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ABSTRACT 

C. difficile is an obligate anaerobic, Gram-positive, rod-

shaped and spore-forming bacterium. It is a well-recognised 

causative agent of antibiotic-associated diarrhoea and 

pseudomembranous colitis. C. difficile has emerged as an 

important nosocomial pathogen in recent years, associated 

with considerable morbidity, mortality and economic burden. 

Despite its importance, functional genomic studies have 

been lagging behind in comparison to other enteric 

pathogens. This is attributed to the fact that C. difficile 

is difficult to manipulate genetically and the lack of 

robust, reproducible mutagenesis systems for many years. 

The ideal mutation for robust functional genomic studies is 

a markerless, in-frame deletion of the gene of interest. 

All systems developed for C. difficile, up to the start of 

this study, involve insertional inactivation of the gene of 

interest. This study describes the development of a novel 

genetic system for C. difficile, to create precise and 

markerless chromosomal deletions, using the meganuclease I-

SceI. For validation of the system, the addBA genes in C. 

difficile were deleted. The AddAB enzyme complex is 

important in the survival of many bacteria, since it 

maintains genome integrity, by the repair of double-strand 

breaks. Deletion of addBA in C. difficile did not 

significantly affect growth and viability, but the mutant 

strains were sensitive to DNA damaging agents. In addition, 

it was shown that C. difficile is capable of initiating the 

SOS response after DNA damage and that AddAB is not 

necessary for the induction of this response. The genetic 

system was further optimised to delete type IV pili (TFP)-

associated genes, particularly pilT (CD3505) and pilA 

(CD3507), to investigate twitching motility. TFP are 

important in virulence and pathogenesis of many bacteria 
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and twitching motility is often involved. TFP in C. 

difficile may be expressed in vivo during infection and may 

be involved in biofilm formation and colonization. To study 

potential TFP-mediated motility, a non-flagellated C. 

difficile strain was first constructed by deleting the fliC 

gene. The pilT gene, predicted to encode a protein involved 

in TFP retraction, was then deleted in the ∆fliC strain. A 

∆pilT strain was also generated. Preliminary experimental 

work using these strains did not show any evidence for 

twitching motility and no difference between the ∆pilT 

strains and the parental strains. Examination of cells from 

the ∆fliC strain, under various conditions, did not reveal 

any pili, which indicates that TFP are regulated in C. 

difficile and that the TFP locus might be repressed at the 

transcriptional level. Preliminary work to investigate an 

intergenic region located upstream of the TFP locus in C. 

difficile, that might be involved in regulation, suggested 

that transcription is being initiated within a 500 bp 

region upstream of the CD3513 gene.  
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CHAPTER 1: Main introduction 

 

1.1: Clostridium difficile overview 

 

Microbiology: 

C. difficile is an obligate anaerobic, Gram-positive, rod-

shaped and spore-forming bacterium. It was first isolated 

in 1935 from the faecal microbiota of healthy neonates and 

was identified in the late 1970s as the aetiological agent 

of antibiotic-associated pseudomembranous colitis (Bartlett 

et al., 1978; George et al., 1978; Larson et al., 1978).  

 

Pathogenesis: 

Clinical manifestations of C. difficile infection (CDI) can 

range from asymptomatic carriage to diarrhoea. Severity of 

diarrhoea varies, from self-limiting to serious diarrhoea, 

with or without formation of pseudomembranes in the colon 

(FIG 1.1), with the possibility of toxic megacolon or bowel 

perforation, sepsis, shock and death (Poxton et al., 2001; 

Rupnik et al., 2009; Freiler et al., 2001; Gebhard et al., 

1985; Kawamoto et al., 1999; Riggs et al., 2007; Rubin et 

al., 1995; Shim et al., 1998; Triadafilopoulos and 

Hallstone, 1991).  
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FIG 1.1 Pseudomembranous colitis 

A typical endoscopic appearance of C. difficile-induced 

pseudomembranous colitis is shown. Pseudomembranes (yellow-white) 

formed are composed of destroyed intestinal cells and leukocytes. The 

figure is adapted from (Rupnik et al., 2009).   

 

 

C. difficile is acquired through ingestion of vegetative 

cells or spores and it is widely accepted that CDI is 

predominantly a toxin-mediated disease. Disruption of 

normal colonic microbiota and thus colonisation resistance 

allows spore germination (spores germinate in response to 

specific bile salts in the small intestine) and 

multiplication of vegetative cells (Vedantam et al., 2012; 

Deneve et al., 2009; Giel et al., 2010; Sorg and 

Sonenshein, 2008). The organism then adheres to the mucus 

layer covering the epithelial surface of the 

gastrointestinal (GI) tract via multiple adhesins, 

penetrates the mucus and adheres to enterocytes marking the 

beginning of the first phase of the pathogenic process, 

colonization (Deneve et al., 2009; Carroll and Bartlett, 

2011). Several factors have been reported to be implicated 

in adhesion and colonization including, fibronectin-binding 

proteins Fbp68 and FbpA, surface layer and cell wall 
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proteins  SlpA, Cwp84, Cw66, CwpV and heat shock protein 

GroEL (Vedantam et al., 2012; Calabi et al., 2002; Barketi-

Klai et al., 2011; Lin et al., 2011; Waligora et al., 2001; 

Hennequin et al., 2001).  

The second phase of the pathogenic process is toxin 

production (Carroll and Bartlett, 2011; Deneve et al., 

2009). Many C. difficile strains, but not all, produce two 

major toxins, termed toxin A (TcdA) and toxin B (TcdB), 

which are recognised as the main virulence factors. They 

belong to a group of large clostridial toxins (LCTs), due 

to their high molecular mass, TcdA being 308 kDa and TcdB 

being 270 kDa, and their production increases as cells 

enter the stationary phase of growth (Davies et al., 2011; 

Rupnik et al., 2009; Dupuy and Sonenshein, 1998; 

Hundsberger et al., 1997; von Eichel-Streiber et al., 

1996). TcdA and TcdB are encoded by tcdA and tcdB genes, 

respectively and are both located in a 19.6 kb region known 

as the Pathogenicity Locus (PaLoc), (FIG 1.2) (Braun et 

al., 1996; Cohen et al., 2000). The PaLoc contains three 

additional genes, tcdC and tcdR which encode  proteins 

involved in the regulation of toxin expression and tcdE 

which encodes  a protein with pore-forming activity which 

allows release of toxins from the cell (Govind and Dupuy, 

2012; Mani and Dupuy, 2001; Mani et al., 2002; Matamouros 

et al., 2007; Tan et al., 2001). The PaLoc is conserved 

between toxigenic strains which encode one or both of the 

toxins. In non-toxigenic strains, the PaLoc locus is 

usually replaced by a 115-bp non-coding sequence and these 

strains are considered non-pathogenic (Rupnik et al., 2009; 

Braun et al., 1996; Rupnik, 2008).  
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FIG 1.2 Schematic of Paloc in C. difficile 

Paloc (19.6 kb) comprises of five genes tcdA, tcdB, tcdR, tcdE and 

tcdC. Toxins A and B are encoded from tcdA and tcdB, respectively. The 

genes tcdR and tcdC encode for proteins that positively and negatively 

regulate transcription of toxins, respectively. The tcdE gene encodes 

for a protein with pore-forming activity. The figure is adapted from 

(Rupnik et al., 2009).  

 

 

The actual role of toxin A or B in the disease pathogenesis 

of CDI remains a matter of debate. Two groups have 

constructed C. difficile mutant strains deficient in the 

production of TcdA, TcdB or both toxins, and tested their 

virulence in the hamster model (Lyras et al., 2009; Kuehne 

et al., 2010). One group concluded that TcdB and not TcdA 

is essential for virulence, while the other, concluded that 

both toxins are important. It was suggested that these 

differences may be attributed to inherent differences 

between the hamsters used in each study, or to differences 

between the parent C. difficile strains used to create the 

mutants (Kuehne et al., 2010).    

Toxins A and B are structurally similar and contain 

multiple domains including; i) N-terminal glycotransferase 

domain, ii) cysteine protease domain, iii) translocation 

hydrophobic domain and iv) C-terminal binding domain (FIG 

1.3) (Davies et al., 2011; Jank and Aktories, 2008). The 

interaction between the C-terminal binding domain of the 

toxin and host cell receptors initiates receptor-mediated 

endocytosis, although, the precise mechanism of toxin 
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uptake remains unclear (FIG 1.3) (Davies et al., 2011; 

Oezguen et al., 2012; Frisch et al., 2003; Giesemann et 

al., 2008; Greco et al., 2006; Ho et al., 2005; Jank et 

al., 2007). Within the endosome, a decrease in pH causes 

conformational changes within the toxin, followed by pore 

formation in the endosomal membrane by the hydrophobic 

domain, and subsequent translocation of the N-terminal 

domain into the cytosol (Barth et al., 2001; Qa'Dan et al., 

2000). Then, the toxin undergoes self-cleavage after a 

conformational change of the cysteine protease domain, a 

process that requires inositol hexakisphosphate (InsP6), 

resulting in the release of the N-terminal domain into the 

cytosol (Egerer et al., 2007; Giesemann et al., 2008; 

Oezguen et al., 2012; Pfeifer et al., 2003; Pruitt et al., 

2009; Reineke et al., 2007; Rupnik et al., 2005). Once in 

the cytosol, the glycotransferase domain of the toxin, 

mono-O-glycosylates and inactivates Rho GTPases (Rho, Ras 

and Cdc42), the proteins that are important for maintaining 

cytoskeletal integrity (Davies et al., 2011; Voth and 

Ballard, 2005; Oezguen et al., 2012; Jank and Aktories, 

2008; Jank et al., 2007; Just et al., 1995b; Just et al., 

1995a). 
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FIG 1.3 Schematic of functional domains of C. difficile toxin A and B and the processing 

machinery 

A] The four functional domains of toxins A and B are shown. A (dark 

blue) refers to N- terminal glycotransferase domain. C (green) refers 

to cysteine protease domain. D (magenta) refers to the translocation 

hydrophobic domain. B (purple) refers to the C-terminal binding domain. 
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B] The processing machinery of toxins is shown. The colour scheme of 

the toxin domains is maintained in this schematic. The C-terminal 

binding domain binds to the host cell and the toxin is endocytosed. 

Whithin the endosome, a decrease in pH causes conformational changes 

within the toxin, followed by pore formation in the endosomal membrane 

by the hydrophobic domain, and subsequent translocation of the N-

terminal domain into the cytosol. Then, the toxin undergoes self-

cleavage after a conformational change of the cysteine protease domain, 

a process that requires inositol hexakisphosphate (InsP6 binds to 

cystein protease domain), resulting in the release of the N-terminal 

domain into the cytosol. Once in the cytosol, the glycotransferase 

domain of the toxin, glycosylates and inactivates Rho GTPases. The 

figure is adapted from (Davies et al., 2011). 

 

 

Inactivation of Rho GTPases leads to loss of structural 

integrity, cell rounding and death of the intoxicated cell. 

The tight junctions between the intestinal epithelial cells 

are disturbed, increasing the permeability of colonic 

epithelial layers, allowing neutrophils to migrate to the 

intestines which contribute to the inflammatory response 

typical of colitis. Moreover, toxin exposure of intestinal 

epithelial cells leads to production of tumour necrosis 

factor and cytokines, which leads to fluid accumulation and 

further inflammatory response (Carroll and Bartlett, 2011; 

Voth and Ballard, 2005; Carter et al., 2012). This intense 

inflammatory response is an important contributory factor 

in causing intestinal injury in CDI (Kelly and Kyne, 2011). 

In addition to TcdA and TcdB, some C. difficile strains, 

produce the C. difficile transferase (CDT), otherwise named 

binary toxin. CDT is encoded by the Cdt locus (CdtLoc) 

which is 4.3 kb and comprised of the cdtA, cdtB and cdtR 

genes (FIG 1.4) (Carroll and Bartlett, 2011; Carter et al., 

2007; Carter et al., 2012; Davies et al., 2011; Perelle et 

al., 1997; Popoff et al., 1988; Rupnik et al., 2009). The 

CdtLoc is found in 6-12.5% of strains overall and those 

that lack CDT have a 68-bp sequence in place of the CdtLoc 
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(Carroll and Bartlett, 2011). CDT is composed of two 

proteins, the enzymatic component CdtA encoded by cdtA and 

the transport and binding component CdtB encoded by cdtB. 

The cdtR gene encodes a positive regulator of CDT (Carter 

et al., 2012; Rupnik et al., 2009; Carter et al., 2007).  

 

 

FIG 1.4  Schematic of CdtLoc in C. difficile 

CdtLoc is 4.3 kb and comprises of the cdtA, cdtB and cdtR genes. The 

cdtA gene encodes the enzymatic component CdtA and the cdtB gene 

encodes the transport and binding component CdtB of CDT. The cdtR gene 

encodes for a positive regulator of CDT. The figure is adapted from 

(Rupnik et al., 2009).  

 

 

CdtB binds to the host cells and translocates CdtA into the 

cytosol where this protein  ADP-ribosylates actin 

molecules, leading to disruption or rearrangement of the 

host cell cytoskeleton and subsequently excess fluid loss 

from the cells, rounding of the cell and cell death (Rupnik 

et al., 2009; Vedantam et al., 2012; Sundriyal et al., 

2010). The role of CDT in the pathogenesis of CDI has yet 

to be established. CDT has been shown to be cytotoxic for 

Vero cells in vitro (Sundriyal et al., 2010). It has 

recently been shown that CDT induces the formation of 

microtubule structures that consist of long microtubule-

based protrusions on the surface of epithelial cells, 

leading to increased adherence of C. difficile (Schwan et 

al., 2009).   
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Risk factors, treatment, epidemiology, and economic impact: 

Risk factors: 

The most recognised risk factor associated with CDI is 

exposure to antibiotics. Almost every antibiotic has been 

associated with CDI, but some are linked with a higher risk 

of disease than others, including clindamycin, broad-

spectrum cephalosporins and fluoroquinolones (Rupnik et 

al., 2009; Ananthakrishnan, 2011; Freeman et al., 2010; 

Kachrimanidou and Malisiovas, 2011; McFarland et al., 1995; 

McFarland et al., 1990). This higher risk relates to 

antibiotics that disrupt the normal microbiota allowing C. 

difficile to multiply and produce toxins (Ananthakrishnan, 

2011; Owens et al., 2008). In addition, C. difficile is 

resistant to a wide range of antibiotics allowing it to 

thrive and cause disease (Kachrimanidou and Malisiovas, 

2011; Owens et al., 2008).  

Older age and hospitalization are other major risk factors. 

Patients older than 65 years of age are at 20-fold higher 

risk for disease than younger individuals (Bartlett and 

Gerding, 2008). In adults, the ability to produce adequate 

levels of IgG against toxin A defines whether the route to 

asymptomatic colonisation or CDI is followed (Kelly and 

Kyne, 2011; Kyne et al., 2000, 2001). The increased 

susceptibility and mortality in elderly populations is 

possibly attributed to inadequate immune response to toxin 

exposure (Rupnik et al., 2009; Kyne et al., 2000). 

Hospitalization but also duration in a hospital or long-

term care facility, increases the risk of CDI (Freeman et 

al., 2010). This is attributed to a mixture of multiple 

risk factors in this setting including, exposure to 

antibiotics, exposure to a spore-contaminated environment, 

inefficient hand hygiene (e.g. alcohol-based hand gels are 
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ineffective against spores) and the presence of a 

susceptible elderly population (Rupnik et al., 2009; Fawley 

and Wilcox, 2001; Debast et al., 2009; Gerding et al., 

2008; Labbe et al., 2008; Oughton et al., 2009; Riggs et 

al., 2007).    

Other factors that have been linked to CDI include, 

immunosuppression, gastric acid suppressants such as H2 

blockers and proton pump inhibitors, gastrointestinal 

diseases such as inflammatory bowel disease and 

gastrointestinal surgery (Ananthakrishnan, 2011; Freeman et 

al., 2010; Kachrimanidou and Malisiovas, 2011). 

CDI can also occur in the community setting despite no 

recent exposure to antibiotics or hospitalization (Hensgens 

et al., 2012). However, the incidence of CDI in the 

community is lower than the health care facilities. C. 

difficile is ubiquitous, it is found in soil, water, food 

products and it is a commensal or pathogen of the 

intestinal tracts of many animals. All can be possible 

community sources for CDI. However, direct transmission 

from these sources to humans has not been proven, although 

similar ribotypes have been found. As no outbreaks have 

been reported in the community, host factors may be more 

important for vulnerability to CDI than increased exposure 

to C. difficile (Hensgens et al., 2012).   

 

Treatment: 

Treatment of CDI depends on the clinical presentation of 

disease (Kachrimanidou and Malisiovas, 2011; 

Ananthakrishnan, 2011). The first therapeutic step in most 

CDI cases is the immediate discontinuation of the inciting 

antibiotic. For mild or moderate CDI, metronidazole is used 
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as the first line drug and for severe CDI, vancomycin is 

the first choice. A combination of metronidazole and 

vancomycin is recommended in the most severe and 

complicated cases of CDI, i.e. those with hypotension, 

shock, ileus or megacolon. In the most severe cases, 

colectomy may be required (Ananthakrishnan, 2011; 

Kachrimanidou and Malisiovas, 2011). A novel drug, 

fidaxomicin, appears superior to vancomycin in treating CDI 

and preventing CDI relapses (Poxton, 2010). Faecal transfer 

from a healthy donor has also been shown to be effective in 

treating patients with recurrent CDI (Ananthakrishnan, 

2011).      

 

Epidemiology: 

In the last decade, there has been a dramatic increase in 

the incidence and severity of CDI in the US, Canada and 

Europe (Kachrimanidou and Malisiovas, 2011; Carroll and 

Bartlett, 2011; Jones et al., 2013; Freeman et al., 2010). 

In 2003, the first reports were from Quebec, Canada which 

showed a 5-fold increase in incidence of CDI in the whole 

population from 1991 to 2003. In addition, an 8-fold 

increase in the incidence of CDI in the elderly was 

reported in North America (Pepin et al., 2004). Similarly, 

in Europe the incidence rate of CDI increased with 

associated outbreaks, first in the UK from 2003 to 2004, 

then in the Netherlands and Belgium, then in France and 

other European countries (Deneve et al., 2009; Kuijper et 

al., 2007). In the United States, from 1999 to 2008, CDI-

associated deaths increased 9-fold and from 2000 to 2008 

CDI cases increased 2-fold (Lessa et al., 2012).   

The increase in incidence rate and severity of CDI has been 

partially attributed to the emergence of a hypervirulent 
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strain C. difficile PCR-ribotype 027. The hypervirulence of 

this strain is attributed to several factors: i) increased 

toxin A and B production in comparison to control strains, 

due to mutations in the tcdC gene that normally negatively 

regulates the tcdA and tcdB genes. There is an 18-bp 

deletion and single base pair deletion at position 117 

relative to the tcdC ATG start codon, the latter resulting 

in formation of a stop codon and thus a truncated, inactive 

TcdC protein; ii) production of CDT in addition to toxins A 

and B; iii) altered surface proteins that increase 

adherence to the intestinal epithelium (Carroll and 

Bartlett, 2011; Deneve et al., 2009; Vohra and Poxton, 

2011; Curry et al., 2007; MacCannell et al., 2006; Warny et 

al., 2005). A further feature that may be a contributing 

factor to the emergence of 027 strains is resistance to 

fluoroquinolones, associated with mutations in the gyrA and 

gyrB genes (Deneve et al., 2009; McDonald et al., 2005; 

Spigaglia et al., 2008; Drudy et al., 2006; Drudy et al., 

2007). Depending on the country, other C. difficile strains 

have been responsible for outbreaks and severe cases, 

including ribotypes 001, 018, 078 and 106 (Kachrimanidou 

and Malisiovas, 2011).  

In the UK, several outbreaks have been reported, with a 

double outbreak at Stoke Mandeville Hospital 

(Buckinghamshire Hospitals NHS Trust) being prominent. The 

first phase, between October 2003 and June 2004, was caused 

by ribotype 027. This resulted in 174 cases and 19 (11%) 

deaths that were either definitely or probably due to C. 

difficile. The second phase occurred between October 2004 

and June 2005, which involved 160 cases and 19 (12%) deaths 

(HCC, 2006; Smith, 2005). The outbreaks were a consequence 

of poor practice in infection control, poor environmental 

hygiene, and lack of facilities for patient isolation (HCC, 
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2006). Although, there has been a dramatic increase in the 

incidence of CDI in England and Wales from 1990 to 2006, 

the reported cases of CDI have been decreasing since 2007 

(FIG 1.5) (Cartman et al., 2010). In addition, the number 

of deaths involving C. difficile, increased from 2004 to 

2007, from 2,238 to 8,324 and have decreased to 2,053 in 

2011 (FIG 1.6) (Office for National Statistics, 2011).  

 

 

 

FIG 1.5  Cases of C. difficile in England and Wales 

The increasing C. difficile incidence in England and Wales between 1990 

and 2007 is shown. The figure was adapted from (Cartman et al., 2010). 

Original source of data from The Health Protection Agency. 
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FIG 1.6  Mortality rates for deaths mentioning C. difficile in England and Wales 

The number of death certificates in England and Wales mentioning C. 

difficile is shown between 2001 and 2011. Rates per million population 

are standardised to the European Standard population. The figure was 

adapted from the Office for National Statistics 

(http://www.ons.gov.uk/ons/dcp171778_276892.pdf). 

 

 

The decrease in CDI cases is probably attributed to a 

combination of improved infection control, better 

environmental cleaning with chlorine-based disinfectants 

and good antibiotic stewardship, restricting the use of 

antibiotics that are known to precipitate CDI.  As in 

England and Wales, since 2008, other European countries 

reported significant decrease in the overall number of CDI 

cases (Jones et al., 2013). In Scotland, the predominant 

strains associated with recent outbreaks and severe cases 

have been ribotype 078 and to a lesser extent 027, and 

since 2009, CDI incidence rate and CDI-associated deaths 

have been decreasing (Health Protection Scotland, 2012; 

General Register Office for Scotland, 2001-2011). Similarly 

to ribotype 027, the ribotype 078 also contains mutations 
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in the tcdC gene of Paloc (39-bp deletion and single base 

pair deletion at position 184) and also contains binary 

toxin genes (Cartman et al., 2010; Goorhuis et al., 2008).   

 

Cost: 

The economic burden of CDI on the healthcare systems in 

Europe and US is high. The cost per case in England has 

been estimated to be €5,000-15,000. If the EU has 500 

million in population, then a potential estimate for CDI 

per year could be €3000 million, a number that might double 

over the next four decades (Jones et al., 2013). In the US 

the cost per year has been estimated to be $1.1 billion 

(Jones et al., 2013). An economic computer simulation model 

suggested that the annual US economic burden for CDI would 

be, ≥$496 million from the hospital perspective, ≥$547 

million from third-party payer perspective and ≥$796 

million from the societal perspective (McGlone et al., 

2012).     

 

 

1.2: Genetic manipulation of C. difficile 

Historical overview of C. difficile genetic manipulation and mutagenesis 

systems: 

Understanding the molecular basis of pathogenicity and 

virulence of a pathogen is of great importance as it is the 

way to provide knowledge for the development of measures 

for combatting disease. Despite the medical and economic 

importance of C. difficile and the availability of genomic 

and proteomic data, functional genomic studies have been 

lagging behind in comparison to other enteric pathogens 
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(Emerson et al., 2008; Janvilisri et al., 2009; Lawley et 

al., 2009; Lemee et al., 2005; Sebaihia et al., 2006; 

Stabler et al., 2006; Stabler et al., 2009). This is 

attributed to the fact that C. difficile is difficult to 

manipulate genetically and the lack of robust and 

reproducible genetic systems for many years.  

By 2007, only a handful of C. difficile mutants had been 

generated. For many years, until 2001, the only means of 

transfer of heterologous DNA into C. difficile was via 

conjugative transposons such as Tn916 with conjugative 

transfer involving Bacillus subtilis donors. In 1991, 

Mullany et al., showed that the conjugative transposon 

Tn916 and a derivative Tn916∆E can be transferred from B. 

subtilis into C. difficile CD37 by filter mating (Mullany 

et al., 1991). The transposon appeared to insert at a 

preferred site, later designated att916, in all C. 

difficile CD37 transconjugants obtained and thus was not an 

appropriate candidate for random mutagenesis (Mullany et 

al., 1991; Wang et al., 2000a). However, it was suggested 

that it may be used for introduction of cloned DNA into C. 

difficile (Mullany et al., 1991). In 1994, Mullany et al., 

used the pC1195 vector containing a 4.2-kb region of the 

conjugative transposon Tn919, which is homologous to Tn916, 

to introduce heterologous DNA into C. difficile (Mullany et 

al., 1994). A 1.1 kb fragment of C. difficile toxin B gene 

was inserted into pC1195, generating pPPM100, which was 

then introduced into C. difficile CD37 via filter mating 

from an isolated B. subtilis donor, into which the plasmid 

had integrated.  The plasmid entered the genome of C. 

difficile CD37 strain at a specific site. The frequency of 

transfer was extremely low, at 10
-8
 per donor, and the 

delivery system involved was cumbersome. However, these 
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experiments were the first example of gene cloning in this 

organism. 

In 2001, Liyanage et al., were the first to introduce a 

replication deficient plasmid into C. difficile from an 

Escherichia coli donor. Importantly, they were the first to 

report a targeted gene disruption in C. difficile (Liyanage 

et al., 2001). In their study, an internal fragment of the 

C. difficile gldA gene (encoding for glycerol 

dehydrogenase) was inserted into the oriT-based suicide 

vector pMTL31 and the resultant plasmid was conjugated from 

an E. coli donor into C. difficile CD37. Since the plasmid 

carried an erythromycin cassette, the integrants were 

selected by acquisition of erythromycin resistance. The 

plasmid was confirmed by PCR to have insertionally 

inactivated the gldA gene, via single cross-over 

integration. Interruption of the gldA gene, however, was 

lethal, as it gave rise to pinpoint colonies that could not 

be subcultured. This is the only report to date where a 

suicide vector has been used for the insertional 

inactivation of a gene in C. difficile. Subsequent, 

repeated efforts from other groups to inactivate genes 

using this method were unsuccessful, which raised questions 

about the reproducibility of this approach (Carter et al., 

2005; O'Connor et al., 2006).  

In 2003, to examine sporulation, Haraldsen and Sonenshein 

introduced a Tn916-based conjugative transposon carrying an 

intact copy of the C. difficile sigK gene, from B. subtilis 

into C. difficile CD196, that had a naturally inactive copy 

of sigK (Haraldsen and Sonenshein, 2003). Unexpectedly, the 

transposon did not insert at the preferred site, but 

integrated into the chromosome at the sigK gene location 

via homologous recombination. The reproducibility of this 

method, however, has not been established. 
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A more encouraging approach was described in 2006 by 

O’Connor et al., that reported the first example of a 

reproducible method for the insertional inactivation of 

target genes in C. difficile JIR8094 (an erythromycin-

sensitive derivative of C. difficile 630). In this case, 

the authors utilised the instability of E. coli-Clostridium 

perfringens shuttle vectors in C. difficile, such as 

pJIR1456 and pJIR2816, to inactivate two genes, rgaR and 

rgbR, via a homology-driven single cross-over event. 

However, in some cell populations of the rgaR mutant, there 

was reversion back to wild-type (O'Connor et al., 2006). 

This is expected from mutants created via single cross-over 

recombination. Recently, the same group has used this 

method to insertionally inactivate the tcdA and tcdB genes 

in C. difficile JIR8094, in which case the mutants were 

stable (Lyras et al., 2009). However, this method was also 

used by Dineen et al., to inactivate the C. difficile codY 

gene, which emphasized the instability of the insertional 

inactivation by a single cross-over event (Dineen et al., 

2007). An internal region of the C. difficile codY gene was 

inserted into pJIR1456, generating pSD21. The mutant C. 

difficile JIR8094::pSD21 strain with interrupted codY gene 

was generated by the single cross-over integration of the 

recombinant plasmid pSD21 into the chromosome. This strain 

grew more slowly than the wild type and stable integration 

could only be maintained in the presence of antibiotic, 

since resistance was conferred by the integrated plasmid. 

In the absence of antibiotic selection, however, the codY 

mutant could revert back to wild type, with functional codY 

after excision of the integrated plasmid, and overpopulate 

the culture (Dineen et al., 2007).   

Heap et al. (2007), developed a mutagenesis system, named 

ClosTron, to overcome the instability observed with single 
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cross-over integration and to bypass the difficulty of 

isolating rare double cross-over events in the Clostridia; 

which had been only observed in C. perfringens (due to the 

high DNA transformation frequencies in this organism) (Heap 

et al., 2007). This is to date the most widely used genetic 

system in C. difficile and since its appearance there has 

been a dramatic increase in the construction of C. 

difficile mutant strains. The ClosTron system was based on 

the TargeTron technology (Sigma-Aldrich) and has been 

modified for use in the Clostridia. In this approach, the 

mobile group II intron from the ltrB gene of Lactococcus 

lactis (Ll.ltrB) was utilised. Group II introns are 

catalytically active RNA molecules that can self-splice 

from an RNA transcript, via a lariat intermediate, and 

insert into a new target gene (Kuehne and Minton, 2012). 

These retro-homing ribozymes can be designed to target 

almost any gene of interest and thus interrupt the gene via 

insertion. The first ClosTron plasmid was named pMTL007 and 

was used to inactivate five genes in C. difficile and other 

Clostridia, including C. acetobutylicum and C. sporogenes 

(Heap et al., 2007). Subsequently, the system was optimised 

to include features for a faster, less-labour intensive 

mutagenesis in the Clostridia. In addition, features were 

added for the possibility of interruption of multiple genes 

in a Clostridial strain of interest. The second generation 

ClosTron plasmids for mutagenesis in C. difficile strains 

were named pMTL007C-E2 and pMTL007C-E5 (FIG 1.7) (Heap et 

al., 2010; Cartman et al., 2010). The ClosTron plasmid 

pMTL007 and derivatives, pMTL007C-E2 and pMTL007C-E5, carry 

a group II intron which contains an ermB 

retrotransposition-activated selectable marker (RAM), which 

itself is interrupted by a group I intron that abolishes 

antibiotic resistance. Due to the relative orientations of 

the group II intron and RAM element, a functional ermB gene 
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is only produced if the group II intron inserts into the 

chromosomal target gene, following retrotransposition and 

self-splicing of the group I intron from the group II 

intron mRNA. The mutants are thus selected by resistance to 

erythromycin and then confirmed by PCR assay. The frequency 

of intron integration at the site of interest can range 

from 7% to 100%, depending on the gene of interest (Heap et 

al., 2007; Heap et al., 2010; Cartman et al., 2010; Kuehne 

and Minton, 2012). The Clostron mutagenesis procedure is 

shown in FIG 1.8 

 

 

 

 

FIG 1.7  The second generation plasmid pMTL007C-EC2 of ClosTron  

The Group II intron expression is directed by the constitutive promoter 

from the fdx gene of Clostridium sporogenes. The promoter of the thlA 

gene from Clostridium acetobutylicum is used for expression of the ermB 

element. The plasmid contains FRT sites flanking the RAM to facilitate 

FLP-mediated removal. It also features a lacZ stuffer sequence that is 

replaced during retargeting for the identification of re-targeted 

plasmids by blue/white screening, restriction analysis or PCR. The 

figure is adapted from (Cartman et al., 2010).  
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FIG 1.8  ClosTron mutagenesis procedure using pMTL007C-EC2 

The ClosTron mutagenesis procedure involves inserting around a 350-bp 

fragment in an appropriate ClosTron plasmid (e.g pMTL007C-E2) which 

changes the specificity of the group II intron for insertion in the 

gene of interest. (A) The ClosTron plasmid is conjugated in C. 

difficile (B) Expression from thlA promoter, does not confer 

erythromycin resistance since the ermB gene is interrupted by the group 

I intron. Group I introns are self-catalytically spliced from RNA 

transcripts but the process is orientation specific. The group I intron 

cannot splice out of the ermB transcript, as it is in the reverse 

orientation (C) Expression of the group II intron gives a transcript 

that binds to the LtrA protein leading to the formation of a 

ribonuclear protein complex (RNP). In this case, the group I intron is 

in the correct orientation and it splices out of the transcript. The 

antibiotic resistance is still not conferred, because the gene is in 

the reverse orientation (D) The RNP complex recognises and binds to 

specific sequences in the target gene, the LtrA protein nicks the 

target DNA and inserts the group II intron RNA. LtrA reverse 

transcribes the complementary DNA strand. Host nucleases degrade the 

RNA strand and DNA polymerase synthesizes the opposite strand. Host 

ligases seal the insertion site leading to completion of the process, 

in which a functional ermB gene is present in the target gene. The 

mutants are selected by resistance to erythromycin and intron insertion 

into the target chromosomal site is confirmed by PCR assay. The 

ClosTron plasmid is then lost due to segregational instability. The 

figure is adapted from (Cartman et al., 2010).  
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1.3: Introduction to the development of a novel markerless deletion 

mutagenesis system for C. difficile 

 

Aim of the study: 

The primary aim of the study was to develop a novel genetic 

system for C. difficile to produce markerless deletions. 

The mutagenesis systems developed, for C. difficile, 

including the widely used ClosTron system, up to the start 

of this study, produce mutant strains by the insertional 

inactivation of genes of interest. An insertion of DNA into 

any given gene can interfere with the expression of 

downstream genes. In addition to polar effects, gene 

interruption by insertion of an antibiotic marker can 

prevent multiple manipulations of the genome, particularly 

in multidrug resistant strains such as C. difficile 630 

(Sebaihia et al., 2006). The ideal mutation for robust 

functional genomic studies is a markerless, in-frame 

deletion of the gene of interest.  

 

Strategy for the development of a novel markerless deletion mutagenesis 

system for C. difficile: 

As exemplified above, the construction of mutants via 

single cross-over can be unstable. However, a spontaneous 

second cross-over to generate a deletion can be a rare 

event, laborious to isolate and it may not occur if the 

diploid is stable. Posfai et al. (1999), exploited the 

homing endonuclease, I-SceI, as a tool for the promotion of 

allele exchange in E. coli, stimulated by a double strand 

break (DSB) and developed a method that permits the 

targeted construction of markerless deletions in this 

bacterium (Posfai et al., 1999). The basic principle of the 
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method is that cleavage of the chromosome at an 

artificially introduced I-SceI site stimulates 

intramolecular recombination by a DSB (known to stimulate 

homologous recombination in many microorganisms) (Posfai et 

al., 1999). Subsequently, this method was successfully 

adapted by various groups to generate deletion mutants of 

other bacteria including the anaerobe Bacteroides fragilis 

(Patrick et al., 2009).  

Homing endonucleases cleave double-stranded DNA with high 

specificity in the presence of divalent metal ions and 

recognise long DNA sequences (12-40 bp) (Belfort and 

Roberts, 1997). I-SceI is encoded by the group I intron of 

the large rRNA gene of Saccharomyces cerevisiae and it is a 

member of the largest class of homing enzymes, 

characterised by the presence of either one or two 

conserved amino acid residue sequence motifs (LAGLIDADG 

motifs) (Belfort and Roberts, 1997; Beylot and Spassky, 

2001). The I-SceI protein acts as a monomeric endonuclease 

of 235 amino acids and cleavage of its 18 bp recognition 

sequence (TAGGGATAACAGGGTAAT) generates 4 bp overhangs with 

3’-hydroxyl termini (Beylot and Spassky, 2001; Perrin et 

al., 1993; Monteilhet et al., 1990). This sequence is 

absent from all eukaryotic (except the source S. 

cerevisiae) and prokaryotic sequenced genomes which 

abolishes the risk of genome fractionation by the 

meganuclease and this makes the enzyme a useful tool for 

genetic engineering (Lopez et al., 2009).  

The present study has adapted the method of Posfai et al. 

(1999), to generate markerless deletions in C. difficile. 

An overview of the method is shown in FIG 1.9. The method 

uses two vectors, one I-SceI site delivery plasmid, 

containing the recognition site of I-SceI and one I-SceI 

expression plasmid. The allele replacement vector, made 
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from the insertion of homologous sequences flanking the 

gene to be deleted into the I-SceI site delivery vector, is 

introduced into C. difficile. Homologous recombination 

between either flanking sequence on the plasmid and its 

chromosomal homologue, results in plasmid integration into 

the chromosome. The I-SceI expression vector is then 

introduced into confirmed plasmid integrants. I-SceI 

meganuclease recognises its integrated site and introduces 

a DSB into the chromosome, stimulating diploid resolution 

via homologous recombination. Depending on the site of the 

cross-over, diploid resolution results in either a deletion 

mutant, or the wild type genotype.  

The method was developed and first applied to generate a 

deletion of the addBA genes in C. difficile, which is 

described in chapter 3. Subsequently, the method was 

optimised for the deletion of the pilA and pilT genes and 

is described in chapter 4.   
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FIG 1.9  Strategy for generation of markerless deletion in C. difficile 

(1)Sequences (~500 bp) flanking the gene to be deleted (red boxes) are 

inserted in the I-SceI site delivery vector, generating the allele 

replacement vector (2) The allele replacement vector is introduced into 

C. difficile (3) Homologous recombination between either flanking 

sequence on the allele replacement plasmid and its chromosomal 

homologue, results in plasmid integration into the chromosome (4) The 

I-SceI expression vector is then introduced into confirmed merodiploids 

(5) I-SceI meganuclease (expressed by an appropriate promoter) 

recognises its integrated site and introduces a DSB into the chromosome 

of the merodiploid (6) The DSB stimulates repair via homologous 

recombination. Depending on the site of the cross-over, diploid 

resolution results in either a deletion mutant, or wild type genotype.  
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CHAPTER 2: Materials and Methods 

 

2.1: LIST OF STRAINS, PLASMIDS AND OLIGONUCLEOTIDES 

 

 

List of strains: 

Strain Name  Genotype Reference 

E. coli S17-1λpir recA thi pro hsdR
-

hsdM
+
 RP4-2-Tc::Mu-

Km::Tn7 λpir 

(Simon R., 1983) 

C. difficile 630 Epidemic type X, 

Ribotype 012, A
+
 B

+
 

(Sebaihia et al., 

2006) 

C. difficile 

630∆erm 

Erythromycin 

sensitive strain of 

C. difficile 630 

(Hussain et al., 

2005) 

C. difficile 

∆addBA 24 

C. difficile 

630∆erm ∆addBA 

This study 

C. difficile 

∆addBA 242 

C. difficile 

630∆erm ∆addBA 

This study 

C. difficile ∆fliC 

88 

C. difficile 

630∆erm ∆fliC 

This study 

C. difficile ∆fliC 

381 

C. difficile 

630∆erm ∆fliC 

This study 

C. difficile ∆fliC 

383 

C. difficile 

630∆erm ∆fliC 

This study 

C. difficile ∆fliC 

415 

C. difficile 

630∆erm ∆fliC 

This study 

C. difficile ∆pilT 

271 

C. difficile 

630∆erm ∆pilT 

This study 

C. difficile ∆pilT 

272 

C. difficile 

630∆erm ∆pilT 

This study 
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C. difficile ∆pilT 

288 

C. difficile 

630∆erm ∆pilT 

This study 

C. difficile ∆pilT 

292 

C. difficile 

630∆erm ∆pilT 

This study 

C. difficile ∆fliC 

∆pilT  234 

C. difficile 

630∆erm ∆fliC ∆pilT 

This study  

C. difficile ∆fliC 

∆pilT  238 

C. difficile 

630∆erm ∆fliC ∆pilT 

This study 

C. difficile ∆fliC 

∆pilT  250 

C. difficile 

630∆erm ∆fliC ∆pilT 

This study 

 

 

List of Plasmids: 

Plasmid Name Description Reference 

pJIR1456 E. coli-C. perfringens 

shuttle vector (pIP404 +ve 

replicon, catP marker), 

Tm
R
/Cm

R
  

(Lyras and Rood, 

1998) 

pJIR2816 E. coli-C. perfringens 

shuttle vector (pIP404 +ve 

replicon, catP marker), 

Tm
R
/Cm

R
 

(O'Connor et 

al., 2006) 

pES185 pJIR1456 + I-SceI 

recognition site (SacI 

site), Tm
R
/Cm

R
  

This study 

pES2761 pJIR2816 + I-SceI 

recognition site (PvuI 

site), Tm
R
/Cm

R
 

This study 

pMTL82254 E. coli-Clostridium  

shuttle vector (pBP1 +ve 

replicon, ermB marker), 

Erm
R
 

(Heap et al., 

2009) 

pMTL83353 E. coli-Clostridium 

shuttle vector (pCB102 +ve 

replicon, aad9 marker), Sp
R
 

(Heap et al., 

2009) 

pGB920 pLYL01 with I-SceI under 

control of B. fragilis fucR 

promoter (tetQ marker), Tc
R 

(Patrick et al., 

2009) 



28 
 

pES288 pMTL82254 + Pfdx::I-SceI  

(SbfI site), ErmR  

This study 

pES124 pMTL82254 + Pgdh::I-SceI 

(FSpI site), Erm
R
 

This study 

pES86  pMTL82254 + Pthl::I-SceI 

(NotI/NdeI site), Erm
R
  

This study 

pMTL84422 E. coli-Clostridium 

shuttle vector (pCD6 +ve 

replicon, tetA marker), Tc
R
 

(Heap et al., 

2009) 

pES271 pES185 +  addBA deletion 

cassette (SphI site), 

Tm
R
/Cm

R
  

This study 

pMTL83151 E. coli-Clostridium 

shuttle vector (pCB102 +ve 

replicon, catP marker), 

Tm
R
/Cm

R
 

(Heap et al., 

2009) 

pES242 pMTL83151 + I-SceI 

recognition site  (SacI 

site), Tm
R
/Cm

R
 

This study 

pES2921 pES242 + fliC deletion 

cassette (FspI site), 

Tm
R
/Cm

R
  

This study 

pMTL84151 E. coli-Clostridium 

shuttle vector (pCD6 +ve 

replicon, catP marker), 

Tm
R
/Cm

R
 

(Heap et al., 

2009) 

pES196 pMTL84151 + fliC gene and 

native promoter (NotI/XhoI 

site), Tm
R
/Cm

R
   

This study 

pES2922 pES242 + pilT deletion 

cassette  (FspI site), 

Tm
R
/Cm

R
     

This study 

pES2923 pES242 + pilA deletion 

cassette  (FspI site), 

Tm
R
/Cm

R
       

This study 

pES2241 pMTL82254 + pilprom1 

(NotI/NdeI site), Erm
R
  

This study 

pES2242 pMTL82254 + pilprom2 

(NotI/NdeI site), Erm
R
 

This study 

pES2243 pMTL82254 + pilprom3 

(NotI/NdeI site), Erm
R
 

This study 

pES2244 pMTL82254 + pilprom4 

(NotI/NdeI site), Erm
R
 

This study 



29 
 

pES2245 pMTL82254 + pilprom5 

(NotI/NdeI site), Erm
R
 

This study 

pES2246 pMTL82254 + pilprom6 

(NotI/NdeI site), Erm
R
 

This study 

pES2247 pMTL82254 + pilprom7 

(NotI/NdeI site), Erm
R
 

This study 

* TmR -thiamphenicol resistance in C. difficile; CmR -

chloramphenicol resistance in E. coli; Sp
R
 –spectinomycin 

resistance in E. coli; Tc
R
 –tetracycline resistance in B. 

fragilis and E. coli; Erm
R
 –erythromycin resistance in C. 

difficile and E. coli 

 

List of Primers:  

Primer Name Sequence 5’- 3’ 

ISceI_F_SacI CCCTCGAATTACCCTGTTATCCCTATCGAGGAGCTTGAGCT 

ISceI_R_SacI CAAGCTCCTCGATAGGGATAACAGGGTAATTCGAGGGAGCT 

ISceI_F_PvuI CGCCTCGAATTACCCTGTTATCCCTATCGAGGAGCTTCGAT 

ISceI_R_PvuI CGAAGCTCCTCGATAGGGATAACAGGGTAATTCGAGGCGAT 

SbfI-PfdxFor AAGTTTCCTGCAGGGTGTAGTAGCCTGTGAAATAAG 

PfdxRev TAACACACCTCCTTAAAAATTAC 

PfdxIsceI GTAATTTTTAAGGAGGTGTGTTAATGAAAAACATCAAAAAAAA

CCAGG 

SbfI-IsceIRev AAGTTTCCTGCAGGTTATTTCAGGAAAGTTTCGGAG 

SphI_addBA1  TTCCGCATGCTAAATGGGGATATAATACAGGC 

addBA2 CCTAAGTCCCATAAATTTCCG 

addBA2_addBA3 CGGAAATTTATGGGACTTAGGTGGAGTTGATGAAGCTGTTTG 

SphI_addBA4 TTCCGCATGCTAGCAACCACAATATTTTCTCC 

INTBAFor GATGATGTTGGTAGTAGAGAG 
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INTBARev GACCTAGTGCAGTATATTGAG 

SphI-fliC1 TTCCGCATGCTTCAGCTTTAGAGTCTTTGTTG 

fliC2 CTCCTTAGTATAGTTGACATCC 

fliC3 GGATGTCAACTATACTAAGGAGAAAAGAAAGGATAAGGCTTTG

C 

SphI-fliC4 TTCCGCATGCTGGTTGTTCATGAACTTTCCC 

INTfliC-For TTGAATATTCTGGAAGTTCAGC 

INTfliC-Rev CAAGGTTTGTTATCAAGTATCC 

cmFliCFor CCCTGGCGGCCGCAACTTTATGATAGTATGGAGC 

cmFliCRev CCCTGCTCGAGCTATCCTAATAATTGTAAAACTC 

Trans-1 TATCAGGAAACAGCTATGACC 

Trans-2 AAAATACTCTTTTCTGTTCCAAC 

Trans-3 AGTGCCAAGCTTGCATGTCTG 

SphI-CD3505-1 ATATGCATGCAATCCAGACACTTCCTCCAC 

CD3505-2 ATGATAGGTGGAGTAAACTAC 

CD3505-3 GTAGTTTACTCCACCTATCATCATAATATTTACTCTCCATATC

TTC 

SphI-CD3505-4 ATATGCATGCGGCTTTGATAACAACTTTTGAC 

INT3505For TACACAGATTCCATAGACTGC 

INT3505Rev ATTTTACCAAATCAAACTCAAGG 

SphI-CD3507-1 TCTCGCATGCTTCTAAGATAGAATCTCTATGTG 

CD3507-2 GTGAGATTTTGAGGAAGTGG 

CD3507-3 CCACTTCCTCAAAATCTCACATTCTTATTACCCTATTCTTGAC 
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SphI-CD3507-4 TCTCGCATGCTGTTCAATGGTATAACATCAGC 

INT3507For ATCTAATGCCTTATAAGTATGTG 

INT3507Rev TACAGATAATCCATCTTCATGG 

NdeI-pilprom TCTCTCATATGTTTTATTCCCCCTTAAATTTTTTAATTAATAC    

NotI-pilprom1 TATCTGCGGCCGCTAGAAATAAATTTGGTTAGTACG 

NotI-pilprom2 TATCTGCGGCCGCGATTTATGTTCTGTAATGTGGG 

NotI-pilprom3 TATCTGCGGCCGCTAAACAGTGTTGCTAAAATATGG 

NotI-pilprom4 TATCTGCGGCCGCATTAGCAAAGGATGGAAATGAC 

NotI-pilprom5 TATCTGCGGCCGCTCTTTAGTGTTTGTGAGAGGG 

NotI-pilprom6 TATCTGCGGCCGCAGAAAGAGGTGTTTCCAATGG 

NotI-pilprom7 TATCTGCGGCCGCGAGTTGTTTAAAAGGATATAAACC 

*Underlined sequences indicate restriction enzyme sites. 

All primers were supplied by Eurofins MWG Operon, Germany. 

Primers were resuspended in 1 x TE at 100 pmol/μl. These 

stocks were then diluted in dH2O to give a working stock of 

10 pmol/μl. 
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2.2: GROWTH MEDIA 

 

LB (L-broth): Difco Bacto-Tryptone (10 g/l), Difco Bacto-yeast 

extract (5 g/l), NaCl (5 g/l), dH2O (1 l), pH adjusted to 

7.2 with NaOH. 

 

BHI (Brain Heart Infusion): Difco Bacto Brain Heart Infusion (37 

g/l), yeast extract (Oxoid) (5 g/l), distilled H2O (1 l). 

 

AIM (Anaerobic Identification Medium): Proteose peptone (Oxoid) (20 

g/l), yeast extract (Oxoid) (5 g/l), trypticase peptone 

(BBL) (5 g/l), NaCl (5 g/l), Na2CO3 (0.4 g/l), distilled H2O 

(1 l). 

 

BHIS or AIMS: BHI or AIM containing L-cysteine and Haemin. 

L-cysteine: Stock solution was made at 10% w/v in dH2O and 

filter sterilised using a 0.22 μm filter. 1 ml of stock was 

added per 100 ml of medium. 

Haemin: Stock solution was made with 50 mg Haemin, 1.74 g 

K2HPO4, 0.4 g NaOH and 100 ml dH2O and then was autoclaved. 

1 ml of stock was added per 100 ml of medium. 

 

Blood agar: Columbia blood agar base (39 g/l), 5% 

defibrinated horse blood. 
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Agar medium concentration:  

Unless otherwise stated, the agar concentration used for 

solid media was 1.5% w/v. 

 

Antibiotics:  

 Antibiotics were supplied from Sigma and were prepared and 

stored according to the manufacturer’s instructions. 

Antibiotics were added at the following final 

concentrations: erythromycin 500 μg/ml for E. coli and 10 

μg/ml for C. difficile; chloraphenicol 30 μg/ml for E. 

coli; thiaphenicol 15 μg/ml for C. difficile; spectinomycin 

250 μg/ml for E. coli; cefoxitin sodium salt 8 μg/ml; D-

cycloserine 250 μg/ml.  

 

 

2.3: BACTERIAL METHODS 

 

Growth conditions:  

E. coli strains were cultured aerobically using LB as 

appropriate, at 37°C, with liquid cultures shaking at 160-

200 rpm. C. difficile strains were grown in a Don Whitley 

Scientific (UK) MiniMacs anaerobic work station at 37°C, 

with an anaerobic gas mix of 10% hydrogen, 10% carbon 

dioxide and 80% nitrogen. BHI, AIM (broth or agar) or Blood 

agar medium (supplemented when appropriate) were used to 

culture C. difficile. Unless otherwise stated, all media 

for C. difficile anaerobic use were reduced overnight.  
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Growth measurement of liquid culture: 

The growth of liquid cultures was monitored by measuring 

the optical density at 600 nm (OD600) with a Hitachi U-2000 

spectrophotometer (Hitachi Instruments, Japan). Since 

spectrophotometer readings above an OD600 of 1 are not 

accurate, the sample was diluted in appropriate medium in 

the cuvette and mixed before a reading was taken. The 

reading was then multiplied by the dilution factor, to give 

the optical density. 

 

Growth curves:  

A single colony of C. difficile was used to inoculate 10 ml 

AIM broth and incubated anaerobically overnight. Fresh AIM 

broth was then inoculated with the overnight culture at 

1/100 dilution and OD600 was measured at 1-h time intervals 

for 10-h. Growth curves were performed in triplicate. 

 

Preparation of competent cells:  

A single colony of the E. coli strain of interest was used 

to inoculate 5 ml LB. Pre-warmed LB (250 ml) containing 20 

mM MgSO4 was inoculated with the overnight culture at 1/100 

dilution and was incubated at 37°C shaking, until an OD600 

of ~0.4 was reached. The culture was centrifuged at 4,500 x 

g in a Sorvall RC-5B centrifuge, with GSA rotor (Sorvall 

Ltd, UK) for 5 min at 4°C. The supernatant was discarded 

and the pellet was resuspended in 100 ml ice-cold TFB1, 

followed by a 5 min incubation on ice. The cells were 

pelleted by centrifugation, as described above, the 

supernatant was discarded and the pellet was resuspended in 

10 ml ice-cold TFB2. Cells were incubated for 1-h on ice. 
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Aliquots (100-200 μl/tube) of the competent cells were 

snap-frozen in dry ice containing isopropanol and stored at 

-80°C.    

TFB1: 30 mM CH3COOK, 10 mM CaCl2, 50 mM MnCl2, 100 mM RbCl, 

15% v/v glycerol, pH adjusted to 5.8 with 1 M acetic acid 

and filter sterilised with a 0.22 μm filter. 

TFB2: 10 mM MOPS, 75 mM CaCl2, 10 mM RbCl, 15% v/v glycerol, 

pH adjusted to 6.5 with 1 M potassium hydroxide and filter 

sterilised with a 0.22 μm filter.  

 

Heat-shock transformation of competent cells:  

Competent cells were thawed on ice. An appropriate amount 

of plasmid DNA was added to 20-100 μl of competent cells, 

followed by 30 min incubation on ice. The cells were heat-

shocked at 37
o
C for 2 min, followed by 5 min incubation on 

ice. Pre-warmed LB was added to the cells, followed by 

incubation at 37
o
C for 1-h. The culture was centrifuged at 

13000 rpm for 1 min, the supernatant was discarded and the 

pelleted cells were then resuspendend in appropriate volume 

of LB (usually 100 μl). The cells were then spread on media 

with appropriate antibiotics and incubated overnight at 

37
o
C. The usual strain used for transformation was S17-

1λpir. Occasionally, competent cells were purchased from 

various companies including, NEB 5-alpha competent E. coli, 

Invitrogen DH5a E. coli competent cells or Clontech Stellar 

competent cells that were transformed using the protocol 

described or according to the manufacturer’s instructions, 

as appropriate.  
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Transfer of plasmid DNA into C. difficile:  

Plasmids were introduced into C. difficile by conjugation 

from E. coli S17-1λpir. Conjugations were performed using 

cultures of donor and recipient from either stationary or 

exponential phase of growth.  A single colony of E. coli, 

containing the appropriate plasmid, was inoculated into 5 

ml of LB with appropriate antibiotic and incubated 

aerobically overnight. A single colony of the C. difficile 

recipient strain was inoculated into 10 ml of appropriate 

broth and incubated overnight. For stationary mating, 1 ml 

of overnight E. coli culture was centrifuged at 5000 rpm 

for 2 min and then the cell pellet was washed twice in 1 ml 

of 1 x PBS (centrifuging as before), to remove traces of 

antibiotics. The pellet of donor cells was then transferred 

to the anaerobic workstation and resuspended in 150-200 μl 

of C. difficile overnight culture. For exponential mating, 

overnight culture of E. coli, prepared as described, was 

used to inoculate fresh LB without antibiotic and grown 

until an OD600 of 0.2-0.4. Then, 1 ml of E. coli culture was 

centrifuged at 5000 rpm for 1 min, followed by transfer of 

the cell pellet in the anaerobic workstation. The pellet of 

donor cells was resuspended in 150-200 μl of C. difficile 

culture, also grown to an OD600 of 0.2-0.4. Occasionally, 

different donor-recipient ratio was used, to optimize for a 

particular mating. The donor-recipient suspension (from 

stationary or exponential cultures) was spotted onto agar 

medium without antibiotic, as appropriate for the 

recipient, and incubated anaerobically at 37°C for 16 to 

24-h. The conjugation mixture was then harvested in 2 ml of 

1 x PBS (reduced overnight) and spread on growth medium 

suitable for the recipient, containing appropriate 

antibiotic to select for the plasmid-encoded resistance and 

also containing cycloserine (250 μg/ml) and cefoxitin (8 
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μg/ml)to counter-select against the E. coli donor. Plates 

were incubated anaerobically at 37°C for 24 to 120-h, 

before colonies were picked and purified by re-streaking. 

Putative transconjugants were replica patched on LB and 

incubated aerobically to exclude E. coli contamination. 

Since background growth would appear over time, donor-only 

and recipient-only mock mating controls were used, to help 

judge when background growth should be expected. 

 

Sporulation measurement:  

A starter culture was prepared in AIM broth using a 1% 

inoculum of C. difficile overnight culture (grown from a 

single colony in AIM broth) and incubated until the optical 

density at OD600 was approximately 0.3. This culture was 

then diluted at 1/100 into fresh AIM broth and this was 

considered the start of sporulation T0. The sporulation 

culture was incubated for five days, where the optical 

density OD600, heat-resistant colony formation and untreated 

colony formation, were measured every 24-h. To measure heat 

resistant CFU, 0.5 ml of sample was transferred out of the 

anaerobic workstation, heated at 60
o
C for 25 min, 10-fold 

serially diluted in 1 x PBS and 5 μl of each dilution 

spotted (4-6 times)on AIM agar containing 0.1% sodium 

taurocholate. The spots were left to dry and plates were 

returned to the anaerobic chamber. To measure untreated 

viable CFU, 0.5 ml of sample was serially diluted in 1 x 

PBS (reduced overnight) and 5 μl of each dilution was 

spotted (4-6 times) on AIM containing 0.1% sodium 

taurocholate. This was performed in the anaerobic 

workstation. Plates were incubated for 48-h before CFU were 

enumerated. All experiments were performed in triplicate.  
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Total toxin production:  

Total toxin (A + B) was measured using the C. difficile TOX 

A/B II ELISA kit (Techlab), according to the manufacturer’s 

instructions. AIM broth was inoculated with overnight 

culture of C. difficile (grown from a single colony in AIM 

broth) at 1/100 and was incubated for 24-h. Culture 

supernatants were collected by centrifugation at 13200 rpm 

for 2 min, when optical density OD600 was approximately 0.5, 

0.8 and 1 and stored at -20
o
C until required. Total toxin 

levels were determined by measuring A450/OD600.  

Culture supernatants were given to Dr. Allison Wroe (MPRL) 

to measure toxin production. 

 

Metronidazole sensitivity assay: 

AIM broth was inoculated with overnight culture of C. 

difficile (grown in AIM from a single colony) at 1/100 

dilution and was incubated until an OD600 of ~0.3 was 

reached. The culture was then diluted at 1/100 into fresh 

AIM broth and incubated until an OD600 of ~0.3 was reached. 

Then, 10-fold serial dilutions of this culture were 

prepared in 1 x PBS (reduced overnight) and 5 μl of each 

dilution was spotted on AIM without metronidazole or on AIM 

with metronidazole concentration of 0.25, 0.125 and 0.06 

μg/ml. Plates were incubated for 48-h before the result was 

recorded. All experiments were performed in triplicate. 

 

UV sensitivity assay:  

AIM broth was inoculated with overnight culture of C. 

difficile (grown in AIM broth from a single colony) at 

1/100 dilution and was incubated until an OD600 of ~0.3 was 
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reached. The culture was then diluted at 1/100 into fresh 

AIM broth and incubated until an OD600 of ~0.3 was reached. 

Then, 10-fold serial dilutions of this culture were 

prepared in 1 x PBS (reduced overnight) and 5 μl of each 

dilution was spotted on AIM. Four sets of AIM agar were 

spotted. All plates were briefly transferred out of the 

anaerobic workstation. Plates were exposed to either just 

atmospheric O2 i.e. not UV irradiated, or exposed to UV 

irradiation of 10, 15 or 20 J/m
2
, using the Stratalinker UV 

2400 (Stratagene). All plates were returned to the 

anaerobic chamber and incubated for 48-h before results 

were recorded.  All experiments were performed in 

triplicate. 

 

SOS induction and cell morphology visualization:  

AIM broth was inoculated with overnight culture of C. 

difficile (grown in AIM broth from a single colony) at 

1/100 dilution and was incubated until an OD600 of ~0.3 was 

reached. This was then inoculated into fresh AIM broth at 

1/100 dilution, containing metronidazole at a concentration 

of 0.25, 0.125 or 0.06 μg/ml and into fresh AIM broth 

without metronidazole. The culture was incubated for 24-h. 

At 0-h (T0, inoculation time), 4-h (T4), 6-h (T6) and 24-h 

(T24), the optical density at OD600 was measured and 1 ml 

sample was centrifuged at 5000 rpm for 1 min, followed by 

resuspension of the cell pellet in 100 μl of cell fixative. 

All samples were stored at 4 
o
C until they were required for 

microscopy. All experiments were performed in triplicate. 

The morphology of cells was visualised by phase-contrast 

microscopy using a 10 μl wet mount, prepared from a fixed 

sample. To visualise the septum, the membrane stain FM4-64 

(Molecular Probes) was added to 1 ml of culture at 
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different time points and incubated in the anaerobic 

workstation for 20 min. The stained sample was centrifuged 

at 5000 rpm for 1 min, followed by resuspension of the cell 

pellet in 100 μl of cell fixative and stored at 4 
o
C in the 

dark until required. The FM4-64-stained sample (8–10 μl) 

was applied onto a poly-L-lysine microscope slide, a 

coverslip was placed on top and the coverslip edges were 

sealed with varnish. The stained cells were viewed by 

fluorescence microscopy.  

The Leitz Wetzlar Metalux II microscope (Leitz Wetzlar now 

Leica-microsystems, Germany) was used and images were 

captured with a Hamamatsu digital c4742-95 camera 

(Hamamatsu Photonics K.K., Japan) and Improvision Openlab 

software (PerkinElmer Inc., USA).   

Cell fixative: 20% v/v formaldehyde solution (Sigma) in 

bacterial buffer. 

Preparation of poly-L-lysine microscope slide: A drop (15 

μl) of poly-L-lysine (Sigma) was spread thinly on an 

ethanol-cleaned and dried microscope slide. Poly-L-lysine 

was left to dry before samples were applied.  

 

Flagella-mediated motility stab assay:  

A single colony of C. difficile was stab inoculated into 

motility agar tube containing appropriate medium with 

0.175% agar. The swim agar tube was incubated anaerobically 

at 37
o
C for 24-h. 
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Transmission electron microscopy:  

A 48-h grown colony of C. difficile from an appropriate 

medium was resuspended in 10 μl reduced 1 x PBS, in the 

anaerobic workstation. The suspension was transferred out 

of the anaerobic chamber and 100 μl of 3% glutaraldehyde 

made in 1 x PBS was added, followed by 30 min incubation at 

room temperature (RT), to fix the cells. Then, a drop of 

the fixed sample was placed onto carbon-coated grid, 

incubated at RT for 5 min and excess liquid was blotted 

away with filter paper. The cells were stained with 1% 

phosphotungstic acid for 1 min and excess liquid was 

blotted away with filter paper and then each grid was air 

dried. The grids were examined using a Philips CM120 

Biotwin transmission electron microscope.  

 

Surface twitching motility assay:  

BHI broth was inoculated with overnight culture of C. 

difficile (grown in BHI broth from a single colony) at 

1/100 dilution and was incubated until an OD600 of ~0.3 was 

reached.  Next 1 ml of culture was concentrated two-fold by 

centrifugation at 5000 rpm for 1 min and resuspension of 

pellet in 0.5 ml 1 x PBS (reduced overnight). Then, 5 μl of 

concentrated culture was spotted onto appropriate, well-

dried medium containing 0.7 % agar. Plates were incubated 

for 5 days anaerobically, with the growth medium facing 

upwards and in sealed bags to maintain humid conditions. 

The morphology and spread of the colony (whole diameter and 

translocation of inoculation spot) were recorded. 
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Subsurface twitching motility assay:  

Appropriate growth medium containing 1% agar was poured 

very thinly (~3 mm) into a plastic petri dish and was dried 

and reduced overnight before inoculation. To inoculate the 

interface between the agar and the petri dish, a single 24-

hr grown colony of C. difficile, was picked with a 

toothpick and was stabbed through the agar to the plastic 

dish at a single point, tapping lightly to ensure 

inoculation. The agar medium was incubated for 5 days, with 

the growth medium facing upwards. Plates were then 

transferred out of the anaerobic workstation, the agar was 

removed, leaving behind bacterial growth attached on the 

plastic dish, which was subsequently dried under a lamp. 

The dried bacteria were stained with Coomasie blue by 

flooding the dish with the stain for 1 min. The excess 

stain was removed with destaining solution by several 

washes, until clear. The staining solution contained 0.5% 

Coomassie Brilliant blue R250, 40% methanol and 10% acetic 

acid in water. The destaining solution contained 40% 

methanol and 10% acetic acid in water. The stained bacteria 

were then dried at 37
o
C and the diameter of colony expansion 

was measured.   

 

 

2.4: DNA METHODS 

 

Chromosomal DNA extraction: 

C. difficile genomic DNA from liquid culture was extracted 

using the DNeasy Blood and Tissue kit (Qiagen) according to 

the manufacturer’s instructions. Alternatively, a C. 
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difficile pellet from liquid culture or a loop-full of 

colonies were vortexed in a 100 μl of 5% suspension of 

Chelex 100 Molecular biology grade resin (Bio-Rad), 

prepared in sterile water. An incubation of 10-15 min at 

100
o
C followed, to destroy the cell membranes and proteins 

and denature genomic DNA. The suspension was then 

centrifuged at 13200 rpm for 10 min and the supernatant 

containing genomic DNA was removed and stored at -20
o
C.  

 

Plasmid DNA extraction: 

Plasmid DNA was prepared using the QIAprep Spin Miniprep 

kit (Qiagen) according to manufacturer’s instructions. An 

additional step was included for C. difficile. The C. 

difficile cell pellet (usually from 5-10 ml culture), was 

resuspended in 250 μl Buffer P1 containing lysozyme (Sigma) 

at a final concentration of 1 mg/ml and incubated at 37
o
C 

for 30-60 min before addition of the Buffer P2. Then the 

protocol continued as specified by the manufacturer. If a 

QIAfilter Midi kit (Qiagen) was used, when a large volume 

of plasmid was required from E. coli, a 100 ml of overnight 

culture was used and DNA was eluted in 1 ml of 1 x TE 

buffer. Isolated plasmid DNA was stored in -20
o
C.   

1 x TE buffer: 10 mM Tris-HCl, 1 mM EDTA pH8 

 

Quantification of DNA:  

DNA concentration was quantified using a nanodrop ND-1000 

or ND-2000 spectrophotometer (Thermo Scientific). The 

260/280 (nm) and 260/230 (nm) absorbance ratio was 

recorded, to assess purity of DNA. 
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Annealing of complementary pairs of oligonucleotides: 

Oligonucleotides were mixed in equal molar amounts in an 

Eppendorf tube and used the Eppendorf Mastercycler gradient 

cycler programmed to heat at 98
o
C for 5 min, followed by 

gradual decrease in temperature until 20
o
C was reached and 

incubated for 5 min. Alternatively, the Eppendorf tube 

containing the mixture of oligos was placed in a beaker 

with boiling water and left to cool until it reached room 

temperature. Annealed oligos were then placed on ice and 

stored at -20
o
C.  

 

Polymerase Chain Reactions: 

PCR reactions were performed in an Eppendorf Mastercycler 

gradient cycler and using Phusion High-Fidelity DNA 

polymerase (New England Biolabs). A typical PCR reaction 

contained 10 μl of 5x Phusion HF or GC buffer, 1 μl of 10 

mM dNTPs mix, 1 μl of 10 pmol/μl forward primer, 1 μl of 10 

pmol/μl reverse  primer, appropriate amount of template DNA 

as required, 0.5 μl Phusion DNA polymerase and dH2O to give 

a final volume of 50 μl. Initial denaturation was performed 

at 98
o
C for 30 sec. This was followed by 31 cycles of 

denaturation at 98
o
C for 10 sec, annealing at primer 

specific temperature for 30 sec, and extension at 72
o
C for 

the time appropriate for the template size. Final extension 

was at 72
o
C for 10 min.  PCR products were purified using 

the QIAquick PCR purification kit (Qiagen), according to 

manufacturer’s instructions. 
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Agarose gel electrophoresis: 

DNA was separated by electrophoresis at 80 V for 60-80 min 

through 1% agarose gel (occasionally 0.8% for large-sized 

DNA) in 1 x TAE, using Bio-Rad electrophoresis tanks (small 

mini/wide mini subcell, subcell), powered by a BIO-RAD 

Power-Pak 300. DNA samples were loaded onto the gel, mixed 

with 6x blue gel loading dye (NEB) to final concentration 

of 1x. The DNA size was determined by loading 1 kb ladder 

or 100 bp ladder (NEB) mixed with loading dye as described. 

Following electrophoresis, the gel was stained in ethidium 

bromide (1 μg/ml) for 20 minutes and then destained in dH2O 

for 10-20 minutes. The DNA was visualised under UV light.  

50 x TAE Buffer: 2 M Tris, 0.95 M glacial acetic acid, 50 

mM EDTA pH8 

 

DNA extraction from agarose gel:  

Agarose gel containing DNA of interest was excised under UV 

light, and DNA was extracted using the QIAquick Gel 

Extraction Kit (Qiagen) or the Wizard SV Gel and PCR clean-

up system (Promega), according to manufacturer’s 

instructions. 

 

Digestion of DNA with restriction endonuclease: 

DNA was cleaved using appropriate restriction endonucleases 

supplied by NEB, according to the manufacturer’s 

instructions. The volume of enzyme was kept below 10% of 

the total reaction volume, to reduce star activity. 

Incubation times varied from 1 to 24-h. The enzymes were 

inactivated as necessary, according to the manufacturer’s 

instructions. When appropriate, digested DNA was purified 
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using the QIAquick PCR purification kit (Qiagen) according 

to the manufacturer’s instructions. 

 

Dephosphorylation of DNA: 

To remove 5′ phosphate groups from linearized plasmid DNA 

fragments, to prevent self-ligation, NEB Alkaline 

Phosphatase (CIP) or NEB Antarctic Phosphatase was used, 

according to the manufacturer’s instructions. Antarctic 

Phosphatase was inactivated as instructed by the 

manufacturer. Before ligation, linear and dephosphorylated 

plasmid DNA was purified using the QIAquick PCR 

purification kit (Qiagen), according to the manufacturer’s 

instructions.  

 

Phosphorylation of DNA:   

DNA products that required addition of 5’-phosphates, prior 

to ligation, the enzyme T4 Polynucleotide Kinase (NEB) was 

used, according to the manufacturer’s instructions. The 

reaction was incubated at 37
o
C for 30 min, followed by heat 

inactivation of the enzyme at 65
o
C for 20 min. 

Phosphorylated DNA products were purified using the 

QIAquick PCR purification kit (Qiagen), according to the 

manufacturer’s instructions. 

 

Ethanol precipitation of DNA: 

To concentrate DNA by ethanol precipitation, 1/10 volume of 

3 M sodium acetate (pH 5.2) was added to the DNA solution, 

followed by addition of 2x volume of chilled 100% ethanol. 

The mixture was incubated either overnight at –20
o
C or at  
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-80
o
C for 1 to 2-h. The DNA was pelleted by centrifugation 

at 15000 rpm for 30 min at 4 
o
C, the supernatant was 

discarded and the pellet was resuspended in 0.5 ml 70% 

ethanol. The mix was centrifuged at 15000 rpm for 20 min at 

4 
o
C, the supernatant was discarded, and the DNA pellet was 

dried by centrifuging at the highest drying rate in a 

Savant DNA Speed Vac DNA110. The dried DNA pellet was 

resuspended in an appropriate volume of dH2O or Elution 

Buffer (Qiagen) and stored at -20
o
C. 

  

Ligation of DNA: 

DNA fragments were purified and quantified, as previously 

described, before ligation. The T4 DNA ligase (Promega) was 

used for ligation, according to the manufacturer’s 

instructions. Depending on the ligation, various 

vector:insert molar ratios were used. Typically, a 10 μl 

reaction contained 3 Weiss units of T4 DNA ligase. A 

control ligation without insert was also set up to assess 

any re-ligation of the vector. Incubation time and 

temperature varied, as appropriate for each ligation. 

Incubation time ranged from 1 to 16-h and temperature from 

8-22
o
C.  

 

Single colony gel:   

To determine whether cells contained the construct of 

interest, following transformation with the ligated 

mixture, single colony gels were run. Single colonies from 

the transformation plates were patched on fresh plates with 

appropriate selection and incubated at 37°C overnight. A 

toothpick was used to transfer and resuspend cells from a 

patched out colony into 150-200 μl of SCFS buffer. The 
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toothpick was left to stand in the buffer for 10-15 min at 

room temperature, it was then removed and the suspension 

was centrifuged at 13200 rpm for 30 min. 30 μl of the 

supernatant containing plasmid DNA was run on a 1% gel at 

80 V for 80 min. Supercoiled plasmid DNA was used as a 

control. The DNA was stained and visualised as described 

previously.  

SCFS Buffer: 2.5% v/v Ficoll, 1.25% w/v SDS, 0.015% w/v 

Bromophenol Blue, 10 μg/ml RNase A, made to volume in 1 x 

TAE buffer 

 

DNA sequencing: 

DNA was sequenced by the GenePool facility, at the 

University of Edinburgh, from appropriately prepared 

samples, as specified by their instructions.  
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CHAPTER 3: The development of a novel markerless deletion 

system in C. difficile and the deletion of addBA genes 

  

3.1: INTRODUCTION 

 

Aim and Objectives:  

 To construct a markerless genetic system for C. 

difficile using I-SceI. 

To identify and use tools for the construction of the 

system including working strain, vectors for I-SceI 

site and allele delivery into the C. difficile 

chromosome and promoters and vectors for I-SceI 

expression. 

 To validate the system via the targeted deletion of 

addBA genes using the I-SceI system.  

 To analyse the function of AddAB in C. difficile. 

 

 

Background: 

It is essential for all organisms to ensure the integrity 

of genomic DNA and the accurate transmission of their 

genetic material to progeny. Bacterial genomic DNA is 

constantly faced with damage from endogenous and exogenous 

sources. It has been suggested that under normal aerobic 

conditions E. coli can suffer 3000 – 5000 DNA lesions per 

cell per generation, the majority being due to oxidative 

damage (Cox, 2001). One type of damage that is considered 

lethal, if not repaired, is a double-strand break (DSB). It 

has been estimated that in E. coli a spontaneous double-
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strand break occurs once per chromosome replication cycle 

(Reuter et al., 2010).  

Double-strand breaks (DSBs) can be caused directly or 

indirectly from various endogenous and exogenous sources 

including, ionizing radiation (e.g. X rays and γ rays), UV 

light, DNA damaging chemicals, desiccation, mechanical 

stress, oxygen radicals and inappropriate cleavage of DNA 

by host restriction-modification systems (Dillingham and 

Kowalczykowski, 2008; Kuzminov, 1999). Ionizing radiation, 

for example, can directly break DNA with the production of 

two free DNA ends (Kuzminov, 1999; Dillingham and 

Kowalczykowski, 2008; Kowalczykowski, 2000). 

In the absence of exogenous damaging agents, during normal 

cell growth, a DSB can result from an encounter of the 

replication fork with discontinuities or blockages in the 

DNA template (Kuzminov, 1999; Dillingham and 

Kowalczykowski, 2008; Kreuzer, 2005; Michel et al., 1997; 

McGlynn and Lloyd, 2002; Cox, 2001; Michel et al., 2007; 

Kuzminov, 2001; Rothstein et al., 2000). These include 

gaps, secondary structures, tightly bound proteins, nicks 

which for example can occur from free radicals arising from 

intermediary metabolism or when a SbcCD endonuclease cuts a 

hairpin structure at palindromic DNA sequences, etc. If a 

replication fork encounters an unrepaired nick in the 

template strand which disturbs the continuity of the 

replication fork, this can result in replication fork 

collapse and generation of an intact chromosome and a 

detached double-strand end (Kuzminov, 1999; McGlynn and 

Lloyd, 2002). Blockage of replication due to a DNA lesion 

in the lagging strand can be bypassed if the replication 

complex stays intact, by restarting lagging strand 

synthesis with a newly primed Okazaki fragment downstream 

of the lesion. This leaves a gap which can eventually lead 
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to a DSB if left unrepaired prior to the arrival of the 

replisome in the next round of duplication (McGlynn and 

Lloyd, 2002; Kuzminov, 1999). Moreover, replication fork 

stalling due to a defective replisome, DNA damage, blockage 

due to secondary structures or tightly bound proteins can 

lead to replication fork reversal, where the ends of the 

newly synthesized leading and lagging strands anneal. This 

can lead to different outcomes including DSBs at stalled 

replication forks or resetting of the replication fork and 

reassembly of the replisome (aided by the RecBCD enzyme 

complex discussed below) (Dillingham and Kowalczykowski, 

2008; De Septenville et al., 2012).  

Bacteria have evolved two primary mechanisms for the repair 

of DSBs: non-homologous end joining (NHEJ) and homologous 

recombination (HR) (Lenhart et al., 2012; Ayora et al., 

2011; Bowater and Doherty, 2006; Shuman and Glickman, 2007; 

Kowalczykowski, 2000). In NHEJ the broken ends, after minor 

processing, are joined together by ligation using minimal 

or no sequence homology. Therefore, this is a low fidelity 

DSB repair pathway accompanied by nucleotide insertions or 

deletions (Lenhart et al., 2012). In addition, NHEJ only 

exists in a subset of bacteria (Della et al., 2004). In 

contrast, homologous recombination is a high fidelity DNA 

repair pathway that requires a homologous sequence to 

repair the break. It is highly conserved among viruses, 

bacteria, archaea and eukaryotes (Cromie, 2009; Lenhart et 

al., 2012). NHEJ is used when HR is impaired or an intact 

homologous template is not available, for example during 

prolonged stationary phase in specialised cell stages such 

as sporulation (Yeeles and Dillingham, 2010; Bowater and 

Doherty, 2006; Shuman and Glickman, 2007).   

HR is recognised to have three stages and the RecA protein 

is central in this (Yeeles and Dillingham, 2010; Cromie, 
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2009; Kowalczykowski, 2000). In the first stage, 

presynapsis, the DNA ends are processed to form suitable 

single-stranded 3’ overhangs to which RecA binds and forms 

a functional RecA-ssDNA complex. In the second stage, 

synapsis, the RecA nucleoprotein filament performs a 

homology search, pairs with its homologous DNA followed by 

strand exchange resulting in a joint molecule called a 

Holliday junction. The third stage, postsynapsis, involves 

resolution of the junction to form recombinant repaired DNA 

products.  

 

In bacteria there are three distinct classes of helicase-

nuclease enzyme complexes namely, RecBCD, AddAB (also 

called RexAB) and AdnAB that process DSBs to form a 3’-

ssDNA overhang for the production of a RecA nucleoprotein 

filament (Rocha et al., 2005; Cromie, 2009). The AddAB and 

RecBCD proteins are widely distributed across the bacterial 

kingdom, with a single RecBCD- or AddAB-type enzyme complex 

being present in the majority of bacterial species; 

although several members of the Actinobacteria contain both 

enzyme types (Cromie, 2009; Yeeles and Dillingham, 2010). 

Structural homologues of these enzyme complexes have not 

been found in eukaryotes (Yeeles et al., 2009). The 

majority of the genes encoding the enzymes are generally 

clustered in an operon (Cromie, 2009). Recently, the AdnAB 

type enzyme has been identified in Mycobacteria species 

(Sinha et al., 2009; Gupta et al., 2011). The E. coli 

RecBCD and the B. subtilis AddAB have been the paradigms 

for these enzymes.  

 

The RecBCD and AddAB enzyme complexes are structurally 

distinct but they are functionally analogous, supported by 

the observation that the heterologous expression of 

Bacillus subtilis AddAB or Lactobacillus lactis RexAB can 
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nearly fully compensate for the DNA repair defect in 

∆recBCD E. coli strain (Yeeles and Dillingham, 2010; 

Dillingham and Kowalczykowski, 2008). Both complex types 

are regulated by a recombination hotspot sequence Chi 

(crossover hotspot instigator) (Yeeles and Dillingham, 

2010; Chedin and Kowalczykowski, 2002; Wigley, 2013). 

RecBCD and AddAB essentially follow the same steps for the 

production of the RecA nucleoprotein filament (Wigley, 

2013). The enzymes bind to blunt or nearly blunt duplex DNA 

ends, the DNA is unwound and digested at the same time 

until a Chi site is recognised which this changes the 

activity of the enzyme complex to produce a 3’-ssDNA 

overhang to which RecA binds with the aid of the enzymes. 

The length and sequence of Chi recognised by different 

enzyme complexes vary between different bacterial species 

but are conserved between different strains of the same 

species. For example, E. coli RecBCD recognises the 

octameric sequence 5’-GCTGGTGG-3’, B. subtilis AddAB 

recognises the pentameric sequence 5’-AGCGG-3’, L. lactis 

AddAB the heptameric sequence 5’-GCGCGTG-3’, Staphylococcus 

aureus AddAB the heptameric sequence 5’-GAAGCGG-3’ and 

Haemophilus influenzae RecBCD the octameric sequence 5’-

GNTGGWGG-3’ (Wigley, 2013; Yeeles and Dillingham, 2010; 

Chedin and Kowalczykowski, 2002). In addition Chi sequences 

are over-represented in the genome (e.g. in E. coli one 

site per 5 kb) and most are skewed towards the origin of 

replication to promote recombination of collapsed 

replication forks (Yeeles and Dillingham, 2010; Smith, 

2012; Halpern et al., 2007).  

RecBCD is a 330 kDa heterotrimeric complex composed of the 

RecB, RecC and RecD proteins (Yeeles and Dillingham, 2010; 

Singleton et al., 2004). The complex contains two helicase 

motors, RecB and RecD with opposite polarities that are 
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powered by ATP hydrolysis (Dillingham and Kowalczykowski, 

2008; Lenhart et al., 2012; Taylor and Smith, 2003; 

Dillingham et al., 2003). The C-terminus of RecB also 

contains a nuclease domain that is responsible for 

cleavages made on both DNA strands (Yeeles and Dillingham, 

2010; Wang et al., 2000b). The N-terminus of RecB contains 

a Superfamily 1A (SF1A) helicase with 3’-5’directionality, 

while the C-terminus is a λ-family nuclease (Wigley, 2013; 

Singleton et al., 2007). RecD is a SF1B helicase with 5’-3’ 

specificity (Wigley, 2013; Singleton et al., 2007). The 

RecC subunit is responsible for recognizing Chi (Wigley, 

2013; Singleton et al., 2004). RecBCD binds to the duplex 

DNA end (FIG 3.1) and the complex travels along the DNA 

using energy from the ATP hydrolysis in the RecB and RecD 

helicase motors. RecB travels in 3’-5’ direction and RecD 

in 5’-3’ direction, with RecD being the faster motor and 

consequently a loop of ssDNA is formed ahead of the RecB 

motor. As the DNA is being unwound, the nuclease domain of 

RecB degrades both strands with the 3’ strand being more 

vigorously hydrolysed than the 5’ strand (Wigley, 2013; 

Smith, 2012; Dillingham and Kowalczykowski, 2008; Dixon and 

Kowalczykowski, 1993; Taylor and Smith, 2003; Dillingham et 

al., 2003). During unwinding, the 3’ stand may pass through 

a tunnel in RecC where it is scanned for the Chi sequence 

(Smith, 2012; Singleton et al., 2004). Upon recognition of 

the Chi sequence, the RecC subunit binds tightly to the Chi 

site and the complex pauses translocation and resumes at a 

reduced rate due to the complex being led by the slower 

RecB motor instead of the RecD motor. Moreover, following 

Chi recognition, cleavage of the 3’-5’ strand is attenuated 

whilst cleavage of the 5’-3’ strand is enhanced, resulting 

in the formation of a 3’ ssDNA overhang close to the Chi 

sequence. The single-strand-binding protein (SSB) binds 

rapidly and tightly to the 3’ssDNA tail produced and RecA 
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is unable to compete with this. However, following Chi 

recognition, the RecB nuclease domain is released from RecC 

and RecB actively loads RecA proteins onto ssDNA, 

displacing SSB and generating the RecA nucleoprotein 

filament (Dillingham and Kowalczykowski, 2008; Lenhart et 

al., 2012; Wigley, 2013; Anderson and Kowalczykowski, 1997; 

Dixon and Kowalczykowski, 1993; Spies et al., 2003; Spies 

et al., 2007).  

 

FIG 3.1  Schematic of processing of 

DNA ends by RecBCD 

a) A double strand break on 

DNA is represented by a star. 

b) RecBCD binds to the DNA end 

and the complex travels along 

the DNA unwinding the duplex 

at the same time. A Chi site 

is shown in red. c) RecB 

travels in 3’-5’ direction and 

RecD in 5’-3’ direction. A 

loop of ssDNA is formed ahead 

of the RecB motor due to RecD 

being the faster motor. RecB 

nuclease domain degrades both 

strands with 3’ssDNA end being 

more vigorously hydrolysed 

than the 5’ ssDNA end. d) A 

Chi site is encountered e) At 

encounter, the 3’-5’ nuclease 

activity is attenuated and 

cleavage of the 5’-3’ strand 

is enhanced resulting in the 

formation of a 3’ ssDNA. f) 

RecBCD loads RecA onto the 

ssDNA resulting in the RecA 

nucleoprotein filament 

formation. The image is 

adapted from (Wigley, 2013). 
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The AddAB complex consists of two subunits, AddA (135 kDa) 

and AddB (141 kDa) (Chedin and Kowalczykowski, 2002). AddA 

is both a helicase and an endonuclease, the N-terminal 

region is a SF1A family helicase with 3’-5’ specificity and 

the C-terminal region is a RecB-type nuclease which digests 

DNA at 3’-5’ direction (Lenhart et al., 2012; Wigley, 2013; 

Saikrishnan et al., 2012; Yeeles and Dillingham, 2007). The 

AddB subunit is also a nuclease, with the C-terminus 

forming a RecB-like nuclease domain that cuts ssDNA with 

5’-3’ polarity (Yeeles and Dillingham, 2007). In addition, 

the C-terminus of AddB contains a 4Fe-4S iron-sulphur 

cluster that seems to have a structural role by binding to 

duplex DNA ends and stabilizing the protein structure 

(Yeeles and Dillingham, 2010; Saikrishnan et al., 2012). 

AddB is analogous to RecC facilitating Chi recognition 

(Wigley, 2013; Saikrishnan et al., 2012). Similarly to 

RecBCD, the AddAB enzyme initiates end processing by 

binding to the dsDNA end, the DNA is unwound and cleaved as 

the enzyme complex translocates along the DNA. In contrast 

to RecBCD, unwinding of duplex DNA by AddAB requires SSB 

(Wigley, 2013; Yeeles et al., 2011). Before a Chi site is 

encountered, AddA and AddB nucleases each cleave a single 

DNA strand at equal frequencies as the DNA is extruded from 

the translocating complex (Yeeles and Dillingham, 2007; 

Chedin et al., 2000). When AddAB recognises a Chi site the 

complex binds tightly, unwinding continues and the cleavage 

of the 3’-5’ strand is attenuated resulting in the 

production of a 3’-ssDNA for RecA binding (Lenhart et al., 

2012; Chedin et al., 2000; Chedin et al., 2006; Yeeles and 

Dillingham, 2007).  

AddAB and RecBCD are involved in a range of important 

processes in addition to DNA damage and DSB repair 

including, bacterial conjugation, transduction, bacterial 
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competence, degradation of host and foreign DNA and the SOS 

response (Chedin and Kowalczykowski, 2002; Dillingham and 

Kowalczykowski, 2008; Lenhart et al., 2012). The importance 

of AddAB or RecBCD activity in bacteria is evident from the 

fact that bacteria deficient in these genes have reduced 

viability, are defective in DSB repair and have increased 

sensitivity to DNA damaging agents (Chedin and 

Kowalczykowski, 2002). During bacterial conjugation, the 

DNA enters the cell as a single-strand and is converted to 

linear dsDNA, by replication, which is a substrate for 

RecBCD to initiate HR with host homologous sequences 

(Dillingham and Kowalczykowski, 2008; Smith, 1991). 

Moreover, during transduction, the ends of injected linear 

DNA of a previous host can be a substrate for RecBCD/AddAB 

enzymes for recombination and integration of the linear DNA 

at homologous sites in the new host (Dillingham and 

Kowalczykowski, 2008; Smith, 1991). In B. subtilis, 

expression of addAB is directly linked to competence in 

this organism and AddAB is required for recombination of 

incoming donor DNA (Haijema et al., 1995). Inactivation of 

addA or addB genes in B. subtilis and L. lactis showed 

reduced frequency of homologous recombination during 

conjugation and transduction (Chedin and Kowalczykowski, 

2002; Kooistra et al., 1997; el Karoui et al., 1998). 

However, RecBCD can also contribute to resistance of 

intruding foreign DNA, e.g. phage DNA that exposes free DNA 

ends is subject to degradation by the enzyme (Dillingham 

and Kowalczykowski, 2008; Benzinger et al., 1975). In 

addition, linear DNA fragments produced from cleavage of 

foreign DNA from restriction modification systems are 

further degraded by RecBCD (Dillingham and Kowalczykowski, 

2008; Handa et al., 2000; Simmon and Lederberg, 1972). In 

many bacteria DNA damage induces the SOS response (Simmons 

et al., 2009; Lenhart et al., 2012). In E. coli, a critical 
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step in this reaction is the formation of RecA-ssDNA 

nucleoprotein filament which is either produced by RecBCD 

if the DNA substrate is a DSB, or by RecFOR when the DNA 

substrate is a single-strand gap (Simmons et al., 2009). 

The RecA-ssDNA filament stimulates the self-cleavage of the 

LexA repressor, inactivating the protein and subsequently 

activating transcription of SOS regulated genes (Lenhart et 

al., 2012; Michel, 2005).  

DSB-processing enzymes are also important in the adaptation 

of microorganisms in extreme environments and bacterial 

virulence. For example, RecD of the RecBCD complex is 

required for the normal growth and cell morphology of the 

marine bacterium Photobaterium profundum at high pressures 

(Bidle and Bartlett, 1999). The ability of Salmonella 

enterica typhimurium to repair DNA damage is essential for 

survival and virulence, as mutants lacking RecBCD function 

are avirulent in the murine typhoid model and are also 

sensitive to reactive oxygen species, nitric oxide, H2O2 

(produced by phagocytes) or bile salts (Buchmeier et al., 

1993; Buchmeier et al., 1995; Cano et al., 2002; Prieto et 

al., 2006). RecBCD contributes to the survival of Neisseria 

gonorrhoeae following oxidative damage produced by 

neutrophils and lactobacilli encountered during infection 

(Stohl and Seifert, 2006). Moreover, E. coli recBCD mutants 

are highly sensitive to nitric oxide (Spek et al., 2001). 

Coxiella burnetti is able to survive in the hostile 

environment of a parasitophorous vacuole, with lysosomal 

characteristics, possibly aided by the strong upregulated 

expression of addAB under conditions of oxidative stress 

(Mertens et al., 2008). Helicobacter pylori undergoes 

oxidative damage soon after infection due to infiltration 

of neutrophils and macrophages during the innate immune 

response (Amundsen et al., 2008). DSB repair by AddAB in 
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this organism is required for successful in vivo 

colonization (Amundsen et al., 2008). In addition, H. 

pylori AddAB promotes recombination-dependent variation of 

cell surface proteins that may allow evasion of adaptive 

immune response or, alternatively, may modify bacterial 

tropism (Amundsen et al., 2008). 

Taking into consideration the importance of RecBCD and 

AddAB enzymes in bacterial infection and in SOS-induced 

mutagenesis and their presence in most sequenced bacterial 

species, these enzymes could be possible targets for the 

development of novel broad spectrum antibacterial 

therapeutics.  

In this study a novel markerless genetic system for C. 

difficile was constructed via the deletion of addA and addB 

genes. Furthermore, the function of AddAB enzyme complex in 

C. difficile was analysed.   

 

 

3.2: RESULTS 

 

3.2.1: Identification and construction of tools for the development of the I-

SceI deletion system in C. difficile: 

 

Choice of working strain: 

The first task towards the development of the genetic 

system was the choice of a C. difficile strain. Ideally, a 

working strain had to have two characteristics: sensitivity 

to two different antibiotics, to allow selection of the 

plasmid constructs in the process; and an available genome 
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sequence to enable the design of gene deletion primers. In 

2006, Sebaihia et al., determined the first complete genome 

sequence of C. difficile 630, which was a multidrug 

resistant isolate from a hospital patient with 

pseudomembranous colitis in Zurich, Switzerland (Sebaihia 

et al., 2006). This was the only sequenced strain at the 

start of this study. In addition, Hussain et al. (2005) 

generated an erythromycin-sensitive derivative of C. 

difficile 630, named 630∆erm, which is also sensitive to 

thiamphenicol (Hussain et al., 2005). This strain was later 

used by Heap et al. (2007) to develop the ClosTron genetic 

system in C. difficile, as it allowed the introduction of 

plasmids that encoded erythromycin and thiamphenicol 

resistance in the bacterium (Heap et al., 2007). Moreover, 

a similar strain to 630∆erm, designated JIR8094, was also 

generated by O’Connor et al. (2006)and was used for the 

construction of C. difficile chromosomal mutants via the 

integration of plasmids encoding thiamphenicol resistance 

(O'Connor et al., 2006; Dineen et al., 2007; Lyras et al., 

2009). In all, strain C. difficile 630∆erm was chosen for 

the development of the system in this study. Despite the 

later availability of information on genome sequence and 

genetic modification of other C. difficile strains, 

including the hypervirulent C. difficile 027, this study 

focused on 630∆erm. 

 

Construction of I-SceI site delivery vectors:  

The next step in the development of the genetic system was 

the identification and construction of the I-SceI site 

delivery vectors to be used for allelic replacement in the 

chromosome of C. difficile. Ideally, the allele replacement 

vectors would be delivered and integrated into the 
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chromosome via suicide vectors to allow efficient selection 

of merodiploids through the antibiotic resistance conferred 

from the integrated plasmid. However, as mentioned, 

conjugative transfer of a suicide plasmid in C. difficile 

has been achieved only once, despite subsequent attempts 

from other groups (O'Connor et al., 2006; Carter et al., 

2005; Liyanage et al., 2001). Thus, replicative but 

unstable plasmids introduced via conjugation have been used 

instead to transfer DNA into C. difficile (O'Connor et al., 

2006; Cartman et al., 2012).  

In this study, plasmids pJIR1456 and pJIR2816 (FIG 3.2) 

were chosen for the construction of the I-SceI site 

delivery vectors pES185 and pES2761 (O'Connor et al., 

2006). These plasmids can be transferred into C. difficile 

by RP4-mediated conjugation from an E. coli donor and have 

been used for the insertional inactivation of C. difficile 

chromosomal genes due to their instability, stemming from 

the presence of a Clostridium perfringens-derived pIP404 

replication region (O'Connor et al., 2006; Purdy et al., 

2002). Both plasmids carry a thiamphenicol resistance gene 

catP allowing their selection at required stages in this 

genetic system. To construct the I-SceI site delivery 

vector pES185, oligos ISceI_F_SacI and ISceI_R_SacI 

carrying the I-SceI recognition site were annealed to each 

other, 5’-phosphates were added and the oligos ligated into 

the SacI site of pJIR1456 (FIG 3.3). Similarly, oligos 

ISceI_F_PvuI and ISceI_R_PvuI were phosphorylated at 5’ 

ends, annealed to each other and ligated into the PvuI site 

of pJIR2816 generating pES2761 (FIG 3.4).  

 



62 
 

         

 

FIG 3.2  Schematic representation of pJIR1456 and pJIR2816 

Both plasmids have oriCP and oriEC, origins of replication from pIP404 

and pUC18, respectively; rep, replication gene from pIP404; catP, 

chloramphenicol resistance gene from C. perfringens; RP4oriT, origin of 

DNA transfer. pJIR1456 adapted from (Lyras and Rood, 1998) and pJIR2816 

from (Carter et al., 2010). 
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A 

 

B 

 

FIG 3.3  Schematic representation and agarose gel analysis of pES185 

A] Oligos ISceI_F_SacI and ISceI_R_SacI carrying the I-SceI recognition 

site  and a SacI restriction site (underlined) were ligated into the 

SacI site of pJIR1456 generating pES185 (6892 bp). B] Restriction 

digest analysis of pES185. Lane 1 refers to 1 kb ladder. Lanes 2, 3, 4 

and 5 refer to supercoiled pES185, I-SceI digested, SacI digested and 

EcoRV digested pES185, respectively. 
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A 

 

B 

 

FIG 3.4  Schematic representation and agarose gel analysis of pES2761 

A] Oligos ISceI_F_PvuI and ISceI_R_PvuI carrying the I-SceI recognition 

site and a PvuI restriction site (underlined) were ligated into the 

PvuI site of pJIR2816 generating pES2761. The plasmid features a lacZ 

gene to aid cloning. B] Restriction digest analysis of pES2761. Lane 1 

corresponds to 1 kb ladder. Lanes 2 and 3 refer to supercoiled pJIR2816 

and PvuI digested pJIR2816, respectively. Lanes 8 and 9 refer to 

supercoiled pES2761 and I-SceI digested pES2761, respectively.  
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Construction of I-SceI expression vectors: 

To construct the I-SceI expression vector, an appropriate 

promoter to express I-SceI and an appropriate plasmid i.e., 

a replicative plasmid encoding an antibiotic resistance 

different from the I-SceI site delivery vector, were 

required. This study utilised the ferredoxin (fdx) promoter 

of the fdx gene from Clostridium sporogenes to express I-

SceI. This promoter had previously been used to express the 

Group II intron in the second generation ClosTron plasmid 

pMTL007C-E2 (Heap et al., 2010; Cartman et al., 2010). The 

E. coli-Clostridium shuttle vector pMTL82254, that carries 

an erythromycin marker, was utilised for the construction 

of the I-SceI expression vector (Heap et al., 2009). The 

fdx promoter (Pfdx) and ribosome binding site (RBS) were 

amplified by PCR, from pMTL83353, using primers SbfI-

PfdxFor and PfdxRev and the I-SceI encoding gene was 

amplified by PCR from pGB920 using primers PfdxIsceI and 

SbfI-IsceIRev (FIG 3.5) (Heap et al., 2009; Patrick et al., 

2009). The Pfdx and I-sceI PCR products were mixed and used 

as template for a cross-over PCR, using primers SbfI-

PfdxFor and SbfI-IsceIRev, resulting in a fused product 

between the promoter and I-SceI; named Pfdx::I-SceI (0.9 

kb) (FIG 3.5).  
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Subsequently, Pfdx::I-SceI was ligated into the SbfI site 

of pMTL82254 generating the I-SceI expression vector pES288 

(FIG 3.6). In this scenario, selection of thiamphenicol 

resistant co-integrants containing pES288 would be via 

erythromycin resistance. This vector was used for 

merodiploid resolution and construction of various C. 

difficile deletion strains which will be described in the 

following chapters. 

 

 

 

 

FIG 3.6  Schematic representation and agarose gel analysis of pES288   

Pfdx::I-SceI was ligated into the SbfI site of pMTL82254 generating 

pES288. Gel 1 lanes 1, 2 and 3 correspond to 1 kb ladder, supercoiled 

pES288 (6843 bp) and SbfI digested pES288 (releasing Pfdx::I-SceI), 

respectively. Gel 2 lanes 1, 2 and 3 correspond to 1 kb ladder, 

supercoiled pMTL82254 (5935 bp) and SbfI digested pMTL82254, 

respectively. Plasmid pES288 features: plasmid replication gene repA, 

putative plasmid replication gene orf2, erythromycin resistance marker 

ermB, Gram –ve replicon ColE1, Gram +ve replicon pBP1 and plasmid 

conjugative transfer gene traJ.  
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Other I-SceI expression vectors were constructed in an 

attempt to increase expression of I-SceI; namely pES124 and 

pES86, where the I-sceI gene was fused to the glutamate 

dehydrogenase promoter (gdh)from C. difficile 630 or to the 

thiolase promoter (thl) from Clostridium acetobutylicum 

ATCC 824 (using pMTL84422 as PCR template), respectively 

(Mani et al., 2006; Heap et al., 2009). However, their use 

resulted in no expression of I-SceI enzyme, implied from 

the absence of merodiploid resolution i.e. no thiamphenicol 

sensitive strains were obtained from loss of the integrated 

allele replacement vector (data not shown). All I-SceI 

expression vectors were sequenced to validate their 

construction and I-SceI expression was tested via 

conjugation of each construct into thiamphenicol resistant 

co-integrants and screening for resolution via loss of 

thiamphenicol resistance (experiments with pES288 are 

described below). In addition, it was attempted to validate 

the I-SceI expression from pES124 or pES288 transconjugants 

via western blotting with anti-I-SceI antibodies, but these 

data were inconclusive because the I-SceI antibody used, 

despite being monoclonal, bound to multiple proteins from 

whole cell-lysates C. difficile 630∆erm and derivates. 
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3.2.2: Construction of C. difficile addBA deletion strain 

 

Arrangement of addBA genes and strategy for deletion: 

Following the construction of the I-SceI genetic system, 

its effectiveness was initially tested in C. difficile 

630∆erm to delete the addBA genes. Using the available 

genomic sequence of C. difficile 630, suitable primers were 

designed to delete addA and addB genes. Figure 3.7 shows 

the arrangement of these genes in C. difficile 630, the 

deletion primers and target deletion region. Upstream of 

the addB gene, there is a putative helicase (CD630_10380) 

of the UvrD family which is known to be involved in 

excision and mismatch repair and SOS induction (Janion, 

2008; Ossanna and Mount, 1989; Selby and Sancar, 1994). 

Downstream of the addA gene, there is a predicted sbcD gene 

(CD630_10420) encoding the nuclease SbcCD subunit D, 

followed by the predicted nuclease SbcCD subunit C encoding 

gene (CD630_10430) which recognises and cleaves secondary 

DNA structures formed from long DNA palindromes (Connelly 

et al., 1998; Eykelenboom et al., 2008). Primer sets 

SphI_addBA1 / addBA2 and addBA2_addBA3 / SphI_addBA4 were 

designed such that their use in the I-SceI genetic system 

would result in the markerless deletion of a 7.256 kb 

region covering almost all of the addB and addA genes in C. 

difficile 630∆erm. 
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Construction of allele replacement vector pES271: 

To deliver the ∆addBA recombinant allele into the 

chromosome of C. difficile 630∆erm, the construction of 

allele replacement vector pES271 was required. The first 

step in achieving this was the construction of the addBA 

deletion cassette. Around 0.5 kb sized regions flanking the 

addB and addA genes were amplified by PCR using primer sets 

SphI_addBA1 / addBA2 and addBA2_addBA3 / SphI_addBA4, with 

genomic DNA from C. difficile 630 as template (FIG 3.8). 

The resulting products were mixed and used as template for 

subsequent cross-over PCR using primers SphI_addBA1 and 

SphI_addBA4, generating the addBA deletion cassette where 

the two flanking regions were fused together via their 

homologous region introduced by addBA2 and addBA2_addBA3 

primers (FIG 3.8). The addBA cross-over PCR resulted into 

two products, possibly due to the presence of homologous 

regions in the PCR mixture. However the product of 

interest, the addBA deletion cassette of ~1 kb in size was 

detected. To generate the allele replacement vector pES271, 

the addBA deletion cassette was ligated into the SphI site 

of pES185 (FIG 3.9). This construct was also sequenced to 

validate its construction.  
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FIG 3.9  Schematic representation and agarose gel analysis of pES271 allele replacement 

vector 

The addBA deletion cassette was ligated into the SphI site of pES185 

generating the allele replacement vector pES271. Gel lanes 1, 2, 3 and 

4 correspond to 1 kb ladder, supercoiled pES271, I-SceI digested pES271 

and SphI digested pES271 (releasing addBA deletion cassette), 

respectively. 
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Conjugation and integration of pES271 in C. difficile 630∆erm: 

Following the construction of pES271 the next step was the 

introduction of the construct into C. difficile followed by 

integration into the chromosome. As the plasmid harbours a 

catP gene in its backbone, this allowed selection of 

thiamphenicol resistance in strains carrying the plasmid 

either in free replicative or chromosomal integrated form. 

The recombinant plasmid was conjugated from E. coli S17-

1λpir into C. difficile using exponential cultures grown in 

BHIS (BHI supplemented with haemin and L-cysteine). Ten 

putative transconjugants, No. 1-10, were recovered after 

72-h and subsequently streaked twice on BHIS containing 

Tm15 μg/ml (BHISTm15) for purity and to allow for a single 

cross-over event. E. coli contaminants were excluded by 

replica screening the colonies via aerobic incubation on 

Luria-Bertani (LB) agar. The presence of pES271 in C. 

difficile was confirmed via amplification of the addBA 

deletion cassette using PCR with SphI_addBA1 and 

SphI_addBA4 primers and template chromosomal DNA extracted 

from 48-h grown putative transconjugants. The addBA 

deletion cassette was only amplified from transconjugant 

No. 1 which also showed better growth on BHISTm15 (FIG 

3.10). 
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FIG 3.10  Schematic diagram and agarose gel image analysis for PCR screening of pES271 

transconjugants  

Primers SphI_addBA1 and SphI_addBA4 were used to confirm the presence 

of pES271 via the amplification of the addBA deletion cassette (~1 kb) 

by PCR from chromosomal extract of putative transconjugants. Wild type 

strains not containing pES271, result in the amplification of wt addBA 

(8 kb) using the same primers. Gel lanes 1, 2, and 3 correspond to 1 kb 

ladder, primers control PCR and addBA deletion cassette (undigested), 

respectively. Lane 4 corresponds to wt addBA product from wt C. 

difficile 630∆erm and lane 5 to addBA deletion cassette product from 

pES271/630∆erm/transconjugant No. 1. 
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To allow for the loss of non-integrated pES271 and for the 

selection of putative merodiploid strains, transconjugant 

strains were passaged through BHIS lacking thiamphenicol 

multiple times and then plated on BHISTm15. From this 

process, 11 possible thiamphenicol resistant integrants 

were selected. Confirmation of pES271 integration into the 

chromosome of these strains was achieved by PCR 

amplification of a 1.2 kb integration product using 

SphI_addBA1 and INTBARev or SphI-addBA4 and INTBAFor primer 

sets and chromosomal DNA of putative merodiploids. Figures 

3.11 & 3.12 show the integration of pES271 in No. 1-10 

merodiploids via the region downstream of the addA gene and 

the integration of pES271 in No. 11 merodiploid via the 

region upstream of the addB gene. For experiments aiming to 

test for the expression of I-SceI, resolution and deletion 

of target genes in the recombinant strains, merodiploids 

pES271/630∆erm/No. 8 and No. 11 were selected. 
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FIG 3.11  Schematic diagram and agarose gel image analysis for PCR screening of pES271 

single cross-over integration via the left flanking homologous region 

Primers INTBAFor and SphI_addBA4 were used to confirm the event of 

single cross-over chromosomal integration of pES271 though the LF 

homologous region via the amplification of a 1.2 kb product by PCR from 

chromosomal extractions. Note that INTBAFor anneals 220 bp upstream of 

LF onto the chromosome. Solid line represents plasmid sequence. Dashed 

line represents chromosomal sequence. Gel lanes 1, 2 and 3 correspond 

to 1 kb ladder, primers control PCR, and wt C. difficile 630∆erm 

control PCR, respectively. Lanes 4 to 14 correspond to merodiploids 

pES271/630∆erm/No.1-11. Single cross-over integration of pES271 via LF 

was confirmed in merodiploid pES271/630∆erm/No. 11.  
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FIG 3.12  Schematic diagram and agarose gel image analysis for PCR screening of pES271 

single cross-over integration via the right flanking homologous region 

Primers SphI_addBA1 and INTBARev were used to confirm the event of 

single cross-over chromosomal integration of pES271 though the RF 

homologous region via the amplification of a 1.2 kb product by PCR from 

chromosomal extractions. Note that INTBARev anneals 270 bp downstream 

of RF onto the chromosome. Solid line represents plasmid sequence. 

Dashed line represents chromosomal sequence. Gel lanes 1, 2 and 3 

correspond to 1 kb ladder, primers control PCR, and wt C. difficile 

630∆erm control PCR, respectively. Lanes 4 to 14 correspond to 

merodiploids pES271/630∆erm/No.1-11. Single cross-over integration of 

pES271 via RF was confirmed in merodiploids pES271/630∆erm/No. 1-10.  
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Introduction of I-SceI expression vector and induction of a double-strand 

break: 

Following the construction of the ∆addBA plasmid 

integrants, the next step involved the introduction of the 

I-SceI expression vector pES288 into these strains and 

generation of a DSB at the integrated I-SceI site. Since 

the fdx promoter had been used for the constitutive 

expression of the Group II intron in the ClosTron system it 

was assumed that I-SceI under the control of this promoter 

would result in constitutive expression, giving rise to a 

DSB as soon as the plasmid entered the integrants (Heap et 

al., 2010; Cartman et al., 2010). Identification of 

resolved strains would therefore be easily achieved via 

screening for loss of thiamphenicol resistance following 

loss of integrated plasmid which carried a catP marker.  

To test for the expression of I-SceI under Pfdx, initial 

experiments involved the introduction of I-SceI expression 

vector pES288, into the merodiploid pES271/630∆erm/No.8 

strain via stationary mating. From this mating, the 

resulting 176 putative transconjugants were screened for 

loss of thiamphenicol resistance to detect for resolution, 

screened for erythromycin resistance to confirm the 

presence of pES288, and screened for aerobic growth to 

exclude E. coli contamination. All transconjugants were 

erythromycin resistant and 97% were anaerobes. Moreover, 

all were thiamphenicol resistant suggesting that, in this 

experiment, resolution did not occur when the I-SceI 

expressing vector entered the cells or there was a low I-

SceI concentration in cells. Therefore, to enrich for a 

population of cells expressing I-SceI with an increased 

probability of obtaining a DSB and for purity, two 

erythromycin resistant pES288 transconjugants were 

subcultured two to four times on BHISErm10 or AIMSErm10 
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(BHIS or AIMS supplemented with erythromycin at 10 μg/ml) 

agar medium to keep the selective pressure for pES288. 

Colonies were selected at random from second or fourth 

subcultures and were screened for thiamphenicol resistance 

and aerobic growth. All the resolved colonies (28.6%) i.e. 

thiamphenicol sensitive colonies isolated (54 sensitive 

colonies from total 189 screened) were confirmed via 

subsequent tests (not described here) to have reverted to 

wt, which suggested that an addBA deletion might be lethal 

to C. difficile or might reduce the growth rate of the 

strain to an extent where it was hard to isolate because 

the wild type might dominate the population.  

Up to this point, isolation of an addBA deletion strain had 

been attempted via resolution of the merodiploid 

pES271/630∆erm/No.8 strain where integration had occurred 

via the downstream region of the addA gene. The next 

attempt to isolate an addBA deletion strain involved the 

introduction of the I-SceI expression vector pES288 into 

the merodiploid pES271/630∆erm/No.11, where integration of 

allele replacement vector occurred via the upstream region 

of addB gene. To isolate two independent addBA deletion 

mutants, the vector pES288 was conjugated into the 

merodiploid pES271/630∆erm/No.11 strain via stationary 

mating at two independent occasions using AIMS medium. On 

both occasions, putative transconjugants were recovered and 

subcultured twice (sub1 & sub2) on AIMSErm10, then from 

each subculture (sub1 & sub2) colonies were picked and 

screened for thiamphenicol sensitivity to test for 

resolution. It was postulated that an addBA deletion would 

delay the growth of C. difficile and so smaller sized 

colonies were preferentially picked.  

From the first mating, 55 putative transconjugants were 

obtained, then screened for thiamphenicol sensitivity and 
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their resistance implied no resolution, which agreed with 

the previous result from pES271/630∆erm/No.8 – pES288 

transconjugants that further sub-streaking may be required 

to increase resolution. Therefore, any subsequent 

resolution screening tests were performed after 

subculturing putative pES288 transconjugants at least once, 

i.e. after enrichment for a resolved population. Following 

this reasoning, putative transconjugants were streaked 

twice on AIMSErm10 (sub1 and sub2) and colonies from each 

subculture were screened for thiamphenicol sensitivity, 

indicative of resolution. Screening for thiamphenicol 

sensitive strains from AIMSErm10 (sub1) resulted in 33.3% 

resolved colonies (10 sensitive colonies from total 30 

screened) and screening of thiamphenicol sensitivity from 

sub2 resulted in 11.8% resolved colonies (4 sensitive 

colonies from total 34 screened). From the second mating, 

13 putative transconjugants were obtained which were 

streaked on AIMSErm10 twice (sub1 & sub2). Screening for 

thiamphenicol sensitivity from sub1 gave 7% resolved 

colonies (9 sensitive colonies from total 135 screened) and 

from sub2 gave 11.9% resolved colonies (14 sensitive 

colonies from total 118 screened). All resolved strains 

obtained, were further tested to confirm reversion to wt or 

deletion of addBA genes (described below). 

 

Screening for double recombination events and confirmation of resolved 

wt or ∆addBA strains: 

It was anticipated that deletion of addBA genes would 

result in sensitivity to DNA damaging agents. This allowed 

the initial screening for putative deletion strains via 

metronidazole sensitivity. All resolved strains isolated 

above, together with wt 630∆erm and the merodiploid 
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pES271/630∆erm/No.11 strain were streaked on AIMS 

containing metronidazole at 0.5 μg/ml (AIMSMZ0.5). This 

resulted in the identification of two metronidazole 

sensitive strains, each isolated from the two independent 

matings. The efficiency of obtaining an addBA deletion 

strain was 7% in the first occasion and 4.3% in the second. 

To investigate whether the phenotype of metronidazole 

sensitivity of the strains was due to resolution and 

deletion of addBA, the next step involved screening of the 

strains via PCR. Chromosomal DNA extracted from all 

isolated thiamphenicol sensitive strains and genomic DNA 

from wt 630∆erm, was used as template for the amplification 

of the addBA region by PCR using primers SphI_addBA1 and 

SphI_addBA4. The addBA deletion cassette (~1 kb) was 

amplified from the two metronidazole sensitive strains, 

while the wt addBA region (~8.2 kb) was amplified from the 

wt 630∆erm and from the thiamphenicol sensitive but 

metronidazole resistant strains (FIG 3.13). This result 

confirmed the isolation of strains that resolved to wt and 

two resolved addBA deletion strains, from two independent 

events, which were named ∆addBA 24 and ∆addBA 242. To 

provide further confirmation of the genotype of the ∆addBA 

strains, the addBA deletion cassette PCR products from 

above were sequenced. The data confirmed that the addBA 

deletion cassette, that replaced the wt allele in ∆addBA 24 

and ∆addBA 242, and the cross-over point between the two 

flanking regions were both correct (FIG 3.13).  
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FIG 3.13  Schematic diagram and agarose gel image analysis for screening of second 

cross-over recombination event 

A] Upon introduction of pES288 into the merodiploid, expressed I-SceI 

creates a DSB resulting in a second recombination event and resolution 

to wild type (1) or addBA deletion strain (2). Solid line represents 

plasmid sequence. Dashed line represents chromosomal sequence. Primers 

SphI_addBA1 and SphI_addBA4 were used to screen for a second cross-over 

event via the amplification of an 8 kb or 1 kb PCR product confirming 

resolution to wt or addBA deletion strain, respectively. Gel image 

represents the amplification by PCR of the wt addBA gene from wt 

strains or the addBA deletion cassette from the deletion strains. Gel 

lane 1 and 2 correspond to 1 kb ladder and primers control PCR, 

respectively. Lanes 3, 5 and 6 correspond to the amplification of addBA 
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deletion cassette from pES271, ∆addBA 24 and ∆addBA 242, respectively. 

Lanes 4 and 7 correspond to amplification of wt addBA genes from C. 

difficile 630∆erm and resolved wt R20, respectively. B] A partial 

sequence alignment is shown of the sequenced addBA deletion cassettes 

amplified from ∆addBA 24 and ∆addBA 242 above with the sequenced addBA 

deletion cassette from pES271. The sequences show the joining point 

between the left and right flanking regions of the deleted addB and 

addA genes. 

 

 

Confirmation of construction of addBA deletion strain due to I-SceI: 

The next step towards the validation of the I-SceI genetic 

system was to confirm that the isolation of the addBA 

deletion strains was due to I-SceI induced DSB repair and 

not due to rare spontaneous second cross-over event. To 

test this, the shuttle vector pMTL82254 from which pES288 

was made, was conjugated into the merodiploid 

pES271/630∆erm/No.11 via stationary mating. Forty of the 

transconjugants obtained were streaked on AIMErm10 (sub 1) 

and in total 80 colonies (two from each sub 1 culture) were 

screened for thiamphenicol sensitivity. Subsequently, ten 

randomly selected transconjugants from sub 1 were further 

subcultured on AIMErm10 (sub 2) and eight colonies from 

each sub 2 culture were screened for thiamphenicol 

sensitivity. All colonies screened were thiamphenicol 

resistant, which indicated that no resolution had occurred. 

This result was in contrast to the resolution observed 

following the introduction of pES288 into merodiploid 

pES271/630∆erm/No.11. It was therefore concluded that, 

resolution was not due to spontaneous secondary 

recombination events, but due to expression of I-SceI from 

pES288. 
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3.2.3: The function of AddAB in C. difficile 

 

Sporulation and toxin production: 

In C. difficile infection, as mentioned, sporulation is the 

aetiologic agent and toxins are well-established virulence 

determinants. Therefore, sporulation and toxin production 

were measured in the ∆addBA strains, the wt 630∆erm and the 

resolved wt R20 (generated from resolution of 

pES271/630∆erm/No.11 from the first mating above).  

 

Spore measurement: 

To compare sporulation characteristics between the strains 

wt 630∆erm, ∆addBA 24, ∆addBA 242 and resolved wt R20, the 

development of heat resistant spores was measured over a 

five day period at 24-h intervals, during which time the 

growth (OD600) and viability of non-heat-treated samples 

were also measured. To determine heat resistant and 

untreated viable cfu/ml counts, samples were plated onto 

AIM agar supplemented with 0.1% sodium taurocholate(AIMTA), 

which had been previously shown to enhance C. difficile 

spore recovery when used in rich medium (Burns et al., 

2010; Wilson et al., 1982). The data from the heat-treated 

cfu/ml counts (FIG 3.14) showed that all strains, except wt 

630∆erm, displayed a similar sporulation pattern through 

the 120-h period with an increase in spore numbers until 

24-h and a slower increase thereafter. In contrast, the wt 

630∆erm strain yielded sporulation numbers at 72-h similar 

to those produced at 24-h by the other strains (at 24-h 

630∆erm produced 100-fold less spores in comparison to the 

rest), but showed a steady gradual increase in heat 

resistant spore development throughout the assay period, 
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reaching final numbers similar to ∆addBA 24 and ∆addBA 242 

at 120-h.  The wt strain R20 yielded an average of 10-fold 

more heat resistant spores at 0-h but the final spore yield 

at 120-h was an average of 10-fold lower than the rest of 

the strains. In addition, the data from the non-heat-

treated cfu/ml counts showed that all strains had similar 

CFU and viability patterns through the 120-h period, with 

an increase in viable CFU until 48-h at which time numbers 

peaked and decreased thereafter (FIG 3.14). The strain 

∆addBA 24 showed slightly lower viability at 48-h, but a 

triplicate experiment from another occasion resulted in 

similar CFU at 48-h to the rest of the strains, suggesting 

an erroneous result. The measurement of growth by OD600 

showed the same pattern in all strains, with a maximum 

optical density at 24-h and a decline in growth thereafter 

(FIG 3.14). There was little difference in growth 

measurement between the strains during the sporulation 

experiment, although, ∆addBA 24 and ∆addBA 242 displayed 

lower optical density at 24 and 48-h compared to the wt 

strains.  
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A 

 

Untreated 
cfu/ml 

        0 24 48 72 96 120 

630∆erm 1.04 x 106 1.73 x 106 8.66 x 106 2.89 x 106 2.71 x 106 1.46 x 106 

∆addBA 24 4.53 x 105 1.27 x 106 2.44 x 106 2.33 x 106 3.09 x 106 8.48 x 105 

∆addBA242 5.52 x 105 1.04 x 106 5.16 x 106 2.73 x 106 2.63 x 106 1.24 x 106 

R20 4.20 x 105 7.09 x 105 6.54 x 106 3.70 x 106 3.83 x 106 9.33 x 105 

 

B 
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Heated 
cfu/ml 

        0 24 48 72 96 120 

630∆erm 1.67 x 101 1.64 x 102 9.62 x 103 4.03 x 104 1.36 x 105 2.97 x 105 

∆addBA 24 5.87 x 101 5.81 x 104 4.07 x 104 9.62 x 104 9.12 x 104 1.22 x 105 

∆addBA242 4.17 x 101 3.01 x 104 5.73 x 104 1.67 x 105 1.73 x 105 1.82 x 105 

R20 5.30 x 102 1.56 x 104 1.11 x 104 1.60 x 104 3.71 x 104 2.61 x 104 
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C 

 

 

Growth 
OD600 

        0 24 48 72 96 120 

630∆erm 0.006 1.297 0.912 0.374 0.294 0.262 

∆addBA 24 0.008 1.024 0.841 0.582 0.352 0.302 

∆addBA242 0.010 1.069 0.849 0.584 0.377 0.318 

R20 0.010 1.272 0.976 0.544 0.286 0.245 
 

 

FIG 3.14  Sporulation assay of C. difficile strains 630∆erm, ∆addBA 24, ∆addBA 242 and 

R20 over a five day period 

The development of heat resistant spores of C. difficile strains 

630∆erm, ∆addBA 24, ∆addBA 242 and R20 was measured over five days. 

Sporulation cultures were incubated anaerobically at 37 oC in AIM broth 

and at 24-h intervals the colony forming units per millimetre (cfu/ml) 

of (A) untreated and (B) heat-treated samples were determined on AIMTA 

agar medium (AIM supplemented with 0.1 % sodium taurocholate) after 48-

h anaerobic incubation period. The (C) growth of the same samples was 

also measured over five days at 24-h intervals. The graphs and 

accompanying tables represent the averages of three experiments and the 

error bars indicate the standard error of the means. At the end of the 

experiment all strains tested were confirmed for their genotype, 

colonial morphology and against contamination. 
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In addition, other sporulation measurement experiments 

revealed an over-sporulating phenotype at 48-h for the 

merodiploid pES271/630∆erm/No.11 strain and derivatives, 

including ∆addBA 24 and ∆addBA 242 and resolved wt strains 

R20 and R215 (generated from resolution of 

pES271/630∆erm/No.11 from the second mating) compared to wt 

630∆erm and other pES271/630∆erm merodiploids (FIG 3.15). 

Therefore, in subsequent experiments, particularly those 

measuring UV and metronidazole sensitivity and SOS 

response, cultures were maintained in exponential growth 

with the presence of a minimum number of spores. As a 

control, resolved wt R20 was also tested in all 

experiments.  

 

 

 

FIG 3.15  Sporulation of merodiploid pES271/630∆erm/No.11 and derivatives 

Sporulation cultures were started by inoculation of 10 ml AIM broths 

with a single colony of each strain. At 48-h incubation period, 0.5 ml 

of each culture were incubated at 65 oC for 25 min, diluted in 1 x PBS 

and then 10 μl of each was spotted onto AIMTA agar medium. The image 

shows heat resistant colonies of each strain after 48-h incubation 

period. Strains C. difficile 630∆erm (1), merodiploid 

pES271/630∆erm/No.1 (7), merodiploid pES271/630∆erm/No.8 (8) and 

merodiploid pES271/630∆erm/No.10 (9) have similar sporulation 

phenotype. In contrast, merodiploid pES271/630∆erm/No.11 (2) and 

derivatives including; ∆addBA 24 (3), ∆addBA 242 (4) and resolved wt 

strains R20 (5) and R215 (6) overproduce heat resistant spores at 48-h 

compared to the rest of the strains.  
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Toxin measurement: 

Total toxin (A+B) production was measured from cultures of 

an optical density OD600 of ~0.5, ~0.8 and ~1 (FIG 3.16). 

Both addBA deletion strains showed a 2-3- fold higher toxin 

production compared to wt strains taken from different 

growth stages. Total toxin (A+B) was measured once in these 

strains and further measurements are required to confirm 

the result.  
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Total toxin A+B (OD450) control values: 

positive control: 1.683  

negative control: 0.047 

 

FIG 3.16  Total toxin production in C. difficile strains 630∆erm, ∆addBA 24, ∆addBA 242 
and R20 

Total toxin production (A+B) in C. difficile strains 630∆erm, ∆addBA 

24, ∆addBA 242 and R20 was measured from culture supernatants at 

optical densities OD600 of around 0.5, 0.6 and 1. The bars and 

accompanying table indicate the result of one experiment. In this 

experiment the addBA deletion strains yielded 2-3 fold higher combined 

toxin titre compared to both wt strains. 

SAMPLE OPTICAL DENSITY (OD600) TOXIN A+B (OD450)

630∆erm 0.593 0.059

R20 0.584 0.057

∆addBA  24 0.54 0.108
∆addBA  242 0.585 0.119

630∆erm 0.877 0.08

R20 0.855 0.058

∆addBA  24 0.773 0.214

∆addBA  242 0.804 0.224

630∆erm 1.452 1.071

R20 1.368 1.735

∆addBA  24 1.008 3.07

∆addBA  242 1.104 3.633
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Growth measurement and colony morphology: 

It was predicted that deletion of addBA genes in C. 

difficile would result in a growth defect (i.e. reduced 

growth rate and small colony morphology) due to the 

requirement to repair DSBs that occur during normal cell 

growth (Dillingham and Kowalczykowski, 2008; Kuzminov, 

1999). The growth of 630∆erm, ∆addBA 24, ∆addBA 242 and 

resolved wt R20 was measured in triplicate for 10-h at 1-h 

intervals (FIG 3.17). All strains had similar growth rates 

with doubling times of 40 min for both wt strains and 45 

min for both ∆addBA strains. It was also noted that the wt 

strains had shorter lag phases in comparison to the 

deletion strains. From the average optical density data 

obtained, it was shown that the wt strains reached an OD600 

of around 1 in 7-h, while the ∆addBA strains reached this 

density in 10-h of incubation. Additionally, all strains 

showed a similar colony size and morphology on AIM agar 

medium. 
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FIG 3.17  Growth curves of C. difficile strains 630∆erm, ∆addBA 24, ∆addBA 242 and R20 

The growth of C. difficile strains 630∆erm, ∆addBA 24, ∆addBA 242 and 

R20 was measured over 10 hours at 1-h intervals. Combined growth curves 

of all strains with accompanying table are shown. All strains had 

similar doubling time of 40 min and 45 min for wt and addBA deletion 

strains, respectively. The graph and accompanying table represent the 

averages of three experiments and the error bars indicate the standard 

error of the means. 
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R20 0.014 0.028 0.078 0.232 0.454 0.769 0.905 0.998 1.078 1.16 1.231
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Sensitivity to DNA damaging agents: 

 

UV sensitivity: 

Previous studies have shown that DNA damage caused by UV 

irradiation can eventually lead to double-strand breaks as 

a result of attempts to repair UV-induced photoproducts via 

nucleotide excision repair (Bonura and Smith, 1975; Wang 

and Smith, 1983). It was therefore hypothesised that UV 

irradiation would greatly affect the viability of C. 

difficile ∆addBA strains due to lethality from accumulated 

unrepaired DSBs. To test this, exponential cultures of 

similar optical density (OD600=~0.3) of wt 630∆erm, ∆addBA 

24, ∆addBA 242 and wt R20 were diluted and spotted onto AIM 

agar followed by irradiation with UV at 10, 15 or 20 J/m
2
. 

To compare survival from UV irradiation, non-UV irradiated 

cultures (No UV) were carried through the experiment. This 

experiment was performed in triplicate and a representative 

example is shown (FIG 3.18). In the absence of UV 

irradiation all strains showed similar viability. However, 

there was a 3 log10 to more than a 4 log10 reduction in cell 

survival of the UV irradiated ∆addBA strains (3 log10 at 10 

J/m
2
 and ≥ 4 log10 at 15 and 20 J/m

2
). UV irradiation had 

very little effect on the survival of the wt strains (1 

log10 at 20 J/m
2
). 
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FIG 3.18  UV sensitivity assay of C. difficile strains 630∆erm, ∆addBA 24, ∆addBA 242 and 

R20 

Exponential cultures (OD600 of ~0.3) of C. difficile strains 630∆erm, 

∆addBA 24, ∆addBA 242 and R20 were serially diluted and 5 μl of each 

was spotted onto AIM agar medium. Replica plates were made which were 

either irradiated with UV at 10, 15 or 20 J/m2 or not exposed to UV 

irradiation. The results were taken after a 48-h incubation period. 

Representative photos are shown from a triplicate experiment. UV 

irradiated plates show that the addBA deletion strains are more 

sensitive to UV in comparison to wt strains as all strains show similar 

viability on non-irradiated replica plates. 
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Metronidazole sensitivity: 

The mode of action of metronidazole is not fully understood 

but it is believed to cause chromosomal fragmentation 

including single- and double-strand breaks (Dachs et al., 

1995; Lofmark et al., 2010; Sisson et al., 2000; Steffens 

et al., 2010). It was therefore expected that deletion of 

addBA genes in C. difficile would lead to enhanced 

sensitivity to metronidazole. To test this, exponential 

cultures of similar optical density (OD600=~0.3)of wt 

630∆erm, ∆addBA 24, ∆addBA 242 and wt R20 were spotted onto 

AIM agar containing either no metronidazole, or different 

concentrations of metronidazole including 0.25 μg/ml, 0.125 

μg/ml  and 0.06 μg/ml. This experiment was performed in 

triplicate and a representative example is shown (FIG 

3.19). Deletion of addBA genes in C. difficile resulted in 

increased sensitivity to all metronidazole concentrations 

tested, compared to the wt strains. Survival of the ∆addBA 

strains was reduced by 4 log10 at MZ 0.06 μg/ml, by 5 log10 

at MZ 0.125 μg/ml and resulted to total death at MZ 0.25 

μg/ml, compared to the survival of the population without 

exposure to metronidazole. In contrast, there was no effect 

on the survival of the wt strains at MZ 0.06 μg/ml, there 

was a 3 log10 survival reduction at MZ 0.125 μg/ml and more 

than 4 log10 reduction at MZ 0.25 μg/ml, compared to the 

survival of the population without metronidazole. 
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FIG 3.19  Metronidazole sensitivity assay of C. difficile strains 630∆erm, ∆addBA 24, 

∆addBA 242 and R20 

Exponential cultures (OD600 of ~0.3) of C. difficile strains 630∆erm, 

∆addBA 24, ∆addBA 242 and R20 were serially diluted and 5 μl of each 

was spotted onto AIM agar medium containing varying concentrations of 

metronidazole including 0.06 μg/ml, 0.125 μg/ml, 0.25 μg/ml or no 

metronidazole. The results were taken after a 48-h incubation period. 

Representative photos are shown from a triplicate experiment. The addBA 

deletion strains were more sensitive to metronidazole compared to the 

wt strains.  
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Tests to complement the sensitivity phenotype of ∆addBA 

strains to DNA damaging agents were not possible, as 

multiple attempts to construct a complementation vector 

were unsuccessful, possibly due to the size of the required 

insert.  

 

SOS response and addBA genes in C. difficile:  

In most bacteria, an SOS response is induced when cells are 

treated with DNA damaging agents (Fernandez De Henestrosa 

et al., 2000; O'Reilly and Kreuzer, 2004). To explore 

whether C. difficile has an SOS response system and whether 

addBA genes are involved, cells were treated with 

metronidazole. A filamenting phenotype is indicative of an 

SOS response considering that during an SOS response cell 

division is inhibited to allow cells to repair DNA damage 

(Dajkovic et al., 2008; Hill et al., 1997; Huisman et al., 

1984). In addition, in E. coli RecBCD is required for SOS 

induction because it is responsible for the formation of 

the RecA/ssDNA filament and subsequent autodigestion of 

LexA repressor allowing transcription of SOS genes (Janion, 

2008; Michel, 2005). Taking this into consideration and in 

keeping with the results above, it was expected that in the 

presence of metronidazole the wt strains, if capable of SOS 

response, would filament while the addBA deletion strains 

would show a non-filamenting lethal phenotype. Exposure of 

exponential cultures of 630∆erm, ∆addBA 24, ∆addBA 242 and 

R20 to metronidazole resulted in the filamentation of cells 

compared to the cell morphology of non-exposed cultures 

(FIG 3.20). The wt strains showed long filaments at higher 

metronidazole concentrations of 0.25 μg/ml and 0.125 μg/ml 

while filamented cells were rare and shorter in length at 

0.06 μg/ml. The addBA deletion strains showed long 
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filaments at metronidazole concentrations of 0.06 μg/ml and 

0.125 μg/ml while the 0.25 μg/ml concentration was lethal, 

which is also indicated by the OD600 measurements taken at 

24-h (T24 average No MZ OD600= 1.548 & MZ 0.25 μg/ml OD600= 

0.006)which also correlates with the metronidazole spot 

testing (FIG 3.19). Also, filaments from the wt and 

deletion strains were more wavy shaped at MZ 0.025 μg/ml 

and 0.0125 μg/ml, respectively, compared to other 

concentrations suggesting a direct or indirect effect of MZ 

on peptidoglycan.  

 

T4 OD600 630∆erm  ∆addBA 24 ∆addBA 242 R20 
No MZ 0.414 0.351 0.358 0.443 
MZ 0.25 0.024 0.013 0.013 0.04 
MZ 0.125 0.146 0.049 0.05 0.168 
MZ 0.06 0.282 0.109 0.104 0.32 

 

A 
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T6 OD600 630∆erm ∆addBA 24 ∆addBA 242 R20 
No MZ 0.735 0.656 0.659 0.752 
MZ 0.25 0.033 0.015 0.014 0.059 
MZ 0.125 0.402 0.055 0.053 0.435 
MZ 0.06 0.624 0.165 0.159 0.647 

 

FIG 3.20  Morphology of C. difficile strains 630∆erm, ∆addBA 24, ∆addBA 242 and R20 

cells in the presence of metronidazole at 4 and 6 hours of SOS induction 

Exponential cultures (OD600 of ~0.3) of C. difficile strains 630∆erm, 

∆addBA 24, ∆addBA 242 and R20 were diluted at 1:100 into AIM broths 

without metronidazole or with metronidazole at a concentration of 0.06 

μg/ml, 0.125 μg/ml or 0.25 μg/ml. The optical density was measured at 

inoculation time T0. At T4 (A) and T6 (B) hours of incubation, the 

optical density was measured and the morphology of fixed cells was 

visualised by wet mount microscopy. Representative photomicrographs are 

shown from triplicate experiments. The wt strains showed filamenting 

cell morphology at metronidazole concentrations of 0.125 μg/ml and 0.25 

μg/ml with a wavy phenotype particularly at 0.25 μg/ml. The addBA 

deletion strains showed filamenting cell morphology at metronidazole 

concentrations of 0.06 μg/ml and 0.125 μg/ml with a wavy phenotype 

particularly at 0.125 μg/ml. Wet mount microscopy of the addBA deletion 

B 
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strains at 0.25 μg/ml showed fewer cells due to reduced survival which 

agreed with the optical density recorded in the tables above. Samples 

that had not been subjected to metronidazole showed normal morphology. 

All strains tested were confirmed for genotype, colonial morphology and 

against contamination. 

 

 

To confirm that the filamenting cells of wt 630∆erm had one 

division septum, samples from time point T6 (6-h after MZ 

addition) from cultures containing MZ 0.125 μg/ml or 

without MZ, were stained with the lipophilic membrane dye 

FM4-64.  Fluorescence microscopy of FM4-64 stained cells 

showed the presence of one septum in induced and non-

induced wt 630∆erm cells but unexpectedly, it has also 

showed the presence of bright foci (FIG 3.21). In most 

cells that had not been exposed to metronidazole there were 

usually two bright foci, one on each side of the septum. 

Similarly, filamenting cells had either bright spots on 

each side of the septum or multiple less bright spots 

throughout the cytoplasm. However, due to the shape of the 

filamenting cells microscope focusing was not ideal and 

possibly the use of confocal microscopy would be more 

informative. The nature of these foci is not clear. They 

could simply be an artefact of the experimental procure 

used or alternatively, considering FM4-64 stains lipids, 

they could be lipophilic inclusions or granules.  
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FIG 3.21  Septal ring in C. difficile 630∆erm in the absence and presence of metronidazole 

Representative photomicrograph from fluorescence microscopy of FM4-64 

stained C. difficile 630∆erm in the absence of metronidazole (A) and in 

the presence of metronidazole at 0.125 μg/ml (B) at T6 of the SOS 

induction experiment. Blue arrows point to the septal ring. Also, note 

the presence of bright foci that have been also stained with FM4-64. 
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3.3: DISCUSSION 

 

Development of C. difficile markerless I-SceI genetic system: 

C. difficile is known to be notoriously resistant to 

genetic manipulation. In addition, C. difficile is a 

multidrug resistant organism and particularly 630∆erm 

strain which is the most widely used lab strain. This poses 

a limitation in the use of antibiotic resistance markers 

for the manipulation of this organism. Most developed 

methods (including the most widely used ClosTron system) of 

C. difficile, result in the interruption of the target gene 

via the integration of an antibiotic resistance marker or a 

whole plasmid carrying antibiotic resistance, which in 

addition to a possible polar effect on neighbouring genes, 

can prevent multiple manipulations of the genome. This 

study has described the development of a novel genetic 

system for C. difficile to create targeted, precise, 

markerless chromosomal deletions using the meganuclease I-

SceI. For validation of this system, the addBA genes in C. 

difficile 630∆erm were deleted. The method developed here, 

results in the deletion of target genes without any foreign 

DNA remaining in the host genome, including resistance 

genes. The system requires the use of two plasmids; one 

that carries the recognition site of I-SceI (I-SceI site 

delivery vector), into which the deletion cassette is 

inserted (allele replacement vector) for single cross-over 

integration, and one that expresses the I-SceI (I-SceI 

expression vector) under an appropriate promoter 

(ferredoxin promoter, Pfdx) to stimulate a double cross-

over via DSB repair. Here, the I-SceI recognition vectors 

pES185 or pES2761 carry a thiamphenicol resistance marker 

and the I-SceI expression vector pES288 constitutively 
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expresses I-SceI and carries an erythromycin resistance 

gene in its backbone. With the use of this system, the 

deletion of a target gene is identified by; 1) the loss of 

thiamphenicol resistance resulting from deletion of the 

integrated plasmid after DSB and resolution, 2) the PCR 

amplification of the deletion cassette (~1 kb) that 

replaces the wt allele and 3) by confirming the new 

sequence joints. In theory, the system could be used to 

delete genes in other C. difficile strains of interest, 

however, the genome sequence is required to aid the design 

of primers for the precise targeted chromosomal deletion 

and provided the strain is sensitive to erythromycin and 

thiamphenicol. In the case of the hypervirulent C. 

difficile R20291 (027) the erythromycin resistance marker 

ermB present in pES288 would confer resistance to 

lincomycin at 20 μg/ml (Heap et al., 2009). It should be 

noted that, the transfer of plasmids into BI/NAP1/027 

strains relying on RP4-mediated conjugation from E. coli, 

was reported to be unsuccessful, although, the reported 

efficiency of RP4-mediated plasmid transfer in C. difficile 

JIR8094 and CD37 strains is 2.3 x 10
2 
– 3 x10

3
 and 4 x 10

1
 – 

2.4 x 10
3
, respectively (Carter et al., 2011; O'Connor et 

al., 2006; Mullany et al., 1990). In this study multiple 

attempts were required to transfer pES271 into C. difficile 

630∆erm, with only one transconjugant obtained. In 

addition, O’ Connor et al. (2006), reported that ‘some 

difficulty was experienced’ in the introduction of pJIR2816 

(similar to pJIR1456 from which pES271 was generated) into 

C. difficile. 

With the genetic system constructed in this study, any gene 

can be deleted, irrespective of size. In contrast, a 

limitation of genetic systems based on the TargeTron 

technology might have, is that DNA sequences less that 400 
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bp may not contain target sites for mobile group II intron 

recognition (TargeTron user guide, Sigma-Aldrich). 

The low resolution rate and the increasing resolution 

percentage with sub-streaking of co-integrates in the 

presence of pES288, suggested that a low I-SceI 

concentration was present in cells. The effect of I-SceI 

levels on resolution has been previously demonstrated by 

Posfai et al. (1999). These authors showed that in E. coli 

stimulation of intramolecular recombination by I-SceI is 

dependent on the concentration of I-SceI in the cell and 

how long I-SceI is allowed to exert its effect (Posfai et 

al., 1999). It was shown that for a 3.4 kb deletion, when 

high I-SceI levels were expressed in the cells, only 8-10% 

of potential transformants survived, but 100% resolution of 

the co-integrates was obtained. When a low I-SceI level was 

expressed, 100% of potential transformants survived but a 

mixed population of resolved and unresolved strains was 

obtained and colonies had to be restreaked to increase 

resolution (> 90%). When extremely low I-SceI levels were 

expressed in the cell, for the same deletion, growth of up 

to 60 generations was required to achieve resolution close 

to 100% (Posfai et al., 1999). If, in the current study, 

the constitutive expression of I-SceI is considered, it 

might be expected that a high concentration of I-SceI was 

present and a high resolution rate should be observed. 

However, the low resolution rate observed may suggest 

inefficient translation of I-SceI or instability of 

messenger RNA or protein. Despite this, it was confirmed 

that the resolution observed was due to I-SceI expression 

and not due to spontaneous recombination. The efficiency of 

obtaining a ∆addBA was an average of 5.7%. This rare 

isolation of ∆addBA strains may have been attributed to the 

moderately large size (7.2 kb) of the targeted deletion, 
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where reversion to wt is favoured with the efficiency of 

obtaining a deletion mutant decreasing with increasing size 

of deleted region (Posfai et al., 1999; Suzuki et al., 

2005).  

 

Function of AddAB in C. difficile: 

A further aspect of this study was to analyse the function 

of AddAB in C. difficile using the two isolated addBA 

deletion strains, the parental C. difficile 630∆erm and one 

resolved wt strain R20. Here, the sporulation-frequency, 

toxin production and growth were measured. Sensitivity to 

DNA damaging agents was determined and the involvement of 

addA and addB genes in the SOS response in C. difficile was 

questioned. 

 

Spore production: 

The measurement of sporulation over a five day period 

showed that ∆addBA 24, ∆addBA 242 and wt R20 produce at 

least 100-fold more heat resistant spores at least 24-h 

earlier than the parental strain 630∆erm. This was not due 

to a difference in growth rate or due to a difference in 

viability, and this characteristic exists only in 

derivative strains of merodiploid pES271/630∆erm/No.11 

where integration occurred via the upstream region of addB 

gene.  An explanation for this phenomenon cannot be given 

at this point and perhaps chromosomal sequencing of these 

strains would shed light on any genomic alteration in these 

strains that provides them with such a phenotype. However, 

deletion of addBA did not affect sporulation since reduced 

numbers were not observed in the mutant strains when 

compared to wt R20, as one would expect for two reasons. 
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First, wet heat does not kill spores by DNA damage but 

instead it can damage spore proteins (Coleman et al., 2007; 

Zhang et al., 2010; Setlow, 2007). Secondly, the fact that 

spores have a single chromosome means that HR would not be 

used as the DSB repair pathway at spore germination, since 

this pathway requires a second homologous chromosome 

(Moeller et al., 2007). In B. subtilis, NHEJ is responsible 

for the DSB repair during spore germination (Moeller et 

al., 2007). Bioinformatic analysis of the C. difficile 

genome did not reveal a Ku homologue. In addition, it was 

noted from the heat-treated data that both addBA deletion 

strains displayed a 10-fold lower spore number compared to 

wt R20 at time 0-h of the sporulation assay. Considering 

that the amount of cells used to inoculate the sporulation 

culture at 0-h (according to OD600 measurement) and that 

viable CFU were similar between the strains, it is 

therefore suggested that either DNA damage inhibits and 

delays sporulation or that wt R20 simply sporulates more 

rapidly, even though this is not observed from 24-h 

onwards. Multiple studies have shown that DNA damage and 

disruption of DNA replication can delay sporulation, which 

might explain the presence of 10-fold reduced spore numbers 

of exponential cultures of addBA deletion strains, where an 

intact replicated chromosome may not be present to initiate 

sporulation (Bejerano-Sagie et al., 2006; Michael, 2001; 

Lemon et al., 2000; Burkholder et al., 2001; Ireton and 

Grossman, 1992; Ireton et al., 1993). 

 

Toxin production: 

Preliminary data for toxin measurement showed that both 

∆addBA strains produced 2-3 times more total toxin (A+B) 

compared to the wt strains at all cell growth stages. There 
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are no previous reports of increased toxin production due 

to loss of addAB genes in other organisms. Evidence 

suggests an association between toxin production and 

sporulation in C. difficile (Underwood et al., 2009; 

Karlsson et al., 2008; Akerlund et al., 2006; Kamiya et 

al., 1992). Although, the resolved wt R20 strain and both 

deletion mutant strains have an altered sporulation 

phenotype, the wt R20 does not produce more total toxin 

compared to the parental strain. It is unclear thus, at the 

moment, why increased toxin production in the mutant 

strains is observed. However, these tests need to be 

repeated. 

 

Growth measurement and Viability: 

Deletion of addBA in C. difficile had little effect on the 

exponential phase of bacterial growth and there was not a 

defect in colony formation. This was in contrast to our 

expectation, taking into account the importance of 

RecBCD/AddAB complexes during normal cell growth (e.g. DNA 

replication, replication fork stalling/collapse etc.). 

Previous studies have shown reduced growth rate and 

impaired colony growth, for example, compared to wt, E. 

coli recB
-
 recC

-
 had generation time increased by 16 min, 

rexA and rexB mutants of S. pneumoniae were severely 

impaired for growth and B. fragilis ∆addAB had increased 

doubling time by 31 min and impaired colony growth (Capaldo 

et al., 1974; Halpern et al., 2004; Parry, 2010). It may be 

suggested that in C. difficile replication does not stop as 

frequently during exponential growth. It was noted that the 

mutant strains displayed a longer lag time. This 

observation may suggest a requirement for AddAB for DNA 

maintenance during stationary phase, as recently 
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demonstrated in E. coli for the RecBCD counterpart, and 

this may be reflected in the starting inoculum population, 

or it may be accumulated DNA damage that has to be repaired 

before exponential growth commences (Williams et al., 

2011). 

In the absence of exogenous DNA damaging agent (e.g. UV or 

MZ), both addBA deletion strains showed similar viability 

to the wt strains. This also agreed with the viability 

measurement over 120-h period during the sporulation assay. 

The viability of the addBA mutant strains observed here is 

in contrast to multiple studies that report reduced 

viability of addAB/recBCD mutants in other species. Reduced 

survival in these studies may mostly reflect cells where 

DSBs occurred from disrupted replication forks that were 

not repaired and did not complete replication. For example, 

viability of E. coli recB recC mutant is reduced by 73%, S. 

pneumoniae rexA and rexB mutants by 80%, B. subtilis addB 

mutant by 50% and B. fragilis ∆addAB has 1-2 log10 reduction 

in viable cells (Dillingham and Kowalczykowski, 2008; 

Capaldo et al., 1974; Halpern et al., 2004; Sciochetti et 

al., 2001; Parry, 2010).  

The fact that the deletion of addBA in C. difficile has not 

significantly affected the growth and viability of C. 

difficile suggests that, in contrast to the E. coli 

paradigm, the replication fork does not stop as frequently 

or if a replication fork stops, a regressed fork is not 

formed or is processed by an enzyme other than AddAB.  

 

Sensitivity to DNA damaging agents: 

The deletion of addBA in C. difficile resulted in reduced 

survival when exposed to agents known to produce DSBs 
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indirectly or directly, such as UV radiation or MZ (Bonura 

and Smith, 1975; Dachs et al., 1995; Steffens et al., 

2010). This confirmed our expectation that in C. difficile 

the AddAB complex is required for the repair of DSB 

produced by these DNA damaging agents. Similarly, for 

example, E. coli ∆recBCD, Pseudomonas syringae ∆recCBD, 

Bacteroides fragilis ∆addAB and Streptococcus pneumoniae 

rexAB mutants are sensitive to UV irradiation (Reuter et 

al., 2010; Halpern et al., 2004; Pavankumar et al., 2010). 

Moreover, B. fragilis ∆addAB shows increased sensitivity to 

MZ compared to wt (Parry, 2010). Other examples of recBCD 

or addAB mutants with increased sensitivity to antibiotics 

known to lead to DSBs include H. pylori addB and addA 

mutants with increased sensitivity to mitocycin C and 

ciprofloxacin, E. coli recD mutant and P. syringae ∆recCBD 

strains with mitomycin C sensitivity (Amundsen et al., 

2000; Amundsen et al., 2008; Pavankumar et al., 2010).  

 

SOS response:  

The presence of an SOS system in C. difficile had not 

previously been reported in the literature, so the 

involvement of the AddAB complex was investigated by the 

exposure of cells to metronidazole. During the SOS response 

cell division is inhibited, for example by SfiA in E. coli 

and by YneA in B. subtilis, resulting in a filamenting cell 

morphology reflecting the continuation of cell growth in 

the absence of cell division (Mo and Burkholder, 2010; 

Huisman et al., 1984). Therefore, the filamenting 

morphology in the presence of metronidazole indicated an 

SOS induction in all strains including the addBA deletion 

strains. FM4-64 staining confirmed that these were indeed 

elongated cells with one septum. These data lead to the 
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conclusion that AddAB is not necessary for induction of the 

SOS response in C. difficile and another exonuclease is 

generating ssDNA. In B. subtilis the SOS response is 

strongly reduced in addAB mutant cells and not abolished as 

in recA cells (Kidane et al., 2004; Sanchez et al., 2006). 

In this organism two end processing avenues have been shown 

to operate, the AddAB- and the RecJ-dependant, both equally 

contributing to the generation of 3’-tailed duplex DNA 

required for RecA filament formation (Sanchez et al., 2006; 

Kidane and Graumann, 2005). The deletion of recJ in B. 

subtilis addAB mutant cells resulted in a strong 

synergistic effect where the double mutants were as 

sensitive to DSBs as recA mutant cells (Sanchez et al., 

2006).   

To summarise, this study has demonstrated the development 

of a new genetic system for the construction of markerless 

deletions in C. difficile, using addBA as an example. The 

use of the I-sceI meganuclease in the system increases 

intramolecular recombination and without this protein 

resolution is not observed. The next step in development 

involved the construction of different deletions and a 

strain with multiple deletions to prove reproducibility and 

robustness of the genetic system. In the C. difficile 

∆addBA mutants generated here, growth was reduced slightly, 

spore formation was unaffected and viability was not 

impaired in the absence of exogenous DNA damage. However, 

when DNA damage was imposed e.g. MZ, cell survival was 

reduced. This may lead to a new avenue for therapeutics to 

increase effectiveness of treatment i.e. a combination drug 

that causes DNA damage, particularly DSB, together with 

inhibition of AddAB.      
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CHAPTER 4: Optimization of the I-SceI genetic system for the 

deletion of fliC, pilT and pilA genes and investigation of the type 

IV pilus in C. difficile 

 

4.1: INTRODUCTION 

 

Aims and Objectives: 

 To construct a non-flagellated C. difficile strain, 

impaired in flagella-mediated motility. 

 To delete the type IV pilus-associated genes pilT and 

pilA in C. difficile. 

 To optimise the genetic system for the construction of 

the fliC, pilT and pilA deletions. 

 To characterise the deletion strains. 

 To investigate the intergenic region upstream of type 

IV pilus-associated genes in C. difficile. 

 

Background: 

Type IV pili (TFP) are unique appendages on the surface of 

non-pathogenic and pathogenic bacteria and are peritrichus 

or polarly located (Jarrell, 2009). They are extremely 

flexible, strong, thin (<8 nm in diameter) and ranging 

between 1000–2500 nm in length (Strom and Lory, 1993; Craig 

and Li, 2008). These surface structures are widespread 

across β-, γ- and δ- proteobacteria and cyanobacteria 

(Nudleman and Kaiser, 2004; Proft and Baker, 2009; Bhaya et 

al., 2000). They have been mostly found in Gram-negative 
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bacteria including enteropathogenic E. coli (EPEC), 

Salmonella enterica, Pseudomonas aeruginosa, Legionella 

pneumophila, Neisseria gonorrhoeae, Neisseria meningitidis 

and Vibrio cholerae (Proft and Baker, 2009). TFP have also 

been recently found in Gram-positive bacteria particularly 

Clostridium perfringens and Ruminococcus albus (Varga et 

al., 2006; Rakotoarivonina et al., 2002).  

TFP structure and function have been extensively studied in 

Neisseria and Pseudomonas species (particularly in P. 

aeruginosa) and in the soil bacterium Myxococcus xanthus 

(Burrows, 2012; Mignot and Kirby, 2008). FIG 4.1 shows a 

model of the TFP apparatus. The major structural subunit of 

TFP is a small (15-20 kDa) pilin protein called PilA in P. 

aeruginosa and PilE in Neisseria (Burrows, 2005; Proft and 

Baker, 2009). Pilins are arranged in a helical fashion but 

the number of subunits per turn has not been established 

(Burrows, 2005; Craig et al., 2004). The pilin subunits are 

extremely variable in sequence and length, but are 

conserved in the amino acid sequence in the N-terminal 

segment (Pelicic, 2008). Pilins are initially synthesized 

as prepilins, the leader sequence is cleaved and the N-

terminal amino acid created is methylated by a prepilin 

peptidase (PilD) resulting in a mature protein (Mattick, 

2002; Nudleman and Kaiser, 2004; Lory and Strom, 1997; 

Strom and Lory, 1993). Type IV pilins can be classified 

into two groups, Type IVa and Type IVb, based on the 

lengths of the leader peptide and the mature protein (Craig 

and Li, 2008; Pelicic, 2008; Proft and Baker, 2009; 

Burrows, 2012; Giltner et al., 2012). The Type IVa pilins 

are short, have short leader peptides, are relatively 

homogeneous and are found in a variety of bacteria with 

broad host ranges. The Type IVb pilins are more diverse, 

they are either short or long, they possess long leader 
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peptides and are commonly found on enteric pathogens. C. 

perfringens PilA2 has an intermediate length of both mature 

sequence and leader peptide and does not fall clearly into 

either class (Jarrell, 2009). Type IVb pilins are further 

divided into tight adherence pili (Tad or Flp) and are 

found in a variety of Gram-positive and Gram-negative 

species (Giltner et al., 2012; Burrows, 2012). Considering 

the absence of a narrow channel in the TFP fibre the pilus 

must therefore be assembled from its base (in contrast to 

flagella), and minor pilin-like proteins (in P. aeruginosa 

PilE, PilV, PilW, PilX, FimT and FimU) are involved in 

pilus assembly (Mattick, 2002; Nudleman and Kaiser, 2004; 

Burrows, 2005; Russell and Darzins, 1994; Alm and Mattick, 

1995, 1996; Winther-Larsen et al., 2005). Pilus 

assembly/extension (addition of pilin subunits to the base) 

and/or pilus disassembly/retraction (removal of pilin 

subunits from the base) is powered by ATP hydrolysis from 

two ATPases, PilB and PilT, which have opposing activities 

(Burrows, 2005; Mattick, 2002; Nudleman and Kaiser, 2004; 

Proft and Baker, 2009; Merz et al., 2000; Maier et al., 

2002; Herdendorf et al., 2002; Jakovljevic et al., 2008). 

PilB is responsible for pilus extension and PilT is 

responsible for pilus retraction. ATP hydrolysis by these 

proteins results in a piston-like movement of a cytoplasmic 

membrane protein (possibly PilC) which leads to the 

addition or removal of pilin subunits during extension and 

retraction, respectively (Jarrell and McBride, 2008; Craig 

et al., 2006). In Gram-negative organisms, the 

translocation of the pilus through the outer membrane is 

achieved via a large oligomeric pore made by the secretin 

PilQ which appears to be stabilized by the lipoprotein PilP 

(Jarrell, 2009; Mattick, 2002; Nudleman and Kaiser, 2004; 

Wall et al., 1999; Collins et al., 2001; Collins et al., 

2004; Drake and Koomey, 1995; Drake et al., 1997; Bitter et 
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al., 1998). In Gram-positive bacteria, including the 

Clostridia, the secretin PilQ and the associated 

lipoprotein PilP are absent (Jarrell and McBride, 2008; 

Jarrell, 2009; Varga et al., 2006). The tip of the pilus is 

thought to be involved in the attachment to surfaces, 

possibly via the primary pilin pilA and/or additional 

proteins such as PilC1 (in N. gonorrhoeae) and PilY1 (in P. 

aeruginosa) (Jarrell and McBride, 2008; Mattick, 2002; 

Proft and Baker, 2009; Skerker and Berg, 2001).   
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FIG 4.1  Model of the type IV pilus apparatus in a Gram-negative bacterium 

Pilins (PilA) are synthesised as prepilins and the prepilin leader 

sequence is cleaved and the N-terminal amino acid created is methylated 

by a prepilin peptidase (PilD) resulting in a mature protein. Pilus is 

assembled from its base and minor pilin-like proteins (in P. aeruginosa 

PilE, PilV, PilW, PilX, FimT and FimU) are involved in this. PilB is 

responsible for pilus extension and PilT is responsible of pilus 

retraction and ATP hydrolysis from these proteins results in a piston-

like movement of a cytoplasmic membrane protein (possibly PilC) which 

leads to the addition or removal of pilin subunits during extension and 

retraction, respectively. In Gram-negative bacteria the pilus is 

extruded through the outer membrane via PilQ, stabilized by PilP and 

both proteins are absent in Gram-positive bacteria. Attachment of the 
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pilus to surfaces is aided through the tip.  The image is adapted from 

(Mattick, 2002). 

 

TFP are involved in a wide range of functions in bacteria 

that are important to their survival and to their success 

as pathogens. These functions include adherence to 

biological (including other bacteria) and non-biological 

surfaces (including plastic, metal, glass etc.), DNA 

uptake, bacteriophage binding, cell aggregation, 

microcolony formation, biofilm production, fruiting body 

formation, host cell invasion, secretion of exoproteins and 

flagella-independent surface translocation (which is unique 

to TFP and has been called twitching motility) (Shi and 

Sun, 2002; Nudleman and Kaiser, 2004; Burrows, 2005; Craig 

and Li, 2008; Jarrell and McBride, 2008; Proft and Baker, 

2009; Filloux, 2010; Burrows, 2012; Giltner et al., 2012; 

Henrichsen, 1972). A lot of these functions are attributed 

to the retraction of the pilus in which PilT is involved 

(Burrows, 2012). Considering the importance of TFP as 

virulence factors and their surface location, these 

structures are important targets of potential vaccine 

development (Proft and Baker, 2009).   

Multiple TFP functions exemplify their importance in 

virulence and pathogenesis, some of which are described 

here. N. gonorrhoeae and N. meningitidis initiate 

colonisation of human mucosal surfaces by binding of their 

TFP, named GC/MC pili, to non-ciliated host cells and 

possibly the receptor for both pili is the human membrane 

cofactor protein CD46 (Swanson, 1973; Kallstrom et al., 

1997; Proft and Baker, 2009). N. meningitidis PilC1 and 

PilC2 adhere to the uropod of polymorphonuclear 

neutrophils, thus escaping phagocytosis and increasing 

their ability to spread at the epithelial cell layer 



119 
 

(Soderholm et al., 2011). N. meningitidis PilT is required 

for intimate attachment to epithelial cells and for 

attaching and effacing lesions (Pujol et al., 1999). In N. 

meningitidis the minor pilin PilX is essential for 

bacterial aggregation (Helaine et al., 2005). In N. 

gonorrhoeae TFP retraction in a PilT-dependent manner, can 

enhance activation of the nuclear factor NF-kB in infected 

cells and gonococcal microcolony formation (Dietrich et 

al., 2011). In P. aeruginosa, PilA binds to 

glycosphingolipid asialo-GM1 on epithelial cells and the 

importance of pili is demonstrated by the inability of non-

piliated strains to bind to human A549 type II 

pneumonocytes (Lee et al., 1994; Chi et al., 1991; Proft 

and Baker, 2009). P. aeruginosa PilT and PilU (homologue of 

PilT) are required for epithelial cell cytotoxicity and for 

full virulence in the mouse model of acute pneumonia 

(Comolli et al., 1999). Moreover,  P. aeruginosa  pilT and 

pilU mutants are hyperpiliated, defective in twitching 

motility and impaired in the corneal infection model, while 

the pilA mutant is non-piliated and impaired in its ability 

to invade corneal epithelial cells (Zolfaghar et al., 

2003).  Twitching-mediated biofilm structure and 

development is also affected in P. aeruginosa pilT and pilU 

mutants, while pilB and pilC mutants do not form 

microcolonies due to loss of twitching-mediated cell 

aggregation (Chiang and Burrows, 2003; O'Toole and Kolter, 

1998). In V. cholerae, the type IV toxin co-regulated pilus 

(TCP) is required for success of the pathogen during 

infection and TCP has multiple functions including: 

attachment to Caco-2 human intestinal epithelial cells; 

secretion of colonization factor TcpF; microcolony 

formation by mediating bacterium-bacterium interactions; 

and protection from the antimicrobial component of bile by 

engulfing the bacterium during infection (Kirn et al., 
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2003; Krebs and Taylor, 2011). In EPEC the TFP called the 

bundle-forming pilus (BFP) initiates adhesion with the 

intestinal epithelium and recruits EPEC cells into 

aggregates resulting in microcolonies. These bacterial 

aggregates can disaggregate and then disperse, which is 

facilitated by pilus retraction driven by BfpF (putative 

ATPase) (Bieber et al., 1998; Zahavi et al., 2011). BFP 

retraction is suggested to contribute to pathogenesis by 

bringing the bacterium to close proximity with the host 

cell, allowing prompt and efficient translocation of 

bacterial protein effectors through the type III secretion 

apparatus in the host cell, resulting in the disruption of 

the epithelial barrier and generation of actin-rich 

pedestals (Zahavi et al., 2011). Salmonella enterica 

serovar Typhi adheres to the intestinal tract by binding to 

the cellular receptor cystic fibrosis transmembrane 

conductance regulator (an epithelial chloride channel) via 

the TFP structural pilin, PilS. The pili are required for 

epithelial cell invasion (Balakrishna et al., 2009).  

In C. perfringens, PilT and PilC enable the bacterium to 

move on surfaces via gliding motility. Mutations introduced 

into the pilC and pilT genes abolish both surface 

localization of TFP and motility in this organism (Varga et 

al., 2006). The observation that the pilT mutation 

abolishes detectable TFP expression in C. perfringens is a 

critical difference with all other instances studied, as 

loss or absence of pilT usually leads to hyperpiliation 

(Jarrell, 2009). In contrast to the extensively studied 

paradigms of N. gonorrhoeae, P. aeruginosa and M. xanthus, 

pilT in C. perfringens may thus also be involved in pilus 

biogenesis in addition to pilus retraction (Jarrell, 2009). 

Moreover, TFP in C. perfirgens are required for efficient 

biofilm formation (Varga et al., 2008). Expression of C. 
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perfringens pilA2 in a non-piliated N. gonorrhoeae strains 

provides the organism with the ability to attach to mouse 

and rat myoblast cell lines, while a C. perfringens pilT 

mutant has reduced ability to adhere to mouse myoblasts 

under anaerobic conditions (Rodgers et al., 2011).  

In C. difficile, two TFP-associated loci (CD3294-CD3297 and 

CD3503-CD3513) are present in the genome and are conserved 

across many strains of human and animal origin, together 

with low DNA sequence divergence (Fig. 5, Janvilisri et 

al., 2009) this would suggest a function of importance to 

the organism (Sebaihia et al., 2006; Stabler et al., 2006; 

Janvilisri et al., 2009). These TFP loci contain genes 

predicted to encode pilin subunits, prepilin peptidases and 

proteins involved in TFP assembly. Previously, Borriello et 

al. (1988) demonstrated the presence of multiple polar 

fimbriae which were 4-9 nm in diameter and up to 6 μm long 

on the surface of 5 out 15 C. difficile strains examined 

(Borriello et al., 1988). A recent in vivo study of C. 

difficile 630 infection in the Golden Syrian hamster model 

found that high numbers of bacteria were present at the 

base of the crypts of the gut tissue, and were observed to 

interact with the gut microvillus via one pole of the 

bacterium. Pilus-like structures recognised by antisera 

against PilA (CD3507) were detected on the surface of 

bacterial cells, suggesting that pili may be expressed in 

the hamster model (Goulding et al., 2009).  In addition, 

Purcell et al. (2012) demonstrated that elevated levels of 

cyclic diguanylate (c-di-GMP) enhance aggregate formation 

in C. difficile and these aggregates were visibly bound by 

long, thin fibres (10 nm thick) which are consistent with 

the size of pili, although their composition is yet to be 

determined (Purcell et al., 2012). These authors 

hypothesized that c-di-GMP may upregulate production of 
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pili to enhance aggregation of C. difficile cells and 

biofilm formation, thus aiding in colonization by the 

pathogen (Purcell et al., 2012).  It is unknown at the 

moment when TFP is expressed, how TFP genes are regulated 

in this organism and whether it is important in the 

survival and infection of C. difficile.  

This study describes further optimisations of the ISce-I 

system generated in chapter 3. The system was used to 

delete the pilT (CD3505) and pilA (CD3507) genes in C. 

difficile, predicted to encode a protein involved in TFP 

retraction and for the type IV pilin subunit, respectively. 

To enable the study of potential twitching motility in C. 

difficile, a non-flagellated C. difficile strain was first 

constructed via deletion of the fliC gene. Furthermore, an 

intergenic region hypothesised to be involved in the 

regulation of TFP genes in C. difficile was also 

investigated.  
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4.2: RESULTS 

 

4.2.1: Optimization of the C. difficile I-SceI genetic system and construction 

of C. difficile ∆fliC  

 

Construction of a new I-SceI site delivery vector: 

Using the I-SceI site vectors pES185 and pES2761, that were 

generated in chapter 3, allele replacement vectors were 

constructed (not described here) to delete the fliC, pilT 

(CD3505) and pilA (CD3507) genes in C. difficile. However, 

multiple attempts to conjugate and integrate these vectors 

into C. difficile were unsuccessful (data not shown). 

Therefore, a new candidate plasmid was sought to generate 

an I-SceI site delivery vector. Recently, Heap et al. 

(2012) used the E. coli – Clostridium replicative, but 

segregationally unstable, shuttle plasmid pMTL83151 (i.e. 

the plasmid replicates at a rate slower than that of the 

host chromosome) to construct an integration vector for use 

in C. difficile (Heap et al., 2012; Heap et al., 2009). The 

plasmid pMTL83151 carries a thiamphenicol resistance 

marker, catP, for selection.  The authors observed that 

following introduction of an integration vector based on 

pMTL83151 into C. difficile 630∆erm, thiamphenicol 

selection resulted in two populations of cells with 

different growth rates; i) faster growing cells, that 

represented cells in which single cross-over occurred and 

ii) slower growing cells, that corresponded to cells in 

which the vector remained in a free replicative form. This 

growth difference was attributed to the segregational 

instability of the plasmid (due to the pCB102 replicon) in 

C. difficile 630 and was considered advantageous since 
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integrants could be enriched from a population of 

transconjugants by culturing on antibiotic containing 

medium twice. Therefore, the plasmid pMTL83151 was chosen 

to construct a new I-SceI site delivery vector. Using a 

construction strategy similar to that for the pES185 I-SceI 

site delivery vector (chapter 3), oligos ISceI_F_SacI and 

ISceI_R_SacI representing the I-SceI recognition site were 

phosphorylated at 5’ ends, annealed to each other and 

ligated into the SacI site of pMTL83151, generating the new 

I-SceI site delivery vector pES242 (FIG 4.2). The use of 

pES242 in the I-SceI genetic system would aid the selection 

for a single cross-over event via thiamphenicol resistance 

and the screening for a second cross-over event via the 

loss of thiamphenicol resistance. 
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FIG 4.2  Schematic representation and agarose gel analysis of pES242 

A] Oligos ISceI_F_SacI and ISceI_R_SacI carrying the I-SceI recognition 

site  and SacI restriction site (underlined)were ligated into the SacI 

site of pMTL83151 generating pES242 (4511 bp). B] Restriction digest 

analysis of pES242. Lane 1 corresponds to 1 kb ladder. Lanes 2, 3, 4 

and 5 correspond to supercoiled pMTL83151, SacI digested pMTL83151, 

supercoiled pES242 and I-SceI digested pES242, respectively. The vector 

pES242 contains a Gram-positive replicon pCB102, a Gram-negative 

replicon ColE1, a conjugative transfer traJ gene and a catP 

thiamphenicol resistance marker. 
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Construction of C. difficile ∆fliC: 

C. difficile produces peritrichous flagella (17-22 nm in 

diameter consistent with the size on other enteric 

bacteria) that are uniformly distributed on the surface of 

the bacterium and allow swimming or swarming motility 

(Delmee et al., 1990; Vedantam et al., 2012). To 

investigate twitching motility and aid visualisation of 

type IV pilus surface production in C. difficile, a non-

flagellated bacterium was constructed. In the genome of C. 

difficile 630 two flagella-associated loci (CD0226-CD0240 

and CD0245-CD0271), separated by an intervening locus, are 

present with one of these loci CD0226-CD0240 containing the 

fliC gene (Stabler et al., 2009). The FliC protein is a 39 

kDa flagellin protein which is the major structural 

component of the flagellar filament (Tasteyre et al., 

2000). It was previously shown that interruption of this 

gene results in the loss of flagellum production and 

flagella-mediated motility (Twine et al., 2009; Dingle et 

al., 2011). To delete the fliC gene (FIG 4.3) the I-SceI 

vector pES242 and the I-SceI expression vector pES288 were 

used. 
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Construction of the fliC allele replacement vector pES2921: 

Regions(~500 bp) flanking the fliC gene were amplified by 

PCR, using primers SphI-fliC1 and fliC2 to amplify the left 

flank (LF) and primers fliC3 and SphI-fliC4 to amplify the 

right flank (RF), with C. difficile 630∆erm genomic DNA as 

template (FIG 4.4). The LF and RF PCR products were mixed 

and fused by cross-over PCR using primers SphI-fliC1 and 

SphI-fliC4, generating the fliC deletion cassette (FIG 

4.4). The deletion cassette was subsequently ligated into 

the FspI site of pES242, resulting in the allele 

replacement vector pES2921 (FIG 4.4). The use of this 

allele replacement vector in the I-SceI system would result 

in the replacement of the fliC gene (873 bp) by the fliC 

deletion cassette (~1 kb). Sequencing of plasmid pES2921 

validated its construction.  
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FIG 4.4  Construction of the allele replacement vector pES2921 

A] Construction of the fliC deletion cassette. Primers SphI-fliC1 ( ) 

and fliC2 ( ) were used to amplify by PCR the left flanking region (LF, 

502 bp) of the fliC gene. Primers fliC3 ( ) and SphI-fliC4 ( ) were 

used to amplify by PCR the right flanking region (RF, 499 bp) of the 

fliC gene.  The LF and RF products were fused together by subsequent 

cross-over PCR using primers SphI-fliC1 ( ) and SphI-fliC4 ( ) 

generating the fliC deletion cassette (~1 Kb). Gel 1 lanes 1, 2 and 3 

correspond to 1 kb ladder, primers control PCR and LF PCR product, 

respectively. Gel 2 lanes 1, 2 and 3 correspond to primers control PCR, 

RF PCR product and 1 Kb ladder, respectively. Gel 3 lanes 1 and 2 

correspond to 1 Kb ladder and fliC deletion cassette, respectively. B] 

Construction and gel analysis of pES2921. The fliC deletion cassette 

was ligated into the FspI site of pES242 generating pES2921. Gel lanes 

1, 2, 3 and 4 correspond to supercoiled pES2921, SphI digested pES2921, 

I-SceI digested pES2921 and 1 kb ladder, respectively.  
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Introduction of pES2921 in C. difficile 630∆erm and screening for a single cross-

over event:   

The allele replacement vector pES2921 was introduced into 

C. difficile from E. coli via an exponential mating. From 

this conjugation, three putative transconjugants were 

obtained (named 10/1, 10/2, 10/3) which were inoculated 

into liquid BHITm15 (BHI containing thiamphenicol at 15 

μg/ml) and were also streaked on BHITm15cfx8cls250 agar 

(BHI containing thiamphenicol 15 μg/ml, cefoxitin 8 μg/ml, 

D-cycloserine 250 μg/ml). The presence of pES2921 in C. 

difficile was confirmed by amplification, via PCR, of the 

fliC deletion cassette together with the wt fliC, including 

flanking regions, using plasmid DNA preparations from the 

overnight cultures grown in BHITm15 as template and primers 

SphI-fliC1 and SphI-fliC4 (FIG 4.5). In addition, the agar 

medium streaked with the transconjugant strains showed the 

presence of a mixed sized colony population (as expected 

with the use of pMTL83151-based plasmids), indicative of 

cells containing single cross-overs and cells containing 

free plasmid (FIG 4.6).  
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FIG 4.5  PCR screening for pES2921 transconjugants 

Primers SphI-fliC1 ( ) and SphI-fliC4 ( ) were used to confirm the 

presence of pES2921 in putative transconjugant strains 10/1, 10/2 and 

10/3 by PCR amplification of the the fliC deletion cassette together 

with the wt fliC including flanking regions. From the wt strain only 

the wt fliC including flanking regions is amplified. Gel lane 1 and 2 

correspond to 1 kb ladder and primer control PCR, respectively. Lane 3 

corresponds to control PCR using pES2921 as template. Lane 4, 5, 6 and 

7 corresponds to PCR using plasmid extraction from wt C. difficile 

630∆erm, from 10/1, from 10/2 and from 10/3, respectively. 
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FIG 4.6  Colony sizes after the introduction of pES2921 into C. difficile 630∆erm 

BHITm15cfx8cls250 agar streaked with pES2921 transconjugant 10/1 

displaying mixed sized colony population. Red arrows indicate big 

colonies corresponding to putative merodiploids and blue arrows 

indicate small colonies corresponding to putative strains with free 

plasmid. 

 

 

Enrichment for a single cross-over population, via a 

further sub-culture in liquid BHITm15, passaging in BHI 

broth without thiamphenicol and streaking back on BHITm15 

agar, resulted in the loss of the small sized population 

indicating the presence of putative co-integrants only. To 

screen, by PCR, for the integration of pES2921 into C. 

difficile 630∆erm, chromosomal DNA was used as template 

with primer sets INTfliC-For and SphI-fliC4 or SphI-fliC1 

and INTfliC-Rev to amplify a ~1.2 kb fragment (FIG 4.7). 

The INTfliC-For and INTfliC-Rev primers were designed to 

anneal to regions upstream (170 bp) or downstream (278 bp) 

of the fliC LF or fliC RF in the targeted chromosome. This 

confirmed the integration of pES2921 in three merodiploid 

strains (INT10/1, INT10/2 and INT10/3) via the fliC LF (FIG 

4.7). Two co-integrants (INT10/1 and INT10/3) were chosen 

for subsequent resolution. 
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FIG 4.7  PCR screening for single cross-over integration of pES2921 

A single cross-over integration of pES2921 into C. difficile 630∆erm 

chromosome was screened by PCR using primer sets INTfliC-For ( ) and 

SphI-fliC4 ( ) or SphI-fliC1 ( ) and INTfliC-Rev ( ) with chromosomal 

DNA of putative merodiploids. Note that primers INTfliC-For and 

INTfliC-Rev anneal outwith of the fliC flanking regions on the 

chromosome. Solid line represents plasmid sequence while dashed line 

represents chromosomal sequence. The amplification of a ~1.2 kb product 

with primers INTfliC-For and SphI-fliC4 confirmed three merodiploid 

strains where integration occurred via the fliC LF. Gel 1 represents 

PCR products with primers SphI-fliC1 and INTfliC-Rev and Gel 2 products 

with primers INTfliC-For and SphI-fliC4. Gel 1 lane 1 and gel 2 lane 1 

correspond to 1 kb ladder. In both gels 1 and 2, lane 2, 3, 4, 5 and 6 

correspond to primers control PCR, to PCR product from wt 630∆erm, from 

10/1, from 10/2 and from 10/3 strains, respectively. 
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Introduction of pES288 into merodiploids INT10/1 and INT10/3 and screening for 

a second cross-over event: 

The I-SceI expression vector pES288 was introduced into the 

partial diploids INT10/1 and INT10/3, via exponential 

matings, and the resulting putative transconjugants (16 and 

8 obtained from INT10/1 and INT10/3 mating, respectively) 

were streaked twice (sub1 and sub2) on AIM containing 

erythromycin at 10 μg/ml (AIMErm10). Screening for 

thiamphenicol sensitive strains from the first subculture 

showed resolution of 0% (total 65 colonies screened) and 

2.8% (1 sensitive colony from total 35 screened) from 

INT10/1 and INT10/3, respectively. Screening for a second 

cross-over event via thiamphenicol sensitivity from the 

strains streaked twice resulted in resolution of 2% (3 

sensitive colonies from total 144 screened) and 3.6% (4 

sensitive colonies form total 111 screened) from 10/1 and 

10/3, respectively. However, this low resolution rate may 

reflect the visual screening for less rhizoid, smaller-

sized colony population. To confirm that the double cross-

over event in the merodiploids INT10/1 and 10/3 was due to 

I-SceI induced DSB repair, and not due to a spontaneous 

event, plasmid pMTL82254 was introduced into these strains 

and subsequently screened for resolution. Transconjugant 

populations streaked once or twice on AIMErm10 did not 

become sensitive to thiamphenicol (total 50 once streaked 

and 133 twice streaked colonies screened from each 10/1 and 

10/3 transconjugant population). 
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Verification of a double cross-over and phenotypic characterization of ∆fliC 

recombinant strains: 

The double cross-over events were confirmed via PCR using 

primers SphI-fliC1 and SphI-fliC4 and genomic DNA from the 

thiamphenicol-sensitive strains isolated above. The fliC 

deletion cassette was amplified from putative ∆fliC strains 

No. 88, 381, 383 and 415, while the wt fliC region was 

amplified from the parental strain 630∆erm and from the 

putative resolved wt strains No.382, 485 and 489 (FIG 4.8). 

Subsequent sequencing of the amplified fliC deletion 

cassette from strains No. 88, 381, 383 and 415 confirmed 

the replacement of the wt fliC allele by the deletion 

cassette in the chromosome of these strains with the 

predicted sequence joints (FIG 4.8). The ∆fliC strains No. 

381 and 383, and the resolved wt No. 382, were isolated 

from co-integrant INT10/1. The ∆fliC strains No. 88 and 

415, and the resolved wt No. 485 and 489, were isolated 

from the resolution of the INT10/3 partial diploid. It 

should also be noted that the pES288 vector was easily 

eliminated from all resolved strains simply by streaking 

twice on medium without erythromycin. This was important 

for subsequent experiments, particularly for the 

construction of strains with multiple deletions.  
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FIG 4.8  Screening and confirmation of second cross-over recombinants and ∆fliC strains 

A] A second cross-over event was identified by PCR, using primers SphI-

fliC1 ( ) and SphI-fliC4 ( ) with chromosomal DNA of putative 

recombinant strains. The amplification of the fliC deletion cassette 

(~1 kb) identified putative ∆fliC recombinant strains, while the 

amplification of the wt fliC including flanking regions (~1.9 kb) 

identified strains that resolved to wt. Gel Lane 11 corresponds to 1 kb 

ladder. Lane 1 and lane 2 correspond to primers control PCR and pES2921 

control PCR. Lanes 4, 5, 7 and 8 correspond to the amplification of the 

fliC deletion cassette from ∆fliC No. 88, 381, 383 and 415 strains, 

respectively. Lanes 3, 6, 9 and 10 correspond to the amplification of 

the wt fliC and flanks from wt 630∆erm, from resolved wt strains 

No.382, 485 and 489, respectively. B] The fliC deletion cassettes 

amplified from the ∆fliC strains were sequenced and a partial sequence 

alignment of the fliC LF and RF together with the joining point is 

shown.  
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As mentioned above, previously published studies 

demonstrated that interruption of the fliC gene in C. 

difficile resulted in non-flagellated strains that were 

impaired in flagella-mediated motility (Dingle et al., 

2011; Twine et al., 2009). Motility tests were therefore 

used, to characterize and confirm the predicted phenotype 

of the markerless deletion strains, such as soft agar 

swimming, motility examination by wet mount microscopy, 

colony morphology and electron microscopy to visualize 

flagella. The assessment of flagella-mediated motility by 

stab inoculation of the parental strain 630∆erm, together 

with wt recombinant strains No.382, 485 and 489, showed a 

spreading and diffuse growth away from the inoculation 

point after 24-h, which indicated a motile phenotype (FIG 

4.9). Microscopic examination of wet mount preparations of 

the resolved wt strains No.382, 485 and 489 showed the same 

motile behaviour as the wt 630∆erm strain. In contrast, 

strains ∆fliC No. 88, 381, 383 and 415 did not display a 

spreading phenotype in the motility agar after 24-h and 

growth was concentrated near the inoculum stab, which 

indicated a non-motile phenotype (FIG 4.9). In addition, 

these strains were non-motile as examined by wet mount 

microscopy. The ∆fliC 383 strain displayed typical C. 

difficile colony morphology, similar to the wt, with 

spreading rhizoids when streaked on BHI, AIM and Blood 

agar. Flagella production in ∆fliC No. 383 and in ∆fliC No. 

88 was examined by electron microscopy. This showed that 

the ∆fliC mutant strains did not produce any flagella 

filaments, whereas both wt 630∆erm and resolved wt No. 489 

produced visible flagella (FIG 4.10).  
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FIG 4.9  Flagella mediated motility stab assay of ∆fliC and wt recombinant strains and wt 

630∆erm  

The result of swimming motility assay at 24-h incubation in AIM medium 

(0.175% agar) is shown. The ∆fliC strains display a non-spreading 

phenotype in contrast to the wt 630∆erm and to the resolved wt strains 

where motility is clearly visible.  
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FIG 4.10  Electron microscopy of flagella production in wt and ∆fliC strains 

Transmission electron micrographs of 48-h single colonies grown on AIM 

agar medium revealing the lack of flagella production in ∆fliC 88 (3) 

and ∆fliC 383 (4) mutant strains in contrast to the wt 630∆erm (1) and 

resolved wt 489 (2) strains where visible flagella is produced.  
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Complementation of the ∆fliC mutants:  

To complement the ∆fliC mutants, the recombinant vector 

pES196 was constructed. To generate this plasmid, the 

intact wt fliC gene and its native promoter, previously 

documented by Dingle et al. (2011), were amplified by PCR 

using primers cmFliCFor and cmFliCRev and genomic DNA from 

630∆erm as template. The resulting PCR product was ligated 

into NotI/XhoI- digested E. coli – Clostridium shuttle 

vector pMTL84151 (FIG 4.11) (Heap et al., 2009). The 

plasmid pES196 was sequenced to validate construction.   

 

 

 

FIG 4.11  Construction of complementation plasmid pES196 

The complementation plasmid was generated be the ligation of the wt 

fliC gene and its respective promoter in the NotI/XhoI site of 

pMTL84151. Gel 1 lane 3 represents the PCR amplification of the wt fliC 

and promoter from genomic DNA of 630∆erm using primers cmFliCFor and 

cmFliCRev. Gel 1 lane 1 and 2 correspond to 1 kb ladder and primers 

control PCR. Gel 2 represents pES196 restriction digest analysis for 

insert confirmation. Gel 2 lane 1 corresponds to 1 kb ladder. Gel 2 

lane 2 and 3 correspond to supercoiled pMTL84151 and NotI/XhoI digested 

pMTL84151, respectively. Gel 2 lane 5 and 6 correspond to supercoiled 

pES196 and NotI/XhoI digested pES196, respectively. Gel 2 lane 4 

corresponds to NotI/XhoI digested insert (1149 bp) used for 

construction of pES196.   
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The complementation vector was conjugated into wt 630∆erm, 

∆fliC 88 and ∆fliC 383 strains using exponential matings. 

For control experiments, the plasmid pMTL84151 was also 

conjugated into these strains. The presence of pMTL84151 or 

pES196 in the strains was confirmed by PCR amplification of 

plasmid specific products using primers Trans-1 and Trans-3 

with chromosomal DNA from transconjugant strains as 

template (FIG 4.12). 

  

 

 

FIG 4.12  PCR confirmation of pES196 and pMTL84151 transconjugant strains 

Transconjugant strains were confirmed to harbour pMTL84151 or pES196 by 

PCR amplification of plasmid specific products, using chromosomal DNA 

of putative transconjugant as template and primers Trans-1 and Trans-3, 

which were designed to anneal outwith of the NotI and XhoI sites of 

pMTL84151. Lane 1 of gel 1, gel 2 and gel 3 refer to 1 kb ladder and 

lane 1 of gel 4 refers to 100 bp ladder. Lane 2 of all gels refers to 

primers control PCR. Lane 3 of gels 1, 2 and 3 refer to control PCR 

using plasmid pES196 as template. Lane 4 of gel 1, 2 and 3 refer to PCR 

product produced from ∆fliC 383, ∆fliC 88 and wt 630∆erm chromosomal 

DNA, respectively. Lane 3 of gel 4 refers to control PCR using plasmid 

pMTL84151 as template. Lane 4, 5 and 6 of gel 4 refer to pMTL84151 

specific PCR product produced from chromosomal extract of wt 630∆erm, 

∆fliC 383 and ∆fliC 88, respectively.  
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The strains wt 630∆erm, ∆fliC 383 and ∆fliC 88 containing 

pES196 or pMTL84151 were stab inoculated into soft agar 

medium. After 24-h incubation, only strains of 630∆erm 

containing either plasmid showed a spreading phenotype, 

while the ∆fliC strains, containing either plasmid, showed 

a non-spreading phenotype (FIG 4.13). Wet mount microscopic 

examination of the wt 630∆erm strain, containing either 

plasmid, displayed typical C. difficile motility with 

vigorous back and forth movements. Wet mount microscopy of 

both ∆fliC 383 and ∆fliC 88 strains containing pES196 

showed some motile cells, singly or in pairs, that 

displayed a tumbling motion. In addition, both ∆fliC 383 

and ∆fliC 88 strains containing the control vector 

pMTL84151 were non-motile when examined by wet mount 

microscopy. Further examination by electron microscopy of 

the ∆fliC 383 and ∆fliC 88 strains containing the 

complementation vector, pES196, revealed production of 

flagellar filaments, while the ∆fliC 383 and ∆fliC 88 

strains containing pMTL84151 did not produce any visible 

flagella (FIG 4.14). Electron microscopy of the parental 

strain 630∆erm containing pES196 or pMTL84151 showed 

production of flagella (FIG 4.14).  
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FIG 4.13  Flagella motility stab assay of complemented ∆fliC strains  

The result of swimming motility assay at 24-h incubation in BHI medium 

(0.175% agar) containing thiamphenicol at 15 μg/ml is shown. Photos 1, 

2 and 3 refer to ∆fliC 383, ∆fliC 88 and wt 630∆erm containing pES196, 

respectively. Photos 4, 5 and 6 refer to ∆fliC 383, ∆fliC 88 and wt 

630∆erm containing pMTL84151, respectively. Only, the wt 630∆erm 

containing either plasmid displays a spreading phenotype in the 

motility agar medium. 
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FIG 4.14  Electron microscopy of complemented ∆fliC strains for flagella production  

Transmission electron micrographs of 48-h single colonies grown on AIM 

agar medium revealed flagella production in fliC complemented ∆fliC 88 

and ∆fliC 383 mutant strains. Photos 1, 2 and 3 refer to wt 630∆erm, 

∆fliC 383 and ∆fliC 88 containing pES196, respectively. Photos 4, 5 and 

6 refer to wt 630∆erm, ∆fliC 383 and ∆fliC 88 containing control 

plasmid pMTL84151, respectively.  
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4.2.2: Construction of C. difficile ∆pilT, ∆fliC∆pilT, attempted construction 

of C. difficile ∆pilA and characterization of the mutant strains  

 

Arrangement of putative type IV pili genes in C. difficile and targeted pilT 

and pilA genes for deletion: 

FIG 4.15 shows one of the type IV pilus-associated loci, 

CD3503–CD3513, in the C. difficile 630 genome. The pilT 

(CD3505) and pilA (CD3507) genes which are predicted to 

encode proteins for pilus retraction and type IV pilin 

subunit, respectively, are shown. The I-SceI site vector 

pES242 and the I-SceI expression vector pES288 were used to 

delete these genes. 

 

 

 

FIG 4.15  Arrangement of type IV pilus locus in C. difficile 630 and genes for deletion  

The putative type IV pilus biosynthesis locus (CD3503 – CD3513) in the 

genome of C. difficile 630 is shown. Putative gene and putative protein 

nomenclature: 3- CD3503 type IV prepilin leader peptidase, 4- CD3504 
type IV prepilin peptidase, 5- CD3505 twitching motility protein PilT, 

6- CD3506 hypothetical protein, 7- CD3507 type IV pilin (PilA, 

nomenclature according to Goulding et al., 2009), 8- CD3508 type IV 

pilin, 9- CD3509 type IV pilus assembly protein, 10- CD3510 membrane 

protein, 11- CD3511 type IV pilus secretion protein, 12- CD3512 type IV 

pilus transporter and 13- CD3513 pilin protein. The genes pilT (CD3505) 

and pilA (CD3507) for deletion are coloured red. 

 

It was predicted that C. difficile pilA or pilT mutants 

would be impaired in twitching motility. The deletion of 

pilT was generated in both C. difficile 630∆erm and in C. 
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difficile ∆fliC 383 strains. The double deletion mutant C. 

difficile ∆fliC ∆pilT was constructed to: i) aid the 

investigation of TFP-mediated motility by exclusion of 

flagella-mediated motility and to aid in the investigation 

of other future TFP function tests e.g. adhesion assays, 

biofilms in which in other species flagella are known to be 

involved; and, ii) test the robustness of the genetic 

system by the construction of multiple deletions.   

 

 

Construction of a C. difficile pilT deletion strain: 

 

Construction of allele replacement vector pES2922: 

Regions flanking (~500 bp) the pilT gene were amplified by 

PCR using chromosomal DNA from 630∆erm as template, with 

primers SphI-CD3505-1 and CD3505-2 used to amplify the pilT 

LF and primers CD3505-3 and SphI-CD3505-4 used to amplify 

the pilT RF (FIG 4.16). The pilT flanking regions were 

fused together by cross-over PCR using primers SphI-CD3505-

1 and SphI-CD3505-4, resulting in the pilT deletion 

cassette (FIG 4.16), which was subsequently ligated into 

the FspI site of pES242, generating the allele replacement 

vector pES2922 (FIG 4.16). Plasmid pES2922 was sequenced to 

validate construction. 
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FIG 4.16  Construction of the allele replacement vector pES2922 

A] Construction of the pilT deletion cassette. Primers SphI-CD3505-1( ) 

and CD3505-2 ( ) were used to amplify by PCR the left flanking region 

(LF, 514 bp) of the pilT gene from 630∆erm genomic DNA. Primers CD3505-

3 ( ) and SphI-CD3505-4( ) were used to amplify by PCR the right 

flanking region (RF, 522 bp) of the pilT gene. The LF and RF products 

were fused together by subsequent cross-over PCR using primers SphI-

CD3505-1( ) and SphI-CD3505-4( ) generating the pilT deletion cassette 

(~1 Kb). Gel 1 lane 1 refers to 1 kb ladder. Gel 1 lane 2 and 4 refer 

to primers SphI-CD3505-1/CD3505-2 and CD3505-3/SphI-CD3505-4 control 

PCR, respectively. Gel 1 lane 3 and 5 refer to LF and RF PCR products, 

respectively. Gel 2 lanes 1, 2 and 3 refer to 1 kb ladder, primers 

SphI-CD3505-1/SphI-CD3505-4 control PCR and pilT deletion cassette, 

respectively. B] Construction and gel analysis of pES2922. The pilT 

deletion cassette was ligated into the FspI site of pES242 generating 

pES2922. Gel lanes 1, 2, 3 and 4 correspond to supercoiled pES2922, 

SphI digested pES2922, I-SceI digested pES2922 and 1 kb ladder, 

respectively.    
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Introduction of pES2922 into C. difficile 630∆erm and screening for a single 

cross-over event: 

The ∆pilT allele replacement vector, pES2922, was 

introduced into C. difficile 630∆erm by exponential mating. 

From this mating, six putative transconjugants were 

obtained (named 35/1, 35/3, 35/5, 35/7, 35/8 and 35/10) 

which were inoculated into liquid BHITm15 and also streaked 

on BHITm15cfx8cls250 agar. All putative transconjugants 

obtained were confirmed to contain the plasmid pES2922 by 

PCR amplification of the pilT deletion cassette and the wt 

pilT gene, including flanking regions, using primers SphI-

CD3505-1 and SphI-CD3505-4 with plasmid DNA prepared from 

overnight cultures as template (FIG 4.17). After overnight 

incubation of the streaked transconjugants strains on 

BHITm15cfx8cls250 agar, a mixed sized population of big and 

small colonies was observed. A single cross-over event was 

enriched as previously described which resulted in the loss 

of the small sized population. The integration of pES2922, 

by a single cross-over event, was confirmed by PCR 

amplification of a ~1.2 kb sized fragment using chromosomal 

DNA of putative merodiploids with primer set SphI-CD3505-4 

and INT3505For or SphI-CD3505-1 and INT3505Rev (FIG 4.18). 

The INT3505For and INT3505Rev primers were designed to 

anneal outwith the pilT LF and RF regions in the C. 

difficile 630∆erm chromosome. This PCR assay confirmed the 

integration of pES2922 via the pilT LF in merodiploids 

INT35/7 and INT35/8, and the integration via the pilT RF in 

merodiploids INT35/1, INT35/5 and INT35/10 (FIG 4.18). In 

the 35/3 transconjugant strain, pES2922 remained in its 

replicative form. The partial diploids INT35/5 and INT35/8 

were chosen for subsequent resolution by induction of a 

second cross-over. 
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FIG 4.17  PCR screening for pES2922 transconjugants 

PCR amplification of the pilT deletion cassette together with the wt 

pilT including flanking regions, using primers SphI-CD3505-1 ( ) and 

SphI-CD3505-4 ( ) with plasmid preparation as template, confirmed the 

presence of pES2922 in transconjugant strains 35/1, 35/3, 35/5, 35/7, 

35/8 and 35/10. From the wt strain 630∆erm only the wt pilT including 

flanking regions is amplified. Gel lanes 1 and 2 refer to the pilT 

deletion cassette used for ligation and primers control PCR, 

respectively.  Lane 11 refers to 1 kb ladder. Lanes 3, 4, 5, 6, 7, 8, 

9, and 10 refer to PCR product from pES2922, 630∆erm, 35/1, 35/3, 35/5, 

35/7, 35/8 and 35/10, respectively.  
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FIG 4.18  PCR screening for single cross-over integration of pES2922 

A single cross-over integration of pES2922 into C. difficile 630∆erm 

chromosome was screened by PCR, using primer sets INT3505For ( ) and 

SphI-CD3505-4 ( ) or SphI-CD3505-1 ( ) and INT3505Rev ( ) with 

chromosomal DNA of putative merodiploids as template. Note that primers 

INT3505For and INT3505Rev anneal outwith of the pilT flanking regions 

on the chromosome. Solid line represents plasmid sequence while dashed 

line represents chromosomal sequence. The amplification of a ~1.2 kb 

product using either primer set confirmed an integration event. Gel 

lanes 1 and 10 refer to 1 kb ladder. Lanes 2 and 11 refer to primers 

SphI-CD3505-4/INT3505For and SphI-CD3505-1/INT3505Rev control PCR, 

respectively. Lanes 3, 4, 5, 6, 7, 8 and 9 refer to PCR product 

obtained from 630∆erm, 35/1, 35/3, 35/5, 35/7, 35/8 and 35/10 using 

primers SphI-CD3505-4/INT3505For, respectively. Lanes 12, 13, 14, 15, 

16, 17 and 18 refer to PCR product obtained from 630∆erm, 35/1, 35/3, 

35/5, 35/7, 35/8 and 35/10 using primers SphI-CD3505-1/INT3505Rev, 

respectively.   
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Introduction of pES288 into merodiploids INT35/5 and INT35/8, screening and 

confirmation of a second cross-over event: 

The I-SceI expression vector pES288 was introduced into the 

merodiploids INT35/5 and INT35/8 via exponential mating. 

The putative transconjugants obtained (6 and 7 

transconjugant colonies from INT35/5 and INT35/8 matings, 

respectively) were streaked twice on BHI containing 

erythromycin at 10 μg/ml (BHIErm10) and colonies from each 

subculture were then screened for thiamphenicol 

sensitivity, which is indicative of resolution. Screening 

for thiamphenicol sensitive strains from the first 

subculture showed no resolution for either merodiploid 

strain INT35/5 or INT35/8 (total 12 and 14 colonies 

screened from INT35/5 and INT35/8, respectively). Screening 

for thiamphenicol sensitive colonies from the second 

subculture showed a resolution of 29.2% for merodiploid 

INT35/5 (19 sensitive colonies from total 65 screened) and 

a 0% for merodiploid INT35/8 (total 66 colonies screened).  

The double cross-over events were confirmed by PCR, using 

primers SphI-CD3505-1 and SphI-CD3505-4 and genomic DNA 

from the thiamphenicol sensitive strains isolated above 

(FIG 4.19). The pilT deletion cassette was amplified from 

strains No. 271, 272, 288 and 292. The wt pilT region was 

amplified from resolved strains No. 273, 274, 275, 276, 

279, 281, 282, 376, 378, 379, 380, 391, 430, 432 and 434. 

Subsequent sequencing of the amplified pilT deletion 

cassette, from ∆pilT strains No. 271, 272, 288 and 292, 

confirmed the in-frame replacement of the wt pilT allele by 

the deletion cassette in the chromosome of these strains 

with the predicted sequence joints (FIG 4.19). The I-SceI 

expression vector pES288 was eliminated from these strains 

by streaking twice on agar BHI without erythromycin.  
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FIG 4.19  Screening and confirmation of second cross-over in ∆pilT recombinant strains 

A] A second cross-over event was identified by PCR using primers SphI-

CD3505-1 ( ) and SphI-CD3505-4 ( ) with chromosomal DNA of putative 

recombinant strains. The amplification of the pilT deletion cassette 

(~1 kb) identified putative ∆pilT recombinant strains, while the 

amplification of the wt pilT including flanking regions (~2 kb) 

identified strains that resolved to wt. Gel 1 lanes 1, 2 and 3 refer to 

1 kb ladder, primer control PCR and product obtained from pES2922, 

respectively. Gel 1 lanes 5, 6, 14 and 15 refer to PCR product obtained 

from ∆pilT strains No. 271, 272, 288 and 292, respectively. Gel 1 lanes 

4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19 and 20 refer to PCR product 

obtained from wt strains 630∆erm, 273, 274, 275, 276, 279, 281, 282, 

376, 378, 379, 380 and 391, respectively. Gel 2 lane 4 refers to 1 kb 

ladder. Gel 2 lanes 1, 2 and 3 refer to PCR product obtained from 

resolved wt strains No. 430, 432 and 434, respectively. B] The pilT 

deletion cassettes amplified from the ∆pilT strains were sequenced and 

a partial sequence alignment of the pilT LF and RF together with the 

joining point is shown.   
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Attempted construction of C. difficile pilA deletion strain: 

 

Construction of allele replacement vector pES2923: 

Around 500 bp regions flanking the putative pilA gene 

(CD3507) in C. difficile 630∆erm were amplified by PCR 

using genomic DNA as template, with primers  SphI-CD3507-1 

and CD3507-2 to amplify the pilA LF and primers CD3507-

3 and SphI-CD3507-4 to amplify the pilA RF (FIG 4.20). The 

pilA LF and RF were fused together by subsequent cross-over 

PCR using primers SphI-CD3507-1 and SphI-CD3507-4 to 

generate the pilA deletion cassette (FIG 4.20). The 

deletion cassette was then ligated into the FspI site of 

pES242 resulting in the allele replacement vector pES2923 

(FIG 4.20). The vector was sequenced to verify 

construction.  
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FIG 4.20  Construction of the allele replacement vector pES2923 

A] Construction of the pilA deletion cassette. Primers SphI-CD3507-1( ) 

and CD3507-2 ( ) were used to amplify by PCR the left flanking region 

(LF, 521 bp) of the pilA gene from 630∆erm genomic DNA. Primers CD3507-

3 ( ) and SphI-CD3507-4 ( ) were used to amplify by PCR the right 

flanking region (RF, 477 bp) of the pilA gene. The LF and RF products 

were fused together by subsequent cross-over PCR using primers SphI-

CD3507-1 ( ) and SphI-CD3507-4 ( ) generating the pilA deletion 

cassette (~1 Kb). Gel 1 lane 1 refers to 1 kb ladder. Gel 1 lane 2 and 

4 refer to primers SphI-CD3507-1/CD3507-2 and CD3507-3/SphI-CD3507-

4 control PCR, respectively. Gel 1 lanes 3 and 5 refer to LF and RF PCR 

product, respectively. Gel 2 lanes 1, 2 and 3 refer to 1 kb ladder, 

primers SphI-CD3507-1/SphI-CD3507-4 control PCR and cross-over PCR 

product, respectively. B] Construction and gel analysis of pES2923. The 

pilA deletion cassette was ligated into the FspI site of pES242 

generating pES2923. Gel lanes 1, 2, 3 and 4 correspond to supercoiled 

pES2923, SphI digested pES2923, I-SceI digested pES2923 and 1 kb 

ladder, respectively.    
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Introduction of pES2923 into C. difficile 630∆erm, single cross-over and double 

cross-over event: 

The allele replacement vector pES2923 was introduced into 

C. difficile 630∆erm from E. coli via stationary mating. 

One putative transconjugant was obtained (named 41/2), 

which was inoculated into liquid BHITm15 and also streaked 

on BHITm15cfx8cls250 agar. The presence of pES2923 in 

630∆erm was confirmed by PCR amplification of the pilA 

deletion cassette together with the amplification of the wt 

pilA, including flanking regions, using plasmid DNA 

extracted from overnight culture of the putative 

transconjugant with primers SphI-CD3507-1 and SphI-CD3507-4 

(FIG 4.21). In addition, as observed previously, the 

overnight incubated agar streaked with the putative pES2923 

transconjugant strain 41/2 showed a mixed sized population.  

A single cross-over event was enriched and selected as 

previously, by a second subculture on thiamphenicol 

containing medium, passage through medium without 

thiamphenicol and selection of putative single cross-over 

integrants by plating on thiamphenicol. This resulted in 

the loss of small sized colonies. Integration of pES2923 

into the C. difficile 630∆erm chromosome was confirmed via 

the amplification of a ~1.2 kb sized fragment, by PCR, 

using genomic DNA of putative partial diploids with primer 

set INT3507For and SphI-CD3507-4 or SphI-CD3507-1 and 

INT3507Rev(FIG 4.22). The INT3507For and INT3507Rev primers 

were designed to anneal to regions outwith of the pilA 

flanking regions on the chromosome. This PCR screening 

confirmed the integration of pES2923 in three merodiploids, 

named INT41/2, INT41/2/1/2 and INT41/2/2/2 via the pilA RF.  
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FIG 4.21  PCR screening for pES2923 transconjugants 

PCR amplification of the pilA deletion cassette together with the wt 

pilA including flanking regions using primers SphI-CD3507-1 ( ) and 

SphI-CD3507-4 ( ) with plasmid extract as template confirmed the 

presence of pES2923 in transconjugant strain 41/2. From the wt strain 

630∆erm only the wt pilA including flanking regions is amplified. Gel 

lanes 1 and 2 refer to 1 kb ladder and primers control PCR. Lane 3 

refers to pilA deletion cassette used for ligation. Lane 4, 5 and 6 

refer to PCR product obtained from pES2923, 630∆erm and transconjugant 

41/2, respectively.   
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FIG 4.22  PCR screening for single cross-over integration of pES2923 

A single cross-over integration of pES2923 into C. difficile 630∆erm 

chromosome was screened by PCR using primer sets INT3507For ( ) and 

SphI-CD3507-4 ( ) or SphI-CD3507-1 ( ) and INT3507Rev ( ) with 

chromosomal DNA of putative merodiploids as template. Note that primers 

INT3507For and INT3507Rev anneal outwith of the pilA flanking regions 

on the chromosome. Solid line represents plasmid sequence while dashed 

line represents chromosomal sequence. The amplification of a ~1.2 kb 

product using either primer set confirmed an integration event. Gel 1 

refers to PCR products obtained using primers INT3507For and SphI-

CD3507-4. Gel 1 lane 1 and 2 refer to 1 kb ladder and primers control 

PCR, respectively. Gel 1 lanes 3, 4, 5 and 6 refer to PCR products 

obtained from 630∆erm, INT41/2, INT41/2/1/2 and INT41/2/2/2, 

respectively. Gel 2 refers to PCR products obtained using primers SphI-

CD3507-1 and INT3507Rev. Gel 2 lane 1 and 2 refer to 1 kb ladder and 

primers control PCR, respectively. Gel 2 lanes 3, 4, 5 and 6 refer to 

PCR product obtained from 630∆erm, INT41/2, INT41/2/1/2 and 

INT41/2/2/2, respectively.  
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The I-SceI expression vector pES288 was introduced into all 

three merodiploids by exponential mating with E. coli. The 

transconjugants obtained were streaked twice on AIMErm10 

and BHIErm10 to enrich for a double cross-over event. 

However, screening for thiamphenicol sensitive strains from 

both subcultures gave no resolved colonies. Total colonies 

screened from sub1 transconjugant cultures of INT41/2, 

INT41/2/1/2 and INT41/2/2/2 were 35, 17 and 5, 

respectively. Total colonies screened from sub2 

transconjugant cultures of INT41/2, INT41/2/1/2 and 

INT41/2/2/2 were 154, 110 and 23, respectively. Therefore, 

in these merodiploids containing pES288, a second cross-

over did not occur.  

 

Construction of C. difficile ∆fliC ∆pilT: 

 

Introduction of pES2922 into C. difficile ∆fliC and screening for a single cross-

over event: 

The allele replacement vector pES2922 which carries the 

pilT deletion cassette was introduced via exponential 

mating from E. coli into the C. difficile ∆fliC 383 strain 

isolated previously. From this mating one putative 

transconjugant was obtained (named 383/35/1) which was 

inoculated into liquid BHITm15 and also streaked on BHITm15 

agar. It was confirmed that this strain contained pES2922 

by amplification of the pilT deletion cassette, together 

with the amplification of the wt pilT and flanking regions 

by PCR using primers SphI-CD3505-1 and SphI-CD3505-4 with 

DNA extracted from the overnight culture as template (FIG 

4.23). In addition, the overnight incubated BHITm15 agar 

streaked with the putative transconjugant strain showed 
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growth of mixed sized colonies, similar to all previously 

described cases following the introduction of the allele 

replacement vectors (FIG 4.24).  

 

 

 

FIG 4.23  PCR screening for pES2922 transconjugants of ∆fliC 383 

PCR amplification of the pilT deletion cassette together with the wt 

pilT including flanking regions using primers SphI-CD3505-1 ( ) and 

SphI-CD3505-4 ( ) with plasmid extract as template, confirmed the 

presence of pES2922 in transconjugant strain 383/35/1. From the wt 

strain 630∆erm only the wt pilT including flanking regions is 

amplified. Gel lanes 1 and 2 refer to 1 kb ladder and primers control 

PCR, respectively. Lanes 3, 4, 5, and 6 refer to PCR product obtained 

from pES2922, 630∆erm, ∆fliC 383 and 383/35/1, respectively.  
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FIG 4.24  Colony size after introduction of pES2922 into C. difficile ∆fliC 383 

BHITm15 agar streaked with the putative transconjugant strain 383/35/1 

showed growth of a mixed sized population. Big colonies possibly 

represent putative merodiploids and small colonies possibly represent 

strains harbouring free plasmid. Examples of big and small colonies are 

indicated with red and blue arrows, respectively. 

 

 

A single cross-over event was enriched as before, via 

subculture on thiamphenicol containing medium, passaging 

through medium lacking thiamphenicol and streaking back on 

thiamphenicol containing medium. This resulted in the loss 

of small sized colonies. Single cross-over events were 

confirmed in four selected thiamphenicol resistant strains 

via the amplification of a ~1.2 kb sized fragment using 

primer set SphI-CD3505-4 and INT3505For or SphI-CD3505-1 

and INT3505Rev with chromosomal DNA of putative 

merodiploids as template (FIG 4.25). This confirmed the 

integration of pES2922 via the pilT LF into the genome of 

three merodiploids, named 383/35/INT2, 383/35/INT3 and 

383/35/INT4, and also confirmed the integration via the 

pilT RF into the genome of one merodiploid named 

383/35/INT1. The merodiploids 383/35/INT1 and 383/35/INT2 

were chosen for subsequent resolution. 
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FIG 4.25  PCR screening for single cross-over integration of pES2922 in C. difficile ∆fliC 

383 

A single cross-over integration of pES2922 into ∆fliC 383 chromosome 

was screened by PCR using primer sets INT3505For ( ) and SphI-CD3505-4 

( ) or SphI-CD3505-1 ( ) and INT3505Rev ( ) with chromosomal DNA of 

putative merodiploids as template. Note that primers INT3505For and 

INT3505Rev anneal outwith of the pilT flanking regions on the 

chromosome. Solid line represents plasmid sequence while dashed line 

represents chromosomal sequence. The amplification of a ~1.2 kb product 

using either primer set confirmed an integration event. Gel 1 lane 1 

refers to 1 kb ladder. Gel 1 lanes 2 and 3 refer to PCR product 

obtained from ∆fliC 383 using primers SphI-CD3505-4/INT3505For and 

SphI-CD3505-1/INT3505Rev, respectively. Gel 2 lanes 1 and 8 refer to 1 

kb ladder. Gel 2 lanes 2 and 9 refer to primers SphI-CD3505-

4/INT3505For and SphI-CD3505-1/INT3505Rev control PCR, respectively. 

Gel 2 lanes 3, 4, 5, 6 and 7 refer to PCR product obtained from 

630∆erm, 383/35/INT1, 383/35/INT2, 383/35/INT3 and 383/35/INT4 using 

primers SphI-CD3505-4/INT3505For, respectively. Gel 2 lanes 10, 11, 12, 

13 and 14 refer to PCR product obtained from 630∆erm, 383/35/INT1, 

383/35/INT2, 383/35/INT3 and 383/35/INT4 using primers SphI-CD3505-

1/INT3505Rev, respectively.  
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Introduction of pES288 into merodiploids 383/35/INT1 and 383/35/INT2, 

screening and confirmation of a second cross-over event: 

The I-SceI expression vector pES288 was introduced into the 

merodiploids 383/35/INT1 and 383/35/INT2 from E. coli by 

exponential mating. Putative transconjugants obtained from 

the matings were streaked twice on BHIErm10 agar to enrich 

and screen for double cross-over events. Screening for 

resolution, via loss of thiamphenicol resistance, from the 

first subculture yielded no recombinants for 383/35/INT1 

(total 80 colonies screened) but 4% resolved colonies from 

383/35/INT2 (3 sensitive colonies from total 75 screened). 

Screening of thiamphenicol sensitive colonies from the 

second subculture revealed a resolution of 0% from 

383/35/INT1 (total 40 colonies screened) and 23.8% from 

383/35/INT2 (20 sensitive colonies from total 84 screened).  

Double cross-over events, in the isolated thiamphenicol 

sensitive strains, were confirmed by PCR using primers 

SphI-CD3505-1 and SphI-CD3505-4 and genomic DNA from the 

candidate strains (FIG 4.26). The pilT deletion cassette 

was amplified from thirteen C. difficile putative 

∆flic∆pilT strains. The fliC deletion cassette was also 

amplified, by PCR, from these strains using SphI-fliC1 and 

SphI-fliC4 primers and genomic DNA as template. Together 

these data indicated successful construction of double 

deletion mutant. Subsequent sequencing of the amplified 

pilT deletion cassette from three chosen strains namely 

∆fliC ∆pilT No. 234, 238 and 250, confirmed the replacement 

of the wt pilT allele by the pilT deletion cassette with 

the predicted sequence joints in the chromosome of these 

strains (FIG 4.26). The wt pilT region was amplified from 

ten resolved strains from which the fliC deletion was also 

amplified, indicating strains that had resolved to the 

parental genotype. FIG 4.26 shows the amplified pilT and 
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fliC deletion cassettes from C. difficile ∆fliC ∆pilT No. 

234, 238 and 250 and from three resolved strains 

representing parental C. difficile ∆fliC 383, No.235, 236 

and 249. 

 

 

 

FIG 4.26  Screening and confirmation of second cross-over ∆fliC ∆pilT recombinants 

A] A second cross-over event was identified by PCR using primers SphI-

CD3505-1 ( ) and SphI-CD3505-4 ( ) with chromosomal DNA of putative 

recombinant strains. The amplification of the pilT deletion cassette 

(~1 kb) identified putative ∆pilT recombinant strains while the 

amplification of the wt pilT including flanking regions (~2 kb) 

identified strains that resolved to parental. Gel 1 lanes 1 and 11 

refer to primers SphI-CD3505-1/SphI-CD3505-4 control PCR and 1 kb 

ladder, respectively. Gel 1 lanes 2, 5, 6 and 7 refer to amplification 

of the pilT deletion cassette from pES2922, from putative ∆fliC ∆pilT 

No. 234, 238 and 250, respectively. Gel 1 lanes 3, 4, 8, 9 and 10 refer 

to the amplification of the wt pilT including flanking regions from 

630∆erm, ∆fliC 383, resolved parental No. 235, 236 and 249, 

respectively. Double deletion mutant strains ∆fliC ∆pilT and resolved 

strains back to ∆fliC 383 were indicated by the PCR amplification of 

the fliC deletion cassette using primers SphI-fliC1 and SphI-fliC4. Gel 

2 lanes 1 and 2 refer to 1 kb ladder and primers SphI-fliC1/SphI-fliC4 

control PCR, respectively. Gel 2 lanes 3, 4, 5, 6, 7, 8, 9, 10 and 11 
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refer to PCR product using primers SphI-fliC1 and SphI-fliC4 obtained 

from pES2922, 630∆erm, ∆fliC 383, ∆fliC ∆pilT 234, ∆fliC ∆pilT 238, 

∆fliC ∆pilT 250, resolved ∆fliC 383 No. 235, resolved ∆fliC 383 No. 236 

and resolved ∆fliC 383 No. 249, respectively. B] The pilT deletion 

cassettes amplified from the ∆fliC ∆pilT strains were sequenced and a 

partial sequence alignment of the pilT LF and RF together with the 

joining point is shown.      

   

   

Phenotypic characterization of the C. difficile pilT mutant strains: 

 

Twitching motility: 

Bacteria can swim in a liquid medium or swarm across a 

surface, powered by flagella rotation. They can translocate 

on solid and semi-solid surfaces via a flagellum-

independent form, but type-IV pilus-dependent motion, 

called twitching motility (Mattick, 2002; Burrows, 2005; 

Jarrell and McBride, 2008). Twitching motility is unique to 

TFP and the mechanism is attributed to repeated pilus 

extension, tethering and retraction resulting in a jerky 

movement (Henrichsen, 1972; Burrows, 2012; Giltner et al., 

2012). Multiple pieces of evidence have demonstrated that 

PilT is responsible for pilus retraction (Nudleman and 

Kaiser, 2004; Burrows, 2005). Therefore, twitching motility 

was investigated in the pilT mutant strains and it was 

hypothesised that these mutants would be impaired in this 

type of motility. Preliminary tests for twitching motility 

involved two methods; 1) colony expansion on the surface of 

semi-solid agar medium, and 2) colony expansion at the 

interstitial surface between agar and a plastic surface. It 

has been documented that different factors can influence 

twitching motility, including nutrients of the growth 

medium (Henrichsen, 1983; Semmler et al., 1999; Huang et 

al., 2003; Pamp and Tolker-Nielsen, 2007; Burrows, 2012). 
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In C. perfringens, gliding motility on a semi-solid agar 

surface is abolished in a pilT mutant and pilT expression 

is depressed in the presence of glucose with minimum 

inhibition observed at 0.5% and  maximum inhibition 

observed at 1% glucose concentration (Varga et al., 2006; 

Mendez et al., 2008). Therefore, in this study, twitching 

motility was investigated using AIM (does not contain 

glucose), BHI (contains 0.2% dextrose) and Blood agar 

medium without glucose addition or with glucose added at 

concentrations of 0.2%, 1% or 2%. Twitching motility was 

investigated in the wt C. difficile 630∆erm but also in 

strains containing ∆pilT (∆pilT 271), ∆fliC ∆pilT (∆fliC 

∆pilT 250) or ∆fliC (∆fliC 383) mutations.  

  

Translocation and morphology on semi-solid surface: 

Exponential cultures of the strains were spotted onto AIM, 

BHI and Blood agar medium with or without glucose and 

colony morphology and surface expansion of the cultures 

were recorded after five days of incubation. This was 

tested at least twice for each growth medium used. 

All strains tested (630∆erm, ∆pilT 271, ∆fliC ∆pilT 250, 

∆fliC 383), behaved similarly between them regarding 

culture expansion on the different media used (FIG 4.27). 

Under the conditions used in this study, the strains 

lacking the pilT gene did not show any obvious impairment 

in the surface translocation compared to the parental 

strain. Addition of glucose to the growth medium had very 

little effect on the culture surface expansion with 

reduction of 1 mm on AIM and Blood agar and 2 mm on BHI 

agar compared to medium without glucose.  
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The morphology of the colony spots of all strains, although 

different on different media, displayed the same pattern 

(FIG 4.27). All strains were irregularly shaped and more 

rhizoid or more undulate shaped at glucose concentrations 

less than 1%, and had a more entire margin and displayed a 

more concentrated colony mass at glucose concentrations of 

1% and 2%. On Blood agar without glucose the fliC deficient 

strains, ∆fliC ∆pilT 250 and ∆fliC 383, displayed thinner 

rhizoids than the wt 630∆erm or the ∆pilT 271 mutant. On 

Blood agar with 1% and 2% glucose, all strains displayed a 

thin outline of cells. On BHI with glucose at 0% and 0.2%, 

all strains were more undulate shaped than on BHI with 1% 

glucose, which also displayed a thin outline of cells. All 

strains on BHI with 2% glucose were not undulate but had an 

entire margin. Similar to BHI, all strains displayed a more 

undulate shape on AIM at glucose concentrations of 0% and 

0.2%, compared to those containing glucose at 1% and 2%. On 

AIM with 1% glucose concentration, the wt 630∆erm and ∆pilT 

271 mutant were more undulate shaped than the fliC 

deficient strains ∆fliC ∆pilT 250 and ∆fliC 383. All 

strains on this medium displayed a thin outline of cells. 

Together these data indicate that any differences observed 

between the strains was due to absence or presence of 

flagella. Representative examples of all strains on 

different media are shown in FIG 4.27 
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FIG 4.27  Twitching surface motility assay 

Photos are shown of five day incubated Blood (A), BHI (B) and AIM (C) 

agar(0.7% agar) medium with increasing glucose concentration spotted 

with exponential cultures of wt 630∆erm, ∆pilT 271, ∆fliC 383, and 

∆fliC∆pilT 250. All strains behaved similarly under the conditions 

tested. Colony expansion was the same between pilT deletion and pilT 

proficient strains. Less rhizoid or less wavy shaped and smaller colony 

spots are produced at glucose concentrations of 1% and 2%. 

 

 

Subsurface translocation: 

Colony expansion at the interstitial surface between agar 

and a plastic petri dish was measured for strains ∆pilT 

271, ∆fliC∆pilT 250, ∆fliC 383 and wt 630∆erm. Measurements 

were made in triplicate and used Blood or BHI agar with 

glucose omitted or with glucose at a concentration of 0.2%, 

1% and 2%. Colony expansion was the same for all strains 

with each medium used. As with surface translocation, the 

pilT mutant strains did not show an obvious phenotype. 
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Moreover, as described above, the addition of glucose at 1% 

and 2% reduced (1–2mm) the colony expansion of all strains 

(data not shown).  

 

Colony morphology:  

At the macroscopic level all strains, ∆pilT 271, ∆fliC 

∆pilT 250, ∆fliC 383 and wt 630∆erm, displayed the same 

colony morphology and colony size when streaked to single 

colonies on BHI, AIM and Blood agar medium. In addition, 

when these strains were streaked on BHI or AIM containing 

1% glucose they produced the same size colonies as growth 

without glucose. While the gross morphology was the same, 

there was a greater biomass present. 

 

Electron microscopy for type IV pilus:  

The strain ∆fliC 383 was examined for the presence of pili. 

This strain was chosen for visualisation of pili surface 

production since it is non-flagellated. Single colonies of 

the ∆fliC 383 strain grown on BHI, Blood, AIM and AIM 

supplemented with 0.2% fucose (fucose was used to mimic the 

types of sugars present on the surface of epithelial cells 

in the GI tract), were examined by EM for the presence of 

pili. No visible pili were observed on the surface of any 

of the cells examined, despite a large number of cells 

being examined. A representative image obtained from the EM 

of ∆fliC 383, grown on AIM, is shown in FIG 4.10  
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4.2.3: Gene regulation of C. difficile type IV pilus biosynthesis locus 

 

Introduction and bioinformatics analysis of an intergenic region upstream 

of the TFP biosynthesis locus: 

Under the conditions used in this study the ∆fliC 383 

strain revealed lack of pili on the surface of the cells, 

as demonstrated by electron microscopy, which indicates 

that TFP are regulated and the TFP locus may be repressed 

at the transcriptional level. In the genome of C. difficile 

630 there is an intergenic region, with no annotated genes, 

immediately upstream of the TFP locus. Bioinformatics 

analysis of this sequence demonstrated no potential open 

reading frames with potentially significant translation 

products. FIG 4.28 shows the TFP biosynthesis locus in the 

genome of 630 and the 1087 bp upstream intergenic region 

which is located between the putative pilin protein 

encoding CD3513 locus and the gene prs (ribose-phosphate 

pyrophosphokinase).  

 

 

 

FIG 4.28  C. difficile type IV pilus locus and location of the intergenic region  

The eleven type IV pilus associated genes in the CD3503 – CD3513 locus 

in the C. difficile 630 genome are shown. Nomenclature of genes is 

given in FIG 4.15. The intergenic region (1087 bp) located between the 

CD3513 locus (13, putative pilin protein) and the prs gene (putative 

ribose-phosphate pyrophosphokinase) is also shown. 
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Intergenic regions in bacteria are rare and may contribute 

to gene regulation of downstream genes. Considering the 

location of this region, we hypothesised that it may be 

involved in regulation of TFP genes in C. difficile 630. 

Comparison of the intergenic region to the genomes of eight 

other C. difficile strains (R2091, CD196, M68, Bl1, Bl9, 

M120, 2007855 and CF5) revealed a high percentage of 

sequence similarity (97% - 99%). Conservation of this 

region in other strains implies importance. In addition, 

further computational analysis showed that, the intergenic 

region in two C. difficile strains, R20291 and CD196, is 

also located upstream of the genes predicted to encode type 

IV pilus proteins. This further supports the hypothesis 

that this region may be associated with the regulation of 

TFP biosynthesis in C. difficile.   

To identify potential binding sites for regulatory proteins 

in the intergenic region, computational analysis, using DNA 

fold, was performed which revealed the presence of inverted 

repeats (FIG 4.29). Downstream of the prs gene a putative 

intrinsic terminator was identified, therefore 

transcription of the TFP locus would most likely start 

downstream of this terminator. In addition the region was 

scanned for putative promoters, using as a reference point 

the promoters described in C. difficile for the rRNA and 

glutamate dehydrogenase genes (Mani et al., 2006). However, 

a promoter was not easily identifiable because the 

intergenic region is AT rich, with a total AT content of 

78%. The genome of C. difficile 630 features a low CG 

content of 29.06% (Sebaihia et al., 2006). The aim of this 

study was to look for promoter activity in the intergenic 

region. This involved the use of a thiamphenicol expression 

catP reporter system and is described below. 
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FIG 4.29  Intergenic region sequence 

The sequence of the intergenic region between the CD3513 locus and the 

prs gene on the forward strand from the C. difficile 630 genome is 

shown. The direction of transcription of the genes is shown in yellow 

arrows. The inverted repeats identified in this region are highlighted 

in grey and complementary sequences are coloured red. The terminator 

sequence downstream of the prs gene is underlined. The 5’-end (blue 

highlighted bases) and direction of primers (blue arrows) used to 

amplify fragments of the intergenic region described in FIG 4.30 are 

indicated. Promoters predicted in the intergenic region using the BPROM 

(Softberry) program are listed in Appendix I. Nucleotide content of the 

sequence; A content: 424 (39.0%), C content: 166 (15.27%), G content: 

72 (6.62%) and T content: 425 (39.09%). 

 

 

 

   

 

 

 TTTTATTCCCCCTTAAATTTTTTAATTAATACTTACTTATAATATATCTGGTTAAAAATCTAAGTAAAA 

TTATTTAAACGTACTAACCAAATTTATTTCTAACATATAACCATTTTTTAAATAAAAAAAGCTATGAAAA 

TAATAGTATCTATAAATAAATACAATTTCATAGCCGGTTGCACCACTAACTCAATATGCTCCAAGGTGCC 

CACATTACAGAACATAAATCAACGTTTCTATTTTATTAAATTCAAAATTATATAACTCATAATGTATATA  

CATATCCACTTATATTATATAATATCTACCATATTTTAGCAACACTGTTTATACTATTTATATATACCAA 

CTTTTTACATATTGAAACAGAATTTCTAGAAAAATTATGCTATACAAAAAAAAAGAAACATCTCCCTACA 

ATTATTATATATCGTAAGGAGATATTTATAAATTATCATTTAGTTTTATCATTGTCATTTCCATCCTTTG 

CTAATATTTATTTGAAAGCTAAAAGCTATTACAATATAGTATTTTATAAAATCATCTATTATAAACATTC 

TATCTATTATAGTTATGATTCAGCCACAATCATTATATAAACGAAACTCTTCATTTACAGATATGCTTAT 

TGTGCAAAATTACTCTTTACAGTAATCTTATATAATCCAGAACCCTCTCACAAACACTAAAGATAGAATA 

GATACTATTTTCAATTCTTATAAATAAACTTTCAATAGATTTTTATATTCACTTTAGATTGTGACTGAAT 

CATTTAATTATTAGGGGTTCATCTTCTAACCTTCCCATTGGAAACACCTCTTTCTTTATTTATATTTACA 

TAATACTACATAATCTGAATTTTTTCAATACTTTTTTGTAATATTTTTTATATTCATAATATTTTGAATA 

ATATATCCTTTATTAGGTTTATTTTACTTAAATATACATAATTTTAAACTATAATCTCTTTTTACAATAA 

TATATACCTTTCTAACAAGAAAAAAATAACATTCCATAAGTATAAAATCAAAAAAGAGTTGCTCAAAAGG 

TTTATATCCTTTTAAACAACTCTCATAAATACAATAAA 

 

 

69 bp 

139 bp 

209 bp 

279 bp 

349 bp 

419 bp 

489 bp 

559 bp 

629 bp 

699 bp 

769 bp 

839 bp 

909 bp 

979 bp 

1049 bp 

CD3513 

prs 

NdeI-pilprom 

NotI-pilprom1 

NotI-pilprom2 

NotI-pilprom3 

 NotI-pilprom4 

NotI-pilprom5 

NotI-pilprom6 

NotI-pilprom7 
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Construction of the catP reporter vectors pES2241-7: 

A series of plasmids containing fragments of the intergenic 

region were constructed using the catP reporter plasmid 

pMTL82254 (Heap et al., 2009). As described in chapter 3, 

this plasmid is an E. coli – Clostridium shuttle vector 

that carries an erythromycin resistance gene and also 

contains a promoter-less catP gene (Heap et al., 2009). 

As shown in FIG 4.30, primers were designed to amplify 

fragments of the intergenic region, starting with the 

largest fragment at 1071 bp upstream of the methionine 

codon of the CD3513 gene and creating consecutive deletion 

PCR fragments ending at 101 bp upstream of the CD3513 gene 

start codon. The fragments were designated pilprom1 

(excluding added restriction sites) (101 bp), pilprom2 (229 

bp), pilprom3 (330 bp), pilprom4 (494 bp), pilrpom5 (692 

bp), pilrom6 (824 bp) and pilprom7 (1071 bp), and were 

amplified by PCR using genomic DNA from C. difficile 

630∆erm as template with primer NdeI-pilprom in combination 

with primer NotI-pilprom1, NotI-pilprom2, NotI-pilprom3, 

NotI-pilprom4, NotI-pilprom5, NotI-pilprom6 or  NotI-

pilprom7 (FIG 4.30). These fragments were subsequently 

ligated into the NotI/NdeI site of pMTL82254 such that each 

fragment was directly upstream to the promoter-less catP 

gene in this vector. Ligation of fragments pilprom 1 to 7 

generated the vectors pES2241 to pES2247 (FIG 4.30). The 

constructs were sequenced to validate construction.  
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FIG 4.30  Construction of pES2241-7 catP reporter recombinant plasmids 
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A] Seven deletion fragments pilprom1-7 were amplified by PCR using 

genomic DNA of C. difficile 630∆erm as template and primer NdeI-pilprom 

in combination with primer NotI-pilprom1, NotI-pilprom2, NotI-pilprom3, 

NotI-pilprom4, NotI-pilprom5, NotI-pilprom6 or NotI-pilprom7. The sizes 

of fragments are shown without restriction sites added from primers. 

Gel lane 1 refers to 100 bp ladder. Gel lanes 2, 3, 4, 5, 6, 7 and 8 

refer to PCR fragment pilrpom1, pilprom2, pilprom3, pilprom4, pilrpom5, 

pilprom6 and pilrom7 obtained, respectively.                                            

B] NotI and NdeI digested pilprom1-7 fragments were ligated into the 

NotI/NdeI sites of pMTL82254 generating pES2241-7. The gels refer to 

restriction digest analysis of pES2241-7. Lanes 1, 2 and 3 of all gels 

refer to 1 kb ladder, supercoiled pMTL82254 and NotI/NdeI digested 

pMTL82254, respectively. Gel 1 lane 4, 11 and 16 refer to NotI/NdeI 

digested pilprom1, pilprom2 and pilprom3 fragments, respectively. Gel 1 

lanes 5-10 refer to pES2241 from three clones with lanes 5, 7 & 9 

representing supercoiled pES2241 and lanes 6, 8 & 10 representing 

NotI/NdeI digested pES2241. Gel 1 lanes 12-15 refer to pES2242 from two 

clones with lanes 12 & 14 representing supercoiled pES2242 and lanes 13 

& 15 representing NotI/NdeI digested pES2242. Gel 1 lanes 17-20 refer 

to pES2243 from two clones with lanes 17 & 19 representing supercoiled 

pES2243 and lanes 18 & 20 representing NotI/NdeI digested pES2243. Gel 

2 lanes 4, 9 and 16 refer to NotI/NdeI digested pilprom4, pilprom5 and 

pilprom6 fragments, respectively. Gel 2 lanes 5-8 refer to pES2244 from 

two clones with lanes 5 & 7 representing supercoiled pES2244 and lanes 

6 & 8 representing NotI/NdeI digested pES2244. Gel 2 lanes 10-15 refer 

to pES2245 from three clones with lanes 10, 12 & 14 representing 

supercoiled pES2245 and lanes 11, 13 & 15 representing NotI/NdeI 

digested pES2245. Gel 2 lanes 17-20 refer to pES2246 from two clones 

with lanes 17 & 19 representing supercoiled pES2246 and lanes 18 & 20 

representing NotI/NdeI digested pES2246. Gel 3 lane 4 refers to 

NotI/NdeI digested pilprom7 fragment. Gel 3 lanes 5-8 refer to pES2247 

from two clones with lanes 5 & 7 representing supercoiled pES2247 and 

lanes 6 & 8 representing NotI/NdeI digested pES2247.         
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Conjugation of vectors and expression of the catP gene: 

From the seven constructs made, four plasmids pES2241, 

pES2244, pES2246 and pES2247 were successfully introduced 

into C. difficile 630∆erm from E. coli by exponential 

conjugation. For control experiments, the pMTL82254 vector 

was also conjugated into C. difficile 630∆erm. 

Transconjugants were confirmed via PCR using pMTL82254 

specific primers Trans-1 and Trans-2 with plasmid extracts 

from putative transconjugants (FIG 4.31).  

An initial qualitative test for promoter activity in the 

intergenic region involved streaking the strains harbouring 

pES2241, pES2244, pES2246 and pES2247 to single colonies on 

growth medium containing thiamphenicol. It was assumed that 

strains harbouring the recombinant plasmids with a promoter 

would be thiamphenicol resistant. Single colonies of the C. 

difficile 630∆erm strains containing pES2241, pES2244, 

pES2246 or pES2247, were streaked on AIMErm10 agar (AIM 

agar containing erythromycin at 10 μg/ml to select for the 

plasmid), on AIMErm10Tm15 agar (AIM agar containing 

erythromycin at 10 μg/ml and thiamphenicol at 15 μg/ml) and 

on AIMTm15 (AIM agar containing thiamphenicol at 15 μg/ml). 

As a control, the strains C. difficile 630∆erm and C. 

difficile 630∆erm containing pMTL82254 were also streaked 

to single colonies on the same media. FIG 4.31 shows photos 

of 48-h incubated plates. As expected, C. difficile 630∆erm 

containing pMTL82254 grew on the medium containing 

erythromycin but not on the medium containing 

thiamphenicol, while C. difficile 630∆erm did not grow on 

any antibiotic containing medium. All C. difficile 630∆erm 

strains containing pES2241, pES2244, pES2246 or pES2247 

grew on all media used. The transconjugant strain 

harbouring pES2241, containing the first 101 bp upstream of 

the CD3513 locus grew less well and showed patchy colony 
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growth on thiamphenicol containing medium, particularly on 

AIMTm15, compared to the rest of the strains. These data 

suggest that transcription is being initiated within the 

first 500 bp upstream of the CD3513 locus. The reduced 

thiamphenicol resistance in the strain harbouring pES2241 

may either suggest that a promoter exists 101 bp upstream 

of the CD3513 codon, but is being repressed or that a 

promoter does not exist within this region. The latter 

suggestion would agree with the observation that a promoter 

sequence was not easily defined within the first 100 bp of 

the intergenic region when compared to other described C. 

difficile promoters.   
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FIG 4.31  Thiamphenicol resistance of pES224 transconjugant strains 

A] C. difficile 630∆erm strains were confirmed to harbour pMTL82254, 

pE2241, pES2244, pES2246 or pES2247 by PCR, using pMTL82254 specific 

primers Trans-1 and Trans-2 which anneal outwith of the NotI/NdeI sites 

of pMTL82254 and as a template plasmid extracts of putative 

transconjugants. Gel lanes 1 and 14 refer to 100 bp ladder and 1 kb 

ladder, respectively. Lane 2 refers to primers control PCR. Lane 3 

refers to PCR product obtained from wt C. difficile 630∆erm plasmid 

extract. Lanes 5, 7, 9, 11 and 13 refer to PCR product obtained from 

plasmid extracts from transconjugant strains containing pMTL82254, 

pES2241, pES2244, pES2246 and pES22547, respectively. Lanes 4, 6, 8, 10 

and 12 refer to pML82254, pES2241, pES2244, pES2246 and pES2247 control 

PCR product obtained from E. coli plasmid extracts, respectively.                                                      

B] Photos of 48-h incubated AIMErm10, AIMErm10Tm15 and AIMTm15 agar 

media streaked with strains wt C. difficile 630∆erm (2), C. difficile 

630∆erm containing pMTL82254 (1), C. difficile 630∆erm containing 

pES2247 (3), C. difficile 630∆erm containing pES2246 (4), C. difficile 

630∆erm containing pES2244 (5) and C. difficile 630∆erm containing 

pES2241 (6). All strains containing pMTL82254-based plasmid grow on 

AIMErm10. Only strains containing pES224 plasmids grow on AIMErm10Tm15 

and AIMTm15. The strain C. difficile 630∆erm containing pES2241 shows 

reduced thiamphenicol resistance with sporadic colony growth 

particularly on AIMTm15 agar medium.                
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4.3: DISCUSSION 

 

In this study the optimization of the I-SceI genetic 

system, particularly the construction of a new I-SceI site 

delivery vector for the construction of various deletions 

in C. difficile, was described. The I-SceI delivery vector 

pES242 (chapter 4) and the I-SceI expression vector pES288 

(chapter 3) were used to delete the fliC, pilT and pilA 

genes in C. difficile. In this system, as with the genetic 

system in chapter 3, single cross-over integration was 

selected via thiamphenicol resistance and second cross-over 

resolution was screened via loss of thiamphenicol 

resistance. The use of the optimized system has shown its 

robustness and reproducibility by construction of the C. 

difficile ∆fliC and C. difficile ∆pilT strains, and 

construction of the double deletion strain C. difficile 

∆fliC ∆pilT. The ability to construct multiple deletions, 

using this system, is attributed to the fact that 

resolution results in the complete loss of thiaphenicol 

resistance and elimination of I-SceI expression vector 

pES288 is easily achieved by streaking twice on medium 

without erythromycin.  

Despite the recent development of other markerless deletion 

systems in C. difficile, it is important to note that a 

markerless double gene deletion of C. difficile has not 

been reported previously, supporting the uniqueness of this 

system over currently used genetic systems in C. difficile 

(Cartman et al., 2012; Ng et al., 2013). In addition, one 

of the systems uses a pyrE-based allelic exchange that 

requires the construction of an auxotrophic mutant strain 

before use of the mutagenesis system (Ng et al., 2013). 

Resulting strains therefore, carry additional mutations 
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that are not representative of the wild type and may have 

unforeseen consequences. The system can be used to convert 

the pyrE mutant strain with the modified target gene back 

to a pyrE
+
 strain, but this could add to laboratory work 

load. Although the widely used ClosTron system includes FRT 

sites to allow excision of ermB via the action of FLP 

recombinase for the re-use of the system for multiple gene 

interruptions, the ermB gene has never been excised in C. 

difficile, despite multiple attempts. This can be bypassed 

by using different ClosTron plasmids containing a 

retrotransposition activated marker (RAM) carrying 

different antibiotic resistance genes, with the end result 

being interruption of different genes of interest by 

different antibiotic genes (Kuehne and Minton, 2012). 

Nevertheless, this approach still produces inactivation of 

genes of interest by interruption and thus has potential 

polar effects and limits the number of genes that can be 

knocked out. 

Introduction of the I-SceI delivery vector into C. 

difficile in all cases, whether C. difficile 630∆erm or C. 

difficile ∆fliC 383, and in the presence of thiamphenicol 

selection resulted in a mixed sized colony population (2-3 

mm and pinpoint size) where larger colonies represented 

single cross-over strains and smaller colonies represented 

strains with free plasmid. The loss of the small sized 

population in all cases, after single cross-over 

enrichment, supports the hypothesis that bigger colonies 

may represent a merodiploid population. This was the 

predicted phenotype with the use of an allele replacement 

vector based on a plasmid carrying the pCB102 replicon, as 

previously observed by two different studies (Heap et al., 

2012; Cartman et al., 2012). According to observations from 

other studies, to enrich for single cross-over by growth 
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rate under antibiotic selection in other Clostridia, such 

as C. difficile R20291 and C. sporogenes, the Gram-positive 

replicons pBP1 (for C. difficile R20291) and pIM13 (for C. 

sporogenes) would be appropriate instead of pCB102 (Cartman 

et al., 2012; Heap et al., 2012).  

Introduction of the I-SceI expression vector pES288 in the 

co-integrant strains displayed a low resolution, with a 

maximum of 29%, which increased with subculturing, as 

previously discussed in chapter 3. However, the resolution 

observed in this study, as well as described in chapter 3, 

was due to I-SceI expression and not due to spontaneous 

second cross-over event as demonstrated by the lack of 

resolution after the introduction of pMTL82254 in the 

merodiploid strains INT10/1 and INT10/3 (pES2921 integrated 

in C. difficile 630∆erm chromosome). An intriguing 

observation was that introduction of pES288 did not always 

result in resolution of the merodiploid and it seemed that, 

for a particular gene deletion, a second cross-over event 

occurred in only one of the merodiploids that resulted from 

a right flank (RF) or left flank (LF) integration but not 

necessarily both.  For example, when pES288 was introduced 

into the merodiploids, resolution occurred in both fliC 

INT10/1 and INT10/3 both generated from LF integration, 

resolution occurred in pilT INT35/5 generated from RF 

integration but not in pilT INT35/8 generated from LF 

integration, and resolution occurred in fliCpilT 

383/35/INT2 generated by LF integration but not in fliCpilT 

383/35/INT1 generated by RF integration. Introduction of 

pES288 into the three pilA integrants (INT41/2, 41/2/1/2 

and 41/2/2/2) all generated by RF integration, did not 

result in resolution. It would be intriguing to test if a 

pilA integrant that had recombined via the LF could 

generate a second cross-over event. The resolution observed 
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according to integration site may be attributable to the 

positioning of Chi sites in relation to the integrated 

construct, and/or the distance that AddAB must translocate 

before encountering a Chi site.  

Deletion of the fliC gene in C. difficile resulted in a 

strain incapable of flagella-mediated motility. This 

phenotype agreed with the phenotype observed previously by 

two other groups when the fliC gene was insertionally 

inactivated (Twine et al., 2009; Dingle et al., 2011). 

Introduction of the complementation vector, pES196, into 

two ∆fliC strains, produced cells with a tumbling motility 

phenotype, as observed by wet mount microscopy. This non-

directional motility presumably prevented the strains from 

penetrating the soft agar medium, despite the EM 

observation that flagella were produced. The lack of a 

spreading phenotype in the soft agar was in contrast to the 

previously reported complemented strain containing an 

interrupted fliC gene were the spreading phenotype was 

restored (Dingle et al., 2011). The parental C. difficile 

strain containing pES196 showed a typical vigorous motility 

and a spreading phenotype in the soft agar medium, which 

excludes the possibility of adverse effects from flagellin 

overproduction. The observed phenotype of the complemented 

∆fliC strains may be attributed either to the out of frame 

deletion of the fliC gene or, alternatively, the deletion 

of the fliC gene may have also deleted a region that may be 

involved in the regulation of flagella-associated genes 

downstream, resulting in improper flagella function. Maybe 

a precise amount of FliC or other proteins is required for 

appropriate flagellar function. Immediately downstream of 

fliC is the CD0240 locus which encodes a 

glycosyltransferase enzyme. It has been shown that 

interruption of CD0240 results in cells that display a non-
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spreading phenotype in soft motility agar and produce 

limited amounts of flagellar filaments that are truncated 

in length (Twine et al., 2009). In addition, it is thought 

that the rotational force of the flagella motor is 

generated by the interaction between the rotor component 

FliG and the stator component MotA (Terashima et al., 

2008). In the genome of C. difficile 630, genes predicted 

to encode for FliG and MotA are located downstream of the 

fliC gene and an effect on their transcription and 

subsequent stoichiometry may be critical for flagellar 

rotation. Nevertheless, the non-flagellated ∆fliC 383 

strain was further used to search for presence of pili and 

twitching motility experiments. 

To characterize the isolated ∆pilT
 
strains, this study 

performed preliminary tests to investigate twitching 

motility. The measurement of colony expansion on the 

surface of agar or the interstitial surface revealed that 

all strains, whether ∆pilT
 
or pilT 

+
, expanded to the same 

size. Moreover, there was no obvious difference in colony 

morphology between the ∆pilT
 
or pilT 

+
 strains.  These 

observations were in contrast to a previous study on TFP-

mediated motility in C. perfringens, where surface motility 

was abolished in a pilT mutant (Varga et al., 2006). It 

should be noted that these tests were only preliminary due 

to time constrains, and certain factors should be taken 

into account before the interpretation of results and 

future work is suggested. First, it is important to note 

that twitching motility at the macroscopic level varies 

between different species and in vitro culture conditions 

need to be optimal for twitching to occur (Semmler et al., 

1999; Mattick, 2002). For example, in N. gonorrhoeae and N. 

meningitidis twitching zones formed from surface-grown 

colonies are so thin they can only be visualized 
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microscopically (Wolfgang et al., 1998; Mattick, 2002). In 

vitro culture conditions that have been reported to 

influence (stimulate or inhibit) twitching motility, 

particularly the composition of the growth medium include; 

nutrients or other compounds that influence the osmolality 

conditions, viscosity, hydrophobicity, tension of the 

medium surface i.e. tryptone, yeast extract, sucrose, 

glucose, mucin, bovine serum albumin, salts (e.g. NaCl, 

KCL), agar concentration, surfactants (e.g. Tween 20)and 

polyvinylpyrrolidone (Henrichsen, 1983; Semmler et al., 

1999; Huang et al., 2003; Pamp and Tolker-Nielsen, 2007; 

Burrows, 2012). In addition, available humidity and 

smoothness of the surface are also influencing factors, 

with the latter being important for the agar-air surface 

translocation experiments (Henrichsen, 1983; Semmler et 

al., 1999).  

In the current study, both surface and subsurface 

translocation were tested using various growth media, 

including Blood, BHI and AIM agar without glucose or with 

varying glucose concentrations. Plates were all kept in a 

sealed bag to maintain humid conditions, although for the 

agar-air surface translocation motility assay the agar was 

set against air possibly resulting in an unsmooth surface. 

However, the edges of the expanded colonies, whether grown 

on the agar surface or subsurface, were not examined 

microscopically in search of cell protrusions or raft 

arrangement indicative of twitching cells, or for any other 

subtle differences that may not be visible to the naked 

eye. Spotted cultures on the surface of agar medium 

containing high glucose concentration (1-2%) produced a 

thin outer cell zone and it would be intriguing to see the 

arrangement of these cells microscopically. In P. 

aeruginosa (where twitching motility has been extensively 
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studied), microscopic examination of the edges of the 

twitching zones at the interstitial surface between a glass 

coverslip and growth medium, the wt PAK strain which is 

capable of twitching shows typical twitching zone with 

large rafts, while the PAK pilA mutant strain not capable 

of twitching does not produce any rafts (Semmler et al., 

1999; Huang et al., 2003). In C. perfringens, observation 

of the edges of surface grown colonies by time lapse 

microscopy revealed the migration of cells as multicellular 

curvilinear shaped flares which were similar to those 

produced in M. xanthus via TFP-dependent social motility 

(Varga et al., 2006). These flares are not formed in a C. 

perfringens pilT mutant, but they are formed in a 

complemented C. perfringens pilT mutant (Varga et al., 

2006). In a recent study, microscopic visualization of the 

edges of colonies of C. difficile 630, grown between a 

glass surface and BHI agar medium (0.7% agar)in a glass 

bottom dish, revealed diffuse edges with directional 

protrusions which resembled those produced by C. 

perfringens TFP-mediated motility (Reynolds et al., 2011). 

This may suggest that twitching motility does occur in C. 

difficile and exclude the possibility that even if TFP 

retraction occurs in C. difficile via the putative 

retraction protein PilT, it may not be involved in 

twitching motility. This is the case with EPEC where TFP 

bundle-forming pili can retract but are not involved in 

twitching motility (Giltner et al., 2012).  Perhaps an 

experiment similar to the one used by Reynolds et al. 

(2011) with the same growth medium and glass bottom dish 

could be performed with the strains isolated in this study 

before any conclusions on twitching motility are formed. 

Further to this, it has been demonstrated that TFP are 

produced mainly by cells in the outermost zone of the 

expanding colonies, where twitching motility is actively 
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taking place, than across the whole colony (Semmler et al., 

1999; Henrichsen, 1983). Therefore, in future searches for 

pilus production on the surface of ∆pilT
 
or pilT 

+
 strains 

via electron microscopy, samples would be best prepared 

from the leading edge of the bacterial growth, by flooding 

the colony edge with a drop of negative stain or other 

liquid and floating the grid on top of the drop, allowing 

the attachment and the selection of the most actively 

twitching cells on the grid. It would be interesting to see 

if electron microscopy of the ∆pilT
 
strains isolated in this 

study would reveal hyperpiliation or lack of TFP production 

on the surface of cells. Electron microscopy examination of 

the strain ∆fliC 383, grown on different media, for the 

presence of pili used samples prepared from the whole 

colony. Although many cells were examined, none were 

observed to produce pili, which might indicate that TFP 

expression is regulated and may only be expressed in 

certain cells under certain conditions. Previous studies 

reporting possible TFP expression in C. difficile and the 

presence of type IV pilus-associated genes in the C. 

difficile genome encoding all genes required for TFP 

biosynthesis and assembly, support this hypothesis 

(Sebaihia et al., 2006; Stabler et al., 2006; Janvilisri et 

al., 2009; Goulding et al., 2009; Borriello et al., 1988). 

It would be intriguing to test whether pili are observed on 

∆fliC cells at the colony outer edge. Perhaps a future 

experiment may involve fusing the pilT gene to a reporter 

gene and investigating its expression under different 

conditions, which may shed light on the optimal conditions 

required for TFP gene expression.  

The last aspect of this study involved the investigation of 

an intergenic region located upstream of the C. difficile 

TFP-associated genes, which might potentially be involved 
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in regulation. Preliminary qualitative results suggested 

that a promoter may exist between 100 bp and 500 bp 

upstream of the CD3513 locus. The thiamphenicol resistance 

displayed by the C. difficile strains containing pES2244, 

pES2246 and pES2247 suggested that transcription is 

initiated in the 500 bp region upstream of the CD3513 

locus. This observation contrasts with the lack of pili 

obtained from the ∆fliC 383 electron microscopy data. An 

explanation for this may be that low levels of catP 

transcription are sufficient for resistance, while a high 

level of transcription of TFP associated genes may be 

required for TFP production. In M. xanthus, a minimum level 

of pilin expression is necessary (more than 50% of the 

maximum wt level) for efficient pilus assembly and motility 

(Jelsbak and Kaiser, 2005). Further research is required 

for any conclusions to be formed which includes, the 

quantification of the catP expression under appropriate 

conditions in the strains containing the catP reporter 

recombinant plasmids and the identification of the 5’ 

transcription start site for the TFP operon.  

In C. perfringens carbon catabolite repression (CCR), a 

regulatory mechanism that responds to carbohydrate 

availability, regulates TFP-dependent gliding motility, 

where the catabolite control protein (CcpA) plays a central 

role acting as a repressor or activator (Mendez et al., 

2008). In the presence of glucose (1%) gliding motility is 

inhibited through the CcpA-mediated repression of pilT and 

pilD genes, while in the absence of glucose CcpA positively 

regulates gliding motility. Moreover, in C. perfringens 

TFP-mediated gliding motility is necessary for optimal 

biofilm formation that is dependent on a functional CcpA 

protein (Varga et al., 2008). C. difficile has all genes 

involved in CCR and recently, it was shown that CcpA is 
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involved in the glucose-dependent repression of C. 

difficile toxin genes, tcdA and tcdB, by binding directly 

to their regulatory regions (Antunes et al., 2011). 

Therefore, questions that arise are, whether the intergenic 

region is subject to glucose catabolism and whether CcpA 

has a regulatory role in the expression of TFP genes in C. 

difficile.  

A molecule that is also considered as a candidate of future 

investigation for the regulation of the intergenic region 

and TFP genes is the second messenger c-di-GMP. C-di-GMP is 

synthesized by diguanylate cyclases (DGCs) that contain a 

GGDEF domain and is degraded by phoshodiesterases (PDEs) 

that contain an EAL or HD-GYP domain (Hengge, 2009). C. 

difficile encodes a large number of proteins, predicted to 

be involved in c-di-GMP metabolism.  The enzymatic 

functionality of many of the homologues was confirmed in V. 

cholerae (Bordeleau et al., 2011). The high number of 

functional DGCs and PDEs, encoded by conserved genes in the 

genomes of different C. difficile strains, indicates that 

c-di-GMP signalling is important in this organism and might 

play a role in regulating diverse phenotypes (Bordeleau et 

al., 2011). It has been shown that c-di-GMP regulates 

flagella-mediated motility in C. difficile (Purcell et al., 

2012; Sudarsan et al., 2008). A c-di-GMP riboswitch is 

located upstream of the large flgB flagella operon and this 

riboswitch functions as an ‘off switch’ in response to c-

di-GMP (Sudarsan et al., 2008). C-di-GMP decreases 

flagella-mediated motility and represses production of 

flagella by reducing transcription of flagellar genes 

(Sudarsan et al., 2008; Purcell et al., 2012). As 

mentioned, c-di-GMP regulates aggregate formation in C. 

difficile where aggregates are bound by structures that 

resemble pili (Purcell et al., 2012). Two c-di-GMP-related 
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proteins, namely FimX and PilZ, involved in TFP biogenesis 

have been identified (Burrows, 2012; Guzzo et al., 2009; 

Huang et al., 2003; Kazmierczak et al., 2006). In P. 

aeruginosa, FimX possesses both a GGEF and EAL domain and 

is implicated in TFP assembly and twitching motility 

(Kazmierczak et al., 2006; Huang et al., 2003). PilZ is 

required for TFP biogenesis and has various TFP-associated 

functions in different bacterial species including P. 

aeruginosa, N. meningitides and Xanthomonas campestris 

(Guzzo et al., 2009). In Xanthomonas spp. PilZ binds to 

PilB (a pilin polymerase) and to the EAL domain of XAC2398 

(a homolog of the TFP regulatory protein FimX of P. 

aeruginosa) and has been suggested that PilZ and FimX might 

regulate the function of PilB in a c-di-GMP-dependent 

manner (Guzzo et al., 2009).    

To conclude, TFP are important to the survival and success 

of many pathogens in infection and their surface location 

makes them targets for vaccine development. TFP in C. 

difficile may be expressed in vivo during infection and may 

be involved in biofilm formation and colonization (Goulding 

et al., 2009; Purcell et al., 2012). Therefore, pursuing 

further research to investigate the function of these pili 

in C. difficile (e.g. adhesion assays, biofilm formation) 

could be important in shedding light on the disease 

pathogenesis and treatment.      
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Appendix I. Promoters predicted in the intergenic region located between 

the CD3513 locus and the prs gene using the BPROM (Softberry) program 

 

Length of sequence-      1087 

 Threshold for promoters -  0.20 

 Number of predicted promoters -      3 

 Promoter Pos:    968 LDF- 10.46 

 -10 box at pos.    951 ttttaaact Score    69 

 -35 box at pos.    932 tttact    Score    42 

 Promoter Pos:    309 LDF-  9.02 

 -10 box at pos.    294 ttatataat Score    75 

 -35 box at pos.    271 atgtat    Score    12 

 Promoter Pos:    646 LDF-  4.26 

 -10 box at pos.    631 gtgcaaaat Score    51 

 -35 box at pos.    613 tttaca    Score    47 

 

 Oligonucleotides from known TF binding sites: 

 

 For promoter at    968: 

       phoB:  TAATATAT at position     908 Score -  15 

      argR2:  TTTATTTT at position     927 Score -   7 

     rpoD17:  TTTTACTT at position     931 Score -   8 

     rpoD19:  TACTTAAA at position     934 Score -   8 

        crp:  TATACATA at position     942 Score -  13 

       tyrR:  TTTACAAT at position     970 Score -   8 

       phoB:  TAATATAT at position     977 Score -  15 

       tyrR:  AATATATA at position     978 Score -  15 

       lexA:  ATATATAC at position     979 Score -  12 

 For promoter at    309: 

       glpR:  TTCAAAAT at position     250 Score -   6 

       cysB:  TGTATATA at position     272 Score -  12 

       lexA:  TATATACA at position     274 Score -  13 

        crp:  TATACATA at position     276 Score -  13 

     rpoS17:  TTATATTA at position     289 Score -  14 

      argR2:  CATATTTT at position     309 Score -   8 

       nagC:  ATATTTTA at position     310 Score -   7 

     rpoD17:  TAGCAACA at position     316 Score -   7 

 For promoter at    646: 

       lexA:  TATATAAA at position     593 Score -  14 

       trpR:  TACTCTTT at position     640 Score -   7 

 

*Please note that this software is designed to identify promoters 

based on the E.coli sigma70 promoter consensus. Therefore may not be 

accurate for use in C. difficile.  
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