
Message Passing with Communication Structures

Gagarine Yaikhom

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Computing Systems Architecture

School of Informatics

University of Edinburgh

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429736014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Abstraction concepts based on process groups have largely dominated the design

and implementation of communication patterns in message passing systems. Al-

though such an approach seems pragmatic—given that participating processes form

a ‘group’—in this dissertation, we discuss subtle issues that affect the qualitative

and quantitative aspects of this approach. To address these issues, we introduce the

concept of a ‘communication structure,’ which defines a communication pattern as

an implicit runtime composition of localised patterns, known as ‘roles.’ During ap-

plication development, communication structures are derived from the algorithm

being implemented. These are then translated to an executable form by defining

process specific data structures, known as ‘branching channels.’

The qualitative advantages of the communication structure approach are that

the resulting programming model is non-ambiguous, uniform, expressive, and ex-

tensible. To use a pattern is to access the corresponding branching channels; to

define a new pattern is simply to combine appropriate roles. The communication

structure approach therefore allows immediate implementation of ad hoc patterns.

Furthermore, it is guaranteed that every newly added role interfaces correctly with

all of the existing roles, therefore scaling the benefit of every new addition.

Quantitatively, branching channels improve performance by automatically over-

lapping computations and communications. The runtime system uses a receiver ini-

tiated communication protocol that allows senders to continue immediately with-

out waiting for the receivers to respond. The advantage is that, unlike split-phase

asynchronous communications, senders need not check whether the send operations

were successful. Another property of branching channels is that they allow com-

munications to be grouped, identified, and referenced. Communication structure

specific parameters, such as message buffering, can therefore be specified imme-

diately. Furthermore, a ‘commit’ based interface optimisation for send-and-forget

type communications—where senders do not reuse sent data—is presented. This

uses the referencing property of branching channels, allowing message buffering

without incurring performance degradation due to intermediate memory copy.

i

Acknowledgements

I would like to thank my supervisor Dr. Murray Cole for being very supportive and

enthusiastic about the work presented in this dissertation. He not only gave me

the freedom to explore potential avenues for research, but also kept me on track by

analysing my arguments and approach critically. I am grateful to him for all the

things that I have learned under his supervision.

Thanks are also due to Dr. Michael O’Boyle (second supervisor) and Dr. Marcelo

Cintra for their interesting comments during the annual progress meetings.

I would like to thank my family for supporting me throughout my life in every

possible way. Special thanks go to my parents for providing me with every aca-

demic resource that I needed, even during financial hardships. I have reached this

far mainly because of their support and enthusiasm for education. I hope that my

work is worth some of the sacrifices which they have made for my siblings and I.

I would also like to thank Horacio González-Vélez, John Hawkins, Robert

Hutchison, and Samantha Lyle for being great friends. They made sure that I did

not neglect my social life entirely. In particular, I would like to thank Horacio for the

interesting discussions we had about research, computer science, and life in general.

Last, but not least, I would like to thank Marie Melvin for providing me with

emotional support throughout the period of my research. She also helped me during

the writing process by checking the drafts for typographical and grammatical errors.

Without her support, it would have been a lonely experience.

This research was funded by the Overseas Research Studentship (ORS) award,

and the University of Edinburgh scholarships.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except as

specified. The following articles were published during the course of this research,

• Gagarine Yaikhom, Shared Message Buffering without Intermediate Memory

Copy, In Proc. of the 3rd Intl. Workshop on Higher-level Parallel Programming

and Applications (HLPP), July 2005, Warwick, United Kingdom. (Also to appear

in Parallel Processing Letters)

• Gagarine Yaikhom, Buffered Branching Channels with Rendezvous Message Pass-

ing, In Proc. of the 23rd IASTED Intl. Conf. on Parallel and Distributed Com-

puting and Networks (PDCN), pages 184–192, ACTA Press, February 2005, Inns-

bruck, Austria.

(Gagarine Yaikhom)

iii

Dedicated to my beloved parents

Late. L. Bhanumati Devi

and

Yaikhom Tomcha Singh.

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis and approach . 6

1.3 Contribution and outline . 7

1.4 Notations and conventions . 9

2 Background 10

2.1 What is this dissertation about? . 11

2.2 What are the existing approaches? 12

2.2.1 Inter-process communications 13

2.2.2 Skeletal programming models 15

2.2.3 Process group based abstraction models 19

2.3 What are the objectives of this dissertation? 24

2.4 How do we plan to attain these objectives? 25

2.4.1 Guidelines from the psychology of programming 26

2.5 Summary . 29

3 Abstraction with communication structures 30

3.1 Understanding a communication pattern 31

3.2 A sequential foundation: the control flow graph 35

3.3 Towards parallelisation: the dependency point 36

3.4 Towards pattern abstraction: the dependency class 40

3.5 Initiating a communication: the dependency class activation 42

3.6 Defining communication patterns: the role 43

3.7 Putting it all together: the communication structure 45

3.8 The encapsulating data structure: the branching channel 48

3.9 Practical advantages of the β-channel approach 51

3.9.1 Avoiding intermediate memory copy 54

3.10 Summary . 56

4 Programming with communication structures 57

4.1 Two-phase application development 58

4.2 Application programming interfaces 60

4.3 Implementing common algorithms 76

4.3.1 Gaussian elimination . 76

4.3.2 Fast Fourier transform . 82

v

4.3.3 Odd-even transposition sorting 86

4.3.4 Mandelbrot set task farm 89

4.3.5 Matrix multiplication . 97

4.4 Skeletal parallel programming . 101

4.4.1 Skeletons, patterns and communication structures 101

4.4.2 Skeletal programming with β-channels 102

4.5 Summary . 109

5 Implementation details 110

5.1 General design decisions . 111

5.2 Program execution and the runtime system 111

5.3 Structuring communications at runtime 115

5.3.1 Establishing the sink-to-source link 116

5.3.2 Example execution of an application program 119

5.3.3 Why do we need ‘the planarity condition’? 120

5.4 Communication protocol . 121

5.4.1 Synchronous interfaces . 121

5.4.2 Asynchronous interfaces . 122

5.4.3 Asynchronous rendezvous 123

5.5 Integrating message buffers within the runtime system 125

5.5.1 Optimisation for send-and-forget communications 127

5.6 Summary . 130

6 Evaluation 131

6.1 Qualitative evaluation . 132

6.1.1 Discussion on the qualitative properties 144

6.2 Quantitative evaluation . 145

6.2.1 Point-to-point performance 146

6.2.2 Collective performance . 154

6.2.3 Performance of the mean value analysis algorithm 158

6.3 Summary . 159

7 Conclusion 160

7.1 Summary . 161

7.2 Further research . 163

A Auxilliary functions 166

Bibliography 170

vi

c h a p t e r 1

Introduction

Message passing parallel programs have become a practical reality with the ad-

vent of loosely-coupled parallel or distributed systems such as the network of work-

stations (e.g. the Beowulf cluster). Loosely-coupled systems provide an array of

processors which can be used simultaneously for a computational task. None of

these processors, however, share a physical memory space; the data dependen-

cies between processors are therefore satisfied by explicitly passing messages over

a communications network. Due to the proven scalability and cost effectiveness of

loosely-coupled systems, interest in such systems has grown significantly over the

years [96, 58].

When a new computing system is introduced, various abstraction models are

also introduced. These models define abstraction concepts that can be related di-

rectly to the underlying system components. The interesting feature of abstraction

based programming is that, through a suitable programming model, the low-level

implementation details of the abstract concepts can be concealed. This allows pro-

grammers to easily harness the facilities provided by a system for useful computa-

tions without actually understanding every low-level implementation detail. The

design of an abstraction model, however, is usually based on different conceptual

interpretations of a given system. Consequently, the level of abstraction provided

by different abstraction models differs widely. Most models, therefore, aim to assist

the programmer by providing a proper balance between efficiency and programma-

bility.

In this chapter, we discuss the motivations behind this dissertation; followed

by a statement of the thesis, and the approach undertaken. We then discuss the

contributions made by this dissertation; followed by an outline of the contents of

the remaining chapters. Finally, this chapter concludes with a description of the

mathematical notations and pseudocode conventions followed throughout.

1

introduction

1.1 Motivation

In message passing systems, abstraction concepts based on process groups have

largely dominated the design and implementation of communication patterns. Al-

though such an approach seems pragmatic—given that participating processes form

a ‘group’—in this chapter, we discuss subtle issues that affect the qualitative and

quantitative aspects of programming with process group based abstraction models.

When a message passing program is developed, the complexity of programming

is mainly concentrated in the code segments that represent data communications

between the processing elements (hereafter referred to as processes). An increase

in the complexity of a message passing algorithm is usually accompanied by an

increase in the complexity of these inter-process communications. In order to reduce

the programming effort, a message passing abstraction model therefore provides

the programmer with concepts that can be related directly to these inter-process

communications.

In general, inter-process communications can be viewed as a producer-consumer

relationship: producer processes send data that have been produced or transformed;

these are then received, and consumed, by consumer processes during further com-

putations. Because such producer-consumer relationships are inherent in message

passing algorithms, they often form the basis for most of the popular abstraction

models. Consequently, representing a point-to-point communication in the corre-

sponding programming model is pretty straightforward: it is often expressed with

some form of a send-receive pair [6]. When communications involving more than

two processes—usually referred to as collective communications—are considered,

however, abstraction models based on ‘process groups’ raise subtle programming

issues.

A process group defines a logical grouping of processes which is used to derive

a collective communication domain. In popular programming models, such as the

mpi [93], abstraction for collective communications is based on this concept of a

process group [14]. From a given process group several collective communication

domains can be derived, which are often associated with an opaque data structure

known as the communicator. When a collective communication is performed over

a communicator, every process in the corresponding process group participates in

that communication. This approach raises some programming issues that we shall

introduce in light of the following example:

Example 1.1.1

Assume a collective communication involving five processes: A (accountant), R (re-

2

introduction

(a) (b)

T S P

RARA

T S P

+
α α

Figure 1.1: Decomposition of an overlapping communication domain. (a) Decomposition
based on two scatters (α) on groups {A,T ,S} and {R,S,P}, where A and R are
the roots of the scatter. (b) Decomposition based on one reduce (+) on group
{A,S,R}, where S is the destination of the reduced value.

search council), T (teacher), S (student), and P (research project). The aim is to

simulate the financial transactions for a period of 12 months, where at the end of

each month A sends funds to T and S, and R sends funds to S and P. S receives

funds from A and R, T receives funds from A, and P receives funds from R. Each of

these monthly communications is a collective communication because all of the five

processes—A, R, T , S and P—should participate during that communication.

Two collective communication domains are said to be overlapping if there is at

least one process which is associated with both domains, so that a single collective

communication cannot be invoked on the common process. In Example 1.1.1, if we

consider the scattering1 of data from A and R, and sum reduction2 of data on S, we

can see that the single sum reduction communication on S actually represents part

of both scatters from A and R. This means that the scatter groups in A and R are

overlapping because of the common receiver S. In the same scenario, if we ignore

the sum reduction and decompose that sum reduction into two receive communica-

tions, where each communication is separately associated with the scattering on A

and R, then the two collective communication domains defined by A and R do not

overlap as each of the two communications on S are separately performed for each

communication domain.

A necessary condition for using collective communications is that they should

not be performed on overlapping communication domains. In such cases, the com-

munication domain should be decomposed into multiple non-overlapping commu-

nication domains. Such decompositions, however, raise the following issues:

1Scatter is a communication pattern which involves sending data from the root process (the sender)
to the receiver processes in a process group so that every receiver receives a unique data.

2Sum reduction is a communication pattern where unique data from multiple sender processes, in
a process group, is reduced on the root process (the receiver) so that the receiver receives the sum of all
the values sent by the senders. Such patterns integrate trivial computations with the communications.

3

introduction

1. What is the approach for carrying out the decomposition? For Example 1.1.1, a

brief inspection reveals that the overlapping domains can be decomposed in two

ways, as shown in Figure 1.1. In the first decomposition (Figure 1.1.a), the over-

lapping domain is decomposed by choosing two collective communications over

the groups {A,T ,S} and {R,S,P}. These communications emphasise the scatter-

ing (α) of funds from A and R respectively. In the second decomposition (Fig-

ure 1.1.b), the overlapping domain is decomposed through a single collective

communication over the group {A,S,R}, emphasising the sum reduction (+) at

S: which also introduces two point-to-point communications from A to T , and R

to P (shown with thick arrows). Both decompositions yield valid collective com-

munications; however, because of the resulting ambiguity due to the possible

choices, performing an optimal decomposition that should also provide a rea-

sonably efficient performance may aggravate the already complex programming

exercise. We shall refer to this issue as the ambiguity problem.

2. If we assume that the overlapping communication domains have been decom-

posed somehow, how does a programmer choose a particular decomposition?

Should the decisions be made based on the qualitative aspects, such as pro-

gramming simplicity, or the quantitative aspects, such as better performance?

If qualitative aspects are to be considered most crucial, how does a program-

mer compare the decompositions qualitatively? On the other hand, if quantita-

tive aspects are to be considered crucial, how does a programmer decide which

decomposition will yield the best performance, without understanding the un-

derlying implementation of the message passing interfaces? Furthermore, if a

programmer is allowed to understand the underlying implementation details of

the message passing interfaces, the message passing model has then failed to

provide a proper abstraction—abstraction models should conceal such details.

We shall refer to this issue as the choice dilemma.

3. Another drawback of choosing decompositions based on the implementation

details of the underlying run-time system is that the performance of a program

can no longer be considered portable (usually referred to as performance porta-

bility [55]). This is because, in practice, there exist many implementations for

a given abstraction model, which are often based on widely varying design de-

cisions. A given decomposition may therefore perform better than the other

decompositions on a particular implementation of the abstraction model; how-

ever, it may also perform poorly on other implementations of the abstraction

model. We shall refer to this issue as the performance portability problem.

4. A qualitative issue related to structured parallel programming is the sacrifice of

4

introduction

‘structural’ information due to the decomposition. When an overlapping com-

munication domain is decomposed, information that enhances the comprehen-

sibility of the algorithm is also sacrificed. For example, if the first decomposi-

tion of Example 1.1.1 is chosen, the information about the sum reduction on S

is lost. In the program, therefore, instead of invoking a single sum reduction

communication interface, S should invoke two interfaces for the scatters from

A and R, following which summation of the received funds is performed sep-

arately. Alternatively, if the second decomposition is chosen, the information

about the scatters from A and R is lost. The processes A and R, therefore, must

invoke sum reduction and point-to-point communication interfaces instead of

invoking a single scatter interface.

Such sacrifice of information seriously affects the programming, and mainte-

nance, of parallel message passing programs because once the program is devel-

oped, there is no way of describing the previous algorithm ‘completely’ without

making certain assumptions. For example, the separate summation of funds re-

quired by the first decomposition now constitutes a code segment of its own, and

should therefore be treated separately from the communications. Even though

this implementation also expresses a semantically equivalent representation, it

is not clear that S could have simplified the implementation by using a sum

reduction communication interface. We shall refer to this issue as the loss of

structural information problem.

5. Another qualitative issue related to collective communications based on process

groups is that processes are required to acknowledge other processes with which

they do not directly share a producer-consumer relationship. For example, in the

first decomposition of Example 1.1.1, T and S are required to mutually acknowl-

edge each other during the scatter (because of the process group {A,T ,S}), when

they do not actually communicate data in any sense. This means that, in order

to receive the monthly salary, the teacher is required to know about all of the

other entities who are also receiving funds from the accountant (in this case the

student); the same goes for the student. Similar arguments can be applied to

the process group {R,S,P}. In daily practice, such systems would be considered

impractical because they demand details that are irrelevant to the execution of

a given process. We shall refer to this issue as the redundant acknowledgement

problem.

This dissertation develops an abstraction model that resolves the above issues.

In addition to resolving these issues, the abstraction model allows implementation

5

introduction

of a programming model that is non-ambiguous, uniform, expressive, extensible,

and yet efficient. By redefining the meaning of a collective communication, and

collective communication patterns, the new programming model allows commu-

nication specific optimisations, such as specialised message buffering and message

buffering without intermediate memory copy, ad hoc implementation of communi-

cation patterns, and single phase asynchronous communications.

1.2 Thesis and approach

The thesis of this dissertation is that message passing abstraction models should

emphasise structured programming of inter-process communication patterns, just

like data structures are used in structured sequential programming. The approach

for performing such structured programming of communication patterns, which we

suggest in this dissertation, is based on our argument that holistic communication

patterns are best abstracted as an implied runtime composition of process specific

localised communication patterns.

Abstraction models should not dictate how a message passing algorithm is im-

plemented, and therefore should not suffer from the issues discussed previously.

They should, instead, provide the necessary mechanisms to effortlessly realise any

given communication pattern manifested by the algorithm. The term ‘effortless’

refers to the qualitative properties—non-ambiguity, expressiveness, uniformity, and

extensibility—defined (see also Table 6.1) as follows:

1. Non-ambiguity. An abstraction model, and therefore the corresponding pro-

gramming model, is said to be non-ambiguous if it does not allow implemen-

tation of a given communication pattern into different application programs

with different characteristics (e.g. performance, programming complexity etc.)

based on the different interpretations of the communication pattern allowed by

the abstraction model.

2. Expressiveness. A programming model is said to be expressive if a communi-

cation pattern manifested by an algorithm can be implemented with the appli-

cation programming interfaces without adapting the communication pattern to

fit the programming model.

3. Uniformity. A programming model is said to be uniform if the application pro-

gramming interfaces that it provides are uniform in terms of the interface func-

tion prototype (e.g. number of parameters, data type of parameters etc.), and

the manner in which the communication pattern is expressed through these in-

terfaces within an application program.

6

introduction

4. Extensibility. A programming model is said to be extensible if it allows ex-

tension of the existing programming model with additional facilities (e.g. new

communication patterns etc.) without disrupting the usage and the functioning

of the existing application programming interfaces.

In addition to having the qualitative properties discussed above, the model should

be practically implementable, with performance characteristics reasonably close to,

or better than, the existing message passing systems.

In the suggested abstraction model, collective communications—and therefore

inter-process communication patterns—are not abstracted based on the concept of

a process group. They are instead abstracted implicitly as run-time compositions of

process specific communication components, which are defined based on the pro-

cess specific understanding of the communication pattern manifested by the algo-

rithm which is being implemented. Furthermore, to generalise the concepts to all

forms of communication, point-to-point communications are considered to be a

special case: a collective communication with only two processes.

1.3 Contribution and outline

The contributions of this dissertation can be summarised as follows:

The first contribution of this dissertation constitutes development of the ab-

straction model which resolves the issues discussed in Section 1.1. We do this by

defining new concepts which are free from the notion of a process group. In essence,

we begin with the control flow graph of a sequential program, and build up the the-

ory from these foundations into an abstract representation of a message passing

parallel program.

The second contribution is the introduction of the β-channel programming

model based on the abstraction model. We show that the programming model facil-

itates ‘effortless’ message passing programming with respect to the following four

qualities: non-ambiguity, expressiveness, uniformity, and extensibility.

The third contribution concerns implementation of higher-level programming

constructs, where we use β-channels for practical skeletal programming. By imple-

menting Cole’s algorithmic skeletons [32, 33], we demonstrate how implementation

and deployment of skeletal programming can be simplified with the new program-

ming model.

The fourth, and final, contribution is related to the performance aspect of the

programming model. The programming model introduces a method for specialised

message buffering, which allows selective buffering for specific communications.

7

introduction

This results in the flexibility to implement a single phase asynchronous rendezvous

communication protocol, which can be extended further as an optimisation allow-

ing message buffering without incurring performance degradation due to interme-

diate memory copy. We show empirically that the new approach improves the over-

all performance of an application by automatically increasing the overlapping of

computations and communications within the application.

The rest of the dissertation is organised as follows:

In Chapter 2, we survey existing approaches that are currently used for mes-

sage passing programming. This survey focuses on the practical implementation

of inter-process communications, and communication patterns. We also discuss the

psychological aspects of programming and system design, which provide supporting

arguments for the design decisions that are made in Chapter 3.

In Chapter 3, we develop the abstraction model. The arguments discussed in

Chapter 2 form the guiding principles for these conceptual developments. We define

abstract concepts based on our thesis which represents a communication pattern as

the implied runtime composition of process specific communication components.

Throughout this chapter, we discuss how the new model resolves the issues dis-

cussed in Section 1.1. Additionally, we discuss the properties of the new model

which offer several practical advantages, such as avoiding intermediate memory

copy during buffering, communication specific specialised message buffering, au-

tomatic overlapping of computations and communications etc..

In Chapter 4, we describe the programming model. A two-phase application

development process is suggested, followed by a description of the application pro-

gramming interfaces. As a demonstration, these programming interfaces are then

used to implement several message passing programs with widely varying commu-

nication patterns. The final part of this chapter explores the relationship between

the β-channel programming model and skeletal parallel programming.

In Chapter 5, we discuss the low-level implementation details of the program-

ming model. We describe the multi-threaded runtime system, the manner in which

application programs are executed, and the communication protocol that is used to

transfer messages. This is followed by a discussion on the integration of specialised

message buffering, and the optimisation for avoiding intermediate memory copy.

In Chapter 6, we evaluate the qualitative and quantitative characteristics of the

new approach. And finally, in Chapter 7, we conclude the dissertation and suggest

areas for further research.

8

introduction

1.4 Notations and conventions

This section describes the mathematical notations and the pseudocode conventions

that are followed throughout this dissertation.

The mathematical notations are,

Pi Process with rank i.

dxe Smallest integer not less than x.

bxc Largest integer not greater than x.

∀x For all x.

∃x There exists x.

|x| Absolute value of real number x.

∅ Empty set.

|S| Cardinality of set S.

x ∈ S x is an element of set S.

x /∈ S x is not an element of set S.

X∩Y Set intersection of X and Y.

X∪Y Set union of X and Y.

X\Y Set difference of X and Y.

∨ Logical conjunction.

∧ Logical disjunction.

¬ Logical negation.

We follow a pseudocode convention similar to Fraser’s [42]. Pseudocodes are

expressed with the C [68] programming language: except for the following operator

substitutions that are made for clarity,

C language Pseudocode

Assignment = :=

Bitwise <<, >>, ˆ , ˜ �,�, ⊗, ∼

Equality ==, != =, 6=
Logical && , ||, ! ∧, ∨, ¬

Member pointer −> →
Relational <=, >= 6, >

9

c h a p t e r 2

Background

In this chapter we place our work in the context of existing and ongoing work.

In Section 2.1 we discuss what this dissertation is about. We provide a general

introduction to our subject, and present an overview of the areas which we plan to

address in this dissertation. In Section 2.2, we explore existing and ongoing work

in the field. We discuss the different approaches that have been suggested so far,

while strongly emphasising the models that have proved successful in recent years.

In Section 2.3, we discuss the objectives of this dissertation. Finally, in Section 2.4

we discuss the approach with which we plan to attain our objectives.

10

background

2.1 What is this dissertation about?

Since their advent, digital computing systems have become an integral part of our

civilisation. They are now being used intensively in academic institutions, com-

mercial institutions, and institutions related to art and entertainment. The ever

increasing demand for high performance computing, however, comes from scien-

tific research where computing systems are being used to model our physical world.

Some of these advanced applications are related to simulation of physical models,

such as weather forecasting, or the extraction of information from a large data set,

such as dna sequencing, or the analysis of astronomical data. With such applica-

tions, the demand for high performance computing has reached the stage where se-

quential computing systems can no longer provide the necessary computing power.

As a result, interest in the field of parallel computing systems has grown signifi-

cantly over the years.

So far, many parallel computing systems have been introduced [96]. Although

most of these systems are based on different design decisions, they can be broadly

classified into two categories: (1) shared memory systems, and (2) distributed mem-

ory systems. In shared memory systems (also referred to as tightly-coupled systems)

all the processes in the system share a common memory. On the other hand, in dis-

tributed memory systems (also referred to as loosely-coupled systems) all the pro-

cesses do not share a common memory; instead, every process is associated with its

own memory subsystem. Transfer of data from one process to another is therefore

performed through data communications over a backbone network.

Recently, two types of distributed computing systems have become prominent:

(1) Cluster computing systems [26], and (2) the Grid computing environments [50].

The Cluster is a network of workstations, which is cost effective, and highly scal-

able. The Grid is similar to a cluster but entails a more dynamic environment where

computing resources, in geographically diverse locations, can enter or leave the envi-

ronment. Since Beowulf clusters are more widely available than specialised parallel

computers, our aim is to explore approaches that can be used to program these

systems easily and efficiently.

This dissertation is about designing a message passing abstraction model which

can be expressed with a parallel programming model that is non-ambiguous, uni-

form, expressive, and extensible. Not only should the programming model be sim-

ple to use, but it should also provide a runtime system which performs better than,

or is at least comparable to, the existing ones.

In the next section, we explore existing approaches to parallel programming.

11

background

2.2 What are the existing approaches?

In this section, we explore existing approaches for parallel programming, and em-

phasise message passing programming models in particular. For a more exhaustive

survey of the field, see Andrews and Schneider [7], Skillicorn and Talia [92], Foster

[40], Quinn [86], Leopold [71], and Grama et al. [49].

Leopold defines parallel and distributed computing as follows:

“Parallel computing splits an application up into tasks that are executed
at the same time, whereas distributed computing splits an application
up into tasks that are executed at different locations, using different re-
sources.” [71, page 3]

From the above definition, one can infer that parallel computing is about divid-

ing a computational task into sub-tasks that can be computed simultaneously using

different computing resources.

Based on the manner in which a parallel program is developed, the development

process is usually classified into two styles: (1) single program multiple data (spmd),

and (2) multiple program multiple data (mpmd) [71, page 25–26]. In the spmd style,

a single program is developed, which is executed by all the processes. The execu-

tion instances of the program on any two processes are, however, not necessarily the

same. In the mpmd style, different programs are developed for different processes,

so that differences in the execution instance depend on the program which a pro-

cess executes. The spmd style is normally used to implement algorithms with data

parallelism [71, Chapter 3]; mpmd style, on the other hand, is more appropriate for

algorithms with task parallelism [71, page 53].1 In distributed systems, such as the

network of workstations, the spmd style is considered to be more appropriate [76,

page 71], one popular system being the mpi [93].

Some of the popular programming models for distributed systems are:

Message passing models In a message passing model, all the processes in the

computing system are considered to be peers. Unless otherwise specified within the

application program, all the processes are considered to be the same with regard to

their capabilities to execute a given task. During parallel execution, these processes

are coordinated in a manner that will allow them to participate in a single compu-

tation simultaneously. When data from one process is required in another, the data

is communicated directly from the sender to the receiver by performing message

passing operations on both processes.

1Task parallelism and data parallelism are sometimes defined in different ways. In this dissertation,
by task parallelism we mean different tasks that can be executed simultaneously; by data parallelism
we mean different data sets that can be processed simultaneously.

12

background

Client-server models In a client-server model [71, Chapter 6], a client process

requests service from a server. The server can be either an active node, which per-

forms computations for the client, or a passive node, which manages computation

on various clients (for example, a data server). In practice, client-server models

tend to be more passive (for example, a web server). The interesting feature of this

model is that the server can be made to execute a generic program, which can cater

to different service requests received from a reasonably large number of clients.

Remote procedure calls (rpc) In a remote procedure call, control is transferred

from one process to another. The concept of rpc is based on the observation that

procedure calls are a well-known and well-understood mechanism for transfer of

control and data within a program running on a single processor. rpc therefore

suggests that this same mechanism can be used to transfer control and data across

a communication network. Birrell et al. [19] provides an implementation of rpc.

In most of the programming models for distributed systems [56], the fundamen-

tal concept which differentiates between two models lies in the representation of an

inter-process communication. The manner in which an inter-process communica-

tion is abstracted forms the foundation upon which a programming model can be

built to support specific features that will render the system both efficient and pro-

grammable. In the next section, we discuss some of the popular concepts that have

been suggested for performing inter-process communications.

2.2.1 Inter-process communications

In message passing parallel programs, the complexity of programming is concen-

trated in the data communication code segments. In order to simplify expression

of these communications during application development, several abstraction con-

cepts for inter-process communications have been suggested (see [6] for an exhaus-

tive survey).

Most of the popular abstraction concepts are implemented as programming lan-

guage constructs. For example, Hoare’s csp channels [62] define communications

as send and receive operators ‘!’ and ‘?’ which when applied to a channel results

in the transfer of values from the sender to the receiver. Gelernter’s linda tuple

space [45], on the other hand, is based on the concept of ‘generative communi-

cation’. Here, messages are added in tuple-structured form to the computation

environment, where they exist as named independent entities until some process

chooses to receive them. The distinguishing feature of the tuple space approach is

that communications are orthogonal. This means that the receiver does not have

13

background

prior knowledge of the sender, and the sender does not have prior knowledge of

the receiver. emerald [20, 87], which is an object-based language, defines message

objects which encapsulate both static data and an active process. Objects commu-

nicate by invoking each other’s operations. The distinguishing feature of emerald’s

design is the concept of object mobility, which allows a message object to migrate

from one processor to another, due to the programmer’s intervention or that of

the system. Bal et al.’s data objects in orca [13] provides another way of viewing

inter-process communications. Here, communications are based on the concept of

logically shared data, similar to distributed shared memory systems [5]. The distin-

guishing feature, however, is that the unit of sharing is a logical, user-defined object

rather than a physical, system-defined page. Several advantages of this approach

have been discussed in [11]. Yet another programming language is sr [81] which is

based on the concept of capability variables. Capability variables allow an orthog-

onal design of the language, which reduces the number of concepts for distributed

and parallel programming. Based on this orthogonal design, there are two ways for

sending messages (blocking and non-blocking), and two ways for receiving messages

(explicit and implicit). A thorough comparison of the above languages—emerald,

linda, orca and sr—can be found in [12].

Currently, some of the abstraction concepts are being implemented as applica-

tion programming interfaces. For example, the Message Passing Interface Forum’s

mpi Standard [54], and its predecessor, the Parallel Virtual Machine (pvm) [44]. In

contrast to providing abstractions as programming language constructs, message

passing interfaces provide abstractions for data communications in terms of data

structures and library functions. Since the application programming interfaces are

closer to the physical systems, and standardised over general programming lan-

guages, the application programming interfaces are considerably easier to learn and

to deploy, while also able to deliver impressive performance.

In spite of the advantages that low-level inter-process communications have

to offer in terms of performance, it has become widely accepted that program-

ming with low-level inter-process communication interfaces must be simplified with

higher-level interfaces, so that an application which performs reasonably well can

be developed with minimum effort from the programmer. This has resulted in the

search for a means of encapsulating low-level details under a suitable abstraction

layer. Most of the pragmatic approaches that have been suggested so far are based

on the realisation that inter-process communications manifest communication pat-

terns, and that these patterns can be provided as simple programming interfaces.

14

background

2.2.2 Skeletal programming models

One of the first models to introduce patterns into parallel programming is the skele-

tal programming model.

Algorithmic skeletons are defined as higher order functions which correspond

to parallel algorithmic structures (or patterns) that occur frequently in parallel pro-

grams. The concept was first introduced by Cole [32], in relation to functional

programming languages. Cole discussed the implementation of four basic skele-

tons: (1) divide and conquer skeleton, which can be used for the development of

application programs that use algorithms which recursively decompose a problem

set into a collection of smaller sub-problems which are further decomposed until

they can be solved without further decomposition; (2) iterative combination skele-

ton, which uses a greedy algorithm that tries to combine seemingly uncoordinated

sets of objects into a structured combination by applying combination rules within

an iteration; (3) cluster skeleton, which uses a reverse abstraction mechanism that

defines combination rules based on the peer-to-peer communication pattern pre-

sented by systems that arrange processors in a two dimensional grid; and (4) task

queue skeleton, which exploits the concurrent progression from problem space to

solution space by executing multiple instances of a task, each task execution gener-

ating sub-solutions that are added into the task queue, until all the tasks in the task

queue have been solved.

Algorithmic skeletons offer several advantages to the programmer:

• The programming effort is reduced because the skeleton implementations en-

capsulate the best possible low-level parallelisation code which will deliver max-

imum performance by exploiting the advanced features provided by the under-

lying system.

• Application programs using algorithmic skeletons are clearer because of the

structure defined by the skeletons they use.

• Because of the clearer structure, and encapsulation of the low-level implemen-

tation details, the skeleton approach is less prone to programming errors.

As algorithmic skeletons are aimed towards the structured simplification of pro-

gramming, they have also influenced the development of parallel programming en-

vironments based on more traditional approaches, using imperative programming

languages—which are arguably more popular than functional programming lan-

guages [100]. Advances in imperative skeletal programming environments have been

made in two major categories—depending on how the skeletons are implemented.

15

background

Compiler based skeleton implementations

Compiler based skeleton implementations define programming languages that are

completely new, or extend an existing sequential programming language, in order to

support algorithmic skeletons at the compiler level. These languages provide skele-

tons in the form of programming language constructs (for example, farm, scan, re-

duce, map etc.), which are implemented with low-level, and sometimes architecture

dependent code, through a compiler. The compiler based approach offers several

advantages:

• The compiler knows the best way to exploit the low-level details of the underly-

ing machine architecture in order to realise a skeleton construct efficiently.

• Since the language does not depend on a host language, it does not suffer from

limitations and restrictions that a host language might impose.

• Error checking for incorrect skeleton usage can be performed at compile time;

any error that may be detected can also be reported in significant detail—which

is sometimes very complicated with a host language.

In spite of the advantages, the compiler based skeleton implementation has the

following disadvantages:

• The extension of the supported skeletons changes the definition of the skeleton

programming language. Therefore, adding new skeleton constructs breaks the

integrity of the language definition, and therefore, reduces the opportunities to

attend a concrete compiler implementation.

• If extensions are disallowed, the programmer is again prevented from exploiting

new patterns that may arise with the introduction of newer algorithmic struc-

tures.

• Arguably, a new language finds it harder to break into the domain of traditional

sequential programming languages, and gain acceptance, because more flexible

and extensible skeleton implementations can be provided as a library of func-

tions that are implemented on top of sequential programming languages.

Some of the most popular compiler based skeleton implementations are:

P3L The Pisa parallel programming language (p3
l) [9, 36, 10] is a well defined pro-

gramming language that provides skeletons in the form of programming con-

structs. These skeleton constructs constitute the sole foundation for introduc-

ing parallelism to an application program. The p
3
l language allows skeleton

16

background

nesting, which was not supported in the initial implementation of skeletons

suggested by Cole [32]. This allows skeletons to contain other skeletons, thus

increasing the flexibility and expressiveness of the programming environment.

Leopold [71, page 185], however, argues that supporting skeleton nesting in-

troduces several other problems related to the assignment of tasks to the set of

processors available for the computation.

scl The structured coordination language (scl) [37] provides a larger number of

skeleton implementations that are mainly related to data distribution across the

processes. This language supports nested data structures which are not sup-

ported by the p
3
l programming language.

hsm The hierarchical skeleton model (hsm) language is an imperative skeleton lan-

guage similar to the C [68] programming language. This language focuses on

providing nested data structures where distribution and alignment of the se-

quential structures is implicitly defined in the program; reducing the program-

ming effort otherwise required in languages such as the scl.

hdc The higher order divide-and-conquer (hdc) [59] focuses on the extended im-

plementation of the divide-and-conquer skeleton; so that any algorithm which

manifests a divide-and-conquer strategy can exploit the several variants of the

skeleton implementation. The base programming language used is a subset of

the higher-order functional programming language, Haskell [18]. The hdc,

however, uses an eager semantics to enable parallelisation. Important combi-

nators, especially various kinds of divide-and-conquer strategies, are expressed

as predefined skeletons. The hdc compiler generates C and mpi parallel target

code.

skil The skeleton imperative language (skil) [21] provides language extensions to

the C programming language. These extensions allow higher order functions,

and partially support application of functional programming concepts such as

functions and polymorphism. The language introduces the concept of a parallel

abstract data type, which controls the access of data based on well defined data

access patterns, such as the block-oriented access pattern.

Programming library based skeleton implementations

More recently, advances in skeletal programming have been made through library

implementations of algorithmic skeletons, such as the Edinburgh skeleton library

17

background

(eskel) [33, 17], Münster skeleton library (muesli) [69], and Fusion-embedded skele-

ton library [75] which allows skeleton-to-skeleton interfacing. The library approach

implements skeletons on top of a host language, and provides the skeletons as a li-

brary of functions (or application programming interfaces). This approach has the

following advantages:

• The programmer need not learn a whole new language. This reduces the learn-

ing curve for programmers who wish to immediately experience the advantages

offered by skeleton based models—without leaving the programming language

they are comfortable with.

• Easy to extend the set of skeletons provided by the library, as the host language

remains the same, and therefore extensions will only mean introducing addi-

tional interfaces to the programming library.

• More flexibility to the implementor because the skeleton implementation can

use a standard host language which has efficient compiler implementation avail-

able for a wider set of architecture, for example the C programming language.

The skeletons implemented with such programming languages can then be used

on all the architectures supported by the compiler, without re-implementation.

Again, the programming library approach suffers the following disadvantages:

• The skeleton implementation depends on the host language. A skeleton imple-

mentor may therefore face certain programming constraints due to restrictions

and limitations imposed by the host programming language being used.

• The skeleton implementation cannot take advantage of pattern specific optimi-

sations that can be made by exploiting the machine level details that are only

possible with a compiler approach.

Given the advances in compiler technology for a host language, such as the C

programming language, we believe, however, that the disadvantages of the program-

ming library approach do not pose a significant problem if we also consider the

maintainability of the skeleton implementations.

There exist several other models which promote the same idea of structured par-

allel programming through frequently occurring pattern abstractions. An exhaus-

tive survey of the design pattern based parallel programming models can be found

in [76]. Some of the related works are parallel programming archetypes [29, 74],

co2p3s [72, 8], and extensible parallel architectural skeletons [48, 2].

18

background

2.2.3 Process group based abstraction models

Most of the abstraction concepts for message passing programming are based on

the notion of a ‘process group’. We shall now discuss this concept in detail.

A process group is a logical set of processes which is used to derive a collec-

tive communication context, normally used to perform communications involving

processes in the process group. An exhaustive survey of ‘process group’ based pro-

gramming models is given by Chockler et al. [30], and articles appearing in the

special issue of the Communication of the ACM, vol. 38, No. 4, April 1996.

The most important concept which is of significance to this dissertation is the

concept of a collective communication. By understanding this, we can understand

some of the programming complexities. Since the mpi is the most popular, and most

widely available message passing system, we shall now focus our attention on mpi

collective communications.

mpi collective communications

Gorlatch suggests that collective communications should be favoured over send-

and-receive (or point-to-point) communications [47]. We, however, note that there

are cases where send-and-receive primitives are far more effective in terms of both

performance and programmability. Consider, for example, algorithms that only re-

quire communications between, at most, two processes, for example the Odd-even

transposition sorting algorithm (see Section 4.3.3). It is more complicated to imple-

ment such algorithms with collective communications, than with send-and-receive

primitives. We therefore refine the argument: if the algorithm to be implemented

has communication patterns that can be easily realised with collective communica-

tions, it is best to use collective communication interfaces. However, if the algorithm

can be implemented straightforwardly with send-and-receive primitives, it will be

a waste of effort to attempt to fit the algorithm with the available set of collective

communications interfaces. In fact, the thesis of this dissertation clearly states our

aim: to define a set of interfaces which provides the programmer with the means to

express any given communication pattern, without the necessity for transformation

of these patterns to fit the interfaces, or the programming model.

In Section 1.1, we introduced the programming issues that arise with process

group based abstraction models. We shall now elaborate on this subject, and discuss

the implications in more detail. We begin by discussing the concept of a collective

communication at its most basic level: the group.

A group is defined in the mpi standard [93] as an ordered set of processes where

19

background

each process is associated with an integer rank. The ranks in a group are contigu-

ously assigned, starting at zero. Groups are represented by opaque data structures

and exist locally on a process. They cannot, therefore, be transferred from one pro-

cess to another. In order to communicate between the participating processes of a

group, a communicator should be derived from the group. Unless a communicator

is derived, no communication can commence in that group.

A communicator is an opaque data structure with a number of attributes, to-

gether with simple rules that govern its creation, usage, and destruction. The com-

municator, in effect, defines a communication domain within which data can be

transferred uniquely, and in order. When all the participating processes belong to

the same group, the communicator is referred to as an intracommunicator. If pro-

cesses that belong to separate groups communicate, the corresponding communica-

tor is referred to as the intercommunicator.

In mpi, any point-to-point or collective communication occurs within a com-

munication domain. Such a communication domain is represented by a set of

communicators with consistent values, residing at each of the participating pro-

cesses: each communicator locally representing the global communication domain

on each of the processes on which it is residing. After MPI_Init(), the communica-

tor MPI_COMM_WORLD is created by the runtime system. This communicator is the

fundamental communicator from which relevant communicators should be derived.

The important points to be noted are:

• The rank of a process depends on the group which is associated with the com-

municator on which the communication interfaces are invoked. Let us assume

therefore that a process has rank r in the communication domain defined by

the communicator MPI_COMM_WORLD. Now, if we derive a communicator, say

my_comm from MPI_COMM_WORLD, it is not safe to assume that the same pro-

cess will have rank r in the group that corresponds to the new communicator.

As the flexibility of the mpi abstraction model derives from the ability to per-

form communications over boundaries established through communicators [40,

pages 295–296], a programmer is meant to define as many communicators as

required for a suitable abstraction. This, however, complicates programming

because the programmer must keep track of the rank of a process in each of the

communicators that have been defined.

• Send and receive calls during a point-to-point communication should specify

the same communicator which defines the communication domain of the mes-

sages being transferred. This is necessary because the communicator is used to

20

background

distinguish between groups of messages.

• A collective communication call involves all of the processes in the group. Most

implementations of the collective communications require two barrier synchro-

nisations: one at the start, and one at the end of the call. We will see, in Sec-

tion 5.4, how this affects the performance of collective communications.

• Collective communications may not use intercommunicators. This follows on

from the condition that collective communications should not be invoked on

overlapping communication domains.

Programming complexity

The main advantage of collective communications comes from the higher-level ab-

straction provided by the concept of a communication domain, represented by com-

municators. Based on this concept, and the conditions for usage discussed in the

previous section, participating processes are unified under a common ground of

cooperative existence, where a collective communication using the communicator

makes it easier to express this cooperation. We can therefore say that once we

have a communicator, we are ready to perform communications that have different

patterns depending on which collective communication interface is invoked. This

also means that, in order to harness these advantages, a programmer must first cre-

ate suitable communicators. It is therefore reasonable to include the programming

costs necessary to derive communicators, while weighing the advantages of collec-

tive communications.

Creation of a communicator in the mpi should respect the rationale that:

“mpi is designed to ensure that communicator constructors always gener-
ate consistent communicators that are valid representations of the newly
created communication domain . . . done by requiring that a new intra-
communicator be constructed out of an existing parent communicator
. . . and this be collective operation over all processes in the group associ-
ated with the parent communicator.” [93, page 206]

Based on the above rationale, we can extend three arguments. Firstly, a pro-

grammer cannot create a new communicator on the fly. Creation therefore means

derivation: a new communicator is derived from an existing communicator. Sec-

ondly, because the derivation of a new communicator is a collective operation, every

call for communicator creation requires two barrier synchronisations, just like col-

lective communication primitives. If this is not preserved, the existence of a globally

21

background

1 enum { JANUARY := 0, DECEMBER := 11 };
enum { ACCOUNTANT := 0, RESEARCH, TEACHER, STUDENT, PROJECT };

3 void mpi artsp comm (void) {
int world rank, agrp rank, rgrp rank, a root, r root, salary[3], month;

5 int a ranks[] := {ACCOUNTANT, TEACHER, STUDENT};
int r ranks[] := {RESEARCH, STUDENT, PROJECT};

7 MPI Group world, a grp, r grp;
MPI Comm a com, r com;

9 MPI Comm rank (MPI COMM WORLD, &world rank); /∗ Get world rank. ∗/
if (world rank = ACCOUNTANT ∨ world rank = RESEARCH) {

11 salary[0] := 0; salary[1] := 1000; salary[2] := 2000; /∗ Set amounts. ∗/
}

13 /∗ Get the group associated with MPI COMM WORLD. ∗/
MPI Comm group (MPI COMM WORLD, &world);

15 /∗ For the MPI Scatter() from ACCOUNTANT. ∗/
MPI Group incl (world, 3, a ranks, &a grp);

17 MPI Group rank (a grp, &agrp rank);
MPI Group translate ranks (world, 1, &a ranks[0], a grp, &a root);

19 MPI Comm create (MPI COMM WORLD, a grp, &a com);
/∗ For the MPI Scatter() from RESEARCH. ∗/

21 MPI Group incl (world, 3, r ranks, &r grp);
MPI Group rank (r grp, &rgrp rank);

23 MPI Group translate ranks (world, 1, &r ranks[0], r grp, &r root);
MPI Comm create (MPI COMM WORLD, r grp, &r com);

25 /∗ Start communication. ∗/
for (month := JANUARY; month ≤ DECEMBER; month++) {

27 if (agrp rank 6= MPI UNDEFINED) /∗ Scatter from ACCOUNTANT. ∗/
MPI Scatter (salary, 1, MPI INT, salary, 1, MPI INT, a root, a com);

29 if (world rank = STUDENT) salary[1] := salary[0];
if (rgrp rank 6= MPI UNDEFINED) /∗ Scatter from RESEARCH .∗/

31 MPI Scatter (salary, 1, MPI INT, salary, 1, MPI INT, r root, r com);
if (world rank = STUDENT) salary[0] += salary[1]; /∗ Sum reduce. ∗/

33 if (world rank 6= ACCOUNTANT ∧ world rank 6= RESEARCH)
printf (”[%d] My salary: %d\n”, world rank, salary[0]);

35 }
/∗ Free the communicators associated with the new scatter groups. ∗/

37 if (agrp rank 6= MPI UNDEFINED) MPI Comm free (&a com);
if (rgrp rank 6= MPI UNDEFINED) MPI Comm free (&r com);

39 /∗ Free the scatter groups. ∗/
MPI Group free (&a grp); MPI Group free (&r grp);

41 }

Figure 2.1: mpi implementation of the first decomposition of Example 1.1.1, which uses two
scatter collective communications over the groups {A,T ,S} and {R,S,P}. A and
R are the respective roots of the MPI_Scatter() calls. What is complicated about
this implementation is the creation of the communicators for each of the two
scatter groups.

22

background

invalid communicator is possible. Thirdly, and finally, the derivation of a new com-

municator from an existing communicator happens in three phases: (1) getting the

group that corresponds to the existing communicator. For example, the group that

corresponds to the communicator MPI_COMM_WORLD; (2) group inclusion, exclu-

sion etc. so that a subset of the existing group gets selected to form a new group; and

(3) create a new communicator from the group just created. In mpi the three oper-

ations can be performed by using the interfaces MPI_Comm_group(), MPI_Group_incl()

(or MPI_Group_excl()), and MPI_Comm_create() respectively.

Now that we know the process of deriving a communicator, let us see if the mpi

approach is simpler when creation of communicators is included in the analysis.

In order to perform a critical analysis, let us reconsider the Example 1.1.1, and

implement an executable mpi program by using the first decomposition which uses

two scatter communications on groups {A,T ,S} and {R,S,P}.

The mpi implementation is shown in Figure 2.1. Three groups are declared

(line 7): world—which corresponds to the MPI_COMM_WORLD, a_grp and r_grp for

the groups that correspond to {A,T ,S} and {R,S,P} respectively. For each MPI_Scatter(),

we need a communicator that corresponds to a_grp and r_grp: respectively declared

as a_comm and r_comm (line 8). Since a new communicator can only be derived from

an existing communicator, we have to first obtain the group, world, that is associated

with communicator MPI_COMM_WORLD (line 14). From this group, we create the

new groups a_grp and r_grp by using MPI_Group_incl() (lines 16 and 21). Further to

the condition that the rank of a process depends on the group, we perform rank

translation (lines 17–18 and lines 22–23). Finally, we create the new communica-

tors, a_comm and r_comm from the groups a_grp and r_grp respectively (lines 19 and

24). The MPI_Scatter() calls are invoked within the loop at lines 28 and 31.

In this example implementation, we can observe that the implementation looks

pretty simple when we consider only what is happening within the loop at lines 26–

35: that is, the usage of the communicators. When the creation of communicators

is considered the simplicity, however, vanishes because of the additional concerns

involved in properly executing operations related to the management of commu-

nicators. For example, at line 14 we derive the process group associated with the

communicator MPI_COMM_WORLD. This group consists of all the processes avail-

able at the time of initialisation with MPI_Init(). From this group, we derive new

groups consisting of only the processes that are necessary to derive the communica-

tors: lines 16 and 21, corresponding to the process groups {A,T ,S} and {R,S,P}. As

the rank of a process changes with the process group, we derive the new rank of the

process from the newly formed groups (lines 17 and 22). We then translate the ranks

23

background

of all the other processes in the new group (lines 18 and 23). Finally, we derive the

communicators from these newly derived groups (lines 19 and 24). As we can see,

although the usage of the communicators is simple and straightforward, deriving

the communicators, as required by the condition (see page 21), increases the com-

plexity. We should therefore aim to, (1) simplify the concept of a communicator so

that the notion that allows simplification of the abstraction is maintained, though

without the additional concerns; (2) further refine the notion of derivation from an

existing communicator, so that communicators can be created on the fly, without

introducing complications due to faulty communicators, and (3) simplify the asso-

ciation of process ranking with a communicator, or the group, should be simplified

by keeping the rank of a process unique and static for the rest of the application, so

that the rank becomes an alias to be used for uniquely identifying a process.

In defining a communication domain, it is stated that each communicator is a

local representation of a global communication domain. This can be interpreted

as the statement that a communicator encapsulates a global state that is visible to

all the processes that belong to the corresponding group. This situation is against

the principle of distributed systems which states that, in addition to the absence

of a common memory and the use of a communication system, distributed sys-

tems are characterised by the lack of a global state visible to an observer at any

given instant [99, 88]. It is therefore important to explore methods that will allow

programmers the benefit of collective communications without breaching this prin-

ciple. Interpreted in another way, this also demands formation of communicators

to be asynchronous, without any barrier synchronisations; which will mean ensur-

ing independence between processes so that every process chooses to complete its

task without being delayed by other processes, unless of course required by a data

dependency.

2.3 What are the objectives of this dissertation?

The objectives of this dissertation can be summarised as follows:

• Development of an abstraction model which resolves the subtle programming

issues related to the ‘process group’ based models (discussed in Section 1.1). We

will focus more on resolving the ambiguity and loss of structural information

problem because the other two issues, choice dilemma and performance porta-

bility, are resolved as a result. The problem of redundant acknowledgement

should also be resolved.

24

background

• Development of a programming model which corresponds directly to the ab-

straction model, so that a programmer can directly translate an abstract repre-

sentation into a valid application program. It is necessary for the programming

model to be non-ambiguous, uniform, expressive and extensible.

• The runtime system which supports the programming model should have an

easy way of specifying specialised message buffers. These message buffers should

be defined as an integral part of the whole system. The integration should not,

however, be too abstract as is the case with linda, or too low-level where ev-

erything related to the message buffers should be programmed explicitly by the

programmer. The aim, therefore, is to provide a reasonable level of abstraction

which allows the programmer to specify certain buffer characteristics, but does

not force them to program handle creation, management and deallocation of

the message buffers.

• Overlapping of computations and communications should be automatic. Since

the chances for improving performance by overlapping depend mostly on the

runtime execution instance of a program, we consider it necessary to allow the

system to take advantage of such opportunities whenever they arise, without

explicit programmer intervention.

2.4 How do we plan to attain these objectives?

We plan to achieve the first objective by defining an abstraction model that does not

depend on the notion of a ‘process group’. In order to avoid usage of the ‘process

group’ concept, we plan to re-analyse the meaning of a communication pattern; and

attempt to develop the abstraction model by enhancing the meaning of a sequential

control flow graph with our fresh interpretation of a communication pattern. What

is integral to this development is an understanding of the differences between se-

quential and parallel programs; simple send-receive communications and pattern

based communications.

Role based parallel programming models such as actor systems [31, 1] have al-

ready been suggested. These models define a parallel programming model in terms

of agents which participate in a given computation by ‘acting’ certain roles. In rela-

tion to this dissertation, however, the role based model which is highly influential is

the concept of a script.

Francez and Hailpern [41] introduced the concept of a script as an abstraction

mechanism which conceals the low-level details that implement patterns of com-

munication. Instead of providing abstractions for point-to-point inter-process com-

25

background

munications, script aims to provide abstraction for a collection of communications

that manifest a communication pattern.

A script is defined as a parameterised program section on to which processes

enroll in order to participate in a computation. It has three main components: (1)

roles, which give the set of instructions that will be executed by any process that

enrolls the role, (2) data parameters, which give the set of data variables that are

affected by an execution of the role, and (3) body, which is a concurrent program

section that defines the patterns of communications defined by the role. For exam-

ple, in a broadcast, there are transmitter roles which send data to recipient roles, so

that data are transferred from the transmitter data parameter to the receiver data

parameters, by executing the pattern of communication defined in the body of the

script, say a spanning tree pattern.

The concept of a script has several advantages as an abstraction mechanism.

Firstly, it separates the definition of a communication pattern from the executing

processes. It is therefore possible to define different scripts based on recurring pat-

terns, without being influenced by the process environment. Secondly, the concept

of enrollment gives a chance to maximise the utilisation of the processing power

as processes can enroll on to different scripts, instead of waiting idle for tasks to

be assigned. Thirdly, the communication patterns can be implemented efficiently

within the body of the script. Finally, the concept of enrollment further allows for

a uniform programming interface, which simplifies programming.

In spite of the above advantages, the concept of a script poses some issues.

Firstly, only one process can enroll on to a given script at any time. Therefore, if

more than two processes attempt to enroll on to a script, all but one process get

blocked. If a process is allowed to enroll on to different scripts at any given mo-

ment, there is a possibility for deadlock. Secondly, scripts work on a fixed network

where processes are not created or destroyed dynamically. This means that the exe-

cution model is not scalable.

2.4.1 Guidelines from the psychology of programming

To achieve the second objective, we have to understand what factors affect the us-

ability of a programming model. In order to do this, we study results from studies

on the psychology of programming. We present some of the interesting results in

the following section.

Even though programming languages and programming interfaces are different

in the sense of implementation, we will consider them similar on the grounds that

they are both tools for expressing the programmer’s understanding of the task into

26

background

a valid executable program. Hence, on the same ground, we also consider it appro-

priate to apply arguments related to programming language designs to the analysis

and design of programming interfaces.

Green’s analysis [52] of programming languages as Information structures has

emphasised that the structure of information expressed by a programming language

should match the structure of the programming task: and depending on this chang-

ing structure of tasks, programming language designs should also change in order

to reflect the changes required in the information structure. One important pro-

gramming task is identified as the task of comprehension, of which deprogramming

is regarded as one very important facet. In deprogramming, after a portion of the

mental representation of the problem has been translated into code, it is again trans-

lated back to the mental representation as a check. It was found that, in many pro-

gramming languages, it was easier to develop the code than to recover its meaning.

Therefore, by applying this argument to interface design, we argue that a message

passing implementation of an algorithm should not be ambiguous about the mean-

ing of the communication pattern involved. This can also be interpreted as: given

a communication pattern, the usage of a given set of application programming in-

terfaces should directly result in a single unambiguous implementation of the com-

munication pattern, and this should exactly represent the structure required by the

pattern. Additionally, this unambiguous implementation should be guaranteed by

the abstraction model, which is what gets translated to the programming interfaces.

Previous research in deprogramming by Pennington [84] and Green [51] has

also emphasised the importance of role expressiveness, which helps a programmer

to identify what the parts of an existing program are, and what is the role or pur-

pose of each part. Since the complications in message passing programs result from

the data communication code segments, a programmer should be able to identify

which part belongs to data communications, and how those communications actu-

ally take place. After applying this argument to interface design, we conclude that

interfaces should readily show the parts representing a communication structure.

In doing so, the interfaces and related data structures should be designed in a man-

ner so as to assist the programmer in identifying the meaning of a communication

pattern as understood from the perspective of each participating process, so that the

programmer can comprehend how the processes are interacting as a whole during

the communication.

Another study by Pair [82], suggests that there are two aspects to programming:

understanding the algorithm and representing objects. The study found out that,

in choosing which aspect to consider first, it is better to begin with the algorithm,

27

background

and then to choose the necessary representations which will make it possible to ef-

ficiently work out the functions and procedures brought to light by the algorithm.

The essence of this argument is now a widely accepted paradigm for software en-

gineering, and has significantly influenced practical programming with the intro-

duction of object-oriented programming languages. By applying this argument to

interface design, we suggest that structuring of communication patterns into com-

munication objects is inevitable for structured message passing programming. By

structuring the communications into such objects, a programmer is able to distin-

guish and identify, from the various communication patterns, those which are re-

quired by a particular algorithm. Subsequent chapters will clarify why this is very

important in achieving simplicity, uniformity, and extensibility of the APIs.

Finally, Petre’s [85] investigation of the differences in the psychology of language

designers and programmers, and Meyer’s [79] experience with the design of the

Eiffel [78] programming language have concluded that Hoare’s guidelines [61, 63],

“. . . good language design may be summarized in five catch phrases: sim-
plicity, security, fast translation, efficient object code, and readability . . .”

are still relevant in the designing of newer programming languages.

From the above discussions, it is quite clear that in the case of parallel program-

ming models, the roles of each process should be easily expressible into a concrete

program; and these roles should be easily inferable from the program code so that

the previous algorithm on which the implementation is based can be derived from

the program without any loss of structural information. Some of the interesting

related works are software reflexion models due to Murphy et al. [80], and the

tube graph abstraction for reverse engineering due to Mancoridis and Holt [73].

It is also important for the programming model to be simple and straightfor-

ward to use once the algorithm has been translated to an abstract model. With

regard to simplicity, the two factors that are relevant are uniformity of the program-

ming interfaces, and expressiveness of these interfaces, so that any given algorithm

can be directly translated into a concrete representation. If needed, the program-

ming model should also be easily extensible, without the need to modify already

existing programming interfaces.

In the next chapter, we shall develop the β-channel abstraction model which will

provide us with the concepts that can be implemented into a programming model,

which will satisfy the objectives of this dissertation (see Section 2.3).

28

background

2.5 Summary

In this chapter, we have put the subject of this dissertation into context (see Sec-

tion 2.1). We have explored existing and ongoing work on inter-process communi-

cations (see Section 2.2.1) and discussed higher-level abstraction models for parallel

programming (see Section 2.2.2). We then discussed the abstraction models that are

based on the concept of a process group, and illustrated the related programming

complexity resulting from its inherent ambiguity (see Section 2.2.3). We then dis-

cussed the objectives of this dissertation (see Section 2.3), and derived guidelines by

analysing the concepts that have already been introduced in relation to the design

of programming languages and systems (see Section 2.4).

29

c h a p t e r 3

Abstraction with communication structures

In the previous chapter, we explored the different approaches that are currently

used for message passing programming. In particular, we discussed the different

concepts that are defined to introduce patterns into the programming model. In

this chapter we develop the β-channel abstraction model which improves the con-

ceptual understanding of a communication pattern, so that the message passing

programming interfaces that are provided are non-ambiguous, uniform, expressive

and extensible.

We begin this chapter by discussing the practical aspects of a communication

pattern, and analysing its meaning in relation to a process which is participating in

the communication. More precisely, we ask the question: what does a communica-

tion pattern mean to a communicating process? While answering this question, we

extend the concept of a control flow graph—which is generally used to thoroughly

analyse the flow of control in a sequential program—so that the message passing

interfaces can be defined as sequential programming primitives. This approach will

place the interface invocations closer to a sequential function call, thus simplifying

the implementation and usage of a communication pattern. We conclude this chap-

ter by highlighting the advances made towards a clearer understanding of a commu-

nication pattern, and outlining the practical advantages it offers to a programmer

(treated more thoroughly in the following chapters).

To make future discussions clearer, the new approach will be referred to as the

Communication Structure approach (or, the β-channel approach).

30

abstraction with communication structures

3.1 Understanding a communication pattern

A message passing program manifests patterns of communication depending on the

algorithm it implements. Such patterns define the manner in which the processes

interact by passing messages. Algorithms, such as the Mandelbrot set task-farm

(see Section 4.3.4), manifest communication patterns that involve the scattering and

gathering of data; while others, such as the block-oriented matrix multiplication

(see Section 4.3.5), manifest communication patterns which form a ring topology

between the processes. A communication pattern, therefore, defines the relationship

between processes based on the flow of data across the processes.

As discussed previously (see Chapter 2), higher-level abstraction concepts, such

as algorithmic skeletons, are defined to capture such patterns with abstract pro-

gramming interfaces that help simplification of the programming model. By pro-

viding pattern abstractions in the form of programming language constructs, or a

library of application programming interfaces, the lower-level implementation de-

tails are concealed from the application developer. In general, this approach involv-

ing higher-level abstraction offers several advantages (which were discussed previ-

ously in relation to specific approaches).

Firstly, the implementation details are hidden under the abstraction layer. Ap-

plication developers who are not concerned with the pattern implementation can

therefore use the patterns without knowing the internal implementation details.

Secondly, because the patterns are implemented independent of any specific appli-

cation, they can be reused in several other applications without re-implementation.

Thirdly, the concealment of the implementation details, and the independence from

any specific application, gives rise to another advantage: portable efficiency. While

implementing the patterns with the lower-level system primitives, proper design de-

cisions can be made in order to harness the potential of a given system architecture,

without worrying about the impact that any usage of the pattern might have on

the pattern implementation itself. Several implementations, for different system

architectures, can therefore be provided for a given pattern without introducing sig-

nificant differences to the abstraction interfaces. It is therefore expected that any

approach for pattern abstraction should provide these advantages to ensure the ef-

fectiveness of the approach. We acknowledge, however, that current approaches do

not provide all of these advantages to their full potential. Our objective, therefore,

is to improve the existing concepts of a communication pattern.

In the next section, we begin development of the β-channel abstraction model

by asking the question: what does a communication pattern mean to a process?

31

abstraction with communication structures

(a)

Broadcast

s r r r

Broadcast

(b)

.

Figure 3.1: (a) The meaning of a broadcast when defined using the notion of a process
group. All of the processes in the group explicitly invoke the same broadcast
interface, but with different parameters. (b) The meaning of a broadcast when
defined from the perspective of each process. Each process invokes the interface
which best defines the communication it is participating in (in this case, root in-
vokes the interface, s, while receivers invoke r). The realisation of the broadcast
pattern is therefore considered as an implied runtime composition of the process
specific interface invocations.

What does a communication pattern mean to a process?

Given a set of communicating processes, we have defined a communication pattern

as the manner in which data flows across this set of processes. This definition,

however, only provides a superficial idea of what a pattern really is: which is, the

way in which all the processes interact together during the communication. If each

process is observed as an independent entity—which they all are if we focus on the

execution of one process at a time—does the conceptual meaning of the pattern

change with the process?

To answer this question, let us consider a simple pattern which is usually pro-

vided in most approaches for pattern abstraction: a message broadcast. A message

broadcast is the sending of a message to all the members of a group of processes so

that all of the member processes receive the same message [101].1

The direct approach is defining the pattern on the group, as shown in Fig-

ure 3.1.a. Here, all of the processes participating in the communication invoke a

broadcast interface. How each process behaves once the interface is executed is de-

cided based on the parameters being passed during the invocation (e.g. the receiving

processes define the root parameter, while the sender process ignores this parame-

ter). In this approach, the pattern is therefore explicitly defined by the interface

which all of the processes invoke. This, we have observed previously (see page 4),

results in the loss of structural information.

Another realisation of the broadcast pattern, due to the β-channel approach, is

1Although there are different ways in which the broadcast pattern can be implemented [90, 97], at
this point we will only focus on the abstract meaning of the pattern.

32

abstraction with communication structures

shown in Figure 3.1.b. Here, the pattern is defined not as a single interface which is

invoked by all the processes, but rather a set of interfaces that are invoked by all the

processes based on their interpretation of the broadcast pattern. The root process

sends data to the receiving processes, therefore invoking an interface s which sends

the message to all the receiving processes. The receiver processes, on the other hand,

invoke the interface r for receiving the message that is sent by the root process.

The broadcast pattern is, hence, not associated explicitly with the group, but is

considered to be an implicit runtime composition of the process specific interface

invocations.

One may ask how, then, is the pattern abstraction concretely implemented in the

application program when it is only defined implicitly? The answer to this question

lies with the interface s, which the root invokes. If we were to use point-to-point

interfaces instead of invoking a single interface s, then no instance of pattern ab-

straction is being used. This is because such a method would mean sending data

to all the receiver processes one by one—which in itself does not readily show the

broadcast pattern. However, if we encapsulate these communications within an

appropriate interface, say interface s, then we have achieved pattern abstraction

because the internal details concerning the sending of messages to all the receiver

processes one by one are concealed by s. If we observe carefully, this makes sense

because the root is the only process which actually require a broadcast pattern; none

of the receiver processes requires a broadcast pattern because all they are required

to perform is the acceptance of data from the root—which in principle is point-to-

point communication, entirely different from a broadcast.

From this discussion, we can observe that the meaning of a communication pat-

tern does change with the process under consideration. We therefore suggest that it

is more meaningful to associate localised communication patterns with the partic-

ipating processes, while leaving the holistic pattern as an implied runtime compo-

sition of these process specific patterns; rather than explicitly defining the holistic

pattern as an interface which is then invoked by all of the participating processes. To

demonstrate one major advantage of the β-channel approach, we will now resolve

the ambiguity, and loss of structural information problem (see page 4).

Resolving the ambiguity and loss of structural information problem

In Section 1.1, we discussed the ambiguity problem related to the overlapping of

communication domains when process group based abstraction models are used.

To resolve this problem, let us recall Example 1.1.1 which introduced the problem.

The ambiguity problem occurs when a single collective communication cannot

33

abstraction with communication structures

(a)

artsp artsp

α α+r r

(b)

Figure 3.2: (a) A process group based collective communication interface for the pattern in
Example 1.1.1. (b) The same pattern implemented with interfaces based on the
process specific interpretations of the pattern.

be invoked over a group of processes because the communication domains defined

by the process groups overlap. Although one may argue that a collective communi-

cation, say artsp, which encapsulates the pattern of Example 1.1.1, can be defined

on the group {A,R,T ,S,P} (Figure 3.2.a), this approach is beset by several pragmatic

concerns. Firstly, how does one manage the patterns if new patterns are defined

for every communication pattern that may appear in a set of applications? Sec-

ondly, the approach contradicts the previously agreed condition that pattern ab-

stractions should be independent of any particular application. Thirdly, a pattern

implementor cannot design a pattern unless the application that will use the pattern

is specified. This means that the application programmer should also be the pattern

implementor. Finally, these arguments also mean that re-usability and performance

portability cannot be ensured in such approaches.

The only solution, therefore, is to decompose the pattern into non-overlapping

communication domains, which can then be used to invoke the respective collec-

tive communication interfaces that are properly designed and implemented by a

pattern implementor. We have, however, noted already that there is no straightfor-

ward method for performing this decomposition, as it can be done in different ways,

which result in different implementations of the same pattern: hence the ambiguity.

On the other hand, if we consider the β-channel approach, which implicitly de-

fines a holistic pattern based on the process specific localised patterns, the pattern

in Example 1.1.1 is realised as shown in Figure 3.2.b. Here, the holistic communi-

cation pattern is implemented by invoking the following interfaces: A and R invoke

scatter interface (α), S invokes data reduction interface (+), and T and P invoke re-

ceive interface r. Since these interfaces (and their associated localised patterns) are

specific to the process and independent of the other processes in the group, there

can exist only one implementation for a given pattern, and that implementation

precisely defines what the pattern actually means, without any loss of structural

information.

34

abstraction with communication structures

3.2 A sequential foundation: the control flow graph

Every process in a message passing program is in itself a sequential process: execut-

ing a set of instructions sequentially. This set of instructions includes the message

passing interfaces that can be considered as sequential instructions if we conceal the

data dependency which relates the interface to corresponding interfaces on other

processes. To define an abstraction model for message passing programming, we

therefore need a clear understanding of what each process does during a parallel ex-

ecution. In order to obtain this, we revisit the fundamental concepts that are defined

by the control flow graph of a sequential program.

A control flow graph defines the flow of control throughout the set of instruc-

tions in a program. It is best represented by a directed graph, defined as follows:

Definition 3.2.1 (Directed graph)

A directed graph G is denoted by G = (N,E) where N is the set of nodes (or vertices)

{n1,n2, . . .} and E is the set of directed edges (or arcs) {(ni,nj),(nj,nk), . . .}. Each

directed edge in the graph G is represented by an ordered pair of nodes (ni,nj),

where ni and nj are not necessarily distinct. [4]

In the directed graph representation of a control flow graph, each node repre-

sents a basic block: defined as a linear sequence of program instructions having one

entry point (the first instruction executed) and one exit point (the last instruction

executed) [4]. A block can have predecessor or successor blocks when it does not

represent the beginning or end of the program. During iterations and recursions,

it can be a successor of its own. Program entry blocks might not have predecessors

that are in the program; program terminating blocks never have successor blocks in

the program.

The edges of the directed graph, on the other hand, represent the flow of control

from one basic block to the other. This defines the order of execution of instructions

that are in different blocks.

To provide a more high-level abstraction of the control flow graph, subsets of

the control flow graph with basic blocks are encapsulated within an extended ba-

sic block. This defines a sequence of program instructions each of which, with the

exception of the first instructions, has one and only one immediate predecessor and

that predecessor precedes it, though not necessarily immediately [3]. Extended ba-

sic blocks can be formed from the tree of basic blocks resulting from programming

constructs such as the if...then...else clause.

The extended basic block allows grouping of basic blocks, and therefore allows

analysis of a program at different levels of detail. We will refer to this level of

35

abstraction with communication structures

(a) (b)

Extended basic block

1

0

2

4

3

5

1

0

2

3

4

Figure 3.3: The resolution of (a) is higher than the resolution of (b) because (b) encapsulates
the basic blocks, nodes 3 and 4, into a single extended basic block, node 3.

detail as the resolution of the nodes in the control flow graph. For example, the

control flow graph shown in Figure 3.3.a has higher resolution than the one shown

in Figure 3.3.b, because the control flow graph shown in Figure 3.3.b encapsulates

two basic blocks, nodes 3 and 4, with a single extended basic block, node 3.

Following the previous discussion, an extended basic block can therefore include

invocations to interfaces that are related to message passing, if we conceal the data

dependency between the local nodes and the nodes existing on remote processes.

To account for the data dependency when representing message passing parallel

programs with control flow graphs, we introduce the concept of a dependency point.

From the next section onwards, we will introduce new concepts which extends

the notion of a control flow graph so that communication patterns can be integrated

within the message passing interfaces. Although some of these concepts may be

related to existing ones, it is defined explicitly to avoid confusion.

3.3 Towards parallelisation: the dependency point

In a message passing parallel program, processes share data: producer processes

produce data that is used by consumer processes. Data are transferred from the

producer to the consumer by transmitting a message containing the data through

a communication channel (or a link), shown in Figure 3.4. This channel has two

opposite ends, the source and the sink. A producer sends a message by putting the

message into a sink, while a receiver receives a message by retrieving the message

from a source.

The manner in which a process behaves as a producer or consumer cannot be

defined for the whole program because every process can behave both as a producer

36

abstraction with communication structures

Producer: send()

Consumer: receive()
sink

source

Producer: send()

Consumer: receive()
sink

source

Process 0 Process 1

Figure 3.4: The definition of a source and a sink from the perspective of the invoking pro-
cess, when the process behaves either as a producer or a consumer. A producer
sends a message by putting the message into a sink, while a consumer receives
a message by retrieving the message from a source. The source and sink are
opposite sides of a communication channel (or a link).

and a consumer depending on the instruction it is executing at a certain moment,

shown by the interchanging producer and consumer behaviour in Figure 3.4.2 It is

therefore necessary to associate the behaviour (producer or consumer) of a process

at the instruction level, depending on whether the instruction is used to send or

receive data.

To differentiate the extended basic blocks that have message passing instruc-

tions from the ones that only use locally available data, the nodes with message

passing instructions in the control flow graph are defined as follows:

Definition 3.3.1 (Dependency point)

A dependency point is a node on the control flow graph that encapsulates instruc-

tions with data dependencies spanning outside the process, to other processes avail-

able during the computation.

A dependency point is further classified as follows:

Definition 3.3.2 (Sink dependency point)

If the instruction that is executed within a dependency point results in the transfer

of data from the local address space to a sink, the dependency point is referred to

as the sink dependency point.

2For clarity, we use ‘instructions’ instead of ‘interfaces’. This is to put the discussion more in
context with those related to a control flow graph.

37

abstraction with communication structures

(a) (b)

3

2

1

4

0

1

2

3

3

1

4

0

2

5

3

1

2

Figure 3.5: (a) The control flow graph has five extended basic blocks represented by the
nodes 0, 1, 2, 3, and 4; of which node 2 is a valid sink dependency point, while
node 3 is an invalid dependency point. (b) Node 3 is transformed into two valid
source dependency points, node 3 and node 5, by increasing the resolution of the
invalid node through decomposition.

Definition 3.3.3 (Source dependency point)

If the instruction that is executed within a dependency point results in the retrieval

and transfer of data from a source to the local address space, the dependency point

is referred to as the source dependency point.

In order to make the above classifications effective, the resolution of each node

should be such that it contains only one instruction that interacts with remote pro-

cesses by either receiving or sending data. We define the validity of a dependency

point as follows:

Definition 3.3.4 (Validity of a dependency point)

A dependency point is said to be valid if it encapsulates exactly one instruction for

interacting with a remote process: either as a producer or a consumer.

In Figure 3.5.a, for example, node 2 is a valid sink dependency point. Node 3, on

the other hand, is not a valid source dependency point because it encapsulates two

off-process data accesses. To make node 3 valid, it should be broken down such that

each of the resulting nodes accesses a single off-process data only (thus increasing

the node resolution). This is shown in Figure 3.5.b where what is originally node 3

is broken down into node 3 and node 5; each accessing separate off-process data.

To identify the dependency points that belong to a process, a collection of de-

pendency points on a process is defined as follows:

38

abstraction with communication structures

r

3

1

4

0

2

5

3

1

2

Figure 3.6: In order to define a communication pattern which encapsulates the point-to-
point communication represented by the dependency points, nodes 3 and 5, a
dependency class r is defined as a logical group of the two dependency points.

Definition 3.3.5 (Dependency set)

For a process, if the sets Γ− and Γ+ respectively represent the set of all the sink

and source dependency points in the control flow graph, a dependency set Γ for the

process is defined as the union Γ+∪ Γ−. That is, Γ = Γ+∪ Γ−.

A dependency point is represented by a node that has an incoming or outgoing

edge (shown in Figure 3.5 with thick arrows), the other end (head or tail) of which is

incident on a node that does not belong in the dependency set of the process under

consideration. Such edges are referred to as dependency edges, and are defined as

follows:

Definition 3.3.6 (Dependency edge)

A dependency edge e = (a,b) is an ordered pair of nodes where either a ∈ Γ and

b /∈ Γ , in which case it is referred to as a sink dependency edge; or a /∈ Γ and b ∈ Γ ,

in which case referred to as a source dependency edge. The classification of a de-

pendency edge into source or sink dependency edge is relative to the process which

defines the set Γ—one process’s sink is another process’s source, and vice versa.

The order of dependency for a dependency edge is given by the directed edge so

that the tail of the edge is incident on the sink dependency point, while the head is

incident on the source dependency point. Both dependency points incident on the

dependency edge belong to different processes. In essence, the order of dependency

gives the direction of data flow from the producer sink to the consumer source.

39

abstraction with communication structures

3.4 Towards pattern abstraction: the dependency class

We have discussed in Section 3.3 how a dependency point represents one end of a

point-to-point communication. In this section we discuss how a localised pattern is

defined on the dependency set of a process.

Given a set of point-to-point communications, pattern abstraction mechanisms

group these communications based on a communication pattern so that such groups

can be represented by a single interface invocation which conceals the underlying

point-to-point communications. In the β-channel approach, therefore, we need a

mechanism to group the dependency points that belong to the dependency set of

a process, so that a pattern can be defined on the group. The β-channel approach

defines such logical groups as follows:

Definition 3.4.1 (Dependency class)

A dependency class is an equivalence class on the set of dependency points that are

incident on a path originating from the root of the control flow graph such that it

does not contain nodes other than source or sink dependence points.

A dependency class represents a logical group to which any action (send or re-

ceive) that is applied gets translated to the internal invocation of the underlying

point-to-point communications. The communications and related computations

are performed by the runtime system in such a way that the communication pattern

associated with the dependency class is properly realised during execution. As an

example, assume that the data received at the source dependency points 3 and 5 in

Figure 3.5.a should be added to give a sum reduced value. To define a sum reduction

pattern on these two dependency points, we group them under a dependency class,

r (see Figure 3.6).

The degree of a dependency class r is defined as the number of dependency

points within the class. It is denoted by δ(r). The in-degree of a class r is defined

as the number of source dependency points within the class r, and is denoted by

δ+(r). The out-degree of a class r is defined as the number of sink dependency

points within the class r, and is denoted by δ−(r). For any given class r, δ(r) =

δ+(r)+δ−(r).

Before we define a pattern on a dependency class, let us first observe some con-

ditions that should be satisfied in order to ensure that the pattern definitions are

consistent with the set of actions applicable to the dependency class.

Definition 3.4.2 (Validity of a dependency class)

A dependency class r defined on a process with dependency set Γ is said to be valid

if and only if,

40

abstraction with communication structures

r
d’

d

(b)

r

(a)

r

d’

d

(d)

r’

r

d

d’’

d’

(c)

’ΓΓ

Figure 3.7: Invalid dependency classes: (a) r = ∅, (b) d ∈ Γ and d ′ ∈ Γ ′, (c) r∩ r ′ 6= ∅, and
(d) δ−(r) and δ+(r) are both 1. Here r and r ′ represent dependency classes, Γ

and Γ ′ represent dependency sets on different processes, d, d ′, and d ′′ represent
dependency points.

1. r 6= ∅,
2. d ∈ r⇒ d ∈ Γ ,
3. d ∈ ri⇒ d /∈ rk, for i 6= k assuming ri and rk are defined,
4. δ+(r) > 0⇒ δ−(r) = 0, and vice versa.

Here d is a dependency point; ri and rk are different dependency classes.

The first condition requires that every dependency class should have at least one

dependency point. If the dependency class r is empty then no communication pat-

tern can be defined because there are no dependency points to be activated when an

action is applied to r. The second condition requires that every dependency point

within a dependency class should also be a member of the dependency set defined

on the process under consideration. This means that dependency classes should

only group local dependency points, and therefore should not encapsulate depen-

dency points defined on other processes. The third condition establishes mutual

exclusion of the dependency classes defined on a process, so that actions applied to

one dependency class do not interfere with other classes. The last condition ensures

that all the dependency points within a class represent either the tail or the head of

the dependency edge so that any one (but not both) of the actions, send or receive,

is defined on the dependency class.

The dependency classes in Figure 3.7 are invalid: (a) condition 1 is not satisfied

because there are no points of dependency, (b) condition 2 is not satisfied because

class r encapsulates dependency points that exist on different processes, (c) condi-

tion 3 is not satisfied because r∩ r ′ 6= ∅, and (d) condition 4 is not satisfied because

δ−(r) and δ+(r) are both 1.

Before proceeding further with the definition of communication patterns, let

us first describe what we mean by applying an action to a dependency class, so

that the following sections on pattern abstraction make sense. We will refer to the

41

abstraction with communication structures

d3 = receive (3);
return d3 + d5;

d5 = receive (2);

activate: receive (r)

r

3

1

4

0

2

5

3

1

2

Figure 3.8: Activation of the dependency class r (see Figure 3.6) for receiving data. The
right-hand side shows the internal instructions that are executed.

application of an action to a dependency class as the activation of the dependency

class, which is described in the next section.

3.5 Initiating a communication: the dependency class activation

The activation of a dependency class r is defined as an execution event where all

of the dependency points within r are activated in order to communicate data. As

shown in Figure 3.8, for example, a dependency class which consists of the depen-

dency points 3 and 5 is said to be activated when a single receive instruction is

executed on r. This activation eventually results in the execution of the separate

receive instructions at each dependency point, following which the received data are

reduced to give their sum.

In Section 3.3, we emphasised that the manner in which a process behaves ei-

ther as a producer or a consumer cannot be defined for the whole program that the

process is executing. It was suggested therefore that the producer or consumer be-

haviour is best associated at the instruction level. Furthermore, from the definition

of a dependency class, we know that activating a dependency class results in the

internal invocation of the encapsulated point-to-point communications; and with

the necessary condition 4 from the definition of a valid dependency class (see Defi-

nition 3.4.2) , it is ensured that an activation is semantically valid—giving a correct

representation of the point-to-point communications if the abstraction provided by

the dependency class is ignored.

When a process behaves as a producer, it sends data. In the programming

model,3 this action is represented by the interface bc_put(). This interface is invoked

3From this point onwards, we will briefly describe the programming interfaces in conjunction with

42

abstraction with communication structures

by passing the data structure which represents the dependency class, the application

buffer to send the data from, and the number of data units that should be sent.

When a process behaves as a consumer, it receives data by invoking the interface

bc_get(). This interface is invoked by passing the data structure which represents the

dependency class, the application buffer where the received data should be stored,

and the number of data units that should be received.

Due to the fact that the communication pattern is defined within the depen-

dency class, these two interfaces, bc_put() and bc_get(), are sufficient to initiate any

form of communication. This is quite contrary to the mpi approach where the com-

munication pattern is associated with the interfaces, for example MPI_Scatter() for

scattering data, MPI_Gather() for gathering data, and so on.

We now proceed to the definition of a communication pattern. In the next sec-

tion, we provide answers to the following questions: how are all the point-to-point

communications within a dependency class executed to manifest a pattern of com-

munication? What happens when either bc_put() or bc_get() is invoked by a process?

3.6 Defining communication patterns: the role

When a dependency class is activated, the dependency points within that class can

in turn be activated internally in different ways. For example, finding the maximum

value of all the data that has been received, or summation of all the values that have

been received. By keeping the degree of the class constant, different internal events

can be defined on the dependency points so that activation of the same dependency

class results in different meanings. These internal events, in fact, defines the local

communication pattern for the process activating the class.

In the β-channel approach, holistic patterns are implicitly defined as the com-

position of localised patterns. These localised patterns are in turn defined in a

dependency class by associating with it a semantic property which relates all the

dependency points within that class. We define this property as the role of that

process in that dependency class.

Definition 3.6.1 (Role)

The role of a dependency class, which in turn represents the role of the process in

that dependency class, is defined as the pattern of internal events that are executed

on the dependency points within r, when r is activated.

the conceptual definitions whenever it is appropriate. These interfaces will be discussed in detail once
all of the relevant concepts have been introduced. Note that all the interface names are prefixed with
‘bc_’, which stands for ‘branching channel’.

43

abstraction with communication structures

(b)

(a)

(c)

x: bc_put

bc_get: x

Process 0

Process 1

bc_get: x+y

x: bc_put

y: bc_put

Process 2
Process 0

bc_get: x

bc_get: y

x, y: bc_put Process 0
Process 2

BC_ROLE_PIPE

BC_ROLE_PIPE

BC_ROLE_REDUCE_SUM

BC_ROLE_PIPE

BC_ROLE_PIPE

BC_ROLE_PIPE

BC_ROLE_PIPE

BC_ROLE_SPREAD

Process 1

Process 1

Figure 3.9: Semantics of the dependency class roles, BC_ROLE_PIPE, BC_ROLE_SPREAD,
and BC_ROLE_REDUCE_SUM. (a) BC_ROLE_PIPE role can be used in de-
pendency classes with both source and sink dependency points. Through the
dependency edge created by the two dependency points, data x is sent from
the application buffer on P0 and received in the application buffer on P1. (b)
BC_ROLE_SPREAD role can only be associated with dependency classes hav-
ing only sink dependency points. Data x and y on P0 are sent from the appli-
cation buffer so that P1 and P2 respectively receive x and y, but not both. (c)
BC_ROLE_REDUCE_SUM role can only be associated with dependency classes
having only source dependency points. Here, data x and y from P1 and P2 are
received on a temporary buffer on P0, and their sum is finally stored in the ap-
plication buffer.

44

abstraction with communication structures

Although all of the implemented roles are discussed thoroughly in Section 4.2,

we will briefly discuss here three roles which we will use for a demonstrative imple-

mentation of Example 1.1.1. The roles that we will discuss here are BC_ROLE_PIPE,

BC_ROLE_SPREAD, and BC_ROLE_REDUCE_SUM. These roles correspond to the lo-

calised communication patterns required by Example 1.1.1. The BC_ROLE_PIPE

role has two meanings depending on the type of dependency point. In the first case,

if r is a dependency class with a single sink dependency point, which is associated

with a BC_ROLE_PIPE role, activation of this dependency class with bc_put() results

in the sending of data from the buffer to the dependency edge incident on the de-

pendency point. In the second case, if r is a dependency class with a single source

dependency point, which is associated with a BC_ROLE_PIPE role, activation of this

dependency class with bc_get() results in the retrieval and transfer of data from the

dependency edge incident on the dependency point to the application buffer.

The role BC_ROLE_SPREAD, on the other hand, can only be associated with a

dependency class with sink dependency points. This means that this role can only

be used for defining producer patterns. If r is a dependency class with n sink de-

pendency points, and if this is associated with a BC_ROLE_SPREAD role, activation

with bc_put() results in the transfer of unique data from the buffer to the dependency

edges incident on the sink dependency points.

Similar to the BC_ROLE_SPREAD role, the BC_ROLE_REDUCE_SUM role can

only be associated with a dependency class with source dependency points. This

means that this role can only be used for defining consumer patterns. If r is a de-

pendency class with n source dependency points, and if this is associated with a

BC_ROLE_REDUCE_SUM role, activation with bc_get() results in the retrieval of n

data units from the dependency edges incident on the source dependency points,

and storage of the sum of the data hence received in the application buffer. In Fig-

ure 3.9, we show graphical representations of the semantics of these roles.

3.7 Putting it all together: the communication structure

In the previous sections, we have defined the data dependency points which give the

nodes of the control flow graph where the process interacts with a remote process

while sending or receiving data. We have also defined a dependency class as a set

of dependency points satisfying a certain set of conditions (see Definition 3.4.2). To

define the localised pattern which specifies the manner in which all of the depen-

dency points within a dependency class are activated, we introduced the concept of

a role.

45

abstraction with communication structures

(a) (b)

r

Process 0

Projection (λ)Dependency point

5

3

2

Dependency class Projection (κ)

r

Dependency class Domain (τ)

r

P

P

P
2

1

3

2 3{P , P }

0{P }

3

1

4

0

2

5

Process 2

Process 1

Process 3

Figure 3.10: (a) The source dependency point 2 and sink dependency points 5 and 3. (b)
The projection of the dependency points 2, 3 and 5, the projection of the de-
pendency class r with dependency points 3 and 5, and the domain of the de-
pendency class r. Pi represents process with rank i.

In this section, we define a communication structure: the concept which incor-

porates all of the other concepts to finally define the holistic communication pattern

of an application program.

Definition 3.7.1 (Communication structure)

A communication structure of a computation involving k processes is defined as a

k-partite simple directed graph G = (D,E,R) where D = ∪k
i=0Γi is the set of all the

dependency points defined on all the participating processes. The set E is defined

as the set of directed edges that is incident on a pair of source and sink dependency

points that exist on different partitions. The set R is defined as the set of equivalence

classes that are defined on each of the k processes.

The communication structure represents the network of links between all of the

processes participating in the computation. This network represents the manner

in which messages are communicated between the processes. The structure of this

network gives the holistic communication pattern manifested by the implemented

algorithm. Before we discuss the validity of a communication structure, let us first

define the following concepts.

For a given dependency class, we are interested in knowing the partition in which

it is defined. We refer to this as the domain of the dependency class.

Definition 3.7.2 (Domain of a dependency class)

The domain of a dependency class, τ(r), for a dependency class, r, is defined as the

46

abstraction with communication structures

partition on which all of the dependency points within r are defined.

For any given dependency point incident on a dependency edge, we are some-

times interested in the partition on which the other dependency point is defined. We

refer to this as the projection of the dependency point, defined as follows:

Definition 3.7.3 (Projection of a dependency point)

The projection of a dependency point, λ(x), for a dependency point x is defined as

the partition on which the other vertex of the directed edge on which x is incident

is defined.

For a sink dependency point, the projection gives the rank of the receiver pro-

cess; for a source dependency point, the rank of the sender process.

While dealing with dependency classes, we are also interested in knowing the

projections of all the dependency points within the dependency class. We refer to

this as the projection of the dependency class, defined as follows:

Definition 3.7.4 (Projection of a dependency class)

The projection of a dependency class, κ(r), for a dependency class r is defined as the

‘unordered’ set of the projections of all the dependency points in r. Mathematically,

κ(r) = {λ(x) | x ∈ r}.

For example, in Figure 3.10, the projections of the dependency points 5, 2 and

3 are 2, 1 and 3 respectively. The projection of the dependency class r with depen-

dency points 5 and 3 is the unordered set {2,3}.

In the programming model, the projection of the dependency class is repre-

sented with a data structure referred to as the process list. The process list is a

process specific data structure which encapsulates the projection of a dependency

class, but specialises it with ‘ordering’ information. When a role is associated with

a dependency class, the semantics of that role define the pattern in which the de-

pendency points are coordinated. For some roles, such as the BC_ROLE_SCATTER,

the coordination requires ordering of the dependency points in order to specify how

the data from the sender application buffer is sent. For other roles, for example

BC_ROLE_REDUCE_SUM, such ordering is not necessary, and therefore it does not

require ordering information in addition to the projection of the class. This is the

reason why we ignore ordering information while defining the projection of a de-

pendency class.

We now define the validity of a communication structure as follows:

Definition 3.7.5 (Validity of a communication structure)

A communication structure G = (D,E,R) is said to be valid if and only if,

47

abstraction with communication structures

BC_ROLE_PIPE BC_ROLE_REDUCE_SUM BC_ROLE_PIPE

ST A R P

BC_ROLE_SPREAD BC_ROLE_SPREAD

Figure 3.11: The communication structure for the communication pattern of Exam-
ple 1.1.1. Each process creates a dependency class: T creates a source depen-
dency class with one dependency point whose projection is {A}. It has the role
BC_ROLE_PIPE. We can similarly derive the information for P. Both A and
R, on the other hand, create a dependency class with two dependency points,
with projections {T ,S} and {S,P} respectively. Both have BC_ROLE_SPREAD

role. Finally, S creates a dependency class with two dependency points, with
projection {A,R}. It has the BC_ROLE_REDUCE_SUM role.

1. ∀r ∈ R, r is a valid dependency class (see Definition 3.4.2),
2. ∀r ∈ R, κ(r) contains unique members,
3. ∀r ∈ R, κ(r)∩τ(r) = ∅, and
4.

∑|R|
i=0δ(ri) = 0 for all ri ∈ R.

The first condition ensures that all the dependency classes in R can be activated

with either bc_put() or bc_get(). The second condition ensures that any dependency

class r ∈ R with degree δ(r) > 1 does not have more than one dependency edge that

is incident on the same remote partition. This is necessary because receiving more

than one data unit with separate receive calls can be combined into a single receive

call that has multiple data units. The third condition ensures that all the directed

edges cross the partition boundary, so that every dependency edge is incident on

two dependency points defined in different partitions. In practice, this means that

a dependency edge can only be used for transferring data from one process to an-

other, and therefore cannot be used for transferring data within the process. In fact,

communicating data to self does not make sense because the process already has ac-

cess to the data through a direct memory access. The final condition ensures that all

the dependency classes are connected to the required number of dependency classes

on other partitions so that every source is connected to its respective sinks, and vice

versa.

3.8 The encapsulating data structure: the branching channel

While developing an application, the communication structure is created as a run-

time composition of process specific data structures referred to as the branching

48

abstraction with communication structures

1 enum { JANUARY := 0, DECEMBER := 11 };
enum { ACCOUNTANT := 0, RESEARCH, TEACHER, STUDENT, PROJECT };

3 void artsp branching (void) {
bc chan t ∗src := NULL, ∗sink := NULL;

5 bc plist t ∗src pl := NULL, ∗sink pl := NULL;
int salary[2], month;

7 if (bc rank = ACCOUNTANT ∨ bc rank = RESEARCH) {
salary[0] := 1000; salary[1] := 2000; /∗ Set amounts. ∗/

9 }
/∗ Create communication structure. ∗/

11 switch (bc rank) {
case ACCOUNTANT:

13 sink pl := bc plist create (2, TEACHER, STUDENT);
sink := bc sink create (sink pl, bc int, 1, BC ROLE SPREAD);

15 break;
case RESEARCH:

17 sink pl := bc plist create (2, STUDENT, PROJECT);
sink := bc sink create (sink pl, bc int, 1, BC ROLE SPREAD);

19 break;
case TEACHER:

21 src pl := bc plist create (1, ACCOUNTANT);
src := bc src create (src pl, bc int, BC ROLE PIPE);

23 break;
case STUDENT:

25 src pl := bc plist create (2, ACCOUNTANT, RESEARCH);
src := bc src create (src pl, bc int, BC ROLE REDUCE SUM);

27 break;
case PROJECT:

29 src pl := bc plist create (1, RESEARCH);
src := bc src create (src pl, bc int, BC ROLE PIPE);

31 break;
}

33 /∗ Start communication. ∗/
for (month := JANUARY; month ≤ DECEMBER; month++) {

35 if (bc rank = ACCOUNTANT ∨ bc rank = RESEARCH)
bc put (sink, &salary[0], 1); /∗ Send amounts. ∗/

37 else {
bc get (src, &salary[0], 1); /∗ Receive amounts. ∗/

39 printf (”[%d] My salary: %d\n”, bc rank, salary[0]);
}

41 }
/∗ Destroy communication structure. ∗/

43 if (src pl) { bc chan destroy (src); bc plist destroy (src pl); }
if (sink pl) { bc chan destroy (sink); bc plist destroy (sink pl); }

45 }

Figure 3.12: β-channel implementation of Example 1.1.1. Each process first creates the
β-channels before commencing communication. The β-channels created on
each process are specific to the process, and represent the localised communi-
cation patterns expressed as the process’ roles.

49

abstraction with communication structures

channels, or β-channels for brevity, which we define as follows:

Definition 3.8.1 (Branching channel)

A branching channel, or β-channel for brevity, is a data structure which encapsu-

lates a dependency class, its projection, the associated role, and the communication

specific parameters which affect the performance of communications upon activa-

tion (for example message buffers).

Every process in the computation creates the necessary β-channel before com-

mencing communications. A process only creates the β-channels that are defined in

its corresponding partition. In the programming model, a source β-channel is cre-

ated with the interface bc_src_create(); a sink β-channel is created with the interface

bc_sink_create(). Both interfaces take the same parameters except for the message

buffer size, which is passed while creating a sink β-channel.

We shall now implement Example 1.1.1. Figure 3.11 shows the dependency

classes on each of the five partitions, T , A, S, R, and P. Each process creates one

β-channel, each corresponding to the dependency class as shown. The complete

implementation of Example 1.1.1 is shown in Figure 3.12. At lines 11–32, we cre-

ate the β-channels. For every β-channel, a process list is first created to represent

the projection of the dependency class which the β-channel encapsulates. This is

done by invoking bc_plist_create(), as shown. The process list is then passed to ei-

ther bc_src_create() or bc_sink_create() while creating the β-channel. We specify the

role of the dependency class as another parameter. In order to specify the type of

data that will be communicated through the β-channel, a data type is passed as the

parameter. In addition, while creating a sink β-channel, the number of buffer units

to be allocated for this β-channel is also passed. Once the β-channels are created,

we commence the communication by activating the corresponding β-channels, as

shown in lines 34–41. We invoke bc_put() on sink β-channels, and bc_get() on source

β-channels. Finally, once the communications are over, the β-channels and their

corresponding process lists are destroyed (lines 43–44).

Discussion

The β-channel abstraction model can be related directly to csp and actor systems,

where the concept of β-channels extends the concept of a csp channel, by allowing

a process to communicate with multiple processes. In csp, processes communi-

cate with a one-to-one channel created by each of the process before commencing

communication (see page 13). Through β-channels we can achieve the same effect

by using β-channels with BC_ROLE_PIPE role. The advantage of β-channels, how-

50

abstraction with communication structures

ever, comes from the possibility of communicating with multiple processes while

using a communication pattern—which is the fundamental basis for actor sys-

tems. Another model similar to the actor system is the dagger approach [57],

where executable components defined in the charm language are executed based

on the availability of messages. In this model, each component behaves similar to

actor components, except for its similarity to data flow programming model [65].

Each of the dagger components in an application program does not initiate

communications explicitly since they are scheduled for execution when the data re-

quired by that component has been received by the charm runtime system. This

means that while some components are waiting for data, others can be executed,

therefore avoiding the wastage of the processing elements. Although this provides

a sense of asynchrony, as multiple components can execute simultaneously depend-

ing on data availability, debugging such programs will be complicated as this asyn-

chrony is compounded by the inherent non-determinism of the system.

3.9 Practical advantages of the β-channel approach

Most message passing systems provide handle based communications where all the

communications are performed on a communication context defined by a commu-

nication handle. These contexts are usually implemented as opaque data structures

upon which certain message passing actions are invoked to achieve data commu-

nications. What differentiates certain message passing systems from others is the

manner in which a communication context is defined. For example, in linda [45],

a communication context is defined by a tuple space, so that every communication

is performed through a transparent implementation medium that provides certain

access to tuples currently existing in the system. A process does not know who

else is accessing the tuples. On the other hand, if we consider mpi systems [93], a

communication context is defined by a communicator that provides a logical subset

of the processes available to the programmer where all the processes in the group

are assigned consecutive process ranks. It can therefore be argued that mpi systems

provide more flexibility than linda because multiple communication contexts can

be defined over the same set of processes. This comparison is important because

the policy for defining communication contexts decides the practical aspects of the

message passing system; and consequently affects the programming interfaces.

In the β-channel approach, the policy for defining a communication context is

again different: instead of defining a context based on a global transparent handle,

or through logical process group based handles, every communication context is de-

51

abstraction with communication structures

fined based on how the communication pattern is interpreted by the process under

consideration (see Section 3.1). This means that every process knows about all the

other processes with which it communicates, but this approach is more flexible than

the mpi system because a process is not affected by, and does not affect, peer pro-

cesses with which it does not perform any communication. This is how we resolve

the redundant acknowledgement problem (see page 5).

Now, the question is how is the β-channel approach practically advantageous?

To answer this question, let us study the following example.

Example 3.9.1

Assume three communicating processes, A, B and C, where A sends a data unit to

B, and also sends n data units to C. From the data unit received, B generates n

data units which are then sent to A. C, on the other hand, reduces the n data units

received from A and sends the resulting data unit back to A. The following figure

shows the communications,

A

CB

A

CB

A

CB

A

CB
n n 11

For process group based systems, there exists only one communication context

defined by the process group {A,B,C}. A communicator corresponding to this group

provides the communication handle upon which communications are performed.

The point to note here is that the communications performed during each stage

exist under this single communicator, and therefore cannot be passively identified

and referenced individually, without performing a communication; say for example,

setting the size of the message buffer to be used for a particular communication.

Upon observation, we can see that in order to reduce the latency, process A can

utilise message buffers. The number of buffers units allocated for each stage of the

communications is not necessarily the same: sending one data unit to process B

requires only one buffer unit; sending n data units to process C, on the other hand,

requires n buffer units. In the above case with process group context handles, we

cannot specify such specialised properties for each stage because they cannot be

identified and referenced individually. This is where the β-channel approach gives

more flexibility to the programmer, by allowing such specification of specialised

communication structure specific properties.

In the β-channel approach, for each stage of communications, a communication

context is defined by the β-channel created for performing the communication. In

52

abstraction with communication structures

Process 1 2 3 4

A 1→ B n→ C n← B 1← C

B 1←A — n→A —

C — n←A — 1→A

Table 3.1: The process specific communication contexts which correspond to the
β-channels created for each stage of the communication. The notation 1→ B

means 1 data unit is sent to process B; n← C means that n data units are re-
ceived from process C. ‘—’ represents empty context where no context is defined
by the process in that stage.

Table 3.1, we show the different contexts defined on each process. The notation

1→ B means 1 data unit is sent to process B; n← C means that n data units are

received from process C. ‘—’ represents empty context, or no context is defined

by the process in that stage. If we consider process A, for example, it defines four

contexts: two, which correspond to the sink β-channels for sending data to B and

C, and another two, which correspond to the source β-channels for receiving data

from B and C. We can perform similar analyses for processes B and C.

Based on the analysis of Table 3.1, we can see that specifying specialised proper-

ties, such as message buffers, is very straightforward with the β-channel approach.

All we have to do is pass the necessary buffer values while creating the β-channels.

In Example 3.9.1, we can therefore specify the message buffer sizes on process A as:

bc_chan_t ∗bsink, ∗csink;

bc_plist_t ∗b, ∗c;

b := bc_plist_create (1, B); c := bc_plist_create (1, C);

bsink := bc_sink_create (b, bc_int, 1, BC_ROLE_PIPE);

csink := bc_sink_create (c, bc_int, n, BC_ROLE_PIPE);

bc_put (bsink, 1, &bdata); bc_put (csink, n, &cdata);

We can see from the above example that the β-channel approach provides a

more flexible environment for the programmer. By allowing the programmer to

have control over the communication properties, it allows for certain optimisations

and further simplification, which we will discuss shortly. Before we discuss the

interface optimisations for send-and-forget type communications let us first discuss

the following β-channel properties :

• The grouping property of β-channels allows communications to be grouped

with the same β-channel. Based on the role and the degree of the depen-

dency class, all the communications represented by the dependency points are

grouped as a single abstract entity.

53

abstraction with communication structures

• The selectivity property of β-channels allows selection of communications from

a possible set of communications, represented by a dependency set. In combi-

nation with the grouping property, this property allows selection of depen-

dency points from the dependency set so that they can be represented as a

single activation unit.

• The referencing property of β-channels allows a group of selected communi-

cations to be referenced as a communication data structure. The most basic

application of this property is the activation of a β-channel where communica-

tions are performed by activating a particular β-channel from a set of available

β-channels.

• β-channels are data typed. This type is specified while creating the β-channel,

and represents the type of data that can be communicated through the β-channel.

Only data of types equivalent to the data type can be put into, or retrieved from

that β-channel.

• The existential property of β-channels states that for a β-channel application

program to be valid, all the communication structures should be created before

activation. This means that all the β-channels that are required for a commu-

nication are available before commencing communications.

3.9.1 Avoiding intermediate memory copy

By combining the properties discussed in the previous section, we can achieve inter-

face optimisations for send-and-forget type communications where a sending pro-

cess does not reuse sent data. With the grouping property and the selectivity prop-

erty, we are able to group a selection of dependency points. This, after translation

to a β-channel, is available to the program as a passive data structure. Due to the

referencing property, a β-channel can be acted upon during activation, or assigned

certain properties (as discussed above in the case of message buffering). In addition,

the β-channels can be manipulated directly, provided proper interfaces are available.

Programmer defined local variables abstract memory units to a particular data

type. Hence, all memory units are potential local variables provided we can abstract

them to a certain data type. When β-channels are created, message buffers are

internally implemented by allocating memory units which are abstracted into buffer

units of the β-channel data type. Therefore, buffer units within a β-channel are also

potential local variables. By using the referencing property, we can therefore access

these buffer units through proper interfaces.

54

abstraction with communication structures

bc_commit (bc);

bc_var (bc, char) = C;

bc_var (bc, char) = B;

bc_var (bc, char) = A; A

B

B

C CB

B

B

A

x = B;

x = C;

x = A; A

B

B

C

copy

bcx

bc

bufferbuffer

B

B

(a) (b)

bc_put (bc, &x, 1);

Figure 3.13: Message buffering, (a) with, (b) without, intermediate memory copy. buffer

represents the internal message buffer units encapsulated by the β-channel bc.

The β-channel programming model provides three interfaces for accessing the

buffer units directly.4 They are: (1) bc_var(), (2) bc_vptr(), and (3) bc_commit(). The

first two interfaces are macros which always point to the next available buffer unit.

The last interface is an activation interface used to commit the current value of the

buffer unit pointed to by the previous macros.

In Figure 3.13, we show message buffering with and without intermediate mem-

ory copy. The variable, x, in Figure 3.13.a is the local variable from which data is

copied to a buffer unit during bc_put(). In Figure 3.13.b, instead of utilising a user

defined local variable, through bc_var() we utilise a variable abstraction of a buffer

unit. When the corresponding bc_commit() is invoked, the pointer to the buffer unit

given by bc_var() is updated to the next valid buffer unit, also committing the previ-

ous value to the buffer. Through this mechanism, we have achieved message buffer-

ing without intermediate memory copy. In contrast to split-phase non-blocking

APIs, more than one buffer unit can be utilised in the message buffer, while also

simplifying programming which would be otherwise complicated by the multiple

initiation-completion pairs. This is illustrated by the following example,

if (bc_rank = PRODUCER) {

for (i := 0; i < 10; i++) {

bc_var (a, int) := compute (data[i]);

bc_commit (a);

}

} else for (i := 0; i < 10; i++) bc_get (a, &data[i], 1);

In the above example, all the n buffer units are automatically utilised with a sin-

4The usage of the interfaces bc_var(), (b) bc_vptr(), and bc_commit() are thoroughly described in
Section 4.2, and their implementation discussed in Section 5.5.1.

55

abstraction with communication structures

gle bc_var() and bc_commit() interface pair. The programming would have been com-

plicated if MPI_Isend() and MPI_Wait() interfaces were used instead. In Section 4.3.4,

we use these interfaces for implementing the Mandelbrot set task farm, where the

input complex points to be communicated are set directly within the β-channel

buffer units; the performance improvements are discussed in Section 6.2.1.

3.10 Summary

In this chapter, we have developed the β-channel abstraction model. We introduced

new concepts for pattern abstraction based on our thesis that holistic patterns are

best represented as implied runtime compositions of localised communication pat-

terns (see Section 1.2).

The development of the β-channel abstraction model began with the re-analysis

of what is meant by a communication pattern (see Section 3.1). To incorporate the

findings of this analysis, we started with the existing fundamental concept of a con-

trol flow graph (see Section 3.2). We then introduced the concept of a dependency

point (see Section 3.3) which defines the nodes of the control flow graph where data

is sent or received from remote processes. As the aim is to integrate communica-

tion patterns within the message passing interfaces, we introduced the concept of a

dependency class (see Section 3.4) which defines a logical grouping of dependency

points lying on the same path within the control flow graph. These dependency

classes formed the conceptual basis of the communication data structures, defined

as branching channels (see Section 3.8), to which communication patterns, defined

as roles (see Section 3.6) are assigned. To represent the holistic communication pat-

tern manifested by the algorithm being implemented, we introduced the concept of

a communication structure (see Section 3.7).

In relation to these new concepts, we have discussed how the ambiguity (see

page 4), loss of structural information (see page 5), and redundant acknowledge-

ment (see page 5) problems are resolved (see page 33 and page 52); the resolution

of the choice dilemma (see page 4) and performance portability (see page 4) prob-

lems follow immediately because the ambiguity has been removed. We have also

discussed the β-channel properties which allow communications to be selected,

grouped, identified and referenced (see page 53). In order to demonstrate the prac-

tical advantages of these properties, we have discussed two applications: firstly, pro-

viding the flexibility to specify specialised communication properties, such as mes-

sage buffers; and secondly, interface optimisation for send-and-forget communica-

tions, which avoids intermediate memory copy during buffering (see Section 3.9).

56

c h a p t e r 4

Programming with communication structures

This chapter discusses the programming model. Our main objective in this chapter

is to understand the practical meanings of the abstraction concepts—in contrast to

the conceptual developments presented in the previous chapter. We discuss here

the practical considerations a programmer is faced with when applications using

communication structures are being developed.

The exposition is divided into two major parts. The first part provides details

of the application development process: starting from the parallelisation of an al-

gorithm to the production of an executable parallel program. We introduce the

two-phase application development process, and describe the related application

programming interfaces with example usage notes. The rest of the first part is fo-

cused on justifying the qualitative advantages of the new approach by discussing

implementations of several non-trivial message passing algorithms which manifest

widely varying communication patterns. In the second part of this chapter, we dis-

cuss the relationship between the new model and skeletal parallel programming.

We emphasise how the new model is advantageous for the implementation and de-

ployment of algorithmic skeletons.

57

programming with communication structures

Communication activation phase

Butterfly communication structure

Communication structuring phase Phases

Fast Fourier transform algorithm

Eexcutable program

ComponentsCommunication activation code

Figure 4.1: Two-phase application development. During the communication structuring
phase, we derive the communication structure from the algorithm, i.e. butterfly
communication structure for a fast Fourier transform algorithm. This is then
translated to β-channels, and combined with the activation code generated dur-
ing the communication activation phase. The highlighted box represents the
application program.

4.1 Two-phase application development

After an algorithm is designed, it is implemented into an executable application by

using a programming model. The programming model provides the programmer

with the necessary tools for expressing the abstract representation of the algorithm

into an executable form, which can then be executed on the runtime environment

provided by the programming model.

Depending on the size and complexity of the application, application develop-

ment is usually divided into several phases (for example, modular programming,

object-oriented programming, etc.). Division into several phases allows program-

ming concerns to be separated and handled independently of the others, thus reduc-

ing programming complexity. In the β-channel programming model, programming

is divided into two main phases:1 (1) communication structuring phase, and (2)

communication activation phase (see Figure 4.1).

Communication structuring phase

During the communication structuring phase, the emphasis is on the understanding

and analysis of the communication patterns manifested by the algorithm. From the

analysis, communication structures which represent these patterns are derived. In

addition to representing inter-process data dependencies, the communication struc-

tures also represent the β-channels that should be created before commencing data

1Although, each of these phases may be divided further into modules etc., we will not consider
such divisions here. It is up to the programmer to choose the best approach for further division of
these phases, if necessary.

58

programming with communication structures

communications during program execution. The end result of this phase is a collec-

tion of β-channels defined by each of the participating processes, which collectively

represents the communication patterns manifested by the algorithm. Any com-

munication performed over this set of β-channels therefore represents the pattern,

automatically—without the need for further programmer intervention.

In Figure 4.1, for example, we implement the fast Fourier transform algorithm

(discussed more thoroughly in Section 4.3.2). During the communication structur-

ing phase, the communication structures that define the butterfly communication

pattern is derived and translated to the necessary β-channels. The final result of

this phase is a ‘passive’ network of β-channels through which data can be commu-

nicated in a butterfly communication pattern. This, however, does not constitute

the actual communications required during the computations. They should there-

fore be activated in order to perform actual communications, which is done during

the communication activation phase.

Communication activation phase

During the communication activation phase, parts of the program that are neces-

sary for actually communicating data are programmed. The β-channels resulting

from the communication structuring phase are passive: they only define how a com-

munication can proceed during execution; and therefore do not mean anything dur-

ing the execution unless they are activated. Hence, in order to communicate data,

the β-channels are activated through a set of interfaces which provides the actions.

The set of ‘actions’ that can be applied to a β-channel are: putting data into

the β-channel, and getting data from the β-channel. These two actions correspond

to whether the process is acting as the producer, or the consumer: ‘put’ actions for

producer processes, and ‘get’ actions for consumer processes.

In Figure 4.1, as discussed in the previous section, the butterfly communication

structure for the fast Fourier transform is translated into a network of β-channels.

During the communication activation phase, we utilise these β-channels by apply-

ing put or get actions. Within the computation, the corresponding sink β-channels

are activated with bc_put() where data are sent, and the source β-channels are acti-

vated with bc_get() where data should be received before further computations.

In essence, the above two divisions follow the fundamental concept of structured

programming, where application development begins by defining data structures

(such as queues, lists, stacks etc.) and then applying actions (such as ‘push’ and

‘pop’) to these data structures based on what is required by the algorithm; thus

resulting in an executable program [102].

59

programming with communication structures

4.2 Application programming interfaces

This section describes the application programming interfaces for developing mes-

sage passing parallel programs with communication structures. We organise this

section so that related interfaces are described together. Wherever possible, we give

running example notes to briefly demonstrate their usage. Further discussion of

their usage when applied to the implementation of real algorithms will be discussed

in Section 4.3.

In order to avoid namespace corruption, the interfaces and the data structures

are prefixed with ‘bc_’, and constants with ‘BC_’. It is also worth noting that, while

naming functions and variables we follow a convention similar to the posix standard

[64]. Unless otherwise stated, all of the programming interfaces return an integer

error code.

Initialisation and finalisation

A β-channel application program should initialise the programming library first.

This allocates the data structures necessary for managing the runtime system. In

order to deallocate these resources at the end of the computations and communi-

cations, the application program should finalise the library before returning. The

application programming interfaces for initialisation and finalisation are,

int bc_init (int flag);

Initialises the programming library. bc_init() should be invoked before using

any of the library functions and associated data structures; and this should be

done only once. The flag gives the options for library functionalities. After

initialisation, two values are defined on every process: bc_size and bc_rank,

where bc_size gives the number of processes available during initialisation, and

bc_rank gives the rank of the process in the process ensemble. All the available

processes are ranked consecutively starting at zero; and every process retains

its rank until bc_final().

int bc_final (void);

Finalises the programming library. This should be invoked at the end of the

application to deallocate internal data structures created during bc_init().

Process list management

The process list is a data structure defined by a process to identify the remote pro-

cesses with which it communicates through a β-channel. They represent the pro-

60

programming with communication structures

cesses with which the process should interact in order to realise its communica-

tion role. Process lists exist independently of any β-channel, therefore, they can be

shared by multiple β-channels. The application programming interfaces for man-

aging process lists are,

bc_plist_t ∗bc_plist_create (int num, ...);

Returns a valid process list with |num| processes. The number of processes

listed by the variable arguments should equal |num|. If num > 0, the process list

is created with the listed processes. If num < 0, the process list is created with

all processes available after bc init(), excluding those that are listed. If num = 0,

NULL is returned, meaning error. For example, if the available processes are

{0,1,2,3,4}, the following will create a process list a with processes {0,1,2},

and process list b with processes {1,3,4}.

bc_plist_t ∗a, ∗b;

a := bc_plist_create (3, 0, 1, 2);

b := bc_plist_create (−2, 0, 2);

bc_plist_t ∗bc_plist_create_empty (int num);

Returns an empty process list with enough placeholders for num > 0 processes;

If num 6 0, NULL is returned, which means error. The returned process list is not

valid and should not be used before setting the process ranks with bc_plist_set().

bc_plist_create_empty() is used when processes need to be assigned dynamically.

For example, an empty process list a for holding 10 processes is created as,

bc_plist_t ∗a;

a := bc_plist_create_empty (10);

int bc_plist_set (bc_plist_t ∗plist, int loc, int proc);

Sets or resets a process in a process list. Processes are ordered within a process

list with consecutive indices starting at 0. bc_plist_set() sets the process at the

placeholder indexed by loc in the plist with the process rank proc. The process

at loc is always overwritten.

A process list should only be set or reset when no β-channel is using it. If

bc_plist_set() is invoked without satisfying this condition, the function returns

immediately without having any effect. For example, a process list a of 10

consecutive even processes starting with process 2 is created as,

bc_plist_t ∗a;

a := bc_plist_create_empty (10);

for (i := 0, j := 2; i < 10; i++, j += 2) bc_plist_set (a, i, j);

61

programming with communication structures

Provided no β-channel is using the process list a created above, the last 5 even

processes can be reset to 5 consecutive odd processes starting at 3 as follows,

for (i := 5, j := 3; i < 10; i++, j += 2) bc_plist_set (a, i, j);

int bc_plist_split (bc_plist_t ∗plist, int num, bc_plist_t ∗new[]);

Splits a process list plist into num process lists. The newly created process lists

will be stored in new; which should be provided by the programmer. Each

new process list is assigned processes from the ordered set in plist. If an equal

division of processes cannot be made, bsize/numc processes will be assigned

to each of the first num − 1 process lists, and the remaining processes will be

assigned to the last process list. Here size gives the number of processes in

plist. All of the new process lists are disjointed so that no two process lists will

have the same process. Also, plist is left unchanged. For example, the process

list a = {0,1,2,3,4,5,6} is split into 3 new process lists, s[0] = {0,1}, s[1] = {2,3},

and s[2] = {4,5,6} as follows,

bc_plist_t ∗a, ∗s[3];

a := bc_plist_create (7, 0, 1, 2, 3, 4, 5, 6);

bc_plist_split (a, 3, s);

bc_plist_t ∗bc_plist_union (int num, bc_plist_t ∗plists[]);

Returns the set union of the num process lists pointed to by plists. When the new

process list is created, the supplied process lists are left unchanged. For exam-

ple, the set union u = {0,1,2,3,4,5} of the two process lists s[0] = {0,1,2,5} and

s[1] = {0,1,3,4,5} is obtained as follows,

bc_plist_t ∗u, ∗s[2];

s[0] := bc_plist_create (4, 0, 1, 2, 5);

s[1] := bc_plist_create (5, 0, 1, 3, 4, 5);

u := bc_plist_union (2, s);

bc_plist_t ∗bc_plist_isect (int num, bc_plist_t ∗plists[]);

Returns the set intersection of the num process lists pointed to by plists. When

the new process list is created, the supplied process lists are left unchanged. For

example, the set intersection i = {0,1,5} of the two process lists s[0] = {0,1,2,5}

and s[1] = {0,1,3,4,5} is obtained as follows,

bc_plist_t ∗i, ∗s[2];

s[0] := bc_plist_create (4, 0, 1, 2, 5);

s[1] := bc_plist_create (5, 0, 1, 3, 4, 5);

i := bc_plist_isect (2, s);

62

programming with communication structures

Flag bc_plist_t ∗ Description

BC_PLIST_SELF bc_plist_self Self reference.

BC_PLIST_ALL bc_plist_all All processes including self.

BC_PLIST_XALL bc_plist_xall All processes excluding self.

BC_PLIST_ODD bc_plist_odd All odd processes excluding self.

BC_PLIST_EVEN bc_plist_even All even processes excluding self.

BC_PLIST_PRED bc_plist_pred All preceding processes.

BC_PLIST_SUCC bc_plist_succ All succeeding processes.

Table 4.1: Builtin process lists that can be used immediately after initialisation.

bc_plist_t ∗bc_plist_diff (bc_plist_t ∗a, bc plist_t ∗b);

Returns the set difference of the process lists a and b. When the new process

list is created, the supplied process lists are left unchanged. For example, the

set difference d = {2,6,7,9} of the process lists a = {0,1,2,5,6,7,9} and b =

{0,1,3,4,5} is obtained as follows,

bc_plist_t ∗d, ∗a, ∗b;

a := bc_plist_create (7, 0, 1, 2, 5, 6, 7, 9);

b := bc_plist_create (5, 0, 1, 3, 4, 5);

d := bc_plist_diff (a, b);

int bc_plist_destroy (bc_plist_t ∗plist);

Destroys the process list plist. The actual deallocation of resources is handled

by the runtime system when it is safe to proceed.

When process lists are created or split, the order of the processes in the initial

process lists is always preserved in the resulting process lists.

Builtin process lists

This section describes some of the builtin process lists (see Table 4.1). These pro-

cess lists are optional functionalities provided by the runtime system, and can be

activated by setting the appropriate flag value before bc_init().

bc_plist_self contains the rank of the process, and is used for self referencing.

bc plist_all refers to the rank of all the bc_size processes available during bc_init().

bc_plist xall refers to the ranks of all the other (bc_size−1) processes available during

bc_init(), excluding the rank of the invoking process. bc_plist_odd and bc_plist_even re-

spectively refer to all of the odd and even ranked processes available during bc_init(),

excluding the rank of the invoking process. bc_plist_pred refers to the ranks of all the

processes in the process ensemble whose process ranks are less than the rank of the

63

programming with communication structures

bc_dtype_t ∗ C data type

bc_char char

bc_uchar unsigned char

bc_short short

bc_ushort unsigned short

bc_int int

bc_uint unsigned int

bc_float float

bc_long long

bc_ulong unsigned long

bc_double double

bc_long_double long double

Table 4.2: Builtin β-channel data types, and corresponding C language data type.

invoking process. Similarly, bc_plist_succ refers to the ranks of all the processes in

the process ensemble whose process ranks are greater than the rank of the invoking

process.

When any of these builtin process lists is required, it can be requested by setting

the appropriate value of flag during initialisation. If more than one process list is

desired, flag is set to the bitwise ‘OR’ing of the appropriate flags. For example, to

broadcast data to all of the succeeding processes, and to sum reduce data from all of

the preceding processes, one can use bc_plist_pred and bc_plist_succ by first requesting

them during initialisation with bc init(BC_PLIST_PRED | BC PLIST_SUCC).

Builtin process lists need not be destroyed by the programmer because they are

managed by the runtime system, and hence are destroyed automatically during fi-

nalisation. Invoking bc plist_destroy() on builtin process lists does not have any effect,

and therefore the function returns immediately.

β-channel data types

This section discusses the β-channel data types which specialise a communication

structure by providing information on the type of data that can be communicated

through the communication structure. Every β-channel is associated with a data

type, and this specifies the type of data which can be sent or received through the

β-channel. Because communication structure only defines the manner of interac-

tion between processes, it is important to specialise this with information about the

actual data that will be communicated. For example, if we desire a pipeline commu-

nication structure through which integer data are communicated, we must specialise

64

programming with communication structures

this structure by specifying integer data types for the corresponding β-channels. It

should be noted here that we only discuss the case where a β-channel is associated

with one data type only; however, this can be extended to support mixed data types

where a β-channel can be used for transferring different types of data depending

on, for example, the runtime execution instance.

Builtin data types

The programming library defines the builtin data types given in (see Table 4.2).

They can be used immediately following a successful bc_init().

Custom data types

Some applications may require transfer of data that cannot be represented with the

builtin data types; or, it may be desirable to communicate data of different data

types packed as a single data unit. For such applications, a custom data type should

be created. The application programming interfaces for managing custom data

types are,

bc_dtype_t ∗bc_dtype_create (size_t size);

Creates a custom data type that can be represented in the virtual memory with

size bytes. For example, a custom data type n for communicating a C pro-

gramming language structure custom with two members: number of type int

and a char array name of length 10 is created as,

struct custom { int number; char name[10]; } ;

bc_dtype_t ∗n;

n := bc_dtype_create (sizeof (struct custom));

Newly created custom data types can be shared by multiple β-channels.

int bc_dtype_destroy (bc_dtype_t ∗dtype);

Destroys a custom data type. Custom data types are not automatically de-

stroyed by the runtime system. Hence, by invoking bc_dtype_destroy(), a process

should explicitly request the runtime system for deallocation. Once a request

for deallocation is received, the runtime system performs the deallocation when

it is safe to proceed.

β-channel roles

This section describes the β-channel roles currently provided by the programming

library. These roles define the manner in which producer and consumer processes

65

programming with communication structures

interact during a communication. Figure 4.2 shows the semantics of the β-channel

roles in terms of graphical representations.

BC_ROLE_PIPE

When a producer sink β-channel with BC_ROLE_PIPE role is activated with

bc_put(), data from the application buffer are copied into the internal buffer

that is associated with the sink β-channel. When the corresponding source

β-channel on the consumer is activated, using bc_get(), data from this internal

buffer is transferred to the application buffer of the consumer.

When a source β-channel with BC_ROLE PIPE role is activated with bc_get(),

a data transfer request is sent to the producer associated with that β-channel

and the consumer waits until the data have been received successfully.

BC_ROLE_REPLICATE

When a sink β-channel with BC_ROLE_REPLICATE role is activated with bc_put(),

data from the application buffer are copied into the shared internal buffers as-

sociated with the β-channel. When the corresponding source β-channels on

the consumers are activated, data from this internal buffer is transferred to

the application buffer of the consumers. Even though the effect of this role is

that of a data broadcast, the name BC_ROLE_REPLICATE is chosen because the

producer does not explicitly broadcast data to all of the consumers. Instead,

data in the internal buffer are shared by the consumers during retrieval, which

results in the replication of the same data on all the consumers.

BC_ROLE_SPREAD

When a sink β-channel with BC ROLE_SPREAD role is activated with bc_put(),

data which are unique to each consumer are copied from the application buffer

into the respective buffers associated with each consumer of that β-channel.

Upon activation of the corresponding source β-channels on the consumers,

data from the corresponding internal buffer are transferred to the application

buffer of the requesting consumer. The manner in which data are copied from

the application buffer depends on the ordering of processes within the process

list associated with the sink β-channel. This decides which consumer gets what

data. Therefore, the first data goes to the first process in the process list, and

so on. The name BC ROLE_SPREAD is chosen instead of BC_ROLE_SCATTER in

order to reflect this ordering.

BC_ROLE_FARM

When a sink β-channel with BC ROLE_FARM role is activated with bc_put(),

data from the application buffer are copied into the shared internal buffer asso-

66

programming with communication structures

z

y

x

xyz

COLLECTION

0

1

0

1 33

2 2

z

y

x

x+y+z

SUMMATION

0

1

2

3

0

1

2

3

z

y

x

MINIMUM

min(x, y, z)

0

1

2

3

0

1

2

3

z

y

x

x*y*z

MULTIPLICATION

0

1 3 1

0

3

2 2

z

y

x

max(x, y, z)

MAXIMUM

0

1

2

3 1

0

2

3

yzxyz

REPLICATION

x

x

x

1 1

3 3

0 0 22

SPREADING

xyz y

x

z

1 1

33

0 0 22

x

PIPELINING

x 1 100

FARMING

xyz y/z/x...

z/x/y...

x/y/z...1 1

00

3 3

22

0

1 3 1

0

3

2 2

xyz

abc

def

xyadbefyz...

HARVEST

Figure 4.2: Semantics of the β-channel roles. • represents activation of a β-channel.

67

programming with communication structures

ciated with the β-channel. From the producer’s perspective, the effect is similar

to that of BC_ROLE_PIPE, except for the internal events which take place when

the corresponding source β-channels are activated. Upon activation of the cor-

responding source β-channels on the consumers, data from the internal buffer

gets transferred to the application buffer of the consumer. The transferred

data, however, are considered unique because only the receiving consumer gets

the data (exclusive). Which consumer gets what data is non-deterministic, and

depends on who requested the data first.

BC_ROLE_COLLECT

When a consumer source β-channel with BC_ROLE_COLLECT role is activated

with bc_get(), data is transferred from the internal buffer of all the correspond-

ing producer β-channels to the consumer application buffer. Data received

from each of the producers are treated uniquely, and are ordered in the ap-

plication buffer according to the ordering of the producers in the process list

associated with the source β-channel. If the source β-channel has n producers,

activation of this β-channel will therefore result in the transfer of n data units

from the producers into the application buffer, where received data are ordered

based on the ordering of the n producers in the associated process list.

BC_ROLE_HARVEST

When a consumer source β-channel with BC_ROLE_HARVEST role is activated

with bc_get(), data is transferred from the internal buffer of the sink β-channel

to the consumer application buffer, by choosing the producer based on data

availability. This is similar to the BC_ROLE_COLLECT role, except for the non-

determinism of the producer from which the data is received. In practice, this

role can be considered as the receiver counterpart to the BC_ROLE_FARM role,

where decisions are made according to when the request for data arrived.

BC_ROLE_REDUCE_SUM

When a consumer source β-channel with BC_ROLE_REDUCE_SUM role is acti-

vated with bc_get(), the sum of the data transferred from the internal buffers of

all the corresponding producer β-channels is stored in the application buffer

of the consumer. If the source β-channel has n producers, activation of this

β-channel will therefore result in the sum reduction of the n data units trans-

ferred from the producers; finally storing the sum into the application buffer.

Only the sum is stored in the application buffer, and the intermediate data

received from the producers are not available to the consumer.

BC_ROLE_REDUCE_MUL

68

programming with communication structures

Similar to BC_ROLE_REDUCE_SUM, but performs multiplicative reduction.

BC_ROLE_REDUCE_MAX

Similar to BC_ROLE_REDUCE_SUM, but calculates the maximum value.

BC_ROLE_REDUCE_MIN

Similar to BC_ROLE_REDUCE_SUM, but calculates the minimum value.

The β-channel roles described here only constitute the most common roles found

in parallel algorithms. Additional roles can be introduced without affecting the ex-

isting interfaces and data structures. This makes the programming model highly

extensible, and easily manageable. For example, the last four roles reduce data re-

ceived from the sender processes. Such roles incorporate trivial computations within

the communications. In situations where the programmer wishes to devise a cus-

tom operator function for the data reduction, one can introduce a new role, say

BC_ROLE_REDUCE_OPT, for supporting such customisations. In the next section,

we shall discuss how the functionality of the β-channel programming model can be

extended with new roles.

Extending the β-channel roles

In this section, we discuss extension of the β-channel programming model by intro-

ducing a new role which allows a programmer to specify custom operator functions

for data reduction. We shall refer to this role as BC_ROLE_REDUCE_OPT.

All computations that are incorporated within the communications are per-

formed as part of the communication, transparent from the application program-

mer. In all of the last four roles in the previous section, the computations are per-

formed after the data has been received from all the sender processes. In principle,

therefore, the implementation of these roles can be separated into communications

with the BC_ROLE_COLLECT role, following which computations on the data that

has been received (e.g. summation, finding the maximum etc.) are performed.

The first part of the extension involves adding the name of the new role into

the roles database so that source β-channels using this role can be created with

bc_src_create(). The second part of the extension involves implementing the inter-

face function that will provide a functionality similar to the one provided by the

BC_ROLE_COLLECT role; so that all the data from the sender processes is received

into a temporary buffer. The third, and final, part of the extension is invoking the

custom function provided by the application programmer, over the set of data units

that have been collected in the temporary buffer.

To support the BC_ROLE_REDUCE_OPT role, we need a way for the program-

69

programming with communication structures

.

.

.
.
.

. 0 n−1
bc_get: f (x , . . . , x)

BC_ROLE_PIPE

BC_ROLE_PIPE

n−1
bc_put: x

0
bc_put: x BC_ROLE_REDUCE_OPT

Figure 4.3: Extending the set of β-channel roles by introducing a new role which supports
specification of custom operator functions for data reduction. A new role,
BC_ROLE_REDUCE_OPT, is introduced. This role invokes the custom function,
f(x0, . . . ,xn−1), during activation.

mer to express the function f(x0, . . . ,xn−1). As shown in Figure 4.3, this function

can then be invoked when a source β-channel with BC_ROLE_REDUCE_OPT role is

activated. To specify the custom operator function without changing the existing

interfaces, we define a function pointer bc_operator with the prototype:

typedef void (∗bc_opt_t) (void ∗buffer, int count);

where buffer is a pointer to a temporary buffer where received data is collected, and

count gives the number of data units that have been collected in buffer.

As an example, to create a custom operator function which adds integer values

received from all the even indexed processes in the process lists, while subtracting

integer values received from the odd indexed processes, we may define a function,

custom_operator, and assign it to bc_operator as follows:

void custom_operator (void ∗buffer, int count) {

int i, value;

for (i := 0; i < count; i++) {

if (i % 2) value -= ∗((int ∗) buffer + i);

else value += ∗((int ∗) buffer + i);

}

∗(int ∗) buffer := value;

}

bc_operator := custom_operator;

Source β-channels using the BC_ROLE_REDUCE_OPT role can now be created

using the bc_src_create() interface (see next section). When such a β-channel is acti-

vated, the runtime system will first receive all the values from the remote processes

listed in the process lists corresponding to the β-channel, and then invoke the func-

tion assigned to bc_operator, which in this case is the function custom_operator: the

70

programming with communication structures

appropriate parameters—pointer to the temporary buffer and the number of data

units available on that buffer—are supplied by the runtime system.

By following procedures similar to the ones discussed above, we can extend the

β-channel programming model with more complex roles. As we can observe, the

addition of new roles does not affect the existing interfaces and roles: it only in-

creases the functionality because the newly added role can be used in conjunction

with existing roles. It should be noted, however, that extensions with custom op-

erator functions are not type safe. It is the programmers’ responsibility to ensure

that the temporary buffer supplied by the β-channel runtime system is dereferenced

appropriately to the β-channel data type within the custom operator function.

β-channel management

This section describes β-channel management. After identifying the communica-

tion structures necessary for implementing a given algorithm, they are translated

into β-channels by specifying the process list, role, data type and buffer characteris-

tics. Following the producer-consumer relationship, producer processes create sink

β-channels, while consumer processes create source β-channels.

bc_chan_t ∗bc src_create (bc_plist_t ∗prod, bc_dtype_t ∗dtype, bc_role_t role);

Returns a source β-channel. prod is the process list which gives the set of pro-

ducers on which the consumer depends for data. dtype gives the type of data

that can be received through this source, and the role defines the manner in

which the data received from the producers are stored in the application buffer.

For example, a source β-channel of integer data type which sum reduces data

received from all the odd ranked processes, excluding the invoking process, is

created as follows,

bc_chan_t ∗src;

src := bc_src_create (bc plist_odd, bc_int, BC ROLE_REDUCE_SUM);

bc_chan_t ∗bc sink_create (bc_plist_t ∗cons, bc_dtype_t ∗dtype, int bu, bc_role_t role);

Returns a sink β-channel. cons is the process list which gives the consumer

processes depending on this β-channel for data. dtype is the type of data that

can be sent through this β-channel, and bu gives the number of buffer units to

be allocated for the internal buffer. The role defines the manner in which data

from the application buffer are stored into the internal buffer associated with

the β-channel. For example, a sink β-channel with 10 buffer units for sending

integer data that are replicated on all the succeeding processes is created as

71

programming with communication structures

follows,

bc_chan_t ∗sink;

sink := bc_sink_create (bc plist_succ, bc_int, 10, BC_ROLE_REPLICATE);

int bc_chan_destroy (bc_chan_t ∗bc);

Destroys a β-channel. Actual deallocation of resources is handled by the run-

time system.

All the interfaces described hitherto are executed locally, and therefore are not

influenced by any of the remote processes. Execution of these interfaces are there-

fore guaranteed to be asynchronous.

Planarity of dependency edges

In the prototype implementation of the runtime system, all the β-channels that are

created on a process are assigned a unique identification tag internally. These tags

are used to resolve the sink-to-source dependency edges during communications.

Using this tag assignment policy allows asynchronous execution of the bc_put() and

bc_get() interfaces. However, in order to perform the resolutions properly it is neces-

sary that all β-channel creations observe the planarity condition, defined as follows:

Definition 4.2.1 (Planarity condition)

When β-channels are created, all the dependency edges between any two processes

formed by a combination of source and sink β-channels should be arranged in such

a manner that no two dependency edges, represented by a straight directed edge,

with the same direction of data flow cross each other. If they do cross, this should

be resolved by reordering the sequence in which the β-channels are created on either

of the two processes. This condition, however, does not apply to dependency edges

which have different directions of data flow, and does not affect the order in which

the β-channels are used during the communication activation phase.

In Figure 4.4, for example, we have two communicating processes A and B.

In case (a), A creates two sink β-channels m and n, when B creates two source

β-channels x and y sequentially. Both dependency edges (m,y) and (n,x) have the

same direction of data flow, and they are non-planar. We must resolve this cross-

ing by reordering the creation of β-channels in one of the processes. As shown in

case (b), we resolve the crossing by reordering the creation of the source β-channels

on B so that β-channel y is created before x. The crossing can also be removed

72

programming with communication structures

A B A B

(c)(b)

A B

(a)

n

m x

y

y

x

m

n q

e

f

p

Figure 4.4: The internal tag assignment policy requires that the ‘planarity condition’ is
satisfied. (a) Non-planar dependency edges where the two edges (m,y) and
(n,x) cross each other, and (b) the crossing in (a) is resolved by reordering the
β-channel creations on PB. (c) non-planar dependency edges with opposite di-
rection of data flow can be left as they are.

by changing the order in which m and n are created on A, so that creation of n

precedes that of m.

On the other hand, the two dependency edges (p,f) and (e,q) as shown in Fig-

ure 4.4.c can be left as they are because the direction of the data flow is opposite: for

dependency edge (p,f), the directed edge points from process A to process B, while

the directed edge for the dependency edge (e,q) points from process B to process A.

In Section 5.3.3, we shall discuss the reasons for the ‘planarity condition’.

β-channel activation

This section describes how a communication structure is activated for communi-

cating data. After a communication structure is translated into the corresponding

β-channels, the producer activates the sink β-channel while the consumer activates

the source β-channel.

When a sink β-channel is activated, data from the application buffer is trans-

ferred into the internal message buffer associated with that β-channel. We perform

this action by invoking the bc_put() interface on the appropriate sink β-channel.

int bc_put (bc_chan_t ∗sink, void ∗abuff, int dunit);

Activates a sink β-channel. This transfers dunit data units from the application

buffer, abuff, to the internal message buffer of sink. One important condition is

that the β-channel buffer should have at least dunit buffer units. For example, in

the following code segment, bc_put() transfers 4 data units from the application

buffer value into the internal buffer of sink.

bc_chan_t ∗sink; bc_plist_t ∗cons;

int value[] := {0, 1, 2, 3};

cons := bc_plist_create (4, 1, 2, 3, 4);

73

programming with communication structures

sink := bc_sink_create (cons, bc_int, 4, BC_ROLE_REPLICATE);

bc_put (sink, value, 4);

bc_chan_destroy (sink); bc plist_destroy (cons);

When a source β-channel is activated, a data transfer request is sent to the pro-

ducers. The data are then received into the application buffer. We perform this

action by invoking the bc_get() interface on the appropriate source β-channel.

int bc_get (bc_chan_t ∗src, void ∗abuff, int dunit);

Activates a source β-channel. This retrieves dunit data units from the source

β-channel src, and stores the received data in the application buffer, abuff. For

example, in the following code segment, bc_get() stores 4 data units in the ap-

plication buffer value, where the stored data are the sum reductions of the data

received from the producers for each data unit requested.

bc_chan_t ∗src; bc_plist_t ∗prod;

int value[4];

prod := bc_plist_create (4, 1, 2, 3, 4);

src := bc_src_create (prod, bc_int, BC_ROLE_REDUCE_SUM);

bc_get (src, value, 4);

bc_chan_destroy (src); bc plist_destroy (prod);

Interfaces for avoiding intermediate memory copy

The interfaces for avoiding intermediate memory copy for send-and-forget type

communications are as follows:

bc_var (bc_chan_t ∗sink, c_type type);

bc_var() is a macro which expands to a valid buffer unit within the sink β-channel

buffer. The valid buffer unit is dereferenced to the C programming language

data type, type: equivalent to a programmer defined variable. For example, the

following dereferences the β-channel buffer unit as an integer variable.

bc_chan_t ∗sink;

sink := bc_sink_create (bc_plist_xall, bc_int, 4, BC_ROLE_REPLICATE);

bc_var(sink, int) := 10;

bc_chan_destroy (sink);

The data type type which is passed to bc_var() ensures that the buffer unit is

properly dereferenced. This is necessary because the buffer units are not as-

sociated with any data type on its own; they are resolved when the β-channel

is activated. In this case, because we are accessing the internals of the sink

74

programming with communication structures

β-channel without actually activating it, we have to make sure that the buffer

unit is properly dereferenced.

bc_vptr (bc_chan_t ∗sink, c_type type);

bc_vptr() is similar to bc_var(). However, instead of abstracting a valid buffer

unit to a variable, it expands to a type variable pointer. This is required for

sending an array of data. For example, in the following code segment we create

a sink which can accommodate 4 buffer units, with each buffer unit storing an

array of 10 integers. Once the sink has been created, we fill the values for one

buffer unit with 10 integers using bc_vptr().

int i; bc_dtype_t ∗dtype; bc_chan_t ∗sink;

dtype := bc_dtype_create (10, sizeof(int));

sink := bc_sink_create (bc_plist_xall, dtype, 4, BC_ROLE_REPLICATE);

for (i := 0; i < 10; i++) ∗(bc_vptr(sink, int) + i) := i;

bc_chan_destroy (sink);bc_dtype_destroy (dtype);

int bc_commit (bc_chan_t ∗sink);

bc_commit() commits the value in the variable abstraction to a buffer unit value

by updating the sink buffer pointer to the next valid buffer unit. Upon return,

bc_var() and bc_vptr() points to a new buffer unit. Until we issue bc_commit(), the

values in the current buffer unit—which is pointed to by bc_var() and bc_vptr()—

cannot be sent to any of the remote receivers. For example, in the following

code, we first fill the 10 integers for the first data unit, and then commit the

value so that we can fill up the next data unit.

int i, j; bc_dtype_t ∗dtype; bc_chan_t ∗sink;

dtype := bc_dtype_create (10, sizeof(int));

sink := bc_sink_create (bc_plist_xall, dtype, 4, BC_ROLE_REPLICATE);

for (i := 0; i < 4; i++) {

for (j := 0; j < 10; j++) ∗(bc_vptr(sink, int) + j) := i∗j;
bc_commit(sink);

}

bc_chan_destroy (sink); bc_dtype_destroy (dtype);

We illustrate the above three interfaces during the implementation of the pipeline

skeleton interface (see Section 4.4.2), and also during the implementation of the

non-deterministic Mandelbrot set task farm (see Section 4.3.4). Implementation

details are discussed in Section 5.5.1, and latency improvement in Section 6.2.1.

75

programming with communication structures

4.3 Implementing common algorithms

This section demonstrates the β-channel programming model by applying the con-

cepts and programming interfaces for implementing five common non-trivial paral-

lel algorithms. These algorithms are chosen because of the communication patterns

they manifest, so that subtle features of the programming model can be described.

For each of the algorithms, we begin the discussion with a brief definition of the

algorithm and related terms, followed by a description of the parallelisation ap-

proach. We then discuss the β-channel implementation.

4.3.1 Gaussian elimination

In scientific problems, it is often necessary to solve a system of linear equations. For

realistic problems, such systems of linear equations are often quite large; therefore

solving these systems is computationally demanding. In order to provide the com-

putational power required to solve such systems, parallel computing systems are

employed. Many parallel algorithms have been designed to solve a system of linear

equations, and Gaussian elimination is a well-known algorithm.

Definition 4.3.1 (Linear equation)

A linear equation on n variables x1, . . . ,xn is an equation which can be expressed as

a1x1 +a2x2 + . . .+anxn = b, where a1, . . . ,an are the coefficients of the equation,

and b is a constant.

Definition 4.3.2 (System of linear equations)

A system of linear equations is a finite set of linear equations on n variables x1, . . . ,xn

which can be solved to give a set of constants s1, . . . ,sn, also known as the solution

set, which, when substituted for the variables, xi = si for 1 6 i 6 n, satisfies all

equations in the system of linear equations.

A system of linear equations on n variables can also be represented as Ax = b

where A is an n×n matrix containing the coefficients aij of all the equations in the

system, and x and b are n×1 vectors respectively storing the values of xi and bi, for

16 i,j 6 n. The locations and values of non-zero elements in A determine the com-

plexity of solving these equations: for a sequential algorithm, the time complexity

is generally O(n3); however, upper triangular and lower triangular systems can be

solved in O(n2) with a sequential algorithm [86].

Definition 4.3.3 (Upper and Lower triangular)

An n×n matrix is upper triangular if for all 1 6 i,j 6 n, aij = 0 when i > j. An

n×n matrix is lower triangular if for all 1 6 i,j 6 n, aij = 0 when i < j.

76

programming with communication structures

1 void gaussian sequential (int A[][], int b[], int c[] , int n) {
int i, j, k;

3 for (i := 0; i < n; i++) {
for (j := i + 1; j < n; j++)

5 A[i][j] := A[i][j] / A[i][i];
c[i] := b[i] / A[i][i];

7 A[i][i] := 1;
for (k := i + 1; k < n; k++) {

9 for (j := i + 1; j < n; j++)
A[k][j] := A[k][j] − A[k][i] ∗ A[i][j];

11 b[k] := b[k] − A[k][i] ∗ c[i];
A[k][i] := 0;

13 }
}

15 }

Figure 4.5: A sequential implementation of the Gaussian elimination algorithm for reduc-
ing a system of linear equations to an upper triangular form. This can be paral-
lelised in the outermost loop (line 3).

Ite
ra

tio
n

Process

Ite
ra

tio
n

Process

(b)(a)

...
...

...
...

.

..
...

...
.
..

.

..
.
..

...
..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4.6: Communication structures for the parallel Gaussian elimination algorithm: (a)
pipeline, and (b) broadcast. For each of the iterations, black ellipses represent
processes that have completed their iterations. Thick arrows represent data flow.

77

programming with communication structures

1 void gaussian pipeline (float A[][], int n) {
int i, j, last := bc size − 1, r := bc rank, y := n + 1;

3 bc plist t ∗sink pl := NULL, ∗src pl := NULL;
bc chan t ∗sink := NULL, ∗src := NULL;

5 /∗ Create Pipeline communication structure. ∗/
if (r 6= 0) {

7 src pl := bc plist create (1, r − 1);
src := bc src create (src pl, bc float, BC ROLE PIPE);

9 }
if (r 6= last) {

11 sink pl := bc plist create (1, r + 1);
sink := bc sink create (sink pl, bc float, y + 1, BC ROLE PIPE);

13 }
/∗ Eliminate all the preceding equations. ∗/

15 for (i := 0; i < r; i++) {
/∗ Receive preceding equations for elimination. ∗/

17 bc get (src, &A[i][0], y + 1);
for (j := i + 1; j < n; j++)

19 A[r][j] := A[r][j] − A[r][i] ∗ A[i][j];
A[r][n] := A[r][n] − A[r][i] ∗ A[i][y];

21 A[r][i] := 0;
/∗ Pass on received equations. ∗/

23 if (r 6= last) bc put (sink, &A[i][0], y + 1);
}

25 /∗ Preceding equations have been eliminated, divide my equation. ∗/
for (j := r + 1; j < n; j++)

27 A[r][j] := A[r][j] / A[r][r];
A[r][y] := A[r][n] / A[r][r];

29 A[r][r] := 1;
/∗ Send my equation for elimination in the succeeding stages. ∗/

31 if (r 6= last) bc put (sink, &A[r][0], y + 1);
/∗ Destroy communication structure. ∗/

33 if (r 6= 0) { bc chan destroy (src); bc plist destroy (src pl); }
if (r 6= last) { bc chan destroy (sink); bc plist destroy (sink pl); }

35 }

Figure 4.7: Implementation of the parallel Gaussian elimination algorithm using a pipeline
communication structure. A is a consolidated matrix representing Ax=b; and n

gives the number of linear equations in the system being solved.

78

programming with communication structures

The Gaussian elimination algorithm reduces a system of linear equations given

by Ax = b, to an upper triangular form Ux = c. Once a system is reduced to this

form, back-substitution [86, 49] can be applied to give the values of xi.

A sequential implementation of the Gaussian elimination algorithm for reduc-

ing a system of linear equations to an upper triangular form is shown in Figure 4.5.

This implementation can be parallelised in the outermost loop (line 3) in two ways

by using the communication structures shown in Figure 4.6.

4.3.1.1 Pipeline communication structure

This section describes a parallel implementation of the Gaussian elimination algo-

rithm using a pipeline communication structure. With a pipeline communication

structure (Figure 4.6.a), every process participating in the computation represents a

pipeline stage.

Assume that n processes are used for solving a system of n linear equations,

where Pi is assigned equation i. The algorithm executed by each stage of the

pipeline can then be expressed as follows,

for 1 to rank do
Receive equation x from the preceding stage.
Eliminate equation x from local equation.
Send equation x to succeeding stage.

end for
Reduce local equation to triangular form.
Send local equation to succeeding stage.

In the above algorithm, rank = i gives the rank of Pi in the process ensemble,

assuming stage i is executed by Pi. In the first part of the algorithm, each stage

eliminates all the preceding linear equations. This is done in the for loop, where a

linear equation is received from the preceding stage, which is then eliminated from

the equation assigned to that stage before sending the unmodified received equation

to the succeeding stage.

In the second part, after all the preceding linear equations have been eliminated,

the linear equation assigned to stage i is divided by A(i,i) which reduces the equa-

tion to the upper triangular form. This equation is then sent to the succeeding stage

so that it can be eliminated by the succeeding stages of the pipeline.

The corresponding implementation with β-channels interfaces is shown in Fig-

ure 4.7. Because of the pipeline communication structure, each stage behaves as

the consumer for the preceding stage, and producer for the succeeding stage. Two

β-channels are therefore required on each stage for these two producer-consumer

79

programming with communication structures

roles. They are created during the communication structuring phase (lines 6–13).

The source β-channel is created with a process list containing the preceding stage

process (bc_rank − 1), and is given the BC_ROLE_PIPE role because the process is

communicating with the preceding process only. Similarly, the sink β-channel is cre-

ated with a process list containing the succeeding stage process (bc_rank + 1). This

β-channel is also given the BC_ROLE_PIPE role because it is communicating with

the succeeding process only. For the sink β-channel, the size of the message buffer

is specified as (y + 1) so that a row in Ax = b can be communicated. Finally, both

β-channels are specialised with the bc_float data type: assuming that the variables,

coefficients and constants are float values.

During the activation phase, the communication structure created in the pre-

vious phase is activated for transferring data (lines 17, 23 and 31). After a stage

concludes computation, the communication structure is destroyed by destroying the

β-channels and their corresponding process lists.

To relate the abstraction model to the programming model, we shall refer to

the concepts discussed in Chapter 3 by using this example. As we can see from

Figure 4.6, the dependency points lie within the main loop (see line 3 in Figure 4.5),

which, in the parallel implementation with pipeline communication pattern (see

Figure 4.7) is shown at lines 17, 23 and 31. These dependency points represent

segments within the application program where data is communicated with remote

processes. From these dependency points, we derive the dependency classes, which,

in this case only contain one dependency point since the process communicates

with either the predecessor or the successor. Furthermore, the predecessor and the

successor form the projections of these dependency points, for which we create the

process lists (see lines 7 and 11). We combine these projections with the appropriate

role, data type and buffer size to create the encapsulating β-channel data structures

(see lines 8 and 12). As discussed previously, we can now activate these β-channels

to perform communications.

4.3.1.2 Broadcast communication structure

This section describes a parallel implementation of the Gaussian elimination algo-

rithm using a broadcast communication structure (Figure 4.6.b). In this implemen-

tation, every process participating in the computation successively acts as the root

of a broadcast during the iterations.

Again, assuming that n processes are utilised for solving a system of n linear

equations, where Pi is assigned equation i, the algorithm executed by every process

can be expressed as follows,

80

programming with communication structures

1 void gaussian replication (float A[][], int n) {
int i, j, last := bc size − 1, r := bc rank, y := n + 1;

3 bc plist t ∗sink pl := NULL, ∗src pl := NULL;
bc chan t ∗sink := NULL, ∗src := NULL;

5 /∗ Eliminate all the preceding equations. ∗/
for (i := 0; i < r; i++) {

7 /∗ Create the communication structure for receiving equations. ∗/
src pl := bc plist create (1, i);

9 src := bc src create (src pl, bc float, BC ROLE PIPE);
/∗ Receive preceding equations for elimination. ∗/

11 bc get (src, &A[i][0], y + 1);
for (j := i + 1; j < n; j++)

13 A[r][j] := A[r][j] − A[r][i] ∗ A[i][j];
A[r][n] := A[r][n] − A[r][i] ∗ A[i][y];

15 A[r][i] := 0;
/∗ Destroy the communication structure for receiving equations. ∗/

17 bc chan destroy (src); bc plist destroy (src pl);
}

19 /∗ Preceding equations have been eliminated, divide my equation. ∗/
for (j := r + 1; j < n; j++)

21 A[r][j] := A[r][j] / A[r][r];
A[r][y] := A[r][n] / A[r][r];

23 A[r][r] := 1;
/∗ Create communication structure for broadcasting. ∗/

25 if (bc rank 6= last)
sink := bc sink create (bc plist succ, bc float,

27 y + 1, BC ROLE REPLICATE);
/∗ Broadcast my equation for elimination in the succeeding processes. ∗/

29 if (r 6= last) bc put (sink, &A[r][0], y + 1);
/∗ Destroy communication structure. ∗/

31 if (r 6= last) bc chan destroy (sink);
}

Figure 4.8: Implementation of the parallel Gaussian elimination algorithm using a broad-
cast communication structure. A is a consolidated matrix representing Ax=b;
and n gives the number of linear equations in the system being solved.

81

programming with communication structures

for 1 to rank do
Receive equation x from the current root.
Eliminate equation x from local equation.

end for
Reduce local equation to triangular form.
Broadcast local equation to all the succeeding processes.

Similar to the implementation with a pipeline communication structure, all the

preceding linear equations are eliminated during the first part of the algorithm.

This is done within the for loop where a linear equation is received from the current

root—which is Pi for iteration i. However, received equations are not sent to any

process because the broadcast renders it unnecessary.

In the second part, after all the preceding linear equations have been eliminated,

the linear equation assigned to stage i is divided by A(i,i) reducing the equation to

the upper triangular form. This equation is then broadcast to all the succeeding

processes for elimination in those processes.

The corresponding implementation with β-channels is shown in Figure 4.8.

Since the root of the broadcast changes with every iteration, the source β-channel

for receiving a linear equation from the root is created dynamically within the loop

(lines 8–9). This β-channel is given the BC_ROLE_PIPE role because it only com-

municates with the root of the broadcast. Assuming that the variables, coefficients

and constants are of float data type, this β-channel is specialised with the bc_float

data type. During each iteration, the preceding equation is received through this

β-channel. After eliminating the received equation, the β-channel and its corre-

sponding process list is destroyed within the loop.

After eliminating all the preceding linear equations, the process creates a sink

β-channel for broadcasting its linear equation (lines 25–27). As the process is cur-

rently the root, this β-channel is given the BC_ROLE_REPLICATE role to specify the

communications with all of the succeeding processes. Instead of creating a new

process list, the builtin process list bc_plist_succ is used to specify all the succeeding

processes. Similar to the source β-channel, this β-channel is also specialised with

the bc_float data type and a request for a message buffer of y + 1 buffering units is

made. Once the sink β-channel has been created, it is activated for broadcasting the

linear equation (line 29). Subsequently, the sink β-channel is destroyed.

4.3.2 Fast Fourier transform

The discrete Fourier transform (dft) has many scientific applications, such as digital

signal processing, and solving partial differential equations. In this section, we

82

programming with communication structures

Iteration

P
ro

ce
ss

1 2 3
0

1

2

3

4

5

6

7

Figure 4.9: Communication structure for an 8 point radix-2 DIT fast Fourier transform. •
and ◦ respectively represent subtraction and addition of values received from
partner. � represents multiplication by twiddle factor.

discuss implementation of the fast Fourier transform (fft) algorithm due to Cooley

and Tukey [34], which reduces the time complexity of computing a dft of an n

point series from Θ(n2) to Θ(n logn) [86, 49].

Definition 4.3.4 (Discrete Fourier transform)

Given a sequence X = 〈x0,x1, . . . ,xn−1〉 of length n, the discrete Fourier transform

of X is defined as the sequence Y = 〈y0,y1, . . . ,yn−1〉, where

yj =

n−1∑
k=0

xkωjk, 06 j < n. (4.1)

ω = e−2πi/n is the principal nth root of unity in the complex plane. i =
√

−1 and

e is the base of natural logarithms.

The fft is a divide and conquer algorithm which recursively breaks down a dft

of the sequence X of size n into dfts of two sequences of sizes n1 and n2, where

n = n1n2; along with O(n) multiplications by powers of ω, often referred to as

twiddle factors.

The simplest and most common form of the fft is the radix-2 decimation-in-

time (dit) algorithm which decimates the problem size by a factor of 2. In this sec-

tion, we implement this algorithm with β-channels. Assuming that n = 2k for some

constant k, the Butterfly communication structure required by a one-dimensional 8

point radix-2 dit algorithm is shown in Figure 4.9. In order to fully understand the

83

programming with communication structures

1 void fourier (int ncoeff, complex t ∗coeff) {
int i, j, step, iter, nbit, nbc, pbit, ∗partner, sign;

3 bc chan t ∗∗src := NULL, ∗∗sink := NULL; /∗ Source and sink beta-channels. ∗/
bc plist t ∗∗plists; /∗ Set of process lists for each iteration. ∗/

5 bc dtype t ∗ntype; /∗ Custom data type. ∗/
complex t recv; /∗ Temporary variable for receiving coefficient. ∗/

7 iter := (int) log2 ((double) ncoeff); /∗ Number of iterations. ∗/
pbit := iter; /∗ Number of bits in process rank. ∗/

9 nbc := iter; /∗ Number of beta-channels. ∗/
/∗ Create custom data type. ∗/

11 ntype := bc dtype create (sizeof (complex t));
/∗ Allocate memory for the communication structure. ∗/

13 partner := (int ∗) malloc (sizeof (int) ∗ nbc);
plists := (bc plist t ∗∗) malloc (sizeof (bc plist t ∗) ∗ nbc);

15 src := (bc chan t ∗∗) malloc (sizeof (bc chan t ∗) ∗ nbc);
sink := (bc chan t ∗∗) malloc (sizeof (bc chan t ∗) ∗ nbc);

17 /∗ Create Butterfly communication structure. ∗/
for (i := iter, j := 0; i; i−−, j++) {

19 nbit := iter − i; partner[j] := bit complement (idx, nbit);
plists[j] := bc plist create (1, partner[j]);

21 src[j] := bc src create (plists[j], ntype, BC ROLE PIPE);
sink[j] := bc sink create (plists[j], ntype, 1, BC ROLE PIPE);

23 }
/∗ Execute communication structure. ∗/

25 for (i := 1, j := 0, step := 0; i ≤ iter; i++, j++) {
if (partner[j] < bc rank) {

27 multiply twiddle (coeff, 1 � i, step); /∗ Multiply with twiddle factor. ∗/
sign := 0; step += i;

29 } else sign := 1;
/∗ Exchange complex coefficients. ∗/

31 bc put (sink[j], coeff, 1);
bc get (src[j], &recv, 1);

33 if (sign > 0) complex addition (coeff, &recv);
else complex subtraction (coeff, &recv);

35 }
/∗ Destroy communication structure. ∗/

37 for (i := 0; i < nbc; i++) {
bc chan destroy (src[i]); bc chan destroy (sink[i]);

39 bc plist destroy (plists[i]);
}

41 bc dtype destroy (ntype); /∗ Destroy custom data type. ∗/
free (src); free (sink); free (plists); free (partner); /∗ Deallocate memory. ∗/

43 }

Figure 4.10: β-channel implementation of the radix-2 decimation-in-time fast Fourier trans-
form algorithm. It is interesting to note that each process defines a partner for
each of the iterations before commencing communication (lines 19). We can
further improve this implementation by pre-calculating the twiddle factors.

84

programming with communication structures

β-channel implementation of the Butterfly communication structure, inter-process

communications are enforced during all iterations by assigning element xi of the

sequence X to process Pi from the set of n available processes. For simplicity, the

permutations of the elements [86, page 208] in X are omitted. The algorithm exe-

cuted by every process can therefore be represented as follows,

p← 0; j← 0; iter← log2n;
for i← 1 to iter do

if partnerj < rank then
coef← coef×ω

p
2i

p← p+ i

sign← 0;
else

sign← 1;
end if
Send my coefficient coef to partnerj;
Receive coefficient recv from partnerj;
if sign = 1 then

coef← recv+coef;
else

coef← recv−coef;
end if
j← j+1;

end for

The coef gives the value of xi in X, which was assigned to Pi at the start of the

execution. Within the for loop, the value of partnerj gives the remote process with

which the process should communicate during iteration i. rank gives the rank of

the executing process.

If partnerj < rank, the coefficient coef on Prank is multiplied2 by ω
p
q. This

coefficient is then exchanged with the coefficient on process partnerj, receiving the

new coefficient in recv. After the exchange, coef is subtracted, or added, to recv to

give the new value of coef based on the following conditions,

coef =

{
recv−coef if partnerj < rank,

recv+coef otherwise.

The β-channel implementation of the radix-2 dit algorithm is shown in Figure 4.10.

The implementation has two phases: the communication structuring phase and the

communication activation phase. Before structuring the communications, a custom

2For simplicity, the value of ω
p
q is calculated for every iteration; however, in practice, pre-

calculating these values would make for better performance.

85

programming with communication structures

data type is first created (line 11). This is necessary because the built-in data types

defined by the library (see Section 4.2) do not provide complex data types required

for exchanging the complex coefficients.

Based on the butterfly communication structure, the only communications re-

quired by the algorithm at each of the log2n iterations are exchanges of coefficients

between two processes. Therefore, each process creates a pair of source and sink

β-channels for receiving and sending coefficients (lines 18–23). Even though the

partner process changes with every iteration (line 19), all the β-channels are created

a priori instead of creating them dynamically for each iteration. Both source and

sink β-channels share a process list which specifies partner (line 20). Finally, the

BC ROLE_PIPE role is specified for both β-channels.

Once the butterfly communication structure has been created, they are activated

during the iterations to exchange coefficients (lines 31–32). After completing all the

log2n iterations, the butterfly communication structure and the custom data type

are destroyed (lines 37–41).

4.3.3 Odd-even transposition sorting

Sorting is one of the most common activities in data processing. By sorting a set of

data, future references to that data set can be performed more efficiently. In fact,

sorting data forms a crucial part of most parallel algorithms. In this section, we im-

plement the odd-even transposition parallel sorting algorithm by using β-channels.3

Let us assume that S = 〈a1,a2, . . . ,an〉 is a sequence of data to be sorted with n

processes. For simplicity, also assume that ai is assigned to Pi. The odd-even trans-

position sorting algorithm performs n/2 iterations, which have two phases: (1) even

exchange and (2) odd exchange. In the first phase, all even ranked processes com-

pare their values with the values in the succeeding process. If necessary, the values

are exchanged so that the lower ranked process gets the smaller value. Similarly,

in the second phase, the values in every odd ranked process are compared with the

values in the succeeding processes. If necessary, the values are exchanged so that the

lower ranked process gets the smaller value. After n/2 iterations, the values stored

in the rank ordered processes give the required sorted values.

The algorithm executed by all the n participating processes can be expressed as,

if (rank mod 2) 6= 0 then
odd← rank−1; even← rank+1;

3Although the odd-even transposition sorting algorithm is not the most efficient sorting algorithm
that is available, we have chosen this algorithm in order to illustrate implementation of the unique
communication pattern it manifests.

86

programming with communication structures

1 int local upper, recv upper, ∗recv base;
size t bytes;

3 void oddeven (int nlocal, int ∗elem) {
bc plist t ∗odd pl := NULL, ∗even pl := NULL;

5 bc chan t ∗odd src, ∗odd sink, ∗even src, ∗even sink;
int odd rank, even rank, ∗workspace, iter, i;

7 workspace := (int ∗) calloc (nlocal � 1, sizeof (int));
bytes := nlocal ∗ sizeof (int); local upper := nlocal − 1;

9 recv upper := (nlocal � 1) − 1; recv base := workspace + nlocal;
iter := bc size / (2 ∗ nlocal);

11 /∗ Create exchange communication structure. ∗/
if (bc rank % 2) { odd rank := bc rank − 1; even rank := bc rank + 1; }

13 else { odd rank := bc rank + 1; even rank := bc rank − 1; }
if (odd rank > −1 ∧ odd rank < bc size) {

15 odd pl := bc plist create (1, odd rank);
odd src := bc src create (odd pl, bc int, BC ROLE PIPE);

17 odd sink := bc sink create (odd pl, bc int, nlocal, BC ROLE PIPE);
}

19 if (even rank > −1 ∧ even rank < bc size) {
even pl := bc plist create (1, even rank);

21 even src := bc src create (even pl, bc int, BC ROLE PIPE);
even sink := bc sink create (even pl, bc int, nlocal, BC ROLE PIPE);

23 }
qsort (elem, nlocal, sizeof (int), compare); /∗ Sort local elements. ∗/

25 /∗ Odd-even transposition exchange loop. ∗/
for (i := 0; i < iter; i++) {

27 if (even pl 6= NULL) {
bc put (even sink, elements, nlocal); bc get (even src, recv base, nlocal);

29 compare exchange (nlocal, elements, workspace, bc rank < even rank);
}

31 if (odd pl 6= NULL) {
bc put (odd sink, elements, nlocal); bc get (odd src, recv base, nlocal);

33 compare exchange (nlocal, elements, workspace, bc rank < odd rank);
}

35 }
/∗ Destroy communication structure. ∗/

37 if (odd pl 6= NULL) {
bc chan destroy (odd src); bc chan destroy (odd sink);

39 bc plist destroy (odd pl);
}

41 if (even pl 6= NULL) {
bc chan destroy (even src); bc chan destroy (even sink);

43 bc plist destroy (even pl);
}

45 free (workspace); /∗ Deallocate workspace. ∗/
}

Figure 4.11: β-channel implementation of the odd-even transposition sorting algorithm.
While creating the exchange communication structure (lines 12–23), each pro-
cess creates four β-channels—two source and sink β-channel pairs—for com-
municating data with a partner in each of the iterations (line 26–35).

87

programming with communication structures

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Iteration

P
ro

ce
ss

Figure 4.12: Communication structure for an 8 point odd-even transposition sort. The pat-
tern requires only two pairs of source and sink β-channels: each pair commu-
nicating with a partner in one of the odd, or even, phases.

else
odd← rank+1; even← rank−1;

end if
for i← 1 to n/2 do

if (even > −1)∧ (even < n) then
put (even, aj); get (even,t);
if rank < even then

aj←minimum (t, aj);
else

aj←maximum (t, aj);
end if

end if
if (odd > −1)∧ (odd < n) then

put (odd, aj); get (odd,t);
if rank < odd then

aj←minimum (t, aj);
else

aj←maximum (t, aj);
end if

end if
end for

Here, rank gives the rank of the executing process. even and odd respectively

refer to the processes with which the executing process communicates during the

even or odd exchange phases. t stores the received value during comparisons.

The communication structure manifested by the odd-even transposition algo-

88

programming with communication structures

rithm for n = 8 is shown in Figure 4.12. If we consider any process, say P1, we

observe that two β-channels are required for the odd exchange phase, and another

two for the even exchange phase. Hence, in the β-channel implementation (see

Figure 4.11), the communication structure is defined by four β-channels: odd_src,

odd_sink, even_src, and even_sink.

The β-channels are created (lines 12–23) with BC_ROLE_PIPE role (similar to

the implementation of the fast Fourier transformation in Section 4.3.2) for exchang-

ing values. This implementation allows more than one value to be assigned to a

single process; however, these values should be sorted before entering the iteration

(line 24). The number of values assigned to a process is given by nlocal, and the

number of transposition iterations is given by n/(2∗ nlocal) (line 10). In order to

improve performance by avoiding memory copy during comparisons, we allocate a

working memory workspace which is used for both receiving and comparing data.

The function compare_exchange()4 compares the values received in recv (which is

a pointer within the working memory workspace) with its local value elem, storing

the minimum value in elem if the rank of the process is less than the rank of the

remote process; the maximum value is stored otherwise (line 29 and 33). Once all

of the iterations have been executed, the communication structure is destroyed by

deallocating the four β-channels and corresponding process lists (lines 37–44).

4.3.4 Mandelbrot set task farm

The Mandelbrot set is a fractal defined by a set of points c in the complex plane for

which the iteratively defined sequence

z0 = 0

zn+1 = z2
n +c

does not tend to infinity. After reformulating in terms of the real and imaginary

parts of the complex plane coordinates X and Y, we get

xn+1 = x2
n −y2

n +a

yn+1 = 2xnyn +b, where c = a+ ib.

It can be shown that the sequence will tend to infinity, and c will be outside the

Mandelbrot set if |zn| > 2, where |zn| =
√

x2
n +y2

n is the modulus of zn [28, page

124]. This value, often referred to as the bail-out value, allows termination of the

iteration for points outside the Mandelbrot set. For points inside the Mandelbrot

4Auxillary functions can be found in Appendix A.

89

programming with communication structures

01 2 3 4 5 6 7

Ti
m

e

8

Process

Computation

Harvesting

Farming

Figure 4.13: Communication structure for the Mandelbrot set task farm with one farmer
and 8 worker processes. Blocks of complex points are sent to each of the worker
processes, which convert the points to colour codes. The codes are harvested
by the farmer process to generate a graphical representation of the complex
points which belong in the Mandelbrot set.

set the loop never terminates. This infinite loop should therefore be terminated

after a pre-determined number of iterations, max_iter. The iterative sequential

algorithm for finding out if a complex point belongs in the Mandelbrot set is given

below (adapted from [83, page 191]).

r← i← j← 0;
while j < max_iter do

t← r2 − i2 +x;
i← 2× r× i+y;
r← t;
a← r2 + i2;
if a > 4 then

break;
end if
j← j+1;

end while
return j;

To parallelise the algorithm for a set of n2 complex points, data partitioning is

used. Each process applies the above algorithm to each of the complex points in the

block which was received from the farmer process. If we employ n processes, the n2

complex points can be partitioned into n blocks, each containing n complex points.

The data partitioning can be done row-major or column-major. For the purpose of

this discussion, we choose row-major distribution of data: meaning, Pi gets the ith

row containing n complex points given by (xi,yj) for all 0 6 j < n.

90

programming with communication structures

1 void farmer (int rows, int cols, float rstart, float rend, float istart, float iend) {
bc chan t ∗sink, ∗src;

3 bc dtype t ∗ntype;
complex t ∗input, ∗iptr;

5 int ∗result, ∗optr, i, j, offset, iter, npoints, nworkers;
float rrange, irange, real, img, rstep, istep;

7 npoints := rows ∗ cols; nworkers := bc size − 1;
rrange := rend − rstart; irange := iend − istart;

9 /∗ Allocate memory for complex points and the results. ∗/
input := (complex t ∗) calloc (npoints, sizeof (complex t));

11 results := (int ∗) calloc (npoints, sizeof (int));
/∗ Create custom data type. ∗/

13 ntype := bc dtype create (sizeof (complex t));
/∗ Create Farm communication structure. ∗/

15 src := bc src create (bc plist xall, bc int, BC ROLE COLLECT);
sink := bc sink create (bc plist xall, ntype, cols, BC ROLE SPREAD);

17 /∗ Generate the coordinates. ∗/
img := istart; rstep := rrange / cols; istep := irange / rows;

19 for (i := 0; i < rows; i++, img += istep) {
real := rstart;

21 for (j := 0; j < cols; j++, real += rstep) {
iptr := (input + cols ∗ i + j);

23 iptr→real := real; iptr→img := img;
}

25 }
/∗ Farm the coordinates and harvest colour codes. ∗/

27 iptr := plane; optr := results;
offset := nworkers ∗ cols;

29 iter := ceil (rows / nworkers);
for (i := 0; i < iter; i++) {

31 bc put (sink, iptr, cols); /∗ Farm blocks of complex points. ∗/
bc get (src, optr, cols); /∗ Harvest results (colour codes). ∗/

33 p ptr += offset; optr += offset;
}

35 /∗ Destroy communication structure. ∗/
bc chan destroy (sink); bc chan destroy (src);

37 bc dtype destroy (ntype); /∗ Destroy custom data type. ∗/
generate image (results, rows, cols); /∗ Generate image file. ∗/

39 free (input); free (results);
}

Figure 4.14: β-channel implementation of the Mandelbrot set farmer function with deter-
ministic roles, based on the uniform distribution of complex points. The n2

complex points are partitioned row-wise so that each row is mapped to one
of the worker process. This is defined statically, and therefore prevents faster
worker processes from computing more complex points than the slower ones.

91

programming with communication structures

1 void worker (int rows, int cols) {
bc chan t ∗src, ∗sink;

3 bc plist t ∗farmer;
bc dtype t ∗ntype;

5 complex t ∗input;
int ∗result, i, iter;

7 /∗ Allocate working memory. ∗/
input := (complex t ∗) calloc (cols, sizeof (complex t));

9 results := (int ∗) calloc (cols, sizeof (int));
/∗ Create custom data type. ∗/

11 ntype := bc dtype create (sizeof (complex t));
/∗ Create the communication structure. ∗/

13 farmer := bc plist create (1, 0); /∗ Process 0 is farmer. ∗/
src := bc src create (farmer, ntype, BC ROLE PIPE);

15 sink := bc sink create (farmer, bc int, cols, BC ROLE PIPE);
/∗ Get complex points and calculate. ∗/

17 iter := ceil (rows / (bc size − 1));
for (i := 0; i < iter; i++) {

19 bc get (src, row, cols); /∗ Get complex points. ∗/
process mandel (cols, input, results); /∗ Process complex points. ∗/

21 bc put (sink, result, cols); /∗ Send results (colour codes). ∗/
}

23 /∗ Destroy communication structure. ∗/
bc chan destroy (src); bc chan destroy (sink);

25 bc plist destroy(farmer);
bc dtype destroy (ntype);

27 free (input); free (results);
}

Figure 4.15: β-channel implementation of the Mandelbrot set worker function, based on
the uniform distribution of complex points. A process retrieves the block of
complex points assigned to it by the farmer. Once the complex points in that
block have been converted to colour codes, they are returned to the farmer.
This continues until all the rows assigned to the process are exhausted.

92

programming with communication structures

Uniform distribution of data

Assuming that the data are distributed and collected by a farmer process Pn which

is not in the set of n worker processes, the communication structure manifested by

the Mandelbrot set task farm is shown in Figure 4.13. Based on this communication

structure, the algorithm executed by the farmer process can be represented as:

p← points;
r← results;
b← n×ncols;
iter← dnrows/ne;
for i← 1 to iter do

spread (workers, p, ncols);
collect(workers, r, ncols);
p← p+b;
r← p+b;

end for

After a row of ncols complex points is received from the farmer, the worker

executes the following algorithm to process and return the colour codes.

loop
get (farmer, &v[0], ncols);
if no data received then

break;
end if
for i← 0 to ncols−1 do

r[i]←mandelbrot(v[i].real,v[i].img);
end for
put (farmer, &r[0], ncols);

end loop

The corresponding β-channel implementation of the farmer and worker algo-

rithms is shown in Figure 4.14, and Figure 4.15 respectively.

In this implementation of the Mandelbrot set task farm, we use uniform distri-

bution of ‘work’ (the number of points per block) for each of the worker processes.

We can observe this in the implementation of the farmer function Figure 4.14.

While creating the β-channel for communicating with the workers, the uniform

distribution of complex points is accounted for by the roles BC_ROLE_SPREAD and

BC_ROLE_COLLECT (lines 15–16). In the execution loop, the farmer process sends

different rows to the worker functions by spreading (line 31) the complex points

initialised in lines 19–25. In line 32, the farmer collects the colour codes from the

worker processes and stores them, aligning them based on the rank of the worker

93

programming with communication structures

1 #define PIX ROWS 1024 /∗ Number of rows. ∗/
#define PIX COLS 1024 /∗ Number of complex points per row. ∗/

3 typedef struct complex s{ float real; float img; } complex t;
typedef struct { int row; complex t point[PIX COLS]; } irow t;

5 typedef struct { int row; int color[PIX COLS]; } orow t;
void farmer refined (float rstart, float rend, float istart, float iend) {

7 bc chan t ∗sink, ∗src;
bc dtype t ∗idtype, ∗odtype;

9 int i, j, nworkers, dunits;
orow t output[PIX ROWS];

11 float rrange, irange, real, img, rstep, istep;
rrange := rend − rstart; irange := iend − istart;

13 /∗ Create communication structure. ∗/
idtype := bc dtype create (sizeof (irow t));

15 odtype := bc dtype create (sizeof (orow t));
nworkers := bc size − 1; /∗ Number of workers. ∗/

17 duints := PIX ROWS + nworkers + 1; /∗ +1 data unit required. ∗/
sink := bc sink create (bc plist xall, idtype, dunits, BC ROLE FARM);

19 src := bc src create (bc plist xall, odtype, BC ROLE HARVEST);
/∗ Generate and commit complex points. ∗/

21 img := istart; rstep := rrange / PIX COLS; istep := irange / PIX ROWS;
for (i := 0; i < PIX ROWS; i++, img += istep) {

23 real := rstart;
bc vptr (sink, irow t)→row := i; /∗ Specify which row. ∗/

25 for (j := 0; j < PIX COLS; j++) {
bc vptr (sink, irow t)→point[j].real := real;

27 bc vptr (sink, irow t)→point[j].img := img;
real += rstep;

29 }
bc commit (sink); /∗ Commit this row. ∗/

31 }
/∗ Commit termination values. ∗/

33 for (i := 0, j := PIX ROWS; i < nworkers; i++) {
bc vptr (sink, irow t)→row := −1; bc commit (sink);

35 }
/∗ Harvest results (colour codes). ∗/

37 for (i := 0; i < PIX ROWS; i++) bc get (src, &output[i], 1);
/∗ Destroy communication structure. ∗/

39 bc chan destroy (src); bc chan destroy (sink);
bc dtype destroy (idtype); bc dtype destroy (odtype);

41 generate image (output, PIX ROWS, PIX COLS); /∗ Generate image file. ∗/
}

Figure 4.16: β-channel implementation of the Mandelbrot set farmer function with non-
deterministic roles, based on runtime determination of complex point to pro-
cess mapping. The n2 complex points are still partitioned into rows of complex
points; however, which process gets a particular row is determined at runtime.
This removes the restrictions imposed by the implementation with determinis-
tic roles, and therefore increases efficiency because faster worker processes can
compute more complex points than slower ones.

94

programming with communication structures

1 int worker refined (void) {
bc chan t ∗src, ∗sink;

3 bc plist t ∗farmer;
bc dtype t ∗idtype, ∗odtype;

5 irow t i; /∗ For receiving input data. ∗/
orow t o; /∗ For computing output data. ∗/

7 farmer := bc plist create (1, 0); /∗ Create the farmer process list. ∗/
/∗ Create communication structure. ∗/

9 idtype := bc dtype create (sizeof(irow t));
odtype := bc dtype create (sizeof(orow t));

11 src := bc src create (farmer, idtype, BC ROLE PIPE);
sink := bc sink create (farmer, odtype, 2, BC ROLE PIPE);

13 /∗ Continue computations while unprocessed data are available. ∗/
while (1) {

15 bc get (src, &i, 1); /∗ Get complex points. ∗/
if (i.row = −1) break; /∗ No more unprocessed data. ∗/

17 process mandel (PIX COLS, i.point, o.color); /∗ Process complex points. ∗/
o.row := i.row; /∗ The row that was processed. ∗/

19 bc put (sink, &o, 1); /∗ Send results (colour codes). ∗/
}

21 /∗ Destroy communication structure. ∗/
bc chan destroy (src); bc chan destroy (sink);

23 bc dtype destroy (idtype);bc dtype destroy (odtype);
bc plist destroy (farmer);

25 return 0;
}

Figure 4.17: β-channel implementation of the Mandelbrot set worker function, based on
non-deterministic distribution of complex points. Workers continue processing
rows of complex points until all the rows on the farmer have exhausted. The
number of iterations that a worker is permitted to execute is not predefined.
This implementation is therefore more efficient than the deterministic version
shown in Figure 4.15.

95

programming with communication structures

process which sent the block. Finally, once all the complex points have been pro-

cessed, the colour codes are converted into a graphical representation (for example,

an image file), as shown in line 38.

Non-deterministic distribution of data

As one can observe, the uniform distribution of data is not efficient because of the

associated ‘determinism’ which prevents a faster process from processing more com-

plex points than the slower ones. In order to improve this situation, we shall now im-

plement the Mandelbrot set task farm with non-deterministic roles: BC_ROLE_FARM

and BC_ROLE_HARVEST.

When non-deterministic roles are used, the data distribution cannot be prede-

fined statically. In principle, therefore, any process can compute any complex point

(or a row of complex points, in case we decrease the granularity of the partition).

Which process gets which complex point (or row) is determined at runtime, allow-

ing faster processes to compute more complex points. Most of the implementation

details, with exception to the non-determinism, are similar to the ones shown in

Figure 4.14, and Figure 4.15. The differences are as follows. Firstly, each row (if we

consider reduced granularity) which is sent to a worker process should be tagged

with the row index. If this is not done, the farmer process does not have enough

information to align the colour codes received from a worker process since the map-

ping of row to worker is non-deterministic. Secondly, because a worker can continue

processing complex points for as long as unprocessed complex points are available,

we must define a condition which marks the point when the processing should end.

The β-channel implementations which incorporate these differences are shown

in Figure 4.16 and Figure 4.17. At lines 18–19 of the farmer function, the source

and sink β-channels are created, respectively with the roles BC_ROLE_HARVEST

and BC_ROLE_FARM. Each row is tagged with the row index while initialising the

complex points (line 24). During initialisation of the complex points (lines 25–29),

instead of using memory copy interface, bc_put(), we use the alternative interfaces

bc_vptr() and bc_commit(), which removes the need for intermediate memory copy.

The complex points for a row are therefore set directly into the buffer of the sink

β-channel. Once the values have been initialised, they are committed to the buffer

(line 30). To address the condition for termination, n dummy termination values

are committed to the sink β-channel (line 33–35).

On the worker function, instead of executing a pre-defined number of iterations,

the process executes an infinite loop (line 14–20). The termination condition is

checked after receiving a row of complex points (line 16). Once all of the complex

96

programming with communication structures

1 void matrix sequential (int A[][], int b[][], int c[][], int l, int m, int n) {
int i, j, k;

3 for (i := 0; i < l; i++)
for (j := 0; j < n; j++) {

5 c[i][j] := 0;
for (k := 0; k < m; k++)

7 c[i][j] += A[i][k] ∗ b[k][j];
}

9 }

Figure 4.18: Sequential implementation of the matrix multiplication algorithm. This can be
parallelised by using a block-oriented parallel algorithm, which divides the ma-
trices into sub-matrices, so that the product of sub-matrices can be computed
simultaneously.

points in the row have been processed, the colour codes are returned to the farmer by

tagging them with the row index received with the row of complex points (line 18).

4.3.5 Matrix multiplication

In this section, we discuss β-channel implementation of the block-oriented parallel

matrix multiplication algorithm [86].

Definition 4.3.5 (Matrix multiplication)

The product of an l×m matrix A and an m×n matrix B is an l×n matrix C where

the elements of C are calculated as follows,

cij =

m−1∑
k=0

aikbkj, 06 i < l and 0 6 j < n.

Here, aij gives the element on row i and column j of matrix A for 0 6 i < l and

0 6 j < m. Similarly, bij gives the element on row i and column j of matrix B for

0 6 i < m and 0 6 j < n.

The sequential implementation of the matrix multiplication algorithm [49] is

shown in Figure 4.18. This sequential implementation requires execution time

O(n3) considering that the computation (line 7) takes unit time. The performance

can be improved by parallelising the implementation using a block-oriented algo-

rithm.

First, assume that l and n are multiples of p (the number of processes available

for the computation). Then partition the two matrices A and B into row and col-

umn blocks as shown in Figure 4.19.a, assuming 4 processes are available for the

computation. Then, assign the first row block to P0, second row block to P1, and so

on. Similarly, assign the first column block to P0, second column block to P1, and

97

programming with communication structures

(b)

(a)
P

ro
ce

ss

Iteration

0

1

2

3

(0,0) (0,1) (0,2) (0,3)

(1,1) (1,2) (1,3) (1,0)

(2,3)(2,2) (2,0) (2,1)

(3,3) (3,0) (3,2)(3,1)

Keys:

i = 0 i = 1 i = 2start

(a,b) − Row block a of A multiplied by column block b of B.

 − Result of computation.

 − Computation with communication.

 − Local computation.

3210

B

A

Figure 4.19: (a) Initial distribution of matrix A and matrix B blocks over 4 processes, (b) It-
erations of the matrix multiplication. At the beginning of the execution, every
process multiplies its two local blocks without invoking any communication.
After that, blocks are communicated to the succeeding process (forming a ring
topology as shown in Figure 4.20.b). When the program terminates, each pro-
cess finishes with a result row, which is collected to give the matrix product.

98

programming with communication structures

1

2

0

0

12 01

2

0

1

2
2

3

1

0
4321

P
ro

ce
ss

(a)

3

0

(b)

2

1

Column block

Figure 4.20: (a) Communication trace of the column blocks. • represents start of trace,
arrow represents communication. The label at the tail of each arrow gives the
iteration when the communication occurs. For example, column block one
starts at P0, and travels through P1 and P2, and finally reaches P3. (b) A ring
topology which arranges an ensemble of four processes to form a ring network.

so on. This constitutes the data partitioning required by the block-oriented scheme

for the parallelisation.

By organising the processes to form a Ring topology (Figure 4.20.b), the paral-

lelisation can be achieved as shown in Figure 4.19.b. Before commencing the iter-

ation, a process uses its row and column blocks for performing local computation.

Then, the iterations which require data communication with other processes begin.

After entering the iteration, every process sends its column to its successor in the

ring. Subsequently, it receives a new column block from its predecessor, which is

multiplied by its row to give the result block. The iteration continues until all the

processes have multiplied their row blocks with all of the column blocks created dur-

ing the data partition. After the iterations have been completed, the resulting rows

are collected on a root process, thus giving the final product of the two matrices.

The communication trace for each column block is shown in Figure 4.20.a.

The β-channel implementation of this algorithm is shown in Figure 4.21. The

implementation is divided into three parts. In the first part, the data is partitioned

(lines 15–17), so that each process is assigned its corresponding row and column

blocks. As the matrices are represented in row-major form, the transpose of the

matrix B (line 16) is performed so that initialisation of column blocks can be done

by direct memory copy. At the end of this part, rows and cols are initialised to the

corresponding row and column block.

In the second part, after partitioning the matrices, the β-channels that corre-

spond to the ring topology are created during the communication structuring phase

(lines 19–23). Both source and sink β-channels are created with BC_ROLE PIPE role

as they communicate with one process only: predecessor or successor in the ring.

The actual multiplications are then performed by entering the communication ac-

99

programming with communication structures

1 void matrix multiply (int nra, int nca, int ∗a, int nrb, int ncb, int ∗b) {
int nrblk, ncblk, rb size, cb size, last rank, i, ∗rows, ∗cols, ∗result;

3 bc plist t ∗src pl, ∗sink pl;
bc chan t ∗src, ∗sink;

5 nrblk := nra / bc size; /∗ Number of rows per row block. ∗/
ncblk := ncb / bc size; /∗ Number of columns per column block. ∗/

7 rb size := nrblk ∗ nca; /∗ Size of matrix A row block. ∗/
cb size := ncblk ∗ nrb; /∗ Size of matrix B column block. ∗/

9 /∗ Allocate working memory. ∗/
rows := (int ∗) calloc (rb size, sizeof (int));

11 cols := (int ∗) calloc (cb size, sizeof (int));
if (bc rank = 0) result := (int ∗) calloc (nra ∗ ncb, sizeof (int));

13 else result := (int ∗) calloc (nrblk ∗ ncb, sizeof (int));
/∗ Get my row and column blocks. ∗/

15 memcpy (rows, a + rb size ∗ bc rank, rb size ∗ sizeof (int));
transpose (nrb, ncb, b); /∗ For contiguous memory copy. ∗/

17 memcpy (cols, b + cb size ∗ bc rank, cb size ∗ sizeof (int));
/∗ Create a Ring topology. ∗/

19 last rank := bc size − 1;
src pl := bc plist create (1, (bc rank = last rank) ? 0 : bc rank + 1);

21 sink pl := bc plist create (1, (bc rank = 0) ? last rank : bc rank − 1);
src := bc src create (src pl, bc int, BC ROLE PIPE);

23 sink := bc sink create (sink pl, bc int, cb size, BC ROLE PIPE);
/∗ Process my row block. ∗/

25 multiply blocks (result, nrblk, nca, rows, ncblk, ncb, cols, 0);
for (i := 1; i < bc size; i++) {

27 bc put (sink, cols, cb size); bc get (src, cols, cb size);
multiply blocks (result, nrblk, nca, rows, ncblk, ncb, cols, i);

29 }
/∗ Destroy Ring topology. ∗/

31 bc chan destroy(src); bc chan destroy(sink);
bc plist destroy(src pl); bc plist destroy(sink pl);

33 /∗ Reduce partial row blocks at Process ’zero’. ∗/
rb size := nrblk ∗ ncb; /∗ Update row block size. ∗/

35 if (bc rank = 0) {
src := bc src create (bc plist xall, bc int, BC ROLE COLLECT);

37 bc get (src, result + rb size, rb size); bc chan destroy(src);
} else {

39 sink pl := bc plist create (1, 0);
sink := bc sink create (sink pl, bc int, rb size, BC ROLE PIPE);

41 bc put (sink, result, rb size);
bc chan destroy (sink); bc plist destroy (sink pl);

43 }
free (rows); free (cols); free (result);

45 }

Figure 4.21: β-channel implementation of the block-oriented matrix multiplication algo-
rithm. We first arrange the processes into a ring topology (lines 19–23). Each
process then multiplies the row and column blocks that are locally available
(line 25). When a new column block is required, it is obtained from the previ-
ous process in the ring (line 27).

100

programming with communication structures

tivation phase. Before entering the communication activation phase, however, the

local block multiplications which do not require column communications are per-

formed (line 25) by using the function multiply blocks(). Each process then enters the

iteration (line 26), within which old columns are sent to the successor (line 27), and

new columns are received from the predecessor (line 27). Local row blocks and the

received column blocks are then multiplied (line 28); storing the resulting row in re-

sult. Upon completion, the ring topology is destroyed by deallocating the β-channels

and their corresponding process lists (lines 31–32).

In the third part, result rows from all the processes are collected on P0. For

this, P0 creates a source β-channel (line 36) with BC_ROLE_COLLECT for collecting

result rows from all the other processes, bc_plist_xall. However, all of the processes

other than P0 create a sink β-channel (lines 39–40) with BC_ROLE_PIPE role as they

communicate with P0 only. These β-channels are activated, storing the resulting

product in result on P0. The source and sink β-channels, and corresponding process

lists, if necessary, are then destroyed.

4.4 Skeletal parallel programming

In the previous sections we have discussed implementation of several non-trivial

parallel algorithms by using β-channels. From these implementations, we can ob-

serve that out of the two phases of the application development exercise (see Sec-

tion 4.1), the communication structuring phase is relatively more complicated than

the communication activation phase, which is quite simple once the communication

structures have been translated to the corresponding β-channels. The aim of this

section is to simplify the communication structuring phase through skeletal parallel

programming, and simultaneously simplify the implementation and deployment of

algorithmc skeletons by using β-channels.

4.4.1 Skeletons, patterns and communication structures

Skeletal parallel programming models provide programming constructs that di-

rectly correspond to frequently occurring patterns of parallel computation, such as

communication patterns in message passing parallel programs. During application

development, the programmer expresses the algorithm in terms of these patterns,

and representations are translated automatically into the corresponding concrete

implementations through compiler transformations, or through application pro-

gramming interfaces. Communication structures, on the other hand, also define

the manner in which processes communicate during a computation. It is therefore

101

programming with communication structures

application program

skeleton layer

communication layer

send (input, next) receive (output, previous)

give (input) take (output)

Figure 4.22: Pipeline skeleton implementation based on the introduction of a skeleton layer.
This provides a higher-level abstraction where ranks of the predecessor and
successor processes are resolved internally by the skeleton layer.

fair to state that skeletal parallel programming and communication structures are

partially related because they both provide abstractions for the underlying commu-

nications based on the pattern of communications manifested by the algorithm that

is being implemented.

4.4.2 Skeletal programming with β-channels

In Section 3.9, we described the β-channel properties which allow grouping, iden-

tification, and referencing of a group of communications. In this section, we use

these properties, again, to implement algorithmic skeletons.

The simplicity of programming with algorithmic skeletons is due to the fact that

complex low-level implementation of communication patterns can be concealed

from the programmer by means of the abstraction provided by a skeleton layer (see

Figure 4.22). Therefore, instead of implementing commonly occuring patterns of

communications, the programmer can simply use existing skeletons that provide

the necessary implementation of the pattern. In a pipeline computation, for ex-

ample, two adjacent stages communicate data so that following stage uses the data

received from the previous stage.

Implementing such a pipeline computation without skeletons means implement-

ing the communications explicitly within the computation loop, which resembles

the following simiplified algorithm:

loop
receive(input,previous);
output← compute(input);
send(output,next);

end loop

The values of previous and next depend on the stage-to-process mapping. For

example, if stage i is mapped to process Pi for 16 i 6 n, then previous = 1 and next

= 3 on P2. If we change the mapping, the values for previous and next also changes

102

programming with communication structures

stage 1 stage 2 stage n. . .

outinout in

application program

communication layer. . .

Figure 4.23: An n stage pipeline skeleton implementation which uses β-channels for com-
munications. After creating a pipeline skeleton instance, each stage is provided
with the source and sink β-channels, in and out. These β-channels can be
used directly within the stage. In addition to providing the abstraction, this
implementation removes the skeleton abstraction layer at runtime.

accordingly. These changes, however, are not relevant to the realisation of a pipeline

computation, and therefore may be concealed from the programmer by means of a

higher-level abstraction.

Higher-level abstraction is the fundamental idea behind skeletal programming.

With algorithmic skeletons the above loop will be simplified as follows:

loop
take(input);
output← compute(input);
give(output);

end loop

The advantage of this algorithm is that the previous and next values are man-

aged by the skeleton layer, which interacts with the application program when the

skeleton interfaces give() and take() are invoked on each of the stages. This affects

programming, and the resulting program in two ways. Firstly, the programmer need

not be concerned about the stage-to-process mapping. The pipeline skeleton will

handle the mapping internally without further programmer intervention, therefore

simplifying the implementation. Secondly, the skeleton layer can decide the best

stage-to-process mapping policy that will allow the pipeline computation to use the

available resources in the most optimal manner.

In existing messaging passing skeletal programming models, algorithmic skele-

tons are implemented by introducing an intermediate skeleton layer between the

application program and the communication layer, as shown in Figure 4.22.

Although the skeleton abstraction simplies programming, implementations that

introduce an intermediate skeleton layer suffer from a degradation in performance

due to abstraction overhead: for example, the skeleton interface give() internally in-

vokes the send() communication interface after determining the value of next. Upon

further investigation, we can observe, however, that the value of previous and next

remain unchanged after a successful mapping for the entire computation loop. We

103

programming with communication structures

should therefore be able to remove the skeleton layer without affecting any of the

advantages provided by an algorithmic skeleton. This is where the β-channel ap-

proach can be used to our advantage.

After the communication structuring phase, the communication structures man-

ifested by the algorithm are translated into opaque data structures, the β-channels.

These β-channels are used by the application during the communication activation

phase, without the need to know how they were created. This means that, once the

β-channels have been created, the communication structure does not affect their us-

age. An execution instance of the pipeline computation with β-channels is shown

in Figure 4.23.

By combining skeletal programming with the β-channel approach, we can there-

fore achieve efficient, yet simple, higher-level abstractions. To do this, we use algo-

rithmic skeletons to abstract the communication structuring phase, while the com-

munication activation phase remains the same as was the case with the β-channel

approach. In the following section, we demonstrate this by implementing algorith-

mic skeletons which uses β-channels for communication.

Implementing the pipeline algorithmic skeleton

To use skeletal programming for simplifying the communication structuring phase,

we implement the following skeleton interfaces:

sk_pipe_t ∗sk_pipe_create (bc_plist_t ∗pl, sk_fptr_t ∗fptr, sk_dmap_t ∗dmap);

Creates a pipeline skeleton instance for the processes in pl, with the stage map-

ping in fptr, and the input and output data types for each stage given by dmap.

This skeleton instance can be applied for computations on different data sets.

void sk_pipe_exec (sk_pipe_t ∗pipe, void ∗in, void ∗out);

Executes the pipeline skeleton instance, pipe, with the input for the first stage

taken from in, while the results from the last stage are stored in out.

void sk_pipe_destroy (sk_pipe_t ∗pipe);

Destroys the pipeline skeleton instance pipe.

The code segments from the implementation of the pipeline skeleton are shown

in Figure 4.24. When sk_pipe_create() is invoked, a skeleton instance is returned

to the participating processes in pl. This skeleton instance is initialised with the

β-channels necessary to realise the pipeline communication structure, as shown at

lines 13–18 for the intermediate stage. The skeleton instance is also initialised with

the corresponding stage task which the process should execute upon entering the

skeleton instance, shown at line 20. When sk_pipe_exec() is invoked this task is ex-

104

programming with communication structures

1 sk pipe t ∗sk pipe create (bc plist t ∗pl, sk fptr t ∗fptr, sk dmap t ∗dmap) {
int i := 0;

3 sk pipe t ∗pipe := NULL;
/∗ If process is not in the process list ‘pl’, return NULL. ∗/

5 ...
do {

7 if (bc rank = pl→plist[i]) {
if (i = 0) { /∗ First stage. ∗/

9 ...
} else if (i = pl→count − 1) { /∗ Last stage. ∗/

11 ...
} else { /∗ Intermediate stage. ∗/

13 pipe→prod := bc plist create (1, pl→plist[i−1]);
pipe→src := bc src create (pipe→prod, dmap[i].in,

15 BC ROLE PIPE);
pipe→cons := bc plist create (1, pl→plist[i+1]);

17 pipe→sink := bc sink create (pipe→cons, dmap[i].out, 1,
BC ROLE PIPE);

19 pipe→role := SK PIPE INTER;
pipe→fptr := fptr[i];

21 }
}

23 } while (++i < pl→count);
return pipe;

25 }
void sk pipe exec (sk pipe t ∗pipe, void ∗in, void ∗out) {

27 if (pipe→role = SK PIPE FIRST) pipe→fptr (in, NULL, pipe→sink);
else if (pipe→role = SK PIPE LAST) pipe→fptr (out, pipe→src, NULL);

29 else pipe→fptr (NULL, pipe→src, pipe→sink);
}

31 void sk pipe destroy (sk pipe t ∗pipe) {
bc chan destroy (pipe→src); bc chan destroy (pipe→sink);

33 bc plist destroy (pipe→prod); bc plist destroy (pipe→cons); free (pipe);
}

Figure 4.24: β-channel implementation of the pipeline algorithmic skeleton interface. The
function sk_pipe_create() is used by application programs to create a pipeline
skeleton interface. The stages in the pipeline instance are executed by invok-
ing sk_pipe_exec(). When the pipeline skeleton instance is no longer needed,
the resources are deallocated by invoking sk_pipe_destroy(). The pipeline skele-
ton instance contains information about the pipeline communication structure,
which is represented by the source and sink β-channels.

105

programming with communication structures

1 void stage first (void ∗ivar, bc chan t ∗ibc, bc chan t ∗obc) {
int j := 0;

3 do { bc var (obc, int) := ∗ ((int ∗) ivar + j);
if (bc var (obc, int) 6= 0) {

5 bc var (obc, int) := bc var (obc, int) + 1;
bc commit (obc);

7 } else { bc commit (obc); break; }
} while (++j);

9 }
void stage inter (void ∗ivar, bc chan t ∗ibc, bc chan t ∗obc) {

11 do { bc get (ibc, bc vptr (obc, int), 1);
if (bc var (obc, int) 6= 0) {

13 bc var (obc, int) := bc var (obc, int) + 2;
bc commit (obc);

15 } else { bc commit (obc); break; }
} while (1);

17 }
void stage last (void ∗ovar, bc chan t ∗ibc, bc chan t ∗obc) {

19 int j := 0;
do { bc get (ibc, (int ∗) ovar + j, 1);

21 if (∗((int ∗)ovar + j) 6= 0) {
∗((int ∗)ovar + j) := ∗((int ∗) ovar + j) + 3;

23 } else break;
} while (++j);

25 }
int main (int argc, char ∗argv[]) {

27 sk pipe t ∗pipe;
sk dmap t dmap[] := {{bc int, bc int}, {bc int, bc int}, {bc int, bc int}};

29 sk fptr t func[] := {stage first, stage inter, stage last};
bc plist t ∗plist;

31 int in[11] := {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, out[10];
plist := bc plist create (3, 0, 1, 2);

33 pipe := sk pipe create (plist, func, dmap);
sk pipe exec (pipe, in, out);

35 sk pipe destroy (pipe);
bc plist destroy (plist);

37 return 0;
}

Figure 4.25: Example usage of the pipeline skeleton interface inside an application program
with a pipeline communication pattern. This application has three stages, each
stage adds some value to the input data. A pipeline skeleton instance is first
created by invoking sk_pipe_create(), which takes the stage functions, input
and output data types for each stage, and the three processes upon which the
stages will be mapped. Receiving and sending data is performed by activating
the source and sink β-channels, ibc and obc. We use the interfaces, bc_var(),
bc_vptr(), and bc_commit(), for sending data.

106

programming with communication structures

ecuted, as shown at lines 27–29. The task function for the first stage is provided as

parameters the input application buffer, in, and the sink β-channel for sending data

to the next stage. Similarly, the task function for the last stage is provided as pa-

rameters the output application buffer, out, and the source β-channel for receiving

data from the previous stage. For the intermediate stages, only the source and sink

β-channels are provided as parameters to the task function.

Using the pipeline skeleton

In this section, we discuss example usage of the above skeleton interfaces for imple-

menting a pipeline with three stages. Here stage i executes the function fi, defined

as f0 : x→ x + 1, f1 : x→ x + 2, and f2 : x→ x + 3. The implementation for the

three stage pipeline is shown in Figure 4.25. After the stage functions are defined at

lines 1–25, the pipeline skeleton instance is created at line 33. This skeleton instance

is then executed at line 34, by passing the in and out application buffers for data in-

put and data output. The skeleton instance is subsequently destroyed at line 35.

In each stage function, the application utilises the input and output β-channels,

ibc and/or obc, provided by the skeleton instance without explicitly creating them.

This is possible because β-channels provide handles to communications; however,

their creation can be transparently handled by the algorithmic skeleton: therefore

providing a higher-level abstraction of the underlying communications.

On the other hand, by utilising the β-channels with the interfaces bc_var(),

bc_vptr(), and bc_commit(), the application can directly access the underlying com-

munication layer, bypassing the skeleton abstraction layer once the stage task be-

gins execution. The adopted approach is different from the mpi based skeleton im-

plementations, such as the eskel skeleton library [33], where stage tasks invoke

skeleton interfaces which internally invoke appropriate message passing interfaces.

In the intermediate stage task (see Figure 4.25), it is interesting to note line 11

where the output buffer associated with the sink β-channel for the next stage is used

for getting data from the previous stage, and is also used during the computation at

line 13; before committing the values for the next stage at line 14.

Since the Gaussian elimination algorithm can be implemented with a pipeline

communication pattern (see Section 4.3.1.1), we can simplify the implementation

shown in Figure 4.7 using the pipeline interfaces as shown in Figure 4.26. In this

implementation, we hide the details concerning creation of the β-channels. These

β-channels are created by the sk_pipe_create() interfaces, which are passed to the

stage function gauss_stage() when the pipeline topology instance is executed using

sk_pipe_exec() (line 38). Since we are using the matrix A as both input and output

107

programming with communication structures

1 void gaussian stage (void ∗∗var, bc chan t ∗src, bc chan t ∗sink) {
int i, j, last := bc size − 1, r := bc rank, y := n + 1;

3 bc plist t ∗sink pl := NULL, ∗src pl := NULL;
bc chan t ∗sink := NULL, ∗src := NULL;

5 /∗ Eliminate all the preceding equations. ∗/
for (i := 0; i < r; i++) {

7 /∗ Receive preceding equations for elimination. ∗/
bc get (src, &A[i][0], y + 1);

9 for (j := i + 1; j < n; j++)
A[r][j] := A[r][j] − A[r][i] ∗ A[i][j];

11 A[r][n] := A[r][n] − A[r][i] ∗ A[i][y];
A[r][i] := 0;

13 /∗ Pass on received equations. ∗/
if (r 6= last) bc put (sink, &A[i][0], y + 1);

15 }
/∗ Preceding equations have been eliminated, divide my equation. ∗/

17 for (j := r + 1; j < n; j++)
A[r][j] := A[r][j] / A[r][r];

19 A[r][y] := A[r][n] / A[r][r];
A[r][r] := 1;

21 /∗ Send my equation for elimination in the succeeding stages. ∗/
if (r 6= last) bc put (sink, &A[r][0], y + 1);

23 }
int main(int argc, char ∗argv[]) {

25 sk pipe t ∗pipe;
sk pipe dmap t dmap[] := {{bc float, bc float}, {bc float, bc float},

27 {bc float, bc float}, {bc float, bc float},
{bc float, bc float}, {bc float, bc float}};

29 sk pipe fptr t func[] := {gaussian stage, gaussian stage,
gaussian stage, gaussian stage,

31 gaussian stage, gaussian stage};
bc plist t ∗plist;

33 /∗ Create process list for the pipeline with six stages. ∗/
plist := bc plist create (6, 0, 1, 2, 3, 4, 5);

35 /∗ Create pipeline topology. ∗/
pipe := sk pipe create (plist, func, dmap, 1);

37 /∗ Execute topology. ∗/
sk pipe exec (pipe, NULL, NULL);

39 /∗ Destroy the pipeline topology. ∗/
sk pipe destroy (pipe);

41 /∗ Destroy the process list. ∗/
bc plist destroy (plist);

43 return 0;
}

Figure 4.26: Simplification of the Gaussian pipeline implementation Figure 4.7, using
pipeline skeleton interfaces. This implementation removes the concerns related
to the creation and destruction of the communication structure.

108

programming with communication structures

buffer, they are not passed explicitly during the invocation of sk_pipe_exec(). Within

the stage functions, the β-channels provided by the pipeline instance are used imme-

diately, as was the case with the implementation without using the pipeline skeleton

interfaces. This is possible because the β-channels provide handles to the commu-

nication structures.

As we can observe in the implementation of the pipeline skeleton (see Fig-

ure 4.24), the most important part is the creation of the β-channels based on the

participating process lists, supplied to the pipeline interface. Based on this simple

framework, we can implement several other skeletons, by modifying the code seg-

ments where the β-channels are created. For example, to create a farm skeleton,

we may create a sink β-channel with BC_ROLE_FARM role for the first process in

the process list (assuming it is the farmer process), while the rest of the processes

create source β-channels with the BC_PIPE_ROLE role. Similarly, for returning the

calculated values to the farmer, the farmer process creates a source β-channel with

BC_ROLE_HARVEST role, while the worker processes create sink β-channels with

BC_ROLE_PIPE. These β-channels can then be provided to the necessary stage func-

tions when the skeleton execution interface is invoked.

4.5 Summary

In this chapter, we have discussed the β-channel programming model. We have dis-

cussed the two phase application development process, which divides application

development into communication structuring phase and communication activation

phase (see Section 4.1). We then described the set of application programming in-

terfaces for implementing message passing algorithms into executable β-channel

based parallel programs (see Section 4.2); and have demonstrated their usage by

implementing non-trivial parallel algorithms (see Section 4.3). Finally, we have

discussed the β-channel programming model in relation to skeletal parallel pro-

gramming: emphasising that the β-channel approach is advantageous for the im-

plementation and deployment of algorithmic skeletons (see Section 4.4). We have

also demonstrated how the skeleton abstraction layer may be removed at runtime

by using β-channels.

109

c h a p t e r 5

Implementation details

This chapter discusses the internal design details of the prototype runtime sys-

tem. We begin by discussing the execution model in Section 5.2. Here, we describe

the various functional units of the runtime system. In Section 5.3, we discuss how

the links between the source and sink β-channel are established at runtime. In

this section, we also explain the reasons behind the planarity condition (see Defi-

nition 4.2.1). In Section 5.4, we discuss the design of the high-level communication

protocol used for transferring data from the sender to the receiver. Here, we in-

troduce the asynchronous rendezvous communication protocol which allows auto-

matic overlapping of computations and communications. In Section 5.5, we discuss

how message buffering is integrated into the runtime system. Finally, we conclude

this section, and the chapter, by presenting the algorithms executed during the in-

terface optimisation for send-and-forget type communications.

110

implementation details

5.1 General design decisions

The design of the runtime system constitutes a crucial step towards attaining the

objective set out in Section 2.3. Two of the most fundamental design decisions are:

• The run-time system should be multi-threaded, so that automatic overlapping of

computations and communications can be implemented easily. Multi-threaded

processes for improving the performance of message passing interfaces are not

new. Some of the previous works in this area are due to Felten and McNamee

[38], and the nexus approach, due to Foster et al. [39]. What is different about

our approach is that it is based on a client-server model, where threads are classi-

fied based on their functions. This allows for a process to switch between sender

and receiver roles, depending on the thread which is currently active.

• Integration of message buffering into the runtime environment requires the de-

sign of a communication protocol which is defined by the message buffer char-

acteristics. For this, we choose a rendezvous communication protocol, where

communications are receiver initiated. The difference from existing implemen-

tations, however, is that the rendezvous protocol which we have implemented is

asynchronous. In order to achieve this, we design the multi-threaded runtime

system by keeping in mind, the design of the communication protocol. Some of

the previous works on asynchronous handling of messages can be found in [70].

Integration of buffers into the runtime systems, as integral component, while

remaining programmer definable, has long been investigated in theoretical con-

texts. Some of these can be found in the works of Brodsky et al. [22]. In fact,

Karp and Miller [66] have already defined a theoretical model for parallel com-

putation based on a network of queues between the processes. They were able

to derive the conditions for determinacy, termination and queueing properties

of such systems.

The following sections discuss the runtime system in detail.

5.2 Program execution and the runtime system

A β-channel application program starts execution when all of the participating pro-

cesses have successfully returned from the bc_init() interface call. During this func-

tion call, a multithreaded runtime system is initialised on the invoking process. This

runtime system has six functional units, as shown in Figure 5.1. We shall now dis-

cuss each of these functional units in detail.

111

implementation details

Application program
Computation threads

Sinks Sources

layer

Received data

Service request

Sent data

Message buffers

Data serving threads

Inter−process
communication

Internal system

Figure 5.1: Functional units of the β-channel runtime system. The computation threads ex-
ecute code segments in the application program, the data serving threads service
data transfer requests from remote processes, the inter-process communication
layer performs data transfers between processes, message buffers allow auto-
matic overlapping of computations and communications, and finally, the sources
and sinks contain information on the β-channels created on the host process.

Computation threads

After initialisation with bc_init(), every process is multithreaded with a set of threads,

also referred to as light-weight processes [25]. These threads are categorised into

two types: (1) computation threads, and (2) data serving threads. Based on the type,

every thread is assigned a specific function during the execution of the application.

Execution of the code segments in the application program, with the exception

of the message passing interfaces, is assigned to the computation thread. Compu-

tation threads therefore produce, or transform, data while behaving as a producer,

and consume data while behaving as a consumer. These basic functions are, in

essence, similar to that of a sequential process. The computations performed by a

computation thread only use in-process data, data which exist in the local address

space. When the execution reaches a point where off-process data is necessary for

further computations, the computation thread invokes the bc_get() interface. This

issues a request to the inter-process communication layer, which performs the nec-

essary communications on behalf of the computation thread. When data is to be

sent to a remote process, the computation thread invokes the bc_put(), or bc_commit()

interface. These interfaces directly copy, or commit, data into the respective mes-

sage buffers associated with the β-channel on which the interface was invoked. The

computation thread, however, does not participate in any inter-process communi-

cations which will result in the transfer of data to the receiver processes: this is done

by the data serving threads, which use the inter-process communication layer.

112

implementation details

Data serving threads

Data serving threads, contrary to computation threads, are internal runtime system

threads. They execute a predefined set of tasks in response to data transfer service

requests from remote processes. This makes them independent of any application

program, and therefore, transparent to the application programmer.

Through the data serving threads,1 a computation thread is allowed to con-

tinue with further computations without participating in actual data transfers with

remote processes. After initialisation, the data serving threads immediately sleep

until woken up by a service request. Once a service request is received, a request

for communication is issued to the inter-process communication layer, which then

transfers the data from the message buffers to the requesting process. Before issuing

the communication request, the data serving thread performs all the necessary sink-

to-source link resolutions so that the correct buffer units are immediately available

to the inter-process communication layer. When a data transfer request has been

served, the active data service threads again go to sleep, until woken up by another

request. What is interesting about this arrangement is that, unless required for

data communications, the processor is always available to the computation threads,

which can continue with computations without worrying about the inter-process

communications. It is easy to observe that this provides an automatic, yet efficient,

approach for overlapping computations and communications.

Inter-process communication layer

The inter-process communication layer handles all the tasks that are to do with the

communication of data with remote processes. After initialisation, a Kn complete

network is established between the n participating processes. This network pro-

vides the raw communication links between all of the processes. The inter-process

communication layer is activated when one of the following three events happens:

(1) a data transfer request is issued by the computation thread, (2) a data transfer

service request is received from a remote process, and (3) a data transfer request

is issued by the data serving thread. In the first case, the inter-process communi-

cation layer sends a data transfer service request to the remote process, and waits

until the requested data is received from the remote process. In the second case,

the service request is transferred to the respective data serving threads by waking

them from their sleep. Finally, in the third case, data is transferred to the remote

process by accessing the message buffers associated with the correct sink β-channel

1To simplify implementation of the prototype runtime system, we assign separate data serving
threads to each of the remote processes with which the host process is allowed to communicate.

113

implementation details

on the host process. The resolution of the sink-to-source link is performed by the

data serving thread, prior to issuing a communication request to the inter-process

communication layer. The third case, therefore, follows the second case whenever

the sink-to-source link is resolved successfully.

Message buffers

Every sink β-channel created by a computation thread is associated with a message

buffer. This buffer is used to store data that is produced or transformed by the

computation thread. The data serving threads should send these data to the remote

processes upon receiving data transfer service requests.

The message buffers functional unit performs all the tasks (for example, cre-

ation, destruction, etc.) related to the management of message buffers. The type of

buffer associated with a sink β-channel depends on the type of the β-channel role

(for example, a BC_ROLE_FARM role uses a message buffer which is shared by all

the data serving threads; a BC_ROLE_SPREAD role, on the other hand, uses message

buffers where separate buffer units are assigned to each of the data serving threads).

This functional unit therefore performs another critical function, which is provid-

ing a uniform interface to the inter-process communication layer so that different

types of buffers can be accessed easily. Furthermore, this functional unit is also re-

sponsible for ensuring mutual exclusion on the shared buffers (for example, buffers

associated with BC_ROLE_FARM role).

Sinks and sources

The functional units, sinks and sources, manage creation and destruction of source

and sink β-channels defined on the host process. When a computation thread in-

vokes β-channel creation interfaces, bc_src_create() or bc_sink_create(), these func-

tional units ensure that the information necessary to access any of these β-channels

is available to all of the other functional units. In particular, the data serving threads

use information stored in these functional units while resolving the sink-to-source

links. From the programmer’s perspective, these two functional units provide in-

direct access to the other two functional units: message buffers, and inter-process

communication layer. In Section 3.9, we have discussed how these facilities are used

to perform optimisations such as avoiding intermediate memory copy.

In the following section, it will be discussed in depth how β-channels are man-

aged in these functional units.

114

implementation details

5.3 Structuring communications at runtime

This section answers the question: how is the holistic communication pattern im-

plemented concretely at runtime? We discuss how localised ordering of events is

used to achieve asynchronous creation and destruction of β-channels. We also dis-

cuss, in detail, what actually happens when a program is executed. This furthers

the previous discussions, by presenting an example execution instance.

Hewitt and Baker [60] axiomatised that the concept of a unique global clock

is not meaningful in the context of a distributed system of autonomous parallel

agents; which Clinger [31] showed was consistent with the principle of parallel pro-

cessing. Following these arguments, Agha concludes [1, page 10]:

“. . .for a distributed system, a unique (linear) global time is not definable.
Instead, each computational agent has a local time which linearly orders
the events as they occur at the agent, or alternatively, orders the local
states of that agent. These local orderings of events are related to each
other by the activation ordering.”

Activation ordering defines the causal relationship between events happening

at different agents, such that global ordering of events is a partial order in which

events occurring at different computational agents are unordered unless there exists

a causal relationship between the agents.

In relation to the structuring of communications at runtime, the above obser-

vation is important on two counts. Firstly, it says that a unique global state is not

definable. Secondly, unless there exists a causal relationship between any two pro-

cesses, both processes can execute asynchronously without invalidating the partial

ordering of global events. If we recall our discussion on the abstraction of a holis-

tic communication pattern (see Chapter 3), we can observe that the communication

pattern expressed by a communication structure represents a global state. However,

based on Agha’s conclusion, this cannot be defined as a ‘unique’ global state. The

global state should therefore be broken down into localised components which are

ordered based on the ordering of local events—leaving the partial global ordering

to the dependency edges that are created by a sink-to-source link.

From the above discussions, it is clear that our approach of abstracting holistic

communication patterns in terms of process specific localised communication pat-

terns is theoretically sound. Furthermore, management of the β-channel is already

asynchronous because none of the interfaces introduced in Section 4.2 depended on

the assumption of inter-process synchronisation. If synchronisation is necessary (for

example, waiting for data to be transferred by the sender), it is handled internally

115

implementation details

A B C

1

2

3

1

2

3

4

2

1

A B C

2

3

11

(b)

A B C

1

3

1A
1A

2A

1C

1A

1A

1B

2B

1

1

2

1

2

(a) (c)

1B,1C

1B,1C

Figure 5.2: Tag assignment policy based on activation ordering: (a) without incorporat-
ing β-channel type and remote process information, (b) without incorporating
remote process information, and (c) both β-channel type and remote process
information is used. • and ◦ respectively represent sink and source β-channels.
In (b) and (c), bold numerals represent tags assigned to sink β-channels, while
numerals in normal text represent tags assigned to source β-channels.

by the runtime system. Of course, such synchronisations only occur when there is a

causal relationship between two processes, and therefore the global partial ordering

is maintained throughout the execution of the program.

5.3.1 Establishing the sink-to-source link

Creation and destruction of β-channels on different processes can happen asyn-

chronously, even when the β-channels belong in the same communication structure.

When a process does not create more than one β-channel during the entire exe-

cution, implementing the communication structure is quite straightforward as the

sink-to-source links can be established directly by assigning the same identification

tag over all of the β-channels. This situation, however, becomes complicated when a

process creates more than one β-channel. The question is: how do we assign identi-

fication tags that will provide a consistent tagging policy, so that any sink-to-source

link can be resolved correctly at runtime?

One naive approach is assigning identification tags based on the local order-

ing of events which corresponds to the creation of a β-channel, as shown in Fig-

ure 5.2.a. Let us ignore for the moment the difference between the source and sink

β-channels. The first two β-channels created on each of the three processes are

consistently tagged: both β-channels are respectively assigned tags ‘one’ and ‘two’.

When we reach the stage where PA and PC create the third β-channel, PB has cre-

ated two β-channels. The tags across PA and PB are still consistent because they

have the same tag, ‘three’; with this, the sink-to-source link can still be resolved.

116

implementation details

The tags across PB and PC are, however, not consistent: the fourth β-channel on

PB has identification tag ‘four’, while the third β-channel on PC has identification

tag ‘three’. If we try to resolve the sink-to-source link between PB and PC at run-

time, we are faced with an error due to these inconsistent tags. The conclusion,

therefore, is that the tagging policy should account for the variation in the number

of β-channels created by each of the processes.

Based on the conditions for the validity of a communication structure (see Defi-

nition 3.7.5), we know that for every sink β-channel, there is always a corresponding

source β-channel, and vice versa. We can use this condition to our advantage for

refining the tagging policy just discussed. Instead of treating all the β-channels

equally while assigning tags, the new tagging policy separates the tags assigned to

source and sink β-channels. This means that source β-channels are assigned tags

from a set of identification tags, independent of the set of tags assigned to the sink

β-channels. According to this tagging policy, two β-channels on the same process

can therefore have the same identification tags as long as they both represent differ-

ent β-channel types.

The refined tagging based on the new policy is shown in Figure 5.2.b. The bold

numerals represent tags assigned to sink β-channels, while numerals in normal text

represents tags assigned to source β-channels. Although the tagging policy is more

sophisticated, it still does not solve the problem. The problem arises because the

number of source and sink β-channels created on a process does not differentiate

between the remote processes with which the sink-to-source link should be estab-

lished. We can see this in Figure 5.2.b, where the final two source β-channels created

on PB are assigned consecutive tags, without acknowledging the tags assignment to

the β-channels on the remote processes, PA and PC.

We now differentiate between source and sink β-channels by incorporating re-

mote process information. With this tagging policy, source and sink β-channels are

assigned independent tags, and within the set of β-channels of a given type, the

tags are assigned based on the remote process with which the sink-to-source link

is established. This ensures that β-channel tags are also grouped according to the

remote process. In Figure 5.2.c, we show tag assignment based on this policy. Each

tag now contains the remote process information. If we consider, for example, the

first β-channel created on each of the three processes, the β-channel of PA is as-

signed the tag ‘1B,1C’. This tag means that the sink β-channel links to two source

β-channels on the remote processes, PB and PC, with source tag values of ‘one’.

On the processes, PB and PC, the tag value ‘1A’ means that the source β-channel

is linked to a sink β-channel on PA which has a sink tag value of ‘one’. As we can

117

implementation details

wakeup ();

link = get_link (B, tag);

send (B, link.buffer)

sleep ();

c1 = create_sink (B);

c2 = create_sink (B);

c3 = create_src (B);

B.sink_tag = 0, B.src_tag = 0

B.sink_tag = 1, c1.tag = 0

B.sink_tag = 2, c2.tag = 1

put (c1, data);

B.src_tag = 1, c3.tag = 0

A.sink_tag = 0, A.src_tag = 0

A.src_tag = 1, c1.tag = 0

A.src_tag = 2, c2.tag = 1

A.sink_tag = 1, c3.tag = 0

get (c1, data);

c1 = create_src (A);

c2 = create_src (A);

c3 = create_sink (A);

1

0

β −channel to buffer pointer
c2

buffers

data serving thread on A

computation thread on B

tag = 1

tag = 0

link to buffer pointer

computation thread on A
. . .CB

hash table for sink −channel links β

Process A

Process B

data transfer request

send data to B

(sends tag value assigned to c1)

c1

Figure 5.3: Example execution of a communication structure based application program.
This shows what happens in the different functional units of the runtime system
when an application program is executed. We show the creation of source and
sink β-channels, invocation of bc_put() and bc_get(); and the events that lead to
the transfer of data between the two processes.

118

implementation details

see, this solves the tagging problem. This tagging policy is easily implemented with

a hash table.

5.3.2 Example execution of an application program

In Figure 5.3, we show the execution of a β-channel application program with two

processes, PA and PB. PA creates two sink β-channels, c1 and c2, and a source

β-channel, c3. PB, on the other hand, creates two source β-channels, c1 and c2, and

a sink β-channel, c3. The code segments executed by the computation threads are

shown within the respective functions unit. The hash table only stores information

on the sink β-channels because this is the only information necessary for finding

out which message buffer should be accessed while transferring data to a remote

process. All the information relevant to the source β-channel can be stored in itself.

During the communication structuring phase, when the sink β-channel, c1, is

created, a link is inserted into the hash table. This link is assigned a tag value

which equals sink_tag. Because different sink_tag values are maintained separately

for each of the remote processes, this link is assigned the value of B.sink_tag, as it

corresponds to the remote process PB. A message buffer is then allocated for this

sink β-channel, and appropriate pointers are updated within c1 and the hash table

link so that the message buffer can be accessed by the computation thread (while

putting data), and the data serving thread (while serving data transfer requests).

These pointers are represented by dashed lines. After successfully creating a sink

β-channel, the value of B.sink_tag is incremented. We repeat the same process for

the second β-channel, c2. When the source β-channel, c3, is created, instead of

using B.sink_tag, B.src_tag is used. In addition, no link is inserted into the hash table

because source β-channels are only used by the computation thread for making a

request to the inter-process communication layer. All the relevant information can

therefore be stored in the source β-channel. Similar analysis can be done on PB.

During the communication activation phase, PA puts data from data into the

sink β-channel, c1, by invoking bc_put(). The message is then received on PB by

invoking bc_get() on the source β-channel, c1. When putting data into the sink

β-channel, the values are transferred directly to the message buffers pointed to by

c1. This is shown by the grey arrow. When the bc_get() interface is invoked on

PB, a request is sent to PA. This wakes up the data serving thread on PA. The

link is then resolved by using the hash table information, as shown by the function

get_link(). This link is passed to the inter-process communication layer, which is

used to access the message buffer pointer while transferring the data to PB. The

data serving thread then goes to sleep.

119

implementation details

A B

(a)

1A

2A

1B

2B

A B

(b)

A B

(c)

1B

2B 2A

1A 1B

1A1B

1A

Figure 5.4: The reason for the planarity condition (see Definition 4.2.1). (a) When the de-
pendency edges with the same direction cross each other, we observe a mismatch
of the source and sink β-channel tags, (b) the mismatch is resolved by removing
the cross over, and (c) crossing over of dependency edges with different direc-
tions of data flow does not pose a problem because the resulting tag values are
not affected by it. Normal labels represent source tags; bold labels sink tags.

5.3.3 Why do we need ‘the planarity condition’?

The planarity condition states that no two dependency edges between two parti-

tions, with the same direction of data flow, should cross each other when repre-

sented with ‘straight lines’ (see Definition 4.2.1). In this section, we discuss why

this condition is necessary for the prototype implementation of the runtime system.

In Section 5.3.1, we have discussed the tag assignment policy used to estab-

lish sink-to-source links at runtime. This tagging policy uses the ordering of local

β-channel creation events to determine the tag values. Due to this approach, the

resolution of sink-to-source links becomes problematic when the planarity condi-

tion is defined. To clarify this, let us consider a case where the dependency edges

cross each other, as shown in Figure 5.4. In the first figure, case (a), two processes,

PA and PB, create two separate communication structures, each represented by a

β-channel. PB creates the source β-channels in reverse order, so that the depen-

dency edges cross. If we see the resulting tag values, we can observe that the sink

and source β-channel tag values are mismatched. For example, the tag value for

the first sink β-channel does not match the tag value assigned to the corresponding

source β-channel (‘1B’ does not match ‘2A’). In a case where the planarity condition

is satisfied, as shown in case (b), we do not observe this mismatch. The source and

sink tags in both communication structures match each other. Finally, in case (c),

when the direction of data flow is opposite, we can ignore the planarity condition.

As we can see, the tags for the source and sink β-channels match, even when the

dependency edges cross each other.

120

implementation details

(b)

t

T

t
0

T0

2

2

0 1 2

(a)

t
t

T

T0

2

2
0

0 1 2

Figure 5.5: Data collection on P1 from P0 and P2. (a) strictly eager protocol (no buffering)
(b) lenient eager protocol (buffering on receiver). • represents interface invoca-
tion, and ◦ represents return.

5.4 Communication protocol

In message passing systems, the communication protocol2 used by the communica-

tion interfaces determines the progression rule: how should a process continue after

invoking a message passing interface? It is therefore important to define the com-

munication protocol used by the message passing interfaces. In existing systems,

the interfaces are classified into synchronous and asynchronous interfaces based on

the communication protocol used to implement them.

5.4.1 Synchronous interfaces

With synchronous interfaces, once a process initiates a communication it cannot

continue until that communication has completed successfully. Such interfaces use

the eager communication protocol, and are often referred to as blocking interfaces.

What is considered to be ‘completion’ of the communication is usually defined by

the semantics of the underlying implementation; a detailed discussion of which can

be found in Cypher and Leu’s paper [35].

Figure 5.5 shows two ways of implementing a collective communication between

three processes, P0, P1, and P2, where P1 collects data from P0 and P2. Both imple-

mentations use different versions of the eager point-to-point communication proto-

col [53].

In Figure 5.5.a, the implementation is based on a strictly eager communication

protocol, where the function returns only when the entire collective communication

has been completed successfully. Assuming that P0 and P2 initiated send at times

t0 and t2 respectively, where t0 < t2; and that it takes T0 and T2 time units for P1

2In this dissertation, the term ‘communication protocol’ will only refer to the protocol employed
by the highest level communication layer, which may be implemented over a lower level protocol layer.

121

implementation details

Memory units (mu)

Access (mu) No access (mu)
Initiation phase

No access (mu)
IB

Access (mu)

AB

Completion phase

Access (mu)
AB

No access (mu)

Application program Runtime system

Figure 5.6: Switching memory unit abstraction in split-phase communication protocol.

to complete receiving data from P0 and P2 respectively, then P0 has to wait for

T2 +(t2 − t0) > T0, with a wastage of T2 +(t2 − t0)−T0 time units. We improve this

situation, as shown in Figure 5.5.b, by utilising a lenient eager protocol that buffers

data at P1, allowing P0 to continue once the data is received by P1. Similar buffering

is done for the data received from P2. In this manner, the wastage on either of the

sending processes can be minimised by buffering data on the receiving process.

In both versions of the eager protocol, however, the time units T0 and T2 required

to complete the individual communications vary depending on when P1 initiated

the receive interface: a delay by P1 affects the waiting time on the sending processes

because they cannot continue until the data is accepted by P1. This means that the

producers and the consumers are tightly coupled. Hence, assuming that P0 and P2

initiated send interfaces at time t0 and t2, with t0 < t2, and P1 initiated receive at

time t1 > t0,t2, the wastage suffered by P0 and P2 in Figure 5.5.b is, respectively,

t1 − t0 and t1 − t2. Within a loop, this wastage is multiplied by the number of

iterations, which can eventually become a serious performance bottleneck [49].

5.4.2 Asynchronous interfaces

With asynchronous interfaces, processes are allowed to continue computation by

deferring communications until the remote processes are ready; or, by allowing

communications to proceed simultaneously with the computations. These inter-

faces are often referred to as non-blocking interfaces because the function returns

immediately without waiting for the completion of the communication. The follow-

ing two conditions are, however, imposed: (1) the invocation of the non-blocking

interfaces should be followed by a corresponding test for completion, and (2) the

associated application buffer should not be utilised before the test condition is sat-

isfied.

Cypher and Leu [35] describe the semantics of such communications in terms of

122

implementation details

split-phase communication protocols, where a communication is divided into two

phases: initiation phase, and completion phase. During the initiation phase, the

runtime system is issued with a communication request which it should perform

on behalf of the calling process. The calling process resumes further computation

without waiting for the communication. When the application buffer associated

with the previous communication is required by the calling process, it tests for the

completion of the communication before re-utilising the buffer during computa-

tions.

By introducing the initiation and completion phases, the split-phase commu-

nication protocol uses a subtle form of message buffering (see Figure 5.6). This

involves switching the abstraction of the memory units from an application buffer

(ab), which is accessible only to the application program, to an implementation

buffer (ib), which is accessible only to the runtime system, and back.

5.4.3 Asynchronous rendezvous

In the β-channel programming model, all the communication interfaces are consid-

ered to be asynchronous: the level of asynchrony is determined by the buffer size.

By explicitly integrating message buffering within the programming model, both

synchronous and asynchronous interfaces are unified, and use the asynchronous

rendezvous communication protocol defined as follows:

Definition 5.4.1 (Asynchronous rendezvous protocol)

In the asynchronous rendezvous protocol, two processes communicate data based

on a request-service scheme—apparent in client-server models—where the sender

(server) sends data only when the receiver (client) makes a request. The additional

condition, however, is that this should happen asynchronously so that neither the

sender nor the receiver waits for the other when the data to be sent is already avail-

able in the message buffer.

Implementing the request-service scheme [71, page 125] does not pose a signif-

icant problem as it has already been implemented as programming language con-

structs in ada [15]; the real concern is providing asynchrony. The rendezvous is

synchronous in ada—either sender or receiver has to wait for the other before con-

tinuation. As we have seen previously (see Section 5.4.1), making a sender wait for

the receiver is inefficient. Forcing the receiver to wait for the sender is also inef-

ficient: consider a case where the sender has continued with further computation

because the receiver did not make a request for the available data, following which

the receiver makes a request and finds the sender busy with computation. The main

123

implementation details

t

r0 r2

Process 0 Process 1 Process 2

20

w

C DC D C0 0 2 21

w0 2

t

RR10 12

2101

Buffer B Buffer B

Figure 5.7: Asynchronous rendezvous protocol: data collection on P1 from P0 and P2. Ci

and Di respectively represent the computation thread and data serving thread
on Pi. • represents interface invocation, and ◦ represents return.

challenge therefore is to decouple the sender and the receiver.

The asynchronous rendezvous protocol as implemented in the β-channel run-

time system is shown in Figure 5.7. The sink β-channels implement buffers, B0 and

B2, on the senders, where data are stored until they are requested by the receiver.

As the buffering is done on the sender, a bc put() on the corresponding β-channel is

equivalent to a local memory access. Therefore, if the buffer was not full at the time

of the invocation, the latency of bc put() should equal cwi where wi is buffer write

time and c is some constant. This decouples the sender from the receiver, leaving the

buffer as an indirect dependency, the strength of which is determined by the buffer

size. On the other hand, when a request for data is received from the consumer,

the transfer of data is handled by the data serving threads (see Section 5.2). As the

data serving threads on the producer are always waiting for data transfer requests,

every request for data is served immediately as long as the buffer is not empty. This

decouples the receiver from the producer.

Although the asynchronous rendezvous protocol efficiently decouples the sender

and the receiver, it increases the number of communications necessary for receiving

data from the sender. Each receive interface invocation consists of sending a data

transfer request, and then receiving the requested data. Therefore, the bc get() la-

tency is given by R10+R12+r0+r2+ t01+ t21, where Rij is the data request transfer

time from Ci to Dj, ri is the buffer access time on Di, and tij is the data transfer

time from Di to Cj. If data are already available in the sender buffer, ri approaches

memory read time. tij is always incurred in any case because of the actual data

transfer, hence this does not arise due to the protocol adopted. The main perfor-

mance bottleneck, therefore, is the extra communication cost Rij. That said, it can

however be argued that Rij can be reduced by exploiting the following properties:

1. Data service request messages are of constant length.

124

implementation details

2. They are smaller compared to the actual data being requested. From the graph

shown in Figure 6.10, the time to service data transfer requests becomes neg-

ligible when the size of the requested data becomes large—often the case with

practical applications.

3. They can be given higher priority like Out-of-band data [43][94].

In the next section, we will discuss the integration of message buffers into the

runtime system.

5.5 Integrating message buffers within the runtime system

In the previous section, we saw that message buffering plays an important role in

determining the progression rule of the message passing interfaces. In this section,

we will elaborate more on message buffering, and describe the internal details of

the interface optimisations for send-and-forget type communications.

Although message buffering constitutes a significant factor in deciding the run-

time behaviour of message passing interfaces, their implementation in popular mes-

sage passing environments have the following limitations:

1. In some systems message buffering is considered to be entirely the programmer’s

responsibility. This provides the programmer with some flexibility in devising

the best approach, however, they are more prone to programming errors. Man-

aging the message buffer—creation, maintenance, and deallocation—adds ad-

ditional programming concern which could have been abstracted by the runtime

system. Additionally, because the message buffering is separated from the run-

time system, programming an efficient message buffering system which interacts

efficiently with the runtime system can be a challenging task.

2. In other systems, such as linda [45], message buffering is integrated, but con-

cealed from the programmer; thus providing a high-level abstraction of the mes-

sage buffers that is less prone to programming errors. This, however, prevents

the programmer from making certain optimisations based on the algorithm be-

ing implemented.

One such optimisation is based on selective buffering. In parallel applications,

the overall frequency of the communications are not uniformly distributed. Some

communications are more frequent than others; therefore, it makes sense to

utilise more buffering space for the frequent ones. For example, if an applica-

tion requires a single point-to-point communication between PA and PB, while

125

implementation details

it also requires n point-to-point communications between PA and PC (say com-

munication within a for loop), it is sensible to provide more buffering for the

n communications between PA and PC. Such optimisations require interfaces

that support selective buffering, allowing dynamic allocation and deallocation

of message buffers for specific sets of communications.

3. In systems such as the mpi [93], message buffering is more sophisticated than

the ones discussed previously. mpi supports buffering by providing two forms of

buffering: (1) standard mode interfaces that use message buffers implemented

by the runtime system, and (2) buffered mode interfaces that use message buffers

that are provided by the programmer. Although this provides a certain level of

improvement, it has the following drawbacks.

mpi does not guarantee buffering. It is therefore the programmer’s responsibil-

ity to ensure enough buffering space is available to the runtime system before

invoking a communication interface. If standard mode interfaces are used there

is therefore a possibility for failure if the data units being transferred are larger

than the buffer space allocated by the mpi implementation. This leads to another

programming concern because the mpi standard does not specify a minimum

buffer size that should be supported; the size of the standard buffers therefore

varies across implementations. Alternatively, by using buffered mode interfaces,

a programmer can ensure that enough buffering space is available to the run-

time system. However, this is again limited by the lack of selective buffering:

a programmer can attach only one buffer to the runtime system which is used

for all of the communications. The buffer management is therefore generic, and

may not be an attractive option for certain applications for which specialised

buffering is possible.

The β-channel runtime system functional unit message buffers resolve some of

these issues as follows:

1. As sink β-channels are created and destroyed at runtime, their associated buffers

are also created and destroyed dynamically. Dynamic buffering is implemented

by default, without further programmer intervention. All that is needed from

the programmer is the size of the buffer that is required for a set of communica-

tions which use the specified β-channel. While discussing the practical advan-

tages of the β-channel approach (see Section 3.9), we have already shown how

selective buffering is supported by the β-channel approach.

2. Embedding the message buffer within the β-channel makes programming more

structured and less error prone, as the allocation, maintenance and deallocation

126

implementation details

of the associated resources are handled automatically in accordance with the

actions applied to the β-channel.

3. Resources are allocated only when it is necessary. Where message buffering is

handled transparently, as in linda or standard mode mpi interfaces, the size of

the message buffer is defined by the runtime, independent of the application be-

ing executed. This means that the resources are always reserved: whether they

are needed or not. We can consider this as an inefficient usage of the available

resources. Buffers allocated within β-channels, on the other hand, are reserved

during the life-time of the corresponding β-channel, and hence it can be opti-

mised for efficient resource usage by claiming only the resources that are abso-

lutely necessary; and freeing them when not needed (for example, by invoking

the interfaces bc_plist_destroy(), bc_chan_destroy() etc.).

5.5.1 Optimisation for send-and-forget communications

In Section 3.9.1 and Section 4.2, we discussed an interface optimisation for send-

and-forget type communications where sent data are not re-used by the sender. In

this section we provide the implementation details.

A performance concern related to message buffering is the intermediate mem-

ory copy involved in transferring data from the application buffer to the runtime

implementation buffer. Copying a message of n unit size takes O(n) time units,

and therefore, this degradation can become a serious performance bottleneck. We

argued, however, that this overhead may be considered negligible in situations where

buffering the messages increases the asynchrony of the communicating processes. In

fact, in some of the mpi implementations, asynchronous communication interfaces

buffer smaller messages (size 6 216), as discussed in Section 6.2.1.

The following algorithms allow applications to avoid intermediate memory copy

by directly accessing the buffer units within the message buffers, as if they were ap-

plication buffers. From the programmer’s perspective, this is done by using the

interfaces bc_var(), bc_vptr(), and bc_commit(). The first algorithm, alg_commit(), is ex-

ecuted within the runtime system, internally, when the computation threads invoke

bc_commit() on a sink β-channel. The second algorithm, alg_send(), is executed by

the data serving thread when a data transfer service request is received from a re-

mote process. To prevent out of bound buffer access errors, only one data unit can

be committed or retrieved from the buffer during each interface invocation.

127

implementation details

1 void alg commit (queue t ∗q, int count) {
pthread mutex lock (&(q→lock));

3 q→rc[q→ptr.idx] := count; /∗ Reset reference count. ∗/
/∗ Update buffer unit pointer. ∗/

5 q→ptr.var += q→size;
if (q→ptr.var = q→end) q→ptr.var := q→start;

7 /∗ Check if it is safe to return. ∗/
i := (q→ptr.idx + 1) % q→qsize;

9 while (1) {
if (q→rc[i] = 0) { /∗ Valid buffer unit found. ∗/

11 q→ptr.idx := i;
pthread cond broadcast (&(q→cond)); /∗ Alert new data. ∗/

13 pthread mutex unlock (&(q→lock));
return;

15 }
pthread cond broadcast (&(q→cond)); /∗ Alert new data. ∗/

17 pthread cond wait (&(q→cond), & (q→lock));
}

19 }

Figure 5.8: Algorithm for committing data to the buffer. ptr.idx gives the index of the buffer
unit which is being committed. Index values lie within the range [0,b), where b

is the total number of buffer units existing within the buffer.

1 void alg send (queue t ∗q, vptr t ∗cptr) {
pthread mutex lock (&(q→lock));

3 /∗ Check data availability. ∗/
while (1) {

5 if (q→rc[cptr→idx] > 0) ∧ (q→ptr.idx 6= cptr→idx)
break;

7 pthread cond wait (&(q→cond), &(q→lock));
}

9 /∗ Send data from buffer unit. ∗/
send data (cptr→var, q→size);

11 q→rc[cptr→idx]−−; /∗ Decrement reference count. ∗/
/∗ Update buffer unit pointer. ∗/

13 cptr→var += q→size;
if (cptr→var = q→end) cptr→var := q→start;

15 cptr→idx := (cptr→idx + 1) % q→qsize;
pthread cond broadcast (&(q→cond)); /∗ Alert free buffer unit. ∗/

17 pthread mutex unlock (&(q→lock));
}

Figure 5.9: Algorithm for sending data from the buffer. This algorithm is for message
buffers where a data unit committed into the buffer is replicated on all of the
remote processes. While checking data availability, we also check if the buffer
unit pointer maintained separately on the data serving threads overtakes the one
maintained within the queue (the predicate q→ptr.idx 6= cptr→idx).

128

implementation details

Algorithm for committing data to the buffer

The complete algorithm for committing data to the buffer is shown in Figure 5.8.

Two parameters are passed to this algorithm: (1) queue, which gives the message

buffer associated with the sink β-channel, and (2) count, the number of data serving

threads which depends on queue. After locking access to queue, the reference count,

which keeps track of the number of references that have been made on the current

buffer unit, is reset to count. This commits the data to the buffer. By resetting the

reference counter to count, we mark availability of a new data unit within the buffer.

The buffer unit pointer iptr.var, which is what bc_var(), or bc_vptr(), expands to is

updated to the next available buffer unit. If there are data serving threads waiting

for data, they are alerted (lines 12–13, and 16–17). Before returning, the algorithm

waits until iptr.var is actually pointing to an empty buffer unit (the while loop). Due

to this, the algorithm requires the message buffer queue to have at least two buffer

units so that bc_var() and bc_vptr() always points to an empty buffer unit after a

successful commit.

Algorithm for transferring data from the buffer

Upon receiving a data transfer service request from a remote process, the data serv-

ing thread executes alg_send(), shown in Figure 5.9. Two parameters are passed to

this algorithm: (1) queue, which gives the message buffer associated with the link

in the hash table (see Section 5.3.2), and (2) cptr, the data serving thread specific

pointer, which marks the buffer unit from which the next request for data should

be served. After locking the access to queue, the algorithm checks if data units are

available in the buffer unit pointed to by cptr (the while loop). If data units are not

available, the algorithm waits on the conditional variable cond. If data units are

available, or when new data units are committed, the while loop breaks. Data from

the buffer unit are then sent to the requesting process. To mark consumption, the

reference counter for that buffer unit is decremented by one. The pointer within the

message buffer, cptr, is updated so that it points to the next buffer unit. If there are

other threads waiting on the conditional variable, cond, they are woken up (lines 16–

17) before the algorithm returns.

The algorithm discussed in the previous two sections is used to implement shared

buffers, where a data unit is used by many remote processes (the reason for up-

dating the value of the reference counter to count for every new data unit that has

been committed). These types of buffers are used in implementing roles such as

129

implementation details

BC_ROLE_REPLICATE. By making slight modifications to the structure of queue, and

the above algorithms, we can achieve different types of queue properties. For exam-

ple, if the current buffer unit pointer, cptr, which is maintained separately on each of

the data serving threads, is maintained within the queue; and the reference counter

is set to ‘one’ for every new buffer units that is committed, we get the buffer queue

required by roles such as BC_ROLE_FARM, where the same data unit is not used by

more than one remote process.

5.6 Summary

In this chapter, we have discussed the implementation details of the β-channel run-

time system. We began by describing the functional units of the β-channel run-

time system (see Section 5.2), and discussed their functions in the execution of a

β-channel application program. We then discussed how the holistic communica-

tion pattern represented by a communication structure is realised concretely at run-

time (see Section 5.3). We discussed how the sink-to-source links between any two

processes are resolved at runtime (see Section 5.3.1). We then illustrated the in-

teractions between the functional units by using an example application program

(see Section 5.3.2), following which justification for the planarity condition was dis-

cussed (see Section 5.3.3). In Section 5.4, we discussed the communication protocols

used by existing message passing interfaces, and contrasted their qualities to those

of the asynchronous rendezvous communication protocol (see Section 5.4.3). The

remainder of this chapter focused on the integration of message buffering into the

runtime system (see Section 5.5). Finally, we presented the algorithms executed

by the interface optimisations for send-and-forget type communications (see Sec-

tion 5.5.1).

130

c h a p t e r 6

Evaluation

In this chapter, we evaluate the communication structure approach. We compare

the β-channel abstraction and programming model with that of a popular message

passing system. The Message Passing Interface (mpi) is a standardised message

passing system, and since it is also arguably the most popular message passing sys-

tem currently available, it is used as our reference system.

The evaluation is divided into two parts. The first part in concerned with the

qualitative properties of the β-channel approach. This highlights the following

properties: non-ambiguity, expressiveness, uniformity, and extensibility (see Sec-

tion 1.2). The second part evaluates the quantitative properties. This highlights

the performance of the β-channel runtime system as compared to the standard mpi

interfaces.

The performance evaluations are further divided into two sections: (1) micro-

benchmarking, where we evaluate the performances of individual interfaces; and (2)

macro-benchmarking, where we evaluate the overall performance of an application

which uses a set of interfaces.

The evaluation results show that the β-channel approach offers significant ad-

vantages over the mpi approach in terms of programmability (see page 143). With

regards to performance, empirical results show that the β-channel interfaces per-

form better than the mpi interfaces when there is reduced contention, and are at least

comparable to them during contention (see Section 6.2). The macro-benchmarking

result (see Section 6.2.3) shows that implementation of an algorithm with a combi-

nation of β-channel interfaces surpasses some of the mpi implementations.

131

evaluation

6.1 Qualitative evaluation

In this section, we evaluate the β-channel approach qualitatively, and discuss how

the β-channel programming interfaces are more flexible and programmable than

the mpi interfaces. While making comparisons, we focus on the following qualities:

non-ambiguity, expressiveness, uniformity, and extensibility.

In Section 1.1, we introduced a simple synthetic example (see Example 1.1.1)

to clarify the discussions. However, in order to make the comparisons and argu-

ments more persuasive, we choose a real application which shows communication

patterns with overlapping communication domains. This application is the mean

value analysis of queueing networks.

Mean value analysis

The mean value analysis algorithm [89] is used to solve the queue length, through-

put, response time etc. of a multi-class closed1 queuing network [16]. This algo-

rithm offers improvements on the first efficient approach based on the ‘convolution

algorithm’ due to Buzen [27]. From a parallel programming perspective, what is

interesting about the mean value analysis algorithm is that the problem space ex-

pands rapidly when the number of classes and their populations are increased to a

reasonably large value. In general, to compute the residence time values for a load

intensity vector ~N = (N1, . . . ,Nr, . . . ,NR), for a model with R classes with class r

population Nr, we need to compute the queue lengths for the load intensity vectors
~N −~11, . . . ,~N −~1r, . . . ,~N −~1R, where ~1r represents a vector where all the compo-

nents are zero, except for the rth component, which is one. In order to provide a

reasonable computation time, approximation algorithms based on the mean value

analysis algorithm have therefore been suggested [91, 23].

Our aim here is to parallelise the mean value analysis algorithm, and show by

implementation why the β-channel approach is more programmable as compared

to the standard mpi interfaces. Gennaro and King have previously suggested par-

allelisation of the mean value analysis algorithm [46] by decomposing the problem

space. In their approach, the initial problem space is decomposed into sub-spaces

so that each sub-space can be assigned to a separate process. The decomposition

is done on the reference class (normally the first class in the queueing network),

and each sub-space is assigned to a separate process, where all the processes are

aligned to form a pipeline. Even though this parallel implementation improves the

1Queueing network models with a fixed number of requests per class are often referred to as a
closed models. It is usually marked by a ‘feedback loop’ where no requests leaves or enters the model.

132

evaluation

performance of the sequential implementation, when we consider large number of

classes with sizable populations, it is still hindered by a large problem space. Fur-

thermore, if the population of the reference class is small, the decomposition results

in more inter-process communications, which causes the communication overhead

to surpass the improvement due to parallelisation.

To improve the above situation, we parallelise Schweitzer’s approximation algo-

rithm [91]. What is interesting about this algorithm is that it allows control over the

decomposition of the problem space, depending on the number of processes avail-

able for the computation, so that each class can be assigned to a process—contrary

to decomposition of the problem space based on a reference class.

A simplified representation of the Schweitzer’s sequential approximation algo-

rithm, adapted from [77, page 361], is given below:

~N← (N1, . . . ,Nr, . . . ,NR);
for r← 1 to R do

for q← 1 to Q do
ne

q,r(~N)←Nr/Kr;
end for

end for
repeat

for r← 1 to R do
for q← 1 to Q do

nq,r(~N)← ne
q,r(~N);

end for
end for
for r← 1 to R do

for q← 1 to Q do

ni(~N−~1r)← [Nr −1]nq,r(~N)/Nr+
∑R

t=1∧t6=r nq,t(~N);

if delay queue then
R

′
q,r(~N)←Dq,r;

else
R

′
q,r(~N)←Dq,r[1+nq(~N−~1r)];

end if
end for
Xr(~N)←Nr/

∑K
i=1R

′
i,r(

~N)

end for
for r← 1 to R do

for q← 1 to Q do
ne

q,r(~N)← Xr(~N)R
′
q,r(~N);

end for
end for

until maxq,r|[n
e
q,r(~N)−nq,r(~N)]/ne

q,r(~N)| < ε

133

evaluation

In the above algorithm, nq,r(~N) and ne
q,r(~N) respectively represent the current

and estimated queue lengths for queue q and class r with load intensity vector ~N.

Dq,r denotes class r demands on queue q, and R
′
q,r(~N) denotes class r residence

time on queue q for the load intensity vector ~N. Finally, Xr represents the class r

throughput, ε represents the relative error tolerance, and Q, the number of queues.

Kr gives the number of visitations of the rth queue.

As we can see, the above algorithm can be parallelised by allocating each class

to one of the processes. All the computations, except for the two boxed ones, can

be performed simultaneously. The two boxed computations are: (1) summation of

remote queue lengths, and (2) determination of the global maximum relative error,

which ensures that all the processes terminate after executing the same number of

iterations. The parallelised algorithm executed by a process is as follows:
~N← (N1, . . . ,Nr, . . . ,NR);
r← process_rank;
for q← 1 to Q do

ne
q,r(~N)←Nr/Kr;

end for
repeat

for q← 1 to Q do
nq,r(~N)← ne

q,r(~N);
end for
for q← 1 to Q do

ni(~N−~1r)← [Nr −1]nq,r(~N)/Nr+
∑R

t=1∧t6=r nq,t(~N);

if delay queue then
R

′
q,r(~N)←Dq,r;

else
R

′
q,r(~N)←Dq,r[1+nq(~N−~1r)];

end if
end for
Xr(~N)←Nr/

∑K
i=1R

′
i,r(

~N)

for q← 1 to Q do
ne

q,r(~N)← Xr(~N)R
′
q,r(~N);

end for
until maxq,r|[n

e
q,r(~N)−nq,r(~N)]/ne

q,r(~N)| < ε

If we focus on the communications only, we can observe the communication

pattern shown in Figure 6.1. Every iteration consists of queue length summation

(first box), and maximum relative error determination (second box).

In addition to providing programmer control over the number of iterations, a set

of classes can be allocated to a process, depending on the number of processes that

are available for the computation. When the problem space contains a large number

134

evaluation

Maximum remote error

Broadcast my maximum error

Sum of remote queue lengths

Broadcast my queue length

Process

Ti
m

e

Figure 6.1: Communication pattern manifested by the parallelised mean value analysis al-
gorithm, based on Schweitzer’s sequential approximation algorithm.

of classes with large populations, each process can compute the local values for

a class—simultaneously—when other processes are computing theirs. Compared

to the pipeline parallelisation used by Gennaro and King, this algorithm is more

efficient because all the processes can start, execute, and exit simultaneously. The

other advantage is that each class can be allocated to a process, which does not

happen in the pipeline approach because the problem space decomposition is based

on the reference class population.

We shall now turn our attention to the implementation. Two approaches for

implementing the above algorithm are discussed. The first one concerns implemen-

tations with mpi collective communications, the second with β-channels. To make

the discussions both clearer and concise, we show in Figure 6.2 the common macros

and variables that are used in all of the following implementations.

In Figure 6.1, we can see that the communication domains overlap. For ex-

ample, the broadcast of the queue length on one process overlaps with the sum

reductions on other processes. In the mpi implementation we must decompose this

overlap, which presents us with a choice of three possible implementations using: (1)

MPI_Bcast(), (2) MPI_Reduce(), and (3) MPI_Alltoall(). In fact, a mixture of these three

collective communications can be adopted for the two separate communication pat-

terns, as they both manifest the same data flow pattern. We shall now discuss these

implementations.

135

evaluation

1 #define val(V,X,Y) V[X ∗ nqueue + Y]
#define ptr(V,X,Y) &V[X ∗ nqueue + Y]

3 int nclass; /∗ Number of classes. ∗/
int nqueue; /∗ Number of queues. ∗/

5 float epsilon := 0.000005; /∗ Relative error tolerance. ∗/
int ∗qtype; /∗ Queue types. ∗/

7 float ∗load vect; /∗ Load intensity vector. ∗/
float ∗visit vect; /∗ Queue visitation vector. ∗/

9 float ∗throughput; /∗ Class throughput. ∗/
float ∗serv demand; /∗ Service demand. ∗/

11 float ∗qlen est; /∗ Queue length estimate. ∗/
float ∗qlen; /∗ Current queue length estimate. ∗/

13 float ∗res time; /∗ Residence times. ∗/

Figure 6.2: Common macros and variables used in the implementation of the parallelised
mean value analysis algorithm. The first two macros are used to access individ-
ual elements in a one-dimensional representation of a two-dimensional array:
the first expands to a variable, the second to a variable pointer.

Implementation with MPI_Bcast()

The implementation of the mean value analysis algorithm with the collective op-

eration MPI_Bcast() is shown in Figure 6.3. At lines 13–17, we calculate the sum-

mation of all the remote queue lengths. As we can see, MPI_Bcast() is invoked nclass

times, each representing a queue length broadcast from the current root. After every

MPI_Bcast() invocation, the queue length received from the current broadcast root is

added to the existing value of sum_qlens. The predicate (k 6= i) ensures that only the

remote queue lengths are added (when the process is the root of the broadcast, its

queue length should be ignored).

The termination condition is checked with isdone_bcast(). In this function, we

perform an iterative broadcast, as above. However, instead of performing summa-

tion, we determine the maximum relative error (line 38–42). The parameters, i and

size, respectively represent the rank of the calling process, and the total number of

processes participating in the computation (equals the number of classes nclass, in

this case).

Implementation with MPI_Reduce()

The implementation of the mean value analysis algorithm with the collective op-

eration MPI_Reduce() is shown in Figure 6.4. Most of the implementation details

remain the same, except for the summation of queue lengths, and maximum rel-

ative error determination. At lines 15–18, we perform the summation. We use

MPI_Reduce() with the summation operator MPI_SUM. As this summation also in-

136

evaluation

1 void mva bcast (void) {
int i, j, k;

3 float temp, one less; /∗ Queue length with one less class r request. ∗/
float sum qlens; /∗ Sum of the queue lengths excluding the current class. ∗/

5 float sum resis; /∗ Sum of the residence times for the current class. ∗/
MPI Comm rank (MPI COMM WORLD, &i);

7 for (j := 0; j < nqueue; j++) /∗ Estimate queue lengths. ∗/
if (val(serv demand,i,j) > 0) val(qlen est,i,j) := (float)load vect[i]/visit vect[i];

9 /∗ Parallel execution on each process. ∗/
do { for (j := 0; j < nqueue; j++) val(qlen,i,j) := val(qlen est,i,j);

11 for (j := 0; j < nqueue; j++) {
/∗ Queue length with one less class i request. ∗/

13 for (k := 0, sum qlens := 0.0; k < nclass; k++) {
if (k = i) temp := val(qlen,i,j);

15 MPI Bcast (&temp, 1, MPI FLOAT, k, MPI COMM WORLD);
if (k 6= i) sum qlens += temp;

17 }
one less := (load vect[i] − 1)/load vect[i]∗val(qlen,i,j) + sum qlens;

19 /∗ Class i residence time at queue j. ∗/
if (qtype[j] = DELAY) val(res time,i,j) := val(serv demand,i,j);

21 else val(res time,i,j) := val(serv demand,i,j)∗(1.0 + one less);
}

23 for (j := 0, sum resis := 0.0; j < nqueue; j++) sum resis += val(res time,i,j);
throughput[i] := load vect[i]/sum resis; /∗ Throughput for class i. ∗/

25 /∗ Compute new estimates for the queue lengths. ∗/
for (j := 0; j < nqueue; j++) val(qlen est,i,j) := throughput[i]∗val(res time,i,j);

27 } while (¬ isdone bcast (i, nclass));
}

29 int isdone bcast (int i, int size) {
int j, k;

31 float temp, error := 0.0; /∗ Relative error. ∗/
float lerror := 0.0; /∗ Local maximum relative error. ∗/

33 float rerror; /∗ Maximum relative error from remote processes. ∗/
for (j := 0; j < nqueue; j++) {

35 error := fabs ((val(qlen est,i,j) − val(qlen,i,j))/val(qlen est,i,j));
if (error > lerror) lerror := error;

37 }
for (k := 0, rerror := 0.0; k < size; k++) {

39 if (k = i) temp := lerror;
MPI Bcast (&temp, 1, MPI FLOAT, k, MPI COMM WORLD);

41 if (k 6= i) if (temp > rerror) rerror := temp;
}

43 if (lerror > rerror) return (lerror < epsilon);
else return (rerror < epsilon);

45 }

Figure 6.3: Implementation of the mean value analysis algorithm with the collective opera-
tion MPI_Bcast(). The function isdone_bcast() checks the termination condition
by using MPI_Bcast(). Lines 13–17 and 38–42 show the interesting parts, which
are different from other implementations.

137

evaluation

1 void mva reduce (void) {
int i, j, k;

3 float one less; /∗ Queue length with one less class r request. ∗/
float sum qlens; /∗ Sum of the queue lengths excluding the current class. ∗/

5 float sum resis; /∗ Sum of the residence times for the current class. ∗/
MPI Comm rank (MPI COMM WORLD, &i);

7 /∗ Estimate queue lengths. ∗/
for (j := 0; j < nqueue; j++)

9 if (val(serv demand,i,j) > 0) val(qlen est,i,j) := (float)load vect[i]/visit vect[i];
/∗ Parallel execution on each process. ∗/

11 do {
for (j := 0; j < nqueue; j++) val(qlen,i,j) := val(qlen est,i,j);

13 for (j := 0; j < nqueue; j++) {
/∗ Queue length with one less class i request. ∗/

15 for (k := 0; k < nclass; k++)
MPI Reduce (ptr(qlen,i,j), &sum qlens, 1, MPI FLOAT, MPI SUM, k,

17 MPI COMM WORLD);
sum qlens −= val(qlen,i,j);

19 one less := (load vect[i] − 1)/load vect[i]∗val(qlen,i,j) + sum qlens;
/∗ Class i residence time at queue j. ∗/

21 if (qtype[j] = DELAY) val(res time,i,j) := val(serv demand,i,j);
else val(res time,i,j) := val(serv demand,i,j)∗(1.0 + one less);

23 }
/∗ Throughput for class i. ∗/

25 for (j := 0, sum resis := 0.0; j < nqueue; j++) sum resis += val(res time,i,j);
throughput[i] := load vect[i]/sum resis;

27 /∗ Compute new estimates for the queue lengths. ∗/
for (j := 0; j < nqueue; j++) val(qlen est,i,j) := throughput[i]∗val(res time,i,j);

29 } while (¬ isdone reduce (i, nclass));
}

31 int isdone reduce (int i, int size) {
int j, k;

33 float error := 0.0; /∗ Relative error. ∗/
float lerror := 0.0; /∗ Local maximum relative error. ∗/

35 float rerror; /∗ Maximum relative error from remote processes. ∗/
float temp;

37 for (j := 0; j < nqueue; j++) {
error := fabs ((val(qlen est,i,j) − val(qlen,i,j))/val(qlen est,i,j));

39 if (error > lerror) lerror := error;
}

41 for (k := 0; k < size; k++)
MPI Reduce(&lerror, &rerror, 1, MPI FLOAT, MPI MAX, k,

43 MPI COMM WORLD);
return (rerror < epsilon);

45 }

Figure 6.4: Implementation of the mean value analysis algorithm with the collective opera-
tion MPI_Reduce(). The function isdone_reduce() checks the termination condi-
tion by using MPI_Reduce(). Lines 15–18 and 41–43 show the interesting parts,
which are different from other implementations.

138

evaluation

1 void mva all to all (void) {
int i, j, k;

3 float ∗qlens, ∗lqlen, one less; /∗ Queue length with one less class r request. ∗/
float sum qlens; /∗ Sum of the queue lengths excluding the current class. ∗/

5 float sum resis; /∗ Sum of the residence times for the current class. ∗/
MPI Comm rank (MPI COMM WORLD, &i);

7 for (j := 0; j < nqueue; j++) /∗ Estimate queue lengths. ∗/
if (val(serv demand,i,j) > 0) val(qlen est,i,j) := (float)load vect[i]/visit vect[i];

9 /∗ Parallel execution on each process. ∗/
qlens := (float ∗) malloc (nclass∗sizeof(float));

11 lqlen := (float ∗) malloc(nclass∗sizeof(float));
do { for (j := 0; j < nqueue; j++) val(qlen,i,j) := val(qlen est,i,j);

13 for (j := 0; j < nqueue; j++) {
/∗ Queue length with one less class i request. ∗/

15 for (k := 0; k < nclass; k++) lqlen[k] := val(qlen,i,j);
MPI Alltoall (lqlen, 1, MPI FLOAT, qlens, 1, MPI FLOAT,

17 MPI COMM WORLD);
for (k := 0, sum qlens := 0.0; k < nclass; k++)

19 if (k 6= i) sum qlens += qlens[k];
one less := (load vect[i] − 1)/load vect[i]∗val(qlen,i,j) + sum qlens;

21 /∗ Class i residence time at queue j. ∗/
if (qtype[j] = DELAY) val(res time,i,j) := val(serv demand,i,j);

23 else val(res time,i,j) := val(serv demand,i,j)∗(1.0 + one less);
}

25 for (j := 0, sum resis := 0.0; j < nqueue; j++) sum resis += val(res time,i,j);
throughput[i] := load vect[i]/sum resis; /∗ Throughput for class i. ∗/

27 /∗ Compute new estimates for the queue lengths. ∗/
for (j := 0; j < nqueue; j++) val(qlen est,i,j) := throughput[i]∗val(res time,i,j);

29 } while (¬ isdone all to all (i, nclass)); free(qlens); free(lqlen);
}

31 int isdone all to all (int i, int size) {
int j, k;

33 float error := 0.0; /∗ Relative error. ∗/
float lerror := 0.0; /∗ Local maximum relative error. ∗/

35 float ∗temp, ∗rerrors; /∗ Relative errors from remote processes. ∗/
for (j := 0; j < nqueue; j++) {

37 error := fabs ((val(qlen est,i,j) − val(qlen,i,j))/val(qlen est,i,j));
if (error > lerror) lerror := error;

39 }
rerrors := (float ∗) malloc (size∗sizeof(float));

41 temp := (float ∗) malloc(size∗sizeof(float));
for (k := 0; k < nclass; k++) temp[k] := lerror;

43 MPI Alltoall (temp, 1, MPI FLOAT, rerrors, 1, MPI FLOAT, MPI COMM WORLD);
for (k := 1, lerror := rerrors[0]; k < nclass; k++)

45 if (rerrors[k] > lerror) lerror := rerrors[k];
free(rerrors); free(temp); return (lerror < epsilon);

47 }

Figure 6.5: Implementation of the mean value analysis algorithm with the collective opera-
tion MPI_Alltoall(). The function isdone_alltoall() checks the termination condi-
tion by using MPI_Alltoall(). Lines 15–19 and 40–46 show the interesting parts,
which are different from other implementations.

139

evaluation

cludes the local queue length, this is subtracted to give the correct value (line 18).

Note that MPI_Reduce() is invoked nclass times, each participating individually in

the summation at one of the nclass processes.

The termination condition is checked with isdone_reduce(). Similar to the sum-

mation of queue lengths, this function also uses the collective operation MPI_Reduce(),

however, the maximum value operator MPI_MAX is used instead of MPI_SUM (line 42–

43). As the calculated maximum incorporates the local maximum relative error, we

do not compare this value with the local value, contrary to what was done in the

case of the MPI_Bcast() implementation at line 43.

Implementation with MPI_Alltoall()

The implementation of the mean value analysis algorithm with the collective opera-

tion MPI_Alltoall() is shown in Figure 6.5. Again, most of the implementation details

remain the same, except for the calculation of the queue length summation, and

maximum relative error determination. At lines 15–19, we perform the summation

by using MPI_Alltoall(). Since this collective operation transfers data from any array

of values to all of the remote processes, while also receiving new values from the

remote processes, we allocate two arrays qlens and lqlen (line 10–11). The collec-

tive operation MPI_Alltoall() is invoked only once because when the call returns, qlens

is filled with all the values required for the summation (including the local queue

length set in lqlen). At lines 18–19, the summation is performed separately. Once

more, we ignore the local queue length with the predicate (k 6= i) (line 19).

The termination condition is checked with isdone_all_to_all(). Again, calculation

of the global maximum relative error is similar to that of the queue length summa-

tion; however, the only difference occurs during the determination of the maximum

value (lines 44–45), where we calculate the maximum value instead of calculating a

summation.

Implementation with β-channels

In this section we discuss implementation of the mean value analysis algorithm with

β-channels. Contrary to the above three implementations, only one is possible with

β-channels. This implementation, shown in Figure 6.6, is based on the use of lo-

calised patterns visible to each of the processes. We can observe from Figure 6.1

that there are three localised communication patterns: (1) broadcasting the local

queue length, or the local maximum relative error, to all the remote processes, (2)

sum reduction of all the queue lengths received from remote processes, and (3) de-

termination of the global maximum relative error.

140

evaluation

1 void mva bc (void) {
int i := bc rank, j;

3 float one less; /∗ Queue length with one less class r request. ∗/
float sum qlens; /∗ Sum of the queue lengths except for the current class. ∗/

5 float sum resis; /∗ Sum of the residence times for the current class. ∗/
bc chan t ∗src data, ∗src err, ∗sink;

7 for (j := 0; j < nqueue; j++) /∗ Estimate queue lengths. ∗/
if (val(serv demand,i,j) > 0) val(qlen est,i,j) := (float)load vect[i]/visit vect[i];

9 /∗ Create communication structures. ∗/
sink := bc sink create (bc plist xall, bc float, 10, BC ROLE REPLICATE);

11 src data := bc src create (bc plist xall, bc float, BC ROLE REDUCE SUM);
src err := bc src create (bc plist xall, bc float, BC ROLE REDUCE MAX);

13 /∗ Parallel execution on each process. ∗/
do { for (j := 0; j < nqueue; j++) val(qlen,i,j) := val(qlen est,i,j);

15 for (j := 0; j < nqueue; j++) {
/∗ Queue length with one less class i request. ∗/

17 bc put (sink, ptr(qlen,i,j), 1); bc get (src data, &sum qlens, 1);
one less := (load vect[i] − 1)/load vect[i]∗val(qlen,i,j) + sum qlens;

19 /∗ Class i residence time at queue j. ∗/
if (qtype[j] = DELAY) val(res time,i,j) := val(serv demand,i,j);

21 else val(res time,i,j) := val(serv demand,i,j)∗(1.0 + one less);
}

23 for (j := 0, sum resis := 0.0; j < nqueue; j++) sum resis += val(res time,i,j);
throughput[i] := load vect[i]/sum resis; /∗ Throughput for class i. ∗/

25 /∗ Compute new estimates for the queue lengths. ∗/
for (j := 0; j < nqueue; j++) val(qlen est,i,j) := throughput[i]∗val(res time,i,j);

27 } while (¬ isdone bc (src err, sink));
/∗ Destroy communication structure. ∗/

29 bc chan destroy (src data); bc chan destroy (src err); bc chan destroy (sink);
}

31 int isdone bc (bc chan t ∗src, bc chan t ∗sink) {
int i := bc rank, j;

33 float lerror := 0.0; /∗ Local maximum relative error. ∗/
float rerror; /∗ Maximum relative error from remote processes. ∗/

35 for (j := 0; j < nqueue; j++) {
rerror := fabs((val(qlen est,i,j) − val(qlen,i,j))/val(qlen est,i,j));

37 if (rerror > lerror) lerror := rerror;
}

39 bc put (sink, &lerror, 1); bc get (src, &rerror, 1);
if (lerror > rerror) return (lerror < epsilon);

41 else return (rerror < epsilon);
}

Figure 6.6: β-channel implementation of the mean value analysis algorithm. The commu-
nication structures created at lines 10–12 are used for communication of queue
lengths, and maximum relative errors (lines 17 and 40). While sending max-
imum relative error, the isdone_bc() uses the same β-channel used for sending
the queue length. However, it uses src_err while receiving the maximum ‘remote’
relative error. src_data is associated with the role BC_ROLE_REDUCE_SUM,
while src_err is associated with BC_ROLE_REDUCE_MAX. The sink β-channel
sink, on the other hand, is associated with BC_ROLE_REPLICATE.

141

evaluation

Based on the two-phases application development process (see Section 4.1), we

begin by defining the β-channels (lines 10–12) which correspond to the above three

communication patterns. For this, two source β-channels, src_data and src_err, are

created: each of them associated respectively with the roles BC_ROLE_REDUCE_SUM

and BC_ROLE_REDUCE_MAX. We only need one sink β-channel as it can be used

both for communicating the queue length, and the maximum relative error. This

sink β-channel is associated with the BC_ROLE_REPLICATE role. We use the in-built

process list, bc_plist_xall, to define the set of remote processes.

The three β-channels created in the communication structuring phase are then

used during the communication activation phase (lines 17 and 39). Once the termi-

nation condition is satisfied, the β-channels are destroyed before returning (line 29).

142

evaluation

Pr
op

er
ty

m
pi

ap
pr

oa
ch

β
-c

ha
nn

el
ap

pr
oa

ch
N

on
-a

m
bi

gu
it

y
A

m
bi

gu
ou

s:
T

hr
ee

im
pl

em
en

ta
ti

on
s

ar
e

po
ss

i-
bl

e.
If

w
e

us
e

di
ff

er
en

t
co

lle
ct

iv
e

co
m

m
un

ic
a-

ti
on

s
fo

r
qu

eu
e

le
ng

th
su

m
m

at
io

n
an

d
m

ax
i-

m
um

er
ro

r
de

te
rm

in
at

io
n,

th
er

e
ar

e
m

or
e

po
s-

si
bl

e
im

pl
em

en
ta

ti
on

s.

N
on

-a
m

bi
gu

ou
s:

O
nl

y
on

e
im

pl
em

en
ta

ti
on

is
po

ss
ib

le
.

Si
nc

e
th

e
ho

lis
ti

c
pa

tt
er

n
is

ab
st

ra
ct

ed
in

te
rm

s
of

th
e

lo
ca

lis
ed

pa
tt

er
ns

,a
nd

th
er

e
is

on
ly

on
e

w
ay

in
w

hi
ch

a
pr

oc
es

s
ca

n
re

pr
es

en
t

it
s

pa
tt

er
n,

th
e

ru
nt

im
e

co
m

po
si

ti
on

of
th

es
e

pa
tt

er
ns

al
so

re
pr

es
en

ts
on

ly
on

e
im

pl
em

en
ta

ti
on

of
th

e
ho

lis
ti

c
pa

tt
er

n.
Ex

pr
es

si
ve

ne
ss

N
ot

ex
pr

es
si

ve
:

T
he

pa
tt

er
ns

ar
e

no
t

ea
si

ly
ex

-
pr

es
si

bl
e

(o
ne

of
th

e
re

as
on

s
fo

r
th

e
am

bi
gu

-
it

y)
.

A
dj

us
tm

en
ts

ha
ve

to
be

m
ad

e
so

th
at

th
e

pa
tt

er
ns

fit
th

e
av

ai
la

bl
e

in
te

rf
ac

es
.

A
ft

er
im

-
pl

em
en

ta
ti

on
,

in
fo

rm
at

io
n

ab
ou

t
th

e
pa

tt
er

n
is

lo
st

.

Ex
pr

es
si

ve
:

T
he

‘r
ol

es
’

de
sc

ri
be

ex
ac

tl
y

w
ha

t
th

e
co

m
m

un
ic

at
io

n
pa

tt
er

ns
m

ea
n.

N
o

in
fo

rm
at

io
n

is
lo

st
du

ri
ng

th
e

im
pl

em
en

ta
ti

on
.

A
br

ie
fs

cr
ut

in
y

of
th

e
β

-c
ha

nn
el

cr
ea

ti
on

co
de

se
gm

en
ts

au
to

m
at

i-
ca

lly
re

ve
al

s
th

e
co

m
m

un
ic

at
io

n
pa

tt
er

ns
in

vo
lv

ed
.

U
ni

fo
rm

it
y

N
ot

un
ifo

rm
:I

fw
e

co
m

pa
re

th
e

th
re

e
in

te
rf

ac
es

M
P

I_
B

ca
st

()
,

M
P

I_
R

ed
uc

e(
),

an
d

M
P

I_
A

llt
oa

ll(
)

in
th

e
pr

ev
io

us
se

ct
io

ns
,

w
e

ca
n

se
e

th
e

no
n-

un
ifo

rm
it

y
in

th
e

fu
nc

ti
on

pr
ot

ot
yp

es
—

th
e

va
ry

in
g

nu
m

be
r

of
pa

ra
m

et
er

s,
an

d
th

e
pa

ra
m

e-
te

r
da

ta
ty

pe
s.

U
ni

fo
rm

:
C

re
at

io
n

of
th

e
β

-c
ha

nn
el

s
us

es
ei

th
er

of
th

e
tw

o
in

te
r-

fa
ce

s
bc

_s
rc

_c
re

at
e(

)
or

bc
_s

in
k_

cr
ea

te
()

.
T

he
pa

tt
er

n
is

on
ly

de
fin

ed
by

th
e

di
ff

er
en

tr
ol

es
pa

ss
ed

to
th

es
e

fu
nc

ti
on

s.
D

ur
in

g
ac

tiv
at

io
ns

,
no

m
at

te
r

w
hi

ch
pa

tt
er

n
is

as
so

ci
at

ed
w

it
h

th
e

β
-c

ha
nn

el
,t

he
fo

l-
lo

w
in

g
in

te
rf

ac
es

bc
_p

ut
()

(o
rb

c_
co

m
m

it(
))

,a
nd

bc
_g

et
()

ar
e

re
qu

ir
ed

.

Ex
te

ns
ib

ili
ty

N
ot

ea
si

ly
ex

te
ns

ib
le

:
A

lt
ho

ug
h

ne
w

co
lle

ct
iv

e
co

m
m

un
ic

at
io

n
in

te
rf

ac
es

ca
n

be
in

tr
od

uc
ed

to
ex

pr
es

s
a

co
m

m
un

ic
at

io
n

pa
tt

er
n,

m
an

ag
em

en
t

an
d

us
ag

e
of

th
e

in
te

rf
ac

es
be

co
m

es
co

m
pl

i-
ca

te
d

be
ca

us
e

of
th

e
no

n-
un

ifo
rm

it
y.

Ea
si

ly
ex

te
ns

ib
le

:
By

de
fa

ul
t,

m
os

t
of

th
e

pa
tt

er
ns

ca
n

be
ea

si
ly

re
al

is
ed

by
co

m
bi

ni
ng

th
e

al
re

ad
y

ex
is

ti
ng

‘r
ol

es
’.

W
he

n
ne

w
pa

t-
te

rn
s

ar
e

ne
ce

ss
ar

y,
al

l
w

e
ne

ed
to

do
is

in
tr

od
uc

e
a

‘r
ol

e’
w

hi
ch

re
pr

es
en

ts
th

e
pa

tt
er

n.
T

hi
s

ne
w

ad
di

ti
on

ca
n

ag
ai

n
be

co
m

bi
ne

d
w

it
h

al
re

ad
y

ex
is

ti
ng

ro
le

s,
th

er
ef

or
e

sc
al

in
g

th
e

ad
va

nt
ag

e
of

ev
er

y
ne

w
ad

di
ti

on
.F

ur
th

er
m

or
e,

th
e

β
-c

ha
nn

el
cr

ea
ti

on
,a

ct
iv

at
io

n,
an

d
de

st
ru

ct
io

n
in

te
rf

ac
es

ne
ed

no
tb

e
ch

an
ge

d.

T
ab

le
6.

1:
C

om
pa

ri
so

n
be

tw
ee

n
th

e
m

p
i

ap
pr

oa
ch

an
d

th
e

β
-c

ha
nn

el
ap

pr
oa

ch
in

te
rm

so
fn

on
-a

m
bi

gu
it

y,
ex

pr
es

si
ve

ne
ss

,u
ni

fo
rm

it
y,

an
d

ex
te

ns
ib

ili
ty

.

143

evaluation

6.1.1 Discussion on the qualitative properties

In Table 6.1 we summarise the qualitative evaluation of the β-channel approach, as

compared to the mpi approach, based on programmability—non-ambiguity, expres-

siveness, uniformity, and extensibility. We shall now discuss these properties with

examples.

Non-ambiguity. While discussing implementation of the mean value analysis

(see page 135), we showed in Figure 6.1 the communication pattern manifested by

the algorithm. From this algorithm, we could derive three different mpi implemen-

tations based on different combinations of collective communications. This ambi-

guity introduces complexity to the already complicated programming exercise by

subjecting the programmer to a dilemma of choice (see page 4). In addition to the

qualitative effects, the ambiguity could result in a performance portability problem

(see page 4), which we demonstrate experimentally in Section 6.2.3. On the other

hand, with the β-channel approach, we could implement the given communication

pattern uniquely, as the process specific patterns can be mapped directly with the

available roles (see lines 10–12 in Figure 6.6).

Expressiveness. Subsequent to the above discussion on non-ambiguity, we can

observe that the mpi implementations require adjustment of the communication pat-

tern to fit the interfaces. For example, at line 15 in Figure 6.3, in order to use the

collective communication MPI_Bcast(), we had to sacrifice information (see page 5)

on the sum reduction pattern, which could have been realised with MPI_Reduce().

Similarly, at lines 16–17 in Figure 6.4, to realise the sum reduction pattern using

MPI_Reduce(), we had to sacrifice the information on the broadcast. We can make

similar observations on the loss of structural information in the implementation

with MPI_Alltoall(). In the β-channel implementation, we do not face this problem,

as the communication patterns displayed by the algorithm (see Figure 6.1) can be

expressed immediately, without sacrificing structural information (see lines 10–12

in Figure 6.6). Since the patterns are specified using β-channel roles, any mpi imple-

mentation of a given algorithm can be converted to a β-channel implementation, by

analysing the communication pattern; whereas, converting a β-channel implemen-

tation to an mpi implementation would require adaptation of the communication

pattern to fit the mpi interfaces.

Uniformity. As discussed in Section 1.2, the aim of the β-channel approach

is to provide programming interfaces that are uniform in terms of the function

prototype so that pattern integration does not require changes in the interfaces

themselves. From the mpi implementations shown in Figure 6.3, Figure 6.4 and

Figure 6.5, the interfaces change with the chosen communications pattern. These

144

evaluation

patterns also have different function prototypes. For example, the MPI_Bcast() in-

terface requires five parameters, while the MPI_Reduce() and MPI_Alltoall() interfaces

both require seven parameters; with different parameter data types. These makes

the mpi interfaces nonuniform, as compared to the β-channel interfaces where the

patterns are encapsulated within the β-channels, leaving the activation interfaces,

bc_put() and bc_get(), independent of the patterns. The uniformity of interfaces is

relevant to the extension of the programming model which we discuss in the follow-

ing paragraph.

Extensibility. In the previous paragraph, we discussed the mpi and β-channel

interfaces in terms of uniformity, and we will now discuss how uniformity affects ex-

tensibility. In order to extend the programming interfaces with new communication

patterns, the mpi approach requires the introduction of new interfaces. This is be-

cause communication patterns are associated with the interface name. By introduc-

ing new patterns, we also introduce new interfaces, which, as a result of the nonuni-

formity of mpi, results in the expansion of the interface set. An application pro-

grammer, using the mpi approach, is therefore required to acknowledge these new

interfaces in addition to acknowledging the new patterns. With the β-channel ap-

proach, however, introducing a new pattern only means introducing a new role (as

shown on page 69), without changing the activation interfaces, bc_put() and bc_get(),

or the communication structuring interfaces, bc_src_create() and bc_sink_create().

6.2 Quantitative evaluation

In this section, we evaluate the β-channel interfaces quantitatively, through experi-

mentation. In Section 6.2.1, we compare the performances of point-to-point com-

munication interfaces. In Section 6.2.2, we compare the performances of collective

communication interfaces.

The setup for the experiments is a 64 node beowulf cluster consisting of Dell

OptiPlex gx240 workstations, each with a 1.8-GHz Pentium 4processor with 256mb

pc133 sdram, connected through two 100Mb Ethernet networks.

The environment is based on the linux operating system (Fedora core 3 release),

version 2.6.12-1.1372_FC3. We use gcc, version 3.4.4 20050721 for compilation. The

runtime system for the β-channel programming model is implemented with native

tcp/ip sockets [94]. The multi-threading is done with posix threads [25]. For the

mpi implementation, we choose lam-mpi [24], version 7.1.1.

145

evaluation

sending two
data units

wait before sending
next data unit

(a) (b)

λ

λ

receiversender sender receiver

Figure 6.7: Evaluation method for interface latency, represented by λ. Each • represents a
data unit that has been sent, and each ◦ represents a data unit that has been
received. (a) Evaluation of sender latency: the feint arrow represents acknowl-
edgement message. This ensures that the latency values evaluated in each of the
iterations are statistically independent. (b) Evaluation of receiver latency: the
evaluation takes place in the second receive invocation, while the first receive
invocation ensures that messages are ready when the second receive is invoked.
Note that the sender sends two data units with a single interface call, and this
ensures that the second receive will not be delayed because of data unavailability
on the sender.

6.2.1 Point-to-point performance

In this section we discuss the experimental results for the point-to-point commu-

nication interfaces. The evaluation is performed as shown in Figure 6.7, where λ

represents the interface latency. We classify the latencies into two types: sender

latency, and receiver latency.

Sender latency. The sender latency is defined as the time (in time units) which

a sender process spends when a message is being sent, or put into an auxilliary

location (for example, a message buffer) to be retrieved later by the runtime system.

For each message size, n (= 1001) latency evaluations are performed within the

loop. The statistical median of the n latencies is then chosen as the latency for that

message size.

During an iteration, the sender process sends a message, and waits for an ac-

knowledgement message from the receiver (shown with feint arrow in Figure 6.7.a),

before continuation. This acknowledgement message ensures that the n latencies

resulting from the evaluation loop are statistically independent. For blocking send,

this may not be necessary if the receiver loop guarantees that messages are accepted

as soon as they are available (for example, a dedicated receiver). For buffered mode

communications, however, we must ensure that the sender process is not sending

146

evaluation

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_put
bc_commit
MPI_Send
MPI_Isend

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

20 22 24 26 28 210 212 214

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_put
bc_commit
MPI_Send
MPI_Isend

Figure 6.8: Comparison of sender latencies for bc_put(), bc_commit(), MPI_Send(), and
MPI_Isend(). (a) Sender latency in milliseconds, against message size in bytes.
(b) Zoom of (a) showing latency for smaller messages (6 215).

more messages than the receiver can accept, filling up the buffer too soon—in such

cases, the statistical independence is not preserved because the sender process will

have to wait for existing messages to be removed from the buffer before sending a

new message for the next evaluation.

In Figure 6.8, we compare the latencies for bc_put(), which incur intermedi-

ate memory copy; bc_commit(), which does not incur intermediate memory copy;

MPI_Send(), blocking send; and MPI_Isend(), non-blocking send. Contrary to the

popular belief that message buffering is a serious performance bottleneck, the eval-

uation of the sender latency shows that it is not always the case. Compared to the

performance of MPI_Send(), the performance of bc_put() displays a remarkable im-

provement. This improvement affects the overall performance of the application

program using these interfaces because the sender process does not have to wait for

the receiver processes. Given that there is a large set of tasks, faster processes can

147

evaluation

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_commit
MPI_Isend

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

20 22 24 26 28 210 212 214

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_commit
MPI_Isend

Figure 6.9: Comparison of sender latencies for asynchronous interfaces bc_commit() and
MPI_Isend().(a) Sender latency in milliseconds, against message size in bytes. (b)
Zoom of (a) showing latency for smaller messages (6 215).

therefore continue with further computations—greedily—without being impeded

by the slower processes.

If we compare the asynchronous mode communication interfaces only, as shown

in Figure 6.9, we can observe that there is a significant difference between perfor-

mances of the two interfaces. Given that bc_commit() does not require a program to

check if message transfers are successful, this significant performance improvement

suggests that the commit based interface is a better option for send-and-forget type

communications.

Further observation reveals that, although MPI_Isend() is supposed to return im-

mediately after making a service request from the mpi runtime system, in the cur-

rent mpi implementation, messages of size 6 216 are buffered. The plot, on the other

hand, also shows that the latency for the bc_commit() interface is almost independent

of the message size; and is smaller than the MPI_Isend() latency. This proves that the

148

evaluation

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_get
MPI_Recv

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20 22 24 26 28 210 212 214

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_get
MPI_Recv

Figure 6.10: Comparison of receiver latencies for bc_get() and MPI_Recv(). (a) Receiver la-
tency in milliseconds, against message size in bytes. (b) Zoom of (a) showing
latency for smaller messages (6 215).

algorithms for message buffering without intermediate memory copy, suggested in

Section 5.5.1, are a valid, and more efficient alternative to those of the MPI_Isend()

interface. This reinforces our argument that application programs where sender

processes do not reuse sent data can achieve a significant performance boost by

adopting a commit based interface.

Receiver latency. The receiver latency is defined as the time (in time units)

spent by a receiver process on receiving messages from a remote process (or pro-

cesses in the case of collective communications). If receiving a message requires

sending a data transfer request to the remote processes, the waiting time incurred

in such situations is also included in the evaluated latency.

The receiver latency is evaluated as shown in Figure 6.7.b. λ represents the

receiver latency being evaluated. Similar to the evaluation of sender latency, for

149

evaluation

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_putget*
bc_putget

MPI_Sendrecv

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20 22 24 26 28 210 212 214

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc_putget*
bc_putget

MPI_Sendrecv

Figure 6.11: Lock-step exchange represents communications where data are exchanged be-
tween two processes. mpi provides the interface MPI_Sendrecv() for performing
such communications. We compare this interface to the β-channel interfaces.
The difference between the β-channel interfaces is that the put_get uses bc_put()

while commit_get uses bc_commit() for sending messages.

each message size, n (= 1001) latency evaluations are performed within a loop. The

statistical median of the n latencies is then chosen as the value of the receiver latency

for that message size.

A sender process sends two consecutive, unique messages, of which the second

message is used for the evaluation. Receiving the first message ensures that the sec-

ond message to be received for the evaluation is available when the receive interface

is invoked. The reason for this setup is that receiver latency should not be affected by

the waiting time that might be incurred if the messages were not ready for retrieval.

Such a situation might occur if, for example, the receiver process invoked the receive

interface well before the messages were sent by the sender process. By using the first

message, statistical independence is hence preserved because the sender process can

150

evaluation

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

20 22 24 26 28 210 212

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

Figure 6.12: Performance of the data scattering interfaces, MPI_Scatter() and bc_put(). (a)
Sender latency in milliseconds, against message size in bytes. (b) Zoom of (a)
showing latency for smaller messages (6 215).

always continue sending messages without having to wait for the receiver process,

satisfying the condition for data availability in all of the following iterations.

As one might expect, the performance for bc_get(), as shown in Figure 6.10, is

slightly inferior to that of MPI_Recv() for small messages. The reason for this infe-

riority is the asynchronous rendezvous communication protocol (see Section 5.4.3)

that is used by the β-channel runtime system. As the protocol requires a service

request to be sent to the remote process before receiving a message, this contributes

to the additional communication costs. It should be noted, however, that the per-

formance improves when larger messages are being received. The reason being that,

as the size of the message increases, the communication costs due to the service re-

quest become negligible compared to the size of the actual message that is received.

This compensates for the extra communication costs because in real applications,

messages are not usually communicated very often; and if communicated, the com-

151

evaluation

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

(b)

 0

 5

 10

 15

 20

 25

 30

20 22 24 26 28 210 212

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

Figure 6.13: Performance of the data receiving interfaces, MPI_Scatter() and bc_get(), during
contention. (a) Receiver latency in milliseconds, against message size in bytes.
(b) Zoom of (a) showing latency for smaller messages (6 215).

munications transfer large data sets. Further to this argument, we have noted at the

end of Section 5.4.3 several conditions that will allow improvement of the β-channel

runtime implementation, so that the cost for communicating a service request can

be reduced to a satisfactory low value.

Lock-step exchange. Lock-step exchange represents communications where

data are exchanged between two processes. They often appear in parallel algo-

rithms, as we have seen in the odd-even transposition sorting algorithm, and the

fast Fourier transform. While performing such communications with the interface

pair, MPI_Send() and MPI_Recv(), there is a possibility of deadlocks if the interfaces

are not ordered properly [93, page 33]. It is often necessary to use non-blocking in-

terfaces, such as MPI_Isend(). To simplify such concerns, the mpi standard provides

the interface MPI_Sendrecv() for performing such communications.

152

evaluation

(a)

 0

 500

 1000

 1500

 2000

 2500

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

20 22 24 26 28 210 212

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

Figure 6.14: Performance of the data broadcasting interfaces, MPI_Bcast() and bc_put(). (a)
Sender latency in milliseconds, against message size in bytes. (b) Zoom of (a)
showing latency for smaller messages (6 215).

We shall now compare the performance of MPI_Sendrecv() to that of the β-channel

interface pairs, bc_put() and bc_get(), which uses the memory copy version; and

bc_commit() and bc_get() which uses the commit based interfaces. Also, since the

β-channel runtime system uses message buffers as an integral part of the communi-

cations, both processes can invoke bc_put() and bc_get() in the same order without

causing a deadlock. The evaluated performance results are shown in Figure 6.11.

We can observe that the performance of the β-channel interfaces perform slightly

better than the mpi interface, MPI_Sendrecv(). We attribute this improvement to the

simultaneous execution of the bc_put() and bc_get() interfaces on both processes. As

for the two β-channel implementations, there is very little performance difference.

We believe that this is because the time taken to receive data with a bc_get() decides

the final result of the total latency.

153

evaluation

(a)

 0

 200

 400

 600

 800

 1000

 1200

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

20 22 24 26 28 210 212

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

Figure 6.15: Performance of the data receiving interfaces, MPI_Bcast() and bc_get(), during
contention. (a) Receiver latency in milliseconds, against message size in bytes.
(b) Zoom of (a) showing latency for smaller messages (6 215).

6.2.2 Collective performance

We shall now turn our attention to the performance of collective communication

interfaces. Every collective communication interface is evaluated on 5, 10, 15 and

20 nodes of the beowulf cluster.

Scattering of data. The performances of the scattering interfaces are evalu-

ated both on the sender and the receivers. The performance of the sender interface

is shown in Figure 6.12, and the performance of the receiver interface ‘during con-

tention’ is shown in Figure 6.13. Although both performance results are the same

for the mpi interfaces (as a result of the barrier synchronisations), the results are not

the same for the β-channel interfaces because there are no barrier synchronisations

involved—each of the sender and receiver interfaces is invoked asynchronously.

As we can observe in Figure 6.12, the β-channel interface for scattering data

154

evaluation

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

(b)

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

20 22 24 26 28 210 212

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

Figure 6.16: Performance of the data sending interfaces, MPI_Gather() and bc_put(). (a)
Sender latency in milliseconds, against message size in bytes. (b) Zoom of
(a) showing latency for smaller messages (6 215).

from a root process performs better than the mpi interface. There is a difference

of about 2 seconds for large data sets (220 bytes), and about 500 microseconds for

smaller data sets (< 29).

During contention, as we can observe in Figure 6.13, the β-channel interface for

receiving data from the root process does not perform better than the mpi interface.

There is difference of about 1.5 seconds for large data sets (220 bytes), and about 250

microseconds for smaller data sets (< 29). This is because, when all the processes are

competing for data at the root process, all the processes other than the one currently

receiving data are waiting for the root process to respond with the necessary data.

However, when there is no contention for data on the root process, the perfor-

mance of the β-channel receiver interface, bc_get(), remains the same, as shown in

Figure 6.10. This means a saving of about 1.91 seconds for large data sets (220

bytes).

155

evaluation

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

20 25 210 215 220

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

20 22 24 26 28 210 212

Ti
m

e
(m

ill
is

ec
on

ds
)

Message size (bytes)

bc (3)
bc (5)
bc (7)
bc (9)

mpi (3)
mpi (5)
mpi (7)
mpi (9)

Figure 6.17: Performance of the data receiving interfaces, MPI_Gather() and bc_get(). (a) Re-
ceiver latency in milliseconds, against message size in bytes. (b) Zoom of (a)
showing latency for smaller messages (6 215).

Data broadcast. The performances of the broadcasting interfaces are evalu-

ated both on the sender and the receivers. The performance of the sender interface

is shown in Figure 6.14, and the performance of the receiver interface ‘during con-

tention’ is shown in Figure 6.15. Although both performance results are the same for

the mpi interfaces (as a result of the barrier synchronisations), the results are again

not the same for the β-channel interfaces because there are no barrier synchronisa-

tions involved—each of the sender and receiver interfaces is invoked asynchronously.

As we can observe in Figure 6.14, the β-channel interface for broadcasting data

from a root process performs better than the mpi interface. There is a difference of

about 275 milliseconds for large data sets (220 bytes), and about 100 microseconds

for smaller data sets (< 29).

During contention, as we can observe in Figure 6.15, the β-channel interface

for receiving data from the root process does not perform as well as the mpi inter-

156

evaluation

face. There is a difference of about 2.8 seconds for large data sets (220 bytes), and

about 250 microseconds for smaller data sets (< 29). This is because, when all the

processes are competing for data at the root process, all the processes other than

the one currently receiving data are waiting for the root process to respond with the

necessary data, as was the case with scattering of data.

However, when there is no contention for data on the root process, the perfor-

mance of the β-channel receiver interface, bc_get(), remains the same, as shown in

Figure 6.10. This means a saving of about 242 milliseconds for large data sets.

Gathering of data. The performances of the data gathering interfaces are eval-

uated both on the senders and the receiver. The performance of the sender interfaces

is shown in Figure 6.16, and the performance of the receiver interface is shown in

Figure 6.17. Although, both performance results are the same for the mpi interfaces

(as a result of the barrier synchronisations), the results are again not the same for the

β-channel interfaces because there are no barrier synchronisations involved—each

of the sender and receiver interfaces is invoked asynchronously.

As we can observe in Figure 6.16, the β-channel interface for sending data to

the root process performs better than the mpi interface. There is a saving of about

1.7 seconds for large data sets (> 29 bytes), and about 7 microseconds for smaller

data sets (< 29 bytes). The performance of the receiving interface, on the other

hand, remains comparable to that of the mpi, as shown in Figure 6.17. The case of

data contention on the sender does not apply in this case because all of the sender

processes only perform a point-to-point communication.

Discussion. From the experimental results, we can see that the latencies of the

β-channel interfaces for sending messages are relatively smaller than those of the

mpi interfaces, and significantly smaller than the mpi interfaces for larger messages

(see Figure 6.8). We see an improvement of about 87.5% for large messages (215

bytes). With interface optimisations for send-and-forget type communications, the

improvement is more significant, since the experimental results show that the sender

latency is almost independent of the message sizes (see Figure 6.9).

As discussed previously (see Section 5.4.3), the asynchronous rendezvous com-

munication protocol is receiver initiated; hence, the latencies of the interfaces for

receiving data include the latency for sending the data transfer request. From the

experimental results, we can observe that this is reflected for smaller messages.

However, when the messages being received are large, the overhead for commu-

nicating the data transfer request becomes negligible (see Figure 6.10), therefore the

performance almost equals that of mpi interfaces. Since receiver initiated communi-

cations increase the asynchrony between the communicating processes, we believe

157

evaluation

that the degradation demonstrated by the receiver latency can be tolerated for small

messages. As we can observe in the performance of lock-step exchange communi-

cations, the degradation resulting from the communication of the data transfer re-

quest is compensated for by the increase in asynchrony between the communicating

processes.

For the collective communications, the performance of the β-channel interfaces

remains the same when there is no contention for data among multiple processes.

This means that, because of the asynchronous rendezvous communication protocol,

each process can be treated independent of the other processes as long as they do

not initiate communications at the same time. For situations where multiple pro-

cesses are contending for data from a sender process, there is some degradation in

performance among the contending processes since only one data serving thread on

the sender process can serve a receiver process.

When comparing performance, we should account for the fact that the mpi im-

plementation being used is a mature and portable system. Since the current imple-

mentation of the β-channel runtime system is a prototype, we should account for

the features and overheads incorporated, or excluded, in either system. The perfor-

mance results should therefore be considered as guidelines for further improvements

to the β-channel runtime system.

6.2.3 Performance of the mean value analysis algorithm

In this section, we provide a macro-benchmark. We compare performances of the

three mpi implementations of the mean value analysis, to that of the β-channel im-

plementation (see Section 6.1). The performance results are shown in Figure 6.18.

Each of the four implementations of the mean value analysis algorithm is ex-

ecuted on 10 processes. The queueing network to be solved is initialised with 10

classes, so that each class can be assigned to a separate process. We perform five

experiments by changing the class population from 64 to 1024, increasing the popu-

lation size by two folds. As we can see, the performance of the β-channel implemen-

tation surpasses that of the two mpi implementations based on the collective oper-

ations, MPI_Bcast() and MPI_Reduce(). However, the performance of the β-channel

implementation remains largely comparable to that of the MPI_Alltoall() implemen-

tation. The significant difference in the performance of the implementations using

MPI_Bcast() and MPI_Reduce() as compared to the MPI_Alltoall() and the β-channel

implementations is mainly due to the multiple barrier synchronisations that are re-

quired in the former two implementations.

158

evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

102451225612864

Ti
m

e
(s

ec
on

ds
)

Class population

bc_put/bc_get
MPI_Bcast

MPI_Reduce
MPI_Alltoall

Figure 6.18: Performance comparisons for the mean value analysis algorithm implemen-
tation. Four different implementations based on the interfaces, MPI_Bcast(),
MPI_Reduce(), MPI_Alltoall(), and bc_put()/bc_get(), are compared. The graph
shows the execution time (in seconds) against the class population for a 10 class
queueing network, when executed on 10 processes (with each class assigned to
a different process). We vary the population size four times from 64 to 1024.

6.3 Summary

In this chapter, we have evaluated the β-channel programming model both qualita-

tively and quantitatively. We have discussed the qualitative advantages by analysing

the parallelisation and implementation of Schwitzer’s approximation based mean

value analysis algorithm (see Section 6.1). We saw that three implementations were

possible when mpi collective operations were used, as compared to a single imple-

mentation with the β-channel interfaces (see Section 6.1.1). We also saw that it

was simpler to express the communication patterns when β-channels were used,

instead of attempting to fit the communication patterns into the set of available

mpi interfaces. We have compared these four implementations on a beowulf clus-

ter and observed that the β-channel programming model indeed performed better

than two of the above implementations, while remaining close in performance level

to the other (see Figure 6.18). We have also provided performance comparisons for

the point-to-point and collective communication interfaces, and noted that appli-

cation programmers can take advantage of the asynchronous interfaces provided

by the β-channel interfaces, instead of utilising mpi collective operations which of-

ten require barrier synchronisation including all of the processes in the group (see

Section 6.2.3).

159

c h a p t e r 7

Conclusion

In this dissertation we have introduced a new approach for message passing pro-

gramming. Our approach is based on the thesis that communication patterns man-

ifested by parallel algorithms are best abstracted as the runtime composition of

process specific localised communication patterns. By avoiding the notion of a ‘pro-

cess group’, we have resolved some of the programming issues that are inherent

in process group based models, namely: ambiguity and loss of structural informa-

tion problem, choice dilemma and performance portability problem, and finally the

problem of redundant acknowledgement. We have also shown how the program-

ming model defined by our approach is non-ambiguous, uniform, expressive and ex-

tensible. Furthermore, we have discussed several practical advantages—automatic

overlapping of computations and communications, avoiding intermediate memory

copy in send-and-forget type communications—which a programmer can exploit

without understanding the internal implementation details of the runtime system.

In this chapter we summarise the contributions made by this dissertation, and dis-

cuss potential avenues for further research.

160

conclusion

7.1 Summary

In Chapter 1, we began with a general introduction on why abstraction models

are necessary for message passing programming. In Section 1.1, we discussed the

programming issues that are inherent in ‘process group’ based abstraction models

(see pages 4–5. This provided the motivation for re-analysing existing concepts of

a communication pattern, which led to our thesis that holistic communication pat-

terns manifested by a parallel algorithm are best abstracted as the implied runtime

composition of process specific localised communication patterns (see Section 1.2).

This thesis allowed us to define a communication pattern while avoiding the notion

of a ‘process group’. In this section, we also defined the qualitative properties which

we use to compare our approach with related systems (see page 6). The remainder

of this chapter summarised the contributions, and provided an outline of the organ-

isation of the remaining chapters of the dissertation; followed by a description of

the mathematical and pseudo-code conventions.

In Chapter 2, we discussed the scope of this dissertation (see Section 2.1), and

explored existing systems and approaches to message passing programming (see

Section 2.2). We then described, in detail, the objectives of this dissertation (see

Section 2.3). This was followed by a discussion of the approach we used to achieve

the objectives, based on guidelines provided by works on the psychology of pro-

gramming (see Section 2.4).

In Chapter 3 we began by re-analysing the concept of a communication pattern

(see Section 3.1). Based on this analysis and our thesis, we developed the β-channel

abstraction model. The abstraction model is based on the already established con-

cept of a control flow graph (see Section 3.2); which we enhance for pattern inte-

gration by introducing new concepts. We first defined the concept of a dependency

point (see Section 3.3) which represents the nodes in the control flow graph that pro-

duce data for, or consume data from, a remote process. To provide a framework for

pattern integration, we defined the concept of a dependency class (see Section 3.4),

which provides a logical grouping of dependency points. By using these depen-

dency classes as the basis, we defined the concept of a role (see Section 3.6), which

associates a process specific pattern to the dependency class. This approach allows

communication activation interfaces to change functionality during activation (see

Section 3.5), depending on the role of the dependency class. Finally, to simplify

translation from the abstraction model to the programming model, we defined the

concept of a communication structure (see Section 3.7), which in essence captures

the communications, the patterns and any specialised communication properties,

161

conclusion

such as message buffers and data types, that are required for a successful commu-

nication between processes. These communication structures are expressed in the

application program as a set of data structures defined as branching channels (or

β-channels) (see Section 3.8). In this chapter we discussed resolution of the pro-

gramming issues raised in Section 1.1 (see page 33), and provided an outline of the

advantages this approach has to offer (see Section 3.9).

While Chapter 3 was concerned with the development of a theoretically sound

abstraction model, Chapter 4 concentrated on the practical aspects. In this chap-

ter, we discussed the application development phases—communication structuring

phase and communication activation phase—which allow separation of concerns

(see Section 4.1). We then described the application programming interfaces (see

Section 4.2) which correspond directly to the abstraction concepts introduced in

Chapter 3. To demonstrate the simplicity of programming, we discussed imple-

mentations of five non-trivial parallel algorithms, in each case emphasising how the

diverse communication patterns are captured by the β-channels (see Section 4.3). In

the final part of this chapter, we discussed the relationship between the β-channel

programming model and skeletal parallel programming (see Section 4.4), and sug-

gested approaches which may improve the implementation and deployment of algo-

rithmic skeletons.

In Chapter 5 we discussed the implementation details that are relevant to the

understanding of the runtime system. We gave an overview of the design decisions

(see Section 5.1), and discussed the internal details of the multi-threaded runtime

system which overlaps computations and communications by introducing different

types of threads within a process (see Section 5.2). In this section, we described

the functional units of the runtime system. In Section 5.3, we discussed how the

communication structures are realised at runtime, and highlighted issues that are

related to the ‘planarity condition’. In Section 5.4, we described the asynchronous

rendezvous communication protocol, and contrasted this with the split-phase asyn-

chronous communication protocol. This chapter concluded with a discussion of

the low-level implementation details involved in the integration of programmer de-

finable message buffers into the runtime system (see Section 5.5).

Finally, in Chapter 6 we evaluated the β-channel approach both qualitatively

(see Section 6.1) and quantitatively (see Section 6.2). The evaluation was based on

implementations of the mean value analysis algorithm, using both mpi and β-channel

interfaces. To show the improvements in performance, we provided both micro- (see

Section 6.2.1 and Section 6.2.2) and macro-benchmark (see Section 6.2.3) results.

The experimental results showed that the β-channel interfaces had lower latency

162

conclusion

than mpi interfaces for large messages during less contention; while demonstrating

comparable performances during contention. It was shown that, by using the per-

formance optimisation for send-and-forget type communications (see Section 5.5.1),

applications could improve performance significantly, since the latency for the com-

mit based interfaces has been shown to be almost independent of the message size

being transferred (see Figure 6.9).

In conclusion, this dissertation has introduced a new way of understanding and

capturing communication patterns. Our model—which is based on the thesis that

holistic communication patterns are best abstracted as an implied runtime composi-

tion of process specific localised communication patterns—has resolved some of the

subtle programming issues that are related to ‘process group’ based message passing

models. By implementing several algorithms with diverse communication patterns,

we have demonstrated that the β-channel programming model is non-ambiguous,

uniform, expressive and extensible. Finally, through experimental results, we have

shown that the performance of message passing applications can be improved by

exploiting several features of the β-channel approach, for example, specialised mes-

sage buffering, avoiding intermediate memory copy during buffering, single-phase

asynchronous interfaces, and the automatic overlapping of computations and com-

munications through the multi-threaded runtime system.

7.2 Further research

In this section we discuss possible avenues for further research.

Application to Grid environment. In Section 1.1, we discussed the problem of

redundant acknowledgement, which is inherent in ‘process group’ models. In order

to discuss a practical concern related to this issue, let us assume a dynamic envi-

ronment where processes come and go, for example a Grid environment. In such

an environment, let us execute an implementation of the first decomposition of Ex-

ample 1.1.1; and focus on the scattering of data from the accountant. If dynamic

nodes on the Grid represent student processes, imagine a situation where students

enter and leave the system, as in a University. As collective communications are

based on process groups, every student who enters or leaves this system should be

acknowledged by all the other entities currently existing in the system. Hence, if we

start with the situation contemplated in Example 1.1.1, and another student, say S0,

enters the system, then the process groups on A, T and S should be changed accord-

ingly to reflect this new entry. However, these changes are not practically necessary

for S and T because they do not communicate with S0. This means, therefore, that

163

conclusion

with process group models, localised changes affect the whole system: complicating

the management of the Grid.

Since the β-channel approach resolves the problem of redundant acknowledge-

ment, processes executing a β-channel application program only acknowledge the

processes with which they directly share a communication link. From this, we can

observe that the β-channel approach provides an interesting avenue for managing

the Grid. In the current β-channel model, certain enhancements should be made to

the ordering of the processes in the ensemble. This is necessary because, for some of

the process lists (for example bc_plist_xall) the ordering does not matter, and there-

fore the insertion or removal of a process can be managed fairly easily; however, for

other process lists (for example bc_plist_succ) the ordering of the processes is directly

relevant to the management of the Grid. The question is how do we assign the ranks

in such cases? Some interesting works in this direction are [95, 98].

Removing the planarity condition. Another avenue for research is the explo-

ration of a new approach to internal tag assignment policy. We acknowledge that

the ‘planarity condition’ can become a deterrent to the adoption of the β-channel

approach. It would therefore be interesting to find an approach which removes the

planarity condition, yet provides us with the same results as before. It is important

to note here that any new tag assignment policy should also be completely asyn-

chronous, without the need for global communications. In essence, what we need is

a tag assignment policy that can be carried out statically, based on the compile-time

information which we have on the communication structures. One approach which

seems to show promise is the ‘name’ based tag assignment policy. In CSP [62], for

example, the name of the channel defines the sink-to-source link. We can therefore

devise such a scheme for the β-channel approach. One approach would be to use

the C preprocessor macro; for example, the macro create_sink() which is defined as:
#define create_sink(name,plist,buffer,role) \

name = bc_sink_create(#name, plist, buffer, role)

In this macro expansion, name is first used to represent a sink β-channel pointer,

and secondly, used as the string #name, which can be converted to a unique integer

tag by using an appropriate hash function [67, Section 2.9]. The sink-to-source link

can then be established using these tags.

Implementation of algorithmic skeletons. We have shown in Section 4.4 an

example implementation of the pipeline skeleton. By following similar approaches,

we can implement several other skeletons, such as farm, scan, map etc., as a set of

programming interfaces implemented on top of the β-channel interfaces. The ad-

vantage of such skeleton implementations, as discussed in Section 4.4.2, is that the

164

conclusion

skeleton abstraction layer could be bypassed at runtime. This means that program-

mers can take advantage of skeletal programming during the application develop-

ment phase, while avoiding possible performance degradation due to the skeleton

abstraction layer overhead, since activation of the β-channels directly interacts with

the low-level communication layer of the runtime system.

Integration with mpi. The β-channel runtime system is developed as an ap-

plication programming library, which is independent of any mpi implementation.

It is therefore possible for an application program to use both mpi and β-channel

interfaces. Since the functional units of the runtime system (see Figure 5.1) exist

independent of an mpi implementation, interfaces from either approach do not in-

terfere with each other’s functions.

165

a p p e n d i x A

Auxilliary functions

This appendix provides the source listing for the auxilliary functions utilised by the

example implementations.

/∗ Bit complement. ∗/
#define bit_complement (num, bit) ((1� (bit)) ⊗ (num))
/∗ Complex data type ∗/
typedef struct complex_s { double real; double img; } complex_t;
/∗ Complex addition. ∗/
void complex_addition (complex_t ∗a, complex_t ∗b) {

complex_t r;
r.real := a→real + b→real; r.img := a→img + b→img;
∗a := r; /∗ Store the result. ∗/

}
/∗ Complex addition. ∗/
void complex_subtraction (complex_t ∗a, complex_t ∗b) {

complex_t r;
r.real := a→real − b→real; r.img := a→img − b→img;
∗a := r; /∗ Store the result. ∗/

}
/∗ Complex multiplication. ∗/
void complex_multiply (complex_t ∗r, complex_t ∗a, complex_t ∗b) {

r→real := (a→real ∗ b→real) − (a→img ∗ b→img);
r→img := (a→real ∗ b→img) + (a→img ∗ b→real);

}
/∗ Complex power. ∗/
void complex_power (complex_t ∗r, complex_t ∗a, int p) {

double c;
int i;
if (p = 0) { r→real := 1.0; r→img := 0.0; return ; }
r→real := a→real; r→img := a→img;
for (i := 1; i < p; i++) {

c := (r→real ∗ a→real) − (r→img ∗ a→img);
r→img := (r→real ∗ a→img) + (r→img ∗ a→real);
r→real := c;

}
}
/∗ Multiply with power of ith primitive root. ∗/
void multiply_omega(complex_t ∗coeff, int i, int p) {

complex_t a, b;
double theta := 6.283185307 / i;
a.real := cos (theta);
a.img := sin (theta);
complex_power (&b, &a, p);

166

auxilliary functions

complex_multiply (&a, coeff, &b);
∗coeff := a; /∗ Store the result. ∗/

}
/∗ Compare and exchange. ∗/
void compare_exchange (int nlocal, int ∗elem, int ∗workspace, short small) {

int i, j, k;
memcpy (workspace, elem, bytes);
if (small) {

i := 0; j := nlocal;
for (k := 0; k < nlocal; k++)

if (workspace[i] < workspace[j]) elem[k] := workspace[i++];
else elem[k] := workspace[j++];

} else {
i := local_upper; j := recv_upper;
for (k := i; k > 0; k−−)

if (workspace[i] > workspace[j]) elem[k] := workspace[i−−];
else elem[k] := workspace[j−−];

}
}
/∗ Quick sort comparison. ∗/
int compare (const void ∗x, const void ∗y) {

return (∗ (int ∗) x − ∗ (int ∗) y);
}
/∗ Transpose a matrix. ∗/
void transpose (int nrow, int ncol, int ∗matrix) {

int ∗temp;
int i, j, k := nrow ∗ ncol;
temp := (int ∗) calloc (k, sizeof (int));
for (i := 0; i < nrow; i++)

for (j := 0; j < ncol; j++) {
∗ (temp + j ∗ nrow + i) := ∗ (matrix + i ∗ ncol + j);

}
memcpy (matrix, temp, k ∗ sizeof (int));
free (temp);

}
/∗ Matrix multiplication of blocks. ∗/
void multiply_blocks (int ∗result, int nrblk, int ca, int ∗rows, int ncblk, int cb, int ∗cols, int n) {

int i, j, ∗c, ∗temp;
result += ((n + bc_rank) % bc_size) ∗ ncblk;
temp := result;
for (i := 0; i < nrblk; i++) {

c := cols;
for (j := 0; j < ncblk; j++) {
∗ (temp + j) := multiply_row_column (rows, c, ca);
c += ca;

}
rows += ca; temp += cb;

}
}
/∗ Vector multiplication. ∗/

167

auxilliary functions

int multiply_row_column (int ∗row, int ∗col, int c) {
int result := 0, i;
for (i := 0; i < c; i++) result += ∗ (row + i) ∗ ∗ (col + i);
return result;

}
/∗ Generate the XPM image file ∗/
void generate_image (int ∗result, int rows, int cols) {

FILE ∗out;
int i, j, code;
char colour[] := " .XoO+@#$%&∗=−;:";
out := fopen ("mandelbrot.xpm", "w");
fprintf(out, "%s", "/∗ XPM file: Mandelbrot Set ∗/ \n"

"static char ∗mandelbrot[] := {\n");
fprintf (out, "\"%d %d 16 1\",\n", rows, cols);
fprintf (out, "%s", "\" c #000000\",\n"

"\". c #220000\",\n\"X c #440000\",\n\"o c #660000\",\n\"O c #880000\",\n"
"\"+ c #aa0000\",\n\"@ c #cc0000\",\n\"# c #ee0000\",\n\"$ c #ee2200\",\n"
"\"\% c #ee4400\",\n\"& c #ee6600\",\n\"∗ c #ee8800\",\n\":= c #eeaa00\",\n"
"\"− c #eebb00\",\n\"; c #eedd00\",\n\": c #eeff00\"");

#define SPREAD_COLLECT
for (i := 0; i < rows; i++) {

fprintf(out, "%s", ",\n\"");
for (j := 0; j < cols; j++) {

code := ∗ (result + i ∗ cols + j);
fprintf (out, "%c", colour[code%16]);

}
fprintf (out, "%s", "\"");

}
fprintf (out, "%s", "};\n");

#elif FARM_HARVEST
for (i := 0; i < PIX_ROWS; i++) {

fprintf(out, "%s", ",\n\"");
for (k := 0; k < PIX_ROWS; k++)

if (result[k].row = i) break ;
for (j := 0; j < PIX_COLS; j++) {

code := result[k].color[j];
fprintf(out, "%c", colour[code%16]);

}
fprintf(out, "%s", "\"");

}
fprintf(out, "%s", "};\n");

#endif
fclose (out);

}
/∗ Calculate set inclusion for a block of complex points. ∗/
void calc_mandel_block (int count, complex_t ∗in, int ∗out) {

int i;
for (i := 0; i < count; i++) out[i] := calc_mandel_pixel (in[i]);

}
/∗ Calculate Set inclusion (returns color code). ∗/

168

auxilliary functions

int calc_mandel_pixel (complex_t c) {
int count := 0, max_iter := 255;
complex_t z;
double len_square, temp;
z.real := z.img := 0.0;
do {

temp := z.real∗z.real − z.img∗z.img + c.real;
z.img := 2.0∗z.real∗z.img + c.img; z.real := temp;
len_square := z.real∗z.real + z.img∗z.img;
if (len_square > 4.0) break ;
count++;

} while (count < max_iter);
return count;

}

169

Bibliography

[1] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986. [pp. 25 and 115.]

[2] Mohammad Mursalin Akon, Dhrubajyoti Goswami, and Hon Fung Li. A
Model for Designing and Implementing Parallel Applications Using Extensi-
ble Architectural Skeletons. In Proc. of PaCT, volume 3606 of LNCS, pages
367–380. Springer-Verlag, 2005. [pp. 18.]

[3] F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun.
ACM, 19(3):137, 1976. [pp. 35.]

[4] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, 1970.
[pp. 35.]

[5] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks
of Workstations. IEEE Computer, 29(2):18–28, February 1996. [pp. 14.]

[6] Gregory R. Andrews. Paradigms for Process Interaction in Distributed Pro-
grams. ACM Comput. Surv., 23(1):49–90, 1991. [pp. 2 and 13.]

[7] Gregory R. Andrews and Fred B. Schneider. Concepts and Notations for
Concurrent Programming. ACM Comput. Surv., 15(1):3–43, 1983. [pp. 12.]

[8] John Anvik, Jonathan Schaeffer, Duane Szafron, and Kai Tan. Why Not Use
a Pattern-Based Parallel Programming System? In Proc. of Euro-Par 2003,
volume 2790 of LNCS, pages 81–86, 2003. [pp. 18.]

[9] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:
A structured high level programming language and its structured support.
Concurrency: Practice and Experience, 7(3):225–255, May 1995. [pp. 16.]

[10] B. Bacci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Skeletons and
Transformations in an Integrated Parallel Programming Environment. In
V. Malyshkin, editor, Proc. of PaCT, volume 1662 of LNCS, pages 13–27.
Springer-Verlag, 1999. [pp. 16.]

[11] Henri E. Bal. Programming Distributed Systems. Silicon Press, Summit, NJ,
1990. [pp. 14.]

170

bibliography

[12] Henri E. Bal. A Comparative Study of Five Parallel Programming Languages.
In Proc. of EurOpen Spring Conf. on Open Distributed Systems, pages 209–
228, Tromso, 20–24 May 1991. [pp. 14.]

[13] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A
language for parallel programming of distributed systems. IEEE Transactions
on Software Engineering, 18(3):190–205, 1992. [pp. 14.]

[14] Vasanth Bala and Shlomo Kipnis. Process Groups: A Mechanism for the Co-
ordination of and Communication Among Processes in the Venus Collective
Communication Library. In Proc. of IPPS, pages 614–620, 1993. [pp. 2.]

[15] John Barnes. Programming in Ada 95. Addison Wesley, 1998. [pp. 123.]

[16] Forest Baskett, K. Mani Chandy, Richard R. Muntz, and Fernando G. Pala-
cios. Open, Closed, and Mixed Networks of Queues with Different Classes
of Customers. J. ACM, 22(2):248–260, 1975. [pp. 132.]

[17] Anne Benoit, Murray Cole, Stephen Gilmore, and Jane Hillston. Flexible
Skeletal Programming with eSkel. In Proc. of Euro-Par, volume 3648 of
LNCS, pages 761–770. Springer-Verlag, 2005. [pp. 18.]

[18] Richard Bird. Introduction to Functional Programming using Haskell.
Prentice-Hall, second edition, 1998. [pp. 17.]

[19] Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure
Calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984. [pp. 13.]

[20] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.
Distributed and abstract types in Emerald. IEEE Trans. Softw. Eng., 13(1):65–
76, 1987. [pp. 14.]

[21] G.H. Botorog and H. Kuchen. Skil: an Imperative Language with Algorith-
mic Skeletons for Efficient Distributed Programming. In Proc. of the 5th Intl.
Symposium on High Performance Distributed Computing, Syracuse, New
York, USA, pages 243–252. IEEE Computer Society Press, 1996. [pp. 17.]

[22] Alex Brodsky, Jan Bækgaard Pedersen, and Alan Wagner. On the Complexity
of Buffer Allocation in Message Passing Systems. Journal of Parallel and
Distributed Computing, 65:692–713, 2005. [pp. 111.]

[23] Raymond M. Bryant, Anthony E. Krzesinski, M. Seetha Lakshmi, and
K. Mani Chandy. The MVA priority approximation. ACM Trans. Comput.
Syst., 2(4):335–359, 1984. [pp. 132.]

[24] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environ-
ment for MPI. In Proc. of Supercomputing Symposium, pages 379–386, 1994.
[pp. 145.]

171

bibliography

[25] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997. [pp. 112 and 145.]

[26] Rajkumar Buyya. High Performance Cluster Computing: Architectures and
Systems. Prentice Hall, first edition, 1999. [pp. 11.]

[27] Jeffrey P. Buzen. Computational algorithms for closed queueing networks
with exponential servers. Commun. ACM, 16(9):527–531, 1973. [pp. 132.]

[28] Lennart Carleson and Theodore W. Gamelin. Complex Dynamics. Springer-
Verlag, 1993. [pp. 89.]

[29] K.M. Chandy, R. Manohar, B.L. Massingill, and D.I. Meiron. Integrating
Task and Data Parallelism with the Group Communication Archetype. In
Proc. of 9th Intl. Parallel Processing Symposium, pages 724–733, Santa Bar-
bara, CA, 1995. [pp. 18.]

[30] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communica-
tion specifications: a comprehensive study. ACM Comput. Surv., 33(4):427–
469, 2001. [pp. 19.]

[31] W. D. Clinger. Foundations of Actor Sematics. Technical Report AI-TR-633,
MIT Articificial Intelligence Laboratory, May 1981. [pp. 25 and 115.]

[32] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, Cambridge, Massachusetts, 1989. [pp. 7, 15
and 17.]

[33] Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto for
skeletal parallel programming. Parallel Computing, 30(3):389–406, March
2004. [pp. 7, 18 and 107.]

[34] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calcu-
lation of Complex Fourier Series. Mathematics of Computation, 19(90):297–
301, April 1965. [pp. 83.]

[35] Robert Cypher and Eric Leu. The Semantics of Blocking and Nonblocking
Send and Receive Primitives. In Proc. 18th IEEE Intl. Parallel Processing Sym-
posium, pages 729–735, April 1994. [pp. 121 and 122.]

[36] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for Data Parallelism
in P3L. In C. Lengauer, M. Griebl, and S. Gorlatch, editors, Proc. of Euro-
Par, volume 1300 of LNCS, pages 619–628, Passau, Germany, August 1997.
Springer-Verlag. [pp. 16.]

[37] J. Darlington, Y. Guo, and H. To. Functional Skeletons for Parallel Coordina-
tion. In Proc. of Euro-Par, volume 966 of LNCS, pages 55–66, August 1995.
[pp. 17.]

172

bibliography

[38] E.W. Felten and D. McNamee. Improving the performance of message-
passing applications by multithreading. In Proc. of Scalable High Perfor-
mance Computing Conf., pages 84–89, Williamsburg, VA, 1992. [pp. 111.]

[39] Ian Foster, Carl Kesselman, and Steven Tuecke. The Nexus Approach to In-
tegrating Multithreading and Communication. Journal of Parallel and Dis-
tributed Computing, 37(0108):70–82, 1996. [pp. 111.]

[40] Ian T. Foster. Designing and Building Parallel Programs. Addison-Wesley,
1994. [pp. 12 and 20.]

[41] Nissim Francez and Brent Hailpern. Script: A communication abstraction
mechanism. In Proc. of the 2nd ACM symposium on Principles of distributed
computing, pages 213–227, New York, NY, USA, 1983. ACM Press. [pp. 25.]

[42] Keir Fraser. Practical Lock-freedom. PhD thesis, University of Cambridge,
2004. [pp. 9.]

[43] L.L. Garlick. Out-of-band control signals in a host-to-host protocol. Net-
work Working Group RFC 721, September 1976. [pp. 125.]

[44] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM: Parallel Virtual Machine: A User’s Guide and
Tutorial for Network Parallel Computing. MIT Press, Cambridge, Mas-
sachusetts, 1995. [pp. 14.]

[45] D. Gelernter. Generative communication in Linda. ACM Trans. on Pro-
gramming Languages and Systems, 7(1):80–112, January 1985. [pp. 13, 51
and 125.]

[46] Claudio Gennaro and Peter J. B. King. Parallelising the Mean Value Analysis
Algorithm. Trans. of the Society for computer Simulation Intl., 16(1):16–22,
March 1999. [pp. 132.]

[47] Sergei Gorlatch. Send-Receive Considered Harmful: Myths and Realities of
Message Passing. ACM Trans. on Programming Languages and Systems,
26(1):47–56, 2004. [pp. 19.]

[48] Dhrubajyoti Goswami. Parallel Architectural Skeletons: Re-usable Building
Blocks for Parallel Applications. Ph.d. thesis, University of Waterloo, Water-
loo, Ontario, Canada, 2001. [pp. 18.]

[49] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduc-
tion to Parallel Computing. Addison-Wesley, second edition, 2003. [pp. 12,
79, 83, 97 and 122.]

[50] Lucio Grandinetti, editor. Grid computing: the new frontier of high perfor-
mance computing, volume 14 of Advances in parallel computing. Elsevier,
2005. [pp. 11.]

173

bibliography

[51] T. R. G. Green. Cognitive dimensions of notations. In Proc. of the 5th Conf.
of the British Computer Society Human-Computer Interaction Specialist
Group, People and Computers V, pages 443–460, Nottingham, 5–8 Septem-
ber 1989. British Computer Society, Cambridge University Press. [pp. 27.]

[52] T. R. G. Green. Psychology of Programming, chapter Programming Lan-
guages as Information Structures. Computers and People Series. Academic
Press, 1990. [pp. 27.]

[53] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI message passing interface
standard. Parallel Computing, 22(6):789–828, September 1996. [pp. 121.]

[54] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. Scientific and En-
gineering Computation. MIT Press, Cambridge, Massachusetts, second edi-
tion, 1999. [pp. 14.]

[55] William D. Gropp. Learning from the Success of MPI. In B. Monien, V.K.
Prasanna, and S. Vajapeyam, editors, Proc. of HiPC, volume 2228 of LNCS,
pages 81–92. Springer-Verlag, 2001. [pp. 4.]

[56] R. Guerraoui. Distributed Programming Abstractions. ACM Comput. Surv.,
28(4es):153, 1996. [pp. 13.]

[57] A. Gursoy and L.V. Kalé. Dagger: Combining the Benefits of Synchronous
and Asynchronous Communication Styles. In H. G. Siegel, editor, Proceed-
ings of the 8th International Parallel Processing Symposium, pages 590–596,
Cancun, Mexico, April 1994. [pp. 51.]

[58] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988. [pp. 1.]

[59] C. A. Herrmann and C. Lengauer. HDC: A Higher-Order Language for
Divide-and-Conquer. Parallel Processing Letters, 10(2–3):239–250, 2000.
[pp. 17.]

[60] C. E. Hewitt and H. Baker. Laws for Communicating Parallel Processes. In
Proc. of the IFIP Congress, pages 987–992, August 1977. [pp. 115.]

[61] C. A. R. Hoare. Hints on programming language design. Technical Report
STAN-CS-73-403, Stanford University, Stanford Artificial Intelligence Labo-
ratory, October 1973. [pp. 28.]

[62] C. A. R. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666–677, 1978. [pp. 13 and 164.]

[63] C. A. R. Hoare. The emperor’s old clothes. Communications of the ACM,
24(2):75–83, 1981. [pp. 28.]

174

bibliography

[64] IEEE/ANSI. 9945-1:1996 (ISO/IEC) Information Technology—Portable Op-
erating System Interface (POSIX)—Part 1: System Application: Program In-
terface (API) [C Language] (ANSI). IEEE Standards Press, IEEE/ANSI Std.
1003.1 1996 edition, 1996. [pp. 60.]

[65] Wesley M. Johnston, J.R. Paul Hanna, and Richard J. Millar. Advances in
dataflow programming languages. ACM Computing Surveys, 36(1):1–34,
March 2004. [pp. 51.]

[66] R.M. Karp and R.E. Miller. Properties of a model for parallel computation:
determinacy, termination, queueing. SIAM Journal of Applied Mathematics,
14(6):1390–1411, November 1966. [pp. 111.]

[67] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-
Wesley, 1999. [pp. 164.]

[68] Brian W. Kernighan and Dennis M. Ritchie. The C programming language:
ANSI C. Prentice-Hall Software Series. Prentice-Hall Inc., Second edition,
1988. [pp. 9 and 17.]

[69] Herbert Kuchen. A Skeleton Library. Technical Report 6/02-I, University of
Münster, 2002. [pp. 18.]

[70] Koen Langendoen, Raoul Bhoedjang, and Henri Bal. Models for asyn-
chronous message handling. IEEE Concurrency, 5(2):28–38, April–June
1997. [pp. 111.]

[71] Claudia Leopold. Parallel and Distributed Computing: A survey of Models,
Paradigms and approaches. Wiley Series on Parallel and Distributed Com-
puting. Wiley-Interscience, John Wiley & Sons, Inc., 2001. [pp. 12, 13, 17
and 123.]

[72] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Tan.
From patterns to frameworks to parallel programs. Parallel Computing,
28:1663–1683, 2002. [pp. 18.]

[73] Spiros Mancoridis and Richard C. Holt. Recovering the structure of software
systems using tube graph interconnection clustering. In Proc. Intl. Conf. on
Software Maintenance (ICSM), pages 23–32. IEEE, November 1996. [pp. 28.]

[74] B.L. Massingill and K.M. Chandy. Parallel program Archetypes. In Proc.
13th Intl. Parallel and Distributed Processing (IPPS), pages 290–296, San
Juan, 1999. [pp. 18.]

[75] Kiminori Matsuzaki, Kazuhiko Kakehi, and Hideya Iwasaki. A Fusion-
Embedded Skeleton Library. In Proc. Euro-Par, volume 3149 of LNCS, pages
644–653. Springer-Verlag, 2004. [pp. 18.]

175

bibliography

[76] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Patterns
for Parallel Programming. Addison-Wesley, 2005. [pp. 12 and 18.]

[77] Daniel A. Menascé and Virgilio A. F. Almeida. Capacity Planning for Web
Services: Metrics, Models and Methods. Prentice Hall, 2002. [pp. 133.]

[78] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992. [pp. 28.]

[79] Bertrand Meyer. Principles of language design and evolution. In Mil-
lenial Perspectives in Computer Science (Proceedings of the 1999 Oxford-
Microsoft Symposium in Honour of Sir Tony Hoare), pages 229–246, Pal-
grave, Basingstoke-New York, 2000. [pp. 28.]

[80] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion mod-
els: bridging the gap between source and high-level models. In Proc. of the
3rd ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 18–28, New York, NY, USA, 1995. ACM Press. [pp. 28.]

[81] Ronald A. Olsson, Gregory R. Andrews, Michael H. Coffin, and Gregg M.
Townsend. SR: A language for parallel and distributed programming. Tech-
nical Report TR 92-09, The University of Arizona, Tucson, 1992. [pp. 14.]

[82] C. Pair. Psychology of Programming, chapter Programming, Programming
Languages and Programming Methods. Computers and People Series. Aca-
demic Press, 1990. [pp. 27.]

[83] H.-O. Peitgen and P.H. Richter. The Beauty of Fractals: Images of Complex
Dynamical Systems. Springer-Verlag, 1986. [pp. 90.]

[84] N. Pennington. Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19:295–341,
1987. [pp. 27.]

[85] M. Petre. Psychology of Programming, chapter Expert Programmers and Pro-
gramming Languages. Computers and People Series. Academic Press, 1990.
[pp. 28.]

[86] Michael Jay Quinn. Parallel Computing: Theory and Practice. Computer
Science Series. McGraw Hill International Edition, 1994. [pp. 12, 76, 79, 83,
85 and 97.]

[87] Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Andrew P. Black, Nor-
man C. Hutchinson, and Eric Jul. Emerald: A general-purpose programming
language. Software - Practice and Experience, 21(1):91–118, 1991. [pp. 14.]

[88] Michel Raynal. Distributed Algorithms and Protocols. John Wiley and Sons,
1988. [pp. 24.]

[89] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multichain
queuing networks. J. ACM, 27(2):313–322, 1980. [pp. 132.]

176

bibliography

[90] Paul Sack and Anne C. Elster. Fast MPI Broadcast through Reliable Multi-
casting. In J. Fagerholm et al., editor, Proc. PARA, volume 2367 of LNCS,
pages 445–453. Springer-Verlag, 2002. [pp. 32.]

[91] P. Schweitzer. Approximate analysis of Multiclass Closed Networks of
Queues. In Proc. Int. Conf. Stochastic Cont. Optimization, Amsterdam,
1979. [pp. 132 and 133.]

[92] David B. Skillicorn and Domenico Talia. Models and Languages for Parallel
Computation. ACM Comput. Surv., 30(2):123–169, June 1998. [pp. 12.]

[93] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-
garra. MPI: The Complete Reference. Scientific and Engineering Computa-
tion. MIT Press, Cambridge, Massachusetts, 1996. [pp. 2, 12, 19, 21, 51, 126
and 152.]

[94] Richard W. Stevens, Bill Fenner, and Andrew M. Rudoff. Unix Network Pro-
gramming: The Sockets Networking API, volume 1. Prentice Hall, third edi-
tion, 2003. [pp. 125 and 145.]

[95] Jaspal Subhlok, Peter Lieu, and Bruce Lowekamp. Automatic node selection
for high performance applications on networks. In Proc. 7th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages 163–
172, New York, NY, USA, 1999. ACM Press. [pp. 164.]

[96] Top500 supercomputer sites. http://www.top500.org/. [pp. 1 and 11.]

[97] Andrew S. Tanenbaum, M. Frank Kaashoek, and Henri E. Bal. Parallel pro-
gramming using shared objects and broadcasting. IEEE Computer, 25(8):10–
19, 1992. [pp. 32.]

[98] Kenjiro Taura, Kenji Kaneda, Toshio Endo, and Akinori Yonezawa.
Phoenix: a parallel programming model for accommodating dynamically
joining/leaving resources. In Proc. 9th ACM SIGPLAN symposium on Prin-
ciples and Practice of Parallel Programming, pages 216–229, New York, NY,
USA, 2003. ACM Press. [pp. 164.]

[99] Gregor von Bochmann. Concepts for Distributed Systems Design. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1983. [pp. 24.]

[100] Philip Wadler. Why no one uses functional languages. SIGPLAN Not.,
33(8):23–27, 1998. [pp. 15.]

[101] Gregory V. Wilson. A Glossary of Parallel Computing Terminology. IEEE
Parallel & Distributed Technology, 1(1):52–67, 1993. [pp. 32.]

[102] Nicklaus Wirth. Algorithm + Data Structures = Programs. Prentice-Hall
series in Automatic Computation. Prentice-Hall, 1976. [pp. 59.]

177

	Introduction
	Motivation
	Thesis and approach
	Contribution and outline
	Notations and conventions

	Background
	What is this dissertation about?
	What are the existing approaches?
	Inter-process communications
	Skeletal programming models
	Process group based abstraction models

	What are the objectives of this dissertation?
	How do we plan to attain these objectives?
	Guidelines from the psychology of programming

	Summary

	Abstraction with communication structures
	Understanding a communication pattern
	A sequential foundation: the control flow graph
	Towards parallelisation: the dependency point
	Towards pattern abstraction: the dependency class
	Initiating a communication: the dependency class activation
	Defining communication patterns: the role
	Putting it all together: the communication structure
	The encapsulating data structure: the branching channel
	Practical advantages of the -channel approach
	Avoiding intermediate memory copy

	Summary

	Programming with communication structures
	Two-phase application development
	Application programming interfaces
	Implementing common algorithms
	Gaussian elimination
	Fast Fourier transform
	Odd-even transposition sorting
	Mandelbrot set task farm
	Matrix multiplication

	Skeletal parallel programming
	Skeletons, patterns and communication structures
	Skeletal programming with -channels

	Summary

	Implementation details
	General design decisions
	Program execution and the runtime system
	Structuring communications at runtime
	Establishing the sink-to-source link
	Example execution of an application program
	Why do we need `the planarity condition'?

	Communication protocol
	Synchronous interfaces
	Asynchronous interfaces
	Asynchronous rendezvous

	Integrating message buffers within the runtime system
	Optimisation for send-and-forget communications

	Summary

	Evaluation
	Qualitative evaluation
	Discussion on the qualitative properties

	Quantitative evaluation
	Point-to-point performance
	Collective performance
	Performance of the mean value analysis algorithm

	Summary

	Conclusion
	Summary
	Further research

	Auxilliary functions
	Bibliography

