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'statlstlcs is derived.

ABSTRACT

The use of a photbn{count correlator'for analysing

different flow situations is described. The problem of -

flow parameter estimation from.the'correlogrém is discusséd.
in some detail. After déscribing some approximate methods,

the least square fittihg and Fourier,transfdrmation methods

are considered. The effect of frequencyvshifting on para-f

meter estimation is described. The use of high resolution

'spectral estimators such as fhe'Maximum Entropj and Maximum

Likelihodd‘spectra have been considered; An experiment

"on a sinuSoidally fluctuating flow is described. The error

1nvolved in unlform random cllpplng of photon counts in
order to make the correlogram 1ndopendent of the fleld
The errors in the'determination of the mean and variance‘.}

of the velocity using a butst counter are derived. This is

: accompllshed by assumlng Poisson sampllng of a contlnuous

veloc1ty record with a known correlatlon function. The

method of obtaining the tufbulence spectra from.the burst

countér'data‘is described.

XEY WORDS : Laser Doppiér Velocimeter Photon Correlator;

Turbulence, Perlodlc Flow, Parameter Estlmatlon Least bquare

Flttlng, bourler Transformation, Max1mum Entropy and Maxnmum

Likelihood Spectra, Burst Counter, P01oson Sampling and

Error Estimation.
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CHAPTER 1

“INTRODUCTION

Photon counting techniqoes have been used'in various
branches of physics, chemistry and biology. It is due to
the high sensitivity of these techniques that it has been
possible to 1nvest1gate a large number of 1nterest1ng | |
ollght,scatterlng phenomena. The use of hlgh speed ollpped
digital correlators for snaly51ng the detecbed photon counts
in real time has }ed~to-many applications. During the last
few years the correlator has been used with a Laser DOppler
Velocnmeter (LDV) ' Unllke prev1ous LDV processors, the
':photon count correlator does not - requlre a contlnuously
"varylng 1ntens1tj at the;detector when a particle traverses
the scattering voluoe. | | _

In chapter 2 the basic principles of the LDV are
described'oriefly. Different optical eonfigﬁrations-are
uconsidered, but emphasis is:on~the’cross—beem system |
- which is‘commonly ﬁsed with & photon count correlator.
Expfessions for the correlation funotions for sinusoidally
fluctuating flow and turbulent flow with Gaussian statistics
"are obtained. The use of periodic sampling of the.deteotor’s
output/input for the analysis of periodically fluctuating
flows is described. It is shown how the variation in‘ '
particle density in the flow can be determined using a

correlator.
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The estimation of flow parameters frem a correlogram.
is discussed in some_defail in chapter 3. After describing
fSOme'approximate methodsfﬂ?bérameter estimétioh the non;
linear 1east square fitting of the cofrelograﬁ to a
model is described. The Fourier transformation of a fully
damped correlogram in%o the spectral piane is shown:to be
the most con?enient mefhod of parameter estimafion.' By |
'properlfrequency shifting ﬁost cerrelograms can be
cempletely dampedvbefore the last lég.value. The use of
high resolution spectrél estimators ie'elso'illustrated.

* The burst counter has been used with considerable
success in analysing‘flows with low particle density. In
chapterkqithe errors in estimating the mean and variance
of the velocity from the data obtained from the bﬁrst
counter are derived,rwlt,is necessary to aesume the form

of the velocity correlation function. .Exponentially

" decayed -and  Gaussian correlation functions are examined.

- The method of obtaining-turbulence spectra 1s also presented.
In appendix A results are presented of .experiments on

& sinusoidally fluctuating flow. This invoived.the

'investigafion of the flow behind a circular cylinder placed

in a steady aiféflowt A hot-wire anemometer wes used te

comﬁare results with those obPained from correlograms ° (

a 48 channel PreéﬁonADeQices photon correlator was used ).
Appendix B consists of. a paper which diseusses'the

erfor involved in uniformArandomeclipping of photon counts used

in order to make the correlogram independent of field.statistics,
A 1list of reports and papefs written during the course

of this. thesis is presented.
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CHAPTER 2

- APPLICATION of CORRELATION TECENIQUE to FLOW MEASUREMENT

§ 1. INTRODUCTION

The statistical and instrumental developmeﬁts in photon—
counting and‘photon-cliéping Fgchnidues have been discussed by
JAKEMAN(?@ﬁecause of the use éé‘aigital circuits thése méthods have a
much higher sensitivity than analogue téchniques'for bbtaining the
intensity correlation function of scattered light. ABBISS et al (1572)
succeeded iﬁ measuring the flow velocity using light scattered frém .

naturally .occurring dust particles in a wind tunnel using a photon

- correlator. MENEELY et al carried out a similar experiment for

measurement of flow in a jet. They identified the "self-beat" and

"cross-beat" components in the correlogram.

ﬁOURKE et al in an iﬁporﬁant paper described the spectrum
ébtained using the referénce beam hetefodyne technique and the homodyne.
technique in thelmeasurement of £urbulent flo&s; They discussed the
influence of the concentration of scattefers and the strength. and |
coherence of the scattered light oﬁ the different components of the
spectrum. ADRIAN & GOLDSTEIN ha&e obtained similar results. EDWARDS
Qt al (1971, °73) related the spéctrum to the Van Hove space—time
correlation function and b& assuming a‘Gaussiaﬁ form for this function
they derived exp;eésions fér the spectrum and ité moments. All thé
papers mentioned in this paragraﬁh discuss the analysis of the
reference-beam system used in conjunctidn-with‘a sweep frequency |

analyser to obtain the spectrum.
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The sweep mode'slowé the reéponse of the frequency analyser and it\
is therefore advantageous to.use a fiite; bank or a phase 1dck 1oop;
The phase lock loop requires a continﬁous éignal input and hence éannot
bé used when there are few .particles in the flow while‘the filter Bank
is very expensive and difficult to construct. Therefore, for low
séeding conditions there are only two effident LDV processors aﬁ the
moment . i. burst counter‘s§stem
. and ii. photon correla;ioﬁ system,
The photon correlation system, while more sensiti;e than the burst
. counter system, has not yét been used for obtaining turbulence specﬁra.
In order to obtain the spectrum-it goﬁld be necéssary to measure'the
inter—éfﬁiva1 £g§e§A§f éarticlés-and’élé; anél&séAtﬁe correl#ti;n
,fuﬁctioﬁ due to each particle tonébtain igs velocity, The velocity can

be obtained by one of the following methods:

i. zero-crossing analysis of the correlation function after passing. .

it through a digital high-pass filter o or

.ii. by detecting the peak of the Fourier transform of the correlogram,
which can be obtained by using a hardware FFT analyser (BERGLAND).

The use of these methods has not been reported in the literature.

In Chapter 4 the burst counter is discussed and it is shown how

— S
" the turbdence spectra can be obtained using it.

In § 2 the pfinciple of Dopplér shift and its application to LDV
is described. It is shown that the cross-beam configuration can be
.analysed by a real figure model. When the number of particles in the

’

flow is high, the reference-beam system is generally preferred to the
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cross~beam system. Both these systems are discussed in § 3.

Iﬁ § 4 tﬁe spétial resolution of the LDV is considered. In a
cross-beam system it is useful to haﬁe a large angle between the beams
and also between the-princiﬁﬁl bisector of the beams and the'liﬁe of -
the detéctor. This arréngement accompanied by‘a suitable field stop
in front of.the detector imprbves the spatial resolution. Iﬁ the
lreference—beam system thg scattering volume is defined principaliy by

the size of the detector's field stap.

v

In § 5, the relation between the count correlation function
(which would be obtained when an ideal full digital correlator is
used) and the intensity correlation function is given. Since these. ,

two functions are related linearly, only expressions for the intensity

) . . s . o . ! . ‘
correlation function are derived in the succeeding sections.

In § 6, there is a discussion on the statistics of'random.pulse
trains. It is shown: that the general expression for the correlation
function obtained by BEUTLER & LENEMAN reduces to Campbéll's theorem
under certain conditions. It is shown in § 7 how Campbell's theoreﬁ'
can be used fo obtain the correlation function for a constant flow.

In § 7.1 it is indicated how the results %n § 7 can be applied to'the

. measurement of particle concentration.

In § 8 the correlation function for the case of turbulent flow
is derived. An attempt has been made in this section to explain the
approaches taken by different authors in analysing this flow -

situation,
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(a)

Fig.(1l) Principle of Doppler shift.
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Measurement of periodic flows is possible using correlation techniques.
‘The procedure, which'depends on periodically sampling the scattered

light, is described in §9.
|

The correlation function for a sinusoidally fluctuating velocity
" is discussed in some detail in § 10. Details of experiments performed
in order to verify the expessions obtained in §10 are given in

Appendix A.

-§ 11 presents a brief review of the cross-correlation technique.

It is indicated how this method can be used to study diffusive motion.

§ 2. ~~PRINCIPLE of the DOPPﬁER‘EFFECT'

The laser anemometer is based on the principle of the Doppler

shift; the frequency of light scatteréd by an object moving‘félétive
to a radiating light source is qhanged by an amount which depends on
the velbcity and the scatteriné geometry; In-fig.(la), Ei and Esjare
- the incident and scattered wave vectors respectively. The maénit—
udes of ftese vectors iﬁ@ giveﬂ by {Egl = 2n/Ag, (g = i,8), vhere %g
represents the wavelength of the incident and scattered light. PFor a
particle travelling with vélocitylz, the Doppler shift is given by

the dot product, Af = (k- k.). v /2n Hz.
. —-s ——1 —

Tor high speed-flows the Doppler shift is usually.véry large '
and so a Fabry Perot interferometér can be used to determire the flow
veloci;y. The finite spectral resolution of the interferometer
presénts a lower bound on the véiocity that can be measured

accurtely. Typically one might have a frequency shift of 500 MHz at
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supersonic velocities which would require an instrumental bandwidth

of the order of 5 MHz; this corresponds to a very high resolution

fnstruﬁent. Conventional plane Fabry-Perot interferometers ﬁave
resolutions of the érder of 160 MHz and évenvth%s is difficult to
maintain except under carefully contrdlled conditions. Confocal
systems such as described by AVIDOR can have resolutions of the.érder
of 1 MHz. BEven at such high resolutlons, the 1nterferometer is

essentlally a hlgh velocity measurlng instrument.

The principle of light beating was demonstrated by FORRESIER
et al about 20 years ago. YEH & CUMMINS using this principle .and the
Dopplcr effect showed that it was possible to measure very low

frequency shlfts in 11ght and hence détermine a large range of

- velocities which are not acce531b1e to the Fabry Perot.

Consider the cross-beam geometry in fig.(1lb). Two convefgent‘

, N
beams with wave vectorskil and 5&2 illuminate a particle moving

with velocity V. The fréquency shift of the light scattered from

each of these vectors in the direction of k¥ is Av, = (k - k.. ). V
, . _ =s 1 -s =il -

and sz = (ES '-512)'-X° The difference of these frequencies is‘

+ . obtained when a square—law detector is used to observe the scattered

lighﬁ.

bvy = Av, = (K, —k.)).V = RV D)
Now

Jea] = o) = o0
hence Af = (bvy - Avé)/Zn = {2u sin Yoo - (2)

Ci)
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lens probe : p‘_

~ beam-gplitter volume
laser l <§§§§i,’,4,,——-f~‘“”—’—”dﬂ‘
' lens
(a)
- s/u
k A
- field stop P,
. t
light scattered by a - detector
particle in the cross- ‘ f
beam system while
traversing the probe
volunme
neutral o
filter . : ,
_lens o - Sf :
? beam-splitter -~ robe scattering beam
laser - > . . — volume ' ‘ S

(b) - : " ‘detector -
A/2usin(9/2) o

N\N\/\/W\/\/\/\/\/\/WV\M

11ght scattered by a particle
in the reference~-beam system
while traversing the probe
volume

Fig.(2) Optical arrangements
(a) cross-beam system
(b) reference-beam system
u = velocity of particlé, s = fringe spacing,

Doppler frequency = u/s. = 2u sin(9/2)/A ,



where u = |V| cos « is the component of V in the direction of K, and

u is perpendicular to the planes of interference fringes formed at

\

'tﬁe intersection of the two beams of equai intensity. The relation-
‘ship between the spatial frequency of the interference patterﬁ and
the Doppler frequency Af will be discussed later. Eq.(2)-indicates
that Af is independeﬁt of the scattéring direction. Consequently,
the collecting efficiency can be eﬁhanced by using a large collecting
lens. It'is also worth ﬁoting that Af is noﬁ direction sensitive, ie.

it depends on the speed u. . d

The reference beam system which will be ‘discussed in the next

" section also measures "a’ frequency shiftfas given in eq.(2). This
system ho%ever. cannot be described by a real fringe geometry and has

e collection aperture.

an upper limit on size of th

§ 3. OPTICAL ARRANGEMENTS and COHERENCE CONSIDERATIONS

' The cross-beam system, fig.(2a), and reference-beam system,
fig.(2b), will be described in this section. Only the salient
features will be discussed here while the practical details will be

left to the next section.

In a cross-beam system, fig.(2a), the lasér beam is split‘by a‘
-béam éplitter into two beams of equal intensity which are focusséd to
a point in the flow by a lens. The régibn in‘sbacé wheré the two
beams cross, together with the fieid stop on' the face of the detector,
define th; scattering volﬁme frbm‘wﬁich the velocity information ié

/
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obtained. This region will also bé referred to as the probe volume.
The scattered 11ght due to particle traver51ng the probc which falls

-on the detector is collected by a large aperture lens, (c f. P32 n)

The_croés—beam'methed is particularly well suited to flows:ip
which the density of ecatterers is low. Idealiy there should be not
more than one particle present in the probe volume at any instant.
~ The S/N ratio decreases with ;pereasing number of particles because
the eignals from individual parricles are of randbm phases.. DRAIN Has
likened the presence of a large number of partielee to a "cloud" with
the effect of blurring the contrast between the light aﬁd dark
'fringee 6f'fhelinterfereﬁce pattern in rhe;prbbe volume. This argument
is jdstrfiable sincelthe eross%beam aeemoﬁeter can be exflarﬁed'by a’
fringe ﬁodel which helps to clarify the worklng of the anemometer.
Slnce fringe spacing in the scatterlng volume is s = A/{Z 31n(6/2)}

a particle with velocity u moving perpendicular to the fringes results
in a fluctﬁating scattered intensity with-frequeney 2u.sin(6/2)/x.

This 1is idenrical to the result. in eq.(ﬁ).of the previous section,"
obtained by using only the Doppler shift prineiple.‘ This is a
resultlthat is explained~by either of two different physical procesees;
Anaﬁely; Doppler frequeﬁcy shift and inferference pattern formed in |
Young's'double—shift experiment. This observatien'hasvbeeﬂ discussed

"in some detail by PENNER et al.

When the average number of partlc]es in-the probe volume is
51gn1f1cantly greater than un:ty, the reference—beam syotem is to be

preferred to the crOSSfbeam system. This has also been noied in

DRAIN's paper in which the important features of the cross—beam and
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the reference-beam systems have been summarised.
]
The reference-beam.system, fig.(2b), requires the aperture of
the field stop in front of the detector to be sufficiently small so
the scattered light from any point in the scattering volume arrives

with approximately the same phase as the reference-beam. This ensures

" that thefcanqellation_of the cross-beam signal due to random phases

of the particles does not occur in the reference—ﬁgam system. The
criterion for éuch coherent detection is that tge solid éngle sub-
tended at the scattering volume by ;hé detector aperture bé at most
Azlwz,'where w is the léfgest dimension of the scattering volume. It
iéiﬁépés;af§lfor fhel iﬁteﬁ§i£y 6f tﬁe‘écé££é£éa 1iéh£ f& be nuch
lowér than that of the refefence«béaﬂu It is recoﬁmended that the
intensity of the reference beam be one‘tentﬁ the intensity of the
scattering beam.  This geﬁerally‘éhsures good mixing at ;hé detector.
Sevefal optical configurations have been deviséd for LDV.
Take for instance the system with one incident beam and two
scattering directions which WANG labelled the symmetric hetero-
dyne .arrangement and showed that the signal analysis for this system
wés[%déntical to-that used for the cross-beam system. This system
however is inferior to the cross—beam system since the scattered light
is collected over a comparatively small area. Such systems are

not used widélyland will not be discussed further.



A unified analysis of cross-beam and reference-beam systems

- has been carried out by SHE & WALLJ Their article isa very {mpértant
contributionlto the LDV'literature. They‘havé considered the effe?t
of paraméters such as spatial coherence and scattérer density flucif |
uations on the autocorreléfign function and fhe power spectrﬁm of
the observed signal.\ Their analysis of the'cross—beam and the
reference-beam sysfem is.an extension.of the results of DRAIN and
ADRIAN & GOLDSTEIN reépectively, The results for fhe S/N ratios of

the two systems obtained by SHE & WALL are however more practical

than those of WANG , - DRAIN and ADRIAN & GOLDSTEIN.

" 'SHE & WALL have presented a comprehensive description of the -
uée_of“aﬁ'LDV for-the.ﬁeaéureﬁent‘of t;rﬁulenﬁé. A tabﬁlatéd o
‘comparison @f'the S/ﬁ ratiqs_fof.differént mode§ of operation
(reference-beam vs.cross—beam) and for different methods of analysis
(spectral measurement vs. cqfrelation~funétion‘aﬁalysiS) has £een
given. The unified character of théir work relies on thelréference-
. beam aﬁd cr&ss—beam éystems both being analysed by addiﬂg the
sca££efed fields incident at the detector. By using different
Coherencg factors, expressions for the spectrum and the correlation
fuﬁction for these two éystems aré obggined; It hés beén‘shown that
for the refe?ence-beam systém the form of the correlation function, 
which is 1ndependent of Lhe partlcle‘den31ty in this case, is the
same as that of thc correlation function for the cross-beam system
with low particle density. Whgn the'particle density in a'cross—
beam system increéses thére can be'significant intenhréﬁce between

fields scattered by different pérticies and this gives a low frequency
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Acontributioﬁ to the spectfum.‘ The reason why this effect is insig-
_ nificant in the reference-beam system is that the iﬁtensity of the
‘deﬁected'scattered ligh£ is very sﬁall'comparea with that in the crqss;
beamvsfstem. The cross*beam‘systeﬁ is used when the scattered
intensity is low (this‘ﬁsually occurs when there are few parpicles in
the probe volume) and hence is generally used in conjunction with a
photon‘correlator. Wher the collection—leﬁs afertﬁre is iarge,'as is
u;ual ip a cross-beam system,bit'is reasonable to assume that the
photamltiplier in this situation acts as a lingar detect&r of
intensity, ie the scattéréd intengigz dué to each particle adds at
the detector surface. Whgn the number of scatterers is lafge; énd a
Hsméll,coliectioh.épefﬁﬁfé, howe§éf, tﬁe rigorous anal;sis.offSHE.& ;
: WALL is neéessary in order to explain the total photocurrént and the.
correlogram‘which contains a low frequency cOntfibution due to
‘interference between fields'scattefed by differenf particles. . This ;
effect will not be considered further in this thesis. It ié however
~ worth notingithat this. term can be used to determine the particle
concentration.” This has been demonstrated by SHE & LUCERO. Their

method is however rather complicated and is not of great practical

significance (SHE,private commnicaton). '\

Although the form of correiation function for the référéﬁce~
beam system and the cross-beam system (for low particle density) is
the same, the correlogram damps more éuickl& in the case of the cross-
beam system than for the referénce—beam system. .This effecf can be

understood by noticing the form of signal detected due to a single
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d ;_d/cos(é/E)
_2 = d/sin(8/2)

Fig. (3) Details of the probe volume:

(a) Geometry of a focused laser beam with a
- Gaussian intensity profile.

(b) Probe volume formed by using a thin lens
- assuming no phase distortion. “he length
of the intersection £’ is obtained by neglect-~
ing the beam divergence in the vicinity of
the focal point. '
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‘particle traversing each system (see fig.(2) ). It is also borne out
by the analysis of SHE & WALL. As mentioned in § 1,.however,"thé‘S/N

ratios of the two systens are different.

\

§ 4. SCATTERING VOLUME GECMETRY and SPATTAL RESOLUTION

‘The size of the probé volume is in important consideratién-
becausé it determines the AimensiAns over which any Vglocity.
fluctuations and g:adiénts in the flow aré avéraged. The probé volume
is determined by the optics of ‘the transmitter and the collection lens
and b& the gizevof'tﬁeilagér,begm{:lA; sﬁaﬁn inif;g7(2a5, tYo_b§am§ o
are fobugséd to a spot to minimise the scatteriﬁg volume. Under ghese'
con&tiops, Eﬁé spot size is detefminéd By tbe diffraction limit of the
focussing lens. The effect of ﬁlacing the beam sélitter before the

lens will be discussed later.

Consider a parallel, monochromatic beam, of uniform iﬁtensity,
diameter D andjwavélength A passing through a tﬁin 1eﬁ§ of focal
length f. At the focal point of thé lens a diffraction pattefn is
formed énd the diameter, d, of the central bright spot (Airy disc) is

given by the relation d = 1.22)£/D (KLEIN).

For a laser beam incident on a lens of focal length £, .the
intensity of the laser beam is not uniform but has a Gaussian pfofile
as shown in fig.(3a), and the wave front is usually spherical. The

diameter of the beam at the focal point is (CHU)

d = (4/m)22/D : | - (3)
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™
1& N2 K4

Tig. (4) Recelver optics for a cross-beam system

. For the sake of clarity only one beam is
shown. The four free parameters a,f: ,h
and ¢ should be'selected carefully Cin
order to keep the probe volume. as small
as poss1ble. See eq.(4).
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The significance of d and D is shown in fig.(3a). It is noted that
the diameter in this case is almost equal to the Airy disc and also

that d can be reduced by beam expansion in thé transmission optics.

In the cross—beam system, thé two beams interséct at the focél
point of the transmission 1eﬁs'and the inte;ferénce fringes are formed
only where the beams intérsect. When the two beams of diametér-p'are
focussed as in fig.(3b), the width of the probe volume d' is d/cos(8/2),
where d is.given by eq.(3). Although feal fringes are ‘not formed in
“the reference—beamvsystém,ithé width of the scattering volume is.also

d'.

As previously mentioned, stops and apertures in the collector -

optics are normally used to limit the size of the scattering volume to
a small probe volume because generally the dimension (% or &') of the -

al axis is too long for good spatial

a

scattering volume along tﬁe optic
résolution in the flow. A simble means-of reduéiné'this‘dimension by
using the collecgor.optics for a cro;s—beam system is shown in fig.(4 )
where for clarity, only.one beam is shown. A pinhole of diameter h is
‘placed in front of the detector so that it is in the image plane of.tﬁe
COliéctor lens with focai 1ength fc. in this arrangement, the length
of the probe volume £ seéﬁ by the detector is % = p/siﬁ ¢, where ¢ is

'the mean scattering angle. By using the lens formula we obtain
L= (a/f - 1) b/sing o 4)

Thus the lengéﬁ of the probe volume can be controlled by a judicious
choice of collector optics and the scattering angle. Usually not all the

parameters in eq.(4) will be free since there will be constraints due
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to the expefimental geonetry. For fhe sake of clarity
only one beam is shéwn in fig.(4). |

 HANSON has considered the.broadening in the
-ﬁower spectrum due'to'impxgper alignment of the beams
forming the interference pattern.. A number of.
investigators have used the laser-beam splitter-lens
transmissibn arrahgement. In thisvset—up ?he lens .
is not used paraxially, hence the waists of the two
beams may not coincide with the cross-over point
‘where the interference pattern is formed. This leads
to a‘véfiable fringe spacing which can'iéad to a
spectral‘broadeﬁingmwpgch underfcértaih conditions canlbé
greater‘than the transit time broadening, HANSON.
It is for this reason that the laser-lens-béam splitter -

configuration in figs.(2a,b) is recommended.

§5. DETECTION of SCATTERED LIGHT

Photodiodes or photomultipliers are generélly
used for the detection of scattéfed light.' When there
is a high scattered intensity, the signal at the output
of these'devices varies continuously because the-
detection system has a finite bandwidth. In a phété-

multiplier, the absorﬁtion of a photon creates individual photo-

v
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electrons at the cathode which after multiplication appear as discrete

~ pulses at the output. These discrete pulses can be‘qbserved if the

incident light levels are low so that pulsés do not overlap and the

finite bandwidth effect is not dominant. . In flows with low or very .

little seéding the scattered intensity is inevitably low and hence it

is necessary to detect (count) these discrete pulses in order to obtain

information about the flow. This is the basis of the'photon;

correlation method (ABBISS et aZ); for which a photon counting photo-
mnltipliep is necessary. This type of photomultiplie} has a high
téﬁppral resolution and a discriminator unit attached to it outputs a
sequeqqe‘of pulseé of.ééual heiéht wﬁich cap‘thén be.%nalysed by a

{ ,
digital correlator. \

‘It can be shown (PIKE) that the count correlation is proportional -
to the intensity correlation function for non-zero time lags if the

fluctuations of the scattered field are 'stationary', ie

: | : ) |
E[n(o;at) .n(t;at)] = + nit. .
| [n(o,At) n(T,At)} (nat) ™ Rp(x) + nat E[I(O)]gTO (5)-
where n(r;at) is the number. of pulses 6utput.from the discriminator
at the time T in an interval At short enough for the intensity to’

remain constant over this interval; n is the quantum efficiency of the

photamltiplier; RI(T) = E[i(O)I(T)J is the intensity .correlation

function and.sro is the Kronécker delta. Sine the digital cofrelator,
(Precision Devices) used in thé expérimenps fo be described, does not
compﬁte the correlation funétioﬁ for 1 = O,»thé second térmf

nAt E[I(O)]G ‘in eq.(J) will not bé conSLdered any further. From'

now on ‘only expressions ror R (r) the intensity corrolatlon functlon

will be given since the count correlatlon function is proportlonal to it.
. ' -

v
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. § 6. STATISTICS of RANDOM PULSE TRAIN

There has been a considérablé interest in the anélysiS-of
random pulse trains since there»are a ﬁumbef of physical processes’
that can be represented by such’a model. Notable among the |
publications is the work of BEUTLER & LENEMAN, A brief account of
their results will be given in this section while the application to

the LDV will be discussed in the following sections.

Consider a general pulse train of the form
. a’-w ) . . !
y(e) = } i (e-t) (6)

-0

in which {tﬁ}'is a random time base. (a statioﬁéfy pgiﬁt process) and
in(.) is‘thg n?th‘pulse. The mean of y(t) in eq.(6) is computed by
averaging succeé?ively 6Vér’1in(.)} and4{t£}.(thes§'ére assumed to be
indepéndent random yariabiés) thus,

© h J-00 )
E[y(t)], = E [Ei [z_win(t-—tn)” =B ) m(t—tn)] _ (D)

-—00

1f g(t) = z G(t—tn), it is possible to write

[m(t-r)g(r)dr _~ . (8)'.

(oo

m(t-t )

and hence .

e ' |
E[J m(t"T)'g(T)dTJ . %)

Efy(t)]

By interchanging the order of expectation and integration in eq.(9):

E[y(t)J. = vj ;m(u)du S ‘ (10)

(+]
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where E[g(T)] = v, which is the average number of pulses per unit time.

It can be shown that autocorrelation of y(t) is.

R (1) = E[y(t)y(tﬂ) V{LF (t+u, u)du + 2 JLP (t+v,u)

£, (Ju=v])au av) o (11)
in which B ‘ ‘
T (u,v) = E[i(u) i 0] - . a
mrk i
~-and fk(t -tm) is the probability den31ty-of'the 1nt§rval tm+k-Fm.

mtk

between k successive intervals.

In the second integral_bf eq. (11), by assuming independence of

the'{in(t)}

r(u,v) = E[i (] E[i (1], k#0. 1)
Thus rk does not depend on its index and the summation may be applied
only to fk. For a Poisson point process {tn} it follows that whenecver

ufv

© Y £ (uv]) =Z L—'1'-‘LL——'exp( v|u~vl> =y, )
k=1 .

(k=1)!

‘accordingly in this case the autocorrelation is

Ry(v) = vwa[im(u+T)im(u)]du + vz(foo E[im(u)]du)2 : . ngj_

i . =00

wnere the first term is 1 dependent and the second term contributes
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only to the d.c., When im,is deterministic, the expectation operator
E can be removed and the result is Campbell's theorem. In this case
the characteristic functionof the pulse process can also be

determiﬁed and hence any statistic of y(t) is available in principle.

From eq.(12) it can be seen that the second term in eq. (11)
will contribute to the fluctuation in the correlation function if
{in(t)} is a correlated sequence.

'Eq.(ll) will be discussed further in § 8 where the cbrreiétion

function for a turbulent flow will be considered.

§ 7.  INTENSITY CORRELATION FUNCTION .for CONSTANT VELOCITY

e

Consider .a typical cross-beam arrangement as.shown:in fig;(Za).‘
For éimplicity it is assumed thétlparticles traversé.the scattering
volume in the plane of maximum fringe contrast or in other words,
pass througﬁ all the fringes. A particlé with‘velpcity u produces a
lscattered.intensity‘
(t~to) U - 2,mut

5 } cos Q-g—) ' (}6)

I(t) = I expl-
o o)
. Zr

whéré'lé is the peak scatteréd ihténsity, to is the time of arrival
of fhe particle at the centré of the scattering volume whére it
scatters Io, r =~(dJ4)/cosﬁ6/é) and s is the f;i@gespacing (seé § 3
and eq.(3) ). After nofmalizing I(t), it can also be regarded as the

probability of absorption of a scattered photon by the photomultiplier.
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When a number of particles pass through, the resultant scattered

intensity is the sum of the contributions-due to each particle, ie

N 2, 32 o
() =] Iem- f_jt'tcz,k’i y hllacos@me/s)) (D)
k=1 : '
2r

By assuming that the arrival times {tok} of the particles form
a Poisson sequirnce, the autocorrelation function of I(t) can be

evaluated -using eqs.(15) and (17) after a simple but rather tedious

calculation:}
R (1) = ¥ B[ ]. LI ("“ZTZ) (142 expl=iy cos(C2E) 4
R okl |Tu ©*P 42- P s
22 2 2

}cos(27ru ) + }exp{ 4“ e (E[I k])z 2nr .
. s | ‘
' T”:2ﬂ2r2 ~tm 2e - :
(1 + 2 exp{ 5 } o+ exp{———754—}) , - (18)

where v = E[N/f] and vg = E[N(N—l)/I],(I = total experimental timé).

A similar expression has been obtained by. ABBISS et dZ (1974).
There secem to be three errors in their formulz noticeable when it is
‘converted.to‘the’form of eq.(18). They'have E[Iok]and 3r/u instead '
of E[Iokz]and /rr /u respectively in the term multiplied by v. Instead
2 : - e e o2 2y
of E [Iok] as 1n the term multiplied by v, ;hey'have E[Iok ]; this

too seems to be incorrect.

For the successful operation of an 1DV there should be at least
two fringes inside the probe volume, ie r > s. Therefore eq.(18) can

be greatly simplified to give
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[;2 ] Jir V—uzrz

N -V ynr 'f 1 2 2Tty |
RI(T) ” okl o . exp( ] 7 )L} + i m” cosC S .)] y
r . .
2, 2 IR 3 3
Y 27r g ‘ : ) A
T E‘[Iok}‘ 2 - a9

where a fringe visiBility constant (o<m<l) has been introduced to
take account of less than 1007 contrast between light and dark
fringes. The value of m is due only to the optics and not to the

number of particles in the probe volume.

There can be some confusion when comparing egs.(l7) and (19).
The 7 dependént terms in the two equations appear to be the same
excépt that, while the amplitude L of a pulse in eq.(17) is
independgﬁt of‘thé-veloéity, fhe ampiitude-of RI<f) seems fo be
proportional to u—;. This ii obvioﬁsly incorrect since it suggests
that ;he'amplituae of kI(T) approaches infinity as,the Yélocity.
approaches zero. This féct has hdwever not been no;ed by-ABBISS et al
(1974) who ekpreésed the fluctuating part of ;he correlation function

as fg exp(.) [1+. mzcos(.)J, (their eq.11), having implicitly absorbed

u .
v in the constant a. Since'v is proportional to the velocity (v =
d.u, where d is proportional to the number of particles per unit

volume), the amplitude of the correlation function, like the amplitude

Io, is independent of the velocity.

Before discussing some aspects of particle concentration
“determination some consequences of the Poisson arrival times will be
described. Inherent in the Poisson assumption is that no two"

particles arrive at the same time in the middle of the probe volume.
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This consequenée is often not sﬁafed in the LDV 1iteraturé. DURRANT &

-~ GREATED (1972), using the formulation of the éhot.noise int?oduced bj

ZCdX & MILLER have used concentraﬁionAcgnstants ¥ and Kvinstead‘of'v and
92 respectively and have hénée considered a non-foiSson point'prﬁcess in
which coinciding points ére allowed. Iﬁ eq.(llj by aséuminé an
arbitrary distribution for {tﬁ}; noting of course the independence of
the Qccurfencé'times, thg two concentration constants Y and « would

'beéome v- and v;z f respecﬁively. This suggests that. z f = k/y. Even

k k
when the Poisson assumptlon is not valld as when the partlclc density

is high, v £ N/T and vZ fk = N /T. This aspect will be discussed
I _ . .

further in § 7.1.

§ 7.1 Determination of particle concentration

Assume that.identiéal partféieé (size < fringe widih) used for
seéding in a flow are mono-disperse and are moving with é constant
velocity. The correlation function given by éq.(19) can now be.
wriften as

2 2 2 2

R (1) =7 NI exp( Bt cosElD)}, ¥ 2 5’12 (20)
) A A 2 4 o}
.4r '
‘ where K =-Z££ and E Iz = E2 I = I2 since . the particies are i
: uT ok| ok| (o] .

identical,

By us:ng a 1argc number of frlnges or by frequency sh1ft1ng,
the term exp(~u21 /4r ) in eq. (20) can be made approximately equal to

unity and by proper optical alignment m can be made very close to
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units. Eq.(20) can now be further’simplified to give

2 .
. KNI . i ) o v
R (1) = —2(1 + § cos €0} + 4 1’1 (21) -
='g KNIE cos(zggT) + 3 KzNzli, (N >> 1) .' (22) =~

" The first and éécoﬁd'térms in eq;(22) give the a.c. and d.c.
contribution to the power of the scattered intensity. The total_powef
is the sum of the mean square a.c. and d.c. power. It can be shown
easily that the ratio (a.c./d.c.) of these two.compon;nts varies as
an. This resﬁlt has been obtaiﬁéd before by'LADING (19732a) and
FARMER. The resulf in eq.(22), however, showsvthat a correlator can
be used to detect the effect of particle concentration in the flow.
The only practical drawback with thié method is the inevitable.
contribution of backg:ound light to the d.c. power.- This contribution
can however be fémoved eifher by clipping or averaéing the Béckgfound

contribution with no flow. The clipping pfocedure will be described

in the next chapter.

The Nfl variation is common to all situations where quantities
with random:phases are summed. When using.this relationship to
‘determine the variation in pérticle concentration Qith. a correlator
. it should be borne in miﬁd that it is'only true for a éonstan; flow -
with N >>"1. FARMER has indicated that in theory the particle number
density can be calculated in a turbulent fiow if the Qelocity
distribution is available, however no éﬁalytical proof ié given. He

has also not considered the fact that a larger number of-particles with
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P

high velocities pass through the probe volume than those with low
velocities.. Leaving aside this complication, it is still felt that the
" complex scattering process and flow characteristics. can only permit,  at

the very best, not more than an approximate N—1 relationship.

§ 8. INTENSITY CORRELATION FUNCTION for TURBULENT FLOW

A number of authors have derived expressions for the intensity

correlation function without stating clearly the underlying assumptions.
The completé analysis in this case needs to take into aecount the fact
that the time of arrival of particles'{tn} is modulated by the

vélocity of the fiuid and the light scattered by a particle is correlated '

with that scattered by other particles. Under these conditions the

methods of derivation adopted by the authors will be discussed.

Two models of point procésses ﬁave been discussed at considerable
length in the 1iteraturé of aﬁplied stochastic processes. PAPOﬁLIS
 has derived the correlation funcfion of a non-homogenous Poisson process
(rate = v(t) ) with a deterministic pulsé shape. This model is in- A
applicable to thé LDV since the,timé depéndent rate v(t) can only occur
with a fluctuating velocity and this in turn means that the centre
frequencies Qf the Doppler bursts becomes random. The‘modél described
in § 7 is moré appropriate to the LDV, hdwévef, it does not take into
account the time dependent rate of fhé point process. By deriving an
expression for the correlation function from first principles it will .

become clearer what assumpticns are necessary in the process of

obtaining the result.
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Let the signal input to the correlator at time t due to N
particles be
y(t) =) i (t-t) oo L (23)
~ n n _ _ .
: n=1 . o N
where unlike the uniform velocity case N, in and t are correlated
with the Velocity {Vn},'n=1,..;,N, of cach particle in the probe

volume. The correlation function is R(t) = A(t) + B(r) where -

N - . .

A(r) = E §=1 i (emt) i (t+r-t) ; | S (24a)
N N ’ "

and B(r)‘ z X 1 (t-t ) 1 (t+T -t ) . , - (24D)

pta A | S

Eq. (24) gives the complete expfession for the éorrelatioﬁ function.
The single particle contribution is givén by A(T),'and B(1) represents
tﬁe two partiéle contribution. Only the singlé partiéle_coﬁtribution
is considered by ABBISS et al (1974) wﬁile DURRANI' & GREATED (1§74)
and SHE have considered both the contributions. SHE has pointed out
“thet in ordéf to evaluate B(7) it is necessary to assume that the ‘
velocities of the partlcles are uncorrelatcd which is not stated but
is 1mp11c1t in the derivation of DURRANI & GREAIED (1974) As
mentloned ear11er ABBISS et al (1974) consider only the case when
there is not more than one particle in the probe volume; here B(t) = 0.
CROSIGNANT et al havé dérivéd'an éxpréssion for B(t) assuming a
jointGaussian probability dénsity funétign for the velocities of thél
particles. They have not considéréd, howévér, title finite transit
timé.effect which‘doés‘play a significant part in démpiug the

influence of the correlated velocity effects. It can be shown
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qualitativély (also analytically but-this wouid be rather fédious)
that B(1) contributes a low frequencyycompbnent t; the corfelétion
function when the number of pafticlés in the probe volume is greater
'£hén unity and if the velocitiés are éorrelated. It does not con— l
tribute a d.c. component as suggésted by DURRANI & GREATED (1974);
their result forAB(T) is true only when thé vgiocities are |
uncorrélated.~ It should be notéd that tﬁé two particle ‘contribution
B(T), in SHE's analysis contains'an extra time dependént térm due to
coherent detection which is'neglécted ip the above discussion sincg a
1argé detéctién ;perturé'is‘used g;nérally in é.cfoss—beam s?Stem.
Fo?_a détailed”disqussion on E(T),?éfé?,to cﬁap.6 of the book by
CROSIGNANI et az(» If a11~contributoﬁréffects-Qéfé~£éken:info accoﬁnf,~
assuming that all the statistics were available, the complété result

would be extremely complicated and not very useful for parameter

»
-

estimation.

An expression for A(t) will now be derived. Let the velocity
of the N particles in the flow be'{vﬁ}, n=1,...,N. In eq.(24a) the
averaging has to be over‘{vﬁ},'{tn} and N. First, taking expectation

over {tn} gives

T Kvl b Rv N « , »
A(t) = E L Aty Tpodeg er:l A (e=t )i (t+r-t ) (25a)

where the probability of a particle arriving at time t, is Kvndtn/T; T .

. 1s the total experimental time and K is a normalization. constant.
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This is equivalent to saying that the higher the velocity of
the partigle the more likely it is to be presen? at time t - This
modulated Poisson ﬁrocess waé first discuésed'by McLAUGHLIN &
TIEDERMAN. Eq.(25a) can be simpligieﬁ‘(for a similar manipulétion

see pg.l48 of WAX)

\
N Ry (T . o
A(t) = E 21=1 — [olnl(t-tn) i (trr-t )dt | (25b).

The integral w.r.t. tn has already been evaluated in eq.(19) and the
result will be represented as a function g(T,vﬁ). Averaging eq. (25b)
w.r.t. the velocities'{vg} gives

L - e

e e TN RV R
_A(f) = EI}-dvl...J'wva f(yl...,vN)Z=l - g(r,vn) (25¢)

S~ . w0 -

P

where f(ﬁ,...,vN)'is the jéint'velocity'probabiliﬁy density function.

On further simplification eq.(25c) beqomés

n=1

-—00

N Kv : : . '
A(r) = E[Z J -—Tﬂ g(t,v ) £(v ) dvnj| ' (254)

where f(vn) is the probability dénsity of velocity.of the n—th
particléf Since it is assumed that the particlés "track" the fluid
pérfectly; v can be replaced in eq.(25d) by v the veloéity.of the
fluid. Before averaging ovér N, it should be noted that tﬁe prévious
expectations w.r.t. {fn} and'{vn} assuméd that these séquenceélweré
independént of N. This is justifiable if T is much greater than the
inverse of the velocity fluctuation bandwidth. Now, avéraging over N

gives .
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K

 A() = E[N) .-T-[“v 81,V (V) dv | o ese)

-0

(see pg.248 of PAPOULIS for a discussion on "random sums").  The form

-

of g(t,v) is (from eq.19)

o 2 o S A
g(t,v) = % exp(dY; Y {1+ %—'cos szr)} o B (26)
.0 4y .

Eq.(25e) can be evaluated now if the velocity probability density is

known. By assuming a Gaussian probability denéity eq.(25e) becomes .

L u2  | u2 m2 : 2w202 -2. | 2mu ]
A(t) = Dexp{—— - ~l}|1 + 5 exp{~ ~—— 1 }cos(—gar) (25f)

20C 20 s C

where u and 02 are the mean and variancé of the floQ velocity
reSpéctiQely, D is a constant and C=1 +-0212/<2r2). This formula is
similar to that‘qudte&~py.f65£D‘et aZiaﬁd aéplies fbr.an arbitrary |
tgrbuience,intensity.vhen the turbulence intensitf is low (o/u<<l) and
assuming that the vglocities‘of the"pa;;icles do n&ﬁ:change while
”traversing the pfobg volume (ofm<<r, whmezn is the maximum'carreiégion
lag value of the order oﬁ-the mean transit time) eq.(25f) can be
simplified‘kl/c = 1-0212/(2r2» to give

22¢ 2 2 2

A(t) =D exp{ = ; }[i +'%L-exp{ﬁzﬂ—%—fz}cosﬁzggT)} (27)
' 4 . S o

For experiments-conducted in a flow with no or very little
“artificial séeding, the correlation function will have the form
given by eq.(27). This.expression has been derived by a number of

authors, SHE and DURRANI & GREATED (1974) for example do not
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consider the modulated Poisson process {ﬁn}land.hence effectivély end
up with a relationshiﬁ with D in eq.(27) feplaced.by D/u. "SHE has
avoi&ed this sticky point by dividing‘the aﬁtocorfelétion of the
weighting function (the Wéighting function fﬁnction defines the transit
time.effect) by its value at zero lag hence cancelling the 1/4 in the
nuﬁerazr and denominator. Aftér this has been done, the'expecﬁation
over {v#} is taken assuming a Poisson distribution of particles. GRANT
et al usé a method similar to DURRANI & GREATED (1974) and hénce also
érrivé at thé surprising 1/u dependencé. ABBISS et al (1974) arrive at
én identical expression to éq.(27). Their method is similar to that
uséd in'this section. It is'felt’howeye; that thg dg;iyafioﬁ given

" ‘hére gives a learer piéture of the mecessary assumptions required in

arriving at the solution.

§ 9. PERIODIC FLOW ANALYSIS by SAMPLING

The invéstigation'of periodic flows 1is of considerablé interést
to the fluid dynamicist. In such flows iti; sufficient to determine
~ the vélodty'of the fluid over one period. 1In such flows thé excitor,
thch for example could bé a wavé—paddle, a péristaitic pump or a 1ﬁhg
ma;hine, stimulétés thé fiow in a perioaic fashion. ‘The‘frequéncy of‘ 
this motion is generélly 1inked‘to the frequency of the observed
periodic response of the fluid. Such flows can be measuréd by using a
gatéd cathode photomultipliér which is'triggéréd by periodic pulses
derived from the excitor, such thap thé photomultipliér alvays "sces"

the same velocity. The duty cycle of the gating pulses should there~

-~ -
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fore be very short compared to the .period. By varying the phase of the
gating waveform am observing the correlogramé for each of these
different phases, the fluctuating velocity of the fluid can be mapped

éompletely by using eq.(9). See fig.(S);

In certain cases there might'be some background turbulence
which'will add to the periodic signal. Using the procedure mentioned
in the previous paragraph, but in this case using eq.(13), the mean and

variance of ‘the velocities can be determined. See fig.(5).
' X \

The procedures that have been suggested can be used to analyse

any periodic flow. Since the photpmgltipligr.”sges" the velocity only
for a short time the disadvantage of this method is that the corrélo-
gram takes a long time to build up. This method is therefore

susceptible to extranéous low frequency fluctuations.

§ 10. SINUSOIDAL FLOW

Simple periodic flows can be analysed by the correlation method
withoutthe need for periodic sampling, hence improving the response
time of the technique. It is necessary in such situations to know the

form of the fluctuation a priori.

In this section the form of the correlation function for a mean
velocity with a sinusoidal fluctuation will be derived. The fluctuation

- will be assumed to be small in comparison with the mean velocity.
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Y

4

Let the velocity in the mean flow direction be
. v(t) =u + a cos(@ot + ¢) X '._ ‘ o (28)
'wherelu is the mean velocity; a,u  are the amplitude and frequency
of the fluctuation respectively and ¢ is uniformly distributed over

A

©,2m).

The velocity probability demsity function is then

pv) = —73—_—-—==§1 3 |vu] g a A . (29)
Tv/a _(v..u) . . .\ . )
=0 ; otherwise

By us;Lng egs. (25e) and (26) and the procedure of averaging
.suggested in § 8, the correlatlon functlon for thls flow can be

' obtalned.

A ur exp{ 2‘2/(4r2)'} m2 2V '
R (1) == XPLY T +5-cos(=r) ldv (30)

" u-a Ja ~-(=u)

By assuming that u >> aj the Gaussian term can be taken outside the

integral to give

A _u2T2 uta 1 - . m2 9y
R.(1) = = exp{ }J ——ee| 1 4+ — cos(5—1) |dv (31)
I T 4r2 u-a vya"=(v-u)”“ 2 s
Eq.(16) can be simplified to givé_
: _ 2 |1 n? 2ma 27u
RI(T) = F exp{ H + ~—-J C——— Jcos( S | (32)

4r2‘L 2

t -for arbitrary a/u ratio a closed form result is not possible. See
eq.(25£) which is valid for any turbulence intensity.
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Notice the similarity in form with eq.(27). For the turbulent flow
case the cosine term is damped by a Gaussian factor whereas for a
periodic flow this damping is replaced by Jo,'the zero order Bessel

function. This causes a beating effect in the correlation function.

Experiments were carried out to verify eq.(32) and are
discussed in Appendix A where a simple method of estimating the

parameters u and a is described.

§ 11. CROSSCORRELATION TECHNIQUES

Crosscorrelation techniques have been applied extersively in

" -the analysis of signals from various types of transducers used for

flow measurements. For example BECK et al have described how the fluid

velocity and the particle size distribution can be determined by cross-

correlating signals arising from two conductivity probes placed a

short distance apart in a pipeline. TFor industrial applications cross—

‘correlation techniques are particularly powerful because of their

simplicity and the case with which the results can be interpreted. .The

mean velocity of the flow can be determined directly from the lag value

" of the peak of the correlation function. - The ratio of the distance

between the probes and the lag value of the peak gives the mean

velocity.

A distinctive peak can be observed even with a low S/N ratio.
peak detecticn circuit (TAI eb aql) or a delay lock loops (HAYKIN &
THORSTEINSON) can be used to keep track of the peak of the cross-—

correlation functiou. If the separation between the transducers is

A
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made extremely small the crosscorrelation methods can be made to be
almost as effective as the frequence trackers commonly used in LDV

work.

The cros;corpeiator is analogous to fhe time—of—flight '
measuring counter used in nuclear physics experiments. A distributién
"~ of the tim¢—6f~f1ight of particles is obtained by using a muitichannei
pulse.heiéht analyser, into which is fed the flight time of each
pérticle; ‘The output of this instrument is then the,Probabiliﬁy
density of the times of flight. Similarly the output‘of'the cross-—
~.correlator is the probability‘dénsity of the transit ﬁiﬁe of
particles passing from dne~beam to the 6thér.' ihe'area under the

crosscorrelation function can be normalised to unity.

LADING (1973b) and DURRANI & GREATED (1975)‘héve'derive&
gxpressions for the crosscorrelation‘fﬁnétion in a turbulent fluid'
when the probability-dénsity‘function.of the velocity.is aséumed to be
Gagssian. It can be shown easily that wﬁen-the separatién betwéen the

\

probe volumes (or transducers) is small the crosscorrelation function -

approximates closely the velocity probability density function.

A possiblé interesting application of the crosscorrelation
technique is the investigation of diéfusive motion. WASAN has
diséussed thé first-péssage-fime probability density of Brownian
motion with a positive‘drift. This probability density has also been
cqnsidered in the statiséical literature undéf tﬁe héaéing "

Gaussian (Wald) Distributions", JOHNSON & KOTZ. Based on the results

of WASAN it can be shown essily that the diffusion constant can be
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determined from the correlation function. A more accessible reference
than WASAN's monograph is a paper by ROY' & WASAN to which the reader

may refer for details.,
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CHAPTER 3

3

PARAMETER ESTIMATION from COUNT CORRELATION FUNCTION

§1.  INTRODUCTION
ﬁ To obtéin a photon count cOfrelogram the number of

.couuts ocourring in consecutive non—ovérlépping iutérvals

of length T aré}measured- If n, is the number of counts

in the time interval (kT, k+1T ), then a digital correlator '
computes the correlation function N z:.nk K+s’ S-O 1. ~l,
where M-1 is the maximun lag value and NT is the total
experimental time. In-practlce-dlgltal photon correlators
oftenuuée’some form of clipping prooédurelwhioh results
- in an -approximation to correlation function described above;

"The Prec1s1on Dev1ces correlator whlch was used 1in

e

the experlments, in addltlon to other statlstlcs, computes
the s1nvle clipped correlation functlon for 48 correlatlon
Jag values. The values computed are_Zka]C Ny, o (s=1,2..,48),

N, 2{[ k]',and-Z:n, where.
© Ind®-=1 if nyec and .

[n])%=0 it ncec. o
The‘clipping levol c, sample time T and_total‘numbep of”
samples N can be set oy the expéfimenter. |

Before estimuting the flow parameters‘it is oonvenient.‘
to normallze the correlatlon function to give |
-1 5

| o
N 2ifng ] k+a

R(ST) = -1
(N ‘{T@kﬁ) (T g:nk.)‘
= L k=)

’

which can be simplified by cancelling the N—l'factors. This

~form of:normalizaticn is -useful in that the effect of slow
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extcaneoes varlatlons in the mean eount rate can be
minimized and also that the flrst term on the r. h.s.
approaches unity as sT 4, hence R(ST)-+ C. Thls
ensures that there is no pedestal in the'correlatien
fuhctioh:and this reduces by'ene the number of free
parameters required in pafameterizing the correlation
function. It is noted that the effect of,backgfound
'light, which otherwise leads te a pedestal, is also -
eiiminafed. The constant pedestal fefm included in the;
expressions for the correlatlon functlon for the dlfferent
flows dlscussed 1n chapter 2 w1ll be neglected for the
rest of this chapter. |
'Aeseciated'with the diseriminatef_( attached te the

photon eoﬁnting photomultiplier ) there is normally'a
‘dead time which:is introduced into the circuitry to
inhibit fhe fermationnof two pulses in very rapid-
SUCCession. This is necessary because ‘of ringing effects
associated with the signal which reaches the discriminators.
‘Dead times are typically of the order of 50 ns, and result
in a reduced correlation between counts at delay times of
' this order. This does not generally cause anj serious
eroblems but sometimes means means that the first point
('s=1 ) on a correlogram'hae to be ignored when sample
times of the order of 50 ns. are used.

| In order to simplify the notatlon, R(sT) will be
‘replaced by- R(T), where v now takes discrete values

=1 12+ oo, 48 1if the sample time T= 1.



' effect of non- Gaussian statlstlcs is domlnated by the

B :"30 5""

It was noted on pg. 2.14, eq.(5)v; that fheifuli
count correlation function is related‘very'simplywto the
’ intensify correlation-function. This resuit is independent
~ of the statistics of the incident field. Since fhe use of
clipping teehniques can considerably reduce the'hardware
and time necessaryfte compute the count correlation
function, it'ie reasorible to enquire how the ciipped T
correlation function is related.to the ihtensity correlation
function.. For Gaussian fields these two functions are &

agaln 51mply Telated. There is however no 51mple relation-

e, L

,<v
AR L 47 e 27 v o

ship for an arbltrary fleld

When the fleld scattered by a fluid has a non- Gau581an

probablllty den51ty, the reference—beam systemAglves the

e s S AL Y

: et it S Rt

spectrum of the field if a'full correlator is used with

L g

Nr§>NS, where Nr ang;NSware the average photon eounts per
sample time due to the reference beam and scattered beamz‘

reepectlvely For a weak 51gnal (N Q:l and N 2>N ) the

shot n01se due to the reference.beam so that the single

T
PR S AT 7337 SRS

cllpped correlator may be used in thls case without

dlstortlon. For details see JAKEMAN(1972). The use of

the reference—beam system with pheten correlation to. | f

measure fluid ve1001t1es has however not been reported. |
Tor a large partlcle density and a constant velocity

the field and intensity detected in‘a-cross-beam system

has a Gaussian probability deﬁsity because of the central

limit theorem. In gencrul for low partlcle density and

and turbulent flow the dctected field is non~Gauq51an.

Uniform random c¢lipping can be used here to make the count

i
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correlation functlon 1ndependent of the 31gna1 statlstlcs.

In Appcndlx B there is a discussion on the use of uniform

random clipping while the error associated with this methodA

. is derived and also articles relevant to this topic are

referenced. As mentioned earlier, for a low count rate
(E[n]<0.1) the single-clipped correlation function is

essentially undistorted so that non-Gaussian signalé can

always be handled at these low light levels. For a general

review of correlation teghniques refer to the article by

- Oliver referenced in Appeﬁdix:B.

In the following sections it will be assumed that

the count correlation function is proportional to the

intensity correlation function.

L g2, | GENLRAL FORV of CORRLLATION FUNCTION

.

The 1nten31ty correlatlon function for a fluctuatlng

flow with a finite mean ve1001ty and a perturbatlon which

1s small compared’ w1th the mean is given by

R('r)':’l‘('r)[l+l/2.m £(1) cos(2mu 1) ] - (1)
o S

where u is the mean velocity, T(T)‘is the fransit'time
effect term and can be replaced by a constant when there

are a large number of frlnges, m accounts for for the

- imperfect visibility and the Fourier transform of f(r) is

- proportional to the probability density of the fluctuating‘

PR DT RU
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velocity. Note that there is no constant pedestal in eq.(1).

A closed form such as eq. (1) is in general not poésible
When the fluctuation is comparable with or greater than
the mean velocity, however, an accurate expre ssion for the
correlation function can be derived for a velocity with

a Gaussian probability density with arbitrary turbulent
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Tig. (1) Correlograms for (a)nconstdnt flow (b) turbulent -

flow wlth 1nten51ty o/u = 0.15 and (c¢) sinusoidally

»fluctuatlng flow with a/u = O 15.
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Transit time effect in the correlobrams
shown in fig.(1).

and (c) show the corrolograms of figs.(1b

~and c¢) with the transit time effect
- removed. The constant pedestal (=40)

can be ea51ly removed.
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Flg (5) A correlogram of thls form should be .

obtained in order to remove the transit
time effect. The ordinates of this

. correlogram become 2zero before the laot

lag.

'Know1ng that the -form of the correlogram

is a Gaussian, the variance of the

- Gaussian function can be found by using the

width of the function.at its 1l/e p01nf
or by fitting. ,

If a separate experiment for the deter-
mination of the transit time effect is
not possible, it should be ensured that

the transit time effect is low. The

transit time effect can now be removed

" by fitting a low order polynomial to th&'
_correlovram. Folynomial P(1)=A(1+B+%° +Cv

S

4
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~of fringes

(v1)
T
20 \ ;- ¢/u=.11
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. (e) Up-vhlft¢ng ‘reduces the
_ . , ' ~ a@pparent turbulence
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—~—infinite fringes
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. ' ' - . '
| - w.2 , turbulence intensity

0

dnsensitive-x¢useful for -—¢damping ratios

region

Fig.(4)  (a)

. parameter not appllcable
estimation here

Difference between the accurate (eq.25f) and
approxinate (eq.27) formulae. See pg. (2. ?6)
for these formulae.

~and b2) Effect of frequency up-shifting.

Method of obtaining damping ratios. Note that
for Dl and D2 it is not necessary to draw Ln
the  “low frequency line.

Graph (schematic) of damping ratlo vVS.
turhuJeuco nnfen31ty.
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intenéity d/u, c.f; eq.(2§f> oﬁ'pé; 2;é6 ;mhlthougﬁ.the
form Of'eq.(25f)Aan.pg. é.26vis'not like”fhat:df.eq;(i);
the mean and variance of fhe velocity can be estimated_
from it. It should 5@ noted thaf:for-lowlturbulence‘
intensity this expression reduces to the form ofweq.(l)o

In fig.(1l) three correlation functions are shown
for which'expfessions:were derived:in éhapter 2. TForty
eight ordinates are shown sihée this is the number of.
‘ channgls on the Precision Dévices correlator. The. zeroth
Alag value is‘not cbmputed. The separation between’the
ordinates‘equals the sample time T, |

It is useful to remove the transit time effect béfore
parameter estimation. The transit time effect éan be found
2 by using a largeisample'timé (>$/2u) so that the periodic
,bart'df thé'correiatipn_function is smeéred out. Frequency
up-shifting can be used here to further reduce the. periodic
compénent. Frequency shifting is described in 34, <Andthér“
méthod is to mask one of the incident.beams so.that the
uinterfereﬁce pattern is not formed ahd_hence,the correlation
function becomes T(t). See fig.(2). .Soﬁe‘methéds of
removing‘the transit time éffect are shown in fig.(3).
When the turbulént intensity is high the same procedure
can be used to find the transit time effeét . It can
however be seen from fig.(4a) that the approximate‘fqrmula
indicates a greater transit time effect (smaller transit

time) than that for the more accurate formula.

&3.  SIMPLE METHODS of PARAMETER BSTIMATION

<«

Unless stated otherwise in'this~section'it will be

'7 asspmed that theztransit time effect has not been removed.,



~3.6-

”The estimation of the mean veiOCity is‘fairiywsimpie‘
‘since one needs to measure only the time interval between '”'S
successive crests and/or troughs of the correlogram to
cobtain the mean Doppler frequency. The pos1tions of these
A turning points are shiited towards towards the origin due
to f(r) and. T(T) It is advisible therefore to measure the
the tlme interval between any two maXima/minima with the'
exception of the maxima at the origin (WATRASIBWICZ & RUDD),
Within the accuracy expected of the approx1mate methods to
be discussed in this section, 1t can be said that the error
involved in u51ng the interval between the origin and the -
first maxima will not.be‘too significant.

.General]y speaking the time lag corresponding to a
crest or trough will not fall at“an exact multiple of the
rsample time SO one must interpolate between ‘the ordinates
. to improve the estimation of the positions of these turning
'.p01nts i.e. a parabola can ‘be made to pass the three ordinates
which form the troughs/crests.'v o

| The‘ratedof damping of the periodic component of the
'correlogram is related to the turbulent 1ntenSityand can be
measured easily by noting the rate at which the relative
heights of successive crests and troughs decrease. BIRCH et al.
(1973) have sugéested that this can be done by drawing in
first the line that corresponds -to the low frequency component
of the LDV signal, fig.(4€). The heights of the first trough -
hl and crest h2 are measured relative to this line. From

eq. (?7),pg (2 26), assuming tha* the transit time effect is
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negligible compared withwthé'aémpiﬁg ﬁﬁe:to the tﬁfbulenée;ﬁv

it can be shown easily that the turbulence intensity is given

by

o/u = 1/m [% 1n(h,/h,) ] ve 4- (2)

By remo?ing the transit time effect it is easy to show that -

‘that the value of turbulence intensity using eq. (2) approaches

the expected value. The only error then is in the estimation
of h, and h,. See fig. (4c).
Although eq.(2) is:bqnvenient in that it gives an

explicit expression for the turbulent intensity in terms

of quantities which can be measured directly from the correl-

ogbam, it tends to be too inaccurate for all but the most

'épproximate estimates, especially when the number of fringes

is small. A more accurate method is to measure damping

ratios such as Dy =" (hy+h))/(h,+h;) or Dy=(hy+hy )/ (Byths) .

For a particular opticai configuration with .a known number

of fringes a nomogram can Bé constructed relating the damping

‘ratio to the turbulent intensity, figs.(4c,d).

It sﬁould be noted that the approximaté formulae
discussed in this section are only applicable for loQ
turbulénce_intensity ( 20%). The damping ratios will
however be insensitive to very low turbulent intensit& and
here it is necessary to increase the épparent turbulence
in%ensity by down-shifting the frequency in order to
fécilitafe_accurate parameter estimation. On the other hand,
if the turbulénce iﬁfgnsity is so high that the cbrrelogram
is highly damped, then, vup-shifting fhe freqﬁency_until a
reasbnable.damping ratio is obtained is recommended. The

effect of frequency shifting on the accuracy of parameter
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estimation will be discussed in the next section.

4. PRLQUDNCY SHIlTING

Optlcal frequency shlftlng technlques are as powerful
WHen applied with photon eorrelation as they are when used
for shifting the frequeﬁcy of the anélogue (continuous)
Doppler signal, - o | '

Fig. (4a) shows the dlfference in the two formulae
for turbulent flow. For such high turbulence 1ntens1ty
-(50‘Z)‘it is not possible to estimate the mean velocit& or .
the turbulence ihtensity accurately. By properly | ) o
up-shifting the frequency, parameterrestimation can be
‘made possible. | |

The eXpreésions'for the correlation funcpiens after
frequency shifting.pyﬂﬁs,cenlbe'obtained by replacing u/s
in the previoue chapter by u/s + f . When-f is'positive
the fringes move in a direction opposite to the mean flow
and hence effectlvely increase the frequency of the fluc-
tuating part of the chrelogram, fig.(4b). Since the'number
of channels (lags) available on a correlator is limited this
lmeans that the maximum correlation lag for which the
~eorrelation function fluctuates is reduced.(for the same
number of points per cycle on the correlogram) when up-shifting
and vice versa. The effect of frequency up—shifting is
therefore to'reduce the effect of.turbulence and transit
time damping. Since ot/r1l, then eqg.(25f) on pg.(2.26)
_reverts to |

"R(t) =D eip(— u Tt ) [l+m /2.exp(-~ ——rgbr ) .

4y?

-cos {2n(u/s+fs)rl} . S .(3)

.t
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This oQuation.ié different'from'eq.(27) on.pg.(2;26),only_{'
in that it contains a different frequency. It is now not ,‘
possible to use all thevcurVes'in fig.(4d) relating the
damping ratio to fhe turbulence'intenSity because now the
the damplng ratlo not only depends on the number of fringes
in the probe volume but also on the amount and dlrectlon of
the frequency shift. If the pumber of fringes or the amount‘
of frequency shift are ﬁigh enough for the transit time
effect to be negligible, the curve for iﬁfinite'numbér»of
fringes in fig.(4d§ can be uéed. The turbulence intensity
o/u cén be obtained directly}ffom the.apparent' _ g
turbulent intensity (O/S)/(u/s+fs) whichnié.extraoted from
fig.(@d)

F:equency shifting affects the éccuracylwith which
. the mean frequency cao‘oe estimated visually. Consider a
correlogém whioh is‘a,pure cosine -of Dopp;or frequency fo. f
By: assuming that the number -of points‘n in each.cycle can
be estimated to within 1 s, 1t can be Shown easily that thev
Zerror 6f0/fo"=‘l/N where M is the total number of
correlation lags. Since the mean frequency is ( nT )
"the frequency resolutlon 6f is ( MnT ) , where n is the - .
averago number of p01nts per cycleoaoa ? ié the sample fimé.With
‘Aa;“frequency shift fs.it can be shown easily that the Y error
in the estimation of the Dopplef frequency is | . |

log /e ] = ML s s |

It can be seen that down—shiftihé (fs< 0) improves the .
accuracy of the mean velocity (fo) estimate and deterioratés
when up-shifting. For example'a'50 point correlogram with
no frequency shift (fs = 0) has an error in the mean velocit&

| of 2.
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Although the preceding results are eppiioable only to a
pure cosine, the ideas are also relevant to correlation.

functions for arbitrary fluctuations.

§5. CURVT FITTING

In thlSS@CthD.Lt will be shown how by fitting a

model to the correlogran the flow parameters can be obtained.
Because of the highly non—liﬁear forms of the correlation |
‘functlons obtained in the prev1ous chapter, it is recommendedl
that some 51mp11flcat10n should be carried out in order
to determine the useful parameters before fitclng. This -
Ameens that the transit time effect (nuisance'term) is
removed and then. the fitting‘is performed. Some methOds
of:removing the transit time effect are shown in fig.(3).
‘“After;the ﬁransitltime term is removed the functions that o
remain are of the fogﬁ--A.f(T) cos(2n§u/s + fs} ), fig(2).

‘Before much experience was gained with-thevleest
square fitting procedure, the complete correlation.function
“(w1th transit time term) was fitted. It was found that the
obgectlve functlon to be minimized was hlghly sensitive to
some parameters while not belng affected very much by others.
If the initial guess values of the'perameters were close
to the true values, however, the parameterslvalues did
oonverge. It wes found that the Nelder Mead method (routine)
was most suitablefox5fhis type of fitting in compafieon
ewith others that were tried. The Marquardt and Powell methods
usually tended to diverge 51gn1flcantly from the expected

values. Two examples of curve fitting using the Nelder Mead

method are shown in fig.(5). The transit time -effect was

Bl
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.- not hemoved’before fitting here. 'ﬁaramete;lvaiues are not
'given since'the’only purposeeis to show theacioseness of
’.the fib' When the transit time effect‘is removed before
foflttlng, however the Marquardt method may~ prove to be
the most efficient. See HIMMELBLAU for details of methods.

BIRCH et al..(1975) have used the non-llnear least

square fitbing method to determine:paramefers assuming a
Gaussian and a Gram—Chariier'velocity‘probability dehsity

VThey found tnat the Gram—Charller model gave a better fit .
than the Gaussian model. The closeness of flt was judged

by the.final Value of the obaeotlve function. The confldence
bound on the parameters were not combuted- It was also -

not . 1ndlcated how 1n1t1al guess values for the skewness,'
kurt081s and higher moments can’ be made from the correlograms.

~The estlmatlon of the confldence bounds on the parameters

e

cannot be over- empha81sed when using a model such as. the
Gram Charller since it is not known exactly where the Gram-
a,Charller series has-to be truncated and the estlmatlon of
third and higher velocity mouents must present difficultj.
Although the informatiouregarding'the higher moments is
present in the correlation function, their estimation will
be oonsiderably easier‘if the Fourier transform of a damﬁed
soorrelogfam is used. This-opinion is contfary to that put
forward by BIRCH et al. (1975). '

N When the average count per sample time is»low, the
errors in the ordinates of the correlogram_are independenb.
By using the first partial derivatives with respect to the
parameters, the confidence bounds on the para mete”s can be

- obtained by‘formlng the-varlance—covarlance matrix. Details



of this standard procedufe which was car:iéd out in the
the fitting programs is described by BEVINGTON. For an

. arbitrary count rate this procedure gives lower‘bounds on
”thé errors of the estimated parameters.

The main.drawback of the'hon—linear least square
fitting mefhod is that the initial guess values of the.
'parameters need to. be provided by the experimenter. An.
.alternative method which was not tried is to use an initial
Fourier transformation in order to obtain the initial guess
VValues.  This metﬁod is no% withdpt its drawbacks.because
it would incfease the.amognt‘of cbmputaﬁion required and.
| aglso the unambiguous autohatic extréction of the initial
guess vélueélfrom the spectrum Would be quite difficult,

If the éorrelogram is dead before the last lag,'there.wiil:

‘'be no need for leastm§quare fitting of the correlqgram sincé.
néwlthe spectrum is proportional to the velécity probébility |
density. The method of obtaining the spectrum iS'described

in the next section.

§6, | TRANSFORMATION of CORRELATION FUNCTION

The main advantage of the transformation'meﬁhod over
the least square fitting method of §5 is that no a priori
model for the velbcity‘probability aénsity is necesSafy.
When a large number of correlogramshave to be analysed, the
leagf square fitting method would be very timé consuming
since initial guess values of the parameters have to be
prdvided»by the.experimenter for éach correlogram. This is

overcome by using the transformation method.
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which is completely damped before its

last lag. See fig.{(2b). The spectral

forms are identical for the 3 transformation
methods investigated. o

A lightly damped correlogram. :
Fourier transform of correlogram in (b). .
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As in %5 it w1ll be assumed that the correlatlon

'..functlon being dealt with'’ 1s of" the form B

R(T) =4 f(r) cos(2n{u/s + fs} 1)
wnere the Fourier transform of f(r) cos(2nu/s.1) is -
nroportional-to the velocity probabiiity density funetion
and f is the frequency shift. Note that the tranSitntime
'effect T(t) has been removed from the correlogram.

The spectrum which is the Fourler transform of the

-?correlatlon function R(sT), s=0, 1 conM=1, is glyen-by-
M~-1 ' '

s(f) = R(O)T + 20 3 R(sT) cos(2nfsT)
N g S | . (4) N
| RSV 2.

Since R(0) is not available on the Precision Devices
ﬁ;correlator, it has to be determlned in order to compute S(f).
R(0) only 1ntroduces a constant pedestal in ‘the ‘spectrum
‘and hence "it is sufficient to ensure that R(O);>R(ST) for s>O.

In eq.(4) if £(v) = exp(-2n°d® /s .T ) with finite o/s
.‘and’Mu oo : | ‘ '
S(f) = A exp [-52/262 . {]f~<'u/s+fs) }"} , fgl/2T .
: Here the constant pedestal is neélected andithe multiplicative
eonstants are absorbed in A. In this easeAthere is no
windowing problem. In nractice, howeyer, it is notlpossible
éo have anlinfinitely long correlogram but windowing can
still be avoided By using frequency shifting tO'aamp ont
the correlogram before the last correlation lag, fig. (2b)'w

The spectnum of bhlu cozrelogram in Ilg (6a) glves values

of u/s and O/Q consistent w1th the correlogram.
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When the eorreiogram is not dead as'iu fig.(6b) the
 effect of the window will cause a broadening or the spectrum
» end the occurrence of side—lobes, fig.(6c). -The. spectrum
‘in this case has ‘a resolution of 1/MT where M is ﬁhe total
number of correlation lags and T is the sample tlme. This
limited resolution is due to w1ndow1ng which 1s common to
‘all conventional Four:er transformation methods. Despite\
the broadening Lhe posntlon of the spectral peak is not
4affected - It can be deduced that the mean ve1001ty (frequency)
obtained from the spectrum for a velocity with symmetric-
probability density is unaffected by-the.windowing.

‘For a sinusoidally fluctuating flow it wasAshown on
on pg.(2.29) that

f(r) = J‘(Ena/s ;‘fj
j For an 1nf1n1tely long correlogram the spectrum is given by

Ar[a - {f (u/s+f )} ] -1/2 ﬁ.‘l—(u/s+fs) <

S(f)

= 0 , otherwise
where\f‘si/ET.

The envelope of the cerrelogram in this case is
oscillatory (fig.(2c)) and hence its Fourier transform
will have a limited resolution. . While the Gaussian can
’ be considered dead after:twe standard deviations the Beesei func-
'tion' Jo(x) oscillates approximateiy like V2/nx ebs(x—n/#),

(SNEDDON) hence frequency shifting does not help very much
in damping outthiscorrelegram. In this case it was found
that estimation of the amplitude of fluctuation is best
determined by finding the zero crossing of the enveiope JO
of the correlogram, c.f. Appendik A. The Value:of the mean

velocity can be determined by the midway point between the
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Fig.(7) (a) Spectrum with peaks not.resolved.

- (b) The two peaks ere resolved in this :
spectrum., The peaks should theoretically
~occur at 0.18 Hz and 0.22 Hz for an
infinitely long correlogram. -
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two.peaks of the spéctrum. In case the peéks are nét
resoived the p051t10n of the 51ngle peak determines the
mean velocity u, c.f. fig. (7)

The use of regre551on spectral estlmators in geophy51cs
has shown their superlorlty in detectlng spectral peaks which
would otherwise be masked by conventional spectral analy31s
(LACOSS). Two such techniques referred to as the Maximum
‘Entropy (ME) Method and the Maximum'Likelihood (ML) Méthpd
were used to see their'effect in resolving the two peaks in
the spectrum for‘sinusoidaliy‘fluctuating f%ow énd on the |
single.peak for-turbulent'flow; |

The ME spectrum at frequency f is given by

Syg(f) = pI/ET PUE"

and'the ML‘épectrum.iS««<'
ML(f) - /'R

where E and I are column vectors (1 elani,eiunfT,..,'
.ele(l\I l)nftll)r‘[\and (l’Yl’Y2""YM-1) respectively. ¥ denotes
complex conjugate. The components of " and the Mxl column
‘. vector P = (p,0,..,0) are found by sol¥ving the set of linear
equations RI™="P, Rfl is the inverse of the MxM correlation
matrix R.

For these two high resolution methods it 1s necessary
to obtain the inverse matrlx R™ 1 Since.R is a Téeplifz

matrix,i.e., the value of 1ts_elements T are dependant

km
only on lk—m{ special iterative methods which use only
N° opetatlons (generql matrix inversion roqulreb N operations)v

can be used to find the inverse. One multaply and add is
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equivalent to one operation. Algorithms given by MARKEL &
GRAY were used to obtain the spectra shown in this chapter.
Since only the shépe of the spectra is of "interest, the
;scale of the'ordinates'is unimportapt. -

Unlike the Fourier transform, the value of the'
cérrelation function at the origin does not simply transform
to a constant pedestal in the high resolution spéctra.n.It'

- has been shown by PISARENKO that thé higher the value of
origin value R(O) theISmopthef the ME spectfum obtained.

A similar though iess markéd behaviour.wés-noted in the-

ML, spectrum. T%e effeét of R(0) on the:spectral shape makes
the two methods unreliabie for the esfiﬁation of spectral

- widths. The effect of R(O) on the two spectra is shown in
Fig.(8). |

| Based on PISAR@@%st paper'the following method for

the determination of‘R(O) is ‘suggested ( R(O) is not pro?ided
by the Precision Devices QOrreiator»). Introduce a trial
value R(0)> R(71), T # O, and determine the smallest eigenvalue
of the correlation matrix. The value of this eigénvalue

is the noise h. Note that all eigenvalues shouid be positive.
Thg value of‘thé cofrélogram at the.origin can now be put

as R(0)-n. Sométimeé this might léad to an unstabie inverse-
and so it will be neceSSary‘to'add a small amount of'noise 8
SO that the origin valué.becomes R(0)-n+b6. Further discussion_
on the effect of origin value is_given‘by MAKEOUL. |

Tests were carried out with simulated correiatibn
functions for turbulent and sinusoidally fluctuating flows.

. In the turbulent flows cases the three method: Fourier
transformation, ME ahd ML,methods gave‘identical‘and écdurate

results for the mean velocity u and standard deviation. o
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Fig. (9)

(a) and (b) show .the ME and ML spectra for

a partially damped correlogram. See figs.(6b,c)-
The standard deviation of the Gaussian envelope
of the correlogram 0=50, - The value of o obtained
from (a) = 62 and (b) =46. TFrom the Fourier
transform in fig.(6¢),0=30.

(¢) and (d) show the ME and ML spectra for a
sinusoidally fluctuating flow. Compare with

- fig.(7a).
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‘of the velocity for correlograms with o/u high enouéh for -
. the correlograms to be zefo before the last correlatioﬁileg
as in fig.(2b). The ME and ML spectra for the correlogram
vin'fig.(6b) ere shown in'figs.(9e,b). Here the cerrelogram
is not dead beforeithe last lag. Although the peaks of
"these spectra are narrower than -the peak in fig. (6c), only
}ian approximate estimate of 0 is obtalned from these high |
resolution spectrf, The ML epectre gave cons1stently bettere
values of © than ebtained;by the ME method for such correlogfems;
the mean velocity‘ee#imate>being accurafe for all methods.

For a correloeram of length M theﬁresolution of the
Tourier tran form is (HT) Hz. while the ME and ML spectra
have resolutlons of approx1mately'(M?T)"l Hz and (MY2T)~
respectively. - It ean be seen from fig;(Sgd)that although
the high resolution me?hdde'resolve the.twe’peaks‘iﬁ.the
sﬁectrum of the correlogram for sinusoidal fluctuation the
effect of the finite cofrelegram leads to the separation
between the peaks to be reduced. Measﬁrement of the amplitude
of oscillation(a)from the separation will in general be
lower fhan its true value. - o

The-results obtainedliﬁ thie sectien poinf to the
1mportance of using frequency shifting in order to damp the
correlogram and then using TFourier transformation, hence
évoiding the use of high fesolution spectral eetimators.
For periodic flows the shape of the correlogram should
_either be related directly to the flow parameters'qf‘interest
as was done for the sinusoidal fluctuation or use periodic
sampling in order te find'the~fqrm of the fluctuafion as

was shown on pg.(2.27).
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" DURRANT. &GREATED (1075) have applled the Fourlerl:
'trensformatnon ME and ML methods to correlograms which
were not completely damped and concluded that the ME spoctrum'
glves an accurate estimate of o0 and hence the turbulence'
Tlnten51ty o/u. They also ouggested that the NL\method :
-because of its limited resolution in comparieon‘with the
ME spectrum does not give good'estimates of the.turbulence
intensity. Both these points are'contradicted by the'results
of the tests carrled out in thls section. | |

Varlous other tests on the extention of the correlogram '
were carried out (DUBROFF). It was shown that by increasing
R(0O) extehtion of the correlogram deteriorated. These results,
however,-are not relevant to toe estimation of flow parameters

and are “therefore not presented here. .

§7. CONCLUSIONS

By a proper choice of“ffequenoy shift a damped oorrelogfam
should be obtained if possible. After normalization of
the correlogram the‘transit time effect should be remO&ed.
| When analysing periodically flucfuatiné flows of .
dnknown fornm it is best to use the periodic sampling method
described ih chapter 2. ‘

The estimation of parametefs from the spectrum is
much easier than by using least square fittihg of a model
to the correlogranm. ‘

Generally there should be no need to use the high ,_
resolution'speotral estimetors for the transformation of
the correlograms in a properly designed experdment; The :

" Tourier transform will give a good estimate of. the velocity

probability deheity.if fhe correlogram is damped.
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CHAPTER 4

" BURST COUNTER ' PROCESSING

§ 1. INTRODUCTION

Several systems have beenAproposed for, processing LDV signals
in order‘to provide a voltage pr0po£tional to the instantaneous
signal frequency, and to track variations in this frequency. Most
of these systems rely on frequency démodulation by locking on to
the phése of the inpﬁt signal. The necessary requirement for such
systems to perform efficientl?iislﬁhat the LDV signal.is gqntinuods,
which is pdssible only if the partiéle.disfribution is homogenéoué
and the particle densiﬁy is high. In applications such.as wind -

tunnel measurements, or other gas flows, where artificial seeding is

either not possible”oriundgsifab;e the scatterer density is extremely = . .

low. Such experimental conditions demand more sensitive measurement’
techniques. The burst counteér has been used with considerable

success in such situations.

In this chapter the burst counter technique will be described.
The application of this method to the measurement of flow parameters
' » U
such as mean velocity, mean square turbulence level, probability

density of velocity and turbulence spectra will be discussed.

5 2. DESCRIPTION of the BURST COUNTER

The principle of the burst counter is very simple. Imagine a
particle passing through a scattéring volume such that the scattered
intehsity detected gives a Contiﬁudus vafigtion of the current at the
output of the éhbto multiplier while the particle is traverging the

probe volume. -

4+ eauivalent to mean <auare turbulence intensity c.r. chanter 2
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If ‘the scattered intensity is sufficiently high the current

" variation effectively reproduces the intensity variation in the

scattering volume, ie the frequency of the signal burst is
proportional to the velocity of the particle. The frequency is

usually determined by the rate of level crossings of the burst. The

velocity of each particle can therefore be obtained since the constant

of éroportionality linking it to the frequency of the detected signal
is pre-determined by the opticéi'geometry and the wévelength of the

laser light. See § 2 & § 3 of Chaptef 2. As each pérticle passes

~ through the scattering volume, velocity and time of passing through

the centre 'of the scattering volume is measured and recorded. The

information 'regarding the time of passingis enly Hecessary if the ~* 7

2

. turbulence spectrum is required.

I

Some practical details of the data acquisition and pre-
conditioning will be discussed. The signal burst for each particle
)
consists of a low-frequency pedestal and a high frequency component

which contains the desired information.. The burst counter operates by

passing the received bufsts through a high-pass filter and timing the

'consecutivé‘intervals between the zero-crossings of the-oufput'bursts

and aséigps a frequency tag to each burst. The effect of ldﬁer_

scattered photon flux, finite fringe numbers and residual pedestal

renders the level-crossing spacings non-uniform.. Most burst counter

processors include some logic circuits to ensure that errors due to
spurious or missing zero-crossings are avoided. Experimenters have

used different criteria (hence different logic circuitry) for

accepting "genuine" bursts. For the purpose of. this chapter it will
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(a)

x(t).s(t)

t,t
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Fig.(l)

(a) Fluid velocity.

(b) Poisson sampling signal of unity

(c)

impulses.

An impulse corresponds ‘to

the time of arrival of a particle in

the scattering volume.

Since the .

transit time 1is usually short compared
with the inter-arrival times of the

particles,’
justifiable.

the unity 1mpulses are -

The data x(t).s(t) output by a burst

counter.
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. be assumed that all particles passing through the fringe volume will
. be detected and that their velocity and arrival times will be measﬁred
accﬁrately. . - B - o3

‘

.Iﬁ this section tbé principle of the burst counter has been
described. For details of‘practiéai systems, the reader is referred
~to BRAYTON et al ...‘f' : '?; The continued interest in this
technique is illustrated by the ﬁumbervéf‘articles ébéut it in the Proc.
of the Sécond International Workshof on LasngV¢1ociﬁbtry, Purdue

University, ’74.

§ 3. SAMPLING MODEL of VELOCITY

I

Since the tramsit time of the particle in the scattéring
volume‘is_verQ small compared to thévtimé interval bétween the
arrival of two consecutive pérticles it is rgééonablé‘to consider the
. velocity séquénce {x(tk)} whéré k =1, 2, eee, N, aS a Poissgn
sampling procesé with a mean raté v.which woﬁld dépend on the
scatteféf density and be avconstant for any experiment. SMITH &
MEADOWS have experimentally verified this model By showing that the
inter-arrival time r.of two consecutivé particies has an exponential
ﬁrobability dénsity function v expt—vr). 'Figure 1 shows the fluid
velogity and the sampling process wﬁich is used as a model in the
analyéis that fqllows. Theré.are a host of examples in other
branches of.physics whéré the events of interest occur sporadicaily .

as in Figure 1.
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o | The exbefimenter'is ofteﬁ faced with the problem of deciding
how many samples n of the velécity are necessary in order to achievé
a required accuracy for the mean and turbulence level of the
fluctuating §elocity. DONOHUE et al have calculated the value of n
“that is'required in order to obtain a certain desired accuracy. Their .
calculations are, howevef, based‘;n thé‘éum'of indépéndent randoﬁ |
variables argument sincé théylgssume that“{xk} is an uncorrelated
sequence. In flows with morenéﬁén one particle paséing thfough the
_frinée volume in less than the Bulerian ﬁime scale, the velocities
'{ik} can be highly correlaﬁd. Under such condiéions the results of -

DONOHUE et al under-estimate the valué‘of n required to achieve the

- desired accuracy.

In order to take into account the correlated behaviour of the
~ velocity fluctuations and its effect on the necessary value of n, it

is necessary to assume a functional form for the velocity correlation

function (c.f.). Three specific c.fs will be considered:

exp(-a|t]), exp(-a|t[)cos(ut) and exp(—xtz). »

Considé%ing each c;f. in turn, thé unbiased mgén and variance'
estimators of the correlated séquencé'{x(tk)} will be derived. The
sampling will be assumed to be Poissonian, ie the number of samples
(velocity samples) in a fixéd time has a Poisson probability dersity

 function with rate v.



The only statistics of the velocity x(t) required for the
derivation of the variance of the mean estimators (for the three c.fs)

is' the apriori knowledge of the c.fs.

In order to evaluate the variance of the variance estimators,
however, Géﬁssian statistics for x(t) havé to'bé assuméd.' The
results for the c.f. exp(—alr[)coé(wr) can be obtained directly from
the exponentially decaying c.f. exp(-a|t|) as will be explained
~ later. Hence, only the c.f. éxp(~a|T|) will be discussed in detail
and expressions will be obtained for thellimiting cases.of this c.f.
when £he numbér of samples n ié 1argé. Althouéh the form of the
variance of ﬁhe.estimators fof #hé Gaussian c.f. exp(-Arz) is similar
to that ;Qtained for the c.f. exﬁ(—arr|), the résuits cannot bé'.
obtéiﬁed.anéiytically.._With'thé aid of a fecurrenceAformula,‘howeéer,

numerical remlts can be obtained easily. For large n, the variance of

the mean estimators is obtained anélytically for the Gaussian c.f.

" § 4. POISSON SAMPLING.

If the ngmbér of samplés in a fixed time has a Poisson
probability density, then the intér?al T between adjacent sampleé has
an exponential probability density aﬁd the probability density of’an§
_two- non-overlapping intervals is indépéndent. Thé érobability.density

of T is:
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.. ‘ p(Ti ‘véxp(-vx) E (T;O)

(1)

I
[«

p(1) (1<0)

where v is the rate parameter of the Poisson probability density.
From this it follows that the probability density of the interval
between any two samples x(tm) and X(tm#n) separated by n independent - .

intervals 1is

400 : "[‘ : .
ph(r) = J—m p(u)pn_l(T-u)du = Iop(u)pn_l(y—u)du
(2)
py(0) = plo)
Cie pn(t), n ;'2, is'obtainéd by suCcéssively convoiving p(t) with
itself (n - 1) times. This leads to
. n n-1 '
p (x) = vt exp(-vt1) - (130) ,
(n-1)! ' ‘
(3)
pn(?)j'= 0 (1<0)

The c.f. of the sampled:pﬁocess;{x(tk)}is givén by

C(n)

]

B[xtep) et

E[E[(x(ti)—u)(x(tj)- i) s for t; and tjfixed] (4)

where = E[%];‘gg.= E[}x~p)2] and'n = |i-j| is the number of
intervals between the samples x(fi) and x(tj). E[: j denotes

expectation. In, eq. (4) the.twoieXpectations are with respect to x
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and the exponentially distributed random'vafiablelti - tjl. K

" Consider a process x(t) with an exponeni:ia.lly decaying e f.
ozexp[-a.lrl], whére o2 is the variance of x(t) and g > 0. The ¢.f. of

' thé sequence {x(tK)} can now be found using equ'at‘i-o,n (4).

C(n) =-E[02e-xp(-a|r|)]‘ S (10) _ o (5)
where |t| = Iti'- tJ] is the random variable. Using equations (3) and
(5) -

C(n) = czfmexp("aT)' vn'rn—léxp (-ﬁn)d . (6)

' 1 T ' .
: ° - (n-1) : -
Since the Gamma function is defined as
I'(o+l) = J"énex'ﬁ-(-%)dé_ = n! (n is a natural number)
5 ’ 2 . o o
then Cn) =0 ( v )n : } ‘ ()

By consiéering the exponentially decaying c.f. as
Re[exp{-(aﬁm)lﬂ}], (i = /~1), the c.f. of the sampled sequence is

simply

C(n) = Re.[ v }n . o - .(8)

v+(a+iw)

. where Re[.] denotes real part.
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. ) 2, . ‘
For the Gaussian c.f.. ¢ exp(-A1"), the covariance of the
séquence now becomes

e, = J oPexp(-AtY) VL exp(vdar o (9)
‘o - r'(n) - . '

From GRADSHTEYN & RHYSIK

szv—lexp(fsxz-Tx)dx = (28)_v/2F(v)expéLE)‘D_V(_I_OfB,v>0l ‘ (10)
: 88 /78
R | C(n) - 02 v ‘nexp vz D I.Av = ozznexp(ZZ/A)D (z) (11)'
_ : —) (gx) -n(——) . -n e
/2% ' /2) -

where D_n(z)-is a parabolic cylinder function and'z=( \ )

§ 5. C.F. = ozexp —a|r|]

5.1 - Mean Estimate and its Variance

‘ ‘ , N . .
We shall now consider the mean estimate x of the sequence of
variables'{x(ti)}, i=1,....,n. Representing x(ti) by X5 8

reasonable estimate is

n C
PN " o ' )
X = 2 x./n ~ : : (12)
- = i

1=1 .o .

Unless specified, all summations that follow will be from 1 to n.

Since we know a priori that E[x(t)] = u, then,
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E[;{] =E[§: xi/n:l = z E[xi‘l/n =y - s ('13)
1 - . .

"We shall now determine the variance of the unbiased mean

”»

‘estimator x : ie - o . - - B | A _~
V(x) = E[f-gr = l_E[i(xi“p)] , - (14) -
. 2 i ’ !
‘ . n : : b
= 1 E[Z(X "u) 2 z Xi"p) (x,"-p)} (15)
2 i " i#3 3T ,
n
=_1_[§E(x % 2 QEGx, —u) (x, -u)J . (16"
2 i#j ,

The definition of_variance is
. ; 2~ ' '
EGe,m) = C0) = o - 3 a7

Using equations (793and (17)'givés

VG =1 [nc + ot 1T vyl J] ~ (18)
n2 i#] \""OL : '
Letting a = (2 < 1 and rémoving the modulus sign we get :
vto '
1Y ylinals R S 9
_1#3 (v+a) 2 §>§ a '

2§ (n-r)a” - (9w
r
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In expanding equation (19a) we find 2(n-r) terms of ar, where r = 1,

2,...:, n=1, therefore equation (18) becomes

V) = l_[ no’ + 20 Z(n-r)arjl o)
2 r '
n |

Using the following results from GRADSHTEYN & RHYSIK

Z a. = (1-a) o S : : (21)
| | n n+l .

z ra? - a[i—(n+1)a ; na ] (22

r - (1-a)

equatidp (18) gives
* 02 2a ' 'n' ) :
V(x) = —-Z—I:n + 5 {n(l-a) + a —1}] ' (23)
- n" % (1-a) -

e

Since a < 1, it can be deduced that x is a consistent estimator
because V(x) » 0 as n + ». It is noted that when the samples {x(tK)}
, , .. |
are independent, ie when a = 0, then V(x) =,02/n. This is the
"standard reailt for the variance of the mean estimate of n independent
samples. For large n, ' o
(c%/n) ' .

o ) » : ;
" Figure (2) shows V(x)/o2 plotted against n for various values

of a.
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5.2 Variance Estimator and its Variance

" The unbiased variance estimator which will be considered in

this section is given by

zlr-

DY R
l B - . o

. ' ‘. . FS
where N has to be determined such that E(v) = ¢

"

EQ) =+

N EZE(Xi - (26)
B[Geym0°] = B[(Gyw) - G- B[] + |
! (27)
E[Gm)?] - B[ Gew)]
By using equation (14), eqvuationi (26) becomes.
E(\;)_ = %— g (02 + V(;c) - 2E{ (gi—u).% )j:(xj-u)}')
= —%[noz + nV(%) - -rz-{ g g 02 'ali—jl ] . | (2'8)
C1p2 oo 2t NES]
-ﬁ[no -f-nV(x) - 20 —-—n--ZZ ]
: ' . i#] |
Using equations (19) and (20) we gét'
?."~1‘2 A 5 4ol r
'.lld(v)‘ = —N:[nc + nV(x) -207 - Yy z(n—r)a ]
. (29)

: . 2 . :
= %]-[noz - 02 - g—rgl— g(nfr)ar]
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For v to be'unbiaéed, E(v) = 02, hence
N = n-l-gi(.n--r)ar : >' '- ~ (30)

. : . . . P
Using equation (20), N can be expressed as a function of V(x), ie

N=n-wW/e?=n-V@/ () NI

" When the samples are in&ependent it can be shown that
N =n -1 by putting a = O in equation (29) or Substituting V(x) =

02/n in equation (31). In its simplified form

N=n-1- _23__2_ {n(l-a) + a" - 1] ' (32)
n(lfa) - :

A

Having found the unbiased estimator we will now find its
variance
4

Vo) = B[-0D)?] = B¢ o (33)

B0 = B[ [0 7] = 55 T TE[0g-0 0] (34)
Lo N I :

o .
Assuming Gaussian statistics for X, and letting 2, = X T X, then

zi has zero mean and
2 2 .2 2 2 .
E[zi Zjl = E[zi] E[zj] + 2E (Zizj) | ‘ : | (35)

It can be -shown that 2 E(zi)g = Noz.

1.
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Also, -
o . - i _ ‘ _ -‘ | "._' A— 7
Ez;z.) ‘.E_(xi W (x, n)l + B () (x u)d»
) o | - (36)
" - EL(xi-u)(x-u)] - F[(xj.-u) (x-u)‘
\ | )
B ) =%§E.-[(Xi-u)(xj-u)] o
| | - (37
2 n-i i-1
1 ¢ 2 - -
== y li-3] f%{p + ] a + | a)
J ‘ r=1 r=
Then, | ) A(L) = v (%). (38)
e T .
Substituting équafioﬂ (37) in (36)
Bz = o Il vi - A - (39)

R EZ[(;.Z.)} ) (2731 v(§)-A(i)—A(jXF - (40)
iy Lr3loig | | o

" Using equation (375, | equation (40) can be simply written as
17 52[ean] =1, v 1, 41, L a)
L L 11 1 2 3 : '
i) .
' _ 4 2|i-j 2.2, _ 2
where ‘ I1 = g go a l | I n v (%), 13 —29§Ai (41b)

Substituting equations (34) and (41) into equation (33) we obtain ‘

V(v) =~g§ [I] + 1,0+ I3] : » (42)
N2 -1 ) _ .
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" z—~ ' 2'2 : o o :
where. I, =0 nt —= {n(l—a ) +a ‘1i] .- (43a)
S L (L-a ) , '

I - n + {n(l—a) + a —1{] S | ‘(43b)
n- L (l—a) :

(1+a)a(1-a2)
(1-a)

L4
- ——ng—-—Eﬁ(1+2a+a2+2an+l)‘— 4

and | ‘ I
n(l—a) L

+ 2..&1_2__)] | - o (43¢)
(1-a ) '

The equations (43a, b and c¢) are obtained using equations (19), (23)
- 4 )

L]
and (21) respeptively in equation (41b). When a = 0, V(v) = T%%TY s

which is the same result as giﬁen'by HALD for independent samples.

- It will be noticed that only I. contributes significantly to V(v) for

1

* large n. A result similar to equation (24) can be obtéined in this

case for large n

1+ a2

1 - a2

V@) ot 1) = @)

' . Lo oA
This equation can be verified by considering V(v) in figure (3) for
= 104 with a =0 and a = 0.9. From the curves

» -—
VCV; a=0.9) _L9x1o 3
Vo, a=0)- 5y 07

=10

and using equation (44) we obtain

1+ (0,97 _ 1.81
1 - (0.9)2 019

10
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e I B
The variance estimator is consistent since V(v) approaches

zero as n increases (see figure (3) and equation (44) ).

§ 6. C.F. = 02 exp (—et|1]) coswt

As indicated in § 3, all the resultsvobtainéd in § 5 can be

directly extended to the present c.f.

For example, using equation (23) the variance of the mean

estimator is

» 2 ' o '
V(x) = Re[o—z(n + J%{n(l—a) + an-l})} ‘ (45)
: ‘ n" (Ifa) .
. _ y B o . «
where a— [m] )

a .

Similarly the variance of the variance estimator can be

obtained.

By setting o = 0, a periodic covariance function can be

considered.

§ 7. C.F. = 02 exp(—xrz)

- In this case the variance of the estimators cannot be obtained

analyticaily, however, the results are easily obtained numerically.
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7.1 Variance of the Mean Estimator

By compafiﬁg equation (11) with equation (7) we can see that
a® = 2" exp(zz/4)D_n(z). Using this similarity we can get the

‘variance of the mean estimate by using equation (20).

-ﬁil?oz + 202 z Y éifj exp(22/4)D_(i_j)(z)X

i>]

V(x)

N

(46)

it

?[n + 2 ';gf(zz/é)Z(n—r) zrn_r'(z)]

.. . . ' r
The summation in equation (46) is convergent. The value of z D_r(z)
can be computed using the following recurrence relation!

r+2 2

‘ - | _ o+l ,
z _(r+2)(z) r+1[? D_(2) -z D_(r+1)(z)] | 47

. Care need be taken when usingAthis recurrence formila because
of the round-o:f errors in computation. A backward reccurence
technique should be used to avoid such errors, (ABRAMOWITZ & STEGUN).
For values of beyoﬁd a certain‘value'k (dependent on z) sz_k(z)
. . - 'kD k+1 '
is approximately zero. We let z D_ (z) and z D (z) be 1 and

' : -k . T=(k+1) .

0 respectively. ' Backward recurrence is then used until the value of
zD_l(z) is obtained, which is then compared with the standard

tabulated values. The ratio of the tabulated to the computed value

" for ﬁ = 1 is obtained. Multiplication of all the computed values

by this ratio gives the correct value for all r <k + 1.

. . - . ' A 2 . :
The curves in figure (4) dre for V(x)/o~ versus n for various
values of z. It should be noticed that the z = O curve corresponds

to the independent samples case and is the same as that obtained for
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= 0 when considering the exponentially decaying correlation (see

figure (2) ).

. » ! . N
For large n,‘V(x)/ozldecreases linearly with n. The variance
of the mean estimate as n approaches infinity can be obtained
analytically. Rewriting equation (46)

V) =Gl s 2 exp(z*/4) J(nr) 2'D__(2) (48)
. : ' r

Using equétion (10) we get

2
erD_r(zl = exp( z /4) 5 J SKELTYT exp(-zx - ——de
| B (49)
' 2 (xz)"~ 2 | '
= exp(-z /4).2.[ 2( =5 exp( zx-———)dx
‘as n approaches"infinity
2(xz> L1t = &2
A : "ZZrD_r(z) = z.exp(—zzlé).Imégp(—xz/z)dx
LT ' 40 . ,

(50)

- :
z exp(-2"/4)./r/2
Intefchanging the order of summation and integration

z r zrD_r(?) = exp‘—zz/h)z.

-

z .ﬁéil___ exp(-zx - zz)dx
R (xr-1)! 27

From GRADSHTEYN & RHYSIK we have
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2 rgixi)' = zx exp(zx) + éXP(éx) (as n > @) .~: (51)

Substitutiﬁg équations (50) and (51) in equation (48) we get

) | .
V(x) —-——[} + z/21 +-%(222,+ z/i?ﬂ

\' ’
S

By neglecting the l/n2 term
R 2 o 4 o '
V(%) %—[1 + 'z/ﬂ} _ _ (52) .

This relationship can be verified easily by using the graphs in

figure (4).

7.2 Variance of the Variance Estimator

A simple extension of the results of § 5 can be aéplied to

the Gaussian c.f. in this section. From equafion (42)

“a 2 ' . - : - . A
V) =-——[% + I, +1 ] (53a)
LT 2T ) | |
4 2 IR .
where Il =g [;+2exp(z /2) E(n-r) (z D_r(z)) ] (53b)
- ' r _ _ _ .

I, =‘{§ N ©(53¢)
I, =] A%(0) o (53)
) t S 34),

4 . 2 n-i i-l
and A(L) = {1+ exp(z/8)| ) = D_.(z) + Y oz D_ (2) }. - (53e)-
el r=l

\
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From equétion (30)

N = n-1 --% exp(zZ/A) Z(n—r) zrD_r(z) R (53f)»

,
contributes significantly to V(v) for large n,

As in § 2.2 only I1

- and hencé
'

T oyw) = 20
()

' 2, v 2 | s
ZEI + 2n exp(z /2) Z(z D-r(z))]" | (54)
. The factor Z(ZrD_r(Z) )zfin equation (54) converges very quickly to

r _ ,
zero wvhen z < 1 hence it is justifiable to retain only two terms of

the summation,

o 4 2 4
= 98 |14+ 2 epr—-){z D (z) +2zD (z)}(for z<1)

ST - o 59)

‘figure (5) shows graphs of V(v)/d‘4 versus n for different values of

Z.

§ 8. " CONTINUOUS AVERAGING

The results obtainable by continuous averaging (hot wire
anemométry) wiil be compared with those obtained by averagiﬁg a
Poisson sampled signal (laser anemometry). The latter has been
discussed in the previous sections. A commonly used model for the c. f._
of the velocity is ozexp(—x{rl) and hence we shall consider this ome

’

for comparison.
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The estimators of mean and variance for, continuous averaging

are respectively

r

>

T
x(t)dt
‘0

,.: apr . .
. Ve F’J li{(t) TJ
. o '

pll
T

T 2 -
x(t)dt |~ dt
o ’ : .

Vs

where x(t) is the contimuous velocity record of length T. P -is such

that the variance estimator is unbiased.

Using a procedure similar to that given by BENDAT & PIERSOL

we find the variance of these estimators for large T to be

B : . 2 -
LN © o 2
Vi) =-%J C(x) dz =-%J.02 exp(-at)dt = 3%; (56)
o o
LN © oo. '
VW) = 35 ZJ Cz(r)dr = éEJ 04exp(-2dr)d1
Soen 2 o 2
P o ’ P /o
= 204T
o
It can be shown that P=T —-5, hence
: 4
v ) = 29 : C
Vo) = =5 : ‘ . ‘ (57)

‘Aithough, as expéctéd, thé varianées of the estimators for the
sampled process are ﬁighér than those far continuous averaging,‘it
will bé shown ﬁat the results for the‘sémpled process approach those
of the 1attér as te rate of the Poissoﬂ process, v = n/T, approaches

infinity. Seeeuations (58) and (59).
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Rewritiﬁg equation (24) and using the definition of a

V(») —.9%..]:_'2% = .‘ﬁ ___a/\)+1+1 = .93 2 =._2_‘£. l(5.8.)--
®.=  #1-1| n |a, -

/v

From equation (44)

4 2 4 o o
A _ 206 l+a - 20 '
'V(v) = - 5 = ST v :  '(39)
§ 9. PHYSICAL SIGNIFICANCE of the METHOD of AVERAGING

It was shown in § 8 that if the continuous velocity record is

f

o o ‘ ) .. . . . _
‘available the mean velocity is given by X, = JIx(t)dt/T. In burst °

. )
counter experiments, however,- only point estimates of the velocity
are availabie and hence a discretized form of this'integrél“has to
be considered in order to éomputéfthé mean. In évaldatiﬁg the
discreti;éd version of. the méan, some assumbtions must be made

‘ regarding the relationship between the velocity record and the

sampling process.

Since the flow is sampled as described in § 4, the simplest .
”approximation‘to the sampled flow is to hold ) constant for the

t -t

, = . The imdted mean then be
K k1 K he estimdted mean then becoyes,

period At

A n ' e - A :
' x = 2 xkAtk/T. It is necessary to assume a relationship between
k=1 :

K between consecutive particles to

the velocity, xk'and the time At

evaluate the summation.
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.

When the turbulence level is not very high, (520%7), the
sampled velocity estimates {x#}.and the times between particles
{Atk} can be assumed to be uncorrelated. In such a situation the

. n
estimate of the mean velocity can be easily shown to be z,xk/n.

o k=1
This is the arithmetic mean of the sequence‘{xk}'obtained from (n)
samples and has been used in the previous sections as an estimate of

the mean velocity.

it has'been argued by McLAUGHLIN & TIEDERMAN that using an
.arithmetié mean to determine ﬁhé‘averagé velocity gives a biaséd
~estimate of~méan vélocigghigher than the trué value .,

This situation can be expiained as follows. When the instantaneous
velocity of the fluid éxceeds the true mean velocity V, say, more
particles pass through the scattering volume than if the fluid
velocity was a éonstnt = V. Similarly, fhere are fewer paréiclés that
£faverse the scattering volume wﬁéﬁ the fluid velocity iévbelow V.

The probability denéiﬁy of the Qelocity obtaingd will be biased
towards the highér velocities because é greater proportion of
particles passing through the scatﬁering volumé have higher vélocitiés
and hence contribute more to the right hand side tail of the

velocity probability density function.

SMITH & MEADOWS have observed experimentally that the
estimate of mean velocity obtained by the arithmetic mean is
correlated with the sampling rate v. While this corroborates the

'results of McLAUGHLIN & TIEDERMAN it has been shown that thére is

only a very 1ow correlation between these quantities. This low-

<
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value justifies the use of the arithmetic mean as' an estimate of the

mean velocity in the previous sections. For high turbulence levels

it may be necessary to correct for the biasing effect. 'It has been
.suggested'by KREID thdt an unbiased estimate of the mean velocity can.

be evaluated using (n E (1/Xk)}’1, This estimate is an approximation
- - k=1 o | . C
of the integral ITx(t)dt/T if there is a positive correlation between

. . o .
Ky and v (or-l/Atk), ie, Xk'Atk = P, where P is a constant.

§ 10.. DETERMINATIDON of the PROBABILITY DENSITY FUNCTION

In most burst counter systems, the probability density“function(P-d-f-)
of the velocity is obtained by constructing a histogram. Since the
velocity is a_cdhﬁnuous variable, the probability distribution

function and the probability density function need to be smooth

functions. It is therefore necessary to

i. draw a smooth 1éne through the histogram
: ii.-.fit a model to it o _or
iii. use a non-parametric method for smoothing as suggested

by PARZEN ' .

~ The latter two methods havé had considerable success in pattérn
recognition reséarch and it has been suggested éhat thése could bé
useful complements or alternatives to the "raw" gr manﬁally smoothed
histogram. As.yet; howéver, the application of these gechniques to

burst counter data or:the analysis of digitized velocity records
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obtained from a hot wire anemometer has not been reported.
- KASHYAP & BLAYDON have shown that if the velocity p.d.f. or

. . . . - - n :
distribution function can be represented as
. =R , ‘ -2 a. ¢.(x) where
: ' DR
1=1
'{éi(x), i=1,....,n}'is a set of independent functions, then the
unknown parametets'{ai, i=1, «...,n} can be obtained on-line using
a stochastic recursive technique. In addition.to requiring very
little storage, this method facilitates the continual examination of
‘the parameter values and once these values stabilize, the data
collection can be terminated. Ig@s noted, however, that a fair.
‘amount of computaﬁiqn is required at eacﬁ iteration and hence this

technique would not be feasible when the average data rate is much

- greater than 1/T, where f = time required for each iteration.

- PARZEN has suggested a class of p.-d.f. estimators based on n

independent observations (velocity estimates) s i=1, ...., n,

o
K(
p b

1
£ =55,
1

[ R ]

i)

These estimators were shown to be conéistent and ésymptomatically
_‘normal subjeét io certain conditioﬁs;pn h, the parameter wpich'
determines the smoothqessofﬁf(x). TheAdrawback in using ghéée»
eétimatérs is that all thé'n‘65;;£Vatibns have to be stored and the
evaluation of £(x) for a particular value of x requires a long

computation involving all the observations. By expanding RK(.) as a

Taylor series, SPECHT has suggested a method which considerably

'
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reduces the computation needed in the orrginal merhod of PARZEN,
'however, all the observatlons still: need to be stored In the burst
" counter experiments reported by MAYO et al and SMITH and MEADOWS all
the velocity estimates are stored so thet spectral analysis can be
carried out eff—line, hence the storage requirement of SPECHI's
method is not necessarily special. It is noted that although PARZEN's
"results require that the observations be independent,.there is ne
reason why £(x) will not provide reasonable estimates of the

probability density function if the observations are correlated.

It will suffice to say here theﬁ K(.) ie analogous to the
iﬁpulse reSponse of a low pass electrical filter where the variable,
time, is replaced by x. A detailed discussiod'of the form of K(.)
and its parameter (h) is glven in SPECHI s article and an up to-date
and1y51s and blbllography of thls subJect is presented by KRONWAL &

TARTER. °

§ 11. . POWER SPECTRUM ESTIMATION.

The analysis of continuous records is in many rnstances ﬁost
codveniently carried out by digital means on a computer. Mich effort’
has been devoted to the development of digital recﬁdiques for
estimating spectra from equi-spaced sam@les, based either on Eﬁe

Blackman-Tukey correlation and transform method or on the periodogram

F.F.T. method, (BENDAT and PIERSOL).
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Wheﬁ a bsrst‘counter is used, estimates.of the velocity are
obtained randomly in time. ﬁecause of the~unequa11y seaced data,
conventional .spectral analysis techniques cannof'be used. The
.speetrum of sueh processes was first'analysed by SHAPIRO & SILVERYNAN
‘end'they showed that if a continuous process is Poisson samﬁled'
then the spectrum of the resultlng process does not suffcr from
aliasing. Beutler and Leneman in a. series of papers have considered
. the spectra for a large variee§ of poiet processes (see-BEUTLER for
a servey of this work). MASRY has descrlbed a class of sampling
._schemes whlch lead to allas—free spectral cstlmates. It is only
recently that the original ideas of SHAPIRQ and SILVERMAN g::jj:j

have been shown to apply in practlce and on-llne processors have

been shown to be p0351ble for statlonary processes, (LIAYO et aZ)

._..a‘*"'

and (GASTER aﬁdAROBERTS). In this section the theory of this type qf
spectral anal&sis aed some practical details wiil be briefly discussed.
It will be shown that a biased Spectfai estimate cen be obtained and
its variance will be given. As exg:ted the variance is higher than
that expected for the spectrum that weuld be‘obtained wﬁen the
continuous recdrd is available: Throughout the discussion the’
sampling times are assumed to be Poisson distributed. As meﬁtiqned

in the previous section, this is a reasonable approximation.

The correlation coefficient r(n) of the sampled process is

defined as the average of the lagged products X X

S where m = 1,2

..., The relationship betwea these coefficients and the correlation

function R(t) of x(t), can be obtained by the following relation:
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r(n) = Jm R(1) pn(’t) dt - - (60)
o | o

"+ where pn(r) has been given by equation (3) for Poisson sampling.
Since R(t) and S(w) the spectrum of x(t) are Fourier transform

_pairs,

(61)

r(n) =-J“ .

SHAPIRO & SILVERMAN have shown that the solution of this

‘integral equation gives an alias-free estimate of the. spectrum given

by

S() = 2 zlb.(n)ibn(w.) .' “ 62
where b (w), = Re(-/Zv v(—l—“l—"l—} | | I(63)-3
o Gumw)™
and  b(n) -/_ 2 -2)" l)I".(k+15 | . (64)

In practice the r(n) coefficients are estimated from an
experiment of say duration T to give

X X . : }‘(_65')

~ . _1.
r(n). TN m m+n

o~ 2

m=1

where N is a random variable equal to the number of samples in time T.

.
It can be shown that r(n) is an unbiased estimate of r(m), ie

E [; (n)]. = r(n).
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Al

In bractice r(n) and hence b(n) will only be computed for a

finite mmber of n. A 'truncated' estimate is then given by

~ . 1
Sylw) ==

|

bn)y_(w) ©(66)
=1 - : : -

" . The expected value of'Sﬁ(w) is
S, (w) -1 ) b(njw (wi . R '(67)
M i n ' B .
where (see equations (61) and (64) )

b(n) = I” Sy du - ©(68)

From these results it can be shown that SM(w) is a weighted integral

of S(w): ' | I

g T

Sy (w) = fim S(w')aM(w,Q')dw' | o .';4 ‘(695

where the kernel

|
1
aM(w,w ) ==

o~ R

wn(w)wn(w') o  (70)
n-1 o : S
GASTER & ROBERTé have shown that thisAkérnel (window) has a
pronéuncéd tendéncy to broaden the spectrum as w/v increasés,' They
havé also démonStrated that an extremély large amount of data is
necessary for obtaining high resolution and low variance spéctral
.esti?ates and hence deriving them from the coefficients ;(n) isAqot

practicable. -
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All practicalisystems for:the analysis of burst counter data

" are based on digital techniqﬁes. It is théféforé inevitable that
slotting (quantiziﬁg) will have to b;.used.- The velocity estimates as
well as thé sampling timé.have tﬁ be quantizéd. Only.the quantization
of the sampling times will bé discussed. One approach is to
approximate the méan autocorrelation function by a Dirac comb 6f

period At. fhe values of'thé spikés of this comb are taken as béing
equal to ﬁhg avéragevof the vaiués of thé neighbouring randomly spaced
estimates. This is efféctively the samé as saying that the time axis
has been quahtizéd. It is necéssary that thé quantizing interval*‘Ar
sﬁtisfieé'th conditions: it is much less than the mean sample

~ period (1/v) and that it'also satisfies the Nyqﬁisf criterion in the
usual manner with (1/At) béigg the equi&alent rate of gniform sampling.

The spectrum can be obtained conveniently using F.F.T. followed by

smoothing.

The result of'an error analysis of the spectral estimator is
given by MAYO et al. Assuming that x(t) is a stationary broad band
. (spectrum S(£) ) Gaussiaﬁ procésé the éxpréssion,for the normalised
r.m.é. varigbility‘érror, €, 1s giveﬁ by
' ‘n+m-1 , ' : él - :
€= [1/11. 1 (s@iaf) - s(iaf) )}/s(o) (71)
C i=m .

= (2/3)? 23(%‘%)"1’ » SN 7))
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where m = first point in the pass band
n"= number of points in the pass band over which the

summation is taken

B = equivalent bandwidth of S(£)
N = number of sampled points
A = rate of the saﬁpling'process

M = maximum lag of the correlation function

. Equation (72) was derived assuming that A/2B << 1; N 3 MAAT and that
* the Bartlett window is used for smoothing. it has beé; verifiéd by
‘MAYO et al by using a.éimulétioﬁ. JdNES -has also o6btained
error ést%mates of similar spéctrai ordinates but his résults différ .
' frém those of MAYO et al. .For-a detailéd discuésipn and dérivatioh .

of practicable estimates- of randomly sampled processés,'the reader

is referred to the original papers.
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_ APPENDIX A

EXPERIMENTS on SINUSOIDAL‘FtUCTUATICNS

.

In order to test the valldity of the theofy présénted in§ 9
of Chap.2 and the practical utility of the résults, twé sets of
experiments wefe performed. Thé first involvéd simulating the
vélocity:fluctuations.occurring in the flow with a mechanical system.
‘This consisted of a perspex disc’whiéh was rotated in a vertiéal
plane whilst being oscillated horizontally. The uséfulness of the
mechapical simulator lies in thé fact phat vg;iablg pérgmetersiare.
known precisely and can be altered at will. The second set of
experiments involved méasurements.in fhe wake of a circular cylinder
set in a steady airstream;" In this case the sinusoidal Velocity
fluctuations were produced by the shed eddies. In both case; the

o

crossbeam optical configuration was used.

By observing both the frequéncy of the cosinusoidal waveform -
and thé positions of thé zéros of thé damping Bessel function, both
the mean veiocity and the amplifudé of .the felocit& fluctﬁatién can
readily be determinea; Note that thé first zero of thé’Bessel
function JO occurs when ifs Frgument-%gij = 2;4, (c.f. éq.sz.of
Chapter 2). Hénce if thénaéré n cyélés bétwéén the zero lag and thé-
first zero of thé Bessel function, the ratio (a/u) of péak deviation
to mean velocity is 2.4/(2m). The period_of the cosine term‘givés
thé Dopplér fréquendy and u can be determinéd since the velocity to

+

frequency conversion constant, 1/s, is known from the optical geometry.
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‘The ﬁeasurement of thevStreamwise velocity using a hot—wire‘
aﬁemomeﬁer in thebflow éxferimént gave a comparison with the coffelatoy
're'su'lts., ; '» A |

-i. Mechanical Simuiaiion

' fhe mechanicai simﬁlator was an.18¢m. diameter perspex disc

“rotated iéshé vertical piane by afsyncbronous.motor at'approximéée}y
1 Hz. Using a 1 m¥ ﬁe—Ng laser and a DISA beam splitter, a fringé
pattérn was fo?med at a short diétancé from the periﬁhér& of the disc,

“the frinées beiﬁg aligned in the hofizontal transmission plane at the
samé level as the centre of the disc."Thé'beaﬁ séparation at the
transmission iéns Qas_ﬁcm.‘.The focallléngth-of éhe tfaﬁsmission iéns
was 30cm:. The disc Qas painted m;tt black in order to réducé the
back scattered 1ight tbia lével low énough for photoﬁ-éounting. Thehb

‘back scattered_light was imagea through a.léns onto a photomultiplier
and discriminator unit édjusted fér singie photon ré8p§nse, the

' résulting pulse train being‘procésséd‘with é digital corrélatof.

' (Pfecision Devices). Thé ihstantaneoﬁs méasuréd vélocity with this
configuration is governed>by the distance of the fringe pattern from
the tgntre of the disc since the rotation is maintained at a cbﬁstant
spéed. A flgttuating Vélocity'éan thérefore be achiévéd by moying
the centré of the disc relative to the obtical system. Thevrequiréd A
siﬁple harmonic movement was 'achieved by moving the complefe disc and
synchronous motor using a ﬁafiabie spéed motor and a crank mechanism.
The fréquency of'oscillatioﬁ wasvsét at approximatély 1‘Hz, Fhis‘
value being;chosen as very small in comparison Qith thé disc frequency
to avoid any non-linear interactionS'bétween the tw§ mogions.' By

setting a range of amplitudes for the disc oscillation, photdn



correlation records were obtained from different a[u ratios. Good
"agréement was found betwéen ;he results obtained from the correlograms
.énd direct measurement;  For a/u > 0.2 thé correlograms showed some

: distbrtion. 'This'is to.be éxpectéd since eq.(32) of Chapter 2 holds

for u >> a.

ii. Wind Tunnel Experiment

In the wake of a circular cylinder in the'Réynolds Mumber range
40 to 150. (say) is a régular street of shed voréices. ‘MéaSurements of
the streamwise component of velocity in this type of wake show that
thé mean flow is perturbed by the passége of each vortex and it is
found that in the periphery ofﬁthe.wake‘thé‘perturbation is
aﬁéroximately sinusoidal. Measurements of values of mean and

fluctuating velocities. were made in the wake of a circular cylinder

using both a photon-correlation anemometer and a hot-wire anemometer.

The expérimént was cbnducféd in the i m X ‘1 m working éection.
of a low turbulence wind—tunnél Qhoée flow was.stéady at the"véry
low spéeds requiréd by the expérimént. Previous work in a small open-—
circuit.tunnél had proved unsuccessful because of flow instaﬁiliﬁies.
Thé cylinder was a 0.47 cm diameter brass rod whicﬁ was ﬁoved
vertically by a traversing arrangement attachéd to a vertical aerofoil
in a workiﬁg séction. The cylindér position was méasﬁréd to. 0.5 mm on

a scale on the wind-tunnel window.
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The hot-wire probe was held firmly 2 cm behind the leading
edge of thé cylinder. A 15 mW laser was used to'fofm a probe ¥olume
at the same height as the hot-wire but approximately 1 mm upstream

of it.

The windspeed wésvselected so that the vortéx streét detected
by the hot-wire was staﬁlg. The frée stream velocitj was measured
with the phpfon correlator and found to be 0.39 m sec*l,-giving a
" Reynolds number based on cyliﬁéér diameter (0.47 cm) of 124. The
frequency of shedding measured on a sPéctrum analyser -was foﬁnd_toAbe

13.3 Hz giving a Strouhal number of 0.157.

| Iﬁe wake was tra&erséd‘by moving thie cyliﬁder vhile keéping tﬁe
hotfwire' and interférencé volume stationary.' Correlation records |
were taken at twenty—two\stations-at 1 mm intervéls distributéd
symmetrically through ﬁhé wake. H&t;wire measurements of the mean
~velocity and the rms of the streaﬁwisé fluctuating velocity‘wgre

made at each station. Measurements of positive and negative peak

fluctuating velocities were made at a number of stations in the wake.

'Calculatién of tgrbulénce levels froﬁ the correlograms was
only possible at the éutér part of thé vortex street whére the rgtio
of thé fluctuating vélocity to'thé local mean velocity was small, ie
1ésé'than say 15% (fig.1(a)). TFor larger lévels difficulties are
seen'in idéntifying JO = 0 (fig. 1(b)) when the beating becomés.so

rapid that the sinusoid is not easily identified.
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The crest factor (peak fluctuafing vélocity/rms fluctﬁafing

. velocity) for both p051t1ve and negatrve half cycles is plotted in -
lflg 2 for one side of the symmetrlcal wake in the range defined
abové. The crest factor for a sine wave (1.414) is also shown on this
diagram. The wave‘is seen to be closély sinusoidal at the wake
-periphéry but becomes distorted as thé core .is approached._'This is
dué to the growing contfibution from the second harmonic. Fig. 3
shows a comparison of the méanﬁvéloéities.measured by the hot-wire

and from the correlograms, while fig. 4 shows flqétuaﬁing ievéls
ﬁéasured by the two mefhods. It is seen that th;re is closé
agfeement‘in both cases. .Thé most signifitant cause of discreﬁancy
between the two measuréments appeaféd-to afise through ‘misalignment

of the measuriné positiéns. Alignmeﬂt was difficult Becausé in a
plane perpendicular to the cylinder'axis the hot-wire had an-effective

K3

diameter of 5 pm whilst the diffraction limited laser spot diameter
was approximately 7 x 10--4 m. It is worth noting, however, that in h

the direction of the cylinder axis the dimensions of the measuring

regions for the two systéms were comparable.



Bl

APPENDIX B

Volume 17, number 2

\

. OPTICS CGMMUNICATIONS

May 1976

-

: ‘ N : .
. ERROR ANALYSIS OF RANDOMLY CLIPPED l’HOTO/COUNT CORRELLATION ESTIMATOR

v

Q. ISA DAUDPOTA . »
Dept. of Physics, Edinburgh University, Scotland, UK

Y

Reccived 23 January 1976, revised version received 1 March 1976

v
v
1

»

The use of uniform random clipping makes the one-bit correlation function independent of the statistics of the incident
field. 1t has therefore been used in optical spectroscopy to measure the intensity spectrum of non-paussian fields. This-note
shows that for a correctly chosen range of clipping, the difference in the crror of the estimator and the error expected ina
full (multi-bit) correlator decreases inversely as the number of samples. The analysis also apnlics to one-bit scaling 1nd other

methods of uniform random clipping.

. . A
- The single clipped photon correlation technique

has been applied in many scientific spheres to obtain

the intensity autocorrelation function of optical ficlds.

This method is attractive because a high spzed of opera-

tion can be achieved with simple digital circuits. For

some fields the analytic relations that exist hetween

the cne-bit correlation furnction and the true correla-

tion function of intensity are quite complicated [1].

In the case of gaussian ficlds the relation is very simple.

and the single clipped photon correlation has been

successfully used to investigate scattered fields where

the gaussian assumption is valid {2].

It is now well known that in certain experimental
situations the observed fields deviate significantly
from the gaussian. Among the cases in which this
happens are light scattered by particles carried by
turbulent fluids [3] and scattering from a small num-
ber of particles undergoing motion of some kind [4].
For such experiments, unlike those with gaussian
fields, the self-beat (homodyne) spectrum provides .
additional information to the .1clcrodyne measure-

-~ ment {5].

~ The field statistics arc usually not known a priori
and many methods have been proposed for making
.the count correlation function independent of them.
These methods have been described and compared in
[6]. Apart from Full digital correlation, the other
methods basically rely on clipping cach s:nnblc ata
randomly selected tevel. An aliernative method has
been analysed [7] in which a uniformly distributed

signal is added before double clipping at a fixed lovel
is carried out. This method can be casily modificd to .
operate in the single clipped mode, in which case it
becomes equivalent to uniform random clipping which
will be considered below.

Scaling and uniform random clipping are equivalent -
when the scaling factor and the range of clipping levels
are identical and greater than the expected maximum
number of photon counts per sample time. This con-
dition is always nccessary for both methods to the
give a correct estimate of the inteusity correlation
function [8].

*The variance of the correlation function obtained
using uniform random clipping will now be compared
with the error expected with full correlation. The esti-
mate of the full count correlation function is

rdr, N) =N"1 ,-§ RMpar s ' (1)

where #n, is the number of counts in sample time 7'
centred at time ¢. Similarly the uniform randomly
clipped correlaiion function estimate is '

N . '
A .
r,(r,Ny=N"! ’Zl/.[n,]? Mpgr s ()
", where
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[7,]¢=1, ifn>c,
=0, ifn <c,

¢ is uniformly distributed with probability density

._ fle)=1/s, 0<c<§-1,
| 3)

=0, otherwise .

The mean square error criterion is most conveniently
applied and very useful for a comparison of different:

measuring methods. For the complete correlation func-

tion we have

ofr N =Elrr, M) - R()2 @)

=E[rf(r, M)] - [R() 2, (5)

where R(r) = Elry(r, N)] and E[+] denotes expecta-
tion. The error in the clipped case is

GE(T»N)=SZE[r3(T,N)] — [R(T)lz ’ ’ ©)
- since ‘ . ' . |
Elr,(r. M)] = (1/S)R(). e

Eq. (7) can be easily shown by taking expectations on
both sidgs of eq. (2) and noting that E[[n,)¢} =

E[n] /S, where E[n] is the average number of counts
per sample time. Now

ERXe M) = (1N?)

=]

N.N :
X2 qZ/:l E[[np]c‘an[nq]C’an]', T (8)

which on simplifying gives
E[r3 (r,N)=(1/NS) E[n,’,ngﬂ]
N N :
+ (]/Nz) EZ (l/Sz)E[npannqon] . )
' P#q ,

- In equivalent notation the mean square value of the
full correlation function is

E[r}(r,N)] = (1/N) E[nan?,.]

NN ’ ' .
s (I/NZ) 220 l;‘[npnpﬁnqnqﬂ]' . .10
P#q '
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“Combining egs. (5), (6), (9) and (10) gives

' 03(1'; N) = 012-(1, N)

+(]/N)(SE[npngH]us[;lgzzgﬂ]). o (1)

Written in this form, the mean square error is seen to
be equal to the error expected with full correlation.
in addition to a term inversely proportional to the
number of samples V. Since the value of n cannot
exceed S the upper bound on the error is

0ar, M)y, = o(r, N +SYN RN (F))

By upplying an argument similar to that used by
Haus {9} it may be assumed that (1) is a Poisson
variable when the 'S/V ratio is low, i.e. the photons
detected by the photomultiplier are mainly due to

- background laser light. This is a familiar experimental

situation and leads to 3 tighter bound than that ob--
tained in eq. (12):

0u(r, NY= o}(r, N) + (N (E{u] + (E[n])?)

X .{S.E[n] - Efn) %(1.3['1])2}, L

(Poisson nand 7 #0) . - a3 -
These formulae will be useful in determining the
experimental time necded toachieve a desirable accu-

_racy. If the precision required is such that it cannot

be obtained with a reaconable value of ¥ (proporlional

-to experimental time), it would then be necessary to

use full correlation.
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' Reports and papers written during the period Dec. 72 -Sept.

'06

\

1. Assecsment of photon countlng technlque (prellmlnary
report), Sept.’73, 30 pages. = -

An expression is derived relating the velocity variance
for a uniform flow to the variance of the correlogranm
ordinates in the case of low scattered intensity. A
.. direct expression for the variance of the ordinates,
. assuming Gaussian statistics for the scattered intensity,
is derived and conditions for its validity presented.

2.'Assessment of photon counting technique (report no.. 2),
- Sept.’74, 24 pages.

The count correlation function is derived for a velocity
with sinusoid variation using two different methods.
Experiments are described which show the usefulness of
the theoretical results. These include an investigation
- of vortex shedding behind a cylinder in a uniform flow
’u51ng photon correlation. The Maximum Entropy Method

is described. The program listing for the ME method
included in this report was modified in ’76 and then
used to obtain the spectra shown in chapter 3. A
- square root transformation for the reduction in variance
of the correlogram ordinates is presented.

. 3. Application of photon correlation technlques to the
measurement of flows with a sinusoidal perturbation,
F.H.Barnes,Q.I. Daudpota ‘I.Grant and C.A.Greated. Accepted
for publlcatlon in Physics of Fluids. A preliminary
version of this paper was presented at the Fluid Dyn. .
Panel Symp. on Appl. of Non-Intrusive Instrum. in Fluid
Flow Research, AGARD, French German Res. Inst., St. Louis,
France, 3-5 May ’76. See chapters 2 5 and .Appendix A..

4, Estimation of moments of a Poisson sampled random process,

Q.Isa Daudpota Graham Dowrick and Clive A.Greated.
' Accepted for publication in J.Phys.A.:Math.Nucl.Gen. .-
, See chapter 4 3%3-8. . '

5. Error analysis of randomly clipped photon count correlation

estimator,Q.Isa Daudpota,Opt. Commun.,l976 17, 145 4,
See Appendlx B. .

6. A joint short note with Dr. C. Greated, on the results
of chapter 3 rolatlng to the frequency transformation
methods is planned.



, IMPORTANT _FORMULAL

_l—Doppler frequency = /i 2 u sin (8/2)/a . - Pgo 2,5
= partlcle velocity, 5 = frlnge spacing, | o

0

. 0 = angle between the beams.

o>_Beam waist diameter at 1/ point:d =4 A f/(nD) PE. 2,11
z2-Intensity scattered by a particle

. . - 2._.2 . - .
I(t) = I exp lj (t—tO) b ] cos('nut ) . pg. 2.17
. . ' 21.2.. . s |

4-Correlation function for turbulent flow with

Gaussian statistics and frequency shift £ _.is

, R'(T) D e){.‘p(‘- w7l ) [l _'*_Ln-g Vexp(_ 21‘(20 ”L’z )Cos(én{u/s+fs}1):[

Lp? 2 g ' |
PE. 2.26
5_Correlat10n function for unlform ve1001ty
' can be obtained from the prev1ous formula by

settlng 0=0. | R . | "~ pg. 2.19

6_Correlatién function for a sinusoidally

fluctuating flow is A |
. 2 2 : 2 ‘ .
R(t) = F exp(~ ___ ) [l + LT 2T " Y cos( 2TU ) ]
4y > s S. s
pg. 2.29



