant' when there 

are a large number of fringes, rn accounts for for the, 

imperfect visibility and the Fourier transform of f(t) is 

proportional to the probability density of the fluctuating 

velocity. Note that •there is no constant pedestal in eq.(l). 

A closed form such as eq.(l) is in general not possible 

when the fluctuation is comparable with or greater than 

the mean velocity, however, an accurate expression for the 

• correlation function can be derived for a velocity with 

a Gaussian probability density with arbitrary turbulent 
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, 	and c) with the transit time effect 
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removed. 	The, constant pedestal. (=40) 
can be easily removed. 
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Fig.(3)A correlograra of this forth should be, 
obtained in order to remove the transit 
time effect. 	The ordinates of this 
correlogram. become zer.o before, the last 
lag. 

Knowing that the form of the correlogram 
is a Gaussian, the variance of the 
Gaussian function can be found by using the 
width of the function.at its 1/e point 
or by fitting. 	 .. 

• If a separate experiment for the deter- 
mination of the transit time effect is 

• not possible, it should be ensured that 
the transit time effect is low. 	The 

• 	 • 
S  transit time effect can now be removed 

• by fitting a low order polynomial to th 
correlogram. Polynomial P(r)=A(l±BT 2 +Ct + .•) 
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D1=(h2+h1)/(h4+h3) 

D2=(h 2+h1 )/(h2+h3 ) 
0  

• 
I 	• 	 1.2 	turbulence intensity 

0 
.1nsens1t1ve-?4useful 	for 	-,damping ratios 

region parameter 	not applicable 
estimation 	here 	• 

• 	
• 	 Fig.(4) • 	(a) Difference between the accurate (eq.25f)  and 

• approximate (eq.27) formulae. See pg.(2.26) 
for these formulae. 

• 	 • 	 • • 	 • 	 (bi. and h2) Effet of frequency up-shifting. 
• • 	 (c) Method of obtaining damping ratios. 	Note that 

for D 	 and B2  it is not necessary to draw in 
the low 	frequency line. 

• 	 • 	 . (d) Graih (schematic) of damping ratio vs. 
• 	 •. turbulence intensity. 



intensity a/u, c.f. eq.(25f) on pg. 2.26 	Although the 

form of 'eq. (25f)  on pg. 2.26 is not like that of eq.(l), 

the mean and variance of the velocity can be estimated 

from it. It should be noted that 'for low turbulence 

intensity this 'expression reduces to the form of eq.(l) 

In fig.(l) three correlation functions are shown 

• for which expressions were derivedin chapter 2 Forty 

eight ordinates are shown since this is the number of 

channels on the Precision Devices correlator. The. zeroth 

lag value is not computed. The separation 1etween the 

ordinates equals the sample time T. 

	

• 	It' is useful to remove the transit time effect before 

parameter estimation. The transit time effect can be found 

by'usin' a large sample time (>s/2u) so that the peiodic 

part of the correlation function is smeared out. Frequency 

up-shifting can be used here to further reduce the, periodic 

component. Frequency shifting 'is described in 	. AnOther 

method is to mask one' of the incident beams so,that the 

interference pattern is not formed and hence, the correlation 

function becomes T(t). See fig.(2). Some methods of 

removing the transit time effect are shown in fig.(3). 

When the turbulent intensity is high the' same procedure' 

can be used to find the transit time effect . It can 

however he seen from fig. ( 1.la) that the approximate' formula 

indicates a greater transit time effect (smaller transit 

time) than that for the more accurate formula. 

SIMPlE NETHOD of PAR MFTER 'iSTIMAToj\J 

	

_). 	•, 	 ' 	
- k 	 • 	 • 

Unless stated otherwise in this ,  section it will be 

assumed that the transit time effect has not been 'removed. 
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The estimation of the mean velOcity is fairly simple 

; since one needs to measure 

successive crests and/or troughs of the corielogram to 

obtain the mean Doppler frequency. The positions of these 

turning points, are shifted towards towards the origin due 

to f(T) and T(t). Tt is advisble therefore to measure .the 

the time interval between any two maxima/minima with the 

exception of the maxima at the origin (WATRASIEWICZ & RUDD). 

Within the accuracy expected of the approximate methods to 

be discussed in this section, it can be said that the error 

involved in using the interval between the origin and the 

first maxima will not he 'too. significant. 	.' 
• 	

• General].y speaking the time lag. corresponding .to.:  a 

. 

	

	crest.'br troüghwill' not fall at El exact, multiple of the 

sample time so one must interpolate between the ordinates 

to improve the estimation of the positions of these turning 

points i.e. a parabola can 'be made to pass the three ordinates 

' . 	which form the troughs/crests. 

The rate of damping of the periodic component of the 

correlogram is related to the turbulent intensityand can be 

measured easily by noting the rate at which the relative 

heights of successive crests and troughs' decrease. BIRCH et al. 

(1973) have suggested that this can be done by drawing in 

first the line that corresponds to the low frequency component 

of the LDV signal, fig.(LIC). The heightsof the first trough 

h1  and crest h2  are measured relative to this line. From 

eq.(27),p9.2.26), assuming.that the transit time effect is 
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• 	negligible compared' with the damping due to the turbulence 

it can' be "shohi eaâily that the turbulence intensity is given 

by 	
0 

• 	/u 	l/m •..[ 	ln(h1/h  ] 1/2 
	 (2) 

2 

By removing the transit time effect it is easy to show that 

that the value of turbulence intensity using eq.(2) approaches 

the expected value. The only error then is in the estimation 

of h1  and h2 . See fig. (L.c). 

Although eq.(2) is..bonvenient in that it gives an 

explicit expression for the turbulent intensity in terms 

of quantities which can be measured directly from the correl- 

ogram, it tends to be too inaccurate for all but the most 

approximate estimates, especialiy when the number of fringes 

is'small. A more 'accurate method is to measure damping 

ratios such as D1  ='(h2-s-h1 )/(h4+h3 ) or D2=(h2+h1 )/(h2+h3 ). 

For a particular optical configuration with .a known number 

of fringes a nomogram can be constructed relating the damping 

ratio to the turbulent intensity, figs.(4c,d). 

It should be noted that the approximate formulae 

discussed in this section are only applicable for low 

turbulencein'tensity 
( 

'20). The damping ratios will 

however be insensitive to very low turbulent intensity and 

'here it is necessary to increase the apparent turbulence 

intensity by down-shifting the frequency in order to 

facilitate accurate parameter estimation. On the other hand, 

if the turbulence intensity is so high that the correlogram 

is highly damped, then, up-shifting the frequency until a 

reasonable damping ratio is obtained is recommended.' The 

effect of frequency shifting on the accuracy of parameter 
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estimation will be discussed in the next section. 

LI... 	FREQUENCY SHIFTING 

Optical frequency shifting techniques are as powerful 

when. applied with photon correlation as they are when used 

for shifting the frequezicy of the analogue (continuous) 

Doppler signal. 

Fig.(4a) shows the, difference in the two formulae 

for turbulent flow. For such high turbulence intensity 

(50 L) it is not possible to estimate the mean velocity or 

the turbulence intensity accurately. By properly 

up-shifting the frequency, parameterestimation can be 

made possible. 	 , 

The expressions for the correlation functions after 

frequency shifting by ±' can be obtained by replacing u/s 

in the previous chapter by u/s + f 5  . When f5  is positive 

the fringes move in a direction opposite to the mean flow 

and hence effectively increase the frequency of the fluc-

tuating part of the corelogram, fig.(4b). Since the number 

of channels (lags) available on a correlator is limited this 

means that the maximum correlation lag for which the 

correlation function fluctuates is reduced (for the same 

number of points per cycle on the correlogram) when up-shifting 

and vice versa. The effect of frequency up-shifting is 

therefore to reduce the effect of turbulence and transit 

time damping. Since t/r<<l, then eq. (25f) on pg. (2.26) 

reverts to 

= D exp(- 
r2t) 

[1~m2/2.exp(_ 2:2T2) 

cos 527t(u/s+f)t}] 	• 	S 	 (3) 
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This equation is different from eq.(27) on pg.(2.26), only 

in that it cOntains a different frequency. It is now not 

possible to use all the curves in fig,(4d) relating the 

damping ratio to the turbulence 'intensity because now the 

the damping ratio not only depends on the number of frings 

in the probe volume but also on the amount and diretion of 

the frequency shift. If the number of fringes or the amount' 

of frequency shift are high enough for the transit time 

effect to be negligible, the curve for infinite' number of 

fringes in fig.(4d) can be used. The turbulence intensity 

cl/u can be obtained directly from the apparent 

turbulent intensity (o'/s)/(u/s+f 5 ) which is extracted from 

fig.(4d) 

Frequency shifting affects the accuracy with which 

the mean frequency can be estimated visually. Consider a 

correlogani which is a. pure cosine of Dopp].er frequency f. 

By assuming that the number of points n in eãch.cycle can 

be estimated to within ±1 , it can be shown easily that the 

),error 5f 0/f =1/N, where N is the 'total number of 

correlation lags. Since the mean frequency is ( nT )l,, 

the frequncy resolution 6f0  is ,( NnT )l, where n is the. 

average number of points per cycle, and T is the sample time.With 

a: frequency shift f5  it can be shown easily that the error 

in the estimation of the Doppler frequency is 

(Of/f 	= Ml 	• 

It can be seen that down-shifting (< 0) improves the 

accuracy of the mean velocity (±') estimate and deteiorates 

when up-shifting. For example a 50 point correlogram with 

no frequency'shift 	= 0) has an error in the mean velocity 

of 2 ,  ' 	' 
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Although the preceding results are applicable only to a 

pure cosine, the ideas are also relevant to correlation 

functions for arbitrary fluctuations. 

55. 	CURVE FITTING 

In this section it will be shown how by fitting a 

model to the correlograrn the flow parameters can be obtained. 

Because of the highly non-linear forms of the correlation 

functions obtained in the previous chapter, it is recommended 

that some simplification should be carried out in' order' 

to determine the useful parameters before fitting. This 

means that the transit time effect (nuisance term) is 

removed and then. the fitting is performed. Some methOds 

of, removing the transit time effect are shown in fig.(3). 

After ;  the transit time term is removed the functions that 

remain are of the form A.f(T) cos(2'tu/s + f} 'r), fig(2). 

Before much experience was gained with'the least 

square fitting procedure, the complete correlation function 

(with transit time term) was 'fitted. It was found that the 

objective function to be minimized was highly sensitive to 

some parameters while, not being affected very much by others. 

If the initial guess values of the parameters were close 

to the true values, however, the paramete±'s values did 

converge. It was found that the Nelder Mead method (routine) 

was most suitable for'this type of fitting in comparison. 

with others that were tried. The Marquardt and Powell methods 

usually tended to diverge significantly from the expected 

values. Two examples of curve fitting using the helder Mead 

method are shown in fig'. (5). The transit time efft was 

I 



not removed before fitting here. Paramete'values are not 

given since the only purpose is to show the'.cioseness of. 

the Lit. When the transit time effect is removed béf ore 

fitting, however, the Narquardt method may' prove to be 

the most efficient. See HINMELBLAU for details of methods. 

BIRCH et al. (1975)  have used the non-linear least 

square fitting method to determineparameters assuming a 
• 	

. Gaussian and a Gram-Charlier velocity probability density. 

• 

	

	They found that the Gram-Charlier model gave a better fit 

than the Gaussian model. The closeness of fit was judged 

by the final value of the objective funtion. The confidence 

• 	bound on the parameters were not computed. It was also 

not indicated how initial guess values for the skewness, 

kurtosis and higher moments Scan' be  made from the correlograms.. 

The estimation of the confidence bounds on the parameters 

cannot be over-emphasised when using a rriodel such asthe 

Gram-Charlier since it is not known exactly where. the Gram-

Charlier series has to be truncated and the estimation of 

third and higher velocity moments must present difficulty. 

Although the inforrnationmgarding the higher moments is 

present in the correlation function, their estimation will 

be considerably easier, if the Fourier transform of a damed 

correlogram is used. This opinion is contrary to that put 

forward by BIRCH et al. (1975). 	 S 	 • 

When the average count per sample time is low, the 

errors in' the ordinates of the correlogram are independent. 

By usin.g the first partial derivatives with respect to the 

parameters, the confidence bounds ori the parameters can be 

obtained by forming the •variance-covariance matrix. Details 
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of this standard procdure which was carried out in the 

the fitting programs is described by BEVINGTON. For an 

arbitrary count rate this procedure gives lowerbounds on 

the errors of the estimated parameters. 

The main drawback of the non-linear least suare 

fitting method is that the initial guess values of the 

parameters needto.be provided by the experimenter. An, 

alternative method which was not tried is to use an initial 

Fourier transformation in order to obtain the initial guess 

values. This method is not without its drawbacks because 

it would increase the.amount'of computation required and 

also the unambiguous automatic extraction of the initial 

guess values from the spectrum would be quite difficult. 

If the correlogram is dead before the last lag, there will 

be no need for least square fitting of the correlogram since. 

now the spectrum is propbrtiönal to the velocity probability 

density. The method of obtaining the spectrum is described 

in the next section.  

6. 	TRANSFORMATION of CORRELATION FUNCTION 

The main advantage of the transformation 'method over 

the least squarefitting method of 5 is that no apriori 

model for the velocity probability density is necessary. 

When a large number of correlograms have to be analysed, the 

least square fitting method would be very time consuming 

since initial guess vatues of the parameters have to be 

provided by the experimenter for each correlogram. This is 

overcome by using the transformation method 
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	which is completely damped before its 
last lag. See fiç.(2b). The spectral 
forms arc identical for the 3 traiisformation 
methods investigated. 

• 	(h) A lightly damped correlogram. 
• 	(c) Fourier transform of correlogram in (b). 



As in 5 it will be assumed that the correlation 

function be:Lng dealt withis of the fOrm 

R(T) =A f( -r) cos(2m{u/s + 	'r) 

• 	where the Fourier transform of f(T) cos(2itu/s.t) is 

• proportional to the velocity probability density function 

• and f 5  is the frequency shift. Note that the transit time 

effect T(t) has been removed from the correlogram. 

The spectrum which is the Fourier transform of the 

correlation function R(sT), s=O,l,..,M-1, is givenby 
• 	 M-1 

S(f) = R(0)T + 2T 	R(sT) cos(27tfsT) 
s=l 	 (4) 

L f k l/2T  
Since R(0) is not available on the Precision Devices 

correlator, it has to be determined in order to compute (f). 

R(0)only introduces a constant pedestal inthe spectrum 

and hence it is sufficient to ensure that R(0) > R(sT) for  s>O. 

In eq.(4) if f(r) = exp(-2n 22 /s2 .t 2 ) with finite als 

and N=e3 

S(f) = A èxp [_s2/22 . { 	}] 	, f 1/2T 

Here the constant pedestal is neglected and the multiplicative 

constants are absorbed in A. In this case there is no 

windowing problem. • In practice, however, it is not possible 
' I  

to have an infinitely long correlogram but windowing can 

still be avoided by using frequency shifting to damp out 

the correlogram before the last correlation lag, fig. (2b). 

The spectrum of this correlograhi in fig. (Ga) gives values 

of u/s and als consistent with the correlograrn. 



• 	When the correlogram is not dead as in fig.(6b) the 

effect of the window will cause a broadening of the spectrum 

and the occurrence of side-lobes, fig.(6c). •Thé.spectrum 

in this case has a resolution of 1/MT where N is the total 

nuriber of correlation lags and T is the sample time. This 

limited resolution is due to windowing which is common to 

all conventional Fourier transformation methods. Despite 

the broadening the position of the spectral peak is not 

affected. 'It can be deduced that the mean velocity (frequency) 

obtained from the spectrum for a velocity with symmetric 

probability density is unaffected by the windowing. 

For a sinusoidally fluctuating flow it was shown on 

on pg. (2.29) that  

• 	f@r) 

 

10 (2ca/s . -r). 	• 	 • 

For an infinitely long correlôgram the spctrurn is given by 

S(f) = A a2 
- f-(u/s ~f5) 

) 

2  ]-1/2 	f-(u/ ~f) 	a 

= 0 , otherwis€?  

wherelfk1/2T. 	 • 

The envelope of the correlogram in this case is 

oscillatory (fig,(2c)) and hence its Fourier transform 

will have a limited resolution. • While the Gaussian can 

be considered dead after two standard deviations the Bessel func-

tion J 0 (x) oscillates approximately like V2/itx cos(x-.t/4), 

(SNEDDON) hence frequency shifting does not help very much 

in damping out this correlogram. In this case it was found 

that estimation of the amplitude of fluctuation is best 

determined by finding the zero crossing of the envelope J o  

of the correlogram, c.f. Appendix A. The ralueof the mean 

velocity can be determined by the midway point between the 
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two peaks of the spectrum. In case the peaks are not 

resolved, the position of the single peak determines the 

mean velocity u, c.f. fig.(7). 

The use of regression spectral estimators in geophysics 

has shown their superiority in detecting spectral peaks which 

would otherwise be masked by conventional spectral analysis 

(LACOSS). Two such techniques referred to as the Maximum 

Entropy (ME) Method and the I'iaximurn Likelihood (ML) Method 

were used to see their effect in resolving the two.peaks in 

the spectrum for sinusoidally fluctuating flow and on the 

single peak for turbulent flow. 

The NE spectrum at frequency f is given by 

= pT/ETF rTEI .• 
	 . ME 

and the ML spectrum is-- 

SML(f) = 1/ETR_ 1E 

i.2mfT itfT where E and r are column vectors (1,e 	,e 	J oe l  

i2(N-1)TtfT T 	 T 
e 	 ) and  (l,yl,y2,..,YM1)  respectively. 	denotes 

complex conjugate. The components of r and the Nxl column 
vector P = (p,O,..,O) are found by so1ing the set of linear 

equatLons R1T=P. R 1  is the inverse of the MxN correlation 

matrix R. 

For these two high resolution methods it is necessary 

to obtain the inverse matrix R 1 . Since R is a Tôeplitz 

matrix,i.e., the value of its elements r 	are dependant 	. 

only on k-rn ( , special iterative methods which use only 

N2  operations (gener1 matrix inversion requires N 3  operations) 

can be used to find the inverse. One multiply and add is 
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equivalent to one operation. Algorithms given by NARKEL 

GRAY were used to obtain the spectra shown in this chapter. 

Since only the shape of the spectra is of interest, the 

scale of the ordinates is unimportant. 

Unlike the Fourier transform, the value of the 

correlation function at the. origin does not simply transform 

to a constant pedestal in the high resolution spectra. It 

has been shown by PISARENKO that the higher the value of 

origin value R(0) the Cmoother the ME spectrum obtained. 

A similar though less marked behaviour was noted in the 
0 

ML spectrum. The effect of R(0) on the spectral shape makes 

the two methods unreliable for the estimation of spectral 

widths. The effect of R(0) on the two spectra is shown in 

fig.(8). 	' 

Based on PISARENKO's paper the following method for 

the determination of R(0) is 'suggested ( R(0) is not provided 

by the Precision Devices cOrrelatpr ). Introduce' a trial 

value fl(0)> R(t), ,r 	0, and determine the smallest eigeñvalue 

of the 'correlation matrix. The value of this eigenvalue 

is the noise ii. Note that all eigenvalues should be positive. 

The value of the correlogram at the origin can now be put 

as R(0)-n. Sometimes this might lead to an unstable inverse 

and so it will be necessary to add a small amount of noise 5 

so that the origin value becomes R(0)-n+5. Further discussion 

on the effect of origin value is given by MAKEOUL. 

Tests were carried out with simulated correlation 

functions for turbulent and sinusoidally fluctuating flows. 

In the turbulent flows cases the three method: Fourier 

transformation, ME and ML methods gave identical and accurate 

results for the mean velocity u and standard deviation a 
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of the velocity for correlograms with /u high enough for 

the correlograms to be zero before the last correlation lag 

as in fig.(2b). The NE and ML spectra for the correlogram 

• infig.(6b) are shown in figs,(9a,b).  Here the correlogram 

is not dead before the last lag. Although the peaks of 

these spectra are narrower than the peak in. fig. (6c), only 

an approximate estimate of a is obtained from these high 

resolution spectra. The ML spectra gave consistently better 

values of o than obtained', by the NE method for such correlograms; 

the mean velocity estimate being accurate for all methods. 

For a correlogram of length N the resolution of the 

Fourier transform is (NT)Hz. while the NE and ML spectra 

have resolutions of approximately (M2.T) 	Hz and (N2T) 	Hz 

respectively. It can be seen from fig. (9c,d)that although 

the high resolution methods resolve the. two peaks in the 

spectrum of the correlograni for sinusoidal f1uctuaion the 

effect of the finite correlôgram leads to the separation 

between the peaks to be reduced. Measurement of the amplitude 

of oscillatioñ(a)from the separation will in general be 

lower than its true value. 

The-results obtained in this section point to the 

importance of using frequency shifting in order to damp the 

correlogram and then using Fourier transformation, hence 

avoiding the use of high resoJ.wt;ion spectral estimators. 

For periodicflows the shape of the correlogram should 

either be related directly to the flow parameters of interest 

as was done for the sinusoidal fluctuation or use periodic 

sampling in order to find the form of the fli.ctuation as 

was shown on pg.(2.27). 	' 	• 	• 	 ' 

.\\. 



-5.l8- 

DURRANJT &REATED (1975) have applied the Fourier 

transformation', ME and NL methods to correlorams wiich 

were not completely damped and concluded that the NE spectrum' 

gives an accurate estimate of a and hence the turbulence •  

intensity cY/u. They also suggested that the ML method '  

because of its limited resolution in comparison with the 

NE spectrum does not give good; estimates of the turbulence 

intensity. Both these point's are contradicted by the results 

of the tests carried out in this section. 

• 	' 	 Various other tests on the extention of the correlogram 

were carried out (DUBROFF). It was shown that by increasing 

R(0) extention of 'the correlograin deteriorated. These results, 

however,are not relevant to the estimation of flow parameters 

and are 'therefore not presented here. , 

7. 	CONCLUSIONS 	- 

By. a proper choice of frequency shift a damped correlogram 

should be obtained if possible. After normalization of 

the correlogram the transit time effect should be remo 4ied. 

When analysing periodically fluctuating flows'of 

unknown form it is best to use the periodic sampling method 

described in chapter 2. 

The estimation. of parameters from the spectrum is 

much easier than by using least square fitting of a model 

to the correlogram. 

Generally there should be .no need to use the high 

resolution spectral estimators for the transformation of 

the correlograins in a propQrly designed experiment. The 

Fourier transforni will give a good estimate of. the velocity 

probability density if the correiogiam is damped. 
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CHAPTER 4 

BURST COUNTER PROCESSING 

INTRODUCTION 

Several systems have been proposed for processing LDV signals 

in order to provide a voltage proportional to the instantaneous 

signal frequency, and to track variations in this frequency. Most 

of these systems rely on frequency demodulation by locking on to 

the phase of the input signal. The necessary requirement for such 

systems to perform efficiently' is that the LDV signal is continuous, 

which is possible only if the particle distribution is homogeneous 

and the particle density is high. In applications such as wind 

tunnel measurements, or other gas flows, where artificial seeding is 

either not possible orundesirable the scattererdensity is extremely 

low. Such experimental conditions demand more sensitive measurement 

techniques. The burst counter has been used with considerable 

success in such situations. 

In this chapter the burst counter technique will be described. 

The application of this method to the measurement of flow parameters 

t 
such as mean velocity, mean square turbulence level, probability 

density of velocity and turbulence spectra will be discussed. 

DESCRIPTION of the BURST COUNTER 

The principle of the burst counter is very simple. Imagine a 

particle passing through a scattering volume such that the scattered 

inteisity detected gives a continuous variation of the current at the 

output of the photo multiplier while the particle is traversing the 

probe volume.  

1 
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• 	. 	 If the  scattered intensity is sufficiently high the current 

variation effectively reproduces the intensity variation in the 

scattering volume, ie the frequency of the signal burst is 

proportional to the velocity of the particle. The frequency is 

usually determined by the rate of level crossings of the burst. The 

velocity of each particle can therefore be obtained since the constant 

of proportionality linking it to the frequency of the detected signal 

is pre-determined bythe optical geometry and the wavelength of the 

laser light. See § 2 & § 3 of Chapter 2. As eaóh particle passes 

through the scattering volume, velocity and time of passing through 

the centre of the scattering volume is measured and recorded. The 

information regarding the time of PaSSJ-flgis only necessary if the 

turbulence spectrum is required. 

• 	 Some practical details of the data. acquisition and pre- 

conditioning will be discussed. The signal burst for each particle 

consists of a low-frequency pedestal and a high frequency component 

which cOntains the desired information.. The burst counter operates by 

passing the received bursts through a high-pass filter and timing the 

consecutive intervals between the zero-crossings of the output bursts 

and assigns a frequency tag to each burst. The effect of lower. • 

scattered photon flux, finite fringe numbers and residual pedestal 

renders the level-crossing spacings non-uniform.. Most burst counter 

processors include some logic circuits to ensure that errors due to 

spurious or missing zero-crossings are avoided. Experimenters have 

used different criteria. (hence different logic circuitry) for 

accepting "genuine" bursts. For the purpoe of this chapter it will 
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Fig.(1) (a) Fluid velocity. 

Poisson sampling signal of unity 
impulses. An impulse corresponds to 
the time of arrival of a particle in 
the scattering volume. Since the 
transit time is usually short compared. 

• 

	

	 with the inter-arrival times of the 
particles, the unity impulses are 
justifiable. 	 0 	 • 

The ciata.x(t).s(t) output by a burst 
counter. 	 . 
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be assumed that all particles passing through the fringe volume will 

be detected and that their velocity and arrival times will be measured 

• . 	accurately. 	. 	 • 

• . 	In this section the principle of the burst counter has been 

described. For details of practical systems, the reader isreferred 

• 	 to BRAYTON et al 	 . The continued interest in this 

technique is illustrated by the number of articles about it in the Proc. 

of the Second International Workshop on Laser Vdlocimtry, Purdue 

University, '74. 	 • 	 • 

§ 3. . 	SAKPLING MODEL of VELOCITY 	 • 	• 	• 

• 	 Since the transit time of the particle in the scattering 

volume is very small compared to the time interval between the 	• . 

arrival of two consecutive particles it is reasonable to consider the 

velocity sequence {x(tk)}  where k = 1, 2, ..., n, as a Poisson 

sampling process with a mean rate v.which would depend on the 

scatterer density and be a constant for any experiment. SMITH .& 

1'iEADOWS have experimentally verified this model by showing that the 

• 	• 	inter-arrival time T of two consecutive particles has an exponential 	• 

probability density function v exp(-vi). Figure 1 shows the fluid • • 

velocity and the sampling process which is used as a model in the 	• 

• 

	

	analysis that follows. There are a host of examples in other 

branches of physics where the event's of interest occur sporadically 

as in Figure 1. 	 • 	 • 
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The experimenter is often faced with the problem of deciding 

how many samples n of the velocity are necessary in order to achieve 

a required accuracy for the mean and turbulence level of the 

fluctuating velocity. DONOHiJE et al have calculated the value of n 

that is required in order to obtain a certain desired accuracy. Their 

calculations are, however, based on the sum of independent random 

variables argument since they assume that {x.k} is an uncorrelated 

sequence. In flows with more than one particle passing through the 

fringe volume in less than the Fuleri-an  time scale, the velocities 

{xk} can be highly correlatal. Under such conditions the results of 

DONOHUE ct al under-estimate the value of n required to achieve the 

desired accuracy. 

In order to take into account the correlated behaviour of the 

velocity fluctuations and its effect on the necessary value of n, it 

is necessary to assume a functional form for the velocity correlation 

function (c.f.). Three specific c.fs will be considered: 

exp(-ctITl), 	exp(-ctlT)cos(uT) 	and 	exp(-Xi 
2
). 

Considering each c.f. in turn, the unbiased mean and variance 

estimators of the correlated sequence {x(tk)} will be derived. The 

sampling will be assumed to be Poissonian, ie the number of samples 

(velocity samples) in a fixed time has a Poisson probability density 

function with rate v. 
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The only statistics of the velocity x(t) required for the 

derivation of the variance of the mean estimators (for the three c.fs) 

is the apriori knowledge of the c.fs. 

In order to evaluate the variance of the variance estimators, 

however, Gaussian statistics for x(t) have to be assumed. The 

results for the c.f. exp(-ajTj)cos(wr) can be obtained directly from 

the exponentially decaying c.f. exp(-aITI)  as will be explained 

later. Hence, only the c.f. exp(-aIiI)  will be disciissed in detail 

and expressions will be obtained for the limiting cases.of this c.f. 

when the number of samples n is large. Although the form of the 

• 

	

	 variance of the estimators for the Gaussian c.f. exp(-XT 2 
 i ) s similar 

to that obtained for the c.f. exp(-clrI), the results cannot be 

• obtained.analytically. With-the aid of a recurrence foniiula, however, 

numerical railts can be obtained easily. For large n, the variance of 

the mean estimators is obtained analytically for the Gaussian c.f. 

§ 4. 	POISSON SMilLING. 

If the number of samples in a fixed time has a Poisson 

probability density, then the interval T between adjacent samples has 

an exponential probability density and the probability density of any 

wo non-overlapping intervals is independent. The probability density 

ofTis: 	 • 
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p(T) = vexp( -VT) 	(TO) 	 S  

(1) 

p(T) = 0 	 (T<0) 

where v is the rate pat'ameter of the Poisson probability density. 

• 	From this it follows that the probability density of the interval 

between any two samples x(t) and x(t+)  separated by n independent 

intervals is 

• 	 p(T) = 
J-CO 

P(U)Pn_l(T1)dU. = 	(u)p_i ()du 

• 	 (2) 

p 1 (T) 	p() 	 S 	 S  

ie p(r), n 	2, is obtained by successively convolving p(T) with 

itself (n - 1) times. This leads to 	 S  

nn-1 
p (T) = \) T 	- exp(-VT) 	(T0) 	 • 

(n-i)! 
(3) 

• 	 S 	 P(T) = 0 	 (T<0) 

• 	• 	The c.f. of the sainpledprocess {x(tK)}is  given by 	 S  

	

• 	C(n) = E[(x(t 1)_) (x(t.)P)] 	S 	 S 

= E[E[(x(t i)_)(x(t)_)for t ad t j fixed]] (4) 

where= E[x5 	•= E[(x_p)2J andn = li-il is the number of 

• 

S 	intervals between the samples x(t 1 ) and x(t,). EE. 
	denotes 

expectation. In, eq. (4) the two expectations are with respect to x 
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• 	and the exponentially distributed andomvariableIt1 - t. 

Consider a process x(t) with an exponentially decaying c.f. 

Cr 2exP _a I T .I] whcre a is the variance of x(t) and a > 0. The .f. of 

the sequence {x(tK) } can now be found using equat±o.n (h). 	. 

C(n) .E[
0
2 exp( a I T I)] (T0) . () 

where ITI . =  t - t.l is the random variable. Using equations (3) and 

(5) . . 

C(n) = Q2Jexp(_aT) V  T'exp(-vT) 	 (6) 
0 	 (n-l) 	 . 	. 

Since the Canmia function is defined as 

00 

r(n+l) = Jexp(_$)d = n! (n is aiatural number) 

then 	 C(n) = G ( V ) fl 	 . 	 . 	.. 	. 	( 7) 
a+v 	 . 	. 	 . 

By considering the exponentially decaying c.f. as 	 • 

Re[exP{_(a+iw)ITI}] (i = 11T), the c.f. of the sampled secuence is 

simply 	 . 	 . 	. •. 	 . 

C(n) = Re.[ 	i n 	. 	 . 	(8) 
v+.(a+iw)J 	 • 	 . 

where Re[.] denotes real part. 	 . 	. 
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For the Gaussian cf.. 	2 	T exp(-A 2 ), the covariance of the 

sequence now becomes 

00 

Jo 	

nfl- 
C(n) = o exp(-Xt ) v T 	exp(-vt)dt 	 (9) 

 r(n) 

From GRADSUTEYN & RHYSIK 

Jx_1exp(x2 	= (28) V/2r(v)exp2) D(_L),(Bv>0), 	(10) 
88 

2 	n 	2 	 2n 	2 
C(n) = a ( U )  eXP ( V ) D ( U )  = 0 z exp(z /4)D_(z) 	(11) 

8A 

where D(z) is a parabolic cylinder function and z= ( v ) . 

§5. 	C.F. 
= 	 S 	• 

5.1 	Mean Estimate' and its Variance 

We shall now consider the mean estimate x of the sequence of 

variables {x(t.)}, i = 1.....,n. Represen1ing x(t.) by x., a • 

reasonable estimate is 

n 

x 
=

x/n 	• 	 (12) 

Unless specified, all sununations that follow will be from 1 ton. 

Since we know a priori that Ex(t)J = p, then, 
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E[X] =E[ x./n] = 	E[x.]/n = 	
(13) 

We shall now determine the variance of the unbiased mean 

estimabDr x : ie 

2 
v(x) = 	= lE{(x.._P)] 	 (14) 

= 1 E[(x. ) 2  + 	(x.-) (x.p) 	 (15) 
2 	1 	 iij 

= I + 	E(x-p) (xj_P)1 	
(l6) 

The definition of variance is 

= C(0) = 2 
	 (17) 

Using equations (7.and (17) gives 

• 	 v() = 1 [
nq2. +  2 	li-il] 	 (18) 

2 

Letting a • = ( V) •< 1 and removing the modulus sign we get 
v+c 

Jl. = 2 	a1 3 	• 	 • (19a) 

• 	 1J 	v+c 	• 	. 
1>3 

= 2 	(n_r ) ar 	 • 	(19b) 
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• 	.,.' 	In expanding equation (19a) we find 2(n-r) terms pf ar,  where r = I, 

2....., n-i', therefore equation (18) becomes 	 ' 

V(x) 4  no 2 + 2a2  (nr)ar] 	 (20) 

• 	Using the following results  from GRADSHTEYN &RHYSIK 

r = a (1_an a 	) 	
(21) 

rar 	 1_1 	+ na = a 	 1 	
• 	( 22)' 

r 	 (la) 

equation (18) gives 	 '' 0 	 • 	 • 

11  • 	• 	• 	V(x) = 	[n + 
	2a 2 (n(l-a) + an _i}] 	 (23) 

• 	 ' 	• 	n 	- 	(1-a) 	 • 	• 

A 	 • 

Since a < 1, it can be deduced that x is a consistent estimator 

because V(x) - 0 as n-- co •  It is noted that when the samples {x(t 1< )} 

are independent, ie when a 0, then V(x) = o 2/n. This is the 

• standard reailt for the variance of the mean estimate of n independent 

samples. For large n, 	 0 	 • 	 • , 	 • 	

0 

V(x) 	1 + a 	 0 	

•24 • 	• 	• 	2 	1-a 	.' • 	• 	(a/n) 	 • 

• Figure (2) shows V(x)/a 2  plotted against n for various values 

of a. 
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5.2 	Variance Estimator and its Variance 

The unbiased variance estimator which will be considered in 

this section is given by 	 . . 

v= 	(x_x) 2 	 (25) 

where N has to be determined such that E(v) 

E(v) = 	E(x. - 
	

. 	
(26) 

E[(x1 x) 2J 	E[{(x.-) -. (x-11)}2] E[(x -v )2J + 	.. 
(27) 

E[(x-1i) 2 J - 2E[(x.-p) (x-ji)] 

By using equation (14), equation. (26) becomes. 	 S  

Ev) = I 	2 + V(x) - 2E(x.-p). 	(x.-p)}) 	. .• 

= 	+ nV(x) - 2 
	2 a3I 

] 	 S 	(28) 

= 1[2 + nV(x) - 2 cy 2   
S 

 

Using equations (19) and (20) we get 	 S  

S 	

E() = l[2 + nV(x) -2o - 	(n_r)an] 

• 	 (29) 
S. 	 5 	 2 

1r2 	2 	2c 	- 	r - 	- - (n-r)a 	 S 



For V to be unbiased, Ev) 	2, hence 

N = n_i_a ( n_r ) ar 	 (30) 

Using equation (20), Ncan be expressed as a function of V(x), ie 

• 	 . 	N =n - nV(x)/a2  = n - V(x)/(o2/n) 	. 	,(31) 

When the samples are independent it can be shown that 

N = n -1 by putting a = 0 in equation (29) or substituting V(x) = 

02/n in equation (31). In its simplified form 

• 	 • 	N = 	- 	
- 	2a 2 {n(l-a) + 	1) 	 (32) 

n(i-a) 

• 	Having found the unbiased estimator we will now find its 

variance 	 . 	 • 	• 

V(v) = E[(v-o2 ) 2 j = E(v 2 ) 	 • 

E(v 2) = E[{ 	(x. ) 2 } 2] = 	E[(x1-x) 2 (x.-x) 2] 	(34) 
Nij 

Assuming Gaussian statistics for x and letting z. = x 1  - x, then 

z. has zero mean and 	 • 	 • 	. 

• 	 2 
E[zi z

i
]

. 
 = E[z

1 	 •

] E[z.] + 2E 2 (z.1z.3 ) 	 . 	(35) 
• 

	 . 

2 	2  It can be shown that 	E(z.) 	N 	
. 
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- E[(x.u)(xi1)j - E[(x._1) (x)] 

Let 	 AU) 	E [(x( 1)(x_1J)i. = 

• 	 . 	 S 	 (37) 
2 	n-i 	i-i 

1 	2 li-jI 	o- 	r 	r 

	

a 	
•=-L ~ 	

a + 	a] 
• 	r1 	r1 

Then, 	 A(i) 	nV(;). 	 • 	 (38) 

Substitudng equation (37) in (36) 	• 	 • 

E(z z 	o2 k-iI + V(x) - A(i) - A(j) • 	 (39) 

... 	 Ef(z.z.)] = 	
( 21 I + V(x)-A(i)-A(j))2 	• (40) 

	

• Using equation (37), 	equation (40) can be simply written as 

• 	
E[(z.z.)] = 	+ 12 + 13 	 • (41a) 

where 	Ii = 	
42Ii-iI 

12 n2V2 (x) I = -2nA 	(41b) 

Substituting equations (34) and (41) into equation (33) we obtain 

V(v) 
= 	

[1 + 2 
+ 
 131 • 	 (42) 
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where. 	
4[ ~ 	2a2 	{n(1-a2) + a2n_l} 	 ' '(43a) 

• 	(1-a) 

12 = 	
+ 	2a 2{n(1-a) + afl_i}] 2 	 (43b) 

n 	(1-a) 

and 1 = - 	 202(1+2a+a2+2a1) 	4(1+a)a(1-a2 3 	
) 

+ 2 	 (43c) 

The equations (43a, b and c) are obtained using equations (19), (23) 

and (21) respectively in equation, (lb). ten a = 0, V) = 	, 

whiëh is the same result as given by BALD for independent samples. 

It will be noticed that only I contributes significantly to V(v) for 

• 	large n. A result similar to equation (24) can be obtained in this 

case for large n 	• 	 •• 	 • 

2  

• 0 	 0 	 V(v)/(2a4/n-1) 	
1 + a t 

	
• 	 (44) 

1-a 

This equation can be verified by considering V() in figure (3) for 	• 

• 	n = 	with a 	0 and a = 0.9. From the curves 	• 	 • • 

• 	 V(v a 	0.9) = 1.9 x 10

0 	
•, 	 • 

• 	 V(v,a=O)' 
• 2x104 	 0 

and using equation (44) we obtain 	 • 

.1 + (0.9)2 = 1.81 	10 	 0 

1 	(09)2 	
0.19 	

0 
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• 	 The variance estimator is consistnt since V(V) approaches 

zero as n increases (see ±igure (3) and equation (44) ). 

6. 	C.F. = a 2  exp(-TcoswT 

As indicated in § 3, all the results obtained in § 5 can be 

directly extended to the present c.f. 

• 	• 	For example, using equation (23) the variance of the mean 

estimator is 

V(x) 	
ReIn

(n 
+ 	2a 2{n(1a) + a_1}] 	 (45) 

 (i-a) 

where 	a=[ 	
v 	•-- 	 0 

LV+(1() 	- 	 - 	 0 0 	 • • 

Similarly the variance of the variance estimator can be 

obtained. 

By setting c = 0, a periodic covariance function can be 

considered. 	
0 	

0 

• 	§ 7. 	C.F. = a2  exp(-AT 2 ) 

• In this case the variance of the estimators cannot be obtained 

analytically, however, the results are easily obtained numerically. 
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7.1 	Variance of the Mean Estimator 

By comparing equation (11) with equation (7) we can see that 

n_n 	2 
a 	z exp(z /4)D(z). Using this similarity we can get the 

variance of the mean estimate by using equation (20). 

V(x) 1 	2 	2 	i 3 + 2 0 	 exp(z2 /4)D (ij) (z) 

2 	 (46) 

21 	
2 exp(z 2 /4) (n-r) zDr(z)] 

The summation in equation (46) isconvergent. The value of zrD r (z) 

can be computed using the following recurrence relation: 

Z2D(r+2) (z) = 	
[D() - r+lD 	(z)] 	 (47) 

Care need be taken when using this recurrence fornuila because 

of the round--off errors in computation. A backward reccurence 

technique should be used to avoid such errors, (ABRAMOWITZ & STEGUN). 

For values of r beyond a certain value k (dependent on z) zkD k (z) 

i 	
S 	 k 	 k +1

s approximately zero. We let z u_k(z)  and z D_(k+l)(z) be I and 

0 respectively. Backward recurrence is then used until the value of 

zD 1 (z) is obtained, which is then compared with the standard 

tabulated values. The ratio of the tabulated to the computed value 

for r = 1 is obtained. Multiplication of all the computed values 

by this ratio gives the correct value for all r <_k + 1. 

The curves in figure (4) are for V(x)/o 2  versus n for varipus 

values of z. It should be noticed that the z = 0 curve corresponds 

to the indcjendent samples case and is the same as that obtained for 
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a = 0 when considering the exponentially decaying correlation (see 

figure (2) ). 	 . . 	.. 	. 	. 	. 

For large n, V(x)/ 2  decreases linearly with n. The variance 

of the mean estimate as n approaches infinity can he obtained 

analytically. Rewriting equation (46) . 	. 	. 

	

V(x) = 2-[n + 2 exp(z 2 /4) (n-r) zrD r (z)I 	(48) 

• 	Using equation (10) we get 	. 	 . 	. 

• • 	 rD(z) = exp(-z 2  z 	 /4) YzJ l)  exp(-zx - 	) d x 	S 

• 	 S 	 • 	

5 	
(49) 

= exp(-z2/4) 
z f

: (xZ) 	exp(-zx - --)dx 

as n approaches infinity 	 S  

• 	

S 	(xz)/(r-1) 	eXZ 	 • 	 S 	 S  

= .exp(_z2/4).fexp(_x2/2)dx 

(50) 

=.z exp(-z 2 /4). 	 S  

• S 	 Interchanging the order of summation and integration • 	 S 	 S  

• 	 • 	r 	 2 	• 	 S 	 S  

• 	 r z D(z) = exp(-z /4)z. 	
S 	 • 	

S 

	

r-]. 	 2 
S 	 fco 	(zx) 	 x 	• • 

• 	 S 	• 	1r, (r-1.)I  cxp(-zx - y)dx 	 • 	 S  

• 	• 	From GRADSHTEYN & RHYSIK we have 	 S 	

S 
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r(zx), 	zx exp(zx) + exp(zx) 	(as n 	)  

Substituting equations (50) and (51) in equation (48) we get 

V(x) 	+ zI 	+ !(2z 2 + z/ 

By neglecting the 1/n2  term 

V(x) 	2_[i +  

This relationship can be verified easily by using the graphs in 

figure (4). 

7.2 	Variance of the Variance Estimator 

A simple extension of the results of § 5 can be applied to 

the Gaussian c.f. 	in this section. 	From equation (42) 

2 	[1  • 	0 	 V(v) 
= 	+ 	2 + 1

3] (53a) 

where 	Ii 
= o4 n+ 2exp ( z 2 /2) J(n-r) 	(zrD_r (z)) 2 	• (53b) 

12 ={ 	A(i)} 2   

• 	 13 	= fl. 	A2 (i) 	 •  
• 

2 	 t-i 	
0 	

i-1 
and 	A(i) 	----{l + exp(z 2 /4) ZD r (Z) + 	zrD_r (z)j)  

r=1 
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From equation (30) 

• 	N = 
iil - 	exp(z2/4) (n-r) zrD_r (z) 	 (53f) 

Asin § 2.2 only I contributes significantly to V(v) for large n, 

and hence 

V(v) 	2a 42[n + 2n exp(z2/2) (zrD r (z))21.. 	(54)  
(n-l) 	 r 

- 

The factor (zr D_r(Z) )2 in e quation (54) conver ges very  quickly to 

zero when z < 1 hence it is justifiable to retain only two terms of 

the summation, 

.'. v() 	2 	2[1 + 2 exp(){z 2D 2  1(z) + z4D2_2(z)(for z<l) 

(n-i) - -- --. 	 (55) 

figure (5) shows graphs of V(v)/ 4  d' versus n for differentvalues of 

Z. 

8. 	CONTINUOUS AVERAGING 

The results obtainable by continuous averaging (hot wire 

anemometry) will be compared with those obtained by averaging a 

Poisson sampled signal (laser anemometry). The latter has been 

discussed in the previous sections. A commonly used model for the c.f. 

of the velocity is cT2exp(-.xITj) and hence we shall consider this one 

for comparison. 	 S 	 S 
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• 	 The estimators of mean and variance for, continuous averaging 

are respectively 	 S  

A. lT 	 • 
x = 	x(t)dt j 	 • 	 S  

= 	- .Jx(t)dt]2 dt 	 / 

where x(t) is the cOntinuous velocity record of length T. P is such 

that the variance estimator is unbiased. 

Using a procedure similar to that given by BENDAT & PIERSOL 

we find the variance of these estimators for large T to be 	 S  

V(x) = ..JC0C(T) dt = 	exp(-cT)dT = 	- 	• 	(56) 	•Ta C.

v(v) = - 	2JC2(T)dT = 	J:04e(_2T1T  

• 	'It can be shown that P = T - . a, hence 	 S  

• 	

S 	 ' ' 

V@) = - 	 S 	 • 	 (57)aT  C.

• 	 Although, as expected, the variances of the estimators for the 

sampled process are higher than those for continuous averaging, it 

will be shown tiat the results for the sampled process approach those 

of the latter as tie rate of the Poisson process, v = nIT, approches 

infinity. SeeE3quations (58) and (59). 	 S 
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• 	 Rewriting equation (24) and using the definition of a 

2 	2 Fa +1+1 	

2I I 	
2 

a •1+a 	a 	Iv 	a 	2 	2a 
V(x)--=--- 	 (58) 

n 1-a 	n ct +1-1 	ctT 
Iv 	 /v 

From equation (44) . 

2 a 4 1' +a 	2a 
2. 	4 	. 	 .. 

V(v) = 

	

	2 = 	 . 	
(59) 

1-a 

9. 	PHYSICAL SIGNIFICANCE of the 1THOD 'of AVERAGING 

It was shown in § 8 that if the continuous velocity record is 

rT 
availabl.e the mean velocity is given by x = jx(t)dt/T. In burst ' 

counter experiments, however, only point estimates of the velocity 

are available and hence a discretized formof this integral has to 

be considered in order to èompute the mean. In evaluating the 

discretized version'of.the mean, some assumptions must be made 

regarding the relationship between the velocity record and the 

sampling process. 	 . 	 . 

Since the flow is sampled as described in g 4, the simplest 

approximation to the sampled flow is to hold xk  constant for the 

perioi At,, = tk+l - tk. The' estimated mean then becomes, 
n 	 . 	 . 

X = 	Xttk/I• It is necessary to assume a relationship between 
.k=l 

the velocity, x.K  and the time Atk  between consecutive particles to 

evaluate the summation. 	 . 	. 	' 
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When the turbulence level is not very high 4  (2O%), the 

sampled velocity estimates {xk}.and the times between particles 

{tk} can be assumed to be uncorrelated. In such a situation the 

estimate of the mean velocity can be easily shown to be 	Xk/fl• 
kl 

This is the arithmetic mean of the sequence {x 1 } obtained from (n) 

samples and has been used in the previous sections as an estimate of 

the mean velocity. 

It has been argued by, NcLAUGHLIN & TIEDERNAN that using an 

arithmetic mean to determine the average velocity gives a biased 

estimate of mean velocily,higher than the true value 

This situation can be explained as follows. When the instantaneous 

velocity of the fluid exceeds the true mean velocity \1, say, more 

particles pass through the scattering volume than if the fluid 

velocity was a conslmt = V. Similarly, there are fewer particles that 

traverse the scattering volume when the fluid velocity is below V. 

The probability density of the velocity obtained will be biased 

towards the higher velocities because a greater proportion of 

particles passing through the scattering volume have higher velocities 

and hence contributE more to the right hand side tail of the 

velocity probability density function. 

SMITH & MEADOWS have observed experimentally that the 

estimate of mean velocity obtained by the arithmetic mean is 

correlated with the sampling.rate v. While this corroborates the 

results of McLAUGHLIN & TIEDERNAN it has been shown that there is 

only a very low correlation between these quantities. This low• 
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value justifies the use of the arithmetic mean as an estimate of the 

mean velocity in the previous sections. For high turbulence levels 

it may be necessary to correct for the biasing effect.' It has been 

suggested by KREID that an unbiased estimate of the mean velocity can, 

be evaluated using 	(1/xk)}1. This estimate is an approximation 

of the integral JTX()dt/T  if there is a positive correlation between 

xk and v(or l/tk),  i, 	P, where Pis a constant. 

§ 10.. 	DETEPNIN?UDN of the PROBABILITY DENSITY FUNCTION 

• 	In most burst counter systems, the probability density function (p.d.f.) 

of the velocity is obtained by constructing a histogram. Since the 

velocity is a continuous variable, the probability distribution 

function and the probability density function need to be smooth 

functions. It is therefore necessary to 

draw a smooth line through the histogram 

fit a model to it 	 . or 

use a non-parametric method for smoothing as suggested 

by PARZEN 

The latter two methods have had considerable success in pattern  

recognition research and it has been suggested that these could be 

useful complements or alternatives to the "raw" or manually smoothed 

histogram. As yet, however, the application of these techniques to 

burst counter data or the analysis of digitized velocity records 
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• 	 obtained from a hot wire anemometer has not been reported. 

KASI-IYAP & BLAYDON have shown that if the velocity p.d.f. or 

• 	distribution function' can be represented as 
L " $.(x) where • ' 	

i=l 

i=l ...... n}is a set of independent functions, then the 

unknown parameters' {cz., i = 1 1  ....,n} can be obtained on-line using 

a stochastic recursive technique. In addition, to requiring very 

• 

	

	little storage, this method facilitates the continual examination of 

'the parameter values and once these values stabilize, the data 

• . 	collection can be terminated. Isis noted, however, that a fair. 

amount of computation is required at each iteration and hence this 

technique would not be feasible when the average data rate is rm.ich 

greater than 1/I, where T = time required for each iteration. 

PARZEN has suggested a class of p.d.f. estimators based on n 

independent' observations (velocity estimates) x.., i = 1....., n 

n 
1 	r 	XX

i 	

• 
f(x) 	

n 
= 	K( h 
	) . 1 	• 	 •• 	•, 

These estimators were shown to be consistent and asymptomatically 

normal subject to certain conditions on h, the parameter which 

determines the smoothness aE.f(x). The drawback in using these 	• 
• 	 • 

estimators is that all the" n observaHons have to be stored and the 

evaluation of f(x)for a particular value of x requires a long 

computation involving all the observations. By expanding K(.) as a 

Taylor series, SPECHT has suggested a method which considerably 
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reduces the compu1tion needed in the original method of PARZEN, 

however, all the observations stilineed to be stored. In the burst 

counter experiments reported by MAYO et al and SMITH and MEADOWS all 

the velocity estimates are stored so that spectral analysis èan be 

carried out off-line, hence the storage requirement of SPECIiT's 

method is not necessarily special. It is noted that although PARZEN's 

results require that the observations be independent, there is no 

reason why f(x) will not provide reasonable estimates of the 

probability density fujiction if the observations are correlated. 

It will suffice to say here that K(.) is analogous to the 

impulse response of a low pass electrical filter where the variable, 

time, is replaced by x. A detailed d'iscussionof the form of K(.) 

and its parameter (h) is given in SPECHI's article and an up-to-date 

analysis and bibliography of this subject is presented by KRONMAL & 

TARTER. 0 	

0 	

0 

§ 11. 	0 POWER SPECTRUM ESTIMATION 

The analysis of continuous records is in many instances most 

conveniently carried out by digital means on a computer. Mich effort 

has been devoted to the development of 'digital techniques for 

estimating spectra from equi-spaced samples, based either on the 

Blackman-Thkey correlation and transform method or on the periodogram 

F.F.T. method, (BENDAT and PIERSOL). 	' 	

0 
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• 	When a burst counter is used, estimates of the velocity are 

obtained randomly in time. Because of the unequally spaced data, 

conventional spectral analysis techniques cannot be used. The 

spectrum of such processes was first analysed by SHAPIRO & SILVERLAN 

and they showed that if a continuous process is Poisson sampled, 

then the spectrum of the resulting process does not suffer from 

aliasing. Beutler and Leneman in a. series of papers have considered 

the spectra for a large variety of point processes (see BEUTLER for 

a survey of this work). MASRY has described a èlass of sampling 

• schemes which lead to alias-free spectral estimates. It is only 

recently that the original ideas of SHAPIRO and SILVERMAN Cj11) 

have been shown to apply in practice and on-line processors have 

been shown to be possible for stationary processes, (MAYO et al) 

and (GASTER and ROBERTS). In this section the theory of this type of 

spectral analysis and some practical details will be briefly discussed. 

It will be shown that a biased spectral estimate can be obtained and 

its variance will be given. As exçated the variance is higher than 

that expected for the spectrum that would be obtained when the 

continuous record is available. Throughout the discussion the 

sampling times are assumedto be Poisson distributed. As mentioned 

in the previous section, this is a reasonable approximation. 

The correlation coefficient r(n) of the sampled process is 

defined as the average of the lagged products x x, where m = 1,2 

The relationship betweai these coefficients and the correlation 

function R(t) of x(t), can be obtained by the following relation: 
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r(n) = 
CO  

	

R(-c) p(T) dr 	 (60) 

where Pn(T)  has been given by equation (3) for Poisson sampling. 

Since R(i) and S(w) the.spectrum of x(t) are Fourier transform 

• pairs, . . ., . . 

fl 

r(n) 1 S() (_
V 	

d 	 . 	 (61) 

• 	SHAPIRO & SILVERNAN have shoin that the solution of this 

'integral equation gives an alias-free estimate o•f the.spectrum given 

by 	 . 

CO 

S(t) 	! 	b(n)(w) 	 (62) 
• . 	. 	 n=l 	 • 	 . 	:. 

........ 
	 - 	 .. n-i 

where 	 P (w) = Re{_11 	) 	 (63)., 

	

(i-V) 	. 

and 	• 	b(n) 	
k (

1)(kl) 	 (64) 
• 	 . 	 k=0 	k 

In practice the r(n) coefficients are estimated from an 

	

• experiment of say duration T to .give 	 • . 

i N 	 ,'• 
r(n) =X XmXm+n 	 • (65) 

m1 

where N is a random variable equal to the number of samples in time T. 

It can be shown. that r(n) is an unbiased estimate of r(n), ic 

E[r(n)] = r(n). 	 . 
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In practice r(n) and hence b(n) will only 3e computed for a 

finite nimber of n. A 'truncated' estimate is then given by 

A 

SM(w) = 	b(n)(w) 	 (66) 
TT n1 

The expected value of SM(w)  is 

SM(w) 	! 	b(n)p(w) 	 (67) 

where (see equations (61) and (64) ) 

b(n) = 	
S(w)()dw. 	 (68) 

From these results it can be shown that SM(w)  is a weighted integral 

ofS(w): 

SM(w) = f 	S(w)a(w,w)dw 	 (69) 

where the kernel 

= 	
nl 	

(w)(w) 	 S 	 (70) 

GASTER & ROBERTS have shown that this kernel (window) has a 

pronounced tendency to broaden the spectrum as /v increases., They 

• 	have also demonstrated that an extremely large amount of data is 

necessary for obtaining high resolution and low variance spectral 

estimates and hence deriving them from the cOefficients r(n) is not 

practicable. S 
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All practical systems for the analysis of' burst counter data 

are based on digital techniques. It is therefore inevitable that 

slotting (quantizing) will have to be used. The velocity estimates as 

well as the sampling time have to be quantized. Only the quantization 

• 	of the sampling times will be discussed. One approach is to 

• 	approximate the mean autocorrelation function by a Dirac comb of 

period 1ST. The values of the spikes of this comb are taken as being 

• 	equal to the average of the values of the neighbouring randomly spaced 

estimates. This is effectively the same as saying that the time axis 

has been quantized. It is necessary that the quantizing interval LT 

satisfies two conditions: i,t is nuch less, than the mean sample 

period (1/0 and that it also satisfies the Nyquist criterion in the 

usual manner with (l/r) being the equivalent rate of uniform sampling. 

The spectrum can be obtained conveniently using P.F.T. followed by 

smoothing. 	 • 	 • 

The result of an error analysis of the spectral estimator is 

given by NAYO et al. Assuming that x(t) is a stationary broad band 

• '(spectrum S(f) ) Gaussian process the expression for the normalised 

r.m.s. variability error, c, is given by • 

r 'n+m-1 	
' 	 11' 

= [1/n. 	(S(i'1f) - S(iLif) ) 2J 2 /S(0) 	 (71) 
S 	 i=m  

MAT (2/3) 2  2B(i) 2 	 , 	 • 	 ( 72) 
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where m 	first point in the pass band 

n = number of points in the pass band over which the 

summation is taken 

B • 	equivalent bandwidth of S(f) 

N = number of sampled points 

A = rate of the sampling process 

M = maximum lag of the correlation function 

Equation (72) was derived assuming that A/2B << 1, N >> MALT and that 

the Bartlett window is used for smoothing. It has been verified by 

'MAYO et at by using a sirrulation. JONES 	has also obtained 

error estimates of similar spectral ordinates but his results differ 

from those of MAYO et al. For a detailed discussion and derivation 

of practicable estimates' of fandomly sampled processes, the reader 

is referred to the original papers. 

'1 
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APPENDIX A 

EXPERIMENTS on SINUSOIDAL FLUCTUATIONS 

In order to test the validity of the theory presented in § 9' 

of Chap.2 and the practical utility of the results, two sets of 

experiments were performed. The first involved simulating the 

ve locity  fluctuations occurring in the flow with a mechanical system. 

This consisted of a perspex disc which was rotated in a vertical 

plane whilst being oscillated horizontally. The usefulness of the 

mechanical simulator lies in the fact that variable parameters are 

known precisely and can be altered at will. The second set of 

experiments involved measurements in the wake of a circular cylinder 

set in a steady airstream. - In this case the sinusoidal velocity 

fluctuations were produced by the shed eddies. Inboth cases the 

crossbeam optical configuration was used. 

By observing both the frequency of the cosinusoidal waveform 

and the positions of the zeros of the damping Bessel function, both 

the mean velocity and the amplitude of the velocity fluctuation can 

readily be determined. Note that the first zero of the Bessel 

function J dccurs when its argument 	= 2.4, (c.f. eq.32 of 

Chapter 2). Hence if therare n cycles between the zero lag and the 

first zero of the Bessel function, the ratio (a/u) of peak deviation 

to mean velocity is 2.4/(2irn). The period of the cosine term gives 

the 1)oppler frequeny and u can be determined since the velocity to 

frequency conversion constant, 1s, is known from the optical geometry. 
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The measurement of the streamwise velocity using a hot-wire 

anemometer in the flow experiment gave a comparison with the correlator 

results.. 	 . 	. 	. 	. 	. 	. . 	 . 

i. Mechanical Simulation 

The mechanical simulator was an 18cm. diameter perspex disc 

rotated in\the vertical plane by asynchronous motor at approximately 

1 Hz. Using a 1 mW He-Ne laser and a DISA beam splitter, a fringe 

pattern was formed at a short distance froin the periery of the disc, 

the fringes being aligned in the horizontal transmission plane at the 

same level as the centre of the disc. The beam separation at the 

transmission lens was 5cm. The focal length of the transmission lens 

was 30cm. • The disc was painted matt black in order to reduce the 

back scattered light to a level low enough for photon counting. The 

back scattered light was imaged through a lens onto a photomultiplier 

and discriminator unit adjusted for single photon response, the 

resulting pulse train being processed with a digital correlator 

(Precision Devices). The instantaneous measured velocity with this 

configuration is governed by the distance of the fringe pattern from 

the centre of the disc since the rotation is maintained at a constant 

speed. A fluctuating velocity can therefore be achieved by moving 

the centre of the disc relative to the opti.cal system. The required .\ 

simple harmonic movement was achieved by moving the complete disc and 

synchronous motor using a variable speed motor and a crank mechanism. 

The frequency of oscillation was set at approximately 1 Hz, this 

value being chosen as vey small in comparison with the disc frequency 

to avoid any non-linear interactions between the two motions.' By 

setting a range of amplitudes for the disc oscillation, photon 



correlation records were obtained from different a/u ratios. Good 

agreement was found between the results obtained from the correlogra.ms 

• and direct measurement. For a/d > 0.2 the correlograms showed some 

distortion. This is to be expected since eq.(32) of Chapter 2 holds 

for u >> a. 

ii. Wind Tunnel Experiment 

In the wake of a circular cylinder in the Reynolds Number range 

40 to 150 (say) is a regular street of shed vortices. Measurements of 

the streamwise component of velocity in this type of wake show that 

the mean flow is perturbed by the passage of each vortex and it is 

found that in the periphery of the wake the perturbation is 

approximately sinusoidal. Measurements of values of mean and 

fluctuating velocities.were made in the wake of acircular cylinder 

using both a photon-correlation anemometer and a hot-wire anemometer. 

The experiment was conducted in the 1 m x 1 m working section 

of a low turbulence wind-tunnel whose flow was steady at the very 

low speeds required by the experiment. Previous work in a small open-

circuit tunnel had proved unsuccessful because of flow instabilities. 

The cylinder was a 0.47 cm diameter brass rod which was moved 

vertically by a traversing arrangement attached to a vertical aerofoil 

• in a working section. The cylinder position was measured to. 0.5 mm on 

a scale on the wind-tunnel window. 	• 	 . 
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Fig. (1) Correlogram for a flow where the ratio 
of the fluctuating velocity to the local 
mean velocity (a) small, (b) large. 
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The hot-wire probe was held firmly 2 cm behind the leading 

• 	 edge of the cylinder. A 15 mW laser was used to form a probeolume 

at the same height as the hot-wire but approximately 1 mm upstream 

ofit. 

The windspeed was selected so that the vortex street detected 

• 	 by the hot-wire was stable. The free stream velocity was measured 

with the photon correlator and found to be 0.39 m sec 	giving a 

• 	Reynolds number based on cylinder diameter (0.47 cm) of 124. The 

frequency of shedding measured on a spectrum analyser was fOund to be 

13.3 Hz giving a Strouhal number of 0.157. 

The wake was traversed by moving the cylinder while keeping the 

hot-wire and interference volume stationary. Correlation records 

were taken at twenty-two stations at 1 mm intervals distributed 

symmetrically through the wake. Hot-wire measurements of the mean 

velocity and the rms of the streamwise fluctuating velocity were 

made at each station. Measurements of positive and negative peak 

fluctuating velocities were made at a number of stations in the wake. 

Calculation of turbulence levels from the correlograms was 

only possible at the outer part of the vortex street where the ratio 

of the fluctuating velocity to the local mean velocity was small, ie 

less than say 15% (fig.l(á)). For larger levels difficulties are 

seen in identifying J0  = 0 (fig. 1(b)) when the beating becomes so 

rapid that the sinusoid is not easily identified. 
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Fi.(2) Graph of crest factoi against non- . 
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wake and B is the diameter of the 
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• 	Pi.() 	The mean velocity in the wake of the cylinder. 
• • 	• 	U i the local velocity and U the free-stream • 	velocity. 	• 	

• 	 0 

• • 	 • • 	0 Hot-wire results 	 • 

• 	• 	•• 	Laser Doppler results • 	• • 
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Fig.(4) The fluctuating velodty in the wake of 
the cylind.er. u' is the rins of the 
fluctuating velocity. 	• S  

0 Rot-wire results 

Laser Doppler results 
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The crest factor (peak fluctuating velocity/rms fluctuating 

velocity) for both positive and negative half—cycles is plotted in 

fig. 2 for one side of the symmetrical wake in the range defined 

above. The crest factor for a sine wave (1.414) is also shown on this 

diagram. The wave is seen to be closely sinusoidal at the wake 

periphery but becomes distorted as the core.is  approached. This is 

due to the growing contribution from the second harmonic. Pig. 3 

shows a comparison of the mean velocities measured by the hot—wire 

and from the correlograms, while fig. 4 shows fluctuating levels 

measured by the two methods. It is seen that there is close 

agreement in both cases. The most significant cause of discrepancy 

between the two measurements appeaed to arise through misalignment 

of the measuring positions. Alignment was difficult because in a 

plane perpendicular to the cylinder axis the hot—wire had an: effective 

diameter of 5 urn whilst the diffraction limited laser spot diameter 

was approximately '7 x 	rn. It is worth noting, however, that in 

the direction of the cylinder axis the dimensions of the measuring 

regions for the two systems were comparable. 
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The use of uniform random clipping makes the one - bit correlation function independent of the statistics of the incident 
field. It has therefore been used in optical spectroscopy to measure the intensity spectrum of non-gaussian fields. Thisnote 
shows that for a correctly chosen ranr.e of clippinr, the difference in the error of the estimator and the error expected in a 
full (multi-bit) correlator decreases inversely as the number of samples. The anlysis a!so applies to one-hit scaling and other 
methods of uniform random clipping. 

The single clippcd photon correlation technique sigiaI is added before double clipping at a fixed level 
has been applied in many scientifIc spheres to obtain is carried out. This method can be easily modified to • 	
the intensity autocorrdation functibn of optical fields. operate in the sitigle dipped mode, in which case it 
This method is auraclive because a high spcd of opera- becomes equivalent to uniform random clipping which 
tion can be achieved with simple digital circuits. For will be considered below. 
some fields the analytic relations that exist between Scaling and uniform random clipping are equivalent 
the one-bit correlation function and the true correla- when the scaling factor and the range of clipping levels 
(ion function of intensity are quite complicated [I] are identical and greater than the expected maximum 
In the case of gaussian fields the relation is very simple number of photon counts per sample time. This con- 
and the single clipped photon correlation has been dition is always necessary for both methods to the 
successfully used to investigate scattered fields where give a correct estimate of the intensity correlation 
the gaussian assumption is valid [-2] - function [8] 

• 	It is now well known that in certain experimental The varianeof the correlaikrn function obtained 
situations the observed fields deviate significantly using uniform random clipping will now be compared 
from the gaussian. Among the cases in which this with the error expected with full correlation. The esti- 
happens are light scattered by particles carried by mate of the full count correlation function is 

• 	turbulent fluids [3] and scattering from a small num- 
ber of narticics undergoing motion of some kind [4]. N 

For such experiments, unlike those with gaussian = rj(T, N) 	N 	n,ii 
+T 	 (1) 

:1  

fields, the self-beat (homodyne) spectrum provides 
additional information to the heterodyne measure- where n, is the number of counts in sample time 7' 

• 	ment [5] 
. centred at time t. Similarly the uniform randomly 

• 
	

The field statistics are usually not known a priori clipped correlation function estimate is 
and many methods have been proposed for making 
the Count correlation ftiitc lion independent of them. A' 	 • 	 - 

= 
These methods ltave been described and compared in N) (r, 	N 	• [n1 ] 	n1 ~ 	, 	 (2) 
16) . Apart from Lull digital correlation, the other 

- 	methods basically rely on clipping each satuple at a • 	where 
randomly selected level - An aliernative me titod li:is 	• 

been analysed [7] 	in witich a uttifornily distributed 	• 	 • .• 	 S 	 • 	 • 
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[]C 
= 

Combining eqs. (5), (6), (9) and (10) gives 

—0, 	1f??,< c, o(r; N) 	o(r, 	) A' 

c is uniformly distributed with probability density + ( l/A')(SEr 	,2 	lEr,2,2 	 11 t"U 	+T 	L 1p 1p+r 

=  4c) 	lIS 	0 	c 	S ._ i Wtten in this form, the mean square error is seen to 
be equal to the error expected with full correlation. 

o 	otherwise in addition to a term inversely proportional to the 

The mean square error criterion is most conveniently 
number of samples A. Since the value ofiz cannot 
exceed S the upper bound on the 

applied and very useful for a comparison of differe,t 
measuring methods. For the complete correlation func. 

error is 

° 	max 	f 	N)+S  
0 2 (r N)! 	= 0 2 (r 	4/N 	 (12) 

lion we have 

• 7 	 2 
By applying an argument similar to that used by 

Haus [9) it 	be o(r N)= E[r(r A')—R(r)J / 	 4) may 	assumed that (ii) is a Poisson . . 

- 	2, 	jU 	r 	,_ 	2 	
( - Etr,r A 	- [Ry jj 	 5) 

variable when the S/A ratio is low, i.e. the photons 
detected b 	the photomul1ip!er are main!)' due to i 	

' 

where R(r) = E[rj(r. N)] and E[•J denotes expecta. 
-................ background laser light. I his is a familiar expenmental 

situation and leads to a tighter bound 
lion. The error in the clipped case is 	• 

than that ob. 
tamed in eq. (12): 

22 0 (r,N)S 2 E[r(7- A')] 	[R(r)12, 	(6) c(r,N)= oJ(r,N) + (1/A) {EIn] + (E[n]) 2 } 
since 	

5.-.---- 

E[r11 (r,N)J 	(1/S)R(7). 	 (7) 
SE[nJ - E[ii] 	(qnj) 2 } 	 - 

Eq. (7) can be easily shown by taking expectations on (Poissonnandr:;60) 	 (13)  
both 5i(es of eq. (2) and noting that E[[n,]CJ = 
E[n)/S, wheic E[n] is the average These formulae will be usefulin determining the 

number of counts 
per sample time. Now experimental time necdcd toachicve a desirable accu- 

E[r2(r N)] = 1 I/N 2  
racy. If the precision requiied issuch that it cannot 
be obtained with a reasonable value of A' 	roportionaj 
to experimental time), it would then be necessary to 

N N use full correlation. 
X 2.) 2.) E [["] flp+7  Iflq 

J2 
q+T]' 	(8) plql 

which on simplifying gives 

E[r(r,N)=('1/NS) 

NN 

+ (1/N2 ) E 	(I1S 2)E[llpnpliq izq+r I 	(9) p Oq 

In equivalent notation thi' :nean square value of the 
full correlation function is 

• E[r(r, N)] 
= °'? 

E[#inJ 

NN 

+ (1/N2) ri,1nj+7.iiqzq41.J . 	(10)  
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1. Assessment of photon counting technique (preliminar 
• 	report), Sept. '7, 30 pages. 

An expression is derived relating the velocity variance 
for a uniform flow to the variance of the correlogram 
ordinates in the case of low scattered intensity. .A 
direct expression for the variance of the ordinates, 
assuming Gaussian statistics for the scattered intensity, 
is derived and conditions for its validity presented. 

• 2. Assessment of photon counting technique (report no. 2), 
• Sept. '74, 24 pages. 

The count correlation function is derived for a velocity 
with sinusoid variation using two different methods. 

• Experiments are described which show the usefulness of 
the theoretical results. These include an investigation 
of vortexshedding behind a cylinder in a.unif.brin flow 
using photon correlation. The Naximum Entropy Netho 
is described. The program listing for the ME method 

• 	included in this report was modified in 176  and then 
• 	used to obtain the spectra shown in chapter 3. A 

square root transformation for the reduction in variance 
of the correlogram ordinates is presented. 

• .3. Application, of photon correlation techniques to the 
measurement of flows with a sinusoidal perturbation, 
F.H.Barnes,Q.I.Daudpota,I.Grant and. C.A.Greated. Accepted 
for publication in Physics of. Fluids. A preliminary 
version of this paper was presented at the. Fluid Dyn. 
Panel Symp. on Appl. of Non-Intrusive Instrum. in Fluid 
Flow Research, AGARD, French German Res. Inst., St. Louis, 
France, 3-5 May 1 76. See chapters 2,3 and .Appendix A.. 

Estimation.of moments of a Poisson. sampled random process, 
Q.Isa Daudpota,Graham Dowrick and Clive A.Greated. 
Accepted for publication in J.Phys.A.:Nath.Nucl.Gen. . 
,See chapter 4 	3-8. 

Error analysisof randomly clipped photon count cor±elatio.n 
estiniator,Q.Isa Daudpota,Opt. Commun. ,1976,l7,143-4. 
See Appendix B. 	 • 	. 

A joint short note,with Dr.. C. Greated, on the results 
of chapter 3 relating to the frequency transform.tion 
methods is planned. 



INPORTAIT FOULAE 

1-Doppler frequency = u/s = 2 u sin (9/2)/ 
	

pg0 2.5 

particle velocity, s = fringe spacing, 

a = angle between the beams. 

2-Beam waist diameter at l/epoint:d =4Af/(tD) 	pg. 2.11 

3-Intensity scattered by a particle 

1(t) = ± exp 1 	(t-t0)2u2 1 cos 2 ( nut) 	p. 2.17 

2r2' 	J 	S 

4_Correlation function for turbulent flow with 

Gaussian statistics and frequency shift f is 

R(t) = D e(- UT .) [i 
+ 2  exp(- 2t2)cos(2m[u/s+f5T) ] 

4r2 	 2 	s2 
pg. 2.26 

5_Correlation function for uniform velocity 

• can be obtained from the previous formula by 

setting c=O. 	 • 	• 	• 	 pg. 2.19 

6_Correlation function for a sinusóidally 

fluctuating flow i 	 • 

R(t) = F .exp(- U_T2)  [1 + 
	

j( 2a 	) cos( 2u 
2 	S 	• 	 S • 

•pg. 2.29 


